WorldWideScience

Sample records for catalytic wet oxidation

  1. Removal of ammonia solutions used in catalytic wet oxidation processes.

    Science.gov (United States)

    Hung, Chang Mao; Lou, Jie Chung; Lin, Chia Hua

    2003-08-01

    Ammonia (NH(3)) is an important product used in the chemical industry, and is common place in industrial wastewater. Industrial wastewater containing ammonia is generally either toxic or has concentrations or temperatures such that direct biological treatment is unfeasible. This investigation used aqueous solutions containing more of ammonia for catalytic liquid-phase oxidation in a trickle-bed reactor (TBR) based on Cu/La/Ce composite catalysts, prepared by co-precipitation of Cu(NO(3))(2), La(NO(3))(2), and Ce(NO(3))(3) at 7:2:1 molar concentrations. The experimental results indicated that the ammonia conversion of the wet oxidation in the presence of the Cu/La/Ce composite catalysts was determined by the Cu/La/Ce catalyst. Minimal ammonia was removed from the solution by the wet oxidation in the absence of any catalyst, while approximately 91% ammonia removal was achieved by wet oxidation over the Cu/La/Ce catalyst at 230 degrees C with oxygen partial pressure of 2.0 MPa. Furthermore, the effluent streams were conducted at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes, and a reaction pathway was found linking the oxidizing ammonia to nitric oxide, nitrogen and water. The solution contained by-products, including nitrates and nitrites. Nitrite selectivity was minimized and ammonia removal maximized when the feed ammonia solution had a pH of around 12.0.

  2. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Quesada-Penate, I. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Julcour-Lebigue, C., E-mail: carine.julcour@ensiacet.fr [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Jauregui-Haza, U. J. [Instituto Superior de Tecnologias y Ciencias Aplicadas, Ave. Salvador Allende y Luaces, Habana (Cuba); Wilhelm, A. M.; Delmas, H. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France)

    2012-06-30

    Highlights: Black-Right-Pointing-Pointer Three activated carbons (AC) compared as adsorbents and oxidation catalysts. Black-Right-Pointing-Pointer Similar evolution for catalytic and adsorptive properties of AC over reuses. Black-Right-Pointing-Pointer Acidic and mesoporous AC to be preferred, despite lower initial efficiency. Black-Right-Pointing-Pointer Oxidative degradation of paracetamol improves biodegradability. Black-Right-Pointing-Pointer Convenient hybrid adsorption-regenerative oxidation process for continuous treatment. - Abstract: The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  3. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption – Catalytic wet air oxidation on activated carbons

    International Nuclear Information System (INIS)

    Quesada-Peñate, I.; Julcour-Lebigue, C.; Jáuregui-Haza, U.J.; Wilhelm, A.M.; Delmas, H.

    2012-01-01

    Highlights: ► Three activated carbons (AC) compared as adsorbents and oxidation catalysts. ► Similar evolution for catalytic and adsorptive properties of AC over reuses. ► Acidic and mesoporous AC to be preferred, despite lower initial efficiency. ► Oxidative degradation of paracetamol improves biodegradability. ► Convenient hybrid adsorption–regenerative oxidation process for continuous treatment. - Abstract: The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  4. [Kinetics of catalytic wet air oxidation of phenol in trickle bed reactor].

    Science.gov (United States)

    Li, Guang-ming; Zhao, Jian-fu; Wang, Hua; Zhao, Xiu-hua; Zhou, Yang-yuan

    2004-05-01

    By using a trickle bed reactor which was designed by the authors, the catalytic wet air oxidation reaction of phenol on CuO/gamma-Al2O3 catalyst was studied. The results showed that in mild operation conditions (at temperature of 180 degrees C, pressure of 3 MPa, liquid feed rate of 1.668 L x h(-1) and oxygen feed rate of 160 L x h(-1)), the removal of phenol can be over 90%. The curve of phenol conversion is similar to "S" like autocatalytic reaction, and is accordance with chain reaction of free radical. The kinetic model of pseudo homogenous reactor fits the catalytic wet air oxidation reaction of phenol. The effects of initial concentration of phenol, liquid feed rate and temperature for reaction also were investigated.

  5. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons.

    Science.gov (United States)

    Quesada-Peñate, I; Julcour-Lebigue, C; Jáuregui-Haza, U J; Wilhelm, A M; Delmas, H

    2012-06-30

    The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Catalytic wet oxidation of ammonia solution: Activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst

    International Nuclear Information System (INIS)

    Hung, C.-M.

    2009-01-01

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H 2 PtCl 6 , Pd(NO 3 ) 3 and Rh(NO 3 ) 3 . Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h -1 in the wet catalytic processes

  7. Catalytic wet oxidation of ammonia solution: Activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hung, C.-M. [Department of Industry Engineering and Management, Yung-Ta Institute of Technology and Commerce, 316 Chung-shan Road, Linlo, Pingtung 909, Taiwan (China)], E-mail: hungcm1031@gmail.com

    2009-04-15

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H{sub 2}PtCl{sub 6}, Pd(NO{sub 3}){sub 3} and Rh(NO{sub 3}){sub 3}. Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h{sup -1} in the wet catalytic processes.

  8. Catalytic wet oxidation of ammonia solution: activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst.

    Science.gov (United States)

    Hung, Chang-Mao

    2009-04-15

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H(2)PtCl(6), Pd(NO(3))(3) and Rh(NO(3))(3). Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes.

  9. Catalytic and non-catalytic wet air oxidation of sodium dodecylbenzene sulfonate: kinetics and biodegradability enhancement.

    Science.gov (United States)

    Suárez-Ojeda, María Eugenia; Kim, Jungkwon; Carrera, Julián; Metcalfe, Ian S; Font, Josep

    2007-06-18

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were investigated as suitable precursors for the biological treatment of industrial wastewater containing sodium dodecylbenzene sulfonate (DBS). Two hours WAO semi-batch experiments were conducted at 15 bar of oxygen partial pressure (P(O2)) and at 180, 200 and 220 degrees C. It was found that the highest temperature provides appreciable total organic carbon (TOC) and chemical oxygen demand (COD) abatement of about 42 and 47%, correspondingly. Based on the main identified intermediates (acetic acid and sulfobenzoic acid) a reaction pathway for DBS and a kinetic model in WAO were proposed. In the case of CWAO experiments, seventy-two hours tests were done in a fixed bed reactor in continuous trickle flow regime, using a commercial activated carbon (AC) as catalyst. The temperature and P(O2) were 140-160 degrees C and 2-9 bar, respectively. The influence of the operating conditions on the DBS oxidation, the occurrence of oxidative coupling reactions over the AC, and the catalytic activity (in terms of substrate removal) were established. The results show that the AC without any supported active metal behaves bi-functional as adsorbent and catalyst, giving TOC conversions up to 52% at 160 degrees C and 2 bar of P(O2), which were comparable to those obtained in WAO experiments. Respirometric tests were completed before and after CWAO and to the main intermediates identified through the WAO and CWAO oxidation route. Then, the readily biodegradable COD (COD(RB)) of the CWAO and WAO effluents were found. Taking into account these results it was possible to compare whether or not the CWAO or WAO effluents were suitable for a conventional activated sludge plant inoculated with non adapted culture.

  10. Catalytic and non-catalytic wet air oxidation of sodium dodecylbenzene sulfonate: Kinetics and biodegradability enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Suarez-Ojeda, Maria Eugenia [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona, Catalonia (Spain); Departament d' Enginyeria Quimica, Edifici Q-ETSE, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia (Spain); Kim, Jungkwon [Chemical Engineering and Analytical Sciences Department, University of Manchester, Manchester (United Kingdom); Carrera, Julian [Departament d' Enginyeria Quimica, Edifici Q-ETSE, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia (Spain); Metcalfe, Ian S. [Chemical Engineering and Advanced Materials Department, University of Newcastle upon Tyne, Newcastle upon Tyne (United Kingdom); Font, Josep [Departament d' Enginyeria Quimica, Escola Tecnica Superior d' Enginyeria Quimica, Universitat Rovira i Virgili, Av. Paisos Catalans 26, 43007 Tarragona, Catalonia (Spain)]. E-mail: jose.font@urv.cat

    2007-06-18

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were investigated as suitable precursors for the biological treatment of industrial wastewater containing sodium dodecylbenzene sulfonate (DBS). Two hours WAO semi-batch experiments were conducted at 15bar of oxygen partial pressure (P{sub O{sub 2}}) and at 180, 200 and 220deg. C. It was found that the highest temperature provides appreciable total organic carbon (TOC) and chemical oxygen demand (COD) abatement of about 42 and 47%, correspondingly. Based on the main identified intermediates (acetic acid and sulfobenzoic acid) a reaction pathway for DBS and a kinetic model in WAO were proposed. In the case of CWAO experiments, seventy-two hours tests were done in a fixed bed reactor in continuous trickle flow regime, using a commercial activated carbon (AC) as catalyst. The temperature and P{sub O{sub 2}} were 140-160deg. C and 2-9bar, respectively. The influence of the operating conditions on the DBS oxidation, the occurrence of oxidative coupling reactions over the AC, and the catalytic activity (in terms of substrate removal) were established. The results show that the AC without any supported active metal behaves bi-functional as adsorbent and catalyst, giving TOC conversions up to 52% at 160deg. C and 2 bar of P{sub O{sub 2}}, which were comparable to those obtained in WAO experiments. Respirometric tests were completed before and after CWAO and to the main intermediates identified through the WAO and CWAO oxidation route. Then, the readily biodegradable COD (COD{sub RB}) of the CWAO and WAO effluents were found. Taking into account these results it was possible to compare whether or not the CWAO or WAO effluents were suitable for a conventional activated sludge plant inoculated with non adapted culture.

  11. Catalytic and non-catalytic wet air oxidation of sodium dodecylbenzene sulfonate: Kinetics and biodegradability enhancement

    International Nuclear Information System (INIS)

    Suarez-Ojeda, Maria Eugenia; Kim, Jungkwon; Carrera, Julian; Metcalfe, Ian S.; Font, Josep

    2007-01-01

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were investigated as suitable precursors for the biological treatment of industrial wastewater containing sodium dodecylbenzene sulfonate (DBS). Two hours WAO semi-batch experiments were conducted at 15bar of oxygen partial pressure (P O 2 ) and at 180, 200 and 220deg. C. It was found that the highest temperature provides appreciable total organic carbon (TOC) and chemical oxygen demand (COD) abatement of about 42 and 47%, correspondingly. Based on the main identified intermediates (acetic acid and sulfobenzoic acid) a reaction pathway for DBS and a kinetic model in WAO were proposed. In the case of CWAO experiments, seventy-two hours tests were done in a fixed bed reactor in continuous trickle flow regime, using a commercial activated carbon (AC) as catalyst. The temperature and P O 2 were 140-160deg. C and 2-9bar, respectively. The influence of the operating conditions on the DBS oxidation, the occurrence of oxidative coupling reactions over the AC, and the catalytic activity (in terms of substrate removal) were established. The results show that the AC without any supported active metal behaves bi-functional as adsorbent and catalyst, giving TOC conversions up to 52% at 160deg. C and 2 bar of P O 2 , which were comparable to those obtained in WAO experiments. Respirometric tests were completed before and after CWAO and to the main intermediates identified through the WAO and CWAO oxidation route. Then, the readily biodegradable COD (COD RB ) of the CWAO and WAO effluents were found. Taking into account these results it was possible to compare whether or not the CWAO or WAO effluents were suitable for a conventional activated sludge plant inoculated with non adapted culture

  12. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Yuting [Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), CNRS – Université Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France); School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Xiong, Ya; Tian, Shuanghong [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275 (China); Kong, Lingjun [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Descorme, Claude, E-mail: claude.descorme@ircelyon.univ-lyon1.fr [Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), CNRS – Université Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France)

    2014-07-15

    Highlights: • A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared. • FeSC exhibited high catalytic activity in the wet air oxidation of 2-chlorophenol. • A strong correlation was observed between the 2-CP conversion, the iron leaching and the pH. • Using an acetate buffer, the iron leaching was suppressed while keeping some catalytic activity. • A simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst. - Abstract: A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared and used in the Catalytic Wet Air Oxidation (CWAO) of 2-chlorophenol (2-CP). The catalysts were characterized in terms of elemental composition, surface area, pH{sub PZC}, XRD and SEM. The performances of the FeSC catalyst in the CWAO of 2-CP was assessed in a batch reactor operated at 120 °C under 0.9 MPa oxygen partial pressure. Complete decomposition of 2-CP was achieved within 5 h and 90% Total Organic Carbon (TOC) was removed after 24 h of reaction. Quite a straight correlation was observed between the 2-CP conversion, the amount of iron leached in solution and the pH of the reaction mixture at a given reaction time, indicating a strong predominance of the homogeneous catalysis contribution. The iron leaching could be efficiently prevented when the pH of the solution was maintained at values higher than 4.5, while the catalytic activity was only slightly reduced. Upon four successive batch CWAO experiments, using the same FeSC catalyst recovered by filtration after pH adjustment, only a very minor catalyst deactivation was observed. Finally, based on all the identified intermediates, a simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst.

  13. Catalytic wet air oxidation of aniline with nanocasted Mn-Ce-oxide catalyst.

    Science.gov (United States)

    Levi, R; Milman, M; Landau, M V; Brenner, A; Herskowitz, M

    2008-07-15

    The catalytic wet air oxidation of aqueous solution containing 1000 ppm aniline was conducted in a trickle-bed reactor packed with a novel nanocasted Mn-Ce-oxide catalyst (surface area of 300 m2/g) prepared using SBA-15 silica as a hard template. A range of liquid hourly space velocities (5-20 h(-1)) and temperatures (110-140 degrees C) at 10 bar of oxygen were tested. The experiments were conducted to provide the intrinsic performance of the catalysts. Complete aniline conversion, 90% TOC conversion, and 80% nitrogen mineralization were achieved at 140 degrees C and 5 h(-1). Blank experiments yielded relatively low homogeneous aniline (<35%) and negligible TOC conversions. Fast deactivation of the catalysts was experienced due to leaching caused by complexation with aniline. Acidification of the solution with HCI (molar HCI to aniline ratio of 1.2) was necessary to avoid colloidization and leaching of the nanoparticulate catalyst components. The catalyst displayed stable performance for over 200 h on stream.

  14. Bimetallic catalysts for continuous catalytic wet air oxidation of phenol.

    Science.gov (United States)

    Fortuny, A; Bengoa, C; Font, J; Fabregat, A

    1999-01-29

    Catalytic wet oxidation has proved to be effective at eliminating hazardous organic compounds, such as phenol, from waste waters. However, the lack of active long-life oxidation catalysts which can perform in aqueous phase is its main drawback. This study explores the ability of bimetallic supported catalysts to oxidize aqueous phenol solutions using air as oxidant. Combinations of 2% of CoO, Fe2O3, MnO or ZnO with 10% CuO were supported on gamma-alumina by pore filling, calcined and later tested. The oxidation was carried out in a packed bed reactor operating in trickle flow regime at 140 degrees C and 900 kPa of oxygen partial pressure. Lifetime tests were conducted for 8 days. The pH of the feed solution was also varied. The results show that all the catalysts tested undergo severe deactivation during the first 2 days of operation. Later, the catalysts present steady activity until the end of the test. The highest residual phenol conversion was obtained for the ZnO-CuO, which was significantly higher than that obtained with the 10% CuO catalyst used as reference. The catalyst deactivation is related to the dissolution of the metal oxides from the catalyst surface due to the acidic reaction conditions. Generally, the performance of the catalysts was better when the pH of the feed solution was increased.

  15. A catalytic wet oxidation process for mixed waste volume reduction/recycling

    International Nuclear Information System (INIS)

    Dhooge, Patrick M.

    1992-01-01

    Mixed wastes have presented a challenge to treatment and destruction technologies. A recently developed catalytic wet oxidation method has promising characteristics for volume reduction and recycling of mixed wastes. The process utilizes iron (III) as an oxidant in the presence of homogeneous cocatalysts which increase organics' oxidation rates and the rate of oxidation of iron (II) by oxygen. The reaction is conducted in an aqueous mineral acid solution at temperatures of 373 - 573 deg K. The mineral acid should solvate a number of heavy metals, including U and Pu. Studies of reaction rates show that the process can oxidize a wide range of organic compounds including aromatics and chlorinated hydrocarbons. Rate constants in the range of 10 -7 to 10 -4 sec -1 , depending on the cocatalyst, acidity, type of anions, type of organic, temperature, and time. Activation energies ranged from 25. to 32. KJ/mole. Preliminary measurements of the extent of oxidation which could be obtained ranged from 80% for trichloroethylene to 99.8% for 1,2,4-trimethylbenzene; evidence was obtained that absorption by the fluorocarbon liners of the reaction bombs allowed some of the organics to escape exposure to the catalyst solution. The results indicate that complete oxidation of the organics used here, and presumably many others, can be achieved. (author)

  16. Treatment of Row Leachate Using Catalytic Wet Oxidation Processes in Combination Hydrogen Peroxide, A Case Study of Isfahan Composting Factory Leachate

    Directory of Open Access Journals (Sweden)

    Behrouz Karimi

    2013-08-01

    Full Text Available Treatment of toxic organic compounds is one of the major applications of the Wet Air Oxidation (WAO processes. The process can be defined  as the oxidation of substances, either in the form of solutions or suspensions, with the use of an oxidant (oxygen or air at elevated pressure and temperature. The aim of this paper was to study of Catalytic Wet Oxidation (CWAO with hydrogen peroxide to improve removal efficiency of organic matter and ammonia mainly produced in Isfahan composting factory leachate. The experiment was carried out by adding 1.5 Lit pretreated leachate sample to 3 Lit autoclave reactor. Four parameters are considered: pressure (8–12 bar; temperature (100–300 °C; retention time (30–90 min; H2O2 (1–5 mL/L.The highest removal efficiencies of COD and BOD were achieved at 300°C; approximately 44% and 48% were destroyed, respectively. On the other hand, highest ammonium removal efficiency was achieved at 100 °C in which approximately 63.8% was removed. The efficiency of aqueous phase oxidation can be largely improved by the use of H2O2 as catalyst. Therefore, catalytic wet oxidation would provide an environmentally attractive option for control of organic and toxic wastes problems. Temperature was found to be the most important control variable of the wet oxidation process of leachate.

  17. A compact process for the treatment of olive mill wastewater by combining wet hydrogen peroxide catalytic oxidation and biological techniques

    International Nuclear Information System (INIS)

    Azabou, Samia; Najjar, Wahiba; Bouaziz, Mohamed; Ghorbel, Abdelhamid; Sayadi, Sami

    2010-01-01

    A system based on combined actions of catalytic wet oxidation and microbial technologies for the treatment of highly polluted OMW containing polyphenols was studied. The wet hydrogen peroxide catalytic oxidation (WHPCO) process has been investigated in the semi-batch mode at atmospheric pressure, using aluminium-iron-pillared inter layer clay ((Al-Fe)PILC), under two different catalytic processes: ((Al-Fe)PILC/H 2 O 2 /ultraviolet radiations) at 25 deg. C and ((Al-Fe)PILC/H 2 O 2 ) at 50 deg. C. The results show that raw OMW was resistant to the photocatalytic process. However ((Al-Fe)PILC/H 2 O 2 ), system operating at 50 deg. C reduced considerably the COD, colour and total phenolic contents, and thus decreased the inhibition of the marine photobacteria Vibrio fischeri luminescence by 70%. This study also examined the feasibility of coupling WHPCO and anaerobic digestion treatment. Biomethanisation experiments performed with raw OMW or pre-treated OMW proved that pre-treatments with ((Al-Fe)PILC/H 2 O 2 ) system, for more than 2 h, resulted in higher methane production. Both untreated OMW as well as 2-h pre-treated OMW revealed as toxic to anaerobic bacteria.

  18. Conversion and Estrogenicity of 17β-estradiol During Photolytic/Photocatalytic Oxidation and Catalytic Wet-air Oxidation.

    Science.gov (United States)

    Bistan, Mirjana; Tišler, Tatjana; Pintar, Albin

    2012-06-01

    Estrogen 17β-estradiol (E2), produced by human body and excreted into municipal wastewaters, belongs to the group of endocrine disrupting compounds that are resistant to biological degradation. The aim of this study was to assess the efficiency of E2 removal from aqueous solutions by means of catalytic wet-air oxidation (CWAO) and photolytic/photocatalytic oxidation. CWAO experiments were conducted in a trickle-bed reactor at temperatures up to 230 °C and oxygen partial pressure of 10 bar over TiO2 and Ru/TiO2 solids. Photolytic/photocatalytic oxidation was carried out in a batch slurry reactor employing a TiO2 P-25 (Degussa) catalyst under visible or UV light. HPLC analysis and yeast estrogen screen assay were used to evaluate the removal of E2 and estrogenicity of treated samples. The latter was completely removed during photolytic/photocatalytic oxidation under UV (365 nm) light and photocatalytic oxidation under visible light. In CWAO experiments, complete removal of both E2 and estrogenicity from the feed solution were noticed in the presence of TiO2 and Ru/TiO2 catalysts.

  19. Catalytic wet air oxidation of chlorophenols over supported ruthenium catalysts

    International Nuclear Information System (INIS)

    Li Ning; Descorme, Claude; Besson, Michele

    2007-01-01

    A series of noble metal (Pt, Pd, Ru) loaded zirconia catalysts were evaluated in the catalytic wet air oxidation (CWAO) of mono-chlorophenols (2-CP, 3-CP, 4-CP) under relatively mild reaction conditions. Among the investigated noble metals, Ru appeared to be the best to promote the CWAO of CPs as far as incipient-wetness impregnation was used to prepare all the catalysts. The position of the chlorine substitution on the aromatic ring was also shown to have a significant effect on the CP reactivity in the CWAO over 3 wt.% Ru/ZrO 2 . 2-CP was relatively easier to degradate compared to 3-CP and 4-CP. One reason could be the higher adsorption of 2-CP on the catalyst surface. Further investigations suggested that 3 wt.% Ru/ZrO 2 is a very efficient catalyst in the CWAO of 2-CP as far as high 2-CP conversion and TOC abatement could still be reached at even lower temperature (393 K) and lower total pressure (3 MPa). Additionally, the conversion of 2-CP was demonstrated to increase with the initial pH of the 2-CP solution. The dechlorination reaction is promoted at higher pH. In all cases, the adsorption of the reactants and the reaction intermediates was shown to play a major role. All parameters that would control the molecule speciation in solution or the catalyst surface properties would have a key effect

  20. Catalytic wet air oxidation of coke-plant wastewater on ruthenium-based eggshell catalysts in a bubbling bed reactor.

    Science.gov (United States)

    Yang, M; Sun, Y; Xu, A H; Lu, X Y; Du, H Z; Sun, C L; Li, C

    2007-07-01

    Catalytic wet air of coke-plant wastewater was studied in a bubbling bed reactor. Two types of supported Ru-based catalysts, eggshell and uniform catalysts, were employed. Compared with the results in the wet air oxidation of coke-plant wastewater, supported Ru uniform catalysts showed high activity for chemical oxygen demand (COD) and ammonia/ammonium compounds (NH3-N) removal at temperature of 250 degrees C and pressure of 4.8 MPa, and it has been demonstrated that the catalytic activity of uniform catalyst depended strongly on the distribution of active sites of Ru on catalyst. Compared to the corresponding uniform catalysts with the same Ru loading (0.25 wt.% and 0.1 wt.%, respectively), the eggshell catalysts showed higher activities for CODcr removal and much higher activities for NH3-N degradation. The high activity of eggshell catalyst for treatment of coke-plant wastewater can be attributed to the higher density of active Ru sites in the shell layer than that of the corresponding uniform catalyst with the same Ru loading. It has been also evidenced that the active Ru sites in the internal core of uniform catalyst have very little or no contribution to CODcr and NH3-N removal in the total oxidation of coke-plant wastewater.

  1. Effective treatment of oily scum via catalytic wet persulfate oxidation process activated by Fe2.

    Science.gov (United States)

    Yuan, Xingzhong; Guan, Renpeng; Wu, Zhibin; Jiang, Longbo; Li, Yifu; Chen, Xiaohong; Zeng, Guangming

    2018-04-05

    Oily scum, a hazardous by-product of petroleum industry, need to be deposed urgently to reduce environmental risks. This paper introduces catalytic wet persulfate oxidation (CWPO) process in the treatment of oily scum to realize risk relief. Under the activation of heat and Fe 2+ , persulfate (PS) was decomposed into sulfate radicals and hydroxyl radicals, which played a major role on the degradation of petroleum hydrocarbons. The effects of wet air oxidation (WAO) and CWPO process on the degradation of oily scum were compared. In CWPO process, the total petroleum hydrocarbons (TPHs) content of oily scum was decreased from 92.63% to 16.75%, which was still up to 70.19% in WAO process. The degradation rate of TPHs in CWPO process was about 3.38 times higher than that in WAO process. The great performance of CWPO process was also confirmed by elemental analysis, which indicated that the C and H contents of oily scum were reduced significantly by CWPO process. These results indicated that CWPO process has high potential on the degradation of oily scum for environmental protection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Ni/MgAlO regeneration for catalytic wet air oxidation of an azo-dye in trickle-bed reaction

    International Nuclear Information System (INIS)

    Vallet, Ana; Ovejero, Gabriel; Rodríguez, Araceli; Peres, José A.; García, Juan

    2013-01-01

    Highlights: ► Ni supported over hydrotalcite calcined precursors as catalyst. ► Catalytic wet air oxidation in trickle bed reactor for Chromotrope 2R removal. ► Dye removal depends on temperature, initial dye concentration and flow rate. ► The catalyst proved to bare-usable after in situ regeneration. -- Abstract: Active nickel catalysts (7 wt%) supported over Mg–Al mixed oxides have been recently developed and it has also been demonstrated that they are also highly selective in Catalytic Wet air Oxidation (CWAO) of dyes. CWAO of Chromotrope 2R (C2R) has been studied using a trickle bed reactor employing temperatures from 100 to 180 °C, liquid flow rates from 0.1 to 0.7 mL min −1 and initial dye concentration from 10 to 50 ppm. Total pressure and air flow were 25 bar and 300 mL min −1 , respectively. The catalyst showed a very stable activity up to 24 h on stream with an average TOC conversion of 82% at 150 °C and T r = 0.098 g Ni min mL −1 . After the reaction, a 1.1 wt% C of carbonaceous deposit is formed onto the catalyst and a diminution of 30% of the surface area with respect of the fresh catalyst was observed. An increase in the space time gave higher TOC conversions up to T r = 0.098 g Ni min mL −1 , attaining values of 80% at 180 °C. The performance of TOC and dye removal does not decrease after two regeneration cycles. In total, a 57 h effective reaction has been carried out with no loss of catalytic activity

  3. Ni/MgAlO regeneration for catalytic wet air oxidation of an azo-dye in trickle-bed reaction

    Energy Technology Data Exchange (ETDEWEB)

    Vallet, Ana [Grupo de Catálisis y Procesos de Separación (CyPS), Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Ovejero, Gabriel, E-mail: govejero@quim.ucm.es [Grupo de Catálisis y Procesos de Separación (CyPS), Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Rodríguez, Araceli [Grupo de Catálisis y Procesos de Separación (CyPS), Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Peres, José A. [Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Apartado 1013, 5001-801 Vila Real (Portugal); García, Juan, E-mail: juangcia@quim.ucm.es [Grupo de Catálisis y Procesos de Separación (CyPS), Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain)

    2013-01-15

    Highlights: ► Ni supported over hydrotalcite calcined precursors as catalyst. ► Catalytic wet air oxidation in trickle bed reactor for Chromotrope 2R removal. ► Dye removal depends on temperature, initial dye concentration and flow rate. ► The catalyst proved to bare-usable after in situ regeneration. -- Abstract: Active nickel catalysts (7 wt%) supported over Mg–Al mixed oxides have been recently developed and it has also been demonstrated that they are also highly selective in Catalytic Wet air Oxidation (CWAO) of dyes. CWAO of Chromotrope 2R (C2R) has been studied using a trickle bed reactor employing temperatures from 100 to 180 °C, liquid flow rates from 0.1 to 0.7 mL min{sup −1} and initial dye concentration from 10 to 50 ppm. Total pressure and air flow were 25 bar and 300 mL min{sup −1}, respectively. The catalyst showed a very stable activity up to 24 h on stream with an average TOC conversion of 82% at 150 °C and T{sub r} = 0.098 g{sub Ni} min mL{sup −1}. After the reaction, a 1.1 wt% C of carbonaceous deposit is formed onto the catalyst and a diminution of 30% of the surface area with respect of the fresh catalyst was observed. An increase in the space time gave higher TOC conversions up to T{sub r} = 0.098 g{sub Ni} min mL{sup −1}, attaining values of 80% at 180 °C. The performance of TOC and dye removal does not decrease after two regeneration cycles. In total, a 57 h effective reaction has been carried out with no loss of catalytic activity.

  4. A kinetic model of municipal sludge degradation during non-catalytic wet oxidation.

    Science.gov (United States)

    Prince-Pike, Arrian; Wilson, David I; Baroutian, Saeid; Andrews, John; Gapes, Daniel J

    2015-12-15

    Wet oxidation is a successful process for the treatment of municipal sludge. In addition, the resulting effluent from wet oxidation is a useful carbon source for subsequent biological nutrient removal processes in wastewater treatment. Owing to limitations with current kinetic models, this study produced a kinetic model which predicts the concentrations of key intermediate components during wet oxidation. The model was regressed from lab-scale experiments and then subsequently validated using data from a wet oxidation pilot plant. The model was shown to be accurate in predicting the concentrations of each component, and produced good results when applied to a plant 500 times larger in size. A statistical study was undertaken to investigate the validity of the regressed model parameters. Finally the usefulness of the model was demonstrated by suggesting optimum operating conditions such that volatile fatty acids were maximised. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Catalytic wet-air oxidation of lignin in a three-phase reactor with aromatic aldehyde production

    Directory of Open Access Journals (Sweden)

    Sales F.G.

    2004-01-01

    Full Text Available In the present work a process of catalytic wet air oxidation of lignin obtained from sugar-cane bagasse is developed with the objective of producing vanillin, syringaldehyde and p-hydroxybenzaldehyde in a continuous regime. Palladium supported on g-alumina was used as the catalyst. The reactions in the lignin degradation and aldehyde production were described by a kinetic model as a system of complex parallel and series reactions, in which pseudo-first-order steps are found. For the purpose of producing aromatic aldehydes in continuous regime, a three-phase fluidized reactor was built, and it was operated using atmospheric air as the oxidizer. The best yield in aromatic aldehydes was of 12%. The experimental results were compatible with those values obtained by the pseudo-heterogeneous axial dispersion model (PHADM applied to the liquid phase.

  6. Effect of Composition and Mass Ratio on the Catalytic Wet Air Oxidation Catalyst Cu–Fe–La/FSC

    Directory of Open Access Journals (Sweden)

    Wu Chao

    2016-01-01

    Full Text Available The catalytic wet air oxidation (CWAO technology is used for the treatment of the simulated printing and dyeing wastewater and also for investigating the catalyst performance indicators such as catalyst activity and stability. The catalyst activity is mainly reflected from the water decolorization and CODCr removal rates, and the stability of the catalyst is mainly reflected by the quantity of metal dissolution. The experimental results showed that the prepared Cu–Fe–La/FSC catalyst with a 1:1:2 ratio of Cu–Fe–La by the impregnation method exhibited good activity for the treatment of the simulated printing and dyeing wastewater by the CWAO method, and the decolorization and CODCr removal rates using this catalyst were 98.7% and 78.6%, respectively, with a higher catalytic activity, lower concentration of metal dissolution, and good stability.

  7. Treatment of ammonia by catalytic wet oxidation process over platinum-rhodium bimetallic catalyst in a trickle-bed reactor: effect of pH.

    Science.gov (United States)

    Hung, Chang-Mao; Lin, Wei-Bang; Ho, Ching-Lin; Shen, Yun-Hwei; Hsia, Shao-Yi

    2010-08-01

    This work adopted aqueous solutions of ammonia for use in catalytic liquid-phase reduction in a trickle-bed reactor with a platinum-rhodium bimetallic catalyst, prepared by the co-precipitation of chloroplatinic acid (H2PtCl6) and rhodium nitrate [Rh(NO3)3]. The experimental results demonstrated that a minimal amount of ammonia was removed from the solution by wet oxidation in the absence of any catalyst, while approximately 97.0% of the ammonia was removed by wet oxidation over the platinum-rhodium bimetallic catalyst at 230 degrees C with an oxygen partial pressure of 2.0 MPa. The oxidation of ammonia has been studied as a function of pH, and the main reaction products were determined. A synergistic effect is manifest in the platinum-rhodium bimetallic structure, in which the material has the greatest capacity to reduce ammonia. The reaction pathway linked the oxidizing ammonia to nitric oxide, nitrogen, and water.

  8. CATALYTIC WET PEROXIDE OXIDATION OF HYDROQUINONE WITH Co(II)/ACTIVE CARBON CATALYST LOADED IN STATIC BED

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Catalysts based on Co(II) supported on active carbon were prepared and loaded in static bed. The hydroquinone would be degraded completely after treated by Catalytic wet peroxide oxidation method with Co(II)/active carbon catalyst. After activate treatment, the active carbon was immerged in cobaltous nitrate solution, then put into a drying oven, Co(II) could be loaded on the micro-surface of carbon. Taking the static bed as the equipment, the absorption of active carbon and catalysis of Co(II) was used to reduce activation energy of hydroquinone. Thus hydroquinone could be drastically degraded and the effluent can be drained under the standard. Referring to Fenton reaction mechanism, experiment had been done to study the heterogeneous catalyzed oxidation mechanism of Co(II). The degradation rate of hydroquinone effluent could be achieved to 92% when treated in four columns at H2O2 concentration 10%, reaction temperature 40℃ , pH 5 and reaction time 2.5h.

  9. Catalytic wet air oxidation of bisphenol A solution in a batch-recycle trickle-bed reactor over titanate nanotube-based catalysts.

    Science.gov (United States)

    Kaplan, Renata; Erjavec, Boštjan; Senila, Marin; Pintar, Albin

    2014-10-01

    Catalytic wet air oxidation (CWAO) is classified as an advanced oxidation process, which proved to be highly efficient for the removal of emerging organic pollutant bisphenol A (BPA) from water. In this study, BPA was successfully removed in a batch-recycle trickle-bed reactor over bare titanate nanotube-based catalysts at very short space time of 0.6 min gCAT g(-1). The as-prepared titanate nanotubes, which underwent heat treatment at 600 °C, showed high activity for the removal of aqueous BPA. Liquid-phase recycling (5- or 10-fold recycle) enabled complete BPA conversion already at 200 °C, together with high conversion of total organic carbon (TOC), i.e., 73 and 98 %, respectively. The catalyst was chemically stable in the given range of operating conditions for 189 h on stream.

  10. Catalytic partial oxidation of methane over porous silica supported VO{sub x} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Pirovano, C.; Schoenborn, E.; Kalevaru, V.N.; Wohlrab, S.; Luecke, B.; Martin, A. [University Rostock e.V., Rostock (Germany). Leibniz Inst. for Catalysis

    2011-07-01

    High surface area mesoporous siliceous MCM-41 and SBA-15 materials have been used as supports to disperse vanadium oxide species using wet impregnation and incipient wetness impregnation methods. These materials were used as catalysts for the partial oxidation of methane (POM) to formaldehyde. The physico-chemical properties of the solids were studied by means of BET, DR-UV/Vis spectroscopy, Py-FTIR and TEM. The influence of support and the preparation method on the dispersion of VOx is also investigated. The catalytic properties of the catalysts were examined in a fixed bed stainless steel reactor at 923 K. So far a maximum production of formaldehyde can be detected on SBA-15 supported VOx-catalysts prepared by incipient wetness impregnation. On this V/SBA-15 material a covalent attachment of catalytic active molecular vanadium species dominates, which in turn leads to a lower activation temperature and thereby reduced over-oxidation. From the best case, the space time yield of HCHO could be reached close to 775 g{sub HCHO} Kg{sub cat}{sup -1} h{sup -1}. (orig.)

  11. Enhanced activity and stability of copper oxide/γ-alumina catalyst in catalytic wet-air oxidation: Critical roles of cerium incorporation

    Science.gov (United States)

    Zhang, Yongli; Zhou, Yanbo; Peng, Chao; Shi, Junjun; Wang, Qingyu; He, Lingfeng; Shi, Liang

    2018-04-01

    By successive impregnation method, the Ce-modified Cu-O/γ-Al2O3 catalyst was prepared and characterized using nitrogen adsorption-desorption, scanning electron microscopy energy dispersive X-ray analysis (SEM-EDS), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman, and H2-Temperature programming reduction (H2-TPR). In catalytic wet-air oxidation (CWAO) process for the printing and dyeing wastewater (PDW), the effects of Ce addition on performance, mechanism and kinetics of the catalyst were investigated. The Ce addition increases the Brunauer-Emmett-Teller (BET) surface area and pore volume of the catalyst and makes the active components uniformly distributed on the catalyst surface. Formation of a stable CuAl2O4 solid solution by anchoring Cu onto the γ-Al2O3 crystal lattice leads to a significant decrease in metal leaching of the Ce-modified catalyst. The proportion of lattice oxygen in the catalyst substantially increases and the apparent activation energy of Cu-O/γ-Al2O3 catalyst decreases owing to Ce addition. Therefore, the catalytic activity and stability of the Ce-modified catalyst are considerably improved. The scavengers experiments identify the active species existed in the CWAO reaction system, with the order of reactivity: h+ > O2•- > H2O2 > HO•. This novel Cu-Ce-O/γ-Al2O3 catalyst has great potential in applications for treatment of concentrated organic wastewater due to its superior catalytic activity and improved stability.

  12. Development studies of a novel wet oxidation process

    International Nuclear Information System (INIS)

    Rogers, T.W.; Dhooge, P.M.

    1995-01-01

    Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. Incineration and similar combustive processes do not appear to be viable options for treatment of these waste streams due to various considerations. The objective of this project is to develop a novel catalytic wet oxidation process for the treatment of multi-component wastes. The DETOX process uses a unique combination of metal catalysts to increase the rate of oxidation of organic materials

  13. Development studies of a novel wet oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, T.W.; Dhooge, P.M. [Delphi Research, Inc., Albuquerque, NM (United States)

    1995-10-01

    Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. Incineration and similar combustive processes do not appear to be viable options for treatment of these waste streams due to various considerations. The objective of this project is to develop a novel catalytic wet oxidation process for the treatment of multi-component wastes. The DETOX process uses a unique combination of metal catalysts to increase the rate of oxidation of organic materials.

  14. Ni/MgAlO regeneration for catalytic wet air oxidation of an azo-dye in trickle-bed reaction.

    Science.gov (United States)

    Vallet, Ana; Ovejero, Gabriel; Rodríguez, Araceli; Peres, José A; García, Juan

    2013-01-15

    Active nickel catalysts (7 wt%) supported over Mg-Al mixed oxides have been recently developed and it has also been demonstrated that they are also highly selective in Catalytic Wet air Oxidation (CWAO) of dyes. CWAO of Chromotrope 2R (C2R) has been studied using a trickle bed reactor employing temperatures from 100 to 180 °C, liquid flow rates from 0.1 to 0.7 mL min(-1) and initial dye concentration from 10 to 50 ppm. Total pressure and air flow were 25 bar and 300 mL min(-1), respectively. The catalyst showed a very stable activity up to 24 h on stream with an average TOC conversion of 82% at 150 °C and T(r)=0.098 g(Ni) min mL(-1). After the reaction, a 1.1 wt% C of carbonaceous deposit is formed onto the catalyst and a diminution of 30% of the surface area with respect of the fresh catalyst was observed. An increase in the space time gave higher TOC conversions up to T(r)=0.098 g(Ni) min mL(-1), attaining values of 80% at 180 °C. The performance of TOC and dye removal does not decrease after two regeneration cycles. In total, a 57 h effective reaction has been carried out with no loss of catalytic activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Session 6: Water depollution from aniline and phenol by air oxidation and adsorptive-catalytic oxidation in liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Dobrynkin, N.M.; Batygina, M.V.; Noskov, A.S. [Boreskov Institute of Catalysis of Siberian Branch of Russian Academy of Sciences, Pr. Ak. Lavrentieva (Russian Federation)

    2004-07-01

    This paper is devoted to development of carbon catalysts and application of catalytic wet air oxidation for deep cleaning of polluted waters. The described catalysts and method are solving the problem of development environmentally reliable method for fluids treatment and allow carrying out the adsorption of pollutants on carbon CAPM (catalytically active porous material) with following regeneration of the CAPM without the loss of adsorptive qualities. The experiments have shown a principal capability simultaneously to use carbon CAPM as adsorbent and either as catalyst, or as a catalyst support for oxidation of aniline and phenol in water solutions. (authors)

  16. Development of a Catalytic Wet Air Oxidation Method to Produce Feedstock Gases from Waste Polymers

    Science.gov (United States)

    Kulis, Michael J.; Guerrero-Medina, Karen J.; Hepp, Aloysius F.

    2012-01-01

    Given the high cost of space launch, the repurposing of biological and plastic wastes to reduce the need for logistical support during long distance and long duration space missions has long been recognized as a high priority. Described in this paper are the preliminary efforts to develop a wet air oxidation system in order to produce fuels from waste polymers. Preliminary results of partial oxidation in near supercritical water conditions are presented. Inherent corrosion and salt precipitation are discussed as system design issues for a thorough assessment of a second generation wet air oxidation system. This work is currently being supported by the In-Situ Resource Utilization Project.

  17. Wet-cupping removes oxidants and decreases oxidative stress.

    Science.gov (United States)

    Tagil, Suleyman Murat; Celik, Huseyin Tugrul; Ciftci, Sefa; Kazanci, Fatmanur Hacievliyagil; Arslan, Muzeyyen; Erdamar, Nazan; Kesik, Yunus; Erdamar, Husamettin; Dane, Senol

    2014-12-01

    Wet-cupping therapy is one of the oldest known medical techniques. Although it is widely used in various conditions such as acute\\chronic inflammation, infectious diseases, and immune system disorders, its mechanism of action is not fully known. In this study, we investigated the oxidative status as the first step to elucidate possible mechanisms of action of wet cupping. Wet cupping therapy is implemented to 31 healthy volunteers. Venous blood samples and Wet cupping blood samples were taken concurrently. Serum nitricoxide, malondialdehyde levels and activity of superoxide dismutase and myeloperoxidase were measured spectrophotometrically. Wet cupping blood had higher activity of myeloperoxidase, lower activity of superoxide dismutase, higher levels of malondialdehyde and nitricoxide compared to the venous blood. Wet cupping removes oxidants and decreases oxidative stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Ruthenium and Platinum Catalysts Supported on Ce, Zr, Pr-O Mixed Oxides Prepared by Soft Chemistry for Acetic Acid Wet Air Oxidation

    Czech Academy of Sciences Publication Activity Database

    Mikulová, Jana; Rossignol, S.; Barbier Jr., J.; Mesnard, D.; Kappenstein, C.; Duprez, D.

    2007-01-01

    Roč. 72, 1-2 (2007), s. 1-10 ISSN 0926-3373 Institutional research plan: CEZ:AV0Z40720504 Keywords : sol-gel * catalytic wet air oxidation * acetic acid Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.651, year: 2007

  19. Catalytic Wastewater Treatment Using Pillared Clays

    Science.gov (United States)

    Perathoner, Siglinda; Centi, Gabriele

    After introduction on the use of solid catalysts in wastewater treatment technologies, particularly advanced oxidation processes (AOPs), this review discussed the use of pillared clay (PILC) materials in three applications: (i) wet air catalytic oxidation (WACO), (ii) wet hydrogen peroxide catalytic oxidation (WHPCO) on Cu-PILC and Fe-PILC, and (iii) behavior of Ti-PILC and Fe-PILC in the photocatalytic or photo-Fenton conversion of pollutants. Literature data are critically analyzed to evidence the main direction to further investigate, in particularly with reference to the possible practical application of these technologies to treat industrial, municipal, or agro-food production wastewater.

  20. Advanced methods for the treatment of organic aqueous wastes: wet air oxidation and wet peroxide oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Debellefontaine, Hubert; Chakchouk, Mehrez; Foussard, Jean Noel [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France). Dept. de Genie des Procedes Industriels; Tissot, Daniel; Striolo, Phillipe [IDE Environnement S.A., Toulouse (France)

    1994-12-31

    There is a growing concern about the problems of wastes elimination. Various oxidation techniques are suited for elimination of organic aqueous wastes, however, because of the environmental drawbacks of incineration, liquid phase oxidation should be preferred. `Wet Air Oxidation` and `Wet Peroxide Oxidation`are alternative processes which are discussed in this paper. 17 refs., 13 figs., 4 tabs.

  1. Advanced methods for the treatment of organic aqueous wastes: wet air oxidation and wet peroxide oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Debellefontaine, Hubert; Chakchouk, Mehrez; Foussard, Jean Noel [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France). Dept. de Genie des Procedes Industriels; Tissot, Daniel; Striolo, Phillipe [IDE Environnement S.A., Toulouse (France)

    1993-12-31

    There is a growing concern about the problems of wastes elimination. Various oxidation techniques are suited for elimination of organic aqueous wastes, however, because of the environmental drawbacks of incineration, liquid phase oxidation should be preferred. `Wet Air Oxidation` and `Wet Peroxide Oxidation`are alternative processes which are discussed in this paper. 17 refs., 13 figs., 4 tabs.

  2. Catalytic wet oxidation of phenol in a trickle bed reactor over a Pt/TiO2 catalyst.

    Science.gov (United States)

    Maugans, Clayton B; Akgerman, Aydin

    2003-01-01

    Catalytic wet oxidation of phenol was studied in a batch and a trickle bed reactor using 4.45% Pt/TiO2 catalyst in the temperature range 150-205 degrees C. Kinetic data were obtained from batch reactor studies and used to model the reaction kinetics for phenol disappearance and for total organic carbon disappearance. Trickle bed experiments were then performed to generate data from a heterogeneous flow reactor. Catalyst deactivation was observed in the trickle bed reactor, although the exact cause was not determined. Deactivation was observed to linearly increase with the cumulative amount of phenol that had passed over the catalyst bed. Trickle bed reactor modeling was performed using a three-phase heterogeneous model. Model parameters were determined from literature correlations, batch derived kinetic data, and trickle bed derived catalyst deactivation data. The model equations were solved using orthogonal collocations on finite elements. Trickle bed performance was successfully predicted using the batch derived kinetic model and the three-phase reactor model. Thus, using the kinetics determined from limited data in the batch mode, it is possible to predict continuous flow multiphase reactor performance.

  3. Mechanisms of wet oxidation by hydrogen peroxide

    International Nuclear Information System (INIS)

    Baxter, R.A.

    1987-08-01

    A research programme is currently under way at BNL and MEL to investigate the possible use of Hydrogen Peroxide with metal ion catalysts as a wet oxidation treatment system for CEGB organic radioactive wastes. The published literature relating to the kinetics and mechanism of oxidation and decomposition reactions of hydrogen peroxide is reviewed and the links with practical waste management by wet oxidation are examined. Alternative wet oxidation systems are described and the similarities to the CEGB research effort are noted. (author)

  4. Slow, Wet and Catalytic Pyrolysis of Fowl Manure

    OpenAIRE

    Renzo Carta; Mario Cruccu; Francesco Desogus

    2012-01-01

    This work presents the experimental results obtained at a pilot plant which works with a slow, wet and catalytic pyrolysis process of dry fowl manure. This kind of process mainly consists in the cracking of the organic matrix and in the following reaction of carbon with water, which is either already contained in the organic feed or added, to produce carbon monoxide and hydrogen. Reactions are conducted in a rotating reactor maintained at a temperature of 500°C; the requi...

  5. Catalytic oxidation of albendazole using molybdenum supported on carbon nanotubes as catalyst

    International Nuclear Information System (INIS)

    Sun-Kou, Maria del Rosario; Vega Carrasco, Edgar R.; Picasso Escobar, Gino I.

    2013-01-01

    The catalytic oxidation reaction of the thioether group (-S-) in the structure to the drug albendazole (C 12 H 15 N 3 O 2 S) was studied in order to obtain a pharmacologically active molecule known as albendazole sulfoxide. With this purpose, three heterogeneous catalysts were prepared using molybdenum (Mo) as active phase and carbon nanotubes as a multiple-layer catalyst support. The incorporation of the active phase was performed by wet impregnation, with subsequent calcination for 4 hours at 400 o C. For the catalytic oxidation reaction was employed hydrogen peroxide-urea (H 2 NCONH 2 ·H 2 O 2 ) as oxidizing agent and methanol (CH 3 OH) as reaction medium. The textural and morphology characterization of carbon nanoparticles and catalysts was carried out by adsorption-desorption of N 2 (BET) and scanning electron microscopy (SEM). The identification and quantification of the reaction products were followed by Fourier transform infrared spectroscopy (FTIR) and high performance liquid chromatography (HPLC), respectively. With the yield, selectivity and conversion higher than 90% after 60 minutes of reaction, albendazole sulphoxide was obtained as major product of oxidation reaction. (author)

  6. Development studies for a novel wet oxidation process

    International Nuclear Information System (INIS)

    Dhooge, P.M.; Hakim, L.B.

    1994-01-01

    A catalytic wet oxidation process (DETOX), which uses an acidic iron solution to oxidize organic compounds to carbon dioxide, water, and other simple products, was investigated as a potential method for the treatment of multicomponent hazardous and mixed wastes. The organic compounds picric acid, poly(vinyl chloride), tetrachlorothiophene, pentachloropyridine, Aroclor 1260 (a polychlorinated biphenyl), and hexachlorobenzene were oxidized in 125 ml reaction vessels. The metals arsenic, barium, beryllium, cadmium, cerium (as a surrogate for plutonium), chromium, lead, mercury, neodymium (as a surrogate for uranium), nickel, and vanadium were tested in the DETOX solution. Barium, beryllium, cerium, chromium, mercury, neodymium, nickel, and vanadium were all found to be very soluble (>100 g/l) in the DETOX chloride-based solution. Arsenic, barium, cadmium, and lead solubilities were lower. Lead could be selectively precipitated from the DETOX solution. Chromium(VI) was reduced to relatively non-toxic chromium(III) by the solution. Six soils were contaminated with arsenic, barium, beryllium, chromium, lead, and neodymium oxides at approximately 0.1% by weight, and benzene, trichloroethene, mineral oil, and Aroclor 1260 at approximately 5% by weight total, and 5.g amounts treated with the DETOX solution in unstirred 125. ml reaction bombs. It is felt that soil treatment in a properly designed system is entirely possible despite incomplete oxidation of the less volatile organic materials in these unstirred tests

  7. Synthesis, spectroscopic characterization and catalytic oxidation ...

    Indian Academy of Sciences (India)

    were characterized by infrared, electronic, electron paramagnetic resonance ... The catalytic oxidation property of ruthenium(III) complexes were also ... cies at room temperature. ..... aldehyde part of Schiff base ligands, catalytic activ- ity of new ...

  8. ESR study into mechanism of heterogeneous-catalytic oxidation on oxides

    Energy Technology Data Exchange (ETDEWEB)

    Topchieva, K V; Loginov, A Yu; Kostikov, S V [Moskovskij Gosudarstvennyj Univ. (USSR)

    1977-12-11

    The role of radical particles in heterogeneous-catalytic oxidation of H/sub 2/; CO; SO/sub 2/; NH/sub 3/; C/sub 3/H/sub 6/ on the rare earth oxides (yttrium, lanthanum, magnesium and scandium oxides) and alkaline earth metal oxides was studied by the ESR method. The conclusion was made about the great reactivity of the peroxide structures O/sub 2//sup -/ in the oxidation catalysis in comparison to other formulas of chemisorption oxigen on oxides. The kinetic investigations are chemisorption oxigen on oxides. The kinetic investigations are carried out on the change of the concentration of paramagnetic particles O/sub 2/ during the catalysis. On the basis of the received data the conclusion is made about the reaction process of catalytic oxidation on rare and alkaline-earth oxides according to radical-chain mechanism with the formation of radical particles O/sub 2//sup -/, CO/sub 3//sup -/, SO/sub 4//sup -/, CO/sub 2//sup -/ as interediate products.

  9. Wet oxidation of quinoline

    DEFF Research Database (Denmark)

    Thomsen, A.B.; Kilen, H.H.

    1998-01-01

    The influence of oxygen pressure (0.4 and 2 MPa). reaction time (30 and 60 min) and temperature (260 and 280 degrees C) on the wet oxidation of quinoline has been studied. The dominant parameters for the decomposition of quinoline were oxygen pressure and reaction temperature. whereas the reactio...

  10. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    International Nuclear Information System (INIS)

    Gary M. Blythe

    2002-01-01

    The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the first full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to project initiation and planning. There is no significant technical progress to report for the current period

  11. Enhanced Control of Mercury and other HAPs by Innovative Modifications to Wet FGD Processes

    International Nuclear Information System (INIS)

    Hargrove, O.W.; Carey, T.R.; Richardson, C.F.; Skarupa, R.C.; Meserole, F.B.; Rhudy, R.G.; Brown, Thomas D.

    1997-01-01

    The overall objective of this project was to learn more about controlling emissions of hazardous air pollutants (HAPs) from coal-fired power plants that are equipped with wet flue gas desulfurization (FGD) systems. The project was included by FETC as a Phase I project in its Mega-PRDA program. Phase I of this project focused on three research areas. These areas in order of priority were: (1) Catalytic oxidation of vapor-phase elemental mercury; (2) Enhanced particulate-phase HAPs removal by electrostatic charging of liquid droplets; and (3) Enhanced mercury removal by addition of additives to FGD process liquor. Mercury can exist in two forms in utility flue gas--as elemental mercury and as oxidized mercury (predominant form believed to be HgCl 2 ). Previous test results have shown that wet scrubbers effectively remove the oxidized mercury from the gas but are ineffective in removing elemental mercury. Recent improvements in mercury speciation techniques confirm this finding. Catalytic oxidation of vapor-phase elemental mercury is of interest in cases where a wet scrubber exists or is planned for SO 2 control. If a loW--cost process could be developed to oxidize all of the elemental mercury in the flue gas, then the maximum achievable mercury removal across the existing or planned wet scrubber would increase. Other approaches for improving control of HAPs included a method for improving particulate removal across the FGD process and the use of additives to increase mercury solubility. This paper discusses results related only to catalytic oxidation of elemental mercury

  12. Boosting the catalytic activity of natural magnetite for wet peroxide oxidation.

    Science.gov (United States)

    Álvarez-Torrellas, Silvia; Munoz, Macarena; Mondejar, Victor; de Pedro, Zahara M; Casas, Jose A

    2018-06-02

    This work explores the modification of naturally occurring magnetite by controlled oxidation (200-400 °C, air atmosphere) and reduction (300-600 °C, H 2 atmosphere) treatments with the aim of boosting its activity in CWPO. The resulting materials were fully characterized by XRD, XPS, TGA, TPR, SEM, and magnetization measurements, allowing to confirm the development of core-shell type structures. The magnetite core of the solid remained unchanged upon the treatment whereas the Fe(II)/Fe(III) ratio of the shell was modified (e.g. 0.42, 0.11 and 0.63 values were calculated for pristine Fe 3 O 4 , Fe 3 O 4 -O400, and Fe 3 O 4 -R400, respectively). The performance of the catalysts was tested in the CWPO of sulfamethoxazole (SMX) (5 mg L -1 ) under ambient conditions and circumneutral pH (pH 0  = 5), using the stoichiometric dose of H 2 O 2 (25 mg L -1 ) and a catalyst load of 1 g L -1 . The key role of the ferrous species on the mineral shell was evidenced. Whereas the oxidation of magnetite led to significantly slower degradation rates of the pollutant, its reduction gave rise to a dramatic increase, achieving the complete removal of SMX in 1.5 h reaction time with the optimum catalyst (Fe 3 O 4 -R400) compared to the 3.5 h required with the pristine mineral. A reaction mechanism was proposed for SMX degradation, and a kinetic equation based on the Eley-Rideal model was accordingly developed. This model successfully fitted the experimental results. The stability of Fe 3 O 4 -R400 was evaluated upon five sequential runs. Finally, the versatility of the catalytic system was proved in real environmentally relevant water matrices.

  13. Wet-air oxidation cleans up black wastewater

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    Sterling Organics produces the analgesic paracetamol (acetaminophen) at its Dudley, England, plant. The wastewater from the batch process contains intermediates such as para-aminophenol (PAP) and byproducts such as thiosulfates, sulfites and sulfides. To stay ahead of increasingly strict environmental legislation, Sterling Organics installed a wet-air oxidation system at the Dudley facility in August 1992. The system is made by Zimpro Environmental Inc. (Rothschild, Wis.). Zimpro's wet-air oxidation system finds a way around the limitations of purely chemical or physical processes. In the process, compressed air at elevated temperature and pressure oxidizes the process intermediates and byproducts and removes the color from the wastewater.

  14. Catalytic Oxidation of Cyanogen Chloride over a Monolithic Oxidation Catalyst

    National Research Council Canada - National Science Library

    Campbell, Jeffrey

    1997-01-01

    The catalytic oxidation of cyanogen chloride was evaluated over a monolithic oxidation catalyst at temperatures between 200 and 300 deg C in air employing feed concentrations between 100 and 10,000 ppm...

  15. VUV photo-oxidation of gaseous benzene combined with ozone-assisted catalytic oxidation: Effect on transition metal catalyst

    International Nuclear Information System (INIS)

    Huang, Haibao; Lu, Haoxian; Zhan, Yujie; Liu, Gaoyuan; Feng, Qiuyu; Huang, Huiling; Wu, Muyan; Ye, Xinguo

    2017-01-01

    Graphical abstract: Mn nanoparticles are highly dispersed on ZSM-5 and most efficient in benzene degradation in the VUV-OZCO process. - Highlights: • Vacuum UV irradiation is well combined with O_3 catalytic oxidation. • O_3 byproducts was used to enhance catalytic oxidation of VOCs. • Mn/ZSM-5 achieved the best catalytic activity for benzene degradation. - Abstract: Volatile organic compounds (VOCs) cause the major air pollution concern. In this study, a series of ZSM-5 supported transition metals were prepared by impregnation method. They were combined with vacuum UV (VUV) photo-oxidation in a continuous-flow packed-bed reactor and used for the degradation of benzene, a typical toxic VOCs. Compared with VUV photo-oxidation alone, the introduction of catalysts can greatly enhance benzene oxidation under the help of O_3, the by-products from VUV irradiation, via ozone-assisted catalytic oxidation (OZCO). The catalytic activity of transition metals towards benzene oxidation followed the order: Mn > Co > Cu > Ni > Fe. Mn achieved the best catalytic activity due to the strongest capability for O_3 catalytic decomposition and utilization. Benzene and O_3 removal efficiency reached as high as 97% and 100% after 360 min, respectively. O_3 was catalytically decomposed, generating highly reactive oxidants such as ·OH and ·O for benzene oxidation.

  16. VUV photo-oxidation of gaseous benzene combined with ozone-assisted catalytic oxidation: Effect on transition metal catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Haibao, E-mail: seabao8@gmail.com [School of Environmental Science and Engineering, Sun Yat-Sen University (China); Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University) (China); Lu, Haoxian; Zhan, Yujie; Liu, Gaoyuan; Feng, Qiuyu; Huang, Huiling; Wu, Muyan; Ye, Xinguo [School of Environmental Science and Engineering, Sun Yat-Sen University (China)

    2017-01-01

    Graphical abstract: Mn nanoparticles are highly dispersed on ZSM-5 and most efficient in benzene degradation in the VUV-OZCO process. - Highlights: • Vacuum UV irradiation is well combined with O{sub 3} catalytic oxidation. • O{sub 3} byproducts was used to enhance catalytic oxidation of VOCs. • Mn/ZSM-5 achieved the best catalytic activity for benzene degradation. - Abstract: Volatile organic compounds (VOCs) cause the major air pollution concern. In this study, a series of ZSM-5 supported transition metals were prepared by impregnation method. They were combined with vacuum UV (VUV) photo-oxidation in a continuous-flow packed-bed reactor and used for the degradation of benzene, a typical toxic VOCs. Compared with VUV photo-oxidation alone, the introduction of catalysts can greatly enhance benzene oxidation under the help of O{sub 3}, the by-products from VUV irradiation, via ozone-assisted catalytic oxidation (OZCO). The catalytic activity of transition metals towards benzene oxidation followed the order: Mn > Co > Cu > Ni > Fe. Mn achieved the best catalytic activity due to the strongest capability for O{sub 3} catalytic decomposition and utilization. Benzene and O{sub 3} removal efficiency reached as high as 97% and 100% after 360 min, respectively. O{sub 3} was catalytically decomposed, generating highly reactive oxidants such as ·OH and ·O for benzene oxidation.

  17. VUV photo-oxidation of gaseous benzene combined with ozone-assisted catalytic oxidation: Effect on transition metal catalyst

    Science.gov (United States)

    Huang, Haibao; Lu, Haoxian; Zhan, Yujie; Liu, Gaoyuan; Feng, Qiuyu; Huang, Huiling; Wu, Muyan; Ye, Xinguo

    2017-01-01

    Volatile organic compounds (VOCs) cause the major air pollution concern. In this study, a series of ZSM-5 supported transition metals were prepared by impregnation method. They were combined with vacuum UV (VUV) photo-oxidation in a continuous-flow packed-bed reactor and used for the degradation of benzene, a typical toxic VOCs. Compared with VUV photo-oxidation alone, the introduction of catalysts can greatly enhance benzene oxidation under the help of O3, the by-products from VUV irradiation, via ozone-assisted catalytic oxidation (OZCO). The catalytic activity of transition metals towards benzene oxidation followed the order: Mn > Co > Cu > Ni > Fe. Mn achieved the best catalytic activity due to the strongest capability for O3 catalytic decomposition and utilization. Benzene and O3 removal efficiency reached as high as 97% and 100% after 360 min, respectively. O3 was catalytically decomposed, generating highly reactive oxidants such as rad OH and rad O for benzene oxidation.

  18. The catalytic activity of several tungsten oxides for the oxidation of propene

    International Nuclear Information System (INIS)

    De Rossi, S.; Schiavello, M.; Rome Univ.; Iguchi, E.; Tilley, R.J.D.

    1976-01-01

    A study has been made of the catalytic oxidation of propene over the oxides WO 3 , WOsub(2,95), WOsub(2,90), WOsub(2,72) and Wo 2 , which were selected because they possess specific features of chemical and structural interest rather than for their catalytic ability. It was found that the oxides WOsub(2,95), WOsub(2,90) and WOsub(2,72) all selectively produce acrolein in small amounts. The oxides WO 3 and WO 2 were non-selective and rather inactive. The results are discussed in terms of a mechanism involving both variable valence in the crystal and the specific structural geometry of these compounds. (orig.) [de

  19. Kinetic Studies of Catalytic Oxidation of Cyclohexene Using ...

    African Journals Online (AJOL)

    acer

    Kinetic Studies of Catalytic Oxidation of Cyclohexene Using Chromium VI Oxide in. Acetic Acid ... respect to the oxidant using pseudo-order approximation method. .... making the concentration of the cyclohexene in ..... on Titanium Silicate.

  20. Aerobic, catalytic oxidation of alcohols in ionic liquids

    Directory of Open Access Journals (Sweden)

    Souza Roberto F. de

    2006-01-01

    Full Text Available An efficient and simple catalytic system based on RuCl3 dissolved in ionic liquids has been developed for the oxidation of alcohols into aldehydes and ketones under mild conditions. A new fluorinated ionic liquid, 1-n-butyl-3-methylimidazolium pentadecafluorooctanoate, was synthesized and demonstrated better performance that the other ionic liquids employed. Moreover this catalytic system utilizes molecular oxygen as an oxidizing agent, producing water as the only by-product.

  1. Catalytic Oxidation of Allylic Alcohols to Methyl Esters

    DEFF Research Database (Denmark)

    Gallas-Hulin, Agata; Kotni, Rama Krishna; Nielsen, Martin

    2017-01-01

    Aerobic oxidation of allylic alcohols to methyl esters using gold nanoparticles supported on different metal oxide carriers has been performed successfully under mild conditions (room temperature, 0.1 MPa O2) without significant loss of catalytic activity. The effects of different reaction...... parameters are studied to find the suitable reaction conditions. All catalysts are characterised by XRD, XRF and TEM. Among these catalysts, Au/TiO2 showed the most efficient catalytic activity towards the selective oxidation of allylic alcohols to the corresponding esters. Moreover, the same Au/TiO2...... to synthesize methyl esters from allylic alcohols....

  2. Selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J; Koljonen, T [VTT Energy, Espoo (Finland)

    1997-12-31

    In the combustion of fossil fuels, the principal source of nitrogen oxides is nitrogen bound in the fuel structure. In gasification, a large part of fuel nitrogen forms NH{sub 3}, which may form nitrogen oxides during gas combustion. If NH{sub 3} and other nitrogen species could be removed from hot gas, the NO emission could be considerably reduced. However, relatively little attention has been paid to finding new means of removing nitrogen compounds from the hot gasification gas. The possibility of selectively oxidizing NH{sub 3} to N{sub 2} in the hot gasification has been studied at VTT Energy. The largest NH{sub 3} reductions have been achieved by catalytic oxidation on aluminium oxides. (author) (4 refs.)

  3. Selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-31

    In the combustion of fossil fuels, the principal source of nitrogen oxides is nitrogen bound in the fuel structure. In gasification, a large part of fuel nitrogen forms NH{sub 3}, which may form nitrogen oxides during gas combustion. If NH{sub 3} and other nitrogen species could be removed from hot gas, the NO emission could be considerably reduced. However, relatively little attention has been paid to finding new means of removing nitrogen compounds from the hot gasification gas. The possibility of selectively oxidizing NH{sub 3} to N{sub 2} in the hot gasification has been studied at VTT Energy. The largest NH{sub 3} reductions have been achieved by catalytic oxidation on aluminium oxides. (author) (4 refs.)

  4. Electro-catalytic oxidation of reactive Orange 107 using cerium doped oxides of Nd3+ nanoparticle

    International Nuclear Information System (INIS)

    Rajkumar, K.; Muthukumar, M.; Mangalaraja, R.V.

    2011-01-01

    A new rare earth doped cerium oxide powder was used as a catalyst to investigate the removal of colour and TOC from simulated wastewater of Reactive Orange 107. The electro oxidation process was carried out in the reactor in presence of an electrolyte NaCl. Graphite electrode was used as anode and cathode and electrolysis were carried out at a current density of 34.96 mAcm -2 with a catalyst concentration of 0.05g L -1 . In order to find the efficiency of nanocatalyst, experiments were also conducted without catalyst. From the experiment, it was found that complete colour removal was achieved on electrocatalytic oxidation as well as electro oxidation. When comparing the above processes, catalytic oxidation shows more efficient than electro oxidation. With respect to the degradation of the dye, catalytic oxidation shows more TOC removal than the oxidation taken place without catalyst. It infers that even though the electro-catalytic oxidation process achieves complete decolouration but it does not achieve complete mineralisation. The FTIR and GCMS studies confirmed the formation of by-products. (author)

  5. Catalytic Performance of Co3O4 on Different Activated Carbon Supports in the Benzyl Alcohol Oxidation

    Directory of Open Access Journals (Sweden)

    Misael Cordoba

    2017-12-01

    Full Text Available Co3O4 particles were supported on a series of activated carbons (G60, CNR, RX3, and RB3. Incipient wetness method was used to prepare these catalysts. The effect of the structural and surface properties of the carbonaceous supports during oxidation of benzyl alcohol was evaluated. The synthetized catalysts were characterized via IR, TEM, TGA/MS, XRD, TPR, AAS, XPS, and N2 adsorption/desorption isotherm techniques. Co3O4/G60 and Co3O4/RX3 catalysts have high activity and selectivity on the oxidation reaction reaching conversions above 90% after 6 h, without the presence of promoters. Catalytic performances show that differences in chemistry of support surface play an important role in activity and suggest that the presence of different ratios of species of cobalt and oxygenated groups on surface in Co3O4/G60 and Co3O4/RX3 catalysts, offered a larger effect synergic between both active phase and support increasing their catalytic activity when compared to the other tested catalysts.

  6. The study on catalytic performance of CuO/CexZr1-xO2 catalyst in carbon monoxide oxidation

    Directory of Open Access Journals (Sweden)

    Huang Jinhua

    2017-12-01

    Full Text Available A series of CuO/CexZr1-xO2 samples were prepared by incipient-wetness impregnation method with CexZr1-xO2 used as the catalyst carrier which was synthesized by co-precipitation method.The influences of the mass ratio of CeO2:ZrO2 and CuO loading were investigated using catalytic activity test,XRD,BET,H2-TPR,and CO-TPR techniques.The results revealed that with a CeO2:ZrO2 mass ratio of 4:1 and 10% CuO loading,10%CuO/Ce0.815Zr0.185O2 catalyst showed a larger surface area and pore volume,a higher dispersity of CuO particles,better reduction property and CO oxidation property.Thus,10% CuO/Ce0.815Zr0.185O2 catalyst exhibited a high catalytic activity in the carbon monoxide oxidation with 100% CO conversion at the temperature as low as 80℃ under atmospheric pressure.

  7. Supported manganese oxide on TiO{sub 2} for total oxidation of toluene and polycyclic aromatic hydrocarbons (PAHs): Characterization and catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Aboukaïs, Antoine, E-mail: aboukais@univ-littoral.fr [Univ Lille Nord de France, 59000 Lille (France); Equipe Catalyse, UCEIV, EA 4492, MREI, ULCO, 59140 Dunkerque (France); Abi-Aad, Edmond [Univ Lille Nord de France, 59000 Lille (France); Equipe Catalyse, UCEIV, EA 4492, MREI, ULCO, 59140 Dunkerque (France); Taouk, Bechara [Laboratoire de Sécurité des procédés Chimiques (LSPC), EA 4704, INSA Rouen, Avenue de l' Université, 76801 Saint Etienne du Rouvray (France)

    2013-11-01

    Manganese oxide catalysts supported on titania (TiO{sub 2}) were prepared by incipient wetness impregnation method in order to elaborate catalysts for total oxidation of toluene and PAHs. These catalysts have been characterized by means of X-ray diffraction (XRD), electron paramagnetic resonance (EPR), temperature programmed reduction (TPR) and temperature programmed desorption (TPD). It has been shown that for the 5%Mn/TiO{sub 2} catalyst the reducibility and the mobility of oxygen are higher compared, in one side, to other x%Mn/TiO{sub 2} samples and, in another side, to catalysts where TiO{sub 2} support was replaced by γ-Al{sub 2}O{sub 3} or SiO{sub 2}. It has been shown that the content of manganese loading on TiO{sub 2} has an effect on the catalytic activity in the toluene oxidation. A maximum of activity was obtained for the 5%Mn/TiO{sub 2} catalyst where the total conversion of toluene was reached at 340 °C. This activity seems to be correlated to the presence of the Mn{sup 3+}/Mn{sup 4+} redox couple in the catalyst. When the Mn content increases, large particles of Mn{sub 2}O{sub 3} appear leading then to the decrease in the corresponding activity. In addition, compared to both other supports, TiO{sub 2} seems to be the best to give the best catalytic activity for the oxidation of toluene when it is loaded with 5% of manganese. For this reason, the latter catalyst was tested for the abatement of some PAHs. The light off temperature of PAHs compounds increases with increasing of benzene rings number and with decreasing of H/C ratio. All of PAHs are almost completely oxidized and converted at temperatures lower than 500 °C. - Highlights: • Preparation of x%MnO{sub 2}/TiO{sub 2} catalysts. • Catalytic oxidation tests of toluene and PAHs. • EPR, TPR and TPD characterizations of Mn(II) and Mn(IV) ions.

  8. Continuous production of bio-oil by catalytic liquefaction from wet distiller’s grain with solubles (WDGS) from bio-ethanol production

    International Nuclear Information System (INIS)

    Toor, Saqib Sohail; Rosendahl, Lasse; Nielsen, Mads Pagh; Glasius, Marianne; Rudolf, Andreas; Iversen, Steen Brummerstedt

    2012-01-01

    Bio-refinery concepts are currently receiving much attention due to the drive toward flexible, highly efficient systems for utilization of biomass for food, feed, fuel and bio-chemicals. One way of achieving this is through appropriate process integration, in this particular case combining enzymatic bio-ethanol production with catalytic liquefaction of the wet distillers grains with soluble, a byproduct from the bio-ethanol process. The catalytic liquefaction process is carried out at sub-critical conditions (280–370 °C and 25 MPa) in the presence of a homogeneous alkaline and a heterogeneous Zirconia catalyst, a process known as the Catliq ® process. In the current work, catalytic conversion of WDGS was performed in a continuous pilot plant with a maximum capacity of 30 dm 3 h −1 of wet biomass. In the process, WDGS was converted to bio-oil, gases and water-soluble organic compounds. The oil obtained was characterized using several analysis methods, among them elementary analysis and GC–MS. The study shows that WDGS can be converted to bio oil with high yields. The results also indicate that through the combination of bio-ethanol production and catalytic liquefaction, it is possible to significantly increase the liquid product yield and scope, opening up for a wider end use applicability. -- Highlights: ► Hydrothermal liquefaction of wet biomass. ► Product phase analysis: oil, acqeous, gas and mineral phase. ► Energy and mass balance evaluation.

  9. COAL CONVERSION WASTEWATER TREATMENT BY CATALYTIC OXIDATION IN SUPERCRITICAL WATER; FINAL

    International Nuclear Information System (INIS)

    Phillip E. Savage

    1999-01-01

    Wastewaters from coal-conversion processes contain phenolic compounds in appreciable concentrations. These compounds need to be removed so that the water can be discharged or re-used. Catalytic oxidation in supercritical water is one potential means of treating coal-conversion wastewaters, and this project examined the reactions of phenol over different heterogeneous oxidation catalysts in supercritical water. More specifically, we examined the oxidation of phenol over a commercial catalyst and over bulk MnO(sub 2), bulk TiO(sub 2), and CuO supported on Al(sub 2) O(sub 3). We used phenol as the model pollutant because it is ubiquitous in coal-conversion wastewaters and there is a large database for non-catalytic supercritical water oxidation (SCWO) with which we can contrast results from catalytic SCWO. The overall objective of this research project is to obtain the reaction engineering information required to evaluate the utility of catalytic supercritical water oxidation for treating wastes arising from coal conversion processes. All four materials were active for catalytic supercritical water oxidation. Indeed, all four materials produced phenol conversions and CO(sub 2) yields in excess of those obtained from purely homogeneous, uncatalyzed oxidation reactions. The commercial catalyst was so active that we could not reliably measure reaction rates that were not limited by pore diffusion. Therefore, we performed experiments with bulk transition metal oxides. The bulk MnO(sub 2) and TiO(sub 2) catalysts enhance both the phenol disappearance and CO(sub 2) formation rates during SCWO. MnO(sub 2) does not affect the selectivity to CO(sub 2), or to the phenol dimers at a given phenol conversion. However, the selectivities to CO(sub 2) are increased and the selectivities to phenol dimers are decreased in the presence of TiO(sub 2) , which are desirable trends for a catalytic SCWO process. The role of the catalyst appears to be accelerating the rate of formation of

  10. Catalytic activity of oxide cerium-molybdenum-tellurium catalysts in oxidation ammonolysis

    International Nuclear Information System (INIS)

    Dzhordano, N.; Bart, D.; Madzhori, R.

    1984-01-01

    A commercial catalyst containing a mixture of Ce-, Mo-, Te oxides deposited on SiO 2 is shown to manifest a high efficiency in oxidative ammonolysis of propylene (C 3 - ) to acrylonitrile (AN). The dependence of the catalytic properties on the catalyst composition and reaction conditions is studied. It is established that three-component mixtures are more active and selective than the systems with a lesser number of components. Using the catalyst with the optimum ratio of constituent oxides in a microreactor at 440 deg enabled one to achieve initial selectivity in terms of AN equal to 82.5% at 97% conversion of C 3 - . Acrolein, acetonitrile, HCN and nitrogen oxides are the reaction by-products. A supposition is made that the reaction proceeds via the formation of π-compleXes on the centres of Te(4). Setective oxidation occurs on oxygen atoms bonded with the Mo(6) ions. Tellurium enhances the molybdenum reducibleness due to delocalization of electrons, whereas the cerium addition to the mixture of tellurium- and molybdenum oxides increases the rate of molybdenum reoxidation and thus enhances the catalytic system stability

  11. Development of wet-proofed catalyst and catalytic exchange process for tritium extraction

    Energy Technology Data Exchange (ETDEWEB)

    Song, Myung Jae; Son, Soon Hwan; Chung, Yang Gun; Lee, Gab Bock [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1996-12-31

    To apply a liquid phase catalytic exchange(LPCE) process for the tritium extraction from tritiated heavy water, the wet proofed catalyst to allow the hydrogen isotopic exchange reaction between liquid water and hydrogen gas was developed. A styrene divinyl benzene copolymer was selected as am effective catalyst support and prepared by suspension copolymerization. After post-treatment, final catalyst supports were dipped in chloroplatinic acid solution. The catalyst support had a good physical properties at a particular preparation condition. The catalytic performance was successfully verified through hydrogen isotopic exchange reaction in the exchange column. A mathematical model for the tritium removal process consisted of LPCE front-ended process and cryogenic distillation process was established using the NTU-HTU method for LPCE column and the FUG method for cryogenic distillation column, respectively. A computer program was developed using the model and then used to investigate optimum design variables which affect the size of columns and tritium inventory (author). 84 refs., 113 figs.

  12. Preliminary comparison of three processes of AlN oxidation: dry, wet and mixed ones

    Directory of Open Access Journals (Sweden)

    Korbutowicz R.

    2016-03-01

    Full Text Available Three methods of AlN layers oxidation: dry, wet and mixed (wet with oxygen were compared. Some physical parameters of oxidized thin films of aluminum nitride (AlN layers grown on silicon Si(1 1 1 were investigated by means Energy-Dispersive X-ray Spectroscopy (EDS and Spectroscopic Ellipsometry (SE. Three series of the thermal oxidations processes were carried out at 1012 °C in pure nitrogen as carrying gas and various gas ambients: (a dry oxidation with oxygen, (b wet oxidation with water steam and (c mixed atmosphere with various process times. All the research methods have shown that along with the rising of the oxidation time, AlN layer across the aluminum oxide nitride transforms to aluminum oxide. The mixed oxidation was a faster method than the dry or wet ones.

  13. Cyanide Containing Wastewater Treatment by Ozone Enhanced Catalytic Oxidation over Diatomite Catalysts

    Directory of Open Access Journals (Sweden)

    Lin Mingguo

    2018-01-01

    Full Text Available Cyanide containing wastewater that discharged from gold mining process creates environmental problems due to the toxicity of cyanide. As one of the promising advanced oxidation process, catalytic oxidation with ozone is considered to be effective on the purification of cyanide. Diatomite, a natural mineral, was used as catalyst in this study. The effect of O3 dosage, salinity, initial cyanide concentration and initial pH condition were investigated. It was observed that the removal rate of cyanide was much higher in the catalytic oxidation with ozone process than the one in zone alone process. Alkaline condition was especially favorable for cyanide in catalytic oxidation with ozone. The ozone and catalytic oxidation with ozone were simulated by pseudo-first-order kinetics model. The apparent first-order rate constant contribution of the diatomite catalyst was 0.0757 min-1, and the contribution percentage was 65.77%.

  14. Catalytic activity of metall-like carbides in carbon oxide oxidation reaction

    International Nuclear Information System (INIS)

    Kharlamov, A.I.; Kosolapova, T.Ya.; Rafal, A.N.; Kirillova, N.V.

    1980-01-01

    Kinetics of carbon oxide oxidation upon carbides of hafnium, niobium, tantalum, molybdenum, zirconium and chromium is studied. Probable mechanism of the catalysts action is suggested. The established character of the change of the carbide catalytic activity is explained by the change of d-electron contribution to the metal-metal interaction

  15. Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion

    International Nuclear Information System (INIS)

    Pozan, Gulin Selda

    2012-01-01

    Highlights: ► α-Al 2 O 3 , obtained from Bohmite, as a support for enhancing of the activity. ► The support material for catalytic oxidation. ► The manganese state and oxygen species effect on the catalytic combustion reaction. - Abstract: The aim of this work was to study combustion of toluene (1000 ppm) over MnO 2 modified with different supports. α-Al 2 O 3 and γ-Al 2 O 3 obtained from Boehmite, γ-Al 2 O 3 (commercial), SiO 2 , TiO 2 and ZrO 2 were used as commercial support materials. In view of potential interest of this process, the influence of support material on the catalytic performance was discussed. The deposition of 9.5MnO 2 was performed by impregnation over support. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction and oxidation (TPR/TPO) and thermogravimetric analysis (TGA). The catalytic tests were carried out at atmospheric pressure in a fixed-bed flow reactor. 9.5MnO 2 /α-Al 2 O 3 (B) (synthesized from Boehmite) catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of 289 °C. Considering all the characterization and reaction data reported in this study, it was concluded that the manganese state and oxygen species played an important role in the catalytic activity.

  16. Activated carbon as catalyst for microwave-assisted wet peroxide oxidation of aromatic hydrocarbons.

    Science.gov (United States)

    Garcia-Costa, Alicia L; Lopez-Perela, Lucia; Xu, Xiyan; Zazo, Juan A; Rodriguez, Juan J; Casas, Jose A

    2018-05-21

    This paper addresses the removal of four aromatic hydrocarbons typically found in petrochemical wastewater: benzene (B), toluene (T), o-xylene (X), and naphthalene (N), by microwave-assisted catalytic wet peroxide oxidation (MW-CWPO) using activated carbon (AC) as catalyst. Under the studied conditions, complete pollutant elimination (B, 1.28 mM; T, 1.09 mM; X, 0.94 mM; and N, 0.78 mM) was achieved, with more than 90% TOC removal after only 15-min reaction time, working at 120 °C, pH 0  = 3, AC at 1 g L -1 , and H 2 O 2 at the stoichiometric dose. Furthermore, in the case of toluene, naphthalene, and xylene, the hydroxylation and breakdown of the ring is very rapid and toxic intermediates were not detected. The process follows two steps: (i) pollutant adsorption onto AC followed by (ii) adsorbed compounds oxidation. Thus, MW-CWPO with AC as catalyst appears a promising way for a fast and effective process for B, T, X, and N removal in aqueous phase.

  17. Catalytic production of metal carbonyls from metal oxides

    Science.gov (United States)

    Sapienza, Richard S.; Slegeir, William A.; Foran, Michael T.

    1984-01-01

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150.degree.-260.degree. C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO.sub.4 and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect.

  18. Effect of NO2 and water on the catalytic oxidation of soot

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt; Grunwaldt, Jan-Dierk; Jensen, Anker Degn

    2017-01-01

    The influence of adding NO2 to 10 vol% O2/N2 on non-catalytic soot oxidation and soot oxidation in intimate or loose contact with a catalyst has been investigated. In non-catalytic soot oxidation the oxidation rate is increased significantly at lower temperatures by NO2. For soot oxidation in tig...... exhibited a volcano-curve dependence on the heat of oxygen chemisorption, and among the tested pure metals and oxides Cr2O3 was the most active catalyst. Further improvements were achieved with a FeaCrbOx binary oxide catalyst....

  19. Mn-Ce-V-WOx/TiO2 SCR Catalysts: Catalytic Activity, Stability and Interaction among Catalytic Oxides

    Directory of Open Access Journals (Sweden)

    Xuteng Zhao

    2018-02-01

    Full Text Available A series of Mn-Ce-V-WOx/TiO2 composite oxide catalysts with different molar ratios (active components/TiO2 = 0.1, 0.2, 0.3, 0.6 have been prepared by wet impregnation method and tested in selective catalytic reduction (SCR of NO by NH3 in a wide temperature range. These catalysts were also characterized by X-ray diffraction (XRD, Transmission Electron Microscope (TEM, in situ Fourier Transform infrared spectroscopy (in situ FTIR, H2-Temperature programmed reduction (H2-TPR and X-ray photoelectron spectroscopy (XPS. The results show the catalyst with a molar ratio of active components/TiO2 = 0.2 exhibits highest NO conversion value between 150 °C to 400 °C and good resistance to H2O and SO2 at 250 °C with a gas hourly space velocity (GHSV value of 40,000 h−1. Different oxides are well dispersed and interact with each other. NH3 and NO are strongly adsorbed on the catalyst surface and the adsorption of the reactant gas leads to a redox cycle with the valence state change among the surface oxides. The adsorption of SO2 on Mn4+ and Ce4+ results in good H2O and SO2 resistance of the catalyst, but the effect of Mn and Ce are more than superior water and sulfur resistance. The diversity of valence states of the four active components and their high oxidation-reduction performance are the main reasons for the high NO conversion in this system.

  20. Modelling the change in the oxidation coefficient during the aerobic ...

    African Journals Online (AJOL)

    2013-01-20

    Jan 20, 2013 ... activated sludge in batch reactors under different initial phenol concentrations. ... wet air oxidation, ozonation, non-catalytic, catalytic and ... design of aeration devices. ... using an open (flowing gas/static liquid) respirometer.

  1. Catalytic oxidation of soot over alkaline niobates

    International Nuclear Information System (INIS)

    Pecchi, G.; Cabrera, B.; Buljan, A.; Delgado, E.J.; Gordon, A.L.; Jimenez, R.

    2013-01-01

    Highlights: ► No previous reported studies about alkaline niobates as catalysts for soot oxidation. ► NaNbO 3 and KNbO 3 perovskite-type oxides show lower activation energy than other lanthanoid perovskite-type oxides. ► The alkaline niobate does not show deactivation by metal loss. - Abstract: The lack of studies in the current literature about the assessment of alkaline niobates as catalysts for soot oxidation has motivated this research. In this study, the synthesis, characterization and assessment of alkaline metal niobates as catalysts for soot combustion are reported. The solids MNbO 3 (M = Li, Na, K, Rb) are synthesized by a citrate method, calcined at 450 °C, 550 °C, 650 °C, 750 °C, and characterized by AAS, N 2 adsorption, XRD, O 2 -TPD, FTIR and SEM. All the alkaline niobates show catalytic activity for soot combustion, and the activity depends basically on the nature of the alkaline metal and the calcination temperature. The highest catalytic activity, expressed as the temperature at which combustion of carbon black occurs at the maximum rate, is shown by KNbO 3 calcined at 650 °C. At this calcination temperature, the catalytic activity follows an order dependent on the atomic number, namely: KNbO 3 > NaNbO 3 > LiNbO 3 . The RbNbO 3 solid do not follow this trend presumably due to the perovskite structure was not reached. The highest catalytic activity shown by of KNbO 3 , despite the lower apparent activation energy of NaNbO 3 , stress the importance of the metal nature and suggests the hypothesis that K + ions are the active sites for soot combustion. It must be pointed out that alkaline niobate subjected to consecutive soot combustion cycles does not show deactivation by metal loss, due to the stabilization of the alkaline metal inside the perovskite structure.

  2. Total catalytic wet oxidation of phenol and its chlorinated derivates with MnO2/CeO2 catalyst in a slurry

    Directory of Open Access Journals (Sweden)

    A. J. Luna

    2009-09-01

    Full Text Available In the present work, a synthetic effluent of phenol was treated by means of a total oxidation process-Catalyzed Wet Oxidation (CWO. A mixed oxide of Mn-Ce (7:3, the catalyst, was synthesized by co-precipitation from an aqueous solution of MnCl2 and CeCl3 in a basic medium. The mixed oxide, MnO2/CeO2, was characterized and used in the oxidation of phenol in a slurry reactor in the temperature range of 80-130ºC and pressure of 2.04-4.76 MPa. A phenol solution containing 2.4-dichlorophenol and 2.4-dichlorophenoxyacetic acid was also degraded with good results. A lumped kinetic model, with two parallel reaction steps, fits precisely with the integrated equation and the experimental data. The kinetic parameters obtained are in agreement with the Arrhenius equation. The activation energies were determined to be 38.4 for the total oxidation and 53.4 kJ/mol for the organic acids formed.

  3. Abatement of phenolic mixtures by catalytic wet oxidation enhanced by Fenton's pretreatment: Effect of H2O2 dosage and temperature

    International Nuclear Information System (INIS)

    Santos, A.; Yustos, P.; Rodriguez, S.; Simon, E.; Garcia-Ochoa, F.

    2007-01-01

    Catalytic wet oxidation (CWO) of a phenolic mixture containing phenol, o-cresol and p-cresol (500 mg/L on each pollutant) has been carried out using a commercial activated carbon (AC) as catalyst, placed in a continuous three-phase reactor. Total pressure was 16 bar and temperature was 127 deg. C. Pollutant conversion, mineralization, intermediate distribution, and toxicity were measured at the reactor outlet. Under these conditions no detoxification of the inlet effluent was found even at the highest catalyst weight (W) to liquid flow rate (Q L ) ratio used. On the other hand, some Fenton Runs (FR) have been carried out in a batch way using the same phenolic aqueous mixture previously cited. The concentration of Fe 2+ was set to 10 mg/L. The influence of the H 2 O 2 amount (between 10 and 100% of the stoichiometric dose) and temperature (30, 50, and 70 deg. C) on phenols conversion, mineralization, and detoxification have been analyzed. Phenols conversion was near unity at low hydrogen peroxide dosage but mineralization and detoxification achieved an asymptotic value at each temperature conditions. The integration of Fenton reagent as pretreatment of the CWO process remarkably improves the efficiency of the CWO reactor and allows to obtain detoxified effluents at mild temperature conditions and relatively low W/Q L values. For a given phenolic mixture a temperature range of 30-50 deg. C in the Fenton pretreatment with a H 2 O 2 dosage between 20 and 40% of the stoichiometric amount required can be proposed

  4. Post-treatment of biologically treated wastewater containing organic contaminants using a sequence of H2O2 based advanced oxidation processes: photolysis and catalytic wet oxidation.

    Science.gov (United States)

    Rueda-Márquez, J J; Sillanpää, M; Pocostales, P; Acevedo, A; Manzano, M A

    2015-03-15

    In this paper the feasibility of a multi-barrier treatment (MBT) for the regeneration of synthetic industrial wastewater (SIWW) was evaluated. Industrial pollutants (orange II, phenol, 4-chlorophenol and phenanthrene) were added to the effluent of municipal wastewater treatment plant. The proposed MBT begins with a microfiltration membrane pretreatment (MF), followed by hydrogen peroxide photolysis (H2O2/UVC) and finishing, as a polishing step, with catalytic wet peroxide oxidation (CWPO) using granular activated carbon (GAC) at ambient conditions. During the microfiltration step (0.7 μm) the decrease of suspended solids concentration, turbidity and Escherichia coli in treated water were 88, 94 and 99%, respectively. Also, the effluent's transmittance (254 nm) was increased by 14.7%. Removal of more than 99.9% of all added pollutants, mineralization of 63% of organic compounds and complete disinfection of total coliforms were reached during the H2O2/UVC treatment step (H2O2:TOC w/w ratio = 5 and an UVC average dose accumulated by wastewater 8.80 WUVC s cm(-2)). The power and efficiency of the lamp, the water transmittance and photoreactor geometry are taken into account and a new equation to estimate the accumulated dose in water is suggested. Remaining organic pollutants with a higher oxidation state of carbon atoms (+0.47) and toxic concentration of residual H2O2 were present in the effluent of the H2O2/UVC process. After 2.3 min of contact time with GAC at CWPO step, 90 and 100% of total organic carbon and residual H2O2 were removed, respectively. Also, the wastewater toxicity was studied using Vibrio fischeri and Sparus aurata larvae. The MBT operational and maintenance costs (O&M) was estimated to be 0.59 € m(-3). Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Al-doped TiO{sub 2} mesoporous material supported Pd with enhanced catalytic activity for complete oxidation of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jing, E-mail: mlczjsls123@163.com; Mu, Wentao, E-mail: mwt15035687833@163.com; Su, Liqing, E-mail: suliqing0163@163.com; Li, Xingying, E-mail: lixingying0479@link.tyut.edu.cn; Guo, Yuyu, E-mail: guoyuyu0455@link.tyut.edu.cn; Zhang, Shen, E-mail: zhangshen0472@link.tyut.edu.cn; Li, Zhe, E-mail: lizhe@tyut.edu.cn

    2017-04-15

    Pd catalysts supported on Al-doped TiO{sub 2} mesoporous materials were evaluated in complete oxidation of ethanol. The catalysts synthesized by wet impregnation based on evaporation-induced self-assembly were characterized by X-ray diffraction, measurement of pore structure, XPS, FT-IR, temperature programmed reduction and TEM. Characteristic results showed that the aluminium was doped into the lattice of mesoporous anatase TiO{sub 2} to form Al-O-Ti defect structure. Catalytic results revealed that Al-doped catalysts were much more active than the pristine one, especially at low temperature (≤200 °C). This should be ascribed to the introduction of aluminium ions that suppressed the strong metal-support interaction and increased the active sites of Pd oxides, enhanced the stabilized anatase TiO{sub 2}, improved well dispersed high valence palladium species with high reducibility and enriched chemisorption oxygen. - Graphical abstract: Al-doped Pd/TiO{sub 2} exhibited optimal catalytic performance for ethanol oxidation and CO{sub 2} yield by the suppression of SMSI. - Highlights: • Palladium catalysts supported on Al-doped TiO{sub 2} mesoporous materials were studied. • The introduction of Al can enhance anatase stabilization and increase defect TiO{sub 2}. • The Pd/Al-TiO{sub 2} catalysts show higher ethanol conversion and CO{sub 2} yield than Pd/TiO{sub 2}. • The influence of Al on SMSI and catalytic performance were evaluated by TPR and XPS.

  6. Selective catalytic oxidation of hydrocarbons as a challenge to the chemical engineer

    Energy Technology Data Exchange (ETDEWEB)

    Emig, G [Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Inst. fuer Technische Chemie 1

    1977-11-01

    In the conversion of the most important chemical raw materials, natural oil and natural gas, to intermediate or end products, selective catalytic oxidation plays an increasing role. This method makes it possible in many cases to use more economical, single-step processes instead of the older multi-step processes. Using the typical example of propylene oxidation or ammonoxidation, the problems encountered by chemical engineers in the development of a heterogeneous-catalytic method of oxidation are demonstrated. The importance of systematic catalyst development is stressed. General aspects of the development of novel processes or the improvement of existing catalytic processes are discussed.

  7. Low-temperature plasma-catalytic oxidation of formaldehyde in atmospheric pressure gas streams

    International Nuclear Information System (INIS)

    Ding Huixian; Zhu Aimin; Lu Fugong; Xu Yong; Zhang Jing; Yang Xuefeng

    2006-01-01

    Formaldehyde (HCHO) is a typical air pollutant capable of causing serious health disorders in human beings. This work reports plasma-catalytic oxidation of formaldehyde in gas streams via dielectric barrier discharges over Ag/CeO 2 pellets at atmospheric pressure and 70 0 C. With a feed gas mixture of 276 ppm HCHO, 21.0% O 2 , 1.0% H 2 O in N 2 , ∼99% of formaldehyde can be effectively destructed with an 86% oxidative conversion into CO 2 at GHSV of 16500 h -1 and input discharge energy density of 108 J l -1 . At the same experimental conditions, the conversion percentages of HCHO to CO 2 from pure plasma-induced oxidation (discharges over fused silica pellets) and from pure catalytic oxidation over Ag/CeO 2 (without discharges) are 6% and 33% only. The above results and the CO plasma-catalytic oxidation experiments imply that the plasma-generated short-lived gas phase radicals, such as O and HO 2 , play important roles in the catalytic redox circles of Ag/CeO 2 to oxidize HCHO and CO to CO 2

  8. Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood

    DEFF Research Database (Denmark)

    Palonen, H.; Thomsen, A.B.; Tenkanen, M.

    2004-01-01

    The wet oxidation pretreatment (water, oxygen, elevated temperature, and pressure) of softwood (Picea abies) was investigated for enhancing enzymatic hydrolysis. The pretreatment was preliminarily optimized. Six different combinations of reaction time, temperature, and pH were applied......, and the compositions of solid and liquid fractions were analyzed. The solid fraction after wet oxidation contained 58-64% cellulose, 2-16% hemicellulose, and 24-30% lignin. The pretreatment series gave information about the roles of lignin and hemicellulose in the enzymatic hydrolysis. The temperature...

  9. Microwave Catalytic Oxidation of Hydrocarbons in Aqueous Solutions

    National Research Council Canada - National Science Library

    Cha, Chang

    2003-01-01

    .... A sufficient amount of experimental work has been completed evaluating the performance of the microwave catalytic oxidation process and determining the effect of different operating parameters...

  10. Nanodiamond-Gold Nanocomposites with the Peroxidase-Like Oxidative Catalytic Activity.

    Science.gov (United States)

    Kim, Min-Chul; Lee, Dukhee; Jeong, Seong Hoon; Lee, Sang-Yup; Kang, Eunah

    2016-12-21

    Novel nanodiamond-gold nanocomposites (NDAus) are prepared, and their oxidative catalytic activity is examined. Gold nanoparticles are deposited on carboxylated nanodiamonds (NDs) by in situ chemical reduction of gold precursor ions to produce NDAus, which exhibit catalytic activity for the oxidation of o-phenylenediamine in the presence of hydrogen peroxide similarly to a peroxidase. This remarkable catalytic activity is exhibited only by the gold nanoparticle-decorated NDs and is not observed for either Au nanoparticles or NDs separately. Kinetic oxidative catalysis studies show that NDAus exhibit a ping-pong mechanism with an activation energy of 93.3 kJ mol -1 , with the oxidation reaction rate being proportional to the substrate concentration. NDAus retain considerable activity even after several instances of reuse and are compatible with a natural enzyme, allowing the detection of xanthine using cascade catalysis. Association with gold nanoparticles makes NDs a good carbonic catalyst due to charge transfer at the metal-carbon interface and facilitated substrate adsorption. The results of this study suggest that diverse carbonic catalysts can be obtained by interfacial incorporation of various metal/inorganic substances.

  11. Characterization and Catalytic Activity of Mn-Co/TiO2 Catalysts for NO Oxidation to NO2 at Low Temperature

    Directory of Open Access Journals (Sweden)

    Lu Qiu

    2016-01-01

    Full Text Available A series of Mn-Co/TiO2 catalysts were prepared by wet impregnation method and evaluated for the oxidation of NO to NO2. The effects of Co amounts and calcination temperature on NO oxidation were investigated in detail. The catalytic oxidation ability in the temperature range of 403–473 K was obviously improved by doping cobalt into Mn/TiO2. These samples were characterized by nitrogen adsorption-desorption, X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, transmission electron microscope (TEM and hydrogen temperature programmed reduction (H2-TPR. The results indicated that the formation of dispersed Co3O4·CoMnO3 mixed oxides through synergistic interaction between Mn-O and Co-O was directly responsible for the enhanced activities towards NO oxidation at low temperatures. Doping of Co enhanced Mn4+ formation and increased chemical adsorbed oxygen amounts, which also accelerated NO oxidation.

  12. Visualizing the mobility of silver during catalytic soot oxidation

    DEFF Research Database (Denmark)

    Gardini, Diego; Christensen, Jakob M.; Damsgaard, Christian Danvad

    2016-01-01

    The catalytic activity and mobility of silver nanoparticles used as catalysts in temperature programmed oxidation of soot:silver (1:5 wt:wt) mixtures have been investigated by means of flow reactor experiments and in situ environmental transmission electron microscopy (ETEM). The carbon oxidation...

  13. Catalytic oxidation of cyclohexane to cyclohexanone

    Indian Academy of Sciences (India)

    ... a precursor and characterized by chemical analysis using the ICP–AES method, XRD, TEM, FTIR and BET surface area determination. The oxidation reaction was carried out at 70°C under atmospheric pressure. The results showed the catalytic performance of Pt/Al2O3 as being very high in terms of turnover frequency.

  14. Degradation of quinoline by wet oxidation - kinetic aspects and reaction mechanisms

    DEFF Research Database (Denmark)

    Thomsen, A.B.

    1998-01-01

    The high temperature, high pressure wet oxidation reaction of quinoline has been studied as a function of initial concentration, pH and temperature. At neutral to acidic pH, it is effective in the oxidation of quinoline at 240 degrees C and above, whereas under alkaline conditions the reaction...... is markedly slowed down. The results indicate that the reaction is an auto-catalysed, free radical chain reaction transforming 99% of quinoline to other substances. Of the quinoline. 30-50% was oxidised to CO2 and H2O depending on the initial concentration. Wet oxidation of deuterium-labelled quinoline...

  15. Selective catalytic oxidation of hydrocarbons as a challenge to the chemical engineer

    Energy Technology Data Exchange (ETDEWEB)

    Emig, G [Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Lehrstuhl fuer Technische Chemie 1

    1978-08-01

    Selective catalytic oxidation is beginning to play a more and more significant role in the process of converting the most important chemical raw materials, crude oil and natural gas, into intermediate and end products. In many cases, this technique makes it possible to replace old processes consisting of many steps by more economical single-step reactions. The typical example of oxidation or ammoxidation of propylene demonstrates the problems which must be solved by the chemical engineer during the development of a heterogeneous catalytic oxidation process. The particular importance of a systematic development of a catalyst is emphasized. General aspects relating to the design of new catalytic processes, or the improvement of existing ones are also discussed.

  16. Catalytic abatement of nitrous oxide from nitric and production

    NARCIS (Netherlands)

    Oonk, J.

    1998-01-01

    Nitric acid production is identified as a main source of nitrous oxide. Options for emission reduction however are not available. TNO and Hydro Agri studied the technological and economic feasibility of catalytic decomposition of nitrous oxide in nitric acid tail-gases. Although in literature

  17. Solvent-free Oxidation of Alcohols and Mild Catalytic Deprotection of ...

    African Journals Online (AJOL)

    tetrabromobenzene- 1,3-disulphonamide (TBBDA) can be used for solvent-free oxidation of primary and secondary alcohols to the corresponding carbonyl compounds without over-oxidation, and efficient catalytic deprotection of various silyl ...

  18. Oxidation-extraction of uranium from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    Lawes, B.C.

    1985-01-01

    The invention involves an improvement to the reductive stripping process for recovering uranium values from wet-process phosphoric acid solution, where uranium in the solution is oxidized to uranium (VI) oxidation state and then extracted from the solution by contact with a water immiscible organic solvent, by adding sufficient oxidant, hydrogen peroxide, to obtain greater than 90 percent conversion of the uranium to the uranium (VI) oxidation state to the phosphoric acid solution and simultaneously extracting the uranium (VI)

  19. Enhanced wet air oxidation : synergistic rate acceleration upon effluent recirculation

    Science.gov (United States)

    Matthew J. Birchmeier; Charles G. Hill; Carl J. Houtman; Rajai H. Atalla; Ira A. Weinstock

    2000-01-01

    Wet air oxidation (WAO) reactions of cellobiose, phenol, and syringic acid were carried out under mild conditions (155°C; 0.93MPa 02; soluble catalyst, Na5[PV2Mo10O40]). Initial oxidation rates were rapid but decreased to small values as less reactive oxidation products accumulated. Recalcitrant oxidation products were consumed more rapidly, however, if additional...

  20. Catalytic oxidative pyrolysis of spent organic ion exchange resins from nuclear power plants

    International Nuclear Information System (INIS)

    Sathi Sasidharan, N.; Deshingkar, D.S.; Wattal, P.K.; Shirsat, A.N.; Bharadwaj, S.R.

    2005-08-01

    The spent IX resins from nuclear power reactors are highly active solid wastes generated during operations of nuclear reactors. Catalytic oxidative pyrolysis of these resins can lead to high volume reduction of these wastes. Low temperature pyrolysis of transition metal ion loaded IX resins in presence of nitrogen was carried out in order to optimize catalyst composition to achieve maximum weight reduction. Thermo gravimetric analysis of the pyrolysis residues was carried out in presence of air in order to compare the oxidative characteristics of transition metal oxide catalysts. Copper along with iron, chromium and nickel present in the spent IX resins gave the most efficient catalyst combination for catalytic and oxidative pyrolysis of the residues. During low temperature catalytic pyrolysis, 137 Cesium volatility was estimated to be around 0.01% from cationic resins and around 0.1% from anionic resins. During oxidative pyrolysis at 700 degC, nearly 10 to 40% of 137 Cesium was found to be released to off gases depending upon type of resin and catalyst loaded on to it. The oxidation of pyrolytic residues at 700 degC gave weight reduction of 15% for cationic resins and 93% for anionic resins. Catalytic oxidative pyrolysis is attractive for reducing weight and volume of spent cationic resins from PHWRs and VVERs. (author)

  1. The optimization, kinetics and mechanism of m-cresol degradation via catalytic wet peroxide oxidation with sludge-derived carbon catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yamin [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wei, Huangzhao; Zhao, Ying [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Sun, Wenjing [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Sun, Chenglin, E-mail: clsun@dicp.ac.cn [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2017-03-15

    Highlights: • The sludge derived carbon modified with 0 °C acid was used as catalyst in CWPO. • RSM was used to optimize CWPO reaction conditions of m-cresol for the first time. • The kinetic model was disclosed to be correlated with residue target concentration. • The proposed degradation pathways of m-cresol were well proven by DFT method. - Abstract: The sludge-derived carbon catalyst modified with 0 °C HNO{sub 3} solution was tested in catalytic wet peroxide oxidation of m-cresol (100 mg L{sup −1}) with systematical mathematical models and theoretical calculation for the first time. The reaction conditions were optimized by response surface methodology (RSM) as T = 60 °C, initial pH = 3.0, C{sub 0,H2O2(30%)} = 1.20 g L{sup −1} (lower than the stoichiometric amount of 1.80 g L{sup −1}) and C{sub cat} = 0.80 g L{sup −1}, with 96% of m-cresol and 47% of TOC converted after 16 min and 120 min of reaction, respectively, and ξ (mg TOC/g H{sub 2}O{sub 2} fed) = 83.6 mg/g. The end time of the first kinetic period in m-cresol model was disclosed to be correlated with the fixed residue m-cresol concentration of about 33%. Furthermore, the kinetic constants in models of TOC and H{sub 2}O{sub 2} exactly provide convincing proof of three-dimensional response surfaces analysis by RSM, which showed the influence of the interaction between organics and H{sub 2}O{sub 2} on effective H{sub 2}O{sub 2} utilization. The reaction intermediates over time were identified by gas chromatography–mass spectrometer based on kinetics analysis. Four degradation pathways for m-cresol were proposed, of which the possibility and feasibility were well proven by frontier molecule orbital theory and atomic charge distribution via density functional theory method.

  2. Experimental Investigation of Flow Resistance in a Coal Mine Ventilation Air Methane Preheated Catalytic Oxidation Reactor

    Directory of Open Access Journals (Sweden)

    Bin Zheng

    2015-01-01

    Full Text Available This paper reports the results of experimental investigation of flow resistance in a coal mine ventilation air methane preheated catalytic oxidation reactor. The experimental system was installed at the Energy Research Institute of Shandong University of Technology. The system has been used to investigate the effects of flow rate (200 Nm3/h to 1000 Nm3/h and catalytic oxidation bed average temperature (20°C to 560°C within the preheated catalytic oxidation reactor. The pressure drop and resistance proportion of catalytic oxidation bed, the heat exchanger preheating section, and the heat exchanger flue gas section were measured. In addition, based on a large number of experimental data, the empirical equations of flow resistance are obtained by the least square method. It can also be used in deriving much needed data for preheated catalytic oxidation designs when employed in industry.

  3. Catalytic aerobic oxidation of bio-renewable chemicals

    DEFF Research Database (Denmark)

    Gorbanev, Yury

    , EDS, XRF and other methods. Supported gold and ruthenium hydroxide catalyst systems were explored for the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDA), a potential polymer building block for the plastic industry, or its dimethyl ester (FDMC). High product......-free conditions. Moreover, a detailed study on the performance and stability of the ruthenium hydroxide catalysts on magnesium-containing supports under reaction conditions was conducted. The aerobic oxidation of HMF to form another value-added chemical, 2,5-diformylfuran (DFF), was also investigated......Ox deposited on various metal oxides. Furthermore, this thesis presents the results of the catalytic aerobic oxidative degradation of higher alcohols over supported ruthenium hydroxide catalysts. A very efficient oxidative cleavage of vic-diols to form respective acids was also shown under examined conditions...

  4. Ruthenium nanoparticles supported on CeO2 for catalytic permanganate oxidation of butylparaben.

    Science.gov (United States)

    Zhang, Jing; Sun, Bo; Guan, Xiaohong; Wang, Hui; Bao, Hongliang; Huang, Yuying; Qiao, Junlian; Zhou, Gongming

    2013-11-19

    This study developed a heterogeneous catalytic permanganate oxidation system with ceria supported ruthenium, Ru/CeO2 (0.8‰ as Ru), as catalyst for the first time. The catalytic performance of Ru/CeO2 toward butylparaben (BP) oxidation by permanganate was strongly dependent on its dosage, pH, permanganate concentration and temperature. The presence of 1.0 g L(-1) Ru/CeO2 increased the oxidation rate of BP by permanganate at pH 4.0-8.0 by 3-96 times. The increase in Ru/CeO2 dosage led to a progressive enhancement in the oxidation rate of BP by permanganate at neutral pH. The XANES analysis revealed that (1) Ru was deposited on the surface of CeO2 as Ru(III); (2) Ru(III) was oxidized by permanganate to its higher oxidation state Ru(VI) and Ru(VII), which acted as the co-oxidants in BP oxidation; (3) Ru(VI) and Ru(VII) were reduced by BP to its initial state of Ru(III). Therefore, Ru/CeO2 acted as an electron shuttle in catalytic permanganate oxidation process. LC-MS/MS analysis implied that BP was initially attacked by permanganate or Ru(VI) and Ru(VII) at the aromatic ring, leading to the formation of various hydroxyl-substituted and ring-opening products. Ru/CeO2 could maintain its catalytic activity during the six successive runs. In conclusion, catalyzing permanganate oxidation with Ru/CeO2 is a promising technology for degrading phenolic pollutants in water treatment.

  5. Metal-Free Oxidation of Primary Amines to Nitriles through Coupled Catalytic Cycles.

    Science.gov (United States)

    Lambert, Kyle M; Bobbitt, James M; Eldirany, Sherif A; Kissane, Liam E; Sheridan, Rose K; Stempel, Zachary D; Sternberg, Francis H; Bailey, William F

    2016-04-04

    Synergism among several intertwined catalytic cycles allows for selective, room temperature oxidation of primary amines to the corresponding nitriles in 85-98% isolated yield. This metal-free, scalable, operationally simple method employs a catalytic quantity of 4-acetamido-TEMPO (ACT; TEMPO=2,2,6,6-tetramethylpiperidine N-oxide) radical and the inexpensive, environmentally benign triple salt oxone as the terminal oxidant under mild conditions. Simple filtration of the reaction mixture through silica gel affords pure nitrile products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Catalytic oxidation of cyanides in an aqueous phase over individual and manganese-modified cobalt oxide systems

    International Nuclear Information System (INIS)

    Christoskova, St.; Stoyanova, M.

    2009-01-01

    The possibility for purification of wastewaters containing free cyanides by applying of a new method based on cyanides catalytic oxidation with air to CO 2 and N 2 at low temperature and atmospheric pressure was investigated. On this purpose, individual and modified with manganese Co-oxide systems as active phase of environmental catalysts were synthesized. The applied method of synthesis favours the preparation of oxide catalytic systems with high active oxygen content (total-O* and surface-O* s ) possessing high mobility, and the metal ions being in a high oxidation state and in an octahedral coordination-factors determining high activity in reactions of complete oxidation. The catalysts employed were characterized by powder X-ray diffraction, Infrared spectroscopy, and chemical analysis. The effect of pH of the medium and catalyst loading on the effectiveness of the cyanide oxidation process, expressed by the degree of conversion (α, %), by the rate constant (k, min -1 ), and COD was studied. The results obtained reveal that using catalysts investigated a high cyanide removal efficiency could be achieved even in strong alkaline medium. The higher activity of the manganese promoted catalytic sample could be explained on the basis of higher total active oxygen content and its higher mobility both depending on the conditions, under which the synthesis of catalyst is being carried out.

  7. Catalytic oxidation of albendazole using molybdenum supported on carbon nanotubes as catalyst; Oxidacion catalitica de albendazol empleando como catalizador molibdeno soportado en nanotubos de carbono

    Energy Technology Data Exchange (ETDEWEB)

    Sun-Kou, Maria del Rosario; Vega Carrasco, Edgar R., E-mail: msun@pucp.edu.pe [Departamento de Ciencias, Seccion Quimica. Pontificia Universidad Catolica del Peru, Avenida Universitaria 1801, Lima (Peru); Picasso Escobar, Gino I. [Laboratorio de Investigacion de Fisicoquimica, Facultad de Ciencias, Universidad Nacional de Ingenieria, Avenida Tupac Amaru 210, Lima (Peru)

    2013-10-15

    The catalytic oxidation reaction of the thioether group (-S-) in the structure to the drug albendazole (C{sub 12}H{sub 15}N{sub 3}O{sub 2}S) was studied in order to obtain a pharmacologically active molecule known as albendazole sulfoxide. With this purpose, three heterogeneous catalysts were prepared using molybdenum (Mo) as active phase and carbon nanotubes as a multiple-layer catalyst support. The incorporation of the active phase was performed by wet impregnation, with subsequent calcination for 4 hours at 400 {sup o}C. For the catalytic oxidation reaction was employed hydrogen peroxide-urea (H{sub 2}NCONH{sub 2}·H{sub 2}O{sub 2}) as oxidizing agent and methanol (CH{sub 3}OH) as reaction medium. The textural and morphology characterization of carbon nanoparticles and catalysts was carried out by adsorption-desorption of N{sub 2} (BET) and scanning electron microscopy (SEM). The identification and quantification of the reaction products were followed by Fourier transform infrared spectroscopy (FTIR) and high performance liquid chromatography (HPLC), respectively. With the yield, selectivity and conversion higher than 90% after 60 minutes of reaction, albendazole sulphoxide was obtained as major product of oxidation reaction. (author)

  8. A novel advanced oxidation process——wet electrocatalytic oxidation for high concentrated organic wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    DAI QiZhou; ZHOU MingHua; LEI LeCheng; ZHANG Xing Wang

    2007-01-01

    A novel advanced oxidation process-wet electrocatalytic oxidation(WEO)was studied with p-nitrophenol as model pollutant and β-PbO2 electrode as the anode.Compared with the effect of the individual wet air oxidation(WAO)and electrochemical oxidation(EO),the effect of WEO showed synergistic effect on COD removal under the conditions of temperature 160℃,C=1000mg·L-1,PN2=0.50MPa,Po2=0.9 MPa,current density=3 mA·cm-2,Na2SO4 3 g·L-1.And the synergistic factor got the best value of 0.98 within 120 min after 180 min treatment.The synergistic factor was studied after 120 min treatment at 100℃,120℃,140℃and 160℃,and the effect of 120℃was the best with the value of 1.26.Possible mechanism for the synergistic effect was discussed based on the analysis of free-radical generation and intermediates detected by HPLC and GC/MS.

  9. Performance improvement and better scalability of wet-recessed and wet-oxidized AlGaN/GaN high electron mobility transistors

    Science.gov (United States)

    Takhar, Kuldeep; Meer, Mudassar; Upadhyay, Bhanu B.; Ganguly, Swaroop; Saha, Dipankar

    2017-05-01

    We have demonstrated that a thin layer of Al2O3 grown by wet-oxidation of wet-recessed AlGaN barrier layer in an AlGaN/GaN heterostructure can significantly improve the performance of GaN based high electron mobility transistors (HEMTs). The wet-etching leads to a damage free recession of the gate region and compensates for the decreased gate capacitance and increased gate leakage. The performance improvement is manifested as an increase in the saturation drain current, transconductance, and unity current gain frequency (fT). This is further augmented with a large decrease in the subthreshold current. The performance improvement is primarily ascribed to an increase in the effective velocity in two-dimensional electron gas without sacrificing gate capacitance, which make the wet-recessed gate oxide-HEMTs much more scalable in comparison to their conventional counterpart. The improved scalability leads to an increase in the product of unity current gain frequency and gate length (fT × Lg).

  10. Kinetic and catalytic analysis of mesoporous metal oxides on the oxidation of Rhodamine B

    Science.gov (United States)

    Xaba, Morena S.; Noh, Ji-Hyang; Mokgadi, Keabetswe; Meijboom, Reinout

    2018-05-01

    In this study, we demonstrate the synthesis and catalytic activity of different mesoporous transition metal oxides, silica (SiO2), copper oxide (CuO), chromium oxide (Cr2O3), iron oxide (Fe2O3) cobalt oxide (Co3O4), cerium oxide (CeO2) and nickel oxide (NiO), on the oxidation of a pollutant dye, Rhodamine B (RhB). These metal oxides were synthesized by inverse micelle formation method and characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), adsorption-desorption isotherms (BET) and H2-temperature programmed reduction (TPR). UV-vis spectrophotometry was used to monitor the time-resolved absorbance of RhB at λmax = 554 nm. Mesoporous copper oxide was calcined at different final heating temperatures of 250, 350, 450 and 550 °C, and each mesoporous copper oxide catalyst showed unique physical properties and catalytic behavior. Mesoporous CuO-550 with the smallest characteristic path length δ, proved to be the catalyst of choice for the oxidation of RhB in aqueous media. We observed that the oxidation of RhB in aqueous media is dependent on the crystallite size and characteristic path length of the mesoporous metal oxide. The Langmuir-Hinshelwood model was used to fit the experimental data and to prove that the reaction occurs on the surface of the mesoporous CuO. The thermodynamic parameters, EA, ΔH#, ΔS# and ΔG# were calculated and catalyst recycling and reusability were demonstrated.

  11. Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution.

    Science.gov (United States)

    Hung, Chang-Mao

    2009-07-30

    Aqueous solutions of 200-1000 mg/L of ammonia were oxidized in a trickle-bed reactor using Cu-activated carbon fiber (ACF) catalysts, which were prepared by incipient wet impregnation with aqueous solutions of copper nitrate that was deposited on ACF substrates. The results reveal that the conversion of ammonia by wet oxidation in the presence of Cu-ACF catalysts was a function of the metal loading weight ratio of the catalyst. The total conversion efficiency of ammonia was 95% during wet oxidation over the catalyst at 463 K at an oxygen partial pressure of 3.0 MPa. Moreover, the effect of the initial concentration of ammonia and the reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid space velocity of less than 3.0 h(-1).

  12. Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution

    International Nuclear Information System (INIS)

    Hung, Chang-Mao

    2009-01-01

    Aqueous solutions of 200-1000 mg/L of ammonia were oxidized in a trickle-bed reactor using Cu-activated carbon fiber (ACF) catalysts, which were prepared by incipient wet impregnation with aqueous solutions of copper nitrate that was deposited on ACF substrates. The results reveal that the conversion of ammonia by wet oxidation in the presence of Cu-ACF catalysts was a function of the metal loading weight ratio of the catalyst. The total conversion efficiency of ammonia was 95% during wet oxidation over the catalyst at 463 K at an oxygen partial pressure of 3.0 MPa. Moreover, the effect of the initial concentration of ammonia and the reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid space velocity of less than 3.0 h -1 .

  13. Reaction pathways for catalytic gas-phase oxidation of glycerol over mixed metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Suprun, W.; Glaeser, R.; Papp, H. [Leipzig Univ. (Germany). Inst. of Chemical Technology

    2011-07-01

    Glycerol as a main by-product from bio-diesel manufacture is a cheap raw material with large potential for chemical or biochemical transformations to value-added C3-chemicals. One possible way of glycerol utilization involves its catalytic oxidation to acrylic acid as an alternative to petrochemical routes. However, this catalytic conversion exhibits various problems such as harsh reaction conditions, severe catalyst coking and large amounts of undesired by-products. In this study, the reaction pathways for gas-phase conversion of glycerol over transition metal oxides (Mo, V und W) supported on TiO{sub 2} and SiO{sub 2} were investigated by two methods: (i) steady state experiments of glycerol oxidation and possible reactions intermediates, i.e., acrolein, 3-hydroxy propionaldehyde and acetaldehyde, and (ii) temperature-programmed surface reaction (TPSR) studies of glycerol conversion in the presence and in the absence of gas-phase oxygen. It is shown that the supported W-, V and Mo-oxides possess an ability to catalyze the oxidation of glycerol to acrylic acid. These investigations allowed us to gain a deeper insight into the reaction mechanism. Thus, based on the obtained results, three possible reactions pathways for the selective oxidation of glycerol to acrylic acid on the transition metal-containing catalysts are proposed. The major pathways in presence of molecular oxygen are a fast successive destructive oxidation of glycerol to CO{sub x} and the dehydration of glycerol to acrolein which is a rate-limiting step. (orig.)

  14. Catalytic Partial Oxidation of Biomass/Oil Mixture

    Czech Academy of Sciences Publication Activity Database

    Veselý, Václav; Hanika, Jiří; Tukač, V.; Lederer, J.; Kovač, D.

    2013-01-01

    Roč. 7, č. 10 (2013), s. 1940-1945 ISSN 1934-8983 R&D Projects: GA TA ČR TE01020080; GA MPO 2A-2TP1/024 Institutional support: RVO:67985858 Keywords : hydrocarbon oil * biomass * catalytic partial oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://www.davidpublishing.com/journals_info.asp?jId=1718#

  15. Oscillatory behaviour of catalytic properties, structure and temperature during the catalytic partial oxidation of methane on Pd/Al2O3

    DEFF Research Database (Denmark)

    Kimmerle, B.; Baiker, A.; Grunwaldt, Jan-Dierk

    2010-01-01

    Pd/Al2O3 catalysts showed an oscillatory behaviour during the catalytic partial oxidation (CPO) of methane, which was investigated simultaneously by IR-thermography, X-ray absorption spectroscopy, and online mass-spectrometry to correlate the temperature, state of the catalyst and catalytic...... to self-reduction leading to extinction of the process. The latter was the key driver for the oscillations and thus gave additional insight into the mechanism of partial methane oxidation....

  16. Catalytic dehydration of ethanol using transition metal oxide catalysts.

    Science.gov (United States)

    Zaki, T

    2005-04-15

    The aim of this work is to study catalytic ethanol dehydration using different prepared catalysts, which include Fe(2)O(3), Mn(2)O(3), and calcined physical mixtures of both ferric and manganese oxides with alumina and/or silica gel. The physicochemical properties of these catalysts were investigated via X-ray powder diffraction (XRD), acidity measurement, and nitrogen adsorption-desorption at -196 degrees C. The catalytic activities of such catalysts were tested through conversion of ethanol at 200-500 degrees C using a catalytic flow system operated under atmospheric pressure. The results obtained indicated that the dehydration reaction on the catalyst relies on surface acidity, whereas the ethylene production selectivity depends on the catalyst chemical constituents.

  17. Combined wet oxidation and alkaline hydrolysis of polyvinylchloride

    DEFF Research Database (Denmark)

    Sørensen, E.; Bjerre, A.B.

    1992-01-01

    In view of the widespread aversion to burning polyvinylchloride (PVC) together with municipal waste, we have attempted an alternative approach to its decomposition. This paper describes a combined wet oxidation/alkaline hydrolysis yielding water soluble, biodegradable products. Experiments were...... carried out at temperatures from 180-260 degree C and reaction times of 8-24 min. The chloride liberated provides information on the rate constants. Considering the measured Cl- and Chemical Oxygen Demand (COD) values, we find hydrolysis and oxidation processes to be interdependent. The main products...

  18. Catalytic oxidative desulfurization of liquid hydrocarbon fuels using air

    Science.gov (United States)

    Sundararaman, Ramanathan

    Conventional approaches to oxidative desulfurization of liquid hydrocarbons involve use of high-purity, expensive water soluble peroxide for oxidation of sulfur compounds followed by post-treatment for removal of oxidized sulfones by extraction. Both are associated with higher cost due to handling, storage of oxidants and yield loss with extraction and water separation, making the whole process more expensive. This thesis explores an oxidative desulfurization process using air as an oxidant followed by catalytic decomposition of sulfones thereby eliminating the aforementioned issues. Oxidation of sulfur compounds was realized by a two step process in which peroxides were first generated in-situ by catalytic air oxidation, followed by catalytic oxidation of S compounds using the peroxides generated in-situ completing the two step approach. By this technique it was feasible to oxidize over 90% of sulfur compounds present in real jet (520 ppmw S) and diesel (41 ppmw S) fuels. Screening of bulk and supported CuO based catalysts for peroxide generation using model aromatic compound representing diesel fuel showed that bulk CuO catalyst was more effective in producing peroxides with high yield and selectivity. Testing of three real diesel fuels obtained from different sources for air oxidation over bulk CuO catalyst showed different level of effectiveness for generating peroxides in-situ which was consistent with air oxidation of representative model aromatic compounds. Peroxides generated in-situ was then used as an oxidant to oxidize sulfur compounds present in the fuel over MoO3/SiO2 catalyst. 81% selectivity of peroxides for oxidation of sulfur compounds was observed on MoO3/SiO2 catalyst at 40 °C and under similar conditions MoO3/Al2O3 gave only 41% selectivity. This difference in selectivity might be related to the difference in the nature of active sites of MoO3 on SiO2 and Al2O 3 supports as suggested by H2-TPR and XRD analyses. Testing of supported and bulk Mg

  19. Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Chang-Mao, E-mail: hungcm1031@gmail.com [Department of Industry Engineering and Management, Yung-Ta Institute of Technology and Commerce, 316 Chung-shan Road, Linlo, Pingtung 909, Taiwan (China)

    2009-07-30

    Aqueous solutions of 200-1000 mg/L of ammonia were oxidized in a trickle-bed reactor using Cu-activated carbon fiber (ACF) catalysts, which were prepared by incipient wet impregnation with aqueous solutions of copper nitrate that was deposited on ACF substrates. The results reveal that the conversion of ammonia by wet oxidation in the presence of Cu-ACF catalysts was a function of the metal loading weight ratio of the catalyst. The total conversion efficiency of ammonia was 95% during wet oxidation over the catalyst at 463 K at an oxygen partial pressure of 3.0 MPa. Moreover, the effect of the initial concentration of ammonia and the reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid space velocity of less than 3.0 h{sup -1}.

  20. Development of a catalytic system for gasification of wet biomass

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.; Sealock, L.J.; Phelps, M.R.; Neuenschwander, G.G.; Hart, T.R. [Pacific Northwest Lab., Richland, WA (United States)

    1993-12-31

    A gasification system is under development at Pacific Northwest Laboratory that can be used with high-moisture biomass feedstocks. The system operates at 350{degrees}C and 205 atm using a liquid water phase as the processing medium. Since a pressurized system is used, the wet biomass can be fed as a slurry to the reactor without drying. Through the development of catalysts, a useful processing system has been produced. This paper includes assessment of processing test results of different catalysts. Reactor system results including batch, bench-scale continuous, and engineering-scale processing results are presented to demonstrate the applicability of this catalytic gasification system to biomass. The system has utility both for direct conversion of biomass to fuel gas or as a wastewater cleanup system for treatment of unconverted biomass from bioconversion processes. By the use of this system high conversions of biomass to fuel gas can be achieved. Medium-Btu is the primary product. Potential exists for recovery/recycle of some of the unreacted inorganic components from the biomass in the aqueous byproduct stream.

  1. Evaluation of wet air oxidation variables for removal of organophosphorus pesticide malathion using Box-Behnken design.

    Science.gov (United States)

    Isgoren, Melike; Gengec, Erhan; Veli, Sevil

    2017-02-01

    This paper deals with finding optimum reaction conditions for wet air oxidation (WAO) of malathion aqueous solution, by Response Surface Methodology. Reaction conditions, which affect the removal efficiencies most during the non-catalytic WAO system, are: temperature (60-120 °C), applied pressure (20-40 bar), the pH value (3-7), and reaction time (0-120 min). Those were chosen as independent parameters of the model. The interactions between parameters were evaluated by Box-Behnken and the quadratic model fitted very well with the experimental data (29 runs). A higher value of R 2 and adjusted R 2 (>0.91) demonstrated that the model could explain the results successfully. As a result, optimum removal efficiency (97.8%) was obtained at pH 5, 20 bars of pressure, 116 °C, and 96 min. These results showed that Box-Behnken is a suitable design to optimize operating conditions and removal efficiency for non-catalytic WAO process. The EC 20 value of raw wastewater was measured as 35.40% for malathion (20 mg/L). After the treatment, no toxicity was observed at the optimum reaction conditions. The results show that the WAO is an efficient treatment system for malathion degradation and has the ability of converting malathion to the non-toxic forms.

  2. Efficient catalytic cycloalkane oxidation employing a "helmet" phthalocyaninato iron(III) complex.

    Science.gov (United States)

    Brown, Elizabeth S; Robinson, Jerome R; McCoy, Aaron M; McGaff, Robert W

    2011-06-14

    We have examined the catalytic activity of an iron(III) complex bearing the 14,28-[1,3-diiminoisoindolinato]phthalocyaninato (diiPc) ligand in oxidation reactions with three substrates (cyclohexane, cyclooctane, and indan). This modified metallophthalocyaninato complex serves as an efficient and selective catalyst for the oxidation of cyclohexane and cyclooctane, and to a far lesser extent indan. In the oxidations of cyclohexane and cyclooctane, in which hydrogen peroxide is employed as the oxidant under inert atmosphere, we have observed turnover numbers of 100.9 and 122.2 for cyclohexanol and cyclooctanol, respectively. The catalyst shows strong selectivity for alcohol (vs. ketone) formation, with alcohol to ketone (A/K) ratios of 6.7 and 21.0 for the cyclohexane and cyclooctane oxidations, respectively. Overall yields (alcohol + ketone) were 73% for cyclohexane and 92% for cyclooctane, based upon the total hydrogen peroxide added. In the catalytic oxidation of indan under similar conditions, the TON for 1-indanol was 10.1, with a yield of 12% based upon hydrogen peroxide. No 1-indanone was observed in the product mixture.

  3. Experimental Investigation of Flow Resistance in a Coal Mine Ventilation Air Methane Preheated Catalytic Oxidation Reactor

    OpenAIRE

    Zheng, Bin; Liu, Yongqi; Liu, Ruixiang; Meng, Jian; Mao, Mingming

    2015-01-01

    This paper reports the results of experimental investigation of flow resistance in a coal mine ventilation air methane preheated catalytic oxidation reactor. The experimental system was installed at the Energy Research Institute of Shandong University of Technology. The system has been used to investigate the effects of flow rate (200 Nm3/h to 1000 Nm3/h) and catalytic oxidation bed average temperature (20°C to 560°C) within the preheated catalytic oxidation reactor. The pressure drop and res...

  4. The catalytic oxidation of organic contaminants in a packed bed reactor

    NARCIS (Netherlands)

    van de Beld, L.; Bijl, M.P.G.; Reinders, A.; van der Wert, B.; Westerterp, K.R.

    1994-01-01

    The catalytic oxidation of several hydrocarbons was studied over noble metal and metal oxide catalysts. A fast empirical method was developed to determine the minimum operating temperature required to guarantee complete conversion of the hydrocarbon. The influence of the operating parameters such as

  5. Selective Production of Aromatic Aldehydes from Heavy Fraction of Bio-oil via Catalytic Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Chang, Jie; Ouyang, Yong; Zheng, Xianwei [South China Univ. of Technology, Guangzhou (China)

    2014-06-15

    High value-added aromatic aldehydes (e. g. vanillin and syringaldehyde) were produced from heavy fraction of bio-oil (HFBO) via catalytic oxidation. The concept is based on the use of metalloporphyin as catalyst and hydrogen peroxide (H{sub 2}O{sub 2}) as oxidant under alkaline condition. The biomimetic catalyst cobalt(II)-sulfonated tetraphenylporphyrin (Co(TPPS{sub 4})) was prepared and characterized. It exhibited relative high activity in the catalytic oxidation of HFBO. 4.57 wt % vanillin and 1.58 wt % syringaldehyde were obtained from catalytic oxidation of HFBO, compared to 2.6 wt % vanillin and 0.86 wt % syringaldehyde without Co(TPPS{sub 4}). Moreover, a possible mechanism of HFBO oxidation using Co(TPPS{sub 4})/H{sub 2}O{sub 2} was proposed by the research of model compounds. The results showed that this is a promising and environmentally friendly method for production of aromatic aldehydes from HFBO under Co(TPPS{sub 4})/H{sub 2}O{sub 2} system.

  6. Selective Production of Aromatic Aldehydes from Heavy Fraction of Bio-oil via Catalytic Oxidation

    International Nuclear Information System (INIS)

    Li, Yan; Chang, Jie; Ouyang, Yong; Zheng, Xianwei

    2014-01-01

    High value-added aromatic aldehydes (e. g. vanillin and syringaldehyde) were produced from heavy fraction of bio-oil (HFBO) via catalytic oxidation. The concept is based on the use of metalloporphyin as catalyst and hydrogen peroxide (H 2 O 2 ) as oxidant under alkaline condition. The biomimetic catalyst cobalt(II)-sulfonated tetraphenylporphyrin (Co(TPPS 4 )) was prepared and characterized. It exhibited relative high activity in the catalytic oxidation of HFBO. 4.57 wt % vanillin and 1.58 wt % syringaldehyde were obtained from catalytic oxidation of HFBO, compared to 2.6 wt % vanillin and 0.86 wt % syringaldehyde without Co(TPPS 4 ). Moreover, a possible mechanism of HFBO oxidation using Co(TPPS 4 )/H 2 O 2 was proposed by the research of model compounds. The results showed that this is a promising and environmentally friendly method for production of aromatic aldehydes from HFBO under Co(TPPS 4 )/H 2 O 2 system

  7. Development of a novel wet oxidation process for hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Dhooge, P.M.

    1994-01-01

    Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. The over all objective of the effort described here is to develop a novel catalytic wet oxidation process for the treatment of these multi-component wastes, with the aim of providing a versatile, non-thermal method which will destroy hazardous organic compounds while simultaneously containing and concentrating toxic and radioactive metals for recovery or disposal in a readily stabilized matrix. The DETOX process uses a unique combination of metal catalysts to increase the rate of oxidation of organic materials. The metal catalysts are in the form of salts dissolved in a dilute acid solution. A typical catalyst composition is 60% ferric chloride, 3--4% hydrochloric acid, 0.13% platinum ions, and 0.13% ruthenium ions in a water solution. The catalyst solution is maintained at 423--473 K. Wastes are introduced into contact with the solution, where their organic portion is oxidized to carbon dioxide and water. If the organic portion is chlorinated, hydrogen chloride will be produced as a product. The process is a viable alternative to incineration for the treatment of organic mixed wastes. Estimated costs for waste treatment using the process are from $2.50/kg to $25.00/kg, depending on the size of the unit and the amount of waste processed. Process units can be mobile for on-site treatment of wastes. Results from phase 1 and 2, design and engineering studies, are described

  8. Investigation of the Origin of Catalytic Activity in Oxide-Supported Nanoparticle Gold

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Ian [Univ. of Virginia, Charlottesville, VA (United States)

    2017-05-26

    Since Haruta’s discovery in 1987 of the surprising catalytic activity of supported Au nanoparticles, we have seen a very large number of experimental and theoretical efforts to explain this activity and to fully understand the nature of the behavior of the responsible active sites. In 2011, we discovered that a dual catalytic site at the perimeter of ~3nm diameter Au particles supported on TiO2 is responsible for oxidative catalytic activity. O2 molecules bind with Au atoms and Ti4+ ions in the TiO2 support and the weakened O-O bond dissociates at low temperatures, proceeding to produce O atoms which act as oxidizing agents for the test molecule, CO. The papers supported by DOE have built on this finding and have been concerned with two aspects of the behavior of Au/TiO2 catalysts: (1). Mechanistic behavior of dual catalytic sites in the oxidation of organic molecules such as ethylene and acetic acid; (2). Studies of the electronic properties of the TiO2 (110) single crystal in relation to its participation in charge transfer at the occupied dual catalytic site. A total of 20 papers have been produced through DOE support of this work. The papers combine IR spectroscopic investigations of Au/TiO2 catalysts with surface science on the TiO2(110) and TiO2 nanoparticle surfaces with modern density functional modeling. The primary goals of the work were to investigate the behavior of the dual Au/Ti4+ site for the partial oxidation of alcohols to acids, the hydrogenation of aldehydes and ketones to alcohols, and the condensation of oxygenate intermediates- all processes related to the utilization of biomass in the production of useful chemical energy sources.

  9. Ozone Decomposition on the Surface of Metal Oxide Catalyst

    Directory of Open Access Journals (Sweden)

    Batakliev Todor Todorov

    2014-12-01

    Full Text Available The catalytic decomposition of ozone to molecular oxygen over catalytic mixture containing manganese, copper and nickel oxides was investigated in the present work. The catalytic activity was evaluated on the basis of the decomposition coefficient which is proportional to ozone decomposition rate, and it has been already used in other studies for catalytic activity estimation. The reaction was studied in the presence of thermally modified catalytic samples operating at different temperatures and ozone flow rates. The catalyst changes were followed by kinetic methods, surface measurements, temperature programmed reduction and IR-spectroscopy. The phase composition of the metal oxide catalyst was determined by X-ray diffraction. The catalyst mixture has shown high activity in ozone decomposition at wet and dry O3/O2 gas mixtures. The mechanism of catalytic ozone degradation was suggested.

  10. Oxidation mechanism of Fe–16Cr alloy as SOFC interconnect in dry/wet air

    International Nuclear Information System (INIS)

    Chen, Zhi-Yuan; Wang, Li-Jun; Li, Fu-Shen; Chou, Kuo-Chih

    2013-01-01

    Highlights: •A special thermodynamic description corresponding to the kinetics was applied. •We reported the relationships of degradation time with temperature and moisture. •”Turning time” in the Fe–16Cr alloy oxidation kinetic model was given. •The oxidation mechanism of Fe–16Cr alloy in the wet air was discussed. -- Abstract: Experimental study on the oxidation corrosions of Fe–16Cr alloy was carried out at 800–1100 °C under dry/wet air conditions. Faster oxidation rate was observed at higher temperature and water vapor content. The degradation time t d between two stages in oxidation process showed an exponential relationship with elevating corrosion temperature in dry air, and a linear relationship with the water content in the case of water vapor introduced to the system. The mechanism of oxidation corrosions of Fe–16Cr alloy was suggested by the Real Physical Picture (RPP) model. It was found that the break-away oxidation in stage II was controlled by diffusion at initial both in dry and wet air, then became linear with the exposure time, which implied that the oxidation rate was then controlled by chemical reaction of the interface between the metal and the oxidized scale. Moreover, the effect of water in the oxidation process is not only to supply more oxygen into system, but also to modify the structures of oxide scale due to the existence of hydrogen atom, which results in the accelerated corrosions

  11. Catalytic combustion of methane over mixed oxides derived from Co-Mg/Al ternary hydrotalcites

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zheng [Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, OX1 3QR (United Kingdom); Research Centre of Eco-Environmental Sciences, CAS, Beijing 100085 (China); Jesus College, University of Oxford, OX1 3DW (United Kingdom); Yu, Junjie; Cheng, Jie; Hao, Zhengping [Research Centre of Eco-Environmental Sciences, CAS, Beijing 100085 (China); Xiao, Tiancun; Edwards, Peter P. [Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, OX1 3QR (United Kingdom); Jones, Martin O. [Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, OX1 3QR (United Kingdom); Rutherford Appleton Laboratory, Didcot, OX11 0QX (United Kingdom)

    2010-01-15

    Co{sub x}Mg{sub 3-x} /Al composite oxides (xCoMAO-800) were prepared by calcination of Co{sub x}Mg{sub 3-x}/Al hydrotalcites (x=0.0,0.5,1.0,1.5,2.0,2.5,3.0, respectively) at 800 C. The materials were characterized using XRD, TG-DSC, N{sub 2} adsorption-desorption and TPR. The methane catalytic combustion over the xCoMAO-800 was assessed in a fixed bed micro-reactor. The results revealed that cobalt can be homogenously dispersed into the matrices of the hydrotalcites and determines the structure, specific surface areas and porosity of the derived xCoMAO-800 oxide catalysts. The thermal stability and homogeneity of the hydrotalcites markedly depends on the cobalt concentration in the hydrotalcites. The Co-based hydrotalcite-derived oxides exhibit good activity in the catalytic combustion of methane. The catalytic activity over the xCoMAO-800 oxides enhances with increasing x up to 1.5, but subsequently decreases dramatically as cobalt loadings are further increased. The 1.5CoMAO-800 catalyst shows the best methane combustion activity, igniting methane at 450 C and completing methane combustion around 600 C. The catalytic combustion activity over the xCoMAO-800 oxides are closely related to the strong Co-Mg/Al interaction within the mixed oxides according to the TG-DSC, TPR and activity characteristics. (author)

  12. Phenol wastewater remediation: advanced oxidation processes coupled to a biological treatment.

    Science.gov (United States)

    Rubalcaba, A; Suárez-Ojeda, M E; Stüber, F; Fortuny, A; Bengoa, C; Metcalfe, I; Font, J; Carrera, J; Fabregat, A

    2007-01-01

    Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. Therefore, different advanced oxidation processes were investigated as suitable precursors for the biological treatment of industrial effluents containing phenol. Wet air oxidation and Fenton process were tested batch wise, while catalytic wet air oxidation and H2O2-promoted catalytic wet air oxidation processes were studied in a trickle bed reactor, the last two using over activated carbon as catalyst. Effluent characterisation was made by means of substrate conversion (using high liquid performance chromatography), chemical oxygen demand and total organic carbon. Biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) were obtained from respirometric tests using activated sludge from an urban biological wastewater treatment plant (WWTP). The main goal was to find the proper conditions in terms of biodegradability enhancement, so that these phenolic effluents could be successfully treated in an urban biological WWTP. Results show promising research ways for the development of efficient coupled processes for the treatment of wastewater containing toxic or biologically non-degradable compounds.

  13. Effect of SUS316L stainless steel surface conditions on the wetting of molten multi-component oxides ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jin, E-mail: wangjinustb@gmail.com [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196 (Japan); Matsuda, Nozomu [Bar and Wire Product Unit, Nippon steel and Sumitomo Metal Corporation, Fukuoka, 802-8686 (Japan); Shinozaki, Nobuya [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196 (Japan); Miyoshi, Noriko [The Center for Instrumental Analysis, Kyushu Institute of Technology, Fukuoka, 804-8550 (Japan); Shiraishi, Takanobu [Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588 (Japan)

    2015-02-01

    Highlights: • Multi-component oxides had a good wetting on stainless substrates with pretreatments. • Various substrates surface roughness caused the difference of final contact angles. • The wetting rate was slow on polished substrate due to the slow surface oxidation. - Abstract: A study on the effect of SUS316L stainless steel surface conditions on the wetting behavior of molten multi-component oxides ceramic was performed and aimed to contribute to the further understanding of the application of oxides ceramic in penetration treatment of stainless steel coatings and the deposition of stainless steel cermet coatings. The results show that at 1273 K, different surface pre-treatments (polishing and heating) had an important effect on the wetting behavior. The molten multi-component oxides showed good wettability on both stainless steel substrates, however, the wetting process on the polished substrate was significantly slower than that on the heated substrates. The mechanism of the interfacial reactions was discussed based on the microscopic and thermodynamic analysis, the substrates reacted with oxygen generated from the decomposition of the molten multi-component oxides and oxygen contained in the argon atmosphere, and the oxide film caused the molten multi-component oxides ceramic to spread on the substrates surfaces. For the polished substrate, more time was required for the surface oxidation to reach the surface composition of Heated-S, which resulted in relatively slow spreading and wetting rates. Moreover, the variance of the surface roughness drove the final contact angles to slightly different values following the sequence Polished-S > Heated-S.

  14. Trends in the Catalytic CO Oxidation Activity of Nanoparticles

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Falsig, Hanne; Larsen, Britt Hvolbæk

    2008-01-01

    Going for gold: Density functional calculations show how gold nanoparticles are more active catalysts for CO oxidation than other metal nanoparticles. The high catalytic activity of nanosized gold clusters at low temperature is found to be related to the ability of low-coordinate metal atoms...

  15. Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion.

    Science.gov (United States)

    Pozan, Gulin Selda

    2012-06-30

    The aim of this work was to study combustion of toluene (1000ppm) over MnO(2) modified with different supports. α-Al(2)O(3) and γ-Al(2)O(3) obtained from Boehmite, γ-Al(2)O(3) (commercial), SiO(2), TiO(2) and ZrO(2) were used as commercial support materials. In view of potential interest of this process, the influence of support material on the catalytic performance was discussed. The deposition of 9.5MnO(2) was performed by impregnation over support. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction and oxidation (TPR/TPO) and thermogravimetric analysis (TGA). The catalytic tests were carried out at atmospheric pressure in a fixed-bed flow reactor. 9.5MnO(2)/α-Al(2)O(3)(B) (synthesized from Boehmite) catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of 289°C. Considering all the characterization and reaction data reported in this study, it was concluded that the manganese state and oxygen species played an important role in the catalytic activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Additive for vanadium and sulfur oxide capture in catalytic cracking

    International Nuclear Information System (INIS)

    Chin, A.A.; Sapre, A.V.; Sarli, M.S.

    1991-01-01

    This patent describes a fluid catalytic cracking process in which a hydrocarbon feedstock. It comprises: a vanadium contaminant in an amount of a least 2 ppmw is cracked under fluid catalytic cracking conditions with a solid, particulate cracking catalyst to produce cracking products of lower molecular weight while depositing carbonaceous material on the particles of cracking catalyst, separating the particles of cracking catalyst from the cracking products in the disengaging zone and oxidatively regenerating the cracking catalyst by burning off the deposited carbonaceous material in a regeneration zone, the improvement comprising reducing the make-up rate of the cracking catalyst by contacting the cracking feed with a particulate additive composition for passivating the vanadium content of the feed, comprising an alkaline earth metal oxide and an alkaline earth metal spinel

  17. Catalytic reduction of nitric oxide with ammonia over transition metal ion-exchanged Y zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Sciyama, T; Arakawa, T; Matsuda, T; Yamazoe, N; Takita, Y

    1975-01-01

    The catalytic reduction of nitric oxide with ammonia was studied over transition metal ion-exchanged Y zeolite (Me-Y) catalysts. The reaction products are nitrogen, nitrous oxide, and water in all cases. Selectivities to N/sub 2/ are 60 to 80% on all the cation exchanged zeolite catalysts exhibiting a relatively minor variation with the cationic species exchanged. The copper (II)-Y catalyst exhibits low temperature activity and has an unusual catalytic activity-temperature profile with a maximum at 120/sup 0/C. The catalytic activity is enhanced considerably when a second cation, especially cobalt (II) or iron (III) is coexchanged together with Cu (II) in Y zeolite.

  18. Comparison between wet oxidation and steam explosion as pretreatment methods for enzymatic hydrolysis of sugarcane bagasse

    DEFF Research Database (Denmark)

    Medina, Carlos Martín; Marcet, M.; Thomsen, Anne Belinda

    2008-01-01

    , and to a two-fold increase of cellulose content in the pretreated solids, while steam explosion solubilised only 60% of xylan and 35% of lignin and increased cellulose content in the solid material by one third. Wet oxidation formed more aliphatic acids and phenolics, and less furan aldehydes in the liquid......Alkaline wet oxidation and steam explosion pretreatments of sugarcane bagasse were compared with regard to biomass fractionation, formation of by-products, and enzymatic convertibility of the pretreated material. Wet oxidation led to the solubilisation of 82% of xylan and 50% of lignin...... fraction than steam explosion did. A better enzymatic convertibility of cellulose was achieved for the wet-oxidised material (57.4 %) than for the steam-exploded material (48.9 %). Cellulose convertibility was lower for the whole slurry than for the washed solids in both pretreatments, but more...

  19. Catalytic conversion of methane: Carbon dioxide reforming and oxidative coupling

    KAUST Repository

    Takanabe, Kazuhiro

    2012-01-01

    and the oxidative coupling of methane. These two reactions have tremendous technological significance for practical application in industry. An understanding of the fundamental aspects and reaction mechanisms of the catalytic reactions reviewed in this study would

  20. Removal of nitrogen compounds from gasification gas by selective catalytic or non-catalytic oxidation; Typpiyhdisteiden poisto kaasutuskaasusta selektiivisellae katalyyttisellae ja ei-katalyyttisellae hapetuksella

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-01

    In gasification reactive nitrogenous compounds are formed from fuel nitrogen, which may form nitrogen oxides in gas combustion. In fluidized bed gasification the most important nitrogenous compound is ammonia (NH{sub 3}). If ammonia could be decomposed to N{sub 2} already before combustion, the emissions if nitrogen oxides could be reduced significantly. One way of increasing the decomposition rate of NH{sub 3} could be the addition of suitable reactants to the gas, which would react with NH{sub 3} and produce N{sub 2}. The aim of this research is to create basic information, which can be used to develop a new method for removal of nitrogen compounds from gasification gas. The reactions of nitrogen compounds and added reactants are studied in reductive atmosphere in order to find conditions, in which nitrogen compounds can be oxidized selectively to N{sub 2}. The project consists of following subtasks: (1) Selective non-catalytic oxidation (SNCO): Reactions of nitrogen compounds and oxidizers in the gas phase, (2) Selective catalytic oxidation (SCO): Reactions of nitrogen compounds and oxidizers on catalytically active surfaces, (3) Kinetic modelling of experimental results in co-operation with the Combustion Chemistry Research Group of Aabo Akademi University. The most important finding has been that NH{sub 3} can be made to react selectively with the oxidizers even in the presence of large amounts of CO and H{sub 2}. Aluminium oxides were found to be the most effective materials promoting selectivity. (author)

  1. Simultaneous sorption and catalytic oxidation of trivalent antimony by Canna indica derived biochars.

    Science.gov (United States)

    Cui, Xiaoqiang; Ni, Qijun; Lin, Qiang; Khan, Kiran Yasmin; Li, Tingqiang; Khan, Muhammad Bilal; He, Zhenli; Yang, Xiaoe

    2017-10-01

    The simultaneous sorption and oxidation of Sb(III) on biochars were investigated using batch experiments. The biochars were derived from Canna indica at different pyrolysis temperatures (300-600 °C, referred as CIB300-CIB600), and characterized by FTIR, BET, XRD, SEM-EDS, EPR and Boehm titration. The Sb(III) sorption data could be well fitted by both the Langmuir and Freundlich models, and the pseudo-second order model is best for describing the kinetic data. The maximum Sb(III) sorption capacity of CIB300 was 16.1 mg g -1 , which was greater than that of other biochars. Inner-sphere complexation with oxygen-containing functional groups and coordination with π electrons are the possible sorption mechanisms. It is worthwhile to note that 4.7-32.3% of Sb(III) was oxidized to Sb(V) after sorption equilibration, demonstrating the occurrence of Sb(III) oxidation during the sorption process. Further study of oxidation under anoxic condition confirmed the catalytic role of biochar for Sb(III) oxidation, and free radicals in biochars were crucial for electron transfer. CIB400 exhibited the highest catalytic oxidative ability for Sb(III), which could be ascribe to its reserve of more electroactive polyphenolic macromolecule and less electroinactive cellulose. These results imply that biochars have good potential as a green effective sorbent for remediation of Sb(III) contaminated water, and simultaneously reduce the toxicity of Sb(III) by catalytic oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements

    Energy Technology Data Exchange (ETDEWEB)

    Angermann, Heike, E-mail: angermann@helmholtz-berlin.de

    2014-09-01

    Highlights: • Determination of electronic interface properties by contact-less surface photovoltage (SPV) technique. • Systematic correlations of substrate morphology and surface electronic properties. • Optimization of surface pre-treatment for flat, saw damage etched, and textured Si solar cell substrates. • Ultra-thin passivating Si oxide layers with low densities of rechargeable states by wet-chemical oxidation and subsequent annealing. • Environmentally acceptable processes, utilizing hot water, diluted HCl, or ozone low cost alternative to current approaches with concentrated chemicals. • The effect of optimized wet-chemical pre-treatments can be preserved during subsequent layer deposition. - Abstract: The field-modulated surface photovoltage (SPV) method, a very surface sensitive technique, was utilized to determine electronic interface properties on wet-chemically oxidized and etched silicon (Si) interfaces. The influence of preparation-induced surface micro-roughness and un-stoichiometric oxides on the resulting the surface charge, energetic distribution D{sub it}(E), and density D{sub it,min} of rechargeable states was studied by simultaneous, spectroscopic ellipsometry (SE) measurements on polished Si(111) and Si(100) substrates. Based on previous findings and new research, a study of conventional and newly developed wet-chemical oxidation methods was established, correlating the interactions between involved oxidizing and etching solutions and the initial substrate morphology to the final surface conditioning. It is shown, which sequences of wet-chemical oxidation and oxide removal, have to be combined in order to achieve atomically smooth, hydrogen terminated surfaces, as well as ultra-thin oxide layers with low densities of rechargeable states on flat, saw damage etched, and textured Si substrates, as commonly applied in silicon device and solar cell manufacturing. These conventional strategies for wet-chemical pre-treatment are mainly

  3. Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements

    International Nuclear Information System (INIS)

    Angermann, Heike

    2014-01-01

    Highlights: • Determination of electronic interface properties by contact-less surface photovoltage (SPV) technique. • Systematic correlations of substrate morphology and surface electronic properties. • Optimization of surface pre-treatment for flat, saw damage etched, and textured Si solar cell substrates. • Ultra-thin passivating Si oxide layers with low densities of rechargeable states by wet-chemical oxidation and subsequent annealing. • Environmentally acceptable processes, utilizing hot water, diluted HCl, or ozone low cost alternative to current approaches with concentrated chemicals. • The effect of optimized wet-chemical pre-treatments can be preserved during subsequent layer deposition. - Abstract: The field-modulated surface photovoltage (SPV) method, a very surface sensitive technique, was utilized to determine electronic interface properties on wet-chemically oxidized and etched silicon (Si) interfaces. The influence of preparation-induced surface micro-roughness and un-stoichiometric oxides on the resulting the surface charge, energetic distribution D it (E), and density D it,min of rechargeable states was studied by simultaneous, spectroscopic ellipsometry (SE) measurements on polished Si(111) and Si(100) substrates. Based on previous findings and new research, a study of conventional and newly developed wet-chemical oxidation methods was established, correlating the interactions between involved oxidizing and etching solutions and the initial substrate morphology to the final surface conditioning. It is shown, which sequences of wet-chemical oxidation and oxide removal, have to be combined in order to achieve atomically smooth, hydrogen terminated surfaces, as well as ultra-thin oxide layers with low densities of rechargeable states on flat, saw damage etched, and textured Si substrates, as commonly applied in silicon device and solar cell manufacturing. These conventional strategies for wet-chemical pre-treatment are mainly based on

  4. Preparation of AuNPs/GQDs/SiO2 Composite and Its Catalytic Performance in Oxidation of Veratryl Alcohol

    Directory of Open Access Journals (Sweden)

    Yaoyao Yang

    2017-01-01

    Full Text Available Composites of gold nanoparticles and graphene quantum dots (AuNPs/GQDs exhibit excellent dispersibility in aqueous solutions. Thus, it is difficult to separate them from wet reaction systems when they are used as catalysts. To resolve this issue, in this study, an AuNPs/GQDs composite was immobilized on silicon dioxide through the hydrothermal method, which involved the formation of an amide bond between the surface GQDs of the AuNPs/GQDs composite and the amino group of the silane. The as-synthesized AuNPs/GQDs/SiO2 composite was found to be suitable for use as a heterogeneous catalyst for the oxidation of veratryl alcohol in water and exhibited catalytic activity comparable to that of bare AuNPs/GQDs as well as better recyclability.

  5. Measurement of the oxidation-extraction of uranium from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    Lawes, B.C.

    1985-01-01

    The present invention relates to processes for the recovery of uranium from wet-process phosphoric acid and more particularly to the oxidation-extraction steps in the DEPA-TOPO process for such recovery. A more efficient use of oxidant is obtained by monitoring the redox potential during the extraction step

  6. Investigation on CO catalytic oxidation reaction kinetics of faceted perovskite nanostructures loaded with Pt

    KAUST Repository

    Yin, S. M.

    2017-01-18

    Perovskite lead titanate nanostructures with specific {111}, {100} and {001} facets exposed, have been employed as supports to investigate the crystal facet effect on the growth and CO catalytic activity of Pt nanoparticles. The size, distribution and surface chemical states of Pt on the perovskite supports have been significantly modified, leading to a tailored conversion temperature and catalytic kinetics towards CO catalytic oxidation.

  7. Investigation on CO catalytic oxidation reaction kinetics of faceted perovskite nanostructures loaded with Pt

    KAUST Repository

    Yin, S. M.; Duanmu, J. J.; Zhu, Yihan; Yuan, Y. F.; Guo, S. Y.; Yang, J. L.; Ren, Z. H.; Han, G. R.

    2017-01-01

    Perovskite lead titanate nanostructures with specific {111}, {100} and {001} facets exposed, have been employed as supports to investigate the crystal facet effect on the growth and CO catalytic activity of Pt nanoparticles. The size, distribution and surface chemical states of Pt on the perovskite supports have been significantly modified, leading to a tailored conversion temperature and catalytic kinetics towards CO catalytic oxidation.

  8. Wet oxidation pretreatment of rape straw for ethanol production

    International Nuclear Information System (INIS)

    Arvaniti, Efthalia; Bjerre, Anne Belinda; Schmidt, Jens Ejbye

    2012-01-01

    Rape straw can be used for production of second generation bioethanol. In this paper we optimized the pretreatment of rape straw for this purpose using Wet oxidation (WO). The effect of reaction temperature, reaction time, and oxygen gas pressure was investigated for maximum ethanol yield via Simultaneous Saccharification and Fermentation (SSF). To reduce the water use and increase the energy efficiency in WO pretreatment features like recycling liquid (filtrate), presoaking of rape straw in water or recycled filtrate before WO, skip washing pretreated solids (filter cake) after WO, or use of whole slurry (Filter cake + filtrate) in SSF were also tested. Except ethanol yields, pretreatment methods were evaluated based on achieved glucose yields, amount of water used, recovery of cellulose, hemicellulose, and lignin. The highest ethanol yield obtained was 67% after fermenting the whole slurry produced by WO at 205 °C for 3 min with 12 bar of oxygen gas pressure and featured with presoaking in water. At these conditions after pre-treatment, cellulose and hemicellulose was recovered quantitatively (100%) together with 86% of the lignin. WO treatments of 2–3 min at 205–210 °C with 12 bar of oxygen gas produced higher ethanol yields and cellulose, hemicelluloses, and lignin recoveries, than 15 min WO treatment at 195 °C. Also, recycling filtrate and use of higher oxygen gas pressure reduced recovery of materials. The use of filtrate could be inhibitory for the yeast, but also reduced lactic acid formation in SSF. -- Highlights: ► Wet Oxidation pretreatment on rape straw for sugar and ethanol production. ► Variables were reaction time, temperature, and oxygen gas pressure. ► Also, other configurations for increase of water and energy efficiency. ► Short Wet oxidation pretreatment (2–3 min) produced highest ethanol yield. ► After these pretreatment conditions recovery of lignin in solids was 86%.

  9. Catalytic Oxidation of Soot on a Novel Active Ca-Co Dually-Doped Lanthanum Tin Pyrochlore Oxide

    Directory of Open Access Journals (Sweden)

    Lijie Ai

    2018-04-01

    Full Text Available A novel active Ca-Co dually-doping pyrochlore oxide La2−xCaxSn2−yCoyO7 catalyst was synthesized by the sol-gel method for catalytic oxidation of soot particulates. The microstructure, atomic valence, reduction, and adsorption performance were investigated by X-ray powder diffraction (XRD, scanning electron microscope (SEM, Fourier-transform infrared spectroscopy (FT-IR, X-ray photoelectron spectroscopy (XPS, H2-TPR (temperature-programmed reduction, and in situ diffuse reflection infrared Fourier transformed (DRIFTS techniques. Temperature programmed oxidation (TPO tests were performed with the mixture of soot-catalyst under tight contact conditions to evaluate the catalytic activity for soot combustion. Synergetic effect between Ca and Co improved the structure and redox properties of the solids, increased the surface oxygen vacancies, and provided a suitable electropositivity for oxide, directly resulting in the decreased ignition temperature for catalyzed soot oxidation as low as 317 °C. The presence of NO in O2 further promoted soot oxidation over the catalysts with the ignition temperature decreased to about 300 °C. The DRIFTS results reveal that decomposition of less stable surface nitrites may account for NO2 formation in the ignition period of soot combustion, which thus participate in the auxiliary combustion process.

  10. Evaporation and wet oxidation of steam generator cleaning solutions

    International Nuclear Information System (INIS)

    Baldwin, P.N. Jr.

    1996-01-01

    Ethylene diamine tetra acetic acid (EDTA) is used in metal-cleaning formulations. Usually the form of the EDTA used is the tetra ammonium salt. When these powerful cleaning solutions are used in steam generators, they attract the key metals of interest--iron and copper. A reduction in the volume of these cleaners and EDTA destruction is required to meet waste management and disposal standards. One method of volume reduction is described: concentration by evaporation. Once volume is reduced, the liquid waste can then be further volume reduced and treated for EDTA content through the use of wet oxidation. The effect of this process on the total organic carbon (TOC) in the form of EDTA contained in the copper as well as the iron spent cleaning solutions is reviewed, including regression analysis of selected benchmark and production data. A regressive analysis is made of the relationship between the EDTA and the TOC analyzed in the wet-oxidation batch residuals as well as the summary effects of hydrogen peroxide, sulfuric acid, and reaction time on the percentage of TOC destroyed

  11. Electro-catalytic oxidation of ethanol on platinum-iridium mixtures supported on glassy carbon

    International Nuclear Information System (INIS)

    Rodriguez, Henry; Hoyos Bibian

    2004-01-01

    Electro-catalytic oxidation of ethanol on platinum-iridium mixtures supported on glassy carbon was studied, in acid media at different temperatures and concentrations. During the maturation time of deposited iridium, the surface is covered by an irreversible oxide formation, which affects the behavior of the catalytic mixture. The Pt 7 0 Ir 3 0 and Pt 9 0 Ir 1 0 mixtures seem to be a little more active than the Pt/C electrode at potentials below 800 mV (vs. HRE). In all electrodes appears two reactions: partial ethanol oxidation to produce acetaldehyde (main path of reaction at low temperatures and high electrode coverage with ethanol adsorption residues) and the total oxidation to carbon dioxide which is considerable at potential above 800 mV and it is increased with increasing temperature

  12. Influence of ionizing radiation on the catalytic properties of oxide catalysts tested by hydrogen peroxide decomposition

    International Nuclear Information System (INIS)

    Mucka, V.

    1987-01-01

    Results of a study of some physical and catalytic properties of different oxide catalysts as affected by ionizing radiation (γ, n, e - ) and tested by the decomposition of hydrogen peroxide in aqueous solution are presented in this paper. The oxidation state of the active component present on the catalyst surface was found to be one of the most sensitive properties to the ionizing radiation. Changes of this state induced by γ-irradiation were found to be positive in most cases; electron pre-irradiation of the oxides leads, as a rule, to negative effects and the effects of neutron irradiation may be positive or negative. On the other hand, changes in the catalytic activity of the oxides after γ-or electron-irradiation seem to be mostly negative and positive, respectively; the effects of fast neutrons seem to vary here. Neither quantitative or qualitative correlation was found between the radiation-induced changes in these two quantities. The results give evidence that ionizing radiation principally affects the surface concentration of the catalytic sites. Both the character and magnitude of the changes in surface oxidation abilities and in catalytic activities of the oxide catalysts seem to be dependent upon the actual state of the catalyst surface. (author)

  13. Wet oxidative destruction of spent ion-exchange resins using hydrogen peroxide

    International Nuclear Information System (INIS)

    Srinivas, C.; Ramaswamy, M.; Theyyunni, T.K.

    1994-01-01

    Spent organic ion exchange resins are generated in large quantities during the operation of nuclear facilities. Wet oxidation as a mode of treatment of these gel-type ion exchange resins was investigated using H 2 O 2 as oxidant in the presence of CuSO 4 as catalyst. Experiments using commercial samples were conducted at 95-100 deg C under reflux conditions at atmospheric pressure. It was found that the reaction of cation resin with H 2 O 2 was instantaneous whereas with anion resin, there was a lag time. For efficient utilization of the oxidant, low rate of addition of H 2 O 2 , 0.01M concentration of CuSO 4 and neutral pH in mixed resin reactions, were found to be useful. Foaming was noted during reactions involving anion resins. This could be controlled by silicone-based agents. The residual solution left after resin oxidation is aqueous in nature and is expected to contain all the radioactivity originally present in the resin. Preliminary experiments showed that it could be efficiently trapped using available inorganic sorbents. Wet oxidation system offers a simple method of converting organic waste into environmentally acceptable inorganic products. (author). 8 refs., 6 figs., 2 tabs

  14. Modification of Coal Char-loaded TiO2 by Sulfonation and Alkylsilylation to Enhance Catalytic Activity in Styrene Oxidation with Hydrogen Peroxide as Oxidant

    Directory of Open Access Journals (Sweden)

    Mukhamad Nurhadi

    2017-04-01

    Full Text Available The modified coal char from low-rank coal by sulfonation, titanium impregnation and followed by alkyl silylation possesses high catalytic activity in styrene oxidation. The surface of coal char was undergone several steps as such: modification using concentrated sulfuric acid in the sulfonation process, impregnation of 500 mmol titanium(IV isopropoxide and followed by alkyl silylation of n-octadecyltriclorosilane (OTS. The catalysts were characterized by X-ray diffraction (XRD, IR spectroscopy, nitrogen adsorption, and hydrophobicity. The catalytic activity of the catalysts has been examined in the liquid phase styrene oxidation by using aqueous hydrogen peroxide as oxidant. The catalytic study showed the alkyl silylation could enhance the catalytic activity of Ti-SO3H/CC-600(2.0. High catalytic activity and reusability of the o-Ti-SO3H/CC-600(2.0 were related to the modification of local environment of titanium active sites and the enhancement the hydrophobicity of catalyst particle by alkyl silylation. Copyright © 2017 BCREC GROUP. All rights reserved Received: 24th May 2016; Revised: 11st October 2016; Accepted: 18th October 2016 How to Cite: Nurhadi, M. (2017. Modification of Coal Char-loaded TiO2 by Sulfonation and Alkylsilylation to Enhance Catalytic Activity in Styrene Oxidation with Hydrogen Peroxide as Oxidant. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (1: 55-61 (doi:10.9767/bcrec.12.1.501.55-61 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.501.55-61

  15. Next Generation Hybrid Photo-Catalytic Oxidation (PCO) for Trace Contaminant Control

    Data.gov (United States)

    National Aeronautics and Space Administration — Photocatalytic oxidation (PCO) is a primary candidate as an alternative to thermal-catalytic or sorbent- based technologies for VOC trace contaminant control due to...

  16. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation.

    Science.gov (United States)

    Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H; Navrotsky, Alexandra

    2013-05-28

    Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn(3+)/Mn(4+) ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states.

  17. Process for forming a homogeneous oxide solid phase of catalytically active material

    Science.gov (United States)

    Perry, Dale L.; Russo, Richard E.; Mao, Xianglei

    1995-01-01

    A process is disclosed for forming a homogeneous oxide solid phase reaction product of catalytically active material comprising one or more alkali metals, one or more alkaline earth metals, and one or more Group VIII transition metals. The process comprises reacting together one or more alkali metal oxides and/or salts, one or more alkaline earth metal oxides and/or salts, one or more Group VIII transition metal oxides and/or salts, capable of forming a catalytically active reaction product, in the optional presence of an additional source of oxygen, using a laser beam to ablate from a target such metal compound reactants in the form of a vapor in a deposition chamber, resulting in the deposition, on a heated substrate in the chamber, of the desired oxide phase reaction product. The resulting product may be formed in variable, but reproducible, stoichiometric ratios. The homogeneous oxide solid phase product is useful as a catalyst, and can be produced in many physical forms, including thin films, particulate forms, coatings on catalyst support structures, and coatings on structures used in reaction apparatus in which the reaction product of the invention will serve as a catalyst.

  18. Treatment of refractory organic pollutants in industrial wastewater by wet air oxidation

    Directory of Open Access Journals (Sweden)

    Mingming Luan

    2017-02-01

    Full Text Available Wet air oxidation (WAO is one of the most economical and environmentally-friendly advanced oxidation processes. It makes a promising technology for the treatment of refractory organic pollutants in industrial wastewaters. In wet air oxidation aqueous waste is oxidized in the liquid phase at high temperatures (125–320 °C and pressures (0.5–20 MPa in the presence of an oxygen-containing gas (usually air. The advantages of the process include low operating costs and minimal air pollution discharges. The present review is concerned about the literature published in the treatment of refractory organic pollutants in industrial wastewaters, such as dyes. Phenolics were taken as model pollutants in most cases. Reports on effect of treatment for the WAO of refractory organic pollutants in industrial wastewaters are reviewed, such as emulsified wastewater, TNT red water, etc. Discussions are also made on the mechanism and kinetics of WAO and main technical parameters influencing WAO. Finally, development direction of WAO is summed up.

  19. Catalytic pleat filter bags for combined particulate separation and nitrogen oxides removal from flue gas streams

    International Nuclear Information System (INIS)

    Park, Young Ok; Choi, Ho Kyung

    2010-01-01

    The development of a high temperature catalytically active pleated filter bag with hybrid filter equipment for the combined removal of particles and nitrogen oxides from flue gas streams is presented. A special catalyst load in stainless steel mesh cartridge with a high temperature pleated filter bag followed by optimized catalytic activation was developed to reach the required nitrogen oxides levels and to maintain the higher collection efficiencies. The catalytic properties of the developed high temperature filter bags with hybrid filter equipment were studied and demonstrated in a pilot scale test rig and a demonstration plant using commercial scale of high temperature catalytic pleated filter bags. The performance of the catalytic pleated filter bags were tested under different operating conditions, such as filtration velocity and operating temperature. Moreover, the cleaning efficiency and residual pressure drop of the catalyst loaded cartridges in pleated filter bags were tested. As result of theses studies, the optimum operating conditions for the catalytic pleated filter bags are determined. (author)

  20. Catalytic allylic oxidation of internal alkenes to a multifunctional chiral building block

    Science.gov (United States)

    Bayeh, Liela; Le, Phong Q.; Tambar, Uttam K.

    2017-07-01

    The stereoselective oxidation of hydrocarbons is one of the most notable advances in synthetic chemistry over the past fifty years. Inspired by nature, enantioselective dihydroxylations, epoxidations and other oxidations of unsaturated hydrocarbons have been developed. More recently, the catalytic enantioselective allylic carbon-hydrogen oxidation of alkenes has streamlined the production of pharmaceuticals, natural products, fine chemicals and other functional materials. Allylic functionalization provides a direct path to chiral building blocks with a newly formed stereocentre from petrochemical feedstocks while preserving the olefin functionality as a handle for further chemical elaboration. Various metal-based catalysts have been discovered for the enantioselective allylic carbon-hydrogen oxidation of simple alkenes with cyclic or terminal double bonds. However, a general and selective allylic oxidation using the more common internal alkenes remains elusive. Here we report the enantioselective, regioselective and E/Z-selective allylic oxidation of unactivated internal alkenes via a catalytic hetero-ene reaction with a chalcogen-based oxidant. Our method enables non-symmetric internal alkenes to be selectively converted into allylic functionalized products with high stereoselectivity and regioselectivity. Stereospecific transformations of the resulting multifunctional chiral building blocks highlight the potential for rapidly converting internal alkenes into a broad range of enantioenriched structures that can be used in the synthesis of complex target molecules.

  1. Solid Waste Decontamination by Thermal Desorption and Catalytic Oxidation Methods

    Czech Academy of Sciences Publication Activity Database

    Šolcová, Olga; Topka, Pavel; Soukup, Karel; Jirátová, Květa; Váňová, H.; Kaštánek, František

    2014-01-01

    Roč. 68, č. 9 (2014), s. 1279-1282 ISSN 0366-6352 R&D Projects: GA MPO FR-TI1/059 Institutional support: RVO:67985858 Keywords : thermal desorption * catalytic oxidation * soil decontamination Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.468, year: 2014

  2. Catalytic activity of lanthanum oxide for the reduction of cyclohexanone

    International Nuclear Information System (INIS)

    Sugunan, S.; Sherly, K.B.

    1994-01-01

    Lanthanum oxides, La 2 O 3 has been found to be an effective catalyst for the liquid phase reduction of cyclohexanone. The catalytic activities of La 2 O 3 activated at 300, 500 and 800 degC and its mixed oxides with alumina for the reduction of cylcohexanone with 2-propanol have been determined and the data parallel that of the electron donating properties of the catalysts. The electron donating properties of the catalysts have been determined from the adsorption of electron acceptors of different electron affinities on the surface of these oxides. (author). 15 refs., 2 figs., 1 tab

  3. Catalytic incineration of CO and VOC emissions over supported metal oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Per-Olof

    1999-05-01

    Catalytic incineration is one of the methods to reduce the emissions of CO and VOCs. Low operation temperature and low catalyst cost are essential parameters for catalytic incinerators. Pt/Al{sub 2}O{sub 3} catalysts are frequently used today, but the cheaper metal oxide catalysts can be very competitive if comparable overall activity is obtained. This thesis concerns how it is possible to decrease the operation temperature for supported metal oxide catalysts by using different supports, active metal oxides and additives. In the thesis it is demonstrated that different copper oxide based catalysts have the best activity and durability for complete oxidation among several tested metal oxide catalysts. CuO{sub x} supported on TiO{sub 2} and Al{sub 2}O{sub 3} showed increased activity with the CuO{sub x} loading up to the threshold coverage for formation of crystalline CuO particles, which is 12 {mu}mol/m{sup 2} on TiO{sub 2} and 6 {mu}mol/m{sup 2} on Al{sub 2}O{sub 3}. Up to the threshold coverage for CuO formation, well dispersed copper oxide species were formed on TiO{sub 2}, and a dispersed copper aluminate surface phase was formed on Al{sub 2}O{sub 3}. Durability tests showed accelerated sintering of TiO{sub 2} by copper, but stabilisation was possible by modification of the TiO{sub 2} with CeO{sub x} before the deposition of CuO{sub x}. The stabilisation was obtained by formation of a Ce-O-Ti surface phase. Addition of CeO{sub x} also enhanced the activity of the copper oxide species thanks to favourable interaction between the active copper oxide species and the CeO{sub x} on the support, which could be seen as increased reducibility in TPR experiments. The increased activity and reducibility was also observed for CuO{sub x} supported on ceria modified Al{sub 2}O{sub 3}. In this regard it was shown that CuO{sub x} deposited on CeO{sub 2}(001) surfaces was substantially more active for CO oxidation than copper oxide deposited on CeO{sub 2}(111) Surfaces. This

  4. Ni–Ta–O mixed oxide catalysts for the low temperature oxidative dehydrogenation of ethane to ethylene

    KAUST Repository

    Zhu, Haibo

    2015-09-01

    The "wet" sol-gel and "dry" solid-state methods were used to prepare Ni-Ta-O mixed oxide catalysts. The resulting Ni-Ta oxides exhibit high activity and selectivity for the low temperature oxidative dehydrogenation of ethane to ethylene. The Ta/(Ni + Ta) atomic ratios (varying from 0 to 0.11 in "wet" sol-gel method, and from 0 to 0.20 in "dry" solid-state method) as well as the preparation methods used in the synthesis, play important roles in controlling catalyst structure, activity, selectivity and stability in the oxidative dehydrogenation of ethane. Electron microscopy characterizations (TEM, EELS mapping, and HAADF-STEM) clearly demonstrate that the Ta atoms are inserted into NiO crystal lattice, resulting in the formation of a new Ni-Ta oxide solid solution. More Ta atoms are found to be located at the lattice sites of crystal surface in sol-gel catalyst. While, a small amount of thin layer of Ta2O5 clusters are detected in solid-state catalyst. Further characterization by XRD, N2 adsorption, SEM, H2-TPR, XPS, and Raman techniques reveal different properties of these two Ni-Ta oxides. Due to the different properties of the Ni-Ta oxide catalysts prepared by two distinct approaches, they exhibit different catalytic behaviors in the ethane oxidative dehydrogenation reaction at low temperature. Thus, the catalytic performance of Ni-Ta-O mixed oxide catalysts can be systematically modified and tuned by selecting a suitable synthesis method, and then varying the Ta content. ©2015 Elsevier Inc. All rights reserved.

  5. Method of fabricating a catalytic structure

    Science.gov (United States)

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2009-09-22

    A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.

  6. Solid state oxidation of phenols to quinones with sodium perborate on wet montmorillonite K10

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, Mohammed M.; Eftekhari-Sis, Bagher; Khalili, Behzad; Karimi-Jaberi, Zahed [Sharif University of Technology, Tehran (Iran, Islamic Republic of). Dept. of Chemistry]. E-mail: mhashemi@sharif.edu

    2005-09-15

    Phenols were oxidized to quinones using sodium perborate (SPB) on wet montmorillonite as oxidant. The reaction was carried out at ambient temperature on the solid phase under solvent free conditions. (author)

  7. Solid state oxidation of phenols to quinones with sodium perborate on wet montmorillonite K10

    International Nuclear Information System (INIS)

    Hashemi, Mohammed M.; Eftekhari-Sis, Bagher; Khalili, Behzad; Karimi-Jaberi, Zahed

    2005-01-01

    Phenols were oxidized to quinones using sodium perborate (SPB) on wet montmorillonite as oxidant. The reaction was carried out at ambient temperature on the solid phase under solvent free conditions. (author)

  8. Removal of ethylene from air stream by adsorption and plasma-catalytic oxidation using silver-based bimetallic catalysts supported on zeolite.

    Science.gov (United States)

    Trinh, Quang Hung; Lee, Sang Baek; Mok, Young Sun

    2015-03-21

    Dynamic adsorption of ethylene on 13X zeolite-supported Ag and Ag-M(x)O(y) (M: Co, Cu, Mn, and Fe), and plasma-catalytic oxidation of the adsorbed ethylene were investigated. The experimental results showed that the incorporation of Ag into zeolite afforded a marked enhancement in the adsorptivity for ethylene. The addition of transition metal oxides was found to have a positive influence on the ethylene adsorption, except Fe(x)O(y). The presence of the additional metal oxides, however, appeared to somewhat interrupt the diffusion of ozone into the zeolite micro-pores, leading to a decrease in the plasma-catalytic oxidation efficiency of the ethylene adsorbed there. Among the second additional metal oxides, Fe(x)O(y) was able to reduce the emission of ozone during the plasma-catalytic oxidation stage while keeping a high effectiveness for the oxidative removal of the adsorbed ethylene. The periodical treatment consisting of adsorption followed by plasma-catalytic oxidation may be a promising energy-efficient ethylene abatement method. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. TEMPO functionalized C60 fullerene deposited on gold surface for catalytic oxidation of selected alcohols

    International Nuclear Information System (INIS)

    Piotrowski, Piotr; Pawłowska, Joanna; Sadło, Jarosław Grzegorz; Bilewicz, Renata; Kaim, Andrzej

    2017-01-01

    C 60 TEMPO 10 catalytic system linked to a microspherical gold support through a covalent S-Au bond was developed. The C 60 TEMPO 10 @Au composite catalyst had a particle size of 0.5–0.8 μm and was covered with the fullerenes derivative of 2.3 nm diameter bearing ten nitroxyl groups; the organic film showed up to 50 nm thickness. The catalytic composite allowed for the oxidation under mild conditions of various primary and secondary alcohols to the corresponding aldehyde and ketone analogues with efficiencies as high as 79–98%, thus giving values typical for homogeneous catalysis, while retaining at the same time all the advantages of heterogeneous catalysis, e.g., easy separation by filtration from the reaction mixture. The catalytic activity of the resulting system was studied by means of high pressure liquid chromatography. A redox mechanism was proposed for the process. In the catalytic cycle of the oxidation process, the TEMPO moiety was continuously regenerated in situ with an applied primary oxidant, for example, O 2 /Fe 3+ system. The new intermediate composite components and the final catalyst were characterized by various spectroscopic methods and thermogravimetry.

  10. Catalytic oxidation of volatile organic compounds (n-hexane, benzene, toluene, o-xylene promoted by cobalt catalysts supported on γ-Al2O3-CeO2

    Directory of Open Access Journals (Sweden)

    R. Balzer

    2014-09-01

    Full Text Available Cobalt catalysts supported on γ-alumina, ceria and γ-alumina-ceria, with 10 or 20%wt of cobalt load, prepared by the wet impregnation method and characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, field emission transmission electron microscopy (FETEM, N2 adsorption-desorption isotherms (BET/BJH methods, energy-dispersive X-ray spectroscopy (EDX, X-ray photoemission spectroscopy (XPS, O2-chemisorption and temperature programmed reduction (TPR were used to promote the oxidation of volatile organic compounds (n-hexane, benzene, toluene and o-xylene. For a range of low temperatures (50-350 °C, the activity of the catalysts with a higher cobalt load (20% wt was greater than that of the catalysts with a lower cobalt load (10% wt. The Co/γ-Al2O3-CeO2 catalytic systems presented the best performances. The results obtained in the characterization suggest that the higher catalytic activity of the Co20/γ-Al2O3-CeO2 catalyst may be attributed to the higher metal content and amount of oxygen vacancies, as well as the effects of the interaction between the cobalt and the alumina and cerium oxides.

  11. Wet air oxidation of seedcorn wastes containing pesticides and insecticides

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, M.; Schlaefer, O.; Onyeche, T.I.; Schroeder, C.; Bormann, H.; Schaefer, S. [CUTEC-Inst. GmbH (Clausthal Environment Technology Inst.), Clausthal-Zellerfeld (Germany)

    2003-07-01

    Wet air oxidation as an alternative treatment process to pyrolysis and combustion of seedcorn wastes was investigated in lab-scale experiments. Due to solid condition of the seed corn waste, the process has been adapted by repeated spraying of water on the seed corn bulk to avoid the production of sludge and its subsequent dewatering. Original seed corns from industrial production plants were used for a degradation kinetic study under smooth wet air oxidation conditions. The temperatures were between 80 and 150 C, the pressure from 1 to 4.5 bar and the pH at different values from 3 to 13. Degradation rates for five different compounds of pesticides and insecticides, namely Imidacloprid, Thiram, Hymexazol, Carbofuran and Tefluthrin were conducted. These compounds represent the recently used in agricultural seedcorn applications. The degradation rate depends linearly on temperature between 80 and 150 C. At 120 C the lowest degradation rate was found for Tefluthrin by 25 mg/h per L reaction volume while the highest degradation rate to be conducted was for Imidacloprid at 363 mg/h L. (orig.)

  12. Catalytic partial oxidation of pyrolysis oils

    Science.gov (United States)

    Rennard, David Carl

    2009-12-01

    This thesis explores the catalytic partial oxidation (CPO) of pyrolysis oils to syngas and chemicals. First, an exploration of model compounds and their chemistries under CPO conditions is considered. Then CPO experiments of raw pyrolysis oils are detailed. Finally, plans for future development in this field are discussed. In Chapter 2, organic acids such as propionic acid and lactic acid are oxidized to syngas over Pt catalysts. Equilibrium production of syngas can be achieved over Rh-Ce catalysts; alternatively mechanistic evidence is derived using Pt catalysts in a fuel rich mixture. These experiments show that organic acids, present in pyrolysis oils up to 25%, can undergo CPO to syngas or for the production of chemicals. As the fossil fuels industry also provides organic chemicals such as monomers for plastics, the possibility of deriving such species from pyrolysis oils allows for a greater application of the CPO of biomass. However, chemical production is highly dependent on the originating molecular species. As bio oil comprises up to 400 chemicals, it is essential to understand how difficult it would be to develop a pure product stream. Chapter 3 continues the experimentation from Chapter 2, exploring the CPO of another organic functionality: the ester group. These experiments demonstrate that equilibrium syngas production is possible for esters as well as acids in autothermal operation with contact times as low as tau = 10 ms over Rh-based catalysts. Conversion for these experiments and those with organic acids is >98%, demonstrating the high reactivity of oxygenated compounds on noble metal catalysts. Under CPO conditions, esters decompose in a predictable manner: over Pt and with high fuel to oxygen, non-equilibrium products show a similarity to those from related acids. A mechanism is proposed in which ethyl esters thermally decompose to ethylene and an acid, which decarbonylates homogeneously, driven by heat produced at the catalyst surface. Chapter 4

  13. Catalytic Oxidation of Benzophenone Hydrazone with Alumina-supported KMnO4 under Oxygen Atmosphere

    International Nuclear Information System (INIS)

    Lee, Kang Hyeok; Ko, Kwang Youn

    2006-01-01

    KMnO 4 /alumina reagent, which is cheap and environmentally safe, can serve as a catalytic oxidant under O 2 atmosphere for the oxidation of benzophenone hydrazone. To the best of our knowledge, the present works are the first example where KMnO 4 /alumina reagent acts as a catalytic oxidant under O 2 atmosphere. Diphenyldiazomethane (Ph 2 CN 2 ) is widely used for the protection of carboxylic acids by conversion to their diphenylmethyl (dpm) esters since dpm group can be easily deprotected by mild acidic condition or hydrogenolysis, especially in the field of b-lactams and peptides. Diphenyldiazomethane has been prepared by the oxidation of benzophenone hydrazone with reagents such as active manganese dioxide, mercuric oxide, peracetic acid, iodosobenzene diacetate or OXONE. However, some methods suffer from a disadvantage such as toxic nature of reagent, strong oxidative conditions or incompatibility with certain functional groups. For example, OXONE may not be employed for the in situ protection of carboxylic acid containing sulfide group due to the possibility of the concomitant oxidation of sulfide group

  14. Wet Oxidation of Maleic Acid by a Pumice Supported Copper (II ...

    African Journals Online (AJOL)

    Pumice supported Cu (II) Schiff base catalysts were prepared by surface chemical modification followed by complexation with Cu (II) acetate. The resulting materials were characterised by Diffuse Reflectance Fourier Transform Spectroscopy (DRIFTS) to confirm the modification. The materials were tested in a wet oxidation ...

  15. 1 - Aromatization of n-hexane and natural gasoline over ZSM-5 zeolite, 2- Wet catalytic oxidation of phenol on fixed bed of active carbon; 1 - Aromatisation de n-hexane et d'essence sur zeolithe ZSM-5, 2 - Oxydation catalytique en voie humide du phenol sur charbon actif

    Energy Technology Data Exchange (ETDEWEB)

    Suwanprasop, S.

    2005-04-15

    I - The production of aromatic hydrocarbons from n-hexane and natural gasoline over Pd loaded ZSM-5 zeolite in a tubular reactor was achieved under the suitable conditions at 400 deg. C, and 0.4 ml/min reactant feeding rate, employing ZSM-5 (0.5% Pd content) as a catalyst. Under these conditions, n-hexane and natural gasoline conversions were found to be 99.7% and 94.3%, respectively (with respective aromatic selectivity of 92.3% and 92.6%). II - Wet catalytic air oxidation of phenol over a commercial active carbon was studied in a three phase fixed bed reactor under mild temperature and oxygen partial pressure. Exit phenol concentration, COD, and intermediates were analysed. Oxidation of phenol was significantly improved when increasing operating temperature, oxygen partial pressure, and liquid space time, while up or down flow modes had only marginal effect. A complete model involving intrinsic kinetics and all mass transfer limitations gave convenient reactor simulation. (author)

  16. Catalytic Oxidation of Phenol over Zeolite Based Cu/Y-5 Catalyst: Part 1: Catalyst Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    K. Maduna Valkaj

    2015-01-01

    Full Text Available The necessity to remove organic pollutants from the industrial wastewater streams has forced the development of new technologies that can produce better results in terms of pollutant removal and process efficiency in combination with low investment and operating costs. One of the new emerging processes with a potential to fulfil these demands is catalytic wet peroxide oxidation, commonly known as the CWPO process. The oxidative effect of the hydrogen peroxide is intensified by the addition of a heterogeneous catalyst that can reduce the operating conditions to atmospheric pressure and temperatures below 383 K. Zeolites, among others, are especially appealing as catalysts for selective oxidation processes due to their unique characteristics such as shape selectivity, thermal and chemical stability, and benign effect on nature and the living world. In this work, catalytic activity, selectivity and stability of Cu/Y-5 zeolite in phenol oxidation with hydrogen peroxide was examined. Catalyst samples were prepared by ion exchange method of the protonic form of commercial zeolite. The catalysts were characterized with powder X-ray diffraction (XRD, scanning electron microscopy (SEM, and AAS elemental analysis, while the adsorption techniques were used for the measurement of the specific surface area. The catalytic tests were carried out in a stainless steel Parr reactor in batch operation mode at the atmospheric pressure and in the temperature range from 323 to 353 K. The catalyst was prepared in powdered form and the mass fraction of the active metal component on the zeolite was 3.46 %. The initial concentration of phenol solution was equal to 0.01 mol dm−3 and the concentration of hydrogen peroxide ranged from 0.01 to 0.10 mol dm−3. The obtained experimental data was tested to a proposed kinetic model for phenol oxidation r = k1 cF cVP and hydrogen peroxide decomposition rHP = k2 cHP. The kinetic parameters were estimated using the Nelder

  17. The effect of antimony-tin and indium-tin oxide supports on the catalytic activity of Pt nanoparticles for ammonia electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Júlio César M. [Department of Chemical & Biological Engineering, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, 161 Louis-Pasteur, Ottawa, ON K1N 6N5 (Canada); Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN-SP, Av. Prof. Lineu Prestes, 2242 Cidade Universitária, CEP 05508-900, São Paulo, SP (Brazil); Piasentin, Ricardo M.; Spinacé, Estevam V.; Neto, Almir O. [Instituto de Pesquisas Energéticas e Nucleares, IPEN/CNEN-SP, Av. Prof. Lineu Prestes, 2242 Cidade Universitária, CEP 05508-900, São Paulo, SP (Brazil); Baranova, Elena A., E-mail: elena.baranova@uottawa.ca [Department of Chemical & Biological Engineering, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, 161 Louis-Pasteur, Ottawa, ON K1N 6N5 (Canada)

    2016-09-01

    Platinum nanoparticles supported on carbon (Pt/C) and carbon with addition of ITO (Pt/C-ITO (In{sub 2}O{sub 3}){sub 9}·(SnO{sub 2}){sub 1}) and ATO (Pt/C-ATO (SnO{sub 2}){sub 9}·(Sb{sub 2}O{sub 5}){sub 1}) oxides were prepared by sodium borohydride reduction method and used for ammonia electro-oxidation reaction (AmER) in alkaline media. The effect of the supports on the catalytic activity of Pt for AmER was investigated using electrochemical (cyclic voltammetry and chronoamperometry) and direct ammonia fuel cell (DAFC) experiments. X-ray diffraction (XRD) showed Pt peaks attributed to the face-centered cubic (fcc) structure, as well as peaks characteristic of In{sub 2}O{sub 3} in ITO support and cassiterite SnO{sub 2} phase of ATO support. According to transmission electron micrographs the mean particles sizes of Pt over carbon were 5.4, 4.9 and 4.7 nm for Pt/C, Pt/C-ATO and Pt/C-ITO, respectively. Pt/C-ITO catalysts showed the highest catalytic activity for ammonia electrooxidation in both electrochemical and fuel cell experiments. We attributed this to the presence of In{sub 2}O{sub 3} phase in ITO, which provides oxygenated or hydroxide species at lower potentials resulting in the removal of poisonous intermediate, i.e., atomic nitrogen (N{sub ads}) and promotion of ammonia electro-oxidation. - Highlights: • Oxide support effect on the catalytic activity of Pt towards ammonia electro-oxidation. • Direct ammonia fuel cell (DAFC) performance using Pt over different supports as anode. • Pt/C-ITO shows better catalytic activity for ammonia oxidation than Pt/C and Pt/C-ATO.

  18. Hydrogen generator, via catalytic partial oxidation of methane for fuel cells

    Science.gov (United States)

    Recupero, Vincenzo; Pino, Lidia; Di Leonardo, Raffaele; Lagana', Massimo; Maggio, Gaetano

    It is well known that the most acknowledged process for generation of hydrogen for fuel cells is based upon the steam reforming of methane or natural gas. A valid alternative could be a process based on partial oxidation of methane, since the process is mildly exothermic and therefore not energy intensive. Consequently, great interest is expected from conversion of methane into syngas, if an autothermal, low energy intensive, compact and reliable process could be developed. This paper covers the activities, performed by the CNR Institute of Transformation and Storage of Energy (CNR-TAE), on theoretical and experimental studies for a compact hydrogen generator, via catalytic selective partial oxidation of methane, integrated with second generation fuel cells (EC-JOU2 contract). In particular, the project focuses the attention on methane partial oxidation via heterogeneous selective catalysts, in order to: demonstrate the basic catalytic selective partial oxidation of methane (CSPOM) technology in a subscale prototype, equivalent to a nominal output of 5 kWe; develop the CSPOM technology for its application in electric energy production by means of fuel cells; assess, by a balance of plant analysis, and a techno-economic evaluation, the potential benefits of the CSPOM for different categories of fuel cells.

  19. Mercury Oxidation over Selective Catalytic Reduction (SCR) Catalysts - Ph.d. thesis Karin Madsen

    DEFF Research Database (Denmark)

    Madsen, Karin

    The vanadium-based SCR catalyst used for NOx-control promotes the oxidation of elemental mercury Hg0 to Hg2+ in flue gases from coal-fired power plants. Hg2+ is water soluble and can effectively be captured in a wet scrubber. This means that the combination of an SCR with a wet FGD can offer an e...

  20. Helicobacter Catalase Devoid of Catalytic Activity Protects the Bacterium against Oxidative Stress.

    Science.gov (United States)

    Benoit, Stéphane L; Maier, Robert J

    2016-11-04

    Catalase, a conserved and abundant enzyme found in all domains of life, dissipates the oxidant hydrogen peroxide (H 2 O 2 ). The gastric pathogen Helicobacter pylori undergoes host-mediated oxidant stress exposure, and its catalase contains oxidizable methionine (Met) residues. We hypothesized catalase may play a large stress-combating role independent of its classical catalytic one, namely quenching harmful oxidants through its recyclable Met residues, resulting in oxidant protection to the bacterium. Two Helicobacter mutant strains ( katA H56A and katA Y339A ) containing catalase without enzyme activity but that retain all Met residues were created. These strains were much more resistant to oxidants than a catalase-deletion mutant strain. The quenching ability of the altered versions was shown, whereby oxidant-stressed (HOCl-exposed) Helicobacter retained viability even upon extracellular addition of the inactive versions of catalase, in contrast to cells receiving HOCl alone. The importance of the methionine-mediated quenching to the pathogen residing in the oxidant-rich gastric mucus was studied. In contrast to a catalase-null strain, both site-change mutants proficiently colonized the murine gastric mucosa, suggesting that the amino acid composition-dependent oxidant-quenching role of catalase is more important than the well described H 2 O 2 -dissipating catalytic role. Over 100 years after the discovery of catalase, these findings reveal a new non-enzymatic protective mechanism of action for the ubiquitous enzyme. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Effect of phase interaction on catalytic CO oxidation over the SnO_2/Al_2O_3 model catalyst

    International Nuclear Information System (INIS)

    Chai, Shujing; Bai, Xueqin; Li, Jing; Liu, Cheng; Ding, Tong; Tian, Ye; Liu, Chang; Xian, Hui; Mi, Wenbo; Li, Xingang

    2017-01-01

    Highlights: • Activity for CO oxidation is greatly enhanced by interaction between SnO_2 and Al_2O_3. • Interaction between SnO_2 and Al_2O_3 phases can generate oxygen vacancies. • Oxygen vacancies play an import role for catalytic CO oxidation. • Sn"4"+ cations are the effective sites for catalytic CO oxidation. • Langmuir-Hinshelwood model is preferred for catalytic CO oxidation. - Abstract: We investigated the catalytic CO oxidation over the SnO_2/Al_2O_3 model catalysts. Our results show that interaction between the Al_2O_3 and SnO_2 phases results in the significantly improved catalytic activity because of the formation of the oxygen vacancies. The oxygen storage capacity of the SnO_2/Al_2O_3 catalyst prepared by the physically mixed method is nearly two times higher than that of the SnO_2, which probably results from the change of electron concentration on the interface of the SnO_2 and Al_2O_3 phases. Introducing water vapor to the feeding gas would a little decrease the activity of the catalysts, but the reaction rate could completely recover after removal of water vapor. The kinetics results suggest that the surface Sn"4"+ cations are effective CO adsorptive sites, and the surface adsorbed oxygen plays an important role upon CO oxidation. The reaction pathways upon the SnO_2-based catalysts for CO oxidation follow the Langmuir-Hinshelwood model.

  2. Comparison of the chemical properties of wheat straw and beech fibers following alkaline wet oxidation and laccase treatments

    DEFF Research Database (Denmark)

    Schmidt, A. S.; Mallon, S.; Thomsen, Anne Belinda

    2002-01-01

    Wheat straw (Triticum aestivum) and beech (Fagus sylvatica), were used to evaluate the effects of two pre-treatment processes (alkaline wet oxidation and enzyme treatment with laccase) on lignocellulosic materials for applications in particleboards and fiberboards. Wheat straw and beech fibers...... treatment gave a more reactive surface than alkaline wet oxidation for wheat straw, whereas the opposite was observed for beech. Fourier transform infrared (FT-IR) spectroscopy showed an almost complete loss of the ester carbonyl stretching signal and the corresponding C-C-O stretching in wet...

  3. Catalytic ozonation of fenofibric acid over alumina-supported manganese oxide

    Energy Technology Data Exchange (ETDEWEB)

    Rosal, Roberto, E-mail: roberto.rosal@uah.es [Departamento de Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, E-28771 Alcala de Henares (Spain); Gonzalo, Maria S.; Rodriguez, Antonio; Garcia-Calvo, Eloy [Departamento de Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, E-28771 Alcala de Henares (Spain)

    2010-11-15

    The catalytic ozonation of fenofibric acid was studied using activated alumina and alumina-supported manganese oxide in a semicontinuous reactor. The rate constants at 20 deg. C for the non-catalytic reaction of fenofibric acid with ozone and hydroxyl radicals were 3.43 {+-} 0.20 M{sup -1} s{sup -1} and (6.55 {+-} 0.33) x 10{sup 9} M{sup -1} s{sup -1}, respectively. The kinetic constant for the catalytic reaction between fenofibric acid and hydroxyl radicals did not differ significantly from that of homogeneous ozonation, either using Al{sub 2}O{sub 3} or MnO{sub x}/Al{sub 2}O{sub 3}. The results showed a considerable increase in the generation of hydroxyl radicals due to the use of catalysts even in the case of catalytic runs performed using a real wastewater matrix. Both catalysts promoted the decomposition of ozone in homogeneous phase, but the higher production of hydroxyl radicals corresponded to the catalyst with more activity in terms of ozone decomposition. We did not find evidence of the catalysts having any effect on rate constants, which suggests that the reaction may not involve the adsorption of organics on catalyst surface.

  4. Synthesis, characterization and catalytic activity toward methanol oxidation of electrocatalyst Pt4+-NH2-MCM-41

    International Nuclear Information System (INIS)

    Zheng Huajun; Chen Zuo; Wang Limin; Ma Chun’an

    2012-01-01

    Highlights: ► It was first confirmed that the Pt 4+ exhibited a good electro-catalytic property for methanol oxidation. ► The Pt 4+ perfectly distributed on a mesoporous molecular sieve matrix synthesis by a facile method. ► The good performance of catalyst resistance to poisoning because of a homogeneous distribution of Pt 4+ and large specific surface area. - Abstract: Mesoporous material with functional group (Pt 4+ -NH 2 -MCM-41) was prepared by grafting aminopropyl group and adsorbing platinum ions on the surface of the commercial molecular sieve (MCM-41). The characterization carried out by X-ray photoelectron spectroscopy, X-ray diffraction, and N 2 adsorption–desorption measurement pointed out that Pt was adsorbed on the NH 2 -MCM-41 surface as the oxidation state (Pt 4+ ) and the surface area of Pt 4+ -NH 2 -MCM-41 was up to 564 m 2 /g. Transmission electron microscopy and elemental mapping indicated a homogeneous distribution of Pt 4+ throughout all surface of the mesoporous materials. Electro-catalytic properties of methanol oxidation on the Pt 4+ -NH 2 -MCM-41 electrode were investigated with electrochemical methods. The results showed that the Pt 4+ -NH 2 -MCM-41 electrode exhibited catalytic activity in the methanol electro-oxidation with the apparent activation energy being 49.29 kJ/mol, and the control step of methanol electro-oxidation was the mass transfer process. It is first proved that platinum ions had good electro-catalytic property for methanol oxidation and provided a new idea for developing electrode materials in future.

  5. The catalytic cycle of nitrous oxide reductase - The enzyme that catalyzes the last step of denitrification.

    Science.gov (United States)

    Carreira, Cíntia; Pauleta, Sofia R; Moura, Isabel

    2017-12-01

    The reduction of the potent greenhouse gas nitrous oxide requires a catalyst to overcome the large activation energy barrier of this reaction. Its biological decomposition to the inert dinitrogen can be accomplished by denitrifiers through nitrous oxide reductase, the enzyme that catalyzes the last step of the denitrification, a pathway of the biogeochemical nitrogen cycle. Nitrous oxide reductase is a multicopper enzyme containing a mixed valence CuA center that can accept electrons from small electron shuttle proteins, triggering electron flow to the catalytic sulfide-bridged tetranuclear copper "CuZ center". This enzyme has been isolated with its catalytic center in two forms, CuZ*(4Cu1S) and CuZ(4Cu2S), proven to be spectroscopic and structurally different. In the last decades, it has been a challenge to characterize the properties of this complex enzyme, due to the different oxidation states observed for each of its centers and the heterogeneity of its preparations. The substrate binding site in those two "CuZ center" forms and which is the active form of the enzyme is still a matter of debate. However, in the last years the application of different spectroscopies, together with theoretical calculations have been useful in answering these questions and in identifying intermediate species of the catalytic cycle. An overview of the spectroscopic, kinetics and structural properties of the two forms of the catalytic "CuZ center" is given here, together with the current knowledge on nitrous oxide reduction mechanism by nitrous oxide reductase and its intermediate species. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. I.C. Engine emission reduction by copper oxide catalytic converter

    Science.gov (United States)

    Venkatesan, S. P.; Shubham Uday, Desai; Karan Hemant, Borana; Rajarshi Kushwanth Goud, Kagita; Lakshmana Kumar, G.; Pavan Kumar, K.

    2017-05-01

    The toxic gases emitted from diesel engines are more than petrol engines. Predicting the use of diesel engines, even more in future, this system is developed and can be used to minimize the harmful gases. Toxic gases include NOX, CO, HC and Smoke which are harmful to the atmosphere as well as to the human beings. The main aim of this work is to fabricate system, where the level of intensity of toxic gases is controlled through chemical reaction to more agreeable level. This system acts itself as an exhaust system; hence there is no needs to fit separate the silencer. The whole assembly is fitted in the exhaust pipe from engine. In this work, catalytic converter with copper oxide as a catalyst, by replacing noble catalysts such as platinum, palladium and rhodium is fabricated and fitted in the engine exhaust. With and without catalytic converter, the experimentations are carried out at different loads such as 0%, 25%, 50%, 75%, and 100% of maximum rated load. From the experimental results it is found that the maximum reduction is 32%, 61% and 21% for HC, NOx and CO respectively at 100% of maximum rated load when compared to that of without catalytic converter. This catalytic converter system is cash effective and more economical than the existing catalytic converter.

  7. Treatment of toxic and hazardous organic wastes by wet oxidation process with oxygenated water at low temperature

    International Nuclear Information System (INIS)

    Piccinno, T.; Salluzzo, A.; Nardi, L.; Gili, M.; Luce, A.; Troiani, F.; Cornacchia, G.

    1989-11-01

    The wet oxidation process using air or molecular oxygen is a well-known process from long time. It is suitable to oxidize several types of waste refractory to the usual biological, thermal and chemical treatments. The drastic operating conditions (high pressures and temperatures) prevented its industrial development. In the last years a new interest was assigned to the process for the treatment of nuclear wastes (organic resins and exhaust organic wastes); the treatment is carried out at widely reduced operating conditions (atmospheric pressure and boiling temperature) by means of metallic catalysts and hydrogen peroxide. With some limits, the wet oxidation with hydrogen peroxide at low temperature can be applied to conventional waste waters containing toxic organic compounds. In the present report are summarized the activities developed at ENEA Fuel Cycle Department by the task force 'Deox' constituted by laboratory and plant specialists in order to verify the application of the wet oxidation process to the treatment of the toxic wastes. (author)

  8. Nitrogen removal from wastewater by a catalytic oxidation method.

    Science.gov (United States)

    Huang, T L; Macinnes, J M; Cliffe, K R

    2001-06-01

    The ammonia-containing waste produced in industries is usually characterized by high concentration and high temperature, and is not treatable by biological methods directly. In this study, a hydrophobic Pt/SDB catalyst was first used in a trickle-bed reactor to remove ammonia from wastewater. In the reactor, both stripping and catalytic oxidation occur simultaneously. It was found that higher temperature and higher oxygen partial pressure enhanced the ammonia removal. A reaction pathway, which involves oxidizing ammonia to nitric oxide, which then further reacts with ammonia to produce nitrogen and water, was confirmed. Small amounts of by-products, nitrites and nitrates were also detected in the resultant reaction solution. These compounds came from the absorption of nitrogen oxides. Both the minimum NO2- selectivity and maximum ammonia removal were achieved when the resultant pH of treated water was near 7.5 for a feed of unbuffered ammonia solution.

  9. Oxidation Kinetics of Chemically Vapor-Deposited Silicon Carbide in Wet Oxygen

    Science.gov (United States)

    Opila, Elizabeth J.

    1994-01-01

    The oxidation kinetics of chemically vapor-deposited SiC in dry oxygen and wet oxygen (P(sub H2O) = 0.1 atm) at temperatures between 1200 C and 1400 C were monitored using thermogravimetric analysis. It was found that in a clean environment, 10% water vapor enhanced the oxidation kinetics of SiC only very slightly compared to rates found in dry oxygen. Oxidation kinetics were examined in terms of the Deal and Grove model for oxidation of silicon. It was found that in an environment containing even small amounts of impurities, such as high-purity Al2O3 reaction tubes containing 200 ppm Na, water vapor enhanced the transport of these impurities to the oxidation sample. Oxidation rates increased under these conditions presumably because of the formation of less protective sodium alumino-silicate scales.

  10. An empirical study on the preparation of the modified coke and its catalytic oxidation properties

    Science.gov (United States)

    Liu, Hao; Jiang, Wenqiang

    2017-05-01

    T As a methyl acrylic ester fungicide, pyraclostrobin has the advantages of high activity, wide sterilization spectrum and high safety level comparing with the traditional fungicide. Due to less toxicity and side effects on human and environment, the use of pyraclostrobin and its mixture in agriculture is increasing. The heavy use of pyraclostrobin will inevitably cause pollution to the biological and abiotic environment. Therefore, it is of great significance to do the research on the degradation of pyraclostrobin. In this study, coke, as matrix, was modified by chemical modification. The modified coke was used as the catalyst and the pyraclostrobin was used as the degradation object. The degradation experiment of pyraclostrobin was carried out by using catalytic oxidation. The catalytic oxidation performance of modified coke was studied. The result showed that in the catalytic oxidation system of using modified coke as catalyst and H2O2 as oxidant, the best reaction condition is as following: The modified coke which is modified by using 70% concentration nitric acid is used as catalyst; The dosage of the catalyst is10g; The dosage of H2O2 is 0.6ml; The reaction time is 6 hours.

  11. Synthesis, characterization and catalytic performance of ZnO-CeO2 nanoparticles in wet oxidation of wastewater containing chlorinated compounds

    Science.gov (United States)

    Anushree; Kumar, S.; Sharma, C.

    2017-11-01

    Here we report the catalytic property of ZnO-CeO2 nanoparticles towards oxidative degradation of organic pollutants present in industrial wastewater. The catalysts were prepared by co-precipitation method without using any surfactant. The physicochemical properties of catalysts were studied by XRD, Raman, XPS, N2-sorption, FE-SEM, TEM and EDX techniques. The characterization results confirmed the formation of porous ZnO-CeO2 nanocatalysts with high surface area, pore volume and oxygen vacancies. ZnO-CeO2 nanocatalysts exhibited appreciable efficiency in CWAO of industrial wastewater under mild conditions. The Ce40Zn60 catalyst was found to be most efficient with 72% color, 64% chemical oxygen demand (COD) and 63% total organic carbon (TOC) removal. Efficient removal of chlorophenolics (CHPs, 59%) and adsorbable organic halides (AOX, 54%) indicated the feasibility of using ZnO-CeO2 nanocatalysts in degradation of non-biodegradable and toxic chlorinated compounds.

  12. Partial catalytic oxidation of CH{sub 4} to synthesis gas for power generation - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mantzaras, I.; Schneider, A.

    2006-03-15

    The partial oxidation of methane to synthesis gas over rhodium catalysts has been investigated experimentally and numerically in the pressure range of 4 to 10 bar. The methane/oxidizer feed has been diluted with large amounts of H{sub 2}O and CO{sub 2} (up to 70% vol.) in order to simulate new power generation cycles with large exhaust gas recycle. Experiments were carried out in an optically accessible channel-flow reactor that facilitated laser-based in situ measurements, and also in a subscale gas-turbine catalytic reactor. Full-elliptic steady and transient two-dimensional numerical codes were used, which included elementary hetero-/homogeneous chemical reaction schemes. The following are the key conclusions: a) Heterogeneous (catalytic) and homogeneous (gas-phase) schemes have been validated for the partial catalytic oxidation of methane with large exhaust gas recycle. b) The impact of added H{sub 2}O and CO{sub 2} has been elucidated. The added H{sub 2}O increased the methane conversion and hydrogen selectivity, while it decreased the CO selectivity. The chemical impact of CO{sub 2} (dry reforming) was minimal. c) The numerical model reproduced the measured catalytic ignition times. It was further shown that the chemical impact of H{sub 2}O and CO{sub 2} on the catalytic ignition delay times was minimal. d) The noble metal dispersion increased with different support materials, in the order Rh/{alpha}-Al{sub 2}O{sub 3}, Rh/ZrO{sub 2}, and Rh/Ce-ZrO{sub 2}. An evident relationship was established between the noble metal dispersion and the catalytic behavior. (authors)

  13. Catalytic Oxidation of Lignins into the Aromatic Aldehydes: General Process Trends and Development Prospects

    Science.gov (United States)

    Tarabanko, Valery E.; Tarabanko, Nikolay

    2017-01-01

    This review discusses principal patterns that govern the processes of lignins’ catalytic oxidation into vanillin (3-methoxy-4-hydroxybenzaldehyde) and syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde). It examines the influence of lignin and oxidant nature, temperature, mass transfer, and of other factors on the yield of the aldehydes and the process selectivity. The review reveals that properly organized processes of catalytic oxidation of various lignins are only insignificantly (10–15%) inferior to oxidation by nitrobenzene in terms of yield and selectivity in vanillin and syringaldehyde. Very high consumption of oxygen (and consequentially, of alkali) in the process—over 10 mol per mol of obtained vanillin—is highlighted as an unresolved and unexplored problem: scientific literature reveals almost no studies devoted to the possibilities of decreasing the consumption of oxygen and alkali. Different hypotheses about the mechanism of lignin oxidation into the aromatic aldehydes are discussed, and the mechanism comprising the steps of single-electron oxidation of phenolate anions, and ending with retroaldol reaction of a substituted coniferyl aldehyde was pointed out as the most convincing one. The possibility and development prospects of single-stage oxidative processing of wood into the aromatic aldehydes and cellulose are analyzed. PMID:29140301

  14. Flame Synthesis of Composite Oxides for Catalytic Applications

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer

    2002-01-01

    gas (CO/CO2/H2) and an excellent thermal stability. Addition of alumina as a structural promoter is necessary in order to obtain a high activity for methanol formation. The binary systems, i.e., CuO/ZnO, ZnO/Al2O3 and CuO/Al2O3 are investigated as a prelude to the preparation of the ternary catalyst...... the flame temperature, the high temperature residence time and the precursor concentration. The Cu/ZnO/Al2O3 methanol catalyst is used as a model system for the preparation of catalytic materials. The flame synthesized catalyst exhibits a high and reproducible activity for methanol formation from synthesis...... crystallites is oxidized. A number of complications may arise using the N2O-titration. It may be difficult to obtain full oxidation of the copper surface without having some oxidation of the bulk. Secondly, some sintering of the nano-sized copper crystallites may occur due to the exothermic nature...

  15. Oxidation of phosphine by sulfur or selenium involving a catalytic ...

    Indian Academy of Sciences (India)

    Administrator

    P NMR spec- troscopy. Such interconversion with the participation of breaking of bridging copper-µ3-sulfur bond with the formation of new copper–phosphorous bond led to the development of a catalytic cycle using excess. PPh3 and S or Se as the reacting substrates. The turnover number for the oxidation of PPh3 by S ...

  16. Catalytic CO Oxidation over Au Nanoparticles Loaded Nanoporous Nickel Phosphate Composite

    Directory of Open Access Journals (Sweden)

    Xiaonan Leng

    2015-01-01

    Full Text Available Au/nickel phosphate-5 (Au/VSB-5 composite with the noble metal loading amount of 1.43 wt.% is prepared by using microporous VSB-5 nanocrystals as the support. Carbon monoxide (CO oxidation reaction is carried out over the sample with several catalytic cycles. Complete conversion of CO is achieved at 238°C over the catalyst at the first catalytic cycle. The catalytic activity improved greatly at the second cycle with the complete conversion fulfilled at 198°C and preserved for the other cycles. A series of experiments such as X-ray diffraction (XRD, high resolution transmission electron microscopy (HRTEM, ultraviolet-visible (UV-vis spectroscopy, and X-ray photoelectron spectroscopy (XPS are carried out to characterize the catalysts before and after the reaction to study the factors influencing this promotion at the second cycle.

  17. Low Temperature Selective Catalytic Reduction of Nitrogen Oxides in Production of Nitric Acid by the Use of Liquid

    Directory of Open Access Journals (Sweden)

    Kabljanac, Ž.

    2011-11-01

    Full Text Available This paper presents the application of low-temperature selective catalytic reduction of nitrous oxides in the tail gas of the dual-pressure process of nitric acid production. The process of selective catalytic reduction is carried out using the TiO2/WO3 heterogeneous catalyst applied on a ceramic honeycomb structure with a high geometric surface area per volume. The process design parameters for nitric acid production by the dual-pressure procedure in a capacity range from 75 to 100 % in comparison with designed capacity for one production line is shown in the Table 1. Shown is the effectiveness of selective catalytic reduction in the temperature range of the tail gas from 180 to 230 °C with direct application of liquid ammonia, without prior evaporation to gaseous state. The results of inlet and outlet concentrations of nitrous oxides in the tail gas of the nitric acid production process are shown in Figures 1 and 2. Figure 3 shows the temperature dependence of the selective catalytic reduction of nitrous oxides expressed as NO2in the tail gas of nitric acid production with the application of a constant mass flow of liquid ammonia of 13,0 kg h-1 and average inlet mass concentration of the nitrous oxides expressed as NO2of 800,0 mgm-3 during 100 % production capacity. The specially designed liquid-ammonia direct-dosing system along with the effective homogenization of the tail gas resulted in emission levels of nitrous oxides expressed as NO2 in tail gas ranging from 100,0 to 185,0 mg m-3. The applied low-temperature selective catalytic reduction of the nitrous oxides in the tail gases by direct use of liquid ammonia is shown in Figure 4. It is shown that low-temperature selective catalytic reduction with direct application of liquid ammonia opens a new opportunity in the reduction of nitrous oxide emissions during nitric acid production without the risk of dangerous ammonium nitrate occurring in the process of subsequent energy utilization of

  18. Catalytic Oxidation of Benzophenone Hydrazone with Alumina-supported KMnO{sub 4} under Oxygen Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hyeok; Ko, Kwang Youn [Ajou University, Suwon (Korea, Republic of)

    2006-02-15

    KMnO{sub 4}/alumina reagent, which is cheap and environmentally safe, can serve as a catalytic oxidant under O{sub 2} atmosphere for the oxidation of benzophenone hydrazone. To the best of our knowledge, the present works are the first example where KMnO{sub 4}/alumina reagent acts as a catalytic oxidant under O{sub 2} atmosphere. Diphenyldiazomethane (Ph{sub 2}CN{sub 2}) is widely used for the protection of carboxylic acids by conversion to their diphenylmethyl (dpm) esters since dpm group can be easily deprotected by mild acidic condition or hydrogenolysis, especially in the field of b-lactams and peptides. Diphenyldiazomethane has been prepared by the oxidation of benzophenone hydrazone with reagents such as active manganese dioxide, mercuric oxide, peracetic acid, iodosobenzene diacetate or OXONE. However, some methods suffer from a disadvantage such as toxic nature of reagent, strong oxidative conditions or incompatibility with certain functional groups. For example, OXONE may not be employed for the in situ protection of carboxylic acid containing sulfide group due to the possibility of the concomitant oxidation of sulfide group.

  19. Selective Oxidation and Reactive Wetting During Hot-Dip Galvanizing of a 1.0 pct Al-0.5 pct Si TRIP-Assisted Steel

    Science.gov (United States)

    Bellhouse, E. M.; McDermid, J. R.

    2012-07-01

    Selective oxidation and reactive wetting during continuous galvanizing were studied for a low-alloy transformation induced plasticity (TRIP)-assisted steel with 0.2 pct C, 1.5 pct Mn, 1.0 pct Al and 0.5 pct Si. Three process atmospheres were tested during annealing prior to galvanizing: 220 K (-53 °C) dew point (dp) N2-20 pct H2, 243 K (-30 °C) dp N2-5 pct H2 and 278 K (+5 °C) dp N2-5 pct H2. The process atmosphere oxygen partial pressure affected the oxide chemistry, morphology and thickness. For the 220 K (-53 °C) dp and 243 K (-30 °C) dp process atmospheres, film and nodule-type manganese, silicon and aluminum containing oxides were observed at the surface. For the 278 K (+5 °C) dp atmosphere, MnO was observed at the grain boundaries and as thicker localized surface films. Oxide morphology, thickness and chemistry affected reactive wetting, with complete wetting being observed for the 220 K (-53 °C) dp and 243 K (-30 °C) dp process atmospheres and incomplete reactive wetting being observed for the 278 K (+5 °C) dp atmosphere. Complete reactive wetting for the 220 K (-53 °C) dp and 243 K (-30 °C) dp process atmospheres was attributed to a combination of zinc bridging of oxides, aluminothermic reduction of surface oxides and wetting of the oxides. Incomplete wetting for the 278 K (+5 °C) dp atmosphere was attributed to localized thick MnO films.

  20. Investigation of catalytic oxidation of diamond by water vapor and carbon dioxide in the presence of alkali melts of some rare earth oxides

    International Nuclear Information System (INIS)

    Kulakova, I.I.; Rudenko, A.P.; Sulejmenova, A.S.; Tolstopyatova, A.A.

    1978-01-01

    The results of an investigation of the catalytic oxydation of diamond by carbon dioxide and water vapors at 906 deg C in the presence of melts of some rare earth oxides in potassium hydroxide are given. The ion La 3+ was shown to possess the most catalytic activity. The earlier proposed mechanisms of the diamond oxidation by CO 2 and H 2 O were corroborated. The ions of rare earth elements were found to accelerate the different stages of the process

  1. Influence of thermal treatments on the basic and catalytic properties of Mg,Al-mixed oxides derived from hydrotalcites

    Directory of Open Access Journals (Sweden)

    Bastiani R.

    2004-01-01

    Full Text Available This work studied the influence of calcination conditions on basic properties and catalytic performance of Mg,Al-mixed oxides derived from a hydrotalcite sample (Al/(Al+Mg=0.20. Various heating rates, calcination atmospheres and lengths of calcination at 723K were evaluated. TPD of CO2 and retroaldolization of diacetone alcohol (DAA were used to determine the basic properties of the mixed oxides. The basic site density determined by TPD of CO2 showed a better correlation with catalytic activity for acetone/citral aldol condensation than the relative basicity obtained from retroaldolization of DAA. Calcination atmosphere was the parameter that influenced most the basic and the catalytic properties of the Mg,Al-mixed oxides, with calcination under dry air being the best choice.

  2. Modification of Titanium Dioxide Nanoparticles With Copper Oxide Co-Catalyst for Photo catalytic Degradation of 2,4-Dichlorophenoxyacetic Acid

    International Nuclear Information System (INIS)

    Leny Yuliati; Siah, W.R.; Nur Azmina Roslan; Mustaffa Shamsuddin

    2016-01-01

    2,4-dichlorophenoxyacetic acid (2,4-D) is a common herbicide that has been used widely. Due to its excessive usage, the 2,4-D herbicides can cause contamination over agricultural land and water bodies. In the present work, a simple impregnation method was used to modify the commercial titanium dioxide (P25 TiO_2) nanoparticles with the copper oxide. The prepared samples were characterized by X-ray Diffraction (XRD), reflectance UV-visible and fluorescence spectroscopies. It was observed that the incorporation of copper oxide did not significantly affect the crystal structure of P25 TiO_2. On the other hand, the presence of copper oxide was confirmed by reflectance UV-visible and fluorescence spectroscopies. The activity of the prepared sample was evaluated for photo catalytic removal of the 2,4-D. The photo catalytic activity of the TiO_2 increased with the increase of copper oxide loading up to 0.5 mol %. Unfortunately, the higher loading amount of copper oxide resulted in the lower photo catalytic activity. This study suggested that the higher photo catalytic activities obtained on the low loading samples were due to the lower electron-hole recombination. (author)

  3. Testing of wet scrap recovery equipment for mixed oxide scrap reprocessing

    International Nuclear Information System (INIS)

    Demiter, J.A.; Klem, M.J.; Owen, T.J.

    1984-08-01

    The Wet Scrap Recovery (WSR) program was initiated at the Hanford Engineering Development Laboratory (HEDL) by Westinghouse Hanford Company in Richland, Washington to demonstrate fuel fabrication scrap recovery and reconversion to fuel grade oxide powder using the continuous coprecipitation-calcination (COPRECAL) conversion process. Advancements in process control equipment and instrumentation were also developed and demonstrated

  4. Catalytic Activity and Deactivation of SO2 Oxidation Catalysts in Simulated Power Plant Flue Gases

    DEFF Research Database (Denmark)

    Masters, Stephen G.; Chrissanthopoulos, Asthanassios; Eriksen, Kim Michael

    1997-01-01

    The catalyst deactivation and the simultaneious formation of compounds in commercial SO2 oxidation catalysts have been studied by combined activity measurements and in situ EPR spectroscopy in the temperature range 350-480 C in wet and dry simulated power plant flue gas.......The catalyst deactivation and the simultaneious formation of compounds in commercial SO2 oxidation catalysts have been studied by combined activity measurements and in situ EPR spectroscopy in the temperature range 350-480 C in wet and dry simulated power plant flue gas....

  5. Reaction rate oscillations during catalytic CO oxidation: A brief overview

    Science.gov (United States)

    Tsotsis, T. T.; Sane, R. C.

    1987-01-01

    It is not the intent here to present a comprehensive review of the dynamic behavior of the catalytic oxidation of CO. This reaction is one of the most widely studied in the field of catalysis. A review paper by Engel and Ertl has examined the basic kinetic and mechanistic aspects, and a comprehensive paper by Razon and Schmitz was recently devoted to its dynamic behavior. Those interested in further study of the subject should consult these reviews and a number of general review papers on catalytic reaction dynamics. The goal is to present a brief overview of certain interesting aspects of the dynamic behavior of this reaction and to discuss a few questions and issues, which are still the subject of study and debate.

  6. Helicobacter Catalase Devoid of Catalytic Activity Protects the Bacterium against Oxidative Stress*♦

    Science.gov (United States)

    Benoit, Stéphane L.; Maier, Robert J.

    2016-01-01

    Catalase, a conserved and abundant enzyme found in all domains of life, dissipates the oxidant hydrogen peroxide (H2O2). The gastric pathogen Helicobacter pylori undergoes host-mediated oxidant stress exposure, and its catalase contains oxidizable methionine (Met) residues. We hypothesized catalase may play a large stress-combating role independent of its classical catalytic one, namely quenching harmful oxidants through its recyclable Met residues, resulting in oxidant protection to the bacterium. Two Helicobacter mutant strains (katAH56A and katAY339A) containing catalase without enzyme activity but that retain all Met residues were created. These strains were much more resistant to oxidants than a catalase-deletion mutant strain. The quenching ability of the altered versions was shown, whereby oxidant-stressed (HOCl-exposed) Helicobacter retained viability even upon extracellular addition of the inactive versions of catalase, in contrast to cells receiving HOCl alone. The importance of the methionine-mediated quenching to the pathogen residing in the oxidant-rich gastric mucus was studied. In contrast to a catalase-null strain, both site-change mutants proficiently colonized the murine gastric mucosa, suggesting that the amino acid composition-dependent oxidant-quenching role of catalase is more important than the well described H2O2-dissipating catalytic role. Over 100 years after the discovery of catalase, these findings reveal a new non-enzymatic protective mechanism of action for the ubiquitous enzyme. PMID:27605666

  7. Investigation of the degradation mechanism of catalytic wires during oxidation of ammonia process

    International Nuclear Information System (INIS)

    Pura, Jarosław; Wieciński, Piotr; Kwaśniak, Piotr; Zwolińska, Marta; Garbacz, Halina; Zdunek, Joanna; Laskowski, Zbigniew; Gierej, Maciej

    2016-01-01

    Highlights: • Degradation mechanisms of precious metal catalytic gauzes is proposed. • Significant change of gauzes morphology and chemical composition was observed. • Samples were analyzed using SEM, EDS and micro-XCT techniques. - Abstract: The most common catalysts for the ammonia oxidation process are 80 μm diameter platinum-rhodium wires knitted or woven into the form of a gauze. In an aggressive environment and under extreme conditions (temperature 800–900 °C, intensive gas flow, high pressure) precious elements are drained from the surface of the wires. Part of this separated material quickly decomposes on the surface in the form of characteristic “cauliflower-shape protrusions”. The rest of the platinum is captured by palladium-nickel catalytic-capture gauzes located beneath. In our investigation we focused on the effects of the degradation of gauzes from one industrial catalytic system. The aim of the study was to compare the degree and the mechanism of degradation of gauzes from a different part of the reactor. The study covered PtRh7 catalytic and PdNi5 catalytic-capture gauzes. X-ray computer microtomography investigation revealed that despite strong differences in morphology, each Pt-Rh wire has a similar specific surface area. This indicates that the oxidation process and morphological changes of the wires occur in a self-regulating balance, resulting in the value of the specific surface area of the catalyst. Microtomography analysis of Pd-Ni wires revealed strong redevelopment of the wires’ surface, which is related to the platinum capture phenomenon. Scanning electron microscope observations also revealed the nanostructure in the cauliflower-shape protrusions and large grains in the wires’ preserved cores. The high temperature in the reactor and the long-term nature of the process do not favor the occurrence of the nanostructure in this type of material. Further and detailed analysis of this phenomena will provide a better

  8. Investigation of the degradation mechanism of catalytic wires during oxidation of ammonia process

    Energy Technology Data Exchange (ETDEWEB)

    Pura, Jarosław, E-mail: jaroslawpura@gmail.com [Faculty of Material Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Wieciński, Piotr; Kwaśniak, Piotr; Zwolińska, Marta; Garbacz, Halina; Zdunek, Joanna [Faculty of Material Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Laskowski, Zbigniew; Gierej, Maciej [Precious Metal Mint, Weteranów 95, 05-250 Radzymin (Poland)

    2016-12-01

    Highlights: • Degradation mechanisms of precious metal catalytic gauzes is proposed. • Significant change of gauzes morphology and chemical composition was observed. • Samples were analyzed using SEM, EDS and micro-XCT techniques. - Abstract: The most common catalysts for the ammonia oxidation process are 80 μm diameter platinum-rhodium wires knitted or woven into the form of a gauze. In an aggressive environment and under extreme conditions (temperature 800–900 °C, intensive gas flow, high pressure) precious elements are drained from the surface of the wires. Part of this separated material quickly decomposes on the surface in the form of characteristic “cauliflower-shape protrusions”. The rest of the platinum is captured by palladium-nickel catalytic-capture gauzes located beneath. In our investigation we focused on the effects of the degradation of gauzes from one industrial catalytic system. The aim of the study was to compare the degree and the mechanism of degradation of gauzes from a different part of the reactor. The study covered PtRh7 catalytic and PdNi5 catalytic-capture gauzes. X-ray computer microtomography investigation revealed that despite strong differences in morphology, each Pt-Rh wire has a similar specific surface area. This indicates that the oxidation process and morphological changes of the wires occur in a self-regulating balance, resulting in the value of the specific surface area of the catalyst. Microtomography analysis of Pd-Ni wires revealed strong redevelopment of the wires’ surface, which is related to the platinum capture phenomenon. Scanning electron microscope observations also revealed the nanostructure in the cauliflower-shape protrusions and large grains in the wires’ preserved cores. The high temperature in the reactor and the long-term nature of the process do not favor the occurrence of the nanostructure in this type of material. Further and detailed analysis of this phenomena will provide a better

  9. The mechanism of the catalytic oxidation of hydrogen sulfide: II. Kinetics and mechanism of hydrogen sulfide oxidation catalyzed by sulfur

    NARCIS (Netherlands)

    Steijns, M.; Derks, F.; Verloop, A.; Mars, P.

    1976-01-01

    The kinetics of the catalytic oxidation of hydrogen sulfide by molecular oxygen have been studied in the temperature range 20–250 °C. The primary reaction product is sulfur which may undergo further oxidation to SO2 at temperatures above 200 °C. From the kinetics of this autocatalytic reaction we

  10. Catalytic Oxidation of Lignins into the Aromatic Aldehydes: General Process Trends and Development Prospects

    Directory of Open Access Journals (Sweden)

    Valery E. Tarabanko

    2017-11-01

    Full Text Available This review discusses principal patterns that govern the processes of lignins’ catalytic oxidation into vanillin (3-methoxy-4-hydroxybenzaldehyde and syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde. It examines the influence of lignin and oxidant nature, temperature, mass transfer, and of other factors on the yield of the aldehydes and the process selectivity. The review reveals that properly organized processes of catalytic oxidation of various lignins are only insignificantly (10–15% inferior to oxidation by nitrobenzene in terms of yield and selectivity in vanillin and syringaldehyde. Very high consumption of oxygen (and consequentially, of alkali in the process—over 10 mol per mol of obtained vanillin—is highlighted as an unresolved and unexplored problem: scientific literature reveals almost no studies devoted to the possibilities of decreasing the consumption of oxygen and alkali. Different hypotheses about the mechanism of lignin oxidation into the aromatic aldehydes are discussed, and the mechanism comprising the steps of single-electron oxidation of phenolate anions, and ending with retroaldol reaction of a substituted coniferyl aldehyde was pointed out as the most convincing one. The possibility and development prospects of single-stage oxidative processing of wood into the aromatic aldehydes and cellulose are analyzed.

  11. Effect of Au Precursor and Support on the Catalytic Activity of the Nano-Au-Catalysts for Propane Complete Oxidation

    Directory of Open Access Journals (Sweden)

    Arshid M. Ali

    2015-01-01

    Full Text Available Catalytic activity of nano-Au-catalyst(s for the complete propane oxidation was investigated. The results showed that the nature of both Au precursor and support strongly influences catalytic activity of the Au-catalyst(s for the propane oxidation. Oxidation state, size, and dispersion of Au nanoparticles in the Au-catalysts, surface area, crystallinity, phase structure, and redox property of the support are the key aspects for the complete propane oxidation. Among the studied Au-catalysts, the AuHAuCl4-Ce catalyst is found to be the most active catalyst.

  12. TEMPO functionalized C{sub 60} fullerene deposited on gold surface for catalytic oxidation of selected alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Piotrowski, Piotr; Pawłowska, Joanna [University of Warsaw, Department of Chemistry (Poland); Sadło, Jarosław Grzegorz [Institute of Nuclear Chemistry and Technology (Poland); Bilewicz, Renata; Kaim, Andrzej, E-mail: akaim@chem.uw.edu.pl [University of Warsaw, Department of Chemistry (Poland)

    2017-05-15

    C{sub 60}TEMPO{sub 10} catalytic system linked to a microspherical gold support through a covalent S-Au bond was developed. The C{sub 60}TEMPO{sub 10}@Au composite catalyst had a particle size of 0.5–0.8 μm and was covered with the fullerenes derivative of 2.3 nm diameter bearing ten nitroxyl groups; the organic film showed up to 50 nm thickness. The catalytic composite allowed for the oxidation under mild conditions of various primary and secondary alcohols to the corresponding aldehyde and ketone analogues with efficiencies as high as 79–98%, thus giving values typical for homogeneous catalysis, while retaining at the same time all the advantages of heterogeneous catalysis, e.g., easy separation by filtration from the reaction mixture. The catalytic activity of the resulting system was studied by means of high pressure liquid chromatography. A redox mechanism was proposed for the process. In the catalytic cycle of the oxidation process, the TEMPO moiety was continuously regenerated in situ with an applied primary oxidant, for example, O{sub 2}/Fe{sup 3+} system. The new intermediate composite components and the final catalyst were characterized by various spectroscopic methods and thermogravimetry.

  13. Catalytic Role of Manganese Oxides in Prebiotic Nucleobases Synthesis from Formamide.

    Science.gov (United States)

    Bhushan, Brij; Nayak, Arunima; Kamaluddin

    2016-06-01

    Origin of life processes might have begun with the formation of important biomonomers, such as amino acids and nucleotides, from simple molecules present in the prebiotic environment and their subsequent condensation to biopolymers. While studying the prebiotic synthesis of naturally occurring purine and pyrimidine derivatives from formamide, the manganese oxides demonstrated not only good binding for formamide but demonstrated novel catalytic activity. A novel one pot manganese oxide catalyzed synthesis of pyrimidine nucleobases like thymine is reported along with the formation of other nucleobases like purine, 9-(hydroxyacetyl) purine, cytosine, 4(3 H)-pyrimidinone and adenine in acceptable amounts. The work reported is significant in the sense that the synthesis of thymine has exhibited difficulties especially under one pot conditions and also such has been reported only under the catalytic activity of TiO2. The lower oxides of manganese were reported to show higher potential as catalysts and their existence were favored by the reducing atmospheric conditions prevalent on early Earth; thereby confirming the hypothesis that mineral having metals in reduced form might have been more active during the course of chemical evolution. Our results further confirm the role of formamide as a probable precursor for the formation of purine and pyrimidine bases during the course of chemical evolution and origin of life.

  14. 高级氧化技术在废水处理中的应用研究进展%Application and Progress of Advanced Oxidation Processes inWastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    钟理; 詹怀宇

    2000-01-01

    探讨了高级氧化技术(Advanced Oxidation Processes,即AOPs)如:O3/H2O2,Fenton试剂均相湿式催化氧化;H2O2/UV、O3/UV、O3/H2O2/UV均相光催化氧化;多相湿式催化氧化,多相光催化氧化,多相催化和生化氧化等过程处理废水及其反应机理,论述了AOPs技术在工业废水处理方面的研究进展。%The wastewater treatment and reaction mechanism by Advanced Oxidation Processes such as homogeneous wet catalytic oxidation of O3/H2O2 and Fenton agent, homogeneous photocatalytic oxidation of H2O2/UV,O3/UV and O2/H2O2/UV, and heterogeneous wet catalytic oxidation, heterogeneous photocatalytic oxidation, heterogeneous catalytic and biochemical oxidation were explored. The investigation and progress of AOPs technique in industrial wastewater treatment were overviewed.

  15. Importance of the oxygen bond strength for catalytic activity in soot oxidation

    DEFF Research Database (Denmark)

    Christensen, Jakob M.; Grunwaldt, Jan-Dierk; Jensen, Anker D.

    2016-01-01

    (loose contact) the rate constants for a number of catalytic materials outline a volcano curve when plotted against their heats of oxygen chemisorption. However, the optima of the volcanoes correspond to different heats of chemisorption for the two contact situations. In both cases the activation...... oxidation. The optimum of the volcano curve in loose contact is estimated to occur between the bond strengths of α-Fe2O3 and α-Cr2O3. Guided by an interpolation principle FeaCrbOx binary oxides were tested, and the activity of these oxides was observed to pass through an optimum for an FeCr2Ox binary oxide...

  16. Catalytic decomposition of nitrogen dioxide over various metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Shimokawabe, M; Ohi, A; Takezawa, N [Dept. of Chemical Process Engineering, Hokkaido Univ., Sapporo (Japan)

    1992-06-30

    The catalytic decomposition of nitrogen oxide (NO2) was investigated over 18 metal oxides (Al2O3, SiO2, ZrO2, SnO2, TiO2, V2O5, Cr2O3, MnO2, Fe2O3, Co3O4, NiO, CuO, ZnO, MgO, CaO, La2O3, CeO2, and Nd2O3). The relationship between the specific rates of metal oxides (Me{sub x}O{sub y}) (Me{sub x}O{sub y-1} + 1/2O{sub 2} {yields} Me{sub x}O{sub y}) shows a V-shaped curve with a minimum at -{Delta}H around 700 kJ/mol. This suggests that the mechanism dealt with in this article switches at -{Delta}H = 700 kJ/mol. 1 fig., 1 tab., 20 refs.

  17. Catalytic exhaust control

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H

    1973-09-01

    Recent achievements and problems in the development of exhaust control devices in the USA are reviewed. To meet the 1976 emission standards, catalytic systems for the oxidation of carbon monoxide and hydrocarbons and for the reduction of nitrogen oxides to nitrogen and water are needed. While oxidizing catalysts using platinum, palladium, copper, vanadium, and chromium appplied on alumina or ceramic materials are more or less effective in emission control, there are no catalytic devices for the reduction of nitrogen oxides with the required useful life of 25,000 to 50,000 miles as yet available. In the case of platinum catalysts on monolithic supports, the operating temperature of 650 to 750/sup 0/C as required for the oxidation process may cause inactivation of the catalysts and fusion of the support material. The oxidation of CO and hydrocarbons is inhibited by high concentrations of CO, nitric oxide, and hydrocarbons. The use of catalytic converters requires the use of lead-free or low-lead gasoline. The nitrogen oxides conversion efficiency is considerably influenced by the oxygen-to-CO ratio of the exhaust gas, which makes limitation of this ratio necessary.

  18. Development of chemical and biological processes for production of bioethanol. Optimization of the wet oxidation process and characterization of products

    Energy Technology Data Exchange (ETDEWEB)

    Bjerre, A B; Skammelsen Schmidt, A

    1997-02-01

    The combination of the wet oxidation pretreatment process and alkaline hydrolysis was investigated in order to efficiently solubilize the hemicellulose, degrade the lignin, and open the solid crystalline cellulose structure of wheat straw lignocellulose without generating fermentation inhibitors. The effects of temperature, oxygen pressure, reaction time, and concentration of straw were evaluated. The degree of lignin degradation and hemicellulose solubilization increased with the reaction temperature and time. The optimum conditions were 15 minutes at 185 deg. C, producing 9.8 g/L hemicellulose. For quantification of the solubilized hemicellulose the best overall acid hydrolysis was obtained by treatment with 4 %w/v sulfuric acid for 10 minutes. The Aminex HPX-87H column was less sensitive towards impurities than the Aminex HPX-87P column. HPX-87H gave improved recovery and reproducibility, and was chosen for routine quantification of hydrolyzed hemicellulose sugars. The purity of the solid cellulose fraction also improved with higher temperature. The optimum condition for obtaining enzymatic convertible cellulose (90%) was 10 minutes at 170 deg. C using a high carbonate concentration. The hemicellulose yield and recovery were significantly reduced under these conditions indicating that a simultaneous optimal utilization of the hemicellulose and cellulose was difficult. The oxygen pressure and sodium carbonate concentration had little effect on the solubilization of hemicellulose, however, by combining wet oxidation with alkaline hydrolysis the formation of 2-furfural, a known microbial inhibitor, was minimal. Much more hemicellulose and lignin were solubilized from the straw by wet oxidation than by steaming(an alternative process). More cellulose was solubilized (and degraded) by steaming than by wet oxidation. Overall carbohydrates `losses` of 20.1% for steaming and 16.2% for wet oxidation were found. More 2-furfural was formed by steaming than by wet oxidation.

  19. Development of chemical and biological processes for production of bioethanol. Optimization of the wet oxidation process and characterization of products

    International Nuclear Information System (INIS)

    Bjerre, A.B.; Skammelsen Schmidt, A.

    1997-02-01

    The combination of the wet oxidation pretreatment process and alkaline hydrolysis was investigated in order to efficiently solubilize the hemicellulose, degrade the lignin, and open the solid crystalline cellulose structure of wheat straw lignocellulose without generating fermentation inhibitors. The effects of temperature, oxygen pressure, reaction time, and concentration of straw were evaluated. The degree of lignin degradation and hemicellulose solubilization increased with the reaction temperature and time. The optimum conditions were 15 minutes at 185 deg. C, producing 9.8 g/L hemicellulose. For quantification of the solubilized hemicellulose the best overall acid hydrolysis was obtained by treatment with 4 %w/v sulfuric acid for 10 minutes. The Aminex HPX-87H column was less sensitive towards impurities than the Aminex HPX-87P column. HPX-87H gave improved recovery and reproducibility, and was chosen for routine quantification of hydrolyzed hemicellulose sugars. The purity of the solid cellulose fraction also improved with higher temperature. The optimum condition for obtaining enzymatic convertible cellulose (90%) was 10 minutes at 170 deg. C using a high carbonate concentration. The hemicellulose yield and recovery were significantly reduced under these conditions indicating that a simultaneous optimal utilization of the hemicellulose and cellulose was difficult. The oxygen pressure and sodium carbonate concentration had little effect on the solubilization of hemicellulose, however, by combining wet oxidation with alkaline hydrolysis the formation of 2-furfural, a known microbial inhibitor, was minimal. Much more hemicellulose and lignin were solubilized from the straw by wet oxidation than by steaming(an alternative process). More cellulose was solubilized (and degraded) by steaming than by wet oxidation. Overall carbohydrates 'losses' of 20.1% for steaming and 16.2% for wet oxidation were found. More 2-furfural was formed by steaming than by wet oxidation

  20. The effect of noble metals on catalytic methanation reaction over supported Mn/Ni oxide based catalysts

    Directory of Open Access Journals (Sweden)

    Wan Azelee Wan Abu Bakar

    2015-09-01

    Full Text Available Carbon dioxide (CO2 in sour natural gas can be removed using green technology via catalytic methanation reaction by converting CO2 to methane (CH4 gas. Using waste to wealth concept, production of CH4 would increase as well as creating environmental friendly approach for the purification of natural gas. In this research, a series of alumina supported manganese–nickel oxide based catalysts doped with noble metals such as ruthenium and palladium were prepared by wetness impregnation method. The prepared catalysts were run catalytic screening process using in-house built micro reactor coupled with Fourier Transform Infra Red (FTIR spectroscopy to study the percentage CO2 conversion and CH4 formation analyzed by GC. Ru/Mn/Ni(5:35:60/Al2O3 calcined at 1000 °C was found to be the potential catalyst which gave 99.74% of CO2 conversion and 72.36% of CH4 formation at 400 °C reaction temperature. XRD diffractogram illustrated that the supported catalyst was in polycrystalline with some amorphous state at 1000 °C calcination temperature with the presence of NiO as active site. According to FESEM micrographs, both fresh and used catalysts displayed spherical shape with small particle sizes in agglomerated and aggregated mixture. Nitrogen Adsorption analysis revealed that both catalysts were in mesoporous structures with BET surface area in the range of 46–60 m2/g. All the impurities have been removed at 1000 °C calcination temperature as presented by FTIR, TGA–DTA and EDX data.

  1. Biogas Catalytic Reforming Studies on Nickel-Based Solid Oxide Fuel Cell Anodes

    DEFF Research Database (Denmark)

    Johnson, Gregory B.; Hjalmarsson, Per; Norrman, Kion

    2016-01-01

    Heterogeneous catalysis studies were conducted on two crushed solid oxide fuel cell (SOFC) anodes in fixed-bed reactors. The baseline anode was Ni/ScYSZ (Ni/scandia and yttria stabilized zirconia), the other was Ni/ScYSZ modified with Pd/doped ceria (Ni/ScYSZ/Pd-CGO). Three main types......-programmed oxidation and time-of-flight secondary ion mass spectrometry. Results showed thatNi/ScYSZ/Pd-CGO was more active for catalytic dissociation of CH4 at 750°C and subsequent reactivity of deposited carbonaceous species. Sulfur deactivated most catalytic reactions except CO2 dissociation at 750°C. The presence...... of Pd-CGO helped to mitigate sulfur deactivation effect; e.g. lowering the onset temperature (up to 190°C) for CH4 conversion during temperature-programmed reactions. Both Ni/ScYSZ and Ni/ScYSZ/Pd-CGO anode catalysts were more active for dry reforming of biogas than they were for steam reforming...

  2. Detection of Intracellular Reduced (Catalytically Active) SHP-1 and Analyses of Catalytically Inactive SHP-1 after Oxidation by Pervanadate or H2O2.

    Science.gov (United States)

    Choi, Seeyoung; Love, Paul E

    2018-01-05

    Oxidative inactivation of cysteine-dependent Protein Tyrosine Phosphatases (PTPs) by cellular reactive oxygen species (ROS) plays a critical role in regulating signal transduction in multiple cell types. The phosphatase activity of most PTPs depends upon a 'signature' cysteine residue within the catalytic domain that is maintained in the de-protonated state at physiological pH rendering it susceptible to ROS-mediated oxidation. Direct and indirect techniques for detection of PTP oxidation have been developed (Karisch and Neel, 2013). To detect catalytically active PTPs, cell lysates are treated with iodoacetyl-polyethylene glycol-biotin (IAP-biotin), which irreversibly binds to reduced (S - ) cysteine thiols. Irreversible oxidation of SHP-1 after treatment of cells with pervanadate or H 2 O 2 is detected with antibodies specific for the sulfonic acid (SO 3 H) form of the conserved active site cysteine of PTPs. In this protocol, we describe a method for the detection of the reduced (S - ; active) or irreversibly oxidized (SO 3 H; inactive) form of the hematopoietic PTP SHP-1 in thymocytes, although this method is applicable to any cysteine-dependent PTP in any cell type.

  3. Catalytic oxidation for treatment of ECLSS and PMMS waste streams. [Process Material Management Systems

    Science.gov (United States)

    Akse, James R.; Thompson, John; Scott, Bryan; Jolly, Clifford; Carter, Donald L.

    1992-01-01

    Catalytic oxidation was added to the baseline multifiltration technology for use on the Space Station Freedom in order to convert low-molecular weight organic waste components such as alcohols, aldehydes, ketones, amides, and thiocarbamides to CO2 at low temperature (121 C), thereby reducing the total organic carbon (TOC) to below 500 ppb. The rate of reaction for the catalytic oxidation of aqueous organics to CO2 and water depends primarily upon the catalyst, temperature, and concentration of reactants. This paper describes a kinetic study conducted to determine the impact of each of these parameters upon the reaction rate. The results indicate that a classic kinetic model, the Langmuir-Hinshelwood rate equation for heterogeneous catalysis, can accurately represent the functional dependencies of this rate.

  4. Hysteresis Phenomena in Sulfur Dioxide Oxidation over Supported Vanadium Catalysts

    DEFF Research Database (Denmark)

    Masters, Stephen G.; Eriksen, Kim Michael; Fehrmann, Rasmus

    1997-01-01

    Catalyst deactivation and hysteresis behavior in industrial SO2-oxidation catalysts have been studied in the temperature region 350-480 C by combined in situ EPR spectroscopy and catalytic activity measurements. The feed gas composition simulated sulfuric acid synthesis gas and wet/dry de......NOx'ed flue gas. The vanadium (IV) compound K4(VO)3(SO4)5 precipitated during all the investigated conditions hence causing catalyst deactivation. Hysteresis behavior of both the catalytic activity and the V(IV) content was observed during reheating....

  5. Reduced graphene oxide wrapped Fe3O4-Co3O4 yolk-shell nanostructures for advanced catalytic oxidation based on sulfate radicals

    Science.gov (United States)

    Zhang, Lishu; Yang, Xijia; Han, Erfen; Zhao, Lijun; Lian, Jianshe

    2017-02-01

    In this work, we designed and synthesized a high performance catalyst of reduced graphene oxide (RGO) wrapped Fe3O4-Co3O4 (RGO/Fe3O4-Co3O4) yolk-shell nanostructures for advanced catalytic oxidation based on sulfate radicals. The synergistic catalytic action of the RGO/Fe3O4-Co3O4 yolk-shell nanostructures activate the peroxymonosulfate (PMS) to produce sulfate radicals (SO4rad -) for organic dyes degradation, and the Orange II can be almost completely degradated in 5 min. Meanwhile the RGO wrapping prevents the loss of cobalt in the catalytic process, and the RGO/Fe3O4-Co3O4 can be recycled after catalyzed reaction due to the presence of magnetic iron core. What's more, it can maintain almost the same high catalytic activity even after 10 cycles through repeated NaBH4 reduction treatment. Hence, RGO/Fe3O4-Co3O4 yolk-shell nanostructures possess a great opportunity to become a promising candidate for waste water treatment in industry.

  6. Structured mesoporous Mn, Fe, and Co oxides: Synthesis, physicochemical, and catalytic properties

    Science.gov (United States)

    Maerle, A. A.; Karakulina, A. A.; Rodionova, L. I.; Moskovskaya, I. F.; Dobryakova, I. V.; Egorov, A. V.; Romanovskii, B. V.

    2014-02-01

    Structured mesoporous Mn, Fe, and Co oxides are synthesized using "soft" and "hard" templates; the resulting materials are characterized by XRD, SEM, TEM, BET, and TG. It is shown that in the first case, the oxides have high surface areas of up to 450 m2/g that are preserved after calcination of the material up to 300°C. Even though, the surface area of the oxides prepared by the "hard-template" method does not exceed 100 m2/g; it is, however, thermally stable up to 500°C. Catalytic activity of mesoporous oxides in methanol conversion was found to depend on both the nature of the transition metal and the type of template used in synthesis.

  7. Reduced graphene oxide supported platinum nanocubes composites: one-pot hydrothermal synthesis and enhanced catalytic activity

    International Nuclear Information System (INIS)

    Li, Fumin; Gao, Xueqing; Xue, Qi; Li, Shuni; Chen, Yu; Lee, Jong-Min

    2015-01-01

    Reduced graphene oxide (rGO) supported platinum nanocubes (Pt-NCs) composites (Pt-NCs/rGO) were synthesized successfully by a water-based co-chemical reduction method, in which polyallylamine hydrochloride acted as a multi-functional molecule for the functionalization of graphene oxide, anchorage of Pt II precursor, and control of Pt crystal facets. The morphology, structure, composition, and catalytic property of Pt-NCs/rGO composites were characterized in detail by various spectroscopic techniques. Transmission electron microscopy images showed well-defined Pt-NCs with an average size of 9 nm uniformly distributed on the rGO surface. The as-prepared Pt-NCs/rGO composites had excellent colloidal stability in the aqueous solution, and exhibited superior catalytic activity towards the hydrogenation reduction of nitro groups compared to commercial Pt black. The improved catalytic activity originated from the abundant exposed Pt{100} facets of Pt-NCs, excellent dispersion of Pt-NCs on the rGO surface, and synergistic effect between Pt-NCs and rGO. (paper)

  8. Catalytic nanoporous membranes

    Science.gov (United States)

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  9. Catalytic ozonation of oxalate with a cerium supported palladium oxide: An efficient degradation not relying on hydroxyl radical oxidation

    KAUST Repository

    Zhang, Tao; Li, Weiwei; Croue, Jean-Philippe

    2011-01-01

    The cerium supported palladium oxide (PdO/CeO 2) at a low palladium loading was found very effective in catalytic ozonation of oxalate, a probe compound that is difficult to be efficiently degraded in water with hydroxyl radical oxidation and one of the major byproducts in ozonation of organic matter. The oxalate was degraded into CO 2 during the catalytic ozonation. The molar ratio of oxalate degraded to ozone consumption increased with increasing catalyst dose and decreasing ozone dosage and pH under the conditions of this study. The maximum molar ratio reached around 1, meaning that the catalyst was highly active and selective for oxalate degradation in water. The catalytic ozonation, which showed relatively stable activity, does not promote hydroxyl radical generation from ozone. Analysis with ATR-FTIR and in situ Raman spectroscopy revealed that 1) oxalate was adsorbed on CeO 2 of the catalyst forming surface complexes, and 2) O 3 was adsorbed on PdO of the catalyst and further decomposed to surface atomic oxygen (*O), surface peroxide (*O 2), and O 2 gas in sequence. The results indicate that the high activity of the catalyst is related to the synergetic function of PdO and CeO 2 in that the surface atomic oxygen readily reacts with the surface cerium-oxalate complex. This kind of catalytic ozonation would be potentially effective for the degradation of polar refractory organic pollutants and hydrophilic natural organic matter. © 2011 American Chemical Society.

  10. Catalytic ozonation of oxalate with a cerium supported palladium oxide: An efficient degradation not relying on hydroxyl radical oxidation

    KAUST Repository

    Zhang, Tao

    2011-11-01

    The cerium supported palladium oxide (PdO/CeO 2) at a low palladium loading was found very effective in catalytic ozonation of oxalate, a probe compound that is difficult to be efficiently degraded in water with hydroxyl radical oxidation and one of the major byproducts in ozonation of organic matter. The oxalate was degraded into CO 2 during the catalytic ozonation. The molar ratio of oxalate degraded to ozone consumption increased with increasing catalyst dose and decreasing ozone dosage and pH under the conditions of this study. The maximum molar ratio reached around 1, meaning that the catalyst was highly active and selective for oxalate degradation in water. The catalytic ozonation, which showed relatively stable activity, does not promote hydroxyl radical generation from ozone. Analysis with ATR-FTIR and in situ Raman spectroscopy revealed that 1) oxalate was adsorbed on CeO 2 of the catalyst forming surface complexes, and 2) O 3 was adsorbed on PdO of the catalyst and further decomposed to surface atomic oxygen (*O), surface peroxide (*O 2), and O 2 gas in sequence. The results indicate that the high activity of the catalyst is related to the synergetic function of PdO and CeO 2 in that the surface atomic oxygen readily reacts with the surface cerium-oxalate complex. This kind of catalytic ozonation would be potentially effective for the degradation of polar refractory organic pollutants and hydrophilic natural organic matter. © 2011 American Chemical Society.

  11. Catalytic reduction of hexaminecobalt(III) by pitch-based spherical activated carbon (PBSAC)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu; Mao, Yan-Peng; Zhu, Hai-Song; Cheng, Jing-Yi; Long, Xiang-Li; Yuan, Wei-Kang [State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai (China)

    2010-07-15

    The wet ammonia (NH{sub 3}) desulfurization process can be retrofitted to remove nitric oxide (NO) and sulfur dioxide (SO{sub 2}) simultaneously by adding soluble cobalt(II) salt into the aqueous ammonia solution. Activated carbon is used as a catalyst to regenerate hexaminecobalt(II), Co(NH{sub 3}){sub 6}{sup 2+}, so that NO removal efficiency can be maintained at a high level for a long time. In this study, the catalytic performance of pitch-based spherical activated carbon (PBSAC) in the simultaneous removal of NO and SO{sub 2} with this wet ammonia scrubbing process has been studied systematically. Experiments have been performed in a batch stirred cell to test the catalytic characteristics of PBSAC in the catalytic reduction of hexaminecobalt(III), Co(NH{sub 3}){sub 6}{sup 3+}. The experimental results show that PBSAC is a much better catalyst in the catalytic reduction of Co(NH{sub 3}){sub 6}{sup 3+} than palm shell activated carbon (PSAC). The Co(NH{sub 3}){sub 6}{sup 3+} reduction reaction rate increases with PBSAC when the PBSAC dose is below 7.5 g/L. The Co(NH{sub 3}){sub 6}{sup 3+} reduction rate increases with its initial concentration. Best Co(NH{sub 3}){sub 6}{sup 3+} conversion is gained at a pH range of 2.0-6.0. A high temperature is favorable to such reaction. The intrinsic activation energy of 51.00 kJ/mol for the Co(NH{sub 3}){sub 6}{sup 3+} reduction catalyzed by PBSAC has been obtained. The experiments manifest that the simultaneous elimination of NO and SO{sub 2} by the hexaminecobalt solution coupled with catalytic regeneration of hexaminecobalt(II) can maintain a NO removal efficiency of 90% for a long time. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  12. Experimental studies of applicability of the wet air oxidation for purification liquid radioactive waste

    International Nuclear Information System (INIS)

    Sergienko, V. I.; Dobrzansky, V. G.

    2005-01-01

    The scheme of handling with liquid radioactive waste (LRW) accepted to exploitation at atomic electric station (AWS) is often connected with evaporating technologies. In this case vat residues of evaporating systems with activity 10 5 -10 6 Bq/1 and containing to 200-300 g/1 of salts are delivered up to LRW storages for lasting keeping. This schema does not correlate to the modern safety standards of handling with LRW, therefore at present numerous works are being carried on including those using technology of accumulated vat residues processing. Some successful experiments on sorption purification of high-salt LRW from cesium radionuclides giving the principal contribution into the total activity of a certain LRW are known. Unfortunately, attempts of sorption purification of the vat residues from other long-lived radionuclides (mainly from 60 Co-radionuclide) were unsuccessful up to the present time. It is found with the fact that the vat residues contain a considerable amount of complexing agent producing stable complexes with transition metal radionuclides including those of 60 Co. Extreme oxidation of the vat residues for decomposition of radioactive organic complexes is one of the solutions of this problem. The works related to oxidation of LRW including the AES vat residues with ozone, hydrogen peroxide as well as photo catalytic and electrochemical oxidation are known, however, possibilities of wet air oxidation (WAO) for LRW processing are not studied till the present time. Condition for decomposition of cobalt complex compounds and necessary excess of oxidizing agent may be easily attained with WAO usage. The necessary experiments were carried out at the experimental plant with the great interface surface (oxygen-solutions) equal to 400m -1 and 3 mm probe bed thickness. The heating time of the reactor to the working temperature 250 .deg. C did not exceed 50 seconds. 20... 50-fold oxidizer excess was achieved by the initial oxygen pressure into the reactor

  13. Tritium removal from air streams by catalytic oxidation and water adsorption

    International Nuclear Information System (INIS)

    Sherwood, A.E.

    1976-06-01

    An effective method of capturing tritium from air streams is by catalytic oxidation followed by water adsorption on a microporous solid adsorbent. Performance of a burner/dryer combination is illustrated by overall mass balance equations. Engineering design methods for packed bed reactors and adsorbers are reviewed, emphasizing the experimental data needed for design and the effect of operating conditions on system performance

  14. Platinum Catalysts Supported on Ce, Zr, Pr - Oxides in Catalytic Wet Air Oxidation of Acetic Acid

    Czech Academy of Sciences Publication Activity Database

    Mikulová, Jana; Rossignol, S.; Barbier Jr., J.; Duprez, D.; Kappenstein, C.

    2007-01-01

    Roč. 146, č. 3 (2007), s. 1248-1253 ISSN 0304-3894 Institutional research plan: CEZ:AV0Z40720504 Keywords : platinum * cerium oxide * carbonate species Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.337, year: 2007

  15. Photo catalytic Degradation of Organic Dye by Sol-Gel-Derived Gallium-Doped Anatase Titanium Oxide Nanoparticles for Environmental Remediation

    International Nuclear Information System (INIS)

    Arghya, N.B.; Sang, W.J.; Bong-Ki, M.

    2012-01-01

    Photo catalytic degradation of toxic organic chemicals is considered to be the most efficient green method for surface water treatment. We have reported the sol-gel synthesis of Gadoped anatase TiO 2 nanoparticles and the photo catalytic oxidation of organic dye into nontoxic inorganic products under UV irradiation. Photodegradation experiments show very good photo catalytic activity of Ga-doped TiO 2 nanoparticles with almost 90% degradation efficiency within 3 hrs of UV irradiation, which is faster than the undoped samples. Doping levels created within the bandgap of TiO 2 act as trapping centers to suppress the photo generated electron-hole recombination for proper and timely utilization of charge carriers for the generation of strong oxidizing radicals to degrade the organic dye. Photo catalytic degradation is found to follow the pseudo-first-order kinetics with the apparent 1 st-order rate constant around 1.3 x 10 -2 min -1 . The cost-effective, sol-gel-derived TiO 2 : Ga nanoparticles can be used efficiently for light-assisted oxidation of toxic organic molecules in the surface water for environmental remediation.

  16. Synthesis, characterization, and catalytic application of ordered mesoporous carbon–niobium oxide composites

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Juan-Li; Gao, Shuang; Liu, Chun-Ling; Liu, Zhao-Tie; Dong, Wen-Sheng, E-mail: wsdong@snnu.edu.cn

    2014-11-15

    Graphical abstract: The ordered mesoporous carbon–niobium oxide composites have been synthesized by a multi-component co-assembly method associated with a carbonization process. - Highlights: • Ordered mesoporous carbon–niobium oxide composites were synthesized. • The content of Nb{sub 2}O{sub 5} in the composites could be tuned from 38 to 75%. • Niobium species were highly dispersed in amorphous carbon framework walls. • The composites exhibited good catalytic performance in the dehydration of fructose. - Abstract: Ordered mesoporous carbon–niobium oxide composites have been synthesized by a multi-component co-assembly method associated with a carbonization process using phenolic resol as carbon source, niobium chloride as precursor and amphiphilic triblock copolymer Pluronic F127 as template. The resulting materials were characterized using a combination of techniques including differential scanning calorimetry–thermogravimetric analysis, N{sub 2} physical adsorption, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The results show that with increasing the content of Nb{sub 2}O{sub 5} from 38 to 75% the specific surface area decreases from 306.4 to 124.5 m{sup 2} g{sup −1}, while the ordered mesoporous structure is remained. Niobium species is well dispersed in the amorphous carbon framework. The mesoporous carbon–niobium oxide composites exhibit high catalytic activity in the dehydration of fructose to 5-hydroxymethylfurfural. A 100% conversion of fructose and a 76.5% selectivity of 5-hydroxymethylfurfural were obtained over the carbon–niobium oxide composite containing 75% Nb{sub 2}O{sub 5} under the investigated reaction conditions.

  17. Study of nitric oxide catalytic oxidation on manganese oxides-loaded activated carbon at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    You, Fu-Tian [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); University of Chinese Academy of Sciences, Beijing (China); Yu, Guang-Wei, E-mail: gwyu@iue.ac.cn [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Wang, Yin, E-mail: yinwang@iue.ac.cn [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Xing, Zhen-Jiao [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Liu, Xue-Jiao; Li, Jie [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); University of Chinese Academy of Sciences, Beijing (China)

    2017-08-15

    Highlights: • Loading manganese oxides on activated carbon effectively promotes NO oxidation. • NO adsorption-desorption on activated carbon is fundamental to NO oxidation. • A high Mn{sup 4+}/Mn{sup 3+} ratio contributes to NO oxidation by promoting lattice O transfer. - Abstract: Nitric oxide (NO) is an air pollutant that is difficult to remove at low concentration and low temperature. Manganese oxides (MnO{sub x})-loaded activated carbon (MLAC) was prepared by a co-precipitation method and studied as a new catalyst for NO oxidation at low temperature. Characterization of MLAC included X-ray diffraction (XRD), scanning electron microscopy (SEM), N{sub 2} adsorption/desorption and X-ray photoelectron spectroscopy (XPS). Activity tests demonstrated the influence of the amount of MnO{sub x} and the test conditions on the reaction. MLAC with 7.5 wt.% MnO{sub x} (MLAC003) exhibits the highest NO conversion (38.7%) at 1000 ppm NO, 20 vol.% O{sub 2}, room temperature and GHSV ca. 16000 h{sup −1}. The NO conversion of MLAC003 was elevated by 26% compared with that of activated carbon. The results of the MLAC003 activity test under different test conditions demonstrated that NO conversion is also influenced by inlet NO concentration, inlet O{sub 2} concentration, reaction temperature and GHSV. The NO adsorption-desorption process in micropores of activated carbon is fundamental to NO oxidation, which can be controlled by pore structure and reaction temperature. The activity elevation caused by MnO{sub x} loading is assumed to be related to Mn{sup 4+}/Mn{sup 3+} ratio. Finally, a mechanism of NO catalytic oxidation on MLAC based on NO adsorption-desorption and MnO{sub x} lattice O transfer is proposed.

  18. Mercury Oxidation via Catalytic Barrier Filters Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

    2007-09-30

    In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

  19. Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes

    KAUST Repository

    Hong, Jongsup

    2013-10-01

    The catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.

  20. Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes

    KAUST Repository

    Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.

    2013-01-01

    The catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.

  1. Magnetic bimetallic nanoparticles supported reduced graphene oxide nanocomposite: Fabrication, characterization and catalytic capability

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei; Wu, Tao; Xu, Xiaoyang; Xia, Fengling; Na, Heya [School of Science, Tianjin University, Tianjin 300072 (China); Liu, Yu, E-mail: liuyuls@163.com [School of Science, Tianjin University, Tianjin 300072 (China); Qiu, Haixia [School of Science, Tianjin University, Tianjin 300072 (China); Wang, Wei [School of Chemical Engineering, Tianjin University, Tianjin 300072 (China); Gao, Jianping, E-mail: jianpinggao2012@126.com [School of Science, Tianjin University, Tianjin 300072 (China)

    2015-04-15

    Highlights: • Ni and Ag nanoparticles loaded on RGO (Ni–Ag@RGO) were fabricated in a one-pot reaction. • The Ni–Ag@RGO were excellent catalysts for the reduction of 4-nitrophenol. • The Ni–Ag@RGO showed superior catalytic activity for photodegradation of methyl orange. • The Ni–Ag@RGO exhibit good reusability in a magnetic field. - Abstract: A facile method for preparing Ni–Ag bimetallic nanoparticles supported on reduced graphene oxide (Ni–Ag@RGO hybrid) has been established. Hydrazine hydrate was used as the reducing agent to reduce the graphene oxide, Ni{sup 2+} and Ag{sup +} to form Ni–Ag@RGO hybrid. The prepared hybrid was further characterized by X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, and transmission electron microscopy. Interestingly, the prepared material shown good magnetic properties, which were determined by vibrating sample magnetometer. In addition, the Ni–Ag@RGO hybrid exhibited excellent catalytic activity for the reduction of 4-nitrophenol and the photodegradation of methyl orange. The catalytic process was monitored by determining the change in the concentration of the reactants with time using ultraviolet–visible absorption spectroscopy. After completion of the reaction, the catalyst can be separated from the reaction system simply under a magnet field and shows good recyclability.

  2. Selective Oxidation and Reactive Wetting during Galvanizing of a CMnAl TRIP-Assisted Steel

    Science.gov (United States)

    Bellhouse, E. M.; McDermid, J. R.

    2011-09-01

    A transformation induced plasticity (TRIP)-assisted steel with 0.2 pct C, 1.5 pct Mn, and 1.5 pct Al was successfully galvanized using a thermal cycle previously shown to produce an excellent combination of strength and ductility. The steel surface chemistry and oxide morphology were determined as a function of process atmosphere oxygen partial pressure. For the 220 K (-53 °C) dew point (dp) + 20 pct H2 atmosphere, the oxide morphology was a mixture of films and nodules. For the 243 K (-30 °C) dp + 5 pct H2 atmosphere, nodules of MnO were found primarily at grain boundaries. For the 278 K (+5 °C) dp + 5 pct H2 atmosphere, nodules of metallic Fe were found on the surface as a result of alloy element internal oxidation. The steel surface chemistry and oxide morphology were then related to the reactive wetting behavior during continuous hot dip galvanizing. Good wetting was obtained using the two lower oxygen partial pressure process atmospheres [220 K dp and 243 K dp (-53 °C dp and -30 °C dp)]. An increase in the number of bare spots was observed when using the higher oxygen partial pressure process atmosphere (+5 °C dp) due to the increased thickness of localized oxide films.

  3. Fe-Mn bi-metallic oxides loaded on granular activated carbon to enhance dye removal by catalytic ozonation.

    Science.gov (United States)

    Tang, Shoufeng; Yuan, Deling; Zhang, Qi; Liu, Yameng; Zhang, Qi; Liu, Zhengquan; Huang, Haiming

    2016-09-01

    A Fe-Mn bi-metallic oxide supported on granular activated carbon (Fe-Mn GAC) has been fabricated by an impregnation-desiccation method and tested in the catalytic ozonation of methyl orange (MO) degradation and mineralization. X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy characterizations revealed that Fe-Mn oxides were successfully loaded and uniformly distributed on the GAC, and nitrogen adsorption isotherms showed that the supported GAC retained a large surface area and a high pore volume compared with the pristine GAC. The catalytic activity was systematically assessed by monitoring the MO removal efficiencies at different operational parameters, such as catalyst dosage, initial solution pH, and ozone flow rate. The Fe-Mn GAC exhibited better catalytic activity relative to ozone alone and GAC alone, improving the TOC removal by 24.5 and 11.5 % and COD removal by 13.6 and 7.3 %, respectively. The reusability of the hybrid was examined over five consecutive cyclic treatments. The Fe-Mn GAC catalytic activity was only a slight loss in the cycles, showing good stability. The addition of Na2CO3 as hydroxyl radicals (•OH) scavengers proved that the catalytic ozonation mechanism was the enhanced generation of •OH by the Fe-Mn GAC. The above results render the Fe-Mn GAC an industrially promising candidate for catalytic ozonation of dye contaminant removal.

  4. COMPARISON OF CATALYTIC ACTIVITIES BOTH FOR SELECTIVE OXIDATION AND DECOMPOSITION OF AMMONIA OVER Fe/HZβ CATALYST

    Directory of Open Access Journals (Sweden)

    YELİZ ÇETİN

    2016-11-01

    Full Text Available Ammonia is one of the syngas contaminants that must be removed before using the syngas downstream applications. The most promising hot-gas clean-up techniques of ammonia are selective catalytic oxidation (SCO and catalytic decomposition. In this study, the catalytic activities over Zeolite Hβ supported iron catalyst (Fe/HZβ were compared both for the two catalytic routes. For SCO experiments; temperature (300-550 °C, O2 (2000-6000 ppmv and (0-10% H2 concentrations were investigated with the presence of 800 ppm NH3 in each of the final gas mixture. In the second route, catalytic ammonia decomposition experiments were carried out with H2 in balance N2 (0-30% containing 800 ppm NH3 at 700°C and 800°C. In the SCO, NH3 conversions were increased with increasing reaction temperatures with the absence of H2 in the reaction mixture. With 10% H2, it was shown that NH3 conversions increased with decreasing the reaction temperature. This was interpreted as the competing H2 and NH3 oxidations over the catalyst. On the other hand, in the catalytic decomposition, thermodynamic equilibrium conversion of almost 100% was attained at both 700 and 800 °C. Upon H2 addition, all conversions decreased. The decrease in conversion seemed to be linear with inlet hydrogen concentration. Hydrogen was seen to inhibit ammonia decomposition reaction. It was shown that Fe/HZβ catalyst is better to use for catalytic decomposition of NH3 in syngas rather than SCO of NH3 in spite of higher reaction temperatures needed in the decomposition reaction.

  5. On the nanostructuring and catalytic promotion of intermediate temperature solid oxide fuel cell (IT-SOFC) cathodes

    Science.gov (United States)

    Serra, José M.; Buchkremer, Hans-Peter

    Solid oxide fuel cells (SOFCs) are highly efficient energy converters for both stationary and mobile purposes. However, their market introduction still demands the reduction of manufacture costs and one possible way to reach this goal is the decrease of the operating temperatures, which entails the improvement of the cathode electrocatalytic properties. An ideal cathode material may have mixed ionic and electronic conductivity as well as proper catalytic properties. Nanostructuring and catalytic promotion of mixed conducting perovskites (e.g. La 0.58Sr 0.4Fe 0.8Co 0.2O 3- δ) seem to be promising approaches to overcoming cathode polarization problems and are briefly illustrated here. The preparation of nanostructured cathodes with relatively high surface area and enough thermal stability enables to improve the oxygen exchange rate and therefore the overall SOFC performance. A similar effect was obtained by catalytic promoting the perovskite surface, allowing decoupling the catalytic and ionic-transport properties in the cathode design. Noble metal incorporation may improve the reversibility of the reduction cycles involved in the oxygen reduction. Under the cathode oxidizing conditions, Pd seems to be partially dissolved in the perovskite structure and as a result very well dispersed.

  6. Nanocrystalline Mn-Mo-Ce Oxide Anode Doped Rare Earth Ce and Its Selective Electro-catalytic Performance

    Directory of Open Access Journals (Sweden)

    SHI Yan-hua

    2017-09-01

    Full Text Available The anode oxide of nanocrystalline Mn-Mo-Ce was prepared by anode electro-deposition technology, and its nanostructure and selective electro-catalytic performance were investigated using the SEM, EDS, XRD, HRTEM, electrochemical technology and oxygen evolution efficiency testing. Furthermore, the selective electro-catalytic mechanism of oxygen evolution and chlorine depression was discussed. The results show that the mesh-like nanostructure Mn-Mo-Ce oxide anode with little cerium doped is obtained, and the oxygen evolution efficiency for the anode in the seawater is 99.51%, which means a high efficiency for the selective electro-catalytic for the oxygen evolution. Due to the structural characteristics of γ-MnO2, the OH- ion is preferentially absorbed, while Cl- absorption is depressed. OH- accomplishes the oxygen evolution process during the valence transition electrocatalysis of Mn4+/Mn3+, completing the selective electro-catalysis process. Ce doping greatly increases the reaction activity, and promotes the absorption and discharge; the rising interplanar spacing between active (100 crystalline plane promotes OH- motion and the escape of newborn O2, so that the selective electro-catalytic property with high efficient oxygen evolution and chlorine depression is achieved from the nano morphology effect.

  7. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik

    2003-09-01

    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  8. Cordierite-supported metal oxide for non-methane hydrocarbon oxidation in cooking oil fumes.

    Science.gov (United States)

    Huang, Yonghai; Yi, Honghong; Tang, Xiaolong; Zhao, Shunzheng; Gao, Fengyu; Wang, Jiangen; Yang, Zhongyu

    2018-05-21

    Cooking emission is an important reason for the air quality deterioration in the metropolitan area in China. Transition metal oxide and different loading of manganese oxide supported on cordierite were prepared by incipient wetness impregnation method and were used for non-methane hydrocarbon (NMHC) oxidation in cooking oil fumes (COFs). The effects of different calcination temperature and different Mn content were also studied. The SEM photographs and CO 2 temperature-programmed desorption revealed 5 wt% Mn/cordierite had the best pore structure and the largest number of the weak and moderate basic sites so it showed the best performance for NMHC oxidation. XRD analysis exhibited 5 wt% Mn/cordierite had the best dispersion of active phase and the active phase was MnO 2 when the calcination temperature was 400℃ which were good for the catalytic oxidation of NMHC.

  9. Catalytic Oxidation of Propene over Pd Catalysts Supported on CeO2, TiO2, Al2O3 and M/Al2O3 Oxides (M = Ce, Ti, Fe, Mn

    Directory of Open Access Journals (Sweden)

    Sonia Gil

    2015-04-01

    Full Text Available In the following work, the catalytic behavior of Pd catalysts prepared using different oxides as support (Al2O3, CeO2 and TiO2 in the catalytic combustion of propene, in low concentration in excess of oxygen, to mimic the conditions of catalytic decomposition of a volatile organic compound of hydrocarbon-type is reported. In addition, the influence of different promoters (Ce, Ti, Fe and Mn when added to a Pd/Al2O3 catalyst was analyzed. Catalysts were prepared by the impregnation method and were characterized by ICP-OES, N2 adsorption, temperature-programmed reduction, temperature-programmed oxidation, X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. Catalyst prepared using CeO2 as the support was less easily reducible, due to the stabilization effect of CeO2 over the palladium oxides. Small PdO particles and, therefore, high Pd dispersion were observed for all of the catalysts, as confirmed by XRD and TEM. The addition of Ce to the Pd/Al2O3 catalysts increased the metal-support interaction and the formation of highly-dispersed Pd species. The addition of Ce and Fe improved the catalytic behavior of the Pd/Al2O3 catalyst; however, the addition of Mn and Ti decreased the catalytic activity in the propene oxidation. Pd/TiO2 showed the highest catalytic activity, probably due to the high capacity of this catalyst to reoxidize Pd into PdO, as has been found in the temperature-programmed oxidation (TPO experiments.

  10. Catalytical degradation of relevant pollutants from waters using magnetic nanocatalysts

    Science.gov (United States)

    Nadejde, C.; Neamtu, M.; Schneider, R. J.; Hodoroaba, V.-D.; Ababei, G.; Panne, U.

    2015-10-01

    The catalytic efficiency of two magnetically responsive nanocatalysts was evaluated for the degradation of Reactive Black 5 (RB5) and Reactive Yellow 84 (RY84) azo dyes using hydrogen peroxide as oxidant under very mild conditions (atmospheric pressure, room temperature). In order to obtain the nanocatalysts, the surface of magnetite (Fe3O4) nanoparticles, prepared by a co-precipitation method, was further modified with ferrous oxalate, a highly sensitive non-hazardous reducing agent. The sensitized nanomaterials were characterized by X-ray diffraction, scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy and vibrating sample magnetometry, and used in the catalytic wet hydrogen peroxide oxidation (CWHPO) of RB5 and RY84, in laboratory-scale experiments. The effect of important variables such as catalyst dosage, H2O2 concentration, and contact time was studied in the dye degradation kinetics. The results showed that it was possible to remove up to 99.7% dye in the presence of 20 mM H2O2 after 240 min of oxidation for a catalyst concentration of 10 g L-1 at 25 °C and initial pH value of 9.0. CWHPO of reactive dyes using sensitized magnetic nanocatalysts can be a suitable pre-treatment method for complete decolorization of effluents from textile dyeing and finishing processes, once the optimum operating conditions are established.

  11. [Synergetic effects of silicon carbide and molecular sieve loaded catalyst on microwave assisted catalytic oxidation of toluene].

    Science.gov (United States)

    Wang, Xiao-Hui; Bo, Long-Li; Liu, Hai-Nan; Zhang, Hao; Sun, Jian-Yu; Yang, Li; Cai, Li-Dong

    2013-06-01

    Molecular sieve loaded catalyst was prepared by impregnation method, microwave-absorbing material silicon carbide and the catalyst were investigated for catalytic oxidation of toluene by microwave irradiation. Research work examined effects of silicon carbide and molecular sieve loading Cu-V catalyst's mixture ratio as well as mixed approach changes on degradation of toluene, and characteristics of catalyst were measured through scanning electron microscope, specific surface area test and X-ray diffraction analysis. The result showed that the fixed bed reactor had advantages of both thermal storage property and low-temperature catalytic oxidation when 20% silicon carbide was filled at the bottom of the reactor, and this could effectively improve the utilization of microwave energy as well as catalytic oxidation efficiency of toluene. Under microwave power of 75 W and 47 W, complete-combustion temperatures of molecular sieve loaded Cu-V catalyst and Cu-V-Ce catalyst to toluene were 325 degrees C and 160 degrees C, respectively. Characteristics of the catalysts showed that mixture of rare-earth element Ce increased the dispersion of active components in the surface of catalyst, micropore structure of catalyst effectively guaranteed high adsorption capacity for toluene, while amorphous phase of Cu and V oxides increased the activity of catalyst greatly.

  12. Shape-dependent plasma-catalytic activity of ZnO nanomaterials coated on porous ceramic membrane for oxidation of butane.

    Science.gov (United States)

    Sanjeeva Gandhi, M; Mok, Young Sun

    2014-12-01

    In order to explore the effects of the shape of ZnO nanomaterials on the plasma-catalytic decomposition of butane and the distribution of byproducts, three types of ZnO nanomaterials (nanoparticles (NPs), nanorods (NRs) and nanowires (NWs)) were prepared and coated on multi-channel porous alumina ceramic membrane. The structures and morphologies of the nanomaterials were confirmed by X-ray diffraction method and scanning electron microscopy. The observed catalytic activity of ZnO in the oxidative decomposition of butane was strongly shape-dependent. It was found that the ZnO NWs exhibited higher catalytic activity than the other nanomaterials and could completely oxidize butane into carbon oxides (COx). When using the bare or ZnO NPs-coated ceramic membrane, several unwanted partial oxidation and decomposition products like acetaldehyde, acetylene, methane and propane were identified during the decomposition of butane. When the ZnO NWs- or ZnO NRs-coated membrane was used, however, the formation of such unwanted byproducts except methane was completely avoided, and full conversion into COx was achieved. Better carbon balance and COx selectivity were obtained with the ZnO NWs and NRs than with the NPs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Catalytic properties and biomedical applications of cerium oxide nanoparticles

    KAUST Repository

    Walkey, Carl D.; Das, Soumen C.; Seal, Sudipta; Erlichman, Joseph S.; Heckman, Karin L.; Ghibelli, Lina; Traversa, Enrico; McGinnis, James F.; Self, William Thomas

    2014-01-01

    Cerium oxide nanoparticles (nanoceria) have shown promise as catalytic antioxidants in the test tube, cell culture models and animal models of disease. However given the reactivity that is well established at the surface of these nanoparticles, the biological utilization of nanoceria as a therapeutic still poses many challenges. Moreover the form that these particles take in a biological environment, such as the changes that can occur due to a protein corona, are not well established. This review aims to summarize the existing literature on biological use of nanoceria, and to raise questions about what further study is needed to apply this interesting catalytic material to biomedical applications. These questions include: 1) How does preparation, exposure dose, route and experimental model influence the reported effects of nanoceria in animal studies? 2) What are the considerations to develop nanoceria as a therapeutic agent in regards to these parameters? 3) What biological targets of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are relevant to this targeting, and how do these properties also influence the safety of these nanomaterials?

  14. Catalytic properties and biomedical applications of cerium oxide nanoparticles

    KAUST Repository

    Walkey, Carl D.

    2014-11-10

    Cerium oxide nanoparticles (nanoceria) have shown promise as catalytic antioxidants in the test tube, cell culture models and animal models of disease. However given the reactivity that is well established at the surface of these nanoparticles, the biological utilization of nanoceria as a therapeutic still poses many challenges. Moreover the form that these particles take in a biological environment, such as the changes that can occur due to a protein corona, are not well established. This review aims to summarize the existing literature on biological use of nanoceria, and to raise questions about what further study is needed to apply this interesting catalytic material to biomedical applications. These questions include: 1) How does preparation, exposure dose, route and experimental model influence the reported effects of nanoceria in animal studies? 2) What are the considerations to develop nanoceria as a therapeutic agent in regards to these parameters? 3) What biological targets of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are relevant to this targeting, and how do these properties also influence the safety of these nanomaterials?

  15. Water oxidation catalyzed by mononuclear ruthenium complexes with a 2,2'-bipyridine-6,6'-dicarboxylate (bda) ligand: how ligand environment influences the catalytic behavior.

    Science.gov (United States)

    Staehle, Robert; Tong, Lianpeng; Wang, Lei; Duan, Lele; Fischer, Andreas; Ahlquist, Mårten S G; Sun, Licheng; Rau, Sven

    2014-02-03

    A new water oxidation catalyst [Ru(III)(bda)(mmi)(OH2)](CF3SO3) (2, H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid; mmi = 1,3-dimethylimidazolium-2-ylidene) containing an axial N-heterocyclic carbene ligand and one aqua ligand was synthesized and fully characterized. The kinetics of catalytic water oxidation by 2 were measured using stopped-flow technique, and key intermediates in the catalytic cycle were probed by density functional theory calculations. While analogous Ru-bda water oxidation catalysts [Ru(bda)L2] (L = pyridyl ligands) are supposed to catalyze water oxidation through a bimolecular coupling pathway, our study points out that 2, surprisingly, undergoes a single-site water nucleophilic attack (acid-base) pathway. The diversion of catalytic mechanisms is mainly ascribed to the different ligand environments, from nonaqua ligands to an aqua ligand. Findings in this work provide some critical proof for our previous hypothesis about how alternation of ancillary ligands of water oxidation catalysts influences their catalytic efficiency.

  16. Synergism between anodic oxidation with diamond anodes and heterogeneous catalytic photolysis for the treatment of pharmaceutical pollutants

    Directory of Open Access Journals (Sweden)

    Juan M. Peralta-Hernández

    2016-03-01

    Full Text Available The mineralization of diclofenac and acetaminophen has been studied by single anodic oxidation with boron-doped diamond (AO-BDD using an undivided electrolysis cell, by single heterogeneous catalytic photolysis with titanium dioxide (HCP-TiO2 and by the combination of both advanced oxidation processes. The results show that mineralization can be obtained with either single technology. The type of functional groups of the pollutant does not influence the results of the single AO-BDD process, but it has a significant influence on the results obtained with HCP-TiO2. A clear synergistic effect appears when both processes are combined showing improvements in the oxidation rate of more than 50% for diclofenac and nearly 200% for acetaminophen at the highest current exerted. Results obtained are explained in terms of the production of oxidants on the surface of BDD (primarily peroxodisulfate and the later homogeneous catalytic light decomposition of these oxidants in the bulk. This mechanism is consistent with the larger improvement observed at higher current densities, for which the production of oxidants is promoted.

  17. EMISSION REDUCTION FROM A DIESEL ENGINE FUELED BY CERIUM OXIDE NANO-ADDITIVES USING SCR WITH DIFFERENT METAL OXIDES COATED CATALYTIC CONVERTER

    Directory of Open Access Journals (Sweden)

    B. JOTHI THIRUMAL

    2015-11-01

    Full Text Available This paper reports the results of experimental investigations on the influence of the addition of cerium oxide in nanoparticle form on the major physiochemical properties and the performance of diesel. The fuel is modified by dispersing the catalytic nanoparticle by ultrasonic agitation. The physiochemical properties of sole diesel fuel and modified fuel are tested with ASTM standard procedures. The effects of the additive nanoparticles on the individual fuel properties, the engine performance, and emissions are studied, and the dosing level of the additive is optimized. Cerium oxide acts as an oxygen-donating catalyst and provides oxygen for the oxidation of CO during combustion. The active energy of cerium oxide acts to burn off carbon deposits within the engine cylinder at the wall temperature and prevents the deposition of non-polar compounds on the cylinder wall which results in reduction in HC emission by 56.5%. Furthermore, a low-cost metal oxide coated SCR (selective catalyst reduction, using urea as a reducing agent, along with different types of CC (catalytic converter, has been implemented in the exhaust pipe to reduce NOx. It was observed that a reduction in NOx emission is 50–60%. The tests revealed that cerium oxide nanoparticles can be used as an additive in diesel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  18. Hydrogen storage evaluation based on investigations of the catalytic properties of metal/metal oxides in electrospun carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Im, Ji Sun; Lee, Young-Seak [Department of Fine Chemical Engineering and Chemistry, Chungnam National University, Daejeon 305-764 (Korea); Park, Soo-Jin [Department of Chemistry, Inha University, Incheon 402-751 (Korea); Kim, Taejin [Core Technology Research Center for Fuel Cell, Jeollabuk-do 561-844 (Korea)

    2009-05-15

    In order to investigate the catalytic capacity of metals and metal oxides based on electrospun carbon fibers for improving hydrogen storage, electrospinning and heat treatments were carried out to obtain metal/metal oxide-embedded carbon fibers. Although the fibers were treated with the same activation procedure, they had different pore structures, due to the nature of the metal oxide. When comparing the catalytic capacity of metal and metal oxide, metal exhibits better performance as a catalyst for the improvement of hydrogen storage, when considering the hydrogen storage system. When a metal oxide with an m.p. lower than the temperature of heat treatment was used, the metal oxide was changed to metal during the heat treatment, developing a micropore structure. The activation process produced a high specific surface area of up to 2900 m{sup 2}/g and a pore volume of up to 2.5 cc/g. The amount of hydrogen adsorption reached approximately 3 wt% at 100 bar and room temperature. (author)

  19. Catalytic degradation of brominated flame retardants by copper oxide nanoparticles

    Science.gov (United States)

    Dror, I.; Yecheskel, Y.; Berkowitz, B.

    2013-12-01

    Brominated flame retardants (BFRs) have been added to various products like plastic, textile, electronics and synthetic polymers at growing rates. In spite of the clear advantages of reducing fire damages, many of these BFRs may be released to the environment after their beneficial use which may lead to contamination of water resources. In this work we present the catalytic degradation of two brominated flame retardants (BFRs), tribromoneopentyl alcohol (TBNPA) and 2,4 dibromophenol (2,4-DBP) by copper oxide nanoparticles (nCuO) in aqueous solution. The degradation kinetics, the debromination, and the formation of intermediates by nCuO catalysis are compared to Fenton oxidation and to reduction by nano zero-valent iron (nZVI). The two studied BFRs are shown to degrade fully by the nCuO system within hours to days. Shorter reaction times showed differences in reaction pathways and kinetics for the two compounds. The 2,4-DBP showed faster degradation than TBNPA, by nCuO catalysis. Relatively high resistance to degradation was recorded for 2,4-DBP with nZVI, yielding 20% degradation after 24 h, while the TBNPA was degraded by 85% within 12 hours. A catalytic mechanism for radical generation and BFR degradation by nCuO is proposed. It is further suggested that H2O2 plays an essential role in the activation of the catalyst.

  20. Catalytic Oxidation of CO and Soot over Ce-Zr-Pr Mixed Oxides Synthesized in a Multi-Inlet Vortex Reactor: Effect of Structural Defects on the Catalytic Activity.

    Science.gov (United States)

    Bensaid, Samir; Piumetti, Marco; Novara, Chiara; Giorgis, Fabrizio; Chiodoni, Angelica; Russo, Nunzio; Fino, Debora

    2016-12-01

    In the present work, ceria, ceria-zirconia (Ce = 80 at.%, Zr = 20 at.%), ceria praseodymia (Ce = 80 at.%, Pr = 20 at.%) and ceria-zirconia-praseodymia catalysts (Ce = 80 at.%, Zr = 10 at.% and Pr = 10 at.%) have been prepared by the multi-inlet vortex reactor (MIVR). For each set of samples, two inlet flow rates have been used during the synthesis (namely, 2 ml min -1 , and 20 ml min -1 ) in order to obtain different particle sizes. Catalytic activity of the prepared materials has been investigated for CO and soot oxidation reactions. As a result, when the catalysts exhibit similar crystallite sizes (in the 7.7-8.8 nm range), it is possible to observe a direct correlation between the O v /F 2g vibrational band intensity ratios and the catalytic performance for the CO oxidation. This means that structural (superficial) defects play a key role for this process. The incorporation of Zr and Pr species into the ceria lattice increases the population of structural defects, as measured by Raman spectroscopy, according to the order: CeO 2  oxidation activity for these catalysts, in contrast with nanostructured ones (e.g., Ce-Zr-O nanopolyhedra, Ce-Pr-O nanocubes) described elsewhere (Andana et al. Appl. Catal. B 197: 125-137, 2016; Piumetti et al., Appl Catal B 180: 271-282, 2016).

  1. Synthesis, Characterization, and Relative Study on the Catalytic Activity of Zinc Oxide Nanoparticles Doped MnCO3, –MnO2, and –Mn2O3 Nanocomposites for Aerial Oxidation of Alcohols

    Directory of Open Access Journals (Sweden)

    Mohamed E. Assal

    2017-01-01

    Full Text Available Zinc oxide nanoparticles doped manganese carbonate catalysts [X% ZnOx–MnCO3] (where X = 0–7 were prepared via a facile and straightforward coprecipitation procedure, which upon different calcination treatments yields different manganese oxides, that is, [X% ZnOx–MnO2] and [X% ZnOx–Mn2O3]. A comparative catalytic study was conducted to evaluate the catalytic efficiency between carbonates and oxides for the selective oxidation of secondary alcohols to corresponding ketones using molecular oxygen as a green oxidizing agent without using any additives or bases. The prepared catalysts were characterized by different techniques such as SEM, EDX, XRD, TEM, TGA, BET, and FTIR spectroscopy. The 1% ZnOx–MnCO3 calcined at 300°C exhibited the best catalytic performance and possessed highest surface area, suggesting that the calcination temperature and surface area play a significant role in the alcohol oxidation. The 1% ZnOx–MnCO3 catalyst exhibited superior catalytic performance and selectivity in the aerial oxidation of 1-phenylethanol, where 100% alcohol conversion and more than 99% product selectivity were obtained in only 5 min with superior specific activity (48 mmol·g−1·h−1 and 390.6 turnover frequency (TOF. The specific activity obtained is the highest so far (to the best of our knowledge compared to the catalysts already reported in the literatures used for the oxidation of 1-phenylethanol. It was found that ZnOx nanoparticles play an essential role in enhancing the catalytic efficiency for the selective oxidation of alcohols. The scope of the oxidation process is extended to different types of alcohols. A variety of primary, benzylic, aliphatic, allylic, and heteroaromatic alcohols were selectively oxidized into their corresponding carbonyls with 100% convertibility without overoxidation to the carboxylic acids under base-free conditions.

  2. Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Klinke, Helene Bendstrup; Olsson, Lisbeth; Thomsen, A.B.

    2003-01-01

    Alkaline wet oxidation (WO) (using water, 6.5 g/L sodium carbonate and 12 bar oxygen at 195degreesC) was used as pretreatment method for wheat straw (60 g/L), resulting in a hydrolysate and a cellulosic solid fraction. The hydrolysate consisted of soluble hemicellulose (8 g/L), low......-molecular-weight carboxylic acids (3.9 g/L), phenols (0.27 g/L = 1.7 mM) and 2-furoic acid (0.007 g/L). The wet oxidized wheat straw hydrolysate caused no inhibition of ethanol production by Saccharomyces cerevisiae ATCC 96581. Nine phenols and 2-furoic acid, identified to be present in the hydrolysate, were each tested...

  3. Improving carbon tolerance of Ni-YSZ catalytic porous membrane by palladium addition for low temperature steam methane reforming

    Science.gov (United States)

    Lee, Sang Moon; Won, Jong Min; Kim, Geo Jong; Lee, Seung Hyun; Kim, Sung Su; Hong, Sung Chang

    2017-10-01

    Palladium was added on the Ni-YSZ catalytic porous membrane by wet impregnation and electroless plating methods. Its surface morphology characteristics and carbon deposition properties for the low temperature steam methane reforming were investigated. The addition of palladium could obviously be enhanced the catalytic activity as well as carbon tolerance of the Ni-YSZ porous membrane. The porous membranes were evaluated by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR), CH4 temperature-programmed reduction (CH4-TPR), and O2 temperature-programmed oxidation (O2-TPO). It was found that the Pd-Ni-YSZ catalytic porous membrane showed the superior stability as well as the deposition of carbon on the surface during carbon dissociation adsorption at 650 °C was also suppressed.

  4. Reversible switching of wetting properties and erasable patterning of polymer surfaces using plasma oxidation and thermal treatment

    Science.gov (United States)

    Rashid, Zeeshan; Atay, Ipek; Soydan, Seren; Yagci, M. Baris; Jonáš, Alexandr; Yilgor, Emel; Kiraz, Alper; Yilgor, Iskender

    2018-05-01

    Polymer surfaces reversibly switchable from superhydrophobic to superhydrophilic by exposure to oxygen plasma and subsequent thermal treatment are demonstrated. Two inherently different polymers, hydrophobic segmented polydimethylsiloxane-urea copolymer (TPSC) and hydrophilic poly(methyl methacrylate) (PMMA) are modified with fumed silica nanoparticles to prepare superhydrophobic surfaces with roughness on nanometer to micrometer scale. Smooth TPSC and PMMA surfaces are also used as control samples. Regardless of their chemical structure and surface topography, all surfaces display completely reversible wetting behavior changing from hydrophobic to hydrophilic and back for many cycles upon plasma oxidation followed by thermal annealing. Influence of plasma power, plasma exposure time, annealing temperature and annealing time on the wetting behavior of polymeric surfaces are investigated. Surface compositions, textures and topographies are characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and white light interferometry (WLI), before and after oxidation and thermal annealing. Wetting properties of the surfaces are determined by measuring their static, advancing and receding water contact angle. We conclude that the chemical structure and surface topography of the polymers play a relatively minor role in reversible wetting behavior, where the essential factors are surface oxidation and migration of polymer molecules to the surface upon thermal annealing. Reconfigurable water channels on polymer surfaces are produced by plasma treatment using a mask and thermal annealing cycles. Such patterned reconfigurable hydrophilic regions can find use in surface microfluidics and optofluidics applications.

  5. Effect of phase interaction on catalytic CO oxidation over the SnO{sub 2}/Al{sub 2}O{sub 3} model catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Shujing [Collaborative Innovation Center of Chemical Science & Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300354 (China); The Institute of Seawater Desalination and Miltipurpose Utilization, State Oceanic Administration, Tianjin 300192 (China); Bai, Xueqin; Li, Jing; Liu, Cheng; Ding, Tong; Tian, Ye; Liu, Chang [Collaborative Innovation Center of Chemical Science & Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300354 (China); Xian, Hui [Tianjin Polytechnic University, School of Computer Science & Software Engineering, Tianjin 300387 (China); Mi, Wenbo [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Faculty of Science, Tianjin University, Tianjin 300354 (China); Li, Xingang, E-mail: xingang_li@tju.edu.cn [Collaborative Innovation Center of Chemical Science & Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300354 (China)

    2017-04-30

    Highlights: • Activity for CO oxidation is greatly enhanced by interaction between SnO{sub 2} and Al{sub 2}O{sub 3}. • Interaction between SnO{sub 2} and Al{sub 2}O{sub 3} phases can generate oxygen vacancies. • Oxygen vacancies play an import role for catalytic CO oxidation. • Sn{sup 4+} cations are the effective sites for catalytic CO oxidation. • Langmuir-Hinshelwood model is preferred for catalytic CO oxidation. - Abstract: We investigated the catalytic CO oxidation over the SnO{sub 2}/Al{sub 2}O{sub 3} model catalysts. Our results show that interaction between the Al{sub 2}O{sub 3} and SnO{sub 2} phases results in the significantly improved catalytic activity because of the formation of the oxygen vacancies. The oxygen storage capacity of the SnO{sub 2}/Al{sub 2}O{sub 3} catalyst prepared by the physically mixed method is nearly two times higher than that of the SnO{sub 2}, which probably results from the change of electron concentration on the interface of the SnO{sub 2} and Al{sub 2}O{sub 3} phases. Introducing water vapor to the feeding gas would a little decrease the activity of the catalysts, but the reaction rate could completely recover after removal of water vapor. The kinetics results suggest that the surface Sn{sup 4+} cations are effective CO adsorptive sites, and the surface adsorbed oxygen plays an important role upon CO oxidation. The reaction pathways upon the SnO{sub 2}-based catalysts for CO oxidation follow the Langmuir-Hinshelwood model.

  6. Identification of a Catalytically Highly Active Surface Phase for CO Oxidation over PtRh Nanoparticles under Operando Reaction Conditions

    Science.gov (United States)

    Hejral, U.; Franz, D.; Volkov, S.; Francoual, S.; Strempfer, J.; Stierle, A.

    2018-03-01

    Pt-Rh alloy nanoparticles on oxide supports are widely employed in heterogeneous catalysis with applications ranging from automotive exhaust control to energy conversion. To improve catalyst performance, an atomic-scale correlation of the nanoparticle surface structure with its catalytic activity under industrially relevant operando conditions is essential. Here, we present x-ray diffraction data sensitive to the nanoparticle surface structure combined with in situ mass spectrometry during near ambient pressure CO oxidation. We identify the formation of ultrathin surface oxides by detecting x-ray diffraction signals from particular nanoparticle facets and correlate their evolution with the sample's enhanced catalytic activity. Our approach opens the door for an in-depth characterization of well-defined, oxide-supported nanoparticle based catalysts under operando conditions with unprecedented atomic-scale resolution.

  7. Negative Effect of Calcination to Catalytic Performance of Coal Char-loaded TiO2 Catalyst in Styrene Oxidation with Hydrogen Peroxide as Oxidant

    Directory of Open Access Journals (Sweden)

    Mukhamad Nurhadi

    2018-01-01

    How to Cite: Nurhadi, M., Kusumawardani, R., Nur, H. (2018. Negative Effect of Calcination to Catalytic Performance of Coal Char-loaded TiO2 Catalyst in Styrene Oxidation with Hydrogen Peroxide as Oxidant. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 113-118 (doi:10.9767/bcrec.13.1.1171.113-118

  8. Fabrication of ammonium perchlorate/copper-chromium oxides core-shell nanocomposites for catalytic thermal decomposition of ammonium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Eslami, Abbas, E-mail: eslami@umz.ac.ir [Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O.Box 47416-95447, Babolsar (Iran, Islamic Republic of); Juibari, Nafise Modanlou [Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O.Box 47416-95447, Babolsar (Iran, Islamic Republic of); Hosseini, Seyed Ghorban [Department of Chemistry, Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran (Iran, Islamic Republic of)

    2016-09-15

    The ammonium perchlorate/Cu(II)-Cr(III)-oxides(AP/Cu-Cr-O) core-shell nanocomposites were in-situ prepared by deposition of copper and chromium oxides on suspended ammonium perchlorate particles in ethyl acetate as solvent. The results of differential scanning calorimetery (DSC) and thermal gravimetric analysis (TGA) experiments showed that the nanocomposites have excellent catalytic effect on the thermal decomposition of AP, so that the released heat increases up to about 3-fold over initial values, changing from 450 J/g for pure AP to 1510 J/g for most appropriate mixture. For better comparison, single metal oxide/AP core-shell nanocomposite have also been prepared and the results showed that they have less catalytic effect respect to mixed metal oxides system. Scanning electron microscopy (SEM) results revealed homogenous deposition of nanoparticles on the surface of AP and fabrication of core-shell structures. The kinetic parameters of thermal decomposition of both pure AP and AP/Cu-Cr-O samples have been calculated by Kissinger method and the results showed that the values of pre-exponential factor and activation energy are higher for AP/Cu-Cr-O nanocomposite. The better catalytic effect of Cu-Cr-O nanocomposites is probably attributed to the synergistic effect between Cu{sup 2+} and Cr{sup 3+} in the nanocomposites, smaller particle size and more crystal defect. - Highlights: • The Cu-Cr-O nanoparticles were synthesized by chemical liquid deposition method. • Then, the AP/Cu-Cr-O core-shell nanocomposites were prepared. • The core-shell samples showed high catalytic activity for AP decomposition. • Thermal decomposition of samples occurs at lower temperature range.

  9. Comparative study of the luminescence of structures with Ge nanocrystals formed by dry and wet oxidation of SiGe films

    International Nuclear Information System (INIS)

    RodrIguez, A; Ortiz, M I; Sangrador, J; RodrIguez, T; Avella, M; Prieto, A C; Torres, A; Jimenez, J; Kling, A; Ballesteros, C

    2007-01-01

    The luminescence emission of structures containing Ge nanocrystals embedded in a dielectric matrix obtained by dry and wet oxidation of polycrystalline SiGe layers has been studied as a function of the oxidation time and initial SiGe layer thickness. A clear relationship between the intensity of the luminescence, the structure of the sample, the formation of Ge nanocrystals and the oxidation process parameters that allows us to select the appropriate process conditions to get the most efficient emission has been established. The evolution of the composition and thickness of the growing oxides and the remaining SiGe layer during the oxidation processes has been characterized using Raman spectroscopy, x-ray diffraction, Fourier-transform infrared spectroscopy, Rutherford backscattering spectrometry and transmission electron microscopy. For dry oxidation, the luminescence appears suddenly, regardless of the initial SiGe layer thickness, when all the Si of the SiGe has been oxidized and the remaining layer of the segregated Ge starts to be oxidized forming Ge nanocrystals. Luminescence is observed as long as Ge nanocrystals are present. For wet oxidation, the luminescence appears from the first stages of the oxidation, and is related to the formation of Ge-rich nanoclusters trapped in the mixed (Si and Ge) growing oxide. A sharp increase of the luminescence intensity for long oxidation times is also observed, due to the formation of Ge nanocrystals by the oxidation of the layer of segregated Ge. For both processes the luminescence is quenched when the oxidation time is long enough to cause the full oxidation of the Ge nanocrystals. The intensity of the luminescence in the dry oxidized samples is about ten times higher than in the wet oxidized ones for equal initial thickness of the SiGe layer

  10. Catalytic properties of a titanium-antimony oxide system in oxidative ammonolysis of propylene

    Energy Technology Data Exchange (ETDEWEB)

    Zenkovets, G.A.; Tarasova, D.V.; Andrushkevich, T.V.; Aleshina, G.I.; Nikoro, T.A.; Ravilov, R.G.

    1979-03-01

    The catalytic properties of titanium-antimony oxide system in oxidative ammonolysis of propylene at 450/sup 0/C depended both on the catalyst and the reactant compositions. Stable and high (75-80Vertical Bar3<) selectivities for acrylonitrile and high activities were observed over catalysts containing 5-60 mole Vertical Bar3< Sb/sub 2/O/sub 4/ with 2Vertical Bar3< propylene and 3Vertical Bar3< ammonia in air at Vertical Bar3; 70Vertical Bar3< conversions. The selectivities of the catalysts for acetonitrile and acrolein did not exceed 5 and 1Vertical Bar3<, respectively. At high ammonia and propylene contents in the reaction mixture and over individual TiO/sub 2/ or Sb/sub 2/O/sub 4/ catalysts, the reaction selectivity shifted toward deep oxidation products. These findings were attributed to the reducing effect of propylene and ammonia at high concentrations on the active components of the catalyst, a solid solution of Sb in TiO/sub 2/ containing 5-7 mole Vertical Bar3< of Sb/sub 2/O/sub 4/ and a chemical compound with TiSb/sub 2/O/sub 6/ composition.

  11. One-pot synthesis of reduced graphene oxide supported PtCuy catalysts with enhanced electro-catalytic activity for the methanol oxidation reaction

    International Nuclear Information System (INIS)

    Peng, Xinglan; Zhao, Yanchun; Chen, Duhong; Fan, Yanfang; Wang, Xiao; Wang, Weili; Tian, Jianniao

    2014-01-01

    The outstanding performance PtCu y (y = 1,2,3) alloy nanoparticles supported on reduced graphene oxide (rGO) have been synthesized by a facile, efficient, one-pot hydrothermal synthesis approach. The as-prepared PtCu y /rGO catalysts are comprehensively characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy. Cyclic voltammetry, CO-stripping voltammetry and chronoamperometry results reveal that the PtCu y /rGO catalysts have higher electro-catalytic activity, more negative onset oxidative potential, more excellent tolerance ability for CO poisoning and enhanced stability for the electro-oxidation of methanol compared to pure Pt/rGO. As far as the as-made PtCu y /rGO catalysts are concerned, the PtCu 2 /rGO exhibits the highest electro-catalytic activity. The mechanism of the promoting effect of Cu on Pt is explained based on the electronic modification effect. The nature of interfacial interactions between the Pt-Cu active metal phase and the rGO supporting materials is crucial to achieving high performance

  12. Selective catalytic oxidation: a new catalytic approach to the desulfurization of natural gas and liquid petroleum gas for fuel cell reformer applications

    Science.gov (United States)

    Lampert, J.

    In both natural gas and liquid petroleum gas (LPG), sulfur degrades the performance of the catalysts used in fuel reformers and fuel cells. In order to improve system performance, the sulfur must be removed to concentrations of less than 200 ppbv (in many applications to less than 20 ppbv) before the fuel reforming operation. Engelhard Corporation presents a unique approach to the desulfurization of natural gas and LPG. This new method catalytically converts the organic and inorganic sulfur species to sulfur oxides. The sulfur oxides are then adsorbed on a high capacity adsorbent. The sulfur compounds in the fuel are converted to sulfur oxides by combining the fuel with a small amount of air. The mixture is then heated from 250 to 270 °C, and contacted with a monolith supported sulfur tolerant catalyst at atmospheric pressure. When Engelhard Corporation demonstrated this catalytic approach in the laboratory, the result showed sulfur breakthrough to be less than 10 ppbv in the case of natural gas, and less than 150 ppbv for LPG. We used a simulated natural gas and LPG mixture, doped with a 50-170 ppmv sulfur compound containing equal concentrations of COS, ethylmercaptan, dimethylsulfide, methylethylsulfide and tetrahydrothiophene. There is no need for recycled H 2 as in the case for hydrodesulfurization.

  13. Influence of the physico-chemical properties of CeO{sub 2}-ZrO{sub 2} mixed oxides on the catalytic oxidation of NO to NO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Atribak, Idriss; Guillen-Hurtado, Noelia; Bueno-Lopez, Agustin [MCMA Group, Department of Inorganic Chemistry, Faculty of Sciences, University of Alicante, Carretera San Vicente del Raspeig s/n - 03690 San Vicente del Raspeig, Alicante (Spain); Garcia-Garcia, Avelina, E-mail: a.garcia@ua.es [MCMA Group, Department of Inorganic Chemistry, Faculty of Sciences, University of Alicante, Carretera San Vicente del Raspeig s/n - 03690 San Vicente del Raspeig, Alicante (Spain)

    2010-10-01

    Commercial and home-made Ce-Zr catalysts prepared by co-precipitation were characterised by XRD, Raman spectroscopy, N{sub 2} adsorption at -196 deg. C and XPS, and were tested for NO oxidation to NO{sub 2}. Among the different physico-chemical properties characterised, the surface composition seems to be the most relevant one in order to explain the NO oxidation capacity of these Ce-Zr catalysts. As a general trend, Ce-Zr catalysts with a cerium-rich surface, that is, high XPS-measured Ce/Zr atomic surface ratios, are more active than those with a Zr-enriched surface. The decrease in catalytic activity of the Ce-Zr mixed oxided upon calcinations at 800 deg. C with regard to 500 deg. C is mainly attributed to the decrease in Ce/Zr surface ratio, that is, to the surface segregation of Zr. The phase composition (cubic or t'' for Ce-rich compositions) seems not to be a direct effect on the catalytic activity for NO oxidation in the range of compositions tested. However, the formation of a proper solid solution prevents important surface segregation of Zr upon calcinations at high temperature. The effect of the BET surface area in the catalytic activity for NO oxidation of Ce-Zr mixed oxides is minor in comparison with the effect of the Ce/Zr surface ratio.

  14. In situ synthesis and catalytic application of reduced graphene oxide supported cobalt nanowires

    Science.gov (United States)

    Xu, Zhiqiang; Long, Qin; Deng, Yi; Liao, Li

    2018-05-01

    Controlled synthesis of magnetic nanocomposite with outstanding catalytic performances is a promising strategy in catalyst industry. We proposed a novel concept for fabrication of reduced graphene oxide-supported cobalt nanowires (RGO/Co-NWs) nanocomposite as high-efficient magnetic catalyst. Unlike the majority of experiments necessitating harsh synthesis conditions such as high-pressure, high-temperature and expensive template, here the RGO/Co-NWs were successfully prepared in aqueous solution under mild conditions with the assistance of external magnetic field. The synthetic process was facile and external magnetic force was adopted to induce the unidirectional self-assembly of cobalt crystals on graphene oxide to form RGO/Co-NWs. The possible formation mechanism laid on the fact that the dipole magnetic moments of the nanoparticles were aligned along the magnetic induction lines with the external magnetic field direction resulting in the formation of nanowires elongating in the direction of the magnetization axis. Simultaneously, a series of controlled reactions were conducted to illuminate the effect of graphene oxide, external magnetic field and PVP on the morphology and size of RGO/Co-NWs in the present approach. More importantly, the nanocomposite exhibited a high catalytic performance towards ammonia borane. Hence the novel nanocomposite holds a great potential for technological applications such as catalyst industry.

  15. Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Minghao, E-mail: suiminghao.sui@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xing, Sichu; Sheng, Li; Huang, Shuhang; Guo, Hongguang [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Ciprofloxacin in water was degraded by heterogeneous catalytic ozonation. Black-Right-Pointing-Pointer MnOx were supported on MWCNTs to serve as catalyst for ozonation. Black-Right-Pointing-Pointer MnOx/MWCNT exhibited highly catalytic activity on ozonation of ciprofloxacin in water. Black-Right-Pointing-Pointer MnOx/MWCNT resulted in effective antibacterial activity inhibition on ciprofloxacin. Black-Right-Pointing-Pointer MnOx/MWCNT promoted the generation of hydroxyl radicals. - Abstract: Carbon nanotube-supported manganese oxides (MnOx/MWCNT) were used as catalysts to assist ozone in degrading ciprofloxacin in water. Manganese oxides were successfully loaded on multi-walled carbon nanotube surfaces by simply impregnating the carbon nanotube with permanganate solution. The catalytic activities of MnOx/MWCNT in ciprofloxacin ozonation, including degradation, mineralization effectiveness, and antibacterial activity change, were investigated. The presence of MnOx/MWCNT significantly elevated the degradation and mineralization efficiency of ozone on ciprofloxacin. The microbiological assay with a reference Escherichia coli strain indicated that ozonation with MnOx/MWCNT results in more effective antibacterial activity inhibition of ciprofloxacin than that in ozonation alone. The effects of catalyst dose, initial ciprofloxacin concentration, and initial pH conditions on ciprofloxacin ozonation with MnOx/MWCNT were surveyed. Electron spin resonance trapping was applied to assess the role of MnOx/MWCNT in generating hydroxyl radicals (HO{center_dot}) during ozonation. Stronger 5,5-dimethyl-1-pyrroline-N-oxide-OH signals were observed in the ozonation with MnOx/MWCNT compared with those in ozonation alone, indicating that MnOx/MWCNT promoted the generation of hydroxyl radicals. The degradation of ciprofloxacin was studied in drinking water and wastewater process samples to gauge the potential effects of water background matrix on

  16. Carbothermal reduction of Ti-modified IRMOF-3: an adaptable synthetic method to support catalytic nanoparticles on carbon.

    Science.gov (United States)

    Kim, Jongsik; McNamara, Nicholas D; Her, Theresa H; Hicks, Jason C

    2013-11-13

    This work describes a novel method for the preparation of titanium oxide nanoparticles supported on amorphous carbon with nanoporosity (Ti/NC) via the post-synthetic modification of a Zn-based MOF with an amine functionality, IRMOF-3, with titanium isopropoxide followed by its carbothermal pyrolysis. This material exhibited high purity, high surface area (>1000 m(2)/g), and a high dispersion of metal oxide nanoparticles while maintaining a small particle size (~4 nm). The material was shown to be a promising catalyst for oxidative desulfurization of diesel using dibenzothiophene as a model compound as it exhibited enhanced catalytic activity as compared with titanium oxide supported on activated carbon via the conventional incipient wetness impregnation method. The formation mechanism of Ti/NC was also proposed based on results obtained when the carbothermal reduction temperature was varied.

  17. The chemical and catalytic properties of nanocrystalline metal oxides prepared through modified sol-gel synthesis

    Science.gov (United States)

    Carnes, Corrie Leigh

    The goal of this research was to synthesize, characterize and study the chemical properties of nanocrystalline metal oxides. Nanocrystalline (NC) ZnO, CuO, NiO, Al2O3, and the binary Al2O 3/MgO and ZnO/CuO were prepared through modified sol gel methods. These NC metal oxides were studied in comparison to the commercial (CM) metal oxides. The samples were characterized by XRD, TGA, FTIR, BET, and TEM. The NC samples were all accompanied by a significant increase in surface area and decrease in crystallite size. Several chemical reactions were studied to compare the NC samples to the CM samples. One of the reactions involved a high temperature reaction between carbon tetrachloride and the oxide to form carbon dioxide and the corresponding metal chloride. A similar high temperature reaction was conducted between the metal oxide and hydrogen sulfide to form water and the corresponding metal sulfide. A room temperature gas phase adsorption was studied where SO2 was adsorbed onto the oxide. A liquid phase adsorption conducted at room temperature was the destructive adsorption of paraoxon (a toxic insecticide). In all reactions the NC samples exhibited greater activity, destroying or adsorbing a larger amount of the toxins compared to the CM samples. To better study surface area effects catalytic reactions were also studied. The catalysis of methanol was studied over the nanocrystalline ZnO, CuO, NiO, and ZnO/CuO samples in comparison to their commercial counterparts. In most cases the NC samples proved to be more active catalysts, having higher percent conversions and turnover numbers. A second catalytic reaction was also studied, this reaction was investigated to look at the support effects. The catalysis of cyclopropane to propane was studied over Pt and Co catalysts. These catalysts were supported onto NC and CM alumina by impregnation. By observing differences in the catalytic behavior, support effects have become apparent.

  18. ABB wet flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Niijhawan, P.

    1994-12-31

    The wet limestone process for flue gas desulfurization (FGD) is outlined. The following topics are discussed: wet flue gas desulfurization, wet FGD characteristics, wet scrubbers, ABB wet FGD experience, wet FGD forced oxidation, advanced limestone FGD systems, key design elements, open spray tower design, spray tower vs. packed tower, important performance parameters, SO{sub 2} removal efficiency, influence by L/G, limestone utilization, wet FGD commercial database, particulate removal efficiencies, materials of construction, nozzle layout, spray nozzles, recycle pumps, mist elimination, horizontal flow demister, mist eliminator washing, reagent preparation system, spray tower FGDS power consumption, flue gas reheat options, byproduct conditioning system, and wet limestone system.

  19. Nanorods of manganese oxides: Synthesis, characterization and catalytic application

    Science.gov (United States)

    Yang, Zeheng; Zhang, Yuancheng; Zhang, Weixin; Wang, Xue; Qian, Yitai; Wen, Xiaogang; Yang, Shihe

    2006-03-01

    Single-crystalline nanorods of β-MnO 2, α-Mn 2O 3 and Mn 3O 4 were successfully synthesized via the heat-treatment of γ-MnOOH nanorods, which were prepared through a hydrothermal method in advance. The calcination process of γ-MnOOH nanorods was studied with the help of Thermogravimetric analysis and X-ray powder diffraction. When the calcinations were conducted in air from 250 to 1050 °C, the precursor γ-MnOOH was first changed to β-MnO 2, then to α-Mn 2O 3 and finally to Mn 3O 4. When calcined in N 2 atmosphere, γ-MnOOH was directly converted into Mn 3O 4 at as low as 500 °C. Transmission electron microscopy (TEM) and high-resolution TEM were also used to characterize the products. The obtained manganese oxides maintain the one-dimensional morphology similar to the precursor γ-MnOOH nanorods. Further experiments show that the as-prepared manganese oxide nanorods have catalytic effect on the oxidation and decomposition of the methylene blue (MB) dye with H 2O 2.

  20. Electrochemical study on the cationic promotion of the catalytic SO2 oxidation in pyrosulfate melts

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bjerrum, Niels; Cappeln, Frederik Vilhelm

    1998-01-01

    The electrochemical behavior of the molten V2O5-M2S2O7 (M = K, Cs, or Na) system was studied using a gold working electrode at 440 degrees C in argon and air atmosphere. The aim of the present investigation was to find a possible correlation between the promoting effect of Cs+ and Na+ ions...... on the catalytic oxidation of SO2 in the V2O5-M2S2O7 system and the effect of these alkali cations on the electrochemical behavior of V2O5 in the alkali pyrosulfate melts It has been shown that Na+ ions had a promoting effect on the V(V) reversible arrow V(IV) electrochemical reaction. Sodium ions accelerate both...... in the catalytic SO, oxidation most likely is the oxidation of V(IV) to V(V) and the Na+ and Cs+ promoting effect is based on the acceleration of this stage. It has also been proposed that voltammetric measurements can be used for fast optimization of the composition of the vanadium catalyst (which...

  1. Catalytic Reactor For Oxidizing Mercury Vapor

    Science.gov (United States)

    Helfritch, Dennis J.

    1998-07-28

    A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.

  2. Learning the Fundamentals of Kinetics and Reaction Engineering with the Catalytic Oxidation of Methane

    Science.gov (United States)

    Cybulskis, Viktor J.; Smeltz, Andrew D.; Zvinevich, Yury; Gounder, Rajamani; Delgass, W. Nicholas; Ribeiro, Fabio H.

    2016-01-01

    Understanding catalytic chemistry, collecting and interpreting kinetic data, and operating chemical reactors are critical skills for chemical engineers. This laboratory experiment provides students with a hands-on supplement to a course in chemical kinetics and reaction engineering. The oxidation of methane with a palladium catalyst supported on…

  3. Oxidative destruction of biomolecules by gasoline engine exhaust products and detoxifying effects of the three-way catalytic converter.

    Science.gov (United States)

    Blaurock, B; Hippeli, S; Metz, N; Elstner, E F

    1992-01-01

    Aqueous solutions of engine exhaust condensation products were derived from cars powered by diesel or four-stroke gasoline engines (with and without three-way catalytic converter). The cars were operated on a static test platform. Samples of the different exhaust solutions accumulated in a Grimmer-type distillation trap (VDI 3872) during standard test programs (Federal Test Procedure) were incubated with important biomolecules. As indicators of reactive oxygen species or oxidative destruction, ascorbic acid, cysteine, glutathione, serum albumin, the enzymes glycerinaldehyde phosphate dehydrogenase and xanthine oxidase, and the oxygen free-radical indicator keto-methylthiobutyrate were used. During and after the incubations, oxygen activation (consumption) and oxidative destruction were determined. Comparison of the oxidative activities of the different types of exhaust condensates clearly showed that the exhaust condensate derived from the four-stroke car equipped with a three-way catalytic converter exhibited by far the lowest oxidative and destructive power.

  4. Synthesis, Characterization, and Catalytic Applications of Transition Metal Oxide/Carbonate Nanomaterials

    Science.gov (United States)

    Jin, Lei

    2011-12-01

    This thesis contains two parts: 1) Studies of novel synthesis methods and characterization of advanced functional manganese oxide octahedral molecular sieves (OMS) and their applications in Li/Air batteries, solvent free toluene oxidations, and ethane oxydehydrogenation (ODH) in the presence of CO2, recycling the green house gas. 2) Development of unique Ln2O2CO3 (Ln = rare earth) layered materials and ZnO/La2O2CO3 composites as clean energy biofuel catalysts. These parts are separated into five different focused topics included in this thesis. The first topic presents studies of catalytic activities of a single step synthesized gamma-MnO2 octahedral molecular sieve nano fiber in solvent free atmospheric oxidation of toluene with molecular oxygen. Solvent free atmospheric oxidation of toluene is a notoriously difficult liquid phase oxidation process due to the challenge of oxidizing sp³ hybridized carbon in inactive hydrocarbons. The synthesized gamma-MnO2 showed excellent catalytic activity and good selectivity under the mild atmospheric reflux system. Under optimized conditions, a 47.8% conversion of toluene, along with 57% selectivity of benzoic acid and 15% of benzaldehyde were obtained. The effects of reaction time, amount of catalyst and initiator, and the reusability of the catalyst were investigated. The second topic involves developing titanium containing gamma-MnO 2 (TM) hollow spheres as electrocatalysts in Li/Air Batteries. Li/air batteries have recently attracted interest because they have the largest theoretical specific energy (11,972 Wh.kg-1) among all practical electrochemical couples. In this study, unique hollow aspheric materials were prepared for the first time using a one-step synthesis method and fully characterized by various techniques. These prepared materials were found to have excellent electrocatalytic activation as cathode materials in lithium-air batteries with a very high specific capacity (up to 2.3 A.h/g of carbon). The third

  5. A consistent reaction scheme for the selective catalytic reduction of nitrogen oxides with ammonia

    DEFF Research Database (Denmark)

    Janssens, Ton V.W.; Falsig, Hanne; Lundegaard, Lars Fahl

    2015-01-01

    For the first time, the standard and fast selective catalytic reduction of NO by NH3 are described in a complete catalytic cycle, that is able to produce the correct stoichiometry, while only allowing adsorption and desorption of stable molecules. The standard SCR reaction is a coupling of the ac...... for standard SCR. Finally, the role of a nitrate/nitrite equilibrium and the possible in uence of Cu dimers and Brønsted sites are discussed, and an explanation is offered as to how a catalyst can be effective for SCR, while being a poor catalyst for NO oxidation to NO2....... spectroscopy (FTIR). A consequence of the reaction scheme is that all intermediates in fast SCR are also part of the standard SCR cycle. The calculated activation energy by density functional theory (DFT) indicates that the oxidation of an NO molecule by O2 to a bidentate nitrate ligand is rate determining...

  6. Thermodynamic Study on the Catalytic Partial Oxidation of Methane to Syngas

    Institute of Scientific and Technical Information of China (English)

    XUJian; WEIWeisheng; 等

    2002-01-01

    The catalytic partial oxidation of methane to syngas (CO+H2) has been simulated thermodynamically with the advanced process simulator PRO/Ⅱ. The influences of temperature,pressure,CH4/O2 ratio and steam addition in feed gas on the conversion of CH4 selectively to syngas and heat duty required were investigated, and their effects on carbon formation were also discussed. The simulation results were in good agreement with the literature data taken from a spouted bed reactor.

  7. Catalytic oxidation of dibromomethane over Ti-modified Co3O4 catalysts: Structure, activity and mechanism.

    Science.gov (United States)

    Mei, Jian; Huang, Wenjun; Qu, Zan; Hu, Xiaofang; Yan, Naiqiang

    2017-11-01

    Ti-modified Co 3 O 4 catalysts with various Co/Ti ratios were synthesized using the co-precipitation method and were used in catalytic oxidation of dibromomethane (CH 2 Br 2 ), which was selected as the model molecule for brominated volatile organic compounds (BVOCs). Addition of Ti distorted the crystal structure and led to the formation of a Co-O-Ti solid solution. Co 4 Ti 1 (Co/Ti molar ratio was 4) achieved higher catalytic activity with a T 90 (the temperature needed for 90% conversion) of approximately 245°C for CH 2 Br 2 oxidation and higher selectivity to CO 2 at a low temperature than the other investigated catalysts. In addition, Co 4 Ti 1 was stable for at least 30h at 500ppm CH 2 Br 2 , 0 or 2vol% H 2 O, 0 or 500ppm p-xylene (PX), and 10% O 2 at a gas hourly space velocity of 60,000h -1 . The final products were CO x , Br 2 , and HBr, without the formation of other Br-containing organic byproducts. The high catalytic activity was attributed to the high Co 3+ /Co 2+ ratio and high surface acidity. Additionally, the synergistic effect of Co and Ti made it superior for CH 2 Br 2 oxidation. Furthermore, based on the analysis of products and in situ DRIFTs studies, a receivable reaction mechanism for CH 2 Br 2 oxidation over Ti-modified Co 3 O 4 catalysts was proposed. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Catalytic oxidation using nitrous oxide

    Directory of Open Access Journals (Sweden)

    Juan Carlos Beltran-Prieto

    2017-01-01

    Full Text Available Nitrous oxide is a very inert gas used generally as oxidant as it offers some advantage compared with other oxidants such as O2 but a considerably higher temperature (> 526 °C is often required. For particular cases such as the oxidation of sugar alcohols, especially for the oxidation of primary alcohols to aldehydes, N2O has the advantage over O2 of a higher reaction selectivity. In the present paper we present the modelling of oxidation reaction of sugar alcohols using an oxidizing agent in low concentrations, which is important to suppress subsequent oxidation reactions due to the very low residual concentrations of the oxidizing agent. For orientation experiments we chose nitrous oxide generated by thermal decomposition of ammonium nitrate. Kinetic modeling of the reaction was performed after determination of the differential equations that describe the system under study.

  9. Catalytic oxidative desulfurization of diesel utilizing hydrogen peroxide and functionalized-activated carbon in a biphasic diesel-acetonitrile system

    Energy Technology Data Exchange (ETDEWEB)

    Haw, Kok-Giap; Bakar, Wan Azelee Wan Abu; Ali, Rusmidah; Chong, Jiunn-Fat [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Kadir, Abdul Aziz Abdul [Department of Petroleum Engineering, Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2010-09-15

    This paper presents the development of granular functionalized-activated carbon as catalysts in the catalytic oxidative desulfurization (Cat-ODS) of commercial Malaysian diesel using hydrogen peroxide as oxidant. Granular functionalized-activated carbon was prepared from oil palm shell using phosphoric acid activation method and carbonized at 500 C and 700 C for 1 h. The activated carbons were characterized using various analytical techniques to study the chemistry underlying the preparation and calcination treatment. Nitrogen adsorption/desorption isotherms exhibited the characteristic of microporous structure with some contribution of mesopore property. The Fourier Transform Infrared Spectroscopy results showed that higher activation temperature leads to fewer surface functional groups due to thermal decomposition. Micrograph from Field Emission Scanning Electron Microscope showed that activation at 700 C creates orderly and well developed pores. Furthermore, X-ray Diffraction patterns revealed that pyrolysis has converted crystalline cellulose structure of oil palm shell to amorphous carbon structure. The influence of the reaction temperature, the oxidation duration, the solvent, and the oxidant/sulfur molar ratio were examined. The rates of the catalytic oxidative desulfurization reaction were found to increase with the temperature, and H{sub 2}O{sub 2}/S molar ratio. Under the best operating condition for the catalytic oxidative desulfurization: temperature 50 C, atmospheric pressure, 0.5 g activated carbon, 3 mol ratio of hydrogen peroxide to sulfur, 2 mol ratio of acetic acid to sulfur, 3 oxidation cycles with 1 h for each cycle using acetonitrile as extraction solvent, the sulfur content in diesel was reduced from 2189 ppm to 190 ppm with 91.3% of total sulfur removed. (author)

  10. Preparation of Pt Ag alloy nanoisland/graphene hybrid composites and its high stability and catalytic activity in methanol electro-oxidation

    Directory of Open Access Journals (Sweden)

    Feng Lili

    2011-01-01

    Full Text Available Abstract In this article, PtAg alloy nanoislands/graphene hybrid composites were prepared based on the self-organization of Au@PtAg nanorods on graphene sheets. Graphite oxides (GO were prepared and separated to individual sheets using Hummer's method. Graphene nano-sheets were prepared by chemical reduction with hydrazine. The prepared PtAg alloy nanomaterial and the hybrid composites with graphene were characterized by SEM, TEM, and zeta potential measurements. It is confirmed that the prepared Au@PtAg alloy nanorods/graphene hybrid composites own good catalytic function for methanol electro-oxidation by cyclic voltammograms measurements, and exhibited higher catalytic activity and more stability than pure Au@Pt nanorods and Au@AgPt alloy nanorods. In conclusion, the prepared PtAg alloy nanoislands/graphene hybrid composites own high stability and catalytic activity in methanol electro-oxidation, so that it is one kind of high-performance catalyst, and has great potential in applications such as methanol fuel cells in near future.

  11. Hysteresis losses in iron oxide nanoparticles prepared by glass crystallization or wet chemical precipitation

    International Nuclear Information System (INIS)

    Mueller, Robert; Dutz, Silvio; Hergt, Rudolf; Schmidt, Christopher; Steinmetz, Hanna; Zeisberger, Matthias; Gawalek, Wolfgang

    2007-01-01

    Ferrofluids were prepared from glass crystallized as well as wet precipitated iron oxide particles. Comparing hysteresis losses versus applied field amplitude from particles in immobilized state (powder) and in fluid state (ferrofluid) shows in some cases anomalous large losses at low magnetic fields. The influence of texture on the losses was investigated

  12. The decomposition of mixed oxide Ag2Cu2O3: Structural features and the catalytic properties in CO and C2H4 oxidation

    Science.gov (United States)

    Svintsitskiy, Dmitry A.; Kardash, Tatyana Yu.; Slavinskaya, Elena M.; Stonkus, Olga A.; Koscheev, Sergei V.; Boronin, Andrei I.

    2018-01-01

    The mixed silver-copper oxide Ag2Cu2O3 with a paramelaconite crystal structure is a promising material for catalytic applications. The as-prepared sample of Ag2Cu2O3 consisted of brick-like particles extended along the [001] direction. A combination of physicochemical techniques such as TEM, XPS and XRD was applied to investigate the structural features of this mixed silver-copper oxide. The thermal stability of Ag2Cu2O3 was investigated using in situ XRD under different reaction conditions, including a catalytic CO + O2 mixture. The first step of Ag2Cu2O3 decomposition was accompanied by the appearance of ensembles consisting of silver nanoparticles with sizes of 5-15 nm. Silver nanoparticles were strongly oriented to each other and to the surface of the initial Ag2Cu2O3 bricks. Based on the XRD data, it was shown that the release of silver occurred along the a and b axes of the paramelaconite structure. Partial decomposition of Ag2Cu2O3 accompanied by the formation of silver nanoparticles was observed during prolonged air storage under ambient conditions. The high reactivity is discussed as a reason for spontaneous decomposition during Ag2Cu2O3 storage. The full decomposition of the mixed oxide into metallic silver and copper (II) oxide took place at temperatures higher than 300 °C regardless of the nature of the reaction medium (helium, air, CO + O2). Catalytic properties of partially and fully decomposed samples of mixed silver-copper oxide were measured in low-temperature CO oxidation and C2H4 epoxidation reactions.

  13. Oxidation of mercury across selective catalytic reduction catalysts in coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Constance L. Senior [Reaction Engineering International, Salt Lake City, UT (United States)

    2006-01-15

    A kinetic model for predicting the amount of mercury (Hg) oxidation across selective catalytic reduction (SCR) systems in coal-fired power plants was developed and tested. The model incorporated the effects of diffusion within the porous SCR catalyst and the competition between ammonia and Hg for active sites on the catalyst. Laboratory data on Hg oxidation in simulated flue gas and slipstream data on Hg oxidation in flue gas from power plants were modeled. The model provided good fits to the data for eight different catalysts, both plate and monolith, across a temperature range of 280-420{sup o}C, with space velocities varying from 1900 to 5000 hr{sup -1}. Space velocity, temperature, hydrochloric acid content of the flue gas, ratio of ammonia to nitric oxide, and catalyst design all affected Hg oxidation across the SCR catalyst. The model can be used to predict the impact of coal properties, catalyst design, and operating conditions on Hg oxidation across SCRs. 20 refs., 9 figs., 2 tabs.

  14. Wet oxidative degradation of cellulosic wastes 5- chemical and thermal properties of the final waste forms

    International Nuclear Information System (INIS)

    Eskander, S.B.; Saleh, H.M.

    2002-01-01

    In this study, the residual solution arising from the wet oxidative degradation of solid organic cellulosic materials, as one of the component of radioactive solid wastes, using hydrogen peroxide as oxidant. Were incorporated into ordinary Portland cement matrix. Leaching as well as thermal characterizations of the final solidified waste forms were evaluated to meet the final disposal requirements. Factors, such as the amount of the residual solution incorporated, types of leachant. Release of different radionuclides and freezing-thaw treatment, that may affect the leaching characterization. Were studied systematically from the data obtained, it was found that the final solid waste from containing 35% residual solution in tap water is higher than that in ground water or sea water. Based on the data obtained from thermal analysis, it could be concluded that incorporating the residual solution form the wet oxidative degradation of cellulosic materials has no negative effect on the hydration of cement materials and consequently on the thermal stability of the final solid waste from during the disposal process

  15. Wet Oxidation Pretreatment of Tobacco Stalks and Orange Waste for Bioethanol Production. Preliminary results

    DEFF Research Database (Denmark)

    Martin, Carlos; Fernandez, Teresa; Garcia, Ariel

    2009-01-01

    Wet oxidation (WO) was used as a pretreatment method prior to enzymatic hydrolysis of tobacco stalks and orange waste. The pretreatment, performed at 195 degrees C and an oxygen pressure of 1.2 MPa, for 15 min, in the presence of Na2CO3, increased the cellulose content of the materials and gave c...

  16. Full scale calcium bromide injection with subsequent mercury oxidation and removal within wet flue gas desulphurization system: Experience at a 700 MW coal-fired power facility

    Science.gov (United States)

    Berry, Mark Simpson

    The Environmental Protection Agency promulgated the Mercury and Air Toxics Standards rule, which requires that existing power plants reduce mercury emissions to meet an emission rate of 1.2 lb/TBtu on a 30-day rolling average and that new plants meet a 0.0002 lb/GWHr emission rate. This translates to mercury removals greater than 90% for existing units and greater than 99% for new units. Current state-of-the-art technology for the control of mercury emissions uses activated carbon injected upstream of a fabric filter, a costly proposition. For example, a fabric filter, if not already available, would require a 200M capital investment for a 700 MW size unit. A lower-cost option involves the injection of activated carbon into an existing cold-side electrostatic precipitator. Both options would incur the cost of activated carbon, upwards of 3M per year. The combination of selective catalytic reduction (SCR) reactors and wet flue gas desulphurization (wet FGD) systems have demonstrated the ability to substantially reduce mercury emissions, especially at units that burn coals containing sufficient halogens. Halogens are necessary for transforming elemental mercury to oxidized mercury, which is water-soluble. Plants burning halogen-deficient coals such as Power River Basin (PRB) coals currently have no alternative but to install activated carbon-based approaches to control mercury emissions. This research consisted of investigating calcium bromide addition onto PRB coal as a method of increasing flue gas halogen concentration. The treated coal was combusted in a 700 MW boiler and the subsequent treated flue gas was introduced into a wet FGD. Short-term parametric and an 83-day longer-term tests were completed to determine the ability of calcium bromine to oxidize mercury and to study the removal of the mercury in a wet FGD. The research goal was to show that calcium bromine addition to PRB coal was a viable approach for meeting the Mercury and Air Toxics Standards rule

  17. On the degradability of printing and dyeing wastewater by wet air oxidation.

    Science.gov (United States)

    Hu, X; Lei, L; Chen, G; Yue, P L

    2001-06-01

    A modified first-order kinetics model was used to study the wet air oxidation of printing and dyeing wastewater. The model simulations are in good agreement with experimental data. The results indicate that a certain fraction of organic pollutants in the printing and dyeing wastewater could not be removed even at elevated temperature and prolonged reaction time. The ratio of degradable organic matter is found independent of temperature and can be improved by using a catalyst.

  18. Subcritical wet air oxidation of organic solvents and chelating agents of the nuclear fuel

    International Nuclear Information System (INIS)

    Bachir, Souley

    1999-01-01

    This document deals with the environment control, more specially organic solvents and chelating agents destruction, employed in the nuclear industry. This work details the subcritical wet air oxidation process. Another part of the document deals with the possible coupling between this process and the biodegradation technic in the framework of the sewage sludges treatment. (A.L.B.)

  19. Communication: Towards catalytic nitric oxide reduction via oligomerization on boron doped graphene

    Energy Technology Data Exchange (ETDEWEB)

    Cantatore, Valentina, E-mail: valcan@chalmers.se; Panas, Itai [Department of Chemistry and Chemical Engineering, Energy & Materials, Chalmers University of Technology, Gothenburg (Sweden)

    2016-04-21

    We use density functional theory to describe a novel way for metal free catalytic reduction of nitric oxide NO utilizing boron doped graphene. The present study is based on the observation that boron doped graphene and O—N=N—O{sup −} act as Lewis acid-base pair allowing the graphene surface to act as a catalyst. The process implies electron assisted N=N bond formation prior to N—O dissociation. Two N{sub 2} + O{sub 2} product channels, one of which favoring N{sub 2}O formation, are envisaged as outcome of the catalytic process. Besides, we show also that the N{sub 2} + O{sub 2} formation pathways are contrasted by a side reaction that brings to N{sub 3}O{sub 3}{sup −} formation and decomposition into N{sub 2}O + NO{sub 2}{sup −}.

  20. Catalytic Wittig and aza-Wittig reactions

    Directory of Open Access Journals (Sweden)

    Zhiqi Lao

    2016-11-01

    Full Text Available This review surveys the literature regarding the development of catalytic versions of the Wittig and aza-Wittig reactions. The first section summarizes how arsenic and tellurium-based catalytic Wittig-type reaction systems were developed first due to the relatively easy reduction of the oxides involved. This is followed by a presentation of the current state of the art regarding phosphine-catalyzed Wittig reactions. The second section covers the field of related catalytic aza-Wittig reactions that are catalyzed by both phosphine oxides and phosphines.

  1. Reaction mechanisms at 4H-SiC/SiO2 interface during wet SiC oxidation

    Science.gov (United States)

    Akiyama, Toru; Hori, Shinsuke; Nakamura, Kohji; Ito, Tomonori; Kageshima, Hiroyuki; Uematsu, Masashi; Shiraishi, Kenji

    2018-04-01

    The reaction processes at the interface between SiC with 4H structure (4H-SiC) and SiO2 during wet oxidation are investigated by electronic structure calculations within the density functional theory. Our calculations for 4H-SiC/SiO2 interfaces with various orientations demonstrate characteristic features of the reaction depending on the crystal orientation of SiC: On the Si-face, the H2O molecule is stable in SiO2 and hardly reacts with the SiC substrate, while the O atom of H2O can form Si-O bonds at the C-face interface. Two OH groups are found to be at least necessary for forming new Si-O bonds at the Si-face interface, indicating that the oxidation rate on the Si-face is very low compared with that on the C-face. On the other hand, both the H2O molecule and the OH group are incorporated into the C-face interface, and the energy barrier for OH is similar to that for H2O. By comparing the calculated energy barriers for these reactants with the activation energies of oxide growth rate, we suggest the orientation-dependent rate-limiting processes during wet SiC oxidation.

  2. Preparation of carbon nanotube-neodymium oxide composite and research on its catalytic performance

    International Nuclear Information System (INIS)

    Zhao Lei; Wang Zhihua; Han Dongmei; Tao Dongliang; Guo Guangsheng

    2009-01-01

    Carbon Nanotube-Neodymium Oxide (CNT-Nd 2 O 3 ) composite was prepared by using acid treated carbon nanotubes (CNTs) and neodymium nitrate in the presence of sodium dodecyl sulfate and ammonia liquid. Techniques of transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and differential thermal analysis (DTA) are used to characterize the morphology, structure, composition and catalytic property of the CNT-Nd 2 O 3 composite. The experimental results show that the Nd 2 O 3 nanoparticles, which have an average diameter of about 30-40 nm, are loaded on the surface of carbon nanotube. Compared with pure Nd 2 O 3 nanorods, the CNT-Nd 2 O 3 composite can catalyze the thermal decomposition of ammonium perchlorate more effectively. The sampling methods of the experimental samples made a difference on the catalytic experiment results, and the best catalytic result was obtained when de-ionized water served as the solvent of ammonium perchlorate

  3. Enhanced photo-catalytic activity of ordered mesoporous indium oxide nanocrystals in the conversion of CO2 into methanol.

    Science.gov (United States)

    Gondal, M A; Dastageer, M A; Oloore, L E; Baig, U; Rashid, S G

    2017-07-03

    Ordered mesoporous indium oxide nanocrystal (m-In 2 O 3 ) was synthesized by nanocasting technique, in which highly ordered mesoporous silca (SBA-15) was used as structural matrix. X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halanda (BJH) studies were carried out on m-In 2 O 3 and the results revealed that this material has a highly ordered mesoporous surface with reduced grain size, increased surface area and surface volume compared to the non porous indium oxide. The diffuse reluctance spectrum exhibited substantially improved light absorption efficiency in m-In 2 O 3 compared to normal indium oxide, however, no considerable change in the band gap energies of these materials was observed. When m-In 2 O 3 was used as a photo-catalyst in the photo-catalytic process of converting carbon dioxide (CO 2 ) into methanol under the pulsed laser radiation of 266-nm wavelengths, an enhanced photo-catalytic activity with the quantum efficiency of 4.5% and conversion efficiency of 46.3% were observed. It was found that the methanol production yield in this chemical process is as high as 485 µlg -1 h -1 after 150 min of irradiation, which is substantially higher than the yields reported in the literature. It is quite clear from the results that the introduction of mesoporosity in indium oxide, and the consequent enhancement of positive attributes required for a photo-catalyst, transformed photo-catalytically weak indium oxide into an effective photo-catalyst for the conversion of CO 2 into methanol.

  4. Graphene oxide nanoplatforms to enhance catalytic performance of iron phthalocyanine for oxygen reduction reaction in bioelectrochemical systems

    Science.gov (United States)

    Costa de Oliveira, Maida Aysla; Mecheri, Barbara; D'Epifanio, Alessandra; Placidi, Ernesto; Arciprete, Fabrizio; Valentini, Federica; Perandini, Alessando; Valentini, Veronica; Licoccia, Silvia

    2017-07-01

    We report the development of electrocatalysts based on iron phthalocyanine (FePc) supported on graphene oxide (GO), obtained by electrochemical oxidation of graphite in aqueous solution of LiCl, LiClO4, and NaClO4. Structure, surface chemistry, morphology, and thermal stability of the prepared materials were investigated by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, atomic force microscopy (AFM), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The catalytic activity toward oxygen reduction reaction (ORR) at neutral pH was evaluated by cyclic voltammetry. The experimental results demonstrate that the oxidation degree of GO supports affects the overall catalytic activity of FePc/GO, due to a modulation effect of the interaction between FePc and the basal plane of GO. On the basis of electrochemical, spectroscopic, and morphological investigations, FePc/GO_LiCl was selected to be assembled at the cathode side of a microbial fuel cell prototype, demonstrating a good electrochemical performance in terms of voltage and power generation.

  5. Evaluation on nitrogen oxides and nanoparticle removal and nitrogen monoxide generation using a wet-type nonthermal plasma reactor

    Science.gov (United States)

    Takehana, Kotaro; Kuroki, Tomoyuki; Okubo, Masaaki

    2018-05-01

    Nitrogen oxides (NOx) emitted from power plants and combustion sources cause air pollution problems. Selective catalytic reduction technology is remarkably useful for NOx removal. However, there are several drawbacks such as preparation of reducing agents, usage of harmful heavy metals, and higher cost. On the other hand, trace NO is a vasodilator agent and employed in inhalation therapies for treating pulmonary hypertension in humans. Considering these factors, in the present study, a wet-type nonthermal plasma reactor, which can control NOx and nanoparticle emissions and generate NO, is investigated. The fundamental characteristics of the reactor are investigated. First, the experiment of nanoparticle removal is carried out. Collection efficiencies of over 99% are achieved for nanoparticles at 50 and 100 ml min‑1 of liquid flow rates. Second, experiments of NOx removal under air atmosphere and NOx generation under nitrogen atmosphere are carried out. NOx-removal efficiencies of over 95% under the air plasma are achieved in 50–200 ml min‑1 liquid flow rates. Moreover, under nitrogen plasma, NOx is generated, of which the major portion is NO. For example, NO concentration is 25 ppm, while NOx concentration is 31 ppm at 50 ml min‑1 liquid flow rate. Finally, experiments of NO generation under the nitrogen atmosphere with or without flowing water are carried out. When water flows on the inner surface of the reactor, approximately 14 ppm of NO is generated. Therefore, NO generation requires flowing water. It is considered that the reaction of N and OH, which is similar to the extended Zeldovich mechanism, could occur to induce NO formation. From these results, it is verified that the wet-type plasma reactor is useful for NOx removal and NO generation under nitrogen atmosphere with flowing water.

  6. Catalytic properties of nickel ferrites for oxidation of glucose, β-nicotiamide adenine dinucleotide (NADH) and methanol

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, R. [Departamento de Química, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, C.P. 36040 Guanajuato, Gto (Mexico); Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco s/n, C.P. 28049 Madrid (Spain); Gutiérrez, S. [Departamento de Química, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, C.P. 36040 Guanajuato, Gto (Mexico); Menéndez, N. [Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco s/n, C.P. 28049 Madrid (Spain); Herrasti, P., E-mail: pilar.herrasti@uam.es [Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco s/n, C.P. 28049 Madrid (Spain)

    2014-02-15

    Highlights: ► NiFe{sub 2}O{sub 4} nanoparticles obtained by electrochemical method are effective catalyst. ► A partially inverse spinel was obtained with 57% Fe{sup 3+} in tetrahedral position. ► A non-enzymatic electrode using NiFe{sub 2}O{sub 4} nanoparticles has been manufactured. -- Abstract: Nickel ferrite nanoparticles (NiFe{sub 2}O{sub 4}) were synthesized by electrochemical method and used as catalyst for direct oxidation of glucose, NADH and methanol. Characterization of these nanoparticles was carried out by X-ray diffraction, Mössbauer spectroscopy, and colloidal properties such as hydrodynamic radius and Zeta potential. To evaluate the catalytic properties of these nanoparticles against the oxidation process, paste graphite electrodes mixing nickel ferrites and different conductive materials (graphite, carbon nanotubes) and binders agents (mineral oil, 1-octylpyridinium hexafluorophosphate (nOPPF6)) were used. The results prove good catalytic properties of these materials, with an oxidation potential around 0.75, 0.5 and 0.8 V for glucose, NADH, and methanol, respectively.

  7. Room-temperature synthesis and enhanced catalytic performance of silver-reduced graphene oxide nanohybrids

    International Nuclear Information System (INIS)

    Thu, Tran Viet; Ko, Pil Ju; Phuc, Nguyen Huu Huy; Sandhu, Adarsh

    2013-01-01

    The synthesis of supported, ultrasmall metallic nanoparticles (NPs) is of great importance for catalytic applications. In this study, silver-reduced graphene oxide nanohybrids (Ag–rGO NHs) were prepared by reducing Ag ions and graphene oxide (GO) at room temperature using sodium borohydride (NaBH 4 ) and trisodium citrate. The resulting products were characterized using UV–Vis spectroscopy, X-ray diffraction, Raman spectroscopy, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and X-ray photoelectron spectroscopy. The rich chemistry of GO surface provided many sites for the nucleation of Ag ions and efficiently limited their growth. Ag NPs were uniformly grown on basal planes of rGO with a high density (∼1,700 NPs μm −2 ) and well-defined size (3.6 ± 0.6 nm) as evidenced in SEM and HRTEM studies. The resulting Ag–rGO NHs were readily dispersed in water and exhibited enhanced catalytic activity toward the reduction of 4-nitrophenol by NaBH 4 in comparison to unsupported Ag NPs. The role of rGO as an excellent support for Ag catalyst is discussed

  8. Room-temperature synthesis and enhanced catalytic performance of silver-reduced graphene oxide nanohybrids

    Energy Technology Data Exchange (ETDEWEB)

    Thu, Tran Viet, E-mail: thu@eiiris.tut.ac.jp; Ko, Pil Ju, E-mail: ko@eiiris.tut.ac.jp [Toyohashi University of Technology, Electronics-Inspired Interdisciplinary Research Institute (Japan); Phuc, Nguyen Huu Huy [Toyohashi University of Technology, Department of Electrical and Electronic Information Engineering (Japan); Sandhu, Adarsh [Toyohashi University of Technology, Electronics-Inspired Interdisciplinary Research Institute (Japan)

    2013-10-15

    The synthesis of supported, ultrasmall metallic nanoparticles (NPs) is of great importance for catalytic applications. In this study, silver-reduced graphene oxide nanohybrids (Ag-rGO NHs) were prepared by reducing Ag ions and graphene oxide (GO) at room temperature using sodium borohydride (NaBH{sub 4}) and trisodium citrate. The resulting products were characterized using UV-Vis spectroscopy, X-ray diffraction, Raman spectroscopy, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and X-ray photoelectron spectroscopy. The rich chemistry of GO surface provided many sites for the nucleation of Ag ions and efficiently limited their growth. Ag NPs were uniformly grown on basal planes of rGO with a high density ({approx}1,700 NPs {mu}m{sup -2}) and well-defined size (3.6 {+-} 0.6 nm) as evidenced in SEM and HRTEM studies. The resulting Ag-rGO NHs were readily dispersed in water and exhibited enhanced catalytic activity toward the reduction of 4-nitrophenol by NaBH{sub 4} in comparison to unsupported Ag NPs. The role of rGO as an excellent support for Ag catalyst is discussed.

  9. Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Klinke, Helene Bendstrup; Thomsen, A.B.; Ahring, Birgitte Kiær

    2001-01-01

    Alkaline wet oxidation (WO) (using water, 6.5 g/l sodium carbonate, and 12 bar oxygen at 195 degreesC) was used for pre-treating wheat straw (60 g/l), resulting in a hemicellulose-rich hydrolysate and a cellulose-rich solid fraction. The hydrolysate consisted of soluble hemicellulose (9 g....../l), aliphatic carboxylic acids (6 g/l), phenols (0.27 g/l or 1.7 mM), and 2-furoic acid (0.007 g/l). The wet-oxidized wheat straw hydrolysate caused no inhibition of ethanol yield by the anaerobic thermophilic bacterium Thermoanaerobacter mathranii. Nine phenols and 2-furoic acid, identified to be present...

  10. Electrochemical promotion of sulfur dioxide catalytic oxidation

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bandur, Viktor; Cappeln, Frederik Vilhelm

    2000-01-01

    investigation was to study a possible non-Faradaic electrochemical promotion of the liquid-phase catalytic reaction. It has been shown that there are two negative potential promotion areas with maximum effects at approximately -0.1 and -0.2 V, and one positive potential promotion area with the maximum effect...... between 0.1 and 0.3 V. There were no Faradaic reactions in the negative polarization region, and there was an anodic current which was less than 16% of the theoretical value for an exclusively Faradaic SO2 oxidation. Therefore the promotion effects at negative polarization are completely non-Faradaic. All...... the promotion effects have been explained as mainly due to charging of the electric double layer at the gold electrode. The effect at -0.2 V also depends on the V2O5 concentration and is more pronounced at higher V2O5 concentrations. This has been ascribed to a destruction of the vanadium polymeric chains...

  11. Synergy of iron and copper oxides in the catalytic formation of PCDD/Fs from 2-monochlorophenol.

    Science.gov (United States)

    Potter, Phillip M; Guan, Xia; Lomnicki, Slawomir M

    2018-07-01

    Transition metal oxides present in waste incineration systems have the ability to catalyze the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) through surface reactions involving organic dioxin precursors. However, studies have concentrated on the catalytic effects of individual transition metal oxides, while the complex elemental composition of fly ash introduces the possibility of synergistic or inhibiting effects between multiple, catalytically active components. In this study, we have tested fly ash surrogates containing different ratios (by weight) of iron (III) oxide and copper (II) oxide. Such Fe 2 O 3 /CuO mixed-oxide surrogates (in the Fe:Cu ratio of 3.5, 0.9 and 0.2 ) were used to study the cooperative effects between two transition metals that are present in high concentrations in most combustion systems and are known to individually catalyze the formation of PCDD/Fs. The presence of both iron and copper oxides increased the oxidative power of the fly ash surrogates in oxygen rich conditions and led to extremely high PCDD/F yields under pyrolytic conditions (up to >5% yield) from 2-monochlorophenol precursor. PCDD/F congener profiles from the mixed oxide samples are similar to results obtained from only CuO, however the total PCDD/F yield increases with increasing Fe 2 O 3 content. Careful analysis of the reaction products and changes to the oxidation states of active metals indicate the CuO surface sites are centers for reaction while the Fe 2 O 3 is affecting the bonds in CuO and increasing the ability of copper centers to form surface-bound radicals that are precursors to PCDD/Fs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Influence of Rare Earth Doping on the Structural and Catalytic Properties of Nanostructured Tin Oxide

    Directory of Open Access Journals (Sweden)

    Maciel Adeilton

    2008-01-01

    Full Text Available AbstractNanoparticles of tin oxide, doped with Ce and Y, were prepared using the polymeric precursor method. The structural variations of the tin oxide nanoparticles were characterized by means of nitrogen physisorption, carbon dioxide chemisorption, X-ray diffraction, and X-ray photoelectron spectroscopy. The synthesized samples, undoped and doped with the rare earths, were used to promote the ethanol steam reforming reaction. The SnO2-based nanoparticles were shown to be active catalysts for the ethanol steam reforming. The surface properties, such as surface area, basicity/base strength distribution, and catalytic activity/selectivity, were influenced by the rare earth doping of SnO2and also by the annealing temperatures. Doping led to chemical and micro-structural variations at the surface of the SnO2particles. Changes in the catalytic properties of the samples, such as selectivity toward ethylene, may be ascribed to different dopings and annealing temperatures.

  13. Catalytic Oxidation of Toluene on Hydrothermally Prepared Ceria Nanocrystals

    Directory of Open Access Journals (Sweden)

    M. Duplančić

    2018-01-01

    Full Text Available Ceria nanocrystals were prepared hydrothermally and tested as potential catalysts for oxidation of volatile organic compounds using toluene as a model compound. Pure ceria with a crystallite size of 4 nm, determined by the Scherrer method from XRD pattern has been obtained. The specific surface area of the prepared nanoparticles determined by BET analysis yielded 201 m2 g–1, while the band gap of 3.2 eV was estimated from DRS spectrum via Tauc’s plot. Catalytic tests were performed on calcined ceria (500 °C with increased crystallite size (9 nm caused by thermal treatment. The tests showed good activities for the toluene oxidation with T50 temperatures, corresponding to 50 % toluene conversion, observed at 250 °C and even lower temperatures depending on the total flow rate of the gas mixture. The one-dimensional pseudo-homogeneous model of the fixed bed reactor was proposed to describe the reactor performance and the appropriate kinetic parameters were estimated. Good agreement between experimental data and the proposed model was observed.

  14. Electrochemical, H2O2-Boosted Catalytic Oxidation System

    Science.gov (United States)

    Akse, James R.; Thompson, John O.; Schussel, Leonard J.

    2004-01-01

    An improved water-sterilizing aqueous-phase catalytic oxidation system (APCOS) is based partly on the electrochemical generation of hydrogen peroxide (H2O2). This H2O2-boosted system offers significant improvements over prior dissolved-oxygen water-sterilizing systems in the way in which it increases oxidation capabilities, supplies H2O2 when needed, reduces the total organic carbon (TOC) content of treated water to a low level, consumes less energy than prior systems do, reduces the risk of contamination, and costs less to operate. This system was developed as a variant of part of an improved waste-management subsystem of the life-support system of a spacecraft. Going beyond its original intended purpose, it offers the advantage of being able to produce H2O2 on demand for surface sterilization and/or decontamination: this is a major advantage inasmuch as the benign byproducts of this H2O2 system, unlike those of systems that utilize other chemical sterilants, place no additional burden of containment control on other spacecraft air- or water-reclamation systems.

  15. Methods and apparatus for catalytic hydrothermal gasification of biomass

    Science.gov (United States)

    Elliott, Douglas C.; Butner, Robert Scott; Neuenschwander, Gary G.; Zacher, Alan H.; Hart, Todd R.

    2012-08-14

    Continuous processing of wet biomass feedstock by catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent separation of sulfur contaminants, or combinations thereof. Treatment further includes separating the precipitates out of the wet feedstock, removing sulfur contaminants, or both using a solids separation unit and a sulfur separation unit, respectively. Having removed much of the inorganic wastes and the sulfur that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

  16. Rare earth oxide aero- and xerogels. Tuning porosity and catalytic properties

    International Nuclear Information System (INIS)

    Neumann, Bjoern

    2013-11-01

    Heterogeneous catalysts to this day are still largely developed on the basis of trial and error. This is due to the great difficulty of creating custom-designed structures at the nanometer scale using traditional preparation methods. In the course of recent rapid developments in the material sciences, however, it has become possible to create materials with custom-designed properties from the macroscopic down into the nanometer range. The purpose of the present study was to make use of this potential for catalysis. The task was to modify the porosity and composition of selected rare earth oxides that promise well as catalysts with the goal of obtaining good results in terms of oxidative reactions and oxidative coupling. One major focus was on chemical sol-gel methods and in particular on what is referred to as the epoxide addition method. Extensive work was put into the characterisation and catalytic testing of aerogels and xerogels of pure rare earth oxides as well as of hybrid systems of rare earth oxides and aluminium oxide. Furthermore, thin xerogel films and macroporous monoliths were produced, the latter using a direct foaming method. The results of this work confirm the high potential of sol-gel chemistry for making porous materials of variable and controllable porosity and composition available for heterogeneous catalysis and creating more powerful catalysts. [de

  17. Catalytic properties of new anode materials for solid oxide fuel cells operated under methane at intermediary temperature

    Science.gov (United States)

    Sauvet, A.-L.; Fouletier, J.

    The recent trend in solid oxide fuel cell concerns the use of natural gas as fuel. Steam reforming of methane is a well-established process for producing hydrogen directly at the anode side. In order to develop new anode materials, the catalytic activities of several oxides for the steam reforming of methane were characterized by gas chromatography. We studied the catalytic activity as a function of steam/carbon ratios r. The methane and the steam content were varied between 5 and 30% and between 1.5 and 3.5%, respectively, corresponding to r-values between 0.07 and 0.7. Catalyst (ruthenium and vanadium)-doped lanthanum chromites substituted with strontium, gadolinium-doped ceria (Ce 0.9Gd 0.1O 2) referred as to CeGdO 2, praseodymium oxide, molybdenum oxide and copper oxide were tested. The working temperature was fixed at 850°C, except for 5% ruthenium-doped La 1- xSr xCrO 3 where the temperature was varied between 700 and 850°C. Two types of behavior were observed as a function of the activity of the catalyst. The higher steam reforming efficiency was observed with 5% of ruthenium above 750°C.

  18. Process options for treatment of organic containing ILWs by wet oxidation

    International Nuclear Information System (INIS)

    Holman, D.J.

    1989-01-01

    The process chemistry, applications and experience with several wet oxidation options are reviewed along with criteria for the selection of viable systems and plant designs, covering a range of organic wastes, including solvents, cellulosic filters, chelant decontamination reagents and ion exchange resins. The use of hydrogen peroxide to treat water-cooled reactor residues containing mixed inorganic and organic filter materials with ion exchange resins is examined in further detail along with treatment of secondary arisings. The technical and financial justifications for treatment are examined along with the engineering requirements to retro-fit the required plant to an existing cement encapsulation facility. (author)

  19. Bench scale demonstration and conceptual engineering for DETOXSM catalyzed wet oxidation

    International Nuclear Information System (INIS)

    Moslander, J.; Bell, R.; Robertson, D.; Dhooge, P.; Goldblatt, S.

    1994-01-01

    Laboratory and bench scale studies of the DETOX SM catalyzed wet oxidation process have been performed with the object of developing the process for treatment of hazardous and mixed wastes. Reaction orders, apparent rates, and activation energies have been determined for a range of organic waste surrogates. Reaction intermediates and products have been analyzed. Metals' fates have been determined. Bench scale units have been designed, fabricated, and tested with solid and liquid organic waste surrogates. Results from the laboratory and bench scale studies have been used to develop conceptual designs for application of the process to hazardous and mixed wastes

  20. An Overview of Recent Advances of the Catalytic Selective Oxidation of Ethane to Oxygenates

    Directory of Open Access Journals (Sweden)

    Robert D. Armstrong

    2016-05-01

    Full Text Available The selective partial oxidation of short chain alkanes is a key challenge within catalysis research. Direct ethane oxidation to oxygenates is a difficult aim, but potentially rewarding, and it could lead to a paradigm shift in the supply chain of several bulk chemicals. Unfortunately, low C–H bond reactivity and kinetically labile products are just some reasons affecting the development and commercialisation of such processes. Research into direct ethane oxidation is therefore disparate, with approaches ranging from oxidation in the gas phase at high temperatures to enzyme catalysed hydroxylation under ambient conditions. Furthermore, in overcoming the barrier posed by the chemically inert C–H bond a range of oxidants have been utilised. Despite years of research, this remains an intriguing topic from both academic and commercial perspectives. Herein we describe some recent developments within the field of catalytic ethane oxidation focusing on the formation of oxygenated products, whilst addressing the key challenges which are still to be overcome.

  1. Catalytic activity trends of CO oxidation – A DFT study

    DEFF Research Database (Denmark)

    Jiang, Tao

    theoretical study of CO oxidation with experimental studies. The latter shows promoted catalytic activity when gold particle size decreases to 5 nm. Oxidizing CO by N2O was found to involve a CO␣O transition state, with atomic O adsorbed on the gold B5 sites and CO on the corners. On the other hand, CO...... and experiment were found to be the same. The experiment findings are in good agreement with our theoretical calculations. The second part of the thesis focuses on improving the convergence property of Quasi-Newton algorithm. The eigenvalues of the Hessian matrix of 54 atoms bulk Cu model are calculated......, and the sizes of eigenvalues follow power-law distribution. It is found that the anharmonicity of the weak modes lead to poor Newton step and poor Hessian update in BFGS type Quasi-Newton algorithm, which slow down the geometry optimization. Line search that fulfills Wolff conditions is then applied to improve...

  2. Catalytic conversion of methane: Carbon dioxide reforming and oxidative coupling

    KAUST Repository

    Takanabe, Kazuhiro

    2012-01-01

    Natural gas conversion remains one of the essential technologies for current energy needs. This review focuses on the mechanistic aspects of the development of efficient and durable catalysts for two reactions, carbon dioxide reforming and the oxidative coupling of methane. These two reactions have tremendous technological significance for practical application in industry. An understanding of the fundamental aspects and reaction mechanisms of the catalytic reactions reviewed in this study would support the design of industrial catalysts. CO 2 reforming of methane utilizes CO 2, which is often stored in large quantities, to convert as a reactant. Strategies to eliminate carbon deposition, which is the major problem associated with this reaction, are discussed. The oxidative coupling of methane directly produces ethylene in one reactor through a slightly exothermic reaction, potentially minimizing the capital cost of the natural gas conversion process. The focus of discussion in this review will be on the attainable yield of C 2 products by rigorous kinetic analyses.

  3. Multi-Stage Selective Catalytic Reduction of NOx in Lean-Burn Engine Exhaust

    National Research Council Canada - National Science Library

    Penetrante, B

    1997-01-01

    .... A plasma can also be used to oxidize NO to NO2. This paper compares the multi-stage catalytic scheme with the plasma-assisted catalytic scheme for reduction of NOx in lean-burn engine exhausts. The advantages of plasma oxidation over catalytic oxidation are presented.

  4. Atomistic structure of cobalt-phosphate nanoparticles for catalytic water oxidation.

    Science.gov (United States)

    Hu, Xiao Liang; Piccinin, Simone; Laio, Alessandro; Fabris, Stefano

    2012-12-21

    Solar-driven water splitting is a key photochemical reaction that underpins the feasible and sustainable production of solar fuels. An amorphous cobalt-phosphate catalyst (Co-Pi) based on earth-abundant elements has been recently reported to efficiently promote water oxidation to protons and dioxygen, a main bottleneck for the overall process. The structure of this material remains largely unknown. We here exploit ab initio and classical atomistic simulations combined with metadynamics to build a realistic and statistically meaningful model of Co-Pi nanoparticles. We demonstrate the emergence and stability of molecular-size ordered crystallites in nanoparticles initially formed by a disordered Co-O network and phosphate groups. The stable crystallites consist of bis-oxo-bridged Co centers that assemble into layered structures (edge-sharing CoO(6) octahedra) as well as in corner- and face-sharing cubane units. These layered and cubane motifs coexist in the crystallites, which always incorporate disordered phosphate groups at the edges. Our computational nanoparticles, although limited in size to ~1 nm, can contain more than one crystallite and incorporate up to 18 Co centers in the cubane/layered structures. The crystallites are structurally stable up to high temperatures. We simulate the extended X-ray absorption fine structure (EXAFS) of our nanoparticles. Those containing several complete and incomplete cubane motifs-which are believed to be essential for the catalytic activity-display a very good agreement with the experimental EXAFS spectra of Co-Pi grains. We propose that the crystallites in our nanoparticles are reliable structural models of the Co-Pi catalyst surface. They will be useful to reveal the origin of the catalytic efficiency of these novel water-oxidation catalysts.

  5. Synthesis, Characterization and Shape-Dependent Catalytic CO Oxidation Performance of Ruthenium Oxide Nanomaterials: Influence of Polymer Surfactant

    Directory of Open Access Journals (Sweden)

    Antony Ananth

    2015-08-01

    Full Text Available Ruthenium oxide nano-catalysts supported on mesoporous γ-Al2O3 have been prepared by co-precipitation method and tested for CO oxidation. The effect of polyethylene glycol (PEG on the properties of the catalyst was studied. Addition of the PEG surfactant acted as a stabilizer and induced a change in the morphology of ruthenium oxide from spherical nanoparticles to one-dimensional nanorods. Total CO conversion was measured as a function of morphology at 175 °C and 200 °C with 1.0 wt.% loading for PEG-stabilized and un-stabilized catalysts, respectively. Conversion routinely increased with temperature but in each case, the PEG-stabilized catalyst exhibited a notably higher catalytic activity as compared to the un-stabilized equivalent. It can be assumed that the increase in the activity is due to the changes in porosity, shape and dispersion of the catalyst engendered by the use of PEG.

  6. Fabrication of Core-Shell Structural SiO2@H3[PM12O40] Material and Its Catalytic Activity

    Directory of Open Access Journals (Sweden)

    Xin Yang

    2014-01-01

    Full Text Available Through a natural tree grain template and sol-gel technology, the heterogeneous catalytic materials based on polyoxometalate compounds H3[PM12O40] encapsulating SiO2: SiO2@H3[PM12O40] (SiO2@PM12, M = W, Mo with core-shell structure had been prepared. The structure and morphology of the core-shell microspheres were characterized by the XRD, IR spectroscopy, UV-Vis absorbance, and SEM. These microsphere materials can be used as heterogeneous catalysts with high activity and stability for catalytic wet air oxidation of pollutant dyes safranine T (ST at room condition. The results show that the catalysts have excellent catalytic activity in treatment of wastewater containing 10 mg/L ST, and 94% of color can be removed within 60 min. Under different cycling runs, it is shown that the catalysts are stable under such operating conditions and the leaching tests show negligible leaching effect owing to the lesser dissolution.

  7. Effects of the wet air on the properties of the lanthanum oxide and lanthanum aluminate thin films

    International Nuclear Information System (INIS)

    Jun, Jin Hyung; Choi, Doo Jin

    2006-01-01

    Lanthanum oxide and lanthanum aluminate thin films were deposited on Si substrates. The as-grown films were stored in wet ambient and dry ambient for days and annealed after storage and also the structural and the electrical properties of the films were investigated. As the storage time increased, the La 2 O 3 films stored in wet ambient showed rapid reaction with moisture and the properties degraded. In case of the LAO films, although the thickness of the film also increased during hydration, the properties of the film did not so much changed due to the role of the incorporated aluminum. The LAO films showed better hydration resistance characteristics and so more suitable for conventional wet cleaning process in semiconductor fabrication

  8. Enhancement of the catalytic activity of Pt nanoparticles toward methanol electro-oxidation using doped-SnO2 supporting materials

    Science.gov (United States)

    Merati, Zohreh; Basiri Parsa, Jalal

    2018-03-01

    Catalyst supports play important role in governing overall catalyst activity and durability. In this study metal oxides (SnO2, Sb and Nb doped SnO2) were electrochemically deposited on titanium substrate (Ti) as a new support material for Pt catalyst in order to electro-oxidation of methanol. Afterward platinum nanoparticles were deposited on metal oxide film via electro reduction of platinum salt in an acidic solution. The surface morphology of modified electrodes were evaluated by field-emission scanning electron microscopy (FESEM) and energy dispersive X-ray analysis (EDX) techniques. The electro-catalytic activities of prepared electrodes for methanol oxidation reaction (MOR) and oxidation of carbon monoxide (CO) absorbed on Pt was considered with cyclic voltammetry. The results showed high catalytic activity for Pt/Nb-SnO2/Ti electrode. The electrochemical surface area (ECSA) of a platinum electro-catalyst was determined by hydrogen adsorption. Pt/Nb-SnO2/Ti electrode has highest ECSA compared to other electrode resulting in high activity toward methanol electro-oxidation and CO stripping experiments. The doping of SnO2 with Sb and Nb improved ECSA and MOR activity, which act as electronic donors to increase electronic conductivity.

  9. Precision Recess of AlGaN/GaN with Controllable Etching Rate Using ICP-RIE Oxidation and Wet Etching

    NARCIS (Netherlands)

    Sokolovskij, R.; Sun, J.; Santagata, F.; Iervolino, E.; Li, S.; Zhang, G.Y.; Sarro, P.M.; Zhang, G.Q.

    2016-01-01

    A method for highly controllable etching of AlGaN/GaN for the fabrication of high sensitivity HEMT based sensors is developed. The process consists of cyclic oxidation of nitride with O2 plasma using ICP-RIE etcher followed by wet etching of the oxidized layer. Previously reported

  10. Preparation, Characterization, and Catalytic Activity of MoCo/USY Catalyst on Hydrodeoxygenation Reaction of Anisole

    Science.gov (United States)

    Nugrahaningtyas, K. D.; Suharbiansah, R. S. R.; Rahmawati, F.

    2018-03-01

    This research aims to prepare, characterize, and study the catalytic activity of Molybdenum (Mo) and Cobalt (Co) metal with supporting material Ultra Stable Y-Zeolite (USY), to produce catalysts with activity in hydrotreatment reaction and in order to eliminate impurities compounds that containing unwanted groups heteroatoms. The bimetallic catalysts MoCo/USY were prepared by wet impregnation method with weight variation of Co metal 0%, 2%, 4%, 6%, 8%, and Mo metal 8% (w/w), respectively. Activation method of the catalyst included calcination, oxidation, reduction and the crystallinity was characterized using X-ray diffraction (XRD), the acidity of the catalyst was analyzed using Fourier Transform Infrared Spectroscopy (FT-IR) and gravimetry method, minerals present in the catalyst was analyzed using X-Ray Fluorescence (XRF), and surface of the catalyst was analyzed using Surface Area Analyzer (SAA). Catalytic activity test (benzene yield product) of MoCo/USY on hydrodeoxigenation reaction of anisole aimed to determine the effect of Mo-Co/USY for catalytic activity in the reaction hydrodeoxigenation (HDO) anisole. Based on characterization and test of catalytic activity, it is known that catalytic of MoCo/USY 2% (catalyst B) shows best activities with acidity of 10.209 mmol/g, specific area of catalyst of 426.295 m2/g, pore average of 14.135 Å, total pore volume 0.318 cc/g, and total yield of HDO products 6.06%.

  11. Influence of Halogen Substituents on the Catalytic Oxidation of 2,4,6-Halogenated Phenols by Fe(III-Tetrakis(p-hydroxyphenyl porphyrins and Potassium Monopersulfate

    Directory of Open Access Journals (Sweden)

    Seiya Nagao

    2011-12-01

    Full Text Available The influence of halogen substituents on the catalytic oxidation of 2,4,6-trihalogenated phenols (TrXPs by iron(III-porphyrin/KHSO5 catalytic systems was investigated. Iron(III-5,10,15,20-tetrakis(p-hydroxyphenylporphyrin (FeTHP and its supported variants were employed, where the supported catalysts were synthesized by introducing FeTHP into hydroquinone-derived humic acids via formaldehyde poly-condensation. F (TrFP, Cl (TrCP, Br (TrBP and I (TrIP were examined as halogen substituents for TrXPs. Although the supported catalysts significantly enhanced the degradation and dehalogenation of TrFP and TrCP, the oxidation of TrBP and TrIP was not enhanced, compared to the FeTHP catalytic system. These results indicate that the degree of oxidation of TrXPs is strongly dependent on the types of halogen substituent. The order of dehalogenation levels for halogen substituents in TrXPs was F > Cl > Br > I, consistent with their order of electronegativity. The electronegativity of a halogen substituent affects the nucleophilicity of the carbon to which it is attached. The levels of oxidation products in the reaction mixtures were analyzed by GC/MS after extraction with n-hexane. The most abundant dimer product from TrFP via 2,6-difluoroquinone is consistent with a scenario where TrXP, with a more electronegative halogen substituent, is readily oxidized, while less electronegative halogen substituents are oxidized less readily by iron(III-porphyrin/KHSO5 catalytic systems.

  12. In-situ XPS analysis of oxidized and reduced plasma deposited ruthenium-based thin catalytic films

    Science.gov (United States)

    Balcerzak, Jacek; Redzynia, Wiktor; Tyczkowski, Jacek

    2017-12-01

    A novel in-situ study of the surface molecular structure of catalytically active ruthenium-based films subjected to the oxidation (in oxygen) and reduction (in hydrogen) was performed in a Cat-Cell reactor combined with a XPS spectrometer. The films were produced by the plasma deposition method (PEMOCVD). It was found that the films contained ruthenium at different oxidation states: metallic (Ru0), RuO2 (Ru+4), and other RuOx (Ru+x), of which content could be changed by the oxidation or reduction, depending on the process temperature. These results allow to predict the behavior of the Ru-based catalysts in different redox environments.

  13. Highly n-Type Titanium Oxide as an Electronically Active Support for Platinum in the Catalytic Oxidation of Carbon Monoxide

    KAUST Repository

    Baker, L. Robert

    2011-08-18

    The role of the oxide-metal interface in determining the activity and selectivity of chemical reactions catalyzed by metal particles on an oxide support is an important topic in science and industry. A proposed mechanism for this strong metal-support interaction is electronic activation of surface adsorbates by charge carriers. Motivated by the goal of using electronic activation to drive nonthermal chemistry, we investigated the ability of the oxide support to mediate charge transfer. We report an approximately 2-fold increase in the turnover rate of catalytic carbon monoxide oxidation on platinum nanoparticles supported on stoichiometric titanium dioxide (TiO2) when the TiO2 is made highly n-type by fluorine (F) doping. However, for nonstoichiometric titanium oxide (TiOX<2) the effect of F on the turnover rate is negligible. Studies of the titanium oxide electronic structure show that the energy of free electrons in the oxide determines the rate of reaction. These results suggest that highly n-type TiO2 electronically activates adsorbed oxygen (O) by electron spillover to form an active O- intermediate. © 2011 American Chemical Society.

  14. Comparison of Efficiencies and Mechanisms of Catalytic Ozonation of Recalcitrant Petroleum Refinery Wastewater by Ce, Mg, and Ce-Mg Oxides Loaded Al2O3

    Directory of Open Access Journals (Sweden)

    Chunmao Chen

    2017-02-01

    Full Text Available The use of catalytic ozonation processes (COPs for the advanced treatment of recalcitrant petroleum refinery wastewater (RPRW is rapidly expanding. In this study, magnesium (Mg, cerium (Ce, and Mg-Ce oxide-loaded alumina (Al2O3 were developed as cost efficient catalysts for ozonation treatment of RPRW, having performance metrics that meet new discharge standards. Interactions between the metal oxides and the Al2O3 support influence the catalytic properties, as well as the efficiency and mechanism. Mg-Ce/Al2O3 (Mg-Ce/Al2O3-COP reduced the chemical oxygen demand by 4.7%, 4.1%, 6.0%, and 17.5% relative to Mg/Al2O3-COP, Ce/Al2O3-COP, Al2O3-COP, and single ozonation, respectively. The loaded composite metal oxides significantly increased the hydroxyl radical-mediated oxidation. Surface hydroxyl groups (–OHs are the dominant catalytic active sites on Al2O3. These active surface –OHs along with the deposited metal oxides (Mg2+ and/or Ce4+ increased the catalytic activity. The Mg-Ce/Al2O3 catalyst can be economically produced, has high efficiency, and is stable under acidic and alkaline conditions.

  15. The effect of Ce ion substituted OMS-2 nanostructure in catalytic activity for benzene oxidation

    Science.gov (United States)

    Hou, Jingtao; Li, Yuanzhi; Mao, Mingyang; Zhao, Xiujian; Yue, Yuanzheng

    2014-11-01

    The nanostructure of Ce doped OMS-2 plays a very important role in its catalytic property. We demonstrate by density functional theory (DFT) calculations that the unique nanostructure of the Ce ion substituted OMS-2 with Mn vacancy in the framework is beneficial for the improvement of catalytic activity, while the nanostructure of the Ce ion substituted OMS-2 without defects are detrimental to the catalytic activity. We establish a novel and facile strategy of synthesizing these unique Ce ion substituted OMS-2 nanostructure with Mn vacancies in the framework by hydrothermal redox reaction between Ce(NO3)3 and KMnO4 with KMnO4/Ce(NO3)3 at a molar ratio of 3 : 1 at 120 °C. Compared to pure OMS-2, the produced catalyst of Ce ion substituted OMS-2 ultrathin nanorods exhibits an enormous enhancement in the catalytic activity for benzene oxidation, which is evidenced by a significant decrease (ΔT50 = 100 °C, ΔT90 = 129 °C) in the reaction temperature of T50 and T90 (corresponding to the benzene conversion = 50% and 90%), which is considerably more efficient than the expensive supported noble metal catalyst (Pt/Al2O3). We combine both theoretical and experimental evidence to provide a new physical insight into the significant effect due to the defects induced by the Ce ion substitution on the catalytic activity of OMS-2. The formation of unique Ce ion substituted OMS-2 nanostructure with Mn vacancies in the framework leads to a significant enhancement of the lattice oxygen activity, thus tremendously increasing the catalytic activity.The nanostructure of Ce doped OMS-2 plays a very important role in its catalytic property. We demonstrate by density functional theory (DFT) calculations that the unique nanostructure of the Ce ion substituted OMS-2 with Mn vacancy in the framework is beneficial for the improvement of catalytic activity, while the nanostructure of the Ce ion substituted OMS-2 without defects are detrimental to the catalytic activity. We establish a novel

  16. A Bioinspired Catalytic Aerobic Oxidative C–H Functionalization of Primary Aliphatic Amines: Synthesis of 1,2-Disubstituted Benzimidazoles

    Science.gov (United States)

    Nguyen, Khac Minh Huy; Largeron, Martine

    2015-01-01

    Aerobic oxidative C–H functionalization of primary aliphatic amines has been accomplished with a biomimetic cooperative catalytic system to furnish 1,2-disubstituted benzimidazoles that play an important role as drug discovery targets. This one-pot atom-economical multistep process, which proceeds under mild conditions, with ambient air and equimolar amounts of each coupling partner, constitutes a convenient environmentally friendly strategy to functionalize non-activated aliphatic amines that remain challenging substrates for non-enzymatic catalytic aerobic systems. PMID:26206475

  17. synthesis, characterization, electrical and catalytic studies of some

    African Journals Online (AJOL)

    B. S. Chandravanshi

    catalytic activity of the VO(IV) and Mn(III) complexes have been tested in the epoxidation reaction of styrene ... Vanadyl sulfate pentahydrate, chromium chloride hexahydrate, anhydrous ferric ..... The catalytic oxidation of styrene gives the products styrene oxide, benzaldehyde, benzoic acid, ... bond via a radical mechanism.

  18. Selective oxidations in microstructured catalytic reactions - A review and an overview of own work on fuel processing for fuel cells

    NARCIS (Netherlands)

    Hessel, V.; Kolb, G.A.; Cominos, V.; Loewe, H.; Nikolaidis, G.; Zapf, R.; Ziogas, A.; Schouten, J.C.; Delsman, E.R.; Croon, de M.H.J.M.; Santamaria, J.; Iglesia, de la O.; Mallada, R.

    2006-01-01

    This review is concerned about catalytic gas-phase oxidation reactions in microreactors, typically being performed in wall-coated microchannels. Not included are liquid and gas-liquid oxidations which are typically done in reactor designs different from the ones considered here. The first part of

  19. A broad spectrum catalytic system for removal of toxic organics from water by deep oxidation. 1998 annual progress report

    International Nuclear Information System (INIS)

    Sen, A.

    1998-01-01

    'Toxic organics and polymers pose a serious threat to the environment, especially when they are present in aquatic systems. The objective of the research is the design of practical procedures for the removal and/or recycling of such pollutants by oxidation. This report summarizes the work performed in the first one and half years of a three year project. The authors had earlier described a catalytic system for the deep oxidation of toxic organics, such as benzene, phenol and substituted phenols, aliphatic and aromatic halogenated compounds, organophosphorus, and organosulfur compounds [1]. In this system, metallic palladium was found to catalyze the oxidation of the substrate by dioxygen in aqueous medium at 80--100 C in the presence of carbon monoxide. For all the substrates examined, deep oxidation to carbon monoxide, carbon dioxide, and water occurred in high yields, resulting in up to several hundred turnovers over a 24 h period. Because of a pressing need for new procedures for the destruction of chemical warfare agents, the authors have examined in detail the deep oxidation of appropriate model compounds containing phosphorus-carbon and sulfur-carbon bonds using the same catalytic system. The result is the first observation of the efficient catalytic oxidative cleavage of phosphorus-carbon and sulfur-carbon bonds under mild conditions, using dioxygen as the oxidant [2]. In addition to the achievements described above, they have unpublished results in several other areas. For example, they have investigated the possibility of using dihydrogen rather than carbon monoxide as a coreductant in the catalytic deep oxidation of substrates. Even more attractive from a practical standpoint is the possibility of using a mixture of carbon monoxide and dihydrogen (synthesis gas). Indeed, experiments indicated that it is possible to substitute carbon monoxide by dihydrogen or synthesis gas. Significantly, in the case of nitro compounds, the deep oxidation in fact proceeded

  20. Surface chemistry and catalytic properties of VOX/Ti-MCM-41 catalysts for dibenzothiophene oxidation in a biphasic system

    International Nuclear Information System (INIS)

    González, J.; Chen, L.F.; Wang, J.A.; Manríquez, Ma.; Limas, R.; Schachat, P.; Navarrete, J.; Contreras, J.L.

    2016-01-01

    Highlights: • Oxidative desulfurization of model diesel was tested in a biphasic system. • ODS activity was proportional to the V 5+ /(V 4+ + V 5+ ) values of the catalysts. • Lewis acidity was related to vanadium content and catalytic activity. • 99.9% DBT was oxidized using 25%V 2 O 5 /Ti-MCM-41 at 60 °C within 60 min. - Abstract: A series of vanadium oxide supported on Ti-MCM-41 catalysts was synthesized via the incipient impregnation method by varying the vanadia loading from 5 wt% to 10, 15, 20 and 25 wt%. These catalysts were characterized by a variety of advanced techniques for investigating their crystalline structure, textural properties, and surface chemistry information including surface acidity, reducibility, vanadium oxidation states, and morphological features. The catalytic activities of the catalysts were evaluated in a biphasic reaction system for oxidative desulfurization (ODS) of a model diesel containing 300 ppm of dibenzothiophene (DBT) where acetonitrile was used as extraction solvent and H 2 O 2 as oxidant. ODS activity was found to be proportional to the V 5+ /(V 4+ + V 5+ ) values of the catalysts, indicating that the surface vanadium pentoxide (V 2 O 5 ) was the active phase. Reaction temperature would influence significantly the ODS efficiency; high temperature, i.e., 80 °C, would lead to low ODS reaction due to the partial decomposition of oxidant. All the catalysts contained both Lewis and Brønsted acid sites but the former was predominant. The catalysts with low vanadia loading (5 or 10 wt%V 2 O 5 ) had many Lewis acid sites and could strongly adsorb DBT molecule via the electron donation/acceptance action which resulted in an inhibition for the reaction of DBT with the surface peroxometallic species. The catalyst with high vanadia loading (25wt%V 2 O 5 /Ti-MCM-41) showed the highest catalytic activity and could remove 99.9% of DBT at 60 °C within 60 min.

  1. Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide.

    Science.gov (United States)

    Wang, Wenting; Xu, Guiyun; Cui, Xinyan Tracy; Sheng, Ge; Luo, Xiliang

    2014-08-15

    Significantly enhanced catalytic activity of a nanocomposite composed of conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) doped with graphene oxide (GO) was achieved through a simple electrochemical reduction process. The nanocomposite (PEDOT/GO) was electrodeposited on an electrode and followed by electrochemical reduction, and the obtained reduced nanocomposite (PEDOT/RGO) modified electrode exhibited lowered electrochemical impedance and excellent electrocatalytic activity towards the oxidation of dopamine. Based on the excellent catalytic property of PEDOT/RGO, an electrochemical sensor capable of sensitive and selective detection of DA was developed. The fabricated sensor can detect DA in a wide linear range from 0.1 to 175μM, with a detection limit of 39nM, and it is free from common interferences such as uric acid and ascorbic acid. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Selective catalytic reduction of nitrogen oxides from industrial gases by hydrogen or methane

    International Nuclear Information System (INIS)

    Engelmann Pirez, M.

    2004-12-01

    This work deals with the selective catalytic reduction of nitrogen oxides (NO x ), contained in the effluents of industrial plants, by hydrogen or methane. The aim is to replace ammonia, used as reducing agent, in the conventional process. The use of others reducing agents such as hydrogen or methane is interesting for different reasons: practical, economical and ecological. The catalyst has to convert selectively NO into N 2 , in presence of an excess of oxygen, steam and sulfur dioxide. The developed catalyst is constituted by a support such as perovskites, particularly LaCoO 3 , on which are dispersed noble metals (palladium, platinum). The interaction between the noble metal and the support, generated during the activation of the catalyst, allows to minimize the water and sulfur dioxide inhibitor phenomena on the catalytic performances, particularly in the reduction of NO by hydrogen. (O.M.)

  3. Wet oxidation pretreatment of rape straw for ethanol production

    DEFF Research Database (Denmark)

    Arvaniti, Efthalia; Bjerre, Anne Belinda; Schmidt, Jens Ejbye

    2012-01-01

    Rape straw can be used for production of second generation bioethanol. In this paper we optimized the pretreatment of rape straw for this purpose using Wet oxidation (WO). The effect of reaction temperature, reaction time, and oxygen gas pressure was investigated for maximum ethanol yield via...... Simultaneous Saccharification and Fermentation (SSF). To reduce the water use and increase the energy efficiency in WO pretreatment features like recycling liquid (filtrate), presoaking of rape straw in water or recycled filtrate before WO, skip washing pretreated solids (filter cake) after WO, or use of whole...... gas produced higher ethanol yields and cellulose, hemicelluloses, and lignin recoveries, than 15 min WO treatment at 195 °C. Also, recycling filtrate and use of higher oxygen gas pressure reduced recovery of materials. The use of filtrate could be inhibitory for the yeast, but also reduced lactic acid...

  4. A Broad Spectrum Catalytic System for Removal of Toxic Organics from Water by Deep Oxidation - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ayusman

    2000-12-01

    A most pressing need for the DOE environmental management program is the removal of toxic organic compounds present in groundwater and soil at specific DOE sites. While several remediation procedures have been proposed, they suffer from one or more drawbacks. The objective of the present research was to develop new catalytic procedures for the removal of toxic organic compounds from the environment through their deep oxidation to harmless products. In water, metallic palladium was found to catalyze the deep oxidation of a wide variety of toxic organic compounds by dioxygen at 80-90 C in the presence of carbon monoxide or dihydrogen. Several classes of organic compounds were examined: benzene, phenol and substituted phenols, nitro and halo organics, organophosphorus, and organosulfur compounds. In every case, deep oxidation to carbon monoxide, carbon dioxide, and water occurred in high yields, resulting in up to several hundred turnovers over a 24 hour period. For substrates susceptible to hydrogenation, the conversions were generally high with dihydrogen than with carbon monoxide. It is clear from the results obtained that we have discovered an exceptionally versatile catalytic system for the deep oxidation of toxic organic compounds in water. This system possesses several attractive features not found simultaneously in other reported systems. These are (a) the ability to directly utilize dioxygen as the oxidant, (b) the ability to carry out the deep oxidation of a particularly wide range of functional organics, and (c) the ease of recovery of the catalyst by simple filtration.

  5. Catalytic ring-​opening copolymerization of limonene oxide and phthalic anhydride : toward partially renewable polyesters

    NARCIS (Netherlands)

    Hosseini Nejad, E.; Pionasari, A; Melis, van C.G.W.; Koning, C.E.; Duchateau, R.

    2013-01-01

    Catalytic ring-¿opening copolymn. of limonene oxide with phthalic anhydride was performed applying metal t-¿Bu-¿salophen complexes (t-¿Bu-¿salophen)¿MX; M = Cr, X = Cl (1)¿, M = Al, X = Cl (2)¿, M = Co, X = OAc (3)¿, M = Mn, X = Cl (4)¿, t-¿Bu-¿salophen =

  6. Co/Zr substitution in a cerium-zirconium oxide by catalytic steam reforming of bio-ethanol

    International Nuclear Information System (INIS)

    Vargas, J.C.; Thomas, S.; Roger, A.C.; Kiennemann, A.; Vargas, J.C.

    2006-01-01

    This work deals with the production of hydrogen by bio-ethanol catalytic steam reforming. The aim is to develop a catalyst active in ethanol conversion, selective in hydrogen and resistant to deactivation, particularly those induced by the formation of carbon deposition. The metal-support interaction being one of the keys of this challenge, catalysts in which a transition metal is inserted into an oxide by a liquid synthesis method (by the precursor method) have been developed. The initial insertion of cobalt into a cerium oxide-zirconia structure presents the advantages to increase the redox properties of the host oxide and to allow a stable reduction of a cobalt part while favoring the metal-support interaction. (O.M.)

  7. A new approach for crystallization of copper(ii) oxide hollow nanostructures with superior catalytic and magnetic response

    Science.gov (United States)

    Singh, Inderjeet; Landfester, Katharina; Chandra, Amreesh; Muñoz-Espí, Rafael

    2015-11-01

    We report the synthesis of copper(ii) oxide hollow nanostructures at ambient pressure and close to room temperature by applying the soft templating effect provided by the confinement of droplets in miniemulsion systems. Particle growth can be explained by considering a mechanism that involves both diffusion and reaction control. The catalytic reduction of p-nitrophenol in aqueous media is used as a model reaction to prove the catalytic activity of the materials: the synthesized hollow structures show nearly 100 times higher rate constants than solid CuO microspheres. The kinetic behavior and the order of the reduction reaction change due to the increase of the surface area of the hollow structures. The synthesis also leads to modification of physical properties such as magnetism.We report the synthesis of copper(ii) oxide hollow nanostructures at ambient pressure and close to room temperature by applying the soft templating effect provided by the confinement of droplets in miniemulsion systems. Particle growth can be explained by considering a mechanism that involves both diffusion and reaction control. The catalytic reduction of p-nitrophenol in aqueous media is used as a model reaction to prove the catalytic activity of the materials: the synthesized hollow structures show nearly 100 times higher rate constants than solid CuO microspheres. The kinetic behavior and the order of the reduction reaction change due to the increase of the surface area of the hollow structures. The synthesis also leads to modification of physical properties such as magnetism. Electronic supplementary information (ESI) available: Associated structural and morphological analysis, XPS characterization, BET surface area, catalytic measurements, recycle tests of the catalyst, and magnetic characterizations. See DOI: 10.1039/c5nr05579b

  8. Hot water extraction with in situ wet oxidation: Kinetics of PAHs removal from soil

    International Nuclear Information System (INIS)

    Dadkhah, Ali A.; Akgerman, Aydin

    2006-01-01

    Finding environmentally friendly and cost-effective methods to remediate soils contaminated with polycyclic aromatic hydrocarbons (PAHs) is currently a major concern of researchers. In this study, a series of small-scale semi-continuous extractions - with and without in situ wet oxidation - were performed on soils polluted with PAHs, using subcritical water (i.e. liquid water at high temperatures and pressures, but below the critical point) as the removal agent. Experiments were performed in a 300 mL reactor using an aged soil sample. To find the desorption isotherms and oxidation reaction rates, semi-continuous experiments with residence times of 1 and 2 h were performed using aged soil at 250 deg. C and hydrogen peroxide as oxidizing agent. In all combined extraction and oxidation flow experiments, PAHs in the remaining soil after the experiments were almost undetectable. In combined extraction and oxidation no PAHs could be detected in the liquid phase after the first 30 min of the experiments. Based on these results, extraction with hot water, if combined with oxidation, should reduce the cost of remediation and can be used as a feasible alternative technique for remediating contaminated soils and sediments

  9. Catalytic oxidation of sulfide in drinking water treatment: activated carbon as catalyst; Katalytische Oxidation von Sulfid bei der Trinkwasseraufbereitung: Aktivkohle als Katalysator

    Energy Technology Data Exchange (ETDEWEB)

    Hultsch, V; Grischek, T; Wolff, D; Worch, E [Technische Univ. Dresden (Germany). Inst. fuer Wasserchemie; Gun, J [Hebrew Univ. of Jerusalem (Israel). Div. of Environmental Sciences, Fredy and Nadine Herrmann School of Applied Science

    2001-07-01

    In regions with warm climate and limited water resources high sulfide concentrations in groundwater can cause problems during drinking water treatment. Aeration of the raw water is not always sufficient to ensure the hydrogen sulfide concentration below the odour threshold value for hydrogen sulfide. As an alternative, activated carbon can be used as a catalyst for sulfide oxidation of raw water. The use of different types of activated carbon was investigated in kinetic experiments. Both Catalytic Carbon from Calgon Carbon and granulated activated carbon from Norit showed high catalytic activities. The results of the experiments are discussed with regard to the practical use of activated carbon for the elimination of hydrogen sulfide during drinking water treatment. (orig.)

  10. Heterogeneous Catalysts for VOC Oxidation from Red Mud and Bagasse Ash Carbon

    Science.gov (United States)

    Pande, Gaurav

    A range of VOC oxidation catalysts have been prepared in this study from agricultural and industrial waste as the starting point. The aim is to prepare catalysts with non-noble metal oxides as the active catalytic component (iron in red mud). The same active component was also supported on activated carbon obtained from unburned carbon in bagasse ash. Red mud which is an aluminum industry waste and rich in different phases of iron as oxide and hydroxide is used as the source for the catalytically active species. It is our aim to enhance the catalytic performance of red mud which though high in iron concentration has a low surface area and may not have the properties of an ideal catalyst by itself. In one of the attempts to enhance the catalytic performance, we have tried to leach red mud for which we have explored a range of leaching acids for effecting the leaching most efficiently and then precipitated the iron from the leachate as its hydroxide by precipitating with alkali solution followed by drying and calcination to give high surface area metal oxide material. Extensive surface characterization and VOC oxidation catalytic testing were performed for these solids. In a step to further enhance the catalytic activity towards oxidation, copper was introduced by taking another industrial waste from the copper tubing industry viz. the pickling acid. Copper has a more favourable redox potential making it catalytically more effective than iron. To make the mixed metal oxide, red mud leachate was mixed with the pickling acid in a pre-decided ratio before precipitating with alkali solution followed by drying and calcination as was done with the red mud leachate. The results from these experiments are encouraging. The temperature programmed reduction (TPR) of the solids show that the precipitate of red mud leachates show hydrogen uptake peak at a lower temperature than for just the calcined red mud. This could be due to the greatly enhanced surface area of the prepared

  11. Phosphotungstic acid encapsulated in the mesocages of amine-functionalized metal-organic frameworks for catalytic oxidative desulfurization.

    Science.gov (United States)

    Wang, Xu-Sheng; Huang, Yuan-Biao; Lin, Zu-Jin; Cao, Rong

    2014-08-21

    Highly dispersed Keggin-type phosphotungstic acid (H3PW12O40, PTA) encapsulated in the mesocages of amine-functionalized metal-organic frameworks MIL-101(Cr)-NH2 has been prepared by an anion-exchange method. PTA anions (PW12O40(3-)) are stabilized in the mesocages via the electrostatic interaction with amino groups of the MIL-101(Cr)-NH2. The obtained catalyst (denoted PTA@MIL-101(Cr)-NH2) exhibits high catalytic activity in the extractive and catalytic oxidative desulfurization (ECODS) system under mild conditions. Moreover, it can be easily recovered and recycled several times without leaching and loss of activity.

  12. Catalytic oxidation of NO to NO2 on activated carbon

    International Nuclear Information System (INIS)

    Zhancheng Guo; Yusheng Xie

    2001-01-01

    Catalytic oxidation of NO to NO 2 over activated carbons PAN-ACF, pitch-ACF and coconut-AC at room temperature (30 o C) were studied to develop a method based on oxidative removal of NO from flue gases. For a dry gas, under the conditions of a gas space flow rate 1500 h -1 in the presence of oxygen of 2-20% in volume concentration, the activated coconut carbon with a surface area 1200 m 2 /g converted about 81-94% of NO with increasing oxygen concentration, the pitch based activated carbon fiber with a surface area 1000 m 2 /g about 44-75%, and the polyacrylonitrile-based activated carbon fiber with a surface area 1810 m 2 /g about 25-68%. The order of activity of the activated carbons was PAN-ACF c P NO P O2 β (F/W), where β is 0.042, 0.16, 0.31 for the coconut-AC, the pitch-ACF and the PAN-ACF respectively, and k c is 0.94 at 30 o C. (author)

  13. Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by ¤Thermoanaerobacter mathranii¤

    DEFF Research Database (Denmark)

    Klinke, H.B.; Thomsen, A.B.; Ahring, B.K.

    2001-01-01

    Alkaline wet oxidation (WO) (using water, 6.5 g/l sodium carbonate, and 12 bar oxygen at 195 degreesC) was used for pre-treating wheat straw (60 g/l), resulting in a hemicellulose-rich hydrolysate and a cellulose-rich solid fraction. The hydrolysate consisted of soluble hemicellulose (9 g....../l), aliphatic carboxylic acids (6 g/l), phenols (0.27 g/l or 1.7 mM), and 2-furoic acid (0.007 g/l). The wet-oxidized wheat straw hydrolysate caused no inhibition of ethanol yield by the anaerobic thermophilic bacterium Thermoanaerobacter mathranii. Nine phenols and 2-furoic acid, identified to be present...

  14. Catalytic oxidation of dichloromethane over sol-gel oxides supported Pd or Ni

    International Nuclear Information System (INIS)

    Martinez; Leidy Marcela; Montes, Consuelo

    2004-01-01

    Several supported Pd or Ni catalysts were synthesized by the sol-gel method using y-alumina, silica, sulfated zirconium and sulfated titanium as carriers. The resulting catalysts were characterized by XRD and nitrogen adsorption, and evaluated in the catalytic oxidation of dichloromethane. The effect of different parameters were determined, i.e. method of synthesis, temperature and the type of support. The durability of the best catalyst (0,5% Pd impregnated over sulfated titanium) was tested between 300 degrades Celsius and 350 degrades Celsius during 48 h. Under the conditions of this study, impregnated catalysts exhibited higher activity than those prepared by cogelation. Pd loaded catalysts showed higher conversion into CO 2 and HCl. Catalyst activity also increased with increasing temperature. Y-Alumina and sulfated titanium showed good activity but the formation of CO is favored instead of CO 2 . Therefore, bifunctional catalysts, i.e. containing metallic and acid sites appear to be required for the decomposition of methylene chloride into CO 2 and HCI

  15. MWW-type titanosilicate synthesis, structural modification and catalytic applications to green oxidations

    CERN Document Server

    Wu, Peng; Xu, Le; Liu, Yueming; He, Mingyuan

    2013-01-01

    This book provides a comprehensive review of a new generation of selective oxidation titanosilicate catalysts with the MWW topology (Ti-MWW) based on the research achievements of the past 12 years. It gives an overview of the synthesis, structure modification and catalytic properties of Ti-MWW. Ti-MWW can readily be prepared by means of direct hydrothermal synthesis with crystallization-supporting agents, using dual-structure-directing agents and a dry-gel conversion technique. It also can be post-synthesized through unique reversible structure transformation and liquid-phase isomorphous subst

  16. Catalytic biofilms on structured packing for the production of glycolic acid.

    Science.gov (United States)

    Li, Xuan Zhong; Hauer, Bernhard; Rosche, Bettina

    2013-02-01

    While structured packing modules are known to be efficient for surface wetting and gas-liquid exchange in abiotic surface catalysis, this model study explores structured packing as a growth surface for catalytic biofilms. Microbial biofilms have been proposed as self-immobilized and self-regenerating catalysts for the production of chemicals. A concern is that the complex and dynamic nature of biofilms may cause fluctuations in their catalytic performance over time or may affect process reproducibility. An aerated continuous trickle-bed biofilm reactor system was designed with a 3 L structured packing, liquid recycling and pH control. Pseudomonas diminuta established a biofilm on the stainless steel structured packing with a specific surface area of 500 m2 m-3 and catalyzed the oxidation of ethylene glycol to glycolic acid for over two months of continuous operation. A steady-state productivity of up to 1.6 gl-1h-1 was achieved at a dilution rate of 0.33 h-1. Process reproducibility between three independent runs was excellent, despite process interruptions and activity variations in cultures grown from biofilm effluent cells. The results demonstrate the robustness of a catalytic biofilm on structured packing, despite its dynamic nature. Implementation is recommended for whole-cell processes that require efficient gas-liquid exchange, catalyst retention for continuous operation, or improved catalyst stability.

  17. A three-electrode column for Pd-catalytic oxidation of TCE in groundwater with automatic pH-regulation and resistance to reduced sulfur compound foiling.

    Science.gov (United States)

    Yuan, Songhu; Chen, Mingjie; Mao, Xuhui; Alshawabkeh, Akram N

    2013-01-01

    A hybrid electrolysis and Pd-catalytic oxidation process is evaluated for degradation of trichloroethylene (TCE) in groundwater. A three-electrode, one anode and two cathodes, column is employed to automatically develop a low pH condition in the Pd vicinity and a neutral effluent. Simulated groundwater containing up to 5 mM bicarbonate can be acidified to below pH 4 in the Pd vicinity using a total of 60 mA with 20 mA passing through the third electrode. By packing 2 g of Pd/Al(2)O(3) pellets in the developed acidic region, the column efficiency for TCE oxidation in simulated groundwater (5.3 mg/L TCE) increases from 44 to 59 and 68% with increasing Fe(II) concentration from 0 to 5 and 10 mg/L, respectively. Different from Pd-catalytic hydrodechlorination under reducing conditions, this hybrid electrolysis and Pd-catalytic oxidation process is advantageous in controlling the fouling caused by reduced sulfur compounds (RSCs) because the in situ generated reactive oxidizing species, i.e., O(2), H(2)O(2) and OH, can oxidize RSCs to some extent. In particular, sulfite at concentrations less than 1 mM even greatly increases TCE oxidation by the production of SO(4)(•-), a strong oxidizing radical, and more OH. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Effect of the preparation method on the structural and catalytic properties of spinel cobalt-iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hammiche-Bellal, Yasmina, E-mail: yasminahammiche@gmail.com [Laboratoire des Matériaux Catalytiques et Catalyse en Chimie Organique, Faculté de Chimie, USTHB, BP32 El Alia, Bab Ezzouar, 16111, Alger (Algeria); Djadoun, Amar [Laboratoire de Géophysique, FSTGAT, USTHB, BP32 El Alia, Bab Ezzouar, 16111, Alger (Algeria); Meddour-Boukhobza, Laaldja; Benadda, Amel [Laboratoire des Matériaux Catalytiques et Catalyse en Chimie Organique, Faculté de Chimie, USTHB, BP32 El Alia, Bab Ezzouar, 16111, Alger (Algeria); Auroux, Aline [Université Lyon 1, CNRS, UMR 5256, IRCELYON, Institut de Recherches sur la Catalyse et l' Environnement de Lyon, 2 Avenue Albert Einstein, F-69626, Villeurbanne (France); Berger, Marie-Hélène [Centre des Matériaux PIERRE-MARIE Fourt, UMR 7633, Paris (France); Mernache, Fateh [UDEC-CRND, COMENA, BP 43 Draria, 16050, Alger (Algeria)

    2016-07-01

    Spinel cobalt-iron oxide was synthesized by co-precipitation and hydrothermal routes. The effect of the co-precipitation experimental conditions, the calcination temperature and the hydrothermal synthesis time and temperature on the properties of the solids was studied. The prepared powders were evaluated as catalysts in the ethanol combustion reaction, and were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM/EDX), nitrogen adsorption–desorption isotherms (BET, BJH) and temperature programmed reduction (TPR) techniques. Using chloride salts as starting materials and sodium hydroxide as precipitating agent, the CoFe{sub 2}O{sub 4} prepared powders displayed a mesoporous structure with a pore distribution strongly dependent on the experimental conditions. A monophasic spinel phase in the case of the calcined solids was obtained while the hydrothermal process led to the formation of a mixture of single oxides in addition to the spinel phase. The variation of the crystallite size and the lattice parameter as a function of calcination temperature was similar, whereas this variation found to be irregular when the synthesis residence time in autoclave was increased. The hydrothermally treated solids show the best catalytic performance in the total oxidation of ethanol. The catalytic behavior was correlated with the crystallite size and the reduction temperature of cobalt species determined by the TPR analysis. - Highlights: • Pure CoFe{sub 2}O{sub 4} phase is obtained by co-precipitation method at calcination temperatures 500–900 °C. • The temperature of co-precipitation procedure influences strongly the growth of the solids during the calcination step. • The hydrothermal synthesis gives a mixture of oxides; CoFe{sub 2}O{sub 4} is the predominant phase. • The CoFe{sub 2}O{sub 4} spinel showed a good catalytic reactivity in the ethanol combustion reaction. • The catalysts prepared by hydrothermal process are more reactive and

  19. Enhanced catalytic hydrogenation activity of Ni/reduced graphene oxide nanocomposite prepared by a solid-state method

    Science.gov (United States)

    Li, Yizhao; Cao, Yali; Jia, Dianzeng

    2018-01-01

    A simple solid-state method has been applied to synthesize Ni/reduced graphene oxide (Ni/rGO) nanocomposite under ambient condition. Ni nanoparticles with size of 10-30 nm supported on reduced graphene oxide (rGO) nanosheets are obtained through one-pot solid-state co-reduction among nickel chloride, graphene oxide, and sodium borohydride. The Ni/rGO nanohybrid shows enhanced catalytic activity toward the reduction of p-nitrophenol (PNP) into p-aminophenol compared with Ni nanoparticles. The results of kinetic research display that the pseudo-first-order rate constant for hydrogenation reaction of PNP with Ni/rGO nanocomposite is 7.66 × 10-3 s-1, which is higher than that of Ni nanoparticles (4.48 × 10-3 s-1). It also presents superior turnover frequency (TOF, 5.36 h-1) and lower activation energy ( E a, 29.65 kJ mol-1) in the hydrogenation of PNP with Ni/rGO nanocomposite. Furthermore, composite catalyst can be magnetically separated and reused for five cycles. The large surface area and high electron transfer property of rGO support are beneficial for good catalytic performance of Ni/rGO nanocomposite. Our study demonstrates a simple approach to fabricate metal-rGO heterogeneous nanostructures with advanced functions.

  20. The variation of cationic microstructure in Mn-doped spinel ferrite during calcination and its effect on formaldehyde catalytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xiaoliang [CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640 (China); Liu, Peng [CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640 (China); He, Hongping, E-mail: hehp@gig.ac.cn [CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640 (China); Wei, Gaoling [Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Chen, Tianhu [School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009 (China); Tan, Wei; Tan, Fuding [CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640 (China); Zhu, Jianxi; Zhu, Runliang [CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640 (China)

    2016-04-05

    Highlights: • Calcination causes the activity variation of Mn-doped ferrites for HCHO oxidation. • The variation of catalytic activity of ferrites by calcination is non-linear. • Mn enriches on the calcinated ferrite surface in the valence of +3 and +4. • The reduction temperature of surface Mn{sup 4+} species is well correlated to T50. - Abstract: In this study, a series of Mn substituted spinel ferrites calcinated at different temperatures were used as catalysts for the oxidation of formaldehyde (HCHO). X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and H{sub 2} temperature-programmed reduction were conducted to characterize the structure and physico-chemical properties of catalysts, which were affected by calcination in the range of 200–600 °C. Results show that all the ferrites were with spinel structure, and those calcinated in the range of 300–600 °C were in the phase of maghemite. The calcination changed the valence and distribution of Mn and Fe on the ferrite surface, and accordingly the reducibility of ferrites. The HCHO catalytic oxidation test showed that with the increase of calcination temperature, the activity was initially improved until 400 °C, but then decreased. The variation of HCHO conversion performance was well positively correlated to the variation of reduction temperature of surface Mn{sup 4+} species. The remarkable effect of calcination on the catalytic activity of Mn-doped spinel ferrites for HCHO oxidation was discussed in view of reaction mechanism and variations in cationic microstructure of Mn-doped ferrites.

  1. The variation of cationic microstructure in Mn-doped spinel ferrite during calcination and its effect on formaldehyde catalytic oxidation

    International Nuclear Information System (INIS)

    Liang, Xiaoliang; Liu, Peng; He, Hongping; Wei, Gaoling; Chen, Tianhu; Tan, Wei; Tan, Fuding; Zhu, Jianxi; Zhu, Runliang

    2016-01-01

    Highlights: • Calcination causes the activity variation of Mn-doped ferrites for HCHO oxidation. • The variation of catalytic activity of ferrites by calcination is non-linear. • Mn enriches on the calcinated ferrite surface in the valence of +3 and +4. • The reduction temperature of surface Mn"4"+ species is well correlated to T50. - Abstract: In this study, a series of Mn substituted spinel ferrites calcinated at different temperatures were used as catalysts for the oxidation of formaldehyde (HCHO). X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy and H_2 temperature-programmed reduction were conducted to characterize the structure and physico-chemical properties of catalysts, which were affected by calcination in the range of 200–600 °C. Results show that all the ferrites were with spinel structure, and those calcinated in the range of 300–600 °C were in the phase of maghemite. The calcination changed the valence and distribution of Mn and Fe on the ferrite surface, and accordingly the reducibility of ferrites. The HCHO catalytic oxidation test showed that with the increase of calcination temperature, the activity was initially improved until 400 °C, but then decreased. The variation of HCHO conversion performance was well positively correlated to the variation of reduction temperature of surface Mn"4"+ species. The remarkable effect of calcination on the catalytic activity of Mn-doped spinel ferrites for HCHO oxidation was discussed in view of reaction mechanism and variations in cationic microstructure of Mn-doped ferrites.

  2. Positron age-momentum correlation in metal oxide powders as catalytic materials

    International Nuclear Information System (INIS)

    Kishimoto, Y.; Ito, K.; Tanigawa, S.; Tsuda, N.

    1982-01-01

    Annihilation characteristics of positrons in fine particles of various types of metal oxides (MgO, SiO 2 , #betta#-Al 2 O 3 , TiO 2 , ZnO and NiO) were studied by the two parameter correlation measurements between the positron age and the momentum of annihilating pairs. It was found that the momentum dependence of lifetime can be classified into three types, that is, the bell shape tau-E relation (Type I : #betta#-Al 2 O 3 ), the W-like one (Type II : ZnO, NiO, MgO and TiO 2 ) and the M-like one (Type III : SiO 2 ). This variation may be due to the difference in the formation and reaction of positroniums at the surface of fine particles of different oxides reflecting the nature of acid points or basic points in catalytic reactions. Particularly, the frequent occurrence of the conversion process of ortho-Ps was observed. (Auth.)

  3. Metatranscriptomic and metagenomic description of the bacterial nitrogen metabolism in waste water wet oxidation effluents

    Directory of Open Access Journals (Sweden)

    Julien Crovadore

    2017-10-01

    Full Text Available Anaerobic digestion is a common method for reducing the amount of sludge solids in used waters and enabling biogas production. The wet oxidation process (WOX improves anaerobic digestion by converting carbon into methane through oxidation of organic compounds. WOX produces effluents rich in ammonia, which must be removed to maintain the activity of methanogens. Ammonia removal from WOX could be biologically operated by aerobic granules. To this end, granulation experiments were conducted in 2 bioreactors containing an activated sludge (AS. For the first time, the dynamics of the microbial community structure and the expression levels of 7 enzymes of the nitrogen metabolism in such active microbial communities were followed in regard to time by metagenomics and metatranscriptomics. It was shown that bacterial communities adapt to the wet oxidation effluent by increasing the expression level of the nitrogen metabolism, suggesting that these biological activities could be a less costly alternative for the elimination of ammonia, resulting in a reduction of the use of chemicals and energy consumption in sewage plants. This study reached a strong sequencing depth (from 4.4 to 7.6 Gb and enlightened a yet unknown diversity of the microorganisms involved in the nitrogen pathway. Moreover, this approach revealed the abundance and expression levels of specialised enzymes involved in nitrification, denitrification, ammonification, dissimilatory nitrate reduction to ammonium (DNRA and nitrogen fixation processes in AS. Keywords: Applied sciences, Biological sciences, Environmental science, Genetics, Microbiology

  4. Catalytic removal of sulfur dioxide from dibenzothiophene sulfone over Mg-Al mixed oxides supported on mesoporous silica.

    Science.gov (United States)

    You, Nansuk; Kim, Min Ji; Jeong, Kwang-Eun; Jeong, Soon-Yong; Park, Young-Kwon; Jeon, Jong-Ki

    2010-05-01

    Dibenzothiophene sulfone (DBTS), one of the products of the oxidative desulfurization of heavy oil, can be removed through extraction as well as by an adsorption process. It is necessary to utilize DBTS in conjunction with catalytic cracking. An object of the present study is to provide an Mg-Al-mesoporous silica catalyst for the removal of sulfur dioxide from DBTS. The characteristics of the Mg-Al-mesoporous silica catalyst were investigated through N2 adsorption, XRD, ICP, and XRF. An Mg-Al-mesoporous silica catalyst formulated in a direct incorporation method showed higher catalytic performance compared to pure MgO during the catalytic removal of sulfur dioxide from DBTS. The higher dispersion of Mg as well as the large surface area of the Mg-Al-mesoporous silica catalyst strongly influenced the catalyst basicity in DBTS cracking.

  5. Multi-stage selective catalytic reduction of NOx in lean burn engine exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    Many studies suggest that the conversion of NO to NO{sub 2} is an important intermediate step in the selective catalytic reduction (SCR) of NO{sub x} to N{sub 2}. Some effort has been devoted to separating the oxidative and reductive functions of the catalyst in a multi-stage system. This method works fine for systems that require hydrocarbon addition. The hydrocarbon has to be injected between the NO oxidation catalyst and the NO{sub 2} reduction catalyst; otherwise, the first-stage oxidation catalyst will also oxidize the hydrocarbon and decrease its effectiveness as a reductant. The multi-stage catalytic scheme is appropriate for diesel engine exhausts since they contain insufficient hydrocarbons for SCR, and the hydrocarbons can be added at the desired location. For lean-burn gasoline engine exhausts, the hydrocarbons already present in the exhausts will make it necessary to find an oxidation catalyst that can oxidize NO to NO{sub 2} but not oxidize the hydrocarbon. A plasma can also be used to oxidize NO to NO{sub 2}. Plasma oxidation has several advantages over catalytic oxidation. Plasma-assisted catalysis can work well for both diesel engine and lean-burn gasoline engine exhausts. This is because the plasma can oxidize NO in the presence of hydrocarbons without degrading the effectiveness of the hydrocarbon as a reductant for SCR. In the plasma, the hydrocarbon enhances the oxidation of NO, minimizes the electrical energy requirement, and prevents the oxidation of SO{sub 2}. This paper discusses the use of multi-stage systems for selective catalytic reduction of NO{sub x}. The multi-stage catalytic scheme is compared to the plasma-assisted catalytic scheme.

  6. Synthesis of carbon-supported copper catalyst and its catalytic performance in methanol dehydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Shelepova, Ekaterina V. [Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, Novosibirsk, 630090 (Russian Federation); National Research Tomsk Polytechnic University, Lenin av., 30, Tomsk, 634050 (Russian Federation); Vedyagin, Aleksey A., E-mail: vedyagin@catalysis.ru [Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, Novosibirsk, 630090 (Russian Federation); National Research Tomsk Polytechnic University, Lenin av., 30, Tomsk, 634050 (Russian Federation); Ilina, Ludmila Yu.; Nizovskii, Alexander I. [Boreskov Institute of Catalysis SB RAS, pr. Ac. Lavrentieva, 5, Novosibirsk, 630090 (Russian Federation); Tsyrulnikov, Pavel G. [Institute of Hydrocarbon Processing SB RAS, Neftezavodskaya st., 54, Omsk, 644040 (Russian Federation)

    2017-07-01

    Highlights: • Carbon-supported copper catalyst was studied in dehydrogenation of methanol. • Reduction temperature affected size of Cu particles and Cu{sup 0}/Cu{sup 2+} ratio. • Reduction at 400 °C was required to obtain high methyl formate yield. - Abstract: Carbon-supported copper catalyst was prepared by incipient wetness impregnation of Sibunit with an aqueous solution of copper nitrate. Copper loading was 5 wt.%. Temperature of reductive pretreatment was varied within a range of 200–400 °C. The samples were characterized by transmission electron microscopy, X-ray diffraction analysis, X-ray photoelectron and X-ray absorption spectroscopies. Catalytic activity of the samples was studied in a reaction of methanol dehydrogenation. Silica-based catalyst with similar copper loading was used as a reference. It was found that copper is distributed over the surface of support in the form of metallic and partially oxidized particles of about 12–17 nm in size. Diminished interaction of copper with support was supposed to be responsible for high catalytic activity.

  7. Catalytic modification of cellulose and hemicellulose - Sugarefine

    Energy Technology Data Exchange (ETDEWEB)

    Repo, T. [Helsinki Univ. (Finland),Laboratory of Inorganic Chemistry], email: timo.repo@helsinki.fi

    2012-07-01

    The main goal of the project is to develop catalytic methods for the modification of lignocellulose-based saccharides in the biorefineries. The products of these reactions could be used for example as biofuel components, raw materials for the chemical industry, solvents and precursors for biopolymers. The catalyst development aims at creating efficient, selective and green catalytic methods for profitable use in biorefineries. The project is divided in three work packages: In WP1 (Catalytic dehydration of cellulose) the aim is at developing non-toxic, efficient methods for the catalytic dehydration of cellulose the target molecule being here 5-hydroxymethylfurfural (5-HMF). 5-HMF is an interesting platform chemical for the production of fuel additives, solvents and polymers. In WP2 (Catalytic reduction), the objective of the catalytic reduction studies is to produce commercially interesting monofunctional chemicals, such as 1-butanol or 2-methyltetrahydrofuran (2-MeTHF). In WP3 (Catalytic oxidation), the research focuses on developing a green and efficient oxidation method for producing acids. Whereas acetic and formic acids are bulk chemicals, diacids such as glucaric and xylaric acids are valuable specialty chemicals for detergent, polymer and food production.

  8. Aluminum oxide mask fabrication by focused ion beam implantation combined with wet etching

    International Nuclear Information System (INIS)

    Liu Zhengjun; Iltanen, Kari; Chekurov, Nikolai; Tittonen, Ilkka; Grigoras, Kestutis

    2013-01-01

    A novel aluminum oxide (Al 2 O 3 ) hard mask fabrication process with nanoscale resolution is introduced. The Al 2 O 3 mask can be used for various purposes, but in this work it was utilized for silicon patterning using cryogenic deep reactive ion etching (DRIE). The patterning of Al 2 O 3 is a two-step process utilizing focused ion beam (FIB) irradiation combined with wet chemical etching. Gallium (Ga + ) FIB maskless patterning confers wet etch selectivity between the irradiated region and the non-irradiated one on the Al 2 O 3 layer, and mask patterns can easily be revealed by wet etching. This method is a modification of Ga + FIB mask patterning for the silicon etch stop, which eliminates the detrimental lattice damage and doping of the silicon substrate in critical devices. The shallow surface gallium FIB irradiated Al 2 O 3 mask protects the underlying silicon from Ga + ions. The performance of the masking capacity was tested by drawing pairs consisting of a line and an empty space with varying width. The best result was seven such pairs for 1 μm. The smallest half pitch was 59 nm. This method is capable of arbitrary pattern generation. The fabrication of a freestanding single-ended tuning fork resonator utilizing the introduced masking method is demonstrated. (paper)

  9. Synthesis of ultrasmall Li-Mn spinel oxides exhibiting unusual ion exchange, electrochemical, and catalytic properties

    Science.gov (United States)

    Miyamoto, Yumi; Kuroda, Yoshiyuki; Uematsu, Tsubasa; Oshikawa, Hiroyuki; Shibata, Naoya; Ikuhara, Yuichi; Suzuki, Kosuke; Hibino, Mitsuhiro; Yamaguchi, Kazuya; Mizuno, Noritaka

    2015-10-01

    The efficient surface reaction and rapid ion diffusion of nanocrystalline metal oxides have prompted considerable research interest for the development of high functional materials. Herein, we present a novel low-temperature method to synthesize ultrasmall nanocrystalline spinel oxides by controlling the hydration of coexisting metal cations in an organic solvent. This method selectively led to Li-Mn spinel oxides by tuning the hydration of Li+ ions under mild reaction conditions (i.e., low temperature and short reaction time). These particles exhibited an ultrasmall crystallite size of 2.3 nm and a large specific surface area of 371 ± 15 m2 g-1. They exhibited unique properties such as unusual topotactic Li+/H+ ion exchange, high-rate discharge ability, and high catalytic performance for several aerobic oxidation reactions, by creating surface phenomena throughout the particles. These properties differed significantly from those of Li-Mn spinel oxides obtained by conventional solid-state methods.

  10. Synthesis of ultrasmall Li–Mn spinel oxides exhibiting unusual ion exchange, electrochemical, and catalytic properties

    Science.gov (United States)

    Miyamoto, Yumi; Kuroda, Yoshiyuki; Uematsu, Tsubasa; Oshikawa, Hiroyuki; Shibata, Naoya; Ikuhara, Yuichi; Suzuki, Kosuke; Hibino, Mitsuhiro; Yamaguchi, Kazuya; Mizuno, Noritaka

    2015-01-01

    The efficient surface reaction and rapid ion diffusion of nanocrystalline metal oxides have prompted considerable research interest for the development of high functional materials. Herein, we present a novel low-temperature method to synthesize ultrasmall nanocrystalline spinel oxides by controlling the hydration of coexisting metal cations in an organic solvent. This method selectively led to Li–Mn spinel oxides by tuning the hydration of Li+ ions under mild reaction conditions (i.e., low temperature and short reaction time). These particles exhibited an ultrasmall crystallite size of 2.3 nm and a large specific surface area of 371 ± 15 m2 g−1. They exhibited unique properties such as unusual topotactic Li+/H+ ion exchange, high-rate discharge ability, and high catalytic performance for several aerobic oxidation reactions, by creating surface phenomena throughout the particles. These properties differed significantly from those of Li–Mn spinel oxides obtained by conventional solid-state methods. PMID:26456216

  11. Catalytic activity and effect of modifiers on Ni-based catalysts for the dry reforming of methane

    Energy Technology Data Exchange (ETDEWEB)

    Barroso-Quiroga, Maria Martha; Castro-Luna, Adolfo Eduardo [Facultad de Ingenieria y Ciencias Economico-Sociales INTEQUI-CONICET-UNSL, Av. 25 de Mayo 384 (5730) Villa Mercedes (S.L.) (Argentina)

    2010-06-15

    Ni catalysts supported on different ceramic oxides (Al{sub 2}O{sub 3}, CeO{sub 2}, La{sub 2}O{sub 3}, ZrO{sub 2}) were prepared by wet impregnation. The catalytic behavior toward hydrogen production through the dry reforming of methane using a fixed-bed reactor was evaluated under certain experimental conditions, and the catalyst supported on ZrO{sub 2} showed the highest stable activity during the period of time studied. The catalyst supported on CeO{sub 2} has a relatively good activity, but shows signs of deactivation after a certain time during the reaction. This catalyst was chosen to be studied after the addition of 0.5 wt% Li and K as activity modifiers. The introduction of the alkaline metals produces a reduction of the catalytic activity but a better stability over the reactant conversion time. The reverse water-gas shift reaction influences the global system of reactions, and as the results indicate, should be considered near equilibrium. (author)

  12. Catalytic behaviors of Co{sup II} and Mn{sup II} compounds bearing α-Diimine ligands for oxidative polymerization or drying oils

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Gilvan E.S.; Nunes, Everton V.; Dantas, Roberta C.; Meneghetti, Mario R.; Meneghetti, Simoni M.P., E-mail: simoni.plentz@gmail.com [Universidade Federal de Alagoas (UFAL), Maceió, AL (Brazil). Grupo de Catálise e Reatividade Química; Simone, Carlos A. de [Universidade de Sao Paulo (USP), São Carlos, USP, SP (Brazil). Instituto de Física

    2018-05-01

    The oxidative polymerization of linseed oil was investigated comparing the classical catalysts cobalt(II) 2-ethylhexanoate and manganese(II) 2-ethylhexanoate and their derivatives modified by the presence of chelating nitrogen ligands, i.e., 2,2’-bipyridyl, 2-(acetyl-2,6-diisopropylphenylimine)- pyridine and [N-(2,6-diisopropylphenyl)imine]acenaphthoquinone. The suitable stoichiometries between the two precursor complexes with the three ligands were determined by UV-visible spectroscopy. All complexes were characterized by infrared spectroscopy, and one complex was characterized also by X-ray diffraction. The apparent kinetic constants of oxidative polymerization of linseed oil was determined, for each catalytic system, via the periodic measurements of the oil viscosity during the oxidation reaction. The results indicated that the modifications of the classical two complexes with the chelating nitrogen ligands improved the catalytic efficiency at least to the manganese complex. (author)

  13. High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol

    DEFF Research Database (Denmark)

    Varga, E.; Klinke, H.B.; Reczey, K.

    2004-01-01

    In this study ethanol was produced from corn stover pretreated by alkaline and acidic wet oxidation (WO) (195 degreesC, 15 min, 12 bar oxygen) followed by nonisothermal simultaneous saccharification and fermentation (SSF). In the first step of the SSF, small amounts of cellulases were added at 50...... increase of substrate concentration reduced the ethanol yield significant as a result of insufficient mass transfer. It was also shown that the fermentation could be followed with an easy monitoring system based on the weight loss of the produced CO2. (C) 2004 Wiley Periodicals, Inc....

  14. A green surfactant-assisted synthesis of hierarchical TS-1 zeolites with excellent catalytic properties for oxidative desulfurization.

    Science.gov (United States)

    Du, Shuting; Li, Fen; Sun, Qiming; Wang, Ning; Jia, Mingjun; Yu, Jihong

    2016-02-25

    Hierarchical TS-1 zeolites with uniform intracrystalline mesopores have been successfully synthesized through the hydrothermal method by using the green and cheap surfactant Triton X-100 as the mesoporous template. The resultant materials exhibit remarkably enhanced catalytic activity in oxidative desulfurization reactions compared to the conventional TS-1 zeolite.

  15. Synthesis and catalytic activity of Birnessite-Type Manganese Oxide synthesized by solvent-free method

    Science.gov (United States)

    Siregar, S. S.; Awaluddin, A.

    2018-04-01

    Redox reaction between KMnO4 and glucose usingsolvent-free method produces the octahedral layer birnessite-type manganese oxide. The effects of mole ratios, temperatures, and calcinations time on the structures and crystallinity of the oxides were studied throughthe X-ray powder diffraction analysis. The mole ratio of KMnO4/glucose (1:3) produces the purebirnessite with low crystallinity, whereas the mole ratio of KMnO4/glucose (3:1) yields high crystalline birnessite with minor components of hausmannite-type manganese oxide.The increasing of the temperature and calcinations times (300-700 °C and 3-7 h, respectively) willimprove the crystallinity and the purity of the as-synthesized oxide. Further experiments also showed that the as-syntesized octahedral layer birnessite-type manganese oxides have catalytic activity on the degradation of methylene blue (MB) dye with H2O2 as oxidant. The results revealed that the effective degradation could be achieved only in the presence of both the birnessite and H2O2, whereas without the addition of catalyst (H2O2only) or addition of H2O2 (catalyst only), the 3.5% and 15.5% of MB removal were obtained, respectively.

  16. Study of the dynamics of the MoO2-Mo2C system for catalytic partial oxidation reactions

    Science.gov (United States)

    Cuba Torres, Christian Martin

    On a global scale, the energy demand is largely supplied by the combustion of non-renewable fossil fuels. However, their rapid depletion coupled with environmental and sustainability concerns are the main drivers to seek for alternative energetic strategies. To this end, the sustainable generation of hydrogen from renewable resources such as biodiesel would represent an attractive alternative solution to fossil fuels. Furthermore, hydrogen's lower environmental impact and greater independence from foreign control make it a strong contender for solving this global problem. Among a wide variety of methods for hydrogen production, the catalytic partial oxidation offers numerous advantages for compact and mobile fuel processing systems. For this reaction, the present work explores the versatility of the Mo--O--C catalytic system under different synthesis methods and reforming conditions using methyl oleate as a surrogate biodiesel. MoO2 exhibits good catalytic activity and exhibits high coke-resistance even under reforming conditions where long-chain oxygenated compounds are prone to form coke. Moreover, the lattice oxygen present in MoO2 promotes the Mars-Van Krevelen mechanism. Also, it is introduced a novel beta-Mo2C synthesis by the in-situ formation method that does not utilize external H2 inputs. Herein, the MoO 2/Mo2C system maintains high catalytic activity for partial oxidation while the lattice oxygen serves as a carbon buffer for preventing coke formation. This unique feature allows for longer operation reforming times despite slightly lower catalytic activity compared to the catalysts prepared by the traditional temperature-programmed reaction method. Moreover, it is demonstrated by a pulse reaction technique that during the phase transformation of MoO2 to beta-Mo2C, the formation of Mo metal as an intermediate is not responsible for the sintering of the material wrongly assumed by the temperature-programmed method.

  17. Trickle bed reactor for the oxidation of phenol over active carbon catalyst

    OpenAIRE

    Gabbiye, Nigus; Font Capafons, Josep; Fortuny Sanromá, Agustín; Bengoa, Christophe José; Fabregat Llangotera, Azael; Stüber, Frank Erich

    2009-01-01

    The catalytic wet air oxidation of phenol using activated carbon has been performed in a laboratory trickle bed reactor over a wide range of operating variables (PO2, T, FL and Cph,o) and hydrodynamic conditions. The influence of different start-up procedures (saturation of activated carbon) has also been tested. Further improvement of activity and stability has been checked for by using dynamic TBR operation concept or impregnated Fe/carbon catalyst. The results obtained confi...

  18. The effect of gallium supported on mesoporous silica and its catalytic activity for oxidation of benzene, toluene and o-xylene

    Energy Technology Data Exchange (ETDEWEB)

    Schwanke, A.J.; Pergher, S.; Probst, L.F.D. [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil); Balzer, R. [Universidade Federal do Parana (UFPR), PR (Brazil)

    2016-07-01

    Full text: Benzene, toluene and xylene (BTX) are a particular class of volatile organic compounds, which are highly toxic pollutants. In this study, samples of gallium-containing mesoporous silica (MS-Ga7% and MS-Ga11%) were synthesized and their catalytic activity in the oxidation of BTX was investigated. The physicochemical characterization by XRD, XPS, XRF, nitrogen adsorption and desorption isotherms at 77K, FTIR, SEM and TEM shows that the inclusion of gallium in the mesoporous silica structure leads to an increase in the number of oxygen vacancies in the structure of the MS-Ga system, which can result in an increase in the total and surface oxygen mobility. The results show the highest conversion for benzene (65%), with >40% for toluene and >28% for o-xylene. The high catalytic activity observed was attributed to a combination of several factors including a higher number of active sites (gallium and gallium oxide) being exposed, with a greater mobility of the active oxygen species on the surface of the catalyst promoting the catalytic activity. (author)

  19. A comparative study of Cu, Ag and Au doped CeO_2 in the total oxidation of volatile organic compounds (VOCs)

    International Nuclear Information System (INIS)

    Aboukaïs, Antoine; Skaf, Mira; Hany, Sara; Cousin, Renaud; Aouad, Samer; Labaki, Madona; Abi-Aad, Edmond

    2016-01-01

    Total oxidation of two Volatile Organic Compounds (VOCs), propylene and toluene, was investigated over M/CeO_2 catalysts, where M is a metal from IB group (i.e. Au, Ag, Cu), prepared by two different methods: the conventional wet impregnation and the deposition-precipitation. The catalysts have been characterized by means of total surface area (BET), X-ray diffraction (XRD), electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), diffuse reflectance ultra-violet-visible spectroscopy (DR-UV/Vis), and temperature-programmed reduction (TPR), in order to explain the differences observed in their catalytic activity towards the studied reactions. By comparing the two different preparation methods, the presence of metal in high oxidation state for gold and silver, and the presence of clusters for copper were the main factors responsible for the high catalytic activity. This latter was also found to be related, when comparing the different IB metals, to the values of the oxidation/reduction potential of the redox couples of the different metals. - Highlights: • IB metals (Au, Ag and Cu) were supported on ceria (CeO_2) by two different methods. • The solids were tested as catalysts for total oxidation of propylene and toluene. • The deposition-precipitation is better for Au whereas for Ag and Cu it is the impregnation. • High oxidation states of gold and silver and clusters of copper enhanced catalytic behavior. • Catalytic activity is linked to the oxidation/reduction potential of the redox IB couples.

  20. High catalytic activity of ultrafine nanoporous palladium for electro-oxidation of methanol, ethanol, and formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoguang; Wang, Weimin; Qi, Zhen; Zhao, Changchun; Ji, Hong; Zhang, Zhonghua [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (MOE), School of Materials Science and Engineering, Shandong University, Jingshi Road 73, Jinan 250061 (China)

    2009-10-15

    Nanoporous palladium (NPPd) with ultrafine ligament size of 3-6 nm was fabricated by dealloying of an Al-Pd alloy in an alkaline solution. Electrochemical measurements indicate that NPPd exhibits significantly high electrochemical active specific surface area (23 m{sup 2} g{sup -1}), and high catalytic activity for electro-oxidation of methanol, ethanol, and formic acid. Mass activities can reach 149, 148, 262 mA mg{sup -1} for the oxidation of methanol, ethanol and formic acid, respectively. Moreover, superior steady-state activities can be observed for all the electro-oxidation processes. NPPd will be a promising candidate for the anode catalyst for direct alcohol or formic acid fuel cells. (author)

  1. A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sanjay; Dosani, Talib; Karakoti, Ajay S.; Kumar, Amit; Seal, Sudipta; Self, William

    2011-10-01

    Cerium oxide nanoparticles (CeNPs) have shown promise as catalytic antioxidants in cell culture and animal models as both superoxide dismutase and catalase mimetics. The reactivity of the cerium (Ce) atoms at the surface of its oxide particle is critical to such therapeutic properties, yet little is known about the potential for a protein or small molecule corona to form on these materials in vivo. Moreover Ce atoms in these active sites have the potential to interact with small molecule anions, peptides, or sugars when administered in culture or animal models. Several nanomaterials have been shown to alter or aggregate under these conditions, rendering them less useful for biomedical applications. In this work we have studied the change in catalytic properties of CeNPs when exposed to various biologically relevant conditions in vitro. We have found that CeNPs are resistant to broad changes in pH and also not altered by incubation in cell culture medium. However to our surprise phosphate anions significantly altered the characteristics of these nanomaterials and shifted the catalytic behavior due to the binding of phosphate anions to cerium. Given the abundance of phosphate in biological systems in an inorganic form, it is likely that the action of CeNPs as a catalyst may be strongly influenced by the local concentration of phosphate in the cells and/or tissues in which it has been introduced.

  2. Three-dimensional block copolymer nanostructures by the solvent-annealing-induced wetting in anodic aluminum oxide templates.

    Science.gov (United States)

    Chu, Chiang-Jui; Chung, Pei-Yun; Chi, Mu-Huan; Kao, Yi-Huei; Chen, Jiun-Tai

    2014-09-01

    Block copolymers have been extensively studied over the last few decades because they can self-assemble into well-ordered nanoscale structures. The morphologies of block copolymers in confined geometries, however, are still not fully understood. In this work, the fabrication and morphologies of three-dimensional polystyrene-block-polydimethylsiloxane (PS-b-PDMS) nanostructures confined in the nanopores of anodic aluminum oxide (AAO) templates are studied. It is discovered that the block copolymers can wet the nanopores using a novel solvent-annealing-induced nanowetting in templates (SAINT) method. The unique advantage of this method is that the problem of thermal degradation can be avoided. In addition, the morphologies of PS-b-PDMS nanostructures can be controlled by changing the wetting conditions. Different solvents are used as the annealing solvent, including toluene, hexane, and a co-solvent of toluene and hexane. When the block copolymer wets the nanopores in toluene vapors, a perpendicular morphology is observed. When the block copolymer wets the nanopores in co-solvent vapors (toluene/hexane = 3:2), unusual circular and helical morphologies are obtained. These three-dimensional nanostructures can serve as naontemplates for refilling with other functional materials, such as Au, Ag, ZnO, and TiO2 . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Analytical aspects of the remediation of soil by wet oxidation - Characterisation of tar contaminants and their degradation products

    DEFF Research Database (Denmark)

    Thomsen, A.B.; Nielsen, T.; Plöger, A.

    1999-01-01

    Wet oxidation of tar compounds gives rise to a wide range of products. Due to the incorporation of oxygen, these products become increasingly more water soluble and the analytical strategy has to take into account the different physical/chemicalproperties of the compounds. An interplay between ga...

  4. Selective catalytic reduction of nitric oxide with acetaldehyde over NaY zeolite catalyst in lean exhaust feed

    International Nuclear Information System (INIS)

    Schmieg, Steven J.; Cho, Byong K.; Oh, Se H.

    2004-01-01

    Steady-state selective catalytic reduction (SCR) of nitric oxide (NO) was investigated under simulated lean-burn conditions using acetaldehyde (CH 3 CHO) as the reductant. This work describes the influence of catalyst space velocity and the impact of nitric oxide, acetaldehyde, oxygen, sulfur dioxide, and water on NO x reduction activity over NaY zeolite catalyst. Results indicate that with sufficient catalyst volume 90% NO x conversion can be achieved at temperatures relevant to light-duty diesel exhaust (150-350C). Nitric oxide and acetaldehyde react to form N 2 , HCN, and CO 2 . Oxygen is necessary in the exhaust feed stream to oxidize NO to NO 2 over the catalyst prior to reduction, and water is required to prevent catalyst deactivation. Under conditions of excess acetaldehyde (C 1 :N>6:1) and low temperature ( x conversion is apparently very high; however, the NO x conversion steadily declines with time due to catalytic oxidation of some of the stored (adsorbed) NO to NO 2 , which can have a significant impact on steady-state NO x conversion. With 250ppm NO in the exhaust feed stream, maximum NO x conversion at 200C can be achieved with =400ppm of acetaldehyde, with higher acetaldehyde concentrations resulting in production of acetic acid and breakthrough of NO 2 causing lower NO x conversion levels. Less acetaldehyde is necessary at lower NO concentrations, while more acetaldehyde is required at higher temperatures. Sulfur in the exhaust feed stream as SO 2 can cause slow deactivation of the catalyst by poisoning the adsorption and subsequent reaction of nitric oxide and acetaldehyde, particularly at low temperature

  5. Wet oxidation treatment of organic household waste enriched with wheat straw for simultaneous saccharification and fermentation into ethanol

    DEFF Research Database (Denmark)

    Lissens, G.; Klinke, H.B.; Verstraete, W.

    2004-01-01

    Organic municipal solid waste enriched with wheat straw was subjected to wet-oxidation as a pre-treatment for subsequent enzymatic conversion and fermentation into bio-ethanol. The effect of tempera (185-195degrees C), oxygen pressure (3-12) and sodium carbonate (0-2 g l(-1)) addition on enzymatic...... in the treated waste could be converted into respectively hexose and pentose sugars compared to 46% for cellulose and 36% for hemicellulose in the raw waste. For all wet oxidation conditions tested, total carbohydrate recoveries were high (> 89%) and 44-66% of the original lignin could be converted into non......-toxic carboxylic acids mainly (2.2-4.5 % on DS basis). Simultaneous saccharification and fermentation (SSF) of the treated waste at 10% DS by Saccharomyces cerevisae yielded average ethanol concentrations of 16.5 to 22 g l(-1) for enzyme loadings of 5 and 25 FPU g(-1) DS, respectively. The cellulose to ethanol...

  6. Surface chemistry and catalytic properties of VO{sub X}/Ti-MCM-41 catalysts for dibenzothiophene oxidation in a biphasic system

    Energy Technology Data Exchange (ETDEWEB)

    González, J. [ESIQIE, Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional s/n, 07738 Col. Zacatenco, Mexico City (Mexico); Chen, L.F., E-mail: lchen@ipn.mx [ESIQIE, Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional s/n, 07738 Col. Zacatenco, Mexico City (Mexico); Wang, J.A.; Manríquez, Ma.; Limas, R. [ESIQIE, Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional s/n, 07738 Col. Zacatenco, Mexico City (Mexico); Schachat, P.; Navarrete, J. [Dirección de Investigación, Instituto Mexicano del Petróleo, Eje Lázaro Cárdenas 152, 07730 México D.F. (Mexico); Contreras, J.L. [Laboratorio de Catálisis y Polímeros, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-A, Av. San Pablo No. 180, 02200 México D.F. (Mexico)

    2016-08-30

    Highlights: • Oxidative desulfurization of model diesel was tested in a biphasic system. • ODS activity was proportional to the V{sup 5+}/(V{sup 4+} + V{sup 5+}) values of the catalysts. • Lewis acidity was related to vanadium content and catalytic activity. • 99.9% DBT was oxidized using 25%V{sub 2}O{sub 5}/Ti-MCM-41 at 60 °C within 60 min. - Abstract: A series of vanadium oxide supported on Ti-MCM-41 catalysts was synthesized via the incipient impregnation method by varying the vanadia loading from 5 wt% to 10, 15, 20 and 25 wt%. These catalysts were characterized by a variety of advanced techniques for investigating their crystalline structure, textural properties, and surface chemistry information including surface acidity, reducibility, vanadium oxidation states, and morphological features. The catalytic activities of the catalysts were evaluated in a biphasic reaction system for oxidative desulfurization (ODS) of a model diesel containing 300 ppm of dibenzothiophene (DBT) where acetonitrile was used as extraction solvent and H{sub 2}O{sub 2} as oxidant. ODS activity was found to be proportional to the V{sup 5+}/(V{sup 4+} + V{sup 5+}) values of the catalysts, indicating that the surface vanadium pentoxide (V{sub 2}O{sub 5}) was the active phase. Reaction temperature would influence significantly the ODS efficiency; high temperature, i.e., 80 °C, would lead to low ODS reaction due to the partial decomposition of oxidant. All the catalysts contained both Lewis and Brønsted acid sites but the former was predominant. The catalysts with low vanadia loading (5 or 10 wt%V{sub 2}O{sub 5}) had many Lewis acid sites and could strongly adsorb DBT molecule via the electron donation/acceptance action which resulted in an inhibition for the reaction of DBT with the surface peroxometallic species. The catalyst with high vanadia loading (25wt%V{sub 2}O{sub 5}/Ti-MCM-41) showed the highest catalytic activity and could remove 99.9% of DBT at 60 °C within 60 min.

  7. Fluorescent proteins such as eGFP lead to catalytic oxidative stress in cells.

    Science.gov (United States)

    Ganini, Douglas; Leinisch, Fabian; Kumar, Ashutosh; Jiang, JinJie; Tokar, Erik J; Malone, Christine C; Petrovich, Robert M; Mason, Ronald P

    2017-08-01

    Fluorescent proteins are an important tool that has become omnipresent in life sciences research. They are frequently used for localization of proteins and monitoring of cells [1,2]. Green fluorescent protein (GFP) was the first and has been the most used fluorescent protein. Enhanced GFP (eGFP) was optimized from wild-type GFP for increased fluorescence yield and improved expression in mammalian systems [3]. Many GFP-like fluorescent proteins have been discovered, optimized or created, such as the red fluorescent protein TagRFP [4]. Fluorescent proteins are expressed colorless and immature and, for eGFP, the conversion to the fluorescent form, mature, is known to produce one equivalent of hydrogen peroxide (H 2 O 2 ) per molecule of chromophore [5,6]. Even though it has been proposed that this process is non-catalytic and generates nontoxic levels of H 2 O 2 [6], this study investigates the role of fluorescent proteins in generating free radicals and inducing oxidative stress in biological systems. Immature eGFP and TagRFP catalytically generate the free radical superoxide anion (O 2 •- ) and H 2 O 2 in the presence of NADH. Generation of the free radical O 2 •- and H 2 O 2 by eGFP in the presence of NADH affects the gene expression of cells. Many biological pathways are altered, such as a decrease in HIF1α stabilization and activity. The biological pathways altered by eGFP are known to be implicated in the pathophysiology of many diseases associated with oxidative stress; therefore, it is critical that such experiments using fluorescent proteins are validated with alternative methodologies and the results are carefully interpreted. Since cells inevitably experience oxidative stress when fluorescent proteins are expressed, the use of this tool for cell labeling and in vivo cell tracing also requires validation using alternative methodologies. Published by Elsevier B.V.

  8. A comparative study of Cu, Ag and Au doped CeO{sub 2} in the total oxidation of volatile organic compounds (VOCs)

    Energy Technology Data Exchange (ETDEWEB)

    Aboukaïs, Antoine, E-mail: aboukais@univ-littoral.fr [Unité de Chimie Environnementale et Interactions sur le Vivant EA 4492, ULCO, Equipe de Catalyse-UCEIV, MREI, 59140, Dunkerque (France); Skaf, Mira, E-mail: miraskaf@hotmail.com [Unité de Chimie Environnementale et Interactions sur le Vivant EA 4492, ULCO, Equipe de Catalyse-UCEIV, MREI, 59140, Dunkerque (France); Department of Chemistry, Faculty of Sciences, University of Balamand, P.O. Box 100, Deir El Balamand, Kelhat-Tripoli (Lebanon); Hany, Sara, E-mail: sarahani@hotmail.com [Unité de Chimie Environnementale et Interactions sur le Vivant EA 4492, ULCO, Equipe de Catalyse-UCEIV, MREI, 59140, Dunkerque (France); Cousin, Renaud, E-mail: Renaud.Cousin@univ-littoral.fr [Unité de Chimie Environnementale et Interactions sur le Vivant EA 4492, ULCO, Equipe de Catalyse-UCEIV, MREI, 59140, Dunkerque (France); Aouad, Samer, E-mail: Samer.Aouad@balamand.edu.lb [Department of Chemistry, Faculty of Sciences, University of Balamand, P.O. Box 100, Deir El Balamand, Kelhat-Tripoli (Lebanon); Labaki, Madona, E-mail: mlabaki@ul.edu.lb [Laboratory of Physical Chemistry of Materials (LCPM)/PR2N, Faculty of Sciences, Lebanese University, Fanar, PO Box 90656, Jdeidet El Metn (Lebanon); Abi-Aad, Edmond, E-mail: abiaad@univ-littoral.fr [Unité de Chimie Environnementale et Interactions sur le Vivant EA 4492, ULCO, Equipe de Catalyse-UCEIV, MREI, 59140, Dunkerque (France)

    2016-07-01

    Total oxidation of two Volatile Organic Compounds (VOCs), propylene and toluene, was investigated over M/CeO{sub 2} catalysts, where M is a metal from IB group (i.e. Au, Ag, Cu), prepared by two different methods: the conventional wet impregnation and the deposition-precipitation. The catalysts have been characterized by means of total surface area (BET), X-ray diffraction (XRD), electron paramagnetic resonance (EPR), X-ray photoelectron spectroscopy (XPS), diffuse reflectance ultra-violet-visible spectroscopy (DR-UV/Vis), and temperature-programmed reduction (TPR), in order to explain the differences observed in their catalytic activity towards the studied reactions. By comparing the two different preparation methods, the presence of metal in high oxidation state for gold and silver, and the presence of clusters for copper were the main factors responsible for the high catalytic activity. This latter was also found to be related, when comparing the different IB metals, to the values of the oxidation/reduction potential of the redox couples of the different metals. - Highlights: • IB metals (Au, Ag and Cu) were supported on ceria (CeO{sub 2}) by two different methods. • The solids were tested as catalysts for total oxidation of propylene and toluene. • The deposition-precipitation is better for Au whereas for Ag and Cu it is the impregnation. • High oxidation states of gold and silver and clusters of copper enhanced catalytic behavior. • Catalytic activity is linked to the oxidation/reduction potential of the redox IB couples.

  9. Synthesis and application of multiple rods gold-zinc oxide nano structures in the photo catalytic degradation of methyl orange

    International Nuclear Information System (INIS)

    Arab Chamjangali, M.; Bagherian, G.; Bahramian, B.; Fahimi Rad, B.

    2015-01-01

    Zinc oxide and gold-zinc oxide (Au-Zn O) nano structures with multiple rods (multi pods) morphology were successfully prepared. Au-Zn O nano structures were synthesized via a simple precipitation route method in the presence of oligo aniline-coated gold nanoparticles. The Au-Zn O catalyst obtained was applied for the degradation of methyl orange in an aqueous solution under UV irradiation Effects of the operational parameters such as the solution p H, amount of photocatalyst, and dye concentration on the photo catalytic degradation and decolorisation of methyl orange were studied. Detailed studies including kinetic study and regeneration of catalyst were carried out on the optimal conditions for the photodegradation of methyl orange by Au-Zn O multi pods in aqueous solution. Effect of foreign species on the photodegradation of methyl orange was also studied. An enhancement of the photo catalytic activities for photodegradation of methyl orange was observed when the gold nanoparticles were loaded on the zinc oxide multi pods. The proposed catalyst was applied for the degradation of methyl orange in synthetic wastewater samples with satisfactory results.

  10. A non-acid-assisted and non-hydroxyl-radical-related catalytic ozonation with ceria supported copper oxide in efficient oxalate degradation in water

    KAUST Repository

    Zhang, Tao

    2012-06-01

    Oxalate is usually used as a refractory model compound that cannot be effectively removed by ozone and hydroxyl radical oxidation in water. In this study, we found that ceria supported CuO significantly improved oxalate degradation in reaction with ozone. The optimum CuO loading amount was 12%. The molar ratio of oxalate removed/ozone consumption reached 0.84. The catalytic ozonation was most effective in a neutral pH range (6.7-7.9) and became ineffective when the water solution was acidic or alkaline. Moreover, bicarbonate, a ubiquitous hydroxyl radical scavenger in natural waters, significantly improved the catalytic degradation of oxalate. Therefore, the degradation relies on neither hydroxyl radical oxidation nor acid assistance, two pathways usually proposed for catalytic ozonation. These special characters of the catalyst make it suitable to be potentially used for practical degradation of refractory hydrophilic organic matter and compounds in water and wastewater. With in situ characterization, the new surface Cu(II) formed from ozone oxidation of the trace Cu(I) of the catalyst was found to be an active site in coordination with oxalate forming multi-dentate surface complex. It is proposed that the complex can be further oxidized by molecular ozone and then decomposes through intra-molecular electron transfer. The ceria support enhanced the activity of the surface Cu(I)/Cu(II) in this process. © 2012 Elsevier B.V.

  11. Catalytical degradation of relevant pollutants from waters using magnetic nanocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Nadejde, C., E-mail: claudia.nadejde@uaic.ro [Interdisciplinary Research Department – Field Science, ‘Alexandru Ioan Cuza’ University, Lascar Catargi 54, 700107 Iasi (Romania); Neamtu, M., E-mail: mariana.neamtu@uaic.ro [Interdisciplinary Research Department – Field Science, ‘Alexandru Ioan Cuza’ University, Lascar Catargi 54, 700107 Iasi (Romania); Schneider, R.J.; Hodoroaba, V.-D. [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, D-12205 Berlin (Germany); Ababei, G. [National Institute of Research and Development for Technical Physics, Dimitrie Mangeron Bd. 47, 700050 Iasi (Romania); Panne, U. [BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, D-12205 Berlin (Germany); Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489 Berlin (Germany)

    2015-10-15

    Graphical abstract: - Highlights: • Non-hazardous, facile and inexpensive procedure for efficient wastewater treatment. • Chemical synthesis of ferrous oxalate modified Fe{sub 3}O{sub 4} nanoparticles. • Structural characterization confirmed the senzitized catalysts' nanometric size. • The highly magnetic catalysts can be easily recovered from solution. • 99.7% of azo dye was removed in 4 h using Fenton-like process in alkaline media. - Abstract: The catalytic efficiency of two magnetically responsive nanocatalysts was evaluated for the degradation of Reactive Black 5 (RB5) and Reactive Yellow 84 (RY84) azo dyes using hydrogen peroxide as oxidant under very mild conditions (atmospheric pressure, room temperature). In order to obtain the nanocatalysts, the surface of magnetite (Fe{sub 3}O{sub 4}) nanoparticles, prepared by a co-precipitation method, was further modified with ferrous oxalate, a highly sensitive non-hazardous reducing agent. The sensitized nanomaterials were characterized by X-ray diffraction, scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy and vibrating sample magnetometry, and used in the catalytic wet hydrogen peroxide oxidation (CWHPO) of RB5 and RY84, in laboratory-scale experiments. The effect of important variables such as catalyst dosage, H{sub 2}O{sub 2} concentration, and contact time was studied in the dye degradation kinetics. The results showed that it was possible to remove up to 99.7% dye in the presence of 20 mM H{sub 2}O{sub 2} after 240 min of oxidation for a catalyst concentration of 10 g L{sup −1} at 25 °C and initial pH value of 9.0. CWHPO of reactive dyes using sensitized magnetic nanocatalysts can be a suitable pre-treatment method for complete decolorization of effluents from textile dyeing and finishing processes, once the optimum operating conditions are established.

  12. Conference: the wet catalytic oxidation, a technology for the removal of organic pollutants in industrial waters; Conference: l'oxydation voie humide catalytique, une technologie pour l'elimination des polluants organiques dans les eaux industrielles

    Energy Technology Data Exchange (ETDEWEB)

    Besson, M. [Institut de recherches sur la catalyse - CNRS, 2 avenue Albert Einstein, 69626 Villeurbanne Cedex (France)

    2004-07-01

    In this conference, it is taken stock on the use of catalysts in the wet oxidation process. Supported (TiO{sub 2}, ZrO{sub 2}....) heterogeneous metallic catalysts (Pt, Ru...) are particularly studied. It is shown that this type of catalysts can answer to the required characteristics: activity for the removal of organic matter, lack of active metal leaching in aqueous acid medium, no deactivation...Examples are given. (O.M.)

  13. Heterogeneous catalytic materials solid state chemistry, surface chemistry and catalytic behaviour

    CERN Document Server

    Busca, Guido

    2014-01-01

    Heterogeneous Catalytic Materials discusses experimental methods and the latest developments in three areas of research: heterogeneous catalysis; surface chemistry; and the chemistry of catalysts. Catalytic materials are those solids that allow the chemical reaction to occur efficiently and cost-effectively. This book provides you with all necessary information to synthesize, characterize, and relate the properties of a catalyst to its behavior, enabling you to select the appropriate catalyst for the process and reactor system. Oxides (used both as catalysts and as supports for cata

  14. Comparison of Elemental Mercury Oxidation Across Vanadium and Cerium Based Catalysts in Coal Combustion Flue Gas: Catalytic Performances and Particulate Matter Effects.

    Science.gov (United States)

    Wan, Qi; Yao, Qiang; Duan, Lei; Li, Xinghua; Zhang, Lei; Hao, Jiming

    2018-03-06

    This paper discussed the field test results of mercury oxidation activities over vanadium and cerium based catalysts in both coal-fired circulating fluidized bed boiler (CFBB) and chain grate boiler (CGB) flue gases. The characterizations of the catalysts and effects of flue gas components, specifically the particulate matter (PM) species, were also discussed. The catalytic performance results indicated that both catalysts exhibited mercury oxidation preference in CGB flue gas rather than in CFBB flue gas. Flue gas component studies before and after dust removal equipment implied that the mercury oxidation was well related to PM, together with gaseous components such as NO, SO 2 , and NH 3 . Further investigations demonstrated a negative PM concentration-induced effect on the mercury oxidation activity in the flue gases before the dust removal, which was attributed to the surface coverage by the large amount of PM. In addition, the PM concentrations in the flue gases after the dust removal failed in determining the mercury oxidation efficiency, wherein the presence of different chemical species in PM, such as elemental carbon (EC), organic carbon (OC) and alkali (earth) metals (Na, Mg, K, and Ca) in the flue gases dominated the catalytic oxidation of mercury.

  15. Catalytic activity of Co/SiO2 and Co/TiO2 nanosized systems in the oxidation of carbon monoxide

    Science.gov (United States)

    Kelyp, A. A.; Smirnova, N. P.; Oleksenko, L. P.; Lutsenko, L. V.; Oranskaya, E. I.; Ripko, A. P.

    2013-06-01

    The effects of the preparation procedure, active component concentration, and conditions of formation of nanosized cobalt-containing systems based on TiO2 and SiO2 mesoporous powders on their catalytic activity in the oxidation of carbon monoxide were studied. The active phase in the systems was cobalt spinel CoCo2O4 found in all samples. High catalytic activity was found in the samples characterized by relatively high contents of surface active centers (cobalt cations with octahedral surroundings).

  16. Effect of nitrogen doping on wetting and photoactive properties of laser processed zinc oxide-graphene oxide nanocomposite layers

    Energy Technology Data Exchange (ETDEWEB)

    György, E., E-mail: egyorgy@icmab.es [Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Barcelona (CSIC-ICMAB), Campus UAB, 08193 Bellaterra (Spain); National Institute for Lasers, Plasma and Radiation Physics, P. O. Box MG 36, 76900 Bucharest V (Romania); Pérez del Pino, A. [Consejo Superior de Investigaciones Cientificas, Instituto de Ciencia de Materiales de Barcelona (CSIC-ICMAB), Campus UAB, 08193 Bellaterra (Spain); Logofatu, C. [National Institute for Materials Physics, P. O. Box MG. 7, 77125 Bucharest (Romania); Duta, A.; Isac, L. [Transilvania University of Brasov, Research Centre for Renewable Energy Systems and Recycling, Eroilor 29, 500036, Brasov (Romania)

    2014-07-14

    Zinc oxide-graphene oxide nanocomposite layers were submitted to laser irradiation in air or controlled nitrogen atmosphere using a frequency quadrupled Nd:YAG (λ = 266 nm, τ{sub FWHM} ≅ 3 ns, ν = 10 Hz) laser source. The experiments were performed in air at atmospheric pressure or in nitrogen at a pressure of 2 × 10{sup 4} Pa. The effect of the irradiation conditions, incident laser fluence value, and number of subsequent laser pulses on the surface morphology of the composite material was systematically investigated. The obtained results reveal that nitrogen incorporation improves significantly the wetting and photoactive properties of the laser processed layers. The kinetics of water contact angle variation when the samples are submitted to laser irradiation in nitrogen are faster than that of the samples irradiated in air, the surfaces becoming super-hydrophilic under UV light irradiation.

  17. Selective oxidation

    International Nuclear Information System (INIS)

    Cortes Henao, Luis F.; Castro F, Carlos A.

    2000-01-01

    It is presented a revision and discussion about the characteristics and factors that relate activity and selectivity in the catalytic and not catalytic partial oxidation of methane and the effect of variables as the temperature, pressure and others in the methane conversion to methanol. It thinks about the zeolites use modified for the catalytic oxidation of natural gas

  18. Design and Experimentation with Sandwich Microstructure for Catalytic Combustion-Type Gas Sensors

    Directory of Open Access Journals (Sweden)

    Jun-Tao Gu

    2014-03-01

    Full Text Available The traditional handmade catalytic combustion gas sensor has some problems such as a pairing difficulty, poor consistency, high power consumption, and not being interchangeable. To address these issues, integrated double catalytic combustion of alcohol gas sensor was designed and manufactured using silicon micro-electro-mechanical systems (MEMS technology. The temperature field of the sensor is analyzed using the ANSYS finite element analysis method. In this work, the silicon oxide-PECVD-oxidation technique is used to manufacture a SiO2-Si3N2-SiO2 microstructure carrier with a sandwich structure, while wet etching silicon is used to form a beam structure to reduce the heat consumption. Thin-film technology is adopted to manufacture the platinum-film sensitive resistance. Nano Al2O3-ZrO-ThO is coated to format the sensor carrier, and the sensitive unit is dipped in a Pt-Pd catalyst solution to form the catalytic sensitive bridge arm. Meanwhile the uncoated catalyst carrier is considered as the reference unit, realizing an integrated chip based on a micro double bridge and forming sensors. The lines of the Pt thin-film resistance have been observed with an electronic microscope. The compensation of the sensitive material carriers and compensation materials have been analyzed using an energy spectrum. The results show that the alcohol sensor can detect a volume fraction between 0 and 4,500 × 10−6 and has good linear output characteristic. The temperature ranges from −20 to +40 °C. The humidity ranges from 30% to 85% RH. The zero output of the sensor is less than ±2.0% FS. The power consumption is ≤0.2 W, and both the response and recovery time are approximately 20 s.

  19. Photolytic AND Catalytic Destruction of Organic Waste Water Pollutants

    Science.gov (United States)

    Torosyan, V. F.; Torosyan, E. S.; Kryuchkova, S. O.; Gromov, V. E.

    2017-01-01

    The system: water supply source - potable and industrial water - wastewater - sewage treatment - water supply source is necessary for water supply and efficient utilization of water resources. Up-to-date technologies of waste water biological treatment require for special microorganisms, which are technologically complex and expensive but unable to solve all the problems. Application of photolytic and catalytically-oxidizing destruction is quite promising. However, the most reagents are strong oxidizers in catalytic oxidation of organic substances and can initiate toxic substance generation. Methodic and scientific approaches to assess bread making industry influence on the environment have been developed in this paper in order to support forecasting and taking technological decisions concerning reduction of this influence. Destructive methods have been tested: ultra violet irradiation and catalytic oxidation for extraction of organic compounds from waste water by natural reagents.

  20. Catalytic upgrading of sugar fractions from pyrolysis oils in supercritical mono-alcohols over Cu doped porous metal oxide

    NARCIS (Netherlands)

    Yin, Wang; Venderbosch, Hendrikus; Bottari, Giovanni; Krawzcyk, Krzysztof K.; Barta, Katalin; Heeres, Hero Jan

    In this work, we report on the catalytic valorization of sugar fractions, obtained by aqueous phase extraction of fast pyrolysis oils, in supercritical methanol (scMeOH) and ethanol (scEtOH) over a copper doped porous metal oxide (Cu-PMO). The product mixtures obtained are, in principle, suitable

  1. The Manipulation of Hydrophobicity in Catalyst Design for Applications of Aerobic Alcohols Oxidation and Electrocatalytic Water Oxidation

    KAUST Repository

    Chen, Batian

    2016-05-17

    Hydrophobicity is the generalized characteristic of non-polar substances that brings about their exclusion from aqueous phases. This property, entropic in its nature, drives key self-assembly and phase separation processes in water. Protein folding, the formation of DNA double helix, the existence of lipid bilayers and the wetting properties of leaf surfaces are all due to hydrophobic interactions. Inspired by Nature, we aimed to use hydrophobicity for creating novel and improved catalytic systems. (I) A number of fluorous amphiphilic star block-copolymers containing a tris(benzyltriazolylmethyl)amine motif have been prepared. These polymers assembled into well-defined nanostructures in water, and their mode of assembly could be controlled by changing the composition of the polymer. The polymers were used for enzyme-inspired catalysis of alcohol oxidation. (II) An enzyme-inspired catalytic system based on a rationally designed multifunctional surfactant was developed. The resulting micelles feature metal-binding sites and stable free radical moieties as well as fluorous pockets that attract and preconcentrate molecular oxygen. In the presence of copper ions, the micelles effect chemoselective aerobic alcohol oxidation under ambient conditions in water, a transformation that is challenging to achieve nonenzymatically. (III) Development of a facile means of photo/electrocatalytic water splitting is one of the main barriers to establishing of a solar hydrogen economy. Of the two half-reactions involved in splitting water into O2 and H2, water oxidation presents the most challenge due to its mechanistic complexity. A practical water oxidation catalyst must be highly active, yet inexpensive and indefinitely stable under harsh oxidative conditions. Here, I shall describe the synthesis of a library of molecular water oxidation catalysts based on the Co complex of tris(2-benzimidazolylmethyl)amine, (BimH)3. A wide range of catalysts differing in their electronic properties

  2. Electrochemical catalytic treatment of phenol wastewater

    International Nuclear Information System (INIS)

    Ma Hongzhu; Zhang Xinhai; Ma Qingliang; Wang Bo

    2009-01-01

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  3. Electrochemical catalytic treatment of phenol wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Ma Hongzhu, E-mail: hzmachem@snnu.edu.cn [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Zhang Xinhai [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Ma Qingliang [Department of Applied Physics, College of Sciences, Taiyuan University of Technology, 030024 Taiyuan (China); Wang Bo [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)

    2009-06-15

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  4. Metallo-deuteroporphyrin as a biomimetic catalyst for the catalytic oxidation of lignin to aromatics.

    Science.gov (United States)

    Zhu, Chenjie; Ding, Weiwei; Shen, Tao; Tang, Chenglun; Sun, Chenguo; Xu, Shichao; Chen, Yong; Wu, Jinglan; Ying, Hanjie

    2015-05-22

    A series of metallo-deuteroporphyrins derived from hemin were prepared as models of the cytochrome P450 enzyme. With the aid of the highly active Co(II) deuteroporphyrin complex, the catalytic oxidation system was applied for the oxidation of several lignin model compounds, and high yields of monomeric products were obtained under mild reaction conditions. It was found that the modified cobalt deuteroporphyrin that has no substituents at the meso sites but does have the disulfide linkage in the propionate side chains at the β sites exhibited much higher activity and stability than the synthetic tetraphenylporphyrin. The changes in the propionate side chains can divert the reactivity of cobalt deuteroporphyrins from the typical CC bond cleavage to CO bond cleavage. Furthermore, this novel oxidative system can convert enzymolysis lignin into depolymerized products including a significant portion of well-defined aromatic monomers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. One-step flame synthesis of an active Pt/TiO2 catalyst for SO2 oxidation

    DEFF Research Database (Denmark)

    Johannessen, Tue; Koutsopoulos, Sotiris

    2002-01-01

    Flame synthesis as a route for production of composite metal oxides has been employed for the one-step synthesis of a supported noble metal catalyst, i.e. a Pt/TiO2 catalyst, by simultaneous combustion of Ti-isopropoxide and platinum acetylacetonate in a quench-cooled flame reactor. The average...... size of the platinum particles supported on aggregated nano-particles of TiO2 is approximately 2 nm. The high SO2-oxidation activity of the catalyst proves that platinum is not hidden in the titania matrix. The flame-produced catalyst showed catalytic activity similar to samples prepared by wet...

  6. Fabrication of highly catalytic silver nanoclusters/graphene oxide nanocomposite as nanotag for sensitive electrochemical immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiamian; Wang, Xiuyun; Wu, Shuo, E-mail: wushuo@dlut.edu.cn; Song, Jie; Zhao, Yanqiu; Ge, Yanqiu; Meng, Changgong

    2016-02-04

    Silver nanoclusters and graphene oxide nanocomposite (AgNCs/GRO) is synthesized and functionalized with detection antibody for highly sensitive electrochemical sensing of carcinoembryonic antigen (CEA), a model tumor marker involved in many cancers. AgNCs with large surface area and abundant amount of low-coordinated sites are synthesized with DNA as template and exhibit high catalytic activity towards the electrochemical reduction of H{sub 2}O{sub 2}. GRO is employed to assemble with AgNCs because it has large specific surface area, super electronic conductivity and strong π-π stacking interaction with the hydrophobic bases of DNA, which can further improve the catalytic ability of the AgNCs. Using AgNCs/GRO as signal amplification tag, an enzyme-free electrochemical immunosensing protocol is designed for the highly sensitive detection of CEA on the capture antibody functionalized immunosensing interface. Under optimal conditions, the designed immunosensor exhibits a wide linear range from 0.1 pg mL{sup −1} to 100 ng mL{sup −1} and a low limit of detection of 0.037 pg mL{sup −1}. Practical sample analysis reveals the sensor has good accuracy and reproducibility, indicating the great application prospective of the AgNCs/GRO in fabricating highly sensitive immunosensors, which can be extended to the detection of various kinds of low abundance disease related proteins. - Highlights: • An enzyme-free electrochemical immunosensor is reported for detecting proteins. • A silver nanocluster/graphene oxide composite is synthesized as nanotag. • The nanotags exhibit highly catalytic activity to the electro-reduction of H{sub 2}O{sub 2}. • The as-fabricated immunosensor could detect protein in serum samples.

  7. Surface chemistry and catalytic properties of VOX/Ti-MCM-41 catalysts for dibenzothiophene oxidation in a biphasic system

    Science.gov (United States)

    González, J.; Chen, L. F.; Wang, J. A.; Manríquez, Ma.; Limas, R.; Schachat, P.; Navarrete, J.; Contreras, J. L.

    2016-08-01

    A series of vanadium oxide supported on Ti-MCM-41 catalysts was synthesized via the incipient impregnation method by varying the vanadia loading from 5 wt% to 10, 15, 20 and 25 wt%. These catalysts were characterized by a variety of advanced techniques for investigating their crystalline structure, textural properties, and surface chemistry information including surface acidity, reducibility, vanadium oxidation states, and morphological features. The catalytic activities of the catalysts were evaluated in a biphasic reaction system for oxidative desulfurization (ODS) of a model diesel containing 300 ppm of dibenzothiophene (DBT) where acetonitrile was used as extraction solvent and H2O2 as oxidant. ODS activity was found to be proportional to the V5+/(V4+ + V5+) values of the catalysts, indicating that the surface vanadium pentoxide (V2O5) was the active phase. Reaction temperature would influence significantly the ODS efficiency; high temperature, i.e., 80 °C, would lead to low ODS reaction due to the partial decomposition of oxidant. All the catalysts contained both Lewis and Brønsted acid sites but the former was predominant. The catalysts with low vanadia loading (5 or 10 wt%V2O5) had many Lewis acid sites and could strongly adsorb DBT molecule via the electron donation/acceptance action which resulted in an inhibition for the reaction of DBT with the surface peroxometallic species. The catalyst with high vanadia loading (25wt%V2O5/Ti-MCM-41) showed the highest catalytic activity and could remove 99.9% of DBT at 60 °C within 60 min.

  8. Catalytic decomposition of nitrous oxide from nitric acid production tail gases. Investigation of inhibition effects. Executive summary

    International Nuclear Information System (INIS)

    Mul, G.; Perez-Ramirez, J.; Xu, Xiaoding; Oonk, H.; Yakovlev, A.

    2001-06-01

    Nitric acid production is an important source of nitrous oxide, one of the green-house gases. Catalytic decomposition of N2O in nitric acid tail-gases might be a possibility for emission reduction, but technology is not yet available. As a part of development of suitable catalytic systems, research was performed, aiming at: gaining an improved understanding of catalytic decomposition of N2O and the inhibiting effects of NO, NO2, H2O and O2; and preparing a 'go-no go' decision whether or not to proceed with subsequent re-search and development and if yes, to indicate what technology further development should aim for. Due to the presence of NOx and water in the nitric acid tail gases, catalytic decomposition proves not to be feasible at temperatures below 350C. At higher temperatures possibilities do exist and a number of promising catalysts are identified. These are active (80 - 100 % conversion) in the temperature range of 400 - 500C and under simulated tail gas conditions. Considering process conditions only (temperatures and composition of the tail-gases), the catalysts studied (pref. the Rh/Al2O3 types) could be in principle applied successfully in all Dutch nitric acid plants

  9. Modifications induced by potassium addition on chromia/alumina catalysts and their influence on the catalytic activity for the oxidative dehydrogenation of propane

    International Nuclear Information System (INIS)

    Rombi, E.; Gazzoli, D.; Cutrufello, M.G.; De Rossi, S.; Ferino, I.

    2010-01-01

    The oxidative dehydrogenation of propane was investigated on K-containing chromia/alumina catalysts, with nominal Cr and K loadings of 10 and 0-2 wt%, respectively. Their chemical composition, structure, texture, nature of surface species, redox features and surface acidity were determined. Catalytic behaviour was investigated in a continuous-flow micro-reactor under different conditions. Besides the nature and concentration of the chromium species, potassium addition was found to affect the reducibility of the catalysts as well as their acid surface features. Such modifications were found to condition the catalytic behaviour, which appeared somewhat peculiar in comparison with that of the catalytic systems reported in literature.

  10. Visualizing a Catalyst at Work during the Ignition of the Catalytic Partial Oxidation of Methane

    DEFF Research Database (Denmark)

    Kimmerle, Bertram; Grunwaldt, Jan-Dierk; Baiker, Alfons

    2009-01-01

    We present a spatiotemporal operando X-ray absorption study of a highly dynamic process, the ignition of the noble metal catalyzed partial oxidation of methane. Evolvement and propagation of the platinum component's structural changes are investigated with a high-speed X-ray camera, which...... in combination with temperature profiling by IR-thermography and catalytic activity measurements by online mass spectrometry gives insight into the first stages of the ignition of the reaction toward hydrogen and carbon monoxide....

  11. SHORT COMMUNICATION CATALYTIC KINETIC ...

    African Journals Online (AJOL)

    IV) catalyzes the discoloring reaction of DBS-arsenazo oxidized by potassium bromate, a new catalytic kinetic spectrophotometric method for the determination of trace titanium (IV) was developed. The linear range of the determination of ...

  12. Structural/surface characterization and catalytic evaluation of rare-earth (Y, Sm and La) doped ceria composite oxides for CH{sub 3}SH catalytic decomposition

    Energy Technology Data Exchange (ETDEWEB)

    He, Dedong; Chen, Dingkai; Hao, Husheng; Yu, Jie; Liu, Jiangping; Lu, Jichang; Liu, Feng [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500 (China); Wan, Gengping [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500 (China); Research Center for Analysis and Measurement, Hainan University, Haikou, 570228 (China); He, Sufang [Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming, 650093 (China); Luo, Yongming, E-mail: environcatalysis222@yahoo.com [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500 (China)

    2016-12-30

    Highlights: • Ce{sub 0.75}RE{sub 0.25}O{sub 2-δ} (RE = Y, Sm and La) were synthesized by citrate complexation method. • Ce{sub 0.75}Y{sub 0.25}O{sub 2-δ} exhibited the best stability for the decomposition of CH{sub 3}SH. • Cation radius played a key role in determining structure and surface characteristics. • Catalytic behavior depended on synergistic role of oxygen vacancies and basic sites. • Ce{sub 2}S{sub 3} accumulation on the surface was responsible for the deactivation of catalyst. - Abstract: A series of rare earth (Y, Sm and La) doped ceria composite oxides and pure CeO{sub 2} were synthesized and evaluated by conducting CH{sub 3}SH catalytic decomposition test. Several characterization studies, including XRD, BET, Raman, H{sub 2}-TPR, XPS, FT-IR, CO{sub 2}-TPD and CH{sub 3}SH-TPD, were undertaken to correlate structural and surface properties of the obtained ceria-based catalysts with their catalytic performance for CH{sub 3}SH decomposition. More oxygen vacancies and increased basic sites exhibited in the rare earth doped ceria catalysts. Y doped ceria sample (Ce{sub 0.75}Y{sub 0.25}O{sub 2-δ}), with a moderate increase in basic sites, contained more oxygen vacancies. More structural defects and active sites could be provided, and a relatively small amount of sulfur would accumulate, which resulted in better catalytic performance. The developed catalyst presented good catalytic behavior with stability very similar to that of typical zeolite-based catalysts reported previously. However, La doped ceria catalyst (Ce{sub 0.75}La{sub 0.25}O{sub 2-δ}) with the highest alkalinity was not the most active one. More sulfur species would be adsorbed and a large amount of cerium sulfide species (Ce{sub 2}S{sub 3}) would accumulate, which caused deactivation of the catalysts. The combined effect of increased oxygen vacancies and alkalinity led to the catalytic stability of Ce{sub 0.75}Sm{sub 0.25}O{sub 2-δ} sample was comparable to that of pure Ce

  13. Control of Alq3 wetting layer thickness via substrate surface functionalization.

    Science.gov (United States)

    Tsoi, Shufen; Szeto, Bryan; Fleischauer, Michael D; Veinot, Jonathan G C; Brett, Michael J

    2007-06-05

    The effects of substrate surface energy and vapor deposition rate on the initial growth of porous columnar tris(8-hydroxyquinoline)aluminum (Alq3) nanostructures were investigated. Alq3 nanostructures thermally evaporated onto as-supplied Si substrates bearing an oxide were observed to form a solid wetting layer, likely caused by an interfacial energy mismatch between the substrate and Alq3. Wetting layer thickness control is important for potential optoelectronic applications. A dramatic decrease in wetting layer thickness was achieved by depositing Alq3 onto alkyltrichlorosilane-derivatized Si/oxide substrates. Similar effects were noted with increasing deposition rates. These two effects enable tailoring of the wetting layer thickness.

  14. Fuel processor integrated H{sub 2}S catalytic partial oxidation technology for sulfur removal in fuel cell power plants

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, T.H.; Berry, D.A.; Lyons, K.D.; Beer, S.K.; Freed, A.D. [U.S. Department of Energy, Morgantown, WV (USA). National Energy Technology Laboratory

    2002-12-01

    H{sub 2}S catalytic partial oxidation technology with an activated carbon catalyst was found to be a promising method for the removal of hydrogen sulfide from fuel cell hydrocarbon feedstocks. Three different fuel cell feedstocks were considered for analysis: sour natural gas, sour effluent from a liquid middle distillate fuel processor and a Texaco O{sub 2}-blown coal-derived synthesis gas. The H{sub 2}S catalytic partial oxidation reaction, its integratability into fuel cell power plants with different hydrocarbon feedstocks and its salient features are discussed. Experimental results indicate that H{sub 2}S concentration can be removed down to the part-per-million level in these plants. Additionally, a power law rate expression was developed and reaction kinetics compared to prior literature. The activation energy for this reaction was determined to be 34.4 kJ/g mol with the reaction being first order in H{sub 2}S and 0.3 order in O{sub 2}. 18 refs., 14 figs., 3 tabs.

  15. Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass

    Science.gov (United States)

    Elliott, Douglas C; Oyler, James

    2013-12-17

    Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogenous catalyst for gasification.

  16. LARGE-SCALE MECURY CONTROL TECHNOLOGY TESTING FOR LIGNITE-FIRED UTILITIES-OXIDATION SYSTEMS FOR WET FGD

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Holmes; Steven A. Benson; Jeffrey S. Thompson

    2004-03-01

    The Energy & Environmental Research Center (EERC) is conducting a consortium-based effort directed toward resolving the mercury (Hg) control issues facing the lignite industry. Specifically, the EERC team--the EERC, EPRI, URS, ADA-ES, Babcock & Wilcox, the North Dakota Industrial Commission, SaskPower, and the Mercury Task Force, which includes Basin Electric Power Cooperative, Otter Tail Power Company, Great River Energy, Texas Utilities (TXU), Montana-Dakota Utilities Co., Minnkota Power Cooperative, BNI Coal Ltd., Dakota Westmoreland Corporation, and the North American Coal Company--has undertaken a project to significantly and cost-effectively oxidize elemental mercury in lignite combustion gases, followed by capture in a wet scrubber. This approach will be applicable to virtually every lignite utility in the United States and Canada and potentially impact subbituminous utilities. The oxidation process is proven at the pilot-scale and in short-term full-scale tests. Additional optimization is continuing on oxidation technologies, and this project focuses on longer-term full-scale testing. The lignite industry has been proactive in advancing the understanding of and identifying control options for Hg in lignite combustion flue gases. Approximately 1 year ago, the EERC and EPRI began a series of Hg-related discussions with the Mercury Task Force as well as utilities firing Texas and Saskatchewan lignites. This project is one of three being undertaken by the consortium to perform large-scale Hg control technology testing to address the specific needs and challenges to be met in controlling Hg from lignite-fired power plants. This project involves Hg oxidation upstream of a system equipped with an electrostatic precipitator (ESP) followed by wet flue gas desulfurization (FGD). The team involved in conducting the technical aspects of the project includes the EERC, Babcock & Wilcox, URS, and ADA-ES. The host sites include Minnkota Power Cooperative Milton R. Young

  17. Zeolite encapsulated Fe-porphyrin for catalytic oxidation with iodobenzene diacetate (PhI(OAc)2)

    International Nuclear Information System (INIS)

    Karimipour, G.; Rezaei, M.; Ashouri, D.

    2013-01-01

    meso-Tetrakis(3-pyridyl)porphyrin ato iron(III) chloride encapsulated on NaY Zeolite [Fe(T-3-PyP)-NaY] was synthesized as a heterogeneous ship-in-a-bottle type catalyst and characterized by Fourier transform infrared, atomic absorption, diffused reflectance UV-Vis, X-ray diffraction and scanning electron microscopy analysis. The catalytic activity of Fe(T-3-PyP-NaY was examined for the epoxidation of cyclohexene by PhI(OAc) 2 in CH 3 CN/H 2 O (5:1) and compared to that of Fe(T-3-PyP) as a homogeneous catalyst. We found that the heterogeneous catalyst Fe(T-3-PyP-NaY was stable and reusable for several times, and provided a mild condition and exhibited high activity and selectivity in the oxidation of alkenes to epoxides (16-94%). As representative examples for the use of Fe(T-3-PyP-NaY/ PhI(OAc) 2 in organic oxidations, oxidation of 4-nitro benzylalcohol to 4-nitrobenzaldehyde (97%), oxidative dehydrogenation of diethyl 4-(2,6-dichlorophenyl)-2,6-dimethyl-1,4-dihydro-3,5-pyridinedicarboxylate to the corresponding pyridine (100%), diphenylacetic acid to benzophenone (64%) was achieved. (Author)

  18. Oriented Decoration in Metal-Functionalized Ordered Mesoporous Silicas and Their Catalytic Applications in the Oxidation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Shijian Zhou

    2018-02-01

    Full Text Available Ordered mesoporous silicas (OMSs attract considerable attention due to their advanced structural properties. However, for the pristine silica materials, the inert property greatly inhibits their catalytic applications. Thus, to contribute to the versatile surface of OMSs, different metal active sites, including acidic/basic sites and redox sites, have been introduced into specific locations (mesoporous channels and framework of OMSs and the metal-functionalized ordered mesoporous silicas (MOMSs show great potential in the catalytic applications. In this review, we first present the categories of metal active sites. Then, the synthesized processes of MOMSs are thoroughly discussed, in which the metal active sites would be introduced with the assistance of organic groups into the specific locations of OMSs. In addition, the structural morphologies of OMSs are elaborated and the catalytic applications of MOMSs in the oxidation of aromatic compounds are illustrated in detail. Finally, the prospects for the future development in this field are proposed.

  19. Gas Selectivity Control in Co3O4 Sensor via Concurrent Tuning of Gas Reforming and Gas Filtering using Nanoscale Hetero-Overlayer of Catalytic Oxides.

    Science.gov (United States)

    Jeong, Hyun-Mook; Jeong, Seong-Yong; Kim, Jae-Hyeok; Kim, Bo-Young; Kim, Jun-Sik; Abdel-Hady, Faissal; Wazzan, Abdulaziz A; Al-Turaif, Hamad Ali; Jang, Ho Won; Lee, Jong-Heun

    2017-11-29

    Co 3 O 4 sensors with a nanoscale TiO 2 or SnO 2 catalytic overlayer were prepared by screen-printing of Co 3 O 4 yolk-shell spheres and subsequent e-beam evaporation of TiO 2 and SnO 2 . The Co 3 O 4 sensors with 5 nm thick TiO 2 and SnO 2 overlayers showed high responses (resistance ratios) to 5 ppm xylene (14.5 and 28.8) and toluene (11.7 and 16.2) at 250 °C with negligible responses to interference gases such as ethanol, HCHO, CO, and benzene. In contrast, the pure Co 3 O 4 sensor did not show remarkable selectivity toward any specific gas. The response and selectivity to methylbenzenes and ethanol could be systematically controlled by selecting the catalytic overlayer material, varying the overlayer thickness, and tuning the sensing temperature. The significant enhancement of the selectivity for xylene and toluene was attributed to the reforming of less reactive methylbenzenes into more reactive and smaller species and oxidative filtering of other interference gases, including ubiquitous ethanol. The concurrent control of the gas reforming and oxidative filtering processes using a nanoscale overlayer of catalytic oxides provides a new, general, and powerful tool for designing highly selective and sensitive oxide semiconductor gas sensors.

  20. Yield optimization in a cycled trickle-bed reactor: ethanol catalytic oxidation as a case study

    Energy Technology Data Exchange (ETDEWEB)

    Ayude, A.; Haure, P. [INTEMA, CONICET, Mar del Plata (Argentina); Cassanello, M. [Universidad de Buenos Aires, PINMATE, Departamento de Industrias, FCEyN, Buenos Aires (Argentina); Martinez, O. [Departamento de Ingenieria Quimica, FI-UNLP-CINDECA, La Plata (Argentina)

    2012-05-15

    The effect of slow ON-OFF liquid flow modulation on the yield of consecutive reactions is investigated for oxidation of aqueous ethanol solutions using a 0.5 % Pd/Al{sub 2}O{sub 3} commercial catalyst in a laboratory trickle-bed reactor. Experiments with modulated liquid flow rate (MLFR) were performed under the same hydrodynamic conditions (degree of wetting, liquid holdup) as experiments with constant liquid flow rate (CLFR). Thus, the impact of the duration of wet and dry cycles as well as the period can be independently investigated. Depending on cycling conditions, acetaldehyde or acetic acid production is favored with MLFR compared to CLFR. Results suggest both the opportunity and challenge of finding a way to tune the cycling parameters for producing the most appropriate product. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Catalytic Chan–Lam coupling using a ‘tube-in-tube’ reactor to deliver molecular oxygen as an oxidant

    Directory of Open Access Journals (Sweden)

    Carl J. Mallia

    2016-07-01

    Full Text Available A flow system to perform Chan–Lam coupling reactions of various amines and arylboronic acids has been realised employing molecular oxygen as an oxidant for the re-oxidation of the copper catalyst enabling a catalytic process. A tube-in-tube gas reactor has been used to simplify the delivery of the oxygen accelerating the optimisation phase and allowing easy access to elevated pressures. A small exemplification library of heteroaromatic products has been prepared and the process has been shown to be robust over extended reaction times.

  2. Phosphate-Doped Carbon Black as Pt Catalyst Support: Co-catalytic Functionality for Dimethyl Ether and Methanol Electro-oxidation

    DEFF Research Database (Denmark)

    Yin, Min; Huang, Yunjie; Li, Qingfeng

    2014-01-01

    ). The supported Pt catalysts show significant improvement in catalytic activity towards the direct oxidation of methanol and DME, attributable to the enhanced adsorption and dehydrogenation of methanol and DME, as well as the presence of activated OH species in the catalysts. The latter is demonstrated......Niobium-phosphate-doped (NbP-doped) carbon blacks were prepared as the composite catalyst support for Pt nanoparticles. Functionalities of the composite include intrinsic proton conductivity, surface acidity, and interfacial synergistic interactions with methanol and dimethyl ether (DME...... to facilitate the removal of CO intermediates formed during the oxidation reactions....

  3. Gold nanoworms immobilized graphene oxide polymer brush nanohybrid for catalytic degradation studies of organic dyes

    Science.gov (United States)

    Mogha, Navin Kumar; Gosain, Saransh; Masram, Dhanraj T.

    2017-02-01

    In the present work, we report gold nanoparticles (AuNPs) on poly (dimethylaminoethyl methacrylate) (PDMAEMA) brushes immobilized reduced graphene oxide (Au/PDMAEMA/RGO) as catalyst for degradation kinetic studies of Rhodamine B (RB), Methyl Orange (MO) and Eosine Y (EY) dyes, having an excellent catalytic activity, as evident by the apparent rate constant (kapp), which is found to be 21.8, 26.2, and 8.7 (×10-3 s-1), for RB, MO and EY respectively. Au/PDMAEMA/RGO catalyst is easy to use, highly efficient, recyclable, which make it suitable for applications in waste water management. Foremost, synthesis of PDMAEMA brushes on graphene oxide is accomplished by Atom transfer radical polymerization method (ATRP), whereas AuNPs are synthesized by simple chemical reduction method.

  4. Influence of vanadium oxidation states on the performance of V-Mg-Al mixed-oxide catalysts for the oxidative dehydrogenation of propane

    International Nuclear Information System (INIS)

    Schacht, L.; Navarrete, J.; Schacht, P.; Ramirez, M. A.

    2010-01-01

    V-Mg-Al mixed-oxide catalysts for oxidative dehydrogenation of propane were prepared by thermal decomposition of Mg-Al-layered double hydroxides with vanadium interlayer doping. The obtained catalysts were tested for the oxidative dehydrogenation of propane, obtaining good results in catalytic activity (conversion 16.55 % and selectivity 99.97 %) Results indicated that catalytic performance of these materials depends on how vanadium is integrated in the layered structure, which is determined by the Mg/Al ratio. Vanadium interlayer doping modifies the oxidation state of vanadium and consequently catalytic properties. Surface properties were studied by X-ray photoelectron spectroscopic and diffuse reflectance, UV-visible spectroscopy, and temperature programmed reduction. The analyses provided information about the oxidation state, before and after the reaction. From these results, it is suggested that selectivity to propylene and catalytic activity depend mainly of vanadium oxidation state. (Author)

  5. Influence of vanadium oxidation states on the performance of V-Mg-Al mixed-oxide catalysts for the oxidative dehydrogenation of propane

    Energy Technology Data Exchange (ETDEWEB)

    Schacht, L. [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Ciencia de Materiales, Av. IPN s/n, Edificio 9, Col. Lindavista, 07738 Mexico D. F. (Mexico); Navarrete, J.; Schacht, P.; Ramirez, M. A., E-mail: pschacha@imp.m [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas No. 152, 07730 Mexico D. F. (Mexico)

    2010-07-01

    V-Mg-Al mixed-oxide catalysts for oxidative dehydrogenation of propane were prepared by thermal decomposition of Mg-Al-layered double hydroxides with vanadium interlayer doping. The obtained catalysts were tested for the oxidative dehydrogenation of propane, obtaining good results in catalytic activity (conversion 16.55 % and selectivity 99.97 %) Results indicated that catalytic performance of these materials depends on how vanadium is integrated in the layered structure, which is determined by the Mg/Al ratio. Vanadium interlayer doping modifies the oxidation state of vanadium and consequently catalytic properties. Surface properties were studied by X-ray photoelectron spectroscopic and diffuse reflectance, UV-visible spectroscopy, and temperature programmed reduction. The analyses provided information about the oxidation state, before and after the reaction. From these results, it is suggested that selectivity to propylene and catalytic activity depend mainly of vanadium oxidation state. (Author)

  6. Ceramic joining through reactive wetting of alumina with calcium ...

    Indian Academy of Sciences (India)

    phase analysis of the fractured joint surface clearly indicate reactive wetting of the alumina ceramics. This wetting enhances ... ally considered oxide materials for many applications. .... three cases but is more pronounced in the case of C12A7.

  7. Influence of the synthesis parameters on the physico-chemical and catalytic properties of cerium oxide for application in the synthesis of diethyl carbonate

    International Nuclear Information System (INIS)

    Leino, Ewelina; Kumar, Narendra; Mäki-Arvela, Päivi; Aho, Atte; Kordás, Krisztián; Leino, Anne-Riikka; Shchukarev, Andrey; Murzin, Dmitry Yu.; Mikkola, Jyri-Pekka

    2013-01-01

    Synthesis of cerium (IV) oxide by means of room temperature precipitation method was carried out. The effect of preparation variables such as synthesis time, calcination temperature and pH of the solution on resulting CeO 2 properties was discussed. Moreover, the comparison of CeO 2 samples prepared in a static and rotation mode of synthesis is presented. The solid catalysts were characterized by means of X-ray powder diffraction, scanning electron microscopy, transmission electron microscope, nitrogen physisorption, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy using pyridine as a probe molecule and temperature programmed desorption of CO 2 . Significant variations in physico-chemical properties of CeO 2 by varying the preparation conditions were observed. Furthermore, the catalytic performances of CeO 2 catalysts were compared in the synthesis of diethyl carbonate starting from ethanol and CO 2 using butylene oxide as a dehydrating agent. The dependence of CeO 2 properties on its catalytic activity is evaluated in detail. - Highlights: • Synthesis of cerium (IV) oxide by precipitation method. • Influence of synthesis time, calcination temperature, mode of stirring and solution pH on properties. • Characterization by XRD, SEM, TEM, nitrogen physisorption, XPS, FTIR. • Catalytic performance diethyl carbonate synthesis from ethanol and CO 2

  8. Preparation of silicon carbide-supported vanadium oxide and its application of removing NO by ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zi-Bo; Xu, Xu [Yangzhou University, College of Environmental Science and Engineering, Yangzhou, Jiangsu (China); Bai, Shu-Li [Wuyi University, College of Chemical and Environmental Engineering, Jiangmen, Guangdong (China); Guan, Yu-Jiang; Jiang, Sheng-Tao [Taizhou University, Environmental Engineering, Taizhou, Zhejiang (China)

    2017-03-15

    The aim of this work was to study the preparation of SiC-supported V{sub 2}O{sub 5} catalysts and the kinetics on selective catalytic reduction for NO with NH{sub 3} on the catalysts. Using incipient wetness impregnation methods, vanadium oxide was applied to silicon carbide to prepare a SiC-supported vanadium oxide. X-ray photoelectron spectroscopy analysis confirmed that V{sub 2}O{sub 5} existed in the prepared materials. Using the prepared materials as catalysts, selective catalytic reduction for NO by NH{sub 3} has been analyzed, and reaction kinetics on the catalysts was studied at 150-300 C. The obtained results showed that the reduction reaction on the catalysts is close to zero-order kinetics with respect to NH{sub 3}, first-order with respect to NO, and half-order to O{sub 2}. Apparent activation energy for the reduction reaction was found to be 38 kJ mol{sup -1}. The prepared materials are stable and reusable. (orig.)

  9. Catalyst for Ammonia Oxidation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a bimetallic catalyst for ammonia oxidation, a method for producing a bimetallic catalyst for ammonia oxidation and a method for tuning the catalytic activity of a transition metal. By depositing an overlayer of less catalytic active metal onto a more catalytic...

  10. Modelling of catalytic oxidation of NH3 and reduction of NO on limestone during sulphur capture

    DEFF Research Database (Denmark)

    Kiil, Søren; Bhatia, Suresh K.; Dam-Johansen, Kim

    1996-01-01

    activity with respect to each species involved. An existing particle model, the Grain-Micrograin Model, which simulates sulphur capture on limestone under oxidizing conditions is considered in the modelling. Simulation results in good qualitative agreement with experimental data are obtained here......A theoretical study of the complex transient system of simultaneous sulphur capture and catalytic reactions of N-containing compounds taking place on a single limestone particle is conducted. The numerical technique developed previously by the authors (Kiil et al. 1994) based on collocation...... for the catalytic chemistry of NH3 during simultaneous sulphur capture on a Stevns Chalk particle. The reduction of NO by NH3 over CaSO4 (which is the product of the reaction between SO2, O2 and limestone) was found to be important because this reaction could explain the change in selectivity with increased solid...

  11. Pretreatment of Reed by Wet Oxidation and Subsequent Utilization of the Pretreated Fibers for Ethanol Production

    DEFF Research Database (Denmark)

    Szijarto, Nora; Kádár, Zsófia; Varga, Eniko

    2009-01-01

    lignocelluloses usually do. In the present study, wet oxidation was investigated as the pretreatment method to enhance the enzymatic digestibility of reed cellulose to soluble sugars and thus improve the convertibility of reed to ethanol. The most effective treatment increased the digestibility of reed cellulose...... of cellulose to glucose was 82.4%. Simultaneous saccharification and fermentation of pretreated solids resulted in a final ethanol concentration as high as 8.7 g/L, yielding 73% of the theoretical....

  12. Oscillatory Behavior during the Catalytic Partial Oxidation of Methane: Following Dynamic Structural Changes of Palladium Using the QEXAFS Technique

    DEFF Research Database (Denmark)

    Stoetzel, Jan; Frahm, Ronald; Kimmerle, Bertram

    2012-01-01

    oxidation of methane, the catalyst reduced from the end to the beginning of the catalyst bed and oxidized again toward the end as soon as the entire catalyst bed was reduced. On an entirely oxidized catalyst bed, only total oxidation of methane was observed and consumed the oxygen until the conditions...... of the Pd particles at increasing age of the catalyst was observed, which leads to a lower oscillation frequency. Effects of particle size, oven temperature, and oxygen/methane ratio on the oscillation behavior were studied in detail. The deactivation period (reoxidation of Pd) was much less influenced...... by the oven temperature than the ignition behavior of the catalytic partial oxidation of methane. This indicates that deactivation is caused by an autoreduction of the palladium at the beginning of the catalyst bed due to the high temperature achieved by total oxidation of methane....

  13. Catalytic hydrogen recombination for nuclear containments

    International Nuclear Information System (INIS)

    Koroll, G.W.; Lau, D.W.P.; Dewit, W.A.; Graham, W.R.C.

    1994-01-01

    Catalytic recombiners appear to be a credible option for hydrogen mitigation in nuclear containments. The passive operation, versatility and ease of back fitting are appealing for existing stations and new designs. Recently, a generation of wet-proofed catalyst materials have been developed at AECL which are highly specific to H 2 -O 2 , are active at ambient temperatures and are being evaluated for containment applications. Two types of catalytic recombiners were evaluated for hydrogen removal in containments based on the AECL catalyst. The first is a catalytic combustor for application in existing air streams such as provided by fans or ventilation systems. The second is an autocatalytic recombiner which uses the enthalpy of reaction to produce natural convective flow over the catalyst elements. Intermediate-scale results obtained in 6 m 3 and 10 m 3 spherical and cylindrical vessels are given to demonstrate self-starting limits, operating limits, removal capacity, scaling parameters, flow resistance, mixing behaviour in the vicinity of an operating recombiner and sensitivity to poisoning, fouling and radiation. (author). 13 refs., 10 figs

  14. Catalytic cracking of vegetable oil with metal oxides for biofuel production

    International Nuclear Information System (INIS)

    Yigezu, Zerihun Demrew; Muthukumar, Karuppan

    2014-01-01

    Highlights: • Biofuel was synthesized from vegetable oil by catalytic cracking. • Performance of six different metal catalysts was studied. • Influence of temperature and reaction time on the process was evaluated. • Methyl and ethyl esters are the major components of the biofuel synthesized. - Abstract: This study presents the utilization of metal oxides for the biofuel production from vegetable oil. The physical and chemical properties of the diesel-like products obtained, and the influence of reaction variables on the product distribution were investigated. Six different metal oxides (Co 3 O 4 , KOH, MoO 3 , NiO, V 2 O 5 , and ZnO) were employed as catalysts and the results indicated that the metal oxides are suitable for catalyzing the conversion of oil into organic liquid products (OLPs). The maximum conversion (87.6%) was obtained with V 2 O 5 at 320 °C in 40 min whereas a minimum conversion (55.1%) was obtained with MoO 3 at 390 °C in 30 min. The physical characteristics of the product obtained (density, specific gravity, higher heat value, flash point and kinematic viscosity), were in line with ASTM D6751 (B100) standards. The hydrocarbons majorly present in the product were found to be methyl and ethyl esters. Furthermore, OLPs obtained were distilled and separated into four components. The amount of light hydrocarbons, gasoline, kerosene and heavy oil like components obtained were 18.73%, 33.62%, 24.91% and 90.93%, respectively

  15. Wetting of water on graphene nanopowders of different thicknesses

    Science.gov (United States)

    Bera, Bijoyendra; Shahidzadeh, Noushine; Mishra, Himanshu; Belyaeva, Liubov A.; Schneider, Grégory F.; Bonn, Daniel

    2018-04-01

    We study the wetting of graphene nanopowders by measuring the water adsorption in nanopowder flakes of different flake thicknesses. Chemical analysis shows that the graphene flakes, especially the thin ones, might exist in the partially oxidized state. We observe that the thinnest graphene nanopowder flakes do not adsorb water at all, independent of the relative humidity. Thicker flakes, on the other hand, do adsorb an increasing amount of water with increasing humidity. This allows us to assess their wetting behavior which is actually the result of the competition between the adhesive interactions of water and graphene and the cohesive interactions of water. Explicit calculation of these contributions from the van der Waals interactions confirms that the adhesive interactions between very thin flakes of graphene oxide and water are extremely weak, which makes the flakes superhydrophobic. "Liquid marble" tests with graphene nanopowder flakes confirm the superhydrophobicity. This shows that the origin of the much debated "wetting transparency" of graphene is due to the fact that a single graphene or graphene oxide layer does not contribute significantly to the adhesion between a wetting phase and the substrate.

  16. Wetting of water on graphene nanopowders of different thicknesses

    KAUST Repository

    Bera, Bijoyendra; Shahidzadeh, Noushine; Mishra, Himanshu; Belyaeva, Liubov A.; Schneider, Gré gory F.; Bonn, Daniel

    2018-01-01

    We study the wetting of graphene nanopowders by measuring the water adsorption in nanopowder flakes of different flake thicknesses. Chemical analysis shows that the graphene flakes, especially the thin ones, might exist in the partially oxidized state. We observe that the thinnest graphene nanopowder flakes do not adsorb water at all, independent of the relative humidity. Thicker flakes, on the other hand, do adsorb an increasing amount of water with increasing humidity. This allows us to assess their wetting behavior which is actually the result of the competition between the adhesive interactions of water and graphene and the cohesive interactions of water. Explicit calculation of these contributions from the van der Waals interactions confirms that the adhesive interactions between very thin flakes of graphene oxide and water are extremely weak, which makes the flakes superhydrophobic. “Liquid marble” tests with graphene nanopowder flakes confirm the superhydrophobicity. This shows that the origin of the much debated “wetting transparency” of graphene is due to the fact that a single graphene or graphene oxide layer does not contribute significantly to the adhesion between a wetting phase and the substrate.

  17. Wetting of water on graphene nanopowders of different thicknesses

    KAUST Repository

    Bera, Bijoyendra

    2018-04-12

    We study the wetting of graphene nanopowders by measuring the water adsorption in nanopowder flakes of different flake thicknesses. Chemical analysis shows that the graphene flakes, especially the thin ones, might exist in the partially oxidized state. We observe that the thinnest graphene nanopowder flakes do not adsorb water at all, independent of the relative humidity. Thicker flakes, on the other hand, do adsorb an increasing amount of water with increasing humidity. This allows us to assess their wetting behavior which is actually the result of the competition between the adhesive interactions of water and graphene and the cohesive interactions of water. Explicit calculation of these contributions from the van der Waals interactions confirms that the adhesive interactions between very thin flakes of graphene oxide and water are extremely weak, which makes the flakes superhydrophobic. “Liquid marble” tests with graphene nanopowder flakes confirm the superhydrophobicity. This shows that the origin of the much debated “wetting transparency” of graphene is due to the fact that a single graphene or graphene oxide layer does not contribute significantly to the adhesion between a wetting phase and the substrate.

  18. Long term wet spent nuclear fuel storage

    International Nuclear Information System (INIS)

    1987-04-01

    The meeting showed that there is continuing confidence in the use of wet storage for spent nuclear fuel and that long-term wet storage of fuel clad in zirconium alloys can be readily achieved. The importance of maintaining good water chemistry has been identified. The long-term wet storage behaviour of sensitized stainless steel clad fuel involves, as yet, some uncertainties. However, great reliance will be placed on long-term wet storage of spent fuel into the future. The following topics were treated to some extent: Oxidation of the external surface of fuel clad, rod consolidation, radiation protection, optimum methods of treating spent fuel storage water, physical radiation effects, and the behaviour of spent fuel assemblies of long-term wet storage conditions. A number of papers on national experience are included

  19. Highly Active PdNi/RGO/Polyoxometalate Nanocomposite Electrocatalyst for Alcohol Oxidation.

    Science.gov (United States)

    Hu, Jing; Wu, Xiaofeng; Zhang, Qingfan; Gao, Mingyan; Qiu, Haifang; Huang, Keke; Feng, Shouhua; Wang, Tingting; Yang, Ying; Liu, Zhelin; Zhao, Bo

    2018-02-27

    A PdNi/RGO/polyoxometalate nanocomposite has been successfully synthesized by a simple wet-chemical method. Characterizations such as transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction analysis, and X-ray photoelectron spectroscopy are employed to verify the morphology, structure, and elemental composition of the as-prepared nanocomposite. Inspired by the fast-developing fuel cells, the electrochemical catalytic performance of the nanocomposite toward methanol and ethanol oxidation in alkaline media is further tested. Notably, the nanocomposite exhibits excellent catalytic activity and long-term stability toward alcohol electrooxidation compared with the PdNi/RGO and commercial Pd/C catalyst. Furthermore, the electrochemical results reveal that the prepared nanocomposite is attractive as a promising electrocatalyst for direct alcohol fuel cells, in which the phosphotungstic acid plays a crucial role in enhancing the electrocatalytic activities of the catalyst.

  20. Effect of mesoporous g-C3N4 substrate on catalytic oxidation of CO over Co3O4

    Science.gov (United States)

    Yang, Heng; Lv, Kangle; Zhu, Junjiang; Li, Qin; Tang, Dingguo; Ho, Wingkei; Li, Mei; Carabineiro, Sónia A. C.

    2017-04-01

    Mesoporous graphitic carbon nitride (mpg-CN) was synthesized using Triton X-100, a surfactant containing a hydrophilic polyethylene oxide group and a tert-octyl-phenyl hydrophobic moiety, as a soft template. The obtained mpg-CN was used as a support for Co3O4, and this supported catalyst was used for CO oxidation. The effects of the amount of Triton X-100, weight ratio of Co3O4 to mpg-CN and calcination temperature on the catalytic performances for CO oxidation of Co3O4/mpg-CN composites were systematically studied. It was found that the presence of Triton X-100 not only retarded the polymerization of dicyandiamide, but also affected the microstructure of Co3O4. Bubbles formed because of the hydrophobic group of the surfactant Triton X-100 can be act as a soft template for the synthesis of mesoporous g-C3N4. The enhanced catalytic activity of Co3O4/mpg-CN was attributed to a synergistic effect, enlarged BET surface areas, increased Co3+ and lattice oxygen contents, and the porous structure of mpg-CN support. The high stability of 12.5% Co3O4/mpg-CN(1.0) makes it a promising catalyst for practical applications.

  1. Influence of Mg doping on ZnO nanoparticles decorated on graphene oxide (GO) crumpled paper like sheet and its high photo catalytic performance under sunlight

    Science.gov (United States)

    Labhane, P. K.; Sonawane, S. H.; Sonawane, G. H.; Patil, S. P.; Huse, V. R.

    2018-03-01

    Mg doped ZnO nanoparticles decorated on graphene oxide (GO) sheets were synthesized by a wet impregnation method. The effect of Mg doping on ZnO and ZnO-GO composite has been evaluated by using x-ray diffraction (XRD), Williamson-Hall Plot (Wsbnd H Plot), field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM) and energy dispersive x-ray spectroscopy (EDX). The physical parameters of as-prepared samples were estimated by XRD data. FESEM and HR-TEM images showed the uniform distribution of nanoparticles on GO crumpled paper like sheet. Solar light photocatalytic activities of samples were evaluated spectrophotometrically by the degradation of p-nitrophenol (PNP) and indigo carmine (IC) solution. Mgsbnd ZnO decorated on GO sheets exhibit excellent catalytic efficiency compared to all other prepared samples under identical conditions, degrading PNP and IC nearly 99% within 60 min under sunlight. The effective degradation by Mgsbnd ZnO decorated on GO sheet would be due to extended solar light absorption, enhanced adsorptivity on the composite catalyst surface and efficient charge separation of photo-induced electrons. Finally, plausible mechanism was suggested with the help of scavengers study.

  2. Influence of peracetic acid modification on the physicochemical properties of activated carbon and its performance in the ozone-catalytic oxidation of gaseous benzene

    Science.gov (United States)

    Fang, Ruimei; Huang, Haibao; Huang, Wenjun; Ji, Jian; Feng, Qiuyu; Shu, Yajie; Zhan, Yujie; Liu, Gaoyuan; Xie, Ruijie

    2017-10-01

    Coal based activated carbon (AC) was pretreated by peracetic acid solution and used for supporting Mn catalyst towards oxidation of gaseous benzene by catalytic ozonation. The as-obtained activated carbon was characterized by XPS, BET, SEM, and TG technologies. It indicates that peracetic acid solution modification not only raised the quantity of chemisorbed oxygen or water, and hydroxyl group on activated carbon material surface, but also increased the specific surface area and benzene adsorption capacity of activated carbon. Benzene could be completely removed in 300 min and CO2 selectivity reached to 61.9% over Mn/AC-modified catalyst. A possible catalytic ozonation mechanism of activated carbon which was treated by peracetic acid solution supported Mn catalyst for oxidation of benzene was proposed.

  3. EFFECT OF IMPREGNATION PROCEDURE OF Pt/γ-Al2O3 CATALYSTS UPON CATALYTIC OXIDATION OF CO

    Directory of Open Access Journals (Sweden)

    Triyono Triyono

    2010-06-01

    Full Text Available The oxidation of carbon monoxide by oxygen using two catalysts prepared by two different methods has been investigated. In the first method, catalyst prepared by immersing γ-Al2O3 into the hexa-chloroplatinic acid solution at 80oC for 4 h, resulted Pt/γ-Al2O3 catalyst having platinum highly dispersed on the support. While that of immersing γ-Al2O3 in the hexa-chloroplatinic acid solution at room temperature for 12 h, produced Pt/ γ-Al2O3 catalyst where platinum dispersion was much lower. Catalytic activity test showed that platinum well dispersed on the support enhanced the activity of oxidation of carbon monoxide. The platinum impregnated at room temperature resulted in the poor activity.   Keyword: Catalyst, CO Oxidation, Platinum.

  4. Amine binding and oxidation at the catalytic site for photosynthetic water oxidation

    Science.gov (United States)

    Ouellette, Anthony J. A.; Anderson, Lorraine B.; Barry, Bridgette A.

    1998-01-01

    Photosynthetic water oxidation occurs at the Mn-containing catalytic site of photosystem II (PSII). By the use of 14C-labeled amines and SDS-denaturing PAGE, covalent adducts derived from primary amines and the PSII subunits, CP47, D2/D1, and the Mn-stabilizing protein, can be observed. When PSII contains the 18- and 24-kDa extrinsic proteins, which restrict access to the active site, no 14C labeling is obtained. NaCl, but not Na2SO4, competes with 14C labeling in Mn-containing PSII preparations, and the concentration dependence of this competition parallels the activation of oxygen evolution. Formation of 14C-labeled adducts is observed in the presence or in the absence of a functional manganese cluster. However, no significant Cl− effect on 14C labeling is observed in the absence of the Mn cluster. Isolation and quantitation of the 14C-labeled aldehyde product, produced from [14C]benzylamine, gives yields of 1.8 ± 0.3 mol/mol PSII and 2.9 ± 0.2 mol/mol in Mn-containing and Mn-depleted PSII, respectively. The corresponding specific activities are 0.40 ± 0.07 μmol(μmol PSII-hr)−1 and 0.64 ± 0.04 μmol(μmol PSII-hr)−1. Cl− suppresses the production of [14C]benzaldehyde in Mn-containing PSII, but does not suppress the production in Mn-depleted preparations. Control experiments show that these oxidation reactions do not involve the redox-active tyrosines, D and Z. Our results suggest the presence of one or more activated carbonyl groups in protein subunits that form the active site of PSII. PMID:9482863

  5. Computational and Physical Analysis of Catalytic Compounds

    Science.gov (United States)

    Wu, Richard; Sohn, Jung Jae; Kyung, Richard

    2015-03-01

    Nanoparticles exhibit unique physical and chemical properties depending on their geometrical properties. For this reason, synthesis of nanoparticles with controlled shape and size is important to use their unique properties. Catalyst supports are usually made of high-surface-area porous oxides or carbon nanomaterials. These support materials stabilize metal catalysts against sintering at high reaction temperatures. Many studies have demonstrated large enhancements of catalytic behavior due to the role of the oxide-metal interface. In this paper, the catalyzing ability of supported nano metal oxides, such as silicon oxide and titanium oxide compounds as catalysts have been analyzed using computational chemistry method. Computational programs such as Gamess and Chemcraft has been used in an effort to compute the efficiencies of catalytic compounds, and bonding energy changes during the optimization convergence. The result illustrates how the metal oxides stabilize and the steps that it takes. The graph of the energy computation step(N) versus energy(kcal/mol) curve shows that the energy of the titania converges faster at the 7th iteration calculation, whereas the silica converges at the 9th iteration calculation.

  6. Synthesis of Nitrogen-Doped Mesoporous Carbon for the Catalytic Oxidation of Ethylbenzene

    Science.gov (United States)

    Wang, Ruicong; Yu, Yifeng; Zhang, Yue; Lv, Haijun; Chen, Aibing

    2017-06-01

    Nitrogen-doped ordered mesoporous carbon (NOMC) was fabricated via a simple hard-template method by functionalized ionic liquids as carbon and nitrogen source, SBA-15 as a hard-template. The obtained NOMC materials have a high nitrogen content of 5.55 %, a high surface area of 446.2 m2 g-1, and an excellent performance in catalysing oxidation of ethylbenzene. The conversion rate of ethylbenzene can be up to 84.5% and the yield of acetophenone can be up to 69.9%, the results indicated that the NOMC materials have a faster catalytic rate and a higher production of acetophenone than catalyst-free and CMK-3, due to their uniform pore size, high surface area and rich active sites in the carbon pore walls.

  7. ENHANCED CONTROL OF MERCURY BY WET FLUE GAS DESULFURIZATION SYSTEMS; FINAL

    International Nuclear Information System (INIS)

    Unknown

    2001-01-01

    The U.S. Department of Energy and EPRI co-funded this project to improve the control of mercury emissions from coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems. The project has investigated catalytic oxidation of vapor-phase elemental mercury to a form that is more effectively captured in wet FGD systems. If successfully developed, the process could be applicable to over 90,000 MW of utility generating capacity with existing FGD systems, and to future FGD installations. Field tests were conducted to determine whether candidate catalyst materials remain active towards mercury oxidation after extended flue gas exposure. Catalyst life will have a large impact on the cost effectiveness of this potential process. A mobile catalyst test unit was used to test the activity of four different catalyst materials for a period of up to six months each at three utility sites. Catalyst testing was completed at the first site, which fires Texas lignite, in December 1998; at the second test site, which fires a Powder River Basin subbituminous coal, in November 1999; and at the third site, which fires a medium- to high-sulfur bituminous coal, in January 2001. Results of testing at each of the three sites were reported in previous technical notes. At Site 1, catalysts were tested only as powders dispersed in sand bed reactors. At Sites 2 and 3, catalysts were tested in two forms, including powders dispersed in sand and in commercially available forms such as extruded pellets and coated honeycomb structures. This final report summarizes and presents results from all three sites, for the various catalyst forms tested. Field testing was supported by laboratory tests to screen catalysts for activity at specific flue gas compositions, to investigate catalyst deactivation mechanisms and methods for regenerating spent catalysts. Laboratory results are also summarized and discussed in this report

  8. Zeolite-Y entrapped Ru(III and Fe(III complexes as heterogeneous catalysts for catalytic oxidation of cyclohexane reaction

    Directory of Open Access Journals (Sweden)

    Chetan K. Modi

    2017-02-01

    Full Text Available Catalysis is probably one of the greatest contributions of chemistry to both economic growth and environmental protection. Herein we report the catalytic behavior of zeolite-Y entrapped Ru(III and Fe(III complexes with general formulae [M(VTCH2·2H2O]+-Y and [M(VFCH2·2H2O]+-Y [where, VTCH = vanillin thiophene-2-carboxylic hydrazone and VFCH = vanillin furoic-2-carboxylic hydrazone] over the oxidation of cyclohexane forming cyclohexanone and cyclohexanol. The samples were corroborated by various physico-chemical techniques. These zeolite-Y based complexes are stable and recyclable under current reaction conditions. Amongst them, [Ru(VTCH2⋅2H2O]+-Y showed higher catalytic activity (41.1% with cyclohexanone (84.6% selectivity.

  9. 2D/2D nano-hybrids of γ-MnO{sub 2} on reduced graphene oxide for catalytic ozonation and coupling peroxymonosulfate activation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuxian [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Xie, Yongbing, E-mail: ybxie@ipe.ac.cn [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Sun, Hongqi [Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia); Xiao, Jiadong; Cao, Hongbin [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing Engineering Research Center of Process Pollution Control, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Wang, Shaobin, E-mail: shaobin.wang@curtin.edu.au [Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845 (Australia)

    2016-01-15

    Highlights: • 2D γ-MnO{sub 2}/2D rGO hybrids (MnO{sub 2}/rGO) via a facile hydrothermal route were prepared. • MnO{sub 2}/rGO exhibits high activity in catalytic ozonation of 4-nitrophenol. • ·O{sub 2}{sup ̄} and {sup 1}O{sub 2} are the major radicals for 4-nitrophenol degradation and mineralization. • A synergistic effect of ozonation and peroxymonosulfate oxidation was evaluated. - Abstract: Two-dimensional reduced graphene oxide (2D rGO) was employed as both a shape-directing medium and support to fabricate 2D γ-MnO{sub 2}/2D rGO nano-hybrids (MnO{sub 2}/rGO) via a facile hydrothermal route. For the first time, the 2D/2D hybrid materials were used for catalytic ozonation of 4-nitrophenol. The catalytic efficiency of MnO{sub 2}/rGO was much higher than either MnO{sub 2} or rGO only, and rGO was suggested to play the role for promoting electron transfers. Quenching tests using tert-butanol, p-benzoquinone, and sodium azide suggested that the major radicals responsible for 4-nitrophenol degradation and mineralization are O{sub 2}{sup ̄} and {sup 1}O{sub 2}, but not ·OH. Reusability tests demonstrated a high stability of the materials in catalytic ozonation with minor Mn leaching below 0.5 ppm. Degradation mechanism, reaction kinetics, reusability and a synergistic effect between catalytic ozonation and coupling peroxymonosulfate (PMS) activation were also discussed.

  10. Effect of Co3O4 and Co3O4/CeO2 infiltration on the catalytic and electro-catalytic activity of LSM15/CGO10 porous cells stacks for oxidation of propene

    DEFF Research Database (Denmark)

    Ippolito, Davide; Kammer Hansen, Kent

    2015-01-01

    The objective of this work was to study the effect of Co3O4 and Co3O4/CeO2 infiltration on the propene oxidation catalytic activity of a La0.85Sr0.15MnO3/Ce0.9Gd0.1O1.95 electrochemical porous cell stack (11 layers, 5 single cells in series). The effect of the infiltration of Co3O4 and Co3O4/CeO2...... on the electrochemical properties of the porous cell stack was also investigated by electrochemical impedance spectroscopy (EIS). Co3O4 and Co3O4/CeO2 exhibited high catalytic activity for propene oxidation. The increase of propene oxidation rate with +4 V (0.8 V/cell) polarization reached 10% for the Co3O4 infiltrated...... reactor and 48% of efficiency at 300 °C. The Co3O4/CeO2 co-infiltration decreased the reactor polarization resistance, while Co3O4 infiltration had negligible effect on reactor electrochemical performance. The beneficial effect of CeO2 on the electrode activity was attributed to the increased...

  11. Proteomic effects of wet cupping (Al-hijamah).

    Science.gov (United States)

    Almaiman, Amer A

    2018-01-01

    Wet cupping (Al-hijamah) is a therapeutic technique practiced worldwide as a part of the Unani system of medicine. It involves bloodletting from acupoints on a patient's skin to produce a therapeutic outcome. A thorough review of research articles on wet cupping with relevance to proteomics field that are indexed by Google Scholar, PubMed, and/or Science Direct databases was performed. Eight original research articles were summarized in this paper. Overall, wet cupping did not have a significant effect on C-reactive protein, Hsp-27, sister chromatid exchanges, and cell replication index. In contrast, wet cupping was found to produce higher oxygen saturation, eliminate lactate from subcutaneous tissues, remove blood containing higher levels of malondialdehyde and nitric oxide, and produce higher activity of myeloperoxidase. The proteomic effects of wet cupping therapy have not been adequately investigated. Thus, future studies on wet cupping that use systemic and sound protocols to avoid bias should be conducted.

  12. Proteomic effects of wet cupping (Al-hijamah

    Directory of Open Access Journals (Sweden)

    Amer A. Almaiman

    2018-01-01

    Full Text Available Wet cupping (Al-hijamah is a therapeutic technique practiced worldwide as a part of the Unani system of medicine. It involves bloodletting from acupoints on a patient’s skin to produce a therapeutic outcome. A thorough review of research articles on wet cupping with relevance to proteomics field that are indexed by Google Scholar, PubMed, and/or Science Direct databases was performed. Eight original research articles were summarized in this paper. Overall, wet cupping did not have a significant effect on C-reactive protein, Hsp-27, sister chromatid exchanges, and cell replication index. In contrast, wet cupping was found to produce higher oxygen saturation, eliminate lactate from subcutaneous tissues, remove blood containing higher levels of malondialdehyde and nitric oxide, and produce higher activity of myeloperoxidase. The proteomic effects of wet cupping therapy have not been adequately investigated. Thus, future studies on wet cupping that use systemic and sound protocols to avoid bias should be conducted.

  13. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation

    International Nuclear Information System (INIS)

    Zhan, Wangcheng; Wang, Jinglin; Wang, Haifeng; Zhang, Jinshui; Liu, Xiaofei

    2017-01-01

    Controlling the physical and chemical properties of alloy nanoparticles (NPs) is an important approach to optimize NP catalysis. Unlike other tuning knobs, such as size, shape, and composition, crystal structure has received limited attention and not been well understood for its role in catalysis. This deficiency is mainly due to the difficulty in synthesis and fine-tuning of the NPs’ crystal structure. Here, Exemplifying by AuCu alloy NPs with face centered cubic (fcc) and face centered tetragonal (fct) structure, we demonstrate a remarkable difference in phase segregation and catalytic performance depending on the crystal structure. During the thermal treatment in air, the Cu component in fcc-AuCu alloy NPs segregates more easily onto the alloy surface as compared to that in fct-AuCu alloy NPs. As a result, after annealing at 250 °C in air for 1 h, the fcc- and fct-AuCu alloy NPs are phase transferred into Au/CuO and AuCu/CuO core/shell structures, respectively. More importantly, this variation in heterostructures introduces a significant difference in CO adsorption on two catalysts, leading to a largely enhanced catalytic activity of AuCu/CuO NP catalyst for CO oxidation. Furthermore, the same concept can be extended to other alloy NPs, making it possible to fine-tune NP catalysis for many different chemical reactions.

  14. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Wangcheng [East China Univ. of Science and Technology, Shanghai (China); Wang, Jinglin [East China Univ. of Science and Technology, Shanghai (China); Wang, Haifeng [East China Univ. of Science and Technology, Shanghai (China); Zhang, Jinshui [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Xiaofei [East China Univ. of Science and Technology, Shanghai (China); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Pengfei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chi, Miaofang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guo, Yanglong [East China Univ. of Science and Technology, Shanghai (China); Guo, Yun [East China Univ. of Science and Technology, Shanghai (China); Lu, Guanzhong [East China Univ. of Science and Technology, Shanghai (China); Sun, Shouheng [Brown Univ., Providence, RI (United States); Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Zhu, Huiyuan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-07

    Controlling the physical and chemical properties of alloy nanoparticles (NPs) is an important approach to optimize NP catalysis. Unlike other tuning knobs, such as size, shape, and composition, crystal structure has received limited attention and not been well understood for its role in catalysis. This deficiency is mainly due to the difficulty in synthesis and fine-tuning of the NPs’ crystal structure. Here, Exemplifying by AuCu alloy NPs with face centered cubic (fcc) and face centered tetragonal (fct) structure, we demonstrate a remarkable difference in phase segregation and catalytic performance depending on the crystal structure. During the thermal treatment in air, the Cu component in fcc-AuCu alloy NPs segregates more easily onto the alloy surface as compared to that in fct-AuCu alloy NPs. As a result, after annealing at 250 °C in air for 1 h, the fcc- and fct-AuCu alloy NPs are phase transferred into Au/CuO and AuCu/CuO core/shell structures, respectively. More importantly, this variation in heterostructures introduces a significant difference in CO adsorption on two catalysts, leading to a largely enhanced catalytic activity of AuCu/CuO NP catalyst for CO oxidation. Furthermore, the same concept can be extended to other alloy NPs, making it possible to fine-tune NP catalysis for many different chemical reactions.

  15. Microwave-Assisted Coprecipitation Synthesis of LaCoO3 Nanoparticles and Their Catalytic Activity for Syngas Production by Partial Oxidation of Methane

    Directory of Open Access Journals (Sweden)

    Consuelo Alvarez-Galvan

    2018-04-01

    Full Text Available LaCoO3 perovskite-type oxides were prepared by microwave-assisted coprecipitation route and investigated in the catalytic partial oxidation of methane (CPOM to syngas. This preparation method aims to achieve higher specific surface areas (ssa than soft-chemical methods commonly used in the preparation of engineered materials. In an attempt to accomplish the creation of mesostructured porous LaCoO3, an ionic template such as cetyl trimethyl ammonium bromide has been used as endotemplate in some samples. The influence of pH and the type of precipitating agent has been studied. The materials have been characterized at different levels: morphology has been studied by scanning electron microscopy, textural properties by nitrogen adsorption–desorption at −196°C, structural analysis by X-ray diffraction, surface composition by X-ray photoelectron spectroscopy, thermal stability by thermogravimetric analysis, and carbon formation in spent catalysts by Raman spectroscopy. Structure-activity correlations point out that the precipitating agent has a key role on the morphology and porosity of the resultant oxide, as well as on the average crystalline domain of lanthanum perovskite (catalyst precursor. Thus, the use of ammonium hydroxide as precipitant leads to materials with a higher surface area and a greater ssa of cobalt (per unit mass, improving their catalytic performance for the CPOM reaction. The best catalytic performance was found for the catalyst prepared using ammonium hydroxide as precipitant (pH 9 and without adding CTAB as endotemplate.

  16. A spectroscopic and catalytic investigation of active phase-support interactions

    Energy Technology Data Exchange (ETDEWEB)

    Haller, G.L.

    1991-01-01

    Active catalytic phases (metal, mixed metals, oxide or mixed oxides) interacting with oxide support on which the active phase is dispersed can affect the percentage exposed, the morphology of supported particles, the degree of reducibility of cations, etc., in a variety of ways. Our objective is to characterize the physical chemistry of the active phase-oxide support by spectroscopic methods and to correlate this structure with catalytic function. The three systems discussed in this progress report are Ag/TiO{sub 2}, Ru-Cu/SiO{sub 2} and SiO{sub 2}/Al{sub 2}O{sub 3}. 24 refs., 3 figs., 2 tabs.

  17. Wetting properties of liquid lithium on lithium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Krat, S.A., E-mail: stepan.krat@gmail.com [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States); National Research Nuclear University MEPhI, Moscow (Russian Federation); Popkov, A.S. [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States); National Research Nuclear University MEPhI, Moscow (Russian Federation); Gasparyan, Yu. M.; Pisarev, A.A. [National Research Nuclear University MEPhI, Moscow (Russian Federation); Fiflis, Peter; Szott, Matthew; Christenson, Michael; Kalathiparambil, Kishor; Ruzic, David N. [Center for Plasma Material Interactions, Department of Nuclear, Plasma, and Radiological Engineering, University Illinois at Urbana-Champaign, Urbana (United States)

    2017-04-15

    Highlights: • Contact angles of liquid lithium and Li{sub 3}N, Li{sub 2}O, Li{sub 2}CO{sub 3} were measured. • Liquid lithium wets lithium compounds at relatively low temperatures: Li{sub 3}N at 257 °C, Li{sub 2}O at 259 °C, Li{sub 2}CO{sub 3} at 323 °C. • Li wets Li{sub 2}O and Li{sub 3}N better than previously measured fusion-relevant materials (W, Mo, Ta, TZM, stainless steel). • Li wets Li{sub 2}CO{sub 3} better than most previously measured fusion-relevant materials (W, Mo, Ta). - Abstract: Liquid metal plasma facing components (LMPFC) have shown a potential to supplant solid plasma facing components materials in the high heat flux regions of magnetic confinement fusion reactors due to the reduction or elimination of concerns over melting, wall damage, and erosion. To design a workable LMPFC, one must understand how liquid metal interacts with solid underlying structures. Wetting is an important factor in such interaction, several designs of LMPFC require liquid metal to wet the underlying solid structures. The wetting of lithium compounds (lithium nitride, oxide, and carbonate) by 200 °C liquid lithium at various surface temperature from 230 to 330 °C was studied by means of contact angle measurements. Wetting temperatures, defined as the temperature above which the contact angle is less than 90°, were measured. The wetting temperature was 257 °C for nitride, 259 °C for oxide, and 323 °C for carbonate. Surface tensions of solid lithium compounds were calculated from the contact angle measurements.

  18. Catalytic oxidation of concentrated orange oil phase by synthetic metallic complexes biomimetic to MMO enzyme.

    Science.gov (United States)

    Fernandes, Ilizandra A; Esmelindro, Maria Carolina; Corazza, Marcos L; Franceschi, Elton; Treichel, Helen; de Oliveira, Debora; Frizzo, Caren D; Oliveira, J Vladimir

    2010-07-01

    This paper reports the catalytic oxidation of the concentrated orange oil phase using the complexes [Fe(III)(BMPP)Cl(micro-O)Fe(III)Cl(3)], [Cu(II)(BTMEA)(2)Cl]Cl and [Co(II)(BMPP)]Cl(2) biomimetic to methane monooxygenase enzyme as catalysts and hydrogen peroxide as oxidant. The reaction products of oil oxidation, mainly nootkatone, were identified by gas chromatography/mass spectrometry. A screening of catalysts was performed through a full 2(3) experimental design, varying the temperature from 30 to 70 degrees C, the catalyst concentration from 7.0 x 10(-4) to 1.5 x 10(-3) mol L(-1) and the oxidant/substrate molar ratio from 1:1 to 3:1. The results of reaction kinetics employing the most promising catalysts showed that conversions to nootkatone of up to 8% were achieved after 16 h at 70 degrees C. The results obtained in this study in terms of nootkatone production should be considered encouraging, since a real, industrially collected, raw material, instead of pure valencene, was employed in the reaction experiments, with a final content about ten times that present in the original concentrated oil.

  19. Reactivity of organic compounds in catalytic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Minachev, Kh M; Bragin, O V

    1978-01-01

    A comprehensive review of 1976 Soviet research on catalysis delivered to the 1977 annual session of the USSR Academy of Science Council on Catalysis (Baku 6/16-20/77) covers hydrocarbon reactions, including hydrogenation and hydrogenolysis, dehydrogenation, olefin dimerization and disproportionation, and cyclization and dehydrocyclization (e.g., piperylene cyclization and ethylene cyclotrimerization); catalytic and physicochemical properties of zeolites, including cracking, dehydrogenation, and hydroisomerization catalytic syntheses and conversion of heterocyclic and functional hydrocarbon derivatives, including partial and total oxidation (e.g., of o-xylene to phthalic anhydride); syntheses of thiophenes from alkanes and hydrogen sulfide over certain dehydrogenation catalysts; catalytic syntheses involving carbon oxides ( e.g., the development of a new heterogeneous catalyst for hydroformylation of olefins), and of Co-MgO zeolitic catalysts for synthesis of aliphatic hydrocarbons from carbon dioxide and hydrogen, and fabrication of high-viscosity lubricating oils over bifunctional aluminosilicate catalysts.

  20. Wet-Chemical Preparation of Silicon Tunnel Oxides for Transparent Passivated Contacts in Crystalline Silicon Solar Cells.

    Science.gov (United States)

    Köhler, Malte; Pomaska, Manuel; Lentz, Florian; Finger, Friedhelm; Rau, Uwe; Ding, Kaining

    2018-05-02

    Transparent passivated contacts (TPCs) using a wide band gap microcrystalline silicon carbide (μc-SiC:H(n)), silicon tunnel oxide (SiO 2 ) stack are an alternative to amorphous silicon-based contacts for the front side of silicon heterojunction solar cells. In a systematic study of the μc-SiC:H(n)/SiO 2 /c-Si contact, we investigated selected wet-chemical oxidation methods for the formation of ultrathin SiO 2 , in order to passivate the silicon surface while ensuring a low contact resistivity. By tuning the SiO 2 properties, implied open-circuit voltages of 714 mV and contact resistivities of 32 mΩ cm 2 were achieved using μc-SiC:H(n)/SiO 2 /c-Si as transparent passivated contacts.

  1. Development of biomimetic catalytic oxidation methods and non-salt methods using transition metal-based acid and base ambiphilic catalysts

    Science.gov (United States)

    MURAHASHI, Shun-Ichi

    2011-01-01

    This review focuses on the development of ruthenium and flavin catalysts for environmentally benign oxidation reactions based on mimicking the functions of cytochrome P-450 and flavoenzymes, and low valent transition-metal catalysts that replace conventional acids and bases. Several new concepts and new types of catalytic reactions based on these concepts are described. PMID:21558760

  2. Oxidation of Borneol to Camphor Using Oxone and Catalytic Sodium Chloride: A Green Experiment for the Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Lang, Patrick T.; Harned, Andrew M.; Wissinger, Jane E.

    2011-01-01

    A new green oxidation procedure was developed for the undergraduate organic teaching laboratories using Oxone and a catalytic quantity of sodium chloride for the conversion of borneol to camphor. This simple 1 h, room temperature reaction afforded high quality and yield of product, was environmentally friendly, and produced negligible quantities…

  3. Influence of basic properties of Mg,Al-mixed oxides on their catalytic activity in knoevenagel condensation between benzaldehyde and phenylsulfonylacetonitrile

    Directory of Open Access Journals (Sweden)

    Caridad Noda Pérez

    2009-01-01

    Full Text Available The catalytic performance of Mg,Al-mixed oxides (MO20, MO25 and MO33 derived from hydrotalcites was evaluated in the Knoevenagel reaction between benzaldehyde and phenylsulfonylacetonitrile at 373 and 383 K. The best results were obtained for the sample MO20 that presented the highest basic sites density and external area and the smallest crystallite sizes. The relative amount of basic sites with weak to intermediate strength also played an important role on catalytic performance. By increasing the catalyst content from 1 to 5 wt.% at 383 K, a complete conversion of the reactants is attained, producing α-phenylsulfonylcinnamonitrile with a selectivity of 100%.

  4. Understanding Catalytic Activity Trends for NO Decomposition and CO Oxidation using Density Functional Theory and Microkinetic Modeling

    DEFF Research Database (Denmark)

    Falsig, Hanne

    -metal surfaces by combining a database of adsorption energies on stepped metal surfaces with known Brønsted–Evans–Polanyi (BEP) relations for the activation barriers of dissociation of diatomic molecules over stepped transition- and noble-metal surfaces. The potential energy diagram directly points to why Pd......The main aim of this thesis is to understand the catalytic activity of transition metals and noble metals for the direct decomposition of NO and the oxidation of CO. The formation of NOx from combustion of fossil and renewable fuels continues to be a dominant environmental issue. We take one step...... towards rationalizing trends in catalytic activity of transition metal catalysts for NO decomposition by combining microkinetic modelling with density functional theory calculations. We establish the full potential energy diagram for the direct NO decomposition reaction over stepped transition...

  5. The emission of nitrous oxide upon wetting a rice soil following a dry season fallow

    Science.gov (United States)

    Byrnes, B. H.; Holt, L. S.; Austin, E. R.

    1993-12-01

    A greenhouse experiment was conducted to measure nitrous oxide (N2O) emissions from a soil, which had been planted to flooded transplanted rice, as it was rewetted to simulate the end of a dry season fallow period. The pots of soil had been cropped to transplanted rice with two commonly used nitrogen (N) fertilizer treatments and a control, and the soil had been puddled before transplanting. Large amounts of nitrate N accumulated in the soils during the dry season fallow, and the N fertilizers applied to the previous crop had little effect on nitrate accumulation. There was little N2O emission during the nitrification period. With water additions meant to simulate rainfall events at the beginning of a wet season, the soil redox dropped slightly, and large amounts of N2O began to be emitted. Large emissions began 5 days after each of the two simulated rainy season watering events and stopped abruptly at soil saturation, even though considerable amounts of nitrate still remained in the soil after saturation. Total measured emissions amounted to 6 to 7 kg N2O-N ha-1 for the period. Although these measurements were made in a system which may have favored nitrate accumulation, they are the first known measurements of N2O made from a rice soil as it is wetted. Nitrous oxide emitted from the flooding of rice soils that have accumulated nitrate during a dry season fallow may be a major source of N2O additions to the atmosphere.

  6. Promotion of catalytic performance by adding W into Pt/ZrO{sub 2} catalyst for selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Mengmeng [Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610064, Sichuan (China); Wang, Suning; Li, Yuanshan [College of Chemical Engineering, Sichuan University, Chengdu 610064, Sichuan (China); Xu, Haidi, E-mail: xuhaidi@scu.edu.cn [Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610064, Sichuan (China); Chen, Yaoqiang, E-mail: nic7501@scu.edu.cn [Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610064, Sichuan (China); College of Chemical Engineering, Sichuan University, Chengdu 610064, Sichuan (China)

    2017-04-30

    Highlights: • The tungsten species weaken platinum-oxygen bond strength. • Pt{sup 0} was the active species of ammonia oxidation reaction in the low temperature. • Some PtO species could convert to Pt [111] beside WO{sub 3} species. - Abstract: Pt-WO{sub 3}/ZrO{sub 2} catalyst was prepared by co-impregnation method to improve the ammonia oxidation performance of Pt/ZrO{sub 2}. Differences in textural, structural, surface chemical states, redox properties and acid properties, together with the catalytic performance of Pt/ZrO{sub 2} and Pt-WO{sub 3}/ZrO{sub 2} catalysts were investigated systematically. The results of H{sub 2}-TPR revealed that higher reduction ability was possessed by Pt-WO{sub 3}/ZrO{sub 2} than that of Pt/ZrO{sub 2} due to the influence of tungsten on platinum. The XPS results showed that electron transfer from tungsten to platinum species made higher electron density around platinum. The TEM results revealed that the active lattice plane Pt[111] was obtained by modification of W species. Consequently, Pt-WO{sub 3}/ZrO{sub 2} exhibited obviously better ammonia oxidation performance compared with Pt/ZrO{sub 2}, the light-off temperature of NH{sub 3} shifted from 284 °C to 249 °C, the activation energy decreased from 113.4 kJ mol{sup −1} to 96.2 kJ mol{sup −1}.

  7. N2O Catalytic Decomposition - Effect of Pelleting Pressure on Activity of Co-Mn-Al Mixed Oxide Catalyst

    Czech Academy of Sciences Publication Activity Database

    Galejová, K.; Obalová, L.; Jirátová, Květa; Pacultová, K.; Kovanda, F.

    2009-01-01

    Roč. 63, č. 2 (2009), s. 172-179 ISSN 0366-6352. [International Conference of the Slovak-Society-of-Chemical-Engineering /35./. Tatranske Matliare, 26.05.2008-30.05.2008] R&D Projects: GA ČR GA104/07/1400 Institutional research plan: CEZ:AV0Z40720504 Keywords : pelleting pressure * nitrous oxide * catalytic decomposition Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.791, year: 2009

  8. Low-temperature catalytic gasification of wet industrial wastes

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D C; Neuenschwander, G G; Baker, E G; Sealock, Jr, L J; Butner, R S

    1991-04-01

    Bench-scale reactor tests are in progress at Pacific Northwest Laboratory to develop a low-temperature, catalytic gasification system. The system, licensed under the trade name Thermochemical Environmental Energy System (TEES{reg sign}), is designed for treating a wide variety of feedstocks ranging from dilute organics in water to waste sludges from food processing. This report describes a test program which used a continuous-feed tubular reactor. This test program is an intermediate stage in the process development. The reactor is a laboratory-scale version of the commercial concept as currently envisioned by the process developers. An energy benefit and economic analysis was also completed on the process. Four conceptual commercial installations of the TEES process were evaluated for three food processing applications and one organic chemical manufacturing application. Net energy production (medium-Btu gas) was achieved in all four cases. The organic chemical application was found to be economically attractive in the present situation. Based on sensitivity studies included in the analysis, the three food processing cases will likely become attractive in the near future as waste disposal regulations tighten and disposal costs increase. 21 refs., 2 figs., 9 tabs.

  9. Reaction Mechanism for the Formation of Nitrogen Oxides (NO x ) During Coke Oxidation in Fluidized Catalytic Cracking Units

    KAUST Repository

    Chaparala, Sree Vidya

    2015-06-11

    Fluidized catalytic cracking (FCC) units in refineries process heavy feedstock obtained from crude oil distillation. While cracking feed, catalysts get deactivated due to coke deposition. During catalyst regeneration by burning coke in air, nitrogen oxides (NOx) are formed. The increase in nitrogen content in feed over time has resulted in increased NOx emissions. To predict NOx concentration in flue gas, a reliable model for FCC regenerators is needed that requires comprehensive understanding and accurate kinetics for NOx formation. Based on the nitrogen-containing functional groups on coke, model molecules are selected to study reactions between coke-bound nitrogen and O2 to form NO and NO2 using density functional theory. The reaction kinetics for the proposed pathways are evaluated using transition state theory. It is observed that the addition of O2 on coke is favored only when the free radical is present on the carbon atom instead of nitrogen atom. Thus, NOx formation during coke oxidation does not result from the direct attack by O2 on N atoms of coke, but from the transfer of an O atom to N from a neighboring site. The low activation energies required for NO formation indicate that it is more likely to form than NO2 during coke oxidation. The favorable pathways for NOx formation that can be used in FCC models are identified. Copyright © 2015 Taylor & Francis Group, LLC.

  10. Ethanol production from maize silage as lignocellulosic biomass in anaerobically digested and wet-oxidized manure

    DEFF Research Database (Denmark)

    Oleskowicz-Popiel, Piotr; Lisiecki, P.; Holm-Nielsen, J.B.

    2008-01-01

    was investigated using 2 1 bioreactors. Wet oxidation performed for 20 min at 121 degrees C was found as the most suitable pretreatment conditions for AD manure. High ammonia concentration and significant amount of macro- and micro-nutrients in the AD manure had a positive influence on the ethanol fermentation....... No extra nitrogen source was needed in the fermentation broth. It was shown that the AD manure could successfully substitute process water in SSF of pretreated lignocellulosic fibres. Theoretical ethanol yields of 82% were achieved, giving 30.8 kg ethanol per 100 kg dry mass of maize silage. (C) 2007...

  11. Theophylline-assisted, eco-friendly synthesis of PtAu nanospheres at reduced graphene oxide with enhanced catalytic activity towards Cr(VI) reduction.

    Science.gov (United States)

    Hu, Ling-Ya; Chen, Li-Xian; Liu, Meng-Ting; Wang, Ai-Jun; Wu, Lan-Ju; Feng, Jiu-Ju

    2017-05-01

    Theophylline as a naturally alkaloid is commonly employed to treat asthma and chronic obstructive pulmonary disorder. Herein, a facile theophylline-assisted green approach was firstly developed for synthesis of PtAu nanospheres/reduced graphene oxide (PtAu NSs/rGO), without any surfactant, polymer, or seed involved. The obtained nanocomposites were applied for the catalytic reduction and removal of highly toxic chromium (VI) using formic acid as a model reductant at 50°C, showing the significantly enhanced catalytic activity and improved recyclability when compared with commercial Pt/C (50%) and home-made Au nanocrystals supported rGO (Au NCs/rGO). It demonstrates great potential applications of the catalyst in wastewater treatment and environmental protection. The eco-friendly route provides a new platform to fabricate other catalysts with enhanced catalytic activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Catalytic oxidation of 2-aminophenols and ortho hydroxylation of aromatic amines by tyrosinase

    International Nuclear Information System (INIS)

    Toussaint, O.; Lerch, K.

    1987-01-01

    The usual substrates of tyrosinase, a copper-containing monooxygenase (EC 1.14.18.1), are monophenols and o-diphenols which are both converted to o-quinones. In this paper, the authors studied the reaction of this enzyme with two new classes of substrates: aromatic amines and o-aminophenols, structural analogues of monophenols and o-diphenols, respectively. They undergo the same catalytic reactions (ortho hydroxylation and oxidation), as documented by product analysis and kinetic studies. In the presence of tyrosinase, arylamines and o-aminophenols are converted to o-quinone imines, which are isolated as quinone anils or phenoxazones. As an example, in the presence of tyrosinase, 2-amino-3-hydroxybenzoic acid (an o-aminophenol) is converted to cinnabarinic acid, a well-known phenoxazone, while p-aminotoluene (an aromatic amine) gives rise to the formation of 5-amino-2-methyl-1,4-benzoquinone 1-(4-methylanil). Kinetic studies using an oxygen electrode show that arylamines and the corresponding monophenols exhibit similar Michaelis constants. In contrast, the reaction rates observed for aromatic amines are relatively slow as compared to monophenols. The enzymatic conversion of arylamines by tryosinase is different from the typical ones: N-oxidation and ring hydroxylation without further oxidation. This difference originates from the regiospecific hydroxylation (ortho position) and subsequent oxidation of the intermediate o-aminophenol to the corresponding o-quinone imine. Finally, the well-know monooxygenase activity of tyrosinase was also confirmed for the aromatic amine p-aminotoluene, with 18 O 2

  13. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer.

    Science.gov (United States)

    Sun, Tonghua; Shen, Yafei; Jia, Jinping

    2014-02-18

    This paper proposes a novel self-developed JTS-01 desulfurizer and JZC-80 alkaline adsorbent for H2S removal and gas cleaning of the COREX coal gas in small-scale and commercial desulfurizing devices. JTS-01 desulfurizer was loaded with metal oxide (i.e., ferric oxides) catalysts on the surface of activated carbons (AC), and the catalyst capacity was improved dramatically by means of ultrasonically assisted impregnation. Consequently, the sulfur saturation capacity and sulfur capacity breakthrough increased by 30.3% and 27.9%, respectively. The whole desulfurizing process combined selective adsorption with catalytic oxidation. Moreover, JZC-80 adsorbent can effectively remove impurities such as HCl, HF, HCN, and ash in the COREX coal gas, stabilizing the system pressure drop. The JTS-01 desulfurizer and JZC-80 adsorbent have been successfully applied for the COREX coal gas cleaning in the commercial plant at Baosteel, Shanghai. The sulfur capacity of JTS-01 desulfurizer can reach more than 50% in industrial applications. Compared with the conventional dry desulfurization process, the modified AC desulfurizers have more merit, especially in terms of the JTS-01 desulfurizer with higher sulfur capacity and low pressure drop. Thus, this sorption enhanced catalytic desulfurization has promising prospects for H2S removal and other gas cleaning.

  14. A non-chemically selective top-down approach towards the preparation of hierarchical TS-1 zeolites with improved oxidative desulfurization catalytic performance.

    Science.gov (United States)

    Du, Shuting; Chen, Xiaoxin; Sun, Qiming; Wang, Ning; Jia, Mingjun; Valtchev, Valentin; Yu, Jihong

    2016-02-28

    Hierarchical TS-1 zeolites with secondary macropores have been successfully prepared by using two different fluoride-containing chemical etching post-treated routes. Hierarchical TS-1 zeolites exhibited a chemical composition similar to that of the parent material and showed remarkably enhanced catalytic activity in oxidative desulfurization reaction.

  15. Role of Defects and Adsorbed Water Film in Influencing the Electrical, Optical and Catalytic Properties of Transition Metal Oxides

    Science.gov (United States)

    Wang, Qi

    Transition metal oxides (TMOs) constitute a large group of materials that exhibit a wide range of optical, electrical, electrochemical, dielectric and catalytic properties, and thus making them highly regarded as promising materials for a variety of applications in next generation electronic, optoelectronic, catalytic, photonic, energy storage and energy conversion devices. Some of the unique properties of TMOs are their strong electron-electron correlations that exists between the valence electrons of narrow d- or f-shells and their ability to exist in variety of oxidation states. This gives TMOs an enormous range of fascinating electronic and other physical properties. Many of these remarkable properties of TMOs arises from the complex surface charge transfer processes at the oxide surface/electrochemical redox species interface and non-stoichiometry due to the presence of lattice vacancies that may cause significant perturbation to the electronic structure of the material. Stoichiometry, oxidation state of the metal center and lattice vacancy defects all play important roles in affecting the physical properties, electronic structures, device behavior and other functional properties of TMOs. However, the underlying relationships between them is not clearly known. For instance, the exchange of electrons between adsorbates and defects can lead to the passivation of existing defect states or formation of new defects, both of which affect defect equilibria, and consequently, functional properties. In depth understanding of the role of lattice defects on the electrical, catalytic and optical properties of TMOs is central to further expansion of the technological applications of TMO based devices. The focus of this work is to elucidate the interactions of vacancy defects with various electrochemical adsorbates in TMOs. The ability to directly probe the interactions of vacancy defects with gas and liquid phase species under in-operando conditions is highly desirable to

  16. Gold Decorated Graphene for Rapid Dye Reduction and Efficient Electro Catalytic Oxidation of Ethanol

    Science.gov (United States)

    Siddhardha, R. S.; Kumar v, Lakshman; Kaniyoor, A.; Podila, R.; Kumar, V. S.; Venkataramaniah, K.; Ramaprabhu, S.; Rao, A.; Ramamurthy, S. S.; Clemson University Team; Sri Sathya Sai Institute of Higher Learning Team; IITMadras Team

    2013-03-01

    A well known disadvantage in fabrication of metal-graphene composite is the use of surfactants that strongly adsorb on the surface and reduce the performance of the catalyst. Here, we demonstrate a novel one pot synthesis of gold nanoparticles (AuNPs) by laser ablation of gold strip and simultaneous decoration of these on functionalized graphene derivatives. Not only the impregnation of AuNPs was linker free, but also the synthesis by itself was surfactant free. This resulted in in-situ decoration of pristine AuNPs on functionalized graphene derivatives. These materials were well characterized and tested for catalytic applications pertaining to dye reduction and electrooxidation. The catalytic reduction rates are 1.4 x 102 and 9.4x102 times faster for Rhodamine B and Methylene Blue dyes respectively, compared to earlier reports. The enhanced rate involves synergistic interplay of electronic relay between AuNPs and the dye, also charge transfer between the graphene system and dye. In addition, the onset potential for ethanol oxidation was found to be more negative ~ 100 mV, an indication of its promising application in direct ethanol fuel cells.

  17. Electrical and physical characterizations of the effects of oxynitridation and wet oxidation at the interface of SiO2/4H-SiC(0001) and (000\\bar{1})

    Science.gov (United States)

    Shiomi, Hiromu; Kitai, Hidenori; Tsujimura, Masatoshi; Kiuchi, Yuji; Nakata, Daisuke; Ono, Shuichi; Kojima, Kazutoshi; Fukuda, Kenji; Sakamoto, Kunihiro; Yamasaki, Kimiyohi; Okumura, Hajime

    2016-04-01

    The effects of oxynitridation and wet oxidation at the interface of SiO2/4H-SiC(0001) and (000\\bar{1}) were investigated using both electrical and physical characterization methods. Hall measurements and split capacitance-voltage (C-V) measurements revealed that the difference in field-effect mobility between wet oxide and dry oxynitride interfaces was mainly attributed to the ratio of the mobile electron density to the total induced electron density. The surface states close to the conduction band edge causing a significant trapping of inversion carriers were also evaluated. High-resolution Rutherford backscattering spectroscopy (HR-RBS) analysis and high-resolution elastic recoil detection analysis (HR-ERDA) were employed to show the nanometer-scale compositional profile of the SiC-MOS interfaces for the first time. These analyses, together with cathode luminescence (CL) spectroscopy and transmission electron microscopy (TEM), suggested that the deviations of stoichiometry and roughness at the interface defined the effects of oxynitridation and wet oxidation at the interface of SiO2/4H-SiC(0001) and (000\\bar{1}).

  18. Physicochemical properties of manganese dioxide synthesized using C2–C5 alcohols as reducing agents and their catalytic activities for CO oxidation

    KAUST Repository

    Lee, Young-Ho

    2015-09-26

    MnO2 catalysts were synthesized in an aqueous solution of KMnO4 and C2–C5 alcohols using a simple redox method at room temperature. The crystalline structure of all samples was δ-MnO2 after being calcined at 300 °C. However, other physicochemical properties of the samples varied depending on the symmetry of the alcohols used. For the catalytic oxidation of CO, MnO2 catalysts prepared with 1° alcohols performed better than the samples prepared in 2° alcohols. Catalytic activities were correlated to the quantity of labile oxygen species of the catalysts. In CO-TPD analysis, the relative area of desorbed radical dotCO2, which is the product of the reaction between adsorbed CO and lattice oxygen species, becomes larger for MnO2 prepared with 1° alcohols than with 2° alcohols. These results were primarily resulted from the innate hydrogen dissociation behavior of alcohol in solution. The pKa was found to be an important factor in determining the physicochemical properties and catalytic activity toward CO oxidation of MnO2.

  19. Physicochemical properties of manganese dioxide synthesized using C2–C5 alcohols as reducing agents and their catalytic activities for CO oxidation

    KAUST Repository

    Lee, Young-Ho; Park, Jung-Hyun; Shin, Chae-Ho

    2015-01-01

    MnO2 catalysts were synthesized in an aqueous solution of KMnO4 and C2–C5 alcohols using a simple redox method at room temperature. The crystalline structure of all samples was δ-MnO2 after being calcined at 300 °C. However, other physicochemical properties of the samples varied depending on the symmetry of the alcohols used. For the catalytic oxidation of CO, MnO2 catalysts prepared with 1° alcohols performed better than the samples prepared in 2° alcohols. Catalytic activities were correlated to the quantity of labile oxygen species of the catalysts. In CO-TPD analysis, the relative area of desorbed radical dotCO2, which is the product of the reaction between adsorbed CO and lattice oxygen species, becomes larger for MnO2 prepared with 1° alcohols than with 2° alcohols. These results were primarily resulted from the innate hydrogen dissociation behavior of alcohol in solution. The pKa was found to be an important factor in determining the physicochemical properties and catalytic activity toward CO oxidation of MnO2.

  20. Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane

    International Nuclear Information System (INIS)

    Kootenaei, A.H. Shahbazi; Towfighi, J.; Khodadadi, A.; Mortazavi, Y.

    2014-01-01

    Highlights: • Vanadia supported on titanate nanotube shows enhanced dispersion of vanadia. • Deactivatoin during propane ODH related to the rutile development. • Titanate nanotube transfers to anatase due to calcinations and presence of vanadia. - Abstract: Titanate nanotubes with a high specific surface area were synthesized by the simple hydrothermal method and investigated as support for V 2 O 5 catalyst in oxidative dehydrogenation of propane (ODP). The structures of pristine nanotubes as well as the prepared catalysts were investigated by XRD, Raman, FTIR, HRTEM, SEM, EDS, BET, and XPS techniques. The characterization of the as-synthesized nanotubes showed the synthesis of hydrogen titanate nanotube. The incipient wetness impregnation method was utilized to prepare VTNT-x (x = 5, 10, and 15 wt.% vanadia supported on nanotube) together with VTi5 (5 wt.% vanadia supported on Degussa P25). The anatase phase was developed in VTNT-x catalysts upon calcination along with specific surface area loss. Higher vanadia loading resulted in the lowering of support capacity in maintaining vanadia in dispersed state such that eventually crystalline vanadia appeared. The measured catalyst activity demonstrates that in spite of major support surface area loss in VTNT-5 catalyst, the propylene yield is superior in comparison with VTi5 catalyst. The catalyst activity can be correlated with maximum reduction temperature. Deactivation of VTi5 and VTNT-5 as well as VTNT-15 were studied for 3,000 min time-on-stream. It was found that the activity of VTNT-5 catalyst remain unchanged while a decline in catalytic activity observed in VTi5 and VTNT-15 catalysts. The development of rutile was considered as being a major element in the deactivation of the investigated catalysts which is influenced by the presence of vanadium and reaction atmosphere

  1. Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane

    Energy Technology Data Exchange (ETDEWEB)

    Kootenaei, A.H. Shahbazi [Department of Chemical Engineering, College of Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Towfighi, J., E-mail: towfighi@modares.ac.ir [Department of Chemical Engineering, College of Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Khodadadi, A.; Mortazavi, Y. [Catalysis and Nanostructured Materials Laboratory, Oil and Gas Processing Center of Excellence, Department of Chemical Engineering, College of Engineering, University of Tehran, P.O. Box 11365-4563, Tehran (Iran, Islamic Republic of)

    2014-04-01

    Highlights: • Vanadia supported on titanate nanotube shows enhanced dispersion of vanadia. • Deactivatoin during propane ODH related to the rutile development. • Titanate nanotube transfers to anatase due to calcinations and presence of vanadia. - Abstract: Titanate nanotubes with a high specific surface area were synthesized by the simple hydrothermal method and investigated as support for V{sub 2}O{sub 5} catalyst in oxidative dehydrogenation of propane (ODP). The structures of pristine nanotubes as well as the prepared catalysts were investigated by XRD, Raman, FTIR, HRTEM, SEM, EDS, BET, and XPS techniques. The characterization of the as-synthesized nanotubes showed the synthesis of hydrogen titanate nanotube. The incipient wetness impregnation method was utilized to prepare VTNT-x (x = 5, 10, and 15 wt.% vanadia supported on nanotube) together with VTi5 (5 wt.% vanadia supported on Degussa P25). The anatase phase was developed in VTNT-x catalysts upon calcination along with specific surface area loss. Higher vanadia loading resulted in the lowering of support capacity in maintaining vanadia in dispersed state such that eventually crystalline vanadia appeared. The measured catalyst activity demonstrates that in spite of major support surface area loss in VTNT-5 catalyst, the propylene yield is superior in comparison with VTi5 catalyst. The catalyst activity can be correlated with maximum reduction temperature. Deactivation of VTi5 and VTNT-5 as well as VTNT-15 were studied for 3,000 min time-on-stream. It was found that the activity of VTNT-5 catalyst remain unchanged while a decline in catalytic activity observed in VTi5 and VTNT-15 catalysts. The development of rutile was considered as being a major element in the deactivation of the investigated catalysts which is influenced by the presence of vanadium and reaction atmosphere.

  2. Fabrication of CuO-doped catalytic material containing zeolite synthesized from red mud and rice husk ash for CO oxidation

    Science.gov (United States)

    Hieu Do Thi, Minh; Thinh Tran, Quoc; Nguyen, Tri; Van Nguyen Thi, Thuy; Huynh, Ky Phuong Ha

    2018-06-01

    In this study a series of the CuO-doped materials containing zeolite with varying CuO contents were synthesized from red mud (RM) and rice husk ash (RHA). The rice husk ash/red mud with the molar ratio of , and being 1.8, 2.5 and 60, respectively, were maintained during the synthetic process of materials. The characteristic structure samples were analyzed by x-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM), Brunauer–Emmett–Teller (BET) surface area and H2 temperature program reduction (H2-TPR). The catalytic activity of samples was evaluated in CO oxidation reaction in a microflow reactor at temperature range 200 °C–350 °C. The obtained results showed that all synthetic samples there exist the A-type zeolites with the average crystal size of 15–20 nm, the specific surface area of , and pore volume of . The material synthesized from RM and RHA with the zeolite structure (ZRM, undoped CuO) could also oxidize CO completely at 350 °C, and its activity was increase significantly when doped with CuO. CuO-doped materials with the zeolite structure exhibited excellent catalytic activity in CO oxidation. The ZRM sample loading 5 wt% CuO with particle nanosize about 10–30 nm was the best one for CO oxidation with complete conversion temperature at 275 °C.

  3. Development of biomimetic catalytic oxidation methods and non-salt methods using transition metal-based acid and base ambiphilic catalysts.

    Science.gov (United States)

    Murahashi, Shun-Ichi

    2011-01-01

    This review focuses on the development of ruthenium and flavin catalysts for environmentally benign oxidation reactions based on mimicking the functions of cytochrome P-450 and flavoenzymes, and low valent transition-metal catalysts that replace conventional acids and bases. Several new concepts and new types of catalytic reactions based on these concepts are described. (Communicated by Ryoji Noyori, M.J.A.).

  4. Metal Oxide Supported Vanadium Substituted Keggin Type Polyoxometalates as Catalyst For Oxidation of Dibenzothiophene

    Science.gov (United States)

    Lesbani, Aldes; Novri Meilyana, Sarah; Karim, Nofi; Hidayati, Nurlisa; Said, Muhammad; Mohadi, Risfidian; Miksusanti

    2018-01-01

    Supported polyoxometalatate H4[γ-H2SiV2W10O40]·nH2O with metal oxide i.e. silica, titanium, and tantalum was successfully synthesized via wet impregnation method to form H4[γ-H2SiV2W10O40]·nH2O-Si, H4[γ-H2SiV2W10O40]·nH2O-Ti, and H4[γ-H2SiV2W10O40]·nH2O-Ta. Characterization was performed using FTIR spectroscopy, X-Ray analyses, and morphology analyses using SEM. All compounds were used as the catalyst for desulfurization of dibenzothiophene (DBT). Silica and titanium supported polyoxometalate H4[γ-H2SiV2W10O40]·nH2O better than tantalum due to retaining crystallinity after impregnation process. On the other hand, compound H H4[γ-H2SiV2W10O40]·nH2O-Ta showed high catalytic activity than other supported metal oxides for desulfurization of DBT. Optimization desulfurization process resulted in 99% conversion of DBT under a mild condition at 70 °C, 0.1 g catalyst, and reaction for 3 hours. Regeneration studies showed catalyst H4[γ-H2SiV2W10O40]·nH2O-Ti was remaining catalytic activity for desulfurization of DBT.

  5. Thermal catalytic oxidation of octachloronaphthalene over anatase TiO2 nanomaterial and its hypothesized mechanism

    Science.gov (United States)

    Su, Guijin; Li, Qianqian; Lu, Huijie; Zhang, Lixia; Huang, Linyan; Yan, Li; Zheng, Minghui

    2015-12-01

    As an environmentally-green technology, thermal catalytic oxidation of octachloronaphthalene (CN-75) over anatase TiO2 nanomaterials was investigated at 300 °C. A wide range of oxidation intermediates, which were investigated using various techniques, could be of three types: naphthalene-ring, single-benzene-ring, and completely ring-opened products. Reactive oxygen species on anatase TiO2 surface, such as O2-• and O2-, contributed to oxidative degradation. Based on these findings, a novel oxidation degradation mechanism was proposed. The reaction at (101) surface of anatase TiO2 was used as a model. The naphthalene-ring oxidative products with chloronaphthols and hydroxyl-pentachloronaphthalene-dione, could be formed via attacking the carbon of naphthalene ring at one or more positions by nucleophilic O2-. Lateral cleavage of the naphthalene ring at different C1-C10 and C4-C9, C1-C2 and C4-C9, C1-C2 or and C3-C4 bond positions by electrophilic O2-• could occur. This will lead to the formation of tetrachlorophenol, tetrachloro-benzoic acid, tetrachloro-phthalaldehyde, and tetrachloro-acrolein-benzoic acid, partially with further transformation into tetrachlorobenzene-dihydrodiol and tetrachloro-salicylic acid. Unexpectedly, the symmetric half section of CN-75 could be completely remained with generating the intricate oxidative intermediates characteristically containing tetrachlorobenzene structure. Complete cleavage of naphthalene ring could produce the ring-opened products, such as formic and acetic acids.

  6. Characterization of microstructure and catalytic of cerium oxide obtained by colloidal solution

    International Nuclear Information System (INIS)

    Senisse, C.A.L.; Bergmann, C.P.; Alves, A.K.

    2012-01-01

    This study investigated to obtain particles of cerium oxide, for use as catalysts for the combustion of methane using the technique of through polymeric colloidal solution. Obtaining the colloidal system is based on hydrolysis of salts such as cerium acetylacetonate, cerium nitrate in the presence of additives such as polyvinylbutyral (PVB), polyvinylpyrrolidone (PVP) and polyvinyl acetate (PVA), at concentrations of 5, 10 and 15% in aqueous or alcoholic medium. These solutions containing ions of interest were subjected to a heat treatment at 650° C for 30 minutes, with heating rate of 2 ° C/ min. After heat treatment, the fibers were characterized according to their morphology, surface area, crystallinity, weight loss and catalytic activity. Samples obtained from cerium acetylacetonate were more reactive than the cerium nitrate to the combustion of methane, as showed greater conversions and higher temperatures reached during the process, which is of utmost importance since the combustion catalytic methane is used for generating thermal energy. After the reaction with methane, the samples underwent significant change in surface area, probably due to the intensity of combustion reactions of the nitrate and the generation of heat involved in this reaction, which gave rise to coarse particles. During the combustion process using the obtained from particles of cerium acetylacetonate, there was the release of large quantities of nitrogen compared to the results of assays with the particles obtained with cerium nitrate. (author)

  7. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts.

    Science.gov (United States)

    Zhuang, Haifeng; Han, Hongjun; Hou, Baolin; Jia, Shengyong; Zhao, Qian

    2014-08-01

    Sewage sludge of biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl₂ as activation agent, which supported manganese and ferric oxides as catalysts (including SBAC) to improve the performance of ozonation of real biologically pretreated Lurgi coal gasification wastewater. The results indicated catalytic ozonation with the prepared catalysts significantly enhanced performance of pollutants removal and the treated wastewater was more biodegradable and less toxic than that in ozonation alone. On the basis of positive effect of higher pH and significant inhibition of radical scavengers in catalytic ozonation, it was deduced that the enhancement of catalytic activity was responsible for generating hydroxyl radicals and the possible reaction pathway was proposed. Moreover, the prepared catalysts showed superior stability and most of toxic and refractory compounds were eliminated at successive catalytic ozonation runs. Thus, the process with economical, efficient and sustainable advantages was beneficial to engineering application. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Zeolite encapsulated Fe-porphyrin for catalytic oxidation with iodobenzene diacetate (PhI(OAc){sub 2})

    Energy Technology Data Exchange (ETDEWEB)

    Karimipour, G.; Rezaei, M.; Ashouri, D. [Yasouj University, Department of Chemistry, 75918-74831 Yasouj (Iran, Islamic Republic of)

    2013-07-01

    meso-Tetrakis(3-pyridyl)porphyrin ato iron(III) chloride encapsulated on NaY Zeolite [Fe(T-3-PyP)-NaY] was synthesized as a heterogeneous ship-in-a-bottle type catalyst and characterized by Fourier transform infrared, atomic absorption, diffused reflectance UV-Vis, X-ray diffraction and scanning electron microscopy analysis. The catalytic activity of Fe(T-3-PyP-NaY was examined for the epoxidation of cyclohexene by PhI(OAc){sub 2} in CH{sub 3}CN/H{sub 2}O (5:1) and compared to that of Fe(T-3-PyP) as a homogeneous catalyst. We found that the heterogeneous catalyst Fe(T-3-PyP-NaY was stable and reusable for several times, and provided a mild condition and exhibited high activity and selectivity in the oxidation of alkenes to epoxides (16-94%). As representative examples for the use of Fe(T-3-PyP-NaY/ PhI(OAc){sub 2} in organic oxidations, oxidation of 4-nitro benzylalcohol to 4-nitrobenzaldehyde (97%), oxidative dehydrogenation of diethyl 4-(2,6-dichlorophenyl)-2,6-dimethyl-1,4-dihydro-3,5-pyridinedicarboxylate to the corresponding pyridine (100%), diphenylacetic acid to benzophenone (64%) was achieved. (Author)

  9. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.; Smith, Colin D.; Wang, Yong

    2016-04-10

    tA highly versatile ethanol conversion process to selectively generate high value compounds is pre-sented here. By changing the reaction temperature, ethanol can be selectively converted to >C2alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3cata-lyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensationor the acetone formation is the path taken in changing the product composition. This article containsthe catalytic activity comparison between the mono-functional and physical mixture counterpart to thehydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  10. Preparation of magnetic imprinted graphene oxide composite for catalytic degradation of Congo red under dark ambient conditions.

    Science.gov (United States)

    Yang, Xiaochao; You, Xiaoxiao; Zhang, Bin; Guo, Chuigen; Yu, Chaosheng

    2017-10-01

    Magnetic imprinted N-doped P25/Fe 3 O 4 -graphene oxide (MIGNT) was prepared with methyl orange as the dummy template and pyrrole as functional monomer for catalytic degradation of Congo red (CR). Hummers method and the hydrothermal method were used to synthesize Fe 3 O 4 -GO and N-doped P25, respectively. The results of adsorption and degradation experiments showed that the adsorption capacity and catalytic degradation ability of the imprinted composite for CR were obviously higher than those of a non-imprinted one. Moreover, the effect factors on degradation efficiency of CR, such as the initial concentration of CR, catalysis time, pH of the solution and temperature, were investigated. The MIGNT was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, a physical property measurement system and a thermal gravimetric analyzer. The degradation products of CR were detected with high performance liquid chromatography and a mass spectrometer. The MIGNT was a brand-new imprinted composite and had high degradation efficiency for CR under dark ambient conditions. The MIGNT could be recycled conveniently, due to its magnetic property, and could be used as an effective, environmentally friendly and low-cost catalytic degradation material for the treatment of water contaminated by CR.

  11. Greenhouse gas microbiology in wet and dry straw crust covering pig slurry

    DEFF Research Database (Denmark)

    Hansen, Rikke Ruth; Nielsen, Daniel Aagren; Schramm, Andreas

    2009-01-01

    was observed in all crusted treatments exposed to anoxia, and this was probably a result of denitrification based on NO2- and NO3- that had accumulated in the crust during oxic conditions. To reduce overall greenhouse gas emissions, floating crust should be managed to optimize conditions for methanotrophs....... microbiology had an effect on the emission of the potent greenhouse gases CH4 and nitrous oxide (N2O) when crust moisture was manipulated ("Dry", "Moderate", and "Wet"). The dry crust had the deepest oxygen penetration (45 mm as compared to 20 mm in the Wet treatment) as measured with microsensors, the highest...... oxidizing bacteria were undetectable and methane oxidizing bacteria were only sparsely present in the "Wet" treatment. A change to anoxia did not affect the CH4 emission indicating the virtual absence of aerobic methane oxidation in the investigated 2-months old crusts. However, an increase in N2O emission...

  12. Optimizing Oily Wastewater Treatment Via Wet Peroxide Oxidation Using Response Surface Methodology

    International Nuclear Information System (INIS)

    Shi, Jianzhong; Wang, Xiuqing; Wang, Xiaoyin

    2014-01-01

    The process of petroleum involves in a large amount of oily wastewater that contains high levels of chemical oxygen demand (COD) and toxic compounds. So they must be treated before their discharge into the receptor medium. In this paper, wet peroxide oxidation (WPO) was adopted to treat the oily wastewater. Central composite design, an experimental design for response surface methodology (RSM), was used to create a set of 31 experimental runs needed for optimizing of the operating conditions. Quadratic regression models with estimated coefficients were developed to describe the COD removals. The experimental results show that WPO could effectively reduce COD by 96.8% at the optimum conditions of temperature 290 .deg. C, H 2 O 2 excess (HE) 0.8, the initial concentration of oily wastewater 3855 mg/L and reaction time 9 min. RSM could be effectively adopted to optimize the operating multifactors in complex WPO process

  13. Catalytic Hydrolysis of Ammonia Borane by Cobalt Nickel Nanoparticles Supported on Reduced Graphene Oxide for Hydrogen Generation

    Directory of Open Access Journals (Sweden)

    Yuwen Yang

    2014-01-01

    Full Text Available Well dispersed magnetically recyclable bimetallic CoNi nanoparticles (NPs supported on the reduced graphene oxide (RGO were synthesized by one-step in situ coreduction of aqueous solution of cobalt(II chloride, nickel (II chloride, and graphite oxide (GO with ammonia borane (AB as the reducing agent under ambient condition. The CoNi/RGO NPs exhibits excellent catalytic activity with a total turnover frequency (TOF value of 19.54 mol H2 mol catalyst−1 min−1 and a low activation energy value of 39.89 kJ mol−1 at room temperature. Additionally, the RGO supported CoNi NPs exhibit much higher catalytic activity than the monometallic and RGO-free CoNi counterparts. Moreover, the as-prepared catalysts exert satisfying durable stability and magnetically recyclability for the hydrolytic dehydrogenation of AB, which make the practical reusing application of the catalysts more convenient. The usage of the low-cost, easy-getting catalyst to realize the production of hydrogen under mild condition gives more confidence for the application of ammonia borane as a hydrogen storage material. Hence, this general method indicates that AB can be used as both a potential hydrogen storage material and an efficient reducing agent, and can be easily extended to facile preparation of other RGO-based metallic systems.

  14. Catalytic properties of oxygen adsorbed on NiO-Sm/sub 2/O/sub 3/ binary oxides

    Energy Technology Data Exchange (ETDEWEB)

    Tadasu, Y.; Niwa, H.; Matsuda, Y.

    1978-02-01

    Various rare earths were screened as promoters for a nickel oxidation catalyst, and samarium (Sm) was selected for further studies. The activity of a physical mixture of NiO/Sm/sub 2/O/sub 3/ and SiC for the oxidation of 500 ppm nitric oxide with 5% oxygen in nitrogen to nitrogen dioxide at 320/sup 0/C went through a maximum with increasing Sm/sub 2/O/sub 3/ content of the catalyst. The most active catalyst, which contained 3.75% Sm/sub 2/O/sub 3/, was 3.7 times as active as pure nickel oxide. Temperature-programed desorption of oxygen from the catalysts revealed three peaks, ..cap alpha.. at 220/sup 0/-230/sup 0/C ..beta.. at 370/sup 0/-380/sup 0/C, and ..gamma.. at 530/sup 0/-540/sup 0/C, for all catalysts except pure Sm/sub 2/O/sub 3/. The amount of adsorbed oxygen increased with increasing Sm/sub 2/O/sub 3/ content to 3.75%, and then decreased with further Sm/sub 2/O/sub 3/ increases. The catalytic activity was correlated to oxygen in the ..beta..-state. Graphs, spectra, and table.

  15. Post-treatment of refinery wastewater effluent using a combination of AOPs (H2O2 photolysis and catalytic wet peroxide oxidation) for possible water reuse. Comparison of low and medium pressure lamp performance.

    Science.gov (United States)

    Rueda-Márquez, J J; Levchuk, I; Salcedo, I; Acevedo-Merino, A; Manzano, M A

    2016-03-15

    The main aim of this work was to study the feasibility of multi-barrier treatment (MBT) consisting of filtration, hydrogen peroxide photolysis (H2O2/UVC) and catalytic wet peroxide oxidation (CWPO) for post-treatment of petroleum refinery effluent. Also the possibility of water reuse or safe discharge was considered. The performance of MBT using medium (MP) and low (LP) pressure lamps was compared as well as operation and maintenance (O&M) cost. Decomposition of organic compounds was followed by means of gas chromatography-mass spectrometry (GC-MS), total organic carbon (TOC) and chemical oxygen demand (COD) analysis. After filtration step (25 μm) turbidity and concentration of suspended solids decreased by 92% and 80%, respectively. During H2O2/UVC process with LP lamp at optimal conditions (H2O2:TOC ratio 8 and UVC dose received by water 5.28 WUVC s cm(-2)) removal of phenolic compounds, TOC and COD was 100%, 52.3% and 84.3%, respectively. Complete elimination of phenolic compounds, 47.6% of TOC and 91% of COD was achieved during H2O2/UVC process with MP lamp at optimal conditions (H2O2:TOC ratio 5, UVC dose received by water 6.57 WUVC s cm(-2)). In order to compare performance of H2O2/UVC treatment with different experimental set up, the UVC dose required for removal of mg L(-1) of COD was suggested as a parameter and successfully applied. The hydrophilicity of H2O2/UVC effluent significantly increased which in turn enhanced the oxidation of organic compounds during CWPO step. After H2O2/UVC treatment with LP and MP lamps residual H2O2 concentration was 160 mg L(-1) and 96.5 mg L(-1), respectively. Remaining H2O2 was fully consumed during subsequent CWPO step (6 and 3.5 min of contact time for LP and MP, respectively). Total TOC and COD removal after MBT was 94.7% and 92.2% (using LP lamp) and 89.6% and 95%, (using MP lamp), respectively. The O&M cost for MBT with LP lamp was estimated to be 0.44 € m(-3) while with MP lamp it was nearly five

  16. A bioinspired catalytic aerobic oxidative C-H functionalization of primary aliphatic amines: synthesis of 1,2-disubstituted benzimidazoles.

    Science.gov (United States)

    Nguyen, Khac Minh Huy; Largeron, Martine

    2015-09-01

    Aerobic oxidative CH functionalization of primary aliphatic amines has been accomplished with a biomimetic cooperative catalytic system to furnish 1,2-disubstituted benzimidazoles that play an important role as drug discovery targets. This one-pot atom-economical multistep process, which proceeds under mild conditions, with ambient air and equimolar amounts of each coupling partner, constitutes a convenient environmentally friendly strategy to functionalize non-activated aliphatic amines that remain challenging substrates for non-enzymatic catalytic aerobic systems. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of Creative Commons Attribution NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  17. Cerium oxide and platinum nanoparticles protect cells from oxidant-mediated apoptosis

    International Nuclear Information System (INIS)

    Clark, Andrea; Zhu Aiping; Sun Kai; Petty, Howard R.

    2011-01-01

    Catalytic nanoparticles represent a potential clinical approach to replace or correct aberrant enzymatic activities in patients. Several diseases, including many blinding eye diseases, are promoted by excessive oxidant stress due to reactive oxygen species (ROS). Cerium oxide and platinum nanoparticles represent two potentially therapeutic nanoparticles that de-toxify ROS. In the present study, we directly compare these two classes of catalytic nanoparticles. Cerium oxide and platinum nanoparticles were found to be 16 ± 2.4 and 1.9 ± 0.2 nm in diameter, respectively. Using surface plasmon-enhanced microscopy, we find that these nanoparticles associate with cells. Furthermore, cerium oxide and platinum nanoparticles demonstrated superoxide dismutase catalytic activity, but did not promote hemolytic or cytolytic pathways in living cells. Importantly, both cerium oxide and platinum nanoparticles reduce oxidant-mediated apoptosis in target cells as judged by the activation of caspase 3. The ability to diminish apoptosis may contribute to maintaining healthy tissues.

  18. Dynamic\tmodelling of catalytic three-phase reactors for hydrogenation and oxidation processes

    Directory of Open Access Journals (Sweden)

    Salmi T.

    2000-01-01

    Full Text Available The dynamic modelling principles for typical catalytic three-phase reactors, batch autoclaves and fixed (trickle beds were described. The models consist of balance equations for the catalyst particles as well as for the bulk phases of gas and liquid. Rate equations, transport models and mass balances were coupled to generalized heterogeneous models which were solved with respect to time and space with algorithms suitable for stiff differential equations. The aspects of numerical solution strategies were discussed and the procedure was illustrated with three case studies: hydrogenation of aromatics, hydrogenation of aldehydes and oxidation of ferrosulphate. The case studies revealed the importance of mass transfer resistance inside the catalyst pallets as well as the dynamics of the different phases being present in the reactor. Reliable three-phase reactor simulation and scale-up should be based on dynamic heterogeneous models.

  19. Annihilation characteristics of positrons in oxide powders in relation to catalytic activities

    International Nuclear Information System (INIS)

    Ito, K.; Ohtsu, Y.; Tanigawa, S.; Enomura, A.; Tsuda, N.

    1982-01-01

    The annihilation chaaracteristics in magnesium oxide powders were studied by the measurements of Doppler broadening of annihilation radiations. MgO powders are well known as a solid base and are utilized as a catalyst for the reactions which start by extracting protons from molecules such as decomposition of alcohol. The isochronal annealing behavior of annihilation characteristics in the process Mg(OH) 2 → MgO was found to correspond just to the change in the number of basic points, specific surface area and catalytic activities in some reactions. From the results of the thermal equilibrium measurements of MgO powders after dehydration, the temperature dependence of S parameter can be considered as the thermal activation process of the escape of positrons from trapped states at surface to form positroniums. The derived value of this activation energy was 0.187 eV. (Auth.)

  20. Heterogeneous catalytic oxidative dehydrogenation of ethylbenzene to styrene with carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Badstube, T.; Papp, H. [Leipzig Univ. (Germany). Inst. fuer Technische Chemie; Kustrowski, P.; Dziembaj, R. [Jagiellonian Univ., Crakow (Poland). Faculty of Chemistry

    1998-12-31

    Alkaline promoted active carbon supported iron catalysts are very active in the oxidative dehydrogenation of ethylbenzene to styrene in the presence of carbon dioxide. The best results were obtained at 550 C for a Li-promoted catalyst with a conversion of ethylbenzene of 75% and a selectivity towards styrene of nearly 95%. These results are better than those obtained with industrial catalysts which perform the dehydrogenation process with an excess of water. The main product of the dehydrogenation reaction with CO{sub 2} was styrene, but the following by-products were detected - benzene and toluene. The selectivity towards toluene was always higher than towards benzene. We observed also the formation of carbon monoxide and water, which were produced with a constant molar ratio of about 0.8. The weight of the catalysts increased up to 20% during the reaction due to deposition of carbon. Using a too large excess of CO{sub 2} (CO{sub 2}/EB>10) was harmful for the styrene yield. The most favorable molar ratio of CO{sub 2} to EB was 10:1. No correlation between the molar ratios of reactants and the amount of deposited coke on the surface of catalysts was observed. The highest catalytic activity showed iron loaded D-90 catalysts which were promoted with alkali metals in a molar ratio of 1:10. Iron, nickel and cobalt loaded carbonized PPAN, PC, inorganic supports like Al{sub 2}O{sub 3}, SiO{sub 2}/ZrO{sub 2} or TiO{sub 2} respectively and commercial iron catalysts applied for styrene production did not show comparable catalytic activity in similar conditions. (orig.)