WorldWideScience

Sample records for catalytic wet oxidation

  1. Catalytic wet oxidation of black liquor

    OpenAIRE

    Viader Riera, Gerard

    2012-01-01

    The major aspects of wet air oxidation and catalytic wet air oxidation have been reviewed in this work paying special attention to the reaction mechanisms, kinetics and the industrial process. In the experimental section a set of heterogeneous catalysts have been tested in the wet oxidation of non-wood black liquor. The oxidation runs were performed batchwise in a laboratory-scale mechanically stirred slurry reactor for 1 h at a temperature of 170°C and total pressure of 12 bar. Pure oxygen w...

  2. Progress of catalytic wet air oxidation technology

    Directory of Open Access Journals (Sweden)

    Guolin Jing

    2016-11-01

    Full Text Available Catalytic wet air oxidation (CWAO is one of the most economical and environmental-friendly advanced oxidation process for high strength, toxic, hazardous and non-biodegradable contaminants under milder conditions, which is developed on the basic of wet air oxidation. Various heterogeneous catalysts including noble metals and metal oxides have been extensively studied to enhance the efficiency of CWAO. The advances in the research on wastewater treatment by CWAO process are summarized in aspects of reaction mechanism investigation, reaction kinetics study and catalyst development. It is pointed out that the preparation of active and stable catalysts, the investigation on reaction mechanisms and the study on reaction kinetics models are very important for the promotion of CWAO application.

  3. [Research on synergy of combining electrochemical oxidation and catalytic wet oxidation].

    Science.gov (United States)

    Wang, Hua; Li, Guang-Ming; Zhang, Fang; Huang, Ju-Wen

    2009-07-15

    A new catalytic wet oxidation fixed-bed reactor combined with three-dimensional electric-field was developed to investigate catalytic wet oxidation, electrochemical oxidation and electroassisted catalytic wet oxidation of the solution containing phenol in the presence of a catalyst Mn-Sn-Sb-3/gamma-Al2O3. Good electroassisted catalytic wet oxidation efficiency was obtained in the setup for the combination system even at mild conditions (T = 130 degrees C, po2 = 1.0 MPa) that the phenol conversion and TOC reduction were up to 94.0% and 88.4% after 27 min treatment, respectively. The result also shows that the rate constants of electroassisted catalytic wet oxidation are much higher than that of not only both catalytic wet oxidation and electrochemical oxidation process alone but also additive efficiencies of catalytic wet oxidation and electrochemical oxidation processes, which indicates an apparent synergetic effect between CWO and ECO processes.

  4. Catalytic wet Air Oxidation of o-Chlorophenol in Wastewater

    Institute of Scientific and Technical Information of China (English)

    徐新华; 汪大翬

    2003-01-01

    Catalytic wet air oxidation (CWAO) was investigated in laboratory-scale experiments for the treatment of o-chlorophenol in wastewater. Experimental results showed that wet air oxidation (WAO) process in the absence of catalyst was also effective for o-chlorophenol in wastewater treatment. Up to 80% of the initial CODCr was removed by wet air oxidation at 270℃ with twice amount of the required stoichiometric oxygen supply. At temperature of 150℃, the removal rate of CODCr was only 30%. Fe2(SO4)3, CuSO4, Cu(NO3)2 and MnSO4 exhibited high catalytic activity. Higher removal rate of CODCr was obtained by CWAO. More than 96% of the initial CODCr was removed at 270℃ and 84.6%-93.6% of the initial CODCr was removed at 150℃. Mixed catalysts had better catalytic activity for the degradation of o-chlorophenol in wastewater.

  5. Removal of ammonia solutions used in catalytic wet oxidation processes.

    Science.gov (United States)

    Hung, Chang Mao; Lou, Jie Chung; Lin, Chia Hua

    2003-08-01

    Ammonia (NH(3)) is an important product used in the chemical industry, and is common place in industrial wastewater. Industrial wastewater containing ammonia is generally either toxic or has concentrations or temperatures such that direct biological treatment is unfeasible. This investigation used aqueous solutions containing more of ammonia for catalytic liquid-phase oxidation in a trickle-bed reactor (TBR) based on Cu/La/Ce composite catalysts, prepared by co-precipitation of Cu(NO(3))(2), La(NO(3))(2), and Ce(NO(3))(3) at 7:2:1 molar concentrations. The experimental results indicated that the ammonia conversion of the wet oxidation in the presence of the Cu/La/Ce composite catalysts was determined by the Cu/La/Ce catalyst. Minimal ammonia was removed from the solution by the wet oxidation in the absence of any catalyst, while approximately 91% ammonia removal was achieved by wet oxidation over the Cu/La/Ce catalyst at 230 degrees C with oxygen partial pressure of 2.0 MPa. Furthermore, the effluent streams were conducted at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes, and a reaction pathway was found linking the oxidizing ammonia to nitric oxide, nitrogen and water. The solution contained by-products, including nitrates and nitrites. Nitrite selectivity was minimized and ammonia removal maximized when the feed ammonia solution had a pH of around 12.0.

  6. Evolution of toxicity upon wet catalytic oxidation of phenol.

    Science.gov (United States)

    Santos, A; Yustos, P; Quintanilla, A; García-Ochoa, F; Casas, J A; Rodríguez, J J

    2004-01-01

    This work reports on the evolution of the toxicity of phenol-containing simulated wastewater upon catalytic wet oxidation with a commercial copper-based catalyst (Engelhard Cu-0203T). The results of the study show that this catalyst enhances detoxification, in addition to its effect on the oxidation rate. The EC50 values of the intermediates identified throughout the oxidation route of phenol have been determined and used to predict the evolution of toxicity upon oxidation. The predicted values have been compared with the ones measured directly from the aqueous solution during the oxidation process. To learn about the evolution of toxicity through out the routes of phenol oxidation, experiments have been performed with simulated wastewaters containing separately phenol, catechol, and hydroquinone as original pollutants. The significant increase of toxicity observed during the early stages of phenol oxidation is not directly related to the development of the brown color that derives mainly from catechol oxidation. This increase of toxicity is caused by the formation of hydroquinone and p-benzoquinone as intermediates, the former showing the highest toxicity. Furthermore, synergistic effects, giving rise to a significant increase of toxicity, have been observed. These effects derive from the interactions among copper leached from the catalyst and catechol, hydroquinone, and p-benzoquinone and demand that close attention be paid to this potential problem in catalytic wet oxidation.

  7. Process of forming catalytic surfaces for wet oxidation reactions

    Science.gov (United States)

    Jagow, R. B. (Inventor)

    1977-01-01

    A wet oxidation process was developed for oxidizing waste materials, comprising dissolved ruthenium salt in a reactant feed stream containing the waste materials. The feed stream is introduced into a reactor, and the reactor contents are then raised to an elevated temperature to effect deposition of a catalytic surface of ruthenium black on the interior walls of the reactor. The feed stream is then maintained in the reactor for a period of time sufficient to effect at least partial oxidation of the waste materials.

  8. Catalytic properties of carbon materials for wet oxidation of aniline.

    Science.gov (United States)

    Gomes, Helder T; Machado, Bruno F; Ribeiro, Andreia; Moreira, Ivo; Rosário, Márcio; Silva, Adrián M T; Figueiredo, José L; Faria, Joaquim L

    2008-11-30

    A mesoporous carbon xerogel with a significant amount of oxygen functional groups and a commercial activated carbon, were tested in the catalytic wet air oxidation of aniline at 200 degrees C and 6.9 bar of oxygen partial pressure. Both carbon materials showed high activity in aniline and total organic carbon removal, a clear increase in the removal efficiency relatively to non-catalytic wet air oxidation being observed. The best results in terms of aniline removal were obtained with carbon xerogel, an almost complete aniline conversion after 1h oxidation with high selectivity to non-organic compounds being achieved. The materials were characterized by thermogravimetric analysis, temperature programmed desorption, N(2) adsorption and scanning electron microscopy, in order to relate their performances to the chemical and textural characteristics. It was concluded that the removal efficiency, attributed to both adsorption and catalytic activity, is related to the mesoporous character of the materials and to the presence of specific oxygen containing functional groups at their surface. The effect of catalytic activity was found to be more important in the removal of aniline than the effect of adsorption at the materials surface. The results obtained indicate that mesoporous carbon xerogels are promising catalysts for CWAO processes.

  9. Catalytic properties of carbon materials for wet oxidation of aniline

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Helder T. [Laboratorio de Catalise e Materiais (LCM), Laboratorio Associado LSRE/LCM, Departamento de Engenharia Quimica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Departamento de Tecnologia Quimica e Biologica, Escola Superior de Tecnologia e de Gestao, Instituto Politecnico de Braganca, Campus de Santa Apolonia, 5300-857 Braganca (Portugal); Machado, Bruno F.; Ribeiro, Andreia; Moreira, Ivo; Rosario, Marcio; Silva, Adrian M.T.; Figueiredo, Jose L. [Laboratorio de Catalise e Materiais (LCM), Laboratorio Associado LSRE/LCM, Departamento de Engenharia Quimica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Faria, Joaquim L. [Laboratorio de Catalise e Materiais (LCM), Laboratorio Associado LSRE/LCM, Departamento de Engenharia Quimica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)], E-mail: jlfaria@fe.up.pt

    2008-11-30

    A mesoporous carbon xerogel with a significant amount of oxygen functional groups and a commercial activated carbon, were tested in the catalytic wet air oxidation of aniline at 200 deg. C and 6.9 bar of oxygen partial pressure. Both carbon materials showed high activity in aniline and total organic carbon removal, a clear increase in the removal efficiency relatively to non-catalytic wet air oxidation being observed. The best results in terms of aniline removal were obtained with carbon xerogel, an almost complete aniline conversion after 1 h oxidation with high selectivity to non-organic compounds being achieved. The materials were characterized by thermogravimetric analysis, temperature programmed desorption, N{sub 2} adsorption and scanning electron microscopy, in order to relate their performances to the chemical and textural characteristics. It was concluded that the removal efficiency, attributed to both adsorption and catalytic activity, is related to the mesoporous character of the materials and to the presence of specific oxygen containing functional groups at their surface. The effect of catalytic activity was found to be more important in the removal of aniline than the effect of adsorption at the materials surface. The results obtained indicate that mesoporous carbon xerogels are promising catalysts for CWAO processes.

  10. Catalytic wet hydrogen peroxide oxidation of a petrochemical wastewater.

    Science.gov (United States)

    Pariente, M I; Melero, J A; Martínez, F; Botas, J A; Gallego, A I

    2010-01-01

    Continuous Catalytic Wet Hydrogen Peroxide Oxidation (CWHPO) for the treatment of a petrochemical industry wastewater has been studied on a pilot plant scale process. The installation, based on a catalytic fixed bed reactor (FBR) coupled with a stirred tank reactor (STR), shows an interesting alternative for the intensification of a continuous CWHPO treatment. Agglomerated SBA-15 silica-supported iron oxide (Fe(2)O(3)/SBA-15) was used as Fenton-like catalyst. Several variables such as the temperature and hydrogen peroxide concentration, as well as the capacity of the pilot plant for the treatment of inlet polluted streams with different dilution degrees were studied. Remarkable results in terms of TOC reduction and increased biodegradability were achieved using 160 degrees C and moderate hydrogen peroxide initial concentration. Additionally, a good stability of the catalyst was evidenced for 8 hours of treatment with low iron leaching (less than 1 mg/L) under the best operating conditions.

  11. Catalytic wet air oxidation of high concentration pharmaceutical wastewater.

    Science.gov (United States)

    Zhan, Wei; Wang, Xiaocong; Li, Daosheng; Ren, Yongzheng; Liu, Dongqi; Kang, Jianxiong

    2013-01-01

    In this study, we investigated the pretreatment of a high concentration pharmaceutical wastewater by catalytic wet air oxidation (CWAO) process. Different experiments were conducted to investigate the effects of the catalyst type, operating temperature, initial system pH, and oxygen partial pressure on the oxidation of the wastewater. Results show that the catalysts prepared by the co-precipitation method have better catalytic activity compared to others. Chemical oxygen demand (COD) conversion increased with the increase in temperature from 160 to 220 °C and decreased with the increase in pH. Moreover, the effect of the oxygen partial pressure on the COD conversion was significant only during the first 20 min of the reaction. Furthermore, the biodegradability of the wastewater improved greatly after CWAO, the ratio of BOD5/COD increased less than 0.1-0.75 when treated at 220 °C (BOD: biochemical oxygen demand).

  12. Wet peroxide oxidation and catalytic wet oxidation of stripped sour water produced during oil shale refining.

    Science.gov (United States)

    Prasad, Jaidev; Tardio, James; Jani, Harit; Bhargava, Suresh K; Akolekar, Deepak B; Grocott, Stephen C

    2007-07-31

    Catalytic wet oxidation (CWO) and wet peroxide oxidation (WPO) of stripped sour water (SSW) from an oil shale refinery was investigated. Greater than 70% total organic carbon (TOC) removal from SSW was achieved using Cu(NO(3))(2) catalysed WO under the following conditions using a glass lined reaction vessel: 200 degrees C, pO(2)=0.5MPa, 3h, [Cu(NO(3))(2)]=67mmol/L. Significant TOC removal ( approximately 31%) also occurred in the system without added oxygen. It is proposed that this is predominantly due to copper catalysed oxidative decarboxylation of organics in SSW based on observed changes in copper oxidation state. Greater than 80% TOC removal was achieved using WPO under the following conditions: 150 degrees C, t=1.5h, [H(2)O(2)]=64g/L. Significantly more TOC could be removed from SSW by adding H(2)O(2) in small doses as opposed to adding the same total amount in one single dose. It was concluded that WPO was a far more effective process for removing odorous compounds from SSW.

  13. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Quesada-Penate, I. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Julcour-Lebigue, C., E-mail: carine.julcour@ensiacet.fr [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Jauregui-Haza, U.J. [Instituto Superior de Tecnologias y Ciencias Aplicadas, Ave. Salvador Allende y Luaces, Habana (Cuba); Wilhelm, A.M.; Delmas, H. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France)

    2012-06-30

    Highlights: Black-Right-Pointing-Pointer Three activated carbons (AC) compared as adsorbents and oxidation catalysts. Black-Right-Pointing-Pointer Similar evolution for catalytic and adsorptive properties of AC over reuses. Black-Right-Pointing-Pointer Acidic and mesoporous AC to be preferred, despite lower initial efficiency. Black-Right-Pointing-Pointer Oxidative degradation of paracetamol improves biodegradability. Black-Right-Pointing-Pointer Convenient hybrid adsorption-regenerative oxidation process for continuous treatment. - Abstract: The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  14. Catalytic wet air oxidation for the treatment of emulsifying wastewater

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jian-fu; CHEN Ling; LU Yi-cheng; TANG Wen-wei

    2005-01-01

    The wet air oxidation (WAO) and catalytic WAO (CWAO) of the high strength emulsifying wastewater containing nonionic surfactants have been investigated in terms of COD and TOC removal. The WAO and homogeneous CWAO processes were carried out at the temperature from 433 K to 513 K, with initial oxygen pressure 1.2 MPa. It was found that homogeneous catalyst copper(Cu ( NO3 )2 )had an fairly good catalytic activity for the WAO process, and the oxidation was catalyzed when the temperature was higher than 473 K.Moreover, several heterogeneous catalysts were proved to be effective for the WAO process. At the temperature 473 K, after 2 h reaction,WAO process could achieve about 75% COD removal and 66% TOC removal, while catalysts Cu/Al2O3 and Mn-Ce/Al2O3 elevated the COD removal up to 86%-89% and that of TOC up to 82%. However, complete elimination of COD and TOC was proved to be difficult even the best non-noble catalyst was used. Therefore, the effluent from WAO or CWAO process need to be further disposed. The bioassay proved that the effluent from WAO process was amenable to the biochemical method.

  15. Copper on activated carbon for catalytic wet air oxidation

    Directory of Open Access Journals (Sweden)

    Nora Dolores Martínez

    2009-03-01

    Full Text Available Textile industry is an important source of water contamination. Some of the organic contaminants cannot be eliminated by nature in a reasonable period. Heterogeneous catalytic wet air oxidation is one of the most effective methods to purify wastewater with organic contaminants. In this work, catalysts based on copper supported on activated carbon were synthesized. The activated carbons were obtained from industrial wastes (apricot core and grape stalk of San Juan, Argentina. These were impregnated with a copper salt and thermically treated in an inert atmosphere. Analysis of specific surface, pore volume, p zc, acidity, basicity and XRD patterns were made in order to characterize the catalysts. The catalytic activity was tested in the oxidation of methylene blue (MB and polyvinyl alcohol (PVA in aqueous phase with pure oxygen. Reaction tests were carried out in a Parr batch reactor at different temperatures, with a 0.2 MPa partial pressure of oxygen. The amount of unconverted organics was measured by spectrophotometry. Higher temperatures were necessary for the degradation of PVA compared to those for methylene blue.

  16. Homogeneous catalytic wet air oxidation for the treatment oftextile wastewaters

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An extensive series of experiments was carried out in order to identify suitable catalysts to boost the reaction rate of wet air oxidation of real textile wastewaters at relatively mild temperature and pressure. Experimental results indicated that all catalysts tested in this investigation had shown an impressive increase in the initial COD and TOC removal rate as well as the COD and TOC removal levels in two hours reaction. Among all the catalysts tested, copper salts were more effective than the rest. Anions of the salt soluffonsalso played a role in the catalytic process with nitrate ions having better effect than sulfate ions. Hence copper nitrates were more effective than copper sulfates. It was also found that a mixture of salts with different metals performed better than either of the component single salt alone.

  17. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons.

    Science.gov (United States)

    Quesada-Peñate, I; Julcour-Lebigue, C; Jáuregui-Haza, U J; Wilhelm, A M; Delmas, H

    2012-06-30

    The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  18. Catalytic wet air oxidation of chlorophenols over supported ruthenium catalysts.

    Science.gov (United States)

    Li, Ning; Descorme, Claude; Besson, Michèle

    2007-07-31

    A series of noble metal (Pt, Pd, Ru) loaded zirconia catalysts were evaluated in the catalytic wet air oxidation (CWAO) of mono-chlorophenols (2-CP, 3-CP, 4-CP) under relatively mild reaction conditions. Among the investigated noble metals, Ru appeared to be the best to promote the CWAO of CPs as far as incipient-wetness impregnation was used to prepare all the catalysts. The position of the chlorine substitution on the aromatic ring was also shown to have a significant effect on the CP reactivity in the CWAO over 3wt.% Ru/ZrO(2). 2-CP was relatively easier to degradate compared to 3-CP and 4-CP. One reason could be the higher adsorption of 2-CP on the catalyst surface. Further investigations suggested that 3wt.% Ru/ZrO(2) is a very efficient catalyst in the CWAO of 2-CP as far as high 2-CP conversion and TOC abatement could still be reached at even lower temperature (393K) and lower total pressure (3MPa). Additionally, the conversion of 2-CP was demonstrated to increase with the initial pH of the 2-CP solution. The dechlorination reaction is promoted at higher pH. In all cases, the adsorption of the reactants and the reaction intermediates was shown to play a major role. All parameters that would control the molecule speciation in solution or the catalyst surface properties would have a key effect.

  19. [Degradation of beta-naphthol by catalytic wet air oxidation].

    Science.gov (United States)

    Liu, Jie; Yu, Chao-Ying; Zhao, Pei-Qing; Chen, Ge-Xin

    2012-11-01

    A series of MnO(x)/nano-TiO2 catalysts were prepared and their application in degradation of beta-naphthol by catalytic wet air oxidation (CWAO) was investigated. The catalysts preparation conditions, reaction conditions and its stability were tested. The catalysts had been characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR) measurements. The results showed that the decrease of the COD removal for the degradation of beta-naphthol at high Mn loading was due to the aggregation of the highly dispersed Mn species and the formation of the correlated crystals. The decline of the COD removal at high calcination temperature was probably attributed to the weak electron transfer between Mn2O3 and MnO2 and the formation of the inactive Mn2O3. The COD removal had been falling slightly when the catalyst was used 6 times, and this was likely related to the decrease of the diffraction peaks. The catalyst had a high activity when the Mn loading (mass fraction) was 4% and the calcination temperature was 450 degrees C. The COD removal was up to 96.4% at 110 degrees C and 0.5 MPa with this catalyst. The COD removal of 92.4% could be obtained with the MnO(x)/nano-TiO2 catalyst was recycled 6 times. The Mn leaching at 50, 80, 110 and 150 degrees C were all less than 9.3 mg x L(-1) by means of Atomic Absorption Spectroscopy (AAS). The probable degradation pathway was proposed according to some publications.

  20. The applicability of the catalytic wet-oxidation to CELSS

    Science.gov (United States)

    Takahashi, Y.; Nitta, K.; Ohya, H.; Oguchi, M.

    1987-01-01

    The wet oxidation catalysis of Au, Pd, Pt, Rh or Ru on a ceramic honeycomb carrier was traced in detail by 16 to 20 repetitive batch tests each. As a result, Pt or Pd on a honeycomb carrier was shown to catalyze complete nitrogen gasification as N2. Though the catalysts which realize both complete nitrogen gasification and complete oxidation could not be found, the Ru+Rh catalyst was found to be most promising. Ru honeycomb catalyzed both nitrification and nitrogen gasification.

  1. Catalytic and non-catalytic wet air oxidation of sodium dodecylbenzene sulfonate: kinetics and biodegradability enhancement.

    Science.gov (United States)

    Suárez-Ojeda, María Eugenia; Kim, Jungkwon; Carrera, Julián; Metcalfe, Ian S; Font, Josep

    2007-06-18

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were investigated as suitable precursors for the biological treatment of industrial wastewater containing sodium dodecylbenzene sulfonate (DBS). Two hours WAO semi-batch experiments were conducted at 15 bar of oxygen partial pressure (P(O2)) and at 180, 200 and 220 degrees C. It was found that the highest temperature provides appreciable total organic carbon (TOC) and chemical oxygen demand (COD) abatement of about 42 and 47%, correspondingly. Based on the main identified intermediates (acetic acid and sulfobenzoic acid) a reaction pathway for DBS and a kinetic model in WAO were proposed. In the case of CWAO experiments, seventy-two hours tests were done in a fixed bed reactor in continuous trickle flow regime, using a commercial activated carbon (AC) as catalyst. The temperature and P(O2) were 140-160 degrees C and 2-9 bar, respectively. The influence of the operating conditions on the DBS oxidation, the occurrence of oxidative coupling reactions over the AC, and the catalytic activity (in terms of substrate removal) were established. The results show that the AC without any supported active metal behaves bi-functional as adsorbent and catalyst, giving TOC conversions up to 52% at 160 degrees C and 2 bar of P(O2), which were comparable to those obtained in WAO experiments. Respirometric tests were completed before and after CWAO and to the main intermediates identified through the WAO and CWAO oxidation route. Then, the readily biodegradable COD (COD(RB)) of the CWAO and WAO effluents were found. Taking into account these results it was possible to compare whether or not the CWAO or WAO effluents were suitable for a conventional activated sludge plant inoculated with non adapted culture.

  2. CuO impregnated activated carbon for catalytic wet peroxide oxidation of phenol.

    Science.gov (United States)

    Liou, Rey-May; Chen, Shih-Hsiung

    2009-12-15

    This paper presents an original approach to the removal of phenol in synthetic wastewater by catalytic wet peroxide oxidation with copper binding activated carbon (CuAC) catalysts. The characteristics and oxidation performance of CuAC in the wet hydrogen peroxide catalytic oxidation of phenol were studied in a batch reactor at 80 degrees C. Complete conversion of the oxidant, hydrogen peroxide, was observed with CuAC catalyst in 20 min oxidation, and a highly efficient phenol removal and chemical oxygen demand (COD) abatement were achieved in the first 30 min. The good oxidation performance of CuAC catalyst was contributed to the activity enhancement of copper oxide, which was binding in the carbon matrix. It can be concluded that the efficiency of oxidation dominated by the residual H2O2 in this study. An over 90% COD removal was achieved by using the multiple-step addition in this catalytic oxidation.

  3. Wet air and catalytic wet air oxidation of several azodyes from wastewaters: the beneficial role of catalysis.

    Science.gov (United States)

    Rodríguez, A; García, J; Ovejero, G; Mestanza, M

    2009-01-01

    Degradation of several azo dyes, Acid Orange 7 (AO7), Acid Orange 74 (AO74), Direct Blue 71 (DB71), Reactive Black 5 (RB5) and Eriochrome Blue Black B (EBBB), well-known non-biodegradable mono, di and tri azo dyes has been studied using, wet-air oxidation (WAO) and catalytic wet air oxidation (CWAO). The efficiency of substrate decolorization and mineralization in each process has been comparatively discussed by evolution concentration, chemical oxygen demand, total organic carbon content and toxicity of dyes solutions. The most efficient method on decolorization and mineralization (TOC) was observed to be CWAO process. Mineralization efficiency with wet air and catalytic wet air oxidation essays was observed in the order of mono-azo > di-azo > tri-azo dye. Final solutions of CWAO applications after 180 min treatment can be disposed safely to environment.

  4. Pretreatment of apramycin wastewater by catalytic wet air oxidation

    Institute of Scientific and Technical Information of China (English)

    YANG Shao-xia; FENG Yu-jie; WAN Jia-feng; LIN Qing-ying; ZHU Wan-peng; JIANG Zhan-peng

    2005-01-01

    The pretreatment technology of wet air oxidation(WAO) and coagulation and acidic hydrolysis for apramycin wastewater was investigated in this paper. The COD, apramycin, NH4+ concentration, and the ratio of BOD5/COD were analyzed, and the color and odor of the effluent were observed. WAO of apramycin wastewater, without catalyst and with RuO2/Al2 O3 and RuO2-CeO2/Al2 O3 catalysts, was carried out at degradation temperature of 200℃ and the total pressure of 4 MPa in a 1 L batch reactor. The result showed that the apramycin removals were respectively 50.2% and 55.0%, COD removals were 40.0% and 46.0%, and the ratio of BOD5/COD was increased to 0.49 and 0.54 with RuO2/Al2 O3 and RuO2-CeO2/Al2 O3 catalysts in catylytic wet air oxidation(CWAO) after the reaction of 150 min. With the pretreatment of coagulation and acidic hydrolysis, COD and apramycin removals were slight decreased, and the ratio of BOD5/COD was increased to 0.45, and the effluents was not suitable to biological treatment. The color and odor of the wastewater were the apramycin wastewater. The addition of CeO2 could promote the activity and stability of RuO2/Al2 O3 in WAO of apramycin wastewater.

  5. Oxidation and mineralisation of substituted phenols by Fenton's reagent and catalytic wet oxidation.

    Science.gov (United States)

    Santos, A; Rodriguez, S; Garcia-Ochoa, F; Yustos, P

    2007-01-01

    Catalytic abatement of solutions of 1,000 mg/L in phenol, ortho and para nitrophenol and ortho and para cresols was acomplished by using two catalytic systems. Fenton's reagent was used at 50 degrees C by adding 10 mg/L of ferrous cation and different dosages of H2O2. The mixture was reacting isothermically in a batch way during 3 hours. Catalytic wet oxidation (CWO) was carried out by using a commercial Activated Carbon, Industrial React FE01606A, CWO runs were carried out in a fixed bed reactor (FBR) with concurrent upflow. Temperature and oxygen pressure of the reactor were set to 160 degrees C and 16 bar, respectively. While phenols are quicky oxidised by the Fenton reagent higher mineralisation was obtained in the CWO process.

  6. Kinetics study on catalytic wet air oxidation of phenol by several metal oxide catalysts

    Institute of Scientific and Technical Information of China (English)

    WAN Jia-feng; FENG Yu-jie; CAI Wei-min; YANG Shao-xia; SUN Xiao-jun

    2004-01-01

    Four metal oxide catalysts composed of copper (Cu), stannum (Sn), copper-stannum (Cu-Sn) and copper-cerium(Cu-Ce) respectively were prepared by the co-impregnation method, and γ-alumina(γ-Al2O3) is selected as support. A first-order kinetics model was established to study the catalytic wet air oxidation of phenol at different temperature when these catalysts were used. The model simulations are good agreement with present experimental data. Results showed that the reaction rate constants can be significantly increased when catalysts were used, and the catalyst of 6% Cu-10%Ce/γ-Al2O3 showed the best catalytic activity. This is consistent with the result of catalytic wet air oxidation of phenol and the COD removal can be arrived at 98.2% at temperature 210℃, oxygen partial pressure 3 MPa and reaction time 30 min. The activation energies of each reaction with different catalysts are nearly equal, which is found to be about 42 kJ/mol and the reaction in this study is proved to be kinetics control.

  7. Magnetic carbon xerogels for the catalytic wet peroxide oxidation of 4-nitrophenol solutions

    OpenAIRE

    Ribeiro, R.; Silva, Adrián; Faria, Joaquim; Gomes, Helder

    2015-01-01

    Catalytic wet peroxide oxidation (CWPO) is a well-known advanced oxidation process for the removal of organic pollutants from industrial process waters and wastewater. Specifically, CWPO employs hydrogen peroxide (H2O2) as oxidation source and a suitable catalyst to promote its decomposition via formation of hydroxyl radicals (HO•), which exhibit high oxidizing potential and serve as effective species in the destruction of a huge range of organic pollutants

  8. Catalytic wet air oxidation with Ni- and Fe-doped mixed oxides derived from hydrotalcites.

    Science.gov (United States)

    Ovejero, G; Rodríguez, A; Vallet, A; Gómez, P; García, J

    2011-01-01

    Catalytic wet air oxidation of Basic Yellow 11 (BY11), a basic dye, was studied in a batch reactor. Layered double hydroxides with the hydrotalcite-like structure containing nickel or iron cations have been prepared by coprecipitation and subsequently calcined leading to Ni- and Fe-doped mixed oxides, respectively. Compared with the results in the wet air oxidation of BY11, these catalysts showed high activity for total organic carbon (TOC), toxicity and dye removal at 120 degrees C and 50 bars after 120 min. It has been demonstrated that the activity depended strongly on the presence of catalyst. The results show that catalysts containing nickel provide a higher extent of oxidation of the dye whereas the reaction carried out with the iron catalyst is faster. The Ni and Fe dispersion determined from the TPR results was higher for the catalysts with a lower Ni or Fe content and decreased for higher Ni or Fe contents. On the basis of activity and selectivity, the Ni containing catalyst with the medium (3%) Ni content was found to be the best catalyst. Finally, a relationship between metal content of the catalyst and reaction rate has been established.

  9. Preparation of rare-earth metal complex oxide catalysts for catalytic wet air oxidation

    Institute of Scientific and Technical Information of China (English)

    LI Ning; LI Guangming; YAO Zhenya; ZHAO Jianfu

    2007-01-01

    Catalytic wet air oxidation(CWAO)is one of the most promising technologies for pollution abatement.Developing catalysts with high activity and stability is crucial for the application of the CWAO process.The Mn/Ce complex oxide catalyrsts for CWAO of high concentration phenol containing wastewater were prepared by coprecipitation.The catalyst preparation conditions were optimized by using an orthogonal layout method and single-factor experimental analysis.The Mn/Ce serial catalysts were characterized by Brunauer-Emmett-Teller(BET)analysis and the metal cation leaching was measured by inductively coupled plasma torch-atomic emission spectrometry(ICP-AES).The results show that the catalysts have high catalytic activities even at a low temperature(80℃)and low oxygen partial pressure(0.5 MPa)in a batch reactor.The metallic ion leaching is comparatively low(Mn<6.577 mg/L and Ce<0.6910 mg/L,respectively)in the CWAO process.The phenol,CODCD and TOC removal efficiencies in the solution exceed 98.5% using the optimal catalyst(named CSP).The new catalyst would have a promising application in CWAO treatment of high concentration organic wastewater.

  10. Catalytic wet-oxidation of a mixed liquid waste: COD and AOX abatement.

    Science.gov (United States)

    Goi, D; de Leitenburg, C; Trovarelli, A; Dolcetti, G

    2004-12-01

    A series of catalytic wet oxidation (CWO) reactions, at temperatures of 430-500 K and in a batch bench-top pressure vessel were carried out utilizing a strong wastewater composed of landfill leachate and heavily organic halogen polluted industrial wastewater. A CeO2-SiO2 mixed oxide catalyst with large surface area to assure optimal oxidation performance was prepared. The catalytic process was examined during batch reactions controlling Chemical Oxygen Demand (COD) and Adsorbable Organic Halogen (AOX) parameters, resulting AOX abatement to achieve better effect. Color and pH were also controlled during batch tests. A simple first order-two stage reaction behavior was supposed and verified with the considered parameters. Finally an OUR test was carried out to evaluate biodegradability changes of wastewater as a result of the catalytic reaction.

  11. Ultrasound assisted catalytic wet peroxide oxidation of phenol: kinetics and intraparticle diffusion effects.

    Science.gov (United States)

    Nikolopoulos, Apostolos N; Igglessi-Markopoulou, Olga; Papayannakos, Nikolaos

    2006-01-01

    The combination of ultrasound irradiation and catalytic wet peroxide oxidation was used as a means to degrade phenol. Direct and indirect irradiation were employed, while experiments in the absence of ultrasound were used as reference. A mixed (Al-Fe) pillared clay named FAZA, was used as a catalyst in the form of powder, extrudates and crushed extrudates. Ultrasound was found to clearly enhance the extrudates performance, increasing the conversion at 4h by more than 6 times under direct and almost 11 times under indirect irradiation. This observation is attributed to the reduction of diffusion resistance within the catalyst pores. The overall sonication-catalytic wet peroxide oxidation process appears very promising for environmental purposes.

  12. Glycerol-based carbon materials for the catalytic wet peroxide oxidation process

    OpenAIRE

    Ribeiro, Rui S.; Silva, Adrián; Pinho, Maria; Figueiredo,José; Faria, Joaquim; Gomes, Helder

    2013-01-01

    It is known that metal-free carbon materials can act as catalysts for the catalytic wet peroxide oxidation (CWPO) process to treat organic pollutants in aqueous solutions [I]. On the other hand, crude glycerol, such as resulting from biodiesel production, is being offered as an abundant and low cost feedstock [2]. In the present work, glycerol-based carbon materials (OBCMs) with distinct properties were produced and tested as catalysts for CWPO, using 2-nitrophenol (2-NP) as a ...

  13. The degradation of Isophorone by catalytic wet air oxidation on Ru/TiZrO4.

    Science.gov (United States)

    Wei, Huangzhao; Yan, Xiaomiao; Li, Xianru; He, Songbo; Sun, Chenglin

    2013-01-15

    The catalyst Ru/TiZrO(4) was applied in the degradation of Isophorone by catalytic wet air oxidation. Mathematical models for the effects of reaction conditions on the Isophorone degradation by catalytic wet air oxidation were developed using a response surface methodology. A model was obtained for each response with multiple regression analysis and then was refined. Analysis of variance revealed that the models developed were adequate. The validity of the models was also verified by experimental data. Analysis of response surface showed that total organic carbon removal and Isophorone conversion were significantly affected (P≤0.01) by reaction time, temperature and their interactions, and affected (P≤0.05) by the square of reaction time. The point of zero charge of Ru/TiZrO(4) catalyst was about 1.72. The total organic carbon removal and Isophorone conversion had a great association with the zeta potential of Ru/TiZrO(4) catalyst. Finally, the degradation pathway of Isophorone in catalytic wet air oxidation was proposed. Within 410 h, the total organic carbon removal remained above 95%, indicating that the Ru/TiZrO(4) catalyst had a good stability.

  14. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review.

    Science.gov (United States)

    Kim, Kyoung-Hun; Ihm, Son-Ki

    2011-02-15

    Catalytic wet air oxidation (CWAO) is one of the most economical and environmental-friendly advanced oxidation process. It makes a promising technology for the treatment of refractory organic pollutants in industrial wastewaters. Various heterogeneous catalysts including noble metals and metal oxides have been extensively studied to enhance the efficiency of CWAO. The present review is concerned about the literatures published in this regard. Phenolics, carboxylic acids, and nitrogen-containing compounds were taken as model pollutants in most cases, and noble metals such as Ru, Rh, Pd, Ir, and Pt as well as oxides of Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, and Ce were applied as heterogeneous catalysts. Reports on their characterization and catalytic performances for the CWAO of aqueous pollutants are reviewed. Discussions are also made on the reaction mechanisms and kinetics proposed for heterogeneous CWAO and also on the typical catalyst deactivations in heterogeneous CWAO, i.e. carbonaceous deposits and metal leaching.

  15. Catalytic wet air oxidation of aniline with nanocasted Mn-Ce-oxide catalyst.

    Science.gov (United States)

    Levi, R; Milman, M; Landau, M V; Brenner, A; Herskowitz, M

    2008-07-15

    The catalytic wet air oxidation of aqueous solution containing 1000 ppm aniline was conducted in a trickle-bed reactor packed with a novel nanocasted Mn-Ce-oxide catalyst (surface area of 300 m2/g) prepared using SBA-15 silica as a hard template. A range of liquid hourly space velocities (5-20 h(-1)) and temperatures (110-140 degrees C) at 10 bar of oxygen were tested. The experiments were conducted to provide the intrinsic performance of the catalysts. Complete aniline conversion, 90% TOC conversion, and 80% nitrogen mineralization were achieved at 140 degrees C and 5 h(-1). Blank experiments yielded relatively low homogeneous aniline (<35%) and negligible TOC conversions. Fast deactivation of the catalysts was experienced due to leaching caused by complexation with aniline. Acidification of the solution with HCI (molar HCI to aniline ratio of 1.2) was necessary to avoid colloidization and leaching of the nanoparticulate catalyst components. The catalyst displayed stable performance for over 200 h on stream.

  16. Catalytic wet oxidation of thiocyanate with homogeneous copper(II) sulphate catalyst.

    Science.gov (United States)

    Collado, Sergio; Laca, Adriana; Díaz, Mario

    2010-05-15

    The wet oxidation of thiocyanate has been investigated in a semi-batch reactor at temperatures between 423 and 473 K and pressures between 6.1 x 10(3) and 1.0 x 10(4)kPa in the presence of copper(II) sulphate as catalyst. The effects of copper concentration, initial thiocyanate concentration, pressure and temperature on the reaction rate were analyzed and the main products of reaction were identified. A kinetic model for the Cu-catalyzed reaction is here proposed, including temperature, oxygen concentration, and the reduction of Cu(2+) to Cu(+) that gives an accurate prediction of the oxidation process under the assayed conditions. A mechanistic model based on the formation of a transition complex between a copper cation and two thiocyanate anions has been proposed for the catalytic wet oxidation.

  17. Catalytic wet oxidation of thiocyanate with homogeneous copper(II) sulphate catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Sergio; Laca, Adriana [Department of Chemical Engineering and Environmental Technology, University of Oviedo, c/ Julian Claveria s/n, E-33071, Oviedo (Spain); Diaz, Mario, E-mail: mariodiaz@uniovi.es [Department of Chemical Engineering and Environmental Technology, University of Oviedo, c/ Julian Claveria s/n, E-33071, Oviedo (Spain)

    2010-05-15

    The wet oxidation of thiocyanate has been investigated in a semi-batch reactor at temperatures between 423 and 473 K and pressures between 6.1 x 10{sup 3} and 1.0 x 10{sup 4} kPa in the presence of copper(II) sulphate as catalyst. The effects of copper concentration, initial thiocyanate concentration, pressure and temperature on the reaction rate were analyzed and the main products of reaction were identified. A kinetic model for the Cu-catalyzed reaction is here proposed, including temperature, oxygen concentration, and the reduction of Cu{sup 2+} to Cu{sup +} that gives an accurate prediction of the oxidation process under the assayed conditions. A mechanistic model based on the formation of a transition complex between a copper cation and two thiocyanate anions has been proposed for the catalytic wet oxidation.

  18. Application of Catalytic Wet Air Oxidation to Treatment of Landfill Leachate on Co/Bi Catalyst

    Institute of Scientific and Technical Information of China (English)

    LI Hai-sheng; LIU Liang; ZHANG Rong; DONG De-ming; LIU Hong-liang; LI Yu

    2004-01-01

    Catalytic wet air oxidation(CWAO) was employed to reduce the organic compounds in landfill leachate and the effects of temperature, oxygen pressure, catalyst dosage, and concentration of the organic compounds on the TOC and CODCr removal rates were studied. The degradation kinetics of landfill leachate was also investigated and an exponential experiential model consisting of four influential factors was established to describe the reduction of the organic compounds in the landfill leachate. Meanwhile, the GC-MS technique was used to detect the components of the organic intermediates for the inference of the decomposition mechanisms of the organic compounds in landfill leachate. The results reveal that the reaction temperature and the catalyst dosage are the most important factors affecting the degradation reaction of the organic compounds and that the principal intermediates confirmed by GC-MS are organic acids at a percentage of more than 88% with no aldehydes or alcohols detected. The decomposition mechanisms of the organic compounds in landfill leachate were inferred based on the GC-MS information as follows: the activated gas phase O2 captured the hydrogen of the organic pollutants to produce free radicals, which then initiated the catalytic reaction. So most of the organic compounds were oxidized into CO2 and H2O ultimately. In general, catalytic wet air oxidation over catalyst Co3O4/Bi2O3 was a very promising technique for the treatment of landfill leachate.

  19. Catalytic wet oxidation of o-chlorophenol at mild temperatures under alkaline conditions.

    Science.gov (United States)

    Kojima, Yoshihiro; Fukuta, Tadashi; Yamada, Takehisa; Onyango, Maurice S; Bernardo, Eileen C; Matsuda, Hitoki; Yagishita, Kohichi

    2005-01-01

    Wet oxidation of a 100 ppm aqueous solution of o-chlorophenol (o-CP) was performed in a lab-scale batch reactor using 3% Ru/TiO(2) catalyst at 373 and 413 K, and a partial oxygen pressure of 0.1 MPa. The experiments were conducted by varying the initial pH values of o-CP solution from pH 6.3 to 9.8 and 11.8. From the results, it was revealed that the catalytic decomposition of o-CP occurred most effectively at 413 K and at the initial pH of 9.8. Complete decomposition and dechlorination of o-CP were almost achieved within 1h, and about 85% of TOC was removed in 3.0 h. On the other hand, the catalytic wet oxidation of o-CP at a higher pH value of 11.8 was not effective in the removal of TOC. The incomplete removal of TOC at the initial pH of 11.8 is likely attributed to a low pK(a) of carboxylic acids formed during the wet oxidation of o-CP.

  20. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Yuting [Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), CNRS – Université Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France); School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Xiong, Ya; Tian, Shuanghong [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275 (China); Kong, Lingjun [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Descorme, Claude, E-mail: claude.descorme@ircelyon.univ-lyon1.fr [Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), CNRS – Université Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France)

    2014-07-15

    Highlights: • A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared. • FeSC exhibited high catalytic activity in the wet air oxidation of 2-chlorophenol. • A strong correlation was observed between the 2-CP conversion, the iron leaching and the pH. • Using an acetate buffer, the iron leaching was suppressed while keeping some catalytic activity. • A simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst. - Abstract: A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared and used in the Catalytic Wet Air Oxidation (CWAO) of 2-chlorophenol (2-CP). The catalysts were characterized in terms of elemental composition, surface area, pH{sub PZC}, XRD and SEM. The performances of the FeSC catalyst in the CWAO of 2-CP was assessed in a batch reactor operated at 120 °C under 0.9 MPa oxygen partial pressure. Complete decomposition of 2-CP was achieved within 5 h and 90% Total Organic Carbon (TOC) was removed after 24 h of reaction. Quite a straight correlation was observed between the 2-CP conversion, the amount of iron leached in solution and the pH of the reaction mixture at a given reaction time, indicating a strong predominance of the homogeneous catalysis contribution. The iron leaching could be efficiently prevented when the pH of the solution was maintained at values higher than 4.5, while the catalytic activity was only slightly reduced. Upon four successive batch CWAO experiments, using the same FeSC catalyst recovered by filtration after pH adjustment, only a very minor catalyst deactivation was observed. Finally, based on all the identified intermediates, a simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst.

  1. Catalytic wet peroxide oxidation of p-nitrophenol by Fe (III) supported on resin.

    Science.gov (United States)

    Liou, Rey-May; Chen, Shih-Hsiung; Huang, Cheng-Hsien; Lai, Cheng-Lee; Shih, C Y; Chang, Jing-Song; Hung, Mu-Ya

    2010-01-01

    Fe(III) supported on resin (Fe(III)-resin) as an effective catalyst for peroxide oxidation was prepared and applied for the degradation of p-nitrophenol (PNP). Catalytic wet peroxide oxidation (CWPO) experiments with hydrogen peroxide as oxidant were performed in a batch rector with p-nitrophenol as the model pollutant. Under given conditions (PNP concentration 500 mg/L, H(2)O(2) 0.1 M, 80°C, resin dosage 0.6% g/mL), p-nitrophenol was almost completely removed, corresponding to an 84% of COD removal. It was found that the reaction temperature, oxidant concentration. and initial pH of solution significantly affected both p-nitrophenol conversion and COD removal by oxidation. It can be inferred from the experiments that Fe(III) supported on resin was an effective catalyst in the mineralization of p-nitrophenol. In an acidic environment of oxidation, the leaching test showed that there was only a slight leaching effect on the activity of catalytic oxidation. It was also confirmed by the aging test of catalysts in the oxidation.

  2. Catalytic wet air oxidation of phenol with functionalized carbon materials as catalysts: reaction mechanism and pathway.

    Science.gov (United States)

    Wang, Jianbing; Fu, Wantao; He, Xuwen; Yang, Shaoxia; Zhu, Wanpeng

    2014-08-01

    The development of highly active carbon material catalysts in catalytic wet air oxidation (CWAO) has attracted a great deal of attention. In this study different carbon material catalysts (multi-walled carbon nanotubes, carbon fibers and graphite) were developed to enhance the CWAO of phenol in aqueous solution. The functionalized carbon materials exhibited excellent catalytic activity in the CWAO of phenol. After 60 min reaction, the removal of phenol was nearly 100% over the functionalized multi-walled carbon, while it was only 14% over the purified multi-walled carbon under the same reaction conditions. Carboxylic acid groups introduced on the surface of the functionalized carbon materials play an important role in the catalytic activity in CWAO. They can promote the production of free radicals, which act as strong oxidants in CWAO. Based on the analysis of the intermediates produced in the CWAO reactions, a new reaction pathway for the CWAO of phenol was proposed in this study. There are some differences between the proposed reaction pathway and that reported in the literature. First, maleic acid is transformed directly into malonic acid. Second, acetic acid is oxidized into an unknown intermediate, which is then oxidized into CO2 and H2O. Finally, formic acid and oxalic acid can mutually interconvert when conditions are favorable.

  3. Conversion of the refractory ammonia and acetic acid in catalytic wet air oxidation of animal byproducts.

    Science.gov (United States)

    Fontanier, Virginie; Zalouk, Sofiane; Barbati, Stéphane

    2011-01-01

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) of slaughtered animal byproducts (ABPs) were investigated. Two step experiment was carried out consisting of a non-catalysed WAO run followed by a CWAO run at 170-275 degrees C, 20 MPa, and reaction time 180 min. The WAO (1st step) of sample (5 g/L total organic carbon (TOC)) yielded (82.0 +/- 4)% TOC removal and (78.4 +/- 13.2)% conversion of the initial organic-N into NH4(+)-N. Four metal catalysts (Pd, Pt, Rh, Ru) supported over alumina have been tested in catalytic WAO (2nd step) at elevated pH to enhance ammonia conversion and organic matter removal, particularly acetic acid. It was found that the catalysts Ru, Pt, and Rh had significant effects on the TOC removal (95.1%, 99.5% and 96.7%, respectively) and on the abatement of ammonia (93.4%, 96.7% and 96.3%, respectively) with high nitrogen selectivity. The catalyst Pd was found to have the less activity while Pt had the best performance. The X-Ray diffraction analysis showed that the support of catalyst was not stable under the experimental conditions since it reacted with phosphate present in solution. Nitrite and nitrate ions were monitored during the oxidation reaction and it was concluded that CWAO of ammonia in real waste treatment framework was in good agreement with the results obtained from the literature for ideal solutions of ammonia.

  4. Comparative kinetic analysis of silent and ultrasound-assisted catalytic wet peroxide oxidation of phenol.

    Science.gov (United States)

    Rokhina, Ekaterina V; Repo, Eveliina; Virkutyte, Jurate

    2010-03-01

    The kinetic study of silent and ultrasound-assisted catalytic wet peroxide oxidation of phenol in water was performed to qualitatively assess the effect of ultrasound on the process kinetics. Various kinetic parameters such as the apparent kinetic rate constants, the surface utilization coefficient and activation energy of phenol oxidation over RuI(3) catalyst were investigated. Comparative analysis revealed that the use of ultrasound irradiation reduced the energy barrier of the reaction but had no impact on the reaction pathway. The activation energy for the oxidation of phenol over RuI(3) catalyst in the presence of ultrasound was found to be 13kJmol(-1), which was four times smaller in comparison to the silent oxidation process (57kJmol(-1)). Finally, 'figures-of-merit' was utilized to assess different experimental strategies such as sonolysis alone, H(2)O(2)-enhanced sonolysis and sono-catalytic oxidation of phenol in order to estimate the electric energy consumption based on the kinetic rate constants of the oxidation process.

  5. Catalytic wet peroxide oxidation of phenol solutions over CuO/CeO2 systems.

    Science.gov (United States)

    Massa, Paola; Ivorra, Fernando; Haure, Patricia; Fenoglio, Rosa

    2011-06-15

    Three 5% CuO/CeO(2) catalysts were synthesized by sol-gel, precipitation and combustion methods, followed by incipient wetness impregnation with copper nitrate. The samples were characterized by XRD, TPR, BET and tested for the catalytic wet peroxide oxidation of a phenol solution (5 g/L). The reaction took place in a batch reactor at atmospheric pressure, in a temperature range of 60-80°C, during 4h. Phenol conversion, H(2)O(2) consumption, pH and chemical oxygen demand were determined. The reaction temperature and the catalyst loading did improve the phenol and the H(2)O(2) conversions. The effect on the selectivity towards complete mineralization was less marked, with levels among 60-70%. Stepwise addition of H(2)O(2) was also tested.

  6. Catalytic wet peroxide oxidation of phenol solutions over CuO/CeO{sub 2} systems

    Energy Technology Data Exchange (ETDEWEB)

    Massa, Paola, E-mail: pamassa@fi.mdp.edu.ar [Division Catalizadores y Superficies, INTEMA, Universidad Nacional de Mar del Plata/CONICET, Juan B. Justo 4302, 7600 Mar del Plata, Buenos Aires (Argentina); Ivorra, Fernando; Haure, Patricia; Fenoglio, Rosa [Division Catalizadores y Superficies, INTEMA, Universidad Nacional de Mar del Plata/CONICET, Juan B. Justo 4302, 7600 Mar del Plata, Buenos Aires (Argentina)

    2011-06-15

    Three 5% CuO/CeO{sub 2} catalysts were synthesized by sol-gel, precipitation and combustion methods, followed by incipient wetness impregnation with copper nitrate. The samples were characterized by XRD, TPR, BET and tested for the catalytic wet peroxide oxidation of a phenol solution (5 g/L). The reaction took place in a batch reactor at atmospheric pressure, in a temperature range of 60-80{sup Degree-Sign }C , during 4 h. Phenol conversion, H{sub 2}O{sub 2} consumption, pH and chemical oxygen demand were determined. The reaction temperature and the catalyst loading did improve the phenol and the H{sub 2}O{sub 2} conversions. The effect on the selectivity towards complete mineralization was less marked, with levels among 60-70%. Stepwise addition of H{sub 2}O{sub 2} was also tested.

  7. Catalytic wet oxidation of phenol: the role of promoter and ceramic support.

    Science.gov (United States)

    Hussain, S Tajammul; Jamil, Sadaf; Mazhar, Muhammad

    2009-04-14

    Complete mineralization of phenol has been achieved over a cerium-manganese catalyst, doped with potassium, supported on a modified zeolite with a high surface area, under very mild conditions (110 degrees C, P(O2) = 0.5 MPa). This newly developed supported catalyst restricts the formation of bulk polymeric species on the surface, thus increasing the lifetime of the catalyst. It demonstrates superior textural, structural and surface oxygen properties compared with the reference cerium-manganese oxide catalyst. The supported catalyst maintains not only the high surface area but also the nanoparticle size during the catalytic run, thereby providing the full availability of the surface for reacting molecules. The geometry of the catalyst is modified electronically by the addition of potassium, and the zeolite addition restricts the conversion of Ce, Mn and K to higher oxidation states, thereby maintaining the geometry of catalytic active sites. The performance measured with this novel catalyst indicates a major improvement in the efficient application of the catalytic wet oxidation process for complete purification ofa complex waste stream.

  8. Degradation of phenylamine by catalytic wet air oxidation using metal catalysts with modified supports.

    Science.gov (United States)

    Torrellas, Silvia A; Escudero, Gabriel O; Rodriguez, Araceli R; Rodriguez, Juan G

    2015-01-01

    The effect of acid treatments with HCl and HNO3 on the surface area and surface chemistry of three granular activated carbons was studied. These supports were characterized and the hydrochloric acid treatment leads to the best activated carbon support (AC2-C). The catalytic behavior of Pt, Ru and Fe (1 wt.%) supported on granular activated carbon treated with HCl was tested in the phenylamine continuous catalytic wet air oxidation in a three-phase, high-pressure catalytic reactor over a range of reaction temperatures 130-170ºC and total pressure of 1.0-3.0 MPa at LHSV = 0.4-1 h(-1), whereas the phenylamine concentration range and the catalyst loading were 5-16 mol.m(-3) and 0.5-1.5 g, respectively. Activity as well as conversion varied as a function of the metal, the catalyst preparation method and operation conditions. Higher activities were obtained with Pt incorporated on hydrochloric acid -treated activated carbon by the ion exchange method. In steady state, approximately 98% phenylamine conversion, 77% of TOC and 94% of COD removal, was recorded at 150ºC, 11 mol m(-3) of phenylamine concentration and 1.5 g of catalyst, and the selectivity to non-organic compounds was 78%. Several reaction intermediaries were detected. A Langmuir-Hinshelwood model gave an excellent fit of the kinetic data of phenylamine continuous catalytic wet air oxidation over the catalysts of this work.

  9. Enhanced wet hydrogen peroxide catalytic oxidation performances based on CuS nanocrystals/reduced graphene oxide composites

    Science.gov (United States)

    Qian, Jing; Wang, Kun; Guan, Qingmeng; Li, Henan; Xu, Hui; Liu, Qian; Liu, Wei; Qiu, Baijing

    2014-01-01

    CuS nanocrystals/reduced graphene oxide (CuS NCs/rGO) composites were prepared by a facile one-pot solvothermal reaction. In this solvothermal system, thioacetamide was found to perform the dual roles of sulphide source and reducing agent, resulting in the formation of CuS NCs and simultaneous reduction of graphene oxide (GO) sheets to rGO sheets. In addition, CuS NCs/rGO composites were further used as heterogeneous catalysts in the wet hydrogen peroxide catalytic oxidation process, with methylene blue as a model organic dye. The introduction of rGO to CuS NCs could effectively enhance the catalytic activity of CuS NCs, and the resultant CuS NCs/rGO composites with a starting GO amount of 5 wt% showed the highest catalytic activity. Furthermore, the CuS NCs/rGO composites showed high catalytic activity over a broad pH operation range from 3.0 to 11.0 under ambient conditions, and still retained 90% of the original catalytic activity after reuse in five cycles.

  10. Chloride ions promoted the catalytic wet peroxide oxidation of phenol over clay-based catalysts.

    Science.gov (United States)

    Zhou, Shiwei; Zhang, Changbo; Xu, Rui; Gu, Chuantao; Song, Zhengguo; Xu, Minggang

    2016-01-01

    Catalytic wet peroxide oxidation (CWPO) of phenol over clay-based catalysts in the presence and absence of NaCl was investigated. Changes in the H2O2, Cl(-), and dissolved metal ion concentration, as well as solution pH during phenol oxidation, were also studied. Additionally, the intermediates formed during phenol oxidation were detected by liquid chromatography-mass spectroscopy and the chemical bonding information of the catalyst surfaces was analyzed by X-ray photoelectron spectroscopy (XPS). The results showed that the presence of Cl(-) increased the oxidation rate of phenol to 155%, and this phenomenon was ubiquitous during the oxidation of phenolic compounds by H2O2 over clay-based catalysts. Cl(-)-assisted oxidation of phenol was evidenced by several analytical techniques such as mass spectroscopy (MS) and XPS, and it was hypothesized that the rate-limiting step was accelerated in the presence of Cl(-). Based on the results of this study, the CWPO technology appears to be promising for applications in actual saline phenolic wastewater treatment.

  11. Conversion of the refractory ammonia and acetic acid in catalytic wet air oxidation of animal byproducts

    Institute of Scientific and Technical Information of China (English)

    Virginie Fontanier; Sofiane Zalouk; Stéphane Barbati

    2011-01-01

    Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) of slaughtered animal byproducts (ABPs) were investigated.Two step experiment was carried out consisting ofa non-catalysed WAO run followed by a CWAO run at 170-275℃, 20 MPa, and reaction time 180 min.The WAO (1st step) of sample (5 g/L total organic carbon (TOC)) yielded (82.0 ± 4)% TOC removal and (78.4 ± 13.2)%conversion of the initial organic-N into NH4+-N.Four metal catalysts (Pd, Pt, Rh, Ru) supported over alumina have been tested in catalytic WAO (2nd step) at elevated pH to enhance ammonia conversion and organic matter removal, particularly acetic acid.It was found that the catalysts Ru, Pt, and Rh had significant effects on the TOC removal (95.1%, 99.5% and 96.7%, respectively) and on the abatement of ammonia (93.4%, 96.7% and 96.3%, respectively) with high nitrogen selectivity.The catalyst Pd was found to have the less activity while Pt had the best performance.The X-Ray diffraction analysis showed that the support of catalyst was not stable under the experimental conditions since it reacted with phosphate present in solution.Nitrite and nitrate ions were monitored during the oxidation reaction and it was concluded that CWAO of ammonia in real waste treatment framework was in good agreement with the results obtained from the literature for ideal solutions of ammonia.

  12. P-chlorophenol wastewater treatment by microwave-enhanced catalytic wet peroxide oxidation.

    Science.gov (United States)

    Zhao, Guohua; Lv, Baoying; Jin, Yan; Li, Dongming

    2010-02-01

    A microwave-enhanced catalytic wet peroxide oxidation (MW-CWPO) technology was investigated to treat a high concentration of p-chlorophenol wastewater under a mild condition. The MW-CWPO experiments were carried out in a microwave autoclave using copper(II) oxide (CuO)-loaded active carbon as a catalyst. The p-chlorophenol was directly ring-opened within 5 minutes at 343 K and 0.3 MPa and then mineralized to carbon dioxide and water. More than 90% of the total organic carbon was removed within 15 minutes. The reaction activation energy (Ea) of hydrogen peroxide (H2O2) decomposition was decreased from 47.7 to 43.1 kJ/mol under microwave irradiation. The H2O2 catalytic decomposition was fitted to a second-order reaction under microwave irradiation, while it followed a first-order reaction without microwave irradiation. The experimental results indicate that the MW-CWPO method has significant potential applications for a high concentration of p-chlorophenol wastewater.

  13. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts.

    Science.gov (United States)

    Tu, Yuting; Xiong, Ya; Tian, Shuanghong; Kong, Lingjun; Descorme, Claude

    2014-07-15

    A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared and used in the Catalytic Wet Air Oxidation (CWAO) of 2-chlorophenol (2-CP). The catalysts were characterized in terms of elemental composition, surface area, pHPZC, XRD and SEM. The performances of the FeSC catalyst in the CWAO of 2-CP was assessed in a batch reactor operated at 120°C under 0.9MPa oxygen partial pressure. Complete decomposition of 2-CP was achieved within 5h and 90% Total Organic Carbon (TOC) was removed after 24h of reaction. Quite a straight correlation was observed between the 2-CP conversion, the amount of iron leached in solution and the pH of the reaction mixture at a given reaction time, indicating a strong predominance of the homogeneous catalysis contribution. The iron leaching could be efficiently prevented when the pH of the solution was maintained at values higher than 4.5, while the catalytic activity was only slightly reduced. Upon four successive batch CWAO experiments, using the same FeSC catalyst recovered by filtration after pH adjustment, only a very minor catalyst deactivation was observed. Finally, based on all the identified intermediates, a simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst.

  14. Study on Catalytic Wet Oxidation of H2S into Sulfur on Fe/Cu Catalyst

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A wet catalytic oxidation at room temperature was investigated with solution containing ferric, ferrous and cupric ions for H2S removal. The experiments were carried out in a two step process,and the results obtained show that the removal efficiency of H2S can always reach 100% in a 300 mm scrubbing column with four sieve plates, and the regeneration of ferric ions in 200 mm bubble column can match the consumed ferric species in absorption. Removal of H2S, production of elemental sulfur and regeneration of ferric, cupric ions can all be accomplished at the same time. No raw material is consumed except O2 in flue gas or air, the process has no secondary pollution and no problem of catalyst degradation and congestion.

  15. Catalytic wet oxidation of ammonia solution: activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst.

    Science.gov (United States)

    Hung, Chang-Mao

    2009-04-15

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H(2)PtCl(6), Pd(NO(3))(3) and Rh(NO(3))(3). Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes.

  16. Heterogeneous catalytic wet peroxide oxidation systems for the treatment of an industrial pharmaceutical wastewater.

    Science.gov (United States)

    Melero, J A; Martínez, F; Botas, J A; Molina, R; Pariente, M I

    2009-09-01

    The aim of this work was to assess the treatment of wastewater coming from a pharmaceutical plant through a continuous heterogeneous catalytic wet peroxide oxidation (CWPO) process using an Fe(2)O(3)/SBA-15 nanocomposite catalyst. This catalyst was preliminary tested in a batch stirred tank reactor (STR), to elucidate the influence of significant parameters on the oxidation system, such as temperature, initial oxidant concentration and initial pH of the reaction medium. In that case, a temperature of 80 degrees C using an initial oxidant concentration corresponding to twice the theoretical stoichiometric amount for complete carbon depletion and initial pH of ca. 3 allow TOC degradation of around 50% after 200 min of contact time. Thereafter, the powder catalyst was extruded with bentonite to prepare pellets that could be used in a fixed bed reactor (FBR). Results in the up-flow FBR indicate that the catalyst shows high activity in terms of TOC mineralization (ca. 60% under steady-state conditions), with an excellent use of the oxidant and high stability of the supported iron species. The activity of the catalyst is kept constant, at least, for 55h of reaction. Furthermore, the BOD(5)/COD ratio is increased from 0.20 to 0.30, whereas the average oxidation stage (AOS) changed from 0.70 to 2.35. These two parameters show a high oxidation degree of organic compounds in the outlet effluent, which enhances its biodegradability, and favours the possibility of a subsequent coupling with a conventional biological treatment.

  17. Catalytic wet-air oxidation of a chemical plant wastewater over platinum-based catalysts.

    Science.gov (United States)

    Cybulski, Andrzej; Trawczyński, Janusz

    2006-01-01

    Catalytic wet-air oxidation (CWAO) of wastewater (chemical oxygen demand [COD] = 1800 mg O2/dm3) from a fine chemicals plant was investigated in a fixed-bed reactor at T = 393-473 K under total pressure of 5.0 or 8.0 MPa. Catalysts containing 0.3% wt. of platinum deposited on two supports, mixed silica-titania (SM1) and carbon black composites (CBC) were used. The CBC-supported catalyst appeared to be more active than the SM1-supported one. A slow decrease of activity of the platinum on SM1 (Pt-SM1) during the long-term operation is attributed to recrystallization of titania and leaching of a support component, while the Pt-CBC catalyst is deteriorated, owing to combustion of the support component. The power-law-kinetic equations were used to describe the rate of COD removal at CWAO over the catalysts. The kinetic parameters of COD reduction for the wastewater were determined and compared with the kinetic parameters describing phenol oxidation over the same catalysts. Rates of COD removal for the wastewater were found higher than those for phenol oxidation over the same catalysts and under identical operating conditions.

  18. Catalytic Wet Air Oxidation of Oxalic Acid using Platinum Catalysts in Bubble Column Reactor: A Review

    Directory of Open Access Journals (Sweden)

    A. K. Saroha

    2010-01-01

    Full Text Available Wastewater treatment and re-use of industrial process water are critical issue for the development of human activities andenvironment conservation. Catalytic wet air oxidation (CWAO is an attractive and useful technique for treatment of effluentswhere the concentrations of organic pollutants are too low, for the incineration and other pollution control techniquesto be economically feasible and when biological treatments are ineffective, e.g. in the case of toxic effluents. In CWAO,combustion takes place on a Pt/Al2O3 catalysts usually at temperatures several degrees below those required forthermal incineration. In CWAO process, the organic contaminants dissolved in water are either partially degraded by meansof an oxidizing agent into biodegradable intermediates or mineralized into innocuous inorganic compounds such as CO2,H2O and inorganic salts, which remain in the aqueous phase. In contrast to other thermal processes CWAO produces no NOx,SO2, HCl, dioxins, furans, fly ash, etc. This review paper presents the application of platinum catalysts in bubble columnreactor for CWAO of oxalic acid.

  19. [Copper leaching in catalytic wet oxidation of phenol with Cu-containing spinel].

    Science.gov (United States)

    Xu, Ai-hua; He, Song-bo; Yang, Min; Du, Hong-zhang; Sun, Cheng-lin

    2008-09-01

    The Cu0.10, Zn0.90 Al1.90 Fe0.10 O4 spinel type catalyst prepared by sol-gel method was tested for catalytic wet air oxidation of phenol. The performances of Cu0.10 Zn0.90 Al1.90 Fe0.10 O4 catalyst in TPR experiment, the influence of phenol as reducer, reaction temperature and phenol-to-catalyst mass ratio on copper leaching were checked respectively. According to the experimental results, it is suggested that the reduced active species can not be easily re-oxidized under low reaction temperature and high phenol-to-catalyst mass ratio are the main reasons for copper leaching. Under high enough reaction temperature and low phenol-to-catalyst mass ratio, the copper leaching reduces remarkably. At 190 degrees C in the presence of 100 mL aqueous solution of 4.29 g x L(-1) of phenol and 2.5 g catalyst, the copper leaching was only 0.96 mg x L(-1) after 2 h of reaction.

  20. Activity and leaching features of zinc-aluminum ferrites in catalytic wet oxidation of phenol.

    Science.gov (United States)

    Xu, Aihua; Yang, Min; Qiao, Ruiping; Du, Hongzhang; Sun, Chenglin

    2007-08-17

    A series of ZnFe(2-x)Al(x)O(4) spinel type catalysts prepared by sol-gel method have been characterized and tested for catalytic wet oxidation (CWO) of phenol with pure oxygen. The iron species existed in these materials as aggregated iron oxide clusters and Fe3+ species in octahedral sites. With a decrease in iron content the concentration of the first iron species decreased and the latter increased. Complete phenol conversions and high chemical oxygen demand (COD) removals were obtained for all catalysts during phenol degradation at mild reaction conditions (160 degrees C and 1.0 MPa of oxygen pressure). Increasing with the concentration of Fe3+ species in octahedral sites, induction period became significantly shortened. After phenol was completely degraded, the concomitant recycling of the leaching Fe3+ ions back to the catalyst surface was observed, and in this case it is possible to perform successful CWO reactions with some cycles. It is also suggested that during the reaction the Fe3+ cations coordinated in octahedral sites in the ZnFe(2-x)Al(x)O(4) catalysts are resistant to acid leaching, but the reduced Fe2+ cations become much more labile, leading to increased Fe leaching.

  1. A kinetic model of municipal sludge degradation during non-catalytic wet oxidation.

    Science.gov (United States)

    Prince-Pike, Arrian; Wilson, David I; Baroutian, Saeid; Andrews, John; Gapes, Daniel J

    2015-12-15

    Wet oxidation is a successful process for the treatment of municipal sludge. In addition, the resulting effluent from wet oxidation is a useful carbon source for subsequent biological nutrient removal processes in wastewater treatment. Owing to limitations with current kinetic models, this study produced a kinetic model which predicts the concentrations of key intermediate components during wet oxidation. The model was regressed from lab-scale experiments and then subsequently validated using data from a wet oxidation pilot plant. The model was shown to be accurate in predicting the concentrations of each component, and produced good results when applied to a plant 500 times larger in size. A statistical study was undertaken to investigate the validity of the regressed model parameters. Finally the usefulness of the model was demonstrated by suggesting optimum operating conditions such that volatile fatty acids were maximised.

  2. Supported noble metal catalysts in the catalytic wet air oxidation of industrial wastewaters and sewage sludges.

    Science.gov (United States)

    Besson, M; Descorme, C; Bernardi, M; Gallezot, P; di Gregorio, F; Grosjean, N; Minh, D Pham; Pintar, A

    2010-12-01

    This paper reviews some catalytic wet air oxidation (CWAO) investigations of industrial wastewaters over platinum and ruthenium catalysts supported on TiO2 and ZrO2 formulated to be active and resistant to leaching, with particular focus on the stability of the catalyst. Catalyst recycling experiments were performed in batch reactors and long-term stability tests were conducted in trickle-bed reactors. The catalyst did not leach upon treatment of Kraft bleaching plant and olive oil mill effluents, and could be either recycled or used for long periods of time in continuous reactors. Conversely, these catalysts were rapidly leached when used to treat effluents from the production of polymeric membranes containing N,N-dimethylformamide. The intermediate formation of amines, such as dimethylamine and methylamine with a high complexing capacity for the metal, was shown to be responsible for the metal leaching. These heterogeneous catalysts also deactivated upon CWAO of sewage sludges due to the adsorption of the solid organic matter. Pre-sonication of the sludge to disintegrate the flocs and improve solubility was inefficient.

  3. Catalytic wet oxidation of the pretreated synthetic pulp and paper mill effluent under moderate conditions.

    Science.gov (United States)

    Garg, Anurag; Mishra, I M; Chand, Shri

    2007-01-01

    In the present study, catalytic wet oxidation (CWO) was investigated for the destruction of organic pollutants in the thermally pretreated effluent from a pulp and paper mill under moderate temperature and pressure conditions. The thermal pretreatment studies were conducted at atmospheric pressure and 368K using copper sulfate as a catalyst. The thermal pretreatment reduced COD by about 61%. The filtrate of the thermal pretreatment step was used at pH 8.0 for CWO at 383-443K temperature and a total pressure of 0.85MPa for 4h. Catalysts used for the reaction include copper sulfate, 5% CuO/95% activated carbon, 60% CuO/40% MnO(2), and 60% CuO/40% CeO(2). Maximum COD reduction was found to be 89% during CWO step using 5% CuO/95% activated carbon with a catalyst loading of 8gl(-1) at 443K and 0.85MPa total pressure. Overall COD reduction for the pretreatment and the CWO was found to be 96%. Besides this, 60% CuO/40% CeO(2) catalyst also exhibited the similar activity as that of obtained with 5% CuO/95% activated carbon catalyst at 423K temperature and 0.85MPa total pressure. The pH of the solution during the experimental runs decreases initially due to the formation of carboxylic acid and then increases due to the decomposition of acids.

  4. Catalytic wet peroxide oxidation of azo dye (Congo red) using modified Y zeolite as catalyst.

    Science.gov (United States)

    Kondru, Arun Kumar; Kumar, Pradeep; Chand, Shri

    2009-07-15

    The present study explores the degradation of azo dye (Congo red) by catalytic wet peroxide oxidation using Fe exchanged commercial Y zeolite as a catalyst. The effects of various operating parameters like temperature, initial pH, hydrogen peroxide concentration and catalyst loading on the removal of dye, color and COD from an aqueous solution were studied at atmospheric pressure. The percent removals of dye, color and COD at optimum pH(0) 7, 90 degrees C using 0.6 ml H(2)O(2)/350 ml solution and 1g/l catalyst was 97% (in 4h), 100% (in 45 min) and 58% (in 4h), respectively. The % dye removal has been found to be less in comparison to % color removal at all conditions, e.g. dye removal in 45 min and at above conditions was 82%, whereas the color removal was 100%. The results indicate that the Fe exchanged Y zeolite is a promising catalyst for dye removal. Fe exchanged catalyst is characterized using XRD, SEM/EDAX, surface area analyzer and FTIR. Though the dye, color and COD removals were maximum at pH(0) 2 but as the leaching of Fe from the catalyst was more in acidic pH range, pH(0) 7 was taken as operating pH due to almost comparable removals as of pH(0) 2 and no leaching of Fe ions.

  5. Conversion and Estrogenicity of 17β-estradiol During Photolytic/Photocatalytic Oxidation and Catalytic Wet-air Oxidation.

    Science.gov (United States)

    Bistan, Mirjana; Tišler, Tatjana; Pintar, Albin

    2012-06-01

    Estrogen 17β-estradiol (E2), produced by human body and excreted into municipal wastewaters, belongs to the group of endocrine disrupting compounds that are resistant to biological degradation. The aim of this study was to assess the efficiency of E2 removal from aqueous solutions by means of catalytic wet-air oxidation (CWAO) and photolytic/photocatalytic oxidation. CWAO experiments were conducted in a trickle-bed reactor at temperatures up to 230 °C and oxygen partial pressure of 10 bar over TiO2 and Ru/TiO2 solids. Photolytic/photocatalytic oxidation was carried out in a batch slurry reactor employing a TiO2 P-25 (Degussa) catalyst under visible or UV light. HPLC analysis and yeast estrogen screen assay were used to evaluate the removal of E2 and estrogenicity of treated samples. The latter was completely removed during photolytic/photocatalytic oxidation under UV (365 nm) light and photocatalytic oxidation under visible light. In CWAO experiments, complete removal of both E2 and estrogenicity from the feed solution were noticed in the presence of TiO2 and Ru/TiO2 catalysts.

  6. Development of a Catalytic Wet Air Oxidation Method to Produce Feedstock Gases from Waste Polymers

    Science.gov (United States)

    Kulis, Michael J.; Guerrero-Medina, Karen J.; Hepp, Aloysius F.

    2012-01-01

    Given the high cost of space launch, the repurposing of biological and plastic wastes to reduce the need for logistical support during long distance and long duration space missions has long been recognized as a high priority. Described in this paper are the preliminary efforts to develop a wet air oxidation system in order to produce fuels from waste polymers. Preliminary results of partial oxidation in near supercritical water conditions are presented. Inherent corrosion and salt precipitation are discussed as system design issues for a thorough assessment of a second generation wet air oxidation system. This work is currently being supported by the In-Situ Resource Utilization Project.

  7. Catalytic oxidation with Al-Ce-Fe-PILC as a post-treatment system for coffee wet processing wastewater.

    Science.gov (United States)

    Sanabria, Nancy R; Peralta, Yury M; Montañez, Mardelly K; Rodríguez-Valencia, Nelson; Molina, Rafael; Moreno, Sonia

    2012-01-01

    The effluent from the anaerobic biological treatment of coffee wet processing wastewater (CWPW) contains a non-biodegradable compound that must be treated before it is discharged into a water source. In this paper, the wet hydrogen peroxide catalytic oxidation (WHPCO) process using Al-Ce-Fe-PILC catalysts was researched as a post-treatment system for CWPW and tested in a semi-batch reactor at atmospheric pressure and 25 °C. The Al-Ce-Fe-PILC achieved a high conversion rate of total phenolic compounds (70%) and mineralization to CO(2) (50%) after 5 h reaction time. The chemical oxygen demand (COD) of coffee processing wastewater after wet hydrogen peroxide catalytic oxidation was reduced in 66%. The combination of the two treatment methods, biological (developed by Cenicafé) and catalytic oxidation with Al-Ce-Fe-PILC, achieved a 97% reduction of COD in CWPW. Therefore, the WHPCO using Al-Ce-Fe-PILC catalysts is a viable alternative for the post-treatment of coffee processing wastewater.

  8. Catalytic wet oxidation of aqueous methylamine: comparative study on the catalytic performance of platinum-ruthenium, platinum, and ruthenium catalysts supported on titania.

    Science.gov (United States)

    Song, Aiying; Lu, Gongxuan

    2015-01-01

    Promotion of the dispersion of Ru species supported on TiO2 was achieved by introduction of Pt component and the role of Pt in enhancing the catalytic performances of Pt-Ru was investigated with catalytic wet air oxidation of methylamine used as a probing reaction. It was found that Pt-Ru/TiO2 displayed a much better catalytic performance compared with Pt/TiO2 and Ru/TiO2 catalysts due to having the highest dispersion of active species. Both high total organic carbon conversion and nitrogen selectivity (∼100%) over Pt-Ru/TiO2 catalyst were achieved at low temperature (200 °C). X-ray photoelectron spectroscopy characterization indicated that there were strong interactions between metal particles and the support, which may increase the catalytic performance of catalysts.

  9. Ruthenium catalysts supported on high-surface-area zirconia for the catalytic wet oxidation of N,N-dimethyl formamide.

    Science.gov (United States)

    Sun, Guanglu; Xu, Aihua; He, Yu; Yang, Min; Du, Hongzhang; Sun, Chenglin

    2008-08-15

    Three weight percent ruthenium catalysts were prepared by incipient-wet impregnation of two different zirconium oxides, and characterized by BET, XRD and TPR. Their activity was evaluated in the catalytic wet oxidation (CWO) of N,N-dimethyl formamide (DMF) in an autoclave reactor. Due to a better dispersion, Ru catalyst supported on a high-surface-area zirconia (Ru/ZrO(2)-A) possessed higher catalytic properties. Due to over-oxidation of Ru particles, the catalytic activity of the both catalysts decreased during successive tests. The effect of oxygen partial pressure and reaction temperature on the DMF reactivity in the CWO on Ru/ZrO(2)-A was also investigated. 98.6% of DMF conversion was obtained through hydrothermal decomposition within 300 min at conditions of 200 degrees C and 2.0 MPa of nitrogen pressure. At 240 degrees C and 2.0 MPa of oxygen pressure 98.3% of DMF conversion was obtained within 150 min.

  10. Wet hydrogen peroxide catalytic oxidation of phenol with FeAC (iron-embedded activated carbon) catalysts.

    Science.gov (United States)

    Liou, Rey-May; Chen, Shih-Hsiung; Huang, Cheng-Hsien; Hung, Mu-Ya; Chang, Jing-Song; Lai, Cheng-Lee

    2010-01-01

    This investigation aims at exploring the catalytic oxidation activity of iron-embedded activated carbon (FeAC) and the application for the degradation of phenol in the wet hydrogen peroxide catalytic oxidation (WHPCO). FeAC catalysts were prepared by pre-impregnating iron in coconut shell with various iron loadings in the range of 27.5 to 46.5% before they were activated. The FeAC catalysts were characterised by measuring their surface area, pore distribution, functional groups on the surface, and X-ray diffraction patterns. The effects of iron loading strongly inhibited the pore development of the catalyst but benefited the oxidation activity in WHPCO. It was found that the complete conversion of phenol was observed with all FeAC catalysts in oxidation. High level of chemical oxygen demand (COD) abatement can be achieved within the first 30 minutes of oxidation. The iron embedded in the activated carbon showed good performance in the degradation and mineralisation of phenol during the oxidation due to the active sites as iron oxides formed on the surface of the activated carbon. It was found that the embedding irons were presented in gamma-Fe(2)O(3), alpha-Fe(2)O(3), and alpha-FeCOOH forms on the activated carbon. The aging tests on FeAC catalysts showed less activity loss, and less iron leaching was found after four oxidation runs.

  11. A compact process for the treatment of olive mill wastewater by combining wet hydrogen peroxide catalytic oxidation and biological techniques.

    Science.gov (United States)

    Azabou, Samia; Najjar, Wahiba; Bouaziz, Mohamed; Ghorbel, Abdelhamid; Sayadi, Sami

    2010-11-15

    A system based on combined actions of catalytic wet oxidation and microbial technologies for the treatment of highly polluted OMW containing polyphenols was studied. The wet hydrogen peroxide catalytic oxidation (WHPCO) process has been investigated in the semi-batch mode at atmospheric pressure, using aluminium-iron-pillared inter layer clay ((Al-Fe)PILC), under two different catalytic processes: ((Al-Fe)PILC/H(2)O(2)/ultraviolet radiations) at 25°C and ((Al-Fe)PILC/H(2)O(2)) at 50°C. The results show that raw OMW was resistant to the photocatalytic process. However ((Al-Fe)PILC/H(2)O(2)), system operating at 50°C reduced considerably the COD, colour and total phenolic contents, and thus decreased the inhibition of the marine photobacteria Vibrio fischeri luminescence by 70%. This study also examined the feasibility of coupling WHPCO and anaerobic digestion treatment. Biomethanisation experiments performed with raw OMW or pre-treated OMW proved that pre-treatments with ((Al-Fe)PILC/H(2)O(2)) system, for more than 2 h, resulted in higher methane production. Both untreated OMW as well as 2-h pre-treated OMW revealed as toxic to anaerobic bacteria.

  12. Unprecedented Catalytic Wet Oxidation of Glucose to Succinic Acid Induced by the Addition of n-Butylamine to a Ru(III) Catalyst.

    Science.gov (United States)

    Podolean, Iunia; Rizescu, Cristina; Bala, Camelia; Rotariu, Lucian; Parvulescu, Vasile I; Coman, Simona M; Garcia, Hermenegildo

    2016-09-08

    A new pathway for the catalytic wet oxidation (CWO) of glucose is described. Employing a cationic Ru@MNP catalyst, succinic acid is obtained in unprecedently high yield (87.5 %) for a >99.9 % conversion of glucose, most probably through a free radical mechanism combined with catalytic didehydroxylation of vicinal diols and hydrogenation of the resulted unsaturated intermediate.

  13. Effect of Composition and Mass Ratio on the Catalytic Wet Air Oxidation Catalyst Cu–Fe–La/FSC

    Directory of Open Access Journals (Sweden)

    Wu Chao

    2016-01-01

    Full Text Available The catalytic wet air oxidation (CWAO technology is used for the treatment of the simulated printing and dyeing wastewater and also for investigating the catalyst performance indicators such as catalyst activity and stability. The catalyst activity is mainly reflected from the water decolorization and CODCr removal rates, and the stability of the catalyst is mainly reflected by the quantity of metal dissolution. The experimental results showed that the prepared Cu–Fe–La/FSC catalyst with a 1:1:2 ratio of Cu–Fe–La by the impregnation method exhibited good activity for the treatment of the simulated printing and dyeing wastewater by the CWAO method, and the decolorization and CODCr removal rates using this catalyst were 98.7% and 78.6%, respectively, with a higher catalytic activity, lower concentration of metal dissolution, and good stability.

  14. Catalytic wet air oxidation of coke-plant wastewater on ruthenium-based eggshell catalysts in a bubbling bed reactor.

    Science.gov (United States)

    Yang, M; Sun, Y; Xu, A H; Lu, X Y; Du, H Z; Sun, C L; Li, C

    2007-07-01

    Catalytic wet air of coke-plant wastewater was studied in a bubbling bed reactor. Two types of supported Ru-based catalysts, eggshell and uniform catalysts, were employed. Compared with the results in the wet air oxidation of coke-plant wastewater, supported Ru uniform catalysts showed high activity for chemical oxygen demand (COD) and ammonia/ammonium compounds (NH3-N) removal at temperature of 250 degrees C and pressure of 4.8 MPa, and it has been demonstrated that the catalytic activity of uniform catalyst depended strongly on the distribution of active sites of Ru on catalyst. Compared to the corresponding uniform catalysts with the same Ru loading (0.25 wt.% and 0.1 wt.%, respectively), the eggshell catalysts showed higher activities for CODcr removal and much higher activities for NH3-N degradation. The high activity of eggshell catalyst for treatment of coke-plant wastewater can be attributed to the higher density of active Ru sites in the shell layer than that of the corresponding uniform catalyst with the same Ru loading. It has been also evidenced that the active Ru sites in the internal core of uniform catalyst have very little or no contribution to CODcr and NH3-N removal in the total oxidation of coke-plant wastewater.

  15. Development of the Monolith Froth Reactor for Catalytic Wet Oxidation of CELSS Model Wastes

    Science.gov (United States)

    Abraham, Martin; Fisher, John W.

    1995-01-01

    The aqueous phase oxidation of acetic acid, used as a model compound for the treatment of CELSS (Controlled Ecological Life Support System) waste, was carried out in the monolith froth reactor which utilizes two-phase flow in the monolith channels. The catalytic oxidation of acetic acid was carried out over a Pt/Al2O3 catalyst, prepared at The University of Tulsa, at temperatures and pressures below the critical point of water. The effect of externally controllable parameters (temperature, liquid flow rate, distributor plate orifice size, pitch, and catalyst distance from the distributor plate) on the rate of acetic acid oxidation was investigated. Results indicate reaction rate increased with increasing temperature and exhibited a maximum with respect to liquid flow rate. The apparent activation energy calculated from reaction rate data was 99.7 kJ/mol. This value is similar to values reported for the oxidation of acetic acid in other systems and is comparable to intrinsic values calculated for oxidation reactions. The kinetic data were modeled using simple power law kinetics. The effect of "froth" feed system characteristics was also investigated. Results indicate that the reaction rate exhibits a maximum with respect to distributor plate orifice size, pitch, and catalyst distance from the distributor plate. Fundamental results obtained were used to extrapolate where the complete removal of acetic acid would be obtained and for the design and operation of a full scale CELSS treatment system.

  16. Inhibition and deactivation effects in catalytic wet oxidation of high-strength alcohol-distillery liquors

    Energy Technology Data Exchange (ETDEWEB)

    Belkacemi, K.; Larachi, F.; Hamoudi, S.; Turcotte, G.; Sayari, A. [Laval Univ., Sainte-Foy, Quebec (Canada)

    1999-06-01

    The removal efficiency of total organic carbon (TOC) from raw high-strength alcohol-distillery waste liquors was evaluated using three different treatments: thermolysis (T), noncatalytic wet oxidation (WO), and solid-catalyzed wet oxidation (CWO). The distillery liquors (TOC = 22,500 mg/l, sugars = 18,000 mg/l, and proteins = 13,500 mg/l) were produced by alcoholic fermentation of enzymatic hydrolyzates from steam-exploded timothy grass. TOC-abatement studies were conducted batchwise in a stirred autoclave to evaluate the influence of the catalyst (7:3, MnO{sub 2}/CeO{sub 2} mixed oxide), oxygen partial pressure (0.5--2.5 MPa), and temperature (453--523 K) on T, WO, and CWO processes. Although CWO outperformed T and WO, TOC conversions did not exceed {approximately}60% at the highest temperature used. Experiments provided prima facie evidence for a gradual fouling of the catalyst and a developing inhibition in the liquors which impaired deep TOC removals. Occurrence of catalyst deactivation by carbonaceous deposits was proven experimentally through quantitative and qualitative experiments such as elemental analysis and X-ray photoelectron spectroscopy. Inhibition toward further degradation of the liquors was ascribed to the occurrence of highly stable antioxidant intermediates via the Maillard reactions between dissolved sugars and proteins. A lumping kinetic model involving both reaction inhibition by dissolved intermediates and catalyst deactivation by carbonaceous deposits was proposed to account for the distribution of carbon in the liquid, solid, and the vapor phases.

  17. Catalytic wet-air oxidation of lignin in a three-phase reactor with aromatic aldehyde production

    Directory of Open Access Journals (Sweden)

    Sales F.G.

    2004-01-01

    Full Text Available In the present work a process of catalytic wet air oxidation of lignin obtained from sugar-cane bagasse is developed with the objective of producing vanillin, syringaldehyde and p-hydroxybenzaldehyde in a continuous regime. Palladium supported on g-alumina was used as the catalyst. The reactions in the lignin degradation and aldehyde production were described by a kinetic model as a system of complex parallel and series reactions, in which pseudo-first-order steps are found. For the purpose of producing aromatic aldehydes in continuous regime, a three-phase fluidized reactor was built, and it was operated using atmospheric air as the oxidizer. The best yield in aromatic aldehydes was of 12%. The experimental results were compatible with those values obtained by the pseudo-heterogeneous axial dispersion model (PHADM applied to the liquid phase.

  18. Relative influence of process variables during non-catalytic wet oxidation of municipal sludge.

    Science.gov (United States)

    Baroutian, Saeid; Smit, Anne-Marie; Gapes, Daniel James

    2013-11-01

    Individual and interactive effects of process variables on the degradation of fermented municipal sludge were examined during wet oxidation. The process was carried out at 220-240°C using 1:1-2:1 oxygen to biomass ratio and 300-500 rpm stirring speed. Response surface methodology coupled with a faced-centred central composite design was used to evaluate the effect of these variables on total suspended solids, volatile suspended solids and total chemical oxygen demand. Multivariate analysis was conducted for the initial and near completion stages of reaction: 5 and 60 min treatments, respectively. Temperature had the most significant effect on degradation rate throughout. During the initial stage the effect of mixing intensity was less significant than that of oxygen ratio. Mixing intensity did not influence degradation rate at the later stage in the process. During the near completion stage, the interaction of temperature and oxygen ratio had significant effect on sludge degradation.

  19. Catalytic wet peroxide oxidation of aniline in wastewater using copper modified SBA-15 as catalyst.

    Science.gov (United States)

    Kong, Liming; Zhou, Xiang; Yao, Yuan; Jian, Panming; Diao, Guowang

    2016-01-01

    SBA-15 mesoporous molecular sieves modified with copper (Cu-SBA-15) were prepared by pH-adjusting hydrothermal method and characterized by X-ray diffraction, BET, transmission electron microscopy, UV-Vis and (29)Si MAS NMR. The pH of the synthesis gel has a significant effect on the amount and the dispersion of copper on SBA-15. The Cu-SBA-15(4.5) (where 4.5 denotes the pH value of the synthesis gel) modified with highly dispersed copper was used as catalyst for the oxidation of aniline by H2O2. The Cu-SBA-15(4.5) shows a higher catalytic activity compared to CuO on the surface of SBA-15. The influences of reaction conditions, such as initial pH of the aqueous solutions, temperature, as well as the dosages of H2O2 and catalyst were investigated. Under weakly alkaline aqueous solution conditions, the aniline conversion, the H2O2 decomposition and the total organic carbon (TOC) removal could be increased significantly compared to the acid conditions. The percentage of leaching Cu(2+) could be decreased from 45.0% to 3.66% when the initial pH of solution was increased from 5 to 10. The TOC removal could be enhanced with the increases of temperature, H2O2 and catalyst dosage, but the aniline conversion and H2O2 decomposition change slightly with further increasing dosage of catalyst and H2O2. At 343 K and pH 8.0, 100% aniline conversion and 66.9% TOC removal can be achieved under the conditions of 1.0 g/L catalyst and 0.05 mol/L H2O2 after 180 min. Although copper might be slightly leached from catalyst, the homogeneous Cu(2+) contribution to the whole catalytic activity is unimportant, and the highly dispersed copper on SBA-15 plays a dominant role.

  20. Thermodynamic and kinetic study of phenol degradation by a non-catalytic wet air oxidation process.

    Science.gov (United States)

    Lefèvre, Sébastien; Boutin, Olivier; Ferrasse, Jean-Henry; Malleret, Laure; Faucherand, Rémy; Viand, Alain

    2011-08-01

    This work is dedicated to an accurate evaluation of thermodynamic and kinetics aspects of phenol degradation using wet air oxidation process. Phenol is a well known polluting molecule and therefore it is important having data of its behaviour during this process. A view cell is used for the experimental study, with an internal volume of 150 mL, able to reach pressures up to 30 MPa and temperatures up to 350°C. Concerning the thermodynamic phase equilibria, experimental and modelling results are obtained for different binary systems (water/nitrogen, water/air) and ternary system (water/nitrogen/phenol). The best model is the Predictive Soave Redlich Kwong one. This information is necessary to predict the composition of the gas phase during the process. It is also important for an implementation in a process simulation. The second part is dedicated to kinetics evaluation of the degradation of phenol. Different compounds have been detected using GC coupled with a MS. A kinetic scheme is deduced, taking into account the evolution of phenol, hydroquinones, catechol, resorcinol and acetic acid. The kinetic parameters are calculated for this scheme. These data are important to evaluate the evolution of the concentration of the different polluting molecules during the process. A simplified kinetic scheme, which can be easily implemented in a process simulation, is also determined for the direct degradation of phenol into H(2)O and CO(2). The Arrhenius law data obtained for the phenol disappearance are the following: k=1.8×10(6)±3.9×10(5)M(-1)s(-1) (pre-exponential factor) and E(a)=77±8 kJ mol(-1) (activation energy).

  1. Active carbon-ceramic sphere as support of ruthenium catalysts for catalytic wet air oxidation (CWAO) of resin effluent.

    Science.gov (United States)

    Liu, Wei-Min; Hu, Yi-Qiang; Tu, Shan-Tung

    2010-07-15

    Active carbon-ceramic sphere as support of ruthenium catalysts were evaluated through the catalytic wet air oxidation (CWAO) of resin effluent in a packed-bed reactor. Active carbon-ceramic sphere and ruthenium catalysts were characterized by N(2) adsorption and chemisorption measurements. BET surface area and total pore volume of active carbon (AC) in the active carbon-ceramic sphere increase with increasing KOH-to-carbon ratio, and AC in the sample KC-120 possesses values as high as 1100 m(2) g(-1) and 0.69 cm(3) g(-1) (carbon percentage: 4.73 wt.%), especially. Active carbon-ceramic sphere supported ruthenium catalysts were prepared using the RuCl(3) solution impregnation onto these supports, the ruthenium loading was fixed at 1-5 wt.% of AC in the support. The catalytic activity varies according to the following order: Ru/KC-120>Ru/KC-80>Ru/KC-60>KC-120>without catalysts. It is found that the 3 wt.% Ru/KC-120 catalyst displays highest stability in the CWAO of resin effluent during 30 days. Chemical oxygen demand (COD) and phenol removal were about 92% and 96%, respectively at the reaction temperature of 200 degrees C, oxygen pressure of 1.5 MPa, the water flow rate of 0.75 L h(-1) and the oxygen flow rate of 13.5 L h(-1).

  2. CATALYTIC WET PEROXIDE OXIDATION OF HYDROQUINONE WITH Co(Ⅱ)/ACTIVE CARBON CATALYST LOADED IN STATIC BED

    Institute of Scientific and Technical Information of China (English)

    LI Chunxiang; YAN Yongsheng; XU Wanzhen

    2008-01-01

    Catalysts based on Co(Ⅱ) supported on active carbon were prepared and loaded in static bed.The hydroquinone wouid be degraded completely after treated by Catalytic wet peroxide oxidation method with Co(Ⅱ)/active carbon catalyst.After activate treatment, the active carbon was immerged in cobaltoas nitrate solution, then put into a drying oven, Co(Ⅱ) could be loaded on the micro-surface of carbon.Taking the static bed as the equipment, the absorption of active carbon and catalysis of Co(Ⅱ) was used to reduce activation energy of hydroquinone.Thus hydroquinone could be drastically degraded and the effluent can be drained under the standard.Referring to Fenton reaction mechanism, experiment had been done to study the heterogeneous catalyzed oxidation mechanism of Co(Ⅱ).The degradation rate of hydroquinone effluent could be achieved to 92% when treated in four columns at H2O2 concentration 10%, reaction temperature 40℃, pH 5 and reaction time 2.5h.

  3. CATALYTIC WET PEROXIDE OXIDATION OF HYDROQUINONE WITH Co(II)/ACTIVE CARBON CATALYST LOADED IN STATIC BED

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Catalysts based on Co(II) supported on active carbon were prepared and loaded in static bed. The hydroquinone would be degraded completely after treated by Catalytic wet peroxide oxidation method with Co(II)/active carbon catalyst. After activate treatment, the active carbon was immerged in cobaltous nitrate solution, then put into a drying oven, Co(II) could be loaded on the micro-surface of carbon. Taking the static bed as the equipment, the absorption of active carbon and catalysis of Co(II) was used to reduce activation energy of hydroquinone. Thus hydroquinone could be drastically degraded and the effluent can be drained under the standard. Referring to Fenton reaction mechanism, experiment had been done to study the heterogeneous catalyzed oxidation mechanism of Co(II). The degradation rate of hydroquinone effluent could be achieved to 92% when treated in four columns at H2O2 concentration 10%, reaction temperature 40℃ , pH 5 and reaction time 2.5h.

  4. Catalytic wet air oxidation of phenol over Co-doped Fe3O4 nanoparticles

    Science.gov (United States)

    Song, Xu Chun; Zheng, Yi Fan; Yin, Hao Yong

    2013-08-01

    The Fe3O4 nanoparticles doped with cobalt ions have been successfully synthesized by the co-precipitation process. The X-ray diffraction, inductively coupled plasma, scanning electron microscopy, and transmission electron microscopy were used to characterize the as-prepared nanoparticles. The results show that the phase structure of the nanoparticles is spinel structure of pure Fe3O4 with the particle size ranging from 40 to 50 nm. The Co-doping concentration can be controlled by changing the atomic ratio of the stock materials. The catalytic activity of the Co-doped Fe3O4 was further investigated by decomposing the phenol in liquid phase. The results show that cobalt ions doping can improve the catalytic efficiency of Fe3O4 nanoparticles in phenol degradation with catalytic reaction fitting the first-order kinetics. According to the estimated reaction rate of Co-doped Fe3O4 nanoparticles at different temperatures, the activation energy was calculated to be 45.63 kJ/mol.

  5. Wet oxidation of quinoline

    DEFF Research Database (Denmark)

    Thomsen, A.B.; Kilen, H.H.

    1998-01-01

    The influence of oxygen pressure (0.4 and 2 MPa). reaction time (30 and 60 min) and temperature (260 and 280 degrees C) on the wet oxidation of quinoline has been studied. The dominant parameters for the decomposition of quinoline were oxygen pressure and reaction temperature. whereas the reaction...... time was less important within the range studied. Nitrifying bacteria were used to measure the inhibition from wet oxidative-treated samples to study the effect of the (wet oxidation) reaction conditions. Wet oxidation made quinoline more toxic to Nitrosomonas. This was observed for Nitrobacter as well....... The combined wet oxidation and biological treatment of reaction products resulted in 91% oxidation of the parent compound to CO2 and water. Following combined wet oxidation and biological treatment the sample showed low toxicity towards Nitrosomonas and no toxicity towards Nitrobacter. (C) 1998 Elsevier...

  6. Influence of the different oxidation treatment on the performance of multi-walled carbon nanotubes in the catalytic wet air oxidation of phenol.

    Science.gov (United States)

    Yang, Shaoxia; Wang, Xingang; Yang, Hongwei; Sun, Yu; Liu, Yunxia

    2012-09-30

    Multi-walled carbon nanotubes (MWCNTs) functionalized by different oxidants (HNO(3)/H(2)SO(4), H(2)O(2), O(3) and air) have been used as catalysts for the wet air oxidation of phenol. To investigate the effect of the oxidation conditions on the structure of the functionalized MWCNTs, various characterization techniques, e.g., scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, Fourier-transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) have been used. The MWCNTs treated with O(3) and H(2)O(2) show higher amounts of oxygen-containing functional groups and carboxylic acid groups, and a weaker acidic nature, in comparison with those treated with other oxidizing agents. All the functionalized MWCNTs exhibit good activity in the catalytic wet air oxidation (CWAO) of phenol. However, the MWCNTs treated with O(3) show the highest activity with desirable stability in comparison with other functionalized MWCNTs, indicating that the functionalization of carbon nanotubes with O(3) is a very promising strategy in synthesizing efficient catalysts for CWAO.

  7. Chemical and toxicological evaluation of an emerging pollutant (enrofloxacin) by catalytic wet air oxidation and ozonation in aqueous solution.

    Science.gov (United States)

    Li, Yan; Zhang, Feifang; Liang, Xinmiao; Yediler, Ayfer

    2013-01-01

    This study evaluates the degradation efficiency of enrofloxacin (ENR) by catalytic wet air oxidation (CWAO) and ozonation. Results obtained by CWAO experiments show that 99.5% degradation, 37.0% chemical oxidation demand (COD) removal and 51.0% total organic carbon (TOC) conversion were obtained when 100 mol% FeCl(3) and 25 mol% NaNO(2) at 150 °C under 0.5 MPa oxygen pressure after 120 min are used. The degradation products are identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS), gas chromatography-mass spectrometry (GC-MS) and ion chromatography (IC). The oxidation end products, F(-), NO(3)(-) and NH(4)(+) were determined by IC. The BOD(5)/COD ratio as a measure of the biodegradability of the parent compound increased from 0.01 to 0.12 after 120 min of reaction time, indicating an improved biodegradability of the parent compound. The inhibition of bioluminescence of the marine bacteria V. fischeri decreased from 43% to 12% demonstrating a loss in toxicity of ENR during CWAO. Ozonation of 0.2 mM ENR was carried out with an ozone concentration of 7.3 g m(-3) at pH 7. ENR decomposition with a degradation rate of 87% was obtained corresponding to the reaction time. Moderate changes in COD (18%) and TOC (17%) removal has been observed. The bioluminescence inhibition increased from 8% to 50%, due to the generation of toxic degradation products during ozonation. In comparison to the widely use of well developed method of ozonation CWAO exhibits better performance in terms of COD, TOC removals and generates less toxic products.

  8. Al 2O 3 supported Ru catalysts prepared by thermolysis of Ru 3(CO) 12 for catalytic wet air oxidation

    Science.gov (United States)

    Yu, Chaoying; Zhao, Peiqing; Chen, Gexin; Hu, Bin

    2011-06-01

    Low loading catalysts Ru/γ-Al 2O 3 and Ru-Ce/γ-Al 2O 3 were prepared by thermolysis of Ru 3(CO) 12 on γ-Al 2O 3. The catalysts were characterized by XPS, XRD and SEM. Two new Ru species (Ru A and Ru B) were detected during the Ru 3(CO) 12 decomposition process due to chemical interaction with the active OH groups on the surface of Al 2O 3 support, and the reduction of them can lead to more dispersed metallic phases. The sample was completely decomposed at 673 K in H 2, and RuO 2 was formed with minor amounts of Ru 0. When the temperature was increased to 773 K to heat the sample, the ratio of Ru 0 to RuO 2 increased. However, after the addition of CeO 2, only RuO 2 was detected on surface. The catalysts exhibited high activities in Catalytic Wet Air Oxidation (CWAO) of different organic compounds at high concentration such as isopropyl alcohol, phenol, acetic acids and N,N-dimethylformamide, which is attributed to the better dispersion of Ru particles and the addition of CeO 2 further enhanced number of effectively active sites on the cluster-derived catalyst surface.

  9. Low-pressure catalytic wet-air oxidation of a high-strength industrial wastewater using Fenton's reagent.

    Science.gov (United States)

    Biçaksiz, Zeliha; Aytimur, Gülin; Atalay, Süheyda

    2008-06-01

    Wastewater from the Afyon Alkaloids Factory (Afyon, Turkey) was subjected to low-pressure catalytic wet-air oxidation (CWAO) using Fenton's reagent, and the optimal reaction conditions were investigated. The CWAO using Fenton's reagent was applied to the factory effluent, diluted factory effluent, and aerobically pretreated wastewater. To find the optimum quantities of reagents, ferrous iron (Fe(+2))-to-substrate ratios of 1:10, 1:25, and 1:50 and hydrogen peroxide (H2O2)-to-Fe(+2) ratios of 1, 5, and 10 were investigated, and the treatment was carried out at different temperatures. High chemical oxygen demand (COD) removals were obtained at 50 degrees C, with the Fe(+2)-to-substrate ratio range between 1:10 and 1:25. The change in H2O2-to-Fe(+2) ratios did not cause any considerable effect. Also, the percentages of COD removals were nearly the same, so the ratio H2O2:Fe(+2):1 is recommended. Aerobic pretreatment seems to be effective. On the other hand, no enhancement was observed in the case of the diluted wastewater.

  10. Resting Study of Tracer Experiment on Catalytic Wet Oxidation Reactor under Micro-gravity and Earth Gravity Conditions

    Institute of Scientific and Technical Information of China (English)

    YANG Ji; JIA Jin-ping

    2005-01-01

    The International Space Station(ISS) employs catalytic wet oxidation carried out in a Volatile Reactor Assembly (VRA) for water recycling. Previous earth gravity experiments show that the VRA is very effective at removing polar,low molecular weight organics. To compare the reactor performance under micro-gravity and Earth gravity conditions,a tracer study was performed on a space shuttle in 1999 by using 0. 2% potassium carbonate as the chemical tracer.In this paper, the experimental data were analyzed and it is indicated that the reactor can be considered as a plug flow one under both micro-gravity and earth gravity experimental conditions. It has also been proved that dispersion is not important in the VRA reactor under the experimental conditions. Tracer retardation was observed in the experiments and it is most likely caused by catalyst adsorption. It is concluded that the following reasons may also have influence on the retardation of mean residence time: (1) the liquid can be held by appurtenances, which will retard the mean residence time; (2) the pores can hold the tracer, which can also retard the mean residence time.

  11. Catalytic Wet Air Oxidation of o-Chlorophenol in Wastewater%邻氯苯酚废水的催化湿式氧化处理

    Institute of Scientific and Technical Information of China (English)

    徐新华; 汪大翚

    2003-01-01

    Catalytic wet air oxidation (CWAO) was investigated in laboratory-scale experiments for the treatmentof o-chlorophenol in wastewater. Experimental results showed that wet air oxidation (WAO) process in the absence ofcatalyst was also effective for o-chlorophenol in wastewater treatment. Up to 80% of the initial CODCr was removedby wet air oxidation at 270℃ with twice amount of the required stoichiometric oxygen supply. At temperatureof 150℃, the removal rate of CODCr was only 30%. Fe2(SO4)3, CuSO4, Cu(NO3)2 and MnSO4 exhibited highcatalytic activity. Higher removal rate of CODCr was obtained by CWAO. More than 96% of the initial CODCrwas removed at 270℃ and 84.6%-93.6% of the initial CODCr was removed at 150℃. Mixed catalysts had bettercatalytic activity for the degradation of o-chlorophenol in wastewater.

  12. Treatment of municipal landfill leachate by catalytic wet air oxidation: Assessment of the role of operating parameters by factorial design.

    Science.gov (United States)

    Anglada, Angela; Urtiaga, Ane; Ortiz, Inmaculada; Mantzavinos, Dionissios; Diamadopoulos, Evan

    2011-08-01

    The wet air oxidation (WAO) of municipal landfill leachate catalyzed by cupric ions and promoted by hydrogen peroxide was investigated. The effect of operating conditions such as WAO treatment time (15-30min), temperature (160-200°C), Cu(2+) concentration (250-750mgL(-1)) and H(2)O(2) concentration (0-1500mgL(-1)) on chemical oxygen demand (COD) removal was investigated by factorial design considering a two-stage, sequential process comprising the heating-up of the reactor and the actual WAO. The leachate, at an initial COD of 4920mgL(-1), was acidified to pH 3 leading to 31% COD decrease presumably due to the coagulation/precipitation of colloidal and other organic matter. During the 45min long heating-up period of the WAO reactor under an inert atmosphere, COD removal values up to 35% (based on the initial COD value) were recorded as a result of the catalytic decomposition of H(2)O(2) to reactive hydroxyl radicals. WAO at 2.5MPa oxygen partial pressure advanced treatment further; for example, 22min of oxidation at 200°C, 250mgL(-1) Cu(2+) and 0-1500mgL(-1) H(2)O(2) resulted in an overall (i.e. including acidification and heating-up) COD reduction of 78%. Amongst the operating variables in question, temperature had the strongest influence on both the heating-up and WAO stages, while H(2)O(2) concentration strongly affected the former and reaction time the latter. Nonetheless, the effects of temperature and H(2)O(2) concentration were found to depend on the concentration levels of catalyst as suggested by the significance of their 3rd order interaction term.

  13. Investigation on preparation of CuO-SnO2-CeO2/γ-Al2O3 catalysts for catalytic wet air oxidation process and their catalytic activity for degradation of phenol

    Institute of Scientific and Technical Information of China (English)

    SUN Xiao-jun; ZHANG Mi-lin; WAN Jia-feng; XIA Zhi; LIU Xiao-hui; LIU hui

    2008-01-01

    Catalytic Wet Air Oxidation process is an efficient measure for treatment of wastewater with great strength which is not biodegradable. Heterocatalysts now become the key investigation subject of catalytic wet air oxidation process due to their good stability and easy separation. In the paper, CuO-SnOE-CeO2/γ-Al2O3 catalysts are prepared by impregnation method, with SnO2 as a doping component, CuO as an active component, CeO2 as a structure stabilizer, γ-Al2O3 as a substrate. XPS test is carried out to investigate the effect of Sn on the chemical surrounding of Cu and O element on the catalyst surface and their catalytic activity. It is shown that the right do-ping of Sn can increase Cu+ content on the catalyst surface, as a result the quantity of adsorption oxygen is also increased. It is found that Cu + content on the catalyst surface is one of the primary factors that determin catalytic activity of catalyst through analyzing the catalytic wet air oxidation process of phenol.

  14. Catalytic wet oxidation of dyehouse effluents with Cu/Al{sub 2}O{sub 3} and Al-Cu pillared clays

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.K.; Kim, S.C.; Kim, D.S.; Lee, G.S.; Yoon, S.B. [Dept. of Chemical Engineering/Environmental Protection, Environment and Regional Development Inst., Gyeongsang National Univ., Gyeongnam (Korea)

    2003-07-01

    Catalytic wet oxidation of real dyehouse effluents was performed in a batch reactor and a continuous flow pilot plant scale reactor by using Cu/Al{sub 2}O{sub 3} and Al-Cu-PILC catalysts. Hydrogen peroxide was used as the oxidant. The removal of TOC and color was strongly related to the consumption of H{sub 2}O{sub 2} and the subsequent formation of HO-. Copper components in the catalysts, especially in the Al-Cu-PILCs, showed successful activity toward complete removal of TOC and color. In addition the Al-Cu-PILC catalysts were extremely stable against copper leaching. (orig.)

  15. [Catalytic stability in wet air oxidation of carboxylic acids over ZnFe0.25Al1.75 O4 catalyst].

    Science.gov (United States)

    Xu, Ai-hua; Yang, Min; Du, Hong-zhang; Peng, Fu-yong; Sun, Cheng-lin

    2007-07-01

    Oxalic, formic and acetic acid are main intermediate products in catalytic wet air oxidation process (CWAO). The catalytic activity and stability in CWAO of the three short-chain organic acids over ZnFe0.25Al1.75O4 catalyst were studied. Oxalic acid is the only oxidizable intermediate and the largest amount of Fe leaching is 9.5 mg L(-1) at 160 degrees C during CWAO process. Formic and acetic acid have little influence on Fe leaching. Due to the strong reducible ability of oxalic acid, the amount of Fe leaching is larger in nitrogen atmosphere than that in oxygen atmosphere. Salicylic acid can be also degraded by ZnFe0.25Al1.75O4 catalyst with a high catalytic activity and stability.

  16. Research on Synergy of Combining Electrochemical Oxidation and Catalytic Wet Oxidation%电场效应与催化湿式氧化协同作用研究

    Institute of Scientific and Technical Information of China (English)

    王华; 李光明; 张芳; 黄菊文

    2009-01-01

    A new catalytic wet oxidation fixed-bed reactor combined with three-dimensional electric-field was developed to investigate catalytic wet oxidation, electrochemical oxidation and electroassisted catalytic wet oxidation of the solution containing phenol in the presence of a catalyst Mn-Sn-Sb-3/γ-Al_2O_3 . Good eleetroassisted catalytic wet oxidation efficiency was obtained in the setup for the combination system even at mild conditions ( T = 130℃, po_2 =1.0 MPa) that the phenol conversion and TOC reduction were up to 94.0% and 88.4% after 27 min treatment, respectively. The result also shows that the rate constants of electroassisted catalytic wet oxidation are much higher than that of not only both catalytic wet oxidation and electrochemical oxidation process alone but also additive efficiencies of catalytic wet oxidation and electrochemical oxidation processes, which indicates an apparent synergetic effect between CWO and ECO processes.%在自行研制开发的一套固定床和复合三维电场一体化连续式催化湿式氧化反应器中,采用浸渍法制备的Mn-Sn-Sb-3/γAl_2O_3催化剂,实验研究了苯酚催化湿式氧化、电催化氧化以及电场效应下的催化湿式氧化过程的行为.结果表明,一体化反应器在较低反应温度(T=130℃)和氧分压(Po_2=1.0 MPa)下即可获得相当满意的处理效果,空时仅为27min时苯酚和TOC的去除率就分别可达到94.0%和88.4%.电场效应下的催化湿式氧化协同降解苯酚的反应速率常数大于单独电催化或催化湿式氧化降解苯酚的反应速率常数,而且还大大超过两者之和,电催化氧化对催化湿式氧化工艺存在明显的协同增效作用.

  17. Removal of salicylic acid on perovskite-type oxide LaFeO3 catalyst in catalytic wet air oxidation process.

    Science.gov (United States)

    Yang, Min; Xu, Aihua; Du, Hongzhang; Sun, Chenglin; Li, Can

    2007-01-02

    It has been found that salicylic acid can be removal effectively at the lower temperature of 140 degrees C on perovskite-type oxide LaFeO3 catalyst in the catalytic wet air oxidation (CWAO) process. Under the same condition, the activities for the CWAO of phenol, benzoic acid and sulfonic salicylic acid have been also investigated. The results indicated that, with compared to the very poor activities for phenol and benzoic acid, the activities for salicylic acid and sulfonic salicylic acid were very high, which are attributed to their same intramolecular H-bonding structures. With the role of hard acidity of intramolecular H-bonding, salicylic acid and sulfonic salicylic acid can be adsorbed effectively on the basic center of LaFeO3 catalyst and are easy to take place the total oxidation reaction. However, at temperatures higher than 140 degrees C, the intramolecular H-bonding structure of salicylic acid was destroyed and the activities at 160 and 180 degrees C decreased greatly, which confirms further the key role of intramolecular H-bonding in the CWAO. Moreover, the LaFeO3 catalyst also indicated a superior stability of activity and structure in CWAO of salicylic acid.

  18. Reuse of a dyehouse effluent after being treated with the combined catalytic wet peroxide oxidation process and the aerated constructed wetland.

    Science.gov (United States)

    Lee, D K; Kim, S C; Yoon, J H

    2007-01-01

    A catalytic wet peroxide oxidation process was combined with the aerated constructed wetland in order to treat the raw dyehouse wastewater to in acceptable level for reuse as washing process water. More than 90% of BOD and CODs could be removed with the wet peroxide oxidation reactor and the remaining pollutants in the treated water were transformed into biodegradable ones which could have been successfully treated at the following aerated constructed wetland. The highest values of BOD5, CODMn, CODCr, SS and T-N in the treated water were 1.6, 1.8, 2.1, 0.5 and 12.8 mg/L, respectively. These values were low enough for the treated water to be reused at the washing process.

  19. Characteristics of CuO-MoO3-P2O5 catalyst and its catalytic wet oxidation (CWO) of dye wastewater under extremely mild conditions.

    Science.gov (United States)

    Ma, Hongzhu; Zhuo, Qiongfang; Wang, Bo

    2007-11-01

    In order to develop a catalyst with high activity for catalytic wet oxidation (CWO) processing at lower temperatures (35 degrees C) and atmospheric pressure, a new CuO-MoO3-P2O5 catalystwas synthesized by a solid-state reaction method and was characterized by X-ray diffraction (XRD), Fourier transformation infrared spectrometer (FTIR), X-ray photoelectron spectroscopy (XPS), selected area electronic diffraction (SAED), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDXS) for elemental mapping. Methylene blue (MB) was adopted to investigate the catalytic activity of CuO-MoO3-P2O5 in CWO processing. The results show that this new catalyst has a high catalytic activity to decolorize MB under mild condition. The color removal of MB (the initial concentration was 0.3 g L(-1) and initial pH was 5) can reach to 99.26% within 10 min at 35 degrees C and atmospheric pressure. Catalyst lifespan and selectivity were also tested, and the results show that after the catalyst was used three times, catalyst activity still remains. Selectivity testing shows that CuO-MoO3-P2O5 has high catalytic activity on degradation of MB, whereas this catalyst has less impact on methyl orange (the color removal was 99.65% for MB and 55% for methyl orange under the same conditions). According to the experimental results, a possible mechanism of catalytic degradation of MB was proposed.

  20. Application of sludge-based carbonaceous materials in a hybrid water treatment process based on adsorption and catalytic wet air oxidation.

    Science.gov (United States)

    Julcour Lebigue, Carine; Andriantsiferana, Caroline; N'Guessan Krou; Ayral, Catherine; Mohamed, Elham; Wilhelm, Anne-Marie; Delmas, Henri; Le Coq, Laurence; Gerente, Claire; Smith, Karl M; Pullket, Suangusa; Fowler, Geoffrey D; Graham, Nigel J D

    2010-12-01

    This paper describes a preliminary evaluation of the performance of carbonaceous materials prepared from sewage sludges (SBCMs) in a hybrid water treatment process based on adsorption and catalytic wet air oxidation; phenol was used as the model pollutant. Three different sewage sludges were treated by either carbonisation or steam activation, and the physico-chemical properties of the resultant carbonaceous materials (e.g. hardness, BET surface area, ash and elemental content, surface chemistry) were evaluated and compared with a commercial reference activated carbon (PICA F22). The adsorption capacity for phenol of the SBCMs was greater than suggested by their BET surface area, but less than F22; a steam activated, dewatered raw sludge (SA_DRAW) had the greatest adsorption capacity of the SBCMs in the investigated range of concentrations (oxidation tests, the SBCMs demonstrated catalytic behaviour arising from their substrate adsorptivity and metal content. Recycling of SA_DRAW in successive oxidations led to significant structural attrition and a hardened SA_DRAW was evaluated, but found to be unsatisfactory during the oxidation step. In a combined adsorption-oxidation sequence, both the PICA carbon and a selected SBCM showed deterioration in phenol adsorption after oxidative regeneration, but a steady state performance was reached after 2 or 3 cycles.

  1. Catalytic wet peroxide oxidation of azo dye (Direct Blue 15) using solvothermally synthesized copper hydroxide nitrate as catalyst.

    Science.gov (United States)

    Zhan, Yuzhong; Zhou, Xiang; Fu, Bei; Chen, Yiliang

    2011-03-15

    Copper hydroxide nitrate (Cu(2)(OH)(3)NO(3)) was synthesized solvothermally in anhydrous ethanol and characterized by XRD, FTIR, TG-DTA and SEM. The peroxide degradation of an azo dye (Direct Blue 15) on this material was evaluated by examining catalyst loading, initial pH, hydrogen peroxide dosage, initial dye concentration and temperature. The leaching of Cu from the copper hydroxide nitrate during the reaction was also measured. The copper hydroxide nitrate synthesized solvothermally, which was of a novel spherical morphology with complex secondary structures and contained high-dispersed Cu(2)O impurity, showed good performance for oxidation degradation of the azo dye, especially high catalytic activity, high utilization of hydrogen peroxide and a wide pH range, whereas the copper hydroxide nitrate synthesized by the direct reaction of copper nitrate and sodium hydroxide showed low catalytic activity.

  2. Treatment of aniline by catalytic wet air oxidation: comparative study over CuO/CeO2 and NiO/Al2O3.

    Science.gov (United States)

    Ersöz, Gülin; Atalay, Süheyda

    2012-12-30

    The treatment of aniline by catalytic wet air oxidation (CWAO) was studied in a bubble reactor. The experiments were performed to investigate the effects of catalyst loading, temperature, reaction time, air flow rate, and pressure on aniline removal. The catalytic effects of the prepared nanostructured catalysts, CuO/CeO(2) (10% wt) and NiO/Al(2)O(3) (10% wt), on the CWAO treatment efficiency were also examined and compared. The prepared catalysts seem to be active having an aniline removal of 45.7% with CuO/CeO(2) and 41.9% with NiO/Al(2)O(3). The amount of N(2) formed was approximately the same for both of the catalysts.

  3. [Catalytic wet air oxidation of phenol with Ru/ZrO2-CeO2 catalyst].

    Science.gov (United States)

    Wang, Jian-bing; Zhu, Wan-peng; Wang, Wei; Yang, Shao-xia

    2007-07-01

    Wet air oxidation of phenol with Ru/ZrO2-CeO2 was systematically investigated and results showed that Ru/ZrO2-CeO2 could significantly increase the removal of COD and phenol. At the reaction temperature of 170 degrees C and pressure of 3MPa, about 99% COD and 100% phenol was removed respectively after 120 min. The optimal conditions were: reaction temperature, 170 degrees C; reaction pressure, 3 MPa; catalyst dosage, 5 g/L; agitator speed, 500 r/min. By analyzing intermediates, a simplified scheme of phenol oxidation was brought out. It includes two main steps. The first step is the production of organic acids, which is fast. The second step is the oxidation of organic acid, in which the oxidation of acetic acid is slow. Complete oxidation of acetic acid needs high temperature at which the radicals assault the C-H bond of a carbon and acetic acid is oxidized into carbon dioxide and water through formic acid.

  4. Degradation process analysis of the azo dyes by catalytic wet air oxidation with catalyst CuO/γ-Al2O3.

    Science.gov (United States)

    Hua, Li; Ma, Hongrui; Zhang, Lei

    2013-01-01

    Three azo dyes (Methyl Orange, Direct Brown and Direct Green) were treated by catalytic wet air oxidation (CWAO) with the catalysts CuO/γ-Al(2)O(3) prepared by consecutive impregnation. The relationship of decolorization extent, chemical oxygen demand (COD) removal extent and total organic carbon (TOC) in dye solution were investigated. The results indicated that the CuO/γ-Al(2)O(3) catalyst had excellent catalytic activity in treating azo dyes. Almost 99% of color and 70% of TOC were removed in 2h. The high removal extent of color and TOC indicated that the CWAO obtained perfect decomposition for pollutants. The degradation pathway of azo dyes was analyzed by UV-Vis, FTIR and MS. According to the examined results, the hydroxyl ((·)OH) radicals induced strong oxidizing effects in the target solution and destroyed the chromophoric groups of azo-benzene conjugated of the molecular structure. Considering characteristics of the dye structure, the azo bond (-N=N-) would first be attacked by the hydroxyl radical and other free radicals. With the continuous oxidization and the long reaction time at high temperature, these intermediates could be oxidized to the final oxidation products, such as water and carbon dioxide.

  5. Treatment of ammonia by catalytic wet oxidation process over platinum-rhodium bimetallic catalyst in a trickle-bed reactor: effect of pH.

    Science.gov (United States)

    Hung, Chang-Mao; Lin, Wei-Bang; Ho, Ching-Lin; Shen, Yun-Hwei; Hsia, Shao-Yi

    2010-08-01

    This work adopted aqueous solutions of ammonia for use in catalytic liquid-phase reduction in a trickle-bed reactor with a platinum-rhodium bimetallic catalyst, prepared by the co-precipitation of chloroplatinic acid (H2PtCl6) and rhodium nitrate [Rh(NO3)3]. The experimental results demonstrated that a minimal amount of ammonia was removed from the solution by wet oxidation in the absence of any catalyst, while approximately 97.0% of the ammonia was removed by wet oxidation over the platinum-rhodium bimetallic catalyst at 230 degrees C with an oxygen partial pressure of 2.0 MPa. The oxidation of ammonia has been studied as a function of pH, and the main reaction products were determined. A synergistic effect is manifest in the platinum-rhodium bimetallic structure, in which the material has the greatest capacity to reduce ammonia. The reaction pathway linked the oxidizing ammonia to nitric oxide, nitrogen, and water.

  6. Ni/MgAlO regeneration for catalytic wet air oxidation of an azo-dye in trickle-bed reaction

    Energy Technology Data Exchange (ETDEWEB)

    Vallet, Ana [Grupo de Catálisis y Procesos de Separación (CyPS), Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Ovejero, Gabriel, E-mail: govejero@quim.ucm.es [Grupo de Catálisis y Procesos de Separación (CyPS), Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Rodríguez, Araceli [Grupo de Catálisis y Procesos de Separación (CyPS), Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Peres, José A. [Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Apartado 1013, 5001-801 Vila Real (Portugal); García, Juan, E-mail: juangcia@quim.ucm.es [Grupo de Catálisis y Procesos de Separación (CyPS), Departamento de Ingeniería Química, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain)

    2013-01-15

    Highlights: ► Ni supported over hydrotalcite calcined precursors as catalyst. ► Catalytic wet air oxidation in trickle bed reactor for Chromotrope 2R removal. ► Dye removal depends on temperature, initial dye concentration and flow rate. ► The catalyst proved to bare-usable after in situ regeneration. -- Abstract: Active nickel catalysts (7 wt%) supported over Mg–Al mixed oxides have been recently developed and it has also been demonstrated that they are also highly selective in Catalytic Wet air Oxidation (CWAO) of dyes. CWAO of Chromotrope 2R (C2R) has been studied using a trickle bed reactor employing temperatures from 100 to 180 °C, liquid flow rates from 0.1 to 0.7 mL min{sup −1} and initial dye concentration from 10 to 50 ppm. Total pressure and air flow were 25 bar and 300 mL min{sup −1}, respectively. The catalyst showed a very stable activity up to 24 h on stream with an average TOC conversion of 82% at 150 °C and T{sub r} = 0.098 g{sub Ni} min mL{sup −1}. After the reaction, a 1.1 wt% C of carbonaceous deposit is formed onto the catalyst and a diminution of 30% of the surface area with respect of the fresh catalyst was observed. An increase in the space time gave higher TOC conversions up to T{sub r} = 0.098 g{sub Ni} min mL{sup −1}, attaining values of 80% at 180 °C. The performance of TOC and dye removal does not decrease after two regeneration cycles. In total, a 57 h effective reaction has been carried out with no loss of catalytic activity.

  7. Post-treatment of biologically treated wastewater containing organic contaminants using a sequence of H2O2 based advanced oxidation processes: photolysis and catalytic wet oxidation.

    Science.gov (United States)

    Rueda-Márquez, J J; Sillanpää, M; Pocostales, P; Acevedo, A; Manzano, M A

    2015-03-15

    In this paper the feasibility of a multi-barrier treatment (MBT) for the regeneration of synthetic industrial wastewater (SIWW) was evaluated. Industrial pollutants (orange II, phenol, 4-chlorophenol and phenanthrene) were added to the effluent of municipal wastewater treatment plant. The proposed MBT begins with a microfiltration membrane pretreatment (MF), followed by hydrogen peroxide photolysis (H2O2/UVC) and finishing, as a polishing step, with catalytic wet peroxide oxidation (CWPO) using granular activated carbon (GAC) at ambient conditions. During the microfiltration step (0.7 μm) the decrease of suspended solids concentration, turbidity and Escherichia coli in treated water were 88, 94 and 99%, respectively. Also, the effluent's transmittance (254 nm) was increased by 14.7%. Removal of more than 99.9% of all added pollutants, mineralization of 63% of organic compounds and complete disinfection of total coliforms were reached during the H2O2/UVC treatment step (H2O2:TOC w/w ratio = 5 and an UVC average dose accumulated by wastewater 8.80 WUVC s cm(-2)). The power and efficiency of the lamp, the water transmittance and photoreactor geometry are taken into account and a new equation to estimate the accumulated dose in water is suggested. Remaining organic pollutants with a higher oxidation state of carbon atoms (+0.47) and toxic concentration of residual H2O2 were present in the effluent of the H2O2/UVC process. After 2.3 min of contact time with GAC at CWPO step, 90 and 100% of total organic carbon and residual H2O2 were removed, respectively. Also, the wastewater toxicity was studied using Vibrio fischeri and Sparus aurata larvae. The MBT operational and maintenance costs (O&M) was estimated to be 0.59 € m(-3).

  8. Catalytic wet air oxidation of bisphenol A solution in a batch-recycle trickle-bed reactor over titanate nanotube-based catalysts.

    Science.gov (United States)

    Kaplan, Renata; Erjavec, Boštjan; Senila, Marin; Pintar, Albin

    2014-10-01

    Catalytic wet air oxidation (CWAO) is classified as an advanced oxidation process, which proved to be highly efficient for the removal of emerging organic pollutant bisphenol A (BPA) from water. In this study, BPA was successfully removed in a batch-recycle trickle-bed reactor over bare titanate nanotube-based catalysts at very short space time of 0.6 min gCAT g(-1). The as-prepared titanate nanotubes, which underwent heat treatment at 600 °C, showed high activity for the removal of aqueous BPA. Liquid-phase recycling (5- or 10-fold recycle) enabled complete BPA conversion already at 200 °C, together with high conversion of total organic carbon (TOC), i.e., 73 and 98 %, respectively. The catalyst was chemically stable in the given range of operating conditions for 189 h on stream.

  9. Investigation of the catalytic wet peroxide oxidation of phenol over different types of Cu/ZSM-5 catalyst.

    Science.gov (United States)

    Valkaj, K Maduna; Katovic, A; Zrncević, S

    2007-06-18

    In this work oxidation of phenol with hydrogen peroxide on Cu/ZSM-5 catalysts was studied. The catalysts samples were prepared by two different methods: by ionic exchange from the protonic form of commercial ZSM-5 zeolite, and by direct hydrothermal synthesis. Characterization of the catalysts extends to X-ray diffraction (XRD), while the adsorption techniques were used for the measurement of the specific surface area. The catalytic tests were carried out in a stainless steel Parr reactor in batch operation mode at the atmospheric pressure and the temperature range from 50 to 80 degrees C. The mass ratio of the active metal component on the zeolite was in the range of 1.62-3.24 wt.%. for catalyst prepared by direct hydrothermal synthesis and 2.23-3.52 wt.% for catalyst prepared by ion exchange method. The initial concentration of phenol and hydrogen peroxide was 0.01 and 0.1 mol dm(-3), respectively. The influence of different methods of Cu/ZSM-5 preparation on their catalytic performance was monitored in terms of phenol conversion and degree of metal leached into aqueous solution.

  10. Sewage-sludge-derived carbonaceous materials for catalytic wet hydrogen peroxide oxidation of m-cresol in batch and continuous reactors.

    Science.gov (United States)

    Yu, Yang; Wei, Huangzhao; Yu, Li; Wang, Wei; Zhao, Ying; Gu, Bin; Sun, Chenglin

    2016-01-01

    In this study, four sewage-sludge-derived carbonaceous materials (SWs) were evaluated for their catalytic wet hydrogen peroxide oxidation (CWPO) performance of m-cresol in batch reactor and continuous reactor, respectively. The SWs were produced by carbonization (SW); carbonization with the addition of CaO (CaO-SW); HNO3 pretreatment (HNO3-SW) and steam activation (Activated-SW). The properties of SW catalysts were assessed by thermogravimetric analysis, Brunauer-Emmett-Teller, Fourier Transform Infrared Spectroscopy, X-ray Fluorescence, Scanning electron microscopy, energy dispersive X-ray analysis and zeta potential. The results showed that SW treated by HNO3 (HNO3-SW) had a high conversion of m-cresol in batch reactor and continuous reactor, respectively. Under the conditions of batch reaction (Cm-cresol = 100 mg L(-1), CH2O2 = 15.7 mmol L(-1), initial pH=7.0, 0.5 g L(-1) catalyst, 80°C, 180 min adsorption and 210 min oxidation), the conversion of m-cresol reached 100% and total organic carbon removal was 67.1%. It had a high catalytic activity and stability on the treatment of m-cresol in CWPO for more than 1100 h. Furthermore, a possible reaction mechanism for the oxidation of m-cresol to 2-methyl-p-benzoquinone by CWPO was proposed.

  11. Effect of CeO2 doping on catalytic activity of Fe2O3/gamma-Al2O(3) catalyst for catalytic wet peroxide oxidation of azo dyes.

    Science.gov (United States)

    Liu, Yan; Sun, Dezhi

    2007-05-08

    In order to find a catalyst with high activity and stability for catalytic wet peroxide oxidation (CWPO) process under normal condition, with Fe(2)O(3)/gamma-Al(2)O(3) and Fe(2)O(3)-CeO(2)/gamma-Al(2)O(3) catalysts prepared by impregnation method, the effect of CeO(2) doping on the structure and catalytic activity of Fe(2)O(3)/gamma-Al(2)O(3) for catalytic wet peroxide oxidation of azo dyes at 25 degrees C and atmospheric pressure is evaluated using BET, SEM, XRF, XRD, XPS and chemical analysis techniques, and test results show that, better dispersion and smaller size of Fe(2)O(3) crystal can be achieved by adding CeO(2), and the content of chemisorbed oxygen can also be increased on the surface of catalyst. CWPO experimental results indicate that azo dyes in simulated wastewater can be efficiently mineralized and the catalytic activity of Fe(2)O(3)-CeO(2)/gamma-Al(2)O(3) can be increased by about 10% compared with that of Fe(2)O(3)/gamma-Al(2)O(3) because of the promotion of the structural and redox properties of the ferric oxide by ceria doped. Leaching tests indicate that Fe(2)O(3)/gamma-Al(2)O(3) and Fe(2)O(3)-CeO(2)/gamma-Al(2)O(3) are stable with a negligible amount of irons found in the aqueous solution after reaction for 2h. It can therefore be concluded from results and discussion that in comparison with Fe(2)O(3)/gamma-Al(2)O(3), Fe(2)O(3)-CeO(2)/gamma-Al(2)O(3) is a suitable catalyst, which can effectively degrade contaminants at normal temperature and atmospheric pressure.

  12. Ni/MgAlO regeneration for catalytic wet air oxidation of an azo-dye in trickle-bed reaction.

    Science.gov (United States)

    Vallet, Ana; Ovejero, Gabriel; Rodríguez, Araceli; Peres, José A; García, Juan

    2013-01-15

    Active nickel catalysts (7 wt%) supported over Mg-Al mixed oxides have been recently developed and it has also been demonstrated that they are also highly selective in Catalytic Wet air Oxidation (CWAO) of dyes. CWAO of Chromotrope 2R (C2R) has been studied using a trickle bed reactor employing temperatures from 100 to 180 °C, liquid flow rates from 0.1 to 0.7 mL min(-1) and initial dye concentration from 10 to 50 ppm. Total pressure and air flow were 25 bar and 300 mL min(-1), respectively. The catalyst showed a very stable activity up to 24 h on stream with an average TOC conversion of 82% at 150 °C and T(r)=0.098 g(Ni) min mL(-1). After the reaction, a 1.1 wt% C of carbonaceous deposit is formed onto the catalyst and a diminution of 30% of the surface area with respect of the fresh catalyst was observed. An increase in the space time gave higher TOC conversions up to T(r)=0.098 g(Ni) min mL(-1), attaining values of 80% at 180 °C. The performance of TOC and dye removal does not decrease after two regeneration cycles. In total, a 57 h effective reaction has been carried out with no loss of catalytic activity.

  13. Degradation of cationic red GTL by catalytic wet air oxidation over Mo-Zn-Al-O catalyst under room temperature and atmospheric pressure.

    Science.gov (United States)

    Xu, Yin; Li, Xiaoyi; Cheng, Xiang; Sun, Dezhi; Wang, Xueye

    2012-03-06

    To overcome the drawback of catalytic wet air oxidation (CWAO) with high temperature and high pressure, the catalytic activity of Mo-Zn-Al-O catalyst for degradation of cationic red GTL under room temperature and atmospheric pressure was investigated. Mo-Zn-Al-O catalyst was prepared by coprecipitation and impregnation. XRD, TG-DTG, and XPS were used to characterize the resulting sample. Central composition design using response surface methodology was employed to optimize correlation of factors on the decolorization of cationic red GTL. The results show that the optimal conditions of pH value, initial concentration of dye and catalyst dosage were found to be 4.0, 85 mg/L and 2.72 g/L, respectively, for maximum decolorization of 80.1% and TOC removal of 50.9%. Furthermore, the reaction on the Mo-Zn-Al-O catalyst and degradation mechanism of cationic red GTL was studied by Electron spin resonance (ESR) and GC-MS technique. The possible reaction mechanism was that the Mo-Zn-Al-O catalyst can efficiently react with adsorbed oxygen/H(2)O to produce ·OH and (1)O(2) and finally induce the degradation of cationic red GTL. GC-MS analysis of the degradation products indicates that cationic red GTL was initiated by the cleavage of -N ═ N- and the intermediates were further oxidized by ·OH or (1)O(2).

  14. Factors influencing catalytic wet peroxide oxidation of maleic acid in aqueous phase over copper/micelle templated silica-3-aminopropyltrimethoxysilane catalyst.

    Science.gov (United States)

    Daniel, Lilian; Katima, Jamidu H Y

    2009-01-01

    Catalytic wet peroxide oxidation (CWPO) of initial maleic acid feed concentration (0.005 to 0.03 M) was carried out in a temperature range of 20-50 degrees Celsius, on micelle templated silica-3-aminopropyltrimethoxysilane (MTS-AMP) supported copper catalyst. The influence of various operating parameters such as initial feed concentration of maleic acid, temperature, catalyst loading and the stability of the catalyst were investigated. CWPO reactions were performed in a stirred batch reactor at an atmospheric pressure in the presence of H(2)O(2) as an oxidant. Total conversion of maleic acid into acetic acid was obtained under mild conditions (i.e. atmospheric pressure and 40 degrees Celsius). Blank experiments showed no measurable maleic acid conversion (i.e. only approximately 0.5% conversion of initial maleic acid), indicating that a significant oxidation reaction of maleic acid is enhanced by the presence of a catalyst. Copper on micelle templated silica-3-aminopropyltrimethoxysilane catalyst therefore was found to be suitable for aqueous phase oxidation of maleic acid with 100% of maleic acid conversion.

  15. Carbon and nitrogen removal from glucose-glycine melanoidins solution as a model of distillery wastewater by catalytic wet air oxidation.

    Science.gov (United States)

    Phuong Thu, Le; Michèle, Besson

    2016-06-05

    Sugarcane molasses distillery wastewater contains melanoidins, which are dark brown recalcitrant nitrogenous polymer compounds. Studies were carried out in batch mode to evaluate Pt and Ru supported catalysts in the Catalytic Wet Air Oxidation (CWAO) process of a synthetic melanoidins solution, prepared by stoichiometric reaction of glucose with glycine. The addition of a catalyst slightly improved TOC removal compared with the non-catalytic reaction, and especially promoted the conversion of ammonium produced from organically-bound nitrogen in melanoidins to molecular nitrogen and nitrate. The selectivity to N2 attained 89% in the presence of the Pt catalysts in the reaction conditions used (TOC=2200mgL(-1), TN=280mgL(-1), 0.5g catalyst loaded with 3% metal, 210°C, 70bar total air pressure). To avoid leaching of the active metal by organically-bound nitrogen, the reaction was very efficiently performed in a two-step reaction consisting in WAO to convert nitrogen into ammonium, before the introduction of a catalyst.

  16. CuZnAl Mixed Oxide Catalyst Prepared from Hydrotalcite-like Precursor for Catalytic Wet Oxidation of Phenol%由类水滑石前驱体制备的CuZnAl复合氧化物催化剂催化湿氧化处理苯酚

    Institute of Scientific and Technical Information of China (English)

    孙颖; 杨民; 窦和瑞; 何雨; 王炜; 孙承林

    2003-01-01

    @@ The efficiency of several noble metals for catalytic wet oxidation (CWO) of various pollutants has been demonstrated[1,2]. However, the noble metals are expensive, affecting greatly the economics of the corresponding process.

  17. 陶瓷-活性炭球为载体的CWAO催化剂%Ceramic-activated carbon sphere supported catalyst for catalytic wet air oxidation(CWAO)

    Institute of Scientific and Technical Information of China (English)

    刘卫民

    2012-01-01

    Ceramic-activated carbon sphere as support of ruthenium catalysts were evaluated through the catalytic wet air oxidation(CWAO) of resin effluent.The effects of the preparation conditions,such as ceramic-activated carbon sphere support,Ru loading,macro-pore diameter of ceramic sphere,etc.on the catalytic activity and stability were investigated.The results show that the catalytic activity varies according to the following order: Ru/KC-120 Ru/KC-80 Ru/KC-60 KC-120 without catalysts.It is found that the 3% Ru/KC-120 catalyst displayed highest stability in the CWAO of resin effluent during 120 min.Chemical oxygen demand(COD) and phenol removal were about 91% and 96%,respectively,at the reaction temperature of 200℃,oxygen pressure of 1.5 MPa.%以陶瓷-活性炭球为载体制备载Ru催化剂,用于催化湿式氧化(CWAO)法处理酚醛树脂废水,考察了陶瓷-活性炭球载体、Ru负载量和陶瓷球宏孔孔径等对催化剂的催化活性和稳定性的影响。实验结果表明,催化剂催化活性的顺序为:Ru/KC-120〉Ru/KC-80〉Ru/KC-60〉KC-120〉无催化剂。在200℃,氧气分压为1.5 MPa等条件下,催化湿式氧化酚醛树脂废水,3%Ru/KC-120催化剂表现良好的催化活性与稳定性,在120 min内,COD和苯酚去除率分别达到91%和96%。

  18. Catalytic wet air oxidation of phenol over CeO2-TiO2 catalyst in the batch reactor and the packed-bed reactor.

    Science.gov (United States)

    Yang, Shaoxia; Zhu, Wanpeng; Wang, Jianbing; Chen, Zhengxiong

    2008-05-30

    CeO2-TiO2 catalysts are prepared by coprecipitation method, and the activity and stability in the catalytic wet air oxidation (CWAO) of phenol are investigated in a batch reactor and packed-bed reactor. CeO2-TiO2 mixed oxides show the higher activity than pure CeO2 and TiO2, and CeO2-TiO2 1/1 catalyst displays the highest activity in the CWAO of phenol. In a batch reactor, COD and TOC removals are about 100% and 77% after 120 min in the CWAO of phenol over CeO2-TiO2 1/1 catalyst at reaction temperature of 150 degrees C, the total pressure of 3 MPa, phenol concentration of 1000 mg/L, and catalyst dosage of 4 g/L. In a packed-bed reactor using CeO2-TiO2 1/1 particle catalyst, over 91% COD and 80% TOC removals are obtained at the reaction temperature of 140 degrees C, the air total pressure of 3.5 MPa, the phenol concentration of 1000 mg/L for 100 h continue reaction. Leaching of metal ions of CeO2-TiO2 1/1 particle catalyst is very low during the continuous reaction. CeO2-TiO2 1/1 catalyst exhibits the excellent activity and stability in the CWAO of phenol.

  19. Microwave assisted catalytic wet air oxidation of H-acid in aqueous solution under the atmospheric pressure using activated carbon as catalyst.

    Science.gov (United States)

    Zhang, Yaobin; Quan, Xie; Chen, Shuo; Zhao, Yazhi; Yang, Fenglin

    2006-09-01

    Catalytic wet air oxidation (CWAO) is a promising method for the treatment of heavily contaminated wastewater. However, its application is restricted due to severe operation conditions (high pressure and high temperature). A microwave (MW) assisted oxidation method was investigated aiming to treat heavily contaminated wastewater under milder conditions. H-acid (1-amino-8-naphthol-3, 6-disulfonic acid) was selected as target compound to evaluate the performance of this novel process. The removal of H-acid and TOC (total organic carbon) for H-acid solution of 3000 mg/L reached as high as 92.6% in 20 min and 84.2% in 60 min, respectively under optimal conditions. The existence of activated carbon and oxygen proved to be critical for effective treatment. The activated carbon acted not only as a catalyst for H-acid decomposition, but also as a special material for the absorption of MW energy. Air was supplied to the reactor as an oxygen source at constant flows. The amino group in H-acid was converted ultimately into nitrate, and sulfonic group into sulfate. This observation gave an evidence of H-acid mineralization although other organic intermediates were unable to be determined. The value of BOD(5)/COD (ratio of 5d biochemical oxygen demand to chemical oxygen demand) increased from 0.008 to 0.467 indicating a significant improvement of biodegradability for the solution, which is beneficial for the further biological treatment of the wastewater.

  20. Catalytic behaviour and copper leaching of Cu0.10Zn0.90Al1.90Fe0.10O4 spinel for catalytic wet air oxidation of phenol.

    Science.gov (United States)

    Xu, Aihua; Sun, Chenglin

    2012-06-01

    A Cu0.10Zn0.90Al1.90Fe0.10O4 spinel catalyst prepared by the sol-gel method was tested for catalytic wet air oxidation (CWAO) of phenol. The catalyst showed high activity for phenol degradation. During successive test at 170 degrees C, 100% phenol conversion and 95% chemical oxygen demand (COD) removal were observed. Results from scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) indicated that the catalyst structure remained unchanged during reaction. From the analysis of temperature programmed reduction (TPR), diffuse reflectance UV-Vis spectra (DR UV-Vis) and activity assay at basic solution pH, it can be suggested that the highly dispersed copper ions on the catalyst surface were almost completely dissolved into the reaction solution, whereas the tetra-coordinated copper ions were not only stable against leaching but also active towards phenol degradation.

  1. Catalytic wet air oxidation of phenol over RuO2/γ-Al2O3 catalyst

    Institute of Scientific and Technical Information of China (English)

    YANG Shaoxia; FENG Yujie; CAI Weimin; ZHU Wanpeng; JIANG Zhanpeng; WAN Jiafeng

    2004-01-01

    A kind of CWAO catalyst, RuO2/γ-Al2O3, was prepared by dipping Al2O3 into the aqueous solution of RuCl3.3H2O. XRD, SEM and TEM were used to determine the catalytic structure. Influences of the calcination temperature,the initial pH of the feed solution and degradation temperature on the activity of the RuO2/γ-Al2O3 catalyst were investigated and the reaction mechanism was preliminarily studied. Results showed that uniform dispersion of RuO2 crystallites was observed on the surface of the catalyst. The activity of the catalyst was higher at calcination temperature of 300℃ for 3 h and the particle reunion occurred and some large RuO2 crystallites were abundant at high calcination temperature of 500℃. The activity of the catalyst was better in the acid solution than in the alkaline solution. Increasing degradation temperature and using the catalyst could shorten the induction periods so that the phenol and COD removal were increased. For RuO2/γ-Al2O3 catalyst, the phenol and COD removal were respectively 98% and 80% in a temperature of 150℃, pH of 5.6 and pressure of 3 MPa after a 2 h reaction. This indicated that Ru/γ-Al2O3 catalyst had good activity.

  2. APPLICATION OF MAGNETIC CATALYSTS TO THE CATALYTIC WET PEROXIDE OXIDATION (CWPO OF INDUSTRIAL WASTEWATER CONTAINING NON BIODEGRADABLE ORGANIC POLLUTANTS

    Directory of Open Access Journals (Sweden)

    Macarena Munoz

    2014-03-01

    Full Text Available A new ferromagnetic -Al2O3-supported iron catalyst has been prepared and its activity and stability have been compared with those of a previous iron-based conventional catalyst and with the traditional homogeneous Fenton process in the oxidation of chlorophenols. The use of solid catalysts improved significantly the efficiency on the use of H2O2, achieving higher mineralization degrees. The magnetic catalyst led to significantly higher oxidation rates than the conventional one due to the presence of both Fe (II and Fe (III. On the other hand, the use of a catalyst with magnetic properties is of interest, since it allows rapid recovery after treatment using a magnetic field. Moreover, it showed a high stability with fairly low iron leaching (<1% upon CWPO runs. An additional clear advantage of this new catalyst is its easy separation and recovery from the reaction medium by applying an external magnetic field.

  3. Comparative study of supported CuOx and MnOx catalysts for the catalytic wet air oxidation of β-naphthol

    Science.gov (United States)

    Liu, Jie; Yu, Chaoying; Zhao, Peiqing; Chen, Gexin

    2012-09-01

    MnOx/nano-TiO2, MnOx/Al2O3-TiO2 (Al-Ti), CuOx/nano-TiO2 and CuOx/Al-Ti were prepared and their application in catalytic wet air oxidation (CWAO) of β-naphthol were investigated. The catalysts had been characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and temperature-programmed reduction (TPR) measurements. Phases of CuO, Cu2O, CuAl2O4, MnO2 and Mn2O3 could be found on the surface of the aforementioned catalysts. Significant differences in activities were observed among the prepared catalysts. Compared to CuOx/nano-TiO2, the combined action of highly dispersed CuO as well as CuAl2O4 of CuOx/Al-Ti helped to achieve higher activity for the CWAO of β-naphthol, while the Cu2O component lead to lower efficiency of CuOx/nano-TiO2. On the surface of MnOx/nano-TiO2, both the larger amount of highly dispersed MnO2 and the stronger electron transfer between MnO2 and Mn2O3 were helpful to promote the activity for the degradation of β-naphthol. However, the higher amount of bulk MnO2 and the weaker electron transfer for MnOx/Al-Ti were unfavorable to increase its efficiency. Among the four catalysts as-prepared, MnOx/nano-TiO2 was identified the highest activity with 93.7% COD removal.

  4. The optimization, kinetics and mechanism of m-cresol degradation via catalytic wet peroxide oxidation with sludge-derived carbon catalyst.

    Science.gov (United States)

    Wang, Yamin; Wei, Huangzhao; Zhao, Ying; Sun, Wenjing; Sun, Chenglin

    2017-03-15

    The sludge-derived carbon catalyst modified with 0°C HNO3 solution was tested in catalytic wet peroxide oxidation of m-cresol (100mgL(-1)) with systematical mathematical models and theoretical calculation for the first time. The reaction conditions were optimized by response surface methodology (RSM) as T=60°C, initial pH=3.0, C0,H2O2(30%)=1.20gL(-1) (lower than the stoichiometric amount of 1.80gL(-1)) and Ccat=0.80gL(-1), with 96% of m-cresol and 47% of TOC converted after 16min and 120min of reaction, respectively, and ξ (mg TOC/g H2O2 fed)=83.6mg/g. The end time of the first kinetic period in m-cresol model was disclosed to be correlated with the fixed residue m-cresol concentration of about 33%. Furthermore, the kinetic constants in models of TOC and H2O2 exactly provide convincing proof of three-dimensional response surfaces analysis by RSM, which showed the influence of the interaction between organics and H2O2 on effective H2O2 utilization. The reaction intermediates over time were identified by gas chromatography-mass spectrometer based on kinetics analysis. Four degradation pathways for m-cresol were proposed, of which the possibility and feasibility were well proven by frontier molecule orbital theory and atomic charge distribution via density functional theory method.

  5. Abatement of phenolic mixtures by catalytic wet oxidation enhanced by Fenton's pretreatment: effect of H2O2 dosage and temperature.

    Science.gov (United States)

    Santos, A; Yustos, P; Rodriguez, S; Simon, E; Garcia-Ochoa, F

    2007-07-31

    Catalytic wet oxidation (CWO) of a phenolic mixture containing phenol, o-cresol and p-cresol (500mg/L on each pollutant) has been carried out using a commercial activated carbon (AC) as catalyst, placed in a continuous three-phase reactor. Total pressure was 16 bar and temperature was 127 degrees C. Pollutant conversion, mineralization, intermediate distribution, and toxicity were measured at the reactor outlet. Under these conditions no detoxification of the inlet effluent was found even at the highest catalyst weight (W) to liquid flow rate (Q(L)) ratio used. On the other hand, some Fenton Runs (FR) have been carried out in a batch way using the same phenolic aqueous mixture previously cited. The concentration of Fe(2+) was set to 10mg/L. The influence of the H(2)O(2) amount (between 10 and 100% of the stoichiometric dose) and temperature (30, 50, and 70 degrees C) on phenols conversion, mineralization, and detoxification have been analyzed. Phenols conversion was near unity at low hydrogen peroxide dosage but mineralization and detoxification achieved an asymptotic value at each temperature conditions. The integration of Fenton reagent as pretreatment of the CWO process remarkably improves the efficiency of the CWO reactor and allows to obtain detoxified effluents at mild temperature conditions and relatively low W/Q(L) values. For a given phenolic mixture a temperature range of 30-50 degrees C in the Fenton pretreatment with a H(2)O(2) dosage between 20 and 40% of the stoichiometric amount required can be proposed.

  6. Integrated catalytic wet air oxidation and aerobic biological treatment in a municipal WWTP of a high-strength o-cresol wastewater.

    Science.gov (United States)

    Suarez-Ojeda, María Eugenia; Guisasola, Albert; Baeza, Juan A; Fabregat, Azael; Stüber, Frank; Fortuny, Agustí; Font, Josep; Carrera, Julián

    2007-02-01

    This study examines the feasibility of coupling a Catalytic Wet Air Oxidation (CWAO), with activated carbon (AC) as catalyst, and an aerobic biological treatment to treat a high-strength o-cresol wastewater. Two goals are pursued: (a) To determine the effect of the main AC/CWAO intermediates on the activated sludge of a municipal WasteWater Treatment Plant (WWTP) and (b) To demonstrate the feasibility of coupling the AC/CWAO effluent as a part of the influent of a municipal WWTP. In a previous study, a high-strength o-cresol wastewater was treated by AC/CWAO aiming to establish the distribution of intermediates and the biodegradability enhancement. In this work, the biodegradability, toxicity and inhibition of the most relevant intermediates detected in the AC/CWAO effluent were determined by respirometry. Also, the results of a pilot scale municipal WWTP study for an integrated AC/CWAO-aerobic biological treatment of this effluent are presented. The biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) of main AC/CWAO intermediates allowed the classification of the intermediates into readily biodegradable, inert or toxic/inhibitory compounds. This detailed study, allowed to understand the biodegradability enhancement exhibited by an AC/CWAO effluent and to achieve a successful strategy for coupling the AC/CWAO step with an aerobic biological treatment for a high-strength o-cresol wastewater. Using 30%, as COD, of AC/CWAO effluent in the inlet to the pilot scale WWTP, the integrated AC/CWAO-biological treatment achieved a 98% of total COD removal and, particularly, a 91% of AC/CWAO effluent COD removal without any undesirable effect on the biomass.

  7. Cu/TiO2催化湿式氧化甲醛废水%CATALYTIC WET AIR OXIDATION OF FORMALDEHYDE BY Cu/TiO2

    Institute of Scientific and Technical Information of China (English)

    李艳; 张科军; 杜青; 章飞芳; 顾江萍; 梁鑫淼

    2012-01-01

    Formaldehyde wastewater would destroy ecological system and influence human health when discharging the wastewater into the water body. This study mainly focused on the degradation of formaldehyde wastewater by catalytic wet air oxidation (CWAO) with the self-prepared Cu/TiO2 as catalyst. After optimizing the reaction conditions, Total Organic Carbon (TOC) removal reached 85% and the toss of Cu2+ and Ti4+ was very low under 180X?, pH=5, 0.5MPa with 6 g/L catalyst after 2 h reaction. Finally, mcthanol in formaldehyde solution and the degradation products formic acid were detected Results demonstrated that CWAO with Cu/TiO] as catalyst could remove formaldehyde in wastewater efficiently.%甲醛废水排放入水体后,破坏生态系统,影响人们的身体健康.考察了以自制的Cu/TiO2为催化剂,用催化湿式氧化的方法降解甲醛废水的情况.通过优化反应条件,在180℃、pH=5、0.5 MPa、催化剂量为6g/L时反应2h,TOC的去除率高达85%且Cu2+和TP4+基本没有流失.此外还检测了甲醛溶液中甲醇变化情况和经处理后甲醛废水的降解产物甲酸.结果表明,以Cu/TiO2为催化剂的催化湿式氧化能有效地降解甲醛废水.

  8. 湿法烟气脱硫环境下亚硫酸钙的非催化氧化%NON-CATALYTIC OXIDATION KINETICS OF CALCIUM SULFITE IN WET LIMESTONE-GYPSUM FGD PROCESS

    Institute of Scientific and Technical Information of China (English)

    杜谦; 吴少华; 朱群益; 秦裕琨

    2003-01-01

    A study on non-catalytic oxidation kinetics of calcium sulfite is presented under typical conditions of wet flue gas desulfurization (FGD)in this paper. A laboratory-scale mechanically stirred tank reactor is used with continuous feed of both gas and liquid phase. The results show that increasing CaSO3 load from a lower value, the reaction rate increases and is limited by solid sulfite dissolution. The oxidation rate limitation is observed at loads exceeding certain concentration. The rate limitation is possibly caused by solid sulfite solubility or oxygen gas-liquid diffusion. The experimental conclusions are useful for design and operation of the holding tank in forced-oxidation wet FGD.

  9. Inhibiting Wet Oxidation of Ammonia

    Science.gov (United States)

    Onisko, D. B. L.

    1985-01-01

    Simple modification of wet-oxidation process for treating organicwaste reduces loss of fixed nitrogen, potentially valuable byproduct of process. Addition of sufficient sulfuric acid to maintain reaction pH below 3 greatly reduces oxidation of ammonia to free nitrogen. No equipment modification required.

  10. 湿式催化氧化催化剂及其活性组分流失控制的研究%Research on Catalyst and Control of Active Catalyst Components Lossing in Catalytic Wet Air Oxidation

    Institute of Scientific and Technical Information of China (English)

    王锐; 尹华强; 李建军; 郭家秀; 任吉萍

    2011-01-01

    Catalytic Wet Air Oxidation is an efficient and feasible technology for high concentration and refractory organic wastewater treatment. But the lossing of the active components of catalyst induced decreased catalytic activity, shorter life, higher investment costs, etc. in industrial operation In the paper, the catalytic wet oxidation technology and catalyst applications were described. What's more, the loss mechanism of the catalyst, affecting factors and methods to improve catalyst stability were emphatically illustrated, at the same time, related experiments and the results obtained are introduced.%湿式催化氧化技术是一种处理高浓度、难降解有机废水的高效、可行的技术,但是在使用过程中,活性组分易流失,在工业化应用中带来催化活性降低、使用寿命变短、投资成本增高等问题。文中介绍了湿式催化氧化技术及催化剂研究,着重讲述催化剂流失机理、影响因素以及提高催化剂稳定的方法,同时对相关实验和成果也做了介绍。

  11. Thermal and sonochemical synthesis of porous (Ce,Zr)O2 mixed oxides from metal β-diketonate precursors and their catalytic activity in wet air oxidation process of formic acid.

    Science.gov (United States)

    Cau, Camille; Guari, Yannick; Chave, Tony; Larionova, Joulia; Nikitenko, Sergey I

    2014-07-01

    Porous (Ce0.5Zr0.5)O2 solid solutions were prepared by thermolysis (T=285 °C) or sonolysis (20 kHz, I=32 W cm(-2), Pac=0.46 W mL(-1), T=200 °C) of Ce(III) and Zr(IV) acetylacetonates in oleylamine or hexadecylamine under argon followed by heat treatment of the precipitates obtained in air at 450 °C. Transmission Electron Microscopy images of the samples show nanoparticles of ca. 4-6 nm for the two synthetic approaches. The powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray and μ-Raman spectroscopy of solids obtained after heat treatment indicate the formation of (Ce0.5Zr0.5)O2 solid solutions with a metastable tetragonal crystal structure for the two synthetic routes. The specific surface area of the samples varies between 78 and 149 m(2) g(-1) depending on synthesis conditions. The use of Barrett-Joyner-Halenda and t-plot methods reveal the formation of mixed oxides with a hybrid morphology that combines mesoporosity and microporosity regardless of the method of preparation. Platinum nanoparticles were deposited on the surface of the mixed oxides by sonochemical reduction of Pt(IV). It was found that the materials prepared by sonochemistry exhibit better resistance to dissolution during the deposition process of platinum. X-ray photoelectron spectroscopy analysis shows the presence of Pt(0) and Pt(II) on the surface of mixed oxides. Porous (Ce0.5Zr0.5)O2 mixed oxides loaded with 1.5%wt. platinum exhibit high activity in catalytic wet air oxidation of formic acid at 40 °C.

  12. Total catalytic wet oxidation of phenol and its chlorinated derivates with MnO2/CeO2 catalyst in a slurry

    Directory of Open Access Journals (Sweden)

    A. J. Luna

    2009-09-01

    Full Text Available In the present work, a synthetic effluent of phenol was treated by means of a total oxidation process-Catalyzed Wet Oxidation (CWO. A mixed oxide of Mn-Ce (7:3, the catalyst, was synthesized by co-precipitation from an aqueous solution of MnCl2 and CeCl3 in a basic medium. The mixed oxide, MnO2/CeO2, was characterized and used in the oxidation of phenol in a slurry reactor in the temperature range of 80-130ºC and pressure of 2.04-4.76 MPa. A phenol solution containing 2.4-dichlorophenol and 2.4-dichlorophenoxyacetic acid was also degraded with good results. A lumped kinetic model, with two parallel reaction steps, fits precisely with the integrated equation and the experimental data. The kinetic parameters obtained are in agreement with the Arrhenius equation. The activation energies were determined to be 38.4 for the total oxidation and 53.4 kJ/mol for the organic acids formed.

  13. Total catalytic wet oxidation of phenol and its chlorinated derivates with MnO{sub 2}/CeO{sub 2} catalyst in a slurry

    Energy Technology Data Exchange (ETDEWEB)

    Luna, A.J. [Instituto Nacional de Propriedade Industrial (INPI), Rio de Janeiro, RJ (Brazil)], e-mail: airtonj@inpi.gov.br; Rojas, L.O.A.; Sousa, J.F. de [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. of Chemical Engineering; Melo, D.M.A. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. of Chemistry; Benachour, M. [Universidade Federal de Pernambuco (UFPE)Recife, PE (Brazil). Dept. of Chemical Engineering

    2009-07-15

    In the present work, a synthetic effluent of phenol was treated by means of a total oxidation process - Catalyzed Wet Oxidation (CWO). A mixed oxide of Mn-Ce (7:3), the catalyst, was synthesized by co-precipitation from an aqueous solution of MnCl{sub 2} and CeCl{sub 3} in a basic medium. The mixed oxide, MnO{sub 2}/CeO{sub 2}, was characterized and used in the oxidation of phenol in a slurry reactor in the temperature range of 80-130 deg C and pressure of 2.04-4.76 MPa. A phenol solution containing 2.4-dichlorophenol and 2.4- dichlorophenoxyacetic acid was also degraded with good results. A lumped kinetic model, with two parallel reaction steps, fits precisely with the integrated equation and the experimental data. The kinetic parameters obtained are in agreement with the Arrhenius equation. The activation energies were determined to be 38.4 for the total oxidation and 53.4 kJ/mol for the organic acids formed. (author)

  14. Pretreatment of Cartap Wastewater by Catalytic Wet Air Oxidation%湿式催化氧化预处理杀螟丹农药废水的研究

    Institute of Scientific and Technical Information of China (English)

    袁美和; 舒和英; 王学文; 陈征宇; 袁聪

    2015-01-01

    Inhomogeneous catalytic wet air oxidation was applied to pretreat wastewater of cartap using Mn/Ce mixed oxide cata-lysts. The influence of reaction temperature, reaction pressure, water distribution pH value, catalytic agent dose on the treatment ef-fect of cartap wastewater was observed and studied, the better technologic conditions were obtained based on our study. The result showed that the removal rate of COD would up to 92.5% when the reaction temperature was 180℃, reaction pressure was 1.3MPa, solution pH value was 9, catalytic agent dose was 7g/L.%以Mn/Ce复合氧化物催化剂的非均相的湿式催化氧化处理杀螟丹生产废水.考察了反应温度、反应压力、配水pH值、催化剂用量等因素对杀螟丹农药废水处理效果的影响,并依此确定较佳的工艺条件.结果表明,当反应温度为180℃,反应压力为1.3MPa,溶液pH值为9,催化剂用量为7g·L-1,在此条件下,COD的去除率达到92.5%以上.

  15. 湿式催化氧化法中催化剂的选择和实验条件的优化%Selection of Catalysts and Optimization of Experimental Condition in Catalytic Wet Oxidation

    Institute of Scientific and Technical Information of China (English)

    董岳刚; 严莲荷; 周进; 周申范

    2001-01-01

    本文研究了湿式催化氧化法(Catalytic Wet Oxidation,CWO)处理高浓度有机水中催化剂的选择和实验条件的优化.在优选催化剂中共计制备十四种催化剂并进行实验,得出Ce、Cu复合催化剂活性最高.在实验条件优化中根据对正交实验数据结果进行的极差分析发现CWO法处理废水时的各影响因素的主次关系是:H2O2用量>Ce、Cu复合催化剂用量>反应时间.

  16. Research Progress on Catalytic Wet Air Oxidation for Treating Highly Concentrated Wastewater%催化湿式氧化处理高浓度有机废水的研究进展

    Institute of Scientific and Technical Information of China (English)

    李云; 袁志文

    2013-01-01

    The reaction principle,technical flow and catalyst research progress of catalytic wet air oxidation technology were introduced.Its application in wastewater treatment was analyzed and summarized.The problems existing in current application were reviewed,and some pieces of advice about the research were proposed.%介绍了催化湿式氧化技术的反应原理、工艺流程以及近些年来不同种催化剂的研究进展,分析和归纳了催化湿式氧化技术在污水处理中的应用现状,对实际应用中出现的问题进行了总结,并提出了一些建议.

  17. Wet oxidation of a spacecraft model waste

    Science.gov (United States)

    Johnson, C. C.; Wydeven, T.

    1985-01-01

    Wet oxidation was used to oxidize a spacecraft model waste under different oxidation conditions. The variables studied were pressure, temperature, duration of oxidation, and the use of one homogeneous and three heterogeneous catalysts. Emphasis is placed on the final oxidation state of carbon and nitrogen since these are the two major components of the spacecraft model waste and two important plant nutrients.

  18. Catalytic wet oxidation of phenol by using Fe/active carbon catalysts%Fe/AC催化剂对苯酚模拟废水的催化湿式氧化

    Institute of Scientific and Technical Information of China (English)

    赵建军

    2011-01-01

    采用浸渍法制备了Fe/AC(活性炭)系列催化剂;用苯酚的湿式催化氧化作为模型反应,研究了催化剂的催化性能.结果表明,在pH=3.0,常压和90 ℃的反应条件下,Fe(5%)/AC催化剂具有相对较优的对苯酚废水的催化氧化活性,该催化剂对苯酚模拟废水的化学需氧量(COD)去除率约为70%.通过催化剂表征,表明该催化剂活性与其表面性质存在一定的关系.%The catalytic wet air oxidation ( CWAO ) of phenol was investigated in the presence of Fe/AC ( active carbon) catalysts, which were obtained by conventional impregnation method. The experiment results showed that the phenol removal was about 70% with addition of the Fe(5% )/AC catalyst at pH = 3.0, 90 ℃ and normal atmospheric pressure. In this catalyst, characterization data showed a very good relation between the catalytic activity and the surface properties of the catalysts.

  19. Electro Catalytic Oxidation (ECO) Operation

    Energy Technology Data Exchange (ETDEWEB)

    Morgan Jones

    2011-03-31

    The power industry in the United States is faced with meeting many new regulations to reduce a number of air pollutants including sulfur dioxide, nitrogen oxides, fine particulate matter, and mercury. With over 1,000 power plants in the US, this is a daunting task. In some cases, traditional pollution control technologies such as wet scrubbers and SCRs are not feasible. Powerspan's Electro-Catalytic Oxidation, or ECO{reg_sign} process combines four pollution control devices into a single integrated system that can be installed after a power plant's particulate control device. Besides achieving major reductions in emissions of sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), fine particulate matter (PM2.5) and mercury (Hg), ECO produces a highly marketable fertilizer, which can help offset the operating costs of the process system. Powerspan has been operating a 50-MW ECO commercial demonstration unit (CDU) at FirstEnergy Corp.'s R.E. Burger Plant near Shadyside, Ohio, since February 2004. In addition to the CDU, a test loop has been constructed beside the CDU to demonstrate higher NOx removal rates and test various scrubber packing types and wet ESP configurations. Furthermore, Powerspan has developed the ECO{reg_sign}{sub 2} technology, a regenerative process that uses a proprietary solvent to capture CO{sub 2} from flue gas. The CO{sub 2} capture takes place after the capture of NOx, SO{sub 2}, mercury, and fine particulate matter. Once the CO{sub 2} is captured, the proprietary solution is regenerated to release CO{sub 2} in a form that is ready for geological storage or beneficial use. Pilot scale testing of ECO{sub 2} began in early 2009 at FirstEnergy's Burger Plant. The ECO{sub 2} pilot unit is designed to process a 1-MW flue gas stream and produce 20 tons of CO{sub 2} per day, achieving a 90% CO{sub 2} capture rate. The ECO{sub 2} pilot program provided the opportunity to confirm process design and cost estimates, and prepare for large

  20. CATALYTIC ENANTIOSELECTIVE ALLYLIC OXIDATION

    NARCIS (Netherlands)

    Rispens, Minze T.; Zondervan, Charon; Feringa, Bernard

    1995-01-01

    Several chiral Cu(II)-complexes of cyclic amino acids catalyse the enantioselective allylic oxidation of cyclohexene to cyclohexenyl esters. Cyclohexenyl propionate was obtained in 86% yield with e.e.'s up to 61%.

  1. Advanced methods for the treatment of organic aqueous wastes: wet air oxidation and wet peroxide oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Debellefontaine, Hubert; Chakchouk, Mehrez; Foussard, Jean Noel [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France). Dept. de Genie des Procedes Industriels; Tissot, Daniel; Striolo, Phillipe [IDE Environnement S.A., Toulouse (France)

    1993-12-31

    There is a growing concern about the problems of wastes elimination. Various oxidation techniques are suited for elimination of organic aqueous wastes, however, because of the environmental drawbacks of incineration, liquid phase oxidation should be preferred. `Wet Air Oxidation` and `Wet Peroxide Oxidation`are alternative processes which are discussed in this paper. 17 refs., 13 figs., 4 tabs.

  2. 湿式氧化法处理工业废水的实验教学设计%Experimental teaching design of treating industrial wastewater by catalytic wet air oxidation

    Institute of Scientific and Technical Information of China (English)

    李道圣; 王小聪; 占伟; 康建雄; 刘冬啟

    2012-01-01

    To combine the experimental teaching with scientific research tightly, an experiment was designed to treat industrial wastewater by catalytic wet air oxidation. The impacts on the oxidation efficiencies of the type of the catalysts, reaction temperature, and catalyst contents were studied, and the bioability of the wastewater after treatment was also investigated. This proposal provided the students with a better understanding and mastering of the detection principle, the operation procedure and the analysis method.%为实现实验教学与科研工作的紧密结合,该教学设计采用催化湿式氧化技术对工业废水进行处理.通过研究催化剂种类、反应温度和催化剂的投加量对处理效果的影响、考察处理后废水的可生化性变化,使学生更好地理解和掌握催化湿式氧化技术处理工业废水的基本原理、操作步骤及结果分析方法.

  3. Study of Cu-Mn-Fe Compound in Wet Catalytic Oxidation of Phenol Wastewater%Cu-Mn-Fe催化湿式氧化苯酚废水的研究

    Institute of Scientific and Technical Information of China (English)

    秦传高; 崔瑞宇; 高迎明; 乔新平

    2015-01-01

    The Cu-Mn-Fe composite oxide catalysts were synthesized by co-precipitation method. The activity of the catalysts in wet catalytic oxidation of phenol wastewater were investigated and the optimum conditions were determined. The results showed that the optimum preparation conditions were as followed: the amount of catalyst addition was 0.7g/L, the amount of 30%H2O2addition was 50 mL/L, the treatment temperature was 55℃ and the treatment time was 2h. The highest removal rate of COD of phenol wastewater was 71.9%.%采用共沉淀法制取Cu-Mn-Fe复合金属氧化物,考察其催化湿式氧化苯酚废水的活性,并确定最佳工艺条件。结果表明,在催化剂用量为0.7g·L-1,30%过氧化氢用量为50mL·L-1,反应时间2h,反应温度55℃的条件下,苯酚废水的COD去除率最高可达71.9%。

  4. 催化湿式过氧化氢氧化预处理有机磷农药废水的研究%Study on catalytic wet hydrogen peroxide oxidation for the pretreatment of organophosphorus pesticide wastewater

    Institute of Scientific and Technical Information of China (English)

    陈春燕

    2015-01-01

    以自制Fe2O3-CeO2/γ-Al2O3为催化剂,采用催化湿式过氧化氢氧化法(CWPO)预处理有机磷农药废水,通过单因素和正交试验研究了过氧化氢投加量、起始pH、反应温度和反应时间对COD的去除效果及影响规律。结果表明,反应最优条件为H2O2投加量2 mL、起始pH=5、反应温度80℃、反应时间40 min,在此条件下COD的去除率可达85.8%,可生化性提高到B/C=0.43。运用一级动力学模型和Arrhenius经验公式,建立了催化湿式过氧化氢氧化降解COD的动力学方程。%With self-made Fe2O3-CeO2/γ-Al2O3 as catalyst,the phosphate pesticide wastewater has been pretreated by catalytic wet peroxide oxidation(CWPO) process. The removing effect and influencing rules of the factors including dosage of H2O2,initial pH value,reaction temperature,and reaction time on the removing rate of COD are investigated through single factor experiments and orthogonal tests. The results show that the optimal COD removing efficiency is more than 85.8% and biodegradability of wastewater can be up to B/C=0.43,under the following conditions:the dosage of H2O2 is 2 mL,pH value 5,reaction temperature 80℃and reaction time 40 min. The kinetics equation of catalytic wet peroxide oxidation of COD degradation has been established by using the first-order kinetics model and Arrhenius empirical formula.

  5. Selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-31

    In the combustion of fossil fuels, the principal source of nitrogen oxides is nitrogen bound in the fuel structure. In gasification, a large part of fuel nitrogen forms NH{sub 3}, which may form nitrogen oxides during gas combustion. If NH{sub 3} and other nitrogen species could be removed from hot gas, the NO emission could be considerably reduced. However, relatively little attention has been paid to finding new means of removing nitrogen compounds from the hot gasification gas. The possibility of selectively oxidizing NH{sub 3} to N{sub 2} in the hot gasification has been studied at VTT Energy. The largest NH{sub 3} reductions have been achieved by catalytic oxidation on aluminium oxides. (author) (4 refs.)

  6. Research Progress on Catalyst of Catalytic Wet Air Oxidation for Phenol Wastewater%催化湿式氧化含酚废水催化剂的研究进展

    Institute of Scientific and Technical Information of China (English)

    李荣; 段大勇

    2015-01-01

    Catalytic wet air oxidation ( CWAO ) technology is an effective technology for phenol wastewater, developing and selecting suitable catalyst is a key factor of CWAO. Active components were briefly introduced and CWAO catalyst for phenol wastewater treatment was carried out. It was specified that selecting the best combination of suitable active component and carrier of CWAO catalyst can improve the efficiency of phenol degradation, developing the catalyst with high activity, stability and cheap characteristics was the development direction of CWAO for phenol wastewater treatment.%催化湿式氧化技术是处理含酚废水的有效技术,此技术的关键是合适催化剂的研制和选用。本文对催化湿式氧化含酚废水催化剂的活性组分、载体等情况进行了综述,并指出选用最佳活性组分和载体的组合能够提高催化剂对苯酚的降解效率,研发高活性、高稳定性及廉价的催化剂是催化湿式氧化含酚废水的发展方向。

  7. Wet Oxidation of PVA-Containing Desizing Wastewater

    Institute of Scientific and Technical Information of China (English)

    雷乐成; 汪大翬

    2000-01-01

    Polyvinyl alcohol (PVA)-containing desizing wastewater was treated by various wet oxidation methods.Parameters such as reaction temperature, initial solution pH, and the dosage of H2O2 were investigated in terms of chemical oxygen demand (CODcr) and total organic carbon (TOC) removal rate. Up to 90% of the initial CODcr was removed by wet air oxidation(WAO) at 270℃ with stoichiometric oxygen supply, while at temperature of 200℃, the CODcr removal rate was found to be 80%. Similar results were obtained by Promoted WAO (PWAO) and wet peroxide oxidation(WPO) at a lower temperature of 150℃. Reaction temperature was found to have a significant effect on the oxidation performance for all the methods. Initial solution pH was observed to play a significant role in PWAO and WPO where H2O2 was employed. Comparison of WAO, CWAO(catalytic wet air oxidation), PWAO and WPO shows that the rate of CODcr removal increases in the order: WAO, CWAO, PWAO and WPO.

  8. Development studies of a novel wet oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, T.W.; Dhooge, P.M. [Delphi Research, Inc., Albuquerque, NM (United States)

    1995-10-01

    Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. Incineration and similar combustive processes do not appear to be viable options for treatment of these waste streams due to various considerations. The objective of this project is to develop a novel catalytic wet oxidation process for the treatment of multi-component wastes. The DETOX process uses a unique combination of metal catalysts to increase the rate of oxidation of organic materials.

  9. Catalytic polarographic currents of oxidizers

    Energy Technology Data Exchange (ETDEWEB)

    Zajtsev, P.M.; Zhdanov, S.I.; Nikolaeva, T.D. (Vsesoyuznyj Nauchno-Issledovatel' skij Inst. Khimicheskikh Reaktivov i Osobo Chistykh Veshchestv, Moscow (USSR))

    1982-06-01

    The state of theory and practice of an important direction in polarography, i.e. catalytic currents of oxidizers-substrates that have found a wide application in the development of highly sensitive methods of determination of a large number of substrates, catalysts and polarographically nonactive ligands, is considered. Transition and some non-transition elements serve as catalysts of reactions that cause catalytic polarographic currents of substrates. Catalytic activity of an inorganic catalyst increases with the increase in the number of its d-orbit. Complex formation in most cases leads to the increase of catalyst activity, however, sometimes a reverse phenomenon takes place. For many catalysts the maximum activity is observed at pH values close to pK value of their hydrolysis. The properties of oxidizers-substrates is revealed by H/sub 2/O/sub 2/, ClO/sub 3//sup -/, BrO/sub 3//sup -/, IO/sub 3//sup -/, ClO/sub 4//sup -/, IO/sub 4//sup -/, NO/sub 2//sup -/, NO/sub 3//sup -/, NH/sub 2/OH, V(5), V(4), S/sub 2/O/sub 8//sup 2 -/, H/sub 2/SO/sub 4/, H/sub 2/C/sub 2/O/sub 4/, COHCOOH, alkenes compounds, organic halogen , sulfur- and amine-containing compounds.

  10. Catalytic Chemistry on Oxide Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Asthagiri, Aravind; Dixon, David A.; Dohnalek, Zdenek; Kay, Bruce D.; Rodriquez, Jose A.; Rousseau, Roger J.; Stacchiola, Dario; Weaver, Jason F.

    2016-05-29

    Metal oxides represent one of the most important and widely employed materials in catalysis. Extreme variability of their chemistry provides a unique opportunity to tune their properties and to utilize them for the design of highly active and selective catalysts. For bulk oxides, this can be achieved by varying their stoichiometry, phase, exposed surface facets, defect, dopant densities and numerous other ways. Further, distinct properties from those of bulk oxides can be attained by restricting the oxide dimensionality and preparing them in the form of ultrathin films and nanoclusters as discussed throughout this book. In this chapter we focus on demonstrating such unique catalytic properties brought by the oxide nanoscaling. In the highlighted studies planar models are carefully designed to achieve minimal dispersion of structural motifs and to attain detailed mechanistic understanding of targeted chemical transformations. Detailed level of morphological and structural characterization necessary to achieve this goal is accomplished by employing both high-resolution imaging via scanning probe methods and ensemble-averaged surface sensitive spectroscopic methods. Three prototypical examples illustrating different properties of nanoscaled oxides in different classes of reactions are selected.

  11. Study on mechanism of wet air oxidation of emulsification wastewater.

    Science.gov (United States)

    Tang, Wen W; Zeng, Xin P; Xiao, Yao M; Gu, Guo W

    2009-04-01

    Wet air oxidation (WAO) can effectively be used to treat high-concentration, non-biodegradable emulsification wastewater that contains nonionic matters. Gas chromatograph analysis of emulsification wastewater after oxidation indicated that a catalyst increased production of fatty acids but could not promote its oxidation between 160 and 180 degrees C. When the temperature was greater than or equal to 220 degrees C, the catalyst not only increased production of fatty acids initially but effectively promoted its oxidation in later stages and significantly reduced the concentration of residual surfactants. Experiments proved that fatty acids (especially acetic acid) were the primary intermediate products and that oxidation of these acids was the rate-limiting step. During the process of catalytic WAO of emulsification wastewater, active oxygen molecules attacked organic matters resulting in production of fatty acids, ketone, alcohol, hydrocarbon, and oligo-polyether through radical chain reactions.

  12. Wet oxidation of salicylic acid solutions.

    Science.gov (United States)

    Collado, Sergio; Garrido, Laura; Laca, Adriana; Diaz, Mario

    2010-11-15

    Salicylic acid is a frequent pollutant in several industrial wastewaters. Uncatalyzed wet air oxidation, which is a promising technique for the treatment of phenolic effluents, has not been analyzed yet for the removal of salicylic acid. The effect of different conditions of pH (1.3-12.3), pressure (1.0-4.1 MPa), temperature (413-443 K), and initial concentrations (1.45-14.50 mM) on the wet oxidation of salicylate/salicylic acid solutions have here been investigated. The pH value of the reaction media was found to be a key parameter for the rate of the oxidation process with an optimum at pH 3.1, when the concentrations of salicylic acid and salicylate were similar. The oxidation reaction followed pseudofirst-order kinetics with respect to salicylic acid and 0.82 order with respect to dissolved oxygen. Additionally, the evolution of the color during the wet oxidation was analyzed and discussed in relation with the formation of intermediate compounds. Then, a reaction pathway for the noncatalytic wet oxidation of the salicylic acid was proposed.

  13. Degradation of phenol via wet-air oxidation over CuO/CeO2-ZrO2 nanocatalyst synthesized employing ultrasound energy: physicochemical characterization and catalytic performance.

    Science.gov (United States)

    Parvas, Mohsen; Haghighi, Mohammad; Allahyari, Somaiyeh

    2014-01-01

    Catalytic wet air oxidation (CWAO) of phenol was carried out under atmospheric pressure of oxygen at 160 degrees C in a stirred batch reactor over copper catalysts supported by CeO2-ZrO2. The copper with different loadings were impregnated over the composite support by a sonication process. The catalysts were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDX), Brunauer-Emmett-Teller (BET) specific surface area and Fourier-transformed infrared analyses. Characteristic peaks attributed to copper were not found in XRD patterns even at high loadings, but based on EDX results, the existence of copper particles was confirmed. It means that sonochemical synthesis method even at high loadings produced small copper particles with low crystallinity and excellent dispersion over the CeO2-ZrO2 composite. FESEM micrographs indicated just slight enhancement in particle size at high loadings of Cu. Blank CWAO experiments illustrated low conversion of phenol using bare CeO2-ZrO2 support. Although some agglomeration of particles was found at high loadings of copper but owning to the fact that almost all ZrO2 particles incorporated into the CeO2 lattice at high contents of Cu, catalyst activity not only did not decrease but also the phenol conversion reached to the higher values. The optimal catalyst loading for phenol degradation was found to be 9 g/l. Complete conversion of phenol was achieved using CuO/CeO2-ZrO2 in 9 g/l catalyst loading with initial phenol concentration of 1000 ppm after 3 h of reaction.

  14. 催化湿式氧化技术处理苯并三氮唑生产废水的研究%Study on Adopting Catalytic Wet-type Oxidation Technology to Dispose Benzotriazole Production Waste Water

    Institute of Scientific and Technical Information of China (English)

    常建勇; 刘伟

    2011-01-01

    Adopting catalytic wet-type Oxidation to dispose the high concentrated organic waste water produced during the production process of benzotriazole.The experiment demonstrates that the preparation of composite supported catalysts CuO-Co3O4-MnO2/ZrO2-CeO2 have better catalytic activity when disposing the waste water.Through the study of increasing the catalyst investment,reaction temperature,oxygen tension and the PH value of wastewater and other technological conditions,we obtain the optimum technological condition: When catalyst dosing quantity is 10 g/L,reaction temperature is 220℃,oxygen tension is 2.5MPa,the initial PH value of wastewater is 10.5,to react for 120 min under these conditions,CODcr removal rate can reach to 98.2%.%采用催化湿式氧化技术处理在生产苯并三氮唑(BTA)过程中产生的高浓度有机废水。实验证明:制备的复合负载型催化剂CuO-Co3O4-MnO2/ZrO2-CeO2在处理该废水时具有较好的催化活性。通过对催化剂投入增加、反应温度、氧气分压和废水pH值等工艺条件的考察,得出的最佳工艺条件为:催化剂投加量为10g/L,反应温度为220℃,氧气分压为2.5MPa,废水初始pH值为10.5,在此条件下反应120min,CODcr去除率达到98.2%。

  15. Post-treatment of refinery wastewater effluent using a combination of AOPs (H2O2 photolysis and catalytic wet peroxide oxidation) for possible water reuse. Comparison of low and medium pressure lamp performance.

    Science.gov (United States)

    Rueda-Márquez, J J; Levchuk, I; Salcedo, I; Acevedo-Merino, A; Manzano, M A

    2016-03-15

    The main aim of this work was to study the feasibility of multi-barrier treatment (MBT) consisting of filtration, hydrogen peroxide photolysis (H2O2/UVC) and catalytic wet peroxide oxidation (CWPO) for post-treatment of petroleum refinery effluent. Also the possibility of water reuse or safe discharge was considered. The performance of MBT using medium (MP) and low (LP) pressure lamps was compared as well as operation and maintenance (O&M) cost. Decomposition of organic compounds was followed by means of gas chromatography-mass spectrometry (GC-MS), total organic carbon (TOC) and chemical oxygen demand (COD) analysis. After filtration step (25 μm) turbidity and concentration of suspended solids decreased by 92% and 80%, respectively. During H2O2/UVC process with LP lamp at optimal conditions (H2O2:TOC ratio 8 and UVC dose received by water 5.28 WUVC s cm(-2)) removal of phenolic compounds, TOC and COD was 100%, 52.3% and 84.3%, respectively. Complete elimination of phenolic compounds, 47.6% of TOC and 91% of COD was achieved during H2O2/UVC process with MP lamp at optimal conditions (H2O2:TOC ratio 5, UVC dose received by water 6.57 WUVC s cm(-2)). In order to compare performance of H2O2/UVC treatment with different experimental set up, the UVC dose required for removal of mg L(-1) of COD was suggested as a parameter and successfully applied. The hydrophilicity of H2O2/UVC effluent significantly increased which in turn enhanced the oxidation of organic compounds during CWPO step. After H2O2/UVC treatment with LP and MP lamps residual H2O2 concentration was 160 mg L(-1) and 96.5 mg L(-1), respectively. Remaining H2O2 was fully consumed during subsequent CWPO step (6 and 3.5 min of contact time for LP and MP, respectively). Total TOC and COD removal after MBT was 94.7% and 92.2% (using LP lamp) and 89.6% and 95%, (using MP lamp), respectively. The O&M cost for MBT with LP lamp was estimated to be 0.44 € m(-3) while with MP lamp it was nearly five

  16. Graphene oxide as an effective catalyst for wet air oxidation of phenol.

    Science.gov (United States)

    Yang, Shaoxia; Cui, Yuhong; Sun, Yu; Yang, Hongwei

    2014-09-15

    The graphene oxide (GO) and chemically reduced graphene oxides, used as catalysts in absence of any metals, were investigated in the catalytic wet air oxidation (CWAO) of phenol in a batch reactor. The characterization of the materials was measured with scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman, fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The carbon materials exhibited good phenol and total organic compounds (TOC) removals in the CWAO of phenol. The GO had the highest catalytic activity, total phenol removal was achieved after 40 min, and ca. 84% TOC removal was obtained after 120 min at reaction temperature of 155°C, total pressure of 2.5 MPa and catalyst loading of 0.2 gL(-1).

  17. Study on stability of CuO/γ-Al_2O_3 catalyst in catalytic wet hydrogen peroxide oxidation%双氧水催化氧化中Cu/γ-Al_2O_3催化剂的稳定性研究

    Institute of Scientific and Technical Information of China (English)

    罗平; 范益群

    2011-01-01

    CuO/γ-Al2O3 catalysts for the H2O2 wet oxidation of phenol are prepared by impregnating process.The stability and deactivation of heterogeneous Cu/γ-Al2O3 catalysts were studied at room temperature and atmospheric pressure in the catalytic wet hydrogen peroxide oxidation(CWPO).Results showed that both the catalyst preparation conditions and the catalytic oxidation reaction conditions would affect the dissolution of the Cu2+ active component.The catalyst deactivation was related with the loss of active components and the catalyst surface coverage by the oxidation intermediates.The catalyst can be regenerated by calcination at high-temperature.%针对废水湿式双氧水催化氧化,采用浸渍法制备Cu催化剂,研究非均相Cu催化剂在常温常压湿式双氧水催化氧化中的稳定性与失活问题。研究表明,催化剂制备条件及催化氧化反应条件对催化剂中Cu2+溶出均有影响。研究同时表明,催化剂失活与活性组分流失和活性组分被有机中间产物覆盖有关,高温焙烧可对催化剂再生。

  18. Catalytic process for formaldehyde oxidation

    Science.gov (United States)

    Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); D'Ambrosia, Christine M. (Inventor)

    1996-01-01

    Disclosed is a process for oxidizing formaldehyde to carbon dioxide and water without the addition of energy. A mixture of formaldehyde and an oxidizing agent (e.g., ambient air containing formaldehyde) is exposed to a catalyst which includes a noble metal dispersed on a metal oxide which possesses more than one oxidation state. Especially good results are obtained when the noble metal is platinum, and the metal oxide which possesses more than one oxidation state is tin oxide. A promoter (i.e., a small amount of an oxide of a transition series metal) may be used in association with the tin oxide to provide very beneficial results.

  19. Development of Pillared Clays for Wet Hydrogen Peroxide Oxidation of Phenol and Its Application in the Posttreatment of Coffee Wastewater

    Directory of Open Access Journals (Sweden)

    Nancy R. Sanabria

    2012-01-01

    Full Text Available This paper focuses on the use of pillared clays as catalysts for the Fenton-like advanced oxidation, specifically wet hydrogen peroxide catalytic oxidation (WHPCO. This paper discusses the limitations on the application of a homogeneous Fenton system, development of solid catalysts for the oxidation of phenol, advances in the synthesis of pillared clays, and their potential application as catalysts for phenol oxidation. Finally, it analyzes the use of pillared clays as heterogeneous Fenton-like catalysts for a real wastewater treatment, emphasizing the oxidation of phenolic compounds present in coffee wastewater. Typically, the wet hydrogen peroxide catalytic oxidation in a real effluent system is used as pretreatment, prior to biological treatment. In the specific case of coffee wet processing wastewater, catalytic oxidation with pillared bentonite with Al-Fe is performed to supplement the biological treatment, that is, as a posttreatment system. According to the results of catalytic activity of pillared bentonite with Al-Fe for oxidation of coffee processing wastewater (56% phenolic compounds conversion, 40% selectivity towards CO2, and high stability of active phase, catalytic wet hydrogen peroxide oxidation emerges as a viable alternative for management of this type of effluent.

  20. Wet air oxidation of epoxy acrylate monomer industrial wastewater.

    Science.gov (United States)

    Yang, Shaoxia; Liu, Zhengqian; Huang, Xiaohui; Zhang, Beiping

    2010-06-15

    Epoxy acrylate monomer industrial wastewater contained highly concentrated and toxic organic compounds. The wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were used to eliminate pollutants in order to examine the feasibility of the WAO/CWAO as a pre-treatment method for the industrial wastewater. The results showed that in the WAO 63% chemical oxygen demand (COD) and 41% total organic carbon (TOC) removals were achieved and biological oxygen demand (BOD(5))/COD ratio increased from 0.13 to 0.72 after 3h reaction at 250 degrees C, 3.5MPa and the initial concentration of 100g(COD)/L. Among homogenous catalysts (Cu(2+), Fe(2+), Fe(3+) and Mn(2+) salts), Cu(2+) salt exhibited better performance. CuO catalyst was used in the CWAO of the wastewater, COD and TOC conversion were 77 and 54%, and good biodegradability was achieved. The results proved that the CWAO was an effective pre-treatment method for the epoxy acrylate monomer industrial wastewater.

  1. Catalytic oxidation of dimethyl ether

    Science.gov (United States)

    Zelenay, Piotr; Wu, Gang; Johnston, Christina M.; Li, Qing

    2016-05-10

    A composition for oxidizing dimethyl ether includes an alloy supported on carbon, the alloy being of platinum, ruthenium, and palladium. A process for oxidizing dimethyl ether involves exposing dimethyl ether to a carbon-supported alloy of platinum, ruthenium, and palladium under conditions sufficient to electrochemically oxidize the dimethyl ether.

  2. Biomimetic, Catalytic Oxidation in Organic Synthesis

    Institute of Scientific and Technical Information of China (English)

    Shun-lchi Murahashi

    2005-01-01

    @@ 1Introduction Oxidation is one of the most fundamental reactions in organic synthesis. Owing to the current need to develop forward-looking technology that is environmentally acceptable with respect many aspects. The most attractive approaches are biomimetic oxidation reactions that are closely related to the metabolism of living things. The metabolisms are governed by a variety of enzymes such as cytochrome P-450 and flavoenzyme.Simulation of the function of these enzymes with simple transition metal complex catalyst or organic catalysts led to the discovery of biomimetic, catalytic oxidations with peroxides[1]. We extended such biomimetic methods to the oxidation with molecular oxygen under mild conditions.

  3. Effects of carrier and Mn loading on supported manganese oxide catalysts for catalytic combustion of methane

    Institute of Scientific and Technical Information of China (English)

    Jinyan Hu; Wei Chu; Limin Shi

    2008-01-01

    Supported manganese oxide catalysts were prepared by incipient wetness impregnation method for methane cat-alytic combustion, and effects of the support (Al2O3, SiO2 and TiO2) and Mn loading were investigated. These catalysts were characterized with N2 adsorption, X-ray diffraction, X-ray photoelectron spectroscopy and temperature-programmed reduction techniques. Methane conversion varied in a large range depending on supports or Mn loading. Al2O3 supported 15% Mn cata-lyst exhibited better activity toward methane catalytic oxidation. The manganese state and oxygen species played an important role in the catalytic performance.

  4. Model catalytic oxidation studies using supported monometallic and heterobimetallic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Ekerdt, J.G.

    1992-02-03

    This research program is directed toward a more fundamental understanding of the effects of catalyst composition and structure on the catalytic properties of metal oxides. Metal oxide catalysts play an important role in many reactions bearing on the chemical aspects of energy processes. Metal oxides are the catalysts for water-gas shift reactions, methanol and higher alcohol synthesis, isosynthesis, selective catalytic reduction of nitric oxides, and oxidation of hydrocarbons. A key limitation to developing insight into how oxides function in catalytic reactions is in not having precise information of the surface composition under reaction conditions. To address this problem we have prepared oxide systems that can be used to study cation-cation effects and the role of bridging (-O-) and/or terminal (=O) surface oxygen anion ligands in a systematic fashion. Since many oxide catalyst systems involve mixtures of oxides, we selected a model system that would permit us to examine the role of each cation separately and in pairwise combinations. Organometallic molybdenum and tungsten complexes were proposed for use, to prepare model systems consisting of isolated monomeric cations, isolated monometallic dimers and isolated bimetallic dimers supported on silica and alumina. The monometallic and bimetallic dimers were to be used as models of more complex mixed- oxide catalysts. Our current program was to develop the systems and use them in model oxidation reactions.

  5. Catalytic wet peroxidation of pyridine bearing wastewater by cerium supported SBA-15

    Energy Technology Data Exchange (ETDEWEB)

    Subbaramaiah, V. [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 Uttarakhand (India); Srivastava, Vimal Chandra, E-mail: vimalcsr@yahoo.co.in [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 Uttarakhand (India); Mall, Indra Deo [Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667 Uttarakhand (India)

    2013-03-15

    Highlights: ► Cerium supported SBA-15 (Ce/SBA-15) synthesized by two-step synthesis. ► Characterization of Ce/SBA-15 by FTIR, XRD and BET surface area. ► Catalytic peroxidation of pyridine by Ce/SBA-15. ► Optimization of parameters like catalyst dose, H{sub 2}O{sub 2} dose, initial concentration and temperature. ► Catalyst reusability and leaching study performed. -- Abstract: Cerium supported SBA-15 (Ce/SBA-15) was synthesized by two-step synthesis method in acidic medium. It was further characterized by various characterization techniques such as X-ray diffraction, field-emission scanning electron microscopy, Fourier transform infrared spectroscopy and N{sub 2} adsorption–desorption pore size distribution analysis. The Ce/SBA-15 showed highly ordered meso-structure with pore diameter ≈ 70–100 A and pore volume ≈ 0.025 cm{sup 3}/g. Ce/SBA-15 was further evaluated as a catalyst for the oxidation of highly toxic and non-biodegradable material, pyridine, by catalytic wet-peroxidation method. The effects of various operating parameters such as catalyst dose (0.5–6 g/l), stoichiometric ratio of H{sub 2}O{sub 2}/pyridine (1–6), initial pyridine concentration (50–800 mg/l) and temperature (313–358 K) have been evaluated and optimized. Ce/SBA-15 showed stable performance during reuse for six cycles with negligible cerium leaching. Kinetic and thermodynamic parameters and operation cost have also been determined.

  6. Reactivity and Kinetic Study on Catalytic Wet Oxidation of Succinic Acid over Ru/Mn-Ce/TiO2 Catalysts%Ru/Mn-Ce/TiO2催化剂催化湿式氧化丁二酸的反应活性和动力学研究

    Institute of Scientific and Technical Information of China (English)

    张世鸿; 涂学炎; 王伟; 李自弘; 王颖臻; 周诚德; 陈斌

    2005-01-01

    在二氧化钛载体中通过掺杂Ru,Mn,Ce制备了一系列用于催化湿式氧化的催化剂,利用XRD,TEM,BET等手段对催化剂进行了表征.在反应温度T=210~270 ℃,氧分压PO2=2.1 Mpa条件下,在间歇式高压反应釜中对丁二酸进行了降解实验.催化剂在反应中有很高的催化活性.催化剂在30 min内对丁二酸降解的COD去除率为54.4~98.3%.Ru及Mn,Ce的氧化物对催化活性都有促进作用.建立了丁二酸催化湿式氧化的一级分段动力学模型.基于COD的一段及二段反应的活化能分别为43.74 kJ/mol和54.28 kJ/mol.%A series of catalysts used for catalytic wet oxidation were prepared by doping Ru, Mn, Ce on TiO2 support and characterized with XRD, TEM, BET. Degradation of succinic acid (COD=7000 mg/L) in aqueous solution were carried out using a slurry autoclave at T=210~270 ℃, PO2=2.1 MPa. The catalysts exhibited remarkable reactivity in reaction. COD removal for succinic acid degradation was at the range of 54.4~98.3% for different catalysts in 30 min. Ru and the oxides of Mn, Ce all showed effectiveness on promoting catalytic reactivity. The first order kinetic models based on subsection were setup to characterize the catalytic wet oxidation of succinic acid. The active energy relates to the first and second segment based on COD is 43.74 and 54.28 kJ/mol respectively.

  7. Low-temperature catalytic gasification of wet industrial wastes

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D C; Neuenschwander, G G; Baker, E G; Sealock, Jr, L J; Butner, R S

    1991-04-01

    Bench-scale reactor tests are in progress at Pacific Northwest Laboratory to develop a low-temperature, catalytic gasification system. The system, licensed under the trade name Thermochemical Environmental Energy System (TEES{reg sign}), is designed for treating a wide variety of feedstocks ranging from dilute organics in water to waste sludges from food processing. This report describes a test program which used a continuous-feed tubular reactor. This test program is an intermediate stage in the process development. The reactor is a laboratory-scale version of the commercial concept as currently envisioned by the process developers. An energy benefit and economic analysis was also completed on the process. Four conceptual commercial installations of the TEES process were evaluated for three food processing applications and one organic chemical manufacturing application. Net energy production (medium-Btu gas) was achieved in all four cases. The organic chemical application was found to be economically attractive in the present situation. Based on sensitivity studies included in the analysis, the three food processing cases will likely become attractive in the near future as waste disposal regulations tighten and disposal costs increase. 21 refs., 2 figs., 9 tabs.

  8. Catalytic wet peroxidation of pyridine bearing wastewater by cerium supported SBA-15.

    Science.gov (United States)

    Subbaramaiah, V; Srivastava, Vimal Chandra; Mall, Indra Deo

    2013-03-15

    Cerium supported SBA-15 (Ce/SBA-15) was synthesized by two-step synthesis method in acidic medium. It was further characterized by various characterization techniques such as X-ray diffraction, field-emission scanning electron microscopy, Fourier transform infrared spectroscopy and N2 adsorption-desorption pore size distribution analysis. The Ce/SBA-15 showed highly ordered meso-structure with pore diameter≈70-100Ǻ and pore volume≈0.025cm(3)/g. Ce/SBA-15 was further evaluated as a catalyst for the oxidation of highly toxic and non-biodegradable material, pyridine, by catalytic wet-peroxidation method. The effects of various operating parameters such as catalyst dose (0.5-6g/l), stoichiometric ratio of H2O2/pyridine (1-6), initial pyridine concentration (50-800mg/l) and temperature (313-358K) have been evaluated and optimized. Ce/SBA-15 showed stable performance during reuse for six cycles with negligible cerium leaching. Kinetic and thermodynamic parameters and operation cost have also been determined.

  9. 钙钛矿型La1.4Fe03.6处理餐厨废水的湿式氧化催化性能研究%Preparation of Lal.4Fe03.6 Catalyst and Its Application in Wet Catalytic Oxidation

    Institute of Scientific and Technical Information of China (English)

    徐玲; 陈益平

    2012-01-01

    Fe does not produce biological toxicity easily. The oxide formation of perovskite structure aerobic space produces or eliminates the basis of reversible oxidation reduction process -the characteristics. This study adopts La1.4 FeO36 catalysts to treat kitchen wastewater with wet catalytic oxidation method. The atmospheric pressure and room temperature were prepared by impregnating process. The results show that calcination temperature would affect the catalyst's property. The catalysts show a good catalytic activity for conversion of kitchen wastewater.%Fe元素不易产生生物毒性,以氧化物所形成的钙钛矿型结构有氧空位产生或消除为基础进行可逆氧化一还原过程的特征。采用新型的钙钛矿型La1.4Fe03.6催化剂,对餐厨废水进行湿式催化氧化处理,考察钙钛矿型La1.4Fe03.6催化荆的催化性能。研究表明,在140℃氧分压为0.6MPa的条件下催化荆对高浓度餐厨废水具有较高的催化活性,但由于催化剂本身的缺陷,存在催化剂流失的问题。

  10. Quantification of activated carbon contents in soils and sediments using chemothermal and wet oxidation methods.

    Science.gov (United States)

    Brändli, Rahel C; Bergsli, Anders; Ghosh, Upal; Hartnik, Thomas; Breedveld, Gijs D; Cornelissen, Gerard

    2009-12-01

    Activated carbon (AC) strongly sorbs organic pollutants and can be used for remediation of soils and sediments. A method for AC quantification is essential to monitor AC (re)distribution. Since AC is black carbon (BC), two methods for BC quantification were tested for AC mixed in different soils and sediments: i) chemothermal oxidation (CTO) at a range of temperatures and ii) wet-chemical oxidation with a potassium dichromate/sulfuric acid solution. For three soils, the amount of AC was accurately determined by CTO at 375 degrees C. For two sediments, however, much of the AC disappeared during combustion at 375 degrees C, which could probably be explained by catalytic effects by sediment constituents. CTO at lower temperatures (325-350 degrees C) was a feasible alternative for one of the sediments. Wet oxidation effectively functioned for AC quantification in sediments, with almost complete AC recovery (81-92%) and low remaining amounts of native organic carbon (5-16%).

  11. Catalytic systems of cumene oxidation based on multiwalled carbon nanotubes

    Science.gov (United States)

    Kobotaeva, N. S.; Skorokhodova, T. S.; Ryabova, N. V.

    2015-03-01

    Catalytic systems for cumene oxidation were prepared on the basis of silver-activated carbon nanotubes. Silver lies on the surface of the carbon nanotubes in the nanocrystalline state and has a size of 15-20 nm. The use of the obtained catalytic systems in cumene oxidation with molecular oxygen allowed a considerable decrease in the oxidation temperature and an increase in selectivity.

  12. 1 - Aromatization of n-hexane and natural gasoline over ZSM-5 zeolite, 2- Wet catalytic oxidation of phenol on fixed bed of active carbon; 1 - Aromatisation de n-hexane et d'essence sur zeolithe ZSM-5, 2 - Oxydation catalytique en voie humide du phenol sur charbon actif

    Energy Technology Data Exchange (ETDEWEB)

    Suwanprasop, S.

    2005-04-15

    I - The production of aromatic hydrocarbons from n-hexane and natural gasoline over Pd loaded ZSM-5 zeolite in a tubular reactor was achieved under the suitable conditions at 400 deg. C, and 0.4 ml/min reactant feeding rate, employing ZSM-5 (0.5% Pd content) as a catalyst. Under these conditions, n-hexane and natural gasoline conversions were found to be 99.7% and 94.3%, respectively (with respective aromatic selectivity of 92.3% and 92.6%). II - Wet catalytic air oxidation of phenol over a commercial active carbon was studied in a three phase fixed bed reactor under mild temperature and oxygen partial pressure. Exit phenol concentration, COD, and intermediates were analysed. Oxidation of phenol was significantly improved when increasing operating temperature, oxygen partial pressure, and liquid space time, while up or down flow modes had only marginal effect. A complete model involving intrinsic kinetics and all mass transfer limitations gave convenient reactor simulation. (author)

  13. Wet-air oxidation cleans up black wastewater

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    Sterling Organics produces the analgesic paracetamol (acetaminophen) at its Dudley, England, plant. The wastewater from the batch process contains intermediates such as para-aminophenol (PAP) and byproducts such as thiosulfates, sulfites and sulfides. To stay ahead of increasingly strict environmental legislation, Sterling Organics installed a wet-air oxidation system at the Dudley facility in August 1992. The system is made by Zimpro Environmental Inc. (Rothschild, Wis.). Zimpro's wet-air oxidation system finds a way around the limitations of purely chemical or physical processes. In the process, compressed air at elevated temperature and pressure oxidizes the process intermediates and byproducts and removes the color from the wastewater.

  14. Simulation of wet oxidation of silicon based on the interfacial silicon emission model and comparison with dry oxidation

    OpenAIRE

    Uematsu, Masashi; Kageshima, Hiroyuki; Shiraishi, Kenji

    2001-01-01

    Silicon oxidation in wet ambients is simulated based on the interfacial silicon emission model and is compared with dry oxidation in terms of the silicon-atom emission. The silicon emission model enables the simulation of wet oxidation to be done using the oxidant self-diffusivity in the oxide with a single activation energy. The amount of silicon emission from the interface during wet oxidation is smaller than that during dry oxidation. The small emission rate for wet oxidation is responsibl...

  15. Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gary Blythe; Conor Braman; Katherine Dombrowski; Tom Machalek

    2010-12-31

    This document is the final technical report for Cooperative Agreement DE-FC26-04NT41992, 'Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,' which was conducted over the time-period January 1, 2004 through December 31, 2010. The objective of this project has been to demonstrate at pilot scale the use of solid catalysts and/or fixed-structure mercury sorbents to promote the removal of total mercury and oxidation of elemental mercury in flue gas from coal combustion, followed by wet flue gas desulfurization (FGD) to remove the oxidized mercury at high efficiency. The project was co-funded by the U.S. DOE National Energy Technology Laboratory (DOE-NETL), EPRI, Great River Energy (GRE), TXU Energy (now called Luminant), Southern Company, Salt River Project (SRP) and Duke Energy. URS Group was the prime contractor. The mercury control process under development uses fixed-structure sorbents and/or catalysts to promote the removal of total mercury and/or oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury not adsorbed is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The project has tested candidate materials at pilot scale and in a commercial form, to provide engineering data for future full-scale designs. Pilot-scale catalytic oxidation tests have been completed for periods of approximately 14 to19 months at three sites, with an additional round of pilot-scale fixed-structure sorbent tests being conducted at one of those sites. Additionally, pilot-scale wet FGD tests have been conducted downstream of mercury oxidation catalysts at a total of four sites. The sites include the two of three sites from this project and two sites where catalytic oxidation pilot testing was conducted as part of a previous DOE-NETL project. Pilot-scale wet FGD tests were also conducted at a fifth site, but with no catalyst or fixed

  16. Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood

    DEFF Research Database (Denmark)

    Palonen, H.; Thomsen, A.B.; Tenkanen, M.;

    2004-01-01

    The wet oxidation pretreatment (water, oxygen, elevated temperature, and pressure) of softwood (Picea abies) was investigated for enhancing enzymatic hydrolysis. The pretreatment was preliminarily optimized. Six different combinations of reaction time, temperature, and pH were applied......, and the compositions of solid and liquid fractions were analyzed. The solid fraction after wet oxidation contained 58-64% cellulose, 2-16% hemicellulose, and 24-30% lignin. The pretreatment series gave information about the roles of lignin and hemicellulose in the enzymatic hydrolysis. The temperature...

  17. Electrochemical promotion of sulfur dioxide catalytic oxidation

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bandur, Viktor; Cappeln, Frederik Vilhelm

    2000-01-01

    The effect of electrochemical polarization on the catalytic SO2 oxidation in the molten V2O5-K2S2O7 system has been studied using a gold working electrode in the temperature range 400-460 degrees C. A similar experiment has been performed with the industrial catalyst VK-58. The aim of the present...... investigation was to study a possible non-Faradaic electrochemical promotion of the liquid-phase catalytic reaction. It has been shown that there are two negative potential promotion areas with maximum effects at approximately -0.1 and -0.2 V, and one positive potential promotion area with the maximum effect...... caused by the negative charge on the electrode. The Faradaic part of the promoting effect under positive polarization has been explained as the electrochemical pushing of the V(V) V(IV) equilibrium in the direction of V(V) formation. It has also been shown that when using the industrial VK-58 catalyst...

  18. Kinetics of wet oxidation of formic acid and acetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Shende, R.V.; Mahajani, V.V. [Univ. of Mumbai (India). Dept. of Chemical Technology

    1997-11-01

    Oxidation of lower molecular weight carboxylic acids such as formic, acetic, glyoxalic, and oxalic acids is often the rate-controlling step during wet oxidation (WO) of an aqueous waste stream exhibiting very high chemical oxygen demand (COD). The kinetics of WO of formic acid was studied in the absence and presence of a cupric sulfate as catalyst in the temperature range 150--240 C and oxygen partial pressure range 0.345--1.380 MPa. Wet oxidation of acetic acid was carried out in the presence of cupric sulfate in the temperature range 215--235 C. Homogeneous copper sulfate was found to be a very good catalyst for oxidation of formic acid and acetic acid.

  19. Mercury Oxidation over Selective Catalytic Reduction (SCR) Catalysts - Ph.d. thesis Karin Madsen

    DEFF Research Database (Denmark)

    Madsen, Karin

    The vanadium-based SCR catalyst used for NOx-control promotes the oxidation of elemental mercury Hg0 to Hg2+ in flue gases from coal-fired power plants. Hg2+ is water soluble and can effectively be captured in a wet scrubber. This means that the combination of an SCR with a wet FGD can offer....... For T=250-375oC, the DeNOx reaction will inhibit the kinetics of reaction R1 by consuming active Lewis sites that must be oxidized to regain activity for Hg0 oxidation. The experimental data obtained in this study indicate that vanadia Lewis sites on SCR catalysts are active in the catalytic Hg0...... in the experimental investigations is incorporated in the model. The resulting model successfully reproduces the variations in Hg0 oxidation over the SCR that have been experimentally observed for different gas compositions and testing conditions. This verifies that the relevant mercury chemistry has been taken...

  20. Fe salts as catalyst for the wet oxidation of o-chlorophenol

    Institute of Scientific and Technical Information of China (English)

    XU Xin-hua; HE Ping; JIN Jian; HAO Zhi-wei

    2005-01-01

    Catalytic wet air oxidation (CWAO) of o-chlorophenol in wastewater was studied in a stainless steel autoclave using four different Fe catalysts in the temperature range of 100-200 ℃. Experimental results showed that high rate of o-chlorophenol and CODcr (Chemical Oxygen Demand, mg/L) removal by CWAO was obtained at relatively low temperature and pressure. The catalysts Fe2(SO4)3, FeSO4, Fe2O3 and FeCl3 all exhibited high catalytic activity. More than 93.7% of the initial CODCr and nearly100% of o-chlorophenol were removed at 150 ℃ after 150 min with FeSO4 as catalyst. The CWAO of o-chlorophenol was found to be pseudo-first order reaction with respect to o-chlorophenol, with activation energy of 75.56 k J/mol in the temperature range of100-175 ℃.

  1. Wet oxidation as a waste treatment in closed systems

    Science.gov (United States)

    Onisko, B. L.; Wydeven, T.

    1981-01-01

    The chemistry of the wet oxidation process has been investigated in relation to production of plant nutrients from plant and human waste materials as required for a closed life-support system. Hydroponically grown lettuce plants were used as a model plant waste and oxygen gas was used as oxidant. Organic nitrogen content was decreased 88-100% depending on feed material. Production of ammonia and nitrogen gas account for all of the observed decrease in organic nitrogen content. No nitrous oxide (N2O) was detected. The implications of these results for closed life-support systems are discussed.

  2. Wet Oxidation as a Waste Treatment Method in Closed Systems

    Science.gov (United States)

    Onisko, B. L.; Wydeven, T.

    1982-01-01

    The chemistry of the wet oxidation process was investigated in relation to production of plant nutrients from plant and human waste materials as required for a closed life support system. Hydroponically grown lettuce plants were used as a model plant waste, and oxygen gas was used as an oxidant. Organic nitrogen content was decreased 88-100%, depending on feed material. Production of ammonia and nitrogen gas accounted for all of the observed decrease in organic nitrogen content. No nitrous oxide (N2O) was detected. The implications of these results for closed life support systems are discussed.

  3. Catalytic partial oxidation of pyrolysis oils

    Science.gov (United States)

    Rennard, David Carl

    2009-12-01

    This thesis explores the catalytic partial oxidation (CPO) of pyrolysis oils to syngas and chemicals. First, an exploration of model compounds and their chemistries under CPO conditions is considered. Then CPO experiments of raw pyrolysis oils are detailed. Finally, plans for future development in this field are discussed. In Chapter 2, organic acids such as propionic acid and lactic acid are oxidized to syngas over Pt catalysts. Equilibrium production of syngas can be achieved over Rh-Ce catalysts; alternatively mechanistic evidence is derived using Pt catalysts in a fuel rich mixture. These experiments show that organic acids, present in pyrolysis oils up to 25%, can undergo CPO to syngas or for the production of chemicals. As the fossil fuels industry also provides organic chemicals such as monomers for plastics, the possibility of deriving such species from pyrolysis oils allows for a greater application of the CPO of biomass. However, chemical production is highly dependent on the originating molecular species. As bio oil comprises up to 400 chemicals, it is essential to understand how difficult it would be to develop a pure product stream. Chapter 3 continues the experimentation from Chapter 2, exploring the CPO of another organic functionality: the ester group. These experiments demonstrate that equilibrium syngas production is possible for esters as well as acids in autothermal operation with contact times as low as tau = 10 ms over Rh-based catalysts. Conversion for these experiments and those with organic acids is >98%, demonstrating the high reactivity of oxygenated compounds on noble metal catalysts. Under CPO conditions, esters decompose in a predictable manner: over Pt and with high fuel to oxygen, non-equilibrium products show a similarity to those from related acids. A mechanism is proposed in which ethyl esters thermally decompose to ethylene and an acid, which decarbonylates homogeneously, driven by heat produced at the catalyst surface. Chapter 4

  4. Tough and catalytically active hybrid biofibers wet-spun from nanochitin hydrogels.

    Science.gov (United States)

    Das, Paramita; Heuser, Thomas; Wolf, Andrea; Zhu, Baolei; Demco, Dan Eugen; Ifuku, Shinsuke; Walther, Andreas

    2012-12-10

    Sustainable alternatives for high-performance and functional materials based on renewable resources are intensely needed as future alternatives for present-day, fossil-based materials. Nanochitin represents an emerging class of highly crystalline bionanoparticles with high intrinsic mechanical properties and the ability for conjugation into functional materials owing to reactive amine and hydroxyl groups. Herein we demonstrate that hydrogels containing surface-deacetylated chitin nanofibrils of micrometer length and average diameters of 9 nm, as imaged by cryogenic transmission electron microscopy, can be wet-spun into macrofibers via extrusion in a coagulation bath, a simple low energy and large-scale processing route. The resulting biofibers display attractive mechanical properties with a large plastic region of about 12% in strain, in which frictional sliding of nanofibrils allows dissipation of fracture energy and enables a high work-of-fracture of near 10 MJ/m3. We further show how to add functionality to these macrofibers by exploiting the amine functions of the surface chitosan groups to host catalytically active noble metal nanoparticles, furnishing biobased, renewable catalytic hybrids. These inorganic/organic macrofibers can be used repeatedly for fast catalytic reductions of model compounds without loss of activity, rendering the concept of hybridized chitin materials interesting as novel bioderived supports for nanoparticle catalysts.

  5. Wet oxidation of real coke wastewater containing high thiocyanate concentration.

    Science.gov (United States)

    Oulego, Paula; Collado, Sergio; Garrido, Laura; Laca, Adriana; Rendueles, Manuel; Díaz, Mario

    2014-01-01

    Coke wastewaters, in particular those with high thiocyanate concentrations, represent an important environmental problem because of their very low biodegradability. In this work, the treatment by wet oxidation of real coke wastewaters containing concentrations of thiocyanate above 17 mM has been studied in a 1-L semi-batch reactor at temperatures between 453 and 493 K, with total oxygen pressures in the range of 2.0-8.0 MPa. A positive effect of the matrix of real coke wastewater was observed, resulting in faster thiocyanate degradation than was obtained with synthetic wastewaters. Besides, the effect of oxygen concentration and temperature on thiocyanate wet oxidation was more noticeable in real effluents than in synthetic wastewaters containing only thiocyanate. It was also observed that the degree of mineralization of the matrix organic compounds was higher when the initial thiocyanate concentration increased. Taking into account the experimental data, kinetic models were obtained, and a mechanism implying free radicals was proposed for thiocyanate oxidation in the matrix considered. In all cases, sulphate, carbonates and ammonium were identified as the main reaction products of thiocyanate wet oxidation.

  6. Anodic aluminium oxide catalytic membranes for asymmetric epoxidation.

    Science.gov (United States)

    Cho, So-Hye; Walther, Nolan D; Nguyen, SonBinh T; Hupp, Joseph T

    2005-11-14

    Catechol-functionalized (salen)Mn complexes can be supported on mesoporous anodized aluminium oxide disks to yield catalytic membranes that are highly active in the enantioselective epoxidation of olefins when being deployed in a forced-through-flow reactor.

  7. Microwave assisted wet oxidation of p-nitrophenol

    Institute of Scientific and Technical Information of China (English)

    BO; Longli; CHEN; Shuo; QUAN; Xie; LIU; Xitao; ZHAO; Huimin

    2005-01-01

    Aqueous solution of p-nitrophenol (PNP) was treated continuously by microwave assisted wet oxidation while flowing through a granular activated carbon (GAC) fixed bed. PNP was pre-adsorbed onto GAC prior to being put into the reactor so as to prevent PNP adsorption on GAC during microwave irradiation. PNP solutions with different initial concentration (218.6 mg/L and 1200 mg/L) were treated under conditions of microwave power 500 W, liquid flow 6.4 mL/min and air flow 40 mL/min or 60 mL/min. The results indicated that the removal of PNP was higher than 90% and more than 65% PNP was mineralized. Phenol, nitrobenzene, hydroquinone and benzoquinone occurred as course products during the operation process, which were degraded further. The biodegradability of the outflow was improved greatly by microwave assisted wet oxidation.

  8. Optimization of wet oxidation pretreatment of wheat straw

    DEFF Research Database (Denmark)

    Schmidt, A.S.; Thomsen, A.B.

    1998-01-01

    The wet oxidation process (water; oxygen and elevated temperature) was investigated under alkaline conditions for fractionation of hemicellulose, cellulose, and lignin from wheat straw. At higher temperature and longer reaction time, a purified cellulose fraction (69% w/w) was produced with high ...... for by saccharides and carboxylic acids; hence, a significant proportion of reaction products remained unidentified. (C) 1998 Elsevier Science Ltd. All rights reserved....

  9. Hydrogen production by catalytic partial oxidation of methane

    OpenAIRE

    Enger, Bjørn Christian

    2008-01-01

    Hydrogen production by catalytic partial oxidation of natural gas was investigated using tools ranging from theoretical calculations to experimental work and sophisticated characterization techniques.Catalytic partial oxidation (CPO) was carried out in a conventional continuous flow experimental apparatus using a xed-bed reactor, and operating at 1 atm and furnace temperatures in the range from ambient to 1073 K. The feed typically consisted of a mixture of methane and air, with a CH4/O2 rati...

  10. Combined wet oxidation and alkaline hydrolysis of polyvinylchloride

    DEFF Research Database (Denmark)

    Sørensen, E.; Bjerre, A.B.

    1992-01-01

    In view of the widespread aversion to burning polyvinylchloride (PVC) together with municipal waste, we have attempted an alternative approach to its decomposition. This paper describes a combined wet oxidation/alkaline hydrolysis yielding water soluble, biodegradable products. Experiments were...... carried out at temperatures from 180-260 degree C and reaction times of 8-24 min. The chloride liberated provides information on the rate constants. Considering the measured Cl- and Chemical Oxygen Demand (COD) values, we find hydrolysis and oxidation processes to be interdependent. The main products...

  11. Wet-oxidation waste management system for CELSS

    Science.gov (United States)

    Takahashi, Y.; Ohya, H.

    1986-01-01

    A wet oxidation system will be useful in the Closed Ecological Life Support System (CELSS) as a facility to treat organic wastes and to redistribute inorganic compounds and elements. However at rather higher temperatures needed in this reaction, for instance, at 260 deg C, only 80% of organic in a raw material can be oxidized, and 20% of it will remain in the liquid mainly as acetic acid, which is virtually noncombustible. Furthermore, nitrogen is transformed to ammonium ions which normally cannot be absorbed by plants. To resolve these problems, it becomes necessary to use catalysts. Noble metals such as Ru, Rh and so on have proved to be partially effective as these catalysts. That is, oxidation does not occur completely, and the unexpected denitrification, instead of the expected nitrification, occurs. So, it is essential to develop the catalysts which are able to realize the complete oxidation and the nitrification.

  12. Development of wet-proofed catalyst and catalytic exchange process for tritium extraction

    Energy Technology Data Exchange (ETDEWEB)

    Song, Myung Jae; Son, Soon Hwan; Chung, Yang Gun; Lee, Gab Bock [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center

    1995-12-31

    To apply a liquid phase catalytic exchange(LPCE) process for the tritium extraction from tritiated heavy water, the wet proofed catalyst to allow the hydrogen isotopic exchange reaction between liquid water and hydrogen gas was developed. A styrene divinyl benzene copolymer was selected as am effective catalyst support and prepared by suspension copolymerization. After post-treatment, final catalyst supports were dipped in chloroplatinic acid solution. The catalyst support had a good physical properties at a particular preparation condition. The catalytic performance was successfully verified through hydrogen isotopic exchange reaction in the exchange column. A mathematical model for the tritium removal process consisted of LPCE front-ended process and cryogenic distillation process was established using the NTU-HTU method for LPCE column and the FUG method for cryogenic distillation column, respectively. A computer program was developed using the model and then used to investigate optimum design variables which affect the size of columns and tritium inventory (author). 84 refs., 113 figs.

  13. Wet Oxidation: A Promising Option for the Treatment of Pulp and Paper Mill Wastewater

    Science.gov (United States)

    Garg, A.

    2012-05-01

    Wet oxidation (WO) is used to degrade persistent organic or inorganic impurities present in industrial wastewater. The process utilizes severe oxidation conditions (i.e., high temperature and pressures) to achieve the efficient degradation of pollutants. To obtain high degradation at lower operation conditions, catalytic WO process is being suggested. The wastewater generated from a pulp and paper mill contains several recalcitrant compounds like lignin, hemi-cellulose, phenols, sulfides etc. Therefore, pulp and paper mill effluent have low biodegradability and are not amenable for conventional biological process. With the implementation of stringent regulations, pulp and paper mill operators need a cleaner disposal route for the wastewater. In this mini-review, the results obtained from the recently published studies on WO treatment for pulp and paper mill effluent are compiled and presented. Finally, the recommendations for the future work are also given.

  14. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe

    2003-01-21

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period October 1, 2002 through December 31, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future fullscale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the fifth full reporting period for the subject Cooperative Agreement. During this period, project efforts included starting up the pilot unit with three catalysts at the first site, conducting catalyst activity measurements, completing comprehensive flue gas sampling and analyses, and procuring additional catalysts for the pilot unit. This technical progress report provides an update on these efforts.

  15. Spacecraft Water Regeneration by Catalytic Wet Air Oxidation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project is to develop advanced catalysts for a volatile removal assembly used to purify spacecraft water. The innovation of the proposed...

  16. Catalytic performance of heteroatom-modified carbon nanotubes in advanced oxidation processes

    Institute of Scientific and Technical Information of China (English)

    João Restivo; Raquel P. Rocha; Adrián M. T. Silva; José J. M. Órfão; Manuel F. R. Pereira; José L. Figueiredo

    2014-01-01

    Multi-walled carbon nanotubes (CNTs) were submitted to chemical and thermal treatments in or-der to incorporate different heteroatoms on the surface. O-, S-and N-containing groups were suc-cessfully introduced onto the CNTs without significant changes of the textural properties. The cata-lytic activity of these heteroatom-modified CNTs was studied in two liquid phase oxidation pro-cesses:catalytic ozonation and catalytic wet air oxidation (CWAO), using oxalic acid and phenol as model compounds. In both cases, the presence of strongly acidic O-containing groups was found to decrease the catalytic activity of the CNTs. On the other hand, the introduction of S species (mainly sulfonic acids) enhanced the removal rate of the model compounds, particularly in the CWAO of phenol. Additional experiments were performed with a radical scavenger and sodium persulfate, in order to clarify the reaction mechanism. Nitrogen functionalities improve the catalytic performance of the original CNTs, regardless of the process or of the pollutant.

  17. Fe-Zn-Al-柱撑蒙脱石催化剂的制备及其降解酸性橙II性能%Fe-Zn-Al Pillared Montmorillonite for Catalytic Wet Peroxide Oxidation Degradation of Orange Acid II:Preparation Methods and Properties

    Institute of Scientific and Technical Information of China (English)

    牛露; 赵彬侠; 叶维; 邱爽; 关文斌; 刘楠; 张小里

    2016-01-01

    以铁为活性组分,钙基蒙脱石为载体,分别采用传统法、超声和微波辅助法制备了Fe-Zn-Al-柱撑蒙脱石(Fe-Zn-Al-Mt)系列催化剂。表征了催化剂的结构和表面性能,研究了不同Fe/Zn摩尔比、焙烧温度以及制备方法对催化剂性能的影响;并将该催化剂用于催化湿式过氧化氢氧化法(CWPO)降解酸性橙II (OII)染料废水。结果表明:采用Fe/Zn摩尔比为3/7、焙烧温度为500℃、微波辅助制备的Fe-Zn-Al-Mt催化剂在蒙脱石表面形成更多的活性组分(ZnFe2O4纳米粒子),用于CWPO降解OII染料废水时效果最佳,其中色度和化学需氧量(COD)去除率可分别高达99.9%和79.7%,Fe离子溶出量仅为0.27 mg/L。此外,微波辅助制备的Fe-Zn-Al(3/7)-Mt催化剂重复使用5次,均能使废水褪色,COD去除率仅降低了3.1%,总Fe离子溶出仅为0.42 mg/L。表明Fe-Zn-Al-Mt催化剂用于降解OII染料废水时具有较高的催化活性和稳定性。%A series of Fe-Zn-Al-pillared montmorillonite (Mt) catalysts were prepared by three preparation methods (i.e. conventional method, ultrasonic and microwave treatment methods). The structure and surface properties of the (Fe-Zn-Al-Mt) catalysts were characterized. Effects of Fe/Zn molar ratio, calcinated temperature and preparation method on the catalytic performance of Fe-Zn-Al-Mt catalysts were investigated. The prepared catalysts were used for the degradation of Orange II (OII) by a catalytic wet hydrogen peroxide oxidation (CWPO) method. The results show that the catalyst prepared by microwave treatment at Fe/Zn more ratio of 3/7 and calcinated temperature of 500℃ contains more active ingredient (ZnFe2O4 nanoparticles) and exhibits the optimum degradation performance (i.e., degradation of 99.9%, chemical oxygen demand(COD) reduction of 79.7%, and Fe leaching was only 0.27mg/L). Besides, Fe-Zn-Al(3/7)-Mt(500℃) catalyst prepared by microwave treatment method could be reused for

  18. Effect of chromium oxide as active site over TiO2-PILC for selective catalytic oxidation of NO.

    Science.gov (United States)

    Zhang, Jingxin; Zhang, Shule; Cai, Wei; Zhong, Qin

    2013-12-01

    This study introduced TiO2-pillared clays (TiO2-PILC) as a support for the catalytic oxidation of NO and analyzed the performance of chromium oxides as the active site of the oxidation process. Cr-based catalysts were prepared by a wet impregnation method. It was found that the 10 wt.% chromium doping on the support achieved the best catalytic activity. At 350 degrees C, the NO conversion was 61% under conditions of GHSV = 23600 hr(-1). The BET data showed that the support particles had a mesoporous structure. H2-TPR showed that Cr(10)TiP (10 wt.% Cr doping on TiO2-PILC) clearly exhibited a smooth single peak. EPR and XPS were used to elucidate the oxidation process. During the NO + O2 adsorption, the intensity of evolution of superoxide ions (O2(-)) increased. The content of Cr3+ on the surface of the used catalyst was 40.37%, but when the used catalyst continued adsorbing NO, the Cr3+ increased to 50.28%. Additionally, O(alpha)/O(beta) increased markedly through the oxidation process. The NO conversion decreased when SO2 was added into the system, but when the SO2 was removed, the catalytic activity recovered almost up to the initial level. FT-IR spectra did not show a distinct characteristic peak of SO4(2-).

  19. Catalytic abatement of nitrous oxide from nitric and production

    NARCIS (Netherlands)

    Oonk, J.

    1998-01-01

    Nitric acid production is identified as a main source of nitrous oxide. Options for emission reduction however are not available. TNO and Hydro Agri studied the technological and economic feasibility of catalytic decomposition of nitrous oxide in nitric acid tail-gases. Although in literature promis

  20. CATALYTIC HYDROGENATION AND OXIDATION OF BIOMASS-DERIVED LEVULINIC ACID

    Directory of Open Access Journals (Sweden)

    Yan Gong

    2011-02-01

    Full Text Available Levulinic acid (LA, 4-oxo-pentanoic acid, is a new platform chemical with various potential uses. In this paper, catalytic hydrogenation and oxidation of levulinic acid were studied. It was shown from experiments that levulinic acid can be hydrogenated to γ-valerolactone (GVL over transition metal catalysts and oxidative-decarboxylated to 2-butanone (methyl-ethyl-ketone, MEK and methyl-vinyl-ketone (MVK by cupric oxide (CuO, cupric oxide/cerium oxide (CuO/CeO2, cupric oxide/ alumina (CuO/ Al2O3, and silver(I/ peroxydisulfate (Ag(I/S2O82-.

  1. Surface wrinkling on polydimethylsiloxane microspheres via wet surface chemical oxidation.

    Science.gov (United States)

    Yin, Jian; Han, Xue; Cao, Yanping; Lu, Conghua

    2014-07-16

    Here we introduce a simple low-cost yet robust method to realize spontaneously wrinkled morphologies on spherical surfaces. It is based on surface chemical oxidation of aqueous-phase-synthesized polydimethylsiloxane (PDMS) microspheres in the mixed H2SO4/HNO3/H2O solution. Consequently, curvature and overstress-sensitive wrinkles including dimples and labyrinth patterns are successfully induced on the resulting oxidized PDMS microspheres. A power-law dependence of the wrinkling wavelength on the microsphere radius exists. The effects of experimental parameters on these tunable spherical wrinkles have been systematically investigated, when the microspheres are pre-deposited on a substrate. These parameters include the radius and modulus of microspheres, the mixed acid solution composition, the oxidation duration, and the water washing post-treatment. Meanwhile, the complicated chemical oxidation process has also been well studied by in-situ optical observation via the microsphere system, which represents an intractable issue in a planar system. Furthermore, we realize surface wrinkled topographies on the whole microspheres at a large scale, when microspheres are directly dispersed in the mixed acid solution for surface oxidation. These results indicate that the introduced wet surface chemical oxidation has the great potential to apply to other complicated curved surfaces for large-scale generation of well-defined wrinkling patterns, which endow the solids with desired physical properties.

  2. Low-temperature catalytic gasification of wet industrial wastes. FY 1991--1992 interim report

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.; Neuenschwander, G.G.; Hart, T.R.; Phelps, M.R.; Sealock, L.J. Jr.

    1993-07-01

    A catalytic gasification system operating in a pressurized water environment has been developed and refined at Pacific Northwest Laboratory (PNL) for over 12 years. Initial experiments were aimed at developing kinetics information for steam gasification of biomass in the presence of catalysts. The combined use of alkali and metal catalysts was reported for gasification of biomass and its components at low temperatures (350{degrees}C to 450{degrees}C). From the fundamental research evolved the concept of a pressurized, catalytic gasification system for converting wet biomass feedstocks to fuel gas. Extensive batch reactor testing and limited continuous reactor system (CRS) testing were undertaken in the development of this system under sponsorship of the US Department of Energy. A wide range of biomass feedstocks were tested, and the importance of the nickel metal catalyst was identified. Specific use of this process for treating food processing wastes was also studied. The concept application was further expanded to encompass cleanup of hazardous wastewater streams, and results were reported for batch reactor tests and continuous reactor tests. Ongoing work at PNL focuses on refining the catalyst and scaling the system to long-term industrial needs. The process is licensed as the Thermochemical Environmental Energy System (TEES{reg_sign}) to Onsite*Ofsite, Inc., of Duarte, California. This report is a follow-on to the 1989--90 interim report [Elliott et al. 1991], which reviewed the results of the studies conducted with a fixed-bed, continuous-feed, tubular reactor. The discussion here provides an overview of experiments on the wide range of potential feedstock materials conducted in a batch reactor; development of new catalyst materials; and tests performed in continuous-flow reactors at three scales. The appendices contain the history and background of the process development, as well as more detailed descriptions and results of the recent studies.

  3. Studies on Nitrogen Oxides Removal Using Plasma Assisted Catalytic Reactor

    Institute of Scientific and Technical Information of China (English)

    V. Ravi; Young Sun Mok; B. S. Rajanikanth; Ho-Chul Kang

    2003-01-01

    An electric discharge plasma reactor combined with a catalytic reactor was studied for removing nitrogen oxides. To understand the combined process thoroughly, discharge plasma and catalytic process were separately studied first, and then the two processes were combined for the study. The plasma reactor was able to oxidize NO to NO2 well although the oxidation rate decreased with temperature. The plasma reactor alone did not reduce the NOx (NO+NO2)level effectively, but the increase in the ratio of NO2 to NO as a result of plasma discharge led to the enhancement of NOx removal efficiency even at lower temperatures over the catalyst surface (V2O5-WOa/TiO2). At a gas temperature of 100℃, the NOx removal efficiency obtained using the combined plasma catalytic process was 88% for an energy input of 36 eV/molecule or 30 J/1.

  4. Kinetics of wet air oxidation (WAO) of alcaloide factory wastewater.

    Science.gov (United States)

    Kunukcu, Y Kaçar

    2005-01-01

    Wet air oxidation (WAO) of Afyon alcaloide factory wastewater, a typical high strength industrial wastewater, was carried out. The process was performed in a specifically designed titanium bubble reactor at temperatures in the range of 140-160 degrees C. The kinetics of WAO of alcaloide factory wastewater was modeled by assuming two distinct steps. The rates of destruction were measured with respect to reduction in COD. The oxidation reaction was found to be first order with respect to COD concentration and also second order with respect to oxygen concentration in both steps. The values of activation energies were found to be in the range of 4.93 x 10(4)-7.85 x 10(4) kJ/kmol.

  5. Wet oxidation kinetics of refractory low molecular mass carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Shende, R.V.; Levec, J.

    1999-10-01

    Wet oxidation kinetics of aqueous solutions of formic, acetic, oxalic, and glyoxalic acids was studied in a titanium autoclave at a temperature range of 150--320 C and oxygen partial pressures between 8 and 60 bar. Oxidation reactions obeyed a first-order kinetics with respect to concentration of all substrates. On the basis of acid concentration decay, the activation energy for acetic, oxalic, and glyoxalic acid oxidation was 178, 137, and 97 kJ/mol, respectively; whereas on the total organic carbon (TOC) conversion basis, these values were slightly higher, namely 182, 141, and 104 kJ/mol. The activation energy for formic acid took a unique value of 149 kJ/mol regardless of the type of concentration used. The rate of oxidation was proportional to a square root of oxygen concentration (partial pressure) for acetic, formic, and oxalic acids, whereas it was linearly proportional for glyoxalic acid. When sufficiently high oxygen partial pressure was applied ({ge}22 bar), the individual acid conversion in a mixture of these acids was well predicted by the rate expression derived for that acid. The lumped TOC concentration of mixtures did not obey a first-order kinetic behavior, although underlying TOC kinetics for each individual acid was linear. The oxidation results are also discussed in a view of speculated reaction pathways and the reactor material.

  6. Catalytic methanation reaction over supported nickel-rhodium oxide for purification of simulated natural gas

    Institute of Scientific and Technical Information of China (English)

    Wan Azelee Wan Abu Bakar; Rusmidah Ali; Susilawati Toemen

    2011-01-01

    In this research,new catalyst with high industrial impact is developed,which can catalyze the conversion of CO2 to methane through methanation reaction.A series of catalysts based on nickel oxide were prepared using wetness impregnation technique and ageing,followed by calcination at 400 ℃.Rh/Ni (30∶70)/Al2O3 catalyst was revealed as the most potential catalyst based on the results of catalytic activity measurementmonitored by Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography (GC).The results showed 90.1% CO2 conversion and 70.8% yield at 400 ℃.

  7. Wet air oxidation of seedcorn wastes containing pesticides and insecticides

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, M.; Schlaefer, O.; Onyeche, T.I.; Schroeder, C.; Bormann, H.; Schaefer, S. [CUTEC-Inst. GmbH (Clausthal Environment Technology Inst.), Clausthal-Zellerfeld (Germany)

    2003-07-01

    Wet air oxidation as an alternative treatment process to pyrolysis and combustion of seedcorn wastes was investigated in lab-scale experiments. Due to solid condition of the seed corn waste, the process has been adapted by repeated spraying of water on the seed corn bulk to avoid the production of sludge and its subsequent dewatering. Original seed corns from industrial production plants were used for a degradation kinetic study under smooth wet air oxidation conditions. The temperatures were between 80 and 150 C, the pressure from 1 to 4.5 bar and the pH at different values from 3 to 13. Degradation rates for five different compounds of pesticides and insecticides, namely Imidacloprid, Thiram, Hymexazol, Carbofuran and Tefluthrin were conducted. These compounds represent the recently used in agricultural seedcorn applications. The degradation rate depends linearly on temperature between 80 and 150 C. At 120 C the lowest degradation rate was found for Tefluthrin by 25 mg/h per L reaction volume while the highest degradation rate to be conducted was for Imidacloprid at 363 mg/h L. (orig.)

  8. Electro-catalytic reduction of nitrogen oxides

    Energy Technology Data Exchange (ETDEWEB)

    McLarnon, C.R.

    1989-12-01

    Nitrogen oxides have been linked to a broad range of air pollution problems including acid rain and the atmospheric production of photochemical ozone. Over twenty million tons of nitrogen oxides are emitted into the atmosphere each year as a result of the high temperature combustion of fossil fuels. Efforts to control nitrogen oxides emissions have lagged because of the generally low discharge concentrations of nitrogen oxides in combustion exhaust and because nitrogen oxides are more difficult to remove due to their lower reactivity. No catalyst has yet been found that will achieve significant reduction of nitrogen oxides in an oxidizing environment. Oxygen in the exhaust stream competes with nitrogen oxides for the active catalyst sites. Also, the dissociated oxygen atoms produced by decomposition of nitrogen oxides deactivate the surface of the catalyst. Externally applied electric fields have been used to control oxygen adsorption on metal and semi-conductor surfaces. In this investigation, a stream containing nitric oxide has been subjected to intense electric fields in the presence of catalyst materials including steel, stainless steel, and gold plated stainless steel wools and glass wool. The electric fields have been generated using DC, AC and rectified AC potentials in the range of 0--20 KV. The effect of parameters such as inlet nitric oxide concentration, oxygen and water content, gas residence time and temperature have also been studied.

  9. Green chemicals from pulp production black liquor by partial wet oxidation.

    Science.gov (United States)

    Muddassar, Hassan Raja; Melin, Kristian; de Villalba Kokkonen, Daniela; Riera, Gerard Viader; Golam, Sarwar; Koskinen, Jukka

    2015-11-01

    To reduce greenhouse gas emissions, more sustainable sources of energy, fuel and chemicals are needed. Biomass side streams such as black liquor, which is a by-product of pulp production, has the potential to be used for this purpose. The aim of the study was the production of carboxylic acids, such as lactic acid, formic acid and acetic acid, from kraft and non-wood black liquor. The processes studied were partial wet oxidation (PWO) and catalytic partial wet oxidation (CPWO). The results show that the yield of carboxylic acid is higher when treated by PWO than the results from CPWO at temperatures of 170 °C and 230 °C. The results shows that the PWO process can increase the yield of carboxylic acids and hydroxy acids in black liquor, reduce lignin content and decrease pH, which makes further separation of the acids more favourable. The hydroxy acids are valuable raw materials for biopolymers, and acetic acid and formic acid are commonly used chemicals conventionally produced from fossil feedstock.

  10. Kinetics of Wet Air Oxidation of Wastewater from Natural Fiber Web Desizing

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This work described the application of wet air oxidation (WAO) to the treatment of desizing wastewater from natural fiber processing. A two-liter autoclave batch reactor was used for the experiments. The range of operating temperature examined was between 150 and 290℃, and partial pressure of oxygen ranged from 0.375 to 2.25 MPa standardized at 25℃. Variations in Chemical Oxygen Demand(COD) and Total Organic Carbon(TOC) were monitored during each experiment and used to assess the performance of the process. Experimental results showed that WAO can be an efficient method for the treatment of desizing wnstewater. Furthermore, Catalytic Wet Air Oxidation (CWAO) was applied to reduce the reaction temperature and pressure in WAO process. A higher COD removal ratio was achieved under more mild reaction condition with the aid of CWAO. A mathematical model was also proposed to simulate the WAO process of desizing wastewater, in which three distinct kinetics steps were considered to describe the degradation of starch. The model simulations were in well agreement with the experimental data.

  11. Degradation of remazol golden yellow dye wastewater in microwave enhanced ClO2 catalytic oxidation process.

    Science.gov (United States)

    Bi, Xiaoyi; Wang, Peng; Jiao, Chunyan; Cao, Hailei

    2009-09-15

    Experiments were conducted to investigate the removal of remazol golden yellow dye in order to assess the effectiveness and feasibility of microwave enhanced chlorine dioxide (ClO(2)) catalytic oxidation process. The catalyst used in this process was CuO(n)-La(2)O(3)/gamma-Al(2)O(3). The operating parameters such as the ClO(2) dosage, catalyst dosage, and pH were evaluated. The results showed that microwave enhanced catalytic oxidation process could effectively degrade remazol golden yellow dye with low oxidant dosage in a short reaction time and extensive pH range compared to the conventional wet catalytic oxidation. Under the optimal condition (ClO(2) concentration 80 mg/L, microwave power 400 W, contacting time 1.5 min, catalyst dosage 70 g/L, and pH 7), color removal efficiency approached 94.03%, corresponding to 67.92% of total organic carbon removal efficiency. It was found that the fluorescence intensity in microwave enhanced ClO(2) catalytic oxidation system was about 500a.u. which was verified that there was much hydroxyl radical produced. Compared with different processes, microwave enhanced ClO(2) catalytic oxidation system could significantly enhance the degradation efficiency. It provides an effective technology for dye wastewater treatment.

  12. Structure and catalytic reactivity of Rh oxides

    DEFF Research Database (Denmark)

    Gustafson, J.; Westerström, R.; Resta, A.;

    2009-01-01

    Using a combination of experimental and theoretical techniques, we show that a thin RhO2 surface oxide film forms prior to the bulk Rh2O3 corundum oxide on all close-packed single crystal Rh surfaces. Based on previous reports, we argue that the RhO2 surface oxide also forms on vicinal Rh surfaces...... as well as on Rh nanoparticles. The detailed structure of this film was previously determined using UHV based techniques and density functional theory. In the present paper, we also examine the structure of the bulk Rh2O3 corundum oxide using surface X-ray diffraction. Being armed with this structural...... surface oxide film. In the case of Pt25Rh75(1 0 0), our measurements demonstrate that the formation of bulk Rh2O3 corundum oxide poisons the reaction, and argue that this is also valid for all other Rh surfaces. Our study implies that the CO oxidation reaction over Rh surfaces at realistic conditions...

  13. Visualizing the mobility of silver during catalytic soot oxidation

    DEFF Research Database (Denmark)

    Gardini, Diego; Christensen, Jakob M.; Damsgaard, Christian Danvad;

    2016-01-01

    The catalytic activity and mobility of silver nanoparticles used as catalysts in temperature programmed oxidation of soot:silver (1:5 wt:wt) mixtures have been investigated by means of flow reactor experiments and in situ environmental transmission electron microscopy (ETEM). The carbon oxidation...... mobility during the soot oxidation, and this mobility, which increases the soot/catalyst contact, is expected to be an important factor for the lower oxidation temperature. In the intimate tight contact mixture the initial dispersion of the silver particles is greater,,and the onset of mobility occurs...

  14. Catalytic oxidation of pulping effluent by activated carbon-supported heterogeneous catalysts.

    Science.gov (United States)

    Yadav, Bholu Ram; Garg, Anurag

    2016-01-01

    The present study deals with the non-catalytic and catalytic wet oxidation (CWO) for the removal of persistent organic compounds from the pulping effluent. Two activated carbon-supported heterogeneous catalysts (Cu/Ce/AC and Cu/Mn/AC) were used for CWO after characterization by the following techniques: temperature-programmed reduction, Fourier transform infrared spectroscopy and thermo-gravimetric analysis. The oxidation reaction was performed in a batch high-pressure reactor (capacity = 0.7  L) at moderate oxidation conditions (temperature = 190°C and oxygen pressure = 0.9 MPa). With Cu/Ce/AC catalyst, the maximum chemical oxygen demand (COD), total organic carbon (TOC) and lignin removals of 79%, 77% and 88% were achieved compared to only 50% removal during the non-catalytic process. The 5-day biochemical oxygen demand (BOD5) to COD ratio (a measure for biodegradability) of the pulping effluent was improved to 0.52 from an initial value of 0.16. The mass balance calculations for solid recovered after CWO reaction showed 8% and 10% deduction in catalyst mass primarily attributed to the loss of carbon and metal leaching. After the CWO process, carbon deposition was also observed on the recovered catalyst which was responsible for around 3-4% TOC reduction.

  15. Trends in the Catalytic CO Oxidation Activity of Nanoparticles

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Falsig, Hanne; Larsen, Britt Hvolbæk

    2008-01-01

    Going for gold: Density functional calculations show how gold nanoparticles are more active catalysts for CO oxidation than other metal nanoparticles. The high catalytic activity of nanosized gold clusters at low temperature is found to be related to the ability of low-coordinate metal atoms to a...

  16. Transformation and removal of wood extractives from pulp mill sludge using wet oxidation and thermal hydrolysis.

    Science.gov (United States)

    Baroutian, Saeid; Robinson, Murray; Smit, Anne-Marie; Wijeyekoon, Suren; Gapes, Daniel

    2013-10-01

    In order to remove wood extractive compounds from pulp mill sludge and thereby enhancing anaerobic digestibility, samples were subjected to either oxidative hydrothermal treatment (wet oxidation) or non-oxidative hydrothermal treatment (thermal hydrolysis). Treatments were carried out at 220 °C with initial pressure of 20 bar. More than 90% destruction of extractive compounds was observed after 20 min of wet oxidation. Wet oxidation eliminated 95.7% of phenolics, 98.6% fatty acids, 99.8% resin acids and 100% of phytosterols in 120 min. Acetic acid concentration increased by approximately 2 g/l after 120 min of wet oxidation. This has potential for rendering sludge more amenable to anaerobic digestion. In contrast thermal hydrolysis was found to be ineffective in degrading extractive compounds. Wet oxidation is considered to be an effective process for removal of recalcitrant and inhibitive compounds through hydrothermal pre-treatment of pulp mill sludge.

  17. Wet air oxidation induced enhanced biodegradability of distillery effluent.

    Science.gov (United States)

    Malik, S N; Saratchandra, T; Tembhekar, P D; Padoley, K V; Mudliar, S L; Mudliar, S N

    2014-04-01

    The present study reports the feasibility of Wet Air Oxidation (WAO) as a pretreatment option for enhanced biodegradation of complex distillery effluent. Initially, the distillery effluent was pretreated by WAO at different process conditions (pressure, temperature and time) to facilitate enhancement in the biodegradability index (BI = BOD5: COD ratio). The biodegradability of WAO pretreated effluent was evaluated by subjecting it to aerobic biodegradation and anaerobic followed by aerobic biodegradation. Aerobic biodegradation of pretreated effluent with enhanced biodegradability index (BI = 0.4-0.8) showed enhanced COD reduction of up to 67.7%, whereas the untreated effluent (BI = 0.17) indicated poor COD reduction of only 22.5%. Anaerobic followed by aerobic biodegradation of pretreated effluent has shown up to 87.9% COD reduction, while the untreated effluent has shown only 43.1% COD reduction. Bio-kinetic parameters also confirmed the increased rate of bio-oxidation at enhanced BIs. The results indicate that the WAO pretreatment facilitates enhanced bio-oxidation/bio-degradation of complex effluents like the distillery spent wash.

  18. Wet oxidation pretreatment of rape straw for ethanol production

    DEFF Research Database (Denmark)

    Arvaniti, Efthalia; Bjerre, Anne Belinda; Schmidt, Jens Ejbye

    2012-01-01

    Rape straw can be used for production of second generation bioethanol. In this paper we optimized the pretreatment of rape straw for this purpose using Wet oxidation (WO). The effect of reaction temperature, reaction time, and oxygen gas pressure was investigated for maximum ethanol yield via...... Simultaneous Saccharification and Fermentation (SSF). To reduce the water use and increase the energy efficiency in WO pretreatment features like recycling liquid (filtrate), presoaking of rape straw in water or recycled filtrate before WO, skip washing pretreated solids (filter cake) after WO, or use of whole...... slurry (Filter cake + filtrate) in SSF were also tested. Except ethanol yields, pretreatment methods were evaluated based on achieved glucose yields, amount of water used, recovery of cellulose, hemicellulose, and lignin.The highest ethanol yield obtained was 67% after fermenting the whole slurry...

  19. Polarographic catalytic wave of hydrogen--Parallel catalytic hydrogen wave of bovine serum albumin in thepresence of oxidants

    Institute of Scientific and Technical Information of China (English)

    GUO; Wei(过玮); LIU; Limin(刘利民); LIN; Hong(林洪); SONG; Junfeng(宋俊峰)

    2002-01-01

    A polarographic catalytic hydrogen wave of bovine serum albumin (BSA) at about -1.80 V (vs. SCE) in NH4Cl-NH3@H2O buffer is further catalyzed by such oxidants as iodate, persulfate and hydrogen peroxide, producing a kinetic wave. Studies show that the kinetic wave is a parallel catalytic wave of hydrogen, which resulted from that hydrogen ion is electrochemically reduced and chemically regenerated through oxidation of its reduction product, atomic hydrogen, by oxidants mentioned above. It is a new type of poralographic catalytic wave of protein, which is suggested to be named as a parallel catalytic hydrogen wave.

  20. Wet air oxidation of formic acid using nanoparticle-modified polysulfone hollow fibers as gas-liquid contactors.

    Science.gov (United States)

    Hogg, Seth R; Muthu, Satish; O'Callaghan, Michael; Lahitte, Jean-Francois; Bruening, Merlin L

    2012-03-01

    Catalytic wet air oxidation (CWAO) using membrane contactors is attractive for remediation of aqueous pollutants, but previous studies of even simple reactions such as formic acid oxidation required multiple passes through tubular ceramic membrane contactors to achieve high conversion. This work aims to increase single-pass CWAO conversions by using polysulfone (PS) hollow fibers as contactors to reduce diffusion distances in the fiber lumen. Alternating adsorption of polycations and citrate-stabilized platinum colloids in fiber walls provides catalytically active PS hollow fibers. Using a single PS fiber, 50% oxidation of a 50 mM formic acid feed solution results from a single pass through the fiber lumen (15 cm length) with a solution residence time of 40 s. Increasing the number of PS fibers to five while maintaining the same volumetric flow rate leads to over 90% oxidation, suggesting that further scale up in the number of fibers will facilitate high single pass conversions at increased flow rates. The high conversion compared to prior studies with ceramic fibers stems from shorter diffusion distances in the fiber lumen. However, the activity of the Pt catalyst is 20-fold lower than in previous ceramic fibers. Focusing the Pt deposition near the fiber lumen and limiting pore wetting to this region might increase the activity of the catalyst.

  1. Oxidation of anthracene using waste Mn oxide minerals: the importance of wetting and drying sequences.

    Science.gov (United States)

    Clarke, Catherine; Tourney, Janette; Johnson, Karen

    2012-02-29

    PAHs are a common problem in contaminated urban soils due to their recalcitrance. This study presents results on the oxidation of anthracene on synthetic and natural Mn oxide surfaces. Evaporation of anthracene spiked Mn oxide slurries in air results in the oxidation of 30% of the anthracene to anthraquinone. Control minerals, quartz and calcite, also oxidised a small but significant proportion of the anthracene (4.5% and 14% conversion, respectively) when spiked mineral slurries were evaporated in air. However, only Mn oxide minerals showed significant anthracene oxidation (5-10%) when evaporation took place in the absence of oxygen (N2 atmosphere). In the fully hydrated systems where no drying took place, natural Mn oxides showed an increase in anthracene oxidation with decreasing pH, with a conversion of 75% anthracene at pH 4. These results show both acidification and drying favor the oxidation of anthracene on Mn oxide mineral surfaces. It has also been demonstrated that non-redox active mineral surfaces, such as calcite, may play a role in contaminant breakdown during wetting and drying sequences. Given that climate changes suggest that wetting and drying sequences are likely to become more significant these results have important implications for contaminated land remediation technologies.

  2. Catalytic combustion over high temperature stable metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Berg, M. [TPS Termiska Processer AB, Nykoeping (Sweden)

    1996-12-31

    This thesis presents a study of the catalytic effects of two interesting high temperature stable metal oxides - magnesium oxide and manganese substituted barium hexa-aluminate (BMA) - both of which can be used in the development of new monolithic catalysts for such applications. In the first part of the thesis, the development of catalytic combustion for gas turbine applications is reviewed, with special attention to alternative fuels such as low-BTU gas, e.g. produced in an air blown gasifier. When catalytic combustion is applied for such a fuel, the primary advantage is the possibility of decreasing the conversion of fuel nitrogen to NO{sub x}, and achieving flame stability. In the experimental work, MgO was shown to have a significant activity for the catalytic combustion of methane, lowering the temperature needed to achieve 10 percent conversion by 270 deg C compared with homogeneous combustion.The reaction kinetics for methane combustion over MgO was also studied. It was shown that the heterogeneous catalytic reactions were dominant but that the catalytically initiated homogeneous gas phase reactions were also important, specially at high temperatures. MgO and BMA were compared. The latter showed a higher catalytic activity, even when the differences in activity decreased with increasing calcination temperature. For BMA, CO{sub 2} was the only product detected, but for MgO significant amounts of CO and C{sub 2}-hydrocarbons were formed. BMA needed a much lower temperature to achieve total conversion of other fuels, e.g. CO and hydrogen, compared to the temperature for total conversion of methane. This shows that BMA-like catalysts are interesting for combustion of fuel mixtures with high CO and H{sub 2} content, e.g. gas produced from gasification of biomass. 74 refs

  3. Removal of ammonia from aqueous solutions by catalytic oxidation with copper-based rare earth composite metal materials: catalytic performance, characterization, and cytotoxicity evaluation

    Institute of Scientific and Technical Information of China (English)

    Chang-Mao Hung

    2011-01-01

    Ammonia (NH3) has an important use in the chemical industry and is widely found in industrial wastewater.For this investigation of copper-based rare earth composite metal materials,aqueous solutions containing 400 mg/L of ammonia were oxidized in a batch-bed reactor with a catalyst prepared by the co-precipitation of copper nitrate,lanthanum nitrate and cerium nitrate.Barely any of the dissolved ammonia was removed by wet oxidation without a catalyst,but about 88% of the ammonia was reduced during wet oxidation over the catalysts at 423 K with an oxygen partial pressure of 4.0 MPa.The catalytic redox behavior was determined by cyclic voltammetry (CV).Furthermore,the catalysts were characterized using thermogravimetric analyzer (TGA) and scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX),which showed that the catalytic behavior was related to the metal oxide properties of the catalyst.In addition,the copper-lanthanum-cerium composite-induced cytotoxicity in the human lung MRC-5 cell line was tested,and the percentage cell survival was determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetra-zolium (MTS) analysis in vitro.No apparent cytotoxicity was observed when the human lung cells were exposed to the copper-lanthanum-cerium composite.

  4. Catalytic Conversion of Methanol by Oxidative Dehydrogenation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This study investigates the effects of addition of oxygen on the oxidative dehydrogenation (ODH) of methanol when a fluorotetrasilicic mica ion-exchanged with palladium (Pd2+-TSM) was used as the catalyst. The reaction proceeded at a very low temperature in the presence of oxygen, and HCOOCH3 was obtained at high selectivity. By calculating the equilibrium conversion, it has been shown that substantial ODH took place for HCOOCH3 production. Consequently, this reaction would make dehydrogenation the dominant reaction at equilibrium. Not all the H dissociated from CH3OH was converted to H2O by oxidation. It has been shown that the H2O was not produced from oxidative dehydrogenation by the direct reaction of CH3OH and O2 when an attempt was made to carry out oxidative dehydrogenation using an isotope oxygen trace method in the gas phase. Therefore, when CH3OH was converted to CO2 and dehydrogenated to HCOOCH3, the C-O bonds were not dissociated.

  5. Formaldehyde: catalytic oxidation as a promising soft way of elimination.

    Science.gov (United States)

    Quiroz Torres, Jhon; Royer, Sébastien; Bellat, Jean-Pierre; Giraudon, Jean-Marc; Lamonier, Jean-François

    2013-04-01

    Compared to other molecules such as benzene, toluene, xylene, and chlorinated compounds, the catalytic oxidation of formaldehyde has been studied rarely. However, standards for the emission level of this pollutant will become more restrictive because of its extreme toxicity even at very low concentrations in air. As a consequence, the development of a highly efficient process for its selective elimination is needed. Complete catalytic oxidation of formaldehyde into CO2 and H2 O using noble-metal-based catalysts is a promising method to convert this pollutant at room temperature, making this process energetically attractive from an industrial point of view. However, the development of a less expensive active phase is required for a large-scale industrial development. Nanomaterials based on oxides of manganese are described as the most promising catalysts. The objective of this Minireview is to present promising recent studies on the removal of formaldehyde through heterogeneous catalysis to stimulate future research in this topic.

  6. Preparation and catalytic properties of tungsten oxides with different morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Bi Yunfei, E-mail: beiyf2003@yahoo.com.cn [Research Institute of Petroleum Processing, SINOPEC, 18 Xue Yuan Road, 100083 Beijing (China); Li Dadong; Nie Hong [Research Institute of Petroleum Processing, SINOPEC, 18 Xue Yuan Road, 100083 Beijing (China)

    2010-09-01

    Tungsten oxides with different morphologies including platelet-like sheets, nanobelts, and nanoparticles have been successfully prepared by changing the ions in the synthetic solution. Transmission electron microscopy, X-ray diffraction, Fourier-transform infrared analysis and N{sub 2} adsorption were employed to reveal the morphological evolution, and results show that the morphological evolution can be attributed to the alteration of coordination environment of tungstenic cations contained in the synthetic solution. Furthermore, these products have been applied into hydrodesulfurization measurement to investigate the relationship between the morphologies of tungsten oxides and their catalytic properties. It is concluded that the catalysts originating from nanobelt-like tungsten oxides have highest catalytic activity and excellent selectivity due to their scrolled character and strong metallic edges.

  7. Role of Bismuth Oxide in Bi-MCo2O4(M=Co,Ni,Cu,Zn) Catalysts for Wet Air Oxidation of Acetic Acid

    Institute of Scientific and Technical Information of China (English)

    JIANG Peng-bo; CHENG Tie-xin; ZHUANG Hong; CUI Xiang-hao; BI Ying-li; ZHEN Kai-ji

    2004-01-01

    Two series of cobalt(Ⅲ)-containing spinel catalysts were prepared by the decomposition of the corresponding nitrates. The catalysts doped with bismuth oxide exhibit a higher activity in the wet air oxidation of acetic acid than those without dopant bismuth oxide. The catalysts were investigated by XRD, TEM, ESR, UV-DRS and XPS, and the interaction between Co and Bi was studied as well. It has been found that nano-sized bismuth oxide is paved on the surface of cobalt spinel crystal and the structures of cobalt(Ⅲ)-containing spinel are still maintained. The shift of the binding energy of Bi4f7/2 is related to the catalytic activity of these catalysts doped with bismuth oxide.

  8. Selective catalytic oxidations of alkylaromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, R.W. [Celanese GmbH, Oberhausen (Germany); Roehrscheid, F. [Hoechst AG, Frankfurt am Main (Germany). Zentralforschung und Technologie

    1998-12-31

    Focused to the guidelines of `Sustainable Development` `Responsible Care` and `Customer Satisfaction`, modern production processes are critically assessed on their balance between their ecological benefits and their economical parameters as well as their value to the community. Also in the area of fine chemicals, it is obvious that more and more processes are devolved which save feedstock, reduce emissions and minimize the potential for safety hazards: Less additive but more integrated protection of the environment yielding ecologically highly valuable processes. The described production of aromatic carboxylic acids is an ideal example for such a modern process. Nowadays the synthesis of derivatives of benzoic acid utilizes air as Ideal oxidant and acetic acid as environmental unquestionable solvent. The major byproduct of the oxidation reaction is water in some cases, dependend on the substrate also carbon dioxide. (orig.)

  9. Manganese zinc ferrite nanoparticles as efficient catalysts for wet peroxide oxidation of organic aqueous wastes

    Indian Academy of Sciences (India)

    Manju Kurian; Divya S Nair

    2015-03-01

    Manganese substituted zinc nanoparticles, MnxZn1−xFe2O4 (x = 0.0, 0.25, 0.5, 0.75, 1.0) prepared by sol gel method were found to be efficient catalysts for wet peroxide oxidation of 4-chlorophenol. Complete degradation of the target pollutant occurred within 90 min at 70°C. Zinc substitution enhanced the catalytic efficiency and the unsubstituted ZnFe2O4 oxidized the target compound completely within 45 min. Studies on the effect of reaction variables revealed that only a small amount of the oxidant, H2O2 (3–4 mL) is required for complete degradation of 4-chlorophenol. More than 80% of 4-chlorophenol was removed at catalyst concentrations of 100 mg/L. Direct correlation between the amount of catalyst present and the extent of degradation of 4-chlorophenol was observed, ruling out hesterogeneous-homogeneous mechanism. The catalysts are reusable and complete degradation of target pollutant occurred after five successive runs. The extent of iron leaching was fairly low after five consecutive cycles indicating the mechanism to be heterogeneous.

  10. Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems

    Energy Technology Data Exchange (ETDEWEB)

    Richard Rhudy

    2006-06-30

    This final report presents and discusses results from a mercury control process development project entitled ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems''. The objective of this project was to demonstrate at pilot scale a mercury control technology that uses solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. Oxidized mercury is removed in downstream wet flue gas desulfurization (FGD) absorbers and leaves with the FGD byproducts. The goal of the project was to achieve 90% oxidation of elemental mercury in the flue gas and 90% overall mercury capture with the downstream wet FGD system. The project was co-funded by EPRI and the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) under Cooperative Agreement DE-FC26-01NT41185. Great River Energy (GRE) and City Public Service (now CPS Energy) of San Antonio were also project co-funders and provided host sites. URS Group, Inc. was the prime contractor. Longer-term pilot-scale tests were conducted at two sites to provide catalyst life data. GRE provided the first site, at their Coal Creek Station (CCS), which fires North Dakota lignite, and CPS Energy provided the second site, at their Spruce Plant, which fires Powder River Basin (PRB) coal. Mercury oxidation catalyst testing began at CCS in October 2002 and continued through the end of June 2004, representing nearly 21 months of catalyst operation. An important finding was that, even though the mercury oxidation catalyst pilot unit was installed downstream of a high-efficiency ESP, fly ash buildup began to plug flue gas flow through the horizontal catalyst cells. Sonic horns were installed in each catalyst compartment and appeared to limit fly ash buildup. A palladium-based catalyst showed initial elemental mercury oxidation percentages of 95% across the catalyst, declining to 67% after 21 months in service. A carbon

  11. Wet oxidation of activated sludge: transformations and mechanisms.

    Science.gov (United States)

    Urrea, José Luis; Collado, Sergio; Laca, Amanda; Díaz, Mario

    2014-12-15

    Wet oxidation (WO) is an interesting alternative for the solubilization and mineralization of activated sludge. The effects of different temperatures (160-200 °C) and pressures (4-8 MPa), on the evolution of chemical composition and rheological characteristics of a thickened activated sludge during WO are analyzed in this work. Soluble COD increases initially to a maximum and then diminishes, while the apparent viscosity of the mixture falls continuously throughout the experiment. Based on the experimental evolution of the compositions and rheological characteristics of the sludge, a mechanism consisting of two stages in series is proposed. Initially, the solid organic compounds are solubilized following a pseudo-second order kinetic model with respect to solid COD. After that, the solubilized COD was oxidized, showing a pseudofirst kinetic order, by two parallel pathways: the complete mineralization of the organic matter and the formation of highly refractory COD. Kinetic parameters of the model, including the activation energies are mentioned, with good global fitting to the experiments described.

  12. Treatment of hydraulic fracturing wastewater by wet air oxidation.

    Science.gov (United States)

    Wang, Wei; Yan, Xiuyi; Zhou, Jinghui; Ma, Jiuli

    2016-01-01

    Wastewater produced by hydraulic fracturing for oil and gas production is characterized by high salinity and high chemical oxygen demand (COD). We applied a combination of flocculation and wet air oxidation technology to optimize the reduction of COD in the treatment of hydraulic fracturing wastewater. The experiments used different values of flocculant, coagulant, and oxidizing agent added to the wastewater, as well as different reaction times and treatment temperatures. The use of flocculants for the pretreatment of fracturing wastewater was shown to improve treatment efficiency. The addition of 500 mg/L of polyaluminum chloride (PAC) and 20 mg/L of anionic polyacrylamide (APAM) during pretreatment resulted in a COD removal ratio of 8.2% and reduced the suspended solid concentration of fracturing wastewater to 150 mg/L. For a solution of pretreated fracturing wastewater with 12 mL of added H2O2, the COD was reduced to 104 mg/L when reacted at 300 °C for 75 min, and reduced to 127 mg/L when reacted at the same temperature for 45 min while using a 1 L autoclave. An optimal combination of these parameters produced treated wastewater that met the GB 8978-1996 'Integrated Wastewater Discharge Standard' level I emission standard.

  13. USING WET AIR OXIDATION TECHNOLOGY TO DESTROY TETRAPHENYLBORATE

    Energy Technology Data Exchange (ETDEWEB)

    Adu-Wusu, K; Daniel McCabe, D; Bill Wilmarth, B

    2007-04-04

    A bench-scale feasibility study on the use of a Wet Air Oxidation (WAO) process to destroy a slurry laden with tetraphenylborate (TPB) compounds has been undertaken. WAO is an aqueous phase process in which soluble and/or insoluble waste constituents are oxidized using oxygen or oxygen in air at elevated temperatures and pressures ranging from 150 C and 1 MPa to 320 C and 22 MPa. The products of the reaction are CO{sub 2}, H{sub 2}O, and low molecular weight oxygenated organics (e.g. acetate, oxalate). Test results indicate WAO is a feasible process for destroying TPB, its primary daughter products [triphenylborane (3PB), diphenylborinic acid (2PB), and phenylboronic acid (1PB)], phenol, and most of the biphenyl byproduct. The required conditions are a temperature of 300 C, a reaction time of 3 hours, 1:1 feed slurry dilution with 2M NaOH solution, the addition of CuSO{sub 4}.5H{sub 2}O solution (500 mg/L Cu) as catalyst, and the addition of 2000 mL/L of antifoam. However, for the destruction of TPB, its daughter compounds (3PB, 2PB, and 1PB), and phenol without consideration for biphenyl destruction, less severe conditions (280 C and 1-hour reaction time with similar remaining above conditions) are adequate.

  14. Solid state oxidation of phenols to quinones with sodium perborate on wet montmorillonite K10

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, Mohammed M.; Eftekhari-Sis, Bagher; Khalili, Behzad; Karimi-Jaberi, Zahed [Sharif University of Technology, Tehran (Iran, Islamic Republic of). Dept. of Chemistry]. E-mail: mhashemi@sharif.edu

    2005-09-15

    Phenols were oxidized to quinones using sodium perborate (SPB) on wet montmorillonite as oxidant. The reaction was carried out at ambient temperature on the solid phase under solvent free conditions. (author)

  15. Lignin Valorization using Heterogenous Catalytic Oxidation

    DEFF Research Database (Denmark)

    Melián Rodríguez, Mayra; Shunmugavel, Saravanamurugan; Kegnæs, Søren

    The research interests in biomass conversion to fuels and chemicals has increased significantly in the last decade in view of current problems such as global warming, high oil prices, food crisis and other geopolitical scenarios. Many different reactions and processes to convert biomass into high...... of the reaction conditions 4. Here, we therefore present an overview of the recent research about conversion of some lignin model compounds using heterogeneous catalysis in oxidation reactions....

  16. Thermal wet oxidation improves anaerobic biodegradability of raw and digested biowaste

    DEFF Research Database (Denmark)

    Lissens, G.; Thomsen, Anne Belinda; De Baere, L.;

    2004-01-01

    profits. The objective of this research was to enhance the anaerobic biodegradability and methane yields from different biowastes (food waste, yard waste, and digested biowaste already treated in a full-scale biogas plant (DRANCO, Belgium)) by assessing thermal wet oxidation. The biodegradability...... of the waste was evaluated by using biochemical methane potential assays and continuous 3-L methane reactors. Wet oxidation temperature and oxygen pressure (T, 185-220 degreesC; O-2 pressure, 0-12 bar; t, 15 min) were varied for their effect on total methane yield and digestion kinetics of digested biowaste....... Measured methane yields for raw yard waste, wet oxidized yard waste, raw food waste, and wet oxidized food waste were 345, 685, 536, and 571 mL of CH4/g of volatile suspended solids, respectively. Higher oxygen pressure during wet oxidation of digested biowaste considerably increased the total methane...

  17. Low-temperature catalytic oxidation of aldehyde mixtures using wood fly ash: kinetics, mechanism, and effect of ozone.

    Science.gov (United States)

    Kolar, Praveen; Kastner, James R

    2010-02-01

    Poultry rendering emissions contain volatile organic compounds (VOCs) that are nuisance, odorous, and smog and particulate matter precursors. Present treatment options, such as wet scrubbers, do not eliminate a significant fraction of the VOCs emitted including, 2-methylbutanal (2-MB), 3-methylbutanal, and hexanal. This research investigated the low-temperature (25-160 degrees C) catalytic oxidation of 2-MB and hexanal vapors in a differential, plug flow reactor using wood fly ash (WFA) as a catalyst and oxygen and ozone as oxidants. The oxidation rates of 2-MB and hexanal ranged between 3.0 and 3.5 x 10(-9)mol g(-1)s(-1) at 25 degrees C and the activation energies were 2.2 and 1.9 kcal mol(-1), respectively. The catalytic activity of WFA was comparable to other commercially available metal and metal oxide catalysts. We theorize that WFA catalyzed a free radical reaction in which 2-butanone and CO(2) were formed as end products of 2-MB oxidation, while CO(2), pentanal, and butanal were formed as end products of hexanal oxidation. When tested as a binary mixture at 25 and 160 degrees C, no inhibition was observed. Additionally, when ozone was tested as an oxidant at 160 degrees C, 100% removal was achieved within a 2-s reaction time. These results may be used to design catalytic oxidation processes for VOC removal at poultry rendering facilities and potentially replace energy and water intensive air pollution treatment technologies currently in use.

  18. Catalytic destruction of dichloromethane using perovskite-type oxide catalysts.

    Science.gov (United States)

    Lou, Jie-Chung; Hung, Chang-Mao; Yang, Bor-Yu

    2004-06-01

    Dichloromethane (DCM, also known as methylene chloride [CH2Cl2]) is often present in industrial waste gas and is a valuable chemical product in the chemical industry. This study addresses the oxidation of airstreams that contain CH2Cl2 by catalytic oxidation in a tubular fixed-bed reactor over perovskite-type oxide catalysts. This work also considers how the concentration of influent CH2Cl2 (Co = 500-1000 ppm), the space velocity (GHSV = 5000-48,000 1/hr), the relative humidity (RH = 10-70%) and the concentration of oxygen (O2 = 5-21%) influence the operational stability and capacity for the removal of CH2Cl2. The surface area of lanthanum (La)-cobalt (Co) composite catalyst was the greatest of the five perovskite-type catalysts prepared in various composites of La, strontium, and Co metal oxides. Approximately 99.5% CH2Cl2 reduction was achieved by the catalytic oxidation over LaCoO3-based perovskite catalyst at 600 degrees C. Furthermore, the effect of the initial concentration and reaction temperature on the removal of CH2Cl2 in the gaseous phase was also monitored. This study also provides information that a higher humidity corresponds to a lower conversion. Carbon dioxide and hydrogen chloride were the two main products of the oxidation process at a relative humidity of 70%.

  19. Hierarchical zeolites and their catalytic performance in selective oxidative processes.

    Science.gov (United States)

    Ojeda, Manuel; Grau-Atienza, Aida; Campos, Rafael; Romero, Antonio A; Serrano, Elena; Maria Marinas, Jose; García Martínez, Javier; Luque, Rafael

    2015-04-24

    Hierarchical ZSM-5 zeolites prepared using a simple alkali treatment and subsequent HCl washing are found to exhibit unprecedented catalytic activities in selective oxidation of benzyl alcohol under microwave irradiation. The metal-free zeolites promote the microwave-assisted oxidation of benzyl alcohol with hydrogen peroxide in yields ranging from 45-35 % after 5 min of reaction under mild reaction conditions as well as the epoxidation of cyclohexene to valuable products (40-60 % conversion). The hierarchically porous systems also exhibited an interesting catalytic activity in the dehydration of N,N-dimethylformamide (25-30 % conversion), representing the first example of transition-metal free catalysts in this reaction.

  20. Development studies for a novel wet oxidation process. Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-07-01

    DETOX{sup SM} is a catalyzed wet oxidation process which destroys organic materials in an acidic water solution of iron at 373 to 473 K. The solution can be used repeatedly to destroy great amounts of organic materials. Since the process is conducted in a contained vessel, air emissions from the process can be well controlled. The solution is also capable of dissolving and concentrating many heavy and radioactive metals for eventual stabilization and disposal. The Phase 2 effort for this project is site selection and engineering design for a DETOX demonstration unit. Site selection was made using a set of site selection criteria and evaluation factors. A survey of mixed wastes at DOE sites was conducted using the Interim Mixed Waste Inventory Report. Sites with likely suitable waste types were identified. Potential demonstration sites were ranked based on waste types, interest, regulatory needs, scheduling, ability to provide support, and available facilities. Engineering design for the demonstration unit is in progress and is being performed by Jacobs Applied Technology. The engineering design proceeded through preliminary process flow diagrams (PFDs), calculation of mass and energy balances for representative waste types, process and instrumentation diagrams (P and IDs), preparation of component specifications, and a firm cost estimate for fabrication of the demonstration unit.

  1. Ruthenium versus platinum on cerium materials in wet air oxidation of acetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Gaalova, J. [Institute of Chemical Process Fundamentals of the CAS, Rozvojova 135, 165 02 Prague 6, CZ (Czech Republic); Barbier, J., E-mail: Jacques.barbier.jr@univ-poitiers.fr [University of Poitiers, LACCO UMR 6503, Laboratoire de Catalyse par les Metaux, 40 Avenue du Recteur Pineau, F-86022 POITIERS Cedex (France); Rossignol, S. [University of Limoges, ENSCI, 47 Avenue Albert Thomas 87000 Limoges France (France)

    2010-09-15

    This study was a comparison between Ru-catalysts and similar, previously investigated, Pt-catalysts. In this paper, ruthenium catalysts for catalytic wet air oxidation are prepared, characterized and tested. Both catalysts were supported on commercial CeO{sub 2} as well as mixed oxide Zr{sub 0.1}(Ce{sub 0.75}Pr{sub 0.25}){sub 0.9}O{sub 2}. The catalysts were characterized by measuring the oxygen storage capacities (OSC), BET, XRD, FTIR and chemisorption of hydrogen. In addition, the effect of sintering (treatments under H{sub 2}) was compared with both of the catalysts. The comparison of the results showed that initial intrinsic activity of ruthenium is not significantly influenced by the type of the support, which is contrast to platinum. Furthermore, the particle size of Ru had an important effect on CWAO activity: the higher the particle size, the better the activity. This was different with Pt-catalysts, where the optimal particle size was smaller, having about 15% of metal dispersion.

  2. Photo-catalytic activity of Zn1-x Mn x S nanocrystals synthesized by wet chemical technique

    Directory of Open Access Journals (Sweden)

    Singh Karamjit

    2011-01-01

    Full Text Available Abstract Polyvinyl pyrrolidone capped Zn1-x Mn x S (0 ≤ x ≤ 0.1 nanocrystals have been synthesized using wet chemical co-precipitation method. Crystallographic and morphological characterization of the synthesized materials have been done using X-ray diffraction and transmission electron microscope. Crystallographic studies show the zinc blende crystals having average crystallite size approx. 3 nm, which is almost similar to the average particle size calculated from electron micrographs. Atomic absorption spectrometer has been used for qualitative and quantitative analysis of synthesized nanomaterials. Photo-catalytic activity has been studied using methylene blue dye as a test contaminant. Energy resolved luminescence spectra have been recorded for the detailed description of radiative and non-radiative recombination mechanisms. Photo-catalytic activity dependence on dopant concentration and luminescence quantum yield has been studied in detail.

  3. Deep desulfurization of diesel fuels by catalytic oxidation

    Institute of Scientific and Technical Information of China (English)

    YU Guoxian; CHEN Hui; LU Shanxiang; ZHU Zhongnan

    2007-01-01

    Reaction feed was prepared by dissolving dibenzothiophene (DBT),which was selected as a model organosulfur compound in diesel fuels,in n-octane.The oxidant was a 30 wt-% aqueous solution of hydrogen peroxide.Catalytic performance of the activated carbons with saturation adsorption of DBT was investigated in the presence of formic acid.In addition,the effects of activated carbon dosage,formic acid concentration,initial concentration of hydrogen peroxide,initial concentration of DBT and reaction temperature on the oxidation of DBT were investigated.Experimental results indicated that performic acid and the hydroxyl radicals produced are coupled to oxidize DBT with a conversion ratio of 100%.Catalytic performance of the combination of activated carbon and formic acid is higher than that ofouly formic acid.The concentration of formic acid,activated carbon dosage,initial concentration of hydrogen peroxide and reaction temperature affect the oxidative removal of DBT.The higher the initial concentration of DBT in the n-octane solution,the more difficult the deep desulfurization by oxidation is.

  4. Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems

    Energy Technology Data Exchange (ETDEWEB)

    Richard Rhudy

    2006-06-30

    This final report presents and discusses results from a mercury control process development project entitled ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems''. The objective of this project was to demonstrate at pilot scale a mercury control technology that uses solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. Oxidized mercury is removed in downstream wet flue gas desulfurization (FGD) absorbers and leaves with the FGD byproducts. The goal of the project was to achieve 90% oxidation of elemental mercury in the flue gas and 90% overall mercury capture with the downstream wet FGD system. The project was co-funded by EPRI and the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) under Cooperative Agreement DE-FC26-01NT41185. Great River Energy (GRE) and City Public Service (now CPS Energy) of San Antonio were also project co-funders and provided host sites. URS Group, Inc. was the prime contractor. Longer-term pilot-scale tests were conducted at two sites to provide catalyst life data. GRE provided the first site, at their Coal Creek Station (CCS), which fires North Dakota lignite, and CPS Energy provided the second site, at their Spruce Plant, which fires Powder River Basin (PRB) coal. Mercury oxidation catalyst testing began at CCS in October 2002 and continued through the end of June 2004, representing nearly 21 months of catalyst operation. An important finding was that, even though the mercury oxidation catalyst pilot unit was installed downstream of a high-efficiency ESP, fly ash buildup began to plug flue gas flow through the horizontal catalyst cells. Sonic horns were installed in each catalyst compartment and appeared to limit fly ash buildup. A palladium-based catalyst showed initial elemental mercury oxidation percentages of 95% across the catalyst, declining to 67% after 21 months in service. A carbon

  5. Purification of carbon nanotube by wet oxidation; Shisshiki sanka ni yoru carbon nanotube no seisei

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, K.; Takarada, T. [Gunma University, Gunma (Japan)

    1997-07-10

    In order to efficiently recover carbon nanotubes, the purification method by wet oxidation with orthoperiodic acid and perchloric acid is investigated. The reactivity of the carbonaceous material toward the acids depends on the type of carbon. Carbon nanotubes are selectively recovered under the mild oxidation conditions. The degree of purification depends on the concentration of orthoperiodic acid. It is suggested that wet oxidation is an effective method for purification of carbon nanotubes. 17 refs., 6 figs.

  6. Catalytic oxidation of volatile organic compounds (VOCs) - A review

    Science.gov (United States)

    Kamal, Muhammad Shahzad; Razzak, Shaikh A.; Hossain, Mohammad M.

    2016-09-01

    Emission of volatile organic compounds (VOCs) is one of the major contributors to air pollution. The main sources of VOCs are petroleum refineries, fuel combustions, chemical industries, decomposition in the biosphere and biomass, pharmaceutical plants, automobile industries, textile manufacturers, solvents processes, cleaning products, printing presses, insulating materials, office supplies, printers etc. The most common VOCs are halogenated compounds, aldehydes, alcohols, ketones, aromatic compounds, and ethers. High concentrations of these VOCs can cause irritations, nausea, dizziness, and headaches. Some VOCs are also carcinogenic for both humans and animals. Therefore, it is crucial to minimize the emission of VOCs. Among the available technologies, the catalytic oxidation of VOCs is the most popular because of its versatility of handling a range of organic emissions under mild operating conditions. Due to that fact, there are numerous research initiatives focused on developing advanced technologies for the catalytic destruction of VOCs. This review discusses recent developments in catalytic systems for the destruction of VOCs. Review also describes various VOCs and their sources of emission, mechanisms of catalytic destruction, the causes of catalyst deactivation, and catalyst regeneration methods.

  7. Reaction rate oscillations during catalytic CO oxidation: A brief overview

    Science.gov (United States)

    Tsotsis, T. T.; Sane, R. C.

    1987-04-01

    It is not the intent here to present a comprehensive review of the dynamic behavior of the catalytic oxidation of CO. This reaction is one of the most widely studied in the field of catalysis. A review paper by Engel and Ertl has examined the basic kinetic and mechanistic aspects, and a comprehensive paper by Razon and Schmitz was recently devoted to its dynamic behavior. Those interested in further study of the subject should consult these reviews and a number of general review papers on catalytic reaction dynamics. The goal is to present a brief overview of certain interesting aspects of the dynamic behavior of this reaction and to discuss a few questions and issues, which are still the subject of study and debate.

  8. Catalytic efficiency of Nb and Nb oxides for hydrogen dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Isobe, Shigehito, E-mail: isobe@eng.hokudai.ac.jp [Graduate School of Engineering, Hokkaido University, N-13, W-8, Sapporo 060-0813 (Japan); Creative Research Institution, Hokkaido University, N-20, W-10, Sapporo 001-0021 (Japan); Kudoh, Katsuhiro; Hino, Satoshi; Hashimoto, Naoyuki; Ohnuki, Somei [Graduate School of Engineering, Hokkaido University, N-13, W-8, Sapporo 060-0813 (Japan); Hara, Kenji [Catalysis Research Center, Hokkaido University, N-20, W-10, Sapporo 001-0021 (Japan)

    2015-08-24

    In this letter, catalytic efficiency of Nb, NbO, Nb{sub 2}O{sub 3}, NbO{sub 2}, and Nb{sub 2}O{sub 5} for dissociation and recombination of hydrogen were experimentally investigated. On the surface of Nb and Nb oxides in a gas mixture of H{sub 2} and D{sub 2}, H{sub 2} and D{sub 2} molecules can be dissociated to H and D atoms; then, H{sub 2}, D{sub 2}, and HD molecules can be produced according to the law of probability. With increase of frequency of the dissociation and recombination, HD ratio increases. The ratio of H{sub 2} and HD gas was analyzed by quadrupole mass spectrometry. As a result, NbO showed the highest catalytic activity towards hydrogen dissociation and recombination.

  9. Optimization of m?cresol degradation by sludge?derived carbon in catalytic wet peroxide oxidation using response surface methodology%响应面法优化污泥炭催化湿式过氧化氢氧化降解间甲酚模拟废水

    Institute of Scientific and Technical Information of China (English)

    赵颖; 王亚旻; 卫皇曌; 于杨; 孙承林

    2016-01-01

    In this study, nitric acid modified activated carbon prepared from excess sludge produced in sewage treatment plant was employed to degrade m?cresol simulated wastewater by catalytic wet peroxide oxidation ( CWPO ) , which helps to recycle and re?utilize the waste sludge. Physical adsorption, temperature programmed desorption ( TPD) and X ray fluorescence spectrometry ( XRF) were used to determine the physical and chemical characteristics of the sludge?derived activated carbon, and the response surface methodology ( RSM ) was applied to optimize the reaction conditions. Reaction temperature, reaction time, initial pH value, hydrogen peroxide ( H2 O2 ) dosage, catalyst dosage were selected as factors while total organic carbon ( TOC) removal rate was the response. An quadratic polynomial mathematical model between the response and 5 impact factors was derived using the central composite design ( CCD ) , refined using the backward regression method, and examined through the analysis of variance ( ANOVA ) . The optimized reaction conditions in CWPO process were found out to the reaction temperature of 60℃, the reaction time of 120 min, initial pH=3.00, H2O2 dosage of 2.03 g?L-1, catalyst dosage of 0.78 g?L-1. TOC removal rate and m?cresol conversion reached their optimal values at 44.6% and 100%, respectively.Under these conditions, The TOC removal rate in the validation experiment was 46.6%. This experimental optimal TOC removal rate is only 2.0% more than its theoretical optimum and is within the 95% confidence interval. The intermediate products from the m?cresol degradation process by sludge derived activated carbon were also analyzed using GC?MS.%以污水处理厂剩余污泥为原料制备硝酸改性活性炭,用于催化湿式过氧化氢氧化(CWPO)处理间甲酚模拟废水,以实现剩余污泥的资源化利用.使用物理吸附、程序升温脱附(TPD)、X射线荧光光谱(XRF)等表征方法对污泥炭的物理化学性质进行测定.而后采

  10. Flame Synthesis of Composite Oxides for Catalytic Applications

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer

    2002-01-01

    The scope of this work is to investigate flame synthesis of oxides and oxide composites for catalytic applications. Vaporized acetylcetonate precursors are combusted in a flame leading to the formation of metal oxides with high specific surface areas. The employed flame setup is a premixed flat...... agglomerates have a highly dendritic structure with a low density. The particle formation during alumina synthesis is modelled employing either a monodisperse model or a self-preserving model for coagulation in combination with a hybrid model describing the sintering kinetics. The hybrid model includes two...... mechanisms for the sintering, which allows the individual mechanisms to control the sintering in different temperature regimes. Simulation of the specific surface areas and collision diameters of the synthesized powder fits measured values nicely when the hybrid sintering model is applied. The temperature...

  11. A novel advanced oxidation process——wet electrocatalytic oxidation for high concentrated organic wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    DAI QiZhou; ZHOU MingHua; LEI LeCheng; ZHANG Xing Wang

    2007-01-01

    A novel advanced oxidation process-wet electrocatalytic oxidation(WEO)was studied with p-nitrophenol as model pollutant and β-PbO2 electrode as the anode.Compared with the effect of the individual wet air oxidation(WAO)and electrochemical oxidation(EO),the effect of WEO showed synergistic effect on COD removal under the conditions of temperature 160℃,C=1000mg·L-1,PN2=0.50MPa,Po2=0.9 MPa,current density=3 mA·cm-2,Na2SO4 3 g·L-1.And the synergistic factor got the best value of 0.98 within 120 min after 180 min treatment.The synergistic factor was studied after 120 min treatment at 100℃,120℃,140℃and 160℃,and the effect of 120℃was the best with the value of 1.26.Possible mechanism for the synergistic effect was discussed based on the analysis of free-radical generation and intermediates detected by HPLC and GC/MS.

  12. Structure and Catalytic Behavior of CuO-ZrO-CeO2 Mixed Oxides

    Institute of Scientific and Technical Information of China (English)

    王恩过; 陈诵英

    2002-01-01

    The effect of doping CuO on the structure and properties of zirconia-ceria mixed oxide was studied. The results show that addition of CuO decreases the reduction temperature of ceria, and stabilizes the cubic structure of mixed oxides, and enhances catalytic activity of CuO-ZrO-CeO2 mixed oxides for CO oxidation. Increasing ceria content in the mixed oxides can enhance the catalytic activity, but some impurities such as sulfate make catalytic activity falling. There is little effect of calcination temperature on catalytic activities, implying that these catalysts are effective with good thermal stability.

  13. The Study of LeachateTreatment by Using Three Advanced Oxidation Process Based Wet air Oxidation

    Directory of Open Access Journals (Sweden)

    Behroz Karimi

    2013-01-01

    Full Text Available Wet air oxidation is regarded as appropriate options for wastewater treatment with average organic compounds. The general purpose of this research is to determine the efficiency of three wet air oxidation methods, wet oxidation with hydrogen peroxide and absorption with activated carbon in removing organic matter and nitrogenous compounds from Isfahan's urban leachate. A leachate sample with the volume of 1.5 liters entered into a steel reactor with the volume of three liters and was put under a 10-bar pressure, at temperatures of 100, 200, and 300[degree sign] as well as three retention times of 30, 60, and 90 minutes. The sample was placed at 18 stages of leachate storage ponds in Isfahan Compost Plant with the volume of 20 liters, using three WPO, WAO methods and a combination of WAO/GAC for leachate pre-treatment. Thirty percent of pure oxygen and hydrogen peroxide were applied as oxidation agents. The COD removal efficiency in WAO method is 7.8-33.3%, in BOD is 14.7-50.6%, the maximum removal percentage (efficiency for NH4-N is 53.3% and for NO3-N is 56.4-73.9%. The removal efficiency of COD and BOD5 is 4.6%-34 and 24%-50 respectively in WPO method. Adding GAC to the reactor, the removal efficiency of all parameters was improved. The maximum removal efficiency was increased 48% for COD, 31%-43.6 for BOD5 by a combinational method, and the ratio of BOD5/COD was also increased to 90%. In this paper, WAO and WPO process was used for Leachate pre-treatment and WAO/GAC combinational process was applied for improving the organic matter removal and leachate treatment; it was also determined that the recent process is much more efficient in removing resistant organic matter.

  14. The study of leachate treatment by using three advanced oxidation process based wet air oxidation.

    Science.gov (United States)

    Karimi, Behroz; Ehrampoush, Mohammad Hassan; Ebrahimi, Asghar; Mokhtari, Mehdi

    2013-01-02

    Wet air oxidation is regarded as appropriate options for wastewater treatment with average organic compounds. The general purpose of this research is to determine the efficiency of three wet air oxidation methods, wet oxidation with hydrogen peroxide and absorption with activated carbon in removing organic matter and nitrogenous compounds from Isfahan's urban leachate. A leachate sample with the volume of 1.5 liters entered into a steel reactor with the volume of three liters and was put under a 10-bar pressure, at temperatures of 100, 200, and 300° as well as three retention times of 30, 60, and 90 minutes. The sample was placed at 18 stages of leachate storage ponds in Isfahan Compost Plant with the volume of 20 liters, using three WPO, WAO methods and a combination of WAO/GAC for leachate pre-treatment. Thirty percent of pure oxygen and hydrogen peroxide were applied as oxidation agents. The COD removal efficiency in WAO method is 7.8-33.3%, in BOD is 14.7-50.6%, the maximum removal percentage (efficiency) for NH4-N is 53.3% and for NO3-N is 56.4-73.9%. The removal efficiency of COD and BOD5 is 4.6%-34 and 24%-50 respectively in WPO method. Adding GAC to the reactor, the removal efficiency of all parameters was improved. The maximum removal efficiency was increased 48% for COD, 31%-43.6 for BOD5 by a combinational method, and the ratio of BOD5/COD was also increased to 90%. In this paper, WAO and WPO process was used for Leachate pre-treatment and WAO/GAC combinational process was applied for improving the organic matter removal and leachate treatment; it was also determined that the recent process is much more efficient in removing resistant organic matter.

  15. Wet deposition of oxidized nitrogen in the United States Pacific Northwest for 2002

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This spatial data set was created by the U.S. Geological Survey (USGS) to represent the amount of wet deposition of oxidized nitrogen in the Pacific Northwest region...

  16. COMPARISON BETWEEN WET OXIDATION AND STEAM EXPLOSION AS PRETREATMENT METHODS FOR ENZYMATIC HYDROLYSIS OF SUGARCANE BAGASSE

    OpenAIRE

    Carlos Martín; Marcelo Marcet; Anne Belinda Thomsen

    2008-01-01

    Alkaline wet oxidation and steam explosion pretreatments of sugarcane bagasse were compared with regard to biomass fractionation, formation of by-products, and enzymatic convertibility of the pretreated material. Wet oxidation led to the solubilisation of 82% of xylan and 50% of lignin, and to a two-fold increase of cellulose content in the pretreated solids, while steam explosion solubilised only 60% of xylan and 35% of lignin and increased cellulose content in the solid material by one thir...

  17. Decision criteria for the selection of wet oxidation and conventional biological treatment.

    Science.gov (United States)

    Collado, Sergio; Laca, Adriana; Diaz, Mario

    2012-07-15

    The suitability of wet oxidation or biological treatments for the degradation of industrial wastewaters is here discussed. Advantages of these operations, either singly or in combination, are discussed on the basis of previous experimental results from laboratory and industry. Decision diagrams for the selection of conventional biological treatment, wet oxidation or a combination of both techniques are suggested according to the type of pollutant, its concentration and the wastewater flow rate.

  18. Unification of catalytic water oxidation and oxygen reduction reactions: amorphous beat crystalline cobalt iron oxides.

    Science.gov (United States)

    Indra, Arindam; Menezes, Prashanth W; Sahraie, Nastaran Ranjbar; Bergmann, Arno; Das, Chittaranjan; Tallarida, Massimo; Schmeißer, Dieter; Strasser, Peter; Driess, Matthias

    2014-12-17

    Catalytic water splitting to hydrogen and oxygen is considered as one of the convenient routes for the sustainable energy conversion. Bifunctional catalysts for the electrocatalytic oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are pivotal for the energy conversion and storage, and alternatively, the photochemical water oxidation in biomimetic fashion is also considered as the most useful way to convert solar energy into chemical energy. Here we present a facile solvothermal route to control the synthesis of amorphous and crystalline cobalt iron oxides by controlling the crystallinity of the materials with changing solvent and reaction time and further utilize these materials as multifunctional catalysts for the unification of photochemical and electrochemical water oxidation as well as for the oxygen reduction reaction. Notably, the amorphous cobalt iron oxide produces superior catalytic activity over the crystalline one under photochemical and electrochemical water oxidation and oxygen reduction conditions.

  19. The plausible role of carbonate in photo-catalytic water oxidation processes.

    Science.gov (United States)

    Kornweitz, Haya; Meyerstein, Dan

    2016-04-28

    DFT calculations point out that the photo-oxidation of water on GaN is energetically considerably facilitated by adsorbed carbonate. As the redox potential of the couple CO3(˙-)/CO3(2-) is considerably lower than that of the couple OH˙/OH(-) but still enables the oxidation of water it is suggested that carbonate should be considered as a catalyst/co-catalyst in a variety of catalytic/photo-catalytic/electro-catalytic oxidation processes.

  20. Hydrogen production from methane through catalytic partial oxidation reactions

    Science.gov (United States)

    Freni, S.; Calogero, G.; Cavallaro, S.

    This paper reviews recent developments in syn-gas production processes used for partial methane oxidation with and/or without steam. In particular, we examined different process charts (fixed bed, fluidised bed, membrane, etc.), kinds of catalysts (powders, foams, monoliths, etc.) and catalytically active phases (Ni, Pt, Rh, etc.). The explanation of the various suggested technical solutions accounted for the reaction mechanism that may selectively lead to calibrated mixtures of CO and H 2 or to the unwanted formation of products of total oxidation (CO 2 and H 2O) and pyrolysis (coke). Moreover, the new classes of catalysts allow the use of small reactors to treat large amounts of methane (monoliths) or separate hydrogen in situ from the other reaction products (membrane). This leads to higher conversions and selectivity than could have been expected thermodynamically. Although catalysts based on Rh are extremely expensive, they can be used to minimise H 2O formation by maximising H 2 yield.

  1. Catalytic conversion of methane: Carbon dioxide reforming and oxidative coupling

    KAUST Repository

    Takanabe, Kazuhiro

    2012-01-01

    Natural gas conversion remains one of the essential technologies for current energy needs. This review focuses on the mechanistic aspects of the development of efficient and durable catalysts for two reactions, carbon dioxide reforming and the oxidative coupling of methane. These two reactions have tremendous technological significance for practical application in industry. An understanding of the fundamental aspects and reaction mechanisms of the catalytic reactions reviewed in this study would support the design of industrial catalysts. CO 2 reforming of methane utilizes CO 2, which is often stored in large quantities, to convert as a reactant. Strategies to eliminate carbon deposition, which is the major problem associated with this reaction, are discussed. The oxidative coupling of methane directly produces ethylene in one reactor through a slightly exothermic reaction, potentially minimizing the capital cost of the natural gas conversion process. The focus of discussion in this review will be on the attainable yield of C 2 products by rigorous kinetic analyses.

  2. Catalytic oxidation of VOCs over CNT-supported platinum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Hea-Jung; Kim, Jae-Ha [Bioneer Corporation, Munyueong-dong 49-4, Daedeok-gu, Daejeon 306-220 (Korea, Republic of); Oh, Jun-Sik; You, Dong-Wook [Department of Chemistry and Nanoscience and Technology Institute, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Park, Han-Oh [Bioneer Corporation, Munyueong-dong 49-4, Daedeok-gu, Daejeon 306-220 (Korea, Republic of); Jung, Kwang-Woo, E-mail: kwjung@wku.ac.kr [Department of Chemistry and Nanoscience and Technology Institute, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of)

    2014-01-30

    The catalytic oxidation of volatile organic compounds such as benzene, toluene, ethylbenzene, and o-xylene (BTEX) over novel Pt/carbon nanotube (CNT) catalysts fabricated by a molecular-level mixing method was investigated at temperatures ranging from 40 to 150 °C. The Pt/CNT interface was probed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray spectroscopy (EDS) to elucidate the binding nature of the Pt nanoparticle-CNT surface. The breakthrough curves for multi-component mixtures show displacement effects, in which adsorbates exhibit interaction forces that are sufficiently to displace weakly bounded substances during adsorption. Catalytic oxidation was conducted using a BTEX concentration ranging from 100 to 500 ppmv in air at volume hour space velocities (VHSVs) of approximately 7.5 × 10{sup 4} h{sup −1}–3.4 × 10{sup 5} h{sup −1}. The light-off curves were very steep, and complete oxidation was realized at temperatures as low as 115 °C with 30 wt% Pt/CNT, well below the temperatures required using previously studied Pt-based catalysts. The oxidation activity was presumably promoted because of the higher surface BTEX concentration afforded by the adsorption capability of multiwalled carbon nanotubes. The catalyst was characterized by its unique hydrophobic property, which facilitated the conversion of BTEX with high activity at relatively low temperatures and was unaffected by moisture in the system.

  3. Removal of formaldehyde over MnxCe1-xO2 catalysts: Thermal catalytic oxidation versus ozone catalytic oxidation

    Institute of Scientific and Technical Information of China (English)

    Jia Wei Li; Kuan Lun Pan; Sheng Jen Yu; Shaw Yi Yan; Moo Been Chang

    2014-01-01

    MnxCe1-xO2 (x:0.3-0.9) prepared by Pechini method was used as a catalyst for the thermal catalytic oxidation of formaldehyde (HCHO).At x =0.3 and 0.5,most of the manganese was incorporated in the fluorite structure of CeO2 to form a solid solution.The catalytic activity was best at x =0.5,at which the temperature of 100% removal rate is the lowest (270℃).The temperature for 100% removal of HCHO oxidation is reduced by approximately 40℃ by loading 5 wt.% CuOx into Mn0.5Ce0.5O2.With ozone catalytic oxidation,HCHO (61 ppm) in gas stream was completely oxidized by adding 506 ppm O3 over Mn0.5Ce0.5O2 catalyst with a GHSV (gas hourly space velocity) of 10,000 hr-1 at 25℃.The effect of the molar ratio of O3 to HCHO was also investigated.As O3/HCHO ratio was increased from 3 to 8,the removal efficiency of HCHO was increased from 83.3% to 100%.With O3/HCHO ratio of 8,the mineralization efficiency of HCHO to CO2 was 86.1%.At 25℃,the p-type oxide semiconductor (Mn0.5Ce0.5O2) exhibited an excellent ozone decomposition efficiency of 99.2%,which significantly exceeded that of n-type oxide semiconductors such as TiO2,which had a low ozone decomposition efficiency (9.81%).At a GHSV of 10,000 hr-1,[O3]/[HCHO] =3 and temperature of 25℃,a high HCHO removal efficiency (≥81.2%) was maintained throughout the durability test of 80 hr,indicating the long-term stability of the catalyst for HCHO removal.

  4. A review of wet air oxidation and Thermal Hydrolysis technologies in sludge treatment.

    Science.gov (United States)

    Hii, Kevin; Baroutian, Saeid; Parthasarathy, Raj; Gapes, Daniel J; Eshtiaghi, Nicky

    2014-03-01

    With rapid world population growth and strict environmental regulations, increasingly large volumes of sludge are being produced in today's wastewater treatment plants (WWTP) with limited disposal routes. Sludge treatment has become an essential process in WWTP, representing 50% of operational costs. Sludge destruction and resource recovery technologies are therefore of great ongoing interest. Hydrothermal processing uses unique characteristics of water at elevated temperatures and pressures to deconstruct organic and inorganic components of sludge. It can be broadly categorized into wet oxidation (oxidative) and thermal hydrolysis (non-oxidative). While wet air oxidation (WAO) can be used for the final sludge destruction and also potentially producing industrially useful by-products such as acetic acid, thermal hydrolysis (TH) is mainly used as a pre-treatment method to improve the efficiency of anaerobic digestion. This paper reviews current hydrothermal technologies, roles of wet air oxidation and thermal hydrolysis in sludge treatment, and challenges faced by these technologies.

  5. Comparison between wet oxidation and steam explosion as pretreatment methods for enzymatic hydrolysis of sugarcane bagasse

    DEFF Research Database (Denmark)

    Medina, Carlos Martín; Marcet, M.; Thomsen, Anne Belinda

    2008-01-01

    Alkaline wet oxidation and steam explosion pretreatments of sugarcane bagasse were compared with regard to biomass fractionation, formation of by-products, and enzymatic convertibility of the pretreated material. Wet oxidation led to the solubilisation of 82% of xylan and 50% of lignin......, and to a two-fold increase of cellulose content in the pretreated solids, while steam explosion solubilised only 60% of xylan and 35% of lignin and increased cellulose content in the solid material by one third. Wet oxidation formed more aliphatic acids and phenolics, and less furan aldehydes in the liquid...... fraction than steam explosion did. A better enzymatic convertibility of cellulose was achieved for the wet-oxidised material (57.4 %) than for the steam-exploded material (48.9 %). Cellulose convertibility was lower for the whole slurry than for the washed solids in both pretreatments, but more...

  6. Investigation on CO catalytic oxidation reaction kinetics of faceted perovskite nanostructures loaded with Pt

    KAUST Repository

    Yin, S. M.

    2017-01-18

    Perovskite lead titanate nanostructures with specific {111}, {100} and {001} facets exposed, have been employed as supports to investigate the crystal facet effect on the growth and CO catalytic activity of Pt nanoparticles. The size, distribution and surface chemical states of Pt on the perovskite supports have been significantly modified, leading to a tailored conversion temperature and catalytic kinetics towards CO catalytic oxidation.

  7. Coupling catalytic hydrolysis and oxidation for CS2 removal

    Institute of Scientific and Technical Information of China (English)

    WANG Li; WU Diyong; WANG Shudong; YUAN Quan

    2008-01-01

    CS2 removal was Obtained by coupling catalytic hyidation on bi-functional catalyst.On the hydrolysis active sites,CS2 is hydrolyzed to H2S,while on the oxidation active sites,H2S is oxidized to elemental S or sulfuric acid deposited on the porous support.The above process can be expressed as follows:CS2→H2O COS →H2O H2S→O2 S/SO2- 4.H2S oxidation eliminates its prohibition on CS2 hydrolysis so that the rate of coupling removal CS2 is 5 times higher than that of CS2 hydrolysis.The same active energy of hydrolysis and coupling reaction also indicates that H2S oxidation does not change the reaction mechanism of CS2 hydrolysis.Temperature has obvious effect on the process while the mole ratio of O2 concentration to CS2 concentration (O/S) does not,especially in excess of 2.5.The formation of sulfuric acid on the catalyst surface poisons hydrolysis active sites and causes the decrease of left OH-1 concentration on the catalysts surface.Lower temperature is suggested for this bi-functional catalyst owing to the low yield ratio of S/SO4 2-.

  8. One-pot wet-chemical co-reduction synthesis of bimetallic gold-platinum nanochains supported on reduced graphene oxide with enhanced electrocatalytic activity

    Science.gov (United States)

    Chen, De-Jun; Zhang, Qian-Li; Feng, Jin-Xia; Ju, Ke-Jian; Wang, Ai-Jun; Wei, Jie; Feng, Jiu-Ju

    2015-08-01

    In this work, a simple, rapid and facile one-pot wet-chemical co-reduction method is developed for synthesis of bimetallic Au-Pt alloyed nanochains supported on reduced graphene oxide (Au-Pt NCs/RGO), in which caffeine is acted as a capping agent and a structure-directing agent, while no any seed, template, surfactant or polymer involved. The as-prepared nanocomposites display enlarged electrochemical active surface area, significantly enhanced catalytic activity and better stability for methanol and ethylene glycol oxidation, compared with commercial Pt-C (Pt 50 wt%), PtRu-C (Pt 30 wt% and Ru 15 wt%) and Pt black.

  9. Surface Oxidation Study of Uranium Dioxide Under Wet and Dry Conditions

    Science.gov (United States)

    2005-03-01

    oxygen [ Colmenares , 1984]. This oxidation rate has been reported in the time frame of minutes to hours. During the preparation of the UO2 powder...Science (Seventh Edition). Prentice-Hall, Inc. 1997. Colmenares , C., Oxidation Mechanisms and Catalytic Properties of the Actinides, Progress in

  10. An approach to modeling of silicon oxidation in a wet ultra-diluted ambient

    NARCIS (Netherlands)

    Kovalgin, A.Y.; Hof, A.J.; Schmitz, J.

    2005-01-01

    In this work, we make steps towards developing a new wet-oxidation model of silicon based on electron-stimulated dissociation of H2O molecules. The need for a new model arises from the fact that existing physical models are inadequate to describe the thin-oxide regime. Two regimes of silicon oxidati

  11. Kinetics of wet air oxidation of glyoxalic acid and oxalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Shende, R.V.; Mahajani, V.V. (Univ. of Bombay (India). Dept. of Chemical Technology)

    1994-12-01

    Oxidation of lower molecular weight monobasic and dibasic acids such as formic acid, acetic acid, glyoxalic acid, and oxalic acid is often the rate-controlling step during wet air oxidation (WAO) of an aqueous waste stream exhibiting very high chemical oxygen demand (COD). The kinetics of WAO of glyoxalic acid and oxalic acid was studied in absence and presence of a cupric sulfate catalyst in the temperature range of 120--245 C and oxygen partial pressure of 0.345--1.380 MPa. The wet oxidation of oxalic acid was found to require more severe conditions as compared to glyoxalic acid. The reaction mechanism and kinetic model have been discussed.

  12. Oxidation mechanism of Fe–16Cr alloy as SOFC interconnect in dry/wet air

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhi-Yuan [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Wang, Li-Jun, E-mail: lijunwang@ustb.edu.cn [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Li, Fu-Shen [School of Material Science Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Chou, Kuo-Chih [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2013-10-15

    Highlights: •A special thermodynamic description corresponding to the kinetics was applied. •We reported the relationships of degradation time with temperature and moisture. •”Turning time” in the Fe–16Cr alloy oxidation kinetic model was given. •The oxidation mechanism of Fe–16Cr alloy in the wet air was discussed. -- Abstract: Experimental study on the oxidation corrosions of Fe–16Cr alloy was carried out at 800–1100 °C under dry/wet air conditions. Faster oxidation rate was observed at higher temperature and water vapor content. The degradation time t{sub d} between two stages in oxidation process showed an exponential relationship with elevating corrosion temperature in dry air, and a linear relationship with the water content in the case of water vapor introduced to the system. The mechanism of oxidation corrosions of Fe–16Cr alloy was suggested by the Real Physical Picture (RPP) model. It was found that the break-away oxidation in stage II was controlled by diffusion at initial both in dry and wet air, then became linear with the exposure time, which implied that the oxidation rate was then controlled by chemical reaction of the interface between the metal and the oxidized scale. Moreover, the effect of water in the oxidation process is not only to supply more oxygen into system, but also to modify the structures of oxide scale due to the existence of hydrogen atom, which results in the accelerated corrosions.

  13. The Oxidation of AlN in Dry and Wet Oxygen

    Science.gov (United States)

    Opila, Elizabeth; Humphrey, Donald; Jacobson, Nathan; Yoshio, Tetsuo; Oda, Kohei

    1998-01-01

    The oxidation kinetics of AlN containing 3.5 wt% Y2O3 were studied by thermogravimetric analysis in dry oxygen and 10% H2O/balance oxygen at temperatures between 1000 and 1200 C for times between 48 and 100 h. The oxidation kinetics for AlN in dry oxygen were parabolic and of approximately the same magnitude and temperature dependence as other alumina forming materials. In this case, diffusion of oxygen and/or aluminum through the alumina scale is the rate limiting mechanism. The oxidation kinetics for AlN in wet oxygen were nearly linear and much more rapid than rates observed in dry oxygen. Numerous micropores were observed in the alumina formed on AIN in wet oxygen. These pores provide a fast path for oxygen transport. The linear kinetics observed in this case suggest that the interface reaction rate of AlN with wet oxygen is the oxidation rate limiting step.

  14. Catalytic graphitization of carbon/carbon composites by lanthanum oxide

    Institute of Scientific and Technical Information of China (English)

    ZHANG Can; LU Guimin; SUN Ze; YU Jianguo

    2012-01-01

    Graphitized carbon/carbon composites were prepared by the process of catalytic graphitization with the rare-earth catalyst,lanthanum oxide (La2O3),in order to increase the degree of graphitization and reduce the electrical resistivity.The modified coal tar pitch and coal-based needle coke were used as carbon source,and a small amount of La2O3 was added to catalyze the graphitization of the disordered carbon materials.The effects of La2O3 catalyst on the graphitization degree and microstructure oftbe carbon/carbon composites were investigated by X-ray diffraction,scanning electron microscopy,and Raman spectroscopy.The results showed that La2O3 promoted the formation of more perfect and larger crystallites,and improved the electrical/mechanical properties of carbon/carbon composites.Carbon/carbon composites with a lower electrical resistivity (7.0 μΩ·m) could be prepared when adding 5 wt.% La2O3 powder with heating treatment at 2800 ℃.The catalytic effect of La2O3 for the graphitization of carbon/carbon composites was analyzed.

  15. Catalytic properties and biomedical applications of cerium oxide nanoparticles

    KAUST Repository

    Walkey, Carl D.

    2014-11-10

    Cerium oxide nanoparticles (nanoceria) have shown promise as catalytic antioxidants in the test tube, cell culture models and animal models of disease. However given the reactivity that is well established at the surface of these nanoparticles, the biological utilization of nanoceria as a therapeutic still poses many challenges. Moreover the form that these particles take in a biological environment, such as the changes that can occur due to a protein corona, are not well established. This review aims to summarize the existing literature on biological use of nanoceria, and to raise questions about what further study is needed to apply this interesting catalytic material to biomedical applications. These questions include: 1) How does preparation, exposure dose, route and experimental model influence the reported effects of nanoceria in animal studies? 2) What are the considerations to develop nanoceria as a therapeutic agent in regards to these parameters? 3) What biological targets of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are relevant to this targeting, and how do these properties also influence the safety of these nanomaterials?

  16. Catalytic Behavior of CO Oxidization over Pd/ZrO2 - CeO2 Catalyst

    Institute of Scientific and Technical Information of China (English)

    Wang Enguo; Mei Fang

    2004-01-01

    The effects of Pd loading, cerium content, the special surface area of the support and calcination temperature on the catalytic properties of Pd-loaded zirconia-ceria mixed oxide were studied.The results show that loading Pd and increasing cerium content in the mixed oxides can enhance the catalytic activity.There is a little effect of calcination temperature on catalytic activities, implying that these catalysts are effective with good thermal stability.

  17. Catalytic hydrogen peroxide decomposition on La1-xSrxCo03-d perovskite oxides

    NARCIS (Netherlands)

    Dam, Van-Ahn. T.; Olthuis, W.; Bergveld, P.; Berg, van den A.

    2005-01-01

    Lanthanide perovskite oxides are mentioned as material for hydrogen peroxide sensor because they can catalytically decompose hydrogen peroxide in an aqueous medium. The catalytic properties of these perovskite oxides to hydrogen peroxide are suggested due to their oxygen vacancies influenced by the

  18. Mercury Oxidation via Catalytic Barrier Filters Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

    2007-09-30

    In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

  19. Methylene Blue Inhibits Caspases by Oxidation of the Catalytic Cysteine.

    Science.gov (United States)

    Pakavathkumar, Prateep; Sharma, Gyanesh; Kaushal, Vikas; Foveau, Bénédicte; LeBlanc, Andrea C

    2015-09-24

    Methylene blue, currently in phase 3 clinical trials against Alzheimer Disease, disaggregates the Tau protein of neurofibrillary tangles by oxidizing specific cysteine residues. Here, we investigated if methylene blue can inhibit caspases via the oxidation of their active site cysteine. Methylene blue, and derivatives, azure A and azure B competitively inhibited recombinant Caspase-6 (Casp6), and inhibited Casp6 activity in transfected human colon carcinoma cells and in serum-deprived primary human neuron cultures. Methylene blue also inhibited recombinant Casp1 and Casp3. Furthermore, methylene blue inhibited Casp3 activity in an acute mouse model of liver toxicity. Mass spectrometry confirmed methylene blue and azure B oxidation of the catalytic Cys163 cysteine of Casp6. Together, these results show a novel inhibitory mechanism of caspases via sulfenation of the active site cysteine. These results indicate that methylene blue or its derivatives could (1) have an additional effect against Alzheimer Disease by inhibiting brain caspase activity, (2) be used as a drug to prevent caspase activation in other conditions, and (3) predispose chronically treated individuals to cancer via the inhibition of caspases.

  20. Kinetics of wet oxidation of propionic and 3-hydroxypropionic acids

    Energy Technology Data Exchange (ETDEWEB)

    Shende, R.V.; Levec, J. [National Inst. of Chemistry, Ljubljana (Slovenia). Lab. for Catalysis and Chemical Reaction Engineering]|[Univ. of Ljubljana (Slovenia). Dept. of Chemical Engineering

    1999-07-01

    Oxidation of aqueous solutions of 3-hydroxypropionic (3-HPA) and propionic acids (PA) was studied in a titanium high-pressure reactor at 280--310 C using oxygen partial pressures between 10 and 45 bar. Oxidation of both acids was found to obey first-order kinetic with respect to their concentrations as well as to their lumped TOC concentrations. Oxidation rate revealed a half order dependence with respect to oxygen for oxidation of both acids. In the case of 3-HPA oxidation, the activation energy was found to be 135 kJ/mol, and it was 140 kJ/mol when lumped concentration TOC was used. The activation energy for PA oxidation is 150 kJ/mol, and it is slightly higher, 158 kJ/mol, for TOC reduction. Almost complete conversion of 3-HPA was achieved at 300 C after 1 h, whereas 95% conversion of PA acid was obtained at 310 C after 3 h. During oxidation of 3-HPA, 3-oxopropionic and acetic acids were identified as intermediate products. Oxidation of PA yielded acetic and formic acids as intermediates; at oxygen partial pressures above 25 bar and 310 C, the formation of acetic acid was appreciably reduced. In both cases, however, direct oxidation to carbon dioxide and water was found to be the main reaction route.

  1. Reactive dye house wastewater treatment. Use of hybrid technology: Membrane, sonication followed by wet oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Dhale, A.D.; Mahajani, V.V. [Univ. of Mumbai (India)

    1999-05-01

    To address problems associated with treatment of an aqueous waste stream from a reactive dye house, a model dye, turquoise blue CI25, was studied. A hybrid technology, membrane separation followed by sonication and wet oxidation, has been demonstrated to treat the wastewater for reuse and discharge. Experiments were first performed with the reactive dye solution in water. A nanofiltration membrane (MPT 30) was found to be suitable to concentrate the dye. The concentrate was then treated with a wet oxidation process. Kinetics studies were performed with and without catalyst, in the temperature range of 170--215 C. The color destruction achieved was > 99%. After process parameters were fixed, studies were conducted with the actual dye waste stream. The actual waste stream was found to be refractory for wet oxidation under the above conditions. Sonication of the concentrate obtained after membrane filtration, in the presence of CuSO{sub 4}, made the waste stream amenable to wet oxidation. Sonication followed by wet oxidation was found to be more effective at near neutral conditions as compared to basic conditions.

  2. Periodic and random perturbation of catalytic oxidation of CO

    Institute of Scientific and Technical Information of China (English)

    杨灵法; 侯中怀; 辛厚文

    1999-01-01

    When a controllable input is modulated by noise and signal, the response of a nonlinear system may exhibit a synchronized effect, which is referred to as stochastic resonance(SR). With the help of noise, the detection of weak signal may become possible and its signal-to-noise ratio can be increased. A model to describe catalytic oxidation of CO on single crystal was adopted, and its stability was studied by linear analysis method. Through computer simulation, the responses under periodic and random perturbation were analyzed. Stochastic resonance behavior was found in a narrow bistable region, or near the oscillatory region. The results shows more characteristics than those of 1-dimensional system does.

  3. Study of positive and negative plasma catalytic oxidation of ethylene.

    Science.gov (United States)

    Van Wesenbeeck, K; Hauchecorne, B; Lenaerts, S

    2016-10-06

    The effect of introducing a photocatalytically active coating inside a plasma unit is investigated. This technique combines the advantages of high product selectivity from catalysis and the fast start-up from plasma technology. In this study, a preselected TiO2 coating is applied on the collector electrode of a DC corona discharge unit as non-thermal plasma reactor, in order to study the oxidation of ethylene. For both positive and negative polarities an enhanced mineralization is observed while the formation of by-products drastically decreases. The plasma catalytic unit gave the best results when using negative polarity at a voltage of 15 kV. This shows the potential of plasma catalysis as indoor air purification technology.

  4. Experimental Investigation of Flow Resistance in a Coal Mine Ventilation Air Methane Preheated Catalytic Oxidation Reactor

    Directory of Open Access Journals (Sweden)

    Bin Zheng

    2015-01-01

    Full Text Available This paper reports the results of experimental investigation of flow resistance in a coal mine ventilation air methane preheated catalytic oxidation reactor. The experimental system was installed at the Energy Research Institute of Shandong University of Technology. The system has been used to investigate the effects of flow rate (200 Nm3/h to 1000 Nm3/h and catalytic oxidation bed average temperature (20°C to 560°C within the preheated catalytic oxidation reactor. The pressure drop and resistance proportion of catalytic oxidation bed, the heat exchanger preheating section, and the heat exchanger flue gas section were measured. In addition, based on a large number of experimental data, the empirical equations of flow resistance are obtained by the least square method. It can also be used in deriving much needed data for preheated catalytic oxidation designs when employed in industry.

  5. Hydrogen production by catalytic partial oxidation of methane

    Energy Technology Data Exchange (ETDEWEB)

    Enger, Bjoern Christian

    2008-12-15

    Hydrogen production by catalytic partial oxidation of natural gas was investigated using tools ranging from theoretical calculations to experimental work and sophisticated characterization techniques. Catalytic partial oxidation (CPO) was carried out in a conventional continuous flow experimental apparatus using a fixed-bed reactor, and operating at 1 atm and furnace temperatures in the range from ambient to 1073 K. The feed typically consisted of a mixture of methane and air, with a CH{sub 4}/O{sub 2} ratio of 2, and the average bed residence time was in the range 10-250 ms. Steam methane reforming (SMR) was carried out in the same apparatus at similar temperatures and pressure in a feed consisting of methane, nitrogen and water, with a steam to carbon ratio of 2.0-4.0. Temperature programmed (TP) techniques, including oxidation (TPO), reduction (TPR), reaction (TPCPO) and methane dissociation (TPMD) was used to characterize catalytic properties such as ignition temperatures, the catalyst reducibility and activation energies. Dispersions from catalyst surface area measurements were compared to X-ray diffraction (XRD) techniques and electron microscopy (SEM, TEM,STEM) to obtain information on catalyst particle sizes and dispersion. X-ray photoelectron spectroscopy (XPS) provided information on the specific catalyst surface composition, which was compared to results on the bulk structure obtained by XRD. The effect of modifying cobalt catalysts supported on alumina was investigated by adding small amounts of Ni, Fe, Cr, Re, Mn, W, Mo, V and Ta oxides. The idea behind this work was to investigate whether the cobalt crystals were decorated, covered or encircled by a modifier and to what extent this affected catalyst performance. The choice of modifiers in this study was based on the principle that in any chemical process it may be just as important to identify groups of elements that have negative effects as identifying the best promoters. It was found that the

  6. Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: Wet oxidation and fermentation by yeast

    DEFF Research Database (Denmark)

    Klinke, Helene Bendstrup; Olsson, Lisbeth; Thomsen, A.B.;

    2003-01-01

    Alkaline wet oxidation (WO) (using water, 6.5 g/L sodium carbonate and 12 bar oxygen at 195degreesC) was used as pretreatment method for wheat straw (60 g/L), resulting in a hydrolysate and a cellulosic solid fraction. The hydrolysate consisted of soluble hemicellulose (8 g/L), low......-molecular-weight carboxylic acids (3.9 g/L), phenols (0.27 g/L = 1.7 mM) and 2-furoic acid (0.007 g/L). The wet oxidized wheat straw hydrolysate caused no inhibition of ethanol production by Saccharomyces cerevisiae ATCC 96581. Nine phenols and 2-furoic acid, identified to be present in the hydrolysate, were each tested...

  7. Characterization and catalytic behavior of Na-W-Mn-Zr-S-P/SiO2 prepared by different methods in oxidative coupling of methane

    Institute of Scientific and Technical Information of China (English)

    Wen Zheng; Dangguo Cheng; Fengqiu Chen; Xiaoli Zhan

    2010-01-01

    Na-W-Mn-Zr-S-P/SiO2 catalysts for oxidative coupling of methane(OCM)were prepared by incipient wetness impregnation,sol-gel and mixture slurry methods.The catalyst prepared by mixture slurry method showed the best catalytic performance among all samples.In addition,the effects of different addition sequences of Na,W,Mn,Zr,S and P on the catalytic performance were studied.The absence of Na before the addition of Mn and Zr in the catalysts preparation depressed the formation of the active phases of Mn203 and ZrO2 and decreased the activities of the catalysts significantly.

  8. Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution.

    Science.gov (United States)

    Hung, Chang-Mao

    2009-07-30

    Aqueous solutions of 200-1000 mg/L of ammonia were oxidized in a trickle-bed reactor using Cu-activated carbon fiber (ACF) catalysts, which were prepared by incipient wet impregnation with aqueous solutions of copper nitrate that was deposited on ACF substrates. The results reveal that the conversion of ammonia by wet oxidation in the presence of Cu-ACF catalysts was a function of the metal loading weight ratio of the catalyst. The total conversion efficiency of ammonia was 95% during wet oxidation over the catalyst at 463 K at an oxygen partial pressure of 3.0 MPa. Moreover, the effect of the initial concentration of ammonia and the reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid space velocity of less than 3.0 h(-1).

  9. Wet Oxidation Pre-Treatment – the Way To Improve Economics of Energy Production From Manure?

    DEFF Research Database (Denmark)

    Uellendahl, Hinrich; Mladenovska, Zuzana; Langvad, Niels Bo

    2006-01-01

    and Wheatley, 1993). The combination of high temperature and pressure, together with the addition of oxygen in the wet oxidation process, has shown a superior potential for increasing the hydrolysis of lignocellulosic biomass with subsequent ethanol fermentation. In the present study the wet oxidation process...... was tested as pretreatment for increasing the biogas yield of the fiber fraction of manure. The wet oxidation pretreatment in combination with solid liquid separation of manure by using either chemical precipitation or decanter centrifuge (Møller et al., 2004) could be a promising option for a significant......Throughout recent years, several physical, chemical and biological pretreatment methods have been tested with limited success in order to increase hydrolysis of the lignocellulose structure of manure fibers (Fan et al., 1982; Gharpuray et al., 1983; Grethlein, 1984; Hartmann et. al. 2000; Hobson...

  10. Characterization of degradation products from alkaline wet oxidation of wheat straw

    DEFF Research Database (Denmark)

    Klinke, H.B.; Ahring, B.K.; Schmidt, A.S.

    2002-01-01

    Alkaline wet oxidation pre-treatment (water, sodium carbonate, oxygen, high temperature and pressure) of wheat straw was performed as a 2(4-1) fractional factorial design with the process parameters: temperature, reaction time, sodium carbonate and oxygen. Alkaline wet oxidation was an efficient...... pre-treatment of wheat straw that resulted in solid fractions with high cellulose recovery (96%) and high enzymatic convertibility to glucose (67%). Carbonate and temperature were the most important factors for fractionation of wheat straw by wet oxidation. Optimal conditions were 10 min at 195...... the solid fraction (62%) did not provide a corresponding increase in the phenol monomer content but was correlated to high carboxylic acid concentrations. The degradation products in the hemicellulose fractions co-varied with the pre-treatment conditions in the principal component analysis according...

  11. Wet Etching of Heat Treated Atomic Layer Chemical Vapor Deposited Zirconium Oxide in HF Based Solutions

    Science.gov (United States)

    Balasubramanian, Sriram; Raghavan, Srini

    2008-06-01

    Alternative materials are being considered to replace silicon dioxide as gate dielectric material. Of these, the oxides of hafnium and zirconium show the most promise. However, integrating these new high-k materials into the existing complementary metal-oxide-semiconductor (CMOS) process remains a challenge. One particular area of concern is the wet etching of heat treated high-k dielectrics. In this paper, work done on the wet etching of heat treated atomic layer chemical vapor deposited (ALCVD) zirconium oxide in HF based solutions is presented. It was found that heat treated material, while refractory to wet etching at room temperature, is more amenable to etching at higher temperatures when methane sulfonic acid is added to dilute HF solutions. Selectivity over SiO2 is still a concern.

  12. COMPARISON BETWEEN WET OXIDATION AND STEAM EXPLOSION AS PRETREATMENT METHODS FOR ENZYMATIC HYDROLYSIS OF SUGARCANE BAGASSE

    Directory of Open Access Journals (Sweden)

    Carlos Martín

    2008-08-01

    Full Text Available Alkaline wet oxidation and steam explosion pretreatments of sugarcane bagasse were compared with regard to biomass fractionation, formation of by-products, and enzymatic convertibility of the pretreated material. Wet oxidation led to the solubilisation of 82% of xylan and 50% of lignin, and to a two-fold increase of cellulose content in the pretreated solids, while steam explosion solubilised only 60% of xylan and 35% of lignin and increased cellulose content in the solid material by one third. Wet oxidation formed more aliphatic acids and phenolics, and less furan aldehydes in the liquid fraction than steam explosion did. A better enzymatic convertibility of cellulose was achieved for the wet-oxidised material (57.4 % than for the steam-exploded material (48.9 %. Cellulose convertibility was lower for the whole slurry than for the washed solids in both pretreatments, but more significantly in steam explosion. This investigation demonstrates the potential of wet oxidation as a promising pretreatment method for enzyme-based bagasse-to-ethanol processes.

  13. CATALYTIC OXIDATION OF DIMETHYL SULFIDE WITH OZONE: EFFECT OF PROMOTER AND PHYSICO-CHEMICAL PROPERTIES OF METAL OXIDE CATALYSTS

    Science.gov (United States)

    This study reports improved catalytic activities and stabilities for the oxidation of dimethyl sulfide (DMS), a major pollutant of pulp and paper mills. Ozone was used as an oxidant and Cu, Mo, V, Cr and Mn metal oxides, and mixed metal oxides support on y-alumina as catalysts ov...

  14. CATALYTIC OXIDATION OF DIMETHYL SULFIDE WITH OZONE: EFFECTS OF PROMOTER AND PHYSICO-CHEMICAL PROPERTIES OF METAL OXIDE CATALYSTS

    Science.gov (United States)

    This study reports improved catalytic activities and stabilities for the oxidation of dimethyl sulfide (DMS), a major pollutant of pulp and paper mills. Ozone was used as an oxidant and activities of Cu, Mo, Cr and Mn oxides, and mixed metal oxides supported on -alumina, were tes...

  15. Low-temperature catalytic gasification of wet industrial wastes. FY 1993--1994 interim report

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.; Hart, T.R.; Neuenschwander, G.G.; Deverman, G.S.; Werpy, T.A.; Phelps, M.R.; Baker, E.G.; Sealock, L.J. Jr.

    1995-03-01

    Process development research is continuing on a low-temperature, catalytic gasification system that has been demonstrated to convert organics in water (dilute or concentrated) to useful and environmentally safe gases. The system, licensed under the trade name Thermochemical Environmental Energy System (TEESO), treats a wide variety of feedstocks ranging from hazardous organics in water to waste sludges from food processing. The current research program is focused on the use of continuous-feed, tubular reactors systems for testing catalysts and feedstocks in the process. A range of catalysts have been tested, including nickel and other base metals, as well as ruthenium and other precious metals. Results of extensive testing show that feedstocks, ranging from 2% para-cresol in water to potato waste and spent grain, can be processed to > 99% reduction of chemical oxygen demand (COD). The product fuel gas contains from 40% up to 75% methane, depending on the feedstock. The balance of the gas is mostly carbon dioxide with < 5% hydrogen and usually < 1% ethane and higher hydrocarbons. The byproduct water stream carries residual organics from 10 to 1,000 mg/l COD, depending on the feedstock. The level of development of TEES has progressed to the initial phases of industrial process demonstration. Testing of industrial waste streams is under way at both the bench scale and engineering scale of development.

  16. Bench-scale reactor tests of low-temperature, catalytic gasification of wet, industrial wastes

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.; Neuenschwander, G.G.; Baker, E.G.; Butner, R.S.; Sealock, L.J.

    1990-04-01

    Bench-scale reactor tests are under way at Pacific Northwest Laboratory to develop a low-temperature, catalytic gasification system. The system, licensed under the trade name Thermochemical Environmental Energy System (TEES{reg sign}), is designed for to a wide variety of feedstocks ranging from dilute organics in water to waste sludges from food processing. The current research program is focused on the use of a continuous-feed, tubular reactor. The catalyst is nickel metal on an inert support. Typical results show that feedstocks such as solutions of 2% para-cresol or 5% and 10% lactose in water or cheese whey can be processed to >99% reduction of chemical oxygen demand (COD) at a rate of up to 2 L/hr. The estimated residence time is less than 5 min at 360{degree}C and 3000 psig, not including 1 to 2 min required in the preheating zone of the reactor. The liquid hourly space velocity has been varied from 1.8 to 2.9 L feedstock/L catalyst/hr depending on the feedstock. The product fuel gas contains 40% to 55% methane, 35% to 50% carbon dioxide, and 5% to 10% hydrogen with as much as 2% ethane, but less than 0.1% ethylene or carbon monoxide, and small amounts of higher hydrocarbons. The byproduct water stream carries residual organics amounting to less than 500 mg/L COD. 9 refs., 1 fig., 4 tabs.

  17. A novel oxidation-based wet etching method for AlGaN/GaN heterostructures

    Institute of Scientific and Technical Information of China (English)

    Cai Jinbao; Wang Jinyan; Liu Yang; Xu Zhe; Wang Maojun; Yu Min; Xie Bing

    2013-01-01

    A novel wet etching method for AlGaN/GaN heterojunction structures is proposed using thermal oxidation followed by wet etching in KOH solution.It is found that an AlGaN/GaN heterostructure after high temperature oxidation above 700 ℃ could be etched off in a homothermal (70 ℃) KOH solution while the KOH solution had no etching effects on the region of the A1GaN/GaN heterostructure protected by a SiO2 layer during the oxidation process.A groove structure with 150 nm step depth on an AlGaN/GaN heterostructure was formed after 8 h thermal oxidation at 900 ℃ followed by 30 min treatment in 70 ℃ KOH solution.As the oxidation time increases,the etching depth approaches saturation and the roughness of the etched surface becomes much better.The physical mechanism of this phenomenon is also discussed.

  18. Formation and degradation of valuable intermediate products during wet oxidation of municipal sludge.

    Science.gov (United States)

    Baroutian, Saeid; Gapes, Daniel J; Sarmah, Ajit K; Farid, Mohammed M; Young, Brent R

    2016-04-01

    The current study investigated the formation of organic acids and alcohols as major intermediate products of wet oxidation of municipal sludge. Municipal sludge was subjected to 60-min wet oxidation at temperatures ranging from 220 to 240°C, with 20bar oxygen partial pressure. Acetic acid was the main intermediate compound produced in this study, followed by propionic, n-butyric, iso-butyric and pentanoic acids and methanol. It was found that the process severity has a significant influence on the formation and degradation of these intermediate products.

  19. Adsorption and Catalytic Oxidation of Methane by Indium Oxide Sensors Doped with Platinum

    Directory of Open Access Journals (Sweden)

    V.V. Golovanov

    2016-11-01

    Full Text Available Differential scanning calorimetry and X-ray photoelectron spectroscopy were used to investigate the mechanism of methane interaction with platinum-doped indium oxide surface. It was shown that sorption processes have a significant impact on the sensor response at the operating temperatures below 370 С for doped Pt/In2O3 and below 500 С for In2O3-based sensors. Above the critical temperatures the sensor response is dominated by the catalytic oxidation of methane. The operating temperature of sensors was decreased on 80 С by doping of the material with Pt 0.5 wt.%. Thus formed PtxIny clusters have a significant effect on the In¬2O3 catalytic properties. The developed sensors demonstrated high sensitivity, small operating parameters range, and low consuming power together with simple production technology.

  20. Fabricating nanostructures through a combination of nano-oxidation and wet etching on silicon wafers with different surface conditions.

    Science.gov (United States)

    Huang, Jen-Ching

    2012-01-01

    This study investigates the surface conditions of silicon wafers with native oxide layers (NOL) or hydrogen passivated layers (HPL) and how they influence the processes of nano-oxidation and wet etching. We also explore the combination of nano-oxidation and wet etching processes to produce nanostructures. Experimental results reveal that the surface conditions of silicon wafers have a considerable impact on the results of nano-oxidation when combined with wet etching. The height and width of oxides on NOL samples exceeded the dimensions of oxides on HPL samples, and this difference became increasingly evident with an increase in applied bias voltage. The height of oxidized nanolines on the HPL sample increased after wet etching; however, the width of the lines increased only marginally. After wet etching, the height and width of oxides on the NOL were more than two times greater than those on the HPL. Increasing the applied bias voltage during nano-oxidation on NOL samples increased both the height and width of the oxides. After wet etching however, the increase in bias voltage appeared to have little effect on the height of oxidized nanolines, but the width of oxidized lines increased. This study also discovered that the use of higher applied bias voltages on NOL samples followed by wet etching results in nanostructures with a section profile closely resembling a curved surface. The use of this technique enabled researchers to create molds in the shape of a silicon nanolens array and an elegantly shaped nanoscale complex structures mold.

  1. Adsorption and Catalytic Oxidation of Methane by Indium Oxide Sensors Doped with Platinum

    OpenAIRE

    V.V. Golovanov; B.V. Nazarchuk; V.V.  Golovanova

    2016-01-01

    Differential scanning calorimetry and X-ray photoelectron spectroscopy were used to investigate the mechanism of methane interaction with platinum-doped indium oxide surface. It was shown that sorption processes have a significant impact on the sensor response at the operating temperatures below 370 С for doped Pt/In2O3 and below 500 С for In2O3-based sensors. Above the critical temperatures the sensor response is dominated by the catalytic oxidation of methane. The operating temperature of...

  2. Evaluation of wet air oxidation variables for removal of organophosphorus pesticide malathion using Box-Behnken design.

    Science.gov (United States)

    Isgoren, Melike; Gengec, Erhan; Veli, Sevil

    2017-02-01

    This paper deals with finding optimum reaction conditions for wet air oxidation (WAO) of malathion aqueous solution, by Response Surface Methodology. Reaction conditions, which affect the removal efficiencies most during the non-catalytic WAO system, are: temperature (60-120 °C), applied pressure (20-40 bar), the pH value (3-7), and reaction time (0-120 min). Those were chosen as independent parameters of the model. The interactions between parameters were evaluated by Box-Behnken and the quadratic model fitted very well with the experimental data (29 runs). A higher value of R(2) and adjusted R(2) (>0.91) demonstrated that the model could explain the results successfully. As a result, optimum removal efficiency (97.8%) was obtained at pH 5, 20 bars of pressure, 116 °C, and 96 min. These results showed that Box-Behnken is a suitable design to optimize operating conditions and removal efficiency for non-catalytic WAO process. The EC20 value of raw wastewater was measured as 35.40% for malathion (20 mg/L). After the treatment, no toxicity was observed at the optimum reaction conditions. The results show that the WAO is an efficient treatment system for malathion degradation and has the ability of converting malathion to the non-toxic forms.

  3. Single catalytic site model for the oxidation of ferrocytochrome c by mitochondrial cytochrome c oxidase.

    OpenAIRE

    Speck, S.H.; Dye, D.; Margoliash, E

    1984-01-01

    A single catalytic site model is proposed to account for the multiphasic kinetics of oxidation of ferrocytochrome c by cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1). This model involves nonproductive binding of substrate to sites near the catalytic site on cytochrome c oxidase for cytochrome c, decreasing the binding constant for cytochrome c at the catalytic site. This substrate inhibition results in an increase in the first-order rate constant for the dissociati...

  4. Design, fabrication and testing of a wet oxidation waste processing system. [for manned space flight

    Science.gov (United States)

    1975-01-01

    The wet oxidation of sewage sludge during space flight was studied for water and gas recovery, and the elimination of overboard venting. The components of the system are described. Slurry and oxygen supply modules were fabricated and tested. Recommendations for redesign of the equipment are included.

  5. Study on catalytic oxidation of planar binuclear copper phthalocyanine on 2-mercaptoethanol

    Institute of Scientific and Technical Information of China (English)

    CHEN Wenxing; WEI Lili; WANG Jinqian; YAO Yuyuan; L(U) Shenshui; CHEN Shiliang

    2006-01-01

    Mononuclear copper phthalocyanine (CuPc) and binuclear copper phthalocyanine (Cu2Pc2) were synthesized by the phenylanhydride-urea route, and their catalytic oxidation activity on 2-mercaptoethanol was studied. Based on the experimental results, a catalytic mechanism of Cu2Pc2 on 2-mercaptoethanol has been proposed. Furthermore, the effects of pH, Cu2Pc2 concentration, and temperature on the catalytic oxidation activity were evaluated. The results showed that CuPc has no catalytic activity, while Cu2Pc2 has high catalytic oxidation activity towards 2-mercaptoethanol with the optimal activity at pH 11. The reaction can further be enhanced by increasing Cu2Pc2 concentration and temperature, due to its endothermic characteristics.

  6. Synthesis, characterization and catalytic application of polyhedron zinc oxide microparticles

    Science.gov (United States)

    Jamil, Saba; Ramzan Saeed Ashraf Janjua, Muhammad; Khan, Shanza Rauf; Jahan, Nazish

    2017-01-01

    Zinc oxide (ZnO) microparticles of unique morphology were synthesized by the microwave heating method. The composition and morphology of the synthesized microparticles were characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM). It is clear from the XRD pattern that the product is highly pure and crystalline. It is shown from the SEM images that the hexagonal unit cells are arranged in the form of a polyhedral lattice. The length of the sides is equal at the middle of the lattice, and unequal on the terminal sides of the lattice. This is due to the alignment of the hexagonal unit cells. The size distribution histogram of the product possesses a sharp band which shows that it is monodisperse. This means that a monodisperse product can be obtained by the microwave heating method. The synthesized particles were used as a catalyst for the thermal degradation of ammonium perchlorate (AP) and the catalytic reduction of 2-nitrophenol (2-NP) and 4-nitrophenol (4-NP). The effect of temperature on the value of the apparent rate constant was also studied, and the values of the kinetic and thermodynamic parameters were calculated. This shows that the catalyst possesses high efficiency for thermally degrading of substances at low temperatures and rapidly reducing the nitroarenes in an aqueous medium.

  7. Real time chemical imaging of a working catalytic membrane reactor during oxidative coupling of methane.

    Science.gov (United States)

    Vamvakeros, A; Jacques, S D M; Middelkoop, V; Di Michiel, M; Egan, C K; Ismagilov, I Z; Vaughan, G B M; Gallucci, F; van Sint Annaland, M; Shearing, P R; Cernik, R J; Beale, A M

    2015-08-18

    We report the results from an operando XRD-CT study of a working catalytic membrane reactor for the oxidative coupling of methane. These results reveal the importance of the evolving solid state chemistry during catalytic reaction, particularly the chemical interaction between the catalyst and the oxygen transport membrane.

  8. Effect of NO2 and water on the catalytic oxidation of soot

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt; Grunwaldt, Jan-Dierk; Jensen, Anker Degn

    2017-01-01

    from the oxide, and where the reaction thus has reached the zero order kinetics regime in the gaseous reactant. In loose contact with a catalyst the presence of NO2 causes a pronounced enhancement of the oxidation rate. The rate constants for loose contact soot oxidation in the presence of NO2......The influence of adding NO2 to 10 vol% O2/N2 on non-catalytic soot oxidation and soot oxidation in intimate or loose contact with a catalyst has been investigated. In non-catalytic soot oxidation the oxidation rate is increased significantly at lower temperatures by NO2. For soot oxidation in tight...... contact with a Co3O4 catalyst a more reactive NO2-containg atmosphere did not change the oxidation profile significantly during temperature programmed oxidation. This is consistent with the expected Mars van Krevelen mechanism, where the rate limiting step is reaction between carbon and lattice oxygen...

  9. Titanium-Containing Mesoporous Materials: Synthesis and Application in Selective Catalytic Oxidation

    Institute of Scientific and Technical Information of China (English)

    Jie Li; Chunhui Zhou; Huali Xie; Zhonghua Ge; Liangcai Yuan; Xiaonian Li

    2006-01-01

    Titanium-containing mesoporous molecular sieves are of great significance in selective catalytic oxidation processes with bulky molecules. Recent researches and developments on the designing and synthesis of Ti-containing mesoporous materials have been reviewed. Various strategies for the preparation of Ti-containing mesoporous materials, such as direct synthesis and post-synthesis, are described. Modifications of Ti-containing mesoporous materials by surface-grafting and atom-planting are also discussed. All approaches aimed mainly at the improving of the stability, the hydrophobicity, and mostly the catalytic activity. Structural and mechanistic features of various synthetic systems are discussed. Ticontaining mesoporous materials in liquid phase catalytic oxidation of organic compounds with H2O2 as an oxidant is briefly summarized, showing their broad utilities for green synthesis of fine chemicals by catalytic oxidative reactions.

  10. Influence of substrate particle size and wet oxidation on physical surface structures and enzymatic hydrolysis of wheat straw.

    Science.gov (United States)

    Pedersen, Mads; Meyer, Anne S

    2009-01-01

    In the worldwide quest for producing biofuels from lignocellulosic biomass, the importance of the substrate pretreatment is becoming increasingly apparent. This work examined the effects of reducing the substrate particle sizes of wheat straw by grinding prior to wet oxidation and enzymatic hydrolysis. The yields of glucose and xylose were assessed after treatments with a benchmark cellulase system consisting of Celluclast 1.5 L (Trichoderma reesei) and Novozym 188 beta-glucosidase (Aspergillus niger). Both wet oxidized and not wet oxidized wheat straw particles gave increased glucose release with reduced particle size. After wet oxidation, the glucose release from the smallest particles (53-149 mum) reached 90% of the theoretical maximum after 24 h of enzyme treatment. The corresponding glucose release from the wet oxidized reference samples (2-4 cm) was approximately 65% of the theoretical maximum. The xylose release only increased (by up to 39%) with particle size decrease for the straw particles that had not been wet oxidized. Wet oxidation pretreatment increased the enzymatic xylose release by 5.4 times and the glucose release by 1.8 times across all particle sizes. Comparison of scanning electron microscopy images of the straw particles revealed edged, nonspherical, porous particles with variable surface structures as a result of the grinding. Wet oxidation pretreatment tore up the surface structures of the particles to retain vascular bundles of xylem and phloem. The enzymatic hydrolysis left behind a significant amount of solid, apparently porous structures within all particles size groups of both the not wet oxidized and wet oxidized particles.

  11. Size Effect of Gold Sol/γ-Alumina on the Catalytic Activities of CO Oxidation

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-Hua; GAO Geng-Yu

    2006-01-01

    The relationship between particle size and catalytic activity of gold nanoparticle catalysts with γ-Al2O3 as support has been investigated. The catalysts were prepared via the gold sol with different particle sizes by micelle method, and their structures were characterized by HRTEM and XRD, respectively. Furthermore, the catalytic activities were tested by CO oxidation. Experimental results showed that the catalytic activity became much weaker when gold particles were increased from 3.2 to 6.6 nm. Additionally, the particle size was also a key factor to govern catalytic activity with regard to gold supported on TiO2 prepared by the methods of deposition-precipitation.

  12. Characterization and Catalytic Activity of Mn-Co/TiO2 Catalysts for NO Oxidation to NO2 at Low Temperature

    Directory of Open Access Journals (Sweden)

    Lu Qiu

    2016-01-01

    Full Text Available A series of Mn-Co/TiO2 catalysts were prepared by wet impregnation method and evaluated for the oxidation of NO to NO2. The effects of Co amounts and calcination temperature on NO oxidation were investigated in detail. The catalytic oxidation ability in the temperature range of 403–473 K was obviously improved by doping cobalt into Mn/TiO2. These samples were characterized by nitrogen adsorption-desorption, X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, transmission electron microscope (TEM and hydrogen temperature programmed reduction (H2-TPR. The results indicated that the formation of dispersed Co3O4·CoMnO3 mixed oxides through synergistic interaction between Mn-O and Co-O was directly responsible for the enhanced activities towards NO oxidation at low temperatures. Doping of Co enhanced Mn4+ formation and increased chemical adsorbed oxygen amounts, which also accelerated NO oxidation.

  13. Wet Aerobic Oxidation of Lignin into Aromatic Aldehydes Catalysed by a Perovskite-type Oxide: LaFe1-xCuxO3 (x=0, 0.1, 0.2

    Directory of Open Access Journals (Sweden)

    Lu Lin

    2009-07-01

    Full Text Available The perovskite-type oxide catalyst LaFe1-xCuxO3 (x=0, 0.1, 0.2 was prepared by the sol–gel method, and tested as a catalyst in the wet aerobic oxidation (WAO of lignin into aromatic aldehydes. The lignin conversion and the yield of each aromatic aldehyde were significantly enhanced in the catalytic process, compared with the non-catalyzed process. Moreover, it was shown that the stability of activity and structure of LaFe1-xCuxO3 (x=0, 0.1, 0.2 remained nearly unchanged after a series of successive recyclings of the catalytic reactions, indicating it was an efficient and recyclable heterogeneous catalyst for the conversion of lignin into aromatic aldehydes in the WAO process.

  14. Oxidation Kinetics of Chemically Vapor-Deposited Silicon Carbide in Wet Oxygen

    Science.gov (United States)

    Opila, Elizabeth J.

    1994-01-01

    The oxidation kinetics of chemically vapor-deposited SiC in dry oxygen and wet oxygen (P(sub H2O) = 0.1 atm) at temperatures between 1200 C and 1400 C were monitored using thermogravimetric analysis. It was found that in a clean environment, 10% water vapor enhanced the oxidation kinetics of SiC only very slightly compared to rates found in dry oxygen. Oxidation kinetics were examined in terms of the Deal and Grove model for oxidation of silicon. It was found that in an environment containing even small amounts of impurities, such as high-purity Al2O3 reaction tubes containing 200 ppm Na, water vapor enhanced the transport of these impurities to the oxidation sample. Oxidation rates increased under these conditions presumably because of the formation of less protective sodium alumino-silicate scales.

  15. First-principles investigations for the catalytic dissociation and oxidation of methane on the Cu surfaces

    Science.gov (United States)

    Li, Ying; Mahadevan, Jagan; Wang, Sanwu

    2010-03-01

    The catalytic reactions of dissociation and oxidation of methane on the copper surfaces play a key role in, for example, the development of high-performance solid oxide fuel cells. We used first-principles quantum theory and large-scale parallel calculations to investigate the atomic-scale mechanism of the catalytic chemical reactions. We report the calculated results, which provide fundamental information and understanding about the atomic-scale dynamics and electronic structures pertinent to the reactions and specifically the catalytic role of the Cu(100) and Cu(111) surfaces. We also report comparison of our results with available experimental data and previous theoretical investigations.

  16. UV-Shielding and Catalytic Characteristics of Nanoscale Zinc-Cerium Oxides

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Fine particles of zinc-cerium oxides (ZCO) used as an ultraviolet filter were prepared via combustion synthesis route. The catalytic activity, UV-shielding performance, surface modification and application of ZCO in polyester varnish were discussed in detail. The experimental results indicate that the photo-catalytic activity of ZCO is much smaller than these of ZnO and TiO2; the oxidation catalytic activity of ZCO is far lower than that of CeO2; the ZCO has shown excellent ultraviolet absorption in the range of UV;addition modified ZCO (MZCO) into polyester will enhance the UV-shielding capability of polyester.

  17. Effect of Alloying Additions on the Oxidation of High Speed Steels under Dry and Wet Conditions

    Institute of Scientific and Technical Information of China (English)

    F.C. RIZZO; M.J.MONTEIRO; S.R.J.SAUNDERS

    2009-01-01

    An investigation has been carried out into the effects of chromium and vanadium content on the oxidation rate and on the adhesion of oxide scales grown on three different chemical compositions of high speed steels under dry and wet conditions. The oxidation tests were carried out in a thermobalance at 650 ℃ for up to 14.4 ks. The mass gain of the specimens increased with increasing contents of water vapour. Alloy composition had no effect on the oxidation rate in dry conditions. The "adhesion" of the oxide scale was determined using indentation with a Rockwell C diamond and the pull adhesion test to determine the interfacial toughness and the tensile strength of the oxide metal bond, respectively. Generally, the results of the investigation indicated that oxide adhesion was lowest for the specimens exposed to dry conditions, and that with increasing water vapour content, the scale was more adherent. Indentation test results showed that an increase in the Ⅴ concentration was deleterious to oxidc adhesion in both the dry and wet environments, whereas an increase in the Cr-content had little effect on adhesion.

  18. Treatment of refractory nano-filtration reject from a tannery using Pd-catalyzed wet air oxidation.

    Science.gov (United States)

    Tripathi, Pranav K; Rao, Nageswara N; Chauhan, Chetan; Pophali, Girish R; Kashyap, Sanjay M; Lokhande, Satish K; Gan, Lihua

    2013-10-15

    We attempted catalytic wet air oxidation (CWAO) of nanofiltration (NF)-reject using Pd based catalyst viz., Pd/activated charcoal (AC) and PdCl2 with the objective of degradation of refractory organic pollutants. Refractory organic pollutants in NF-reject before and after WAO and CWAO were confirmed by GC-MS analysis. Experiments were conducted to investigate the effects of temperature, catalyst dosage and air partial pressure on the rate of removal of total organic carbon (TOC). The reaction kinetics can be conveniently described by considering two-stage first order kinetics. The use of Pd/AC afforded 85% TOC removal, the corresponding rate constant (k) was 2.90 ± 0.075 × 10(-3)min(-1) (Pd/AC, 100mg/L; T, 473.15K; Pair, 0.69 MPa). On the other hand, 75% TOC was removed with k=2.31 ± 0.075 × 10(-3)min(-1) using Pd(2+) catalyst (Pd(2+), 16.66 mg/L; T, 473.15K; Pair, 0.69 MPa). The observed rate of mineralization under Pd-catalyzed conditions was significantly higher than that of the uncatalyzed oxidation (41%) under the similar experimental conditions. Catalyst stability experiments were performed and TEM, SEM, XRD, Raman and XPS characterization data collected. Despite some morphological transformation of support, Pd catalyst was stable under CWAO conditions.

  19. Phytoxicity study of the products of wet oxidation of a representative biomass (lettuce)

    Science.gov (United States)

    Onisko, B. L.; Wydeven, T.

    1983-01-01

    In an attempt to verify the results reported previously concerning the phytotoxicity of wet-oxidation (wet-ox) products, lettuce solids were suspended in water and then heated to 548 K for 3.6 ksec (1 hr) under 4.1x10 to the -7 Pa (400 psig at 294 K) oxygen pressure and 1.52x10 to the 8th (1500 psig at 548 K) total pressure. Such treatment resulted in oxidation of 80% of the initial organic carbon to carbon dioxide. Thirty-three percent of the remaining organic carbon was present in acetic acid. Organic nitrogen in the feed was decreased 90% by the wet-ox treatment. Ammonia and nitrogen gas were the main nitrogen products. Analysis of the liquid product of wet-ox indicated that most of the minerals essential for plant growth were present. However, when tested using a lettuce-root growth-rate assay, the solution was toxic. This toxicity was not due to excessive salt or ammonia or to an improper pH. Analysis of the wet-ox solution revealed the presence of silver and chromium, thus implicating reactor corrosion as the cause of the phytotoxicity. Both cation and anion exchange resins removed the silver and the toxicity of the liquid effluent, indicating silver as the toxic component. Uptake of both silver and chromium by lettuce roots correlated with diminished root growth. Toxicity of the solution from wet-ox was not observed when precautions were taken to minimize contact of the liquid in the reactor with the metal reactor components.

  20. Valuable compounds from sewage sludge by thermal hydrolysis and wet oxidation. A review.

    Science.gov (United States)

    Suárez-Iglesias, Octavio; Urrea, José Luis; Oulego, Paula; Collado, Sergio; Díaz, Mario

    2017-04-15

    Sewage sludge is considered a costly waste, whose benefit has received a lot of attention for decades. In this sense, a variety of promising technologies, such as thermal hydrolysis and wet oxidation, are currently employed. Thermal hydrolysis is used as a pretreatment step ahead of anaerobic digestion processes and wet oxidation is intended for the solubilization and partial oxidation of the sludge. Such processes could be utilized for solubilizing polysaccharides, lipids, fragments of them and phosphorus (thermal hydrolysis) or for generating carboxylic acids (wet oxidation). This article compiles the available information on the production of valuable chemicals by these techniques and comments on their main features. Temperature, reaction duration times and sludge characteristics influence the experimental results significantly, but only the first two variables have been thoroughly studied. For thermal hydrolysis, a rise of temperature led to an increase in the solubilized biomolecules, but also to a greater decomposition of proteins and undesirable reactions of carbohydrates with themselves or with proteins. At constant temperature, the amounts of substances that can be recovered tend to become time independent after several minutes. Diluted and activated sludges seem to be more readily hydrolyzable than the thickened and primary ones. For wet oxidation, the dependence of the production of carboxylic acids with temperature and time is not simple: their concentration can increase, decrease or go through a maximum. At high temperatures, acetic acid is the main carboxylic acid obtained. Concentrated, fermented and secondary sludge seem to be more suitable for yielding higher amounts of acid than diluted, undigested and primary ones.

  1. Differential response of ammonia-oxidizing archaea and bacteria to the wetting of salty arid soil.

    Science.gov (United States)

    Sher, Yonatan; Ronen, Zeev; Nejidat, Ali

    2016-08-01

    Ammonia-oxidizing archaea and bacteria (AOA, AOB) catalyze the first and rate-limiting step of nitrification. To examine their differential responses to the wetting of dry and salty arid soil, AOA and AOB amoA genes (encoding subunit A of the ammonia monooxygenase) and transcripts were enumerated in dry (summer) and wet (after the first rainfall) soil under the canopy of halophytic shrubs and between the shrubs. AOA and AOB were more abundant under shrub canopies than between shrubs in both the dry and wetted soil. Soil wetting caused a significant decrease in AOB abundance under the canopy and an increase of AOA between the shrubs. The abundance of the archaeal amoA gene transcript was similar for both the wet and dry soil, and the transcript-to-gene ratios were water content. In contrast, the bacterial amoA transcript-to-gene ratios were between 78 and 514. The lowest ratio was in dry soil under the canopy and the highest in the soil between the shrubs. The results suggest that the AOA are more resilient to stress conditions and maintain a basic activity in arid ecosystems, while the AOB are more responsive to changes in the biotic and abiotic conditions.

  2. Catalytic oxidation of benzene with ozone over nanoporous Mn/MCM-48 catalyst.

    Science.gov (United States)

    Park, Jong-Hwa; Jurng, Jongsoo; Bae, Gwi-Nam; Park, Sung Hoon; Jeon, Jong-Ki; Kim, Sang Chai; Kim, Ji Man; Park, Young-Kwon

    2012-07-01

    The catalytic oxidation of a representative volatile organic compound, benzene, with ozone at a low temperature was investigated. A nanoporous MCM-48 material with a high specific surface area was used as the support for the catalytic oxidation for the first time. Mn, which has high activity at a low temperature, was used as the metal catalyst. To examine the effect of the Mn precursor, MCM-48 was impregnated with two different Mn precursors: Mn acetate and Mn nitrate. The characteristics of the synthesized catalysts were analyzed by Brunauer Emmett Teller surface area, X-ray diffraction, X-ray photoelectron spectroscopy, and temperature-programmed reduction. MCM-48 impregnated with Mn acetate showed higher catalytic activity than MCM-48 impregnated with Mn nitrate. This result was attributed to the better dispersion within nanoporous MCM-48 and higher oxygen mobility of Mn oxides produced by Mn acetate. The catalytic activity was also shown to depend closely on the ozone concentration.

  3. Uncatalysed wet oxidation of D-glucose with hydrogen peroxide and its combination with hydrothermal electrolysis.

    Science.gov (United States)

    Moreno, Teresa; Kouzaki, Goushi; Sasaki, Mitsuru; Goto, Motonobu; Cocero, María José

    2012-02-15

    An increasing interest in biomass as a renewable feedstock for the chemical industry has risen over the last decades, and glucose, the monomer unit of cellulose, has been widely studied as a source material to produce value-added products such as carboxylic acids, mainly gluconic and formic. In this work, the non-catalysed wet oxidation of glucose using hydrogen peroxide has been analysed, obtaining molar yields to gluconic and formic acids up to 15% and 64%, respectively. Glucose conversion was generally between 40 and 50%, reaching over 80% under the highest temperature (200°C). An appropriate choice of temperature can tune product distribution as well as reaction rates. The interaction of the wet oxidation with an electrolytic reaction was also analysed.

  4. Treatment of desizing wastewater from the textile industry by wet air oxidation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper describes the application of wet air oxidation to the treatment of desizing wastewater from two textile companies. A two-liter high temperature, high pressure autoclave reactor was used in the study. The range of operating temperatures examined was between 150 and 290℃, and the partial pressure of oxygen ranged from 0. 375 to 2.25 MPa. Variations in pH,CODCr and TOD content were monitored during each experiment and used to assess the extent of conversion of the process. The effects of temperature, pressure and reaction time were explored extensively. More than 90 % CODCr reduction and 80 % TOC removal have been obtained. The results have also been demonstrated that WAO is a suitable pre-treatment methods due to improvement of the BOD5/CODCr ratio of desizing wastewater. The reaction kinetics of wet air oxidation of desizing wastewater has been proved to be two steps, a fast reaction followed by a slow reaction stage.

  5. Pretreatment of Reed by Wet Oxidation and Subsequent Utilization of the Pretreated Fibers for Ethanol Production

    DEFF Research Database (Denmark)

    Szijarto, Nora; Kádár, Zsófia; Varga, Eniko

    2009-01-01

    lignocelluloses usually do. In the present study, wet oxidation was investigated as the pretreatment method to enhance the enzymatic digestibility of reed cellulose to soluble sugars and thus improve the convertibility of reed to ethanol. The most effective treatment increased the digestibility of reed cellulose...... by cellulases more than three times compared to the untreated control. During this wet oxidation, 51.7% of the hemicellulose and 58.3% of the lignin were solubilized, whereas 87.1% of the cellulose remained in the solids. After enzymatic hydrolysis of pretreated fibers from the same treatment, the conversion......Common reed (Phragmites australis) is often recognized as a promising source of renewable energy. However, it is among the least characterized crops from the bioethanol perspective. Although one third of reed dry matter is cellulose, without pretreatment, it resists enzymatic hydrolysis like...

  6. Preliminary Test of the Wet Oxidation of Organics in Basin F Wastewater at Rocky Mountain Arsenal

    Science.gov (United States)

    1978-04-01

    unless other costs such as heating and compression become prohibitive. It is particularly suitable for first-stage treatment of waste source containing...pressures lead to requirements for heavy walled vessels and high pressure pumps . j (2) Wet oxidation tends to produce oxygenated organic compounds of...From Table III, DIMP disappears during the first 10 or 20 percent of the COD reduction. Contrary to our experience with carbon adsorbtion , DIMP is not

  7. Kinetics of wet oxidation of phenol over an Fe/activated carbon catalyst

    NARCIS (Netherlands)

    Quintanilla, A.; Casas, J.A.; Rodriquez, J.J.; Kreutzer, M.T.; Kapteijn, F.; Moulijn, J.A.

    2007-01-01

    Wet oxidation of phenol over an Fe/activated carbon catalyst has been studied in a trickle-bed reactor in the following operational window: inlet C phenol=0.5 and 1 g/L, T=100-127 ºC, PT=3-8 atm, W=0-4.8 g, QL=0.125-2 mL/min and QO2=91.6 NmL/min. The experiments were carried out in the absence of ma

  8. Selective catalytic oxidation of H{sub 2}S over iron oxide supported on alumina-intercalated Laponite clay catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin; Dou, Guangyu; Wang, Zhuo [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Li, Li [Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072 (Australia); Wang, Yufei; Wang, Hailin [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Hao, Zhengping, E-mail: zpinghao@rcees.ac.cn [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China)

    2013-09-15

    Graphical abstract: The catalytic reaction and deactivation mechanisms for H{sub 2}S selective oxidation over Fe/Al-Lap catalysts are shown in the illustration. The catalytic reaction follows Mars–van Krevelen mechanism. Moreover, the interaction between iron oxide and alumina, the strong acidity of the catalysts and the well dispersion of iron oxide improve the catalytic performance efficiently. Meanwhile, the catalyst deactivation is mainly due to the formation of Fe{sub 2}(SO{sub 4}){sub 3} and elemental sulfur deposits on the surface. -- Highlights: • Fe/Al-Lap catalysts with mesoporous structure were synthesized. • Iron oxide mainly exists in form of isolate Fe{sup 3+} in an oxidic environment. •Fe/Al-Lap catalysts show high catalytic activities at low temperature. •The high catalytic activities are ascribed to the interaction between iron oxide and alumina. •The formed Fe{sub 2}(SO{sub 4}){sub 3} and elemental sulfur deposits on surface cause catalyst deactivation. -- Abstract: A series of iron oxide supported on alumina-intercalated clay catalysts (named Fe/Al-Lap catalysts) with mesoporous structure and high specific surface area were prepared. The structural and chemical properties were studied by nitrogen sorption isotherms, X-ray diffraction (XRD), UV–vis diffuse reflectance spectra (UV–vis DRS), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FTIR), H{sub 2} temperature-programmed reduction (H{sub 2}-TPR) and NH{sub 3} temperature-programmed desorption (NH{sub 3}-TPD) techniques. It was realized that iron oxide mainly existed in the form of isolated Fe{sup 3+} in an oxidic environment. Fe/Al-Lap catalysts showed high catalytic activities in the temperature range of 120–200 °C without the presence of excessive O{sub 2}. This can be attributed to the interaction between iron oxide and alumina, which improve the redox property of Fe{sup 3+} efficiently. In addition, the strong acidity of catalysts and good

  9. Model catalytic oxidation studies using supported monometallic and heterobimetallic oxides. Progress report, August 1, 1991--January 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Ekerdt, J.G.

    1992-02-03

    This research program is directed toward a more fundamental understanding of the effects of catalyst composition and structure on the catalytic properties of metal oxides. Metal oxide catalysts play an important role in many reactions bearing on the chemical aspects of energy processes. Metal oxides are the catalysts for water-gas shift reactions, methanol and higher alcohol synthesis, isosynthesis, selective catalytic reduction of nitric oxides, and oxidation of hydrocarbons. A key limitation to developing insight into how oxides function in catalytic reactions is in not having precise information of the surface composition under reaction conditions. To address this problem we have prepared oxide systems that can be used to study cation-cation effects and the role of bridging (-O-) and/or terminal (=O) surface oxygen anion ligands in a systematic fashion. Since many oxide catalyst systems involve mixtures of oxides, we selected a model system that would permit us to examine the role of each cation separately and in pairwise combinations. Organometallic molybdenum and tungsten complexes were proposed for use, to prepare model systems consisting of isolated monomeric cations, isolated monometallic dimers and isolated bimetallic dimers supported on silica and alumina. The monometallic and bimetallic dimers were to be used as models of more complex mixed- oxide catalysts. Our current program was to develop the systems and use them in model oxidation reactions.

  10. Development and testing of a wet oxidation waste processing system. [for waste treatment aboard manned spacecraft

    Science.gov (United States)

    Weitzmann, A. L.

    1977-01-01

    The wet oxidation process is considered as a potential treatment method for wastes aboard manned spacecraft for these reasons: (1) Fecal and urine wastes are processed to sterile water and CO2 gas. However, the water requires post-treatment to remove salts and odor; (2) the residual ash is negligible in quantity, sterile and easily collected; and (3) the product CO2 gas can be processed through a reduction step to aid in material balance if needed. Reaction of waste materials with oxygen at elevated temperature and pressure also produces some nitrous oxide, as well as trace amounts of a few other gases.

  11. Advances and perspectives in catalytic oxidation of hydrocarbons in liquid phase

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This review article summarizes recent advances in catalytic oxidation of hydrocarbons, especially presents two strategies for activation of C-H bonds or molecular oxygen. Based on our own research results, the applications of the two methods in the oxidation of cyclohexane, toluene and ethyl benzene, etc. are introduced, and the perspectives of the two methods are also discussed.

  12. Integration of advanced oxidation processes at mild conditions in wet scrubbers for odourous sulphur compounds treatment.

    Science.gov (United States)

    Vega, Esther; Martin, Maria J; Gonzalez-Olmos, Rafael

    2014-08-01

    The effectiveness of different advanced oxidation processes on the treatment of a multicomponent aqueous solution containing ethyl mercaptan, dimethyl sulphide and dimethyl disulphide (0.5 mg L(-1) of each sulphur compound) was investigated with the objective to assess which one is the most suitable treatment to be coupled in wet scrubbers used in odour treatment facilities. UV/H2O2, Fenton, photo-Fenton and ozone treatments were tested at mild conditions and the oxidation efficiency obtained was compared. The oxidation tests were carried out in magnetically stirred cylindrical quartz reactors using the same molar concentration of oxidants (hydrogen peroxide or ozone). The results show that ozone and photo-Fenton are the most efficient treatments, achieving up to 95% of sulphur compounds oxidation and a mineralisation degree around 70% in 10 min. Furthermore, the total costs of the treatments taking into account the capital and operational costs were also estimated for a comparative purpose. The economic analysis revealed that the Fenton treatment is the most economical option to be integrated in a wet scrubber to remove volatile organic sulphur compounds, as long as there are no space constraints to install the required reactor volume. In the case of reactor volume limitation or retrofitting complexities, the ozone and photo-Fenton treatments should be considered as viable alternatives.

  13. Wet oxidation of phenol on Ce{sub 1{minus}x}Cu{sub x}O{sub 2{minus}{delta}} catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hocevar, S.; Batista, J. [National Inst. of Chemistry, Ljubljana (Slovenia). Lab. of Catalysis and Chemical Reaction Engineering; Levec, J. [National Inst. of Chemistry, Ljubljana (Slovenia). Lab. of Catalysis and Chemical Reaction Engineering]|[Univ. of Ljubljana (Slovenia). Dept. of Chemical Engineering

    1999-05-15

    Ce{sub 1{minus}x}Cu{sub x}O{sub 2{minus}{delta}} catalysts with 0.05 < x < 0.20 for catalytic wet oxidation of phenol in aqueous solutions have been synthesized using the coprecipitation method. The three most important synthesis parameters, the concentration of the mixed metal salt solution, the rate of coprecipitant addition and the stirrer speed during coprecipitation, were optimized with central composite design using the catalytic activity as a response function. The catalytic activity strongly depends on stirrer speed during coprecipitation. A high mutual dispersion of copper oxide and ceria, having the average crystallite size of about 9 nm, enhances solid solution formation. The unit cell parameter of ceria decreases when the overall concentration of copper in the catalyst increases, most probably obeying Vegard`s law. The catalysts proved to be very stable in hydrothermal reaction conditions at low pH values. After 5 h of reaction in the semibatch CST reactor less than 100 ppm of Cu was leached out of catalyst samples that were calcined in a flow of air for 2 h above 1033 K, and only a very low quantity of carbonaceous deposits were formed on the surface of the catalysts (0.6 wt%). The kinetics of phenol degradation could be interpreted by an equation valid for homogeneous autocatalytic reactions, in which the rate constant depends linearly on the heterogeneous catalyst (Cu) concentrations. This demonstrates that the reaction proceeds through a heterogeneous-homogeneous radical-branched chain mechanism.

  14. Wet Chemical Synthesis and Screening of Thick Porous Oxide Films for Resistive Gas Sensing Applications

    Directory of Open Access Journals (Sweden)

    Wilhelm F. Maier

    2006-11-01

    Full Text Available A method of wet chemical synthesis suitable for high throughput and combinatorial applications has been developed for the synthesis of porous resistive thick-film gas sensors. This method is based on the robot-controlled application of unstable metal oxide suspensions on an array of 64 inter-digital electrodes positioned on an Al2O3 substrate. SnO2, WO3, ZrO2, TiO2, CeO2, In2O3 and Bi2O3 were chosen as base oxides, and were optimised by doping or mixed oxide formation. The parallel synthesis of mixed oxide sensors is illustrated by representative examples. The electrical characteristics and the sensor performance of the films were measured by high-throughput impedance spectroscopy while supplying various test gases (H2, CO, NO, NO2, propene. Data collection, data mining techniques applied and the best potential sensor materials discovered are presented.

  15. Conversion of a regenerative oxidizer into catalytic unit

    Energy Technology Data Exchange (ETDEWEB)

    Matros, Y.S.; Bunimovich, G.A.; Strots, V.O. [Matros Technologies, Chesterfield, MO (United States)] [and others

    1997-12-31

    Use of a VOC oxidation catalyst in the existing regenerative thermal oxidizers may greatly reduce fuel consumption and improve the oxidizer performance. This was demonstrated in a commercial 25,000 SCFM unit installed at a printing facility. The paper discusses the principles of the oxidizer retrofit design and test results obtained at various conditions of operation.

  16. Catalytic NiO Filter Supported on Carbon Fiber for Oxidation of Volatile Organic Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Jong Ki; Seo, Hyun Ook; Jeong, Myunggeun; Kim, Kwangdae; Kim, Young Dok [Sungkyunkwan Univ., Suwon (Korea, Republic of); Lim, Dong Chan [Korea Institute of Materials Science, Changwon (Korea, Republic of)

    2013-07-15

    Carbon-fiber-supported NiO catalytic filters for oxidation of volatile organic compounds were prepared by electroless Ni-P plating and subsequent annealing processes. Surface structure and crystallinity of NiO film on carbon fiber could be modified by post-annealing at different temperatures (500 and 650 .deg. C). Catalytic thermal decompositions of toluene over these catalytic filters were investigated. 500 .deg. C-annealed sample showed a higher catalytic reactivity toward toluene decomposition than 650 .deg. C-annealed one under same conditions, despite of its lower surface area and toluene adsorption capacity. X-ray diffraction and X-ray photoelectron spectroscopy studies suggest that amorphous structures of NiO on 500 .deg. C-annealed catalyst caused the higher reactivity for oxidation of toluene than that of 650 .deg. C-annealed sample with a higher crystallinity.

  17. Preparation of nitric humic acid by catalytic oxidation from Guizhou coal with catalysts

    Institute of Scientific and Technical Information of China (English)

    Yang Zhiyuan; Gong Liang; Ran Pan

    2012-01-01

    Nitric humic acid was prepared by catalytic oxidation between nitric acid and Guizhou coal,with added catalysts.We investigated catalytic oxidation processes and the factors that affect the reactions.The effects of different catalysts,including NiSO4 support on active carbon (AC-NiSO4),NiSO4 support on silicon dioxide (SiO2-NiSO4),composites of SO42-/Fe2O3,Zr-iron and vanadium-iron composite were studied.As well.we investigated nitric humic acid yields and the chemical structure of products by element analysis,FT-IR and E4/E6 (an absorbance ratio at wavelengths of 465 and 665 nm of humic acid alkaline extraction solutions).The results show that the catalytic oxidation reaction with added catalysts can increase humic acid yields by 18.7%,16.36%,12.94%,5.61% and 8.59%,respectively.The highest yield of humic acid,i.e.,36.0%,was obtained with AC-NiSO4 as the catalyst.The amounts of C and H decreased with the amount of nitrogen.The increase in the E4/E6 ratio in catalytic oxidation of (Guizhou) coal shows that small molecular weights and high yields of nitric humic acid can be obtained by catalytic oxidation reactions.

  18. ESR ST study of hydroxyl radical generation in wet peroxide system catalyzed by heterogeneous ruthenium

    NARCIS (Netherlands)

    Rokhina, E.V.; Golovina, E.A.; As, van H.; Virkutyte, J.

    2009-01-01

    Ru-based catalysts gained popularity because of their applicability for a variety of processes, including carbon monoxide oxidation, wet air catalytic oxidation and wastewater treatment. The focus of a current study was generation of hydroxyl radicals in the wet peroxide system catalyzed by heteroge

  19. Oscillatory behaviour of catalytic properties, structure and temperature during the catalytic partial oxidation of methane on Pd/Al2O3

    DEFF Research Database (Denmark)

    Kimmerle, B.; Baiker, A.; Grunwaldt, Jan-Dierk

    2010-01-01

    Pd/Al2O3 catalysts showed an oscillatory behaviour during the catalytic partial oxidation (CPO) of methane, which was investigated simultaneously by IR-thermography, X-ray absorption spectroscopy, and online mass-spectrometry to correlate the temperature, state of the catalyst and catalytic...

  20. Influence of Substrate Particle Size and Wet Oxidation on Physical Surface Structures and Enzymatic Hydrolysis of Wheat Straw

    DEFF Research Database (Denmark)

    Pedersen, Mads; Meyer, Anne S.

    2009-01-01

    In the worldwide quest for producing biofuels from lignocellulosic biomass, the importance of the substrate pretreatment is becoming increasingly apparent. This work examined the effects of reducing the substrate particle sizes of wheat straw by grinding prior to wet oxidation and enzymatic...... release only increased (by up to 39%) with particle size decrease for the straw particles that had not been wet oxidized. Wet oxidation pretreatment increased the enzymatic xylose release by 5.4 times and the glucose release by 1.8 times across all particle sizes. Comparison of scanning electron...... microscopy images of the straw particles revealed edged, nonspherical, porous particles with variable surface structures as a result of the grinding. Wet oxidation pretreatment tore up the surface structures of the particles to retain vascular bundles of xylem and phloem. The enzymatic hydrolysis left behind...

  1. Selective catalytic reduction of nitrogen oxides with ammonia over microporous zeolite catalysts

    OpenAIRE

    VENNESTROM, PETER NICOLAI RAVNBORG

    2014-01-01

    With increasing legislative demands to remove nitrogen oxides (NOx) from automotive diesel exhaust, new catalyst systems are investigated and intensely studied in industry as well in academia. The most prevailing catalytic method of choice is the selective catalytic reduction (SCR) where non-toxic urea is used as a reductant for practical reasons. Usually urea is stored in a separate tank and once injected into the exhaust system it hydrolyses into the more aggressive reductant NH3 and CO2. ...

  2. Biodiesel by catalytic reactive distillation powered by metal oxides

    NARCIS (Netherlands)

    Kiss, A.A.; Dimian, A.C.; Rothenberg, G.

    2008-01-01

    The properties and use of biodiesel as a renewable fuel as well as the problems associated with its current production processes are outlined. A novel sustainable esterification process based on catalytic reactive distillation is proposed. The pros and cons of manufacturing biodiesel via fatty acid

  3. Tailoring micro-mesoporosity in activated carbon fibers to enhance SO₂ catalytic oxidation.

    Science.gov (United States)

    Diez, Noel; Alvarez, Patricia; Granda, Marcos; Blanco, Clara; Gryglewicz, Grażyna; Wróbel-Iwaniec, Iwona; Sliwak, Agata; Machnikowski, Jacek; Menendez, Rosa

    2014-08-15

    Enhanced SO2 adsorption of activated carbon fibers is obtained by tailoring a specific micro-mesoporous structure in the fibers. This architecture is obtained via metal catalytic activation of the fibers with a novel precursor, cobalt naphthenate, which contrary to other precursors, also enhances spinnability and carbon fiber yield. In the SO2 oxidation, it is demonstrated that the combination of micropores and large mesopores is the main factor for an enhanced catalytic activity which is superior to that observed in other similar microporous activated carbon fibers. This provides an alternative way for the development of a new generation of catalytic material.

  4. Study on dynamics characteristics of wet air oxidation of non-ionic surfactants

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Wet air oxidation is an effective method to deal with highly concentrated nondegradable emulsification wastewater which contains non-ionic surfactants. This article illustrates our investigation on dynamic characteristics of wet air oxidation of typical non-ionic surfactants like polyether, phenol ether and widely used alcohol ether. The experimental results indicated that the oxidation rate of polyether, phenol ether and alcohol ether obviously ascended as the temperature rose. A good oxidation effect was available at 240℃. The TOC removal rate could reach 88.0%, 94% and 91.5%, after 125 min reaction. Alcohol ether was prone to an easier oxidation compared with polyether and phenol ether when the temperature was 220℃ or below. The oxidation rate of alcohol ether was higher than that of polyether at 160℃, while the oxidation rate of polyether was higher than that of phenol ether between 180℃ and 220℃. During the later period of the reaction at 240℃, the rate of phenol ether was higher than that of alcohol ether, which was still higher than that of polyether. Partitioned first order kinetics model analy-sis showed that the apparent activation energy of alcohol ether was lower than that of both polyether and phenol ether in the leading stage and lagging stage, and it was easy to acquire a higher oxidation rate for alcohol ether at low temperature. Three parameter general dynamics model analyses showed that the reason why the oxidation rate of polyether was lower than that of alcohol ether was that the oxidation of polyether was more apt to be converted to intermediate production than that of alcohol ether, whereas between 200℃ and 220℃, the direct oxidation rate of polyether and the oxidation rate of intermediate product were obviously lower than that of alcohol ether. The apparent activation energy of direct and indirect oxidation of polyether was 43.37 and 60.45 kJ?mol?1, respectively, while the corre-sponding apparent activation energy of alcohol

  5. Study on dynamics characteristics of wet air oxidation of non-ionic surfactants

    Institute of Scientific and Technical Information of China (English)

    ZENG XinPing; TANG WenWei; ZHAO JianFu; GU GuoWei

    2008-01-01

    Wet air oxidation is an effective method to deal with highly concentrated nondegradable emulsification wastewater which contains non-ionic surfactants. This article illustrates our investigation on dynamic characteristics of wet air oxidation of typical non-ionic surfactants like polyether, phenol ether and widely used alcohol ether. The experimental results indicated that the oxidation rate of polyether, phenol ether and alcohol ether obviously ascended as the temperature rose. A good oxidation effect was available at 240℃. The TOC removal rate could reach 88.0%, 94% and 91.5%, after 125 min reaction. Alcohol ether was prone to an easier oxidation compared with polyether and phenol ether when the temperature was 220℃ or below. The oxidation rate of alcohol ether was higher than that of polyether at 160℃, while the oxidation rate of polyether was higher than that of phenol ether between 180℃ and 220℃. During the later period of the reaction at 240℃, the rate of phenol ether was higher than that of alcohol ether, which was still higher than that of polyether. Partitioned first order kinetics model analysis showed that the apparent activation energy of alcohol ether was lower than that of both polyether and phenol ether in the leading stage and lagging stage, and it was easy to acquire a higher oxidation rate for alcohol ether at low temperature. Three parameter general dynamics model analyses showed that the reason why the oxidation rate of polyether was lower than that of alcohol ether was that the oxidation of polyether was more apt to be converted to intermediate production than that of alcohol ether, whereas between 200℃ and 220℃, the direct oxidation rate of polyether and the oxidation rate of intermediate product were obviously lower than that of alcohol ether. The apparent activation energy of direct and indirect oxidation of polyether was 43.37 and 60.45 kJ·mol-1, respectively, while the corresponding apparent activation energy of alcohol

  6. Treatment of refractory organic pollutants in industrial wastewater by wet air oxidation

    Directory of Open Access Journals (Sweden)

    Mingming Luan

    2017-02-01

    Full Text Available Wet air oxidation (WAO is one of the most economical and environmentally-friendly advanced oxidation processes. It makes a promising technology for the treatment of refractory organic pollutants in industrial wastewaters. In wet air oxidation aqueous waste is oxidized in the liquid phase at high temperatures (125–320 °C and pressures (0.5–20 MPa in the presence of an oxygen-containing gas (usually air. The advantages of the process include low operating costs and minimal air pollution discharges. The present review is concerned about the literature published in the treatment of refractory organic pollutants in industrial wastewaters, such as dyes. Phenolics were taken as model pollutants in most cases. Reports on effect of treatment for the WAO of refractory organic pollutants in industrial wastewaters are reviewed, such as emulsified wastewater, TNT red water, etc. Discussions are also made on the mechanism and kinetics of WAO and main technical parameters influencing WAO. Finally, development direction of WAO is summed up.

  7. Final Report, "Molecular Design of Hydrocarbon Oxidation Catalytic Processes"

    Energy Technology Data Exchange (ETDEWEB)

    Professor Francisco Zaera

    2007-08-09

    production of small amounts of ethylene and water, most likely via the concerted decomposition or disproportionation of the adsorbed molecular species. The bulk of the 2-iodoethanol decomposes at about 150 K via an initial carbon-iodine scission to form –O(H)CH2CH2– (~80%) and 2-hydroxyethyl (~20%) intermediates. Two competing reactions are involved with the subsequent conversion of the 2-hydroxyethyl species around 160 K, a reductive elimination with surface hydrogen to yield ethanol, and a β-H elimination to surface vinyl alcohol. The –O(H)CH2CH2–, on the other hand, dehydrogenates to a –OCH2CH2– oxametallacycle species about the same temperature. Both 2-hydroxyethyl and oxametallacycle species tautomerize to acetaldehyde, around 210 K and above 250 K, respectively, and some of that acetaldehyde desorbs while the rest decomposes to hydrogen and carbon monoxide. We contend that a better understanding of the surface chemistry of oxygen-containing surfaces can lead to better selectivities in catalysis. This is arguably the most important issue in the field of catalysis in the near future, and one that impacts several technologies of interest to DOE such as the manufacturing of speciality chemicals and the control and removal of pollutants. Additional work was performed on the characterization of the chemistry of methyl and methylene adsorbed species on oxygen-treated nickel surfaces. Complex chemistry was observed involving not only hydrogenation and dehydrogenation steps, but also C-C couplings and methylene insertions to produce heavier hydrocarbons, and oxygen insertion reactions that yield oxygenates. Finally, a dual titration technique employing xenon and a chemically sensitive probe was developed to identify minority catalytic sites on oxide surfaces. In the case of oxygen-treated Ni(110) single crystals, it was found that both hydrogen transfer with adsorbed water or ammonia and certain hydrocarbon hydrogenation reactions take place at the end of the

  8. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe

    2003-05-01

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,'' during the time period January 1, 2003 through March 31, 2003. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project cofunders. URS Group is the prime contractor. The mercury control process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The current project is testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the sixth full reporting period for the subject Cooperative Agreement. During this period, project efforts included continued operation of the pilot unit with three catalysts, conducting catalyst activity measurements, and procuring the fourth catalyst, all for the GRE Coal Creek pilot unit site. Laboratory efforts were also conducted to support catalyst selection for the second pilot unit site, at CPS' Spruce Plant. This technical progress report provides an update on these efforts.

  9. Stability and catalytic performance of vanadia supported on nanostructured titania catalyst in oxidative dehydrogenation of propane

    Science.gov (United States)

    Kootenaei, A. H. Shahbazi; Towfighi, J.; Khodadadi, A.; Mortazavi, Y.

    2014-04-01

    Titanate nanotubes with a high specific surface area were synthesized by the simple hydrothermal method and investigated as support for V2O5 catalyst in oxidative dehydrogenation of propane (ODP). The structures of pristine nanotubes as well as the prepared catalysts were investigated by XRD, Raman, FTIR, HRTEM, SEM, EDS, BET, and XPS techniques. The characterization of the as-synthesized nanotubes showed the synthesis of hydrogen titanate nanotube. The incipient wetness impregnation method was utilized to prepare VTNT-x (x = 5, 10, and 15 wt.% vanadia supported on nanotube) together with VTi5 (5 wt.% vanadia supported on Degussa P25). The anatase phase was developed in VTNT-x catalysts upon calcination along with specific surface area loss. Higher vanadia loading resulted in the lowering of support capacity in maintaining vanadia in dispersed state such that eventually crystalline vanadia appeared. The measured catalyst activity demonstrates that in spite of major support surface area loss in VTNT-5 catalyst, the propylene yield is superior in comparison with VTi5 catalyst. The catalyst activity can be correlated with maximum reduction temperature. Deactivation of VTi5 and VTNT-5 as well as VTNT-15 were studied for 3,000 min time-on-stream. It was found that the activity of VTNT-5 catalyst remain unchanged while a decline in catalytic activity observed in VTi5 and VTNT-15 catalysts. The development of rutile was considered as being a major element in the deactivation of the investigated catalysts which is influenced by the presence of vanadium and reaction atmosphere.

  10. Catalytic ozone oxidation of benzene at low temperature over MnOx/Al-SBA-16 catalyst.

    Science.gov (United States)

    Park, Jong Hwa; Kim, Ji Man; Jin, Mingshi; Jeon, Jong-Ki; Kim, Seung-Soo; Park, Sung Hoon; Kim, Sang Chai; Park, Young-Kwon

    2012-01-05

    The low-temperature catalytic ozone oxidation of benzene was investigated. In this study, Al-SBA-16 (Si/Al = 20) that has a three-dimensional cubic Im3m structure and a high specific surface area was used for catalytic ozone oxidation for the first time. Two different Mn precursors, i.e., Mn acetate and Mn nitrate, were used to synthesize Mn-impregnated Al-SBA-16 catalysts. The characteristics of these two catalysts were investigated by instrumental analyses using the Brunauer-Emmett-Teller method, X-ray diffraction, X-ray photoelectron spectroscopy, and temperature-programmed reduction. A higher catalytic activity was exhibited when Mn acetate was used as the Mn precursor, which is attributed to high Mn dispersion and a high degree of reduction of Mn oxides formed by Mn acetate than those formed by Mn nitrate.

  11. Chloride interference in the analysis of dissolved organic carbon by the wet oxidation method

    Science.gov (United States)

    Aiken, G.R.

    1992-01-01

    The presence of Cl- in concentrations greater than 0.02 M is shown to interfere with the analysis of aqueous DOC concentrations by the wet oxidation method of analysis when a reaction time of 5 min is employed. Chloride competes with DOC for S2O82-, lowering the overall oxidation efficiency. The resulting HOCl from the oxidation of Cl- reacts with DOC, producing significant amounts of chlorinated intermediate compounds in addition to CO2. These compounds were found in the waste effluent from the reaction chamber and in the gas stream transporting CO2 to the detector. While a possible Cl- effect has been noted for DOC measurements in the past, it has not previously been demonstrated to be a source of error at the concentrations reported in this paper. The interference can be overcome either by increasing the digestion time or by diluting samples to contain less than 0.02 M Cl-.

  12. Preparation of Molecular Sieve Catalyst and Application in the Catalytic Oxidation Treatment of Waste Water

    Institute of Scientific and Technical Information of China (English)

    WANG RongMin; XIE Xin; HE YuFeng; WANG YunPu; HE NaiPu; ZHANG ZhengLin; SONG PengFei; LIU WenJun

    2001-01-01

    @@ Citric acid is an important additive in foods, cosmetics, medicine and so on, but it discharges about 10 ton of factory effluent when 1 ton of citric acid is produced. The COD of the factory effluent is near 20000 mg/L. The treatment of citric acid factory effluent is a serious problem in environmental chemistry. It is found that molecular sieve support metal complexes have high catalytic activity in aerobic oxidation of alkene [1,2]. In this paper, a kind of molecular sieve catalyst was prepared. The catalyst was used for the treatment of citric acid factory effluent by method of catalytic oxygen oxidation.

  13. Catalytic Activity and Deactivation of SO2 Oxidation Catalysts in Simulated Power Plant Flue Gases

    DEFF Research Database (Denmark)

    Masters, Stephen G.; Chrissanthopoulos, Asthanassios; Eriksen, Kim Michael;

    1997-01-01

    The catalyst deactivation and the simultaneious formation of compounds in commercial SO2 oxidation catalysts have been studied by combined activity measurements and in situ EPR spectroscopy in the temperature range 350-480 C in wet and dry simulated power plant flue gas.......The catalyst deactivation and the simultaneious formation of compounds in commercial SO2 oxidation catalysts have been studied by combined activity measurements and in situ EPR spectroscopy in the temperature range 350-480 C in wet and dry simulated power plant flue gas....

  14. Study on Catalytic Oxidation Treatment of Coking Wastewater%催化氧化法处理焦化废水研究

    Institute of Scientific and Technical Information of China (English)

    邹琳琳; 黄冲; 潘一; 杨双春

    2013-01-01

    As high concentration organic wastewater, coking wastewater is poisonous, harmful and difficult biodegradable. Catalytic oxidation process can decompose organic macromolecular material and reduce coking wastewater toxicity. In this article, research status of catalytic oxidation treatment of coking wastewater was mainly introduced, including electrode catalytic method, electrochemical catalysis method, wet catalytic oxidation, supercritical water oxidation method, catalytic coupling method, titanium dioxide photo catalysis method and ultrasonic collaborative light catalysis, and so on. Various methods were summarized and evaluated. Then, some suggestions of research direction in the future were put forward.%  焦化废水是一种有毒有害、难生物降解的高浓度有机废水,催化氧化法能够分解有机大分子物质、降低焦化废水毒性,近年来国内外学者对其研究较多。介绍了催化氧化法处理焦化废水的研究现状,包括电极催化法、电解催化法、湿式催化氧化法,超临界水氧化法、催化耦合法、二氧化钛光催化法和超声协同光催化等。对各种方法进行了综述和评价,同时对催化氧化法处理焦化废水今后的研究方向提出了建议。

  15. Effects of Oxygen Transfer Limitation and Kinetic Control on Biomimetic Catalytic Oxidation of Toluene

    Institute of Scientific and Technical Information of China (English)

    罗伟平; 刘大为; 孙俊; 邓伟; 盛文兵; 刘强; 郭灿城

    2014-01-01

    Under oxygen transfer limitation and kinetic control, liquid-phase catalytic oxidation of toluene over metalloporphyrin was studied. An improved technique of measuring dissolved oxygen levels for gas-liquid reaction at the elevated temperature and pressure was used to take the sequential data in the oxidation of toluene catalyzed by metalloporphyrin. By this technique the corresponding control step of toluene oxidation could be obtained by varying reaction conditions. When the partial pressure of oxygen in the feed is lower than or equal to 0.070 MPa at 463 K, the oxidation of toluene would be controlled by oxygen transfer, otherwise the reaction would be controlled by kinetics. The effects of both oxygen transfer and kinetic control on the toluene conversion and the selectivity of benzaldehyde and benzyl alcohol in biomimetic catalytic oxidation of toluene were systematically investigated. Three conclusions have been made from the experimental results. Firstly, under the oxygen transfer limitation the toluene conversion is lower than that under kinetic control at the same oxidation conditions. Secondly, under the oxygen transfer limitation the total selectivity of benzaldehyde and benzyl alcohol is lower than that under kinetic control with the same conversion of toluene. Finally, under the kinetics control the oxidation rate of toluene is zero-order with respect to oxygen. The experimental results are identical with the biomimetic catalytic mechanism of toluene oxidation over metalloporphyrins.

  16. Full-Scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet FGD System

    Energy Technology Data Exchange (ETDEWEB)

    Gary Blythe; Jennifer Paradis

    2010-06-30

    This document presents and discusses results from Cooperative Agreement DE-FC26-06NT42778, 'Full-scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet FGD System,' which was conducted over the time-period July 24, 2006 through June 30, 2010. The objective of the project was to demonstrate at full scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in pulverized-coal-fired flue gas. Oxidized mercury is removed downstream in wet flue gas desulfurization (FGD) absorbers and collected with the byproducts from the FGD system. The project was co-funded by EPRI, the Lower Colorado River Authority (LCRA), who also provided the host site, Great River Energy, Johnson Matthey, Southern Company, Salt River Project (SRP), the Tennessee Valley Authority (TVA), NRG Energy, Ontario Power and Westar. URS Group was the prime contractor and also provided cofunding. The scope of this project included installing and testing a gold-based catalyst upstream of one full-scale wet FGD absorber module (about 200-MW scale) at LCRA's Fayette Power Project (FPP) Unit 3, which fires Powder River Basin coal. Installation of the catalyst involved modifying the ductwork upstream of one of three wet FGD absorbers on Unit 3, Absorber C. The FGD system uses limestone reagent, operates with forced sulfite oxidation, and normally runs with two FGD modules in service and one spare. The full-scale catalyst test was planned for 24 months to provide catalyst life data. Over the test period, data were collected on catalyst pressure drop, elemental mercury oxidation across the catalyst module, and mercury capture by the downstream wet FGD absorber. The demonstration period began on May 6, 2008 with plans for the catalyst to remain in service until May 5, 2010. However, because of continual increases in pressure drop across the catalyst and concerns that further increases would adversely affect Unit 3 operations, LCRA decided to end the

  17. Surface composition and catalytic activity of La-Fe mixed oxides for methane oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fengxiang [School of Chemistry, Beijing Institute of Technology, Liangxiang East Road, Beijing 102488 (China); Li, Zhanping [Analysis Center, Tsinghua University, Beijing 100084 (China); Ma, Hongwei [School of Chemistry, Beijing Institute of Technology, Liangxiang East Road, Beijing 102488 (China); Gao, Zhiming, E-mail: zgao@bit.edu.cn [School of Chemistry, Beijing Institute of Technology, Liangxiang East Road, Beijing 102488 (China)

    2015-10-01

    Graphical abstract: - Highlights: • The sample with La/Fe atomic ratio of 0.94 is single phase perovskite La{sub 0.94}FeO{sub 3−d}. • The excess ironic oxide exists on the surface of the perovskite crystallites. • La{sup 3+} ions are enriched on surface of the oxides even for the La{sub 0.68}Fe sample. - Abstract: Four La-Fe oxide samples with La/Fe atomic ratio y = 1.02 ∼ 0.68 (denoted as LayFe) were prepared by the citrate method. The samples had a decreased specific surface area with the La/Fe atomic ratio decreasing. XRD pattern proved that the sample La{sub 0.94}Fe is single phase perovskite La{sub 0.94}FeO{sub 3−d}. Phase composition of the samples was estimated by the Rietveld refinement method. XPS analyses indicate that La{sup 3+} ions are enriched on surface of crystallites for all the samples, and surface carbonate ions are relatively abundant on the samples La{sub 1.02}Fe and La{sub 0.94}Fe. Catalytic activity for methane oxidation per unit surface area of the samples is in the order of La{sub 0.68}Fe > La{sub 0.76}Fe > La{sub 0.94}Fe > La{sub 1.02}Fe both in the presence and in the absence of gaseous oxygen. A reason for this order would be the higher concentration of Fe{sup 3+} ion on the surface of the samples La{sub 0.68}Fe and La{sub 0.76}Fe.

  18. Ruthenium nanoparticles supported on CeO2 for catalytic permanganate oxidation of butylparaben.

    Science.gov (United States)

    Zhang, Jing; Sun, Bo; Guan, Xiaohong; Wang, Hui; Bao, Hongliang; Huang, Yuying; Qiao, Junlian; Zhou, Gongming

    2013-11-19

    This study developed a heterogeneous catalytic permanganate oxidation system with ceria supported ruthenium, Ru/CeO2 (0.8‰ as Ru), as catalyst for the first time. The catalytic performance of Ru/CeO2 toward butylparaben (BP) oxidation by permanganate was strongly dependent on its dosage, pH, permanganate concentration and temperature. The presence of 1.0 g L(-1) Ru/CeO2 increased the oxidation rate of BP by permanganate at pH 4.0-8.0 by 3-96 times. The increase in Ru/CeO2 dosage led to a progressive enhancement in the oxidation rate of BP by permanganate at neutral pH. The XANES analysis revealed that (1) Ru was deposited on the surface of CeO2 as Ru(III); (2) Ru(III) was oxidized by permanganate to its higher oxidation state Ru(VI) and Ru(VII), which acted as the co-oxidants in BP oxidation; (3) Ru(VI) and Ru(VII) were reduced by BP to its initial state of Ru(III). Therefore, Ru/CeO2 acted as an electron shuttle in catalytic permanganate oxidation process. LC-MS/MS analysis implied that BP was initially attacked by permanganate or Ru(VI) and Ru(VII) at the aromatic ring, leading to the formation of various hydroxyl-substituted and ring-opening products. Ru/CeO2 could maintain its catalytic activity during the six successive runs. In conclusion, catalyzing permanganate oxidation with Ru/CeO2 is a promising technology for degrading phenolic pollutants in water treatment.

  19. Effect of tungsten doping on catalytic properties of niobium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Franciane P.; Nogueira, Andre E. [Departamento de Quimica, Universidade Federal de Lavras, Lavras-MG (Brazil); Patricio, Patricia S.O., E-mail: patriciapatricio@cefetmg.br [Centro Federal de Educacao Tecnologica, CEFET, Belo Horizonte, MG (Brazil); Oliveira, Luiz C.A. [Departamento de Quimica, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil)

    2012-04-15

    A novel material based on niobia (Nb{sub 2}O{sub 5}) was synthesized to oxidize an organic compound in aqueous medium in the presence of H{sub 2}O{sub 2} after chemical modifications. Niobia was modified by doping with tungsten and also treating with H{sub 2}O{sub 2} in order to maximize the oxidative properties of this oxide. The analysis of the products from methylene blue dye oxidation with electro spray ionization mass spectrometry (ESI-MS) showed that the dye was successively oxidized to different intermediate compounds. The successive hydroxylation during this oxidation strongly suggests that highly reactive hydroxyl radicals are generated involving H{sub 2}O{sub 2} on the W-doped niobia grain surface. These results strongly suggest that the H{sub 2}O{sub 2} can regenerate in situ the peroxo group remaining active the system. (author)

  20. Catalytic aerobic oxidation of bio-renewable chemicals

    DEFF Research Database (Denmark)

    Gorbanev, Yury

    , EDS, XRF and other methods. Supported gold and ruthenium hydroxide catalyst systems were explored for the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDA), a potential polymer building block for the plastic industry, or its dimethyl ester (FDMC). High product...... for the exclusive production of intermediate products of the oxidation. Catalysts consisting of Ru(OH)x deposited on metal oxide supports, such as, for instance, CeO2 and MgAl2O4, were employed in the aerobic oxidation of HMF in different ”green” reaction media, e.g. water and various ionic liquids, under base....... Thus, the oxidative transformations of biomass-derived chemicals over different gold and ruthenium-based catalyst systems with oxygen as the abundant oxidant were explored....

  1. An analytical method for 14C in environmental water based on a wet-oxidation process.

    Science.gov (United States)

    Huang, Yan-Jun; Guo, Gui-Yin; Wu, Lian-Sheng; Zhang, Bing; Chen, Chao-Feng; Zhang, Hai-Ying; Qin, Hong-Juan; Shang-Guan, Zhi-Hong

    2015-04-01

    An analytical method for (14)C in environmental water based on a wet-oxidation process was developed. The method can be used to determine the activity concentrations of organic and inorganic (14)C in environmental water, or total (14)C, including in drinking water, surface water, rainwater and seawater. The wet-oxidation of the organic component allows the conversion of organic carbon to an inorganic form, and the extraction of the inorganic (14)C can be achieved by acidification and nitrogen purging. Environmental water with a volume of 20 L can be used for the wet-oxidation and extraction, and a detection limit of about 0.02 Bq/g(C) can be achieved for water with carbon content above 15 mg(C)/L, obviously lower than the natural level of (14)C in the environment. The collected carbon is sufficient for measurement with a low level liquid scintillation counter (LSC) for typical samples. Extraction or recovery experiments for inorganic carbon and organic carbon from typical materials, including analytical reagents of organic benzoquinone, sucrose, glutamic acid, nicotinic acid, humic acid, ethane diol, et cetera., were conducted with excellent results based on measurement on a total organic carbon analyzer and LSC. The recovery rate for inorganic carbon ranged tween 98.7%-99.0% with a mean of 98.9(± 0.1)%, for organic carbon recovery ranged between 93.8% and 100.0% with a mean of 97.1(± 2.6)%. Verification and an uncertainty budget of the method are also presented for a representative environmental water. The method is appropriate for (14)C analysis in environmental water, and can be applied also to the analysis of liquid effluent from nuclear facilities.

  2. Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature.

    Science.gov (United States)

    Narsimhan, Karthik; Iyoki, Kenta; Dinh, Kimberly; Román-Leshkov, Yuriy

    2016-06-22

    The direct catalytic conversion of methane to liquid oxygenated compounds, such as methanol or dimethyl ether, at low temperature using molecular oxygen is a grand challenge in C-H activation that has never been met with synthetic, heterogeneous catalysts. We report the first demonstration of direct, catalytic oxidation of methane into methanol with molecular oxygen over copper-exchanged zeolites at low reaction temperatures (483-498 K). Reaction kinetics studies show sustained catalytic activity and high selectivity for a variety of commercially available zeolite topologies under mild conditions (e.g., 483 K and atmospheric pressure). Transient and steady state measurements with isotopically labeled molecules confirm catalytic turnover. The catalytic rates and apparent activation energies are affected by the zeolite topology, with caged-based zeolites (e.g., Cu-SSZ-13) showing the highest rates. Although the reaction rates are low, the discovery of catalytic sites in copper-exchanged zeolites will accelerate the development of strategies to directly oxidize methane into methanol under mild conditions.

  3. Supported manganese oxide on TiO{sub 2} for total oxidation of toluene and polycyclic aromatic hydrocarbons (PAHs): Characterization and catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Aboukaïs, Antoine, E-mail: aboukais@univ-littoral.fr [Univ Lille Nord de France, 59000 Lille (France); Equipe Catalyse, UCEIV, EA 4492, MREI, ULCO, 59140 Dunkerque (France); Abi-Aad, Edmond [Univ Lille Nord de France, 59000 Lille (France); Equipe Catalyse, UCEIV, EA 4492, MREI, ULCO, 59140 Dunkerque (France); Taouk, Bechara [Laboratoire de Sécurité des procédés Chimiques (LSPC), EA 4704, INSA Rouen, Avenue de l' Université, 76801 Saint Etienne du Rouvray (France)

    2013-11-01

    Manganese oxide catalysts supported on titania (TiO{sub 2}) were prepared by incipient wetness impregnation method in order to elaborate catalysts for total oxidation of toluene and PAHs. These catalysts have been characterized by means of X-ray diffraction (XRD), electron paramagnetic resonance (EPR), temperature programmed reduction (TPR) and temperature programmed desorption (TPD). It has been shown that for the 5%Mn/TiO{sub 2} catalyst the reducibility and the mobility of oxygen are higher compared, in one side, to other x%Mn/TiO{sub 2} samples and, in another side, to catalysts where TiO{sub 2} support was replaced by γ-Al{sub 2}O{sub 3} or SiO{sub 2}. It has been shown that the content of manganese loading on TiO{sub 2} has an effect on the catalytic activity in the toluene oxidation. A maximum of activity was obtained for the 5%Mn/TiO{sub 2} catalyst where the total conversion of toluene was reached at 340 °C. This activity seems to be correlated to the presence of the Mn{sup 3+}/Mn{sup 4+} redox couple in the catalyst. When the Mn content increases, large particles of Mn{sub 2}O{sub 3} appear leading then to the decrease in the corresponding activity. In addition, compared to both other supports, TiO{sub 2} seems to be the best to give the best catalytic activity for the oxidation of toluene when it is loaded with 5% of manganese. For this reason, the latter catalyst was tested for the abatement of some PAHs. The light off temperature of PAHs compounds increases with increasing of benzene rings number and with decreasing of H/C ratio. All of PAHs are almost completely oxidized and converted at temperatures lower than 500 °C. - Highlights: • Preparation of x%MnO{sub 2}/TiO{sub 2} catalysts. • Catalytic oxidation tests of toluene and PAHs. • EPR, TPR and TPD characterizations of Mn(II) and Mn(IV) ions.

  4. Ethanol production from wet oxidized corn straw by simultaneous saccharification and fermentation

    DEFF Research Database (Denmark)

    Zhang, Q.; Yin, Y.; Thygesen, Anders

    2010-01-01

    In order to find out the appropriate process for ethanol production from corn straw, alkaline wet-oxidation pretreatment (195°C, 15 min, Na2CO3 2 g/L, O2 1200 kPa) and simultaneous saccharification and fermentation (SSF) were adopted to produce ethanol. The results showed that 90% of cellulose...... was obtained. The estimated total ethanol production was 262.7 kg/t raw material by assuming the consumption of both C-6 and C-5. No obvious inhibition effect occurred during SSF. These offered experiment evidences for ethanol production from corn straw....

  5. Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility

    DEFF Research Database (Denmark)

    Varga, E.; Schmidt, A.S.; Reczey, K.

    2003-01-01

    Corn stover is an abundant, promising raw material for fuel ethanol production. Although it has a high cellulose content, without pretreatment it resists enzymatic hydrolysis, like most lignocellulosic materials. Wet oxidation (water, oxygen, mild alkali or acid, elevated temperature and pressure......) was investigated to enhance the enzymatic digestibility of corn stover. Six different combinations of reaction temperature, time, and pH were applied. The best conditions (60 g/L of corn stover, 195degreesC, 15 min, 12 bar O-2, 2 g/L of Na2CO) increased the enzymatic conversion of corn stover four times, compared...

  6. Wet Oxidation Pretreatment of Tobacco Stalks and Orange Waste for Bioethanol Production. Preliminary results

    DEFF Research Database (Denmark)

    Martin, Carlos; Fernandez, Teresa; Garcia, Ariel

    2009-01-01

    Wet oxidation (WO) was used as a pretreatment method prior to enzymatic hydrolysis of tobacco stalks and orange waste. The pretreatment, performed at 195 degrees C and an oxygen pressure of 1.2 MPa, for 15 min, in the presence of Na2CO3, increased the cellulose content of the materials and gave...... cellulose recoveries of approximately 90%. The pretreatment enhanced the susceptibility of cellulose to enzymatic hydrolysis. The highest enzymatic convertibility, that of 64.9%, was achieved for pretreated tobacco stalks. The ethanolic fermentation of the WO filtrates, using Saccharomyces cerevisiae...

  7. Aerobic Catalytic Oxidation of Cyclohexene over TiZrCo Catalysts

    Directory of Open Access Journals (Sweden)

    Tong Liu

    2016-01-01

    Full Text Available The aerobic oxidation of hydrocarbon is of great significance from the viewpoints of both fundamental and industry studies as it can transfer the petrochemical feedstock into valuable chemicals. In this work, we investigated the aerobic oxidation of cyclohexene over TiZrCo catalysts, in which 2-cyclohexen-1-one was produced with a high selectivity of 57.6% at a conversion of 92.2%, which are comparable to the best results reported for the aerobic oxidation of cyclohexene over heterogeneous catalysts. The influences of kinds of solvent, substrate concentration and reaction temperature were evaluated. Moreover, the catalytic performance of the TiZrCo catalyst and the main catalytic active species were also discussed. The results of SEM, XRD and XPS suggested that the surface CoO and Co3O4 species are the catalytic active species and contribute to the high activity and selectivity in the present cyclohexene oxidation. The present catalytic system should have wide applications in the aerobic oxidation of hydrocarbons.

  8. Preparation of hierarchical layer-stacking Mn-Ce composite oxide for catalytic total oxidation of VOCs

    Institute of Scientific and Technical Information of China (English)

    唐文翔; 武晓峰; 刘刚; 李双德; 李东艳; 李文辉; 陈运法

    2015-01-01

    Hierarchical layer-stacking Mn-Ce composite oxide with mesoporous structure was firstly prepared by a simple precipita-tion/decomposition procedure with oxalate precursor and the complete catalytic oxidation of VOCs (benzene, toluene and ethyl ace-tate) were examined. The Mn-Ce oxalate precursor was obtained from metal salt and oxalic acid without any additives. The resulting materials were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), en-ergy dispersive X-ray spectroscopy (EDX), hydrogen temperature programmed reduction (H2-TPR) and X-ray photoelectron spec-troscopy (XPS). Compared with Mn-Ce composite oxide synthesized through a traditional method (Na2CO3 route), the hierarchical layer-stacking Mn-Ce composite oxide exhibited higher catalytic activity in the complete oxidation of volatile organic compounds (VOCs). By means of testing, the data revealed that the hierarchical layer-stacking Mn-Ce composite oxide possessed superior physiochemical properties such as good low-temperature reducibility, high manganese oxidation state and rich adsorbed surface oxy-gen species which resulted in the enhancement of catalytic abilities.

  9. Catalytic Potential of Nano-Magnesium Oxide on Degradation of Humic Acids From Aquatic Solutions

    Directory of Open Access Journals (Sweden)

    Ghorban Asgari

    2014-12-01

    Full Text Available Catalytic ozonation is a new and promising process used to remove the contaminants from drinking water and wastewater. This study aimed to evaluate the catalytic potential of nano-magnesium oxide (nano-MgO for the removal of humic acids (HA from water. Mg (NO32 solution was used to prepare MgO powder by the calcination method. In a semi-batch reactor, the catalytic ozonation was carried out. The effects of the various operating parameters, including pH, reaction time, T-butyl alcohol (TBA and phosphate on HA degradation were evaluated. Experimental results indicated that degradation of HA was increased as the pH solution and reaction time were increased. Maximum HA degradation was obtained at pH = 10 and the reaction time of 10 minutes in the catalytic process. The calculated catalytic potential of nano-MgO on ozonation of HA was 60%. Moreover, catalytic ozonation process was not affected by TBA and the main reaction on HA degradation HA have effect take place on MgO surface. According to the results of this study, the developed MgO catalyst is the active and proficient catalyst in HA degradation using the catalytic ozonation process.

  10. Selective catalytic oxidation of NO over iron and manganese oxides supported on mesoporous silica

    Institute of Scientific and Technical Information of China (English)

    Junfeng Zhang; Yan Huang; Xia Chen

    2008-01-01

    The selective catalytic oxidation (SCO)of NO was studied on a catalyst consisting of iron-manganese oxide supported on mesoporous silica (MPS) with different Mn/Fe ratios.Effects of the amount of manganese and iron,oxygen,and calcination temperature on NO conversion were also investigated.It was found that the Mn-Fe/MPS catalyst with a Mn/Fe molar ratio of l showed the highest activity at the calcination temperature of 400℃.The results showed that over this catalyst,NO conversion reached 70%under the condition of 280℃ and a space velocity of 5000 h-1.SO2 and H2O had no adverse impact on the reaction activity when the SCO reaction temperature was above 240℃.In addition,the SCO activity was suppressed gradually in the presence of SO2 and H2O below 240℃.and such an effect was reversible after heating treatment.

  11. Spin-on metal oxide materials with high etch selectivity and wet strippability

    Science.gov (United States)

    Yao, Huirong; Mullen, Salem; Wolfer, Elizabeth; McKenzie, Douglas; Rahman, Dalil; Cho, JoonYeon; Padmanaban, Munirathna; Petermann, Claire; Hong, SungEun; Her, YoungJun

    2016-03-01

    Metal oxide or metal nitride films are used as hard mask materials in semiconductor industry for patterning purposes due to their excellent etch resistances against the plasma etches. Chemical vapor deposition (CVD) or atomic layer deposition (ALD) techniques are usually used to deposit the metal containing materials on substrates or underlying films, which uses specialized equipment and can lead to high cost-of-ownership and low throughput. We have reported novel spin-on coatings that provide simple and cost effective method to generate metal oxide films possessing good etch selectivity and can be removed by chemical agents. In this paper, new spin-on Al oxide and Zr oxide hard mask formulations are reported. The new metal oxide formulations provide higher metal content compared to previously reported material of specific metal oxides under similar processing conditions. These metal oxide films demonstrate ultra-high etch selectivity and good pattern transfer capability. The cured films can be removed by various chemical agents such as developer, solvents or wet etchants/strippers commonly used in the fab environment. With high metal MHM material as an underlayer, the pattern transfer process is simplified by reducing the number of layers in the stack and the size of the nano structure is minimized by replacement of a thicker film ACL. Therefore, these novel AZ® spinon metal oxide hard mask materials can potentially be used to replace any CVD or ALD metal, metal oxide, metal nitride or spin-on silicon-containing hard mask films in 193 nm or EUV process.

  12. Preparation of birnessite-supported pt nanoparticles and their application in catalytic oxidation of formaldehyde.

    Science.gov (United States)

    Liu, Linlin; Tian, Hua; He, Junhui; Wang, Donghui; Yang, Qiaowen

    2012-01-01

    Flaky and nanospherical birnessite and birnessite-supported Pt catalysts were successfully prepared and characterized by means of Xray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and N2 adsorption-desorption. Effects of the birnessite morphology and Pt reduction method on the catalytic activity for the complete oxidation of formaldehyde (HCHO) were investigated. It was found that flaky birnessite exhibited higher catalytic activity than nanospherical birnessite. The promoting effect of Pt on the birnessite catalyst indicated that the reduction method of the Pt precursor greatly influenced the catalytic performance. Flaky birnessite-supported Pt nanoparticles reduced by KBH4 showed the highest catalytic activity and could completely oxidize HCHO into CO2 and H20 at 50 degreesC, whereas the sample reduced using H2-plasma showed lower activity for HCHO oxidation. The differences in catalytic activity of these materials were jointly attributed to the effects of pore structure, surface active sites exposed to HCHO and the dispersion of Pt nanoparticles.

  13. Catalytic Oxidation and Deoxygenation of Renewables with Rhenium Complexes

    NARCIS (Netherlands)

    Korstanje, T.J.; Klein Gebbink, R.J.M.

    2012-01-01

    Transformation of renewables has received major research interest in recent years, opening up completely new research areas, in particular in the field of oxidation and deoxygenation. For the oxidation reaction, rhenium complexes, in particular methyltrioxorhenium, are well known for their potential

  14. Catalytic Oxidation of Benzene Over LaCoO3 Perovskite-Type Oxides Prepared Using Microwave Process.

    Science.gov (United States)

    Jung, Won Young; Song, Young In; Lim, Kwon Taek; Lee, Gun Dae; Lee, Man Sig; Hong, Seong-Soo

    2015-01-01

    LaCoO3 perovskite type oxides were successfully prepared using microwave-assisted method, characterized by TG/DTA, XRD, XPS and H2-TPR and their catalytic activities for combustion of benzene were determined. Almost of catalyst showed perovskite crystalline phase and 13-84 nm particle size. LaCoO3 catalysts prepared by microwave-assisted method showed the highest activity and the conversion reached almost 100% at 360 degrees C. In the LaCoO3-type catalyst, the partial substitution of Sr into site A enhanced the catalytic activity on the combustion of benzene. The higher amount of the chemisorbed oxygen was, the better the performance of the combustion catalyst. The catalytic activity of perovskite-type oxides showed a good relationship with the results of H2-TPR and XPS measurement.

  15. Synergistic Catalytic Action of Cobalt(Ⅱ) Hydroxamates and N-Hydroxyphthalimide in the Aerobic Oxidation of p-Xylene

    Institute of Scientific and Technical Information of China (English)

    Jian LIANG; Jian Zhang LI; Bo ZHOU; Sheng Ying QIN

    2005-01-01

    The catalytic performance of a series of cobalt( Ⅱ ) hydroxamates (CoL2) and the synergistic catalytic action of the cobalt complexes combined with N-hydroxyphthalimide (NHPI) in the aerobic oxidation ofp-xylene to p-toluic acid (PTA) were investigated. The results showed that the existing synergistic action in the catalytic oxidation can shorten the induction period of the radical reaction and improve the yield of PTA.

  16. Effect of SUS316L stainless steel surface conditions on the wetting of molten multi-component oxides ceramic

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jin, E-mail: wangjinustb@gmail.com [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196 (Japan); Matsuda, Nozomu [Bar and Wire Product Unit, Nippon steel and Sumitomo Metal Corporation, Fukuoka, 802-8686 (Japan); Shinozaki, Nobuya [Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196 (Japan); Miyoshi, Noriko [The Center for Instrumental Analysis, Kyushu Institute of Technology, Fukuoka, 804-8550 (Japan); Shiraishi, Takanobu [Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8588 (Japan)

    2015-02-01

    Highlights: • Multi-component oxides had a good wetting on stainless substrates with pretreatments. • Various substrates surface roughness caused the difference of final contact angles. • The wetting rate was slow on polished substrate due to the slow surface oxidation. - Abstract: A study on the effect of SUS316L stainless steel surface conditions on the wetting behavior of molten multi-component oxides ceramic was performed and aimed to contribute to the further understanding of the application of oxides ceramic in penetration treatment of stainless steel coatings and the deposition of stainless steel cermet coatings. The results show that at 1273 K, different surface pre-treatments (polishing and heating) had an important effect on the wetting behavior. The molten multi-component oxides showed good wettability on both stainless steel substrates, however, the wetting process on the polished substrate was significantly slower than that on the heated substrates. The mechanism of the interfacial reactions was discussed based on the microscopic and thermodynamic analysis, the substrates reacted with oxygen generated from the decomposition of the molten multi-component oxides and oxygen contained in the argon atmosphere, and the oxide film caused the molten multi-component oxides ceramic to spread on the substrates surfaces. For the polished substrate, more time was required for the surface oxidation to reach the surface composition of Heated-S, which resulted in relatively slow spreading and wetting rates. Moreover, the variance of the surface roughness drove the final contact angles to slightly different values following the sequence Polished-S > Heated-S.

  17. Studies of Cyclohexane Catalytic Oxidation Processes over Titanium Silicate-1 Zeolite

    Institute of Scientific and Technical Information of China (English)

    Cheng Shibiao; Wu Wei; Sun Bin; Min Enze

    2003-01-01

    The catalytic oxidation processes for cyclohexane/H2O2/acetone system over the TS-1 zeolite was studied. Study results have revealed that the cyclohexane conversion was 27% after the reaction proceeded at 100C for 2 hours at a cyclohexane/H2O2 molar ratio of 0.8. The cyclohexanol/cyclohexanone molar ratio was 1.3along with a certain amount of organic acids and esters, the formation of which was closely associated with the oxidation of reaction solvent and deep oxidation of cyclohexanone and cyclohexanol contained in the reaction products. With respect to the catalytic oxidation of cyclohexane/H2O2 system the selection of appropriate solvent was critically important.

  18. Wet etching of InSb surfaces in aqueous solutions: Controlled oxide formation

    Energy Technology Data Exchange (ETDEWEB)

    Aureau, D., E-mail: damien.aureau@chimie.uvsq.fr [Institut Lavoisier UVSQ-CNRS UMR 8180, 45 avenue des Etats Unis, Versailles, 78035 (France); Chaghi, R.; Gerard, I. [Institut Lavoisier UVSQ-CNRS UMR 8180, 45 avenue des Etats Unis, Versailles, 78035 (France); Sik, H.; Fleury, J. [Sagem Defense Sécurité, 72-74, rue de la tour Billy, 95101, Argenteuil Cedex (France); Etcheberry, A. [Institut Lavoisier UVSQ-CNRS UMR 8180, 45 avenue des Etats Unis, Versailles, 78035 (France)

    2013-07-01

    This paper investigates the wet etching of InSb surfaces by two different oxidant agents: Br{sub 2} and H{sub 2}O{sub 2} and the consecutive oxides generation onto the surfaces. The strong dependence between the chemical composition of the etching baths and the nature of the final surface chemistry of this low band-gap III–V semiconductor will be especially highlighted. One aqueous etching solution combined hydrobromic acid and Bromine (HBr–Br{sub 2}:H{sub 2}O) with adjusted concentrations. The other solution combines orthophosphoric and citric acids with hydrogen peroxide (H{sub 3}PO{sub 4}–H{sub 2}O{sub 2}:H{sub 2}O). Depending on its composition, each formulation gave rise to variable etching rate. The dosage of Indium traces in the etching solution by atomic absorption spectroscopy (AAS) gives the kinetic variation of the dissolution process. The variations on etching rates are associated to the properties and the nature of the formed oxides on InSb surfaces. Surface characterization is specifically performed by X-ray photoelectron spectroscopy (XPS). A clear evidence of the differences between the formed oxides is highlighted. Atomic force microscopy is used to monitor the surface morphology and pointed out that very different final morphologies can be reached. This paper presents new results on the strong variability of the InSb oxides in relation with the InSb reactivity toward environment interaction.

  19. Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose

    DEFF Research Database (Denmark)

    Bjerre, A.B.; Bjerring Olesen, A.; Fernqvist, T.

    1996-01-01

    addition readily oxidizes lignin from wheat straw facilitating the polysaccharides for enzymatic hy drolysis. By using a specially constructed autoclave system, the wet oxidation process was optimized with respect to both reaction time and temperature. The best conditions (20 g/L straw, 170 degrees C, 5...

  20. Correlation between the microstructures of graphite oxides and their catalytic behaviors in air oxidation of benzyl alcohol.

    Science.gov (United States)

    Geng, Longlong; Wu, Shujie; Zou, Yongcun; Jia, Mingjun; Zhang, Wenxiang; Yan, Wenfu; Liu, Gang

    2014-05-01

    A series of graphite oxide (GO) materials were obtained by thermal treatment of oxidized natural graphite powder at different temperatures (from 100 to 200 °C). The microstructure evolution (i.e., layer structure and surface functional groups) of the graphite oxide during the heating process is studied by various characterization means, including XRD, N2 adsorption, TG-DTA, in situ DRIFT, XPS, Raman, TEM and Boehm titration. The characterization results show that the structures of GO materials change gradually from multilayer sheets to a transparent ultrathin 2D structure of the carbon sheets. The concentration of surface COH and HOCO groups decrease significantly upon treating temperature increasing. Benzyl alcohol oxidation with air as oxidant source was carried out to detect the catalytic behaviors of different GO materials. The activities of GO materials decrease with the increase of treating temperatures. It shows that the structure properties, including ultrathin sheets and high specific surface area, are not crucial factors affecting the catalytic activity. The type and amount of surface oxygen-containing functional groups of GO materials tightly correlates with the catalytic performance. Carboxylic groups on the surface of GO should act as oxidative sites for benzyl alcohol and the reduced form could be reoxidized by molecular oxygen.

  1. Selective catalytic oxidation of H₂S over iron oxide supported on alumina-intercalated Laponite clay catalysts.

    Science.gov (United States)

    Zhang, Xin; Dou, Guangyu; Wang, Zhuo; Li, Li; Wang, Yufei; Wang, Hailin; Hao, Zhengping

    2013-09-15

    A series of iron oxide supported on alumina-intercalated clay catalysts (named Fe/Al-Lap catalysts) with mesoporous structure and high specific surface area were prepared. The structural and chemical properties were studied by nitrogen sorption isotherms, X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (UV-vis DRS), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FTIR), H₂ temperature-programmed reduction (H₂-TPR) and NH₃ temperature-programmed desorption (NH3-TPD) techniques. It was realized that iron oxide mainly existed in the form of isolated Fe(3+) in an oxidic environment. Fe/Al-Lap catalysts showed high catalytic activities in the temperature range of 120-200 °C without the presence of excessive O₂. This can be attributed to the interaction between iron oxide and alumina, which improve the redox property of Fe(3+) efficiently. In addition, the strong acidity of catalysts and good dispersion of iron oxide were also beneficial to oxidation reaction. Among them, 7% Fe/Al-Lap catalyst presented the best catalytic performance at 180 °C. Finally, the catalytic and deactivation mechanisms were explored.

  2. pH Responsive and Oxidation Resistant Wet Adhesive based on Reversible Catechol-Boronate Complexation.

    Science.gov (United States)

    Narkar, Ameya R; Barker, Brett; Clisch, Matthew; Jiang, Jingfeng; Lee, Bruce P

    2016-08-09

    A smart adhesive capable of binding to a wetted surface was prepared by copolymerizing dopamine methacrylamide (DMA) and 3-acrylamido phenylboronic acid (AAPBA). pH was used to control the oxidation state and the adhesive property of the catechol side chain of DMA and to trigger the catechol-boronate complexation. FTIR spectroscopy confirmed the formation of the complex at pH 9, which was not present at pH 3. The formation of the catechol-boronate complex increased the cross-linking density of the adhesive network. Most notably, the loss modulus values of the adhesive were more than an order of magnitude higher for adhesive incubated at pH 9 when compared to those measured at pH 3. This drastic increase in the viscous dissipation property is attributed to the introduction of reversible complexation into the adhesive network. Based on the Johnson Kendall Roberts (JKR) contact mechanics test, adhesive containing both DMA and AAPBA demonstrated strong interfacial binding properties (work of adhesion (Wadh) = 2000 mJ/m(2)) to borosilicate glass wetted with an acidic solution (pH 3). When the pH was increased to 9, Wadh values (180 mJ/m(2)) decreased by more than an order of magnitude. During successive contact cycles, the adhesive demonstrated the capability to transition reversibly between its adhesive and nonadhesive states with changing pH. Adhesive containing only DMA responded slowly to repeated changes in pH and became progressively oxidized without the protection of boronic acid. Although adhesive containing only AAPBA also demonstrated strong wet adhesion (Wadh ∼ 500 mJ/m(2)), its adhesive properties were not pH responsive. Both DMA and AAPBA are required to fabricate a smart adhesive with tunable and reversible adhesive properties.

  3. Bulk Preparation of Holey Graphene via Controlled Catalytic Oxidation

    Science.gov (United States)

    Watson, Kent (Inventor); Lin, Yi (Inventor); Ghose, Sayata (Inventor); Connell, John (Inventor)

    2015-01-01

    A scalable method allows preparation of bulk quantities of holey carbon allotropes with holes ranging from a few to over 100 nm in diameter. Carbon oxidation catalyst nanoparticles are first deposited onto a carbon allotrope surface in a facile, controllable, and solvent-free process. The catalyst-loaded carbons are then subjected to thermal treatment in air. The carbons in contact with the carbon oxidation catalyst nanoparticles are selectively oxidized into gaseous byproducts such as CO or CO.sub.2, leaving the surface with holes. The catalyst is then removed via refluxing in diluted nitric acid to obtain the final holey carbon allotropes. The average size of the holes correlates strongly with the size of the catalyst nanoparticles and is controlled by adjusting the catalyst precursor concentration. The temperature and time of the air oxidation step, and the catalyst removal treatment conditions, strongly affect the morphology of the holes.

  4. Catalytic and regioselective oxidation of carbohydrates to synthesize keto-sugars under mild conditions.

    Science.gov (United States)

    Muramatsu, Wataru

    2014-09-19

    A new catalytic and regioselective approach for the synthesis of keto-sugars is described. An organotin catalyst, Oc2SnCl2, in the presence of trimethylphenylammonium tribromide ([TMPhA](+)Br3(-)) accelerates the regioselective oxidation at the "axial"-OH group of 1,2-diol moieties in galactopyranosides. The reaction conditions can also be used for the regioselective oxidation of various carbohydrates.

  5. Catalytic water oxidation by mononuclear Ru complexes with an anionic ancillary ligand.

    Science.gov (United States)

    Tong, Lianpeng; Inge, A Ken; Duan, Lele; Wang, Lei; Zou, Xiaodong; Sun, Licheng

    2013-03-04

    Mononuclear Ru-based water oxidation catalysts containing anionic ancillary ligands have shown promising catalytic efficiency and intriguing properties. However, their insolubility in water restricts a detailed mechanism investigation. In order to overcome this disadvantage, complexes [Ru(II)(bpc)(bpy)OH2](+) (1(+), bpc = 2,2'-bipyridine-6-carboxylate, bpy = 2,2'-bipyridine) and [Ru(II)(bpc)(pic)3](+) (2(+), pic = 4-picoline) were prepared and fully characterized, which features an anionic tridentate ligand and has enough solubility for spectroscopic study in water. Using Ce(IV) as an electron acceptor, both complexes are able to catalyze O2-evolving reaction with an impressive rate constant. On the basis of the electrochemical and kinetic studies, a water nucleophilic attack pathway was proposed as the dominant catalytic cycle of the catalytic water oxidation by 1(+), within which several intermediates were detected by MS. Meanwhile, an auxiliary pathway that is related to the concentration of Ce(IV) was also revealed. The effect of anionic ligand regarding catalytic water oxidation was discussed explicitly in comparison with previously reported mononuclear Ru catalysts carrying neutral tridentate ligands, for example, 2,2':6',2″-terpyridine (tpy). When 2(+) was oxidized to the trivalent state, one of its picoline ligands dissociated from the Ru center. The rate constant of picoline dissociation was evaluated from time-resolved UV-vis spectra.

  6. Learning the Fundamentals of Kinetics and Reaction Engineering with the Catalytic Oxidation of Methane

    Science.gov (United States)

    Cybulskis, Viktor J.; Smeltz, Andrew D.; Zvinevich, Yury; Gounder, Rajamani; Delgass, W. Nicholas; Ribeiro, Fabio H.

    2016-01-01

    Understanding catalytic chemistry, collecting and interpreting kinetic data, and operating chemical reactors are critical skills for chemical engineers. This laboratory experiment provides students with a hands-on supplement to a course in chemical kinetics and reaction engineering. The oxidation of methane with a palladium catalyst supported on…

  7. Silica-gel Supported V Complexes:Preparation, Characterization and Catalytic Oxidative Desulfurization

    Institute of Scientific and Technical Information of China (English)

    黎俊波; 刘习文; 曹灿灿; 郭嘉; 潘志权

    2013-01-01

    In this manuscript, a series of catalyst SGn-[VVO2-PAMAM-MSA] (SG=silica gel, PAMAM=poly-amidoamine, MSA=5-methyl salicylaldehyde, n=0, 1, 2, 3) was prepared and their structures were fully charac-terized by Fourier transform-infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray photoelec-tron spectroscopy (XPS) and inductive coupled plasma emission spectrometer (ICP) etc. XPS revealed that the metal V and SGn-PAMAM-MSA combined more closely after the formation of Schiff base derivatives. Their cata-lytic activities for oxidation of dibenzothiophene were evaluated using tert-butyl hydroperoxide as oxidant. The results showed that the catalyst SG2.0-[VVO2-PAMAM-MSA] presented good catalytic activity and recycling time. Mean-while, the optimal condition for the catalytic oxidation of SG2.0-[VVO2-PAMAM-MSA] was also investigated, which showed that when the oxidation temperature was 90 °C, time was 60 min, the O/S was 3︰1, and the mass content of catalyst was 1%, the rate of desulfurization could reach 85.2%. Moreover, the catalyst can be recycled several times without significant decline in catalytic activity.

  8. Phosphorus recovery from sewage sludge with a hybrid process of low pressure wet oxidation and nanofiltration.

    Science.gov (United States)

    Blöcher, Christoph; Niewersch, Claudia; Melin, Thomas

    2012-04-15

    Phosphorus recovery from sewage sludge will become increasingly important within the next decades due to depletion of mineral phosphorus resources. In this work a new process concept was investigated, which aims at realising phosphorus recovery in a synergistic way with the overall sewage sludge treatment scheme. This process combines a low pressure wet oxidation for sewage sludge decomposition as well as phosphorus dissolution and a nanofiltration process to separate phosphorus from heavy metals and obtain a clean diluted phosphoric acid, from which phosphorus can be recovered as clean fertiliser. It was shown that this process concept is feasible for sewage sludge for wastewater treatment plants that apply enhanced biological removal or precipitation with alumina salts for phosphorus removal. The critical parameter for phosphorus dissolution in the low pressure wet oxidation process is the iron concentration, while in the nanofiltration multi-valent cations play a predominant role. In total, a phosphorus recovery of 54% was obtained for an exemplary wastewater treatment plant. Costs of the entire process are in the same range as conventional sewage sludge disposal, with the benefit being phosphorus recovery and reduced emission of greenhouse gases due to avoidance of sludge incineration.

  9. Effect of intermediate compounds and products on wet oxidation and biodegradation rates of pharmaceutical compounds.

    Science.gov (United States)

    Collado, Sergio; Laca, Adriana; Diaz, Mario

    2013-06-01

    Kinetics of pure compounds in batch agitated reactors are useful data to clarify the characteristics of a given reaction, but they frequently do not provide the required information to design industrial mixed continuous processes because in this case the final and intermediate products interact with the reaction of interest, due to backmixing effects. Simultaneously, the presence and transformations of other compounds, frequent in industrial wastewater treatments, adds more complexity to these types of interactions, whose effect can be different, favorable or unfavorable, for chemical or biological reactions. In this work, batch laboratory reactor data were obtained for the wet oxidation and biodegradation of four phenolic compounds present in a pharmaceutical wastewater and then compared with those collected from industrial continuous stirred tank reactors. For wet oxidation, batch laboratory degradation rates were significantly lower than those found in industrial continuous stirred operation. This behavior was explained by a different distribution of intermediate compounds in lab and industrial treatments, caused by the degree of backmixing and the synergistic effects between phenolic compounds (matrix effects). On the other hand, the specific utilization rates during aerobic biodegradation in the continuous industrial operation were lower than those measured in the laboratory, due to the simultaneous presence of the four pollutants in the industrial process (matrix effects) increasing the inhibitory effects of these compounds and its intermediates.

  10. Treatment of desizing wastewater from the textile industry by wet air oxidation

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper describes the application of wet air oxidation to the treatment of desizing wastewater from two textile companies. A two-liter high temperature, high pressure autoclave reactor was used in the study. The range of operating temperatures examined was between 150 and 290℃, and the partial pressure of oxygen ranged from 0. 375 to 2.25 MPa. Variations in pH,CODCr and TOD content were monitored during each experiment and used to assess the extent of conversion of the process. The effects of temperature, pressure and reaction time were explored extensively. More than 90 % CODCr reduction and 80 % TOC removal have been obtained. The results have also been demonstrated that WAO is a suitable pre-treatment methods due to improvement of the BOD5/CODCr ratio of desizing wastewater. The reaction kinetics of wet air oxidation of desizing wastewater has been proved to be two steps, a fast reaction followed by a slow reaction stage.

  11. Alkaline peroxide assisted wet air oxidation pretreatment approach to enhance enzymatic convertibility of rice husk.

    Science.gov (United States)

    Banerjee, Saumita; Sen, Ramkrishna; Mudliar, Sandeep; Pandey, R A; Chakrabarti, Tapan; Satpute, Dewanand

    2011-01-01

    Pretreatment of rice husk by alkaline peroxide assisted wet air oxidation (APAWAO) approach was investigated with the aim to enhance the enzymatic convertibility of cellulose in pretreated rice husk. Rice husk was presoaked overnight in 1% (w/v) H(2)O(2) solution (pH adjusted to 11.5 using NaOH) (equivalent to 16.67 g H(2)O(2) and 3.63 g NaOH per 100 g dry, untreated rice husk) at room temperature, followed by wet air oxidation (WAO). APAWAO pretreatment resulted in solubilization of 67 wt % of hemicellulose and 88 wt % of lignin initially present in raw rice husk. Some amount of oligomeric glucose (˜8.3 g/L) was also observed in the APAWAO liquid fraction. APAWAO pretreatment resulted in 13-fold increase in the amount of glucose that could be obtained from otherwise untreated rice husk. Up to 86 wt % of cellulose in the pretreated rice husk (solid fraction) could be converted into glucose within 24 hours, yielding over 21 g glucose per 100 g original rice husk. Scanning electron microscopy was performed to visualize changes in biomass structure following the APAWAO pretreatment. Enzymatic cellulose convertibility of the pretreated slurry at high dry matter loadings was also investigated.

  12. Degradation of H-acid in aqueous solution by microwave assisted wet air oxidation using Ni-loaded GAC as catalyst

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yao-bin; QUAN Xie; ZHAO Hui-min; CHEN Shuo; YANG Feng-lin

    2005-01-01

    A novel process, microwave assisted catalytic wet air oxidation(MW-CWO), was applied for the degradation of H-acid( 1-amino8-naphthol-3, 6-disulfonic acid) in aqueous solution. Ni-loaded granular activated carbon (GAG), prepared by immersion-calcination method, was used as catalyst. The results showed that the MW-CWO process was very effective for the degradation of H-acid in aqueous solution under atmospheric pressure with 87.4% TOC (total organic carbon) reduction in 20 min. Ni on GAC existed in the form of NiO as specified by XRD. Loss of Ni was significant in the initial stage, and then remained almost constant after 20 min reaction. BET surface area results showed that the surface property of GAC after MW-CWO process was superior to that of blank GAC.

  13. Catalytic routes and oxidation mechanisms in photoreforming of polyols

    Energy Technology Data Exchange (ETDEWEB)

    Sanwald, Kai E.; Berto, Tobias F.; Eisenreich, Wolfgang; Gutiérrez, Oliver Y.; Lercher, Johannes A.

    2016-12-01

    Photocatalytic reforming of biomass-derived oxygenates leads to H2 generation and evolution of CO2 via parallel formation of organic intermediates through anodic oxidations on a Rh/TiO2 photocatalyst. The reaction pathways and kinetics in the photoreforming of C3–C6 polyols were explored. Polyols are converted via direct and indirect hole transfer pathways resulting in (i) oxidative rupture of C–C bonds, (ii) oxidation to a-oxygen functionalized aldoses and ketoses (carbonyl group formation) and (iii) light-driven dehydration. Direct hole transfer to chemisorbed oxygenates on terminal Ti(IV)-OH groups, generating alkoxy-radicals that undergo ß-C–C-cleavage, is proposed for the oxidative C–C rupture. Carbonyl group formation and dehydration are attributed to indirect hole transfer at surface lattice oxygen sites [Ti_ _ _O_ _ _Ti] followed by the generation of carbon-centered radicals. Polyol chain length impacts the contribution of the oxidation mechanisms favoring the C–C bond cleavage (internal preferred over terminal) as the dominant pathway with higher polyol carbon number.

  14. Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes

    KAUST Repository

    Hong, Jongsup

    2013-10-01

    The catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.

  15. Synthesis and catalytic property of Cu-Mn-Ce/ γ -Al2O3 complex oxide

    Institute of Scientific and Technical Information of China (English)

    黄可龙; 王红霞; 刘素琴; 桂客

    2002-01-01

    A new type of catalytic material for purification of automobile exhaust,Cu-Mn-Ce-O/ γ -Al2O3,has been studied.The factors affecting its catalytic activity,such as calcination temperature and the period of calcinations and so on have been investigated.Its catalytic activity after SO2-poisoning was determined in a fixed-bed reactor by exposing the sample to the atmosphere of 160 mL/min SO2/air.The study reveals that the catalyst has shown high catalytic activities for the conversion of NH3 oxidation by NO after sulfate.The conversion of NO reduction over the sulfated catalyst is somewhat higher than that over the fresh catalyst except that the optimum temperature has increased about 100 ℃.Also at the optimum process for the experiment,the selective catalytic oxidation of CO by NO is over 76% and the conversion of NO reduction is over 80% by NH3.

  16. Effects of operational conditions on sludge degradation and organic acids formation in low-critical wet air oxidation.

    Science.gov (United States)

    Chung, Jinwook; Lee, Mikyung; Ahn, Jaehwan; Bae, Wookeun; Lee, Yong-Woo; Shim, Hojae

    2009-02-15

    Wet air oxidation processes are to treat highly concentrated organic compounds including refractory materials, sludge, and night soil, and usually operated at supercritical water conditions of high temperature and pressure. In this study, the effects of operational conditions including temperature, pressure, and oxidant dose on sludge degradation and conversion into subsequent intermediates such as organic acids were investigated at low critical wet oxidation conditions. The reaction time and temperature in the wet air oxidation process was shown an important factor affecting the liquefaction of volatile solids, with more significant effect on the thermal hydrolysis reaction rather than the oxidation reaction. The degradation efficiency of sludge and the formation of organic acids were improved with longer reaction time and higher reaction temperature. For the sludge reduction and the organic acids formation under the wet air oxidation, the optimal conditions for reaction temperature, time, pressure, and oxidant dose were shown approximately 240 degrees C, 30min, 60atm, and 2.0L/min, respectively.

  17. Catalytic oxidative conversion of alkanes to olefines and oxygenates

    Energy Technology Data Exchange (ETDEWEB)

    Baerns, M. [Institut fuer Angewandte Chemie Berlin-Adlershof e.V., Berlin (Germany)

    1998-12-31

    All of the direct reaction schemes described and the corresponding process schemes are still in an exploratory state. Ethylene by oxidative coupling of methane could become competitive if process schemes are developed with significantly less expenditures for separation of the product from unconverted feed. No encouragement for formaldehyde from methane can be presently derived from the existing knowledge. Liquid-phase oxidation of methane to methanol appears to be attractive but no final judgement is possible at present. Oxidative dehydrogenation of ethylene and propane look promising although further catalyst improvement is required. Acetic acid from ethane and acrylonitrile from propane have a certain potential as an alternative to present technology. The outlook for acrolein and acrylic acid from propane is less favourable; new concepts for catalyst design are necessary. (orig.)

  18. On the catalytic gas phase oxidation of butadiene to furan

    Energy Technology Data Exchange (ETDEWEB)

    Kubias, B.; Rodemerck, U. [Institut fuer Angewandte Chemie Berlin-Adlershof e.V., Berlin (Germany); Ritschl, F.; Meisel, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Chemie

    1998-12-31

    Applying the thermochemical selectivity criterion of Hadnett et al. It is shown that the selectivity of the furan formation is not limited by a too low strength of the C-H bonds in furan when compared with the C-H bond dissociation energy in the educt molecule butadiene. In the oxidation of butadiene on a CsH{sub 2}PMo{sub 12}O{sub 40} catalyst a maximum yield of 22 mol% furan has been obtained. To improve this comparatively low furan yield oxidation activity of the catalyst must be lowered to prevent the consecutive reaction to maleic anhydride. (orig.)

  19. Mechanism of catalytic oxidation of water-lipid substrate

    Science.gov (United States)

    Kraynik, V. V.; Ushkalova, V. N.

    2010-05-01

    The processes of ethyl oleate water-emulsion oxidation in the presence of copper (II) complexes with α-alanine as a catalyst were investigated spectroscopically. UV spectra of the samples revealed the competitive nature of the formation and decomposition of hydroperoxides in the course of oxidation. Vis spectra of the aqueous phase revealed the constant presence of copper (II) complex with α-alanine and the formation of a similar complex with copper (I) in organic phase. The involvement of these complexes in the reactions of chain nucleation and decay of hydroperoxides is suggested.

  20. Pretreatment of Afyon alcaloide factory's wastewater by wet air oxidation (WAO).

    Science.gov (United States)

    Kaçar, Y; Alpay, E; Ceylan, V K

    2003-03-01

    In this study, pretreatment of Afyon (Turkey) alcaloide factory wastewater, a typical high strength industrial wastewater (chemical oxygen demand (COD)=26.65 kgm(-3), biological oxygen demand (BOD(5))=3.95 kgm(-3)), was carried out by wet air oxidation process. The process was performed in a 0.75 litre specially designed bubble reactor. Experiments were conducted to see the advantages of one-stage and two-stage oxidation and the effects of pressure, pH, temperature, catalyst type, catalyst loading and air or oxygen as gas source on the oxidation of the wastewater. In addition, BOD(5)/COD ratios of the effluents, which are generally regarded as an important index of biodegradability of a high-strength industrial wastewater, were determined at the end of some runs. After a 2h oxidation (T=150 degrees C, P=0.65 MPa, airflowrate=1.57 x 10(-5)m(3)s(-1), pH=7.0), the BOD(5)/COD ratio was increased from 0.15 to above 0.5 by using the salts of metals such as Co(2+),Fe(2+),Fe(2+)+Ni(2+),Cu(2+)+Mn(2+) as catalyst.

  1. Optical characteristics of wet-thermally oxidized bulk and nanoporous GaN

    Science.gov (United States)

    Kim, Sinjae; Kadam, Mahadev; Kang, Jin-Ho; Ryu, Sang-Wan

    2016-09-01

    Gallium nitride (GaN) films deposited on sapphire substrates by metal organic chemical vapor deposition were successfully transformed into bulk and nanoporous gallium oxide (Ga2O3) using a wet thermal oxidation technique. Oxidation depth measurements confirmed that the oxide growth appeared to be faster in the case of nanoporous GaN than that of bulk GaN. Spectroscopic ellipsometry was used to evaluate and compare the optical properties of nanoporous and bulk Ga2O3 films, such as refractive index and extinction coefficient, which revealed improved optical properties for nanoporous Ga2O3 compared to the bulk. The simulations conducted on the ellipsometric spectra for bulk and nanoporous Ga2O3 using the Forouhi-Bloomer model and the Bruggeman effective medium approximation revealed the best fit with a low mean square error value. In the case of nanoporous Ga2O3, zero absorption was observed in the wavelength range of 300 nm to 840 nm, supporting the use of this material as a transparent coating in optoelectronic devices.

  2. Partial catalytic oxidation of CH{sub 4} to synthesis gas for power generation - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mantzaras, I.; Schneider, A.

    2006-03-15

    The partial oxidation of methane to synthesis gas over rhodium catalysts has been investigated experimentally and numerically in the pressure range of 4 to 10 bar. The methane/oxidizer feed has been diluted with large amounts of H{sub 2}O and CO{sub 2} (up to 70% vol.) in order to simulate new power generation cycles with large exhaust gas recycle. Experiments were carried out in an optically accessible channel-flow reactor that facilitated laser-based in situ measurements, and also in a subscale gas-turbine catalytic reactor. Full-elliptic steady and transient two-dimensional numerical codes were used, which included elementary hetero-/homogeneous chemical reaction schemes. The following are the key conclusions: a) Heterogeneous (catalytic) and homogeneous (gas-phase) schemes have been validated for the partial catalytic oxidation of methane with large exhaust gas recycle. b) The impact of added H{sub 2}O and CO{sub 2} has been elucidated. The added H{sub 2}O increased the methane conversion and hydrogen selectivity, while it decreased the CO selectivity. The chemical impact of CO{sub 2} (dry reforming) was minimal. c) The numerical model reproduced the measured catalytic ignition times. It was further shown that the chemical impact of H{sub 2}O and CO{sub 2} on the catalytic ignition delay times was minimal. d) The noble metal dispersion increased with different support materials, in the order Rh/{alpha}-Al{sub 2}O{sub 3}, Rh/ZrO{sub 2}, and Rh/Ce-ZrO{sub 2}. An evident relationship was established between the noble metal dispersion and the catalytic behavior. (authors)

  3. A PROCESS FOR THE CATALYTIC OXIDATION OF HYDROCARBONS

    DEFF Research Database (Denmark)

    1999-01-01

    A process for producing an alcohol from a gaseous hydrocarbon, e.g. a lower alkane such as methane, via oxidative reaction of the hydrocarbon in a concentrated sulfuric acid medium in the presence of a catalyst employs an added catalyst comprising a substance selected from iodine, iodine compounds...

  4. Catalytic oxidation of benzene using DBD corona discharges.

    Science.gov (United States)

    Lu, B; Zhang, X; Yu, X; Feng, T; Yao, S

    2006-09-01

    Plasma oxidation of benzene (C(6)H(6)) in oxygen and nitrogen was investigated using a dielectric barrier discharge (DBD) reactor with or without MnO2 or TiO2 at atmospheric pressure and without external heating except plasma heating. An alternative current power supply was used to generate corona discharges for the plasma oxidation. The energy density was controlled under 200 J/L to keep an increase in gas temperature less than 167 K. C(6)H(6) was oxidized to carbon monoxide (CO) and dioxide (CO(2)). Typically, the energy efficiency at an energy density of 92J/L was about 0.052, 0.039, and 0.024 mol/kWh with MnO2, TiO2, and without MnO2 and TiO2, respectively. Benzene oxidation mechanism was mentioned. A comparison on energy efficiency as a function of initial concentration of hydrocarbons, inorganic sulphur compounds, and chloro (fluoro and bromo) carbons was given.

  5. Catalytic Partial Oxidation Reforming of JP8 AND S8

    Science.gov (United States)

    2007-06-01

    magnesium oxide (MgO) and have temperatures above 500°C. A kinetics study of steam reformation of isooctane has been performed. Temperatures at the end...been used and are better than nickel based catalysts (Shekawat et al., 2006). A study conducted with isooctane using CPOX reforming showed coking

  6. Simultaneous catalytic removal of NOx and diesel soot particulate over perovskite-type oxides and supported Ag catalysts

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A series of perovskite-type oxides and supported Ag catalysts were prepared,and characterized by X-ray diffraction (XRD) and Xray photoelectron spectroscopy (XPS).The catalytic activities of the catalysts as well as influencing factors on catalytic activity have been investigated for the simultaneous removal of NOx and diesel soot particulate.An increase in catalytic activity for the selective reduction of NOx was observed with Ag addition in these perovskite oxides,especially with 5% Ag loading.This catalyst could be a promising candidate of catalytic material for the simultaneous elimination of NOx and diesel soot.

  7. Catalytic oxidation of cyclohexane to cyclohexanone and cyclohexanol by tert-butyl hydroperoxide over Pt/oxide catalysts

    Indian Academy of Sciences (India)

    I Rekkab-Hammoumraoui; A Choukchou-Braham; L Pirault-Roy; C Kappenstein

    2011-08-01

    Heterogeneous oxidation of cyclohexane with tertiobutyl hydroperoxide was carried out on Pt/oxide (Al2O3, TiO2 and ZrO2) catalysts in the presence of different solvents (acetic acid and acetonitrile). The catalysts were prepared using Pt(NH3)2(NO2)2 as a precursor and characterized by chemical analysis using the ICP–AES method, XRD, TEM, FTIR and BET surface area determination. The oxidation reaction was carried out at 70°C under atmospheric pressure. The results showed the catalytic performance of Pt/Al2O3 as being very high in terms of turnover frequency.

  8. Screening study of transition metal oxide catalysts supported on ceria-modified titania for catalytic oxidation of toluene

    Institute of Scientific and Technical Information of China (English)

    Dan-qing YU; Yue LIU; Zhong-biao WU

    2011-01-01

    Six transition metal oxides were added in ceria-modified titania using a sol-gel method for catalytic oxidation of toluene. An MnOx based catalyst was found to be the most active one, with which toluene could be decomposed completely at 200 ℃. The greatest Mn/Ti and molar ratio of the mobile oxygen to the total oxygen concentration, together with a large surface area and a low reduction peak-starting temperature, would result in its best activity in toluene oxidation.

  9. Selective Production of Aromatic Aldehydes from Heavy Fraction of Bio-oil via Catalytic Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Chang, Jie; Ouyang, Yong; Zheng, Xianwei [South China Univ. of Technology, Guangzhou (China)

    2014-06-15

    High value-added aromatic aldehydes (e. g. vanillin and syringaldehyde) were produced from heavy fraction of bio-oil (HFBO) via catalytic oxidation. The concept is based on the use of metalloporphyin as catalyst and hydrogen peroxide (H{sub 2}O{sub 2}) as oxidant under alkaline condition. The biomimetic catalyst cobalt(II)-sulfonated tetraphenylporphyrin (Co(TPPS{sub 4})) was prepared and characterized. It exhibited relative high activity in the catalytic oxidation of HFBO. 4.57 wt % vanillin and 1.58 wt % syringaldehyde were obtained from catalytic oxidation of HFBO, compared to 2.6 wt % vanillin and 0.86 wt % syringaldehyde without Co(TPPS{sub 4}). Moreover, a possible mechanism of HFBO oxidation using Co(TPPS{sub 4})/H{sub 2}O{sub 2} was proposed by the research of model compounds. The results showed that this is a promising and environmentally friendly method for production of aromatic aldehydes from HFBO under Co(TPPS{sub 4})/H{sub 2}O{sub 2} system.

  10. Catalytic activity of titania zirconia mixed oxide catalyst for dimerization eugenol

    Science.gov (United States)

    Tursiloadi, S.; Kristiani, A.; Jenie, S. N. Aisyiyah; Laksmono, J. A.

    2017-01-01

    Clove oil has been found to possess antibacterial, antifungal, antiviral, antitumor, antioxidant and insecticidal properties. The major compound of clove oil is eugenol about 49-87%. Eugenol as phenolic compounds exhibits antioxidant and antimicrobial activities. The derivative compound of eugenol, dieugenol, show antioxidant potency better than parent eugenol. A series of TiO2-ZrO2 mixed oxides (TZ) with various titanium contents from 0 to 100wt%, prepared by using sol gel method were tested their catalytic activity for dimerization eugenol, Their catalytic activity show that these catalysts resulted a low yield of dimer eugenol, dieugenol, about 2-9 % and the purity is more than 50%.

  11. The superior catalytic CO oxidation capacity of a Cr-phthalocyanine porous sheet

    Science.gov (United States)

    Li, Yawei; Sun, Qiang

    2014-02-01

    Two-dimensional organometallic sheets containing regularly and separately distributed transition atoms (TMs) have received tremendous attentions due to their flexibility in synthesis, well-defined geometry and the promising applications in hydrogen storage, electronic circuits, quantum Hall effect, and spintronics. Here for the first time we present a study on the superior catalytic CO oxidation capacity of a Cr-phthalocyanine porous sheet proceeding first via Langmuir-Hinshelwood (LH) mechanism and then via Eley-Rideal (ER) mechanism. Compared to the noble metal based catalysts or graphene supported catalysts, our studied system has following unique features: without poisoning effect and clustering problem, having comparable reaction energy barrier for low-temperature oxidation, and low cost for large-scale catalytic CO oxidation in industry.

  12. Effects of calcium substitute in LaMnO3 perovskites for NO catalytic oxidation

    Institute of Scientific and Technical Information of China (English)

    SHEN Meiqing; ZHAO Zhen; CHEN Jiahao; SU Yugeng; WANG Jun; WANG Xinquan

    2013-01-01

    La1-xCaxMnO3 (x=0-0.3) perovskite-type oxides were synthesized by citrate sol-gel method.The physical and chemical properties were characterized by X-ray diffraction (XRD),Brumauer-Emmett-Teller method (BET),X-ray photoelectron spectroscopy (XPS),NO+O2-TPD (temperature-programmed desorption),activated oxygen evaluation and H2-TPR (temperature-programmed reduction) technologies.The results showed that NO catalytic oxidation activity was significantly improved by Ca substitution,especially for lower temperature activity.The La0.9Ca0.1UnO3 sample showed the maximum conversion of 82% at 300 ℃.The monodentate nitrates played a crucial role for the formation of NO2.The reducibility of Mn4+ ions and reactivity of activated oxygen were favorable for the catalytic performances of NO oxidation.

  13. [Catalytic wet air oxidation of phenol and aniline over multi-walled carbon nanotubes].

    Science.gov (United States)

    Li, Xiang; Yang, Shao-xi; Zhu, Wan-peng; Wang, Jian-bing; Wang, Li

    2008-09-01

    Multi-walled carbon nanotubes (MWNTs) without any metal ions were used as the catalyst, and investigated in the CWAO of phenol and aniline in a batch reactor. The structures of the MWNTs were characterized by means of SEM and TEM. It showed that the MWNTs, treated with the mixed acid (HNO3-H2SO4), displayed excellent activity and stability in the CWAO. Under the reaction temperature of 160 degrees C, the total pressure of 2.5 MPa, the initial concentration of 1000 mg/L and loading the catalyst of 1.6 g/L, 100% phenol and 86% COD were removed after 120 min reaction in CWAO of phenol. At the same operating conditions, 83% aniline and 68% COD removals were obtained in the CWAO of aniline solution when the initial concentration of aniline was 2 000 mg/L. The surface functional groups played the important role for the high activity of the MWNTs in CWAO of organic compounds.

  14. Wet oxidation treatment of organic household waste enriched with wheat straw for simultaneous saccharification and fermentation into ethanol

    DEFF Research Database (Denmark)

    Lissens, G.; Klinke, H.B.; Verstraete, W.;

    2004-01-01

    Organic municipal solid waste enriched with wheat straw was subjected to wet-oxidation as a pre-treatment for subsequent enzymatic conversion and fermentation into bio-ethanol. The effect of tempera (185-195degrees C), oxygen pressure (3-12) and sodium carbonate (0-2 g l(-1)) addition on enzymatic...... cellulose and hemicellulose convertibility was studied at a constant wet oxidation retention time of 10 minutes. An enzyme convertibility assay at high enzyme loading (25 filter paper unit (FPU) g(-1) dry solids (DS) added) showed that up to 78% of the cellulose and up to 68% of the hemicellulose...... in the treated waste could be converted into respectively hexose and pentose sugars compared to 46% for cellulose and 36% for hemicellulose in the raw waste. For all wet oxidation conditions tested, total carbohydrate recoveries were high (> 89%) and 44-66% of the original lignin could be converted into non...

  15. Comparison of the chemical properties of wheat straw and beech fibers following alkaline wet oxidation and laccase treatments

    DEFF Research Database (Denmark)

    Schmidt, A. S.; Mallon, S.; Thomsen, Anne Belinda;

    2002-01-01

    Wheat straw (Triticum aestivum) and beech (Fagus sylvatica), were used to evaluate the effects of two pre-treatment processes (alkaline wet oxidation and enzyme treatment with laccase) on lignocellulosic materials for applications in particleboards and fiberboards. Wheat straw and beech fibers...... reacted differently in the two processes. The chemical composition changed little following enzyme treatment. After alkaline wet oxidation, fibers enriched in cellulose were obtained. With both materials, almost all hemicellulose (80%) together with a large portion of the lignin were solubilised...... by alkaline wet oxidation, but essentially all cellulose remained in the solid fraction. Following enzyme treatment most material remained as a solid. For wheat straw, reaction with acetic anhydride indicated that both treatments resulted in more hydroxyl groups being accessible for reaction. The enzyme...

  16. Studies on green and efficient catalytic oxidation of a triazole compound

    Science.gov (United States)

    Luo, J.; Liu, Y. C.; Huang, K. H.; Chai, T.; Wang, J. H.; Yu, Y. W.; Yuan, J. M.; Chang, S. J.; Guo, J. H.; Zhang, J.

    2016-07-01

    1-Methyl-3,5-dinitro-1,2,4-triazole is an insensitive energetic compound that can be prepared by oxidizing the nitrate salt of 1-methylguanazole. The influence of the reaction time, reaction temperature, reactant ratio, feeding method and catalytic oxidation method on the yield were discussed. The results show that the optimum reaction conditions are as follows: mass ratio of sodium tungstate to nitrate salt to 1-methylguanazole, 4:4.4; time, 5.5h; and temperature, 65-75°C. The yield of this oxidation reaction reached 51.36%.

  17. Low-temperature catalytic oxidation of NO over Mn-Ce-O_x catalyst

    Institute of Scientific and Technical Information of China (English)

    李华; 唐晓龙; 易红宏; 于丽丽

    2010-01-01

    A series of manganese-cerium oxide catalysts were prepared by different methods and used for low-temperature catalytic oxidation of NO in the presence of excess O2.Their surface properties were evaluated by means of BET and were characterized by using scanning electron microscopy(SEM) and X-ray diffractometer(XRD).The activity test of Mn-Ce-Ox catalysts showed that addition of Ce enhanced the activities of NO oxidation.The most active catalysts with a molar Ce/(Mn+Ce) ratio of 0.3 were prepared by co-precip...

  18. Highly Chemical and Regio-selective Catalytic Oxidation with a Novel Manganese Catalyst

    Institute of Scientific and Technical Information of China (English)

    刘斌; 陈怡; 余成志; 沈征武

    2003-01-01

    The chemical selectivity of a novel active manganese compound [Mn2IVμ-O)3(TMTACN)2] (PF6)2 (1) in catalytic oxidation reactions depended on the structure of substrates and 1 was able to catalyze the oxidation of toluene into benzaldehyde and/or benzoic acid under very mild conditions. The following results were obtained: (1) The selectivity of the oxidation depended on the electronic density of double bonds. Reactivity was absent when strong electron-witherawing groups were conjugated with double bonds. (2) Allylic oxidation reactions mostly take place when double bond is present inside a ring system, whilst epoxiclarion reactions occur when the alkene moiety is part of linear chain. (3) In ring systems, the methylene group was more likely to be oxidized than the methyl group on ailylic position. As expected, the C--H bonds at the bridgeheads were unreactive.The secondary hydroxyl groups are more easily to be oxidized than the primary hydroxyl groups.

  19. An Overview of Recent Advances of the Catalytic Selective Oxidation of Ethane to Oxygenates

    Directory of Open Access Journals (Sweden)

    Robert D. Armstrong

    2016-05-01

    Full Text Available The selective partial oxidation of short chain alkanes is a key challenge within catalysis research. Direct ethane oxidation to oxygenates is a difficult aim, but potentially rewarding, and it could lead to a paradigm shift in the supply chain of several bulk chemicals. Unfortunately, low C–H bond reactivity and kinetically labile products are just some reasons affecting the development and commercialisation of such processes. Research into direct ethane oxidation is therefore disparate, with approaches ranging from oxidation in the gas phase at high temperatures to enzyme catalysed hydroxylation under ambient conditions. Furthermore, in overcoming the barrier posed by the chemically inert C–H bond a range of oxidants have been utilised. Despite years of research, this remains an intriguing topic from both academic and commercial perspectives. Herein we describe some recent developments within the field of catalytic ethane oxidation focusing on the formation of oxygenated products, whilst addressing the key challenges which are still to be overcome.

  20. Catalytic Enhancement of Solid Carbon Oxidation in HDCFCs

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent

    2014-01-01

    was investigated using current-potential-power density curves. In the anode chamber, catalysts are mixed with the carbon-carbonate mixture. These catalysts include various manganese oxides (MnO2, Mn2O3, and Mn3O4) and dopedceria (CeO2, Ce1-xGdxO2-x/2, Ce1-xRExO2-delta (RE = Pr, Sm)), the effectiveness......Hybrid direct carbon fuel cells consisting of a solid carbon (carbon black)-molten carbonate ((62-38 wt% Li-K)(2)CO3) mixtures in the anode chamber of an anode-supported solid oxide fuel cell type full-cell are tested for their electrochemical performance between 700 and 800 degrees C. Performance...

  1. Kinetics of p-xylene liquid-phase catalytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Cao, G.; Servida, A. (Univ. di Cagliari (Italy). Dipt. di Ingegneria Chimica e Materiali); Pisu, M. (Sviluppo e Studi Superiori in Sardegna, Cagliari (Italy). Centro di Ricerche); Morbidelli, M. (Politecnico di Milano (Italy). Dipt. di Chimica Fisica Applicata)

    1994-07-01

    A semibatch gas-liquid reactor model based on a lumped kinetic scheme for the liquid-phase oxidation of p-xylene to p-toluic acid catalyzed by cobalt naphthenate is developed. The model accounts for the complex nature of the involved reaction network, as well as for the interphase and intraphase mass transport processes of both reactants and products. The model reliability is tested by comparison with suitable experimental data obtained in a semibatch oxidation reactor, where the role of the composition of both the gaseous and the liquid feed has been investigated. It is shown that the model describes the reactor behavior in any of the regimes which may prevail depending upon the operating conditions and the depletion of liquid reactants in time.

  2. Catalytic Enhancement of Solid Carbon Oxidation in HDCFCs

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent

    2014-01-01

    data as a function of temperature, anode and cathode atmospheres, and their flow rates are discussed. In the anode chamber, catalysts are mixed with the carbon-carbonate mixture. These catalysts include various manganese oxides (MnO2, Mn2O3, and Mn3O4, Fig. 1) and doped-ceria (CeO2, Ce1-xGdxO2, Ce1-x......Hybrid direct carbon fuel cells (HDCFCs) consisting of a solid carbon (carbon black)-molten carbonate ((62-38 wt% Li-K)2CO3) mixtures in the anode chamber of an anode-supported solid oxide fuel cell (SOFC)-type full-cell (NiO-yttria-stablized zirconia (YSZ)|YSZ|lanthanum strontium manganite (LSM......RExO2 (RE = Pr, Gd, Sm, etc.)), the effectiveness of these families of catalysts are discussed with respect to electrochemical, chemical and post-mortem analysis. Fig. 1. Current-potential-power density curves acquired for a blank (SiC) and manganese oxide (MnO2, Mn2O3, Mn3O4) catalysts suspended...

  3. Catalytic oxidation of calcium sulfite in solution/aqueous slurry

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-qin; WU Zhong-biao; WANG Da-hui

    2004-01-01

    Forced oxidation of calcium sulfite aqueous slurry is a key step for the calcium-based flue gas desulfurization(FGD) residue. Experiments were conducted in a semi-batch system and a continuous flow system on lab scales. The main reactor in semi-batch system is a 1000 ml volume flask. It has five necks for continuous feeding of gas and a batch of calcium sulfite solution/aqueous slurry. In continuous flow system, the main part is a jacketed Pyrex glass reactor in which gas and solution/aqueous slurry are fed continuously. Calcium sulfite oxidation is a series of complex free-radical reactions. According to experimental results and literature data, the reactions are influenced significantly by manganese as catalyst. At low concentration of manganese and calcium sulfite, the reaction rate is dependent on 1.5 order of sulfite concentration, 0.5 order of manganese concentration, and zero order of oxygen concentration in which the oxidation is controlled by chemical kinetics. With concentrations of calcium sulfite and manganese increasing, the reactions are independent gradually on the constituents in solution but are impacted by oxygen concentration. Manganese can accelerate the free-radical reactions, and then enhances the mass transfer of oxygen from gas to liquid. The critical concentration of calcium sulfite is 0.007 mol/L, manganese is 10-4 mol/L, and oxygen is of 0.2-0.4 atm.

  4. Development of chemical and biological processes for production of bioethanol. Optimization of the wet oxidation process and characterization of products

    Energy Technology Data Exchange (ETDEWEB)

    Bjerre, A.B.; Skammelsen Schmidt, A.

    1997-02-01

    The combination of the wet oxidation pretreatment process and alkaline hydrolysis was investigated in order to efficiently solubilize the hemicellulose, degrade the lignin, and open the solid crystalline cellulose structure of wheat straw lignocellulose without generating fermentation inhibitors. The effects of temperature, oxygen pressure, reaction time, and concentration of straw were evaluated. The degree of lignin degradation and hemicellulose solubilization increased with the reaction temperature and time. The optimum conditions were 15 minutes at 185 deg. C, producing 9.8 g/L hemicellulose. For quantification of the solubilized hemicellulose the best overall acid hydrolysis was obtained by treatment with 4 %w/v sulfuric acid for 10 minutes. The Aminex HPX-87H column was less sensitive towards impurities than the Aminex HPX-87P column. HPX-87H gave improved recovery and reproducibility, and was chosen for routine quantification of hydrolyzed hemicellulose sugars. The purity of the solid cellulose fraction also improved with higher temperature. The optimum condition for obtaining enzymatic convertible cellulose (90%) was 10 minutes at 170 deg. C using a high carbonate concentration. The hemicellulose yield and recovery were significantly reduced under these conditions indicating that a simultaneous optimal utilization of the hemicellulose and cellulose was difficult. The oxygen pressure and sodium carbonate concentration had little effect on the solubilization of hemicellulose, however, by combining wet oxidation with alkaline hydrolysis the formation of 2-furfural, a known microbial inhibitor, was minimal. Much more hemicellulose and lignin were solubilized from the straw by wet oxidation than by steaming(an alternative process). More cellulose was solubilized (and degraded) by steaming than by wet oxidation. Overall carbohydrates `losses` of 20.1% for steaming and 16.2% for wet oxidation were found. More 2-furfural was formed by steaming than by wet oxidation.

  5. Removal of formaldehyde over Mn(x)Ce(1)-(x)O(2) catalysts: thermal catalytic oxidation versus ozone catalytic oxidation.

    Science.gov (United States)

    Li, Jia Wei; Pan, Kuan Lun; Yu, Sheng Jen; Yan, Shaw Yi; Chang, Moo Been

    2014-12-01

    Mn(x)Ce(1)-(x)O(2) (x: 0.3-0.9) prepared by Pechini method was used as a catalyst for the thermal catalytic oxidation of formaldehyde (HCHO). At x=0.3 and 0.5, most of the manganese was incorporated in the fluorite structure of CeO(2) to form a solid solution. The catalytic activity was best at x=0.5, at which the temperature of 100% removal rate is the lowest (270°C). The temperature for 100% removal of HCHO oxidation is reduced by approximately 40°C by loading 5wt.% CuO(x) into Mn(0.5)Ce(0.5)O(2). With ozone catalytic oxidation, HCHO (61 ppm) in gas stream was completely oxidized by adding 506 ppm O₃over Mn(0.5)Ce(0.5)O(2) catalyst with a GHSV (gas hourly space velocity) of 10,000 hr⁻¹ at 25°C. The effect of the molar ratio of O(3) to HCHO was also investigated. As O(3)/HCHO ratio was increased from 3 to 8, the removal efficiency of HCHO was increased from 83.3% to 100%. With O(3)/HCHO ratio of 8, the mineralization efficiency of HCHO to CO(2) was 86.1%. At 25°C, the p-type oxide semiconductor (Mn(0.5)Ce(0.5)O(2)) exhibited an excellent ozone decomposition efficiency of 99.2%, which significantly exceeded that of n-type oxide semiconductors such as TiO(2), which had a low ozone decomposition efficiency (9.81%). At a GHSV of 10,000 hr⁻¹, [O(3)]/[HCHO]=3 and temperature of 25°C, a high HCHO removal efficiency (≥ 81.2%) was maintained throughout the durability test of 80 hr, indicating the long-term stability of the catalyst for HCHO removal.

  6. Removal of nitrogen compounds from gasification gas by selective catalytic or non-catalytic oxidation; Typpiyhdisteiden poisto kaasutuskaasusta selektiivisellae katalyyttisellae ja ei-katalyyttisellae hapetuksella

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-01

    In gasification reactive nitrogenous compounds are formed from fuel nitrogen, which may form nitrogen oxides in gas combustion. In fluidized bed gasification the most important nitrogenous compound is ammonia (NH{sub 3}). If ammonia could be decomposed to N{sub 2} already before combustion, the emissions if nitrogen oxides could be reduced significantly. One way of increasing the decomposition rate of NH{sub 3} could be the addition of suitable reactants to the gas, which would react with NH{sub 3} and produce N{sub 2}. The aim of this research is to create basic information, which can be used to develop a new method for removal of nitrogen compounds from gasification gas. The reactions of nitrogen compounds and added reactants are studied in reductive atmosphere in order to find conditions, in which nitrogen compounds can be oxidized selectively to N{sub 2}. The project consists of following subtasks: (1) Selective non-catalytic oxidation (SNCO): Reactions of nitrogen compounds and oxidizers in the gas phase, (2) Selective catalytic oxidation (SCO): Reactions of nitrogen compounds and oxidizers on catalytically active surfaces, (3) Kinetic modelling of experimental results in co-operation with the Combustion Chemistry Research Group of Aabo Akademi University. The most important finding has been that NH{sub 3} can be made to react selectively with the oxidizers even in the presence of large amounts of CO and H{sub 2}. Aluminium oxides were found to be the most effective materials promoting selectivity. (author)

  7. Studies on the synthesis of europium activated yttrium oxide by wet-chemical method

    Energy Technology Data Exchange (ETDEWEB)

    Muresan, Laura [Raluca Ripan Institute for Research in Chemistry, Fantanele 30, 400294 Cluj-Napoca (Romania)], E-mail: laura_muresan2003@yahoo.com; Popovici, Elisabeth-Jeanne; Grecu, Rodica [Raluca Ripan Institute for Research in Chemistry, Fantanele 30, 400294 Cluj-Napoca (Romania); Tudoran, Lucian Barbu [Electronic Microscopy Center, Babes-Bolyai University, 400028 Cluj-Napoca (Romania)

    2009-03-05

    Europium activated yttrium oxide phosphor powders (Y{sub 2}O{sub 3}:Eu{sup 3+}) were prepared from yttrium-europium precursors obtained by wet-chemical method. With this purpose in view, precursors were prepared using the reagent simultaneous addition SimAdd technique from yttrium-europium nitrate and chloride as rare-earth supplier and urea, ammonium oxalate, ammonium carbonate and oxalic acid as precipitating agents. Precursors, obtained under controlled concentration, temperature and pH conditions, were fired at 1200 deg. C in order to generate Y{sub 2}O{sub 3}:Eu{sup 3+} phosphor powders. Yttrium-europium precursors and Y{sub 2}O{sub 3}:Eu{sup 3+} phosphor powders were investigated by FTIR, TGA-DTA, X-ray diffraction (XRD), scanning electronic microscopy (SEM) and photoluminescence spectroscopy (PL) in order to put in evidence the influence of the quality of yttrium-europium precursors obtained by wet-chemical method, using the SimAdd technique on the properties of Y{sub 2}O{sub 3}:Eu{sup 3+} phosphor powders.

  8. Catalytic CO Oxidation over Au Nanoparticles Loaded Nanoporous Nickel Phosphate Composite

    Directory of Open Access Journals (Sweden)

    Xiaonan Leng

    2015-01-01

    Full Text Available Au/nickel phosphate-5 (Au/VSB-5 composite with the noble metal loading amount of 1.43 wt.% is prepared by using microporous VSB-5 nanocrystals as the support. Carbon monoxide (CO oxidation reaction is carried out over the sample with several catalytic cycles. Complete conversion of CO is achieved at 238°C over the catalyst at the first catalytic cycle. The catalytic activity improved greatly at the second cycle with the complete conversion fulfilled at 198°C and preserved for the other cycles. A series of experiments such as X-ray diffraction (XRD, high resolution transmission electron microscopy (HRTEM, ultraviolet-visible (UV-vis spectroscopy, and X-ray photoelectron spectroscopy (XPS are carried out to characterize the catalysts before and after the reaction to study the factors influencing this promotion at the second cycle.

  9. Operational wastes management - 'wet oxidation' - an innovative process to manage radiological spent resins

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, F.; Maggini, F.; Mazzoni, C.; Orlandi, S.; Ricci, C. [Nuclear System Engineering Department, Ansaldo Nucleare S.p.A., Corso Perrone 25, 16161 Genova (Italy)

    2010-07-01

    A new system using the wet-oxidation process has been studied for the treatment of the organic radioactive waste such spent ion exchange resins. The purpose of the process is to enable a high degree of volume reduction of the waste and compared with various processes for treating sludge and resin, the wet-oxidation system is rather simple and it works in mild conditions. Verification tests have been performed in a large scale pilot plant with not contaminated ion exchange resin samples similar to those ones used in NPPs. (authors)

  10. Iron oxide nanoparticles synthesis through a benign approach and its catalytic application

    Directory of Open Access Journals (Sweden)

    Henam Sylvia Devi

    2016-09-01

    Full Text Available Synthesis of iron oxide nanoparticles was carried out through an environmental benign route using tannic acid as reducing and capping agent. The TEM image shows the details of the poly-dispersity in size of the iron oxide nanoparticle and average diameter of the particles range in between 30 and 50 nm. XRD result rule out that iron oxide nanoparticle is a mixed phase constituted by Fe+2 and Fe+3 ions. The average size of the particle determined from XRD data is 45.6 nm which is agreeable with the finding obtained from TEM images. This particle of iron oxide is used for the degradation of p-cresol and it successfully degraded p-cresol. Catalytic property of the iron oxide nanoparticle was also investigation using methylene blue as role model dye. Degradation of methylene blue dye was studied in presence of NaBH4 and the degradation reaction followed first order kinetics with rate constant value of 1.6 × 10−3 min−1. The rate constant of the reaction in absence of iron oxide nanoparticles is 4 × 10−4 min−1, this result confirmed the catalytic nature of as such prepared iron oxide nanoparticles.

  11. Preparation of ultrafine Ce-based oxide nanoparticles and their catalytic performances for diesel soot combustion

    Institute of Scientific and Technical Information of China (English)

    韦岳长; 赵震; 焦金庆; 刘坚; 段爱军; 姜桂元

    2014-01-01

    The ultrafine Ce-based oxide nanoparticles with different element dopings (Zr, Y) were synthesized by the method of mi-cropores-diffused coprecipitation (MDC) using ammonia solution as the precipitation agent. The activities of the catalysts for soot oxidation were evaluated by the temperature-programmed oxidation (TPO) reaction. Ce-based oxides prepared in this study exhibited high catalytic activity for soot oxidation under the condition of loose contact between soot particles and catalysts, and the catalytic ac-tivity of ultrafine Ce0.9Zr0.1O2 nanoparticle for soot combustion was the highest, whose T10, T50 and SCO2m was 364, 442 ºC and 98.3%, respectively. All catalysts were systematically characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brumauer-Emett-Teller (BET), Fourier transform infrared spectroscopy (FT-IR) and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). It was indicated that the MDC method could prepare the ultrafine Ce-based oxide nanoparticles whose the crystal lattice were perfect, and the BET surface area and average crystal size of the ultrafine nanoparticles changed with the different element dopings (Zr, Y). The H2-TPR measurements showed that the ultrafine Ce-based ox-ide nanoparticles with the doping-Zr cation could be favorable for improving the redox property of the catalysts.

  12. Influence of wet oxidation on the surface area and the porosity of some lignites

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, S.; Karatepe, N.; Kucukbayrak, S. [Istanbul Technical University, Istanbul (Turkey). Chemical and Metallurgical Engineering Faculty

    2000-07-01

    Influence of wet oxidation on the surface area and the porosity of lignites was investigated using five different Turkish lignites. Lignite samples were oxidised in aqueous medium in a 1 l Parr autoclave at 423 K under 1.5 MPa partial pressure of oxygen for 60 min. Some physical properties such as surface area, bulk density, apparent density, mean pore radius, and porosity of the original and oxidised lignite samples were determined. For this purpose, BET and mercury intrusion porosimetry techniques were performed. In order to examine the effects of oxidation on the functional groups, FT-IR technique was applied for both original and oxidised lignite samples. On the other hand, some inorganic constituents were eliminated from the samples as a result of in situ formation of sulphuric acid from oxidation of sulphur compounds. The changes taken place in the physical properties were studied considering chemical compositions of the samples and the extent of the interaction between the samples and oxygen. 6 refs., 3 figs., 5 tabs.

  13. TOC reduction of alcohol distillery wastewater by wet oxidation using heterogeneous catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Belkacemi, K.; Hamoudi, S.; Larachi, F.; Montero, J.P.; Sayari, A.; Turcotte, G. [Universite Laval, Quebec (Canada)

    1997-07-01

    We studied the potential of three heterogeneous wet air oxidation (WAO) catalysts to reduce the total organic carbon (TOC) content of two distillery waste liquors. The catalysts were 1% Pt/Al{sub 2}O{sub 3}, Mn/Ce composite oxides, and Cu{sup 2+}-exchanged NaY zeolite. The liquors were produced from alcohol fermentation of enzymatic hydrolyzates originating from steam- and ammonia-exploded forages and agricultural residues. Initial WAO reaction rates of the liquors were measured batchwise in the temperature range 180 to 250{sup o}C under pure oxygen at 0.5 to 2.5 MPa. The WAO initial rates were first order for TOC, and the activation energies of the catalysts varied between 34 and 51 kJ/mol. The highest TOC abatements were achieved over Mn/Ce oxides and Cu{sup 2+}/NaY catalysts. Kinetic tests over extended times revealed the formation of significant amounts of strongly adsorbed carbonaceous foulants, which were responsible for the loss of catalyst activity. Foulants were tentatively characterized by means of X-ray photoelectron spectroscopy (XPS). (author)

  14. Treatment of biomass gasification wastewater using a combined wet air oxidation/activated sludge process

    Energy Technology Data Exchange (ETDEWEB)

    English, C.J.; Petty, S.E.; Sklarew, D.S.

    1983-02-01

    A lab-scale treatability study for using thermal and biological oxidation to treat a biomass gasification wastewater (BGW) having a chemical oxygen demand (COD) of 46,000 mg/l is described. Wet air oxidation (WA0) at 300/sup 0/C and 13.8 MPa (2000 psi) was used to initially treat the BGW and resulted in a COD reduction of 74%. This was followed by conventional activated sludge treatment using operating conditions typical of municipal sewage treatment plants. This resulted in an additional 95% COD removal. Overall COD reduction for the combined process was 99%. A detailed chemical analysis of the raw BGW and thermal and biological effluents was performed using gas chromatography/mass spectrometry (GC/MS). These results showed a 97% decrease in total extractable organics with WA0 and a 99.6% decrease for combined WA0 and activated sludge treatment. Components of the treated waters tended to be fewer in number and more highly oxidized. An experiment was conducted to determine the amount of COD reduction caused by volatilization during biological treatment. Unfortunately, this did not yield conclusive results. Treatment of BGW using WA0 followed by activated sludge appears to be very effective and investigations at a larger scale are recommended.

  15. Optimizing Oily Wastewater Treatment Via Wet Peroxide Oxidation Using Response Surface Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jianzhong; Wang, Xiuqing; Wang, Xiaoyin [Wuhan Textile Univ., Wuhan (China)

    2014-02-15

    The process of petroleum involves in a large amount of oily wastewater that contains high levels of chemical oxygen demand (COD) and toxic compounds. So they must be treated before their discharge into the receptor medium. In this paper, wet peroxide oxidation (WPO) was adopted to treat the oily wastewater. Central composite design, an experimental design for response surface methodology (RSM), was used to create a set of 31 experimental runs needed for optimizing of the operating conditions. Quadratic regression models with estimated coefficients were developed to describe the COD removals. The experimental results show that WPO could effectively reduce COD by 96.8% at the optimum conditions of temperature 290 .deg. C, H{sub 2}O{sub 2} excess (HE) 0.8, the initial concentration of oily wastewater 3855 mg/L and reaction time 9 min. RSM could be effectively adopted to optimize the operating multifactors in complex WPO process.

  16. High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol

    DEFF Research Database (Denmark)

    Varga, E.; Klinke, H.B.; Reczey, K.

    2004-01-01

    In this study ethanol was produced from corn stover pretreated by alkaline and acidic wet oxidation (WO) (195 degreesC, 15 min, 12 bar oxygen) followed by nonisothermal simultaneous saccharification and fermentation (SSF). In the first step of the SSF, small amounts of cellulases were added at 50....../L) were present in the hemicellulose rich hydrolyzate at subinhibitory levels, thus no detoxification was needed prior to SSF of the whole slurry. Based on the cellulose available in the WO corn stover 83% of the theoretical ethanol yield was obtained under optimized SSF conditions. This was achieved...... with a substrate concentration of 12% dry matter (DM) acidic WO corn stover at 30 FPU/g DM (43.5 FPU/g cellulose) enzyme loading. Even with 20 and 15 FPU/g DM (corresponding to 29 and 22 FPU/g cellulose) enzyme loading, ethanol yields of 76 and 73%, respectively, were obtained. After 120 h of SSF the highest...

  17. A 3D AgCl hierarchical superstructure synthesized by a wet chemical oxidation method.

    Science.gov (United States)

    Lou, Zaizhu; Huang, Baibiao; Ma, Xiangchao; Zhang, Xiaoyang; Qin, Xiaoyan; Wang, Zeyan; Dai, Ying; Liu, Yuanyuan

    2012-12-07

    A novel 3D AgCl hierarchical superstructure, with fast growth along the 〈111〉 directions of cubic seeds, is synthesized by using a wet chemical oxidation method. The morphological structures and the growth process are investigated by scanning electron microscopy and X-ray diffraction. The crystal structures are analyzed by their crystallographic orientations. The surface energy of AgCl facets {100}, {110}, and {111} with absorbance of Cl(-) ions is studied by density functional theory calculations. Based on the experimental and computational results, a plausible mechanism is proposed to illustrate the formation of the 3D AgCl hierarchical superstructures. With more active sites, the photocatalytic activity of the 3D AgCl hierarchical superstructures is better than those of concave and cubic ones in oxygen evolution under irradiation by visible light.

  18. Ethanol production from maize silage as lignocellulosic biomass in anaerobically digested and wet-oxidized manure.

    Science.gov (United States)

    Oleskowicz-Popiel, Piotr; Lisiecki, Przemyslaw; Holm-Nielsen, Jens Bo; Thomsen, Anne Belinda; Thomsen, Mette Hedegaard

    2008-09-01

    In this communication, pretreatment of the anaerobically digested (AD) manure and the application of the pretreated AD manure as liquid medium for the simultaneous saccharification and fermentation (SSF) were described. Furthermore, fermentation of pretreated maize silage and wheat straw was investigated using 2l bioreactors. Wet oxidation performed for 20 min at 121 degrees C was found as the most suitable pretreatment conditions for AD manure. High ammonia concentration and significant amount of macro- and micro-nutrients in the AD manure had a positive influence on the ethanol fermentation. No extra nitrogen source was needed in the fermentation broth. It was shown that the AD manure could successfully substitute process water in SSF of pretreated lignocellulosic fibres. Theoretical ethanol yields of 82% were achieved, giving 30.8 kg ethanol per 100 kg dry mass of maize silage.

  19. THz-Pulse-Induced Selective Catalytic CO Oxidation on Ru

    Science.gov (United States)

    LaRue, Jerry L.; Katayama, Tetsuo; Lindenberg, Aaron; Fisher, Alan S.; Ã-ström, Henrik; Nilsson, Anders; Ogasawara, Hirohito

    2015-07-01

    We demonstrate the use of intense, quasi-half-cycle THz pulses, with an associated electric field component comparable to intramolecular electric fields, to direct the reaction coordinate of a chemical reaction by stimulating the nuclear motions of the reactants. Using a strong electric field from a THz pulse generated via coherent transition radiation from an ultrashort electron bunch, we present evidence that CO oxidation on Ru(0001) is selectively induced, while not promoting the thermally induced CO desorption process. The reaction is initiated by the motion of the O atoms on the surface driven by the electric field component of the THz pulse, rather than thermal heating of the surface.

  20. Synthesis, characterization and catalytic activity of birnessite type potassium manganese oxide nanotubes and nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Khalid Abdelazez Mohamed, E-mail: khalidgnad@hotmail.com [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Department of Chemistry, School of Chemistry and Chemical Technology, Faculty of Science and Technology, Al-Neelain University, P.O. Box 12702, Khartoum (Sudan); Huang Kaixun, E-mail: hxxzrf@mail.hust.edu.cn [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer Birnessite type manganese oxides nanotubes and nanorods were prepared by calcination route. Black-Right-Pointing-Pointer The transition from tube to rod structure is described by an oriented attachment-thermodynamical (OA-TD) process. Black-Right-Pointing-Pointer The catalytic degradation efficiency of safranin O by as-prepared products was compared. - Abstract: Birnessite-type manganese oxide nanotubes and nanorods were synthesized via a calcination process using manganese acetate and potassium hydroxide as precursors in presence of polyethylene glycol-melamine-formaldehyde. As-prepared products were characterized by XRD, FT-IR, FE-SEM, TEM, SA-ED, HR-TEM, Brunauer-Emmett-Teller (BET) and TGA analyses. The influences of reaction temperature and time on the morphology of manganese oxide nanocrystals were investigated. The oriented attachment-thermodynamical (OA-TD) process is suggested to describe the transition from tube to rod structure. Their capability of catalytic degradation of safranin O was compared. The results indicate that birnessite-type manganese oxide nanotube has higher catalytic activity for than nanorod crystal in aqueous solution, because it has a larger surface area. The decomposition of safranin O follows pseudo-first order kinetics and is markedly affected by pH.

  1. Catalytic reactions on neutral Rh oxide clusters more efficient than on neutral Rh clusters.

    Science.gov (United States)

    Yamada, Akira; Miyajima, Ken; Mafuné, Fumitaka

    2012-03-28

    Gas phase catalytic reactions involving the reduction of N(2)O and oxidation of CO were observed at the molecular level on isolated neutral rhodium clusters, Rh(n) (n = 10-28), using mass spectrometry. Sequential oxygen transfer reactions, Rh(n)O(m-1) + N(2)O → Rh(n)O(m) + N(2) (m = 1, 2, 3,…), were monitored and the rate constant for each reaction step was determined as a function of the cluster size. Oxygen extraction reactions by a CO molecule, Rh(n)O(m) + CO → Rh(n)O(m-1) + CO(2) (m = 1, 2, 3,…), were also observed when a small amount of CO was mixed with the reactant N(2)O gas. The rate constants of the oxygen extraction reactions by CO for m ≥ 4 were found to be two or three orders of magnitude higher than the rate constants for m ≤ 3, which indicates that the catalytic reaction proceeds more efficiently when the reaction cycles turn over around Rh(n)O(m) (m ≥ 4) than around bare Rh(n). Rhodium clusters operate as more efficient catalysts when they are oxidized than non- or less-oxidized rhodium clusters, which is consistent with theoretical and experimental studies on the catalytic CO oxidation reaction on a rhodium surface.

  2. Catalytic ozonation of oxalate with a cerium supported palladium oxide: An efficient degradation not relying on hydroxyl radical oxidation

    KAUST Repository

    Zhang, Tao

    2011-11-01

    The cerium supported palladium oxide (PdO/CeO 2) at a low palladium loading was found very effective in catalytic ozonation of oxalate, a probe compound that is difficult to be efficiently degraded in water with hydroxyl radical oxidation and one of the major byproducts in ozonation of organic matter. The oxalate was degraded into CO 2 during the catalytic ozonation. The molar ratio of oxalate degraded to ozone consumption increased with increasing catalyst dose and decreasing ozone dosage and pH under the conditions of this study. The maximum molar ratio reached around 1, meaning that the catalyst was highly active and selective for oxalate degradation in water. The catalytic ozonation, which showed relatively stable activity, does not promote hydroxyl radical generation from ozone. Analysis with ATR-FTIR and in situ Raman spectroscopy revealed that 1) oxalate was adsorbed on CeO 2 of the catalyst forming surface complexes, and 2) O 3 was adsorbed on PdO of the catalyst and further decomposed to surface atomic oxygen (*O), surface peroxide (*O 2), and O 2 gas in sequence. The results indicate that the high activity of the catalyst is related to the synergetic function of PdO and CeO 2 in that the surface atomic oxygen readily reacts with the surface cerium-oxalate complex. This kind of catalytic ozonation would be potentially effective for the degradation of polar refractory organic pollutants and hydrophilic natural organic matter. © 2011 American Chemical Society.

  3. Microreactor for the Catalytic Partial Oxidation of Methane

    Institute of Scientific and Technical Information of China (English)

    Widodo Wahyu Puwanto; Yuswan Muharam

    2006-01-01

    Fixed-bed reactors for the partial oxidation of methane to produce synthetic gas still pose hotspot problems. An alternative reactor, which is known as the shell-and-tube-typed microreactor, has been developed to resolve these problems. The microreactor consists of a 1 cm outside-diameter, 0.8 cm insidediameter and 11 cm length tube, and a 1.8 cm inside-diameter shell. The tube is made of dense alumina and the shell is made of quartz. Two different methods dip and spray coating were performed to line the tube side with the LaNixOy catalyst. Combustion and reforming reactions take place simultaneously in this reactor. Methane is oxidized in the tube side to produce flue gases (CO2 and H2O) which flow counter-currently and react with the remaining methane in the shell side to yield synthesis gas. The methane conversion using the higher-loading catalyst spray-coated tube reaches 97% at 700 ℃, whereas that using the lower-loading catalyst dip-coated tube reaches only 7.78% because of poor adhesion between the catalyst film and the alumina support. The turnover frequencies (TOFs) using the catalyst spray-and 900 ℃ provides better performance than that at 1250 ℃ because sintering reduces the surface-area. The hydrogen to carbon monoxide ratio produced by the spray-coated catalyst is greater than the stoichiometric ratio, which is caused by carbon deposition through methane cracking or the Boudouard reaction.

  4. Catalytic partial oxidation of methane to synthesis gas over a ruthenium catalyst: the role of the oxidation state.

    Science.gov (United States)

    Rabe, Stefan; Nachtegaal, Maarten; Vogel, Frédéric

    2007-03-28

    The catalytic partial oxidation of methane to synthesis gas over ruthenium catalysts was investigated by thermogravimetry coupled with infrared spectroscopy (TGA-FTIR) and in situ X-ray absorption spectroscopy (XAS). It was found that the oxidation state of the catalyst influences the product formation. On oxidized ruthenium sites, carbon dioxide was formed. The reduced catalyst yielded carbon monoxide as a product. The influence of the temperature was also investigated. At temperatures below the ignition point of the reaction, the catalyst was in an oxidized state. At temperatures above the ignition point, the catalyst was reduced. This was also confirmed by the in situ XAS spectroscopy. The results indicate that both a direct reaction mechanism as well as a combustion-reforming mechanism can occur. The importance of knowing the oxidation state of the surface is discussed and a method to determine it under reaction conditions is presented.

  5. Multifunctional rare earth or bismuth oxide materials for catalytic or electrical applications

    Directory of Open Access Journals (Sweden)

    Gavarri J.R.

    2013-09-01

    Full Text Available We present a review on catalytic or electrical properties of materials based on rare earth (RE oxides (CeO2, La2O3, Lu2O3 or bismuth based composite systems CeO2-Bi2O3, susceptible to be integrated into catalytic microsystems or gas sensors. The polycrystalline solids can be used as catalysts allowing conversion of CO or CH4 traces in air-gas flows. Fourier Transform infrared spectroscopy is used to determine the conversion rate of CO or CH4 into CO2 through the variations versus time and temperature of vibrational band intensities. The time dependent reactivities are interpreted in terms of an adapted Avrami model. In these catalytic analyses the nature of surfaces of polycrystalline solids seems to play a prominent role in catalytic efficiency. Electrical impedance spectroscopy allows analyzing the variation of conductivity of the system CeO2-Bi2O3. In this system, the specific high ionic conduction of a Bi2O3 tetragonal phase might be linked to the high catalytic activity.

  6. Sulfur recovery from low H{sub 2}S content acid gas using catalytic partial oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Clark, P.D.; Dowling, N.I.; Huang, M.

    2010-01-15

    The poster presentation discussed a new strategy for recovering sulfur from low hydrogen-sulphide-content acid gas using catalytic partial oxidation. In a new technology for dealing with BTX-contaminated lean acid gas, a catalytic reactor replaces the burner-furnace stage to achieve BTX conversion greater than 95 percent and control the hydrogen sulfide/sulfur dioxide ratio. The product gas is then sent to the Claus catalytic converters. The best catalysts for this process are alumina-supported Co-Mo and y-alumina. This process was compared with SELECTOX, another process that deals with poor acid gas with BTX conversion better than 95 percent. Catalytic oxidation can deal with a higher BTX feed content than SELECTOX, but the running temperature is higher. Both processes produce acceptable sulfur quality. To improve this process, the quality of the sulfur produced and the lifetime of the catalyst need to be increased, and an economic way to increase the heat to reach the running temperature needs to be found. The partial oxidation (POX) of CH{sub 4} solves both of these problems. The catalytic POX of acid gas is combined with the POX of fuel gas in the pre-heating zone. This process has the advantage that the burner-furnace stage of the Claus process can be replaced by a stream containing H{sub 2}S/SO{sub 2}=2; the reaction is performed at its adiabatic temperature requiring only a small amount of fuel gas; the presence of H{sub 2} and CO produced by the POX of fuel gas improves the quality of sulfur; the catalyst remains active for about 30 hours; and the process can tolerate high BTX content. 6 tabs., 2 figs.

  7. Gold & silver nanoparticles supported on manganese oxide: Synthesis, characterization and catalytic studies for selective oxidation of benzyl alcohol

    Directory of Open Access Journals (Sweden)

    Saad Alabbad

    2014-12-01

    Full Text Available Nano-gold and silver particles supported on manganese oxide were synthesized by the co-precipitation method. The catalytic properties of these materials were investigated for the oxidation of benzyl alcohol using molecular oxygen as a source of oxygen. The catalyst was calcined at 300, 400 and 500 °C. They were characterized by electron microscopy, powder X-ray diffraction (XRD and surface area. It was observed that the calcination temperature affects the size of the nanoparticle, which plays a significant role in the catalytic process. The catalyst calcined at 400 °C, gave a 100% conversion and >99% selectivity, whereas catalysts calcined at 300 and 500 °C gave a conversion of 69.51% and 19.90% respectively, although the selectivity remains >99%.

  8. Effect of Calcination Temperature on Surface Oxygen Vacancies and Catalytic Performance Towards CO Oxidation of Co3O4 Nanoparticles Supported on SiO2

    Institute of Scientific and Technical Information of China (English)

    Jin-bing Li; Zhi-quan Jiang; Kun Qian; Wei-xin Huang

    2012-01-01

    Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures.Their structures were characterized with X-ray diffraction (XRD),laser Raman spectroscopy,X-ray photoelectron spectroscopy (XPS),temperature-programmed reduction (TPR) and X-ray absorption fine structure (XAFS) spectroscopy.Both XRD and Raman spectroscopy only detect the existence of Co3O4 crystallites in all catalysts.However,XPS results indicate that excess Co2+ ions are present on the surface of Co3O4 in Co3O4(200)/SiO2 as compared with bulk Co3O4.Meanwhile,TPR results suggest the presence of surface oxygen vacancies on Co3O4 in Co3O4(200)/SiO2,and XAFS results demonstrate that Co3O4 in Co3O4(200)/SiO2 contains excess Co2+.Increasing calcination temperature results in oxidation of excess Co2+and the decrease of the concentration of surface oxygen vacancies,consequently the formation of stoichiometric Co3O4 on supported catalysts.Among all Co3O4/SiO2 catalysts,Co3O4(200)/SiO2 exhibits the best catalytic performance towards CO oxidation,demonstrating that excess Co2+ and surface oxygen vacancies can enhance the catalytic activity of Co3O4 towards CO oxidation.These results nicely demonstrate the effect of calcination temperature on the structure and catalytic performance towards CO oxidation of silicasupported Co3O4 catalysts and highlight the important role of surface oxygen vacancies on Co3O4.

  9. Effect of Calcination Temperature on Surface Oxygen Vacancies and Catalytic Performance Towards CO Oxidation of Co3O4 Nanoparticles Supported on SiO2

    Science.gov (United States)

    Li, Jin-bing; Jiang, Zhi-quan; Qian, Kun; Huang, Wei-xin

    2012-02-01

    Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures. Their structures were characterized with X-ray diffraction (XRD), laser Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR) and X-ray absorption fine structure (XAFS) spectroscopy. Both XRD and Raman spectroscopy only detect the existence of Co3O4 crystallites in all catalysts. However, XPS results indicate that excess Co2+ ions are present on the surface of Co3O4 in Co3O4(200)/SiO2 as compared with bulk Co3O4. Meanwhile, TPR results suggest the presence of surface oxygen vacancies on Co3O4 in Co3O4(200)/SiO2, and XAFS results demonstrate that Co3O4 in Co3O4(200)/SiO2 contains excess Co2+. Increasing calcination temperature results in oxidation of excess Co2+ and the decrease of the concentration of surface oxygen vacancies, consequently the formation of stoichiometric Co3O4 on supported catalysts. Among all Co3O4/SiO2 catalysts, Co3O4(200)/SiO2 exhibits the best catalytic performance towards CO oxidation, demonstrating that excess Co2+ and surface oxygen vacancies can enhance the catalytic activity of Co3O4 towards CO oxidation. These results nicely demonstrate the effect of calcination temperature on the structure and catalytic performance towards CO oxidation of silica-supported Co3O4 catalysts and highlight the important role of surface oxygen vacancies on Co3O4.

  10. Catalytic conversions of alcohols--7. Alkene selectivity of tungsten oxides

    Energy Technology Data Exchange (ETDEWEB)

    Davis, B.H.

    1978-11-01

    The reactions of C/sub 5/-C/sub 8/ alcohols, including 2- and 3-pentanol, trans-2-methylcyclohexanol, and 2-octanol, with and without alkene additions to the feed, were studied at 1 atm over hydrogen-treated and oxygen-treated tungsten oxides. The oxygen-treated catalysts yielded high cis-2/trans-2-alkene ratios from 2-alcohols; the hydrogen-pretreated catalysts yielded larger trans-2-alkene amounts from 2-alcohols. With oxygen-treated catalysts, the amount of trans-2-alkene increased slightly with increasing temperature, and the 1-alkene yield increased slightly with increasing chain length of the 2-alcohol. No cis-trans isomerization was observed with 2-methylcyclohexanol. Surface reactions and intermediates are briefly discussed.

  11. Air trichloroethylene oxidation in a corona plasma-catalytic reactor

    Science.gov (United States)

    Masoomi-Godarzi, S.; Ranji-Burachaloo, H.; Khodadadi, A. A.; Vesali-Naseh, M.; Mortazavi, Y.

    2014-08-01

    The oxidative decomposition of trichloroethylene (TCE; 300 ppm) by non-thermal corona plasma was investigated in dry air at atmospheric pressure and room temperature, both in the absence and presence of catalysts including MnOx, CoOx. The catalysts were synthesized by a co-precipitation method. The morphology and structure of the catalysts were characterized by BET surface area measurement and Fourier Transform Infrared (FTIR) methods. Decomposition of TCE and distribution of products were evaluated by a gas chromatograph (GC) and an FTIR. In the absence of the catalyst, TCE removal is increased with increases in the applied voltage and current intensity. Higher TCE removal and CO2 selectivity is observed in presence of the corona and catalysts, as compared to those with the plasma alone. The results show that MnOx and CoOx catalysts can dissociate the in-plasma produced ozone to oxygen radicals, which enhances the TCE decomposition.

  12. Catalytic oxidation for treatment of ECLSS and PMMS waste streams. [Process Material Management Systems

    Science.gov (United States)

    Akse, James R.; Thompson, John; Scott, Bryan; Jolly, Clifford; Carter, Donald L.

    1992-01-01

    Catalytic oxidation was added to the baseline multifiltration technology for use on the Space Station Freedom in order to convert low-molecular weight organic waste components such as alcohols, aldehydes, ketones, amides, and thiocarbamides to CO2 at low temperature (121 C), thereby reducing the total organic carbon (TOC) to below 500 ppb. The rate of reaction for the catalytic oxidation of aqueous organics to CO2 and water depends primarily upon the catalyst, temperature, and concentration of reactants. This paper describes a kinetic study conducted to determine the impact of each of these parameters upon the reaction rate. The results indicate that a classic kinetic model, the Langmuir-Hinshelwood rate equation for heterogeneous catalysis, can accurately represent the functional dependencies of this rate.

  13. Preparation of Molecular Sieve Catalyst and Application in the Catalytic Oxidation Treatment of Waste Water

    Institute of Scientific and Technical Information of China (English)

    WANG; RongMin

    2001-01-01

    Citric acid is an important additive in foods, cosmetics, medicine and so on, but it discharges about 10 ton of factory effluent when 1 ton of citric acid is produced. The COD of the factory effluent is near 20000 mg/L. The treatment of citric acid factory effluent is a serious problem in environmental chemistry.  It is found that molecular sieve support metal complexes have high catalytic activity in aerobic oxidation of alkene [1,2]. In this paper, a kind of molecular sieve catalyst was prepared. The catalyst was used for the treatment of citric acid factory effluent by method of catalytic oxygen oxidation.  ……

  14. Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity.

    Science.gov (United States)

    Qi, Hetong; Yu, Ping; Wang, Yuexiang; Han, Guangchao; Liu, Huibiao; Yi, Yuanping; Li, Yuliang; Mao, Lanqun

    2015-04-29

    Graphdiyne (GDY), a novel kind of two-dimensional carbon allotrope consisting of sp- and sp(2)-hybridized carbon atoms, is found to be able to serve as the reducing agent and stabilizer for electroless deposition of highly dispersed Pd nanoparticles owing to its low reduction potential and highly conjugated electronic structure. Furthermore, we observe that graphdiyne oxide (GDYO), the oxidation form of GDY, can be used as an even excellent substrate for electroless deposition of ultrafine Pd clusters to form Pd/GDYO nanocomposite that exhibits a high catalytic performance toward the reduction of 4-nitrophenol. The high catalytic performance is considered to benefit from the rational design and electroless deposition of active metal catalysts with GDYO as the support.

  15. Catalytic Oxidation of Phenol over Zeolite Based Cu/Y-5 Catalyst: Part 1: Catalyst Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    K. Maduna Valkaj

    2015-01-01

    Full Text Available The necessity to remove organic pollutants from the industrial wastewater streams has forced the development of new technologies that can produce better results in terms of pollutant removal and process efficiency in combination with low investment and operating costs. One of the new emerging processes with a potential to fulfil these demands is catalytic wet peroxide oxidation, commonly known as the CWPO process. The oxidative effect of the hydrogen peroxide is intensified by the addition of a heterogeneous catalyst that can reduce the operating conditions to atmospheric pressure and temperatures below 383 K. Zeolites, among others, are especially appealing as catalysts for selective oxidation processes due to their unique characteristics such as shape selectivity, thermal and chemical stability, and benign effect on nature and the living world. In this work, catalytic activity, selectivity and stability of Cu/Y-5 zeolite in phenol oxidation with hydrogen peroxide was examined. Catalyst samples were prepared by ion exchange method of the protonic form of commercial zeolite. The catalysts were characterized with powder X-ray diffraction (XRD, scanning electron microscopy (SEM, and AAS elemental analysis, while the adsorption techniques were used for the measurement of the specific surface area. The catalytic tests were carried out in a stainless steel Parr reactor in batch operation mode at the atmospheric pressure and in the temperature range from 323 to 353 K. The catalyst was prepared in powdered form and the mass fraction of the active metal component on the zeolite was 3.46 %. The initial concentration of phenol solution was equal to 0.01 mol dm−3 and the concentration of hydrogen peroxide ranged from 0.01 to 0.10 mol dm−3. The obtained experimental data was tested to a proposed kinetic model for phenol oxidation r = k1 cF cVP and hydrogen peroxide decomposition rHP = k2 cHP. The kinetic parameters were estimated using the Nelder

  16. Visualizing a Catalyst at Work during the Ignition of the Catalytic Partial Oxidation of Methane

    DEFF Research Database (Denmark)

    Kimmerle, Bertram; Grunwaldt, Jan-Dierk; Baiker, Alfons

    2009-01-01

    We present a spatiotemporal operando X-ray absorption study of a highly dynamic process, the ignition of the noble metal catalyzed partial oxidation of methane. Evolvement and propagation of the platinum component's structural changes are investigated with a high-speed X-ray camera, which in comb...... in combination with temperature profiling by IR-thermography and catalytic activity measurements by online mass spectrometry gives insight into the first stages of the ignition of the reaction toward hydrogen and carbon monoxide....

  17. A polarized liquid-liquid interface meets visible light-driven catalytic water oxidation.

    Science.gov (United States)

    Rastgar, Shokoufeh; Pilarski, Martin; Wittstock, Gunther

    2016-09-15

    Hyperbranched nanostructured bismuth vanadate at a chemically polarized water/organic interface is applied for efficient visible light-driven catalytic oxidation of water in the presence of [Co(bpy)3](PF6)3 as an organic soluble electron acceptor. The photocurrent response originating from the transfer of photo-excited electrons in BiVO4 to [Co(bpy)3](3+) is measured by scanning electrochemical microscopy.

  18. Thermodynamic Study on the Catalytic Partial Oxidation of Methane to Syngas

    Institute of Scientific and Technical Information of China (English)

    XUJian; WEIWeisheng; 等

    2002-01-01

    The catalytic partial oxidation of methane to syngas (CO+H2) has been simulated thermodynamically with the advanced process simulator PRO/Ⅱ. The influences of temperature,pressure,CH4/O2 ratio and steam addition in feed gas on the conversion of CH4 selectively to syngas and heat duty required were investigated, and their effects on carbon formation were also discussed. The simulation results were in good agreement with the literature data taken from a spouted bed reactor.

  19. The effect of noble metals on catalytic methanation reaction over supported Mn/Ni oxide based catalysts

    Directory of Open Access Journals (Sweden)

    Wan Azelee Wan Abu Bakar

    2015-09-01

    Full Text Available Carbon dioxide (CO2 in sour natural gas can be removed using green technology via catalytic methanation reaction by converting CO2 to methane (CH4 gas. Using waste to wealth concept, production of CH4 would increase as well as creating environmental friendly approach for the purification of natural gas. In this research, a series of alumina supported manganese–nickel oxide based catalysts doped with noble metals such as ruthenium and palladium were prepared by wetness impregnation method. The prepared catalysts were run catalytic screening process using in-house built micro reactor coupled with Fourier Transform Infra Red (FTIR spectroscopy to study the percentage CO2 conversion and CH4 formation analyzed by GC. Ru/Mn/Ni(5:35:60/Al2O3 calcined at 1000 °C was found to be the potential catalyst which gave 99.74% of CO2 conversion and 72.36% of CH4 formation at 400 °C reaction temperature. XRD diffractogram illustrated that the supported catalyst was in polycrystalline with some amorphous state at 1000 °C calcination temperature with the presence of NiO as active site. According to FESEM micrographs, both fresh and used catalysts displayed spherical shape with small particle sizes in agglomerated and aggregated mixture. Nitrogen Adsorption analysis revealed that both catalysts were in mesoporous structures with BET surface area in the range of 46–60 m2/g. All the impurities have been removed at 1000 °C calcination temperature as presented by FTIR, TGA–DTA and EDX data.

  20. The chemical and catalytic properties of nanocrystalline metal oxides prepared through modified sol-gel synthesis

    Science.gov (United States)

    Carnes, Corrie Leigh

    The goal of this research was to synthesize, characterize and study the chemical properties of nanocrystalline metal oxides. Nanocrystalline (NC) ZnO, CuO, NiO, Al2O3, and the binary Al2O 3/MgO and ZnO/CuO were prepared through modified sol gel methods. These NC metal oxides were studied in comparison to the commercial (CM) metal oxides. The samples were characterized by XRD, TGA, FTIR, BET, and TEM. The NC samples were all accompanied by a significant increase in surface area and decrease in crystallite size. Several chemical reactions were studied to compare the NC samples to the CM samples. One of the reactions involved a high temperature reaction between carbon tetrachloride and the oxide to form carbon dioxide and the corresponding metal chloride. A similar high temperature reaction was conducted between the metal oxide and hydrogen sulfide to form water and the corresponding metal sulfide. A room temperature gas phase adsorption was studied where SO2 was adsorbed onto the oxide. A liquid phase adsorption conducted at room temperature was the destructive adsorption of paraoxon (a toxic insecticide). In all reactions the NC samples exhibited greater activity, destroying or adsorbing a larger amount of the toxins compared to the CM samples. To better study surface area effects catalytic reactions were also studied. The catalysis of methanol was studied over the nanocrystalline ZnO, CuO, NiO, and ZnO/CuO samples in comparison to their commercial counterparts. In most cases the NC samples proved to be more active catalysts, having higher percent conversions and turnover numbers. A second catalytic reaction was also studied, this reaction was investigated to look at the support effects. The catalysis of cyclopropane to propane was studied over Pt and Co catalysts. These catalysts were supported onto NC and CM alumina by impregnation. By observing differences in the catalytic behavior, support effects have become apparent.

  1. Wet air oxidation of pretreatment of pharmaceutical wastewater by Cu2+ and [PxWmOy]q- co-catalyst system.

    Science.gov (United States)

    Wang, Guowen; Wang, Dong; Xu, Xiaochen; Liu, Lifen; Yang, Fenglin

    2012-05-30

    This study concentrates on the pretreatment of real wastewater using catalytic wet air oxidation (CWAO). WO(3-) and PO(4)(3-) contained in fosfomycin pharmaceutical wastewater (FPW) and Cu(2+) contained in berberine pharmaceutical wastewater (BPW) were studied as CWAO influent. Mixture of this two streams were reused to form Cu(2+) and [P(x)W(m)O(y)](q-), namely polyoxometalates (POMs) as co-catalyst system to treat themselves. Experiments were conducted to investigate the effects of the initial oxygen pressure and temperature on the COD (chemical oxygen demand), TOC (total organic carbon) removal and biodegradable enhancement, it was discovered that over 40% of COD and TOC removal can be easily realized in an hour of WAO oxidation at 523 K, 1.4 MPa. The BOD(5)/COD (BOD(5), biochemical oxygen demand in 5 days) of this two pharmaceutical mixture ascended from nonexistent to maximum 0.41 depends on the optimal FPW:BPW volume ratio 4:1, to compose POM co-catalyst system. Organic pollutants were incompletely oxidized to propionic acid and other intermediates. Some properties (e.g., TGA, IR, XRF) of POM catalyst separated from effluent, were obtained to provide additional information.

  2. Analytical aspects of the remediation of soil by wet oxidation - Characterisation of tar contaminants and their degradation products

    DEFF Research Database (Denmark)

    Thomsen, A.B.; Nielsen, T.; Plöger, A.;

    1999-01-01

    Wet oxidation of tar compounds gives rise to a wide range of products. Due to the incorporation of oxygen, these products become increasingly more water soluble and the analytical strategy has to take into account the different physical/chemicalproperties of the compounds. An interplay between gas...

  3. Experimental coupling and modelling of wet air oxidation and packed-bed biofilm reactor as an enhanced phenol removal technology.

    Science.gov (United States)

    Minière, Marine; Boutin, Olivier; Soric, Audrey

    2017-01-25

    Experimental coupling of wet air oxidation process and aerobic packed-bed biofilm reactor is presented. It has been tested on phenol as a model refractory compound. At 30 MPa and 250 °C, wet air oxidation batch experiments led to a phenol degradation of 97% and a total organic carbon removal of 84%. This total organic carbon was mainly due to acetic acid. To study the interest of coupling processes, wet air oxidation effluent was treated in a biological treatment process. This step was made up of two packed-bed biofilm reactors in series: the first one acclimated to phenol and the second one to acetic acid. After biological treatment, phenol and total organic carbon removal was 99 and 97% respectively. Thanks to parameters from literature, previous studies (kinetic and thermodynamic) and experimental data from this work (hydrodynamic parameters and biomass characteristics), both treatment steps were modelled. This modelling allows the simulation of the coupling process. Experimental results were finally well reproduced by the continuous coupled process model: relative error on phenol removal efficiency was 1 and 5.5% for wet air oxidation process and packed-bed biofilm reactor respectively.

  4. In situ generated hypoiodous acid in an efficient and heterogeneous catalytic system for the homo-oxidative coupling of thiols

    Directory of Open Access Journals (Sweden)

    Ghorbani-Choghamarani Arash

    2013-01-01

    Full Text Available Supported hydrogen peroxide on polyvinylpolypyrrolidone (PVPH2O2, silica sulfuric acid (SiO2-OSO3H and catalytic amounts of potassium iodide (KI has been developed as a heterogeneous medium for the rapid oxidative coupling of thiols into symmetrical homodisulfides. This oxidizing system proceeds under extremely mild conditions and gives no other oxidized side products.

  5. The effect of Ce ion substituted OMS-2 nanostructure in catalytic activity for benzene oxidation

    Science.gov (United States)

    Hou, Jingtao; Li, Yuanzhi; Mao, Mingyang; Zhao, Xiujian; Yue, Yuanzheng

    2014-11-01

    The nanostructure of Ce doped OMS-2 plays a very important role in its catalytic property. We demonstrate by density functional theory (DFT) calculations that the unique nanostructure of the Ce ion substituted OMS-2 with Mn vacancy in the framework is beneficial for the improvement of catalytic activity, while the nanostructure of the Ce ion substituted OMS-2 without defects are detrimental to the catalytic activity. We establish a novel and facile strategy of synthesizing these unique Ce ion substituted OMS-2 nanostructure with Mn vacancies in the framework by hydrothermal redox reaction between Ce(NO3)3 and KMnO4 with KMnO4/Ce(NO3)3 at a molar ratio of 3 : 1 at 120 °C. Compared to pure OMS-2, the produced catalyst of Ce ion substituted OMS-2 ultrathin nanorods exhibits an enormous enhancement in the catalytic activity for benzene oxidation, which is evidenced by a significant decrease (ΔT50 = 100 °C, ΔT90 = 129 °C) in the reaction temperature of T50 and T90 (corresponding to the benzene conversion = 50% and 90%), which is considerably more efficient than the expensive supported noble metal catalyst (Pt/Al2O3). We combine both theoretical and experimental evidence to provide a new physical insight into the significant effect due to the defects induced by the Ce ion substitution on the catalytic activity of OMS-2. The formation of unique Ce ion substituted OMS-2 nanostructure with Mn vacancies in the framework leads to a significant enhancement of the lattice oxygen activity, thus tremendously increasing the catalytic activity.The nanostructure of Ce doped OMS-2 plays a very important role in its catalytic property. We demonstrate by density functional theory (DFT) calculations that the unique nanostructure of the Ce ion substituted OMS-2 with Mn vacancy in the framework is beneficial for the improvement of catalytic activity, while the nanostructure of the Ce ion substituted OMS-2 without defects are detrimental to the catalytic activity. We establish a novel

  6. A new process for preparing dialdehyde by catalytic oxidation of cyclic olefins with aqueous hydrogen peroxide

    Institute of Scientific and Technical Information of China (English)

    YU, Hong-Kun; PANG, Zhen; HUANG, Zu-En; CAI, Rui-Fang

    2000-01-01

    A novel peroxo-nioboplosphate was synthesized for the first time and used as a catalyst in the oxidation reaction of cyclic olefins with aqueous hydrogen peroxide to prepare dialdehydes. The catalyst was characterized by elemental analysis,thermographic analyses, IR, UV/vis, 31P NMR and XPS ~ as [ π-C5H5N(CH2)i3CH3 ]2 [Nb406 (O2)2 (PO4)2] ·6H20 (PTNP). It showed high selectivity to glutaraldehyde in the catalytic oxidation of cyclopentene with aqueous hydrogen peroxide in ethanol.

  7. Catalytic combustion of methane by perovskite-type oxide nanoparticles as pollution prevention strategy

    Science.gov (United States)

    Zaza, F.; Luisetto, I.; Serra, E.; Tuti, S.; Pasquali, M.

    2016-06-01

    The transition from the existing brown economy towards the desired green economy drives the research efforts to the development of advanced technologies promoting the efficient utilization of energy sources. Catalysis science offers to combustion technology significant opportunity to increase the fuel efficiency by lowering the internal temperature gradients and reduce the environmental impact by lowering local peak temperature and, consequently, thermodynamically inhibiting the nitrogen oxides formation. Alternative catalytic materials are transition metals oxide, including complex oxides with perovskite crystalline structure. The aim of this work is to synthetize lanthanum ferrite perovskites with lanthanum ions partially substituted by strontium ions in order to study the substitution effects on structural properties and redox activity of the original oxide. Lanthanum ferrite oxides partially substituted with different Strontium amount were synthesized by solution combustion method. The perovskite nanopowders obtained were characterized by XRD, SEM, TPR analyses for defining crystalline structure, morphology and redox properties. Finally, the catalytic activity for methane combustion was tested. The most performing catalysts was La0.6Sr0.4FeO3 having the highest oxygen vacancy concentration as revealed by TPR analysis.

  8. Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Minghao, E-mail: suiminghao.sui@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xing, Sichu; Sheng, Li; Huang, Shuhang; Guo, Hongguang [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Ciprofloxacin in water was degraded by heterogeneous catalytic ozonation. Black-Right-Pointing-Pointer MnOx were supported on MWCNTs to serve as catalyst for ozonation. Black-Right-Pointing-Pointer MnOx/MWCNT exhibited highly catalytic activity on ozonation of ciprofloxacin in water. Black-Right-Pointing-Pointer MnOx/MWCNT resulted in effective antibacterial activity inhibition on ciprofloxacin. Black-Right-Pointing-Pointer MnOx/MWCNT promoted the generation of hydroxyl radicals. - Abstract: Carbon nanotube-supported manganese oxides (MnOx/MWCNT) were used as catalysts to assist ozone in degrading ciprofloxacin in water. Manganese oxides were successfully loaded on multi-walled carbon nanotube surfaces by simply impregnating the carbon nanotube with permanganate solution. The catalytic activities of MnOx/MWCNT in ciprofloxacin ozonation, including degradation, mineralization effectiveness, and antibacterial activity change, were investigated. The presence of MnOx/MWCNT significantly elevated the degradation and mineralization efficiency of ozone on ciprofloxacin. The microbiological assay with a reference Escherichia coli strain indicated that ozonation with MnOx/MWCNT results in more effective antibacterial activity inhibition of ciprofloxacin than that in ozonation alone. The effects of catalyst dose, initial ciprofloxacin concentration, and initial pH conditions on ciprofloxacin ozonation with MnOx/MWCNT were surveyed. Electron spin resonance trapping was applied to assess the role of MnOx/MWCNT in generating hydroxyl radicals (HO{center_dot}) during ozonation. Stronger 5,5-dimethyl-1-pyrroline-N-oxide-OH signals were observed in the ozonation with MnOx/MWCNT compared with those in ozonation alone, indicating that MnOx/MWCNT promoted the generation of hydroxyl radicals. The degradation of ciprofloxacin was studied in drinking water and wastewater process samples to gauge the potential effects of water background matrix on

  9. Investigation of the degradation mechanism of catalytic wires during oxidation of ammonia process

    Science.gov (United States)

    Pura, Jarosław; Wieciński, Piotr; Kwaśniak, Piotr; Zwolińska, Marta; Garbacz, Halina; Zdunek, Joanna; Laskowski, Zbigniew; Gierej, Maciej

    2016-12-01

    The most common catalysts for the ammonia oxidation process are 80 μm diameter platinum-rhodium wires knitted or woven into the form of a gauze. In an aggressive environment and under extreme conditions (temperature 800-900 °C, intensive gas flow, high pressure) precious elements are drained from the surface of the wires. Part of this separated material quickly decomposes on the surface in the form of characteristic "cauliflower-shape protrusions". The rest of the platinum is captured by palladium-nickel catalytic-capture gauzes located beneath. In our investigation we focused on the effects of the degradation of gauzes from one industrial catalytic system. The aim of the study was to compare the degree and the mechanism of degradation of gauzes from a different part of the reactor. The study covered PtRh7 catalytic and PdNi5 catalytic-capture gauzes. X-ray computer microtomography investigation revealed that despite strong differences in morphology, each Pt-Rh wire has a similar specific surface area. This indicates that the oxidation process and morphological changes of the wires occur in a self-regulating balance, resulting in the value of the specific surface area of the catalyst. Microtomography analysis of Pd-Ni wires revealed strong redevelopment of the wires' surface, which is related to the platinum capture phenomenon. Scanning electron microscope observations also revealed the nanostructure in the cauliflower-shape protrusions and large grains in the wires' preserved cores. The high temperature in the reactor and the long-term nature of the process do not favor the occurrence of the nanostructure in this type of material. Further and detailed analysis of this phenomena will provide a better understanding of the precious metals etching and deposition processes during oxidation.

  10. Catalytic ozonation of fenofibric acid over alumina-supported manganese oxide

    Energy Technology Data Exchange (ETDEWEB)

    Rosal, Roberto, E-mail: roberto.rosal@uah.es [Departamento de Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, E-28771 Alcala de Henares (Spain); Gonzalo, Maria S.; Rodriguez, Antonio; Garcia-Calvo, Eloy [Departamento de Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, E-28771 Alcala de Henares (Spain)

    2010-11-15

    The catalytic ozonation of fenofibric acid was studied using activated alumina and alumina-supported manganese oxide in a semicontinuous reactor. The rate constants at 20 deg. C for the non-catalytic reaction of fenofibric acid with ozone and hydroxyl radicals were 3.43 {+-} 0.20 M{sup -1} s{sup -1} and (6.55 {+-} 0.33) x 10{sup 9} M{sup -1} s{sup -1}, respectively. The kinetic constant for the catalytic reaction between fenofibric acid and hydroxyl radicals did not differ significantly from that of homogeneous ozonation, either using Al{sub 2}O{sub 3} or MnO{sub x}/Al{sub 2}O{sub 3}. The results showed a considerable increase in the generation of hydroxyl radicals due to the use of catalysts even in the case of catalytic runs performed using a real wastewater matrix. Both catalysts promoted the decomposition of ozone in homogeneous phase, but the higher production of hydroxyl radicals corresponded to the catalyst with more activity in terms of ozone decomposition. We did not find evidence of the catalysts having any effect on rate constants, which suggests that the reaction may not involve the adsorption of organics on catalyst surface.

  11. Catalytic ozonation of fenofibric acid over alumina-supported manganese oxide.

    Science.gov (United States)

    Rosal, Roberto; Gonzalo, María S; Rodríguez, Antonio; García-Calvo, Eloy

    2010-11-15

    The catalytic ozonation of fenofibric acid was studied using activated alumina and alumina-supported manganese oxide in a semicontinuous reactor. The rate constants at 20°C for the non-catalytic reaction of fenofibric acid with ozone and hydroxyl radicals were 3.43±0.20 M(-1) s(-1) and (6.55±0.33)×10(9) M(-1) s(-1), respectively. The kinetic constant for the catalytic reaction between fenofibric acid and hydroxyl radicals did not differ significantly from that of homogeneous ozonation, either using Al(2)O(3) or MnO(x)/Al(2)O(3). The results showed a considerable increase in the generation of hydroxyl radicals due to the use of catalysts even in the case of catalytic runs performed using a real wastewater matrix. Both catalysts promoted the decomposition of ozone in homogeneous phase, but the higher production of hydroxyl radicals corresponded to the catalyst with more activity in terms of ozone decomposition. We did not find evidence of the catalysts having any effect on rate constants, which suggests that the reaction may not involve the adsorption of organics on catalyst surface.

  12. Full scale calcium bromide injection with subsequent mercury oxidation and removal within wet flue gas desulphurization system: Experience at a 700 MW coal-fired power facility

    Science.gov (United States)

    Berry, Mark Simpson

    The Environmental Protection Agency promulgated the Mercury and Air Toxics Standards rule, which requires that existing power plants reduce mercury emissions to meet an emission rate of 1.2 lb/TBtu on a 30-day rolling average and that new plants meet a 0.0002 lb/GWHr emission rate. This translates to mercury removals greater than 90% for existing units and greater than 99% for new units. Current state-of-the-art technology for the control of mercury emissions uses activated carbon injected upstream of a fabric filter, a costly proposition. For example, a fabric filter, if not already available, would require a 200M capital investment for a 700 MW size unit. A lower-cost option involves the injection of activated carbon into an existing cold-side electrostatic precipitator. Both options would incur the cost of activated carbon, upwards of 3M per year. The combination of selective catalytic reduction (SCR) reactors and wet flue gas desulphurization (wet FGD) systems have demonstrated the ability to substantially reduce mercury emissions, especially at units that burn coals containing sufficient halogens. Halogens are necessary for transforming elemental mercury to oxidized mercury, which is water-soluble. Plants burning halogen-deficient coals such as Power River Basin (PRB) coals currently have no alternative but to install activated carbon-based approaches to control mercury emissions. This research consisted of investigating calcium bromide addition onto PRB coal as a method of increasing flue gas halogen concentration. The treated coal was combusted in a 700 MW boiler and the subsequent treated flue gas was introduced into a wet FGD. Short-term parametric and an 83-day longer-term tests were completed to determine the ability of calcium bromine to oxidize mercury and to study the removal of the mercury in a wet FGD. The research goal was to show that calcium bromine addition to PRB coal was a viable approach for meeting the Mercury and Air Toxics Standards rule

  13. Catalytic activity of copper (II) oxide prepared via ultrasound assisted Fenton-like reaction.

    Science.gov (United States)

    Angı, Arzu; Sanlı, Deniz; Erkey, Can; Birer, Özgür

    2014-03-01

    Copper (II) oxide nanoparticles were synthesized in an ultrasound assisted Fenton-like aqueous reaction between copper (II) cations and hydrogen peroxide. The reactions were initiated with the degradation of hydrogen peroxide by ultrasound induced cavitations at 0 °C or 5 °C and subsequent generation of the OH radical. The radical was converted into hydroxide anion in Fenton-like reactions and copper hydroxides were readily converted to oxides without the need of post annealing or aging of the samples. The products were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Brunauer-Emmett-Teller (BET) surface area analysis. Catalytic activity of the nanoparticles for the hydrogen peroxide assisted degradation of polycyclic aromatic hydrocarbons in the dark was tested by UV-visible spectroscopy with methylene blue as the model compound. The rate of the reaction was first order, however the rate constants changed after the initial hour. Initial rate constants as high as 0.030 min(-1) were associated with the high values of surface area, i.e. 70 m(2)/g. Annealing of the products at 150 °C under vacuum resulted in the decrease of the catalytic activity, underlying the significance of the cavitation induced surface defects in the catalytic process.

  14. Synthesis and characterization of Cr-MSU-1 and its catalytic application for oxidation of styrene

    Science.gov (United States)

    Liu, Hong; Wang, Zhigang; Hu, Hongjiu; Liang, Yuguang; Wang, Mengyang

    2009-07-01

    Chromium-containing mesoporous silica material Cr-MSU-1 was synthesized using lauryl alcohol-polyoxyethylene (23) ether as templating agent under the neutral pH condition by two-step method. The sample was characterized by XRD, TEM, FT-IR, UV-Vis, ESR, ICP-AES and N 2 adsorption. Its catalytic performance for oxidation of styrene was studied. Effects of the solvent used, the styrene/H 2O 2 mole ratio and the reaction temperature and time on the oxidation of styrene over the Cr-MSU-1 catalyst were examined. The results indicate that Cr ions have been successfully incorporated into the framework of MSU-1 and the Cr-MSU-1 material has a uniform worm-like holes mesoporous structure. After Cr-MSU-1 is calcined, most of Cr 3+ is oxidized to Cr 5+ and Cr 6+ in tetrahedral coordination and no extra-framework Cr 2O 3 is formed. The Cr-MSU-1 catalyst is highly active for the selective oxidation of styrene and the main reaction products over Cr-MSU-1 are benzaldehyde and phenylacetaldehyde. Its catalytic performance remains stable within five repeated runs and no leaching is noticed for this chromium-based catalyst.

  15. CO oxidation over ruthenium: identification of the catalytically active phases at near-atmospheric pressures

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng; Goodman, Wayne D.

    2012-05-21

    CO oxidation was carried out over Ru(0001) and RuO2(110) thin film grown on Ru(0001) at various O2/CO ratios near atmospheric pressures. Reaction kinetics, coupled with in situ polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and post-reaction Auger electron spectroscopy (AES) measurements were used to identify the catalytically relevant phases at different reaction conditions. Under stoichiometric and reducing conditions at all reaction temperatures, as well as net-oxidizing reaction conditions below {approx}475 K, a reduced metallic phase with chemisorbed oxygen is the thermodynamically stable and catalytically active phase. On this surface CO oxidation occurs at surface defect sites, for example step edges. Only at net-oxidizing reaction conditions and above {approx}475 K is the RuO2 thin film grown on metallic Ru stable and active. However, RuO2 is not active itself without the existence of the metal substrate, suggesting the importance of a strong metal-substrate interaction (SMSI).

  16. Catalytic oxidation of gaseous reduced sulfur compounds using coal fly ash.

    Science.gov (United States)

    Kastner, James R; Das, K C; Melear, Nathan D

    2002-11-11

    Activated carbon has been shown to oxidize reduced sulfur compounds, but in many cases it is too costly for large-scale environmental remediation applications. Alternatively, we theorized that coal fly ash, given its high metal content and the presence of carbon could act as an inexpensive catalytic oxidizer of reduced sulfur compounds for "odor" removal. Initial results indicate that coal fly ash can catalyze the oxidization of H(2)S and ethanethiol, but not dimethyl sulfide (DMS) and dimethyl disulfide (DMDS) at room temperature. In batch reactor systems, initial concentrations of 100-500 ppmv H(2)S or ethanethiol were reduced to 0-2 ppmv within 1-2 and 6-8 min, respectively. This was contrary to control systems without ash in which concentrations remained constant. Diethyl disulfide was formed from ethanethiol substantiating the claim that catalytic oxidation occurred. The presence of water increased the rate of adsorption/reaction of both H(2)S and ethanethiol for the room temperature reactions (23-25 degrees C). Additionally, in a continuous flow packed bed reactor, a gaseous stream containing an inlet H(2)S concentration of 400-500 ppmv was reduced to 200 ppmv at a 4.6s residence time. The removal efficiency remained at 50% for approximately 4.6h or 3500 reactor volumes. These results demonstrate the potential of using coal fly ash in reactors for removal of H(2)S and other reduced sulfur compounds.

  17. Selective catalytic oxidation of ammonia over copper-cerium composite catalyst.

    Science.gov (United States)

    Lou, Jie-Chung; Hung, Chang-Mao; Yang, Sheng-Fu

    2004-01-01

    This work considers the oxidation of ammonia (NH3) by selective catalytic oxidation (SCO) over a copper (Cu)-cerium (Ce) composite catalyst at temperatures between 150 and 400 degrees C. A Cu-Ce composite catalyst was prepared by coprecipitation of copper nitrate and cerium nitrate at various molar concentrations. This study also considers how the concentration of influent NH3 (500-1000 ppm), the space velocity (72,000-110,000 hr(-1)), the relative humidity (12-18%) and the concentration of oxygen (4-20%) affect the operational stability and the capacity for removing NH3. The effects of the O2 and NH3 content of the carrier gas on the catalyst's reaction rate also are considered. The experimental results show that the extent of conversion of NH3 by SCO in the presence of the Cu-Ce composite catalyst was a function of the molar ratio. The NH3 was removed by oxidation in the absence of Cu-Ce composite catalyst, and approximately 99.2% NH3 reduction was achieved during catalytic oxidation over the Cu-Ce (6:4, molar/molar) catalyst at 400 degrees C with an O2 content of 4%. Moreover, the effect of the initial concentration and reaction temperature on the removal of NH3 in the gaseous phase was also monitored at a gas hourly space velocity of less than 92,000 hr(-1).

  18. Anchoring and promotion effects of metal oxides on silica supported catalytic gold nanoparticles.

    Science.gov (United States)

    Luo, Jingjie; Ersen, Ovidiu; Chu, Wei; Dintzer, Thierry; Petit, Pierre; Petit, Corinne

    2016-11-15

    The understanding of the interactions between the different components of supported metal doped gold catalysts is of crucial importance for selecting and designing efficient gold catalysts for reactions such as CO oxidation. To progress in this direction, a unique supported nano gold catalyst Au/SS was prepared, and three doped samples (Au/SS@M) were elaborated. The samples before and after test were characterized by Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). It is found that the doping metal species prefer to be located on the surface of gold nanoparticles and that a small amount of additional reductive metal leads to more efficient reaction. During the catalytic test, the nano-structure of the metal species transforms depending on its chemical nature. This study allows one to identify and address the contribution of each metal on the CO reaction in regard to oxidative species of gold, silica and dopants. Metal doping leads to different exposure of interface sites between Au and metal oxide, which is one of the key factors for the change of the catalytic activity. The metal oxides help the activation of oxygen by two actions: mobility inside the metal bulk and transfer of water species onto of gold nanoparticles.

  19. Catalytic Reaction Synthesis for the Partial Oxidation of Methane to Formaldehyde.

    Science.gov (United States)

    Cardenas-Galindo, Maria-Guadalupe

    Catalytic reaction synthesis for the partial oxidation of methane to formaldehyde has been studied by combining microkinetic analysis with molecular orbital calculations. This strategy is used to establish microscopic correlations between the structure and composition of the active site and the kinetic parameters of the reaction mechanism. Using atom clusters to represent the active site of transition metal oxide catalysts, the relationship was probed between coordination number, oxidation state, and ionization potential of the active cation and the reaction steps of methane activation and surface reactions leading to formaldehyde formation. The analysis suggests that in transition metal oxide catalysts, the d-band orbitals of the metal cation should be empty, since otherwise CO_2 formation from CO oxidation will be excessive. Furthermore, the transition metal oxide d-band must be located at sufficiently low energy that it may accept electrons during methane activation. Oxygen O- species, representing vacancies in the 2p cluster band, will favor methane activation. However, clusters with fully occupied 2p bands (O^ {2-}^ecies) will favor formaldehyde production. Such inferences illustrate how experimental and theoretical information already incorporated into an existing microkinetic model for the reaction over V _2O_5 and MoO _3 catalysts can be extended to describe the reaction over new materials in the search for more active and selective catalysts. Using parameters estimated from the molecular orbital calculations, microkinetic reaction simulations were also shown to be useful to identify reactor operating conditions that may favor the production of formaldehyde. The simulation can be used to identify key experiments necessary to test the performance of postulated catalytic materials. The economic evaluation of the process design sets important target goals for methane conversion and formaldehyde selectivity that a catalytic material must satisfy to create a new

  20. Improvement on the catalytic performance of Mg-Zr mixed oxides for furfural-acetone aldol condensation by supporting on mesoporous carbons.

    Science.gov (United States)

    Faba, Laura; Díaz, Eva; Ordóñez, Salvador

    2013-03-01

    A new procedure for improving the performance of the most common catalysts used in aqueous-phase aldol condensation (Mg-Zr mixed oxides) reactions is presented. This reaction is of interest for upgrading carbohydrate feedstocks. The procedure involves supporting Mg-Zr oxides on non-microporous carbonaceous materials, such as carbon nanofibers (CNFs) or high-surface-area graphites (HSAGs), using either incipient wetness or coprecipitation procedures. The use of HSAGs together with the coprecipitation method provides the best performance. Results obtained for the cross-condensation of acetone and furfural at 323 K reveal that the catalyst performance is greatly improved compared to the bulk oxides (96.5 % conversion vs. 81.4 % with the bulk oxide; 87.8 % selectivity for C13 and C8 adducts vs. 76.2 % with the bulk oxide). This difference is even more prominent in terms of rates per catalytically active basic site (four and seven times greater for C8 and C13 adducts, respectively). The improved performance is explained in terms of a more appropriate basic site distribution and by greater interaction of the reactants with the carbon surface. In addition, deactivation behavior of the catalyst is improved by tuning the morphology of the carbonaceous support. An important enhancement of the catalytic stability can be obtained selecting a HSAG with an appropriate pore diameter. With HSAG100 the activity decreased by less than 20 % between successive reaction cycles and the selectivity for the condensation products remained almost unaltered. The decrease is greater than 80 % for the bulk oxides tested at these conditions, with important increases in the selectivity for by-product formation.

  1. Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements

    Science.gov (United States)

    Angermann, Heike

    2014-09-01

    The field-modulated surface photovoltage (SPV) method, a very surface sensitive technique, was utilized to determine electronic interface properties on wet-chemically oxidized and etched silicon (Si) interfaces. The influence of preparation-induced surface micro-roughness and un-stoichiometric oxides on the resulting the surface charge, energetic distribution Dit(E), and density Dit,min of rechargeable states was studied by simultaneous, spectroscopic ellipsometry (SE) measurements on polished Si(111) and Si(100) substrates. Based on previous findings and new research, a study of conventional and newly developed wet-chemical oxidation methods was established, correlating the interactions between involved oxidizing and etching solutions and the initial substrate morphology to the final surface conditioning. It is shown, which sequences of wet-chemical oxidation and oxide removal, have to be combined in order to achieve atomically smooth, hydrogen terminated surfaces, as well as ultra-thin oxide layers with low densities of rechargeable states on flat, saw damage etched, and textured Si substrates, as commonly applied in silicon device and solar cell manufacturing. These conventional strategies for wet-chemical pre-treatment are mainly based on concentrated solutions. Therefore, special attention was put on the development of more environmentally acceptable processes, utilizing e.g. hot pure water with low contents of oxygen or hydrochloric acid, and of ozone, working at ambient temperatures. According to our results, these methods could be a high quality and low cost alternative to current approaches with liquid chemicals for the preparation of hydrophobic Si substrate surfaces and ultra-thin passivating oxide layers. As demonstrated for selected examples, the effect of optimized wet-chemical pre-treatments can be preserved during subsequent soft plasma enhanced chemical vapor depositions of Si oxides (SiOx), or amorphous materials such as Si (a-Si:H), Si nitride (a

  2. The activity and selectivity of catalytic peroxide oxidation of chlorophenols over Cu-Al hydrotalcite/clay composite.

    Science.gov (United States)

    Zhou, Shiwei; Gu, Chuantao; Qian, Zhenying; Xu, Jinguang; Xia, Chuanhai

    2011-05-15

    Liquid phase catalytic oxidation of chlorophenols (CPs) was carried out over Cu-Al hydrotalcite/clay composite at ambient temperature and pressure using hydrogen peroxide as oxidant. The results showed that the catalyst had high catalytic activity, with complete oxidation of 4-CP within 40 min at 40 °C. The content and position of chlorine on the aromatic ring had significantly different effects on the oxidation rate of CPs, with the rate sequence of phenol > monochlorophenol (MCP) > dichlorophenol (DCP) > trichlorophenol (TCP), 3-CP > 2-CP > 4-CP, and 3,5-DCP > 3,4-DCP > 2,5-DCP > 2,4-DCP > 2,6-DCP. This was ascribed to the interactions among σ-electron withdrawing conductive effect, π-electron donating conjugative effect, and steric hindrance effect of chlorine. It was evidenced that the catalytic peroxide oxidation of CPs in the first step was selective and rate-limiting, where chlorinated 1,4-benzoquinones formed.

  3. Highly n-Type Titanium Oxide as an Electronically Active Support for Platinum in the Catalytic Oxidation of Carbon Monoxide

    KAUST Repository

    Baker, L. Robert

    2011-08-18

    The role of the oxide-metal interface in determining the activity and selectivity of chemical reactions catalyzed by metal particles on an oxide support is an important topic in science and industry. A proposed mechanism for this strong metal-support interaction is electronic activation of surface adsorbates by charge carriers. Motivated by the goal of using electronic activation to drive nonthermal chemistry, we investigated the ability of the oxide support to mediate charge transfer. We report an approximately 2-fold increase in the turnover rate of catalytic carbon monoxide oxidation on platinum nanoparticles supported on stoichiometric titanium dioxide (TiO2) when the TiO2 is made highly n-type by fluorine (F) doping. However, for nonstoichiometric titanium oxide (TiOX<2) the effect of F on the turnover rate is negligible. Studies of the titanium oxide electronic structure show that the energy of free electrons in the oxide determines the rate of reaction. These results suggest that highly n-type TiO2 electronically activates adsorbed oxygen (O) by electron spillover to form an active O- intermediate. © 2011 American Chemical Society.

  4. Green synthesis of silver nanoparticles, decorated on graphene oxide nanosheets and their catalytic activity

    Science.gov (United States)

    Sreekanth, T. V. M.; Jung, Min-Ji; Eom, In-Yong

    2016-01-01

    In this study, we develop an inexpensive and green route for the synthesis of silver nanoparticles (AgNPs) using Picrasma quassioides bark aqueous extract as reducing and capping agent and also eco-friendly decorate graphene oxide (GO) nanosheets with AgNPs (GO-AgNPs). Green synthesized AgNPs and GO-AgNPs composites were characterized by UV-Visible spectroscopy, SEM-EDX, and TEM-SAED techniques. The resulting GO-AgNPs contained about 41.35% of Ag and the AgNPs size ranges 17.5-66.5 nm, and GO-AgNPs size ranges 10-49.5 nm. Moreover, the GO-AgNPs exhibited excellent catalytic activity towards the methylene blue (MB) in the presence of sodium borohydride (NaBH4) at room temperature. This catalytic reaction completed within 15 min.

  5. Catalytic properties of Cu/Co/Zn/Zr oxides prepared by various methods

    Institute of Scientific and Technical Information of China (English)

    Limin Shi; Wei Chu; Siyu Deng; Huiyuan Xu

    2008-01-01

    The new Cu-Co based (Cu/Co/Zn/Zr) catalysts for higher-alcohol synthesis were prepared using coprecipitation method, plasma enhanced method and reverse coprecipitation method under ultrasound irradiation. The catalysts were investi-gated by the means of BET, SEM, XRD, H2-TPR and XPS. Catalytic properties of the catalysts prepared by various methods were examined using CO hydrogenation reaction. It was found that plasma enhanced method and reverse coprecipitation method under ultrasound irradiation were both effective in enhancing the catalytic properties of Cu/Co/Zn/Zr mixed oxides. The small particle size, high dispersion of active components, the improvement of specific surface area and surface contents of active phases could account for the excellent performance of the experimental Cu/Co/Zn/Zr catalysts.

  6. Yield optimization in a cycled trickle-bed reactor: ethanol catalytic oxidation as a case study

    Energy Technology Data Exchange (ETDEWEB)

    Ayude, A.; Haure, P. [INTEMA, CONICET, Mar del Plata (Argentina); Cassanello, M. [Universidad de Buenos Aires, PINMATE, Departamento de Industrias, FCEyN, Buenos Aires (Argentina); Martinez, O. [Departamento de Ingenieria Quimica, FI-UNLP-CINDECA, La Plata (Argentina)

    2012-05-15

    The effect of slow ON-OFF liquid flow modulation on the yield of consecutive reactions is investigated for oxidation of aqueous ethanol solutions using a 0.5 % Pd/Al{sub 2}O{sub 3} commercial catalyst in a laboratory trickle-bed reactor. Experiments with modulated liquid flow rate (MLFR) were performed under the same hydrodynamic conditions (degree of wetting, liquid holdup) as experiments with constant liquid flow rate (CLFR). Thus, the impact of the duration of wet and dry cycles as well as the period can be independently investigated. Depending on cycling conditions, acetaldehyde or acetic acid production is favored with MLFR compared to CLFR. Results suggest both the opportunity and challenge of finding a way to tune the cycling parameters for producing the most appropriate product. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Toluene removal by oxidation reaction in spray wet scrubber: experimental, modeling and optimization

    Directory of Open Access Journals (Sweden)

    Roumporn Nikom

    2006-11-01

    Full Text Available Toluene, an important volatile organic compound (VOC, is used in many kinds of industries, such as painting, printing, coating, and petrochemical industries. The emission of toluene causes serious air pollution, odor problem, flammability problem and affects human health. This paper proposes the removal of toluene from waste air using a spray wet scrubber combining the absorption and oxidation reaction. Aqueous sodium hypochlorite (NaOCl solution was used as the scrubbing liquid in the system. NaOCl, the strongest oxidative agent, presents an effective toluene removal. As the scrubbed toluene is reacted, recirculation of the scrubbing liquid could be operated with a constant removal efficiency throughout the operting time. The investigated variables affecting the removal efficiency were air flow rate, inlet toluene concentration, NaOCl concentration, scrubbing liquid flow rate and size of spray nozzle. Influence of the scrubbing parameters was experimentally studied to develop a mathematical model of the toluene removal efficiency. The removal model reveals that the increase of scrubbing liquid flow rate, toluene concentration, and NaOCl concentration together with the decrease of air flow rate and size of spray nozzle can increase the toluene removal efficiency. Optimization problem with an objective function and constraints was set to provide the maximum toluene removal efficiency and solved by Matlab optimization toolbox. The optimization constraints were formed from the mathematical model and process limitation. The solution of the optimization was an air flow rate of 100 m3/h, toluene concentration of 1500 ppm, NaOCl concentration of 0.02 mol/l, NaOCl solution feed rate of 0.8 m3/h, and spray nozzle size of 0.5 mm. Solution of the optimization gave the highest toluene removal efficiency of 91.7%.

  8. Effect of wet oxidation on the fingerprints of polymeric substances from an activated sludge.

    Science.gov (United States)

    Urrea, José Luis; Collado, Sergio; Oulego, Paula; Díaz, Mario

    2016-11-15

    Thermal pre-treatments of activated sludge involve the release of a high amount of polymeric substances into the bulk medium. The molecular size of these polymers will largely define the subsequent biological treatment of the liquid effluent generated. In this work, the effects of wet oxidation treatment (WO) on the fingerprints of the polymeric substances which compose the activated sludge, were analysed. For a better understanding of these transformations, the sludge was separated into its main fractions: soluble microbial products (SMP), loosely bound extracellular polymeric substances (LB-EPS), tightly bound extracellular polymeric substances (TB-EPS) and naked cells, and then each one was subjected to WO separately (190 °C and 65 bar), determining the fingerprints evolution by size exclusion technique. Results revealed a fast degradation of larger molecules (over 500 kDa) during the first minutes of treatment (40 min). WO also increases the absorptive properties of proteins (especially for 30 kDa), which is possibly due to the hydroxylation of phenylalanine amino acids in their structure. WO of naked cells involved the formation of molecules between 23 and 190 kDa, which are related to the release of cytoplasmic polymers, and more hydrophobic polymers, probably from the cell membrane. The results allowed to establish a relationship between the location of polymeric material and its facility to become oxidised; thus, the more internal the polymeric material in the cell, the easier its oxidation. When working directly with the raw sludge, hydrolysis mechanisms played a key role during the starting period. Once a high degree of solubilisation was reached, the molecules were rapidly oxidised into other compounds with refractory characteristics. The final effluent after WO showed almost 90% of low molecular weight solubilised substances (0-35 kDa).

  9. Anaerobic treatability of liquid residue from wet oxidation of sewage sludge.

    Science.gov (United States)

    Bertanza, Giorgio; Galessi, Raniero; Menoni, Laura; Pedrazzani, Roberta; Salvetti, Roberta; Zanaboni, Sabrina

    2015-05-01

    Wet Oxidation (WO) of sewage sludge is a chemical oxidation of sludge at high temperatures and pressures by means of an oxygen-containing gas. The liquid stream originated by WO is easily biodegradable, and therefore, the recirculation to the biological Waste Water Treatment Plant (WWTP) may be a feasible solution. However, the WO effluent has a residual organic and nitrogen content so that its treatment may be required when the receiving WWTP has no surplus treatment capacity left. The aim of this research was the assessment of the anaerobic treatability of the WO liquid residue, in order to reduce the organic load to be recirculated to the WWTP, simultaneously promoting energy recovery. For this purpose, the liquid residue obtained during full scale WO tests on two different types of sludge was submitted to anaerobic digestion in a continuous flow pilot reactor (V = 5 L). Furthermore, batch tests were carried out in order to evaluate possible inhibition factors. Experimental results showed that, after the start-up/acclimation period (~130 days), Chemical Oxygen Demand (COD) removal efficiency was stably around 60% for about 120 days, despite the change in operating conditions. In the last phase of the experimental activity, COD removal reached 70% under the following treatment conditions: Hydraulic Retention Time (HRT) = 20 days, Volumetric Organic Loading Rate (VOLR) = 0.868 kg COD/m(3)/day, Organic Loading Rate per Volatile Suspended Solids (OLRvss) = 0.078 kg COD/kg VSS/day, temperature (T) = 36.5 °C, pH = 8. Energy balance calculation demonstrated anaerobic treatment sustainability.

  10. Advanced treatment of wet-spun acrylic fiber manufacturing wastewater using three-dimensional electrochemical oxidation.

    Science.gov (United States)

    Zheng, Tianlong; Wang, Qunhui; Shi, Zhining; Fang, Yue; Shi, Shanshan; Wang, Juan; Wu, Chuanfu

    2016-12-01

    A three-dimensional electrochemical oxidation (3D-EC) reactor with introduction of activated carbon (AC) as particle micro-electrodes was applied for the advanced treatment of secondary wastewater effluent of a wet-spun acrylic fiber manufacturing plant. Under the optimized conditions (current density of 500A/m(2), circulation rate of 5mL/min, AC dosage of 50g, and chloride concentration of 1.0g/L), the average removal efficiencies of chemical oxygen demand (CODcr), NH3-N, total organic carbon (TOC), and ultraviolet absorption at 254nm (UV254) of the 3D-EC reactor were 64.5%, 60.8%, 46.4%, and 64.8%, respectively; while the corresponding effluent concentrations of CODcr, NH3-N, TOC, and UV254 were 76.6, 20.1, and 42.5mg/L, and 0.08Abs/cm, respectively. The effluent concentration of CODcr was less than 100mg/L, which showed that the treated wastewater satisfied the demand of the integrated wastewater discharge standard (GB 8978-1996). The 3D-EC process remarkably improved the treatment efficiencies with synergistic effects for CODcr, NH3-N, TOC, and UV254 during the stable stage of 44.5%, 38.8%, 27.2%, and 10.9%, respectively, as compared with the sum of the efficiencies of a two-dimensional electrochemical oxidation (2D-EC) reactor and an AC adsorption process, which was ascribed to the numerous micro-electrodes of AC in the 3D-EC reactor. Gas chromatography mass spectrometry (GC-MS) analysis revealed that electrochemical treatment did not generate more toxic organics, and it was proved that the increase in acute biotoxicity was caused primarily by the production of free chlorine.

  11. Low adhesion, non-wetting phosphonate self-assembled monolayer films formed on copper oxide surfaces.

    Science.gov (United States)

    Hoque, E; DeRose, J A; Bhushan, B; Hipps, K W

    2009-07-01

    Self-assembled monolayer (SAM) films have been formed on oxidized copper (Cu) substrates by reaction with 1H,1H,2H,2H-perfluorodecylphosphonic acid (PFDP), octadecylphosphonic acid (ODP), decylphosphonic acid (DP), and octylphosphonic acid (OP) and then investigated by X-ray photoelectron spectroscopy (XPS), contact angle measurement (CAM), and atomic force microscopy (AFM). The presence of alkyl phosphonate molecules, PFDP, ODP, DP, and OP, on Cu were confirmed by CAM and XPS analysis. No alkyl phosphonate molecules were seen by XPS on unmodified Cu as a control. The PFDP/Cu and ODP/Cu SAMs were found to be very hydrophobic having water sessile drop static contact angles of more than 140 degrees , while DP/Cu and OP/Cu have contact angles of 119 degrees and 76 degrees , respectively. PFDP/Cu, ODP/Cu, DP/Cu, and OP/Cu SAMs were studied by friction force microscopy, a derivative of AFM, to better understand their micro/nanotribological properties. PFDP/Cu, ODP/Cu, and DP/Cu had comparable adhesive force, which is much lower than that for unmodified Cu. ODP/Cu had the lowest friction coefficient followed by PFDP/Cu, DP/Cu, and OP/Cu while unmodified Cu had the highest. XPS data gives some indication that a bidentate bond forms between the alkyl phosphonate molecules and the oxidized Cu surface. Hydrophobic phosphonate SAMs could be useful as corrosion inhibitors in micro/nanoelectronic devices and/or as promoters for anti-wetting, low adhesion surfaces.

  12. Wet adhesion of buckypaper produced from oxidized multiwalled carbon nanotubes on soft animal tissue.

    Science.gov (United States)

    Martinelli, Andrea; Carru, Giovanna A; D'Ilario, Lucio; Caprioli, Fabrizio; Chiaretti, Massimo; Crisante, Fernanda; Francolini, Iolanda; Piozzi, Antonella

    2013-05-22

    Buckypaper (BP) is the general definition of a macroscopic assembly of entangled carbon nanotubes. In this paper, a new property of a BP film produced from oxidized multiwalled carbon nanotubes was investigated. In particular, BP shows to be able to promptly and strongly adhere to animal internal soft and wet tissues, as evaluated by peeling and shear tests. BP adhesion strength is higher than that recorded for a commercial prosthetic fabric (sealed to the tissue by fibrin glue) and comparable with that of other reported optimized nanopatterned surfaces. In order to give an interpretation of the observed behavior, the BP composition, morphology, porosity, water wettability, and mechanical properties were analyzed by AFM, X-ray photoelectron spectroscopy, wicking tests, contact angle, and stress-strain measurements. Although further investigations are needed to assess the biocompatibility and safety of the BP film used in this work, the obtained results pave the way for a possible future use of buckypaper as adhesive tape in abdominal prosthetic surgery. This would allow the substitution of conventional sealants or the reduction in the use of perforating fixation.

  13. Wet oxidation of sewage sludge: full-scale experience and process modeling.

    Science.gov (United States)

    Bertanza, Giorgio; Galessi, Raniero; Menoni, Laura; Salvetti, Roberta; Slavik, Edoardo; Zanaboni, Sabrina

    2015-05-01

    Nowadays, sewage sludge management represents one of the most important issues in wastewater treatment. Within the European project "ROUTES," wet oxidation (WO) was proposed for sludge minimization. Four different types of sludge were treated in an industrial WO plant: (1) municipal primary sludge (chemical oxygen demand COD: 73.0 g/L; volatile suspended solid VSS: 44.1 g/L); (2) secondary sludge from an industrial wastewater treatment plant (WWTP) without primary sedimentation (COD: 71.8 g/L; VSS: 34.2 g/L); (3) secondary sludge from a mixed municipal and industrial WWTP without primary sedimentation (COD: 61.9 g/L; VSS: 38.7 g/L); and (4) mixed primary (70%) and secondary (30%) municipal sludge (COD: 81.2 g/L; VSS: 40.6 g/L). The effect of process parameters (temperature, reaction time, oxygen dosage) on WO performance was investigated. Depending on operating conditions, VSS and COD removal efficiency varied in the range 80-97% and 43-71%, respectively. A correlation between process efficiency and the initial VSS/TSS (total suspended solids) ratio was highlighted. Furthermore, a mathematical model of WO process for simulating VSS and COD profiles was developed.

  14. Decomposition and Mineralization of Dimethyl Phthalate in an Aqueous Solution by Wet Oxidation.

    Science.gov (United States)

    Ji, Dar-Ren; Chang, Chia-Chi; Chen, Shih-Yun; Chiu, Chun-Yu; Tseng, Jyi-Yeong; Chang, Ching-Yuan; Chang, Chiung-Fen; Chiang, Sheng-Wei; Hung, Zang-Sie; Shie, Je-Lueng; Chen, Yi-Hung; Yuan, Min-Hao

    2015-01-01

    Dimethyl phthalate (DMP) was treated via wet oxygen oxidation process (WOP). The decomposition efficiency η DMP of DMP and mineralization efficiency η TOC of total organic carbons were measured to evaluate the effects of operation parameters on the performance of WOP. The results revealed that reaction temperature T is the most affecting factor, with a higher T offering higher η DMP and η TOC as expected. The η DMP increases as rotating speed increases from 300 to 500 rpm with stirring enhancement of gas liquid mass transfer. However, it exhibits reduction effect at 700 rpm due to purging of dissolved oxygen by overstirring. Regarding the effects of pressure P T, a higher P T provides more oxygen for the forward reaction with DMP, while overhigh P T increases the absorption of gaseous products such as CO2 and decomposes short-chain hydrocarbon fragments back into the solution thus hindering the forward reaction. For the tested P T of 2.41 to 3.45 MPa, the results indicated that 2.41 MPa is appropriate. A longer reaction time of course gives better performance. At 500 rpm, 483 K, 2.41 MPa, and 180 min, the η DMP and η TOC are 93 and 36%, respectively.

  15. Techno-economic and environmental assessment of sewage sludge wet oxidation.

    Science.gov (United States)

    Bertanza, Giorgio; Canato, Matteo; Heimersson, Sara; Laera, Giuseppe; Salvetti, Roberta; Slavik, Edoardo; Svanström, Magdalena

    2015-05-01

    Today, several technologies and management strategies are proposed and applied in wastewater treatment plants (WWTPs) to minimise sludge production and contamination. In order to avoid a shifting of burdens between different areas, their techno-economic and environmental performance has to be carefully evaluated. Wet oxidation (WO) is an alternative solution to incineration for recovering energy in sewage sludge while converting it to mostly inorganic residues. This paper deals with an experimentation carried out within the EU project "ROUTES". A mass balance was made for a WWTP (500,000 person equivalents) in which a WO stage for sludge minimisation was considered to be installed. Both bench- and full-scale test results were used. Design of treatment units and estimation of capital and operational costs were then performed. Subsequently, technical and economic aspects were evaluated by means of a detailed methodology which was developed within the ROUTES project. Finally, an assessment of environmental impacts from a life cycle perspective was performed. The integrated assessment showed that for the specific upgrade considered in this study, WO technology, although requiring a certain increase of technical complexity at the WWTP, may contribute to environmental and economic advantages. The paper provides guidance in terms of which aspects need a more thorough evaluation in relation to the specific case in which an upgrade with WO is considered.

  16. Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility.

    Science.gov (United States)

    Varga, Eniko; Schmidt, Anette S; Réczey, Kati; Thomsen, Anne Belinda

    2003-01-01

    Corn stover is an abundant, promising raw material for fuel ethanol production. Although it has a high cellulose content, without pretreatment it resists enzymatic hydrolysis, like most lignocellulosic materials. Wet oxidation (water, oxygen, mild alkali or acid, elevated temperature and pressure) was investigated to enhance the enzymatic digestibility of corn stover. Six different combinations of reaction temperature, time, and pH were applied. The best conditions (60 g/L of corn stover, 195 degrees C, 15 min, 12 bar O2, 2 g/L of Na2CO3) increased the enzymatic conversion of corn stover four times, compared to untreated material. Under these conditions 60% of hemicellulose and 30% of lignin were solubilized, whereas 90% of cellulose remained in the solid fraction. After 24-h hydrolysis at 50 degrees C using 25 filter paper units (FPU)/g of drymatter (DM) biomass, the achieved conversion of cellulose to glucose was about 85%. Decreasing the hydrolysis temperature to 40 degrees C increased hydrolysis time from 24 to 72 h. Decreasing the enzyme loading to 5 FPU/g of DM biomass slightly decreased the enzymatic conversion from 83.4 to 71%. Thus, enzyme loading can be reduced without significantly affecting the efficiency of hydrolysis, an important economical aspect.

  17. Solid-state charge-based device for control of catalytic carbon monoxide oxidation on platinum nanofilms using external bias and light.

    Science.gov (United States)

    Baker, L Robert; Hervier, Antoine; Kennedy, Griffin; Somorjai, Gabor A

    2012-05-09

    Using a Pt/Si catalytic nanodiode, we externally control the rate of CO oxidation on a Pt nanofilm. The catalytic reaction can be turned on and off by alternating between bias states of the device. Additionally, the reaction rate is sensitive to photocurrent induced by visible light. The effects of both bias and light show that negative charge on the Pt increases catalytic activity, while positive charge on the Pt decreases catalytic activity for CO oxidation.

  18. Degradation of acid red 97 dye in aqueous medium using wet oxidation and electro-Fenton techniques.

    Science.gov (United States)

    Kayan, Berkant; Gözmen, Belgin; Demirel, Muhammet; Gizir, A Murat

    2010-05-15

    Degradation of the acid red 97 dye using wet oxidation, by different oxidants, and electro-Fenton systems was investigated in this study. The oxidation effect of different oxidants such as molecular oxygen, periodate, persulfate, bromate, and hydrogen peroxide in wet oxidation system was compared. Mineralization of AR97 with periodate appeared more effective when compared with that of the other oxidants at equal initial concentration. When 5 mM of periodate was used, at the first minute of the oxidative treatment, the decolorization percentage of AR97 solution at 150 and 200 degrees C reached 88 and 98%, respectively. The total organic carbon removal efficiency at these temperatures also reached 60 and 80%. The degradation of AR97 was also studied by electro-Fenton process. The optimal current value and Fe(2+) concentration were found to be 300 mA and 0.2 mM, respectively. The results showed that electro-Fenton process can lead to 70 and 95% mineralization of the dye solution after 3 and 5h giving carboxylic acids and inorganic ions as final end-products before mineralization. The products obtained from degradation were identified by GC/MS as 1,2-naphthalenediol, 1,1'-biphenyl-4-amino-4-ol, 2-naphthalenol diazonium, 2-naphthalenol, 2,3-dihydroxy-1,4-naphthalenedion, phthalic anhydride, 1,2-benzenedicarboxylic acid, phthaldehyde, 3-hydroxy-1,2-benzenedicarboxylic acid, 4-amino-benzoic acid, and 2-formyl-benzoic acid.

  19. Metallo-deuteroporphyrin as a biomimetic catalyst for the catalytic oxidation of lignin to aromatics.

    Science.gov (United States)

    Zhu, Chenjie; Ding, Weiwei; Shen, Tao; Tang, Chenglun; Sun, Chenguo; Xu, Shichao; Chen, Yong; Wu, Jinglan; Ying, Hanjie

    2015-05-22

    A series of metallo-deuteroporphyrins derived from hemin were prepared as models of the cytochrome P450 enzyme. With the aid of the highly active Co(II) deuteroporphyrin complex, the catalytic oxidation system was applied for the oxidation of several lignin model compounds, and high yields of monomeric products were obtained under mild reaction conditions. It was found that the modified cobalt deuteroporphyrin that has no substituents at the meso sites but does have the disulfide linkage in the propionate side chains at the β sites exhibited much higher activity and stability than the synthetic tetraphenylporphyrin. The changes in the propionate side chains can divert the reactivity of cobalt deuteroporphyrins from the typical CC bond cleavage to CO bond cleavage. Furthermore, this novel oxidative system can convert enzymolysis lignin into depolymerized products including a significant portion of well-defined aromatic monomers.

  20. Catalytic ozonation of sulfosalicylic acid over manganese oxide supported on mesoporous ceria.

    Science.gov (United States)

    Xing, Shengtao; Lu, Xiaoyang; Liu, Jia; Zhu, Lin; Ma, Zichuan; Wu, Yinsu

    2016-02-01

    Manganese oxide supported on mesoporous ceria was prepared and used as catalyst for catalytic ozonation of sulfosalicylic acid (SA). Characterization results indicated that the manganese oxide was mostly incorporated into the pores of ceria. The synthesized catalyst exhibited high activity and stability for the mineralization of SA in aqueous solution by ozone, and more than 95% of total organic carbon was removed in 30 min under various conditions. Mechanism studies indicated that SA was mainly degraded by ozone molecules, and hydroxyl radical reaction played an important role for the degradation of its ozonation products (small molecular organic acids). The manganese oxide in the pores of CeO2 improved the adsorption of small molecular organic acids and the generation of hydroxyl radicals from ozone decomposition, resulting in high TOC removal efficiency.