WorldWideScience

Sample records for catalytic wet oxidation

  1. Catalytic wet oxidation of black liquor

    OpenAIRE

    Viader Riera, Gerard

    2012-01-01

    The major aspects of wet air oxidation and catalytic wet air oxidation have been reviewed in this work paying special attention to the reaction mechanisms, kinetics and the industrial process. In the experimental section a set of heterogeneous catalysts have been tested in the wet oxidation of non-wood black liquor. The oxidation runs were performed batchwise in a laboratory-scale mechanically stirred slurry reactor for 1 h at a temperature of 170°C and total pressure of 12 bar. Pure oxygen w...

  2. Catalytic wet peroxide oxidation of formic acid in wastewater with ...

    African Journals Online (AJOL)

    2016-07-03

    Jul 3, 2016 ... ABSTRACT. The catalytic wet oxidation of formic acid, using hydrogen peroxide as the oxidizing agent over naturally-occurring iron ore, was explored. Firstly, the decomposition of hydrogen peroxide to its hydroxyl radicals (HO• and HOO•) over naturally-occurring iron ore was investigated. The reaction was ...

  3. Catalytic wet peroxide oxidation of formic acid in wastewater with ...

    African Journals Online (AJOL)

    The catalytic wet oxidation of formic acid, using hydrogen peroxide as the oxidizing agent over naturally-occurring iron ore, was explored. Firstly, the decomposition of hydrogen peroxide to its hydroxyl radicals (HO• and HOO•) over naturally-occurring iron ore was investigated. The reaction was monitored by ATR FTIR by ...

  4. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Quesada-Penate, I. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Julcour-Lebigue, C., E-mail: carine.julcour@ensiacet.fr [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Jauregui-Haza, U.J. [Instituto Superior de Tecnologias y Ciencias Aplicadas, Ave. Salvador Allende y Luaces, Habana (Cuba); Wilhelm, A.M.; Delmas, H. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France)

    2012-06-30

    Highlights: Black-Right-Pointing-Pointer Three activated carbons (AC) compared as adsorbents and oxidation catalysts. Black-Right-Pointing-Pointer Similar evolution for catalytic and adsorptive properties of AC over reuses. Black-Right-Pointing-Pointer Acidic and mesoporous AC to be preferred, despite lower initial efficiency. Black-Right-Pointing-Pointer Oxidative degradation of paracetamol improves biodegradability. Black-Right-Pointing-Pointer Convenient hybrid adsorption-regenerative oxidation process for continuous treatment. - Abstract: The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  5. Catalytic wet air oxidation of chlorophenols over supported ruthenium catalysts

    International Nuclear Information System (INIS)

    Li Ning; Descorme, Claude; Besson, Michele

    2007-01-01

    A series of noble metal (Pt, Pd, Ru) loaded zirconia catalysts were evaluated in the catalytic wet air oxidation (CWAO) of mono-chlorophenols (2-CP, 3-CP, 4-CP) under relatively mild reaction conditions. Among the investigated noble metals, Ru appeared to be the best to promote the CWAO of CPs as far as incipient-wetness impregnation was used to prepare all the catalysts. The position of the chlorine substitution on the aromatic ring was also shown to have a significant effect on the CP reactivity in the CWAO over 3 wt.% Ru/ZrO 2 . 2-CP was relatively easier to degradate compared to 3-CP and 4-CP. One reason could be the higher adsorption of 2-CP on the catalyst surface. Further investigations suggested that 3 wt.% Ru/ZrO 2 is a very efficient catalyst in the CWAO of 2-CP as far as high 2-CP conversion and TOC abatement could still be reached at even lower temperature (393 K) and lower total pressure (3 MPa). Additionally, the conversion of 2-CP was demonstrated to increase with the initial pH of the 2-CP solution. The dechlorination reaction is promoted at higher pH. In all cases, the adsorption of the reactants and the reaction intermediates was shown to play a major role. All parameters that would control the molecule speciation in solution or the catalyst surface properties would have a key effect

  6. Catalytic wet oxidative degradation of filter paper waste simulates

    International Nuclear Information System (INIS)

    Shatta, H.A.; Saleh, H.M.; Bayoumi, T.A.

    2005-01-01

    This study is part of a comprehensive research program carried out at Radioisotope Department, Atomic Energy Authority, Egypt, aiming at the treatment of organic wastes simulate to achieve acceptable weight and volume reduction. The process is based on the wet oxidative degradation of these wastes, at a laboratory scale, using hydrogen peroxide as oxidant at atmospheric pressure and at 100 degree C. The present study was concerned with the treatment of filter paper waste simulates, as one of organic wastes originating from the peaceful applications of the nuclear technology, in the presence of two types of catalysts namely; copper sulphate and ferrous sulphate. The main aim of this treatment is to achieve an acceptable weight and volume reduction. That waste was subjected to wet oxidative degradation process at atmospheric pressure and 100 degree C using 35% hydrogen peroxide as oxidant in the presence of different concentrations of ferrous sulphate or copper sulphate as catalysts. Elemental analysis and IR spectroscopy were performed for the solid residue and the secondary waste solution resulted from the treatment process to follow the degradation process. Increasing the concentration of catalyst was accompanied with an acceptable increase in the weight reduction and conversion percentages. Up to 95% total weight reduction was obtained in the case of using copper sulphate as catalyst. Also, through this technique, the organic portion of these wastes is converted to carbon dioxide and water and hence the remaining solution is considered as a form suitable for subsequent immobilization process

  7. SPONTANEOUS CATALYTIC WET AIR OXIDATION DURING PRE-TREATMENT OF HIGH-LEVEL RADIOACTIVE WASTE SLUDGE

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D.; Herman, C.; Pareizs, J.; Bannochie, C.; Best, D.; Bibler, N.; Fellinger, T.

    2009-10-01

    Savannah River Remediation, LLC (SRR) operates the Defense Waste Processing Facility for the U.S. Department of Energy at the Savannah River Site. This facility immobilizes high-level radioactive waste through vitrification following chemical pretreatment. Catalytic destruction of formate and oxalate ions to carbon dioxide has been observed during qualification testing of non-radioactive analog systems. Carbon dioxide production greatly exceeded hydrogen production, indicating the occurrence of a process other than the catalytic decomposition of formic acid. Statistical modeling was used to relate the new reaction chemistry to partial catalytic wet air oxidation of both formate and oxalate ions driven by the low concentrations of palladium, rhodium, and/or ruthenium in the waste. Variations in process conditions led to increases or decreases in the total oxidative destruction, as well as partially shifting the preferred species undergoing destruction from oxalate ion to formate ion.

  8. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Yuting [Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), CNRS – Université Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France); School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Xiong, Ya; Tian, Shuanghong [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275 (China); Kong, Lingjun [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Descorme, Claude, E-mail: claude.descorme@ircelyon.univ-lyon1.fr [Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), CNRS – Université Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France)

    2014-07-15

    Highlights: • A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared. • FeSC exhibited high catalytic activity in the wet air oxidation of 2-chlorophenol. • A strong correlation was observed between the 2-CP conversion, the iron leaching and the pH. • Using an acetate buffer, the iron leaching was suppressed while keeping some catalytic activity. • A simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst. - Abstract: A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared and used in the Catalytic Wet Air Oxidation (CWAO) of 2-chlorophenol (2-CP). The catalysts were characterized in terms of elemental composition, surface area, pH{sub PZC}, XRD and SEM. The performances of the FeSC catalyst in the CWAO of 2-CP was assessed in a batch reactor operated at 120 °C under 0.9 MPa oxygen partial pressure. Complete decomposition of 2-CP was achieved within 5 h and 90% Total Organic Carbon (TOC) was removed after 24 h of reaction. Quite a straight correlation was observed between the 2-CP conversion, the amount of iron leached in solution and the pH of the reaction mixture at a given reaction time, indicating a strong predominance of the homogeneous catalysis contribution. The iron leaching could be efficiently prevented when the pH of the solution was maintained at values higher than 4.5, while the catalytic activity was only slightly reduced. Upon four successive batch CWAO experiments, using the same FeSC catalyst recovered by filtration after pH adjustment, only a very minor catalyst deactivation was observed. Finally, based on all the identified intermediates, a simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst.

  9. Degradation of phenylamine by catalytic wet air oxidation using metal catalysts with modified supports.

    Science.gov (United States)

    Torrellas, Silvia A; Escudero, Gabriel O; Rodriguez, Araceli R; Rodriguez, Juan G

    2015-01-01

    The effect of acid treatments with HCl and HNO3 on the surface area and surface chemistry of three granular activated carbons was studied. These supports were characterized and the hydrochloric acid treatment leads to the best activated carbon support (AC2-C). The catalytic behavior of Pt, Ru and Fe (1 wt.%) supported on granular activated carbon treated with HCl was tested in the phenylamine continuous catalytic wet air oxidation in a three-phase, high-pressure catalytic reactor over a range of reaction temperatures 130-170ºC and total pressure of 1.0-3.0 MPa at LHSV = 0.4-1 h(-1), whereas the phenylamine concentration range and the catalyst loading were 5-16 mol.m(-3) and 0.5-1.5 g, respectively. Activity as well as conversion varied as a function of the metal, the catalyst preparation method and operation conditions. Higher activities were obtained with Pt incorporated on hydrochloric acid -treated activated carbon by the ion exchange method. In steady state, approximately 98% phenylamine conversion, 77% of TOC and 94% of COD removal, was recorded at 150ºC, 11 mol m(-3) of phenylamine concentration and 1.5 g of catalyst, and the selectivity to non-organic compounds was 78%. Several reaction intermediaries were detected. A Langmuir-Hinshelwood model gave an excellent fit of the kinetic data of phenylamine continuous catalytic wet air oxidation over the catalysts of this work.

  10. Effective treatment of oily scum via catalytic wet persulfate oxidation process activated by Fe2.

    Science.gov (United States)

    Yuan, Xingzhong; Guan, Renpeng; Wu, Zhibin; Jiang, Longbo; Li, Yifu; Chen, Xiaohong; Zeng, Guangming

    2018-04-05

    Oily scum, a hazardous by-product of petroleum industry, need to be deposed urgently to reduce environmental risks. This paper introduces catalytic wet persulfate oxidation (CWPO) process in the treatment of oily scum to realize risk relief. Under the activation of heat and Fe 2+ , persulfate (PS) was decomposed into sulfate radicals and hydroxyl radicals, which played a major role on the degradation of petroleum hydrocarbons. The effects of wet air oxidation (WAO) and CWPO process on the degradation of oily scum were compared. In CWPO process, the total petroleum hydrocarbons (TPHs) content of oily scum was decreased from 92.63% to 16.75%, which was still up to 70.19% in WAO process. The degradation rate of TPHs in CWPO process was about 3.38 times higher than that in WAO process. The great performance of CWPO process was also confirmed by elemental analysis, which indicated that the C and H contents of oily scum were reduced significantly by CWPO process. These results indicated that CWPO process has high potential on the degradation of oily scum for environmental protection. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Heterogeneous catalytic wet peroxide oxidation systems for the treatment of an industrial pharmaceutical wastewater.

    Science.gov (United States)

    Melero, J A; Martínez, F; Botas, J A; Molina, R; Pariente, M I

    2009-09-01

    The aim of this work was to assess the treatment of wastewater coming from a pharmaceutical plant through a continuous heterogeneous catalytic wet peroxide oxidation (CWPO) process using an Fe(2)O(3)/SBA-15 nanocomposite catalyst. This catalyst was preliminary tested in a batch stirred tank reactor (STR), to elucidate the influence of significant parameters on the oxidation system, such as temperature, initial oxidant concentration and initial pH of the reaction medium. In that case, a temperature of 80 degrees C using an initial oxidant concentration corresponding to twice the theoretical stoichiometric amount for complete carbon depletion and initial pH of ca. 3 allow TOC degradation of around 50% after 200 min of contact time. Thereafter, the powder catalyst was extruded with bentonite to prepare pellets that could be used in a fixed bed reactor (FBR). Results in the up-flow FBR indicate that the catalyst shows high activity in terms of TOC mineralization (ca. 60% under steady-state conditions), with an excellent use of the oxidant and high stability of the supported iron species. The activity of the catalyst is kept constant, at least, for 55h of reaction. Furthermore, the BOD(5)/COD ratio is increased from 0.20 to 0.30, whereas the average oxidation stage (AOS) changed from 0.70 to 2.35. These two parameters show a high oxidation degree of organic compounds in the outlet effluent, which enhances its biodegradability, and favours the possibility of a subsequent coupling with a conventional biological treatment.

  12. Supported noble metal catalysts in the catalytic wet air oxidation of industrial wastewaters and sewage sludges.

    Science.gov (United States)

    Besson, M; Descorme, C; Bernardi, M; Gallezot, P; di Gregorio, F; Grosjean, N; Minh, D Pham; Pintar, A

    2010-12-01

    This paper reviews some catalytic wet air oxidation (CWAO) investigations of industrial wastewaters over platinum and ruthenium catalysts supported on TiO2 and ZrO2 formulated to be active and resistant to leaching, with particular focus on the stability of the catalyst. Catalyst recycling experiments were performed in batch reactors and long-term stability tests were conducted in trickle-bed reactors. The catalyst did not leach upon treatment of Kraft bleaching plant and olive oil mill effluents, and could be either recycled or used for long periods of time in continuous reactors. Conversely, these catalysts were rapidly leached when used to treat effluents from the production of polymeric membranes containing N,N-dimethylformamide. The intermediate formation of amines, such as dimethylamine and methylamine with a high complexing capacity for the metal, was shown to be responsible for the metal leaching. These heterogeneous catalysts also deactivated upon CWAO of sewage sludges due to the adsorption of the solid organic matter. Pre-sonication of the sludge to disintegrate the flocs and improve solubility was inefficient.

  13. Characterizations of Platinum Catalysts Supported on Ce, Zr, Pr-oxides and Formation of Carbonate Species in Catalytic Wet Air Oxidation of Acetic Acid

    Czech Academy of Sciences Publication Activity Database

    Mikulová, Jana; Rossignol, S.; Barbier Jr., J.; Duprez, D.; Kappenstein, C.

    2007-01-01

    Roč. 124, 3-4 (2007), s. 185-190 ISSN 0920-5861 Institutional research plan: CEZ:AV0Z40720504 Keywords : acetic acid * cerium oxide * catalytic wet air oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.764, year: 2007

  14. Development of a Catalytic Wet Air Oxidation Method to Produce Feedstock Gases from Waste Polymers

    Science.gov (United States)

    Kulis, Michael J.; Guerrero-Medina, Karen J.; Hepp, Aloysius F.

    2012-01-01

    Given the high cost of space launch, the repurposing of biological and plastic wastes to reduce the need for logistical support during long distance and long duration space missions has long been recognized as a high priority. Described in this paper are the preliminary efforts to develop a wet air oxidation system in order to produce fuels from waste polymers. Preliminary results of partial oxidation in near supercritical water conditions are presented. Inherent corrosion and salt precipitation are discussed as system design issues for a thorough assessment of a second generation wet air oxidation system. This work is currently being supported by the In-Situ Resource Utilization Project.

  15. A compact process for the treatment of olive mill wastewater by combining wet hydrogen peroxide catalytic oxidation and biological techniques

    International Nuclear Information System (INIS)

    Azabou, Samia; Najjar, Wahiba; Bouaziz, Mohamed; Ghorbel, Abdelhamid; Sayadi, Sami

    2010-01-01

    A system based on combined actions of catalytic wet oxidation and microbial technologies for the treatment of highly polluted OMW containing polyphenols was studied. The wet hydrogen peroxide catalytic oxidation (WHPCO) process has been investigated in the semi-batch mode at atmospheric pressure, using aluminium-iron-pillared inter layer clay ((Al-Fe)PILC), under two different catalytic processes: ((Al-Fe)PILC/H 2 O 2 /ultraviolet radiations) at 25 deg. C and ((Al-Fe)PILC/H 2 O 2 ) at 50 deg. C. The results show that raw OMW was resistant to the photocatalytic process. However ((Al-Fe)PILC/H 2 O 2 ), system operating at 50 deg. C reduced considerably the COD, colour and total phenolic contents, and thus decreased the inhibition of the marine photobacteria Vibrio fischeri luminescence by 70%. This study also examined the feasibility of coupling WHPCO and anaerobic digestion treatment. Biomethanisation experiments performed with raw OMW or pre-treated OMW proved that pre-treatments with ((Al-Fe)PILC/H 2 O 2 ) system, for more than 2 h, resulted in higher methane production. Both untreated OMW as well as 2-h pre-treated OMW revealed as toxic to anaerobic bacteria.

  16. A compact process for the treatment of olive mill wastewater by combining wet hydrogen peroxide catalytic oxidation and biological techniques

    Energy Technology Data Exchange (ETDEWEB)

    Azabou, Samia [Laboratoire des BioProcedes, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax (Tunisia); Najjar, Wahiba [Laboratoire de Chimie des Materiaux et Catalyse, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis (Tunisia); Bouaziz, Mohamed [Laboratoire des BioProcedes, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax (Tunisia); Ghorbel, Abdelhamid [Laboratoire de Chimie des Materiaux et Catalyse, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunis (Tunisia); Sayadi, Sami, E-mail: sami.sayadi@cbs.rnrt.tn [Laboratoire des BioProcedes, Centre de Biotechnologie de Sfax, BP 1177, 3018 Sfax (Tunisia)

    2010-11-15

    A system based on combined actions of catalytic wet oxidation and microbial technologies for the treatment of highly polluted OMW containing polyphenols was studied. The wet hydrogen peroxide catalytic oxidation (WHPCO) process has been investigated in the semi-batch mode at atmospheric pressure, using aluminium-iron-pillared inter layer clay ((Al-Fe)PILC), under two different catalytic processes: ((Al-Fe)PILC/H{sub 2}O{sub 2}/ultraviolet radiations) at 25 deg. C and ((Al-Fe)PILC/H{sub 2}O{sub 2}) at 50 deg. C. The results show that raw OMW was resistant to the photocatalytic process. However ((Al-Fe)PILC/H{sub 2}O{sub 2}), system operating at 50 deg. C reduced considerably the COD, colour and total phenolic contents, and thus decreased the inhibition of the marine photobacteria Vibrio fischeri luminescence by 70%. This study also examined the feasibility of coupling WHPCO and anaerobic digestion treatment. Biomethanisation experiments performed with raw OMW or pre-treated OMW proved that pre-treatments with ((Al-Fe)PILC/H{sub 2}O{sub 2}) system, for more than 2 h, resulted in higher methane production. Both untreated OMW as well as 2-h pre-treated OMW revealed as toxic to anaerobic bacteria.

  17. Platinum Catalysts Supported on Ce, Zr, Pr - Oxides in Catalytic Wet Air Oxidation of Acetic Acid

    Czech Academy of Sciences Publication Activity Database

    Mikulová, Jana; Rossignol, S.; Barbier Jr., J.; Duprez, D.; Kappenstein, C.

    2007-01-01

    Roč. 146, č. 3 (2007), s. 1248-1253 ISSN 0304-3894 Institutional research plan: CEZ:AV0Z40720504 Keywords : platinum * cerium oxide * carbonate species Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.337, year: 2007

  18. Catalytic wet-air oxidation of lignin in a three-phase reactor with aromatic aldehyde production

    Directory of Open Access Journals (Sweden)

    Sales F.G.

    2004-01-01

    Full Text Available In the present work a process of catalytic wet air oxidation of lignin obtained from sugar-cane bagasse is developed with the objective of producing vanillin, syringaldehyde and p-hydroxybenzaldehyde in a continuous regime. Palladium supported on g-alumina was used as the catalyst. The reactions in the lignin degradation and aldehyde production were described by a kinetic model as a system of complex parallel and series reactions, in which pseudo-first-order steps are found. For the purpose of producing aromatic aldehydes in continuous regime, a three-phase fluidized reactor was built, and it was operated using atmospheric air as the oxidizer. The best yield in aromatic aldehydes was of 12%. The experimental results were compatible with those values obtained by the pseudo-heterogeneous axial dispersion model (PHADM applied to the liquid phase.

  19. Active carbon-ceramic sphere as support of ruthenium catalysts for catalytic wet air oxidation (CWAO) of resin effluent.

    Science.gov (United States)

    Liu, Wei-Min; Hu, Yi-Qiang; Tu, Shan-Tung

    2010-07-15

    Active carbon-ceramic sphere as support of ruthenium catalysts were evaluated through the catalytic wet air oxidation (CWAO) of resin effluent in a packed-bed reactor. Active carbon-ceramic sphere and ruthenium catalysts were characterized by N(2) adsorption and chemisorption measurements. BET surface area and total pore volume of active carbon (AC) in the active carbon-ceramic sphere increase with increasing KOH-to-carbon ratio, and AC in the sample KC-120 possesses values as high as 1100 m(2) g(-1) and 0.69 cm(3) g(-1) (carbon percentage: 4.73 wt.%), especially. Active carbon-ceramic sphere supported ruthenium catalysts were prepared using the RuCl(3) solution impregnation onto these supports, the ruthenium loading was fixed at 1-5 wt.% of AC in the support. The catalytic activity varies according to the following order: Ru/KC-120>Ru/KC-80>Ru/KC-60>KC-120>without catalysts. It is found that the 3 wt.% Ru/KC-120 catalyst displays highest stability in the CWAO of resin effluent during 30 days. Chemical oxygen demand (COD) and phenol removal were about 92% and 96%, respectively at the reaction temperature of 200 degrees C, oxygen pressure of 1.5 MPa, the water flow rate of 0.75 L h(-1) and the oxygen flow rate of 13.5 L h(-1). 2010 Elsevier B.V. All rights reserved.

  20. Treatment of printing and dyeing wastewater by catalytic wet hydrogen peroxide oxidation of honeycomb cinder as carrier catalyst

    Science.gov (United States)

    Zhang, D. H.; Yang, H. M.; Ou, Y. J.; Xu, C.; Gu, J. C.

    2017-06-01

    Under the condition of 35 °C, honeycomb cinder was used as the carrier, nickel as the active ingredient, impregnated for 2h, and calcined at 300 °C for 2h. The catalyst was used to Catalytic Wet Peroxide Oxidation of methylene blue simulated printing and dyeing wastewater. The effect of the amount of catalyst, the amount of catalyst, the reaction temperature and the reaction time on the treatment efficiency and the effect of the self-made catalyst on the simulated wastewater with different concentration gradient were studied in the experiment. The results showed that when the reaction conditions were H2O2 8ml/L, catalyst 12g/L and reaction time 1h, the degradation rate of methylene blue reached more than 77% for the wastewater with concentration ranging from 40 mg/L to 200 mg/L. In addition, at a temperature of 30 DEG C, the wastewater, the concentration was 80mg/L, degradation rate was up to 85.70%.

  1. Wet oxidation of quinoline

    DEFF Research Database (Denmark)

    Thomsen, A.B.; Kilen, H.H.

    1998-01-01

    The influence of oxygen pressure (0.4 and 2 MPa). reaction time (30 and 60 min) and temperature (260 and 280 degrees C) on the wet oxidation of quinoline has been studied. The dominant parameters for the decomposition of quinoline were oxygen pressure and reaction temperature. whereas the reaction...... time was less important within the range studied. Nitrifying bacteria were used to measure the inhibition from wet oxidative-treated samples to study the effect of the (wet oxidation) reaction conditions. Wet oxidation made quinoline more toxic to Nitrosomonas. This was observed for Nitrobacter as well....... The combined wet oxidation and biological treatment of reaction products resulted in 91% oxidation of the parent compound to CO2 and water. Following combined wet oxidation and biological treatment the sample showed low toxicity towards Nitrosomonas and no toxicity towards Nitrobacter. (C) 1998 Elsevier...

  2. [Catalytic stability in wet air oxidation of carboxylic acids over ZnFe0.25Al1.75 O4 catalyst].

    Science.gov (United States)

    Xu, Ai-hua; Yang, Min; Du, Hong-zhang; Peng, Fu-yong; Sun, Cheng-lin

    2007-07-01

    Oxalic, formic and acetic acid are main intermediate products in catalytic wet air oxidation process (CWAO). The catalytic activity and stability in CWAO of the three short-chain organic acids over ZnFe0.25Al1.75O4 catalyst were studied. Oxalic acid is the only oxidizable intermediate and the largest amount of Fe leaching is 9.5 mg L(-1) at 160 degrees C during CWAO process. Formic and acetic acid have little influence on Fe leaching. Due to the strong reducible ability of oxalic acid, the amount of Fe leaching is larger in nitrogen atmosphere than that in oxygen atmosphere. Salicylic acid can be also degraded by ZnFe0.25Al1.75O4 catalyst with a high catalytic activity and stability.

  3. Catalytic gasification of dry and wet biomass

    NARCIS (Netherlands)

    van Rossum, G.; Potic, B.; Kersten, Sascha R.A.; van Swaaij, Willibrordus Petrus Maria

    2009-01-01

    Catalytic gasification of dry biomass and of wet biomass streams in hot compressed water are reviewed and discussed as potential technologies for the production of synthesis gas, hydrogen- and methane-rich gas. Next to literature data also new experimental results from our laboratory on catalytic

  4. Enhanced activity and stability of copper oxide/γ-alumina catalyst in catalytic wet-air oxidation: Critical roles of cerium incorporation

    Science.gov (United States)

    Zhang, Yongli; Zhou, Yanbo; Peng, Chao; Shi, Junjun; Wang, Qingyu; He, Lingfeng; Shi, Liang

    2018-04-01

    By successive impregnation method, the Ce-modified Cu-O/γ-Al2O3 catalyst was prepared and characterized using nitrogen adsorption-desorption, scanning electron microscopy energy dispersive X-ray analysis (SEM-EDS), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman, and H2-Temperature programming reduction (H2-TPR). In catalytic wet-air oxidation (CWAO) process for the printing and dyeing wastewater (PDW), the effects of Ce addition on performance, mechanism and kinetics of the catalyst were investigated. The Ce addition increases the Brunauer-Emmett-Teller (BET) surface area and pore volume of the catalyst and makes the active components uniformly distributed on the catalyst surface. Formation of a stable CuAl2O4 solid solution by anchoring Cu onto the γ-Al2O3 crystal lattice leads to a significant decrease in metal leaching of the Ce-modified catalyst. The proportion of lattice oxygen in the catalyst substantially increases and the apparent activation energy of Cu-O/γ-Al2O3 catalyst decreases owing to Ce addition. Therefore, the catalytic activity and stability of the Ce-modified catalyst are considerably improved. The scavengers experiments identify the active species existed in the CWAO reaction system, with the order of reactivity: h+ > O2•- > H2O2 > HO•. This novel Cu-Ce-O/γ-Al2O3 catalyst has great potential in applications for treatment of concentrated organic wastewater due to its superior catalytic activity and improved stability.

  5. Ce1-xFexO2 nanocatalysts for priority organic pollutants removal through catalytic wet air oxidation

    Directory of Open Access Journals (Sweden)

    Anushree

    2017-12-01

    Full Text Available A series of Ce1-xFexO2 nanocatalysts, prepared by co-precipitation method, were applied for the catalytic oxidation of priority organic pollutants present in paper industry wastewater. To investigate the synergic effect of various Fe contents, detailed characterizations of Ce1-xFexO2 were done by Raman, XPS, XRD, TEM and EDX techniques. The addition of Fe to CeO2 lattice increased the amount of oxygen vacancies, which have an efficient role in the oxidation of organic pollutants under oxygen-rich conditions. Ce0.4Fe0.6O2 catalyst showed the highest removal of TOC (72%, AOX (68%, chlorophenols (62% and chloroguaicols (86%. The superior catalytic activity of Ce0.4Fe0.6O2 is ascribed to its higher oxygen vacancy concentration. The presence of two oxidation states of Ce (4+,3+ and Fe (3+,2+ confirmed the role of redox couples in oxidation of organic pollutants.

  6. Application of sludge-based carbonaceous materials in a hybrid water treatment process based on adsorption and catalytic wet air oxidation.

    Science.gov (United States)

    Julcour Lebigue, Carine; Andriantsiferana, Caroline; N'Guessan Krou; Ayral, Catherine; Mohamed, Elham; Wilhelm, Anne-Marie; Delmas, Henri; Le Coq, Laurence; Gerente, Claire; Smith, Karl M; Pullket, Suangusa; Fowler, Geoffrey D; Graham, Nigel J D

    2010-12-01

    This paper describes a preliminary evaluation of the performance of carbonaceous materials prepared from sewage sludges (SBCMs) in a hybrid water treatment process based on adsorption and catalytic wet air oxidation; phenol was used as the model pollutant. Three different sewage sludges were treated by either carbonisation or steam activation, and the physico-chemical properties of the resultant carbonaceous materials (e.g. hardness, BET surface area, ash and elemental content, surface chemistry) were evaluated and compared with a commercial reference activated carbon (PICA F22). The adsorption capacity for phenol of the SBCMs was greater than suggested by their BET surface area, but less than F22; a steam activated, dewatered raw sludge (SA_DRAW) had the greatest adsorption capacity of the SBCMs in the investigated range of concentrations (<0.05 mol L(-1)). In batch oxidation tests, the SBCMs demonstrated catalytic behaviour arising from their substrate adsorptivity and metal content. Recycling of SA_DRAW in successive oxidations led to significant structural attrition and a hardened SA_DRAW was evaluated, but found to be unsatisfactory during the oxidation step. In a combined adsorption-oxidation sequence, both the PICA carbon and a selected SBCM showed deterioration in phenol adsorption after oxidative regeneration, but a steady state performance was reached after 2 or 3 cycles. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Catalytic wet air oxidation of bisphenol A solution in a batch-recycle trickle-bed reactor over titanate nanotube-based catalysts.

    Science.gov (United States)

    Kaplan, Renata; Erjavec, Boštjan; Senila, Marin; Pintar, Albin

    2014-10-01

    Catalytic wet air oxidation (CWAO) is classified as an advanced oxidation process, which proved to be highly efficient for the removal of emerging organic pollutant bisphenol A (BPA) from water. In this study, BPA was successfully removed in a batch-recycle trickle-bed reactor over bare titanate nanotube-based catalysts at very short space time of 0.6 min gCAT g(-1). The as-prepared titanate nanotubes, which underwent heat treatment at 600 °C, showed high activity for the removal of aqueous BPA. Liquid-phase recycling (5- or 10-fold recycle) enabled complete BPA conversion already at 200 °C, together with high conversion of total organic carbon (TOC), i.e., 73 and 98 %, respectively. The catalyst was chemically stable in the given range of operating conditions for 189 h on stream.

  8. Degradation of cationic red GTL by catalytic wet air oxidation over Mo-Zn-Al-O catalyst under room temperature and atmospheric pressure.

    Science.gov (United States)

    Xu, Yin; Li, Xiaoyi; Cheng, Xiang; Sun, Dezhi; Wang, Xueye

    2012-03-06

    To overcome the drawback of catalytic wet air oxidation (CWAO) with high temperature and high pressure, the catalytic activity of Mo-Zn-Al-O catalyst for degradation of cationic red GTL under room temperature and atmospheric pressure was investigated. Mo-Zn-Al-O catalyst was prepared by coprecipitation and impregnation. XRD, TG-DTG, and XPS were used to characterize the resulting sample. Central composition design using response surface methodology was employed to optimize correlation of factors on the decolorization of cationic red GTL. The results show that the optimal conditions of pH value, initial concentration of dye and catalyst dosage were found to be 4.0, 85 mg/L and 2.72 g/L, respectively, for maximum decolorization of 80.1% and TOC removal of 50.9%. Furthermore, the reaction on the Mo-Zn-Al-O catalyst and degradation mechanism of cationic red GTL was studied by Electron spin resonance (ESR) and GC-MS technique. The possible reaction mechanism was that the Mo-Zn-Al-O catalyst can efficiently react with adsorbed oxygen/H(2)O to produce ·OH and (1)O(2) and finally induce the degradation of cationic red GTL. GC-MS analysis of the degradation products indicates that cationic red GTL was initiated by the cleavage of -N ═ N- and the intermediates were further oxidized by ·OH or (1)O(2).

  9. Microwave assisted catalytic wet air oxidation of H-acid in aqueous solution under the atmospheric pressure using activated carbon as catalyst

    International Nuclear Information System (INIS)

    Zhang Yaobin; Quan Xie; Chen Shuo; Zhao Yazhi; Yang Fenglin

    2006-01-01

    Catalytic wet air oxidation (CWAO) is a promising method for the treatment of heavily contaminated wastewater. However, its application is restricted due to severe operation conditions (high pressure and high temperature). A microwave (MW) assisted oxidation method was investigated aiming to treat heavily contaminated wastewater under milder conditions. H-acid (1-amino-8-naphthol-3, 6-disulfonic acid) was selected as target compound to evaluate the performance of this novel process. The removal of H-acid and TOC (total organic carbon) for H-acid solution of 3000 mg/L reached as high as 92.6% in 20 min and 84.2% in 60 min, respectively under optimal conditions. The existence of activated carbon and oxygen proved to be critical for effective treatment. The activated carbon acted not only as a catalyst for H-acid decomposition, but also as a special material for the absorption of MW energy. Air was supplied to the reactor as an oxygen source at constant flows. The amino group in H-acid was converted ultimately into nitrate, and sulfonic group into sulfate. This observation gave an evidence of H-acid mineralization although other organic intermediates were unable to be determined. The value of BOD 5 /COD (ratio of 5d biochemical oxygen demand to chemical oxygen demand) increased from 0.008 to 0.467 indicating a significant improvement of biodegradability for the solution, which is beneficial for the further biological treatment of the wastewater

  10. APPLICATION OF MAGNETIC CATALYSTS TO THE CATALYTIC WET PEROXIDE OXIDATION (CWPO OF INDUSTRIAL WASTEWATER CONTAINING NON BIODEGRADABLE ORGANIC POLLUTANTS

    Directory of Open Access Journals (Sweden)

    Macarena Munoz

    2014-03-01

    Full Text Available A new ferromagnetic -Al2O3-supported iron catalyst has been prepared and its activity and stability have been compared with those of a previous iron-based conventional catalyst and with the traditional homogeneous Fenton process in the oxidation of chlorophenols. The use of solid catalysts improved significantly the efficiency on the use of H2O2, achieving higher mineralization degrees. The magnetic catalyst led to significantly higher oxidation rates than the conventional one due to the presence of both Fe (II and Fe (III. On the other hand, the use of a catalyst with magnetic properties is of interest, since it allows rapid recovery after treatment using a magnetic field. Moreover, it showed a high stability with fairly low iron leaching (<1% upon CWPO runs. An additional clear advantage of this new catalyst is its easy separation and recovery from the reaction medium by applying an external magnetic field.

  11. Abatement of phenolic mixtures by catalytic wet oxidation enhanced by Fenton's pretreatment: Effect of H2O2 dosage and temperature

    International Nuclear Information System (INIS)

    Santos, A.; Yustos, P.; Rodriguez, S.; Simon, E.; Garcia-Ochoa, F.

    2007-01-01

    Catalytic wet oxidation (CWO) of a phenolic mixture containing phenol, o-cresol and p-cresol (500 mg/L on each pollutant) has been carried out using a commercial activated carbon (AC) as catalyst, placed in a continuous three-phase reactor. Total pressure was 16 bar and temperature was 127 deg. C. Pollutant conversion, mineralization, intermediate distribution, and toxicity were measured at the reactor outlet. Under these conditions no detoxification of the inlet effluent was found even at the highest catalyst weight (W) to liquid flow rate (Q L ) ratio used. On the other hand, some Fenton Runs (FR) have been carried out in a batch way using the same phenolic aqueous mixture previously cited. The concentration of Fe 2+ was set to 10 mg/L. The influence of the H 2 O 2 amount (between 10 and 100% of the stoichiometric dose) and temperature (30, 50, and 70 deg. C) on phenols conversion, mineralization, and detoxification have been analyzed. Phenols conversion was near unity at low hydrogen peroxide dosage but mineralization and detoxification achieved an asymptotic value at each temperature conditions. The integration of Fenton reagent as pretreatment of the CWO process remarkably improves the efficiency of the CWO reactor and allows to obtain detoxified effluents at mild temperature conditions and relatively low W/Q L values. For a given phenolic mixture a temperature range of 30-50 deg. C in the Fenton pretreatment with a H 2 O 2 dosage between 20 and 40% of the stoichiometric amount required can be proposed

  12. Integrated catalytic wet air oxidation and aerobic biological treatment in a municipal WWTP of a high-strength o-cresol wastewater.

    Science.gov (United States)

    Suarez-Ojeda, María Eugenia; Guisasola, Albert; Baeza, Juan A; Fabregat, Azael; Stüber, Frank; Fortuny, Agustí; Font, Josep; Carrera, Julián

    2007-02-01

    This study examines the feasibility of coupling a Catalytic Wet Air Oxidation (CWAO), with activated carbon (AC) as catalyst, and an aerobic biological treatment to treat a high-strength o-cresol wastewater. Two goals are pursued: (a) To determine the effect of the main AC/CWAO intermediates on the activated sludge of a municipal WasteWater Treatment Plant (WWTP) and (b) To demonstrate the feasibility of coupling the AC/CWAO effluent as a part of the influent of a municipal WWTP. In a previous study, a high-strength o-cresol wastewater was treated by AC/CWAO aiming to establish the distribution of intermediates and the biodegradability enhancement. In this work, the biodegradability, toxicity and inhibition of the most relevant intermediates detected in the AC/CWAO effluent were determined by respirometry. Also, the results of a pilot scale municipal WWTP study for an integrated AC/CWAO-aerobic biological treatment of this effluent are presented. The biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) of main AC/CWAO intermediates allowed the classification of the intermediates into readily biodegradable, inert or toxic/inhibitory compounds. This detailed study, allowed to understand the biodegradability enhancement exhibited by an AC/CWAO effluent and to achieve a successful strategy for coupling the AC/CWAO step with an aerobic biological treatment for a high-strength o-cresol wastewater. Using 30%, as COD, of AC/CWAO effluent in the inlet to the pilot scale WWTP, the integrated AC/CWAO-biological treatment achieved a 98% of total COD removal and, particularly, a 91% of AC/CWAO effluent COD removal without any undesirable effect on the biomass.

  13. Total catalytic wet oxidation of phenol and its chlorinated derivates with MnO2/CeO2 catalyst in a slurry

    OpenAIRE

    Luna, A. J.; Rojas, L. O. A.; Melo, D. M. A.; Benachour, M.; Sousa, J. F. de

    2009-01-01

    In the present work, a synthetic effluent of phenol was treated by means of a total oxidation process-Catalyzed Wet Oxidation (CWO). A mixed oxide of Mn-Ce (7:3), the catalyst, was synthesized by co-precipitation from an aqueous solution of MnCl2 and CeCl3 in a basic medium. The mixed oxide, MnO2/CeO2, was characterized and used in the oxidation of phenol in a slurry reactor in the temperature range of 80-130ºC and pressure of 2.04-4.76 MPa. A phenol solution containing 2.4-dichlorophenol and...

  14. The optimization, kinetics and mechanism of m-cresol degradation via catalytic wet peroxide oxidation with sludge-derived carbon catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yamin [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wei, Huangzhao; Zhao, Ying [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Sun, Wenjing [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Sun, Chenglin, E-mail: clsun@dicp.ac.cn [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2017-03-15

    Highlights: • The sludge derived carbon modified with 0 °C acid was used as catalyst in CWPO. • RSM was used to optimize CWPO reaction conditions of m-cresol for the first time. • The kinetic model was disclosed to be correlated with residue target concentration. • The proposed degradation pathways of m-cresol were well proven by DFT method. - Abstract: The sludge-derived carbon catalyst modified with 0 °C HNO{sub 3} solution was tested in catalytic wet peroxide oxidation of m-cresol (100 mg L{sup −1}) with systematical mathematical models and theoretical calculation for the first time. The reaction conditions were optimized by response surface methodology (RSM) as T = 60 °C, initial pH = 3.0, C{sub 0,H2O2(30%)} = 1.20 g L{sup −1} (lower than the stoichiometric amount of 1.80 g L{sup −1}) and C{sub cat} = 0.80 g L{sup −1}, with 96% of m-cresol and 47% of TOC converted after 16 min and 120 min of reaction, respectively, and ξ (mg TOC/g H{sub 2}O{sub 2} fed) = 83.6 mg/g. The end time of the first kinetic period in m-cresol model was disclosed to be correlated with the fixed residue m-cresol concentration of about 33%. Furthermore, the kinetic constants in models of TOC and H{sub 2}O{sub 2} exactly provide convincing proof of three-dimensional response surfaces analysis by RSM, which showed the influence of the interaction between organics and H{sub 2}O{sub 2} on effective H{sub 2}O{sub 2} utilization. The reaction intermediates over time were identified by gas chromatography–mass spectrometer based on kinetics analysis. Four degradation pathways for m-cresol were proposed, of which the possibility and feasibility were well proven by frontier molecule orbital theory and atomic charge distribution via density functional theory method.

  15. Catalytic performances of supported gold nano-particles in catalytic oxidation of organic acids by wet way; Performances catalytiques de nanoparticules d'or supportees en oxydation catalytique d'acides organiques par voie humide

    Energy Technology Data Exchange (ETDEWEB)

    Doan, Pham Minh; Aubert, G.; Gallezot, P.; Bessona, M. [Institut de Recherche sur la Catalyse (IRC), UPR 5401-CNRS, 69 - Villeurbanne (France); Zanella, R.; Delannoy, L.; Louis, C. [Paris-6 Univ., Lab. de Reactivite de Surface, UMR 7609-CNRS 75 (France)

    2004-07-01

    It has been shown for the first time that gold catalysts in the form of supported nano-particles, active in the reactions of CO oxidation and VOC combustion, are active too for the elimination reactions of organic acids in aqueous solution by the air wet oxidation process. The acids are mainly oxidized in CO{sub 2} and H{sub 2}O. (O.M.)

  16. Total catalytic wet oxidation of phenol and its chlorinated derivates with MnO2/CeO2 catalyst in a slurry

    Directory of Open Access Journals (Sweden)

    A. J. Luna

    2009-09-01

    Full Text Available In the present work, a synthetic effluent of phenol was treated by means of a total oxidation process-Catalyzed Wet Oxidation (CWO. A mixed oxide of Mn-Ce (7:3, the catalyst, was synthesized by co-precipitation from an aqueous solution of MnCl2 and CeCl3 in a basic medium. The mixed oxide, MnO2/CeO2, was characterized and used in the oxidation of phenol in a slurry reactor in the temperature range of 80-130ºC and pressure of 2.04-4.76 MPa. A phenol solution containing 2.4-dichlorophenol and 2.4-dichlorophenoxyacetic acid was also degraded with good results. A lumped kinetic model, with two parallel reaction steps, fits precisely with the integrated equation and the experimental data. The kinetic parameters obtained are in agreement with the Arrhenius equation. The activation energies were determined to be 38.4 for the total oxidation and 53.4 kJ/mol for the organic acids formed.

  17. Synthesis, characterization and catalytic performance of ZnO-CeO2 nanoparticles in wet oxidation of wastewater containing chlorinated compounds

    Science.gov (United States)

    Anushree; Kumar, S.; Sharma, C.

    2017-11-01

    Here we report the catalytic property of ZnO-CeO2 nanoparticles towards oxidative degradation of organic pollutants present in industrial wastewater. The catalysts were prepared by co-precipitation method without using any surfactant. The physicochemical properties of catalysts were studied by XRD, Raman, XPS, N2-sorption, FE-SEM, TEM and EDX techniques. The characterization results confirmed the formation of porous ZnO-CeO2 nanocatalysts with high surface area, pore volume and oxygen vacancies. ZnO-CeO2 nanocatalysts exhibited appreciable efficiency in CWAO of industrial wastewater under mild conditions. The Ce40Zn60 catalyst was found to be most efficient with 72% color, 64% chemical oxygen demand (COD) and 63% total organic carbon (TOC) removal. Efficient removal of chlorophenolics (CHPs, 59%) and adsorbable organic halides (AOX, 54%) indicated the feasibility of using ZnO-CeO2 nanocatalysts in degradation of non-biodegradable and toxic chlorinated compounds.

  18. Electro Catalytic Oxidation (ECO) Operation

    Energy Technology Data Exchange (ETDEWEB)

    Morgan Jones

    2011-03-31

    The power industry in the United States is faced with meeting many new regulations to reduce a number of air pollutants including sulfur dioxide, nitrogen oxides, fine particulate matter, and mercury. With over 1,000 power plants in the US, this is a daunting task. In some cases, traditional pollution control technologies such as wet scrubbers and SCRs are not feasible. Powerspan's Electro-Catalytic Oxidation, or ECO{reg_sign} process combines four pollution control devices into a single integrated system that can be installed after a power plant's particulate control device. Besides achieving major reductions in emissions of sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), fine particulate matter (PM2.5) and mercury (Hg), ECO produces a highly marketable fertilizer, which can help offset the operating costs of the process system. Powerspan has been operating a 50-MW ECO commercial demonstration unit (CDU) at FirstEnergy Corp.'s R.E. Burger Plant near Shadyside, Ohio, since February 2004. In addition to the CDU, a test loop has been constructed beside the CDU to demonstrate higher NOx removal rates and test various scrubber packing types and wet ESP configurations. Furthermore, Powerspan has developed the ECO{reg_sign}{sub 2} technology, a regenerative process that uses a proprietary solvent to capture CO{sub 2} from flue gas. The CO{sub 2} capture takes place after the capture of NOx, SO{sub 2}, mercury, and fine particulate matter. Once the CO{sub 2} is captured, the proprietary solution is regenerated to release CO{sub 2} in a form that is ready for geological storage or beneficial use. Pilot scale testing of ECO{sub 2} began in early 2009 at FirstEnergy's Burger Plant. The ECO{sub 2} pilot unit is designed to process a 1-MW flue gas stream and produce 20 tons of CO{sub 2} per day, achieving a 90% CO{sub 2} capture rate. The ECO{sub 2} pilot program provided the opportunity to confirm process design and cost estimates, and prepare for large

  19. CATALYTIC ENANTIOSELECTIVE ALLYLIC OXIDATION

    NARCIS (Netherlands)

    Rispens, Minze T.; Zondervan, Charon; Feringa, Bernard

    Several chiral Cu(II)-complexes of cyclic amino acids catalyse the enantioselective allylic oxidation of cyclohexene to cyclohexenyl esters. Cyclohexenyl propionate was obtained in 86% yield with e.e.'s up to 61%.

  20. Selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-31

    In the combustion of fossil fuels, the principal source of nitrogen oxides is nitrogen bound in the fuel structure. In gasification, a large part of fuel nitrogen forms NH{sub 3}, which may form nitrogen oxides during gas combustion. If NH{sub 3} and other nitrogen species could be removed from hot gas, the NO emission could be considerably reduced. However, relatively little attention has been paid to finding new means of removing nitrogen compounds from the hot gasification gas. The possibility of selectively oxidizing NH{sub 3} to N{sub 2} in the hot gasification has been studied at VTT Energy. The largest NH{sub 3} reductions have been achieved by catalytic oxidation on aluminium oxides. (author) (4 refs.)

  1. Advanced methods for the treatment of organic aqueous wastes: wet air oxidation and wet peroxide oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Debellefontaine, Hubert; Chakchouk, Mehrez; Foussard, Jean Noel [Institut National des Sciences Appliquees (INSA), 31 - Toulouse (France). Dept. de Genie des Procedes Industriels; Tissot, Daniel; Striolo, Phillipe [IDE Environnement S.A., Toulouse (France)

    1993-12-31

    There is a growing concern about the problems of wastes elimination. Various oxidation techniques are suited for elimination of organic aqueous wastes, however, because of the environmental drawbacks of incineration, liquid phase oxidation should be preferred. `Wet Air Oxidation` and `Wet Peroxide Oxidation`are alternative processes which are discussed in this paper. 17 refs., 13 figs., 4 tabs.

  2. Wet-cupping removes oxidants and decreases oxidative stress.

    Science.gov (United States)

    Tagil, Suleyman Murat; Celik, Huseyin Tugrul; Ciftci, Sefa; Kazanci, Fatmanur Hacievliyagil; Arslan, Muzeyyen; Erdamar, Nazan; Kesik, Yunus; Erdamar, Husamettin; Dane, Senol

    2014-12-01

    Wet-cupping therapy is one of the oldest known medical techniques. Although it is widely used in various conditions such as acute\\chronic inflammation, infectious diseases, and immune system disorders, its mechanism of action is not fully known. In this study, we investigated the oxidative status as the first step to elucidate possible mechanisms of action of wet cupping. Wet cupping therapy is implemented to 31 healthy volunteers. Venous blood samples and Wet cupping blood samples were taken concurrently. Serum nitricoxide, malondialdehyde levels and activity of superoxide dismutase and myeloperoxidase were measured spectrophotometrically. Wet cupping blood had higher activity of myeloperoxidase, lower activity of superoxide dismutase, higher levels of malondialdehyde and nitricoxide compared to the venous blood. Wet cupping removes oxidants and decreases oxidative stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Development of a catalytic system for gasification of wet biomass

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.; Sealock, L.J.; Phelps, M.R.; Neuenschwander, G.G.; Hart, T.R. [Pacific Northwest Lab., Richland, WA (United States)

    1993-12-31

    A gasification system is under development at Pacific Northwest Laboratory that can be used with high-moisture biomass feedstocks. The system operates at 350{degrees}C and 205 atm using a liquid water phase as the processing medium. Since a pressurized system is used, the wet biomass can be fed as a slurry to the reactor without drying. Through the development of catalysts, a useful processing system has been produced. This paper includes assessment of processing test results of different catalysts. Reactor system results including batch, bench-scale continuous, and engineering-scale processing results are presented to demonstrate the applicability of this catalytic gasification system to biomass. The system has utility both for direct conversion of biomass to fuel gas or as a wastewater cleanup system for treatment of unconverted biomass from bioconversion processes. By the use of this system high conversions of biomass to fuel gas can be achieved. Medium-Btu is the primary product. Potential exists for recovery/recycle of some of the unreacted inorganic components from the biomass in the aqueous byproduct stream.

  4. Conference: the wet catalytic oxidation, a technology for the removal of organic pollutants in industrial waters; Conference: l'oxydation voie humide catalytique, une technologie pour l'elimination des polluants organiques dans les eaux industrielles

    Energy Technology Data Exchange (ETDEWEB)

    Besson, M. [Institut de recherches sur la catalyse - CNRS, 2 avenue Albert Einstein, 69626 Villeurbanne Cedex (France)

    2004-07-01

    In this conference, it is taken stock on the use of catalysts in the wet oxidation process. Supported (TiO{sub 2}, ZrO{sub 2}....) heterogeneous metallic catalysts (Pt, Ru...) are particularly studied. It is shown that this type of catalysts can answer to the required characteristics: activity for the removal of organic matter, lack of active metal leaching in aqueous acid medium, no deactivation...Examples are given. (O.M.)

  5. Wet oxidation catalyzed by ruthenium supported on cerium (IV) oxides

    International Nuclear Information System (INIS)

    Imamura, S.; Fukuda, I.; Ishida, S.

    1988-01-01

    The activity of precious meta catalysts in the wet oxidation of organic compounds was investigated. Ruthenium was the most active catalyst among the precious metals examined, and cerium (IV) oxide was the most effective support. The Ru/Ce catalyst rivaled homogeneous copper catalyst, which is used in the practical wastewater treatment, for the oxidation of n-propyl alcohol, n-butyl alcohol, phenol, acetamide, poly (propylene glycol), and acetic acid. In addition, it was especially effective for the oxidation of some compounds with high oxygen content such as poly (ethylene glycol), ethylene glycol, formaldehyde, and formic acid

  6. Development of Pillared Clays for Wet Hydrogen Peroxide Oxidation of Phenol and Its Application in the Posttreatment of Coffee Wastewater

    Directory of Open Access Journals (Sweden)

    Nancy R. Sanabria

    2012-01-01

    Full Text Available This paper focuses on the use of pillared clays as catalysts for the Fenton-like advanced oxidation, specifically wet hydrogen peroxide catalytic oxidation (WHPCO. This paper discusses the limitations on the application of a homogeneous Fenton system, development of solid catalysts for the oxidation of phenol, advances in the synthesis of pillared clays, and their potential application as catalysts for phenol oxidation. Finally, it analyzes the use of pillared clays as heterogeneous Fenton-like catalysts for a real wastewater treatment, emphasizing the oxidation of phenolic compounds present in coffee wastewater. Typically, the wet hydrogen peroxide catalytic oxidation in a real effluent system is used as pretreatment, prior to biological treatment. In the specific case of coffee wet processing wastewater, catalytic oxidation with pillared bentonite with Al-Fe is performed to supplement the biological treatment, that is, as a posttreatment system. According to the results of catalytic activity of pillared bentonite with Al-Fe for oxidation of coffee processing wastewater (56% phenolic compounds conversion, 40% selectivity towards CO2, and high stability of active phase, catalytic wet hydrogen peroxide oxidation emerges as a viable alternative for management of this type of effluent.

  7. Development studies for a novel wet oxidation process

    International Nuclear Information System (INIS)

    Dhooge, P.M.; Hakim, L.B.

    1994-01-01

    A catalytic wet oxidation process (DETOX), which uses an acidic iron solution to oxidize organic compounds to carbon dioxide, water, and other simple products, was investigated as a potential method for the treatment of multicomponent hazardous and mixed wastes. The organic compounds picric acid, poly(vinyl chloride), tetrachlorothiophene, pentachloropyridine, Aroclor 1260 (a polychlorinated biphenyl), and hexachlorobenzene were oxidized in 125 ml reaction vessels. The metals arsenic, barium, beryllium, cadmium, cerium (as a surrogate for plutonium), chromium, lead, mercury, neodymium (as a surrogate for uranium), nickel, and vanadium were tested in the DETOX solution. Barium, beryllium, cerium, chromium, mercury, neodymium, nickel, and vanadium were all found to be very soluble (>100 g/l) in the DETOX chloride-based solution. Arsenic, barium, cadmium, and lead solubilities were lower. Lead could be selectively precipitated from the DETOX solution. Chromium(VI) was reduced to relatively non-toxic chromium(III) by the solution. Six soils were contaminated with arsenic, barium, beryllium, chromium, lead, and neodymium oxides at approximately 0.1% by weight, and benzene, trichloroethene, mineral oil, and Aroclor 1260 at approximately 5% by weight total, and 5.g amounts treated with the DETOX solution in unstirred 125. ml reaction bombs. It is felt that soil treatment in a properly designed system is entirely possible despite incomplete oxidation of the less volatile organic materials in these unstirred tests

  8. Synthesis, spectroscopic characterization and catalytic oxidation ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 123; Issue 3. Synthesis, spectroscopic characterization and catalytic oxidation properties of ONO/ONS donor Schiff base ruthenium(III) complexes containing PPh3/AsPh3. Priyarega M Muthu Tamizh R Karvembu R Prabhakaran K Natarajan. Volume 123 Issue 3 May ...

  9. Model catalytic oxidation studies using supported monometallic and heterobimetallic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Ekerdt, J.G.

    1992-02-03

    This research program is directed toward a more fundamental understanding of the effects of catalyst composition and structure on the catalytic properties of metal oxides. Metal oxide catalysts play an important role in many reactions bearing on the chemical aspects of energy processes. Metal oxides are the catalysts for water-gas shift reactions, methanol and higher alcohol synthesis, isosynthesis, selective catalytic reduction of nitric oxides, and oxidation of hydrocarbons. A key limitation to developing insight into how oxides function in catalytic reactions is in not having precise information of the surface composition under reaction conditions. To address this problem we have prepared oxide systems that can be used to study cation-cation effects and the role of bridging (-O-) and/or terminal (=O) surface oxygen anion ligands in a systematic fashion. Since many oxide catalyst systems involve mixtures of oxides, we selected a model system that would permit us to examine the role of each cation separately and in pairwise combinations. Organometallic molybdenum and tungsten complexes were proposed for use, to prepare model systems consisting of isolated monomeric cations, isolated monometallic dimers and isolated bimetallic dimers supported on silica and alumina. The monometallic and bimetallic dimers were to be used as models of more complex mixed- oxide catalysts. Our current program was to develop the systems and use them in model oxidation reactions.

  10. Specific features of aluminum nanoparticle water and wet air oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Lozhkomoev, Aleksandr S., E-mail: asl@ispms.tsc.ru; Glazkova, Elena A., E-mail: eagl@ispms.tsc.ru; Svarovskaya, Natalia V., E-mail: nvsv@ispms.tsc.ru; Bakina, Olga V., E-mail: ovbakina@ispms.tsc.ru; Kazantsev, Sergey O., E-mail: kzso@mail.ru; Lerner, Marat I., E-mail: lerner@ispms.tsc.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    The oxidation processes of the electrically exploded aluminum nanopowders in water and in wet air are examined in the paper. The morphology of the intermediate reaction products of aluminum oxidation has been studied using the transmission electron microscopy. It was shown that the aluminum nanopowder water oxidation causes the formation of the hollow spheres with mesoporous boehmite nanosheets coating. The wedge-like bayerite particles are formed during aluminum nanopowder wet air oxidation.

  11. Enhanced wet air oxidation : synergistic rate acceleration upon effluent recirculation

    Science.gov (United States)

    Matthew J. Birchmeier; Charles G. Hill; Carl J. Houtman; Rajai H. Atalla; Ira A. Weinstock

    2000-01-01

    Wet air oxidation (WAO) reactions of cellobiose, phenol, and syringic acid were carried out under mild conditions (155°C; 0.93MPa 02; soluble catalyst, Na5[PV2Mo10O40]). Initial oxidation rates were rapid but decreased to small values as less reactive oxidation products accumulated. Recalcitrant oxidation products were consumed more rapidly, however, if additional...

  12. Catalytic oxidation of soot over alkaline niobates

    International Nuclear Information System (INIS)

    Pecchi, G.; Cabrera, B.; Buljan, A.; Delgado, E.J.; Gordon, A.L.; Jimenez, R.

    2013-01-01

    Highlights: ► No previous reported studies about alkaline niobates as catalysts for soot oxidation. ► NaNbO 3 and KNbO 3 perovskite-type oxides show lower activation energy than other lanthanoid perovskite-type oxides. ► The alkaline niobate does not show deactivation by metal loss. - Abstract: The lack of studies in the current literature about the assessment of alkaline niobates as catalysts for soot oxidation has motivated this research. In this study, the synthesis, characterization and assessment of alkaline metal niobates as catalysts for soot combustion are reported. The solids MNbO 3 (M = Li, Na, K, Rb) are synthesized by a citrate method, calcined at 450 °C, 550 °C, 650 °C, 750 °C, and characterized by AAS, N 2 adsorption, XRD, O 2 -TPD, FTIR and SEM. All the alkaline niobates show catalytic activity for soot combustion, and the activity depends basically on the nature of the alkaline metal and the calcination temperature. The highest catalytic activity, expressed as the temperature at which combustion of carbon black occurs at the maximum rate, is shown by KNbO 3 calcined at 650 °C. At this calcination temperature, the catalytic activity follows an order dependent on the atomic number, namely: KNbO 3 > NaNbO 3 > LiNbO 3 . The RbNbO 3 solid do not follow this trend presumably due to the perovskite structure was not reached. The highest catalytic activity shown by of KNbO 3 , despite the lower apparent activation energy of NaNbO 3 , stress the importance of the metal nature and suggests the hypothesis that K + ions are the active sites for soot combustion. It must be pointed out that alkaline niobate subjected to consecutive soot combustion cycles does not show deactivation by metal loss, due to the stabilization of the alkaline metal inside the perovskite structure.

  13. Session 6: Water depollution from aniline and phenol by air oxidation and adsorptive-catalytic oxidation in liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Dobrynkin, N.M.; Batygina, M.V.; Noskov, A.S. [Boreskov Institute of Catalysis of Siberian Branch of Russian Academy of Sciences, Pr. Ak. Lavrentieva (Russian Federation)

    2004-07-01

    This paper is devoted to development of carbon catalysts and application of catalytic wet air oxidation for deep cleaning of polluted waters. The described catalysts and method are solving the problem of development environmentally reliable method for fluids treatment and allow carrying out the adsorption of pollutants on carbon CAPM (catalytically active porous material) with following regeneration of the CAPM without the loss of adsorptive qualities. The experiments have shown a principal capability simultaneously to use carbon CAPM as adsorbent and either as catalyst, or as a catalyst support for oxidation of aniline and phenol in water solutions. (authors)

  14. Lignin Valorization using Heterogenous Catalytic Oxidation

    DEFF Research Database (Denmark)

    Melián Rodríguez, Mayra; Shunmugavel, Saravanamurugan; Kegnæs, Søren

    The research interests in biomass conversion to fuels and chemicals has increased significantly in the last decade in view of current problems such as global warming, high oil prices, food crisis and other geopolitical scenarios. Many different reactions and processes to convert biomass into high......-value products and fuels have been proposed in the literature, giving special attention to the conversion of lignocellulosic biomass, which does not compete with food resources and is widely available as a low cost feedstock 1. Lignocellulose biomass is a complex material composed of three main fractions...... be obtained 2. Heiko Lange et al., has reported that the catalytic oxidation products of lignin and lignin model compounds range from aromatic aldehyde and carboxylic acid and they must be originate form oxidation of side chain. The products we obtained in these reactions are based on the severity...

  15. Microwave Catalytic Oxidation of Hydrocarbons in Aqueous Solutions

    National Research Council Canada - National Science Library

    Cha, Chang

    2003-01-01

    .... A sufficient amount of experimental work has been completed evaluating the performance of the microwave catalytic oxidation process and determining the effect of different operating parameters...

  16. 1 - Aromatization of n-hexane and natural gasoline over ZSM-5 zeolite, 2- Wet catalytic oxidation of phenol on fixed bed of active carbon; 1 - Aromatisation de n-hexane et d'essence sur zeolithe ZSM-5, 2 - Oxydation catalytique en voie humide du phenol sur charbon actif

    Energy Technology Data Exchange (ETDEWEB)

    Suwanprasop, S.

    2005-04-15

    I - The production of aromatic hydrocarbons from n-hexane and natural gasoline over Pd loaded ZSM-5 zeolite in a tubular reactor was achieved under the suitable conditions at 400 deg. C, and 0.4 ml/min reactant feeding rate, employing ZSM-5 (0.5% Pd content) as a catalyst. Under these conditions, n-hexane and natural gasoline conversions were found to be 99.7% and 94.3%, respectively (with respective aromatic selectivity of 92.3% and 92.6%). II - Wet catalytic air oxidation of phenol over a commercial active carbon was studied in a three phase fixed bed reactor under mild temperature and oxygen partial pressure. Exit phenol concentration, COD, and intermediates were analysed. Oxidation of phenol was significantly improved when increasing operating temperature, oxygen partial pressure, and liquid space time, while up or down flow modes had only marginal effect. A complete model involving intrinsic kinetics and all mass transfer limitations gave convenient reactor simulation. (author)

  17. Wet-air oxidation cleans up black wastewater

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    Sterling Organics produces the analgesic paracetamol (acetaminophen) at its Dudley, England, plant. The wastewater from the batch process contains intermediates such as para-aminophenol (PAP) and byproducts such as thiosulfates, sulfites and sulfides. To stay ahead of increasingly strict environmental legislation, Sterling Organics installed a wet-air oxidation system at the Dudley facility in August 1992. The system is made by Zimpro Environmental Inc. (Rothschild, Wis.). Zimpro's wet-air oxidation system finds a way around the limitations of purely chemical or physical processes. In the process, compressed air at elevated temperature and pressure oxidizes the process intermediates and byproducts and removes the color from the wastewater.

  18. Ruthenium and Platinum Catalysts Supported on Ce, Zr, Pr-O Mixed Oxides Prepared by Soft Chemistry for Acetic Acid Wet Air Oxidation

    Czech Academy of Sciences Publication Activity Database

    Mikulová, Jana; Rossignol, S.; Barbier Jr., J.; Mesnard, D.; Kappenstein, C.; Duprez, D.

    2007-01-01

    Roč. 72, 1-2 (2007), s. 1-10 ISSN 0926-3373 Institutional research plan: CEZ:AV0Z40720504 Keywords : sol-gel * catalytic wet air oxidation * acetic acid Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.651, year: 2007

  19. Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gary Blythe; Conor Braman; Katherine Dombrowski; Tom Machalek

    2010-12-31

    This document is the final technical report for Cooperative Agreement DE-FC26-04NT41992, 'Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,' which was conducted over the time-period January 1, 2004 through December 31, 2010. The objective of this project has been to demonstrate at pilot scale the use of solid catalysts and/or fixed-structure mercury sorbents to promote the removal of total mercury and oxidation of elemental mercury in flue gas from coal combustion, followed by wet flue gas desulfurization (FGD) to remove the oxidized mercury at high efficiency. The project was co-funded by the U.S. DOE National Energy Technology Laboratory (DOE-NETL), EPRI, Great River Energy (GRE), TXU Energy (now called Luminant), Southern Company, Salt River Project (SRP) and Duke Energy. URS Group was the prime contractor. The mercury control process under development uses fixed-structure sorbents and/or catalysts to promote the removal of total mercury and/or oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury not adsorbed is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The project has tested candidate materials at pilot scale and in a commercial form, to provide engineering data for future full-scale designs. Pilot-scale catalytic oxidation tests have been completed for periods of approximately 14 to19 months at three sites, with an additional round of pilot-scale fixed-structure sorbent tests being conducted at one of those sites. Additionally, pilot-scale wet FGD tests have been conducted downstream of mercury oxidation catalysts at a total of four sites. The sites include the two of three sites from this project and two sites where catalytic oxidation pilot testing was conducted as part of a previous DOE-NETL project. Pilot-scale wet FGD tests were also conducted at a fifth site, but with no catalyst or fixed

  20. Catalytic Reactor For Oxidizing Mercury Vapor

    Science.gov (United States)

    Helfritch, Dennis J.

    1998-07-28

    A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.

  1. Reuse of Ammonium Nitrate - Wet Air Oxidation

    National Research Council Canada - National Science Library

    Maloney, Stephen

    1999-01-01

    ... it. AN is commonly used as a fertilizer (80 percent of AN produced) and an oxidizer. Owing to the high demand and wide availability of AN for its most common use, the commercial cost is very low...

  2. Catalytic partial oxidation of pyrolysis oils

    Science.gov (United States)

    Rennard, David Carl

    2009-12-01

    This thesis explores the catalytic partial oxidation (CPO) of pyrolysis oils to syngas and chemicals. First, an exploration of model compounds and their chemistries under CPO conditions is considered. Then CPO experiments of raw pyrolysis oils are detailed. Finally, plans for future development in this field are discussed. In Chapter 2, organic acids such as propionic acid and lactic acid are oxidized to syngas over Pt catalysts. Equilibrium production of syngas can be achieved over Rh-Ce catalysts; alternatively mechanistic evidence is derived using Pt catalysts in a fuel rich mixture. These experiments show that organic acids, present in pyrolysis oils up to 25%, can undergo CPO to syngas or for the production of chemicals. As the fossil fuels industry also provides organic chemicals such as monomers for plastics, the possibility of deriving such species from pyrolysis oils allows for a greater application of the CPO of biomass. However, chemical production is highly dependent on the originating molecular species. As bio oil comprises up to 400 chemicals, it is essential to understand how difficult it would be to develop a pure product stream. Chapter 3 continues the experimentation from Chapter 2, exploring the CPO of another organic functionality: the ester group. These experiments demonstrate that equilibrium syngas production is possible for esters as well as acids in autothermal operation with contact times as low as tau = 10 ms over Rh-based catalysts. Conversion for these experiments and those with organic acids is >98%, demonstrating the high reactivity of oxygenated compounds on noble metal catalysts. Under CPO conditions, esters decompose in a predictable manner: over Pt and with high fuel to oxygen, non-equilibrium products show a similarity to those from related acids. A mechanism is proposed in which ethyl esters thermally decompose to ethylene and an acid, which decarbonylates homogeneously, driven by heat produced at the catalyst surface. Chapter 4

  3. Structural, electrical and catalytic properties of ion-implanted oxides

    NARCIS (Netherlands)

    van Hassel, B.A.; Burggraaf, A.J.

    1989-01-01

    The potential application of ion implantation to modify the surfaces of ceramic materials is discussed. Changes in the chemical composition and microstructure result in important variations of the electrical and catalytic properties of oxides.

  4. Catalytic partial oxidation of methane over porous silica supported VO{sub x} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Pirovano, C.; Schoenborn, E.; Kalevaru, V.N.; Wohlrab, S.; Luecke, B.; Martin, A. [University Rostock e.V., Rostock (Germany). Leibniz Inst. for Catalysis

    2011-07-01

    High surface area mesoporous siliceous MCM-41 and SBA-15 materials have been used as supports to disperse vanadium oxide species using wet impregnation and incipient wetness impregnation methods. These materials were used as catalysts for the partial oxidation of methane (POM) to formaldehyde. The physico-chemical properties of the solids were studied by means of BET, DR-UV/Vis spectroscopy, Py-FTIR and TEM. The influence of support and the preparation method on the dispersion of VOx is also investigated. The catalytic properties of the catalysts were examined in a fixed bed stainless steel reactor at 923 K. So far a maximum production of formaldehyde can be detected on SBA-15 supported VOx-catalysts prepared by incipient wetness impregnation. On this V/SBA-15 material a covalent attachment of catalytic active molecular vanadium species dominates, which in turn leads to a lower activation temperature and thereby reduced over-oxidation. From the best case, the space time yield of HCHO could be reached close to 775 g{sub HCHO} Kg{sub cat}{sup -1} h{sup -1}. (orig.)

  5. Catalytic Oxidation of Allylic Alcohols to Methyl Esters

    DEFF Research Database (Denmark)

    Gallas-Hulin, Agata; Kotni, Rama Krishna; Nielsen, Martin

    2017-01-01

    Aerobic oxidation of allylic alcohols to methyl esters using gold nanoparticles supported on different metal oxide carriers has been performed successfully under mild conditions (room temperature, 0.1 MPa O2) without significant loss of catalytic activity. The effects of different reaction...... parameters are studied to find the suitable reaction conditions. All catalysts are characterised by XRD, XRF and TEM. Among these catalysts, Au/TiO2 showed the most efficient catalytic activity towards the selective oxidation of allylic alcohols to the corresponding esters. Moreover, the same Au/TiO2...... to synthesize methyl esters from allylic alcohols....

  6. Catalytic abatement of nitrous oxide from nitric and production

    NARCIS (Netherlands)

    Oonk, J.

    1998-01-01

    Nitric acid production is identified as a main source of nitrous oxide. Options for emission reduction however are not available. TNO and Hydro Agri studied the technological and economic feasibility of catalytic decomposition of nitrous oxide in nitric acid tail-gases. Although in literature

  7. Catalytic oxidative cracking of hexane as a route to olefins

    NARCIS (Netherlands)

    Boyadjian, C.A.; Lefferts, Leonardus; Seshan, Kulathuiyer

    2010-01-01

    Catalytic oxidative cracking of naphtha is conceptually an alternative process to steam cracking. The performance of sol–gel synthesized Li/MgO in oxidative cracking of hexane as a model compound of naphtha, has been studied and compared to that of conventionally prepared catalyst. At a temperature

  8. Spacecraft Water Regeneration by Catalytic Wet Air Oxidation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this project is to develop advanced catalysts for a volatile removal assembly used to purify spacecraft water. The innovation of the proposed...

  9. Catalytic wet peroxide oxidation of formic acid in wastewater with ...

    African Journals Online (AJOL)

    2016-07-03

    Jul 3, 2016 ... total reflectance Fourier transform infrared (ATR FTIR) spectra ... ATR FTIR. Hydrogen peroxide decomposition test with the naturally- occurring iron ore added as catalyst. Hydrogen peroxide reaction mixtures of different concentrations ..... la degradation superficielle de FeS2, CuFeS2, ZnS et PbS a.

  10. Coupling catalytic hydrolysis and oxidation of HCN over HZSM-5 modified by metal (Fe,Cu) oxides

    Science.gov (United States)

    Hu, Yanan; Liu, Jiangping; Cheng, Jinhuan; Wang, Langlang; Tao, Lei; Wang, Qi; Wang, Xueqian; Ning, Ping

    2018-01-01

    In this work, a series of metal oxides (Fe,Cu) modified HZSM-5 catalysts were synthesized by incipient-wetness impregnation method and then characterized by XRD, N2 adsorption-desorption, H2-TPR, NH3-TPD, UV-vis, FT-IR and XPS measurements. The catalytic hydrolysis and oxidation behaviors toward HCN were investigated. The results indicated that the Fe-Cu/HZSM-5 catalysts exhibited more excellent performence on coupling catalytic hydrolysis and oxidation of HCN than HZSM-5, Fe/HZSM-5, Cu/HZSM-5, and both nearly 100% HCN conversion and 80% N2 selectivity were obtained at about 250 °C. The improved catalytic performance could be ascribed to the creation of highly dispersed iron and copper composites on the surface of the HZSM-5 support, the excellent redox and regulated acid properties of the active ingredients. Moreover, the highly N2 selectivity could be attributed to the good interaction between the Fe and Cu nanocomposites which was facilitated to the NH3-SCR (selective catalytic reduction of NO by NH3) reaction.

  11. CATALYTIC HYDROGENATION AND OXIDATION OF BIOMASS-DERIVED LEVULINIC ACID

    OpenAIRE

    Yan Gong; Lu Lin; Zhipei Yan

    2011-01-01

    Levulinic acid (LA), 4-oxo-pentanoic acid, is a new platform chemical with various potential uses. In this paper, catalytic hydrogenation and oxidation of levulinic acid were studied. It was shown from experiments that levulinic acid can be hydrogenated to γ-valerolactone (GVL) over transition metal catalysts and oxidative-decarboxylated to 2-butanone (methyl-ethyl-ketone, MEK) and methyl-vinyl-ketone (MVK) by cupric oxide (CuO), cupric oxide/cerium oxide (CuO/CeO2), cupric oxide/ alumina (Cu...

  12. Synthesis and characterization of formaldehyde by catalytic oxidation of methanol

    International Nuclear Information System (INIS)

    Salman, M.; Answer, J.; Zaman, W.U.

    2008-01-01

    The catalytic oxidation of methanol to formaldehyde is studied over copper and silver catalysts. The impact of various factors catalytic poisoning, temperature, contact time on the formaldehyde yield have been investigated. An assembly using copper and silver as catalysts has been proposed to prepare formaldehyde in perspective of Pakistan in local industry. All the conditions to optimize the formaldehyde yield were also investigated. The formaldehyde produced was standardized chemically as well as spectroscopically. (author)

  13. Wet Oxidation: A Promising Option for the Treatment of Pulp and Paper Mill Wastewater

    Science.gov (United States)

    Garg, A.

    2012-05-01

    Wet oxidation (WO) is used to degrade persistent organic or inorganic impurities present in industrial wastewater. The process utilizes severe oxidation conditions (i.e., high temperature and pressures) to achieve the efficient degradation of pollutants. To obtain high degradation at lower operation conditions, catalytic WO process is being suggested. The wastewater generated from a pulp and paper mill contains several recalcitrant compounds like lignin, hemi-cellulose, phenols, sulfides etc. Therefore, pulp and paper mill effluent have low biodegradability and are not amenable for conventional biological process. With the implementation of stringent regulations, pulp and paper mill operators need a cleaner disposal route for the wastewater. In this mini-review, the results obtained from the recently published studies on WO treatment for pulp and paper mill effluent are compiled and presented. Finally, the recommendations for the future work are also given.

  14. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe

    2003-01-21

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period October 1, 2002 through December 31, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future fullscale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the fifth full reporting period for the subject Cooperative Agreement. During this period, project efforts included starting up the pilot unit with three catalysts at the first site, conducting catalyst activity measurements, completing comprehensive flue gas sampling and analyses, and procuring additional catalysts for the pilot unit. This technical progress report provides an update on these efforts.

  15. Activity and resistance of iron-containing amorphous, zeolitic and mesostructured materials for wet peroxide oxidation of phenol.

    Science.gov (United States)

    Calleja, G; Melero, J A; Martínez, F; Molina, R

    2005-05-01

    Iron-containing materials have been prepared following several strategies of synthesis and using different silica supports (amorphous, zeolitic and mesostructured materials). Activity and stability of these materials was evaluated on the wet peroxide oxidation of phenol under mild reaction conditions (100 degrees C, air pressure of 1MPa and stoichiometric amount of hydrogen peroxide for the complete mineralisation of phenol). Their catalytic performance was monitored in terms of phenol and total organic carbon (TOC) conversions, by-products distribution (aromatics compounds and carboxylic acids) and degree of metal leached into the aqueous solution. The nature and local environment of iron species is strongly dependent on the synthetic route, which dramatically influences their catalytic performance. Crystalline iron oxide species supported over mesostructured SBA-15 materials have demonstrated to be the most interesting catalysts for phenol degradation according to its high organic mineralisation, low sensitivity to leaching out and good oxidant efficiency.

  16. Synthesis, spectroscopic characterization and catalytic oxidation ...

    Indian Academy of Sciences (India)

    tion in the development of catalysis, magnetism, molec- ular architectures and materials chemistry. Oxidation of alcohols to carbonyl compounds is one of the most pivotal functional group transformations in organic synthesis. Three important natural enzymes used for oxidation reactions are cytochrome P-450, per- oxidases ...

  17. Catalytic partial oxidation of methanol and ethanol for hydrogen generation.

    Science.gov (United States)

    Hohn, Keith L; Lin, Yu-Chuan

    2009-01-01

    Hydrogen-powered fuel cell vehicles feature high energy efficiency and minor environmental impact. Liquid fuels are ideal hydrogen carriers, which can catalytically be converted into syngas or hydrogen to power vehicles. Among the potential liquid fuels, alcohols have several advantages. The hydrogen/carbon ratio is higher than that of other liquid hydrocarbons or oxygenates, especially in the case of methanol. In addition, alcohols can be derived from renewable biomass resources. Catalytic partial oxidation of methanol or ethanol offers immense potential for onboard hydrogen generation due to its rapid reaction rate and exothermic nature. These benefits stimulate a burgeoning research community in catalyst design, reaction engineering, and mechanistic investigation. The purpose of this Minireview is to provide insight into syngas and hydrogen production from methanol and ethanol partial oxidation, particularly highlighting catalytic chemistry.

  18. Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood

    DEFF Research Database (Denmark)

    Palonen, H.; Thomsen, A.B.; Tenkanen, M.

    2004-01-01

    , and the compositions of solid and liquid fractions were analyzed. The solid fraction after wet oxidation contained 58-64% cellulose, 2-16% hemicellulose, and 24-30% lignin. The pretreatment series gave information about the roles of lignin and hemicellulose in the enzymatic hydrolysis. The temperature...... of the pretreatment, the residual hemicellulose content of the substrate, and the type of the commercial cellulase preparation used were the most important factors affecting the enzymatic hydrolysis. The highest sugar yield in a 72-h hydrolysis, 79% of theoretical, was obtained using a pretreatment of 200degrees...

  19. Oxidation of phosphine by sulfur or selenium involving a catalytic ...

    Indian Academy of Sciences (India)

    Administrator

    P NMR spec- troscopy. Such interconversion with the participation of breaking of bridging copper-µ3-sulfur bond with the formation of new copper–phosphorous bond led to the development of a catalytic cycle using excess. PPh3 and S or Se as the reacting substrates. The turnover number for the oxidation of PPh3 by S ...

  20. Solid Waste Decontamination by Thermal Desorption and Catalytic Oxidation Methods

    Czech Academy of Sciences Publication Activity Database

    Šolcová, Olga; Topka, Pavel; Soukup, Karel; Jirátová, Květa; Váňová, H.; Kaštánek, František

    2014-01-01

    Roč. 68, č. 9 (2014), s. 1279-1282 ISSN 0366-6352 R&D Projects: GA MPO FR-TI1/059 Institutional support: RVO:67985858 Keywords : thermal desorption * catalytic oxidation * soil decontamination Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.468, year: 2014

  1. Catalytic Partial Oxidation of Biomass/Oil Mixture

    Czech Academy of Sciences Publication Activity Database

    Veselý, Václav; Hanika, Jiří; Tukač, V.; Lederer, J.; Kovač, D.

    2013-01-01

    Roč. 7, č. 10 (2013), s. 1940-1945 ISSN 1934-8983 R&D Projects: GA TA ČR TE01020080; GA MPO 2A-2TP1/024 Institutional support: RVO:67985858 Keywords : hydrocarbon oil * biomass * catalytic partial oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://www.davidpublishing.com/journals_info.asp?jId=1718#

  2. Catalytic dehydrogenation of light alkanes on metals and metal oxides

    NARCIS (Netherlands)

    Sattler, Jesper J H B|info:eu-repo/dai/nl/328235601; Ruiz-Martinez, Javier|info:eu-repo/dai/nl/341386405; Santillan-Jimenez, Eduardo|info:eu-repo/dai/nl/323171958; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397

    2014-01-01

    A study is conducted to demonstrate catalytic dehydrogenation of light alkanes on metals and metal oxides. The study provides a complete overview of the materials used to catalyze this reaction, as dehydrogenation for the production of light olefins has become extremely relevant. Relevant factors,

  3. Trends in the Catalytic CO Oxidation Activity of Nanoparticles

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Falsig, Hanne; Larsen, Britt Hvolbæk

    2008-01-01

    Going for gold: Density functional calculations show how gold nanoparticles are more active catalysts for CO oxidation than other metal nanoparticles. The high catalytic activity of nanosized gold clusters at low temperature is found to be related to the ability of low-coordinate metal atoms...

  4. Structure and catalytic reactivity of Rh oxides

    DEFF Research Database (Denmark)

    Gustafson, J.; Westerström, R.; Resta, A.

    2009-01-01

    Using a combination of experimental and theoretical techniques, we show that a thin RhO2 surface oxide film forms prior to the bulk Rh2O3 corundum oxide on all close-packed single crystal Rh surfaces. Based on previous reports, we argue that the RhO2 surface oxide also forms on vicinal Rh surfaces...... as well as on Rh nanoparticles. The detailed structure of this film was previously determined using UHV based techniques and density functional theory. In the present paper, we also examine the structure of the bulk Rh2O3 corundum oxide using surface X-ray diffraction. Being armed with this structural...... information, we have explored the CO oxidation reaction over Rh(1 1 1), Rh(1 0 0) and Pt25Rh75(1 0 0) at realistic pressures using in situ surface X-ray diffraction and online mass spectrometry. In all three cases we find that an increase of the CO2 production coincides with the formation of the thin RhO2...

  5. Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pozan, Gulin Selda, E-mail: gpozan@istanbul.edu.tr [Istanbul University, Faculty of Engineering, Chemical Engineering Department, Avcilar 34320, Istanbul (Turkey)

    2012-06-30

    Highlights: Black-Right-Pointing-Pointer {alpha}-Al{sub 2}O{sub 3}, obtained from Bohmite, as a support for enhancing of the activity. Black-Right-Pointing-Pointer The support material for catalytic oxidation. Black-Right-Pointing-Pointer The manganese state and oxygen species effect on the catalytic combustion reaction. - Abstract: The aim of this work was to study combustion of toluene (1000 ppm) over MnO{sub 2} modified with different supports. {alpha}-Al{sub 2}O{sub 3} and {gamma}-Al{sub 2}O{sub 3} obtained from Boehmite, {gamma}-Al{sub 2}O{sub 3} (commercial), SiO{sub 2}, TiO{sub 2} and ZrO{sub 2} were used as commercial support materials. In view of potential interest of this process, the influence of support material on the catalytic performance was discussed. The deposition of 9.5MnO{sub 2} was performed by impregnation over support. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction and oxidation (TPR/TPO) and thermogravimetric analysis (TGA). The catalytic tests were carried out at atmospheric pressure in a fixed-bed flow reactor. 9.5MnO{sub 2}/{alpha}-Al{sub 2}O{sub 3}(B) (synthesized from Boehmite) catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of 289 Degree-Sign C. Considering all the characterization and reaction data reported in this study, it was concluded that the manganese state and oxygen species played an important role in the catalytic activity.

  6. Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion

    International Nuclear Information System (INIS)

    Pozan, Gulin Selda

    2012-01-01

    Highlights: ► α-Al 2 O 3 , obtained from Bohmite, as a support for enhancing of the activity. ► The support material for catalytic oxidation. ► The manganese state and oxygen species effect on the catalytic combustion reaction. - Abstract: The aim of this work was to study combustion of toluene (1000 ppm) over MnO 2 modified with different supports. α-Al 2 O 3 and γ-Al 2 O 3 obtained from Boehmite, γ-Al 2 O 3 (commercial), SiO 2 , TiO 2 and ZrO 2 were used as commercial support materials. In view of potential interest of this process, the influence of support material on the catalytic performance was discussed. The deposition of 9.5MnO 2 was performed by impregnation over support. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction and oxidation (TPR/TPO) and thermogravimetric analysis (TGA). The catalytic tests were carried out at atmospheric pressure in a fixed-bed flow reactor. 9.5MnO 2 /α-Al 2 O 3 (B) (synthesized from Boehmite) catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of 289 °C. Considering all the characterization and reaction data reported in this study, it was concluded that the manganese state and oxygen species played an important role in the catalytic activity.

  7. Combined wet oxidation and alkaline hydrolysis of polyvinylchloride

    DEFF Research Database (Denmark)

    Sørensen, E.; Bjerre, A.B.

    1992-01-01

    In view of the widespread aversion to burning polyvinylchloride (PVC) together with municipal waste, we have attempted an alternative approach to its decomposition. This paper describes a combined wet oxidation/alkaline hydrolysis yielding water soluble, biodegradable products. Experiments were...... carried out at temperatures from 180-260 degree C and reaction times of 8-24 min. The chloride liberated provides information on the rate constants. Considering the measured Cl- and Chemical Oxygen Demand (COD) values, we find hydrolysis and oxidation processes to be interdependent. The main products...... are Cl- and CO-2, the rest comprising a range of water-soluble compounds, a small, Cl-free residue, and a recognizable amount of H-2....

  8. Wet air oxidation of seedcorn wastes containing pesticides and insecticides

    Energy Technology Data Exchange (ETDEWEB)

    Sievers, M.; Schlaefer, O.; Onyeche, T.I.; Schroeder, C.; Bormann, H.; Schaefer, S. [CUTEC-Inst. GmbH (Clausthal Environment Technology Inst.), Clausthal-Zellerfeld (Germany)

    2003-07-01

    Wet air oxidation as an alternative treatment process to pyrolysis and combustion of seedcorn wastes was investigated in lab-scale experiments. Due to solid condition of the seed corn waste, the process has been adapted by repeated spraying of water on the seed corn bulk to avoid the production of sludge and its subsequent dewatering. Original seed corns from industrial production plants were used for a degradation kinetic study under smooth wet air oxidation conditions. The temperatures were between 80 and 150 C, the pressure from 1 to 4.5 bar and the pH at different values from 3 to 13. Degradation rates for five different compounds of pesticides and insecticides, namely Imidacloprid, Thiram, Hymexazol, Carbofuran and Tefluthrin were conducted. These compounds represent the recently used in agricultural seedcorn applications. The degradation rate depends linearly on temperature between 80 and 150 C. At 120 C the lowest degradation rate was found for Tefluthrin by 25 mg/h per L reaction volume while the highest degradation rate to be conducted was for Imidacloprid at 363 mg/h L. (orig.)

  9. Metal-free catalytic oxidation of sulfides to sulfoxides with ammonium nitrate, ammonium hydrogen sulfate and ammonium bromide as catalyst

    OpenAIRE

    Ghorbani-Choghamarani, Arash; Zolfigol, Mohammad Ali; Ayazi-Nasrabadi, Roia

    2010-01-01

    A general and metal-free catalytic oxidation of aliphatic and aromatic sulfides to their corresponding sulfoxides via combination of ammonium nitrate (NH4NO3), supported ammonium hydrogen sulfate on silica gel (NH4HSO4-SiO2) and a catalytic amount of ammonium bromide (NH4Br) in the presence of wet SiO2 (50%, w/w) has been investigated. The reactions were carried out heterogeneously and selectively in short reaction times in CH2Cl2 at room temperature. This protocol is mild and efficient compa...

  10. Synthesis, spectroscopic characterization and catalytic oxidation ...

    Indian Academy of Sciences (India)

    Oxidation of alcohols to carbonyl compounds is one of the most pivotal functional group transformations in organic synthesis. Three important natural enzymes ..... 6. Benzyl alcohol. Benzaldehyde. 57. 1-Phenylethanol. Acetophenone. 65. Cyclohexanol. Cyclohexanone. 49 a Reaction time, 5 h. b Yields based on substrate.

  11. Green chemicals from pulp production black liquor by partial wet oxidation.

    Science.gov (United States)

    Muddassar, Hassan Raja; Melin, Kristian; de Villalba Kokkonen, Daniela; Riera, Gerard Viader; Golam, Sarwar; Koskinen, Jukka

    2015-11-01

    To reduce greenhouse gas emissions, more sustainable sources of energy, fuel and chemicals are needed. Biomass side streams such as black liquor, which is a by-product of pulp production, has the potential to be used for this purpose. The aim of the study was the production of carboxylic acids, such as lactic acid, formic acid and acetic acid, from kraft and non-wood black liquor. The processes studied were partial wet oxidation (PWO) and catalytic partial wet oxidation (CPWO). The results show that the yield of carboxylic acid is higher when treated by PWO than the results from CPWO at temperatures of 170 °C and 230 °C. The results shows that the PWO process can increase the yield of carboxylic acids and hydroxy acids in black liquor, reduce lignin content and decrease pH, which makes further separation of the acids more favourable. The hydroxy acids are valuable raw materials for biopolymers, and acetic acid and formic acid are commonly used chemicals conventionally produced from fossil feedstock. © The Author(s) 2015.

  12. Catalytic oxidation for treatment of ECLSS and PMMS waste streams

    Science.gov (United States)

    Akse, James R.; Jolly, Clifford D.

    1991-01-01

    It is shown that catalytic oxidation is an effective technique for the removal of trace organic contaminants in a multifiltration potable processor's effluent. Essential elements of this technology are devices that deliver oxygen to the influent, and remove gaseous reaction byproducts from the effluent, via hollow-tube, gas-permeable membranes. Iodine, which poisons existing catalysis, is removed by a small deiodination bed prior to catalytic reactor entrance. The catalyst used is a mixture of Pt and Ru deposited on carbon, operating at 125-160 C and 39-90 psi pressures.

  13. Novel synthesis and shape-dependent catalytic performance of Cu-Mn oxides for CO oxidation

    Science.gov (United States)

    Li, Zhixun; Wang, Honglei; Wu, Xingxing; Ye, Qinglan; Xu, Xuetang; Li, Bin; Wang, Fan

    2017-05-01

    Transition metal oxides with large specific surface area are attractive for high-activity catalysts, and hierarchical structures of transition metal oxides with porous feature possess the structural advantage in the transfer of gaseous reactant and product. In this work, porous Cu-Mn oxides with high surface area were successfully obtained through low-temperature coprecipitation method in alcohol/water solvent and then post-annealing. The addition of alcohol showed great influences on the shape and catalytic performances for CO oxidation. Dumbbell-like Cu-Mn oxide particles with splitting ends displayed high catalytic activity and a complete conversion of CO was achieved at 45 °C, suggesting a shape-dependent catalytic activity. The oxidative activity was attributed to a combination of factors including specific surface area, active surface oxygen species and Mn(IV) cations. The results may supply a new thought to design high-performance Cu-Mn oxide catalysts.

  14. Visualizing the mobility of silver during catalytic soot oxidation

    DEFF Research Database (Denmark)

    Gardini, Diego; Christensen, Jakob M.; Damsgaard, Christian Danvad

    2016-01-01

    The catalytic activity and mobility of silver nanoparticles used as catalysts in temperature programmed oxidation of soot:silver (1:5 wt:wt) mixtures have been investigated by means of flow reactor experiments and in situ environmental transmission electron microscopy (ETEM). The carbon oxidation...... temperature was significantly lower compared to uncatalyzed soot oxidation with soot and silver loosely stirred together (loose contact) and lowered further with the two components crushed together (tight contact). The in situ TEM investigations revealed that the silver particles exhibited significant...

  15. Selective catalytic oxidations of alkylaromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, R.W. [Celanese GmbH, Oberhausen (Germany); Roehrscheid, F. [Hoechst AG, Frankfurt am Main (Germany). Zentralforschung und Technologie

    1998-12-31

    Focused to the guidelines of `Sustainable Development` `Responsible Care` and `Customer Satisfaction`, modern production processes are critically assessed on their balance between their ecological benefits and their economical parameters as well as their value to the community. Also in the area of fine chemicals, it is obvious that more and more processes are devolved which save feedstock, reduce emissions and minimize the potential for safety hazards: Less additive but more integrated protection of the environment yielding ecologically highly valuable processes. The described production of aromatic carboxylic acids is an ideal example for such a modern process. Nowadays the synthesis of derivatives of benzoic acid utilizes air as Ideal oxidant and acetic acid as environmental unquestionable solvent. The major byproduct of the oxidation reaction is water in some cases, dependend on the substrate also carbon dioxide. (orig.)

  16. Method For Selective Catalytic Reduction Of Nitrogen Oxides

    Science.gov (United States)

    Mowery-Evans, Deborah L.; Gardner, Timothy J.; McLaughlin, Linda I.

    2005-02-15

    A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

  17. Effect of redox additives over Ni/Al{sub 2}O{sub 3} catalysts on syngas production via methane catalytic partial oxidation

    Energy Technology Data Exchange (ETDEWEB)

    J. Requies; V.L. Barrio; J.F. Cambra; M.B. Guemez; P.L. Arias; V. La Parola; M.A. Pena; J.L.G. Fierro [University of the Basque Country, Bilbao (Spain). School of Engineering

    2008-11-15

    Alumina-supported nickel catalysts modified with redox (Mo, Mn and Sn) oxides were tested in the catalytic partial oxidation (CPO) of methane and the wet catalytic partial oxidation (wet-CPO) of methane for syngas production. The influence of different reaction parameters on the performance of these systems was studied for both reactions. Certain insights on catalyst surface structure were revealed by means of X-ray photoelectron spectroscopy (XPS) and thermal programmed reduction (TPR). The joint analysis of all the results led to certain correlations between the structure of the catalysts and catalytic activity, indicating that the redox additives to some extent modify the stability of the active nickel phase by altering the nickel-alumina interface interaction. 37 refs., 9 figs., 4 tabs.

  18. Optimization of wet oxidation pretreatment of wheat straw

    DEFF Research Database (Denmark)

    Schmidt, A.S.; Thomsen, A.B.

    1998-01-01

    The wet oxidation process (water; oxygen and elevated temperature) was investigated under alkaline conditions for fractionation of hemicellulose, cellulose, and lignin from wheat straw. At higher temperature and longer reaction time, a purified cellulose fraction (69% w/w) was produced with high...... with a 15-min reaction time. Under these conditions, 55% of the lignin and 80% of the hemicellulose were solubilized, while 95% of the cellulose remained in the solid fraction. At 185 degrees C, the reaction kinetics was of pseudo first-order. The rate constant for hemicellulose solubilization was higher...... than that for lignin, whereas the rate for cellulose was very low. The cellulose recovery (95-100%) was significantly higher than that for hemicellulose (60%). At temperatures above 185 degrees C, recoveries decreased due to increased degradation. Only half of the COD-content could be accounted...

  19. Non-Noble Metal Oxide Catalysts for Methane Catalytic Combustion: Sonochemical Synthesis and Characterisation.

    Science.gov (United States)

    Jodłowski, Przemysław J; Jędrzejczyk, Roman J; Chlebda, Damian K; Dziedzicka, Anna; Kuterasiński, Łukasz; Gancarczyk, Anna; Sitarz, Maciej

    2017-07-07

    The aim of this study was to obtain nanocrystalline mixed metal-oxide-ZrO₂ catalysts via a sonochemically-induced preparation method. The effect of a stabiliser's addition on the catalyst parameters was investigated by several characterisation methods including X-ray Diffraction (XRD), nitrogen adsorption, X-ray fluorescence (XRF), scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and µRaman. The sonochemical preparation method allowed us to manufacture the catalysts with uniformly dispersed metal-oxide nanoparticles at the support surface. The catalytic activity was tested in a methane combustion reaction. The activity of the catalysts prepared by the sonochemical method was higher than that of the reference catalysts prepared by the incipient wetness method without ultrasonic irradiation. The cobalt and chromium mixed zirconia catalysts revealed their high activities, which are comparable with those presented in the literature.

  20. Preliminary comparison of three processes of AlN oxidation: dry, wet and mixed ones

    Directory of Open Access Journals (Sweden)

    Korbutowicz R.

    2016-03-01

    Full Text Available Three methods of AlN layers oxidation: dry, wet and mixed (wet with oxygen were compared. Some physical parameters of oxidized thin films of aluminum nitride (AlN layers grown on silicon Si(1 1 1 were investigated by means Energy-Dispersive X-ray Spectroscopy (EDS and Spectroscopic Ellipsometry (SE. Three series of the thermal oxidations processes were carried out at 1012 °C in pure nitrogen as carrying gas and various gas ambients: (a dry oxidation with oxygen, (b wet oxidation with water steam and (c mixed atmosphere with various process times. All the research methods have shown that along with the rising of the oxidation time, AlN layer across the aluminum oxide nitride transforms to aluminum oxide. The mixed oxidation was a faster method than the dry or wet ones.

  1. Mn-Ce-V-WOx/TiO2 SCR Catalysts: Catalytic Activity, Stability and Interaction among Catalytic Oxides

    Directory of Open Access Journals (Sweden)

    Xuteng Zhao

    2018-02-01

    Full Text Available A series of Mn-Ce-V-WOx/TiO2 composite oxide catalysts with different molar ratios (active components/TiO2 = 0.1, 0.2, 0.3, 0.6 have been prepared by wet impregnation method and tested in selective catalytic reduction (SCR of NO by NH3 in a wide temperature range. These catalysts were also characterized by X-ray diffraction (XRD, Transmission Electron Microscope (TEM, in situ Fourier Transform infrared spectroscopy (in situ FTIR, H2-Temperature programmed reduction (H2-TPR and X-ray photoelectron spectroscopy (XPS. The results show the catalyst with a molar ratio of active components/TiO2 = 0.2 exhibits highest NO conversion value between 150 °C to 400 °C and good resistance to H2O and SO2 at 250 °C with a gas hourly space velocity (GHSV value of 40,000 h−1. Different oxides are well dispersed and interact with each other. NH3 and NO are strongly adsorbed on the catalyst surface and the adsorption of the reactant gas leads to a redox cycle with the valence state change among the surface oxides. The adsorption of SO2 on Mn4+ and Ce4+ results in good H2O and SO2 resistance of the catalyst, but the effect of Mn and Ce are more than superior water and sulfur resistance. The diversity of valence states of the four active components and their high oxidation-reduction performance are the main reasons for the high NO conversion in this system.

  2. Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems

    Energy Technology Data Exchange (ETDEWEB)

    Richard Rhudy

    2006-06-30

    This final report presents and discusses results from a mercury control process development project entitled ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems''. The objective of this project was to demonstrate at pilot scale a mercury control technology that uses solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. Oxidized mercury is removed in downstream wet flue gas desulfurization (FGD) absorbers and leaves with the FGD byproducts. The goal of the project was to achieve 90% oxidation of elemental mercury in the flue gas and 90% overall mercury capture with the downstream wet FGD system. The project was co-funded by EPRI and the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) under Cooperative Agreement DE-FC26-01NT41185. Great River Energy (GRE) and City Public Service (now CPS Energy) of San Antonio were also project co-funders and provided host sites. URS Group, Inc. was the prime contractor. Longer-term pilot-scale tests were conducted at two sites to provide catalyst life data. GRE provided the first site, at their Coal Creek Station (CCS), which fires North Dakota lignite, and CPS Energy provided the second site, at their Spruce Plant, which fires Powder River Basin (PRB) coal. Mercury oxidation catalyst testing began at CCS in October 2002 and continued through the end of June 2004, representing nearly 21 months of catalyst operation. An important finding was that, even though the mercury oxidation catalyst pilot unit was installed downstream of a high-efficiency ESP, fly ash buildup began to plug flue gas flow through the horizontal catalyst cells. Sonic horns were installed in each catalyst compartment and appeared to limit fly ash buildup. A palladium-based catalyst showed initial elemental mercury oxidation percentages of 95% across the catalyst, declining to 67% after 21 months in service. A carbon

  3. Solid State, Surface and Catalytic Studies of Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Kung, H. H.

    2004-11-23

    This project investigates the catalytic properties of oxides for the selective oxidative dehydrogenation of light alkanes and for hydrocarbon reduction of NO{sub x}. Various vanadium oxide based catalysts were investigated to elucidate the relationship between the chemical and structural properties of the catalysts and their selectivity for the formation of alkenes. It was found that vanadium oxide units that are less reducible give higher selectivities. For hydrocarbon reduction of NO{sub x}, it was found that alumina-based catalysts can be effective at higher temperatures than the corresponding zeolite-based catalysts. On some catalysts, such as SnO{sub 2}/Al{sub 2}O{sub 3}. Ag/Al{sub 2}O{sub 3}, the alumina participates directly in the reaction, making the catalyst bifunctional. These results are useful in research to improve the performance of this stress of catalysts.

  4. USING WET AIR OXIDATION TECHNOLOGY TO DESTROY TETRAPHENYLBORATE

    Energy Technology Data Exchange (ETDEWEB)

    Adu-Wusu, K; Daniel McCabe, D; Bill Wilmarth, B

    2007-04-04

    A bench-scale feasibility study on the use of a Wet Air Oxidation (WAO) process to destroy a slurry laden with tetraphenylborate (TPB) compounds has been undertaken. WAO is an aqueous phase process in which soluble and/or insoluble waste constituents are oxidized using oxygen or oxygen in air at elevated temperatures and pressures ranging from 150 C and 1 MPa to 320 C and 22 MPa. The products of the reaction are CO{sub 2}, H{sub 2}O, and low molecular weight oxygenated organics (e.g. acetate, oxalate). Test results indicate WAO is a feasible process for destroying TPB, its primary daughter products [triphenylborane (3PB), diphenylborinic acid (2PB), and phenylboronic acid (1PB)], phenol, and most of the biphenyl byproduct. The required conditions are a temperature of 300 C, a reaction time of 3 hours, 1:1 feed slurry dilution with 2M NaOH solution, the addition of CuSO{sub 4}.5H{sub 2}O solution (500 mg/L Cu) as catalyst, and the addition of 2000 mL/L of antifoam. However, for the destruction of TPB, its daughter compounds (3PB, 2PB, and 1PB), and phenol without consideration for biphenyl destruction, less severe conditions (280 C and 1-hour reaction time with similar remaining above conditions) are adequate.

  5. Catalytic oxidation of volatile organic compounds (VOCs) - A review

    Science.gov (United States)

    Kamal, Muhammad Shahzad; Razzak, Shaikh A.; Hossain, Mohammad M.

    2016-09-01

    Emission of volatile organic compounds (VOCs) is one of the major contributors to air pollution. The main sources of VOCs are petroleum refineries, fuel combustions, chemical industries, decomposition in the biosphere and biomass, pharmaceutical plants, automobile industries, textile manufacturers, solvents processes, cleaning products, printing presses, insulating materials, office supplies, printers etc. The most common VOCs are halogenated compounds, aldehydes, alcohols, ketones, aromatic compounds, and ethers. High concentrations of these VOCs can cause irritations, nausea, dizziness, and headaches. Some VOCs are also carcinogenic for both humans and animals. Therefore, it is crucial to minimize the emission of VOCs. Among the available technologies, the catalytic oxidation of VOCs is the most popular because of its versatility of handling a range of organic emissions under mild operating conditions. Due to that fact, there are numerous research initiatives focused on developing advanced technologies for the catalytic destruction of VOCs. This review discusses recent developments in catalytic systems for the destruction of VOCs. Review also describes various VOCs and their sources of emission, mechanisms of catalytic destruction, the causes of catalyst deactivation, and catalyst regeneration methods.

  6. Catalytic Activity of Oxidized Carbon Black and Graphene Oxide for the Crosslinking of Epoxy Resins

    Directory of Open Access Journals (Sweden)

    Maria Rosaria Acocella

    2017-04-01

    Full Text Available This article compares the catalytic activities of oxidized carbon black (oCB and graphene oxide (eGO samples on the kinetics of a reaction of diglycidyl ether of bisphenol A (DGEBA with a diamine, leading to crosslinked insoluble networks. The study is mainly conducted by rheometry and Differential Scanning Calorimetry (DSC. Following the same oxidation procedure, CB samples are more efficiently oxidized than graphite samples. For instance, CB and graphite samples with high specific surface areas (151 and 308 m2/g, as oxidized by the Hummers’ method, exhibit O/C wt/wt ratios of 0.91 and 0.62, respectively. Due to the higher oxidation levels, these oCB samples exhibit a higher catalytic activity toward the curing of epoxy resins than fully exfoliated graphene oxide.

  7. Catalytic oxidation of carbon monoxide over supported palladium nanoparticles

    Science.gov (United States)

    Soni, Keshav Chand; Krishna, R.; Chandra Shekar, S.; Singh, Beer

    2016-01-01

    Catalytic oxidation of CO with ozone had been studied over Al2O3 and SiO2 supported Pd nanoparticles which was synthesized by two different methods. The polyol method mainly resulted in highly dispersed Pd particles on the support, while the impregnation method resulted in agglomeration Pd particles on the support. Supported Pd nanoparticles synthesized from PdCl2 in the presence of poly ( N-vinylpyrrolidone) (PVP) by chemical reduction. The catalysts were characterized by X-ray diffraction, N2 BET surface area, pore size distributions, CO chemisorption, TEM and H2-temperature programmed reduction. The physico-chemical properties were well correlated with activity data. Characterizations of XRD and TEM show that the surface Pd nanoparticles are highly dispersed over Al2O3 and SiO2. The catalytic activity was dependent upon ozone/CO ratio, contact times, and the reaction temperature. The extent of carbon monoxide oxidation was proportional to the catalytically ozone decomposition. The PVP synthesized Pd/A2O3 catalyst had been found to be highly active for complete CO removal at room temperature. The higher activity of the nanocatalyst was attributed to small particle size and higher dispersion of Pd over support.

  8. Catalytic oxidative desulfurization of liquid hydrocarbon fuels using air

    Science.gov (United States)

    Sundararaman, Ramanathan

    Conventional approaches to oxidative desulfurization of liquid hydrocarbons involve use of high-purity, expensive water soluble peroxide for oxidation of sulfur compounds followed by post-treatment for removal of oxidized sulfones by extraction. Both are associated with higher cost due to handling, storage of oxidants and yield loss with extraction and water separation, making the whole process more expensive. This thesis explores an oxidative desulfurization process using air as an oxidant followed by catalytic decomposition of sulfones thereby eliminating the aforementioned issues. Oxidation of sulfur compounds was realized by a two step process in which peroxides were first generated in-situ by catalytic air oxidation, followed by catalytic oxidation of S compounds using the peroxides generated in-situ completing the two step approach. By this technique it was feasible to oxidize over 90% of sulfur compounds present in real jet (520 ppmw S) and diesel (41 ppmw S) fuels. Screening of bulk and supported CuO based catalysts for peroxide generation using model aromatic compound representing diesel fuel showed that bulk CuO catalyst was more effective in producing peroxides with high yield and selectivity. Testing of three real diesel fuels obtained from different sources for air oxidation over bulk CuO catalyst showed different level of effectiveness for generating peroxides in-situ which was consistent with air oxidation of representative model aromatic compounds. Peroxides generated in-situ was then used as an oxidant to oxidize sulfur compounds present in the fuel over MoO3/SiO2 catalyst. 81% selectivity of peroxides for oxidation of sulfur compounds was observed on MoO3/SiO2 catalyst at 40 °C and under similar conditions MoO3/Al2O3 gave only 41% selectivity. This difference in selectivity might be related to the difference in the nature of active sites of MoO3 on SiO2 and Al2O 3 supports as suggested by H2-TPR and XRD analyses. Testing of supported and bulk Mg

  9. Reaction rate oscillations during catalytic CO oxidation: A brief overview

    Science.gov (United States)

    Tsotsis, T. T.; Sane, R. C.

    1987-01-01

    It is not the intent here to present a comprehensive review of the dynamic behavior of the catalytic oxidation of CO. This reaction is one of the most widely studied in the field of catalysis. A review paper by Engel and Ertl has examined the basic kinetic and mechanistic aspects, and a comprehensive paper by Razon and Schmitz was recently devoted to its dynamic behavior. Those interested in further study of the subject should consult these reviews and a number of general review papers on catalytic reaction dynamics. The goal is to present a brief overview of certain interesting aspects of the dynamic behavior of this reaction and to discuss a few questions and issues, which are still the subject of study and debate.

  10. Catalytic

    Directory of Open Access Journals (Sweden)

    S.A. Hanafi

    2014-03-01

    Full Text Available A series of dealuminated Y-zeolites impregnated by 0.5 wt% Pt catalysts promoted by different amounts of Ni, Pd or Cr (0.3 and 0.6 wt% were prepared and characterized as hydrocracking catalysts. The physicochemical and structural characterization of the solid catalysts were investigated and reported through N2 physisorption, XRD, TGA-DSC, FT-IR and TEM techniques. Solid catalysts surface acidities were investigated through FT-IR spectroscopy aided by pyridine adsorption. The solid catalytic activities were evaluated through hydroconversion of n-hexane and n-heptane employing micro-catalytic pulse technique directly connected to a gas chromatograph analyzer. The thermal stability of the solids was also investigated up to 800 °C. Crystallinity studies using the XRD technique of all modified samples proved analogous to the parent Y-zeolite, exhibiting nearly an amorphous and microcrystalline character of the second metal oxides. Disclosure of bimetallic catalysts crystalline characterization, through XRD, was not viable. The nitrogen adsorption–desorption isotherms for all samples concluded type I adsorption isotherms, without any hysteresis loop, indicating that the entire pore system is composed of micropores. TEM micrographs of the solid catalysts demonstrate well-dispersed Pt, Ni and Cr nanoparticles having sizes of 2–4 nm and 7–8 nm, respectively. The catalytic activity results indicate that the bimetallic (0.5Pt–0.3Cr/D18H–Y catalyst is the most active towards n-hexane and n-heptane isomerization while (0.5Pt–0.6Ni/D18H–Y catalyst can be designed as most suitable as a cracking catalyst.

  11. Catalytic oxidation. VI. Oxidation of labeled olefins over silver

    International Nuclear Information System (INIS)

    Cant, N.W.; Hall, W.K.

    1978-01-01

    The oxidation of ethylene and propylene labeled with deuterium in various positions and the cooxidation of unlabeled olefins with the corresponding 14 C-labeled epoxides have been studied over a silver catalyst. The latter measurements showed that, in both systems at 200 to 220 0 C, a portion of the CO 2 was produced by destruction of the product epoxide, but that the oxygen exchange between olefin and epoxide was nil. Oxidation of either cis- or trans-ethylene-d 2 yielded a mixture of the cis- and trans-d 2 epoxides which was about 92% equilibrated. Relative rate measurements showed that substitution of deuterium for hydrogen in ethylene increased the yield of epoxide substantially. Such kinetic isotope effects were even more pronounced with propylene for which the oxidation of CD 3 CHCH 2 and CD 3 CDCD 2 gave a 10 to 14% selectivity to the corresponding epoxides compared with 2 to 5% for CH 3 CHCH 2 , CH 3 CDCH 2 , and CH 3 CHCD 2 . The kinetic isotope effects can be qualitatively explained in terms of a normal primary effect in the further oxidation of an intermediate which is common to both epoxide formation and total oxidation. The significance of these findings to previous suggestions regarding surface intermediates and the mechanism of these oxidations is discussed. 4 figures, 5 tables

  12. Catalytic aerobic oxidation of bio-renewable chemicals

    DEFF Research Database (Denmark)

    Gorbanev, Yury

    , EDS, XRF and other methods. Supported gold and ruthenium hydroxide catalyst systems were explored for the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDA), a potential polymer building block for the plastic industry, or its dimethyl ester (FDMC). High product...... selectivities and yields were obtained under optimized conditions. Heterogeneous catalysts consisting of Au nanoparticles on different supports were shown to efficiently oxidize HMF to FDA or FDMC in water or methanol, respectively. Additionally, the reaction conditions were shown to be adjustable...... with supported Ru(OH)x catalysts in organic solvents. The examined catalyst systems and reaction conditions were also shown to be applicable for the efficient oxidation of other substituted furans. Furthermore, novel catalytic systems comprising vanadia supported on zeolites were investigated for the aerobic...

  13. Study of nitric oxide catalytic oxidation on manganese oxides-loaded activated carbon at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    You, Fu-Tian [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); University of Chinese Academy of Sciences, Beijing (China); Yu, Guang-Wei, E-mail: gwyu@iue.ac.cn [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Wang, Yin, E-mail: yinwang@iue.ac.cn [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Xing, Zhen-Jiao [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); Liu, Xue-Jiao; Li, Jie [Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen (China); University of Chinese Academy of Sciences, Beijing (China)

    2017-08-15

    Highlights: • Loading manganese oxides on activated carbon effectively promotes NO oxidation. • NO adsorption-desorption on activated carbon is fundamental to NO oxidation. • A high Mn{sup 4+}/Mn{sup 3+} ratio contributes to NO oxidation by promoting lattice O transfer. - Abstract: Nitric oxide (NO) is an air pollutant that is difficult to remove at low concentration and low temperature. Manganese oxides (MnO{sub x})-loaded activated carbon (MLAC) was prepared by a co-precipitation method and studied as a new catalyst for NO oxidation at low temperature. Characterization of MLAC included X-ray diffraction (XRD), scanning electron microscopy (SEM), N{sub 2} adsorption/desorption and X-ray photoelectron spectroscopy (XPS). Activity tests demonstrated the influence of the amount of MnO{sub x} and the test conditions on the reaction. MLAC with 7.5 wt.% MnO{sub x} (MLAC003) exhibits the highest NO conversion (38.7%) at 1000 ppm NO, 20 vol.% O{sub 2}, room temperature and GHSV ca. 16000 h{sup −1}. The NO conversion of MLAC003 was elevated by 26% compared with that of activated carbon. The results of the MLAC003 activity test under different test conditions demonstrated that NO conversion is also influenced by inlet NO concentration, inlet O{sub 2} concentration, reaction temperature and GHSV. The NO adsorption-desorption process in micropores of activated carbon is fundamental to NO oxidation, which can be controlled by pore structure and reaction temperature. The activity elevation caused by MnO{sub x} loading is assumed to be related to Mn{sup 4+}/Mn{sup 3+} ratio. Finally, a mechanism of NO catalytic oxidation on MLAC based on NO adsorption-desorption and MnO{sub x} lattice O transfer is proposed.

  14. Ruthenium versus platinum on cerium materials in wet air oxidation of acetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Gaalova, J. [Institute of Chemical Process Fundamentals of the CAS, Rozvojova 135, 165 02 Prague 6, CZ (Czech Republic); Barbier, J., E-mail: Jacques.barbier.jr@univ-poitiers.fr [University of Poitiers, LACCO UMR 6503, Laboratoire de Catalyse par les Metaux, 40 Avenue du Recteur Pineau, F-86022 POITIERS Cedex (France); Rossignol, S. [University of Limoges, ENSCI, 47 Avenue Albert Thomas 87000 Limoges France (France)

    2010-09-15

    This study was a comparison between Ru-catalysts and similar, previously investigated, Pt-catalysts. In this paper, ruthenium catalysts for catalytic wet air oxidation are prepared, characterized and tested. Both catalysts were supported on commercial CeO{sub 2} as well as mixed oxide Zr{sub 0.1}(Ce{sub 0.75}Pr{sub 0.25}){sub 0.9}O{sub 2}. The catalysts were characterized by measuring the oxygen storage capacities (OSC), BET, XRD, FTIR and chemisorption of hydrogen. In addition, the effect of sintering (treatments under H{sub 2}) was compared with both of the catalysts. The comparison of the results showed that initial intrinsic activity of ruthenium is not significantly influenced by the type of the support, which is contrast to platinum. Furthermore, the particle size of Ru had an important effect on CWAO activity: the higher the particle size, the better the activity. This was different with Pt-catalysts, where the optimal particle size was smaller, having about 15% of metal dispersion.

  15. Development studies for a novel wet oxidation process. Phase 2

    International Nuclear Information System (INIS)

    1994-07-01

    DETOX SM is a catalyzed wet oxidation process which destroys organic materials in an acidic water solution of iron at 373 to 473 K. The solution can be used repeatedly to destroy great amounts of organic materials. Since the process is conducted in a contained vessel, air emissions from the process can be well controlled. The solution is also capable of dissolving and concentrating many heavy and radioactive metals for eventual stabilization and disposal. The Phase 2 effort for this project is site selection and engineering design for a DETOX demonstration unit. Site selection was made using a set of site selection criteria and evaluation factors. A survey of mixed wastes at DOE sites was conducted using the Interim Mixed Waste Inventory Report. Sites with likely suitable waste types were identified. Potential demonstration sites were ranked based on waste types, interest, regulatory needs, scheduling, ability to provide support, and available facilities. Engineering design for the demonstration unit is in progress and is being performed by Jacobs Applied Technology. The engineering design proceeded through preliminary process flow diagrams (PFDs), calculation of mass and energy balances for representative waste types, process and instrumentation diagrams (P and IDs), preparation of component specifications, and a firm cost estimate for fabrication of the demonstration unit

  16. Electro-catalytic oxidation of reactive Orange 107 using cerium doped oxides of Nd3+ nanoparticle

    International Nuclear Information System (INIS)

    Rajkumar, K.; Muthukumar, M.; Mangalaraja, R.V.

    2011-01-01

    A new rare earth doped cerium oxide powder was used as a catalyst to investigate the removal of colour and TOC from simulated wastewater of Reactive Orange 107. The electro oxidation process was carried out in the reactor in presence of an electrolyte NaCl. Graphite electrode was used as anode and cathode and electrolysis were carried out at a current density of 34.96 mAcm -2 with a catalyst concentration of 0.05g L -1 . In order to find the efficiency of nanocatalyst, experiments were also conducted without catalyst. From the experiment, it was found that complete colour removal was achieved on electrocatalytic oxidation as well as electro oxidation. When comparing the above processes, catalytic oxidation shows more efficient than electro oxidation. With respect to the degradation of the dye, catalytic oxidation shows more TOC removal than the oxidation taken place without catalyst. It infers that even though the electro-catalytic oxidation process achieves complete decolouration but it does not achieve complete mineralisation. The FTIR and GCMS studies confirmed the formation of by-products. (author)

  17. Study of nitric oxide catalytic oxidation on manganese oxides-loaded activated carbon at low temperature

    Science.gov (United States)

    You, Fu-Tian; Yu, Guang-Wei; Wang, Yin; Xing, Zhen-Jiao; Liu, Xue-Jiao; Li, Jie

    2017-08-01

    Nitric oxide (NO) is an air pollutant that is difficult to remove at low concentration and low temperature. Manganese oxides (MnOx)-loaded activated carbon (MLAC) was prepared by a co-precipitation method and studied as a new catalyst for NO oxidation at low temperature. Characterization of MLAC included X-ray diffraction (XRD), scanning electron microscopy (SEM), N2 adsorption/desorption and X-ray photoelectron spectroscopy (XPS). Activity tests demonstrated the influence of the amount of MnOx and the test conditions on the reaction. MLAC with 7.5 wt.% MnOx (MLAC003) exhibits the highest NO conversion (38.7%) at 1000 ppm NO, 20 vol.% O2, room temperature and GHSV ca. 16000 h-1. The NO conversion of MLAC003 was elevated by 26% compared with that of activated carbon. The results of the MLAC003 activity test under different test conditions demonstrated that NO conversion is also influenced by inlet NO concentration, inlet O2 concentration, reaction temperature and GHSV. The NO adsorption-desorption process in micropores of activated carbon is fundamental to NO oxidation, which can be controlled by pore structure and reaction temperature. The activity elevation caused by MnOx loading is assumed to be related to Mn4+/Mn3+ ratio. Finally, a mechanism of NO catalytic oxidation on MLAC based on NO adsorption-desorption and MnOx lattice O transfer is proposed.

  18. Unification of catalytic water oxidation and oxygen reduction reactions: amorphous beat crystalline cobalt iron oxides.

    Science.gov (United States)

    Indra, Arindam; Menezes, Prashanth W; Sahraie, Nastaran Ranjbar; Bergmann, Arno; Das, Chittaranjan; Tallarida, Massimo; Schmeißer, Dieter; Strasser, Peter; Driess, Matthias

    2014-12-17

    Catalytic water splitting to hydrogen and oxygen is considered as one of the convenient routes for the sustainable energy conversion. Bifunctional catalysts for the electrocatalytic oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are pivotal for the energy conversion and storage, and alternatively, the photochemical water oxidation in biomimetic fashion is also considered as the most useful way to convert solar energy into chemical energy. Here we present a facile solvothermal route to control the synthesis of amorphous and crystalline cobalt iron oxides by controlling the crystallinity of the materials with changing solvent and reaction time and further utilize these materials as multifunctional catalysts for the unification of photochemical and electrochemical water oxidation as well as for the oxygen reduction reaction. Notably, the amorphous cobalt iron oxide produces superior catalytic activity over the crystalline one under photochemical and electrochemical water oxidation and oxygen reduction conditions.

  19. Catalytic conversion of methane: Carbon dioxide reforming and oxidative coupling

    KAUST Repository

    Takanabe, Kazuhiro

    2012-01-01

    Natural gas conversion remains one of the essential technologies for current energy needs. This review focuses on the mechanistic aspects of the development of efficient and durable catalysts for two reactions, carbon dioxide reforming and the oxidative coupling of methane. These two reactions have tremendous technological significance for practical application in industry. An understanding of the fundamental aspects and reaction mechanisms of the catalytic reactions reviewed in this study would support the design of industrial catalysts. CO 2 reforming of methane utilizes CO 2, which is often stored in large quantities, to convert as a reactant. Strategies to eliminate carbon deposition, which is the major problem associated with this reaction, are discussed. The oxidative coupling of methane directly produces ethylene in one reactor through a slightly exothermic reaction, potentially minimizing the capital cost of the natural gas conversion process. The focus of discussion in this review will be on the attainable yield of C 2 products by rigorous kinetic analyses.

  20. Investigation on CO catalytic oxidation reaction kinetics of faceted perovskite nanostructures loaded with Pt

    KAUST Repository

    Yin, S. M.

    2017-01-18

    Perovskite lead titanate nanostructures with specific {111}, {100} and {001} facets exposed, have been employed as supports to investigate the crystal facet effect on the growth and CO catalytic activity of Pt nanoparticles. The size, distribution and surface chemical states of Pt on the perovskite supports have been significantly modified, leading to a tailored conversion temperature and catalytic kinetics towards CO catalytic oxidation.

  1. The catalytic activity of several tungsten oxides for the oxidation of propene

    International Nuclear Information System (INIS)

    De Rossi, S.; Schiavello, M.; Rome Univ.; Iguchi, E.; Tilley, R.J.D.

    1976-01-01

    A study has been made of the catalytic oxidation of propene over the oxides WO 3 , WOsub(2,95), WOsub(2,90), WOsub(2,72) and Wo 2 , which were selected because they possess specific features of chemical and structural interest rather than for their catalytic ability. It was found that the oxides WOsub(2,95), WOsub(2,90) and WOsub(2,72) all selectively produce acrolein in small amounts. The oxides WO 3 and WO 2 were non-selective and rather inactive. The results are discussed in terms of a mechanism involving both variable valence in the crystal and the specific structural geometry of these compounds. (orig.) [de

  2. The Study of LeachateTreatment by Using Three Advanced Oxidation Process Based Wet air Oxidation

    Directory of Open Access Journals (Sweden)

    Behroz Karimi

    2013-01-01

    Full Text Available Wet air oxidation is regarded as appropriate options for wastewater treatment with average organic compounds. The general purpose of this research is to determine the efficiency of three wet air oxidation methods, wet oxidation with hydrogen peroxide and absorption with activated carbon in removing organic matter and nitrogenous compounds from Isfahan's urban leachate. A leachate sample with the volume of 1.5 liters entered into a steel reactor with the volume of three liters and was put under a 10-bar pressure, at temperatures of 100, 200, and 300[degree sign] as well as three retention times of 30, 60, and 90 minutes. The sample was placed at 18 stages of leachate storage ponds in Isfahan Compost Plant with the volume of 20 liters, using three WPO, WAO methods and a combination of WAO/GAC for leachate pre-treatment. Thirty percent of pure oxygen and hydrogen peroxide were applied as oxidation agents. The COD removal efficiency in WAO method is 7.8-33.3%, in BOD is 14.7-50.6%, the maximum removal percentage (efficiency for NH4-N is 53.3% and for NO3-N is 56.4-73.9%. The removal efficiency of COD and BOD5 is 4.6%-34 and 24%-50 respectively in WPO method. Adding GAC to the reactor, the removal efficiency of all parameters was improved. The maximum removal efficiency was increased 48% for COD, 31%-43.6 for BOD5 by a combinational method, and the ratio of BOD5/COD was also increased to 90%. In this paper, WAO and WPO process was used for Leachate pre-treatment and WAO/GAC combinational process was applied for improving the organic matter removal and leachate treatment; it was also determined that the recent process is much more efficient in removing resistant organic matter.

  3. Development of a novel wet oxidation process for hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Dhooge, P.M.

    1994-01-01

    Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. The over all objective of the effort described here is to develop a novel catalytic wet oxidation process for the treatment of these multi-component wastes, with the aim of providing a versatile, non-thermal method which will destroy hazardous organic compounds while simultaneously containing and concentrating toxic and radioactive metals for recovery or disposal in a readily stabilized matrix. The DETOX process uses a unique combination of metal catalysts to increase the rate of oxidation of organic materials. The metal catalysts are in the form of salts dissolved in a dilute acid solution. A typical catalyst composition is 60% ferric chloride, 3--4% hydrochloric acid, 0.13% platinum ions, and 0.13% ruthenium ions in a water solution. The catalyst solution is maintained at 423--473 K. Wastes are introduced into contact with the solution, where their organic portion is oxidized to carbon dioxide and water. If the organic portion is chlorinated, hydrogen chloride will be produced as a product. The process is a viable alternative to incineration for the treatment of organic mixed wastes. Estimated costs for waste treatment using the process are from $2.50/kg to $25.00/kg, depending on the size of the unit and the amount of waste processed. Process units can be mobile for on-site treatment of wastes. Results from phase 1 and 2, design and engineering studies, are described

  4. Catalytic degradation of brominated flame retardants by copper oxide nanoparticles.

    Science.gov (United States)

    Yecheskel, Yinon; Dror, Ishai; Berkowitz, Brian

    2013-09-01

    The catalytic degradation of two brominated flame retardants (BFRs), tribromoneopentyl alcohol (TBNPA) and 2,4 dibromophenol (2,4-DBP) by copper oxide nanoparticles (nCuO) was investigated. The degradation kinetics, the debromination, and the formation of intermediates by nCuO catalysis were also compared to Fenton oxidation and nano zero-valent iron (nZVI) reduction methods. BFRs have been added to various products like plastic, textile, electronics and synthetic polymers at growing rates. In spite of the clear advantages of reducing fire damages, many of these BFRs may be released to the environment after their beneficial use and become contaminants. The two studied BFRs were fully degraded with sufficient time (hours to days) and oxidation agent (H2O2). Shorter reaction times showed differences in reaction pathway and kinetics. The 2,4-DBP showed faster degradation than TBNPA, by nCuO catalysis. Relatively high resistance to degradation was recorded for 2,4-DBP with nZVI, yielding 20% degradation after 24h, while the TBNPA was degraded by 85% within 12h. Electron Spin Resonance (ESR) measurements show generation of both hydroxyl and superoxide radicals. In addition, inhibition of 2,4-DBP degradation in the presence of spin traps implies a radical degradation mechanism. A catalytic mechanism for radical generation and BFR degradation by nCuO is proposed. It is further suggested that H2O2 plays an essential role in the activation of the catalyst. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. VUV photo-oxidation of gaseous benzene combined with ozone-assisted catalytic oxidation: Effect on transition metal catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Haibao, E-mail: seabao8@gmail.com [School of Environmental Science and Engineering, Sun Yat-Sen University (China); Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University) (China); Lu, Haoxian; Zhan, Yujie; Liu, Gaoyuan; Feng, Qiuyu; Huang, Huiling; Wu, Muyan; Ye, Xinguo [School of Environmental Science and Engineering, Sun Yat-Sen University (China)

    2017-01-01

    Graphical abstract: Mn nanoparticles are highly dispersed on ZSM-5 and most efficient in benzene degradation in the VUV-OZCO process. - Highlights: • Vacuum UV irradiation is well combined with O{sub 3} catalytic oxidation. • O{sub 3} byproducts was used to enhance catalytic oxidation of VOCs. • Mn/ZSM-5 achieved the best catalytic activity for benzene degradation. - Abstract: Volatile organic compounds (VOCs) cause the major air pollution concern. In this study, a series of ZSM-5 supported transition metals were prepared by impregnation method. They were combined with vacuum UV (VUV) photo-oxidation in a continuous-flow packed-bed reactor and used for the degradation of benzene, a typical toxic VOCs. Compared with VUV photo-oxidation alone, the introduction of catalysts can greatly enhance benzene oxidation under the help of O{sub 3}, the by-products from VUV irradiation, via ozone-assisted catalytic oxidation (OZCO). The catalytic activity of transition metals towards benzene oxidation followed the order: Mn > Co > Cu > Ni > Fe. Mn achieved the best catalytic activity due to the strongest capability for O{sub 3} catalytic decomposition and utilization. Benzene and O{sub 3} removal efficiency reached as high as 97% and 100% after 360 min, respectively. O{sub 3} was catalytically decomposed, generating highly reactive oxidants such as ·OH and ·O for benzene oxidation.

  6. Solvent-free Oxidation of Alcohols and Mild Catalytic Deprotection of ...

    African Journals Online (AJOL)

    tetrabromobenzene- 1,3-disulphonamide (TBBDA) can be used for solvent-free oxidation of primary and secondary alcohols to the corresponding carbonyl compounds without over-oxidation, and efficient catalytic deprotection of various silyl ...

  7. Solvent-free Oxidation of Alcohols and Mild Catalytic Deprotection of ...

    African Journals Online (AJOL)

    NJD

    tetrabromobenzene-1,3-disulphonamide. (TBBDA) can be used for solvent-free oxidation of primary and secondary alcohols to the corresponding carbonyl compounds without over-oxidation, and efficient catalytic deprotection of various silyl ...

  8. Catalytic properties and biomedical applications of cerium oxide nanoparticles

    KAUST Repository

    Walkey, Carl D.

    2014-11-10

    Cerium oxide nanoparticles (nanoceria) have shown promise as catalytic antioxidants in the test tube, cell culture models and animal models of disease. However given the reactivity that is well established at the surface of these nanoparticles, the biological utilization of nanoceria as a therapeutic still poses many challenges. Moreover the form that these particles take in a biological environment, such as the changes that can occur due to a protein corona, are not well established. This review aims to summarize the existing literature on biological use of nanoceria, and to raise questions about what further study is needed to apply this interesting catalytic material to biomedical applications. These questions include: 1) How does preparation, exposure dose, route and experimental model influence the reported effects of nanoceria in animal studies? 2) What are the considerations to develop nanoceria as a therapeutic agent in regards to these parameters? 3) What biological targets of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are relevant to this targeting, and how do these properties also influence the safety of these nanomaterials?

  9. Comparison between wet oxidation and steam explosion as pretreatment methods for enzymatic hydrolysis of sugarcane bagasse

    DEFF Research Database (Denmark)

    Medina, Carlos Martín; Marcet, M.; Thomsen, Anne Belinda

    2008-01-01

    , and to a two-fold increase of cellulose content in the pretreated solids, while steam explosion solubilised only 60% of xylan and 35% of lignin and increased cellulose content in the solid material by one third. Wet oxidation formed more aliphatic acids and phenolics, and less furan aldehydes in the liquid...... significantly in steam explosion. This investigation demonstrates the potential of wet oxidation as a promising pretreatment method for enzyme-based bagasse-to-ethanol processes....

  10. Catalytic hydrogen peroxide decomposition La1-xSrxCoO3-δ perovskite oxides

    NARCIS (Netherlands)

    Dam, T.V.A.; Olthuis, Wouter; Bergveld, Piet; van den Berg, Albert

    2005-01-01

    Lanthanide perovskite oxides are mentioned as material for hydrogen peroxide sensor because they can catalytically decompose hydrogen peroxide in an aqueous medium. The catalytic properties of these perovskite oxides to hydrogen peroxide are suggested due to their oxygen vacancies influenced by the

  11. Nanorods of manganese oxides: Synthesis, characterization and catalytic application

    Science.gov (United States)

    Yang, Zeheng; Zhang, Yuancheng; Zhang, Weixin; Wang, Xue; Qian, Yitai; Wen, Xiaogang; Yang, Shihe

    2006-03-01

    Single-crystalline nanorods of β-MnO 2, α-Mn 2O 3 and Mn 3O 4 were successfully synthesized via the heat-treatment of γ-MnOOH nanorods, which were prepared through a hydrothermal method in advance. The calcination process of γ-MnOOH nanorods was studied with the help of Thermogravimetric analysis and X-ray powder diffraction. When the calcinations were conducted in air from 250 to 1050 °C, the precursor γ-MnOOH was first changed to β-MnO 2, then to α-Mn 2O 3 and finally to Mn 3O 4. When calcined in N 2 atmosphere, γ-MnOOH was directly converted into Mn 3O 4 at as low as 500 °C. Transmission electron microscopy (TEM) and high-resolution TEM were also used to characterize the products. The obtained manganese oxides maintain the one-dimensional morphology similar to the precursor γ-MnOOH nanorods. Further experiments show that the as-prepared manganese oxide nanorods have catalytic effect on the oxidation and decomposition of the methylene blue (MB) dye with H 2O 2.

  12. Methylene Blue Inhibits Caspases by Oxidation of the Catalytic Cysteine.

    Science.gov (United States)

    Pakavathkumar, Prateep; Sharma, Gyanesh; Kaushal, Vikas; Foveau, Bénédicte; LeBlanc, Andrea C

    2015-09-24

    Methylene blue, currently in phase 3 clinical trials against Alzheimer Disease, disaggregates the Tau protein of neurofibrillary tangles by oxidizing specific cysteine residues. Here, we investigated if methylene blue can inhibit caspases via the oxidation of their active site cysteine. Methylene blue, and derivatives, azure A and azure B competitively inhibited recombinant Caspase-6 (Casp6), and inhibited Casp6 activity in transfected human colon carcinoma cells and in serum-deprived primary human neuron cultures. Methylene blue also inhibited recombinant Casp1 and Casp3. Furthermore, methylene blue inhibited Casp3 activity in an acute mouse model of liver toxicity. Mass spectrometry confirmed methylene blue and azure B oxidation of the catalytic Cys163 cysteine of Casp6. Together, these results show a novel inhibitory mechanism of caspases via sulfenation of the active site cysteine. These results indicate that methylene blue or its derivatives could (1) have an additional effect against Alzheimer Disease by inhibiting brain caspase activity, (2) be used as a drug to prevent caspase activation in other conditions, and (3) predispose chronically treated individuals to cancer via the inhibition of caspases.

  13. Mercury Oxidation via Catalytic Barrier Filters Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

    2007-09-30

    In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

  14. Heterogeneous Catalytic Oxidation of Simple Alcohols by Transition Metals.

    Science.gov (United States)

    Jacobse, Leon; Vink, Sebastiaan O; Wijngaarden, Sven; Juurlink, Ludo B F

    2017-09-12

    The "exploding" flask demonstration presents a well-known illustration of heterogeneous catalyzed methanol oxidation. We find that for the same vapor pressure, the demonstration also works for all primary and secondary alcohols up to butanol but not for a tertiary alcohol. Also, we show that the demonstration works for a large range of transition metal catalysts. Hence, this demonstration, which is often applied for the repetitive explosions when methanol is used, may also be used to argue the requirement of initial dehydrogenation of the alcohol to an aldehyde in the catalytic reaction mechanism to support the general insensitivity to reactant molecules in heterogeneous catalysis in contrast to biological catalysis and to provide proof for activity trends as often depicted by volcano plots.

  15. Oxidative catalytic dimerization of methane: Syngas process alternative

    International Nuclear Information System (INIS)

    Salvi, G.

    1991-01-01

    A review of research progress relative to the direct conversion of methane into liquid hydrocarbons through oxidative catalytic dimerization indicates that high carbon (C 2 ) yields can be obtained in experimental conditions in which there is a high linear gas velocity, i.e., velocities greater than 0.45 m/s, at temperatures ranging between 800 and 850 degrees C, and with volumetric methane/oxygen ratios of 2 to 10. The high linear velocities have the function of preventing back-mixing phenomena and consequent product degradation. The suitable integration of dimerization (exothermic) with cracking (endothermic) of ethane to ethylene and higher olefins, as well as, oligomerization of the olefins to liquid hydrocarbons (synthesis fuels) can allow for the development of an very interesting process from both technical and economic points of view, especially for those countries with a mix of abundant natural gas reserves and scarce petroleum resources

  16. Low-temperature catalytic oxidation of aldehyde mixtures using wood fly ash: kinetics, mechanism, and effect of ozone.

    Science.gov (United States)

    Kolar, Praveen; Kastner, James R

    2010-02-01

    Poultry rendering emissions contain volatile organic compounds (VOCs) that are nuisance, odorous, and smog and particulate matter precursors. Present treatment options, such as wet scrubbers, do not eliminate a significant fraction of the VOCs emitted including, 2-methylbutanal (2-MB), 3-methylbutanal, and hexanal. This research investigated the low-temperature (25-160 degrees C) catalytic oxidation of 2-MB and hexanal vapors in a differential, plug flow reactor using wood fly ash (WFA) as a catalyst and oxygen and ozone as oxidants. The oxidation rates of 2-MB and hexanal ranged between 3.0 and 3.5 x 10(-9)mol g(-1)s(-1) at 25 degrees C and the activation energies were 2.2 and 1.9 kcal mol(-1), respectively. The catalytic activity of WFA was comparable to other commercially available metal and metal oxide catalysts. We theorize that WFA catalyzed a free radical reaction in which 2-butanone and CO(2) were formed as end products of 2-MB oxidation, while CO(2), pentanal, and butanal were formed as end products of hexanal oxidation. When tested as a binary mixture at 25 and 160 degrees C, no inhibition was observed. Additionally, when ozone was tested as an oxidant at 160 degrees C, 100% removal was achieved within a 2-s reaction time. These results may be used to design catalytic oxidation processes for VOC removal at poultry rendering facilities and potentially replace energy and water intensive air pollution treatment technologies currently in use. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  17. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation

    Science.gov (United States)

    Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H.; Navrotsky, Alexandra

    2013-01-01

    Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn3+/Mn4+ ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states. PMID:23667149

  18. One-pot wet-chemical co-reduction synthesis of bimetallic gold-platinum nanochains supported on reduced graphene oxide with enhanced electrocatalytic activity

    Science.gov (United States)

    Chen, De-Jun; Zhang, Qian-Li; Feng, Jin-Xia; Ju, Ke-Jian; Wang, Ai-Jun; Wei, Jie; Feng, Jiu-Ju

    2015-08-01

    In this work, a simple, rapid and facile one-pot wet-chemical co-reduction method is developed for synthesis of bimetallic Au-Pt alloyed nanochains supported on reduced graphene oxide (Au-Pt NCs/RGO), in which caffeine is acted as a capping agent and a structure-directing agent, while no any seed, template, surfactant or polymer involved. The as-prepared nanocomposites display enlarged electrochemical active surface area, significantly enhanced catalytic activity and better stability for methanol and ethylene glycol oxidation, compared with commercial Pt-C (Pt 50 wt%), PtRu-C (Pt 30 wt% and Ru 15 wt%) and Pt black.

  19. Oxidation-extraction of uranium from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    Lawes, B.C.

    1985-01-01

    The invention involves an improvement to the reductive stripping process for recovering uranium values from wet-process phosphoric acid solution, where uranium in the solution is oxidized to uranium (VI) oxidation state and then extracted from the solution by contact with a water immiscible organic solvent, by adding sufficient oxidant, hydrogen peroxide, to obtain greater than 90 percent conversion of the uranium to the uranium (VI) oxidation state to the phosphoric acid solution and simultaneously extracting the uranium (VI)

  20. Catalytic oxidation of NO to NO2 on activated carbon

    International Nuclear Information System (INIS)

    Zhancheng Guo; Yusheng Xie

    2001-01-01

    Catalytic oxidation of NO to NO 2 over activated carbons PAN-ACF, pitch-ACF and coconut-AC at room temperature (30 o C) were studied to develop a method based on oxidative removal of NO from flue gases. For a dry gas, under the conditions of a gas space flow rate 1500 h -1 in the presence of oxygen of 2-20% in volume concentration, the activated coconut carbon with a surface area 1200 m 2 /g converted about 81-94% of NO with increasing oxygen concentration, the pitch based activated carbon fiber with a surface area 1000 m 2 /g about 44-75%, and the polyacrylonitrile-based activated carbon fiber with a surface area 1810 m 2 /g about 25-68%. The order of activity of the activated carbons was PAN-ACF c P NO P O2 β (F/W), where β is 0.042, 0.16, 0.31 for the coconut-AC, the pitch-ACF and the PAN-ACF respectively, and k c is 0.94 at 30 o C. (author)

  1. Electrochemical, H2O2-Boosted Catalytic Oxidation System

    Science.gov (United States)

    Akse, James R.; Thompson, John O.; Schussel, Leonard J.

    2004-01-01

    An improved water-sterilizing aqueous-phase catalytic oxidation system (APCOS) is based partly on the electrochemical generation of hydrogen peroxide (H2O2). This H2O2-boosted system offers significant improvements over prior dissolved-oxygen water-sterilizing systems in the way in which it increases oxidation capabilities, supplies H2O2 when needed, reduces the total organic carbon (TOC) content of treated water to a low level, consumes less energy than prior systems do, reduces the risk of contamination, and costs less to operate. This system was developed as a variant of part of an improved waste-management subsystem of the life-support system of a spacecraft. Going beyond its original intended purpose, it offers the advantage of being able to produce H2O2 on demand for surface sterilization and/or decontamination: this is a major advantage inasmuch as the benign byproducts of this H2O2 system, unlike those of systems that utilize other chemical sterilants, place no additional burden of containment control on other spacecraft air- or water-reclamation systems.

  2. Catalytic activity of oxide cerium-molybdenum-tellurium catalysts in oxidation ammonolysis

    International Nuclear Information System (INIS)

    Dzhordano, N.; Bart, D.; Madzhori, R.

    1984-01-01

    A commercial catalyst containing a mixture of Ce-, Mo-, Te oxides deposited on SiO 2 is shown to manifest a high efficiency in oxidative ammonolysis of propylene (C 3 - ) to acrylonitrile (AN). The dependence of the catalytic properties on the catalyst composition and reaction conditions is studied. It is established that three-component mixtures are more active and selective than the systems with a lesser number of components. Using the catalyst with the optimum ratio of constituent oxides in a microreactor at 440 deg enabled one to achieve initial selectivity in terms of AN equal to 82.5% at 97% conversion of C 3 - . Acrolein, acetonitrile, HCN and nitrogen oxides are the reaction by-products. A supposition is made that the reaction proceeds via the formation of π-compleXes on the centres of Te(4). Setective oxidation occurs on oxygen atoms bonded with the Mo(6) ions. Tellurium enhances the molybdenum reducibleness due to delocalization of electrons, whereas the cerium addition to the mixture of tellurium- and molybdenum oxides increases the rate of molybdenum reoxidation and thus enhances the catalytic system stability

  3. Measurement of the oxidation-extraction of uranium from wet-process phosphoric acid

    International Nuclear Information System (INIS)

    Lawes, B.C.

    1985-01-01

    The present invention relates to processes for the recovery of uranium from wet-process phosphoric acid and more particularly to the oxidation-extraction steps in the DEPA-TOPO process for such recovery. A more efficient use of oxidant is obtained by monitoring the redox potential during the extraction step

  4. Catalytic pleat filter bags for combined particulate separation and nitrogen oxides removal from flue gas streams

    International Nuclear Information System (INIS)

    Park, Young Ok; Choi, Ho Kyung

    2010-01-01

    The development of a high temperature catalytically active pleated filter bag with hybrid filter equipment for the combined removal of particles and nitrogen oxides from flue gas streams is presented. A special catalyst load in stainless steel mesh cartridge with a high temperature pleated filter bag followed by optimized catalytic activation was developed to reach the required nitrogen oxides levels and to maintain the higher collection efficiencies. The catalytic properties of the developed high temperature filter bags with hybrid filter equipment were studied and demonstrated in a pilot scale test rig and a demonstration plant using commercial scale of high temperature catalytic pleated filter bags. The performance of the catalytic pleated filter bags were tested under different operating conditions, such as filtration velocity and operating temperature. Moreover, the cleaning efficiency and residual pressure drop of the catalyst loaded cartridges in pleated filter bags were tested. As result of theses studies, the optimum operating conditions for the catalytic pleated filter bags are determined. (author)

  5. Effect of NO2 and water on the catalytic oxidation of soot

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt; Grunwaldt, Jan-Dierk; Jensen, Anker Degn

    2017-01-01

    The influence of adding NO2 to 10 vol% O2/N2 on non-catalytic soot oxidation and soot oxidation in intimate or loose contact with a catalyst has been investigated. In non-catalytic soot oxidation the oxidation rate is increased significantly at lower temperatures by NO2. For soot oxidation in tig...... exhibited a volcano-curve dependence on the heat of oxygen chemisorption, and among the tested pure metals and oxides Cr2O3 was the most active catalyst. Further improvements were achieved with a FeaCrbOx binary oxide catalyst.......The influence of adding NO2 to 10 vol% O2/N2 on non-catalytic soot oxidation and soot oxidation in intimate or loose contact with a catalyst has been investigated. In non-catalytic soot oxidation the oxidation rate is increased significantly at lower temperatures by NO2. For soot oxidation in tight...... contact with a Co3O4 catalyst a more reactive NO2-containg atmosphere did not change the oxidation profile significantly during temperature programmed oxidation. This is consistent with the expected Mars van Krevelen mechanism, where the rate limiting step is reaction between carbon and lattice oxygen...

  6. Biomarkers of oxidative stress in patients with wet age related macular degeneration.

    Science.gov (United States)

    Zafrilla, P; Losada, M; Perez, A; Caravaca, G; Mulero, J

    2013-03-01

    The aim of this study was to analyze biomarkers of oxidative stress in patients with wet age related macular degeneration (AMD). Case-control study that includes 163 patients with wet AMD (age group of 55-82 years with the mean age of 71 years and 170 age-matched healthy controls in the age group of 55-78 years with the mean age of 71 years. The following parameters were determined: reduced and oxidized Glutathione (GSH/GSSH), protein carbonyl groups, total antioxidant activity in plasma and the activity of endogenous antioxidant enzymes, such as, gluthatione peroxidase, gluthatione reductase and superoxide dismutase. We observed total antioxidant activity higher in control group (CG) compared with patients with wet AMD (7.1 ± 1.2 μM Trolox vs 5.8 ± 1.1 μM Trolox). Values of superoxide dismutase activity (SOD), gluthatione reductase (GR) and gluthatione peroxidase (GPx) are higher in control group than in patients with wet AMD. According to the GSH/GSSH results, average values were higher in the CG than in patients with wet AMD and data were not significantly different.. Values of protein carbonyl groups were higher in patients with wet AMD than in CG and significant differences were found. The finding of the present study suggests that the patients with wet AMD are an altered metabolic state of oxidation-reduction and that it is convenient to give therapeutic interventions with antioxidants. We have demonstrated that systematic oxidative stress, measured by different biomarkers is closely associated with the wet AMD.

  7. Steps to detect catalytic ethylene oxide formation on single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Boecklein, Sebastian; Guenther, Sebastian; Reichelt, Robert; Seibald, Markus; Preimesser, Andreas; Ehrensberger, Martin; Rozsa, Gergely; Wintterlin, Joost [Ludwig-Maximilians-Universitaet, 81377 Muenchen (Germany)

    2010-07-01

    As part of a project to bridge the ''pressure gap'' for the catalytic synthesis of ethylene oxide (EtO) on Ag surfaces we have undertaken extensive studies in a model reactor. The investigations aimed at finding conditions under which the production of EtO can be unambiguously and quantitatively detected on single crystal Ag surfaces, a challenging task because of the extremely low ethylene-to-EtO reaction probability. The experiments were performed in a specially designed reactor, and they involved the variation of partial pressures, temperature, and type of Ag samples (powders and polycrystalline sheets), and great effort was expended for proper background subtraction. We find that for the sheets an essential ingredient is an activation treatment by annealing in oxygen, which raises the activity by more than one order of magnitude. There are indications that subsurface O atoms are created by this pretreatment. The maximum values obtained for activity, selectivity, yield, and reaction probability allow us to predict that EtO produced on a single Ag crystal can indeed be detected under flow conditions in a UHV chamber. Experiments on the deactivation show that sintering plays an important role for the dispersed samples, but that there is an additional deactivation process for the sheets that is not caused by sintering or poisoning.

  8. Basic promoters effect over nickel/alumina catalyst on hydrogen production via methane catalytic partial oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Requies, J.; Cabrero, M. A.; Barrio, V. I.; Cambra, J. F.; Arias, P. L.; Guemez, B.; La Oarola, V.; Pena, M. A.; Fierro, J. L. G.

    2005-07-01

    The European Directives concerning the environment protection and the sustainable development include the green fuels production and utilization. Thus, one of their major objectives is related to the research on processes to obtain green fuels and their direct application or their transformation in clean energy carriers and final fuels as hydrogen. Hydrogen is an energy vector that is being considered by most countries and many energy companies as a possible long-term solution in the electricity, heating and transport energy markets, where it will offer greenhouse gas abatement and other local air quality benefits. Before the generalization of hydrogen production from renewable resources, other production processes can fulfil the objective of generating an energy infrastructure based on hydrogen. By the methane catalytic partial oxidation (CPO) process or by an analogous one, like Wet CPO, a synthesis gas can be produced. This gas can be further treated to maximize the hydrogen production or it can also be used to generate clean liquid fuels precursors via Fischer-Tropsch synthesis. In the present work, the hydrogen and/or synthesis gas production via CPO or Wet-CPO is studied using nickel catalyst supported on -Al2O3 promoted by basic metals (Ca and Mg). The conventional nickel supported catalysts are highly effective for these processes. Nevertheless, they are unsatisfactory with respect to coke formation. Deactivation of these catalysts by a coke formation is sometimes a serious limitation. The addition of calcium and magnesium onto Ni/ -Al2O3 aims to eliminate the coke formation, via a reduction on support acidity, and as a result to improve these catalysts performance. The catalysts were prepared by consecutive wet impregnation method, and -Al2O3 was employed as acid support. The nominal contents of nickel were 15 and 25 wt%. The nominal contents of promoters were 5 and 10 wt% of Mg or Ca. The catalyst textural characterization was studied using different

  9. Reaction pathways for catalytic gas-phase oxidation of glycerol over mixed metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Suprun, W.; Glaeser, R.; Papp, H. [Leipzig Univ. (Germany). Inst. of Chemical Technology

    2011-07-01

    Glycerol as a main by-product from bio-diesel manufacture is a cheap raw material with large potential for chemical or biochemical transformations to value-added C3-chemicals. One possible way of glycerol utilization involves its catalytic oxidation to acrylic acid as an alternative to petrochemical routes. However, this catalytic conversion exhibits various problems such as harsh reaction conditions, severe catalyst coking and large amounts of undesired by-products. In this study, the reaction pathways for gas-phase conversion of glycerol over transition metal oxides (Mo, V und W) supported on TiO{sub 2} and SiO{sub 2} were investigated by two methods: (i) steady state experiments of glycerol oxidation and possible reactions intermediates, i.e., acrolein, 3-hydroxy propionaldehyde and acetaldehyde, and (ii) temperature-programmed surface reaction (TPSR) studies of glycerol conversion in the presence and in the absence of gas-phase oxygen. It is shown that the supported W-, V and Mo-oxides possess an ability to catalyze the oxidation of glycerol to acrylic acid. These investigations allowed us to gain a deeper insight into the reaction mechanism. Thus, based on the obtained results, three possible reactions pathways for the selective oxidation of glycerol to acrylic acid on the transition metal-containing catalysts are proposed. The major pathways in presence of molecular oxygen are a fast successive destructive oxidation of glycerol to CO{sub x} and the dehydration of glycerol to acrolein which is a rate-limiting step. (orig.)

  10. Gaseous Heterogeneous Catalytic Reactions over Mn-Based Oxides for Environmental Applications: A Critical Review.

    Science.gov (United States)

    Xu, Haomiao; Yan, Naiqiang; Qu, Zan; Liu, Wei; Mei, Jian; Huang, Wenjun; Zhao, Songjian

    2017-08-15

    Manganese oxide has been recognized as one of the most promising gaseous heterogeneous catalysts due to its low cost, environmental friendliness, and high catalytic oxidation performance. Mn-based oxides can be classified into four types: (1) single manganese oxide (MnOx), (2) supported manganese oxide (MnOx/support), (3) composite manganese oxides (MnOx-X), and (4) special crystalline manganese oxides (S-MnOx). These Mn-based oxides have been widely used as catalysts for the elimination of gaseous pollutants. This review aims to describe the environmental applications of these manganese oxides and provide perspectives. It gives detailed descriptions of environmental applications of the selective catalytic reduction of NOx with NH 3 , the catalytic combustion of volatile organic compounds, Hg 0 oxidation and adsorption, and soot oxidation, in addition to some other environmental applications. Furthermore, this review mainly focuses on the effects of structure, morphology, and modified elements and on the role of catalyst supports in gaseous heterogeneous catalytic reactions. Finally, future research directions for developing manganese oxide catalysts are proposed.

  11. CATALYTIC OXIDATION OF AIR POLLUTANTS FROM PULP AND PAPER INDUSTRY USING OZONE

    Science.gov (United States)

    Major pollutants from pulp and paper mills include volatile organic compounds (VOCs) such as methanol and total reduced sulfur compounds (TRS) such as dimethyl sulfide. The conventional treatment technologies including incineration or catalytic thermal oxidation are energy intens...

  12. Next Generation Hybrid Photo-Catalytic Oxidation (PCO) for Trace Contaminant Control

    Data.gov (United States)

    National Aeronautics and Space Administration — Photocatalytic oxidation (PCO) is a primary candidate as an alternative to thermal-catalytic or sorbent- based technologies for VOC trace contaminant control due to...

  13. Thermal wet oxidation improves anaerobic biodegradability of raw and digested biowaste

    DEFF Research Database (Denmark)

    Lissens, G.; Thomsen, Anne Belinda; De Baere, L.

    2004-01-01

    yield and digestion kinetics and permitted lignin utilization during a subsequent second digestion. The increase of the specific methane yield for the full-scale biogas plant by applying thermal wet oxidation was 35-40%, showing that there is still a considerable amount of methane that can be harvested...... profits. The objective of this research was to enhance the anaerobic biodegradability and methane yields from different biowastes (food waste, yard waste, and digested biowaste already treated in a full-scale biogas plant (DRANCO, Belgium)) by assessing thermal wet oxidation. The biodegradability...

  14. Mercury Oxidation over Selective Catalytic Reduction (SCR) Catalysts - Ph.d. thesis Karin Madsen

    DEFF Research Database (Denmark)

    Madsen, Karin

    The vanadium-based SCR catalyst used for NOx-control promotes the oxidation of elemental mercury Hg0 to Hg2+ in flue gases from coal-fired power plants. Hg2+ is water soluble and can effectively be captured in a wet scrubber. This means that the combination of an SCR with a wet FGD can offer an e...

  15. Catalytic decomposition of N2O on ordered crystalline metal oxides.

    Science.gov (United States)

    Ma, Zhen; Ren, Yu; Lu, Yanbin; Bruce, Peter G

    2013-07-01

    The synthesis of mesoporous metal oxides using mesoporous silicas or carbons as hard templates has attracted growing interest recently, but the catalytic application of mesoporous metal oxides has not been studied sufficiently. In addition, few publications have compared the catalytic performance of a series of mesoporous metal oxides in the same reaction, and little is known about the influence of preparation details of mesoporous metal oxides on catalytic activity. Herein, ordered crystalline mesoporous metal oxides (i.e., CeO2, Co3O4, Cr2O3, CuO, alpha-Fe2O3, beta-MnO2, Mn2O3, Mn3O4, NiO) prepared using mesoporous SiO2 (KIT-6) as a hard template were tested in the decomposition of N2O, an environmental pollutant, and the catalytic performance was compared with that of commercial metal oxides with low surface areas. In particular, mesoporous Co3O4, beta-MnO2, and NiO showed high N2O conversions at 350 degrees C. The influence of preparation parameters of mesoporous Co3O4 on catalytic activity was then studied in more detail. Mesoporous Co3O4 samples with different pore sizes and wall thicknesses were prepared using KIT-6 synthesized under different hydrothermal or calcination temperatures. Interestingly, the catalytic activities of different mesoporous Co3O4 samples were found to be influenced by these preparation details.

  16. Evaluation of wet air oxidation variables for removal of organophosphorus pesticide malathion using Box-Behnken design.

    Science.gov (United States)

    Isgoren, Melike; Gengec, Erhan; Veli, Sevil

    2017-02-01

    This paper deals with finding optimum reaction conditions for wet air oxidation (WAO) of malathion aqueous solution, by Response Surface Methodology. Reaction conditions, which affect the removal efficiencies most during the non-catalytic WAO system, are: temperature (60-120 °C), applied pressure (20-40 bar), the pH value (3-7), and reaction time (0-120 min). Those were chosen as independent parameters of the model. The interactions between parameters were evaluated by Box-Behnken and the quadratic model fitted very well with the experimental data (29 runs). A higher value of R 2 and adjusted R 2 (>0.91) demonstrated that the model could explain the results successfully. As a result, optimum removal efficiency (97.8%) was obtained at pH 5, 20 bars of pressure, 116 °C, and 96 min. These results showed that Box-Behnken is a suitable design to optimize operating conditions and removal efficiency for non-catalytic WAO process. The EC 20 value of raw wastewater was measured as 35.40% for malathion (20 mg/L). After the treatment, no toxicity was observed at the optimum reaction conditions. The results show that the WAO is an efficient treatment system for malathion degradation and has the ability of converting malathion to the non-toxic forms.

  17. Catalytic soot oxidation over Ce- and Cu-doped hydrotalcites-derived mesoporous mixed oxides.

    Science.gov (United States)

    Wang, Zhongpeng; Wang, Liguo; He, Fang; Jiang, Zheng; Xiao, Tiancun; Zhang, Zhaoliang

    2014-09-01

    Ce- and Cu-doped hydrotalcites derived mixed oxides were prepared through co-precipitation and calcination method, and their catalytic activities for soot oxidation with O2 and O2/NO were investigated. The solids were characterized by XRD, TG-DTG, BET, H2-TPR, in situ FTIR and TPO techniques. All the catalysts precursors showed the typical diffraction patterns of hydrotalcite-like materials having layered structure. The derived mixed oxides exhibited mesoporous properties with specific surface area of 45-160 m2/g. After both Ce and Cu incorporated, mixed crystalline phases of CuO (tenorite), CeO2 (fluorite) and MgAl2O4 (spinel) were formed. As a result, the NO(x) adsorption capacity of this catalyst was largely increased to 201 μmol/g, meanwhile, it was also the most effective to convert NO into NO2 in the sorption process due to the enhanced reducibility. The in situ FTIR spectra revealed that NO(x) were stored mainly as chelating bidentate and monodentate nitrate. The interaction effect between Cu and Ce in the mixed oxide resulted in different NO(x) adsorption behavior. Compared with the non-catalyzed soot oxidation, soot conversion curves over the mixed oxides catalysts shift to low temperature in O2. The presence of NO in the gas phase significantly enhanced the soot oxidation activity with ignition temperature decreased to about 320 degrees C, which is due to NO conversion to NO2 over the catalyst followed by the reaction of NO2 with soot. This explains the cooperative effect of Ce and Cu in the mixed oxide on soot oxidation with high activity and 100% selectivity to CO2 formation.

  18. Wet Oxidation of Maleic Acid by a Pumice Supported Copper (II ...

    African Journals Online (AJOL)

    Pumice supported Cu (II) Schiff base catalysts were prepared by surface chemical modification followed by complexation with Cu (II) acetate. The resulting materials were characterised by Diffuse Reflectance Fourier Transform Spectroscopy (DRIFTS) to confirm the modification. The materials were tested in a wet oxidation ...

  19. Subcritical wet air oxidation of organic solvents and chelating agents of the nuclear fuel

    International Nuclear Information System (INIS)

    Bachir, Souley

    1999-01-01

    This document deals with the environment control, more specially organic solvents and chelating agents destruction, employed in the nuclear industry. This work details the subcritical wet air oxidation process. Another part of the document deals with the possible coupling between this process and the biodegradation technic in the framework of the sewage sludges treatment. (A.L.B.)

  20. Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility

    DEFF Research Database (Denmark)

    Varga, E.; Schmidt, A.S.; Reczey, K.

    2003-01-01

    Corn stover is an abundant, promising raw material for fuel ethanol production. Although it has a high cellulose content, without pretreatment it resists enzymatic hydrolysis, like most lignocellulosic materials. Wet oxidation (water, oxygen, mild alkali or acid, elevated temperature and pressure...

  1. Testing of wet scrap recovery equipment for mixed oxide scrap reprocessing

    International Nuclear Information System (INIS)

    Demiter, J.A.; Klem, M.J.; Owen, T.J.

    1984-08-01

    The Wet Scrap Recovery (WSR) program was initiated at the Hanford Engineering Development Laboratory (HEDL) by Westinghouse Hanford Company in Richland, Washington to demonstrate fuel fabrication scrap recovery and reconversion to fuel grade oxide powder using the continuous coprecipitation-calcination (COPRECAL) conversion process. Advancements in process control equipment and instrumentation were also developed and demonstrated

  2. Selective Production of Aromatic Aldehydes from Heavy Fraction of Bio-oil via Catalytic Oxidation

    International Nuclear Information System (INIS)

    Li, Yan; Chang, Jie; Ouyang, Yong; Zheng, Xianwei

    2014-01-01

    High value-added aromatic aldehydes (e. g. vanillin and syringaldehyde) were produced from heavy fraction of bio-oil (HFBO) via catalytic oxidation. The concept is based on the use of metalloporphyin as catalyst and hydrogen peroxide (H 2 O 2 ) as oxidant under alkaline condition. The biomimetic catalyst cobalt(II)-sulfonated tetraphenylporphyrin (Co(TPPS 4 )) was prepared and characterized. It exhibited relative high activity in the catalytic oxidation of HFBO. 4.57 wt % vanillin and 1.58 wt % syringaldehyde were obtained from catalytic oxidation of HFBO, compared to 2.6 wt % vanillin and 0.86 wt % syringaldehyde without Co(TPPS 4 ). Moreover, a possible mechanism of HFBO oxidation using Co(TPPS 4 )/H 2 O 2 was proposed by the research of model compounds. The results showed that this is a promising and environmentally friendly method for production of aromatic aldehydes from HFBO under Co(TPPS 4 )/H 2 O 2 system

  3. Oscillatory Behavior during the Catalytic Partial Oxidation of Methane: Following Dynamic Structural Changes of Palladium Using the QEXAFS Technique

    DEFF Research Database (Denmark)

    Stoetzel, Jan; Frahm, Ronald; Kimmerle, Bertram

    2012-01-01

    as a combination of total oxidation and reforming in the catalytic capillary reactor was observed. This change in catalytic performance was directly linked to changes in the oxidation state of the Pd/Al2O3 catalysts at different positions along the catalytic reactor. During the ignition of the catalytic partial......Pd/Al2O3 catalysts oscillate between ignition and extinction of the catalytic partial oxidation of methane when they are exposed to a 2:1 reaction mixture of methane and oxygen. The oscillations of the catalytic performance and the structure of Pd/Al2O3 catalysts in a fixed-bed reactor were...... by the oven temperature than the ignition behavior of the catalytic partial oxidation of methane. This indicates that deactivation is caused by an autoreduction of the palladium at the beginning of the catalyst bed due to the high temperature achieved by total oxidation of methane....

  4. Wet Aerobic Oxidation of Lignin into Aromatic Aldehydes Catalysed by a Perovskite-type Oxide: LaFe1-xCuxO3 (x=0, 0.1, 0.2

    Directory of Open Access Journals (Sweden)

    Lu Lin

    2009-07-01

    Full Text Available The perovskite-type oxide catalyst LaFe1-xCuxO3 (x=0, 0.1, 0.2 was prepared by the sol–gel method, and tested as a catalyst in the wet aerobic oxidation (WAO of lignin into aromatic aldehydes. The lignin conversion and the yield of each aromatic aldehyde were significantly enhanced in the catalytic process, compared with the non-catalyzed process. Moreover, it was shown that the stability of activity and structure of LaFe1-xCuxO3 (x=0, 0.1, 0.2 remained nearly unchanged after a series of successive recyclings of the catalytic reactions, indicating it was an efficient and recyclable heterogeneous catalyst for the conversion of lignin into aromatic aldehydes in the WAO process.

  5. The mechanism of the catalytic oxidation of hydrogen sulfide: II. Kinetics and mechanism of hydrogen sulfide oxidation catalyzed by sulfur

    NARCIS (Netherlands)

    Steijns, M.; Derks, F.; Verloop, A.; Mars, P.

    1976-01-01

    The kinetics of the catalytic oxidation of hydrogen sulfide by molecular oxygen have been studied in the temperature range 20–250 °C. The primary reaction product is sulfur which may undergo further oxidation to SO2 at temperatures above 200 °C. From the kinetics of this autocatalytic reaction we

  6. Model catalytic oxidation studies using supported monometallic and heterobimetallic oxides. Progress report, August 1, 1991--January 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Ekerdt, J.G.

    1992-02-03

    This research program is directed toward a more fundamental understanding of the effects of catalyst composition and structure on the catalytic properties of metal oxides. Metal oxide catalysts play an important role in many reactions bearing on the chemical aspects of energy processes. Metal oxides are the catalysts for water-gas shift reactions, methanol and higher alcohol synthesis, isosynthesis, selective catalytic reduction of nitric oxides, and oxidation of hydrocarbons. A key limitation to developing insight into how oxides function in catalytic reactions is in not having precise information of the surface composition under reaction conditions. To address this problem we have prepared oxide systems that can be used to study cation-cation effects and the role of bridging (-O-) and/or terminal (=O) surface oxygen anion ligands in a systematic fashion. Since many oxide catalyst systems involve mixtures of oxides, we selected a model system that would permit us to examine the role of each cation separately and in pairwise combinations. Organometallic molybdenum and tungsten complexes were proposed for use, to prepare model systems consisting of isolated monomeric cations, isolated monometallic dimers and isolated bimetallic dimers supported on silica and alumina. The monometallic and bimetallic dimers were to be used as models of more complex mixed- oxide catalysts. Our current program was to develop the systems and use them in model oxidation reactions.

  7. Dual catalyst bed concept for catalytic partial oxidation of methane to synthesis gas

    NARCIS (Netherlands)

    Zhu, J.J.; Mujeebur Rahuman, M.S.M.; van Ommen, J.G.; Lefferts, Leonardus

    2004-01-01

    A system with two catalyst beds instead of one single metal catalyst bed is proposed for catalytic partial oxidation of methane (CPOM) to synthesis gas. In this dual catalyst bed system, an irreducible stable oxide, such as yttrium-stabilized zirconia (YSZ), is used in the first catalyst bed to

  8. The catalytic oxidation of organic contaminants in a packed bed reactor

    NARCIS (Netherlands)

    van de Beld, L.; Bijl, M.P.G.; Reinders, A.; van der Wert, B.; Westerterp, K.R.

    1994-01-01

    The catalytic oxidation of several hydrocarbons was studied over noble metal and metal oxide catalysts. A fast empirical method was developed to determine the minimum operating temperature required to guarantee complete conversion of the hydrocarbon. The influence of the operating parameters such as

  9. Catalytic Performance of Co3O4 on Different Activated Carbon Supports in the Benzyl Alcohol Oxidation

    Directory of Open Access Journals (Sweden)

    Misael Cordoba

    2017-12-01

    Full Text Available Co3O4 particles were supported on a series of activated carbons (G60, CNR, RX3, and RB3. Incipient wetness method was used to prepare these catalysts. The effect of the structural and surface properties of the carbonaceous supports during oxidation of benzyl alcohol was evaluated. The synthetized catalysts were characterized via IR, TEM, TGA/MS, XRD, TPR, AAS, XPS, and N2 adsorption/desorption isotherm techniques. Co3O4/G60 and Co3O4/RX3 catalysts have high activity and selectivity on the oxidation reaction reaching conversions above 90% after 6 h, without the presence of promoters. Catalytic performances show that differences in chemistry of support surface play an important role in activity and suggest that the presence of different ratios of species of cobalt and oxygenated groups on surface in Co3O4/G60 and Co3O4/RX3 catalysts, offered a larger effect synergic between both active phase and support increasing their catalytic activity when compared to the other tested catalysts.

  10. Valorization of Lignin by Partial Wet Oxidation Using Sustainable Heteropoly Acid Catalysts

    Directory of Open Access Journals (Sweden)

    Abayneh Getachew Demesa

    2017-09-01

    Full Text Available The production of carboxylic acids by partial wet oxidation of alkali lignin at elevated temperatures and pressures was studied experimentally. Two different heteropoly acids, phosphotungstic acid (H3PW12O40 and phosphomolybdic acid (H3PMo12O40, were used to catalyze the oxidation of lignin under hydrothermal conditions. Factors influencing the total yield of carboxylic acids formed during the partial oxidation of lignin were investigated. Formic, acetic and succinic acids were the major products identified. Of the two catalysts used, phosphomolybdic acid gave the most promising results, with carboxylic acid yields and lignin conversions of up to 45% and 95%, respectively.

  11. Preparation of AuNPs/GQDs/SiO2 Composite and Its Catalytic Performance in Oxidation of Veratryl Alcohol

    Directory of Open Access Journals (Sweden)

    Yaoyao Yang

    2017-01-01

    Full Text Available Composites of gold nanoparticles and graphene quantum dots (AuNPs/GQDs exhibit excellent dispersibility in aqueous solutions. Thus, it is difficult to separate them from wet reaction systems when they are used as catalysts. To resolve this issue, in this study, an AuNPs/GQDs composite was immobilized on silicon dioxide through the hydrothermal method, which involved the formation of an amide bond between the surface GQDs of the AuNPs/GQDs composite and the amino group of the silane. The as-synthesized AuNPs/GQDs/SiO2 composite was found to be suitable for use as a heterogeneous catalyst for the oxidation of veratryl alcohol in water and exhibited catalytic activity comparable to that of bare AuNPs/GQDs as well as better recyclability.

  12. Selective Catalytic Oxidation of NH3 to N2 for Catalytic Combustion of Low Heating Value Gas under Lean/Rich Conditions

    Czech Academy of Sciences Publication Activity Database

    Kušar, H.M.J.; Ersson, A.G.; Vosecký, Martin; Järas, S.G.

    2005-01-01

    Roč. 58, 1-2 (2005), s. 25-32 ISSN 0926-3373 Institutional research plan: CEZ:AV0Z40720504 Keywords : catalytic combustion * selective catalytic oxidation * ammonia Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.809, year: 2005

  13. Biodiesel by catalytic reactive distillation powered by metal oxides

    NARCIS (Netherlands)

    Kiss, A.A.; Dimian, A.C.; Rothenberg, G.

    2008-01-01

    The properties and use of biodiesel as a renewable fuel as well as the problems associated with its current production processes are outlined. A novel sustainable esterification process based on catalytic reactive distillation is proposed. The pros and cons of manufacturing biodiesel via fatty acid

  14. Oxidation of phosphine by sulfur or selenium involving a catalytic ...

    Indian Academy of Sciences (India)

    Administrator

    sulfur bond with the formation of new copper–phosphorous bond led to the development of a catalytic cycle using excess. PPh3 and S or Se as the reacting ... clean inter conversion between tetramer and monomer complex using elemental sulfur ...

  15. Catalytic oxidative pyrolysis of spent organic ion exchange resins from nuclear power plants

    International Nuclear Information System (INIS)

    Sathi Sasidharan, N.; Deshingkar, D.S.; Wattal, P.K.; Shirsat, A.N.; Bharadwaj, S.R.

    2005-08-01

    The spent IX resins from nuclear power reactors are highly active solid wastes generated during operations of nuclear reactors. Catalytic oxidative pyrolysis of these resins can lead to high volume reduction of these wastes. Low temperature pyrolysis of transition metal ion loaded IX resins in presence of nitrogen was carried out in order to optimize catalyst composition to achieve maximum weight reduction. Thermo gravimetric analysis of the pyrolysis residues was carried out in presence of air in order to compare the oxidative characteristics of transition metal oxide catalysts. Copper along with iron, chromium and nickel present in the spent IX resins gave the most efficient catalyst combination for catalytic and oxidative pyrolysis of the residues. During low temperature catalytic pyrolysis, 137 Cesium volatility was estimated to be around 0.01% from cationic resins and around 0.1% from anionic resins. During oxidative pyrolysis at 700 degC, nearly 10 to 40% of 137 Cesium was found to be released to off gases depending upon type of resin and catalyst loaded on to it. The oxidation of pyrolytic residues at 700 degC gave weight reduction of 15% for cationic resins and 93% for anionic resins. Catalytic oxidative pyrolysis is attractive for reducing weight and volume of spent cationic resins from PHWRs and VVERs. (author)

  16. Catalytic Wastewater Treatment Using Pillared Clays

    Science.gov (United States)

    Perathoner, Siglinda; Centi, Gabriele

    After introduction on the use of solid catalysts in wastewater treatment technologies, particularly advanced oxidation processes (AOPs), this review discussed the use of pillared clay (PILC) materials in three applications: (i) wet air catalytic oxidation (WACO), (ii) wet hydrogen peroxide catalytic oxidation (WHPCO) on Cu-PILC and Fe-PILC, and (iii) behavior of Ti-PILC and Fe-PILC in the photocatalytic or photo-Fenton conversion of pollutants. Literature data are critically analyzed to evidence the main direction to further investigate, in particularly with reference to the possible practical application of these technologies to treat industrial, municipal, or agro-food production wastewater.

  17. Catalytic oxidant scavenging by selenium-containing compounds

    DEFF Research Database (Denmark)

    Carroll, Luke; Pattison, David I; Fu, Shanlin

    2017-01-01

    Myeloperoxidase produces strong oxidants during the immune response to destroy invading pathogens. However, these oxidants can also cause tissue damage, which contributes to the development of numerous inflammatory diseases. Selenium containing compounds, including selenomethionine (SeMet) and 1,...

  18. Catalytic ozonation of sulfamethoxazole by composite iron-manganese silicate oxide: cooperation mechanism between adsorption and catalytic reaction.

    Science.gov (United States)

    Gao, Guoying; Kang, Jing; Shen, Jimin; Chen, Zhonglin; Chu, Wei

    2016-11-01

    A systematic investigation of the cooperation mechanism between adsorption and catalytic reaction during the catalytic ozonation of sulfamethoxazole (SMX) by composite iron-manganese silicate oxide (FMSO) was carried out in this work. Results showed that the total organic carbon (TOC) removal increased significantly from 27 % (sole-ozonation) to 79.8 % (FMSO catalytic ozonation). The presence of FMSO in the ozonation process effectively enhanced the ozone utilization efficiency and accelerated the transformation of ozone into hydroxyl radicals. The latter result was verified by the indirect method, using NaHSO 3 as the reductor, and the direct electron spin resonance (ESR) determination technology. The adsorption of SMX on FMSO was minimal (1.8 %). However, ozone rapidly converted SMX into various intermediates, which was exhibited by the much higher adsorption affinity on the surface of FMSO than that of SMX. The accumulation of various intermediates on the FMSO surface also increased their contact probability with the ·OH radicals generated by the ozone decomposition. The continuous interaction of intermediates with ·OH radicals could further promote the benign cycling of the release of adsorption sites and the succeeding adsorption/decomposition of ozone and intermediates on FMSO. This could be another reason for the higher and faster TOC removal rate.

  19. Oscillatory behaviour of catalytic properties, structure and temperature during the catalytic partial oxidation of methane on Pd/Al2O3

    DEFF Research Database (Denmark)

    Kimmerle, B.; Baiker, A.; Grunwaldt, Jan-Dierk

    2010-01-01

    Pd/Al2O3 catalysts showed an oscillatory behaviour during the catalytic partial oxidation (CPO) of methane, which was investigated simultaneously by IR-thermography, X-ray absorption spectroscopy, and online mass-spectrometry to correlate the temperature, state of the catalyst and catalytic...... to self-reduction leading to extinction of the process. The latter was the key driver for the oscillations and thus gave additional insight into the mechanism of partial methane oxidation....

  20. Kinetic Studies of Catalytic Oxidation of Cyclohexene Using ...

    African Journals Online (AJOL)

    acer

    ABSTRACT: Cyclohexene was oxidized using chromium (VI) oxide (CrO3) in pure acetic acid medium. The products of oxidation were analysed using simple qualitative analysis, IR spectroscopy and Gas chromatography-Mass spectrometry (GC/MS). Kinetics studies were carried out to determine the order of reaction, rate ...

  1. Kinetic Studies of Catalytic Oxidation of Cyclohexene Using ...

    African Journals Online (AJOL)

    Cyclohexene was oxidized using chromium (VI) oxide (CrO3) in pure acetic acid medium. The products of oxidation were analysed using simple qualitative analysis, IR spectroscopy and Gas chromatography-Mass spectrometry (GC/MS). Kinetics studies were carried out to determine the order of reaction, rate constant and ...

  2. CATALYTIC RECOMBINATION OF RADIOLYTIC GASES IN THORIUM OXIDE SLURRIES

    Science.gov (United States)

    Morse, L.E.

    1962-08-01

    A method for the coinbination of hydrogen and oxygen in aqueous thorium oxide-uranium oxide slurries is described. A small amount of molybdenum oxide catalyst is provided in the slurry. This catalyst is applicable to the recombination of hydrogen and/or deuterium and oxygen produced by irradiation of the slurries in nuclear reactors. (AEC)

  3. Bimetallic Cu-Ni nanoparticles supported on activated carbon for catalytic oxidation of benzyl alcohol

    Science.gov (United States)

    Kimi, Melody; Jaidie, Mohd Muazmil Hadi; Pang, Suh Cem

    2018-01-01

    A series of bimetallic copper-nickel (CuNix, x = 0.1, 0.2, 0.5 and 1) nanoparticles supported on activated carbon (AC) were prepared by deposition-precipitation method for the oxidation of benzyl alcohol to benzaldehyde using hydrogen peroxide as oxidising agent. Analyses by means of X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) confirmed that Cu and Ni was successfully added on the surface of activated carbon. CuNi1/AC showed the best catalytic activity for the oxidation of benzyl alcohols to the corresponding aldehyde within a short reaction period at 80 °C. The catalytic performance is significantly enhanced by the addition of equal amount of Ni as compared to the monometallic counterpart. This result indicates the synergistic effect between Ni and Cu particles in the catalytic oxidation reaction.

  4. Pretreatment of Reed by Wet Oxidation and Subsequent Utilization of the Pretreated Fibers for Ethanol Production

    DEFF Research Database (Denmark)

    Szijarto, Nora; Kádár, Zsófia; Varga, Eniko

    2009-01-01

    lignocelluloses usually do. In the present study, wet oxidation was investigated as the pretreatment method to enhance the enzymatic digestibility of reed cellulose to soluble sugars and thus improve the convertibility of reed to ethanol. The most effective treatment increased the digestibility of reed cellulose...... by cellulases more than three times compared to the untreated control. During this wet oxidation, 51.7% of the hemicellulose and 58.3% of the lignin were solubilized, whereas 87.1% of the cellulose remained in the solids. After enzymatic hydrolysis of pretreated fibers from the same treatment, the conversion...... of cellulose to glucose was 82.4%. Simultaneous saccharification and fermentation of pretreated solids resulted in a final ethanol concentration as high as 8.7 g/L, yielding 73% of the theoretical....

  5. On the degradability of printing and dyeing wastewater by wet air oxidation.

    Science.gov (United States)

    Hu, X; Lei, L; Chen, G; Yue, P L

    2001-06-01

    A modified first-order kinetics model was used to study the wet air oxidation of printing and dyeing wastewater. The model simulations are in good agreement with experimental data. The results indicate that a certain fraction of organic pollutants in the printing and dyeing wastewater could not be removed even at elevated temperature and prolonged reaction time. The ratio of degradable organic matter is found independent of temperature and can be improved by using a catalyst.

  6. Synthesis gas production via catalytic partial oxidation reforming of liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Cheekatamarla, P.K.; Finnerty, C.M. [NanoDynamics Energy Inc., 901 Fuhrmann Boulevard, Buffalo, NY 14203 (United States)

    2008-10-15

    This work deals with the performance of waterless catalytic partial oxidation (CPOX)-based catalytic reformer system fed by different liquid fuels including ethanol, isooctane, hexadecane, synthetic JP8, kerosene and diesel for solid oxide fuel cell applications. The effect of different fuel components on product composition was studied and the operational parameters were optimized to provide a stable reforming performance. The system provided negligible pressure drop combined with the simpler system design due to the lack of water requirement making the POX reformer an attractive choice. (author)

  7. Wet oxidative destruction of spent ion-exchange resins using hydrogen peroxide

    International Nuclear Information System (INIS)

    Srinivas, C.; Ramaswamy, M.; Theyyunni, T.K.

    1994-01-01

    Spent organic ion exchange resins are generated in large quantities during the operation of nuclear facilities. Wet oxidation as a mode of treatment of these gel-type ion exchange resins was investigated using H 2 O 2 as oxidant in the presence of CuSO 4 as catalyst. Experiments using commercial samples were conducted at 95-100 deg C under reflux conditions at atmospheric pressure. It was found that the reaction of cation resin with H 2 O 2 was instantaneous whereas with anion resin, there was a lag time. For efficient utilization of the oxidant, low rate of addition of H 2 O 2 , 0.01M concentration of CuSO 4 and neutral pH in mixed resin reactions, were found to be useful. Foaming was noted during reactions involving anion resins. This could be controlled by silicone-based agents. The residual solution left after resin oxidation is aqueous in nature and is expected to contain all the radioactivity originally present in the resin. Preliminary experiments showed that it could be efficiently trapped using available inorganic sorbents. Wet oxidation system offers a simple method of converting organic waste into environmentally acceptable inorganic products. (author). 8 refs., 6 figs., 2 tabs

  8. Integration of advanced oxidation processes at mild conditions in wet scrubbers for odourous sulphur compounds treatment.

    Science.gov (United States)

    Vega, Esther; Martin, Maria J; Gonzalez-Olmos, Rafael

    2014-08-01

    The effectiveness of different advanced oxidation processes on the treatment of a multicomponent aqueous solution containing ethyl mercaptan, dimethyl sulphide and dimethyl disulphide (0.5 mg L(-1) of each sulphur compound) was investigated with the objective to assess which one is the most suitable treatment to be coupled in wet scrubbers used in odour treatment facilities. UV/H2O2, Fenton, photo-Fenton and ozone treatments were tested at mild conditions and the oxidation efficiency obtained was compared. The oxidation tests were carried out in magnetically stirred cylindrical quartz reactors using the same molar concentration of oxidants (hydrogen peroxide or ozone). The results show that ozone and photo-Fenton are the most efficient treatments, achieving up to 95% of sulphur compounds oxidation and a mineralisation degree around 70% in 10 min. Furthermore, the total costs of the treatments taking into account the capital and operational costs were also estimated for a comparative purpose. The economic analysis revealed that the Fenton treatment is the most economical option to be integrated in a wet scrubber to remove volatile organic sulphur compounds, as long as there are no space constraints to install the required reactor volume. In the case of reactor volume limitation or retrofitting complexities, the ozone and photo-Fenton treatments should be considered as viable alternatives. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Iron oxides and their applications in catalytic processes: a review

    OpenAIRE

    Oliveira, Luiz C. A.; Fabris, José D.; Pereira, Márcio C.

    2013-01-01

    A review of most of the reported studies on the use of iron oxides as catalyst in specific processes, namely Haber-Bosch reaction, Fischer-Tropsch synthesis, Fenton oxidation and photolytic molecular splitting of water to produce gaseous hydrogen, was carried out. An essential overview is thus presented, intending to address the fundamental meaning, as well as the corresponding chemical mechanisms, and perspectives on new technological potentialities of natural and synthetic iron oxides, more...

  10. Wet Chemical Synthesis and Screening of Thick Porous Oxide Films for Resistive Gas Sensing Applications

    Directory of Open Access Journals (Sweden)

    Wilhelm F. Maier

    2006-11-01

    Full Text Available A method of wet chemical synthesis suitable for high throughput and combinatorial applications has been developed for the synthesis of porous resistive thick-film gas sensors. This method is based on the robot-controlled application of unstable metal oxide suspensions on an array of 64 inter-digital electrodes positioned on an Al2O3 substrate. SnO2, WO3, ZrO2, TiO2, CeO2, In2O3 and Bi2O3 were chosen as base oxides, and were optimised by doping or mixed oxide formation. The parallel synthesis of mixed oxide sensors is illustrated by representative examples. The electrical characteristics and the sensor performance of the films were measured by high-throughput impedance spectroscopy while supplying various test gases (H2, CO, NO, NO2, propene. Data collection, data mining techniques applied and the best potential sensor materials discovered are presented.

  11. Potential inhibitors from wet oxidation of wheat straw and their effect on ethanol production of Saccharomyces cerevisiae: wet oxidation and fermentation by yeast.

    Science.gov (United States)

    Klinke, H B; Olsson, L; Thomsen, A B; Ahring, B K

    2003-03-20

    Alkaline wet oxidation (WO) (using water, 6.5 g/L sodium carbonate and 12 bar oxygen at 195 degrees C) was used as pretreatment method for wheat straw (60 g/L), resulting in a hydrolysate and a cellulosic solid fraction. The hydrolysate consisted of soluble hemicellulose (8 g/L), low-molecular-weight carboxylic acids (3.9 g/L), phenols (0.27 g/L = 1.7 mM) and 2-furoic acid (0.007 g/L). The wet oxidized wheat straw hydrolysate caused no inhibition of ethanol production by Saccharomyces cerevisiae ATCC 96581. Nine phenols and 2-furoic acid, identified to be present in the hydrolysate, were each tested in concentrations of 50-100 times the concentration found in the hydrolysate for their effect on fermentation by yeast. At these high concentrations (10 mM), 4-hydroxybenzaldehyde, vanillin, 4-hydroxyacetophenone and acetovanillone caused a 53-67% decrease in the volumetric ethanol productivity in S. cerevisiae compared to controls with an ethanol productivity of 3.8 g/L. The phenol acids (4-hydroxy, vanillic and syringic acid), 2-furoic acid, syringaldehyde and acetosyringone were less inhibitory, causing a 5-16% decrease in ethanol productivity. By adding the same aromatic compounds to hydrolysate (10 mM), it was shown that syringaldehyde and acetovanillone interacted negatively with hydrolysate components on the ethanol productivity. Fermentation in WO hydrolysate, that had been concentrated 6 times by freeze-drying, lasted 4 hours longer than in regular hydrolysate; however, the ethanol yield was the same. The longer fermentation time could not be explained by an inhibitory action of phenols alone, but was more likely caused by inhibitory interactions of phenols with carboxylic acids, such as acetic and formic acid. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 81: 738-747, 2003.

  12. Supported manganese oxide on TiO{sub 2} for total oxidation of toluene and polycyclic aromatic hydrocarbons (PAHs): Characterization and catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Aboukaïs, Antoine, E-mail: aboukais@univ-littoral.fr [Univ Lille Nord de France, 59000 Lille (France); Equipe Catalyse, UCEIV, EA 4492, MREI, ULCO, 59140 Dunkerque (France); Abi-Aad, Edmond [Univ Lille Nord de France, 59000 Lille (France); Equipe Catalyse, UCEIV, EA 4492, MREI, ULCO, 59140 Dunkerque (France); Taouk, Bechara [Laboratoire de Sécurité des procédés Chimiques (LSPC), EA 4704, INSA Rouen, Avenue de l' Université, 76801 Saint Etienne du Rouvray (France)

    2013-11-01

    Manganese oxide catalysts supported on titania (TiO{sub 2}) were prepared by incipient wetness impregnation method in order to elaborate catalysts for total oxidation of toluene and PAHs. These catalysts have been characterized by means of X-ray diffraction (XRD), electron paramagnetic resonance (EPR), temperature programmed reduction (TPR) and temperature programmed desorption (TPD). It has been shown that for the 5%Mn/TiO{sub 2} catalyst the reducibility and the mobility of oxygen are higher compared, in one side, to other x%Mn/TiO{sub 2} samples and, in another side, to catalysts where TiO{sub 2} support was replaced by γ-Al{sub 2}O{sub 3} or SiO{sub 2}. It has been shown that the content of manganese loading on TiO{sub 2} has an effect on the catalytic activity in the toluene oxidation. A maximum of activity was obtained for the 5%Mn/TiO{sub 2} catalyst where the total conversion of toluene was reached at 340 °C. This activity seems to be correlated to the presence of the Mn{sup 3+}/Mn{sup 4+} redox couple in the catalyst. When the Mn content increases, large particles of Mn{sub 2}O{sub 3} appear leading then to the decrease in the corresponding activity. In addition, compared to both other supports, TiO{sub 2} seems to be the best to give the best catalytic activity for the oxidation of toluene when it is loaded with 5% of manganese. For this reason, the latter catalyst was tested for the abatement of some PAHs. The light off temperature of PAHs compounds increases with increasing of benzene rings number and with decreasing of H/C ratio. All of PAHs are almost completely oxidized and converted at temperatures lower than 500 °C. - Highlights: • Preparation of x%MnO{sub 2}/TiO{sub 2} catalysts. • Catalytic oxidation tests of toluene and PAHs. • EPR, TPR and TPD characterizations of Mn(II) and Mn(IV) ions.

  13. Kinetic and catalytic analysis of mesoporous Co3O4 on the oxidation of morin

    Science.gov (United States)

    Xaba, Morena. S.; Meijboom, Reinout

    2017-11-01

    Herein we report on the synthesis, characterization and catalytic evaluation of mesoporous cobalt oxides on the oxidation of morin. These mesoporous cobalt oxides were synthesized using an inverse surfactant micelle method, they are connected, well-defined with intra-particle voids. These materials were calcined to different final heating temperatures of 150, 250, 350, 450 and 550 °C, and each mesoporous cobalt oxide catalyst showed unique physical properties and catalytic behavior. Morin oxidation was used as a model reaction in the presence of hydrogen peroxide to evaluate the kinetic and catalytic activity of calcined mesoporous cobalt oxides. The adsorption-desorption equilibrium rate constants of morin and hydrogen peroxide were found to be inversely proportional to the crystallite size of the mesoporous cobalt oxide, and the characteristic path length in which the mass transfer takes place was found to be directly proportional to the crystallite size. The materials were characterized using powder X-Ray Diffraction (p-XRD), N2-sorption isotherms (BET), hydrogen temperature programmed reduction (H2-TPR) and High Resolution-Transmission Electron Microscopy (HR-TEM). UV-vis spectrophotometry was used to monitor the time-resolved absorbance of morin at λmax = 410 nm. The surface reaction in this system is described in terms of the well-established Langmuir-Hinshelwood model. The thermodynamic parameters, EA, ΔH#, ΔS# and ΔG# were calculated and catalyst recycling and reusability is demonstrated.

  14. Cloud Nucleating Activity of Non-Spherical Particles: Applications of Wet CCN Measurement to Iodine Oxides

    Science.gov (United States)

    Camp, M. G.; Nakao, S.; Kreidenweis, S. M.

    2013-12-01

    This study employs a new experimental approach to better characterize the hygroscopicity of fractal-like particles. Traditional methods of measuring particle hygroscopicity with a size-resolved Cloud Condensation Nuclei (CCN) set-up require accurate measurement of the dry particle's volume. The relationship between the mobility diameter and the volume is straightforward for a spherical particle, or a slightly irregular particle with a known shape factor, but is not well known for fractal particles. The traditional CCN activity measurement overestimates the amount of solute in a particle when the particle has irregular geometry and thus underestimates hygroscopicity, as measured by the parameter κ developed in Petters and Kreidenweis, 2007. We used a new experimental approach to overcome this challenge: CCN measurements were carried out using wet particles so that the volume of the dry solute does not need to be measured directly. When sufficiently wetted, fractal particles collapse, and the spherical assumption for mobility sizing of the wetted particles is valid. In order to test the wet CCN approach on a fractal particle, iodine oxide particles were generated in a 65 L batch reactor by photolysis of CH2I2 to generate iodine radicals, which subsequently reacted with ozone under dry (RH65%)conditions in two separate series of experiments. The hygroscopicities of generated particles were measured using the traditional dry CCN method and our wet CCN method. For the particles generated under dry conditions, the observed κ for particles measured at low humidity was 0.2, an underestimate, while at RH above 40% κ values were 0.6-0.7, more in line with expectations. The wetted particles' observed higher hygroscopicity was consistent with collapsing of fractal particles at higher RH and was a more accurate determination of their water contents. Particles generated under humid reactor conditions exhibited κ≈0, suggesting the compounds produced via gas phase oxidation

  15. Hydrazide-Derivatized Microgels Bond to Wet, Oxidized Cellulose Giving Adhesion Without Drying or Curing.

    Science.gov (United States)

    Yang, Dong; Gustafsson, Emil; Stimpson, Taylor C; Esser, Anton; Pelton, Robert H

    2017-06-21

    Hydrazide-derivatized poly(N-isopropylacrylamide-co-acrylic acid) microgels gave strong adhesion to wet, TEMPO oxidized, regenerated cellulose membranes without a drying or heating step. Adhesion was attributed to hydrazone covalent bond formation with aldehyde groups present on the cellulose surfaces. This is one of only three chemistries we have found that gives significant never-dried adhesion between wet cellulose surfaces. By contrast, for cellulose joints that have been dried and heated before wet testing, the hydrazide-hydrazone chemistry offers no advantages over standard paper industry wet strength resins. The design rules for the hydrazide-microgel adhesives include: cationic microgels are superior to anionic gels; the lower the microgel cross-link density, the higher the adhesion; longer PEG-based hydrazide tethers offer no advantage over shorter attachments; and, adhesion is independent of microgel diameter. Many of these rules were in agreement with predictions of a simple adhesion model where the microgels were assumed to be ideal springs. We propose that the unexpected, high cohesion between neighboring microgels in multilayer films was a result of bond formation between hydrazide groups and residual NHS-carboxyl esters from the preparation of the hydrazide microgels.

  16. Catalytic role of transition metals supported on niobium oxide in O2 activation

    Science.gov (United States)

    Omidvar, Akbar

    2018-03-01

    Metal particles supported on metal oxides (MMO) are promising materials with versatile applications such as catalyst in fuel cell technologies. As one of the transition metal oxides, niobium oxide (NbO) demonstrates a wide interesting properties that make it a potentially applicable in MMO materials. Here, the catalytic activity for the O2 activation of transition metals (Fe, Co, Ni, Cu, Rh, Pd, Ag, Ir, Pt, and Au) supported on the NbO has been studied theoretically using density functional theory (DFT). The activation of O2 molecule and yielding two separated O atoms is an essential step for the oxygen reduction reaction. Our study demonstrates that the transition metals supported on the NbO can act as driving force for O2 dissociation. Consistent with the prediction of reactivity descriptors, the maximum catalytic activity toward O2 activation is related to the Pt-supported on the NbO metal oxide.

  17. Gold & silver nanoparticles supported on manganese oxide: Synthesis, characterization and catalytic studies for selective oxidation of benzyl alcohol

    OpenAIRE

    Alabbad, Saad; Adil, S.F.; Assal, M.E.; Khan, Mujeeb; Alwarthan, Abdulrahman; Siddiqui, M. Rafiq H.

    2014-01-01

    Nano-gold and silver particles supported on manganese oxide were synthesized by the co-precipitation method. The catalytic properties of these materials were investigated for the oxidation of benzyl alcohol using molecular oxygen as a source of oxygen. The catalyst was calcined at 300, 400 and 500 °C. They were characterized by electron microscopy, powder X-ray diffraction (XRD) and surface area. It was observed that the calcination temperature affects the size of the nanoparticle, which play...

  18. Catalytic oxidation of phosphorus on MoO3 as studied by infrared spectroscopy

    International Nuclear Information System (INIS)

    Paul, D.K.; Rao, L.F.; Yates, J.T. Jr.

    1992-01-01

    Transmission infrared spectroscopy and mass spectroscopy were used to study the decomposition and oxidation of phosphine on an MoO 3 /Al 2 O 3 supported catalyst at 300-800 K. At 573 K, phosphine decomposes and is oxidized to a HP=O surface species. At 673 K, further oxidation forms (HO) x P=O that desorbs from the surface around 773 K. This suggests that the MoO 3 /Al 2 O 3 catalyst may be useful for continuous organophosphorous catalytic oxidation. 30 refs., 12 figs., 1 tab

  19. Bulk Preparation of Holey Graphene via Controlled Catalytic Oxidation

    Science.gov (United States)

    Watson, Kent (Inventor); Lin, Yi (Inventor); Ghose, Sayata (Inventor); Connell, John (Inventor)

    2015-01-01

    A scalable method allows preparation of bulk quantities of holey carbon allotropes with holes ranging from a few to over 100 nm in diameter. Carbon oxidation catalyst nanoparticles are first deposited onto a carbon allotrope surface in a facile, controllable, and solvent-free process. The catalyst-loaded carbons are then subjected to thermal treatment in air. The carbons in contact with the carbon oxidation catalyst nanoparticles are selectively oxidized into gaseous byproducts such as CO or CO.sub.2, leaving the surface with holes. The catalyst is then removed via refluxing in diluted nitric acid to obtain the final holey carbon allotropes. The average size of the holes correlates strongly with the size of the catalyst nanoparticles and is controlled by adjusting the catalyst precursor concentration. The temperature and time of the air oxidation step, and the catalyst removal treatment conditions, strongly affect the morphology of the holes.

  20. Waste Not, Want Not: Mild and Selective Catalytic Oxidation of Uronic Acids

    NARCIS (Netherlands)

    Klis, van der F.; Frissen, A.E.; Haveren, van J.; Es, van D.S.

    2013-01-01

    And isn't it uronic: A mild, highly efficient and selective catalytic oxidation of pectin-derived uronic acids to the corresponding aldaric acids is reported. Fast, quantitative conversions (>99%) of the starting materials are achieved with high selectivity (>97%) at room temperature, using

  1. Learning the Fundamentals of Kinetics and Reaction Engineering with the Catalytic Oxidation of Methane

    Science.gov (United States)

    Cybulskis, Viktor J.; Smeltz, Andrew D.; Zvinevich, Yury; Gounder, Rajamani; Delgass, W. Nicholas; Ribeiro, Fabio H.

    2016-01-01

    Understanding catalytic chemistry, collecting and interpreting kinetic data, and operating chemical reactors are critical skills for chemical engineers. This laboratory experiment provides students with a hands-on supplement to a course in chemical kinetics and reaction engineering. The oxidation of methane with a palladium catalyst supported on…

  2. Comparison Of Different Noble Metal Catalysts For The Low Temperature Catalytic Partial Oxidation Of Methane

    Energy Technology Data Exchange (ETDEWEB)

    Rabe, S.; Truong, T.-B.; Vogel, F.

    2005-03-01

    The generation of synthesis gas at low temperatures can contribute to a more economic production of clean transportation fuels (Fischer-Tropsch liquids) from natural gas. In this report, the performance of different noble metal catalysts in a low temperature catalytic partial oxidation process is presented. (author)

  3. Tritium removal from air streams by catalytic oxidation and water adsorption

    International Nuclear Information System (INIS)

    Sherwood, A.E.

    1976-06-01

    An effective method of capturing tritium from air streams is by catalytic oxidation followed by water adsorption on a microporous solid adsorbent. Performance of a burner/dryer combination is illustrated by overall mass balance equations. Engineering design methods for packed bed reactors and adsorbers are reviewed, emphasizing the experimental data needed for design and the effect of operating conditions on system performance

  4. Reduction of nitrogen oxides with catalytic acid resistant aluminosilicate molecular sieves and ammonia

    Science.gov (United States)

    Pence, Dallas T.; Thomas, Thomas R.

    1980-01-01

    Noxious nitrogen oxides in a waste gas stream such as the stack gas from a fossil-fuel-fired power generation plant or other industrial plant off-gas stream is catalytically reduced to elemental nitrogen and/or innocuous nitrogen oxides employing ammonia as reductant in the presence of a zeolite catalyst in the hydrogen or sodium form having pore openings of about 3 to 10 A.

  5. Catalytic oxidation of cyanides in an aqueous phase over individual and manganese-modified cobalt oxide systems

    International Nuclear Information System (INIS)

    Christoskova, St.; Stoyanova, M.

    2009-01-01

    The possibility for purification of wastewaters containing free cyanides by applying of a new method based on cyanides catalytic oxidation with air to CO 2 and N 2 at low temperature and atmospheric pressure was investigated. On this purpose, individual and modified with manganese Co-oxide systems as active phase of environmental catalysts were synthesized. The applied method of synthesis favours the preparation of oxide catalytic systems with high active oxygen content (total-O* and surface-O* s ) possessing high mobility, and the metal ions being in a high oxidation state and in an octahedral coordination-factors determining high activity in reactions of complete oxidation. The catalysts employed were characterized by powder X-ray diffraction, Infrared spectroscopy, and chemical analysis. The effect of pH of the medium and catalyst loading on the effectiveness of the cyanide oxidation process, expressed by the degree of conversion (α, %), by the rate constant (k, min -1 ), and COD was studied. The results obtained reveal that using catalysts investigated a high cyanide removal efficiency could be achieved even in strong alkaline medium. The higher activity of the manganese promoted catalytic sample could be explained on the basis of higher total active oxygen content and its higher mobility both depending on the conditions, under which the synthesis of catalyst is being carried out.

  6. Catalytic routes and oxidation mechanisms in photoreforming of polyols

    Energy Technology Data Exchange (ETDEWEB)

    Sanwald, Kai E.; Berto, Tobias F.; Eisenreich, Wolfgang; Gutiérrez, Oliver Y.; Lercher, Johannes A.

    2016-12-01

    Photocatalytic reforming of biomass-derived oxygenates leads to H2 generation and evolution of CO2 via parallel formation of organic intermediates through anodic oxidations on a Rh/TiO2 photocatalyst. The reaction pathways and kinetics in the photoreforming of C3–C6 polyols were explored. Polyols are converted via direct and indirect hole transfer pathways resulting in (i) oxidative rupture of C–C bonds, (ii) oxidation to a-oxygen functionalized aldoses and ketoses (carbonyl group formation) and (iii) light-driven dehydration. Direct hole transfer to chemisorbed oxygenates on terminal Ti(IV)-OH groups, generating alkoxy-radicals that undergo ß-C–C-cleavage, is proposed for the oxidative C–C rupture. Carbonyl group formation and dehydration are attributed to indirect hole transfer at surface lattice oxygen sites [Ti_ _ _O_ _ _Ti] followed by the generation of carbon-centered radicals. Polyol chain length impacts the contribution of the oxidation mechanisms favoring the C–C bond cleavage (internal preferred over terminal) as the dominant pathway with higher polyol carbon number.

  7. Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes

    KAUST Repository

    Hong, Jongsup

    2013-10-01

    The catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.

  8. Catalytic oxidative conversion of alkanes to olefines and oxygenates

    Energy Technology Data Exchange (ETDEWEB)

    Baerns, M. [Institut fuer Angewandte Chemie Berlin-Adlershof e.V., Berlin (Germany)

    1998-12-31

    All of the direct reaction schemes described and the corresponding process schemes are still in an exploratory state. Ethylene by oxidative coupling of methane could become competitive if process schemes are developed with significantly less expenditures for separation of the product from unconverted feed. No encouragement for formaldehyde from methane can be presently derived from the existing knowledge. Liquid-phase oxidation of methane to methanol appears to be attractive but no final judgement is possible at present. Oxidative dehydrogenation of ethylene and propane look promising although further catalyst improvement is required. Acetic acid from ethane and acrylonitrile from propane have a certain potential as an alternative to present technology. The outlook for acrolein and acrylic acid from propane is less favourable; new concepts for catalyst design are necessary. (orig.)

  9. On the catalytic gas phase oxidation of butadiene to furan

    Energy Technology Data Exchange (ETDEWEB)

    Kubias, B.; Rodemerck, U. [Institut fuer Angewandte Chemie Berlin-Adlershof e.V., Berlin (Germany); Ritschl, F.; Meisel, M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Chemie

    1998-12-31

    Applying the thermochemical selectivity criterion of Hadnett et al. It is shown that the selectivity of the furan formation is not limited by a too low strength of the C-H bonds in furan when compared with the C-H bond dissociation energy in the educt molecule butadiene. In the oxidation of butadiene on a CsH{sub 2}PMo{sub 12}O{sub 40} catalyst a maximum yield of 22 mol% furan has been obtained. To improve this comparatively low furan yield oxidation activity of the catalyst must be lowered to prevent the consecutive reaction to maleic anhydride. (orig.)

  10. Partial catalytic oxidation of CH{sub 4} to synthesis gas for power generation - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mantzaras, I.; Schneider, A.

    2006-03-15

    The partial oxidation of methane to synthesis gas over rhodium catalysts has been investigated experimentally and numerically in the pressure range of 4 to 10 bar. The methane/oxidizer feed has been diluted with large amounts of H{sub 2}O and CO{sub 2} (up to 70% vol.) in order to simulate new power generation cycles with large exhaust gas recycle. Experiments were carried out in an optically accessible channel-flow reactor that facilitated laser-based in situ measurements, and also in a subscale gas-turbine catalytic reactor. Full-elliptic steady and transient two-dimensional numerical codes were used, which included elementary hetero-/homogeneous chemical reaction schemes. The following are the key conclusions: a) Heterogeneous (catalytic) and homogeneous (gas-phase) schemes have been validated for the partial catalytic oxidation of methane with large exhaust gas recycle. b) The impact of added H{sub 2}O and CO{sub 2} has been elucidated. The added H{sub 2}O increased the methane conversion and hydrogen selectivity, while it decreased the CO selectivity. The chemical impact of CO{sub 2} (dry reforming) was minimal. c) The numerical model reproduced the measured catalytic ignition times. It was further shown that the chemical impact of H{sub 2}O and CO{sub 2} on the catalytic ignition delay times was minimal. d) The noble metal dispersion increased with different support materials, in the order Rh/{alpha}-Al{sub 2}O{sub 3}, Rh/ZrO{sub 2}, and Rh/Ce-ZrO{sub 2}. An evident relationship was established between the noble metal dispersion and the catalytic behavior. (authors)

  11. Full-Scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet FGD System

    Energy Technology Data Exchange (ETDEWEB)

    Gary Blythe; Jennifer Paradis

    2010-06-30

    This document presents and discusses results from Cooperative Agreement DE-FC26-06NT42778, 'Full-scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet FGD System,' which was conducted over the time-period July 24, 2006 through June 30, 2010. The objective of the project was to demonstrate at full scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in pulverized-coal-fired flue gas. Oxidized mercury is removed downstream in wet flue gas desulfurization (FGD) absorbers and collected with the byproducts from the FGD system. The project was co-funded by EPRI, the Lower Colorado River Authority (LCRA), who also provided the host site, Great River Energy, Johnson Matthey, Southern Company, Salt River Project (SRP), the Tennessee Valley Authority (TVA), NRG Energy, Ontario Power and Westar. URS Group was the prime contractor and also provided cofunding. The scope of this project included installing and testing a gold-based catalyst upstream of one full-scale wet FGD absorber module (about 200-MW scale) at LCRA's Fayette Power Project (FPP) Unit 3, which fires Powder River Basin coal. Installation of the catalyst involved modifying the ductwork upstream of one of three wet FGD absorbers on Unit 3, Absorber C. The FGD system uses limestone reagent, operates with forced sulfite oxidation, and normally runs with two FGD modules in service and one spare. The full-scale catalyst test was planned for 24 months to provide catalyst life data. Over the test period, data were collected on catalyst pressure drop, elemental mercury oxidation across the catalyst module, and mercury capture by the downstream wet FGD absorber. The demonstration period began on May 6, 2008 with plans for the catalyst to remain in service until May 5, 2010. However, because of continual increases in pressure drop across the catalyst and concerns that further increases would adversely affect Unit 3 operations, LCRA decided to end the

  12. Wet oxidative degradation of cellulosic wastes 5- chemical and thermal properties of the final waste forms

    International Nuclear Information System (INIS)

    Eskander, S.B.; Saleh, H.M.

    2002-01-01

    In this study, the residual solution arising from the wet oxidative degradation of solid organic cellulosic materials, as one of the component of radioactive solid wastes, using hydrogen peroxide as oxidant. Were incorporated into ordinary Portland cement matrix. Leaching as well as thermal characterizations of the final solidified waste forms were evaluated to meet the final disposal requirements. Factors, such as the amount of the residual solution incorporated, types of leachant. Release of different radionuclides and freezing-thaw treatment, that may affect the leaching characterization. Were studied systematically from the data obtained, it was found that the final solid waste from containing 35% residual solution in tap water is higher than that in ground water or sea water. Based on the data obtained from thermal analysis, it could be concluded that incorporating the residual solution form the wet oxidative degradation of cellulosic materials has no negative effect on the hydration of cement materials and consequently on the thermal stability of the final solid waste from during the disposal process

  13. Metatranscriptomic and metagenomic description of the bacterial nitrogen metabolism in waste water wet oxidation effluents

    Directory of Open Access Journals (Sweden)

    Julien Crovadore

    2017-10-01

    Full Text Available Anaerobic digestion is a common method for reducing the amount of sludge solids in used waters and enabling biogas production. The wet oxidation process (WOX improves anaerobic digestion by converting carbon into methane through oxidation of organic compounds. WOX produces effluents rich in ammonia, which must be removed to maintain the activity of methanogens. Ammonia removal from WOX could be biologically operated by aerobic granules. To this end, granulation experiments were conducted in 2 bioreactors containing an activated sludge (AS. For the first time, the dynamics of the microbial community structure and the expression levels of 7 enzymes of the nitrogen metabolism in such active microbial communities were followed in regard to time by metagenomics and metatranscriptomics. It was shown that bacterial communities adapt to the wet oxidation effluent by increasing the expression level of the nitrogen metabolism, suggesting that these biological activities could be a less costly alternative for the elimination of ammonia, resulting in a reduction of the use of chemicals and energy consumption in sewage plants. This study reached a strong sequencing depth (from 4.4 to 7.6 Gb and enlightened a yet unknown diversity of the microorganisms involved in the nitrogen pathway. Moreover, this approach revealed the abundance and expression levels of specialised enzymes involved in nitrification, denitrification, ammonification, dissimilatory nitrate reduction to ammonium (DNRA and nitrogen fixation processes in AS. Keywords: Applied sciences, Biological sciences, Environmental science, Genetics, Microbiology

  14. Catalytic oxidation and spectroscopic analysis of simulated wastewater containing acid chrome blue K by using chlorine dioxide as oxidant.

    Science.gov (United States)

    Yu, Fengjun; Shi, Laishun

    2010-01-01

    An activated carbon-MnO(2) catalyst was prepared by the dipping-calcination method using activated carbon as catalyst support. The catalyst was used for the catalytic oxidation of simulated acid chrome blue K wastewater. The COD removal efficiency and decolor efficiency by catalytic oxidation are 72.0% and 87.8%, respectively, at the condition of wastewater's COD is 2,418 mg/L, the optimum pH value is 1.2, the dosage of chlorine dioxide is 1,200 mg/L, the dosage of activated carbon-MnO(2) catalyst is 4 g by reacting 50 min. The COD removal efficiency by catalytic oxidation is great than that of chemical oxidation. The COD removal efficiency only decreased a little after the catalyst used 8 times. The FTIR spectra indicate that the active ingredient of manganese dioxide is linked with activated carbon by chemical bond, not merely mechanical blending. The intermediates during the degradation process were obtained by using online infrared spectrum analysis. The degradation reaction mechanism of acid chrome blue K by chlorine dioxide oxidation was proposed based upon the experiment evidence.

  15. Catalytic water oxidation by single-site ruthenium catalysts.

    Science.gov (United States)

    Concepcion, Javier J; Jurss, Jonah W; Norris, Michael R; Chen, Zuofeng; Templeton, Joseph L; Meyer, Thomas J

    2010-02-15

    A series of monomeric ruthenium polypyridyl complexes have been synthesized and characterized, and their performance as water oxidation catalysts has been evaluated. The diversity of ligand environments and how they influence rates and reaction thermodynamics create a platform for catalyst design with controllable reactivity based on ligand variations.

  16. Flame Synthesis of Composite Oxides for Catalytic Applications

    DEFF Research Database (Denmark)

    Jensen, Joakim Reimer

    2002-01-01

    . These investigations prove that synthesis in a premixed flame is a very attractive method for the preparation of high surface area spinel structures with a high degree of crystallinity and a good resistance against sintering. ZnAl2O4, CuAl2O4 and MgAl2O4 spinel structures have been synthesized. The CuAl2O4 spinel...... exhibits a high activity for alcohol dehydrogenation due to a high reduced copper surface area. The copper surface areas of the reduced copper catalysts are measured employing N2O-titration. Treating the reduced copper catalysts with N2O results in a mild oxidation and only the surface layer of the copper...... crystallites is oxidized. A number of complications may arise using the N2O-titration. It may be difficult to obtain full oxidation of the copper surface without having some oxidation of the bulk. Secondly, some sintering of the nano-sized copper crystallites may occur due to the exothermic nature...

  17. Study of nano-structured ceria for catalytic CO oxidation

    Czech Academy of Sciences Publication Activity Database

    Valechha, D.; Lokhande, S.; Klementová, Mariana; Šubrt, Jan; Rayalu, S.; Labhsetwar, N.

    2011-01-01

    Roč. 21, č. 11 (2011), s. 3718-3725 ISSN 0959-9428 Institutional research plan: CEZ:AV0Z40320502 Keywords : mesoporous CeO2 * titania * alumina * oxides Subject RIV: CA - Inorganic Chemistry Impact factor: 5.968, year: 2011

  18. Catalytic oxidation of benzene using DBD corona discharges

    International Nuclear Information System (INIS)

    Lu, B.; Zhang, X.; Yu, X.; Feng, T.; Yao, S.

    2006-01-01

    Plasma oxidation of benzene (C 6 H 6 ) in oxygen and nitrogen was investigated using a dielectric barrier discharge (DBD) reactor with or without MnO 2 or TiO 2 at atmospheric pressure and without external heating except plasma heating. An alternative current power supply was used to generate corona discharges for the plasma oxidation. The energy density was controlled under 200 J/L to keep an increase in gas temperature less than 167 K. C 6 H 6 was oxidized to carbon monoxide (CO) and dioxide (CO 2 ). Typically, the energy efficiency at an energy density of 92 J/L was about 0.052, 0.039, and 0.024 mol/kWh with MnO 2 , TiO 2 , and without MnO 2 and TiO 2 , respectively. Benzene oxidation mechanism was mentioned. A comparison on energy efficiency as a function of initial concentration of hydrocarbons, inorganic sulphur compounds, and chloro (fluoro and bromo) carbons was given

  19. A PROCESS FOR THE CATALYTIC OXIDATION OF HYDROCARBONS

    DEFF Research Database (Denmark)

    1999-01-01

    A process for producing an alcohol from a gaseous hydrocarbon, e.g. a lower alkane such as methane, via oxidative reaction of the hydrocarbon in a concentrated sulfuric acid medium in the presence of a catalyst employs an added catalyst comprising a substance selected from iodine, iodine compounds...

  20. A study on the reaction characteristics of vanadium-impregnated natural manganese oxide in ammonia selective catalytic reduction.

    Science.gov (United States)

    Kim, Sung Su; Lee, Sang Moon; Park, Kwang Hee; Kwon, Dong Wook; Hong, Sung Chang

    2011-05-01

    This study investigated the effect of adding vanadium (V) to natural manganese oxide (NMO) in ammonia (NH3) selective catalytic reduction (SCR). The addition of V to NMO decreased the catalytic activity at low temperatures by blocking the active site. However, the enhancement of catalytic activity was achieved by controlling NH3 oxidation at high temperatures. From the NH3 temperature programmed desorption and oxygen on/off test, it was confirmed that the amount of Lewis acid site and active lattice oxygen of the catalyst affects the catalytic performance at low temperature.

  1. Catalytic Oxidation and Depolymerization of Lignin in Aqueous Ionic Liquid

    International Nuclear Information System (INIS)

    Das, Lalitendu; Xu, Siquan; Shi, Jian

    2017-01-01

    Lignin is an integral part of the plant cell wall, which provides rigidity to plants, also contributes to the recalcitrance of the lignocellulosic biomass to biochemical and biological deconstruction. Lignin is a promising renewable feedstock for aromatic chemicals; however, an efficient and economic lignin depolymerization method needs to be developed to enable the conversion. In this study, we investigated the depolymerization of alkaline lignin in aqueous 1-ethyl-3-methylimidazolium acetate [C 2 C 1 Im][OAc] under oxidizing conditions. Seven different transition metal catalysts were screened in presence of H 2 O 2 as oxidizing agent in a batch reactor. CoCl 2 and Nb 2 O 5 proved to be the most effective catalysts in degrading lignin to aromatic compounds. A central composite design was used to optimize the catalyst loading, H 2 O 2 concentration, and temperature for product formation. Results show that lignin was depolymerized, and the major degradation products found in the extracted oil were guaiacol, syringol, vanillin, acetovanillone, and homovanillic acid. Lignin streams were characterized by Fourier transform infrared spectroscopy and gel permeation chromatography to determine effects of the experimental parameters on lignin depolymerization. The weight-average molecular weight (M w ) of liquid stream lignin after oxidation, for CoCl 2 and Nb 2 O 5 catalysts were 1,202 and 1,520 g mol −1 , respectively, lower than that of Kraft lignin. Polydispersity index of the liquid stream lignin increased as compared with Kraft lignin, indicating wide span of the molecular weight distribution as a result of lignin depolymerization. Results from this study provide insights into the role of oxidant and transition metal catalysts and the oxidative degradation reaction sequence of lignin toward product formation in presence of aqueous ionic liquid.

  2. Catalytic Oxidation and Depolymerization of Lignin in Aqueous Ionic Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Das, Lalitendu [Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY (United States); Xu, Siquan [Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY (United States); College of Chemical Engineering, Nanjing Forestry University, Nanjing (China); Shi, Jian, E-mail: j.shi@uky.edu [Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY (United States)

    2017-08-10

    Lignin is an integral part of the plant cell wall, which provides rigidity to plants, also contributes to the recalcitrance of the lignocellulosic biomass to biochemical and biological deconstruction. Lignin is a promising renewable feedstock for aromatic chemicals; however, an efficient and economic lignin depolymerization method needs to be developed to enable the conversion. In this study, we investigated the depolymerization of alkaline lignin in aqueous 1-ethyl-3-methylimidazolium acetate [C{sub 2}C{sub 1}Im][OAc] under oxidizing conditions. Seven different transition metal catalysts were screened in presence of H{sub 2}O{sub 2} as oxidizing agent in a batch reactor. CoCl{sub 2} and Nb{sub 2}O{sub 5} proved to be the most effective catalysts in degrading lignin to aromatic compounds. A central composite design was used to optimize the catalyst loading, H{sub 2}O{sub 2} concentration, and temperature for product formation. Results show that lignin was depolymerized, and the major degradation products found in the extracted oil were guaiacol, syringol, vanillin, acetovanillone, and homovanillic acid. Lignin streams were characterized by Fourier transform infrared spectroscopy and gel permeation chromatography to determine effects of the experimental parameters on lignin depolymerization. The weight-average molecular weight (M{sub w}) of liquid stream lignin after oxidation, for CoCl{sub 2} and Nb{sub 2}O{sub 5} catalysts were 1,202 and 1,520 g mol{sup −1}, respectively, lower than that of Kraft lignin. Polydispersity index of the liquid stream lignin increased as compared with Kraft lignin, indicating wide span of the molecular weight distribution as a result of lignin depolymerization. Results from this study provide insights into the role of oxidant and transition metal catalysts and the oxidative degradation reaction sequence of lignin toward product formation in presence of aqueous ionic liquid.

  3. Catalytic Oxidation and Depolymerization of Lignin in Aqueous Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Lalitendu Das

    2017-08-01

    Full Text Available Lignin is an integral part of the plant cell wall, which provides rigidity to plants, also contributes to the recalcitrance of the lignocellulosic biomass to biochemical and biological deconstruction. Lignin is a promising renewable feedstock for aromatic chemicals; however, an efficient and economic lignin depolymerization method needs to be developed to enable the conversion. In this study, we investigated the depolymerization of alkaline lignin in aqueous 1-ethyl-3-methylimidazolium acetate [C2C1Im][OAc] under oxidizing conditions. Seven different transition metal catalysts were screened in presence of H2O2 as oxidizing agent in a batch reactor. CoCl2 and Nb2O5 proved to be the most effective catalysts in degrading lignin to aromatic compounds. A central composite design was used to optimize the catalyst loading, H2O2 concentration, and temperature for product formation. Results show that lignin was depolymerized, and the major degradation products found in the extracted oil were guaiacol, syringol, vanillin, acetovanillone, and homovanillic acid. Lignin streams were characterized by Fourier transform infrared spectroscopy and gel permeation chromatography to determine effects of the experimental parameters on lignin depolymerization. The weight-average molecular weight (Mw of liquid stream lignin after oxidation, for CoCl2 and Nb2O5 catalysts were 1,202 and 1,520 g mol−1, respectively, lower than that of Kraft lignin. Polydispersity index of the liquid stream lignin increased as compared with Kraft lignin, indicating wide span of the molecular weight distribution as a result of lignin depolymerization. Results from this study provide insights into the role of oxidant and transition metal catalysts and the oxidative degradation reaction sequence of lignin toward product formation in presence of aqueous ionic liquid.

  4. Catalytic Templating Approaches for Three-Dimensional Hollow Carbon/Graphene Oxide Nano-Architectures

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Gun-Hee; Shin, Yongsoon; Choi, Daiwon; Arey, Bruce W.; Exarhos, Gregory J.; Wang, Chong M.; Choi, Wonyong; Liu, Jun

    2013-01-01

    We report a catalytic templating method to synthesize well-controlled, three-dimensional (3D) nano-architectures with graphene oxide sheets. The 3D composites are prepared via self-assembly of carbon, GO, and spherical alumina-coated silica (ACS) templates during a catalytic reaction porcess. By changing the GO content, we can systematically tune the architecture from layered composites to 3D hollow structures to microporous materials. The composites show a synergistic effect with significantly superior properties than either pure carbon or r-GO prepared with a significant enhancement to its capacitance at high current density.

  5. TEMPO functionalized C60 fullerene deposited on gold surface for catalytic oxidation of selected alcohols

    International Nuclear Information System (INIS)

    Piotrowski, Piotr; Pawłowska, Joanna; Sadło, Jarosław Grzegorz; Bilewicz, Renata; Kaim, Andrzej

    2017-01-01

    C 60 TEMPO 10 catalytic system linked to a microspherical gold support through a covalent S-Au bond was developed. The C 60 TEMPO 10 @Au composite catalyst had a particle size of 0.5–0.8 μm and was covered with the fullerenes derivative of 2.3 nm diameter bearing ten nitroxyl groups; the organic film showed up to 50 nm thickness. The catalytic composite allowed for the oxidation under mild conditions of various primary and secondary alcohols to the corresponding aldehyde and ketone analogues with efficiencies as high as 79–98%, thus giving values typical for homogeneous catalysis, while retaining at the same time all the advantages of heterogeneous catalysis, e.g., easy separation by filtration from the reaction mixture. The catalytic activity of the resulting system was studied by means of high pressure liquid chromatography. A redox mechanism was proposed for the process. In the catalytic cycle of the oxidation process, the TEMPO moiety was continuously regenerated in situ with an applied primary oxidant, for example, O 2 /Fe 3+ system. The new intermediate composite components and the final catalyst were characterized by various spectroscopic methods and thermogravimetry.

  6. Selective Production of Aromatic Aldehydes from Heavy Fraction of Bio-oil via Catalytic Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yan; Chang, Jie; Ouyang, Yong; Zheng, Xianwei [South China Univ. of Technology, Guangzhou (China)

    2014-06-15

    High value-added aromatic aldehydes (e. g. vanillin and syringaldehyde) were produced from heavy fraction of bio-oil (HFBO) via catalytic oxidation. The concept is based on the use of metalloporphyin as catalyst and hydrogen peroxide (H{sub 2}O{sub 2}) as oxidant under alkaline condition. The biomimetic catalyst cobalt(II)-sulfonated tetraphenylporphyrin (Co(TPPS{sub 4})) was prepared and characterized. It exhibited relative high activity in the catalytic oxidation of HFBO. 4.57 wt % vanillin and 1.58 wt % syringaldehyde were obtained from catalytic oxidation of HFBO, compared to 2.6 wt % vanillin and 0.86 wt % syringaldehyde without Co(TPPS{sub 4}). Moreover, a possible mechanism of HFBO oxidation using Co(TPPS{sub 4})/H{sub 2}O{sub 2} was proposed by the research of model compounds. The results showed that this is a promising and environmentally friendly method for production of aromatic aldehydes from HFBO under Co(TPPS{sub 4})/H{sub 2}O{sub 2} system.

  7. A catalytic reactor for the trapping of free radicals from gas phase oxidation reactions

    Science.gov (United States)

    Conte, Marco; Wilson, Karen; Chechik, Victor

    2010-10-01

    A catalytic reactor for the trapping of free radicals originating from gas phase catalytic reactions is described and discussed. Radical trapping and identification were initially carried out using a known radical generator such as dicumyl peroxide. The trapping of radicals was further demonstrated by investigating genuine radical oxidation processes, e.g., benzaldehyde oxidation over manganese and cobalt salts. The efficiency of the reactor was finally proven by the partial oxidation of cyclohexane over MoO3, Cr2O3, and WO3, which allowed the identification of all the radical intermediates responsible for the formation of the products cyclohexanol and cyclohexanone. Assignment of the trapped radicals was carried out using spin trapping technique and X-band electron paramagnetic resonance spectroscopy.

  8. Electrochemical study on the cationic promotion of the catalytic SO2 oxidation in pyrosulfate melts

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bjerrum, Niels; Cappeln, Frederik Vilhelm

    1998-01-01

    on the catalytic oxidation of SO2 in the V2O5-M2S2O7 system and the effect of these alkali cations on the electrochemical behavior of V2O5 in the alkali pyrosulfate melts It has been shown that Na+ ions had a promoting effect on the V(V) reversible arrow V(IV) electrochemical reaction. Sodium ions accelerate both...... in the catalytic SO, oxidation most likely is the oxidation of V(IV) to V(V) and the Na+ and Cs+ promoting effect is based on the acceleration of this stage. It has also been proposed that voltammetric measurements can be used for fast optimization of the composition of the vanadium catalyst (which...

  9. Performance improvement and better scalability of wet-recessed and wet-oxidized AlGaN/GaN high electron mobility transistors

    Science.gov (United States)

    Takhar, Kuldeep; Meer, Mudassar; Upadhyay, Bhanu B.; Ganguly, Swaroop; Saha, Dipankar

    2017-05-01

    We have demonstrated that a thin layer of Al2O3 grown by wet-oxidation of wet-recessed AlGaN barrier layer in an AlGaN/GaN heterostructure can significantly improve the performance of GaN based high electron mobility transistors (HEMTs). The wet-etching leads to a damage free recession of the gate region and compensates for the decreased gate capacitance and increased gate leakage. The performance improvement is manifested as an increase in the saturation drain current, transconductance, and unity current gain frequency (fT). This is further augmented with a large decrease in the subthreshold current. The performance improvement is primarily ascribed to an increase in the effective velocity in two-dimensional electron gas without sacrificing gate capacitance, which make the wet-recessed gate oxide-HEMTs much more scalable in comparison to their conventional counterpart. The improved scalability leads to an increase in the product of unity current gain frequency and gate length (fT × Lg).

  10. Helicobacter Catalase Devoid of Catalytic Activity Protects the Bacterium against Oxidative Stress*♦

    Science.gov (United States)

    Benoit, Stéphane L.; Maier, Robert J.

    2016-01-01

    Catalase, a conserved and abundant enzyme found in all domains of life, dissipates the oxidant hydrogen peroxide (H2O2). The gastric pathogen Helicobacter pylori undergoes host-mediated oxidant stress exposure, and its catalase contains oxidizable methionine (Met) residues. We hypothesized catalase may play a large stress-combating role independent of its classical catalytic one, namely quenching harmful oxidants through its recyclable Met residues, resulting in oxidant protection to the bacterium. Two Helicobacter mutant strains (katAH56A and katAY339A) containing catalase without enzyme activity but that retain all Met residues were created. These strains were much more resistant to oxidants than a catalase-deletion mutant strain. The quenching ability of the altered versions was shown, whereby oxidant-stressed (HOCl-exposed) Helicobacter retained viability even upon extracellular addition of the inactive versions of catalase, in contrast to cells receiving HOCl alone. The importance of the methionine-mediated quenching to the pathogen residing in the oxidant-rich gastric mucus was studied. In contrast to a catalase-null strain, both site-change mutants proficiently colonized the murine gastric mucosa, suggesting that the amino acid composition-dependent oxidant-quenching role of catalase is more important than the well described H2O2-dissipating catalytic role. Over 100 years after the discovery of catalase, these findings reveal a new non-enzymatic protective mechanism of action for the ubiquitous enzyme. PMID:27605666

  11. Bench scale demonstration and conceptual engineering for DETOXSM catalyzed wet oxidation

    International Nuclear Information System (INIS)

    Moslander, J.; Bell, R.; Robertson, D.; Dhooge, P.; Goldblatt, S.

    1994-01-01

    Laboratory and bench scale studies of the DETOX SM catalyzed wet oxidation process have been performed with the object of developing the process for treatment of hazardous and mixed wastes. Reaction orders, apparent rates, and activation energies have been determined for a range of organic waste surrogates. Reaction intermediates and products have been analyzed. Metals' fates have been determined. Bench scale units have been designed, fabricated, and tested with solid and liquid organic waste surrogates. Results from the laboratory and bench scale studies have been used to develop conceptual designs for application of the process to hazardous and mixed wastes

  12. Ethanol production from maize silage as lignocellulosic biomass in anaerobically digested and wet-oxidized manure

    DEFF Research Database (Denmark)

    Oleskowicz-Popiel, Piotr; Lisiecki, P.; Holm-Nielsen, J.B.

    2008-01-01

    was investigated using 2 1 bioreactors. Wet oxidation performed for 20 min at 121 degrees C was found as the most suitable pretreatment conditions for AD manure. High ammonia concentration and significant amount of macro- and micro-nutrients in the AD manure had a positive influence on the ethanol fermentation....... No extra nitrogen source was needed in the fermentation broth. It was shown that the AD manure could successfully substitute process water in SSF of pretreated lignocellulosic fibres. Theoretical ethanol yields of 82% were achieved, giving 30.8 kg ethanol per 100 kg dry mass of maize silage. (C) 2007...

  13. Investigation of the Origin of Catalytic Activity in Oxide-Supported Nanoparticle Gold

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Ian [Univ. of Virginia, Charlottesville, VA (United States)

    2017-05-26

    Since Haruta’s discovery in 1987 of the surprising catalytic activity of supported Au nanoparticles, we have seen a very large number of experimental and theoretical efforts to explain this activity and to fully understand the nature of the behavior of the responsible active sites. In 2011, we discovered that a dual catalytic site at the perimeter of ~3nm diameter Au particles supported on TiO2 is responsible for oxidative catalytic activity. O2 molecules bind with Au atoms and Ti4+ ions in the TiO2 support and the weakened O-O bond dissociates at low temperatures, proceeding to produce O atoms which act as oxidizing agents for the test molecule, CO. The papers supported by DOE have built on this finding and have been concerned with two aspects of the behavior of Au/TiO2 catalysts: (1). Mechanistic behavior of dual catalytic sites in the oxidation of organic molecules such as ethylene and acetic acid; (2). Studies of the electronic properties of the TiO2 (110) single crystal in relation to its participation in charge transfer at the occupied dual catalytic site. A total of 20 papers have been produced through DOE support of this work. The papers combine IR spectroscopic investigations of Au/TiO2 catalysts with surface science on the TiO2(110) and TiO2 nanoparticle surfaces with modern density functional modeling. The primary goals of the work were to investigate the behavior of the dual Au/Ti4+ site for the partial oxidation of alcohols to acids, the hydrogenation of aldehydes and ketones to alcohols, and the condensation of oxygenate intermediates- all processes related to the utilization of biomass in the production of useful chemical energy sources.

  14. The catalytic cycle of nitrous oxide reductase - The enzyme that catalyzes the last step of denitrification.

    Science.gov (United States)

    Carreira, Cíntia; Pauleta, Sofia R; Moura, Isabel

    2017-12-01

    The reduction of the potent greenhouse gas nitrous oxide requires a catalyst to overcome the large activation energy barrier of this reaction. Its biological decomposition to the inert dinitrogen can be accomplished by denitrifiers through nitrous oxide reductase, the enzyme that catalyzes the last step of the denitrification, a pathway of the biogeochemical nitrogen cycle. Nitrous oxide reductase is a multicopper enzyme containing a mixed valence CuA center that can accept electrons from small electron shuttle proteins, triggering electron flow to the catalytic sulfide-bridged tetranuclear copper "CuZ center". This enzyme has been isolated with its catalytic center in two forms, CuZ*(4Cu1S) and CuZ(4Cu2S), proven to be spectroscopic and structurally different. In the last decades, it has been a challenge to characterize the properties of this complex enzyme, due to the different oxidation states observed for each of its centers and the heterogeneity of its preparations. The substrate binding site in those two "CuZ center" forms and which is the active form of the enzyme is still a matter of debate. However, in the last years the application of different spectroscopies, together with theoretical calculations have been useful in answering these questions and in identifying intermediate species of the catalytic cycle. An overview of the spectroscopic, kinetics and structural properties of the two forms of the catalytic "CuZ center" is given here, together with the current knowledge on nitrous oxide reduction mechanism by nitrous oxide reductase and its intermediate species. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Synthesis, characterization and catalytic activity toward methanol oxidation of electrocatalyst Pt4+-NH2-MCM-41

    International Nuclear Information System (INIS)

    Zheng Huajun; Chen Zuo; Wang Limin; Ma Chun’an

    2012-01-01

    Highlights: ► It was first confirmed that the Pt 4+ exhibited a good electro-catalytic property for methanol oxidation. ► The Pt 4+ perfectly distributed on a mesoporous molecular sieve matrix synthesis by a facile method. ► The good performance of catalyst resistance to poisoning because of a homogeneous distribution of Pt 4+ and large specific surface area. - Abstract: Mesoporous material with functional group (Pt 4+ -NH 2 -MCM-41) was prepared by grafting aminopropyl group and adsorbing platinum ions on the surface of the commercial molecular sieve (MCM-41). The characterization carried out by X-ray photoelectron spectroscopy, X-ray diffraction, and N 2 adsorption–desorption measurement pointed out that Pt was adsorbed on the NH 2 -MCM-41 surface as the oxidation state (Pt 4+ ) and the surface area of Pt 4+ -NH 2 -MCM-41 was up to 564 m 2 /g. Transmission electron microscopy and elemental mapping indicated a homogeneous distribution of Pt 4+ throughout all surface of the mesoporous materials. Electro-catalytic properties of methanol oxidation on the Pt 4+ -NH 2 -MCM-41 electrode were investigated with electrochemical methods. The results showed that the Pt 4+ -NH 2 -MCM-41 electrode exhibited catalytic activity in the methanol electro-oxidation with the apparent activation energy being 49.29 kJ/mol, and the control step of methanol electro-oxidation was the mass transfer process. It is first proved that platinum ions had good electro-catalytic property for methanol oxidation and provided a new idea for developing electrode materials in future.

  16. An Overview of Recent Advances of the Catalytic Selective Oxidation of Ethane to Oxygenates

    Directory of Open Access Journals (Sweden)

    Robert D. Armstrong

    2016-05-01

    Full Text Available The selective partial oxidation of short chain alkanes is a key challenge within catalysis research. Direct ethane oxidation to oxygenates is a difficult aim, but potentially rewarding, and it could lead to a paradigm shift in the supply chain of several bulk chemicals. Unfortunately, low C–H bond reactivity and kinetically labile products are just some reasons affecting the development and commercialisation of such processes. Research into direct ethane oxidation is therefore disparate, with approaches ranging from oxidation in the gas phase at high temperatures to enzyme catalysed hydroxylation under ambient conditions. Furthermore, in overcoming the barrier posed by the chemically inert C–H bond a range of oxidants have been utilised. Despite years of research, this remains an intriguing topic from both academic and commercial perspectives. Herein we describe some recent developments within the field of catalytic ethane oxidation focusing on the formation of oxygenated products, whilst addressing the key challenges which are still to be overcome.

  17. Removal of formaldehyde over Mn(x)Ce(1)-(x)O(2) catalysts: thermal catalytic oxidation versus ozone catalytic oxidation.

    Science.gov (United States)

    Li, Jia Wei; Pan, Kuan Lun; Yu, Sheng Jen; Yan, Shaw Yi; Chang, Moo Been

    2014-12-01

    Mn(x)Ce(1)-(x)O(2) (x: 0.3-0.9) prepared by Pechini method was used as a catalyst for the thermal catalytic oxidation of formaldehyde (HCHO). At x=0.3 and 0.5, most of the manganese was incorporated in the fluorite structure of CeO(2) to form a solid solution. The catalytic activity was best at x=0.5, at which the temperature of 100% removal rate is the lowest (270°C). The temperature for 100% removal of HCHO oxidation is reduced by approximately 40°C by loading 5wt.% CuO(x) into Mn(0.5)Ce(0.5)O(2). With ozone catalytic oxidation, HCHO (61 ppm) in gas stream was completely oxidized by adding 506 ppm O₃over Mn(0.5)Ce(0.5)O(2) catalyst with a GHSV (gas hourly space velocity) of 10,000 hr⁻¹ at 25°C. The effect of the molar ratio of O(3) to HCHO was also investigated. As O(3)/HCHO ratio was increased from 3 to 8, the removal efficiency of HCHO was increased from 83.3% to 100%. With O(3)/HCHO ratio of 8, the mineralization efficiency of HCHO to CO(2) was 86.1%. At 25°C, the p-type oxide semiconductor (Mn(0.5)Ce(0.5)O(2)) exhibited an excellent ozone decomposition efficiency of 99.2%, which significantly exceeded that of n-type oxide semiconductors such as TiO(2), which had a low ozone decomposition efficiency (9.81%). At a GHSV of 10,000 hr⁻¹, [O(3)]/[HCHO]=3 and temperature of 25°C, a high HCHO removal efficiency (≥ 81.2%) was maintained throughout the durability test of 80 hr, indicating the long-term stability of the catalyst for HCHO removal. Copyright © 2014. Published by Elsevier B.V.

  18. Removal of nitrogen compounds from gasification gas by selective catalytic or non-catalytic oxidation; Typpiyhdisteiden poisto kaasutuskaasusta selektiivisellae katalyyttisellae ja ei-katalyyttisellae hapetuksella

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-01

    In gasification reactive nitrogenous compounds are formed from fuel nitrogen, which may form nitrogen oxides in gas combustion. In fluidized bed gasification the most important nitrogenous compound is ammonia (NH{sub 3}). If ammonia could be decomposed to N{sub 2} already before combustion, the emissions if nitrogen oxides could be reduced significantly. One way of increasing the decomposition rate of NH{sub 3} could be the addition of suitable reactants to the gas, which would react with NH{sub 3} and produce N{sub 2}. The aim of this research is to create basic information, which can be used to develop a new method for removal of nitrogen compounds from gasification gas. The reactions of nitrogen compounds and added reactants are studied in reductive atmosphere in order to find conditions, in which nitrogen compounds can be oxidized selectively to N{sub 2}. The project consists of following subtasks: (1) Selective non-catalytic oxidation (SNCO): Reactions of nitrogen compounds and oxidizers in the gas phase, (2) Selective catalytic oxidation (SCO): Reactions of nitrogen compounds and oxidizers on catalytically active surfaces, (3) Kinetic modelling of experimental results in co-operation with the Combustion Chemistry Research Group of Aabo Akademi University. The most important finding has been that NH{sub 3} can be made to react selectively with the oxidizers even in the presence of large amounts of CO and H{sub 2}. Aluminium oxides were found to be the most effective materials promoting selectivity. (author)

  19. Study of the catalytic activity of mixed non-stoichiometric uranium-thorium oxides in carbon monoxide oxidation

    International Nuclear Information System (INIS)

    Brau, G.

    1969-06-01

    The aim of this work has been to study the catalytic properties of non-stoichiometric uranium-thorium oxides having the general formula U x Th 1-x O 2+y , for the oxidation of carbon monoxide. The preparation of pure, homogeneous, isotropic solids having good structural stability and a surface area as high as possible calls for a strict control of the conditions of preparation of these oxides right from the preparation of 'mother salts': the mixed oxalates U x Th 1-x (C 2 O 4 ) 2 , 2H 2 O. A study has been made of their physico-chemical properties (overall and surface chemical constitution, texture, structure, electrical conductivity), as well as of their adsorption properties with respect to gaseous species occurring in the catalytic reaction. This analysis has made it possible to put forward a reaction mechanism based on successive oxidations and reductions of the active surface by the reactants. A study of the reactions kinetics has confirmed the existence of this oxidation-reduction mechanism which only occurs for oxides having a uranium content of above 0.0014. The carbon dioxide produced by the reaction acts as an inhibitor by blocking the sites on which carbon monoxide can be adsorbed. These non-stoichiometric mixed oxides are a particularly clear example of catalysis by oxygen exchange between the solid and the gas phase. (author) [fr

  20. Catalytic CO Oxidation over Au Nanoparticles Loaded Nanoporous Nickel Phosphate Composite

    Directory of Open Access Journals (Sweden)

    Xiaonan Leng

    2015-01-01

    Full Text Available Au/nickel phosphate-5 (Au/VSB-5 composite with the noble metal loading amount of 1.43 wt.% is prepared by using microporous VSB-5 nanocrystals as the support. Carbon monoxide (CO oxidation reaction is carried out over the sample with several catalytic cycles. Complete conversion of CO is achieved at 238°C over the catalyst at the first catalytic cycle. The catalytic activity improved greatly at the second cycle with the complete conversion fulfilled at 198°C and preserved for the other cycles. A series of experiments such as X-ray diffraction (XRD, high resolution transmission electron microscopy (HRTEM, ultraviolet-visible (UV-vis spectroscopy, and X-ray photoelectron spectroscopy (XPS are carried out to characterize the catalysts before and after the reaction to study the factors influencing this promotion at the second cycle.

  1. Catalytic Oxidation of Lignins into the Aromatic Aldehydes: General Process Trends and Development Prospects

    Directory of Open Access Journals (Sweden)

    Valery E. Tarabanko

    2017-11-01

    Full Text Available This review discusses principal patterns that govern the processes of lignins’ catalytic oxidation into vanillin (3-methoxy-4-hydroxybenzaldehyde and syringaldehyde (3,5-dimethoxy-4-hydroxybenzaldehyde. It examines the influence of lignin and oxidant nature, temperature, mass transfer, and of other factors on the yield of the aldehydes and the process selectivity. The review reveals that properly organized processes of catalytic oxidation of various lignins are only insignificantly (10–15% inferior to oxidation by nitrobenzene in terms of yield and selectivity in vanillin and syringaldehyde. Very high consumption of oxygen (and consequentially, of alkali in the process—over 10 mol per mol of obtained vanillin—is highlighted as an unresolved and unexplored problem: scientific literature reveals almost no studies devoted to the possibilities of decreasing the consumption of oxygen and alkali. Different hypotheses about the mechanism of lignin oxidation into the aromatic aldehydes are discussed, and the mechanism comprising the steps of single-electron oxidation of phenolate anions, and ending with retroaldol reaction of a substituted coniferyl aldehyde was pointed out as the most convincing one. The possibility and development prospects of single-stage oxidative processing of wood into the aromatic aldehydes and cellulose are analyzed.

  2. Dehydrogenase-Catalyzed Oxidation of Furanics: Exploitation of Hemoglobin Catalytic Promiscuity.

    Science.gov (United States)

    Jia, Hao-Yu; Zong, Min-Hua; Yu, Hui-Lei; Li, Ning

    2017-09-22

    The catalytic promiscuity of hemoglobin (Hb) was explored for regenerating oxidized nicotinamide cofactors [NAD(P) + ]. With H 2 O 2 as oxidant, Hb efficiently oxidized NAD(P)H into NAD(P) + within 30 min. The new NAD(P) + regeneration system was coupled with horse liver alcohol dehydrogenase (HLADH) for the oxidation of bio-based furanics such as furfural and 5-hydroxymethylfurfural (HMF). The target acids (e.g., 2,5-furandicarboxylic acid, FDCA) were prepared with moderate-to-good yields. The enzymatic regeneration method was applied in l-glutamic dehydrogenase (DH)-mediated oxidative deamination of lglutamate and for l-lactic-DH-mediated oxidation of l-lactate, which furnished α-ketoglutarate and pyruvate in yields of 97 % and 81 %, respectively. A total turnover number (TTON) of up to approximately 5000 for cofactor and an E factor of less than 110 were obtained in the bi-enzymatic cascade synthesis of α-ketoglutarate. Overall, a proof-of-concept based on catalytic promiscuity of Hb was provided for in situ regeneration of NAD(P) + in DH-catalyzed oxidation reactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Wet etching of InSb surfaces in aqueous solutions: Controlled oxide formation

    Energy Technology Data Exchange (ETDEWEB)

    Aureau, D., E-mail: damien.aureau@chimie.uvsq.fr [Institut Lavoisier UVSQ-CNRS UMR 8180, 45 avenue des Etats Unis, Versailles, 78035 (France); Chaghi, R.; Gerard, I. [Institut Lavoisier UVSQ-CNRS UMR 8180, 45 avenue des Etats Unis, Versailles, 78035 (France); Sik, H.; Fleury, J. [Sagem Defense Sécurité, 72-74, rue de la tour Billy, 95101, Argenteuil Cedex (France); Etcheberry, A. [Institut Lavoisier UVSQ-CNRS UMR 8180, 45 avenue des Etats Unis, Versailles, 78035 (France)

    2013-07-01

    This paper investigates the wet etching of InSb surfaces by two different oxidant agents: Br{sub 2} and H{sub 2}O{sub 2} and the consecutive oxides generation onto the surfaces. The strong dependence between the chemical composition of the etching baths and the nature of the final surface chemistry of this low band-gap III–V semiconductor will be especially highlighted. One aqueous etching solution combined hydrobromic acid and Bromine (HBr–Br{sub 2}:H{sub 2}O) with adjusted concentrations. The other solution combines orthophosphoric and citric acids with hydrogen peroxide (H{sub 3}PO{sub 4}–H{sub 2}O{sub 2}:H{sub 2}O). Depending on its composition, each formulation gave rise to variable etching rate. The dosage of Indium traces in the etching solution by atomic absorption spectroscopy (AAS) gives the kinetic variation of the dissolution process. The variations on etching rates are associated to the properties and the nature of the formed oxides on InSb surfaces. Surface characterization is specifically performed by X-ray photoelectron spectroscopy (XPS). A clear evidence of the differences between the formed oxides is highlighted. Atomic force microscopy is used to monitor the surface morphology and pointed out that very different final morphologies can be reached. This paper presents new results on the strong variability of the InSb oxides in relation with the InSb reactivity toward environment interaction.

  4. Nanodiamond-Gold Nanocomposites with the Peroxidase-Like Oxidative Catalytic Activity.

    Science.gov (United States)

    Kim, Min-Chul; Lee, Dukhee; Jeong, Seong Hoon; Lee, Sang-Yup; Kang, Eunah

    2016-12-21

    Novel nanodiamond-gold nanocomposites (NDAus) are prepared, and their oxidative catalytic activity is examined. Gold nanoparticles are deposited on carboxylated nanodiamonds (NDs) by in situ chemical reduction of gold precursor ions to produce NDAus, which exhibit catalytic activity for the oxidation of o-phenylenediamine in the presence of hydrogen peroxide similarly to a peroxidase. This remarkable catalytic activity is exhibited only by the gold nanoparticle-decorated NDs and is not observed for either Au nanoparticles or NDs separately. Kinetic oxidative catalysis studies show that NDAus exhibit a ping-pong mechanism with an activation energy of 93.3 kJ mol -1 , with the oxidation reaction rate being proportional to the substrate concentration. NDAus retain considerable activity even after several instances of reuse and are compatible with a natural enzyme, allowing the detection of xanthine using cascade catalysis. Association with gold nanoparticles makes NDs a good carbonic catalyst due to charge transfer at the metal-carbon interface and facilitated substrate adsorption. The results of this study suggest that diverse carbonic catalysts can be obtained by interfacial incorporation of various metal/inorganic substances.

  5. Treatment of toxic and hazardous organic wastes by wet oxidation process with oxygenated water at low temperature

    International Nuclear Information System (INIS)

    Piccinno, T.; Salluzzo, A.; Nardi, L.; Gili, M.; Luce, A.; Troiani, F.; Cornacchia, G.

    1989-11-01

    The wet oxidation process using air or molecular oxygen is a well-known process from long time. It is suitable to oxidize several types of waste refractory to the usual biological, thermal and chemical treatments. The drastic operating conditions (high pressures and temperatures) prevented its industrial development. In the last years a new interest was assigned to the process for the treatment of nuclear wastes (organic resins and exhaust organic wastes); the treatment is carried out at widely reduced operating conditions (atmospheric pressure and boiling temperature) by means of metallic catalysts and hydrogen peroxide. With some limits, the wet oxidation with hydrogen peroxide at low temperature can be applied to conventional waste waters containing toxic organic compounds. In the present report are summarized the activities developed at ENEA Fuel Cycle Department by the task force 'Deox' constituted by laboratory and plant specialists in order to verify the application of the wet oxidation process to the treatment of the toxic wastes. (author)

  6. Catalytic ozonation of oxalate with a cerium supported palladium oxide: An efficient degradation not relying on hydroxyl radical oxidation

    KAUST Repository

    Zhang, Tao

    2011-11-01

    The cerium supported palladium oxide (PdO/CeO 2) at a low palladium loading was found very effective in catalytic ozonation of oxalate, a probe compound that is difficult to be efficiently degraded in water with hydroxyl radical oxidation and one of the major byproducts in ozonation of organic matter. The oxalate was degraded into CO 2 during the catalytic ozonation. The molar ratio of oxalate degraded to ozone consumption increased with increasing catalyst dose and decreasing ozone dosage and pH under the conditions of this study. The maximum molar ratio reached around 1, meaning that the catalyst was highly active and selective for oxalate degradation in water. The catalytic ozonation, which showed relatively stable activity, does not promote hydroxyl radical generation from ozone. Analysis with ATR-FTIR and in situ Raman spectroscopy revealed that 1) oxalate was adsorbed on CeO 2 of the catalyst forming surface complexes, and 2) O 3 was adsorbed on PdO of the catalyst and further decomposed to surface atomic oxygen (*O), surface peroxide (*O 2), and O 2 gas in sequence. The results indicate that the high activity of the catalyst is related to the synergetic function of PdO and CeO 2 in that the surface atomic oxygen readily reacts with the surface cerium-oxalate complex. This kind of catalytic ozonation would be potentially effective for the degradation of polar refractory organic pollutants and hydrophilic natural organic matter. © 2011 American Chemical Society.

  7. Phosphorus recovery from sewage sludge with a hybrid process of low pressure wet oxidation and nanofiltration.

    Science.gov (United States)

    Blöcher, Christoph; Niewersch, Claudia; Melin, Thomas

    2012-04-15

    Phosphorus recovery from sewage sludge will become increasingly important within the next decades due to depletion of mineral phosphorus resources. In this work a new process concept was investigated, which aims at realising phosphorus recovery in a synergistic way with the overall sewage sludge treatment scheme. This process combines a low pressure wet oxidation for sewage sludge decomposition as well as phosphorus dissolution and a nanofiltration process to separate phosphorus from heavy metals and obtain a clean diluted phosphoric acid, from which phosphorus can be recovered as clean fertiliser. It was shown that this process concept is feasible for sewage sludge for wastewater treatment plants that apply enhanced biological removal or precipitation with alumina salts for phosphorus removal. The critical parameter for phosphorus dissolution in the low pressure wet oxidation process is the iron concentration, while in the nanofiltration multi-valent cations play a predominant role. In total, a phosphorus recovery of 54% was obtained for an exemplary wastewater treatment plant. Costs of the entire process are in the same range as conventional sewage sludge disposal, with the benefit being phosphorus recovery and reduced emission of greenhouse gases due to avoidance of sludge incineration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. The use of thermal wet oxidation for enhanced biogas recovery from raw and digested biowaste

    Energy Technology Data Exchange (ETDEWEB)

    Lissens, G.; Verstraete, W. [Gent Univ. (Belgium). LabMET; Thomsen, A.B. [Rise National Lab (Denmark). Dept. of Plant Research; Ahring, B.K. [Technical Univ., of Denmark (Denmark). Environmental Microbiology and Biotechnology

    2004-07-01

    The energy content of biodegradable organic waste and sewage sludge generated in the European Union represents 8 per cent of the European petroleum consumption, or on a per capita basis about 180 litres per year. Most of this material is still incinerated or disposed of in landfills despite the potential for anaerobic digestion to make this energy available. Current biodegradation plants only convert the easily digested portion of the waste, converting this to methane, leaving the rest to be stabilized by, for instance, composting. However, increased environmental consciousness is causing researchers to look at ways of increasing the methane yield. In this study, the anaerobic biodegradability of three waste sources was investigated: source-separated food waste, woody yard waste, and mixed biowaste from yard and kitchen waste after digestion in a full-scale digester. Thermal alkaline wet oxidation was applied to establish its effect on methane production and the digestion kinetics of raw and digested biowaste in batch and continuous tests. Results show that thermal alkaline wet oxidation can significantly increase methane production. 1 fig.

  9. I.C. Engine emission reduction by copper oxide catalytic converter

    Science.gov (United States)

    Venkatesan, S. P.; Shubham Uday, Desai; Karan Hemant, Borana; Rajarshi Kushwanth Goud, Kagita; Lakshmana Kumar, G.; Pavan Kumar, K.

    2017-05-01

    The toxic gases emitted from diesel engines are more than petrol engines. Predicting the use of diesel engines, even more in future, this system is developed and can be used to minimize the harmful gases. Toxic gases include NOX, CO, HC and Smoke which are harmful to the atmosphere as well as to the human beings. The main aim of this work is to fabricate system, where the level of intensity of toxic gases is controlled through chemical reaction to more agreeable level. This system acts itself as an exhaust system; hence there is no needs to fit separate the silencer. The whole assembly is fitted in the exhaust pipe from engine. In this work, catalytic converter with copper oxide as a catalyst, by replacing noble catalysts such as platinum, palladium and rhodium is fabricated and fitted in the engine exhaust. With and without catalytic converter, the experimentations are carried out at different loads such as 0%, 25%, 50%, 75%, and 100% of maximum rated load. From the experimental results it is found that the maximum reduction is 32%, 61% and 21% for HC, NOx and CO respectively at 100% of maximum rated load when compared to that of without catalytic converter. This catalytic converter system is cash effective and more economical than the existing catalytic converter.

  10. Air trichloroethylene oxidation in a corona plasma-catalytic reactor

    Science.gov (United States)

    Masoomi-Godarzi, S.; Ranji-Burachaloo, H.; Khodadadi, A. A.; Vesali-Naseh, M.; Mortazavi, Y.

    2014-08-01

    The oxidative decomposition of trichloroethylene (TCE; 300 ppm) by non-thermal corona plasma was investigated in dry air at atmospheric pressure and room temperature, both in the absence and presence of catalysts including MnOx, CoOx. The catalysts were synthesized by a co-precipitation method. The morphology and structure of the catalysts were characterized by BET surface area measurement and Fourier Transform Infrared (FTIR) methods. Decomposition of TCE and distribution of products were evaluated by a gas chromatograph (GC) and an FTIR. In the absence of the catalyst, TCE removal is increased with increases in the applied voltage and current intensity. Higher TCE removal and CO2 selectivity is observed in presence of the corona and catalysts, as compared to those with the plasma alone. The results show that MnOx and CoOx catalysts can dissociate the in-plasma produced ozone to oxygen radicals, which enhances the TCE decomposition.

  11. Gold & silver nanoparticles supported on manganese oxide: Synthesis, characterization and catalytic studies for selective oxidation of benzyl alcohol

    Directory of Open Access Journals (Sweden)

    Saad Alabbad

    2014-12-01

    Full Text Available Nano-gold and silver particles supported on manganese oxide were synthesized by the co-precipitation method. The catalytic properties of these materials were investigated for the oxidation of benzyl alcohol using molecular oxygen as a source of oxygen. The catalyst was calcined at 300, 400 and 500 °C. They were characterized by electron microscopy, powder X-ray diffraction (XRD and surface area. It was observed that the calcination temperature affects the size of the nanoparticle, which plays a significant role in the catalytic process. The catalyst calcined at 400 °C, gave a 100% conversion and >99% selectivity, whereas catalysts calcined at 300 and 500 °C gave a conversion of 69.51% and 19.90% respectively, although the selectivity remains >99%.

  12. Process for forming a homogeneous oxide solid phase of catalytically active material

    Science.gov (United States)

    Perry, Dale L.; Russo, Richard E.; Mao, Xianglei

    1995-01-01

    A process is disclosed for forming a homogeneous oxide solid phase reaction product of catalytically active material comprising one or more alkali metals, one or more alkaline earth metals, and one or more Group VIII transition metals. The process comprises reacting together one or more alkali metal oxides and/or salts, one or more alkaline earth metal oxides and/or salts, one or more Group VIII transition metal oxides and/or salts, capable of forming a catalytically active reaction product, in the optional presence of an additional source of oxygen, using a laser beam to ablate from a target such metal compound reactants in the form of a vapor in a deposition chamber, resulting in the deposition, on a heated substrate in the chamber, of the desired oxide phase reaction product. The resulting product may be formed in variable, but reproducible, stoichiometric ratios. The homogeneous oxide solid phase product is useful as a catalyst, and can be produced in many physical forms, including thin films, particulate forms, coatings on catalyst support structures, and coatings on structures used in reaction apparatus in which the reaction product of the invention will serve as a catalyst.

  13. A consistent reaction scheme for the selective catalytic reduction of nitrogen oxides with ammonia

    DEFF Research Database (Denmark)

    Janssens, Ton V.W.; Falsig, Hanne; Lundegaard, Lars Fahl

    2015-01-01

    For the first time, the standard and fast selective catalytic reduction of NO by NH3 are described in a complete catalytic cycle, that is able to produce the correct stoichiometry, while only allowing adsorption and desorption of stable molecules. The standard SCR reaction is a coupling of the ac...... for standard SCR. Finally, the role of a nitrate/nitrite equilibrium and the possible in uence of Cu dimers and Brønsted sites are discussed, and an explanation is offered as to how a catalyst can be effective for SCR, while being a poor catalyst for NO oxidation to NO2....... spectroscopy (FTIR). A consequence of the reaction scheme is that all intermediates in fast SCR are also part of the standard SCR cycle. The calculated activation energy by density functional theory (DFT) indicates that the oxidation of an NO molecule by O2 to a bidentate nitrate ligand is rate determining...

  14. Influence of Rare Earth Doping on the Structural and Catalytic Properties of Nanostructured Tin Oxide

    Directory of Open Access Journals (Sweden)

    Maciel Adeilton

    2008-01-01

    Full Text Available AbstractNanoparticles of tin oxide, doped with Ce and Y, were prepared using the polymeric precursor method. The structural variations of the tin oxide nanoparticles were characterized by means of nitrogen physisorption, carbon dioxide chemisorption, X-ray diffraction, and X-ray photoelectron spectroscopy. The synthesized samples, undoped and doped with the rare earths, were used to promote the ethanol steam reforming reaction. The SnO2-based nanoparticles were shown to be active catalysts for the ethanol steam reforming. The surface properties, such as surface area, basicity/base strength distribution, and catalytic activity/selectivity, were influenced by the rare earth doping of SnO2and also by the annealing temperatures. Doping led to chemical and micro-structural variations at the surface of the SnO2particles. Changes in the catalytic properties of the samples, such as selectivity toward ethylene, may be ascribed to different dopings and annealing temperatures.

  15. Catalytic oxidation for treatment of ECLSS and PMMS waste streams. [Process Material Management Systems

    Science.gov (United States)

    Akse, James R.; Thompson, John; Scott, Bryan; Jolly, Clifford; Carter, Donald L.

    1992-01-01

    Catalytic oxidation was added to the baseline multifiltration technology for use on the Space Station Freedom in order to convert low-molecular weight organic waste components such as alcohols, aldehydes, ketones, amides, and thiocarbamides to CO2 at low temperature (121 C), thereby reducing the total organic carbon (TOC) to below 500 ppb. The rate of reaction for the catalytic oxidation of aqueous organics to CO2 and water depends primarily upon the catalyst, temperature, and concentration of reactants. This paper describes a kinetic study conducted to determine the impact of each of these parameters upon the reaction rate. The results indicate that a classic kinetic model, the Langmuir-Hinshelwood rate equation for heterogeneous catalysis, can accurately represent the functional dependencies of this rate.

  16. Visualizing a Catalyst at Work during the Ignition of the Catalytic Partial Oxidation of Methane

    DEFF Research Database (Denmark)

    Kimmerle, Bertram; Grunwaldt, Jan-Dierk; Baiker, Alfons

    2009-01-01

    We present a spatiotemporal operando X-ray absorption study of a highly dynamic process, the ignition of the noble metal catalyzed partial oxidation of methane. Evolvement and propagation of the platinum component's structural changes are investigated with a high-speed X-ray camera, which in comb...... in combination with temperature profiling by IR-thermography and catalytic activity measurements by online mass spectrometry gives insight into the first stages of the ignition of the reaction toward hydrogen and carbon monoxide....

  17. Understanding the role of gold nanoparticles in enhancing the catalytic activity of manganese oxides in water oxidation reactions.

    Science.gov (United States)

    Kuo, Chung-Hao; Li, Weikun; Pahalagedara, Lakshitha; El-Sawy, Abdelhamid M; Kriz, David; Genz, Nina; Guild, Curtis; Ressler, Thorsten; Suib, Steven L; He, Jie

    2015-02-16

    The Earth-abundant and inexpensive manganese oxides (MnOx) have emerged as an intriguing type of catalysts for the water oxidation reaction. However, the overall turnover frequencies of MnOx catalysts are still much lower than that of nanostructured IrO2 and RuO2 catalysts. Herein, we demonstrate that doping MnOx polymorphs with gold nanoparticles (AuNPs) can result in a strong enhancement of catalytic activity for the water oxidation reaction. It is observed that, for the first time, the catalytic activity of MnOx/AuNPs catalysts correlates strongly with the initial valence of the Mn centers. By promoting the formation of Mn(3+) species, a small amount of AuNPs (MnO2/AuNP catalysts significantly improved the catalytic activity up to 8.2 times in the photochemical and 6 times in the electrochemical system, compared with the activity of pure α-MnO2. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Catalytic Oxidation of Phenol over Zeolite Based Cu/Y-5 Catalyst: Part 1: Catalyst Preparation and Characterization

    Directory of Open Access Journals (Sweden)

    K. Maduna Valkaj

    2015-01-01

    Full Text Available The necessity to remove organic pollutants from the industrial wastewater streams has forced the development of new technologies that can produce better results in terms of pollutant removal and process efficiency in combination with low investment and operating costs. One of the new emerging processes with a potential to fulfil these demands is catalytic wet peroxide oxidation, commonly known as the CWPO process. The oxidative effect of the hydrogen peroxide is intensified by the addition of a heterogeneous catalyst that can reduce the operating conditions to atmospheric pressure and temperatures below 383 K. Zeolites, among others, are especially appealing as catalysts for selective oxidation processes due to their unique characteristics such as shape selectivity, thermal and chemical stability, and benign effect on nature and the living world. In this work, catalytic activity, selectivity and stability of Cu/Y-5 zeolite in phenol oxidation with hydrogen peroxide was examined. Catalyst samples were prepared by ion exchange method of the protonic form of commercial zeolite. The catalysts were characterized with powder X-ray diffraction (XRD, scanning electron microscopy (SEM, and AAS elemental analysis, while the adsorption techniques were used for the measurement of the specific surface area. The catalytic tests were carried out in a stainless steel Parr reactor in batch operation mode at the atmospheric pressure and in the temperature range from 323 to 353 K. The catalyst was prepared in powdered form and the mass fraction of the active metal component on the zeolite was 3.46 %. The initial concentration of phenol solution was equal to 0.01 mol dm−3 and the concentration of hydrogen peroxide ranged from 0.01 to 0.10 mol dm−3. The obtained experimental data was tested to a proposed kinetic model for phenol oxidation r = k1 cF cVP and hydrogen peroxide decomposition rHP = k2 cHP. The kinetic parameters were estimated using the Nelder

  19. Reaction kinetics of waste sulfuric acid using H2O2catalytic oxidation.

    Science.gov (United States)

    Wang, Jiade; Hong, Binxun; Tong, Xinyang; Qiu, Shufeng

    2016-12-01

    The process of recovering waste sulfuric acids using H 2 O 2 catalytic oxidation is studied in this paper. Activated carbon was used as catalyst. Main operating parameters, such as temperature, feed rate of H 2 O 2 , and catalyst dosage, have effects on the removal of impurities from waste sulfuric acids. The reaction kinetics of H 2 O 2 catalytic oxidation on impurities are discussed. At a temperature of 90°C, H 2 O 2 feeding rate of 50 g (kg waste acid) -1 per hour, and catalyst dosage of 0.2 wt% (waste acid weight), the removal efficiencies of COD and chrominance were both more than 99%, the recovery ratio of sulfuric acid was more than 95%, and the utilization ratio of H 2 O 2 was 88.57%. Waste sulfuric acid is a big environmental problem in China. The amount of waste sulfuric acid is huge every year. Many small and medium-sized businesses produced lots of waste acids, but they don't have an appropriate method to treat and recover them. H 2 O 2 catalytic oxidation has been used to treat and recover waste sulfuric acid and activated carbon is the catalyst here. Main parameters, such as temperature, feed rate of H 2 O 2 , and catalyst dosage, have been investigated. The reaction kinetics are discussed. This method can be economical and feasible for most small and medium-sized businesses.

  20. The effect of Ce ion substituted OMS-2 nanostructure in catalytic activity for benzene oxidation

    Science.gov (United States)

    Hou, Jingtao; Li, Yuanzhi; Mao, Mingyang; Zhao, Xiujian; Yue, Yuanzheng

    2014-11-01

    The nanostructure of Ce doped OMS-2 plays a very important role in its catalytic property. We demonstrate by density functional theory (DFT) calculations that the unique nanostructure of the Ce ion substituted OMS-2 with Mn vacancy in the framework is beneficial for the improvement of catalytic activity, while the nanostructure of the Ce ion substituted OMS-2 without defects are detrimental to the catalytic activity. We establish a novel and facile strategy of synthesizing these unique Ce ion substituted OMS-2 nanostructure with Mn vacancies in the framework by hydrothermal redox reaction between Ce(NO3)3 and KMnO4 with KMnO4/Ce(NO3)3 at a molar ratio of 3 : 1 at 120 °C. Compared to pure OMS-2, the produced catalyst of Ce ion substituted OMS-2 ultrathin nanorods exhibits an enormous enhancement in the catalytic activity for benzene oxidation, which is evidenced by a significant decrease (ΔT50 = 100 °C, ΔT90 = 129 °C) in the reaction temperature of T50 and T90 (corresponding to the benzene conversion = 50% and 90%), which is considerably more efficient than the expensive supported noble metal catalyst (Pt/Al2O3). We combine both theoretical and experimental evidence to provide a new physical insight into the significant effect due to the defects induced by the Ce ion substitution on the catalytic activity of OMS-2. The formation of unique Ce ion substituted OMS-2 nanostructure with Mn vacancies in the framework leads to a significant enhancement of the lattice oxygen activity, thus tremendously increasing the catalytic activity.The nanostructure of Ce doped OMS-2 plays a very important role in its catalytic property. We demonstrate by density functional theory (DFT) calculations that the unique nanostructure of the Ce ion substituted OMS-2 with Mn vacancy in the framework is beneficial for the improvement of catalytic activity, while the nanostructure of the Ce ion substituted OMS-2 without defects are detrimental to the catalytic activity. We establish a novel

  1. The effect of noble metals on catalytic methanation reaction over supported Mn/Ni oxide based catalysts

    Directory of Open Access Journals (Sweden)

    Wan Azelee Wan Abu Bakar

    2015-09-01

    Full Text Available Carbon dioxide (CO2 in sour natural gas can be removed using green technology via catalytic methanation reaction by converting CO2 to methane (CH4 gas. Using waste to wealth concept, production of CH4 would increase as well as creating environmental friendly approach for the purification of natural gas. In this research, a series of alumina supported manganese–nickel oxide based catalysts doped with noble metals such as ruthenium and palladium were prepared by wetness impregnation method. The prepared catalysts were run catalytic screening process using in-house built micro reactor coupled with Fourier Transform Infra Red (FTIR spectroscopy to study the percentage CO2 conversion and CH4 formation analyzed by GC. Ru/Mn/Ni(5:35:60/Al2O3 calcined at 1000 °C was found to be the potential catalyst which gave 99.74% of CO2 conversion and 72.36% of CH4 formation at 400 °C reaction temperature. XRD diffractogram illustrated that the supported catalyst was in polycrystalline with some amorphous state at 1000 °C calcination temperature with the presence of NiO as active site. According to FESEM micrographs, both fresh and used catalysts displayed spherical shape with small particle sizes in agglomerated and aggregated mixture. Nitrogen Adsorption analysis revealed that both catalysts were in mesoporous structures with BET surface area in the range of 46–60 m2/g. All the impurities have been removed at 1000 °C calcination temperature as presented by FTIR, TGA–DTA and EDX data.

  2. Comparison of the chemical properties of wheat straw and beech fibers following alkaline wet oxidation and laccase treatments

    DEFF Research Database (Denmark)

    Schmidt, A. S.; Mallon, S.; Thomsen, Anne Belinda

    2002-01-01

    reacted differently in the two processes. The chemical composition changed little following enzyme treatment. After alkaline wet oxidation, fibers enriched in cellulose were obtained. With both materials, almost all hemicellulose (80%) together with a large portion of the lignin were solubilised......Wheat straw (Triticum aestivum) and beech (Fagus sylvatica), were used to evaluate the effects of two pre-treatment processes (alkaline wet oxidation and enzyme treatment with laccase) on lignocellulosic materials for applications in particleboards and fiberboards. Wheat straw and beech fibers...... by alkaline wet oxidation, but essentially all cellulose remained in the solid fraction. Following enzyme treatment most material remained as a solid. For wheat straw, reaction with acetic anhydride indicated that both treatments resulted in more hydroxyl groups being accessible for reaction. The enzyme...

  3. A study of the effect of gamma radiation and doping on the catalytic activity of some oxides in the decomposition of hydrogen per-oxide

    International Nuclear Information System (INIS)

    Mousa, M.A.

    1987-01-01

    The rates of hydrogen peroxide decomposition on pure, doped and gamma-irradiated oxides Chromium oxide, Cobalt oxide, Magnesium oxide Nickel oxide, Ferric oxide, Magnesium ferri oxide were measured in a temperature range of 25-40 degree centigrade. It was found that lattice defect induced by doping and gamma-irradiation affect the catalytic properties of the oxides, either by activation or deactivation. The correlation between the catalytic activity for the hydrogen peroxide decomposition and the electronic defects produced by doping and by gamma-irradiation in the oxides is dicussed. Generally, it was found that the p-type semiconductor oxides are more active towards hydrogen peroxide decomposition than the n-type semiconductor oxides. (orig./A.B.)

  4. Development of chemical and biological processes for production of bioethanol. Optimization of the wet oxidation process and characterization of products

    Energy Technology Data Exchange (ETDEWEB)

    Bjerre, A.B.; Skammelsen Schmidt, A.

    1997-02-01

    The combination of the wet oxidation pretreatment process and alkaline hydrolysis was investigated in order to efficiently solubilize the hemicellulose, degrade the lignin, and open the solid crystalline cellulose structure of wheat straw lignocellulose without generating fermentation inhibitors. The effects of temperature, oxygen pressure, reaction time, and concentration of straw were evaluated. The degree of lignin degradation and hemicellulose solubilization increased with the reaction temperature and time. The optimum conditions were 15 minutes at 185 deg. C, producing 9.8 g/L hemicellulose. For quantification of the solubilized hemicellulose the best overall acid hydrolysis was obtained by treatment with 4 %w/v sulfuric acid for 10 minutes. The Aminex HPX-87H column was less sensitive towards impurities than the Aminex HPX-87P column. HPX-87H gave improved recovery and reproducibility, and was chosen for routine quantification of hydrolyzed hemicellulose sugars. The purity of the solid cellulose fraction also improved with higher temperature. The optimum condition for obtaining enzymatic convertible cellulose (90%) was 10 minutes at 170 deg. C using a high carbonate concentration. The hemicellulose yield and recovery were significantly reduced under these conditions indicating that a simultaneous optimal utilization of the hemicellulose and cellulose was difficult. The oxygen pressure and sodium carbonate concentration had little effect on the solubilization of hemicellulose, however, by combining wet oxidation with alkaline hydrolysis the formation of 2-furfural, a known microbial inhibitor, was minimal. Much more hemicellulose and lignin were solubilized from the straw by wet oxidation than by steaming(an alternative process). More cellulose was solubilized (and degraded) by steaming than by wet oxidation. Overall carbohydrates `losses` of 20.1% for steaming and 16.2% for wet oxidation were found. More 2-furfural was formed by steaming than by wet oxidation.

  5. Development of chemical and biological processes for production of bioethanol. Optimization of the wet oxidation process and characterization of products

    International Nuclear Information System (INIS)

    Bjerre, A.B.; Skammelsen Schmidt, A.

    1997-02-01

    The combination of the wet oxidation pretreatment process and alkaline hydrolysis was investigated in order to efficiently solubilize the hemicellulose, degrade the lignin, and open the solid crystalline cellulose structure of wheat straw lignocellulose without generating fermentation inhibitors. The effects of temperature, oxygen pressure, reaction time, and concentration of straw were evaluated. The degree of lignin degradation and hemicellulose solubilization increased with the reaction temperature and time. The optimum conditions were 15 minutes at 185 deg. C, producing 9.8 g/L hemicellulose. For quantification of the solubilized hemicellulose the best overall acid hydrolysis was obtained by treatment with 4 %w/v sulfuric acid for 10 minutes. The Aminex HPX-87H column was less sensitive towards impurities than the Aminex HPX-87P column. HPX-87H gave improved recovery and reproducibility, and was chosen for routine quantification of hydrolyzed hemicellulose sugars. The purity of the solid cellulose fraction also improved with higher temperature. The optimum condition for obtaining enzymatic convertible cellulose (90%) was 10 minutes at 170 deg. C using a high carbonate concentration. The hemicellulose yield and recovery were significantly reduced under these conditions indicating that a simultaneous optimal utilization of the hemicellulose and cellulose was difficult. The oxygen pressure and sodium carbonate concentration had little effect on the solubilization of hemicellulose, however, by combining wet oxidation with alkaline hydrolysis the formation of 2-furfural, a known microbial inhibitor, was minimal. Much more hemicellulose and lignin were solubilized from the straw by wet oxidation than by steaming(an alternative process). More cellulose was solubilized (and degraded) by steaming than by wet oxidation. Overall carbohydrates 'losses' of 20.1% for steaming and 16.2% for wet oxidation were found. More 2-furfural was formed by steaming than by wet oxidation

  6. Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Minghao, E-mail: suiminghao.sui@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xing, Sichu; Sheng, Li; Huang, Shuhang; Guo, Hongguang [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Ciprofloxacin in water was degraded by heterogeneous catalytic ozonation. Black-Right-Pointing-Pointer MnOx were supported on MWCNTs to serve as catalyst for ozonation. Black-Right-Pointing-Pointer MnOx/MWCNT exhibited highly catalytic activity on ozonation of ciprofloxacin in water. Black-Right-Pointing-Pointer MnOx/MWCNT resulted in effective antibacterial activity inhibition on ciprofloxacin. Black-Right-Pointing-Pointer MnOx/MWCNT promoted the generation of hydroxyl radicals. - Abstract: Carbon nanotube-supported manganese oxides (MnOx/MWCNT) were used as catalysts to assist ozone in degrading ciprofloxacin in water. Manganese oxides were successfully loaded on multi-walled carbon nanotube surfaces by simply impregnating the carbon nanotube with permanganate solution. The catalytic activities of MnOx/MWCNT in ciprofloxacin ozonation, including degradation, mineralization effectiveness, and antibacterial activity change, were investigated. The presence of MnOx/MWCNT significantly elevated the degradation and mineralization efficiency of ozone on ciprofloxacin. The microbiological assay with a reference Escherichia coli strain indicated that ozonation with MnOx/MWCNT results in more effective antibacterial activity inhibition of ciprofloxacin than that in ozonation alone. The effects of catalyst dose, initial ciprofloxacin concentration, and initial pH conditions on ciprofloxacin ozonation with MnOx/MWCNT were surveyed. Electron spin resonance trapping was applied to assess the role of MnOx/MWCNT in generating hydroxyl radicals (HO{center_dot}) during ozonation. Stronger 5,5-dimethyl-1-pyrroline-N-oxide-OH signals were observed in the ozonation with MnOx/MWCNT compared with those in ozonation alone, indicating that MnOx/MWCNT promoted the generation of hydroxyl radicals. The degradation of ciprofloxacin was studied in drinking water and wastewater process samples to gauge the potential effects of water background matrix on

  7. Helicobacter Catalase Devoid of Catalytic Activity Protects the Bacterium against Oxidative Stress.

    Science.gov (United States)

    Benoit, Stéphane L; Maier, Robert J

    2016-11-04

    Catalase, a conserved and abundant enzyme found in all domains of life, dissipates the oxidant hydrogen peroxide (H 2 O 2 ). The gastric pathogen Helicobacter pylori undergoes host-mediated oxidant stress exposure, and its catalase contains oxidizable methionine (Met) residues. We hypothesized catalase may play a large stress-combating role independent of its classical catalytic one, namely quenching harmful oxidants through its recyclable Met residues, resulting in oxidant protection to the bacterium. Two Helicobacter mutant strains ( katA H56A and katA Y339A ) containing catalase without enzyme activity but that retain all Met residues were created. These strains were much more resistant to oxidants than a catalase-deletion mutant strain. The quenching ability of the altered versions was shown, whereby oxidant-stressed (HOCl-exposed) Helicobacter retained viability even upon extracellular addition of the inactive versions of catalase, in contrast to cells receiving HOCl alone. The importance of the methionine-mediated quenching to the pathogen residing in the oxidant-rich gastric mucus was studied. In contrast to a catalase-null strain, both site-change mutants proficiently colonized the murine gastric mucosa, suggesting that the amino acid composition-dependent oxidant-quenching role of catalase is more important than the well described H 2 O 2 -dissipating catalytic role. Over 100 years after the discovery of catalase, these findings reveal a new non-enzymatic protective mechanism of action for the ubiquitous enzyme. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Treatment of biomass gasification wastewater using a combined wet air oxidation/activated sludge process

    Energy Technology Data Exchange (ETDEWEB)

    English, C.J.; Petty, S.E.; Sklarew, D.S.

    1983-02-01

    A lab-scale treatability study for using thermal and biological oxidation to treat a biomass gasification wastewater (BGW) having a chemical oxygen demand (COD) of 46,000 mg/l is described. Wet air oxidation (WA0) at 300/sup 0/C and 13.8 MPa (2000 psi) was used to initially treat the BGW and resulted in a COD reduction of 74%. This was followed by conventional activated sludge treatment using operating conditions typical of municipal sewage treatment plants. This resulted in an additional 95% COD removal. Overall COD reduction for the combined process was 99%. A detailed chemical analysis of the raw BGW and thermal and biological effluents was performed using gas chromatography/mass spectrometry (GC/MS). These results showed a 97% decrease in total extractable organics with WA0 and a 99.6% decrease for combined WA0 and activated sludge treatment. Components of the treated waters tended to be fewer in number and more highly oxidized. An experiment was conducted to determine the amount of COD reduction caused by volatilization during biological treatment. Unfortunately, this did not yield conclusive results. Treatment of BGW using WA0 followed by activated sludge appears to be very effective and investigations at a larger scale are recommended.

  9. Ethanol production from wet oxidized corn straw by simultaneous saccharification and fermentation

    DEFF Research Database (Denmark)

    Zhang, Q.; Yin, Y.; Thygesen, Anders

    2010-01-01

    remained in the solid fraction and recovery of cellulose was 95.87% after pretreatment. After 24 h hydrolysis at 50°C using cellulase, the achieved conversion of cellulose to glucose was about 67.6%. After 142 h of SSF with substrate concentration of 8%, ethanol yield of 79.0% of the theoretical......In order to find out the appropriate process for ethanol production from corn straw, alkaline wet-oxidation pretreatment (195°C, 15 min, Na2CO3 2 g/L, O2 1200 kPa) and simultaneous saccharification and fermentation (SSF) were adopted to produce ethanol. The results showed that 90% of cellulose...... was obtained. The estimated total ethanol production was 262.7 kg/t raw material by assuming the consumption of both C-6 and C-5. No obvious inhibition effect occurred during SSF. These offered experiment evidences for ethanol production from corn straw....

  10. Wet Oxidation Pretreatment of Tobacco Stalks and Orange Waste for Bioethanol Production. Preliminary results

    DEFF Research Database (Denmark)

    Martin, Carlos; Fernandez, Teresa; Garcia, Ariel

    2009-01-01

    Wet oxidation (WO) was used as a pretreatment method prior to enzymatic hydrolysis of tobacco stalks and orange waste. The pretreatment, performed at 195 degrees C and an oxygen pressure of 1.2 MPa, for 15 min, in the presence of Na2CO3, increased the cellulose content of the materials and gave...... cellulose recoveries of approximately 90%. The pretreatment enhanced the susceptibility of cellulose to enzymatic hydrolysis. The highest enzymatic convertibility, that of 64.9%, was achieved for pretreated tobacco stalks. The ethanolic fermentation of the WO filtrates, using Saccharomyces cerevisiae......, was inhibited compared to the fermentation of a reference glucose solution. Inhibition was more intense for the filtrate of tobacco stalks than for that of orange waste. The inhibition degree of the volumetric productivity of ethanol was higher (79.1-86.8%) than that of the ethanol yield (7.1-9.5%)....

  11. High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol

    DEFF Research Database (Denmark)

    Varga, E.; Klinke, H.B.; Reczey, K.

    2004-01-01

    In this study ethanol was produced from corn stover pretreated by alkaline and acidic wet oxidation (WO) (195 degreesC, 15 min, 12 bar oxygen) followed by nonisothermal simultaneous saccharification and fermentation (SSF). In the first step of the SSF, small amounts of cellulases were added at 50....../L) were present in the hemicellulose rich hydrolyzate at subinhibitory levels, thus no detoxification was needed prior to SSF of the whole slurry. Based on the cellulose available in the WO corn stover 83% of the theoretical ethanol yield was obtained under optimized SSF conditions. This was achieved...... with a substrate concentration of 12% dry matter (DM) acidic WO corn stover at 30 FPU/g DM (43.5 FPU/g cellulose) enzyme loading. Even with 20 and 15 FPU/g DM (corresponding to 29 and 22 FPU/g cellulose) enzyme loading, ethanol yields of 76 and 73%, respectively, were obtained. After 120 h of SSF the highest...

  12. Fabrication of CeO2–MOx (M = Cu, Co, Ni composite yolk–shell nanospheres with enhanced catalytic properties for CO oxidation

    Directory of Open Access Journals (Sweden)

    Ling Liu

    2017-11-01

    Full Text Available CeO2–MOx (M = Cu, Co, Ni composite yolk–shell nanospheres with uniform size were fabricated by a general wet-chemical approach. It involved a non-equilibrium heat-treatment of Ce coordination polymer colloidal spheres (Ce-CPCSs with a proper heating rate to produce CeO2 yolk–shell nanospheres, followed by a solvothermal treatment of as-synthesized CeO2 with M(CH3COO2 in ethanol solution. During the solvothermal process, highly dispersed MOx species were decorated on the surface of CeO2 yolk–shell nanospheres to form CeO2–MOx composites. As a CO oxidation catalyst, the CeO2–MOx composite yolk–shell nanospheres showed strikingly higher catalytic activity than naked CeO2 due to the strong synergistic interaction at the interface sites between MOx and CeO2. Cycling tests demonstrate the good cycle stability of these yolk–shell nanospheres. The initial concentration of M(CH3COO2·xH2O in the synthesis process played a significant role in catalytic performance for CO oxidation. Impressively, complete CO conversion as reached at a relatively low temperature of 145 °C over the CeO2–CuOx-2 sample. Furthermore, the CeO2–CuOx catalyst is more active than the CeO2–CoOx and CeO2–NiO catalysts, indicating that the catalytic activity is correlates with the metal oxide. Additionally, this versatile synthesis approach can be expected to create other ceria-based composite oxide systems with various structures for a broad range of technical applications.

  13. Effect of Au Precursor and Support on the Catalytic Activity of the Nano-Au-Catalysts for Propane Complete Oxidation

    Directory of Open Access Journals (Sweden)

    Arshid M. Ali

    2015-01-01

    Full Text Available Catalytic activity of nano-Au-catalyst(s for the complete propane oxidation was investigated. The results showed that the nature of both Au precursor and support strongly influences catalytic activity of the Au-catalyst(s for the propane oxidation. Oxidation state, size, and dispersion of Au nanoparticles in the Au-catalysts, surface area, crystallinity, phase structure, and redox property of the support are the key aspects for the complete propane oxidation. Among the studied Au-catalysts, the AuHAuCl4-Ce catalyst is found to be the most active catalyst.

  14. Metal and Metal Oxide Interactions and Their Catalytic Consequences for Oxygen Reduction Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Qingying; Ghoshal, Shraboni; Li, Jingkun; Liang, Wentao; Meng, Guangnan [ULVAC Technologies, Inc., 401; Che, Haiying [Shanghai; Zhang, Shiming [Shanghai; Ma, Zi-Feng [Shanghai; Mukerjee, Sanjeev

    2017-06-01

    Many industrial catalysts are composed of metal particles supported on metal oxides (MMO). It is known that the catalytic activity of MMO materials is governed by metal and metal oxide interactions (MMOI), but how to optimize MMO systems via manipulation of MMOI remains unclear, due primarily to the ambiguous nature of MMOI. Herein, we develop a Pt/NbOx/C system with tunable structural and electronic properties via a modified arc plasma deposition method. We unravel the nature of MMOI by characterizing this system under reactive conditions utilizing combined electrochemical, microscopy, and in situ spectroscopy. We show that Pt interacts with the Nb in unsaturated NbOx owing to the oxygen deficiency in the MMO interface, whereas Pt interacts with the O in nearly saturated NbOx, and further interacts with Nb when the oxygen atoms penetrate into the Pt cluster at elevated potentials. While the Pt–Nb interactions do not benefit the inherent activity of Pt toward oxygen reduction reaction (ORR), the Pt–O interactions improve the ORR activity by shortening the Pt–Pt bond distance. Pt donates electrons to NbOx in both Pt–Nb and Pt–O cases. The resultant electron efficiency stabilizes low-coordinated Pt sites, hereby stabilizing small Pt particles. This determines the two characteristic features of MMO systems: dispersion of small metal particles and high catalytic durability. These findings contribute to our understandings of MMO catalytic systems.

  15. Synthesis and characterization of Cr-MSU-1 and its catalytic application for oxidation of styrene

    Science.gov (United States)

    Liu, Hong; Wang, Zhigang; Hu, Hongjiu; Liang, Yuguang; Wang, Mengyang

    2009-07-01

    Chromium-containing mesoporous silica material Cr-MSU-1 was synthesized using lauryl alcohol-polyoxyethylene (23) ether as templating agent under the neutral pH condition by two-step method. The sample was characterized by XRD, TEM, FT-IR, UV-Vis, ESR, ICP-AES and N 2 adsorption. Its catalytic performance for oxidation of styrene was studied. Effects of the solvent used, the styrene/H 2O 2 mole ratio and the reaction temperature and time on the oxidation of styrene over the Cr-MSU-1 catalyst were examined. The results indicate that Cr ions have been successfully incorporated into the framework of MSU-1 and the Cr-MSU-1 material has a uniform worm-like holes mesoporous structure. After Cr-MSU-1 is calcined, most of Cr 3+ is oxidized to Cr 5+ and Cr 6+ in tetrahedral coordination and no extra-framework Cr 2O 3 is formed. The Cr-MSU-1 catalyst is highly active for the selective oxidation of styrene and the main reaction products over Cr-MSU-1 are benzaldehyde and phenylacetaldehyde. Its catalytic performance remains stable within five repeated runs and no leaching is noticed for this chromium-based catalyst.

  16. Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene.

    Science.gov (United States)

    Lu, Hanfeng; Kong, Xianxian; Huang, Haifeng; Zhou, Ying; Chen, Yinfei

    2015-06-01

    Cu-Mn, Cu-Mn-Ce, and Cu-Ce mixed-oxide catalysts were prepared by a citric acid sol-gel method and then characterized by XRD, BET, H2-TPR and XPS analyses. Their catalytic properties were investigated in the toluene combustion reaction. Results showed that the Cu-Mn-Ce ternary mixed-oxide catalyst with 1:2:4 mole ratios had the highest catalytic activity, and 99% toluene conversion was achieved at temperatures below 220°C. In the Cu-Mn-Ce catalyst, a portion of Cu and Mn species entered into the CeO2 fluorite lattice, which led to the formation of a ceria-based solid solution. Excess Cu and Mn oxides existed on the surface of the ceria-based solid solution. The coexistence of Cu-Mn mixed oxides and the ceria-based solid solution resulted in a better synergetic interaction than the Cu-Mn and Cu-Ce catalysts, which promoted catalyst reducibility, increased oxygen mobility, and enhanced the formation of abundant active oxygen species. Copyright © 2015. Published by Elsevier B.V.

  17. Tailoring Catalytic Properties of Pd/Co₃O₄ Catalysts via Structure Engineering for Methane Oxidation.

    Science.gov (United States)

    Chen, Lufei; Zhu, Yan

    2018-04-01

    The catalytic behavior of Co3O4 catalysts loaded by Pd for methane oxidation can be tailored by distinct spatial architectures and surface structures of such catalysts. Pd nanoparticles nested in Co3O4 with hexagonal-like microflakes exhibited superior catalytic activity, that is, T10 = 250 °C and T90 = 325 °C are correlated to 10% and 90% conversion of methane. Further Pd/Co3O4 microflakes catalyst can almost restore to its initial value in the absence of water when water vapor was cut off. This excellent catalysis should be attributed to its exposed more open surface, more active oxygen species and stronger redox properties.

  18. Selective catalytic reduction of nitrogen oxides from industrial gases by hydrogen or methane

    International Nuclear Information System (INIS)

    Engelmann Pirez, M.

    2004-12-01

    This work deals with the selective catalytic reduction of nitrogen oxides (NO x ), contained in the effluents of industrial plants, by hydrogen or methane. The aim is to replace ammonia, used as reducing agent, in the conventional process. The use of others reducing agents such as hydrogen or methane is interesting for different reasons: practical, economical and ecological. The catalyst has to convert selectively NO into N 2 , in presence of an excess of oxygen, steam and sulfur dioxide. The developed catalyst is constituted by a support such as perovskites, particularly LaCoO 3 , on which are dispersed noble metals (palladium, platinum). The interaction between the noble metal and the support, generated during the activation of the catalyst, allows to minimize the water and sulfur dioxide inhibitor phenomena on the catalytic performances, particularly in the reduction of NO by hydrogen. (O.M.)

  19. Preparation, photo-catalytic activity of cuprous oxide nano-crystallites with different sizes

    International Nuclear Information System (INIS)

    Tang Aidong; Xiao Yu; Ouyang Jing; Nie Sha

    2008-01-01

    Cuprous oxide (Cu 2 O) nano-crystallites with different sizes were prepared via electrolysis method and characterized by X-ray powder diffraction (XRD) and transmission electron microscope (TEM). Its photo-catalytic activities in the degradation of methyl orange as the model pollutant using UV light as an energy source were investigated. The XRD patterns showed that the sizes of Cu 2 O nano-crystallite decreased with the increasement of cetyltrimethyl ammonium bromide (CTAB) being added into the electrolyte, which were ranging from 27 nm to 48 nm. The progress of photo-catalytic degradation of the methyl orange was observed by monitoring the concentration change of the methyl orange solution. The highest decolorization ratio of 90% was observed for the sample prepared by addition of 0.05 g/L CTAB after photo-degradating 50 mg/L of methyl orange solution for 70 min. The mechanism of photo-degradation was discussed

  20. Investigation of catalytic oxidation of diamond by water vapor and carbon dioxide in the presence of alkali melts of some rare earth oxides

    International Nuclear Information System (INIS)

    Kulakova, I.I.; Rudenko, A.P.; Sulejmenova, A.S.; Tolstopyatova, A.A.

    1978-01-01

    The results of an investigation of the catalytic oxydation of diamond by carbon dioxide and water vapors at 906 deg C in the presence of melts of some rare earth oxides in potassium hydroxide are given. The ion La 3+ was shown to possess the most catalytic activity. The earlier proposed mechanisms of the diamond oxidation by CO 2 and H 2 O were corroborated. The ions of rare earth elements were found to accelerate the different stages of the process

  1. Highly n-Type Titanium Oxide as an Electronically Active Support for Platinum in the Catalytic Oxidation of Carbon Monoxide

    KAUST Repository

    Baker, L. Robert

    2011-08-18

    The role of the oxide-metal interface in determining the activity and selectivity of chemical reactions catalyzed by metal particles on an oxide support is an important topic in science and industry. A proposed mechanism for this strong metal-support interaction is electronic activation of surface adsorbates by charge carriers. Motivated by the goal of using electronic activation to drive nonthermal chemistry, we investigated the ability of the oxide support to mediate charge transfer. We report an approximately 2-fold increase in the turnover rate of catalytic carbon monoxide oxidation on platinum nanoparticles supported on stoichiometric titanium dioxide (TiO2) when the TiO2 is made highly n-type by fluorine (F) doping. However, for nonstoichiometric titanium oxide (TiOX<2) the effect of F on the turnover rate is negligible. Studies of the titanium oxide electronic structure show that the energy of free electrons in the oxide determines the rate of reaction. These results suggest that highly n-type TiO2 electronically activates adsorbed oxygen (O) by electron spillover to form an active O- intermediate. © 2011 American Chemical Society.

  2. Investigation of the degradation mechanism of catalytic wires during oxidation of ammonia process

    Energy Technology Data Exchange (ETDEWEB)

    Pura, Jarosław, E-mail: jaroslawpura@gmail.com [Faculty of Material Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Wieciński, Piotr; Kwaśniak, Piotr; Zwolińska, Marta; Garbacz, Halina; Zdunek, Joanna [Faculty of Material Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Laskowski, Zbigniew; Gierej, Maciej [Precious Metal Mint, Weteranów 95, 05-250 Radzymin (Poland)

    2016-12-01

    Highlights: • Degradation mechanisms of precious metal catalytic gauzes is proposed. • Significant change of gauzes morphology and chemical composition was observed. • Samples were analyzed using SEM, EDS and micro-XCT techniques. - Abstract: The most common catalysts for the ammonia oxidation process are 80 μm diameter platinum-rhodium wires knitted or woven into the form of a gauze. In an aggressive environment and under extreme conditions (temperature 800–900 °C, intensive gas flow, high pressure) precious elements are drained from the surface of the wires. Part of this separated material quickly decomposes on the surface in the form of characteristic “cauliflower-shape protrusions”. The rest of the platinum is captured by palladium-nickel catalytic-capture gauzes located beneath. In our investigation we focused on the effects of the degradation of gauzes from one industrial catalytic system. The aim of the study was to compare the degree and the mechanism of degradation of gauzes from a different part of the reactor. The study covered PtRh7 catalytic and PdNi5 catalytic-capture gauzes. X-ray computer microtomography investigation revealed that despite strong differences in morphology, each Pt-Rh wire has a similar specific surface area. This indicates that the oxidation process and morphological changes of the wires occur in a self-regulating balance, resulting in the value of the specific surface area of the catalyst. Microtomography analysis of Pd-Ni wires revealed strong redevelopment of the wires’ surface, which is related to the platinum capture phenomenon. Scanning electron microscope observations also revealed the nanostructure in the cauliflower-shape protrusions and large grains in the wires’ preserved cores. The high temperature in the reactor and the long-term nature of the process do not favor the occurrence of the nanostructure in this type of material. Further and detailed analysis of this phenomena will provide a better

  3. Catalytic oxidation of low-concentration CO at ambient temperature over supported Pd-Cu catalysts.

    Science.gov (United States)

    Wang, Fagen; Zhang, Haojie; He, Dannong

    2014-01-01

    The CO catalytic oxidation at ambient temperature and high space velocity was studied over the Pd-Cu/MOx (MOx = TiO2 and AI203) catalysts. The higher Brunauer-Emmett-Teller area surface of the A1203 support facilitates the dispersion of Pd2+ species, and the presence of Cu2Cl(OH)3 accelerates the re-oxidation of Pd0 to Pd2+ over the Pd-Cu/Al203 catalyst, which contributed to better performance of CO catalytic oxidation. The poorer activity of the Pd-Cu/TiO2 catalyst was attributed to the lower dispersion of Pd2+ species because of the less surface area and the non-formation of Cu2CI(OH)3 species. The presence of saturated moisture showed a negative effect on CO conversion over the two catalysts. This might be because of the competitive adsorption, the formation of carbonate species and the transformation of Cu2CI(OH)3 to inactive CuCI over the Pd-Cu/AI2O3 catalyst, which facilitates the aggregation of PdO species over the Pd-Cu/TiO2 catalyst under the moisture condition.

  4. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramasamy, Karthikeyan K.; Gray, Michel J.; Job, Heather M.; Smith, Colin D.; Wang, Yong

    2016-04-10

    tA highly versatile ethanol conversion process to selectively generate high value compounds is pre-sented here. By changing the reaction temperature, ethanol can be selectively converted to >C2alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3cata-lyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensationor the acetone formation is the path taken in changing the product composition. This article containsthe catalytic activity comparison between the mono-functional and physical mixture counterpart to thehydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  5. MWW-type titanosilicate synthesis, structural modification and catalytic applications to green oxidations

    CERN Document Server

    Wu, Peng; Xu, Le; Liu, Yueming; He, Mingyuan

    2013-01-01

    This book provides a comprehensive review of a new generation of selective oxidation titanosilicate catalysts with the MWW topology (Ti-MWW) based on the research achievements of the past 12 years. It gives an overview of the synthesis, structure modification and catalytic properties of Ti-MWW. Ti-MWW can readily be prepared by means of direct hydrothermal synthesis with crystallization-supporting agents, using dual-structure-directing agents and a dry-gel conversion technique. It also can be post-synthesized through unique reversible structure transformation and liquid-phase isomorphous subst

  6. Composite of Au-Pd nanoalloys/reduced graphene oxide toward catalytic selective organic transformation to fine chemicals

    Science.gov (United States)

    Zhang, Yanhui; Gao, Fei; Fu, Ming-Lai

    2018-01-01

    A facile, stabilizing-molecules-free strategy has been utilized for anchoring Au-Pd alloy nanoparticles onto the flat surface of two-dimensional (2D) reduced graphene oxide (RGO) nanosheets. Formation of Au-Pd nanoalloys and loading onto the RGO are accomplished simultaneously. The Au-Pd/reduced graphene oxide (Au-Pd/RGO) exhibits higher catalytic activity than both Au/RGO and Pd/RGO, prepared by the same approach toward selective oxidation of benzyl alcohol and selective reduction of nitroaromatics, the catalytic activity order can be in good agreement with the noble metal particles size distribution of the Au, Pd and Au-Pd/RGO.

  7. Polymeric heterogeneous catalysts of transition-metal oxides: surface characterization, physicomechanical properties, and catalytic activity.

    Science.gov (United States)

    Nhi, Bui Dinh; Akhmadullin, Renat Maratovich; Akhmadullina, Alfiya Garipovna; Samuilov, Yakov Dmitrievich; Aghajanian, Svetlana Ivanova

    2013-12-16

    We investigate the physicomechanical properties of polymeric heterogeneous catalysts of transition-metal oxides, specifically, the specific surface area, elongation at break, breaking strength, specific electrical resistance, and volume resistivity. Digital microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and energy-dispersive analysis are used to study the surfaces of the catalysts. The experimental results show that polymeric heterogeneous catalysts of transition-metal oxides exhibit high stability and can maintain their catalytic activity under extreme reaction conditions for long-term use. The oxidation mechanism of sulfur-containing compounds in the presence of polymeric heterogeneous catalysts of transition-metal oxides is confirmed. Microstructural characterization of the catalysts is performed by using X-ray computed tomography. The activity of various catalysts in the oxidation of sulfur-containing compounds is determined. We demonstrate the potential application of polymeric heterogeneous catalysts of transition-metal oxides in industrial wastewater treatment. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis and catalytic activity of Birnessite-Type Manganese Oxide synthesized by solvent-free method

    Science.gov (United States)

    Siregar, S. S.; Awaluddin, A.

    2018-04-01

    Redox reaction between KMnO4 and glucose usingsolvent-free method produces the octahedral layer birnessite-type manganese oxide. The effects of mole ratios, temperatures, and calcinations time on the structures and crystallinity of the oxides were studied throughthe X-ray powder diffraction analysis. The mole ratio of KMnO4/glucose (1:3) produces the purebirnessite with low crystallinity, whereas the mole ratio of KMnO4/glucose (3:1) yields high crystalline birnessite with minor components of hausmannite-type manganese oxide.The increasing of the temperature and calcinations times (300-700 °C and 3-7 h, respectively) willimprove the crystallinity and the purity of the as-synthesized oxide. Further experiments also showed that the as-syntesized octahedral layer birnessite-type manganese oxides have catalytic activity on the degradation of methylene blue (MB) dye with H2O2 as oxidant. The results revealed that the effective degradation could be achieved only in the presence of both the birnessite and H2O2, whereas without the addition of catalyst (H2O2only) or addition of H2O2 (catalyst only), the 3.5% and 15.5% of MB removal were obtained, respectively.

  9. The study on catalytic performance of CuO/CexZr1-xO2 catalyst in carbon monoxide oxidation

    Directory of Open Access Journals (Sweden)

    Huang Jinhua

    2017-12-01

    Full Text Available A series of CuO/CexZr1-xO2 samples were prepared by incipient-wetness impregnation method with CexZr1-xO2 used as the catalyst carrier which was synthesized by co-precipitation method.The influences of the mass ratio of CeO2:ZrO2 and CuO loading were investigated using catalytic activity test,XRD,BET,H2-TPR,and CO-TPR techniques.The results revealed that with a CeO2:ZrO2 mass ratio of 4:1 and 10% CuO loading,10%CuO/Ce0.815Zr0.185O2 catalyst showed a larger surface area and pore volume,a higher dispersity of CuO particles,better reduction property and CO oxidation property.Thus,10% CuO/Ce0.815Zr0.185O2 catalyst exhibited a high catalytic activity in the carbon monoxide oxidation with 100% CO conversion at the temperature as low as 80℃ under atmospheric pressure.

  10. Biogas Catalytic Reforming Studies on Nickel-Based Solid Oxide Fuel Cell Anodes

    DEFF Research Database (Denmark)

    Johnson, Gregory B.; Hjalmarsson, Per; Norrman, Kion

    2016-01-01

    of experiments were performed to study catalytic activity and effect of sulfur poisoning: (i) CH4 and CO2 dissociation; (ii) biogas (60% CH4 and 40% CO2) temperature-programmed reactions (TPRxn); and (iii) steady-state biogas reforming reactions followed by postmortem catalyst characterization by temperature......-programmed oxidation and time-of-flight secondary ion mass spectrometry. Results showed thatNi/ScYSZ/Pd-CGO was more active for catalytic dissociation of CH4 at 750°C and subsequent reactivity of deposited carbonaceous species. Sulfur deactivated most catalytic reactions except CO2 dissociation at 750°C. The presence...... of Pd-CGO helped to mitigate sulfur deactivation effect; e.g. lowering the onset temperature (up to 190°C) for CH4 conversion during temperature-programmed reactions. Both Ni/ScYSZ and Ni/ScYSZ/Pd-CGO anode catalysts were more active for dry reforming of biogas than they were for steam reforming...

  11. Green synthesis of core-shell gold-palladium@palladium nanocrystals dispersed on graphene with enhanced catalytic activity toward oxygen reduction and methanol oxidation in alkaline media

    Science.gov (United States)

    Zheng, Jie-Ning; Li, Shan-Shan; Ma, Xiaohong; Chen, Fang-Yi; Wang, Ai-Jun; Chen, Jian-Rong; Feng, Jiu-Ju

    2014-09-01

    Well-defined core-shell gold-palladium@palladium nanocrystals (AuPd@Pd) are facilely prepared by a simple and green wet-chemical method at 25 °C. A Good's buffer, 2-[4-(2-hydroxyethyl)-1-piperazinyl] ethanesulfonic acid (HEPES), is used as a reducing agent and a shape-directing agent, while there is no template, seed, organic solvent, or surfactant involved. The AuPd@Pd nanocrystals are uniformly dispersed on graphene nanosheets by ultrasonication, resulting in the formation of graphene supported AuPd@Pd (G-AuPd@Pd). The as-prepared nanocomposites exhibit the improved catalytic activity, good tolerance, and better stability for oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) in alkaline media, compared with the G-Pd and commercial Pd black catalysts. The as-developed method may provide a promising pathway for large-scale fabrication of AuPd-based catalysts.

  12. Full scale calcium bromide injection with subsequent mercury oxidation and removal within wet flue gas desulphurization system: Experience at a 700 MW coal-fired power facility

    Science.gov (United States)

    Berry, Mark Simpson

    The Environmental Protection Agency promulgated the Mercury and Air Toxics Standards rule, which requires that existing power plants reduce mercury emissions to meet an emission rate of 1.2 lb/TBtu on a 30-day rolling average and that new plants meet a 0.0002 lb/GWHr emission rate. This translates to mercury removals greater than 90% for existing units and greater than 99% for new units. Current state-of-the-art technology for the control of mercury emissions uses activated carbon injected upstream of a fabric filter, a costly proposition. For example, a fabric filter, if not already available, would require a 200M capital investment for a 700 MW size unit. A lower-cost option involves the injection of activated carbon into an existing cold-side electrostatic precipitator. Both options would incur the cost of activated carbon, upwards of 3M per year. The combination of selective catalytic reduction (SCR) reactors and wet flue gas desulphurization (wet FGD) systems have demonstrated the ability to substantially reduce mercury emissions, especially at units that burn coals containing sufficient halogens. Halogens are necessary for transforming elemental mercury to oxidized mercury, which is water-soluble. Plants burning halogen-deficient coals such as Power River Basin (PRB) coals currently have no alternative but to install activated carbon-based approaches to control mercury emissions. This research consisted of investigating calcium bromide addition onto PRB coal as a method of increasing flue gas halogen concentration. The treated coal was combusted in a 700 MW boiler and the subsequent treated flue gas was introduced into a wet FGD. Short-term parametric and an 83-day longer-term tests were completed to determine the ability of calcium bromine to oxidize mercury and to study the removal of the mercury in a wet FGD. The research goal was to show that calcium bromine addition to PRB coal was a viable approach for meeting the Mercury and Air Toxics Standards rule

  13. Synthesis, characterization and catalytic evaluation of cubic ordered mesoporous iron-silicon oxides

    Energy Technology Data Exchange (ETDEWEB)

    Martins, T.S., E-mail: tsmartins@unifesp.br [Departamento de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo, Rua Prof. Artur Riedel 275, 09972-270 Diadema, Sao Paulo (Brazil); Mahmoud, A.; Cides da Silva, L.C. [Instituto de Quimica, Universidade de Sao Paulo, 05508-900 Sao Paulo (Brazil); Cosentino, I.C. [IPEN, Av. Prof. Lineu Prestes 2242, Cidade Universitaria, 05508-900 Sao Paulo (Brazil); Tabacniks, M.H. [Instituto de Fisica, Universidade de Sao Paulo 66318, 05315-970 Sao Paulo (Brazil); Matos, J.R. [Instituto de Quimica, Universidade de Sao Paulo, 05508-900 Sao Paulo (Brazil); Freire, R.S. [CEPEMA/USP, Centro de Capacitacao e Pesquisa em Meio Ambiente, Cubatao/SP (Brazil); Instituto de Quimica, Universidade de Sao Paulo, 05508-900 Sao Paulo (Brazil); Fantini, M.C.A. [Instituto de Fisica, Universidade de Sao Paulo 66318, 05315-970 Sao Paulo (Brazil)

    2010-11-01

    Iron was successfully incorporated in FDU-1 type cubic ordered mesoporous silica by a simple direct synthesis route. The (Fe/FDU-1) samples were characterized by Rutherford back-scattering spectrometry (RBS), small angle X-ray scattering (SAXS), N{sub 2} sorption isotherm, X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). The resulting material presented an iron content of about 5%. Prepared at the usual acid pH of -0.3, the composite was mostly formed by amorphous silica and hematite with a quantity of Fe{sup 2+} present in the structure. The samples prepared with adjusted pH values (2 and 3.5) were amorphous. The samples' average pore diameter was around 12.0 nm and BET specific surface area was of 680 m{sup 2} g{sup -1}. Although the iron-incorporated material presented larger lattice parameter, about 25 nm compared to pure FDU-1, the Fe/FDU-1 composite still maintained its cubic ordered fcc mesoporous structure before and after the template removal at 540 deg. C. The catalytic performance of Fe/FDU-1 was investigated in the catalytic oxidation of Black Remazol B dye using a catalytic ozonation process. The results indicated that Fe/FDU-1 prepared at the usual acid pH exhibited high catalytic activity in the mineralization of this pollutant when compared to the pure FDU-1, Fe{sub 2}O{sub 3} and Fe/FDU-1 prepared with higher pH of 2 and 3.5.

  14. Effects of Acid Treatment on the Acidic Properties and Catalytic Activity of MCM-41 for the Oxidative Dehydrogenation of Isobutane

    OpenAIRE

    Ehiro, Takuya; Itagaki, Ai; Misu, Hisanobu; Nakagawa, Keizo; Katoh, Masahiro; Katou, Yuuki; Ninomiya, Wataru; Sugiyama, Shigeru

    2016-01-01

    Mesoporous silicas have shown promise as materials for solid catalysts or catalyst supports due to their unique characteristics. Metal-doped mesoporous silicas are known to be catalytically active in the oxidative dehydrogenation (ODH) of isobutane. However, heavy-metal-free mesoporous silicas have not been studied closely for their use as catalysts. In the present study, MCM-41 (#41 Mobil composition of matter) was acid-treated to enhance its catalytic activity, although pure MCM-41 was conf...

  15. Gold nanoworms immobilized graphene oxide polymer brush nanohybrid for catalytic degradation studies of organic dyes

    Science.gov (United States)

    Mogha, Navin Kumar; Gosain, Saransh; Masram, Dhanraj T.

    2017-02-01

    In the present work, we report gold nanoparticles (AuNPs) on poly (dimethylaminoethyl methacrylate) (PDMAEMA) brushes immobilized reduced graphene oxide (Au/PDMAEMA/RGO) as catalyst for degradation kinetic studies of Rhodamine B (RB), Methyl Orange (MO) and Eosine Y (EY) dyes, having an excellent catalytic activity, as evident by the apparent rate constant (kapp), which is found to be 21.8, 26.2, and 8.7 (×10-3 s-1), for RB, MO and EY respectively. Au/PDMAEMA/RGO catalyst is easy to use, highly efficient, recyclable, which make it suitable for applications in waste water management. Foremost, synthesis of PDMAEMA brushes on graphene oxide is accomplished by Atom transfer radical polymerization method (ATRP), whereas AuNPs are synthesized by simple chemical reduction method.

  16. Promoting effect of vanadium on catalytic activity of Pt/Ce-Zr-O diesel oxidation catalysts.

    Science.gov (United States)

    Huang, Haifeng; Jiang, Bo; Gu, Lei; Qi, Zhonghua; Lu, Hanfeng

    2015-07-01

    A series of Pt-V/Ce-Zr-O diesel oxidation catalysts was prepared using the impregnation method. The catalytic activity and sulfur resistance of Pt-V/Ce-Zr-O were investigated in the presence of simulated diesel exhaust. The effect of vanadium on the structure and redox properties of the catalysts was also investigated using the Brunauer-Emmett-Teller method, X-ray diffraction, H2 temperature-programmed reduction, CO temperature-programmed desorption, X-ray photoelectron spectroscopy, and Energy Dispersive Spectroscopy. Results showed that the Pt particles were well dispersed on the Ce-Zr-O carrier through the vanadium isolation effect, which significantly improved the oxidation activity toward CO and hydrocarbons. An electron-withdrawing phenomenon occurred from V to Pt, resulting in an increase in the metallic nature of platinum, which was beneficial to hydrocarbon molecular activation. Copyright © 2015. Published by Elsevier B.V.

  17. Synthesis of ultrasmall Li-Mn spinel oxides exhibiting unusual ion exchange, electrochemical, and catalytic properties

    Science.gov (United States)

    Miyamoto, Yumi; Kuroda, Yoshiyuki; Uematsu, Tsubasa; Oshikawa, Hiroyuki; Shibata, Naoya; Ikuhara, Yuichi; Suzuki, Kosuke; Hibino, Mitsuhiro; Yamaguchi, Kazuya; Mizuno, Noritaka

    2015-10-01

    The efficient surface reaction and rapid ion diffusion of nanocrystalline metal oxides have prompted considerable research interest for the development of high functional materials. Herein, we present a novel low-temperature method to synthesize ultrasmall nanocrystalline spinel oxides by controlling the hydration of coexisting metal cations in an organic solvent. This method selectively led to Li-Mn spinel oxides by tuning the hydration of Li+ ions under mild reaction conditions (i.e., low temperature and short reaction time). These particles exhibited an ultrasmall crystallite size of 2.3 nm and a large specific surface area of 371 ± 15 m2 g-1. They exhibited unique properties such as unusual topotactic Li+/H+ ion exchange, high-rate discharge ability, and high catalytic performance for several aerobic oxidation reactions, by creating surface phenomena throughout the particles. These properties differed significantly from those of Li-Mn spinel oxides obtained by conventional solid-state methods.

  18. Synthesis of ultrasmall Li–Mn spinel oxides exhibiting unusual ion exchange, electrochemical, and catalytic properties

    Science.gov (United States)

    Miyamoto, Yumi; Kuroda, Yoshiyuki; Uematsu, Tsubasa; Oshikawa, Hiroyuki; Shibata, Naoya; Ikuhara, Yuichi; Suzuki, Kosuke; Hibino, Mitsuhiro; Yamaguchi, Kazuya; Mizuno, Noritaka

    2015-01-01

    The efficient surface reaction and rapid ion diffusion of nanocrystalline metal oxides have prompted considerable research interest for the development of high functional materials. Herein, we present a novel low-temperature method to synthesize ultrasmall nanocrystalline spinel oxides by controlling the hydration of coexisting metal cations in an organic solvent. This method selectively led to Li–Mn spinel oxides by tuning the hydration of Li+ ions under mild reaction conditions (i.e., low temperature and short reaction time). These particles exhibited an ultrasmall crystallite size of 2.3 nm and a large specific surface area of 371 ± 15 m2 g−1. They exhibited unique properties such as unusual topotactic Li+/H+ ion exchange, high-rate discharge ability, and high catalytic performance for several aerobic oxidation reactions, by creating surface phenomena throughout the particles. These properties differed significantly from those of Li–Mn spinel oxides obtained by conventional solid-state methods. PMID:26456216

  19. Conditioning of Si-interfaces by wet-chemical oxidation: Electronic interface properties study by surface photovoltage measurements

    Science.gov (United States)

    Angermann, Heike

    2014-09-01

    The field-modulated surface photovoltage (SPV) method, a very surface sensitive technique, was utilized to determine electronic interface properties on wet-chemically oxidized and etched silicon (Si) interfaces. The influence of preparation-induced surface micro-roughness and un-stoichiometric oxides on the resulting the surface charge, energetic distribution Dit(E), and density Dit,min of rechargeable states was studied by simultaneous, spectroscopic ellipsometry (SE) measurements on polished Si(111) and Si(100) substrates. Based on previous findings and new research, a study of conventional and newly developed wet-chemical oxidation methods was established, correlating the interactions between involved oxidizing and etching solutions and the initial substrate morphology to the final surface conditioning. It is shown, which sequences of wet-chemical oxidation and oxide removal, have to be combined in order to achieve atomically smooth, hydrogen terminated surfaces, as well as ultra-thin oxide layers with low densities of rechargeable states on flat, saw damage etched, and textured Si substrates, as commonly applied in silicon device and solar cell manufacturing. These conventional strategies for wet-chemical pre-treatment are mainly based on concentrated solutions. Therefore, special attention was put on the development of more environmentally acceptable processes, utilizing e.g. hot pure water with low contents of oxygen or hydrochloric acid, and of ozone, working at ambient temperatures. According to our results, these methods could be a high quality and low cost alternative to current approaches with liquid chemicals for the preparation of hydrophobic Si substrate surfaces and ultra-thin passivating oxide layers. As demonstrated for selected examples, the effect of optimized wet-chemical pre-treatments can be preserved during subsequent soft plasma enhanced chemical vapor depositions of Si oxides (SiOx), or amorphous materials such as Si (a-Si:H), Si nitride (a

  20. Fabrication of highly catalytic silver nanoclusters/graphene oxide nanocomposite as nanotag for sensitive electrochemical immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiamian; Wang, Xiuyun; Wu, Shuo, E-mail: wushuo@dlut.edu.cn; Song, Jie; Zhao, Yanqiu; Ge, Yanqiu; Meng, Changgong

    2016-02-04

    Silver nanoclusters and graphene oxide nanocomposite (AgNCs/GRO) is synthesized and functionalized with detection antibody for highly sensitive electrochemical sensing of carcinoembryonic antigen (CEA), a model tumor marker involved in many cancers. AgNCs with large surface area and abundant amount of low-coordinated sites are synthesized with DNA as template and exhibit high catalytic activity towards the electrochemical reduction of H{sub 2}O{sub 2}. GRO is employed to assemble with AgNCs because it has large specific surface area, super electronic conductivity and strong π-π stacking interaction with the hydrophobic bases of DNA, which can further improve the catalytic ability of the AgNCs. Using AgNCs/GRO as signal amplification tag, an enzyme-free electrochemical immunosensing protocol is designed for the highly sensitive detection of CEA on the capture antibody functionalized immunosensing interface. Under optimal conditions, the designed immunosensor exhibits a wide linear range from 0.1 pg mL{sup −1} to 100 ng mL{sup −1} and a low limit of detection of 0.037 pg mL{sup −1}. Practical sample analysis reveals the sensor has good accuracy and reproducibility, indicating the great application prospective of the AgNCs/GRO in fabricating highly sensitive immunosensors, which can be extended to the detection of various kinds of low abundance disease related proteins. - Highlights: • An enzyme-free electrochemical immunosensor is reported for detecting proteins. • A silver nanocluster/graphene oxide composite is synthesized as nanotag. • The nanotags exhibit highly catalytic activity to the electro-reduction of H{sub 2}O{sub 2}. • The as-fabricated immunosensor could detect protein in serum samples.

  1. A Novel Supramolecular Assembly Film of Porphyrin Bound DNA: Characterization and Catalytic Behaviors Towards Nitric Oxide

    Directory of Open Access Journals (Sweden)

    Osamu Ikeda

    2005-04-01

    Full Text Available A stable Fe(4-TMPyP-DNA-PADDA (FePyDP film was characterized onpyrolytic graphite electrode (PGE or an indium-tin oxide (ITO electrode through thesupramolecular interaction between water-soluble iron porphyrin (Fe(4-TMPyP and DNAtemplate, where PADDA (poly(acrylamide-co-diallyldimethylammonium chloride isemployed as a co-immobilizing polymer. Cyclic voltammetry of FePyDP film showed a pairof reversible FeIII/FeII redox peaks and an irreversible FeIV/FeIII peak at –0.13 V and 0.89vs. Ag|AgCl in pH 7.4 PBS, respectively. An excellent catalytic reduction of NO wasdisplayed at –0.61 V vs. Ag|AgCl at a FePyDP film modified electrode.Chronoamperometric experiments demonstrated a rapid response to the reduction of NOwith a linear range from 0.1 to 90 μM and a detection limit of 30 nM at a signal-to-noiseratio of 3. On the other hand, it is the first time to apply high-valent iron porphyrin ascatalyst at modified electrode for NO catalytic oxidation at 0.89 vs. Ag|AgCl. The sensorshows a high selectivity of some endogenous electroactive substances in biological systems.The mechanism of response of the sensors to NO is preliminary studied.

  2. Dinuclear manganese complexes for water oxidation: evaluation of electronic effects and catalytic activity.

    Science.gov (United States)

    Arafa, Wael A A; Kärkäs, Markus D; Lee, Bao-Lin; Åkermark, Torbjörn; Liao, Rong-Zhen; Berends, Hans-Martin; Messinger, Johannes; Siegbahn, Per E M; Åkermark, Björn

    2014-06-28

    During recent years significant progress has been made towards the realization of a sustainable and carbon-neutral energy economy. One promising approach is photochemical splitting of H2O into O2 and solar fuels, such as H2. However, the bottleneck in such artificial photosynthetic schemes is the H2O oxidation half reaction where more efficient catalysts are required that lower the kinetic barrier for this process. In particular catalysts based on earth-abundant metals are highly attractive compared to catalysts comprised of noble metals. We have now synthesized a library of dinuclear Mn2(II,III) catalysts for H2O oxidation and studied how the incorporation of different substituents affected the electronics and catalytic efficiency. It was found that the incorporation of a distal carboxyl group into the ligand scaffold resulted in a catalyst with increased catalytic activity, most likely because of the fact that the distal group is able to promote proton-coupled electron transfer (PCET) from the high-valent Mn species, thus facilitating O-O bond formation.

  3. Solid-oxide fuel cell operated on in situ catalytic decomposition products of liquid hydrazine

    Science.gov (United States)

    Gu, Hongxia; Ran, Ran; Zhou, Wei; Shao, Zongping; Jin, Wanqin; Xu, Nanping; Ahn, Jeongmin

    Hydrazine was examined as a fuel for a solid-oxide fuel cell (SOFC) that employed a typical nickel-based anode. An in situ catalytic decomposition of hydrazine at liquid state under room temperature and ambient pressure before introducing to the fuel cell was developed by applying a Ba 0.5Sr 0.5Co 0.8Fe 0.2O 3- δ (BSCF) oxide catalyst. Catalytic testing demonstrated that liquid N 2H 4 can be decomposed to gaseous NH 3 and H 2 at a favorable rate and at a temperature as low as 20 °C and H 2 selectivity reaching values as high as 10% at 60 °C. Comparable fuel cell performance was observed using either the in situ decomposition products of hydrazine or pure hydrogen as fuel. A peak power density of ∼850 mW cm -2 at 900 °C was obtained with a typical fuel cell composed of scandia-stabilized zirconia and La 0.8Sr 0.2MnO 3 cathode. The high energy and power density, easy storage and simplicity in fuel delivery make it highly attractive for portable applications.

  4. Catalytic partial oxidation coupled with membrane purification to improve resource and energy efficiency in syngas production.

    Science.gov (United States)

    Iaquaniello, G; Salladini, A; Palo, E; Centi, G

    2015-02-01

    Catalytic partial oxidation coupled with membrane purification is a new process scheme to improve resource and energy efficiency in a well-established and large scale-process like syngas production. Experimentation in a semi industrial-scale unit (20 Nm(3)  h(-1) production) shows that a novel syngas production scheme based on a pre-reforming stage followed by a membrane for hydrogen separation, a catalytic partial oxidation step, and a further step of syngas purification by membrane allows the oxygen-to-carbon ratio to be decreased while maintaining levels of feed conversion. For a total feed conversion of 40 %, for example, the integrated novel architecture reduces oxygen consumption by over 50 %, with thus a corresponding improvement in resource efficiency and an improved energy efficiency and economics, these factors largely depending on the air separation stage used to produce pure oxygen. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Theoretical study of catalytic mechanism for single-site water oxidation process.

    Science.gov (United States)

    Lin, Xiangsong; Hu, Xiangqian; Concepcion, Javier J; Chen, Zuofeng; Liu, Shubin; Meyer, Thomas J; Yang, Weitao

    2012-09-25

    Water oxidation is a linchpin in solar fuels formation, and catalysis by single-site ruthenium complexes has generated significant interest in this area. Combining several theoretical tools, we have studied the entire catalytic cycle of water oxidation for a single-site catalyst starting with [Ru(II)(tpy)(bpm)(OH(2))](2+) (i.e., [Ru(II)-OH(2)](2+); tpy is 2,2':6',2''-terpyridine and bpm is 2,2'-bypyrimidine) as a representative example of a new class of single-site catalysts. The redox potentials and pK(a) calculations for the first two proton-coupled electron transfers (PCETs) from [Ru(II)-OH(2)](2+) to [Ru(IV) = O](2+) and the following electron-transfer process to [Ru(V) = O](3+) suggest that these processes can proceed readily in acidic or weakly basic conditions. The subsequent water splitting process involves two water molecules, [Ru(V) = O](3+) to generate [Ru(III)-OOH](2+), and H(3)O(+) with a low activation barrier (~10 kcal/mol). After the key O-O bond forming step in the single-site Ru catalysis, another PECT process oxidizes [Ru(III)-OOH](2+) to [Ru(IV)-OO](2+) when the pH is lower than 3.7. Two possible forms of [Ru(IV)-OO](2+), open and closed, can exist and interconvert with a low activation barrier (catalytic cycle. This understanding is helpful in the design of new catalysts for water oxidation.

  6. Radio-frequency magnetron sputtering and wet thermal oxidation of ZnO thin film

    International Nuclear Information System (INIS)

    Liu, H. F.; Chua, S. J.; Hu, G. X.; Gong, H.; Xiang, N.

    2007-01-01

    The authors studied the growth and wet thermal oxidation (WTO) of ZnO thin films using a radio-frequency magnetron sputtering technique. X-ray diffraction reveals a preferred orientation of [1010]ZnO(0002)//[1120]Al 2 O 3 (0002) coexisted with a small amount of ZnO (1011) and ZnO (1013) crystals on the Al 2 O 3 (0001) substrate. The ZnO (1011) and ZnO (1013) crystals, as well as the in-plane preferred orientation, are absent from the growth of ZnO on the GaAs(001) substrate. WTO at 550 deg. C improves the crystalline and the photoluminescence more significantly than annealing in air, N 2 and O 2 ambient; it also tends to convert the crystal from ZnO (1011) and ZnO (1013) to ZnO (0002). The evolution of the photoluminescence upon WTO and annealing reveals that the green and orange emissions, centered at 520 and 650 nm, are likely originated from oxygen vacancies and oxygen interstitials, respectively; while the 420 nm emission, which is very sensitive to the postgrowth thermal processing regardless of the substrate and the ambient gas, is likely originated from the surface-state related defects

  7. Determination of boron in graphite by a wet oxidation decomposition/curcumin photometric method

    International Nuclear Information System (INIS)

    Watanabe, Kazuo; Toida, Yukio

    1995-01-01

    The wet oxidation decomposition of graphite materials has been studied for the accurate determination of boron using a curcumin photometric method. A graphite sample of 0.5 g was completely decomposed with a mixture of 5 ml of sulfuric acid, 3 ml of perchloric acid, 0.5 ml of nitric acid and 5 ml of phosphoric acid in a silica 100 ml Erlenmeyer flask fitted with an air condenser at 200degC. Any excess of perchloric and nitric acids in the solution was removed by heating on a hot plate at 150degC. Boron was distilled with methanol, and then recovered in 10 ml of 0.2 M sodium hydroxide. The solution was evaporated to dryness. To the residue were added curcumin-acetic acid and sulfuric-acetic acid. The mixture was diluted with ethanol, and the absorbance at 555 nm was measured. The addition of 5 ml of phosphoric acid proved to be effective to prevent any volatilization loss of boron during decomposition of the graphite sample and evaporation of the resulting solution. The relative standard deviation was 4-8% for samples with 2 μg g -1 levels of boron. The results on CRMs JAERI-G5 and G6 were in good agreement with the certified values. (author)

  8. Negative Effect of Calcination to Catalytic Performance of Coal Char-loaded TiO2 Catalyst in Styrene Oxidation with Hydrogen Peroxide as Oxidant

    Directory of Open Access Journals (Sweden)

    Mukhamad Nurhadi

    2018-01-01

    How to Cite: Nurhadi, M., Kusumawardani, R., Nur, H. (2018. Negative Effect of Calcination to Catalytic Performance of Coal Char-loaded TiO2 Catalyst in Styrene Oxidation with Hydrogen Peroxide as Oxidant. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 113-118 (doi:10.9767/bcrec.13.1.1171.113-118

  9. Mechanism of catalytic action of oxide systems in reactions of aldehyde oxidation to carboxylic acids

    International Nuclear Information System (INIS)

    Andrushkevich, T.V.

    1997-01-01

    Mechanism of selective action of oxide catalysts (on the base of V 2 O 4 , MoO 3 ) of aldehyde oxidation to acids is considered, reaction acrolein oxidation to acrylic acid is taken as an example. Multistage mechanism of the process is established; it involves consequent transformation of coordination-bonded aldehyde into carbonyl-bonded aldehyde and symmetric carboxylate. Principles of active surface construction are formulated, they take into account the activity of stabilization center of concrete intermediate compound and bond energy of oxygen with surface. (author)

  10. Oxidation Behavior of Mo-Si-B Alloys in Wet Air; TOPICAL

    International Nuclear Information System (INIS)

    M. Kramer; A. Thom; O. Degirmen; V. Behrani; M. Akinc

    2002-01-01

    Multiphase composite alloys based on the Mo-Si-B system are candidate materials for ultra-high temperature applications. In non load-bearing uses such as thermal barrier coatings or heat exchangers in fossil fuel burners, these materials may be ideally suited. The present work investigated the effect of water vapor on the oxidation behavior of Mo-Si-B phase assemblages. Three alloys were studied: Alloy 1= Mo(sub 5)Si(sub 3)B(sub x) (T1)- MoSi(sub 2)- MoB, Alloy 2= T1- Mo(sub 5)SiB(sub 2) (T2)- Mo(sub 3)Si, and Alloy 3= Mo- T2- Mo(sub 3)Si. Tests were conducted at 1000 and 1100C in controlled atmospheres of dry air and wet air nominally containing 18, 55, and 150 Torr H(sub 2)O. The initial mass loss of each alloy was approximately independent of the test temperature and moisture content of the atmosphere. The magnitude of these initial losses varied according to the Mo content of the alloys. All alloys formed a continuous, external silica scale that protected against further mass change after volatilization of the initially formed MoO(sub 3). All alloys experienced a small steady state mass change, but the calculated rates cannot be quantitatively compared due to statistical uncertainty in the individual mass measurements. Of particular interest is that Alloy 3, which contains a significant volume fraction of Mo metal, formed a protective scale. All alloys formed varying amounts of subscale Mo and MoO(sub 2). This implies that oxygen transport through the external silica scale has been significantly reduced. For all alloys, water vapor accelerated the growth of a multiphase interlayer at the silica scale/unoxidized alloy interface. This interlayer is likely composed of fine Mo and MoO(sub 2) that is dispersed within a thin silica matrix. Alloy 3 was particularly sensitive to water accelerated growth of this interlayer. At 1100 C, the scale thickness after 300 hours increased from about 20 mm in dry air to nearly 100 mm in wet air

  11. Zeolite encapsulated Fe-porphyrin for catalytic oxidation with iodobenzene diacetate (PhI(OAc)2)

    International Nuclear Information System (INIS)

    Karimipour, G.; Rezaei, M.; Ashouri, D.

    2013-01-01

    meso-Tetrakis(3-pyridyl)porphyrin ato iron(III) chloride encapsulated on NaY Zeolite [Fe(T-3-PyP)-NaY] was synthesized as a heterogeneous ship-in-a-bottle type catalyst and characterized by Fourier transform infrared, atomic absorption, diffused reflectance UV-Vis, X-ray diffraction and scanning electron microscopy analysis. The catalytic activity of Fe(T-3-PyP-NaY was examined for the epoxidation of cyclohexene by PhI(OAc) 2 in CH 3 CN/H 2 O (5:1) and compared to that of Fe(T-3-PyP) as a homogeneous catalyst. We found that the heterogeneous catalyst Fe(T-3-PyP-NaY was stable and reusable for several times, and provided a mild condition and exhibited high activity and selectivity in the oxidation of alkenes to epoxides (16-94%). As representative examples for the use of Fe(T-3-PyP-NaY/ PhI(OAc) 2 in organic oxidations, oxidation of 4-nitro benzylalcohol to 4-nitrobenzaldehyde (97%), oxidative dehydrogenation of diethyl 4-(2,6-dichlorophenyl)-2,6-dimethyl-1,4-dihydro-3,5-pyridinedicarboxylate to the corresponding pyridine (100%), diphenylacetic acid to benzophenone (64%) was achieved. (Author)

  12. Catalytic oxidation of concentrated orange oil phase by synthetic metallic complexes biomimetic to MMO enzyme.

    Science.gov (United States)

    Fernandes, Ilizandra A; Esmelindro, Maria Carolina; Corazza, Marcos L; Franceschi, Elton; Treichel, Helen; de Oliveira, Debora; Frizzo, Caren D; Oliveira, J Vladimir

    2010-07-01

    This paper reports the catalytic oxidation of the concentrated orange oil phase using the complexes [Fe(III)(BMPP)Cl(micro-O)Fe(III)Cl(3)], [Cu(II)(BTMEA)(2)Cl]Cl and [Co(II)(BMPP)]Cl(2) biomimetic to methane monooxygenase enzyme as catalysts and hydrogen peroxide as oxidant. The reaction products of oil oxidation, mainly nootkatone, were identified by gas chromatography/mass spectrometry. A screening of catalysts was performed through a full 2(3) experimental design, varying the temperature from 30 to 70 degrees C, the catalyst concentration from 7.0 x 10(-4) to 1.5 x 10(-3) mol L(-1) and the oxidant/substrate molar ratio from 1:1 to 3:1. The results of reaction kinetics employing the most promising catalysts showed that conversions to nootkatone of up to 8% were achieved after 16 h at 70 degrees C. The results obtained in this study in terms of nootkatone production should be considered encouraging, since a real, industrially collected, raw material, instead of pure valencene, was employed in the reaction experiments, with a final content about ten times that present in the original concentrated oil.

  13. Fluorescent proteins such as eGFP lead to catalytic oxidative stress in cells

    Directory of Open Access Journals (Sweden)

    Douglas Ganini

    2017-08-01

    Full Text Available Fluorescent proteins are an important tool that has become omnipresent in life sciences research. They are frequently used for localization of proteins and monitoring of cells [1,2]. Green fluorescent protein (GFP was the first and has been the most used fluorescent protein. Enhanced GFP (eGFP was optimized from wild-type GFP for increased fluorescence yield and improved expression in mammalian systems [3]. Many GFP-like fluorescent proteins have been discovered, optimized or created, such as the red fluorescent protein TagRFP [4]. Fluorescent proteins are expressed colorless and immature and, for eGFP, the conversion to the fluorescent form, mature, is known to produce one equivalent of hydrogen peroxide (H2O2 per molecule of chromophore [5,6]. Even though it has been proposed that this process is non-catalytic and generates nontoxic levels of H2O2 [6], this study investigates the role of fluorescent proteins in generating free radicals and inducing oxidative stress in biological systems. Immature eGFP and TagRFP catalytically generate the free radical superoxide anion (O2•– and H2O2 in the presence of NADH. Generation of the free radical O2•– and H2O2 by eGFP in the presence of NADH affects the gene expression of cells. Many biological pathways are altered, such as a decrease in HIF1α stabilization and activity. The biological pathways altered by eGFP are known to be implicated in the pathophysiology of many diseases associated with oxidative stress; therefore, it is critical that such experiments using fluorescent proteins are validated with alternative methodologies and the results are carefully interpreted. Since cells inevitably experience oxidative stress when fluorescent proteins are expressed, the use of this tool for cell labeling and in vivo cell tracing also requires validation using alternative methodologies.

  14. Modeling the detailed kinetics of mitochondrial cytochrome c oxidase: Catalytic mechanism and nitric oxide inhibition.

    Science.gov (United States)

    Pannala, Venkat R; Camara, Amadou K S; Dash, Ranjan K

    2016-11-01

    Cytochrome c oxidase (CcO) catalyzes the exothermic reduction of O 2 to H 2 O by using electrons from cytochrome c, and hence plays a crucial role in ATP production. Although details on the enzyme structure and redox centers involved in O 2 reduction have been known, there still remains a considerable ambiguity on its mechanism of action, e.g., the number of sequential electrons donated to O 2 in each catalytic step, the sites of protonation and proton pumping, and nitric oxide (NO) inhibition mechanism. In this work, we developed a thermodynamically constrained mechanistic mathematical model for the catalytic action of CcO based on available kinetic data. The model considers a minimal number of redox centers on CcO and couples electron transfer and proton pumping driven by proton motive force (PMF), and accounts for the inhibitory effects of NO on the reaction kinetics. The model is able to fit well all the available kinetic data under diverse experimental conditions with a physiologically realistic unique parameter set. The model predictions show that: 1) the apparent K m of O 2 varies considerably and increases from fully reduced to fully oxidized cytochrome c depending on pH and the energy state of mitochondria, and 2) the intermediate enzyme states depend on pH and cytochrome c redox fraction and play a central role in coupling mitochondrial respiration to PMF. The developed CcO model can easily be integrated into existing mitochondrial bioenergetics models to understand the role of the enzyme in controlling oxidative phosphorylation in normal and disease conditions. Copyright © 2016 the American Physiological Society.

  15. Role of iron oxide catalysts in selective catalytic reduction of NOx and soot from vehicular emission

    International Nuclear Information System (INIS)

    Anjuman, S.; Tahira, S.; Hizbullah, K.; Hizbullah, K.

    2011-01-01

    This study deals with Iron containing catalysts i.e Iron oxide Fe/sub 2/O/sub 3/) Iron potassium oxide Fe/sub 1.9/K/sub 0.1/O/sub 3/, copper iron oxide Cu/sub 0.9/K/sub 0.1/, Fe/sub 2/O/sub 3/, nickel iron oxide Ni Fe/sub 2/O/sub 4/, and Nickel potassium iron oxide Ni/sub 0.95/K/sub 0.05/ Fe/sub 2/O/sub 4/ catalyst were synthesized by using PVA technique. By X-ray Diffraction technique these catalysts were characterized to ensure the formation of crystalline structure. Energy Dispersive X-rays analysis (EDX) was used for the confirmation of presence of different metals and Scanning Electron Microscopy (SEM) for Surface Morphology. Then the catalytic investigations of the prepared catalyst were carried out for their activity measurement toward simultaneous conversion of NOx and Soot from an engine exhaust. Some Iron containing oxide catalysts were partially modified by alkali metal potassium and were used for NOx -Soot reaction in a model exhaust gas. Fe/sub 1.9 K /sub 0.1/O/sub 3/ show high catalytic performance for N/sub 2/ formation in the prepared catalyst. Further studies have shown that Fe/sub 1.9/ K/sub 0.1/ O/sub 3/ was deactivated in a substantial way after about 20 Temperature. Temperature Programmed Reaction (TPR) experiments due to agglomeration of the promoter potassium. Experiments carried out over the aged Fe/sub 1.9/K/sub 0.1/O/sub 3/ catalyst have shown that NOx-soot reaction was suppressed at higher oxygen concentration, since O/sub 2/-soot conversion was kindly favored. More over nitrite species formed at the catalyst surface might play an important role in NOx-soot conversion. (author)

  16. Thermal catalytic oxidation of octachloronaphthalene over anatase TiO2 nanomaterial and its hypothesized mechanism

    Science.gov (United States)

    Su, Guijin; Li, Qianqian; Lu, Huijie; Zhang, Lixia; Huang, Linyan; Yan, Li; Zheng, Minghui

    2015-12-01

    As an environmentally-green technology, thermal catalytic oxidation of octachloronaphthalene (CN-75) over anatase TiO2 nanomaterials was investigated at 300 °C. A wide range of oxidation intermediates, which were investigated using various techniques, could be of three types: naphthalene-ring, single-benzene-ring, and completely ring-opened products. Reactive oxygen species on anatase TiO2 surface, such as O2-• and O2-, contributed to oxidative degradation. Based on these findings, a novel oxidation degradation mechanism was proposed. The reaction at (101) surface of anatase TiO2 was used as a model. The naphthalene-ring oxidative products with chloronaphthols and hydroxyl-pentachloronaphthalene-dione, could be formed via attacking the carbon of naphthalene ring at one or more positions by nucleophilic O2-. Lateral cleavage of the naphthalene ring at different C1-C10 and C4-C9, C1-C2 and C4-C9, C1-C2 or and C3-C4 bond positions by electrophilic O2-• could occur. This will lead to the formation of tetrachlorophenol, tetrachloro-benzoic acid, tetrachloro-phthalaldehyde, and tetrachloro-acrolein-benzoic acid, partially with further transformation into tetrachlorobenzene-dihydrodiol and tetrachloro-salicylic acid. Unexpectedly, the symmetric half section of CN-75 could be completely remained with generating the intricate oxidative intermediates characteristically containing tetrachlorobenzene structure. Complete cleavage of naphthalene ring could produce the ring-opened products, such as formic and acetic acids.

  17. Synthesis and catalytic activity of electrospun NiO/NiCo2O4 nanotubes for CO and acetaldehyde oxidation

    Science.gov (United States)

    Kim, Il Hee; Lee, Hyerim; Yu, Areum; Jeong, Jae Hwan; Lee, Youngmi; Kim, Myung Hwa; Lee, Chongmok; Dok Kim, Young

    2018-04-01

    NiO/NiCo2O4 nanotubes with a diameter of approximately 100 nm are synthesized using Ni and Co precursors via electro-spinning and subsequent calcination processes. The tubular structure is confirmed via transmission electron microscopy imaging, whereas the structures and elemental compositions of the nanotubes are determined using x-ray diffraction, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. N2 adsorption isotherm data reveal that the surface of the nanotubes consists of micropores, thereby resulting in a significantly higher surface area (˜20 m2 g-1) than expected for a flat-surface structure (present a study of the catalytic activity of our novel NiO/NiCo2O4 nanotubes for CO and acetaldehyde oxidation. The catalytic activity of NiO/NiCo2O4 is superior to Pt below 100 °C for CO oxidation. For acetaldehyde oxidation, the total oxidation activity of NiO/NiCo2O4 for acetaldehyde is comparable with that of Pt. Coexistence of many under-coordinated Co and Ni active sites in our structure is suggested be related to the high catalytic activity. It is suggested that our novel NiO/NiCo2O4 tubular structures with surface microporosity can be of interest for a variety of applications, including the catalytic oxidation of harmful gases.

  18. High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol.

    Science.gov (United States)

    Varga, Enikõ; Klinke, Helene B; Réczey, Kati; Thomsen, Anne Belinda

    2004-12-05

    In this study ethanol was produced from corn stover pretreated by alkaline and acidic wet oxidation (WO) (195 degrees C, 15 min, 12 bar oxygen) followed by nonisothermal simultaneous saccharification and fermentation (SSF). In the first step of the SSF, small amounts of cellulases were added at 50 degrees C, the optimal temperature of enzymes, in order to obtain better mixing condition due to some liquefaction. In the second step more cellulases were added in combination with dried baker's yeast (Saccharomyces cerevisiae) at 30 degrees C. The phenols (0.4-0.5 g/L) and carboxylic acids (4.6-5.9 g/L) were present in the hemicellulose rich hydrolyzate at subinhibitory levels, thus no detoxification was needed prior to SSF of the whole slurry. Based on the cellulose available in the WO corn stover 83% of the theoretical ethanol yield was obtained under optimized SSF conditions. This was achieved with a substrate concentration of 12% dry matter (DM) acidic WO corn stover at 30 FPU/g DM (43.5 FPU/g cellulose) enzyme loading. Even with 20 and 15 FPU/g DM (corresponding to 29 and 22 FPU/g cellulose) enzyme loading, ethanol yields of 76 and 73%, respectively, were obtained. After 120 h of SSF the highest ethanol concentration of 52 g/L (6 vol.%) was achieved, which exceeds the technical and economical limit of the industrial-scale alcohol distillation. The SSF results showed that the cellulose in pretreated corn stover can be efficiently fermented to ethanol with up to 15% DM concentration. A further increase of substrate concentration reduced the ethanol yield significant as a result of insufficient mass transfer. It was also shown that the fermentation could be followed with an easy monitoring system based on the weight loss of the produced CO2.

  19. Improved Aeration Process - Catalytic Role Of The Iron Oxides In Arsenic Oxidation And Coprecipitation

    DEFF Research Database (Denmark)

    Kowalski, Krysztof; Søgaard, Erik Gydesen

    2013-01-01

    Demands for a better drinking water quality, especially concerning arsenic, a compound with many adverse health effects, put a pressure on the utilities to ensure the best treatment technologies that meet nowadays and possible future quality standards. The aim of this paper is to introduce...... an improved aeration process that can also help in developing better arsenic removal treatment. The results present advantages of arsenic oxidation in an aeration process in the presence of ferrihydrite surface that have been shown to adsorb arsenic simultaneously to its oxidation. The presence...... of precipitated (ferrihydrite surface) and dissolved iron enhanced arsenic oxidation in comparison to solution with absence of precipitated iron in laboratory scale experiments. However, in the pilot scale studies the adsorption of arsenite on ferrihydrite was found to be the main process occurring during...

  20. Direct observation of enhanced plasmon-driven catalytic reaction activity of Au nanoparticles supported on reduced graphene oxides by SERS.

    Science.gov (United States)

    Liang, Xiu; You, Tingting; Liu, Dapeng; Lang, Xiufeng; Tan, Enzhong; Shi, Jihua; Yin, Penggang; Guo, Lin

    2015-04-21

    Graphene-based nanocomposites have recently attracted tremendous research interest in the field of catalysis due to their unique optical and electronic properties. However, direct observation of enhanced plasmon-driven catalytic activity of Au nanoparticles (NPs) supported on reduced graphene oxides (Au/rGO) has rarely been reported. Herein, based on the reduction from 4-nitrobenzenethiol (4-NBT) to p,p'-dimercaptoazobenzene (DMAB), the catalytic property of Au/rGO nanocomposites was investigated and compared with corresponding Au NP samples with similar size distribution. Our results show that Au/rGO nanocomposites could serve as a good catalytic and analytic platform for plasmon-driven chemical reactions. In addition, systematic comparisons were conducted during power- and time-dependent surface-enhanced Raman scattering (SERS) experiments, which exhibited a lower power threshold and higher catalytic efficiency for Au/rGO as compared to Au NPs toward the reaction.

  1. Insights into catalytic oxidation at the Au/TiO(2) dual perimeter sites.

    Science.gov (United States)

    Green, Isabel X; Tang, Wenjie; Neurock, Matthew; Yates, John T

    2014-03-18

    Gold (Au) nanoparticles supported on reducible oxides such as TiO2 demonstrate exceptional catalytic activity for a wide range of gas phase oxidation reactions such as CO oxidation, olefin epoxidation, and water gas shift catalysis. Scientists have recently shifted their hypotheses on the origin of the reactivity of these materials from the unique electronic properties and under-coordinated Au sites on nanometer-sized particles to bifunctional sites at the Au-support interface. In this Account, we summarize our recent experimental and theoretical results to provide insights into the active sites and pathways that control oxidation over Au/TiO2 catalysts. We provide transmission IR spectroscopic data that show the direct involvement of the Au-Ti(4+) dual perimeter sites, and density functional theory results that connect the electronic properties at these sites to their reactivity and to plausible reaction mechanisms. We also show the importance of interfacial Au-Ti(4+) sites in adsorbing and activating O2 as a result of charge transfer from the Au into antibonding states on O2 causing di-σ interactions with interfacial Au-Ti(4+) sites. This results in apparent activation energies for O2 activation of 0.16-0.60 eV thus allowing these materials to operate over a wide range of temperatures (110-420 K) and offering the ability also to control H-H, C-H, and C-O bond scission. At low temperatures (100-130 K), adsorbed O2 directly reacts with co-adsorbed CO or H2. In addition, we observe the specific consumption of CO adsorbed on TiO2. The more strongly held CO/Au species do not react at ∼120 K due to high diffusion barriers that prevent them from reaching active interfacial sites. At higher temperatures, O2 directly dissociates to form active oxygen adatoms (O*) on Au and TiO2. These readily react with bound hydrocarbon intermediates via base-catalyzed nucleophilic attack on unsaturated C═O and C═C bonds or via activation of weakly acidic C-H or O-H bonds. We

  2. Identification of Subnanometric Ag Species, Their Interaction with Supports and Role in Catalytic CO Oxidation

    Directory of Open Access Journals (Sweden)

    Yulia Kotolevich

    2016-04-01

    Full Text Available The nature and size of the real active species of nanoparticulated metal supported catalysts is still an unresolved question. The technique of choice to measure particle sizes at the nanoscale, HRTEM, has a practical limit of 1 nm. This work is aimed to identify the catalytic role of subnanometer species and methods to detect and characterize them. In this frame, we investigated the sensitivity to redox pretreatments of Ag/Fe/TiO2, Ag/Mg/TiO2 and Ag/Ce/TiO2 catalysts in CO oxidation. The joint application of HRTEM, SR-XRD, DRS, XPS, EXAFS and XANES methods indicated that most of the silver in all samples is in the form of Ag species with size <1 nm. The differences in catalytic properties and sensitivity to pretreatments, observed for the studied Ag catalysts, could not be explained taking into account only the Ag particles whose size distribution is measured by HRTEM, but may be explained by the presence of the subnanometer Ag species, undetectable by HRTEM, and their interaction with supports. This result highlights their role as active species and the need to take them into account to understand integrally the catalysis by supported nanometals.

  3. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Wangcheng [East China Univ. of Science and Technology, Shanghai (China); Wang, Jinglin [East China Univ. of Science and Technology, Shanghai (China); Wang, Haifeng [East China Univ. of Science and Technology, Shanghai (China); Zhang, Jinshui [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Xiaofei [East China Univ. of Science and Technology, Shanghai (China); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhang, Pengfei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chi, Miaofang [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guo, Yanglong [East China Univ. of Science and Technology, Shanghai (China); Guo, Yun [East China Univ. of Science and Technology, Shanghai (China); Lu, Guanzhong [East China Univ. of Science and Technology, Shanghai (China); Sun, Shouheng [Brown Univ., Providence, RI (United States); Dai, Sheng [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Zhu, Huiyuan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-07

    Controlling the physical and chemical properties of alloy nanoparticles (NPs) is an important approach to optimize NP catalysis. Unlike other tuning knobs, such as size, shape, and composition, crystal structure has received limited attention and not been well understood for its role in catalysis. This deficiency is mainly due to the difficulty in synthesis and fine-tuning of the NPs’ crystal structure. Here, Exemplifying by AuCu alloy NPs with face centered cubic (fcc) and face centered tetragonal (fct) structure, we demonstrate a remarkable difference in phase segregation and catalytic performance depending on the crystal structure. During the thermal treatment in air, the Cu component in fcc-AuCu alloy NPs segregates more easily onto the alloy surface as compared to that in fct-AuCu alloy NPs. As a result, after annealing at 250 °C in air for 1 h, the fcc- and fct-AuCu alloy NPs are phase transferred into Au/CuO and AuCu/CuO core/shell structures, respectively. More importantly, this variation in heterostructures introduces a significant difference in CO adsorption on two catalysts, leading to a largely enhanced catalytic activity of AuCu/CuO NP catalyst for CO oxidation. Furthermore, the same concept can be extended to other alloy NPs, making it possible to fine-tune NP catalysis for many different chemical reactions.

  4. Characterization of microstructure and catalytic of cerium oxide obtained by colloidal solution

    International Nuclear Information System (INIS)

    Senisse, C.A.L.; Bergmann, C.P.; Alves, A.K.

    2012-01-01

    This study investigated to obtain particles of cerium oxide, for use as catalysts for the combustion of methane using the technique of through polymeric colloidal solution. Obtaining the colloidal system is based on hydrolysis of salts such as cerium acetylacetonate, cerium nitrate in the presence of additives such as polyvinylbutyral (PVB), polyvinylpyrrolidone (PVP) and polyvinyl acetate (PVA), at concentrations of 5, 10 and 15% in aqueous or alcoholic medium. These solutions containing ions of interest were subjected to a heat treatment at 650° C for 30 minutes, with heating rate of 2 ° C/ min. After heat treatment, the fibers were characterized according to their morphology, surface area, crystallinity, weight loss and catalytic activity. Samples obtained from cerium acetylacetonate were more reactive than the cerium nitrate to the combustion of methane, as showed greater conversions and higher temperatures reached during the process, which is of utmost importance since the combustion catalytic methane is used for generating thermal energy. After the reaction with methane, the samples underwent significant change in surface area, probably due to the intensity of combustion reactions of the nitrate and the generation of heat involved in this reaction, which gave rise to coarse particles. During the combustion process using the obtained from particles of cerium acetylacetonate, there was the release of large quantities of nitrogen compared to the results of assays with the particles obtained with cerium nitrate. (author)

  5. Crystal Structural Effect of AuCu Alloy Nanoparticles on Catalytic CO Oxidation

    International Nuclear Information System (INIS)

    Zhan, Wangcheng; Wang, Jinglin; Wang, Haifeng; Zhang, Jinshui; Liu, Xiaofei

    2017-01-01

    Controlling the physical and chemical properties of alloy nanoparticles (NPs) is an important approach to optimize NP catalysis. Unlike other tuning knobs, such as size, shape, and composition, crystal structure has received limited attention and not been well understood for its role in catalysis. This deficiency is mainly due to the difficulty in synthesis and fine-tuning of the NPs’ crystal structure. Here, Exemplifying by AuCu alloy NPs with face centered cubic (fcc) and face centered tetragonal (fct) structure, we demonstrate a remarkable difference in phase segregation and catalytic performance depending on the crystal structure. During the thermal treatment in air, the Cu component in fcc-AuCu alloy NPs segregates more easily onto the alloy surface as compared to that in fct-AuCu alloy NPs. As a result, after annealing at 250 °C in air for 1 h, the fcc- and fct-AuCu alloy NPs are phase transferred into Au/CuO and AuCu/CuO core/shell structures, respectively. More importantly, this variation in heterostructures introduces a significant difference in CO adsorption on two catalysts, leading to a largely enhanced catalytic activity of AuCu/CuO NP catalyst for CO oxidation. Furthermore, the same concept can be extended to other alloy NPs, making it possible to fine-tune NP catalysis for many different chemical reactions.

  6. Modeling of adsorber/desorber/catalytic reactor system for ethylene oxide removal

    Directory of Open Access Journals (Sweden)

    ZELJKO B. GRBAVCIC

    2004-12-01

    Full Text Available The removal of ethylene oxide (EtO in a combined system adsorber/desorber/catalytic reactor has been investigated. The combined system was a modified draft tube spouted bed reactor loaded with Pt/Al2O3 catalyst. The annular region was divided into two sectons, the “hot” section contained about 7 % of catalyst and it behaved as a desorber and catalytic incinerator, while the “cold” section, with the rest of the catalyst, behaved as a sorber. The catalyst particles were circulated between the two sections by use of a draft tube riser. The Computational Fluid Dynamics (CFD program package FLUENT was used for simulations of the operation of the combined system. In addition, a one-dimensional numerical model for the operation of the packed bed reactor was compared with the corresponding FLUENT calculations. The results of the FLUENT simulations are in very good agreement with the experimental observations, as well as with the results of the one-dimensional numerical simulations.

  7. Kinetic spectrophotometric determination of iron based on catalytic oxidation of p-acetylarsenazo

    Directory of Open Access Journals (Sweden)

    Qing-Zhou Zhai

    2009-12-01

    Full Text Available A novel catalytic kinetic spectrophotometric method for the determination of iron is developed based on the catalytic effect of Fe(III on the oxidation reaction of p-acetylarsenazo(ASApA by potassium periodate. Maximum absorbance of the Fe(III−ASApA−KIO4 system in 8.0 × 10-3 M sulfuric acid occurs at the wavelength of 540 nm. The change in absorbance (ΔA is linearly related with the concentration of iron(III in the range of 0.10−4.0 ng/mL and fitted the equation: ΔA = 4.91 × 10-2 C (C: ng/mL + 0.017, with a regression coefficient of 0.9966 at the wavelength. The detection limit of the method is 0.031 ng/mL. The relative standard deviation of the method was from 1.34% to 1.78% for 11 replicate determinations. The standard addition recovery of the method ranged from 95.71% to 103.3%. The method was used to determine iron in the black gingili paste, oat slice, sleeve-fish silk food samples. The determined results were in agreement with those by atomic absorption spectrometry.

  8. Fabrication of highly catalytic silver nanoclusters/graphene oxide nanocomposite as nanotag for sensitive electrochemical immunoassay.

    Science.gov (United States)

    Wang, Jiamian; Wang, Xiuyun; Wu, Shuo; Song, Jie; Zhao, Yanqiu; Ge, Yanqiu; Meng, Changgong

    2016-02-04

    Silver nanoclusters and graphene oxide nanocomposite (AgNCs/GRO) is synthesized and functionalized with detection antibody for highly sensitive electrochemical sensing of carcinoembryonic antigen (CEA), a model tumor marker involved in many cancers. AgNCs with large surface area and abundant amount of low-coordinated sites are synthesized with DNA as template and exhibit high catalytic activity towards the electrochemical reduction of H2O2. GRO is employed to assemble with AgNCs because it has large specific surface area, super electronic conductivity and strong π-π stacking interaction with the hydrophobic bases of DNA, which can further improve the catalytic ability of the AgNCs. Using AgNCs/GRO as signal amplification tag, an enzyme-free electrochemical immunosensing protocol is designed for the highly sensitive detection of CEA on the capture antibody functionalized immunosensing interface. Under optimal conditions, the designed immunosensor exhibits a wide linear range from 0.1 pg mL(-1) to 100 ng mL(-1) and a low limit of detection of 0.037 pg mL(-1). Practical sample analysis reveals the sensor has good accuracy and reproducibility, indicating the great application prospective of the AgNCs/GRO in fabricating highly sensitive immunosensors, which can be extended to the detection of various kinds of low abundance disease related proteins. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Catalytic and recyclability properties of phytogenic copper oxide nanoparticles derived from Aglaia elaeagnoidea flower extract

    Directory of Open Access Journals (Sweden)

    G. Manjari

    2017-07-01

    Full Text Available The phytogenic synthesis method to highly active, recoverable and recyclable heterogeneous copper oxide nanocatalyst and encapsulated within biomaterial that acts as a nontoxic and renewable source of reducing and stabilizing agent. The biosynthesized CuO NPs were characterized using UV–Vis absorption spectroscopy, X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, energy dispersive X-ray spectroscopy (EDX, transmission electron microscopy (TEM and thermo gravimetric analysis-differential scanning calorimetry (TGA–DSC, techniques. The formation of CuO NPs with the size 20–45 nm range is shown in TEM image. Significantly, in aqueous phase CuO NPs have high catalytic activity for the reduction of Congo red (CR, methylene blue (MB and 4-nitrophenol (4-NP in the presence of the sodium borohydride (NaBH4 at room temperature. In addition, CuO NPs catalyst can be easily recovered by centrifugation and reused for 6 cycles with more than 90% conversion efficiency. CuO nanocatalyst, leaching after catalytic application was investigated by ICPAES (Inductively coupled plasma atomic emission spectroscopy. CuO NPs possess great prospects in reduction of pernicious dyes and nitro organic pollutants in water.

  10. Reaction Mechanism for the Formation of Nitrogen Oxides (NO x ) During Coke Oxidation in Fluidized Catalytic Cracking Units

    KAUST Repository

    Chaparala, Sree Vidya

    2015-06-11

    Fluidized catalytic cracking (FCC) units in refineries process heavy feedstock obtained from crude oil distillation. While cracking feed, catalysts get deactivated due to coke deposition. During catalyst regeneration by burning coke in air, nitrogen oxides (NOx) are formed. The increase in nitrogen content in feed over time has resulted in increased NOx emissions. To predict NOx concentration in flue gas, a reliable model for FCC regenerators is needed that requires comprehensive understanding and accurate kinetics for NOx formation. Based on the nitrogen-containing functional groups on coke, model molecules are selected to study reactions between coke-bound nitrogen and O2 to form NO and NO2 using density functional theory. The reaction kinetics for the proposed pathways are evaluated using transition state theory. It is observed that the addition of O2 on coke is favored only when the free radical is present on the carbon atom instead of nitrogen atom. Thus, NOx formation during coke oxidation does not result from the direct attack by O2 on N atoms of coke, but from the transfer of an O atom to N from a neighboring site. The low activation energies required for NO formation indicate that it is more likely to form than NO2 during coke oxidation. The favorable pathways for NOx formation that can be used in FCC models are identified. Copyright © 2015 Taylor & Francis Group, LLC.

  11. Synthesis, Characterization and Shape-Dependent Catalytic CO Oxidation Performance of Ruthenium Oxide Nanomaterials: Influence of Polymer Surfactant

    Directory of Open Access Journals (Sweden)

    Antony Ananth

    2015-08-01

    Full Text Available Ruthenium oxide nano-catalysts supported on mesoporous γ-Al2O3 have been prepared by co-precipitation method and tested for CO oxidation. The effect of polyethylene glycol (PEG on the properties of the catalyst was studied. Addition of the PEG surfactant acted as a stabilizer and induced a change in the morphology of ruthenium oxide from spherical nanoparticles to one-dimensional nanorods. Total CO conversion was measured as a function of morphology at 175 °C and 200 °C with 1.0 wt.% loading for PEG-stabilized and un-stabilized catalysts, respectively. Conversion routinely increased with temperature but in each case, the PEG-stabilized catalyst exhibited a notably higher catalytic activity as compared to the un-stabilized equivalent. It can be assumed that the increase in the activity is due to the changes in porosity, shape and dispersion of the catalyst engendered by the use of PEG.

  12. Peroxynitrite formation in nitric oxide-exposed submitochondrial particles: detection, oxidative damage and catalytic removal by Mn-porphyrins.

    Science.gov (United States)

    Valez, Valeria; Cassina, Adriana; Batinic-Haberle, Ines; Kalyanaraman, Balaraman; Ferrer-Sueta, Gerardo; Radi, Rafael

    2013-01-01

    Peroxynitrite (ONOO(-)) formation in mitochondria may be favored due to the constant supply of superoxide radical (O(2)(∙-)) by the electron transport chain plus the facile diffusion of nitric oxide ((∙)NO) to this organelle. Herein, a model system of submitochondrial particles (SMP) in the presence of succinate plus the respiratory inhibitor antimycin A (to increase O(2)(∙-) rates) and the (∙)NO-donor NOC-7 was studied to directly establish and quantitate peroxynitrite by a multiplicity of methods including chemiluminescence, fluorescence and immunochemical analysis. While all the tested probes revealed peroxynitrite at near stoichiometric levels with respect to its precursor radicals, coumarin boronic acid (a probe that directly reacts with peroxynitrite) had the more straightforward oxidation profile from O(2)(∙-)-forming SMP as a function of the (∙)NO flux. Interestingly, immunospintrapping studies verified protein radical generation in SMP by peroxynitrite. Substrate-supplemented SMP also reduced Mn(III)porphyrins (MnP) to Mn(II)P under physiologically-relevant oxygen levels (3-30 μM); then, Mn(II)P were capable to reduce peroxynitrite and protect SMP from the inhibition of complex I-dependent oxygen consumption and protein radical formation and nitration of membranes. The data directly support the formation of peroxynitrite in mitochondria and demonstrate that MnP can undergo a catalytic redox cycle to neutralize peroxynitrite-dependent mitochondrial oxidative damage. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Gold nanoworms immobilized graphene oxide polymer brush nanohybrid for catalytic degradation studies of organic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Mogha, Navin Kumar; Gosain, Saransh; Masram, Dhanraj T., E-mail: dhnaraj_masram27@rediffmail.com

    2017-02-28

    Highlights: • AuNPs on PDMAEMA brushes immobilized reduced graphene oxide was used as catalyst. • A novel highly efficient, reusable heterogeneous catalyst for dyes degradation. • Rhodamine B, Methyl Orange and Eosin Y was used for study. • Apparent rate constant observed was 21.8, 26.2, and 8.7 (×10{sup −3} s{sup −1}) respectively. - Abstract: In the present work, we report gold nanoparticles (AuNPs) on poly (dimethylaminoethyl methacrylate) (PDMAEMA) brushes immobilized reduced graphene oxide (Au/PDMAEMA/RGO) as catalyst for degradation kinetic studies of Rhodamine B (RB), Methyl Orange (MO) and Eosine Y (EY) dyes, having an excellent catalytic activity, as evident by the apparent rate constant (k{sub app}), which is found to be 21.8, 26.2, and 8.7 (×10{sup −3} s{sup −1}), for RB, MO and EY respectively. Au/PDMAEMA/RGO catalyst is easy to use, highly efficient, recyclable, which make it suitable for applications in waste water management. Foremost, synthesis of PDMAEMA brushes on graphene oxide is accomplished by Atom transfer radical polymerization method (ATRP), whereas AuNPs are synthesized by simple chemical reduction method.

  14. Removal of radionuclides from partitioning waste solutions by adsorption and catalytic oxidation methods

    Energy Technology Data Exchange (ETDEWEB)

    Yamagishi, Isao; Yamaguchi, Isoo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kubota, Masumitsu [Research Organization for Information Science and Technology (RIST), Tokai, Ibaraki (Japan)

    2000-09-01

    Adsorption of radionuclides with inorganic ion exchangers and catalytic oxidation of a complexant were studied for the decontamination of waste solutions generated in past partitioning tests with high-level liquid waste. Granulated ferrocyanide and titanic acid were used for adsorption of Cs and Sr, respectively, from an alkaline solution resulting from direct neutralization of an acidic waste solution. Both Na and Ba inhibited adsorption of Sr but Na did not that of Cs. These exchangers adsorbed Cs and Sr at low concentration with distribution coefficients of more than 10{sup 4}ml/g from 2M Na solution of pH11. Overall decontamination factors (DFs) of Cs and total {beta} nuclides exceeded 10{sup 5} and 10{sup 3}, respectively, at the neutralization-adsorption step of actual waste solutions free from a complexant. The DF of total {alpha} nuclides was less than 10{sup 3} for a waste solution containing diethylenetriaminepentaacetic acid (DTPA). DTPA was rapidly oxidized by nitric acid in the presence of a platinum catalyst, and radionuclides were removed as precipitates by neutralization of the resultant solution. The DF of {alpha} nuclides increased to 8x10{sup 4} by addition of the oxidation step. The DFs of Sb and Co were quite low through the adsorption step. A synthesized Ti-base exchanger (PTC) could remove Sb with the DF of more than 4x10{sup 3}. (author)

  15. Catalytic oxidation of xanthine by the nanostructured poly(aniline-co-2,4-diaminophenol)

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yifei [Department of Chemistry, Yangzhou University, Yangzhou 225002 (China); Mu Shaolin, E-mail: slmu@yzu.edu.c [Department of Chemistry, Yangzhou University, Yangzhou 225002 (China)

    2010-06-30

    Poly(aniline-co-2,4-diaminophenol) (PADAP) was synthesized in a solution containing aniline, 2,4-diaminophenol (DAP) and sulfuric acid, using potentiostatic method. The image of a PADAP film is constructed of spherical particles with an average diameter of 50 nm, which was examined by both scanning electron microscope (SEM) and atomic force microscopy (AFM). The nanostructured PADAP can catalyze xanthine oxidation under a less positive potential of 0.31 V (vs. SCE), which was proved by cyclic voltammetry and amperometric method. The PADAP electrode has a very fast response for the determination of xanthine. The response current of the PADAP electrode increases with increasing xanthine concentration and applied potential. The catalytic mechanism for the oxidation of xanthine on the nanostructured PADAP electrode is similar to that of xanthine oxidase-catalyzed reaction. Experimental evidence for the electrocatalytic mechanism of xanthine oxidation on a PADAP electrode was demonstrated via measurements of the open-circuit potential and the in situ chemical-ESR spectra of PADAP in the solutions without and with xanthine, respectively.

  16. Dynamic\tmodelling of catalytic three-phase reactors for hydrogenation and oxidation processes

    Directory of Open Access Journals (Sweden)

    Salmi T.

    2000-01-01

    Full Text Available The dynamic modelling principles for typical catalytic three-phase reactors, batch autoclaves and fixed (trickle beds were described. The models consist of balance equations for the catalyst particles as well as for the bulk phases of gas and liquid. Rate equations, transport models and mass balances were coupled to generalized heterogeneous models which were solved with respect to time and space with algorithms suitable for stiff differential equations. The aspects of numerical solution strategies were discussed and the procedure was illustrated with three case studies: hydrogenation of aromatics, hydrogenation of aldehydes and oxidation of ferrosulphate. The case studies revealed the importance of mass transfer resistance inside the catalyst pallets as well as the dynamics of the different phases being present in the reactor. Reliable three-phase reactor simulation and scale-up should be based on dynamic heterogeneous models.

  17. Catalytic oxidation efficiencies for tritium and tritiated methane in a mature, industrial-scale decontamination system

    International Nuclear Information System (INIS)

    Mintz, J.M.; Gildea, P.D.

    1981-01-01

    Almost all tritium decontamination systems proposed for fusion facilities employ catalytic oxidation to water, followed by drying, to remove tritium and tritiated hydrocarbons from gas streams. One such large-scale system, the gas purification system (GPS), has been operating in the Tritium Research Laboratory (TRL) at Sandia National Laboratories, Livermore, CA, since October 1977. A series of experiments have recently been conducted there to assesss the current operating characteristics of the GPS catalyst. The experiments used tritium and tritiated methane and covered a range of temperatures, flow rates, and concentration levels. When contrasted with 1977 data, the results indicate that no measurable degradation of catalyst function had occurred. However, some reduction in active metal surface area, as indicated by B.E.T. surface area measurements (approx. 100 → 90m 2 /g) and AES scans (approx. 1.4 → 0.9 at. % Pt), had occurred. Kinetic rate coefficients were also derived and a rough temperature dependence obtained

  18. Catalytic oxidation efficiencies for tritium and tritiated methane in a mature, industrial-scale decontamination system

    International Nuclear Information System (INIS)

    Mintz, J.M.; Gildea, P.D.

    1980-10-01

    Almost all tritium decontamination systems proposed for fusion facilities employ catalytic oxidation to water, followed by drying, to remove tritium and tritiated hydrocarbons from gas streams. One such large-scale system, the gas purification system (GPS), has been operating in the Tritium Research Laboratory (TRL) at Sandia National Laboratories, Livermore, CA, since October 1977. A series of experiments have recently been conducted there to assess the current operating characteristics of the GPS catalyst. The experiments used tritium and tritiated methane and covered a range of temperatures, flow rates, and concentration levels. When contrasted with 1977 data, the results indicate that no measurable degradation of catalyst function had occurred. However, some reduction in active metal surface area, as indicated by B.E.T. surface area measurements (approx. 100 → 90 m 2 /g) and AES scans (approx. 1.4 → 0.9 at% Pt), had occurred. Kinetic rate coefficients were also derived and a rough temperature dependence obtained

  19. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting.

    Science.gov (United States)

    Rausch, Benjamin; Symes, Mark D; Chisholm, Greig; Cronin, Leroy

    2014-09-12

    The electrolysis of water using renewable energy inputs is being actively pursued as a route to sustainable hydrogen production. Here we introduce a recyclable redox mediator (silicotungstic acid) that enables the coupling of low-pressure production of oxygen via water oxidation to a separate, catalytic hydrogen production step outside the electrolyzer that requires no post-electrolysis energy input. This approach sidesteps the production of high-pressure gases inside the electrolytic cell (a major cause of membrane degradation) and essentially eliminates the hazardous issue of product gas crossover at the low current densities that characterize renewables-driven water-splitting devices. We demonstrated that a platinum-catalyzed system can produce pure hydrogen over 30 times faster than state-of-the-art proton exchange membrane electrolyzers at equivalent platinum loading. Copyright © 2014, American Association for the Advancement of Science.

  20. Single-Site Palladium(II) Catalyst for Oxidative Heck Reaction: Catalytic Performance and Kinetic Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hui; Li, Mengyang; Zhang, Guanghui; Gallagher, James R.; Huang, Zhiliang; Sun, Yu; Luo, Zhong; Chen, Hongzhong; Miller, Jeffrey T.; Zou, Ruqiang; Lei, Aiwen; Zhao, Yanli

    2015-01-01

    ABSTRACT: The development of organometallic single-site catalysts (SSCs) has inspired the designs of new heterogeneous catalysts with high efficiency. Nevertheless, the application of SSCs in certain modern organic reactions, such as C-C bond formation reactions, has still been less investigated. In this study, a single-site Pd(II) catalyst was developed, where 2,2'-bipyridine-grafted periodic mesoporous organosilica (PMO) was employed as the support of a Pd(II) complex. The overall performance of the single-site Pd(II) catalyst in the oxidative Heck reaction was then investigated. The investigation results show that the catalyst displays over 99% selectivity for the product formation with high reaction yield. Kinetic profiles further confirm its high catalytic efficiency, showing that the rate constant is nearly 40 times higher than that for the free Pd(II) salt. X-ray absorption spectroscopy reveals that the catalyst has remarkable lifetime and recyclability.

  1. Low Temperature Selective Catalytic Reduction of Nitrogen Oxides in Production of Nitric Acid by the Use of Liquid

    Directory of Open Access Journals (Sweden)

    Kabljanac, Ž.

    2011-11-01

    Full Text Available This paper presents the application of low-temperature selective catalytic reduction of nitrous oxides in the tail gas of the dual-pressure process of nitric acid production. The process of selective catalytic reduction is carried out using the TiO2/WO3 heterogeneous catalyst applied on a ceramic honeycomb structure with a high geometric surface area per volume. The process design parameters for nitric acid production by the dual-pressure procedure in a capacity range from 75 to 100 % in comparison with designed capacity for one production line is shown in the Table 1. Shown is the effectiveness of selective catalytic reduction in the temperature range of the tail gas from 180 to 230 °C with direct application of liquid ammonia, without prior evaporation to gaseous state. The results of inlet and outlet concentrations of nitrous oxides in the tail gas of the nitric acid production process are shown in Figures 1 and 2. Figure 3 shows the temperature dependence of the selective catalytic reduction of nitrous oxides expressed as NO2in the tail gas of nitric acid production with the application of a constant mass flow of liquid ammonia of 13,0 kg h-1 and average inlet mass concentration of the nitrous oxides expressed as NO2of 800,0 mgm-3 during 100 % production capacity. The specially designed liquid-ammonia direct-dosing system along with the effective homogenization of the tail gas resulted in emission levels of nitrous oxides expressed as NO2 in tail gas ranging from 100,0 to 185,0 mg m-3. The applied low-temperature selective catalytic reduction of the nitrous oxides in the tail gases by direct use of liquid ammonia is shown in Figure 4. It is shown that low-temperature selective catalytic reduction with direct application of liquid ammonia opens a new opportunity in the reduction of nitrous oxide emissions during nitric acid production without the risk of dangerous ammonium nitrate occurring in the process of subsequent energy utilization of

  2. Effects of Mn- and K-addition on catalytic activity of calcium oxide for methane activation

    International Nuclear Information System (INIS)

    Park, Jong Sik; Kong, Jang Il; Lee, Sung Han; Jun, Jong Ho

    1998-01-01

    Pure CaO, Mn-doped CaO, Mn/CaO, and K/CaO catalysts were prepared and tested as catalysts for the oxidative coupling of methane in the temperature range of 600 to 800 .deg. C to investigate the effects of Mn- and K-addition on the catalytic activity of calcium oxide. To characterize the catalysts, X-ray powder diffraction (XRD), XPS, SEM, DSC, and TG analyses were performed. The catalytic reaction was carried out in a single-pass flow reactor using on-line gas chromatography system. Normalized reaction conditions were generally p(CH 4 )/p(O 2 )=250 Torr/50 Torr, total feed flow rate=30 mL/min, and 1 atm of total pressure with He being used as diluent gas. Among the catalysts tested, 6.3 mol% Mn-doped CaO catalyst showed the best C 2 yield of 8.0% with a selectivity of 43.2% at 775 .deg. C. The C 2 selectivity increased on lightly doped CaO catalysts, while decreased on heavily doped CaO((Mn)>6.3 mol%)catalysts. 6 wt.% Mn/CaO and 6 wt.% K/CaO catalysts showed the C 2 selectivities of 13.2% and 30.9%, respectively, for the reaction. Electrical conductivities of CaO and Mn-doped CaO were measured in the temperature range of 500 to 1000 .deg. C at Po2's of 10 -3 to 10 -1 atm. The electrical conductivity was decreased with Mn-doping and increased with increasing Po 2 in the range of 10 -3 to 10 -1 atm, indicating the specimens to be p-type semiconductors. It was suggested that the interstitial oxygen ions formed near the surface can activate methane and the formation of interstitial oxygen ions was discussed on the basis of solid-state chemistry

  3. Atomistic structure of cobalt-phosphate nanoparticles for catalytic water oxidation.

    Science.gov (United States)

    Hu, Xiao Liang; Piccinin, Simone; Laio, Alessandro; Fabris, Stefano

    2012-12-21

    Solar-driven water splitting is a key photochemical reaction that underpins the feasible and sustainable production of solar fuels. An amorphous cobalt-phosphate catalyst (Co-Pi) based on earth-abundant elements has been recently reported to efficiently promote water oxidation to protons and dioxygen, a main bottleneck for the overall process. The structure of this material remains largely unknown. We here exploit ab initio and classical atomistic simulations combined with metadynamics to build a realistic and statistically meaningful model of Co-Pi nanoparticles. We demonstrate the emergence and stability of molecular-size ordered crystallites in nanoparticles initially formed by a disordered Co-O network and phosphate groups. The stable crystallites consist of bis-oxo-bridged Co centers that assemble into layered structures (edge-sharing CoO(6) octahedra) as well as in corner- and face-sharing cubane units. These layered and cubane motifs coexist in the crystallites, which always incorporate disordered phosphate groups at the edges. Our computational nanoparticles, although limited in size to ~1 nm, can contain more than one crystallite and incorporate up to 18 Co centers in the cubane/layered structures. The crystallites are structurally stable up to high temperatures. We simulate the extended X-ray absorption fine structure (EXAFS) of our nanoparticles. Those containing several complete and incomplete cubane motifs-which are believed to be essential for the catalytic activity-display a very good agreement with the experimental EXAFS spectra of Co-Pi grains. We propose that the crystallites in our nanoparticles are reliable structural models of the Co-Pi catalyst surface. They will be useful to reveal the origin of the catalytic efficiency of these novel water-oxidation catalysts.

  4. Identification of a Catalytically Highly Active Surface Phase for CO Oxidation over PtRh Nanoparticles under Operando Reaction Conditions

    Science.gov (United States)

    Hejral, U.; Franz, D.; Volkov, S.; Francoual, S.; Strempfer, J.; Stierle, A.

    2018-03-01

    Pt-Rh alloy nanoparticles on oxide supports are widely employed in heterogeneous catalysis with applications ranging from automotive exhaust control to energy conversion. To improve catalyst performance, an atomic-scale correlation of the nanoparticle surface structure with its catalytic activity under industrially relevant operando conditions is essential. Here, we present x-ray diffraction data sensitive to the nanoparticle surface structure combined with in situ mass spectrometry during near ambient pressure CO oxidation. We identify the formation of ultrathin surface oxides by detecting x-ray diffraction signals from particular nanoparticle facets and correlate their evolution with the sample's enhanced catalytic activity. Our approach opens the door for an in-depth characterization of well-defined, oxide-supported nanoparticle based catalysts under operando conditions with unprecedented atomic-scale resolution.

  5. Oxidative destruction of biomolecules by gasoline engine exhaust products and detoxifying effects of the three-way catalytic converter.

    Science.gov (United States)

    Blaurock, B; Hippeli, S; Metz, N; Elstner, E F

    1992-01-01

    Aqueous solutions of engine exhaust condensation products were derived from cars powered by diesel or four-stroke gasoline engines (with and without three-way catalytic converter). The cars were operated on a static test platform. Samples of the different exhaust solutions accumulated in a Grimmer-type distillation trap (VDI 3872) during standard test programs (Federal Test Procedure) were incubated with important biomolecules. As indicators of reactive oxygen species or oxidative destruction, ascorbic acid, cysteine, glutathione, serum albumin, the enzymes glycerinaldehyde phosphate dehydrogenase and xanthine oxidase, and the oxygen free-radical indicator keto-methylthiobutyrate were used. During and after the incubations, oxygen activation (consumption) and oxidative destruction were determined. Comparison of the oxidative activities of the different types of exhaust condensates clearly showed that the exhaust condensate derived from the four-stroke car equipped with a three-way catalytic converter exhibited by far the lowest oxidative and destructive power.

  6. The catalytic oxidation of H2S in a stainless steel membrane reactor with separate feed of reactants.

    NARCIS (Netherlands)

    Neomagus, H.W.J.P.; van Swaaij, Willibrordus Petrus Maria; Versteeg, Geert

    1998-01-01

    The oxidation of H2S is studied in a membrane reactor with separate feed of reactants. As a novelty in the concept of separate introduction of the reactants, a sintered stainless steel membrane is used, because this type of material is easy to integrate into the reactor, and the catalytic properties

  7. The catalytic oxidation of H2S in a stainless steel membrane reactor with separate feed of reactants

    NARCIS (Netherlands)

    Neomagus, H.W.J.P.; Swaaij, W.P.M. van; Versteeg, G.F.

    1998-01-01

    The oxidation of H2S is studied in a membrane reactor with separate feed of reactants. As a novelty in the concept of separate introduction of the reactants, a sintered stainless steel membrane is used, because this type of material is easy to integrate into the reactor, and the catalytic properties

  8. Oxidation of Borneol to Camphor Using Oxone and Catalytic Sodium Chloride: A Green Experiment for the Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Lang, Patrick T.; Harned, Andrew M.; Wissinger, Jane E.

    2011-01-01

    A new green oxidation procedure was developed for the undergraduate organic teaching laboratories using Oxone and a catalytic quantity of sodium chloride for the conversion of borneol to camphor. This simple 1 h, room temperature reaction afforded high quality and yield of product, was environmentally friendly, and produced negligible quantities…

  9. Construction and biofunctional evaluation of electrospun vascular graft loaded with selenocystamine for in situ catalytic generation of nitric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Siyuan; An, Jun; Weng, Lei [State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China); Li, Yandong [Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071 (China); Xu, Han; Wang, Yaping; Ding, Dan; Kong, Deling [State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China); Wang, Shufang, E-mail: wangshufang@nankai.edu.cn [State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2014-12-01

    Construction and biofunctional evaluation of a novel vascular graft with in situ catalytic generation of nitric oxide were described in this paper. Poly α-lysine and poly (γ-glutamic acid) were deposited alternately onto the surface of an electrospun poly ε-caprolactone matrix via electrostatic layer-by-layer self-assembly, and then selenocystamine was loaded as a catalyst. Measurement of in vitro catalytic generation of nitric oxide demonstrated that this catalyst-loaded material could considerably accelerate the release of nitric oxide from S-nitrosoglutathione. A fibroblast proliferation assay showed that the material possessed satisfactory cellular compatibility. The catalyst-loaded material could inhibit the spread of smooth muscle cells in the presence of nitric oxide donors. In arteriovenous-shunt experiment, the catalyst-loaded graft exhibited good anti-thrombotic property where it could prevent acute thrombosis by decreasing the adhesion and activation of platelets and other blood cells. These data suggest a new method of building vascular grafts with improved hemocompatibility and biological functions. - Highlights: • A porous small-diameter vascular graft was prepared by electrospinning. • Selenocystamine was loaded for in situ catalytic and sustained NO generation. • There was a significant catalytic NO generation on the catalyst-loaded sample. • The spread of smooth muscle cells was inhibited on the catalyst-loaded sample. • The catalyst-loaded sample showed anti-thrombotic property in AV-shunt experiment.

  10. Treatment of organic pollutants in coke plant wastewater by the method of ultrasonic irradiation, catalytic oxidation and activated sludge

    NARCIS (Netherlands)

    Ning, Ping; Bart, Hans-Jörg; Jiang, Yijiao; de Haan, A.B.; Tien, C.

    2005-01-01

    The paper deals with the degradation of the organic pollutants in coke plant wastewater by the combination process of ultrasonic irradiation, catalytic oxidation and activated sludge. The effect factors of ultrasonic irradiation on the degradation of the organic pollutants such as saturating gas,

  11. Catalytic upgrading of sugar fractions from pyrolysis oils in supercritical mono-alcohols over Cu doped porous metal oxide

    NARCIS (Netherlands)

    Yin, Wang; Venderbosch, Hendrikus; Bottari, Giovanni; Krawzcyk, Krzysztof K.; Barta, Katalin; Heeres, Hero Jan

    In this work, we report on the catalytic valorization of sugar fractions, obtained by aqueous phase extraction of fast pyrolysis oils, in supercritical methanol (scMeOH) and ethanol (scEtOH) over a copper doped porous metal oxide (Cu-PMO). The product mixtures obtained are, in principle, suitable

  12. Modification of Coal Char-loaded TiO2 by Sulfonation and Alkylsilylation to Enhance Catalytic Activity in Styrene Oxidation with Hydrogen Peroxide as Oxidant

    Directory of Open Access Journals (Sweden)

    Mukhamad Nurhadi

    2017-04-01

    Full Text Available The modified coal char from low-rank coal by sulfonation, titanium impregnation and followed by alkyl silylation possesses high catalytic activity in styrene oxidation. The surface of coal char was undergone several steps as such: modification using concentrated sulfuric acid in the sulfonation process, impregnation of 500 mmol titanium(IV isopropoxide and followed by alkyl silylation of n-octadecyltriclorosilane (OTS. The catalysts were characterized by X-ray diffraction (XRD, IR spectroscopy, nitrogen adsorption, and hydrophobicity. The catalytic activity of the catalysts has been examined in the liquid phase styrene oxidation by using aqueous hydrogen peroxide as oxidant. The catalytic study showed the alkyl silylation could enhance the catalytic activity of Ti-SO3H/CC-600(2.0. High catalytic activity and reusability of the o-Ti-SO3H/CC-600(2.0 were related to the modification of local environment of titanium active sites and the enhancement the hydrophobicity of catalyst particle by alkyl silylation. Copyright © 2017 BCREC GROUP. All rights reserved Received: 24th May 2016; Revised: 11st October 2016; Accepted: 18th October 2016 How to Cite: Nurhadi, M. (2017. Modification of Coal Char-loaded TiO2 by Sulfonation and Alkylsilylation to Enhance Catalytic Activity in Styrene Oxidation with Hydrogen Peroxide as Oxidant. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (1: 55-61 (doi:10.9767/bcrec.12.1.501.55-61 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.501.55-61

  13. Reaction mechanisms at 4H-SiC/SiO2 interface during wet SiC oxidation

    Science.gov (United States)

    Akiyama, Toru; Hori, Shinsuke; Nakamura, Kohji; Ito, Tomonori; Kageshima, Hiroyuki; Uematsu, Masashi; Shiraishi, Kenji

    2018-04-01

    The reaction processes at the interface between SiC with 4H structure (4H-SiC) and SiO2 during wet oxidation are investigated by electronic structure calculations within the density functional theory. Our calculations for 4H-SiC/SiO2 interfaces with various orientations demonstrate characteristic features of the reaction depending on the crystal orientation of SiC: On the Si-face, the H2O molecule is stable in SiO2 and hardly reacts with the SiC substrate, while the O atom of H2O can form Si-O bonds at the C-face interface. Two OH groups are found to be at least necessary for forming new Si-O bonds at the Si-face interface, indicating that the oxidation rate on the Si-face is very low compared with that on the C-face. On the other hand, both the H2O molecule and the OH group are incorporated into the C-face interface, and the energy barrier for OH is similar to that for H2O. By comparing the calculated energy barriers for these reactants with the activation energies of oxide growth rate, we suggest the orientation-dependent rate-limiting processes during wet SiC oxidation.

  14. The physicochemical properties and catalytic performance of carbon-covered alumina for oxidative dehydrogenation of ethylbenzene with CO2

    Science.gov (United States)

    Wang, Tehua; Chong, Siying; Wang, Tongtong; Lu, Huiyi; Ji, Min

    2018-01-01

    In order to correlate the physicochemical properties of carbon-covered alumina (CCA) materials with their catalytic performance for oxidative dehydrogenation of ethylbenzene with CO2 (CO2-ODEB), a series of CCA materials with diverse carbon contents (8.7-31.3 wt%) and pyrolysis temperatures (600-800 °C), which were synthesized via an impregnation method followed by pyrolysis, were applied. These catalytic materials were characterized by TGA, N2 physisorption, XRD, Raman spectroscopy and XPS techniques. It was found that the catalytic performance of these CCA materials highly depended on their physicochemical properties, and the optimum CCA catalyst exhibited much better catalytic stability than conventional hydroxyl carbon nanotubes. Below an optimum value of carbon content, the CCA catalyst preserved the main pore characteristics of the Al2O3 support and its catalytic activity increased with the carbon content. Excessive carbon loading resulted in significant textural alterations and thereby decreased both the ethylbenzene conversion and styrene selectivity. On the other hand, high pyrolysis temperature was detrimental to the ordered graphitic structure of the carbon species within the Al2O3 pore. The decreased ordered graphitic degree was found to be associated with the loss of the surface active carbonyl groups, consequently hampering the catalytic efficiency of the CCA catalyst.

  15. COMPARISON OF CATALYTIC ACTIVITIES BOTH FOR SELECTIVE OXIDATION AND DECOMPOSITION OF AMMONIA OVER Fe/HZβ CATALYST

    Directory of Open Access Journals (Sweden)

    YELİZ ÇETİN

    2016-11-01

    Full Text Available Ammonia is one of the syngas contaminants that must be removed before using the syngas downstream applications. The most promising hot-gas clean-up techniques of ammonia are selective catalytic oxidation (SCO and catalytic decomposition. In this study, the catalytic activities over Zeolite Hβ supported iron catalyst (Fe/HZβ were compared both for the two catalytic routes. For SCO experiments; temperature (300-550 °C, O2 (2000-6000 ppmv and (0-10% H2 concentrations were investigated with the presence of 800 ppm NH3 in each of the final gas mixture. In the second route, catalytic ammonia decomposition experiments were carried out with H2 in balance N2 (0-30% containing 800 ppm NH3 at 700°C and 800°C. In the SCO, NH3 conversions were increased with increasing reaction temperatures with the absence of H2 in the reaction mixture. With 10% H2, it was shown that NH3 conversions increased with decreasing the reaction temperature. This was interpreted as the competing H2 and NH3 oxidations over the catalyst. On the other hand, in the catalytic decomposition, thermodynamic equilibrium conversion of almost 100% was attained at both 700 and 800 °C. Upon H2 addition, all conversions decreased. The decrease in conversion seemed to be linear with inlet hydrogen concentration. Hydrogen was seen to inhibit ammonia decomposition reaction. It was shown that Fe/HZβ catalyst is better to use for catalytic decomposition of NH3 in syngas rather than SCO of NH3 in spite of higher reaction temperatures needed in the decomposition reaction.

  16. Synthesis and characterization of supported Pt and Pt alloys nanoparticles used for the catalytic oxidation of sulfur dioxide

    DEFF Research Database (Denmark)

    Koutsopoulos, Sotiris; Eriksen, Kim Michael; Fehrmann, Rasmus

    2006-01-01

    Controlled pore glass silica (CPG) was used as support to prepare platinum-based catalysts using the wet impregnation method and DMSO or CHCl3 as solvent. In all cases, the catalyst loading with the active phase was 2 wt%. The catalysts were tested for the SO2 oxidation reaction at atmospheric pr...

  17. Synthesis, Characterization, and Catalytic Applications of Transition Metal Oxide/Carbonate Nanomaterials

    Science.gov (United States)

    Jin, Lei

    2011-12-01

    This thesis contains two parts: 1) Studies of novel synthesis methods and characterization of advanced functional manganese oxide octahedral molecular sieves (OMS) and their applications in Li/Air batteries, solvent free toluene oxidations, and ethane oxydehydrogenation (ODH) in the presence of CO2, recycling the green house gas. 2) Development of unique Ln2O2CO3 (Ln = rare earth) layered materials and ZnO/La2O2CO3 composites as clean energy biofuel catalysts. These parts are separated into five different focused topics included in this thesis. The first topic presents studies of catalytic activities of a single step synthesized gamma-MnO2 octahedral molecular sieve nano fiber in solvent free atmospheric oxidation of toluene with molecular oxygen. Solvent free atmospheric oxidation of toluene is a notoriously difficult liquid phase oxidation process due to the challenge of oxidizing sp³ hybridized carbon in inactive hydrocarbons. The synthesized gamma-MnO2 showed excellent catalytic activity and good selectivity under the mild atmospheric reflux system. Under optimized conditions, a 47.8% conversion of toluene, along with 57% selectivity of benzoic acid and 15% of benzaldehyde were obtained. The effects of reaction time, amount of catalyst and initiator, and the reusability of the catalyst were investigated. The second topic involves developing titanium containing gamma-MnO 2 (TM) hollow spheres as electrocatalysts in Li/Air Batteries. Li/air batteries have recently attracted interest because they have the largest theoretical specific energy (11,972 Wh.kg-1) among all practical electrochemical couples. In this study, unique hollow aspheric materials were prepared for the first time using a one-step synthesis method and fully characterized by various techniques. These prepared materials were found to have excellent electrocatalytic activation as cathode materials in lithium-air batteries with a very high specific capacity (up to 2.3 A.h/g of carbon). The third

  18. Determination of Model Kinetics for Forced Unsteady State Operation of Catalytic CH4 Oxidation

    Directory of Open Access Journals (Sweden)

    Effendy Mohammad

    2016-01-01

    Full Text Available The catalytic oxidation of methane for abating the emission vented from coal mine or natural gas transportation has been known as most reliable method. A reverse flow reactor operation has been widely used to oxidize this methane emission due to its capability for autothermal operation and heat production. The design of the reverse flow reactor requires a proper kinetic rate expression, which should be developed based on the operating condition. The kinetic rate obtained in the steady state condition cannot be applied for designing the reactor operated under unsteady state condition. Therefore, new approach to develop the dynamic kinetic rate expression becomes indispensable, particularly for periodic operation such as reverse flow reactor. This paper presents a novel method to develop the kinetic rate expression applied for unsteady state operation. The model reaction of the catalytic methane oxidation over Pt/-Al2O3 catalyst was used with kinetic parameter determined from laboratory experiments. The reactor used was a fixed bed, once-through operation, with a composition modulation in the feed gas. The switching time was set at 3 min by varying the feed concentration, feed flow rate, and reaction temperature. The concentrations of methane in the feed and product were measured and analysed using gas chromatography. The steady state condition for obtaining the kinetic rate expression was taken as a base case and as a way to judge its appropriateness to be applied for dynamic system. A Langmuir-Hinshelwood reaction rate model was developed. The time period during one cycle was divided into some segments, depending on the ratio of CH4/O2. The experimental result shows that there were kinetic regimes occur during one cycle: kinetic regime controlled by intrinsic surface reaction and kinetic regime controlled by external diffusion. The kinetic rate obtained in the steady state operation was not appropriate when applied for unsteady state operation

  19. Iridium nanoparticles with high catalytic activity in degradation of acid red-26: an oxidative approach.

    Science.gov (United States)

    Goel, Anjali; Lasyal, Rajni

    2016-12-01

    Nanocatalysis using metal nanoparticles constitutes one of the emerging technologies for destructive oxidation of organics such as dyes. This paper deals with the degradation of acid red-26 (AR-26), an azo dye by hexacyanoferrate (abbreviated as HCF) (III) using iridium nanoparticles. UV-vis spectroscopy has been employed to obtain the details of the oxidative degradation of the selected dye. The effect of various operational parameters such as HCF(III) concentration, pH, initial dye concentration, catalyst and temperature was investigated systematically at the λ max , 507 nm, of the reaction mixture. Degradation kinetics follows the first order kinetic model with respect to AR-26 and Ir nano concentrations, while with respect to the HCF(III) concentration reaction it follows first order kinetics at lower concentrations, tending towards zero order at higher concentrations. Thermodynamic parameters have been calculated by studying the reaction rate at four different temperatures. The UV-vis, high performance liquid chromatography (HPLC), liquid chromatography-mass spectrometry (LC-MS) analysis of degradation products showed the formation of carboxylic acid and substituted carboxylic acids as major degradation products, which are simple and less hazardous compounds. The big advantage of the present method is the recovery and reuse of iridium nanoparticles. Moreover, turnover frequencies for each catalytic cycle have been determined, indicating the long life span of Ir nanoparticles. Thus, the finding is a novel and highly economical alternative for environmental safety against pollution by dyes, and extendable for other contaminants as well.

  20. Protection of tobacco cells from oxidative copper toxicity by catalytically active metal-binding DNA oligomers.

    Science.gov (United States)

    Iwase, Junichiro; Furukawa, Hiroka; Hiramatsu, Takuya; Bouteau, François; Mancuso, Stefano; Tanaka, Kenichiro; Okazaki, Toshihiko; Kawano, Tomonori

    2014-03-01

    The impact of copper ions on the oxidative and calcium signal transductions, leading to cell death in plant cells, have been documented. Copper induces a series of biological and chemical reactions in plant cells including the oxidative burst reflecting the production of reactive oxygen species and the stimulation of calcium channel opening allowing a transient increase in cytosolic calcium concentrations. These early events, completed within a few minutes after the contact with copper, are known to trigger the development of cell death. The effects of DNA fragments with copper-binding motifs as novel plant cell-protecting agents were assessed using cell suspension cultures of transgenic tobacco (Nicotiana tabacum L., cell line BY-2) expressing the aequorin gene. The addition of GC-rich double-stranded DNA fragments, prior to the addition of copper ions, effectively blocked both the copper-induced calcium influx and cell death. In addition, the DNA-Cu complex examined was shown to possess superoxide-scavenging catalytic activity, suggesting that DNA-mediated protection of the cells from copper toxicity is due to the removal of superoxide. Lastly, a possible mechanism of DNA-Cu interaction and future applications of these DNA fragments in the protection of plant roots from metal toxicity or in aid of phyto-remediation processes are discussed.

  1. Probing Hot Electron Flow Generated on Pt Nanoparticles with Au/TiO2 Schottky Diodes during Catalytic CO Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Y.; Lee, Hyunjoo; Renzas, J. Russell; Zhang, Yawen; Somorjai, G.A.

    2008-05-01

    Hot electron flow generated on colloid platinum nanoparticles during exothermic catalytic carbon monoxide oxidation was directly detected with Au/TiO{sub 2} diodes. Although Au/TiO{sub 2} diodes are not catalytically active, platinum nanoparticles on Au/TiO{sub 2} exhibit both chemicurrent and catalytic turnover rate. Hot electrons are generated on the surface of the metal nanoparticles and go over the Schottky energy barrier between Au and TiO{sub 2}. The continuous Au layer ensures that the metal nanoparticles are electrically connected to the device. The overall thickness of the metal assembly (nanoparticles and Au thin film) is comparable to the mean free path of hot electrons, resulting in ballistic transport through the metal. The chemicurrent and chemical reactivity of nanoparticles with citrate, hexadecylamine, hexadecylthiol, and TTAB (Tetradecyltrimethylammonium Bromide) capping agents were measured during catalytic CO oxidation at pressures of 100 Torr O{sub 2} and 40 Torr CO at 373-513 K. We found that chemicurrent yield varies with each capping agent, but always decreases with increasing temperature. We suggest that this inverse temperature dependence is associated with the influence of charging effects due to the organic capping layer during hot electron transport through the metal-oxide interface.

  2. TEMPO functionalized C{sub 60} fullerene deposited on gold surface for catalytic oxidation of selected alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Piotrowski, Piotr; Pawłowska, Joanna [University of Warsaw, Department of Chemistry (Poland); Sadło, Jarosław Grzegorz [Institute of Nuclear Chemistry and Technology (Poland); Bilewicz, Renata; Kaim, Andrzej, E-mail: akaim@chem.uw.edu.pl [University of Warsaw, Department of Chemistry (Poland)

    2017-05-15

    C{sub 60}TEMPO{sub 10} catalytic system linked to a microspherical gold support through a covalent S-Au bond was developed. The C{sub 60}TEMPO{sub 10}@Au composite catalyst had a particle size of 0.5–0.8 μm and was covered with the fullerenes derivative of 2.3 nm diameter bearing ten nitroxyl groups; the organic film showed up to 50 nm thickness. The catalytic composite allowed for the oxidation under mild conditions of various primary and secondary alcohols to the corresponding aldehyde and ketone analogues with efficiencies as high as 79–98%, thus giving values typical for homogeneous catalysis, while retaining at the same time all the advantages of heterogeneous catalysis, e.g., easy separation by filtration from the reaction mixture. The catalytic activity of the resulting system was studied by means of high pressure liquid chromatography. A redox mechanism was proposed for the process. In the catalytic cycle of the oxidation process, the TEMPO moiety was continuously regenerated in situ with an applied primary oxidant, for example, O{sub 2}/Fe{sup 3+} system. The new intermediate composite components and the final catalyst were characterized by various spectroscopic methods and thermogravimetry.

  3. Heterogeneous catalytic oxidative dehydrogenation of ethylbenzene to styrene with carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Badstube, T.; Papp, H. [Leipzig Univ. (Germany). Inst. fuer Technische Chemie; Kustrowski, P.; Dziembaj, R. [Jagiellonian Univ., Crakow (Poland). Faculty of Chemistry

    1998-12-31

    Alkaline promoted active carbon supported iron catalysts are very active in the oxidative dehydrogenation of ethylbenzene to styrene in the presence of carbon dioxide. The best results were obtained at 550 C for a Li-promoted catalyst with a conversion of ethylbenzene of 75% and a selectivity towards styrene of nearly 95%. These results are better than those obtained with industrial catalysts which perform the dehydrogenation process with an excess of water. The main product of the dehydrogenation reaction with CO{sub 2} was styrene, but the following by-products were detected - benzene and toluene. The selectivity towards toluene was always higher than towards benzene. We observed also the formation of carbon monoxide and water, which were produced with a constant molar ratio of about 0.8. The weight of the catalysts increased up to 20% during the reaction due to deposition of carbon. Using a too large excess of CO{sub 2} (CO{sub 2}/EB>10) was harmful for the styrene yield. The most favorable molar ratio of CO{sub 2} to EB was 10:1. No correlation between the molar ratios of reactants and the amount of deposited coke on the surface of catalysts was observed. The highest catalytic activity showed iron loaded D-90 catalysts which were promoted with alkali metals in a molar ratio of 1:10. Iron, nickel and cobalt loaded carbonized PPAN, PC, inorganic supports like Al{sub 2}O{sub 3}, SiO{sub 2}/ZrO{sub 2} or TiO{sub 2} respectively and commercial iron catalysts applied for styrene production did not show comparable catalytic activity in similar conditions. (orig.)

  4. Catalytic cracking of vegetable oil with metal oxides for biofuel production

    International Nuclear Information System (INIS)

    Yigezu, Zerihun Demrew; Muthukumar, Karuppan

    2014-01-01

    Highlights: • Biofuel was synthesized from vegetable oil by catalytic cracking. • Performance of six different metal catalysts was studied. • Influence of temperature and reaction time on the process was evaluated. • Methyl and ethyl esters are the major components of the biofuel synthesized. - Abstract: This study presents the utilization of metal oxides for the biofuel production from vegetable oil. The physical and chemical properties of the diesel-like products obtained, and the influence of reaction variables on the product distribution were investigated. Six different metal oxides (Co 3 O 4 , KOH, MoO 3 , NiO, V 2 O 5 , and ZnO) were employed as catalysts and the results indicated that the metal oxides are suitable for catalyzing the conversion of oil into organic liquid products (OLPs). The maximum conversion (87.6%) was obtained with V 2 O 5 at 320 °C in 40 min whereas a minimum conversion (55.1%) was obtained with MoO 3 at 390 °C in 30 min. The physical characteristics of the product obtained (density, specific gravity, higher heat value, flash point and kinematic viscosity), were in line with ASTM D6751 (B100) standards. The hydrocarbons majorly present in the product were found to be methyl and ethyl esters. Furthermore, OLPs obtained were distilled and separated into four components. The amount of light hydrocarbons, gasoline, kerosene and heavy oil like components obtained were 18.73%, 33.62%, 24.91% and 90.93%, respectively

  5. A broad spectrum catalytic system for removal of toxic organics from water by deep oxidation. 1998 annual progress report

    International Nuclear Information System (INIS)

    Sen, A.

    1998-01-01

    'Toxic organics and polymers pose a serious threat to the environment, especially when they are present in aquatic systems. The objective of the research is the design of practical procedures for the removal and/or recycling of such pollutants by oxidation. This report summarizes the work performed in the first one and half years of a three year project. The authors had earlier described a catalytic system for the deep oxidation of toxic organics, such as benzene, phenol and substituted phenols, aliphatic and aromatic halogenated compounds, organophosphorus, and organosulfur compounds [1]. In this system, metallic palladium was found to catalyze the oxidation of the substrate by dioxygen in aqueous medium at 80--100 C in the presence of carbon monoxide. For all the substrates examined, deep oxidation to carbon monoxide, carbon dioxide, and water occurred in high yields, resulting in up to several hundred turnovers over a 24 h period. Because of a pressing need for new procedures for the destruction of chemical warfare agents, the authors have examined in detail the deep oxidation of appropriate model compounds containing phosphorus-carbon and sulfur-carbon bonds using the same catalytic system. The result is the first observation of the efficient catalytic oxidative cleavage of phosphorus-carbon and sulfur-carbon bonds under mild conditions, using dioxygen as the oxidant [2]. In addition to the achievements described above, they have unpublished results in several other areas. For example, they have investigated the possibility of using dihydrogen rather than carbon monoxide as a coreductant in the catalytic deep oxidation of substrates. Even more attractive from a practical standpoint is the possibility of using a mixture of carbon monoxide and dihydrogen (synthesis gas). Indeed, experiments indicated that it is possible to substitute carbon monoxide by dihydrogen or synthesis gas. Significantly, in the case of nitro compounds, the deep oxidation in fact proceeded

  6. Catalytic Partial Oxidation of Cyclohexane by Bimetallic Ag/Pd Nanoparticles on Magnesium Oxide.

    Science.gov (United States)

    Liu, Xi; Conte, Marco; He, Qian; Knight, David W; Murphy, Damien M; Taylor, Stuart H; Whiston, Keith; Kiely, Christopher J; Hutchings, Graham J

    2017-09-04

    The liquid-phase oxidation of cyclohexane to cyclohexanol and cyclohexanone was investigated by synthesizing and testing an array of heterogeneous catalysts comprising: monometallic Ag/MgO, monometallic Pd/MgO and a set of bimetallic AgPd/MgO catalysts. Interestingly, Ag/MgO was capable of a conversion comparable to current industrial routes of approximately 5 %, and with a high selectivity (up to 60 %) to cyclohexanol, thus making Ag/MgO an attractive system for the synthesis of intermediates for the manufacture of nylon fibres. Furthermore, following the doping of Ag nanoparticles with Pd, the conversion increased up to 10 % whilst simultaneously preserving a high selectivity to the alcohol. Scanning transmission electron microscopy and energy dispersive spectroscopy of the catalysts showed a systematic particle-size-composition variation with the smaller Ag-Pd nanoparticles being statistically richer in Pd. Analysis of the reaction mixture by electron paramagnetic resonance (EPR) spectroscopy coupled with the spin-trapping technique showed the presence of large amounts of alkoxy radicals, thus providing insights for a possible reaction mechanism. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Principles of water oxidation and O2-based hydrocarbon transformation by multinuclear catalytic sites

    Energy Technology Data Exchange (ETDEWEB)

    Musaev, Djamaladdin G [Chemistry, Emory University; Hill, Craig L [Chemistry, Emory University; Morokuma, Keiji [Chemistry, Emory University

    2014-10-28

    Abstract The central thrust of this integrated experimental and computational research program was to obtain an atomistic-level understanding of the structural and dynamic factors underlying the design of catalysts for water oxidation and selective reductant-free O2-based transformations. The focus was on oxidatively robust polyoxometalate (POM) complexes in which a catalytic active site interacts with proximal metal centers in a synergistic manner. Thirty five publications in high-impact journals arose from this grant. I. Developing an oxidatively and hydrolytically stable and fast water oxidation catalyst (WOC), a central need in the production of green fuels using water as a reductant, has proven particularly challenging. During this grant period we have designed and investigated several carbon-free, molecular (homogenous), oxidatively and hydrolytically stable WOCs, including the Rb8K2[{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]·25H2O (1) and [Co4(H2O)2(α-PW9O34)2]10- (2). Although complex 1 is fast, oxidatively and hydrolytically stable WOC, Ru is neither abundant nor inexpensive. Therefore, development of a stable and fast carbon-free homogenous WOC, based on earth-abundant elements became our highest priority. In 2010, we reported the first such catalyst, complex 2. This complex is substantially faster than 1 and stable under homogeneous conditions. Recently, we have extended our efforts and reported a V2-analog of the complex 2, i.e. [Co4(H2O)2(α-VW9O34)2]10- (3), which shows an even greater stability and reactivity. We succeeded in: (a) immobilizing catalysts 1 and 2 on the surface of various electrodes, and (b) elucidating the mechanism of O2 formation and release from complex 1, as well as the Mn4O4L6 “cubane” cluster. We have shown that the direct O-O bond formation is the most likely pathway for O2 formation during water oxidation catalyzed by 1. II. Oxo transfer catalysts that contain two proximal and synergistically interacting redox active metal

  8. Controlling the shape and gap width of silicon electrodes using local anodic oxidation and anisotropic TMAH wet etching

    International Nuclear Information System (INIS)

    Rouhi, Jalal; Mahmud, Shahrom; Naderi, Nima; Abdullah, Mat Johar; Hutagalung, Sabar Derita; Kakooei, Saeid

    2012-01-01

    A simple method for fabricating silicon electrodes with various shapes and gap widths was designed using the special properties of anisotropic tetramethylammonium hydroxide (TMAH) wet etching and local anodic oxidation (LAO). A statistical system was used for the optimization of the parameters of the LAO process to facilitate a better understanding and precise analysis of the process. Analyses of the interaction effects among the significant factors of LAO showed that the relative humidity and applied voltage were interdependent. They had the strongest interaction effect on the dimensions of the oxide mask. TMAH with a concentration of 25% was used as an etchant solution in (1 0 0) silicon with a rectangular oxide mask. The observed undercutting at convex corners, tip shape of emitters and gap widths of electrodes were exactly consistent with theoretical studies. Combination of the LAO method and anisotropic TMAH wet etching was successfully used to fabricate Si nano-gap electrodes. This fabrication method of sharp and round tip emitters was simple, controllable and faster than common techniques. These results indicate that the method can be a new approach for studying the electrical properties of nano-gap electrodes. (paper)

  9. One pot in situ growth of gold nanoparticles on amine-modified graphene oxide and their high catalytic properties

    Science.gov (United States)

    Ju, Yuyun; Li, Xi; Feng, Jie; Ma, Yanhua; Hu, Jing; Chen, Xingguo

    2014-10-01

    In this work, one pot strategy was proposed for in situ growth of Au nanoparticles (Au NPs) on the surface of amine-modified graphene oxide (GO@NH2) nanosheets. Au NPs were generated via an in situ reduction of Au3+ by Cu+ which was linked to the surface of GO@NH2 nanosheets through inorganic grafting. The initial Au NPs then served as seed for subsequent particle growth. The as-obtained GO@NH2-Au nanocomposites (GO@NH2-Au NCs) exhibited high catalytic activity for the degradation of 4-nitrophenol, which was a refractory pollutant that occur in industrial waste water. The catalytic efficiency was examined by turnover frequency (TOF). It was calculated to be 595 h-1, which was higher than that of other Au catalysts. Furthermore, the as-prepared catalyst showed high cycle stabilization during the catalytic reduction.

  10. Oriented Decoration in Metal-Functionalized Ordered Mesoporous Silicas and Their Catalytic Applications in the Oxidation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Shijian Zhou

    2018-02-01

    Full Text Available Ordered mesoporous silicas (OMSs attract considerable attention due to their advanced structural properties. However, for the pristine silica materials, the inert property greatly inhibits their catalytic applications. Thus, to contribute to the versatile surface of OMSs, different metal active sites, including acidic/basic sites and redox sites, have been introduced into specific locations (mesoporous channels and framework of OMSs and the metal-functionalized ordered mesoporous silicas (MOMSs show great potential in the catalytic applications. In this review, we first present the categories of metal active sites. Then, the synthesized processes of MOMSs are thoroughly discussed, in which the metal active sites would be introduced with the assistance of organic groups into the specific locations of OMSs. In addition, the structural morphologies of OMSs are elaborated and the catalytic applications of MOMSs in the oxidation of aromatic compounds are illustrated in detail. Finally, the prospects for the future development in this field are proposed.

  11. Catalytic Oxidation of Benzophenone Hydrazone with Alumina-supported KMnO{sub 4} under Oxygen Atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hyeok; Ko, Kwang Youn [Ajou University, Suwon (Korea, Republic of)

    2006-02-15

    KMnO{sub 4}/alumina reagent, which is cheap and environmentally safe, can serve as a catalytic oxidant under O{sub 2} atmosphere for the oxidation of benzophenone hydrazone. To the best of our knowledge, the present works are the first example where KMnO{sub 4}/alumina reagent acts as a catalytic oxidant under O{sub 2} atmosphere. Diphenyldiazomethane (Ph{sub 2}CN{sub 2}) is widely used for the protection of carboxylic acids by conversion to their diphenylmethyl (dpm) esters since dpm group can be easily deprotected by mild acidic condition or hydrogenolysis, especially in the field of b-lactams and peptides. Diphenyldiazomethane has been prepared by the oxidation of benzophenone hydrazone with reagents such as active manganese dioxide, mercuric oxide, peracetic acid, iodosobenzene diacetate or OXONE. However, some methods suffer from a disadvantage such as toxic nature of reagent, strong oxidative conditions or incompatibility with certain functional groups. For example, OXONE may not be employed for the in situ protection of carboxylic acid containing sulfide group due to the possibility of the concomitant oxidation of sulfide group.

  12. Synthesis, Characterization, and Relative Study on the Catalytic Activity of Zinc Oxide Nanoparticles Doped MnCO3, –MnO2, and –Mn2O3 Nanocomposites for Aerial Oxidation of Alcohols

    OpenAIRE

    Assal, Mohamed E.; Kuniyil, Mufsir; Shaik, Mohammed Rafi; Khan, Mujeeb; Al-Warthan, Abdulrahman; Siddiqui, Mohammed Rafiq H.; Adil, Syed Farooq

    2017-01-01

    Zinc oxide nanoparticles doped manganese carbonate catalysts [X% ZnOx–MnCO3] (where X = 0–7) were prepared via a facile and straightforward coprecipitation procedure, which upon different calcination treatments yields different manganese oxides, that is, [X% ZnOx–MnO2] and [X% ZnOx–Mn2O3]. A comparative catalytic study was conducted to evaluate the catalytic efficiency between carbonates and oxides for the selective oxidation of secondary alcohols to corresponding ketones using molecular oxyg...

  13. [Synergetic effects of silicon carbide and molecular sieve loaded catalyst on microwave assisted catalytic oxidation of toluene].

    Science.gov (United States)

    Wang, Xiao-Hui; Bo, Long-Li; Liu, Hai-Nan; Zhang, Hao; Sun, Jian-Yu; Yang, Li; Cai, Li-Dong

    2013-06-01

    Molecular sieve loaded catalyst was prepared by impregnation method, microwave-absorbing material silicon carbide and the catalyst were investigated for catalytic oxidation of toluene by microwave irradiation. Research work examined effects of silicon carbide and molecular sieve loading Cu-V catalyst's mixture ratio as well as mixed approach changes on degradation of toluene, and characteristics of catalyst were measured through scanning electron microscope, specific surface area test and X-ray diffraction analysis. The result showed that the fixed bed reactor had advantages of both thermal storage property and low-temperature catalytic oxidation when 20% silicon carbide was filled at the bottom of the reactor, and this could effectively improve the utilization of microwave energy as well as catalytic oxidation efficiency of toluene. Under microwave power of 75 W and 47 W, complete-combustion temperatures of molecular sieve loaded Cu-V catalyst and Cu-V-Ce catalyst to toluene were 325 degrees C and 160 degrees C, respectively. Characteristics of the catalysts showed that mixture of rare-earth element Ce increased the dispersion of active components in the surface of catalyst, micropore structure of catalyst effectively guaranteed high adsorption capacity for toluene, while amorphous phase of Cu and V oxides increased the activity of catalyst greatly.

  14. A comparative study of metal oxide and sulfate catalysts for selective catalytic reduction of NO with NH3.

    Science.gov (United States)

    Zhu, Lin; Zhong, Zhaoping; Yang, Han; Wang, Chunhua

    2017-05-01

    The properties and characteristics of metal oxide and sulfate catalysts with different active elements for selective catalytic reduction of NO with NH 3 were investigated. Cerium-based oxide catalyst showed the widest temperature window for NO x removal and manganese-based oxide catalyst exhibited the best catalytic performance at low temperature. For all the catalysts, the SCR activities at low temperature were directly related with the redox abilities of catalysts. The existence of sulfate groups inhibited the redox abilities of active species for sulfate catalysts compared with the metal oxide catalysts. The catalytic activities of CeWTi-S and MnWTi-S were seriously decreased in contrast to CeWTi-N and MnWTi-N. The temperature window of CuWTi-S was shifted toward higher temperature comparing with CuWTi-N. The FeWTi-N and FeWTi-S catalysts both showed high NO x conversion in the temperature range between 300°C and 400°C and N 2 O concentrations for iron-based samples were least among the same kind of catalysts. The abundance of acid sites and weak stability of surface sulfate groups for iron- and copper-based sulfate catalysts might be the main reasons accounting for the better NO x conversion in the medium-temperature range.

  15. Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lingzhi; Wei, Wei; Manke, Jeff; Vazquez, Arturo; Thompson, Jeff; Thompson, Mark

    2011-05-28

    requirement for commercial deployment of biomass-based power/heat co-generation and biofuels production. There are several commonly used syngas clean-up technologies: (1) Syngas cooling and water scrubbing has been commercially proven but efficiency is low and it is only effective at small scales. This route is accompanied with troublesome wastewater treatment. (2) The tar filtration method requires frequent filter replacement and solid residue treatment, leading to high operation and capital costs. (3) Thermal destruction typically operates at temperatures higher than 1000oC. It has slow kinetics and potential soot formation issues. The system is expensive and materials are not reliable at high temperatures. (4) In-bed cracking catalysts show rapid deactivation, with durability to be demonstrated. (5) External catalytic cracking or steam reforming has low thermal efficiency and is faced with problematic catalyst coking. Under this program, catalytic partial oxidation (CPO) is being evaluated for syngas tar clean-up in biomass gasification. The CPO reaction is exothermic, implying that no external heat is needed and the system is of high thermal efficiency. CPO is capable of processing large gas volume, indicating a very compact catalyst bed and a low reactor cost. Instead of traditional physical removal of tar, the CPO concept converts tar into useful light gases (eg. CO, H2, CH4). This eliminates waste treatment and disposal requirements. All those advantages make the CPO catalytic tar conversion system a viable solution for biomass gasification downstream gas clean-up. This program was conducted from October 1 2008 to February 28 2011 and divided into five major tasks. - Task A: Perform conceptual design and conduct preliminary system and economic analysis (Q1 2009 ~ Q2 2009) - Task B: Biomass gasification tests, product characterization, and CPO tar conversion catalyst preparation. This task will be conducted after completing process design and system economics analysis

  16. Nanocrystalline Mn-Mo-Ce Oxide Anode Doped Rare Earth Ce and Its Selective Electro-catalytic Performance

    Directory of Open Access Journals (Sweden)

    SHI Yan-hua

    2017-09-01

    Full Text Available The anode oxide of nanocrystalline Mn-Mo-Ce was prepared by anode electro-deposition technology, and its nanostructure and selective electro-catalytic performance were investigated using the SEM, EDS, XRD, HRTEM, electrochemical technology and oxygen evolution efficiency testing. Furthermore, the selective electro-catalytic mechanism of oxygen evolution and chlorine depression was discussed. The results show that the mesh-like nanostructure Mn-Mo-Ce oxide anode with little cerium doped is obtained, and the oxygen evolution efficiency for the anode in the seawater is 99.51%, which means a high efficiency for the selective electro-catalytic for the oxygen evolution. Due to the structural characteristics of γ-MnO2, the OH- ion is preferentially absorbed, while Cl- absorption is depressed. OH- accomplishes the oxygen evolution process during the valence transition electrocatalysis of Mn4+/Mn3+, completing the selective electro-catalysis process. Ce doping greatly increases the reaction activity, and promotes the absorption and discharge; the rising interplanar spacing between active (100 crystalline plane promotes OH- motion and the escape of newborn O2, so that the selective electro-catalytic property with high efficient oxygen evolution and chlorine depression is achieved from the nano morphology effect.

  17. Catalytic Oxidation of Vanillyl Alcohol Using FeMCM-41 Nanoporous Tubular Reactor

    Science.gov (United States)

    Elamathi, P.; Kolli, Murali Krishna; Chandrasekar, G.

    Iron containing nanoporous MCM-41 (FeMCM-41) with different Si/Fe ratios of 50, 100 and 150 was synthesized by hydrothermal synthesis process. The materials obtained from hydrothermal synthesis were characterized by various physico chemical techniques such as XRD, N2 adsorption, DR UV-vis, EPR and FTIR spectroscopy. XRD analyses of FeMCM-41 materials confirmed the presence of well-ordered crystalline structure. N2 isotherm of FeMCM-41 materials showed type IV adsorption isotherm. EPR and DR UV-vis analysis of FeMCM-41 samples indicates the presence of high tetrahedral coordination at the Si/Fe ratios of 100 and 150. The catalytic performance of FeMCM-41 nano tubular reactor was tested in the liquid phase oxidation of vanillyl alcohol into vanillin using H2O2 (50wt% in water). The reaction products were analyzed by gas chromatography in DB-5 capillary column with flame ionization detector. The products were confirmed by 1H NMR, 13C NMR and LC-Mass spectroscopy. The maximum conversion of vanillyl alcohol (85%) and selectivity towards vanillin (82%) were observed using the catalyst FeMCM-41(100) in 30min at 60∘C. The influence of reaction temperature, reaction time, reactants molar ratio, Si/Fe ratio and amount of catalyst were investigated.

  18. Selective catalytic reduction of nitrogen oxides over a modified silicoaluminophosphate commercial zeolite.

    Science.gov (United States)

    Petitto, Carolina; Delahay, Gérard

    2018-03-01

    Nitrogen oxides (NO x : NO, NO 2 ) are a concern due to their adverse health effects. Diesel engine transport sector is the major emitter of NO x . The regulations have been strengthened and to comply with them, one of the two methods commonly used is the selective catalytic reduction of NO x by NH 3 (NH 3 -SCR), NH 3 being supplied by the in-situ hydrolysis of urea. Efficiency and durability of the catalyst for this process are highly required. Durability is evaluated by hydrothermal treatment of the catalysts at temperature above 800°C. In this study, very active catalysts for the NH 3 -SCR of NO x were prepared by using a silicoaluminophosphate commercial zeolite as copper host structure. Characterizations by X-ray diffraction (XRD), scanning electron microscopy (SEM) and temperature programmed desorption of ammonia (NH 3 -TPD) showed that this commercial zeolite was hydrothermally stable up to 850°C and, was able to retain some structural properties up to 950°C. After hydrothermal treatment at 850°C, the NO x reduction efficiency into NH 3 -SCR depends on the copper content. The catalyst with a copper content of 1.25wt.% was the most active. The difference in activity was much more important when using NO than the fast NO/NO 2 reaction mixture. Copyright © 2017. Published by Elsevier B.V.

  19. Environmental and economic evaluation of selective non-catalytic reduction of nitrogen oxides

    Science.gov (United States)

    Parchevskii, V. M.; Shchederkina, T. E.; Proshina, A. O.

    2017-11-01

    There are two groups of atmosphere protecting measures: technology (primary) and treatment (secondary). When burning high-calorie low-volatile brands of coals in the furnaces with liquid slag removal to achieve emission standards required joint use of these two methods, for example, staged combustion and selective non-catalytic reduction recovery (SNCR). For the economically intelligent combination of these two methods it is necessary to have information not only about the environmental performance of each method, but also the operating costs per unit of reduced emission. The authors of this report are made an environmental-economic analysis of SNCR on boiler Π-50P Kashirskaya power station. The obtained results about the dependence of costs from the load of the boiler and the mass emissions of nitrogen oxides then approximates into empirical formulas, is named as environmental and economic characteristics, which is suitable for downloading into controllers and other control devices for subsequent implementation of optimal control of emissions to ensure compliance with environmental regulations at the lowest cost at any load of the boiler.

  20. Co2 Effect on the Catalytic Behavior of Alumina Supported Mixed Oxides

    International Nuclear Information System (INIS)

    Aouissi, A.; Aldhayan, D.; Mahdjoubi, H.A.

    2005-01-01

    The industrial catalysts for the reforming reactions suffer from coke which accelerates their deactivation. One of the remedy is to adjust the partial pressure of hydrogen. This work is focused on the work of CO2 on the total conversion of n-heptane and on its cyclization reaction into cyclohexane. The tests were carried out over a series of bifunctional catalysts constituted of mixed oxides supported on alumina. The catalysts, which are prepared by co-precipitation method, were characterized by means of atomic absorption spectroscopy and Fourier-transformed infrared spectroscopy (FTIR). Catalytic tests were carried out with and without carbon dioxide under atmospheric pressure. Results indicate that carbon dioxide influences the total activity of the catalysts and selectivity to form cyclohexane. So that, at 250C, the total conversion was high but the cyclohexane selectivity was low. In the range 250C-450C, results indicate an increase of both conversion and selectivity due to temperature increase, but fast deactivation was observed due to coke formation which can be removed by CO2 at higher temperatures. (author)

  1. Investigation into catalytic properties of the second group metal molybdates in acrolein oxidation

    International Nuclear Information System (INIS)

    Yakubovich, M.N.; Gorochovatskij, Ya.B.; Alchazov, T.G.; Adzhamov, K.Yu.

    1976-01-01

    The catalytic properties are investigated of magnesium, calcium, strontium, zinc, cadmium, and barium molybdates. Temperature dependence of catalysts activity is studied. At temperature over 370 deg C the activity becomes higher in the series ZnMoO 4 -CaMoO 4 -MgMoO 4 -SrMoO 4 . A sharp fall in the activity is observed for BaMoO 4 , and CdMoO 4 . SrMoO 4 is the most active catalyst. The activity series have been made up with respect to the formation of acrylic acid: MgMoO 4 >ZnMoO 4 >CaMoO 4 , and also with respect to the formation of the deep oxidation products: SrMoO 4 >CaMoO 4 >MgMoO 4 >ZnMoO 4 . The dependence of selectivity with respect to the formation of acrylic acid and the sum of the acids on temperature is provided

  2. Hierarchical nano-on-micro copper with enhanced catalytic activity towards electro-oxidation of hydrazine

    Science.gov (United States)

    Yan, Xiaodong; Liu, Yuan; Scheel, Kyle R.; Li, Yong; Yu, Yunhua; Yang, Xiaoping; Peng, Zhonghua

    2018-01-01

    The electrochemical properties of catalyst materials are highly dependent on the materials structure and architecture. Herein, nano-on-micro Cu electrodes are fabricated by growing Cu microcrystals on Ni foam substrate, followed by introducing Cu nanocrystals onto the surface of the Cu microcrystals. The introduction of Cu nanocrystals onto the surface of Cu microcrystals is shown to dramatically increase the electrochemically active surface area and thus significantly enhances the catalytic activity of the catalyst electrode towards electro-oxidation of hydrazine. The onset potential (-1.04 V vs. Ag/AgCl) of the nano-on-micro Cu electrode is lower than those of the reported Cu-based catalysts under similar testing conditions, and a current density of 16 mA·cm-2, which is 2 times that of the microsized Cu electrode, is achieved at a potential of -0.95 V vs. Ag/AgCl. Moreover, the nano-on-micro Cu electrode demonstrates good long-term stability.

  3. [In situ diffuse reflectance FTIR spectroscopy characterization of titanium silicalite-1 catalytic oxidization of styrene].

    Science.gov (United States)

    Zhang, Ping; Wang, Le-fu; Chen, Yong-heng

    2007-05-01

    The Stability of framework of titanium silicalite-1 (TS-1) was investigated by high temperature diffuse reflectance FT-IR spectroscopy (DRIFTS), and the results showed that the 960 cm(-1) peak belonging to Ti-framework was stabilized at 673 K, but the two peaks belonging to framework shifted to lower frequencies by about 13 cm(-1) at 673 K. The effect on the framework after H2O2 adsorption was discussed. The results showed that the 960 cm(-1) peak lowered and shifted to high frequencies by about 11 cm(-1), but it recovered with vacuum or heating up. It was suggested that the 960 cm(-1) peak characterizes Ti==O, and this explained why the 960 cm(-1) peak shifted to high frequencies well. TS-1 catalytic oxidization of styrene was investigated by in situ DRIFTS. The reaction process was detected and phenyl aldehyde was the main product. Based on in situ analysis, it was proposed that H2O2 was adsorbed on Ti in framework of TS-1 to form active center.

  4. System and method for selective catalytic reduction of nitrogen oxides in combustion exhaust gases

    Science.gov (United States)

    Sobolevskiy, Anatoly; Rossin, Joseph A

    2014-04-08

    A multi-stage selective catalytic reduction (SCR) unit (32) provides efficient reduction of NOx and other pollutants from about 50-550.degree. C. in a power plant (19). Hydrogen (24) and ammonia (29) are variably supplied to the SCR unit depending on temperature. An upstream portion (34) of the SCR unit catalyzes NOx+NH.sub.3 reactions above about 200.degree. C. A downstream portion (36) catalyzes NOx+H.sub.2 reactions below about 260.degree. C., and catalyzes oxidation of NH.sub.3, CO, and VOCs with oxygen in the exhaust above about 200.degree. C., efficiently removing NOx and other pollutants over a range of conditions with low slippage of NH.sub.3. An ammonia synthesis unit (28) may be connected to the SCR unit to provide NH.sub.3 as needed, avoiding transport and storage of ammonia or urea at the site. A carbonaceous gasification plant (18) on site may supply hydrogen and nitrogen to the ammonia synthesis unit, and hydrogen to the SCR unit.

  5. Catalytic and electrochemical behaviour of solid oxide fuel cell operated with simulated-biogas mixtures

    Science.gov (United States)

    Dang-Long, T.; Quang-Tuyen, T.; Shiratori, Y.

    2016-06-01

    Being produced from organic matters of wastes (bio-wastes) through a fermentation process, biogas mainly composed of CH4 and CO2 and can be considered as a secondary energy carrier derived from solar energy. To generate electricity from biogas through the electrochemical process in fuel cells is a state-of-the-art technology possessing higher energy conversion efficiency without harmful emissions compared to combustion process in heat engines. Getting benefits from high operating temperature such as direct internal reforming ability and activation of electrochemical reactions to increase overall system efficiency, solid oxide fuel cell (SOFC) system operated with biogas becomes a promising candidate for distributed power generator for rural applications leading to reductions of environmental issues caused by greenhouse effects and bio-wastes. CO2 reforming of CH4 and electrochemical oxidation of the produced syngas (H2-CO mixture) are two main reaction processes within porous anode material of SOFC. Here catalytic and electrochemical behavior of Ni-ScSZ (scandia stabilized-zirconia) anode in the feed of CH4-CO2 mixtures as simulated-biogas at 800 °C were evaluated. The results showed that CO2 had strong influences on both reaction processes. The increase in CO2 partial pressure resulted in the decrease in anode overvoltage, although open-circuit voltage was dropped. Besides that, the simulation result based on a power-law model for equimolar CH4-CO2 mixture revealed that coking hazard could be suppressed along the fuel flow channel in both open-circuit and closed-circuit conditions.

  6. Catalytic and electrochemical behaviour of solid oxide fuel cell operated with simulated-biogas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Dang-Long, T., E-mail: 3TE14098G@kyushu-u.ac.jp [Department of Hydrogen Energy Systems, Faculty of Engineering, Kyushu University Motooka 744, Nishiku, Fukuoka, 810-0395 (Japan); Quang-Tuyen, T., E-mail: tran.tuyen.quang.314@m.kyushu-u.ac.jp [International Research Center for Hydrogen Energy, Kyushu University Motooka 744, Nishiku, Fukuoka, 810-0395 (Japan); Shiratori, Y., E-mail: shiratori.yusuke.500@m.kyushu-u.ac.jp [Department of Hydrogen Energy Systems, Faculty of Engineering, Kyushu University Motooka 744, Nishiku, Fukuoka, 810-0395 (Japan); International Research Center for Hydrogen Energy, Kyushu University Motooka 744, Nishiku, Fukuoka, 810-0395 (Japan)

    2016-06-03

    Being produced from organic matters of wastes (bio-wastes) through a fermentation process, biogas mainly composed of CH{sub 4} and CO{sub 2} and can be considered as a secondary energy carrier derived from solar energy. To generate electricity from biogas through the electrochemical process in fuel cells is a state-of-the-art technology possessing higher energy conversion efficiency without harmful emissions compared to combustion process in heat engines. Getting benefits from high operating temperature such as direct internal reforming ability and activation of electrochemical reactions to increase overall system efficiency, solid oxide fuel cell (SOFC) system operated with biogas becomes a promising candidate for distributed power generator for rural applications leading to reductions of environmental issues caused by greenhouse effects and bio-wastes. CO{sub 2} reforming of CH{sub 4} and electrochemical oxidation of the produced syngas (H{sub 2}–CO mixture) are two main reaction processes within porous anode material of SOFC. Here catalytic and electrochemical behavior of Ni-ScSZ (scandia stabilized-zirconia) anode in the feed of CH{sub 4}–CO{sub 2} mixtures as simulated-biogas at 800 °C were evaluated. The results showed that CO{sub 2} had strong influences on both reaction processes. The increase in CO{sub 2} partial pressure resulted in the decrease in anode overvoltage, although open-circuit voltage was dropped. Besides that, the simulation result based on a power-law model for equimolar CH{sub 4}−CO{sub 2} mixture revealed that coking hazard could be suppressed along the fuel flow channel in both open-circuit and closed-circuit conditions.

  7. Removal of Selected Heavy Metals from Green Mussel via Catalytic Oxidation

    International Nuclear Information System (INIS)

    Faizuan Abdullah; Abdull Rahim Mohd Yusoff; Wan Azelee Wan Abu Bakar; Razali Ismail; Dwi Priya Hadiyanto

    2014-01-01

    Perna viridis or green mussel is a potentially an important aquaculture product along the South Coast of Peninsular Malaysia especially Johor Straits. As the coastal population increases at tremendous rate, there was significant effect of land use changes on marine communities especially green mussel, as the heavy metals input to the coastal area also increase because of anthropogenic activities. Heavy metals content in the green mussel exceeded the Malaysian Food Regulations (1985) and EU Food Regulations (EC No: 1881/ 2006). Sampling was done at Johor Straits from Danga to Pendas coastal area for green mussel samples. This research introduces a catalytic oxidative technique for demetallisation in green mussel using edible oxidants such as peracetic acid (PAA) enhanced with alumina beads supported CuO, Fe 2 O 3 , and ZnO catalysts. The lethal dose of LD 50 to rats of PAA is 1540 mg kg -1 was verified by National Institute of Safety and Health, United State of America. The best calcination temperature for the catalysts was at 1000 degree Celsius as shown in the X-Ray Diffraction (XRD), Nitrogen Adsorption (BET surface area) and Field Emission Scanning Electron Microscopy (FESEM) analyses. The demetallisation process in green mussel was done successfully using only 100 mgL -1 PAA and catalyzed with Fe 2 O 3 / Al 2 O 3 for up to 90 % mercury (Hg) removal. Using PAA with only 1 hour of reaction time, at room temperature (30-35 degree Celsius), pH 5-6 and salinity of 25-28 ppt, 90 % lead (Pb) was removed from life mussel without catalyst. These findings have a great prospect for developing an efficient and practical method for post-harvesting heavy metals removal in green mussel. (author)

  8. XPS and contact angle study of cotton surface oxidation by catalytic bleaching, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 296

    NARCIS (Netherlands)

    Topalovic, T.; Nierstrasz, Vincent; Bautista, J.; Bautista, Lorenzo; Jocic, Dragan; Jocic, D.; Navarro, Antonio; Warmoeskerken, Marinus

    2007-01-01

    Surface chemistry and wetting properties of cotton fibres as affected by catalytic bleaching have been investigated. Two types of cotton fabric have been analysed: the regular and a model cotton fabric. In the regular – double scoured cotton fabric, cellulose was contaminated with both non-removable

  9. Synergism between anodic oxidation with diamond anodes and heterogeneous catalytic photolysis for the treatment of pharmaceutical pollutants

    Directory of Open Access Journals (Sweden)

    Juan M. Peralta-Hernández

    2016-03-01

    Full Text Available The mineralization of diclofenac and acetaminophen has been studied by single anodic oxidation with boron-doped diamond (AO-BDD using an undivided electrolysis cell, by single heterogeneous catalytic photolysis with titanium dioxide (HCP-TiO2 and by the combination of both advanced oxidation processes. The results show that mineralization can be obtained with either single technology. The type of functional groups of the pollutant does not influence the results of the single AO-BDD process, but it has a significant influence on the results obtained with HCP-TiO2. A clear synergistic effect appears when both processes are combined showing improvements in the oxidation rate of more than 50% for diclofenac and nearly 200% for acetaminophen at the highest current exerted. Results obtained are explained in terms of the production of oxidants on the surface of BDD (primarily peroxodisulfate and the later homogeneous catalytic light decomposition of these oxidants in the bulk. This mechanism is consistent with the larger improvement observed at higher current densities, for which the production of oxidants is promoted.

  10. A Broad Spectrum Catalytic System for Removal of Toxic Organics from Water by Deep Oxidation - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ayusman

    2000-12-01

    A most pressing need for the DOE environmental management program is the removal of toxic organic compounds present in groundwater and soil at specific DOE sites. While several remediation procedures have been proposed, they suffer from one or more drawbacks. The objective of the present research was to develop new catalytic procedures for the removal of toxic organic compounds from the environment through their deep oxidation to harmless products. In water, metallic palladium was found to catalyze the deep oxidation of a wide variety of toxic organic compounds by dioxygen at 80-90 C in the presence of carbon monoxide or dihydrogen. Several classes of organic compounds were examined: benzene, phenol and substituted phenols, nitro and halo organics, organophosphorus, and organosulfur compounds. In every case, deep oxidation to carbon monoxide, carbon dioxide, and water occurred in high yields, resulting in up to several hundred turnovers over a 24 hour period. For substrates susceptible to hydrogenation, the conversions were generally high with dihydrogen than with carbon monoxide. It is clear from the results obtained that we have discovered an exceptionally versatile catalytic system for the deep oxidation of toxic organic compounds in water. This system possesses several attractive features not found simultaneously in other reported systems. These are (a) the ability to directly utilize dioxygen as the oxidant, (b) the ability to carry out the deep oxidation of a particularly wide range of functional organics, and (c) the ease of recovery of the catalyst by simple filtration.

  11. Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide.

    Science.gov (United States)

    Wang, Wenting; Xu, Guiyun; Cui, Xinyan Tracy; Sheng, Ge; Luo, Xiliang

    2014-08-15

    Significantly enhanced catalytic activity of a nanocomposite composed of conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) doped with graphene oxide (GO) was achieved through a simple electrochemical reduction process. The nanocomposite (PEDOT/GO) was electrodeposited on an electrode and followed by electrochemical reduction, and the obtained reduced nanocomposite (PEDOT/RGO) modified electrode exhibited lowered electrochemical impedance and excellent electrocatalytic activity towards the oxidation of dopamine. Based on the excellent catalytic property of PEDOT/RGO, an electrochemical sensor capable of sensitive and selective detection of DA was developed. The fabricated sensor can detect DA in a wide linear range from 0.1 to 175μM, with a detection limit of 39nM, and it is free from common interferences such as uric acid and ascorbic acid. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Wet oxidation treatment of organic household waste enriched with wheat straw for simultaneous saccharification and fermentation into ethanol

    DEFF Research Database (Denmark)

    Lissens, G.; Klinke, H.B.; Verstraete, W.

    2004-01-01

    Organic municipal solid waste enriched with wheat straw was subjected to wet-oxidation as a pre-treatment for subsequent enzymatic conversion and fermentation into bio-ethanol. The effect of tempera (185-195degrees C), oxygen pressure (3-12) and sodium carbonate (0-2 g l(-1)) addition on enzymatic...... conversion efficiency during SSF was 50, 62 65 and 70% for a total enzyme loading of 5, 10, 15 and 25 FPU g(-1) DS, respectively. Hence, this study shows that wet oxidation is a suitable pre-treatment for the conversion of organic waste carbohydrates into ethanol and that compatible conversion yields (60......-toxic carboxylic acids mainly (2.2-4.5 % on DS basis). Simultaneous saccharification and fermentation (SSF) of the treated waste at 10% DS by Saccharomyces cerevisae yielded average ethanol concentrations of 16.5 to 22 g l(-1) for enzyme loadings of 5 and 25 FPU g(-1) DS, respectively. The cellulose to ethanol...

  13. Wet oxidation pre-treatment of woody yard waste: Parameter optimization and enzymatic digestibility for ethanol production

    DEFF Research Database (Denmark)

    Lissens, G.; Klinke, H.B.; Verstraete, W.

    2004-01-01

    Woody yard waste with high lignin content (22% of dry matter (DM)) was subjected to wet oxidation pre-treatment for subsequent enzymatic conversion and fermentation. The effects of temperature (185-200 degreesC), oxygen pressure (3-12 bar) and addition of sodium carbonate (0-3.3 g per 100 g DM...... biomass) on enzymatic cellulose and hemicellulose (xylan) convertibility were studied. The enzymatic cellulose conversion was highest after wet oxidation for 15 min at 185 degreesC with addition of 12 bars of oxygen and 3.3 g Na2CO3 per 100g waste. At 25 FPU (filter paper unit) cellulase g(-1) DM added......, 58-67% and 80-83% of the cellulose and hemicellulose contained in the waste were converted into monomeric sugars. The cellulose conversion efficiency during a simultaneous saccharification and fermentation (SSF) assay at 10% DM was 79% for the highest enzyme loading (25 FPU g(-1) DM) while 69...

  14. Fabrication of ammonium perchlorate/copper-chromium oxides core-shell nanocomposites for catalytic thermal decomposition of ammonium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Eslami, Abbas, E-mail: eslami@umz.ac.ir [Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O.Box 47416-95447, Babolsar (Iran, Islamic Republic of); Juibari, Nafise Modanlou [Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O.Box 47416-95447, Babolsar (Iran, Islamic Republic of); Hosseini, Seyed Ghorban [Department of Chemistry, Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran (Iran, Islamic Republic of)

    2016-09-15

    The ammonium perchlorate/Cu(II)-Cr(III)-oxides(AP/Cu-Cr-O) core-shell nanocomposites were in-situ prepared by deposition of copper and chromium oxides on suspended ammonium perchlorate particles in ethyl acetate as solvent. The results of differential scanning calorimetery (DSC) and thermal gravimetric analysis (TGA) experiments showed that the nanocomposites have excellent catalytic effect on the thermal decomposition of AP, so that the released heat increases up to about 3-fold over initial values, changing from 450 J/g for pure AP to 1510 J/g for most appropriate mixture. For better comparison, single metal oxide/AP core-shell nanocomposite have also been prepared and the results showed that they have less catalytic effect respect to mixed metal oxides system. Scanning electron microscopy (SEM) results revealed homogenous deposition of nanoparticles on the surface of AP and fabrication of core-shell structures. The kinetic parameters of thermal decomposition of both pure AP and AP/Cu-Cr-O samples have been calculated by Kissinger method and the results showed that the values of pre-exponential factor and activation energy are higher for AP/Cu-Cr-O nanocomposite. The better catalytic effect of Cu-Cr-O nanocomposites is probably attributed to the synergistic effect between Cu{sup 2+} and Cr{sup 3+} in the nanocomposites, smaller particle size and more crystal defect. - Highlights: • The Cu-Cr-O nanoparticles were synthesized by chemical liquid deposition method. • Then, the AP/Cu-Cr-O core-shell nanocomposites were prepared. • The core-shell samples showed high catalytic activity for AP decomposition. • Thermal decomposition of samples occurs at lower temperature range.

  15. Fabrication of ammonium perchlorate/copper-chromium oxides core-shell nanocomposites for catalytic thermal decomposition of ammonium perchlorate

    International Nuclear Information System (INIS)

    Eslami, Abbas; Juibari, Nafise Modanlou; Hosseini, Seyed Ghorban

    2016-01-01

    The ammonium perchlorate/Cu(II)-Cr(III)-oxides(AP/Cu-Cr-O) core-shell nanocomposites were in-situ prepared by deposition of copper and chromium oxides on suspended ammonium perchlorate particles in ethyl acetate as solvent. The results of differential scanning calorimetery (DSC) and thermal gravimetric analysis (TGA) experiments showed that the nanocomposites have excellent catalytic effect on the thermal decomposition of AP, so that the released heat increases up to about 3-fold over initial values, changing from 450 J/g for pure AP to 1510 J/g for most appropriate mixture. For better comparison, single metal oxide/AP core-shell nanocomposite have also been prepared and the results showed that they have less catalytic effect respect to mixed metal oxides system. Scanning electron microscopy (SEM) results revealed homogenous deposition of nanoparticles on the surface of AP and fabrication of core-shell structures. The kinetic parameters of thermal decomposition of both pure AP and AP/Cu-Cr-O samples have been calculated by Kissinger method and the results showed that the values of pre-exponential factor and activation energy are higher for AP/Cu-Cr-O nanocomposite. The better catalytic effect of Cu-Cr-O nanocomposites is probably attributed to the synergistic effect between Cu 2+ and Cr 3+ in the nanocomposites, smaller particle size and more crystal defect. - Highlights: • The Cu-Cr-O nanoparticles were synthesized by chemical liquid deposition method. • Then, the AP/Cu-Cr-O core-shell nanocomposites were prepared. • The core-shell samples showed high catalytic activity for AP decomposition. • Thermal decomposition of samples occurs at lower temperature range.

  16. N2O Catalytic Decomposition - Effect of Pelleting Pressure on Activity of Co-Mn-Al Mixed Oxide Catalyst

    Czech Academy of Sciences Publication Activity Database

    Galejová, K.; Obalová, L.; Jirátová, Květa; Pacultová, K.; Kovanda, F.

    2009-01-01

    Roč. 63, č. 2 (2009), s. 172-179 ISSN 0366-6352. [International Conference of the Slovak-Society-of-Chemical-Engineering /35./. Tatranske Matliare, 26.05.2008-30.05.2008] R&D Projects: GA ČR GA104/07/1400 Institutional research plan: CEZ:AV0Z40720504 Keywords : pelleting pressure * nitrous oxide * catalytic decomposition Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.791, year: 2009

  17. Electrochemical behaviour of metal hexacyanoferrate converted to metal hydroxide films immobilized on indium tin oxide electrodes-Catalytic ability towards alcohol oxidation in alkaline medium

    International Nuclear Information System (INIS)

    Ganesh, V.; Latha Maheswari, D.; Berchmans, Sheela

    2011-01-01

    Graphical abstract: - Abstract: In this work, we demonstrate a simple method to modify indium tin oxide (ITO) electrodes in order to perform electro-catalytic oxidation of alcohols in alkaline medium. Metal hexacyanoferrate (MHCF) films such as nickel hexacyanoferrate (NiHCF) and copper hexacyanoferrate (CuHCF) were successfully immobilized on ITO electrodes using an electrochemical method. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were employed to characterize the structural and morphological aspects of MHCF films. Cyclic voltammetry (CV) was used to study the redox properties and to determine the surface coverage of these films on ITO electrodes. Electrochemical potential cycling was carried out in alkaline medium in order to alter the chemical structure of these films and convert to their corresponding metal hydroxide films. SEM and XPS were performed to analyze the structure and morphology of metal hydroxide modified electrodes. Electro-catalytic oxidation ability of these films towards methanol and ethanol in alkaline medium was investigated using CV. From these studies we found that metal hydroxide modified electrodes show a better catalytic performance and good stability for methanol oxidation along with the alleviation of CO poisoning effect. We have obtained an anodic oxidation current density of ∼82 mA cm -2 for methanol oxidation, which is at least 10 fold higher than that of any metal hydroxide modified electrodes reported till date. The onset potential for methanol oxidation is lowered by ∼200 mV compared to other chemically modified electrodes reported. A plausible mechanism was proposed for the alcohol oxidation based on the redox properties of these modified electrodes. The methodology adapted in this work does not contain costlier noble metals like platinum and ruthenium and is economically viable.

  18. Enhanced catalytic stability of lipase immobilized on oxidized and disulfide-rich eggshell membrane for esters hydrolysis and transesterification.

    Science.gov (United States)

    Jiang, Chenyu; Cheng, Chuanchuan; Hao, Mei; Wang, Hongbin; Wang, Ziying; Shen, Cai; Cheong, Ling-Zhi

    2017-12-01

    Eggshell membrane (ESM) is an industrial waste that is available in abundance from food industry. Present study investigated the physicochemical properties of oxidized ESM and compared the efficiency of ESM and oxidized ESM as carrier for Burkholderia cepacia lipase (BCL) used in esters hydrolysis and transesterification. Following oxidation treatment, FTIR analysis and Ellman's assay showed amino acid cysteine in ESM was oxidized to form disulfide bond-containing cystine. In addition, AFM analysis showed ESM which exhibited a highly porous filamentous structure appeared to be coalesce following oxidation treatment. Oxidized ESM also showed reduced porosity (38.67%) in comparison to native ESM (51.65%). BCL were successfully immobilized on oxidized ESM through carrier activation method (enzyme loading of 5.01mg protein/g oxidized ESM). These immobilized lipase demonstrated significantly (Ptransesterification (7.83±0.05) activity for at least 10 consecutive runs. Enhanced catalytic stability of BCL immobilized on oxidized ESM might be due to stabilization of the protein structure in oxidized ESM by disulfide bonds which helped formation of a stable bonding with BCL. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Comparative study of the luminescence of structures with Ge nanocrystals formed by dry and wet oxidation of SiGe films

    International Nuclear Information System (INIS)

    RodrIguez, A; Ortiz, M I; Sangrador, J; RodrIguez, T; Avella, M; Prieto, A C; Torres, A; Jimenez, J; Kling, A; Ballesteros, C

    2007-01-01

    The luminescence emission of structures containing Ge nanocrystals embedded in a dielectric matrix obtained by dry and wet oxidation of polycrystalline SiGe layers has been studied as a function of the oxidation time and initial SiGe layer thickness. A clear relationship between the intensity of the luminescence, the structure of the sample, the formation of Ge nanocrystals and the oxidation process parameters that allows us to select the appropriate process conditions to get the most efficient emission has been established. The evolution of the composition and thickness of the growing oxides and the remaining SiGe layer during the oxidation processes has been characterized using Raman spectroscopy, x-ray diffraction, Fourier-transform infrared spectroscopy, Rutherford backscattering spectrometry and transmission electron microscopy. For dry oxidation, the luminescence appears suddenly, regardless of the initial SiGe layer thickness, when all the Si of the SiGe has been oxidized and the remaining layer of the segregated Ge starts to be oxidized forming Ge nanocrystals. Luminescence is observed as long as Ge nanocrystals are present. For wet oxidation, the luminescence appears from the first stages of the oxidation, and is related to the formation of Ge-rich nanoclusters trapped in the mixed (Si and Ge) growing oxide. A sharp increase of the luminescence intensity for long oxidation times is also observed, due to the formation of Ge nanocrystals by the oxidation of the layer of segregated Ge. For both processes the luminescence is quenched when the oxidation time is long enough to cause the full oxidation of the Ge nanocrystals. The intensity of the luminescence in the dry oxidized samples is about ten times higher than in the wet oxidized ones for equal initial thickness of the SiGe layer

  20. Catalytic Properties of Alumina-Supported Ruthenium, Platinum, and Cobalt Nanoparticles towards the Oxidation of Cyclohexane to Cyclohexanol and Cyclohexanone

    Directory of Open Access Journals (Sweden)

    Ilhem Rekkab-Hammoumraoui

    2018-01-01

    Full Text Available A series of metal-loaded (Ru, Pt, Co alumina catalysts were evaluated for the catalytic oxidation of cyclohexane using tertbutylhydroperoxide (TBHP as oxidant and acetonitrile or acetic acid as solvent. These materials were prepared by the impregnation method and then characterized by Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES, H2 chemisorption, Fourier Transformed Infrared Spectroscopy (FTIR, High-Resolution Transmission Electron Microscopy (HRTEM, and X-ray Diffraction (XRD. All the prepared materials acted as efficient catalysts. Among them, Ru/Al2O3 was found to have the best catalytic activity with enhanced cyclohexane conversion of 36 %, selectivity to cyclohexanol and cyclohexanone of 96 % (57.6 mmol, and cyclohexane turnover frequency (TOF of 288 h-1. Copyright © 2018 BCREC Group. All rights reserved Received: 26th May 2017; Revised: 17th July 2017; Accepted: 18th July 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018 How to Cite: Rekkab-Hammoumraoui, I., Choukchou-Braham, A. (2018. Catalytic Properties of Alumina-Supported Ruthenium, Platinum, and Cobalt Nanoparticles towards the Oxidation of Cyclohexane to Cyclohexanol and Cyclohexanone. Bulletin of Chemical Reaction Engineering & Catalysis, 13(1: 24-36 (doi:10.9767/bcrec.13.1.1226.24-35

  1. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature.

    Science.gov (United States)

    Deng, Dehui; Chen, Xiaoqi; Yu, Liang; Wu, Xing; Liu, Qingfei; Liu, Yun; Yang, Huaixin; Tian, Huanfang; Hu, Yongfeng; Du, Peipei; Si, Rui; Wang, Junhu; Cui, Xiaoju; Li, Haobo; Xiao, Jianping; Xu, Tao; Deng, Jiao; Yang, Fan; Duchesne, Paul N; Zhang, Peng; Zhou, Jigang; Sun, Litao; Li, Jianqi; Pan, Xiulian; Bao, Xinhe

    2015-12-01

    Coordinatively unsaturated (CUS) iron sites are highly active in catalytic oxidation reactions; however, maintaining the CUS structure of iron during heterogeneous catalytic reactions is a great challenge. Here, we report a strategy to stabilize single-atom CUS iron sites by embedding highly dispersed FeN4 centers in the graphene matrix. The atomic structure of FeN4 centers in graphene was revealed for the first time by combining high-resolution transmission electron microscopy/high-angle annular dark-field scanning transmission electron microscopy with low-temperature scanning tunneling microscopy. These confined single-atom iron sites exhibit high performance in the direct catalytic oxidation of benzene to phenol at room temperature, with a conversion of 23.4% and a yield of 18.7%, and can even proceed efficiently at 0°C with a phenol yield of 8.3% after 24 hours. Both experimental measurements and density functional theory calculations indicate that the formation of the Fe═O intermediate structure is a key step to promoting the conversion of benzene to phenol. These findings could pave the way toward highly efficient nonprecious catalysts for low-temperature oxidation reactions in heterogeneous catalysis and electrocatalysis.

  2. Pronounced Size Dependence in Structure and Morphology of Gas-Phase Produced, Partially Oxidized Cobalt Nanoparticles under Catalytic Reaction Conditions.

    Science.gov (United States)

    Bartling, Stephan; Yin, Chunrong; Barke, Ingo; Oldenburg, Kevin; Hartmann, Hannes; von Oeynhausen, Viola; Pohl, Marga-Martina; Houben, Kelly; Tyo, Eric C; Seifert, Sönke; Lievens, Peter; Meiwes-Broer, Karl-Heinz; Vajda, Stefan

    2015-06-23

    It is generally accepted that optimal particle sizes are key for efficient nanocatalysis. Much less attention is paid to the role of morphology and atomic arrangement during catalytic reactions. Here, we unravel the structural, stoichiometric, and morphological evolution of gas-phase produced and partially oxidized cobalt nanoparticles in a broad size range. Particles with diameters between 1.4 and 22 nm generated in cluster sources are size selected and deposited on amorphous alumina (Al2O3) and ultrananocrystalline diamond (UNCD) films. A combination of different techniques is employed to monitor particle properties at the stages of production, exposure to ambient conditions, and catalytic reaction, in this case, the oxidative dehydrogenation of cyclohexane at elevated temperatures. A pronounced size dependence is found, naturally classifying the particles into three size regimes. While small and intermediate clusters essentially retain their compact morphology, large particles transform into hollow spheres due to the nanoscale Kirkendall effect. Depending on the substrate, an isotropic (Al2O3) or anisotropic (UNCD) Kirkendall effect is observed. The latter results in dramatic lateral size changes. Our results shed light on the interplay between chemical reactions and the catalyst's structure and provide an approach to tailor the cobalt oxide phase composition required for specific catalytic schemes.

  3. Reduced graphene oxide wrapped Fe3O4-Co3O4 yolk-shell nanostructures for advanced catalytic oxidation based on sulfate radicals

    Science.gov (United States)

    Zhang, Lishu; Yang, Xijia; Han, Erfen; Zhao, Lijun; Lian, Jianshe

    2017-02-01

    In this work, we designed and synthesized a high performance catalyst of reduced graphene oxide (RGO) wrapped Fe3O4-Co3O4 (RGO/Fe3O4-Co3O4) yolk-shell nanostructures for advanced catalytic oxidation based on sulfate radicals. The synergistic catalytic action of the RGO/Fe3O4-Co3O4 yolk-shell nanostructures activate the peroxymonosulfate (PMS) to produce sulfate radicals (SO4rad -) for organic dyes degradation, and the Orange II can be almost completely degradated in 5 min. Meanwhile the RGO wrapping prevents the loss of cobalt in the catalytic process, and the RGO/Fe3O4-Co3O4 can be recycled after catalyzed reaction due to the presence of magnetic iron core. What's more, it can maintain almost the same high catalytic activity even after 10 cycles through repeated NaBH4 reduction treatment. Hence, RGO/Fe3O4-Co3O4 yolk-shell nanostructures possess a great opportunity to become a promising candidate for waste water treatment in industry.

  4. Assessment of methane emission and oxidation at Air Hitam Landfill site cover soil in wet tropical climate.

    Science.gov (United States)

    Abushammala, Mohammed F M; Basri, Noor Ezlin Ahmad; Elfithri, Rahmah

    2013-12-01

    Methane (CH₄) emissions and oxidation were measured at the Air Hitam sanitary landfill in Malaysia and were modeled using the Intergovernmental Panel on Climate Change waste model to estimate the CH₄ generation rate constant, k. The emissions were measured at several locations using a fabricated static flux chamber. A combination of gas concentrations in soil profiles and surface CH₄ and carbon dioxide (CO₂) emissions at four monitoring locations were used to estimate the CH₄ oxidation capacity. The temporal variations in CH₄ and CO₂ emissions were also investigated in this study. Geospatial means using point kriging and inverse distance weight (IDW), as well as arithmetic and geometric means, were used to estimate total CH₄ emissions. The point kriging, IDW, and arithmetic means were almost identical and were two times higher than the geometric mean. The CH₄ emission geospatial means estimated using the kriging and IDW methods were 30.81 and 30.49 gm(−2) day(−1), respectively. The total CH₄ emissions from the studied area were 53.8 kg day(−1). The mean of the CH₄ oxidation capacity was 27.5 %. The estimated value of k is 0.138 year(−1). Special consideration must be given to the CH₄ oxidation in the wet tropical climate for enhancing CH₄ emission reduction.

  5. Direct synthesis of nanocrystalline oxide powders by wet-chemical techniques

    Directory of Open Access Journals (Sweden)

    Vladimir V. Srdić

    2010-09-01

    Full Text Available In a recent period there is a great need for increasing the knowledge of tailoring the innovative procedures for the synthesis of electroceramic nanopowders and materials with improved quality for specific application. In order to produce electroceramics with desirable microstructure and properties, synthesis of stoichiometric, ultra-fine and agglomerate free powders with narrow size distributions is one of the most important steps. Within this scope, in the present paper we summarize our recent results on direct synthesis of some important perovskites and ferrites nanopowders by wet-chemical techniques.

  6. Enhanced adsorption and catalytic oxidation of ciprofloxacin by an Ag/AgCl@N-doped activated carbon composite

    Science.gov (United States)

    Nekouei, Farzin; Nekouei, Shahram; Noorizadeh, Hossein

    2018-03-01

    In this study, we synthesized a new nanocomposite catalyst comprising Ag/AgCl@N-doped activated carbon (Ag/AgCl@N-AC) and demonstrated its high efficiency during the enhanced adsorptive removal and catalytic oxidation of ciprofloxacin (CIP) with peroxymonosulfate (PMS) and persulfate (PS) as oxidants in aqueous solution. The efficiency of the new nanocomposite was compared with those of both pristine AC and N-AC under the same conditions. Furthermore, the effects of oxidants on the catalytic oxidation of CIP were assessed using PMS and PS. We found that the degradation efficiency of CIP with Ag/AgCl@N-AC was higher when using PS as an oxidant, whereas the use of PMS obtained relatively better results with both AC and N-AC. The adsorption processes for AC, N-AC, and Ag/AgCl@N-AC were dominated not only by electrostatic attraction but also by π-π interactions, which had higher impacts on the adsorption processes than the specific surface area.

  7. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of catalytic ultrasound oxidation and membrane bioreactor.

    Science.gov (United States)

    Jia, Shengyong; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Hou, Baolin

    2015-01-01

    Laboratorial scale experiments were conducted to investigate a novel system integrating catalytic ultrasound oxidation (CUO) with membrane bioreactor (CUO-MBR) on advanced treatment of biologically pretreated coal gasification wastewater. Results indicated that CUO with catalyst of FeOx/SBAC (sewage sludge based activated carbon (SBAC) which loaded Fe oxides) represented high efficiencies in eliminating TOC as well as improving the biodegradability. The integrated CUO-MBR system with low energy intensity and high frequency was more effective in eliminating COD, BOD5, TOC and reducing transmembrane pressure than either conventional MBR or ultrasound oxidation integrated MBR. The enhanced hydroxyl radical oxidation, facilitation of substrate diffusion and improvement of cell enzyme secretion were the mechanisms for CUO-MBR performance. Therefore, the integrated CUO-MBR was the promising technology for advanced treatment in engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Catalytic Activity and Stability of Oxides: The Role of Near-Surface Atomic Structures and Compositions

    KAUST Repository

    Feng, Zhenxing

    2016-05-05

    δ oxide thin films, and the physical origin of segregation is discussed in comparison with (La1–ySry)2CoO4±δ/La1–xSrxCo0.2Fe0.8O3−δ. Sr enrichment in many electrocatalysts, such as La1–xSrxMO3−δ (M = Cr, Co, Mn, or Co and Fe) and Sm1–xSrxCoO3, has been probed using alternative techniques, including low energy ion scattering, secondary ion mass spectrometry, and X-ray fluorescence-based methods for depth-dependent, element-specific analysis. We highlight a strong connection between cation segregation and electrocatalytic properties, because cation segregation enhances oxygen transport and surface oxygen exchange kinetics. On the other hand, the formation of cation-enriched secondary phases can lead to the blocking of active sites, inhibiting oxygen exchange. With help from density functional theory, the links between cation migration, catalyst stability, and catalytic activity are provided, and the oxygen p-band center relative to the Fermi level can be identified as an activity descriptor. Based on these findings, we discuss strategies to increase a catalyst’s activity while maintaining stability to design efficient, cost-effective electrocatalysts.

  9. Enhanced photo-catalytic activity of ordered mesoporous indium oxide nanocrystals in the conversion of CO2 into methanol.

    Science.gov (United States)

    Gondal, M A; Dastageer, M A; Oloore, L E; Baig, U; Rashid, S G

    2017-07-03

    Ordered mesoporous indium oxide nanocrystal (m-In 2 O 3 ) was synthesized by nanocasting technique, in which highly ordered mesoporous silca (SBA-15) was used as structural matrix. X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halanda (BJH) studies were carried out on m-In 2 O 3 and the results revealed that this material has a highly ordered mesoporous surface with reduced grain size, increased surface area and surface volume compared to the non porous indium oxide. The diffuse reluctance spectrum exhibited substantially improved light absorption efficiency in m-In 2 O 3 compared to normal indium oxide, however, no considerable change in the band gap energies of these materials was observed. When m-In 2 O 3 was used as a photo-catalyst in the photo-catalytic process of converting carbon dioxide (CO 2 ) into methanol under the pulsed laser radiation of 266-nm wavelengths, an enhanced photo-catalytic activity with the quantum efficiency of 4.5% and conversion efficiency of 46.3% were observed. It was found that the methanol production yield in this chemical process is as high as 485 µlg -1 h -1 after 150 min of irradiation, which is substantially higher than the yields reported in the literature. It is quite clear from the results that the introduction of mesoporosity in indium oxide, and the consequent enhancement of positive attributes required for a photo-catalyst, transformed photo-catalytically weak indium oxide into an effective photo-catalyst for the conversion of CO 2 into methanol.

  10. Operating envelope of a short contact time fuel reformer for propane catalytic partial oxidation

    Science.gov (United States)

    Waller, Michael G.; Walluk, Mark R.; Trabold, Thomas A.

    2015-01-01

    Fuel cell technology has yet to realize widespread deployment, in part because of the hydrogen fuel infrastructure required for proton exchange membrane systems. One option to overcome this barrier is to produce hydrogen by reforming propane, which has existing widespread infrastructure, is widely used by the general public, easily transported, and has a high energy density. The present work combines thermodynamic modeling of propane catalytic partial oxidation (cPOx) and experimental performance of a Precision Combustion Inc. (PCI) Microlith® reactor with real-time soot measurement. Much of the reforming research using Microlith-based reactors has focused on fuels such as natural gas, JP-8, diesel, and gasoline, but little research on propane reforming with Microlith-based catalysts can be found in literature. The aim of this study was to determine the optimal operating parameters for the reformer that maximizes efficiency and minimizes solid carbon formation. The primary parameters evaluated were reformate composition, carbon concentration in the effluent, and reforming efficiency as a function of catalyst temperature and O2/C ratio. Including the lower heating values for product hydrogen and carbon monoxide, efficiency of 84% was achieved at an O2/C ratio of 0.53 and a catalyst temperature of 940 °C, resulting in near equilibrium performance. Significant solid carbon formation was observed at much lower catalyst temperatures, and carbon concentration in the effluent was determined to have a negative linear relationship at T reactor displayed good stability during more than 80 experiments with temperature cycling from 360 to 1050 °C.

  11. Enhanced catalytic activity of Ag nanoparticles supported on polyacrylamide/polypyrrole/graphene oxide nanosheets for the reduction of 4-nitrophenol

    Science.gov (United States)

    Mao, Hui; Ji, Chunguang; Liu, Meihong; Cao, Zhenqian; Sun, Dayin; Xing, Zhiqiang; Chen, Xia; Zhang, Yu; Song, Xi-Ming

    2018-03-01

    High-density and well-dispersed Ag nanoparticles (Ag NPs) with a mean size of 20 nm have been successfully supported on the surface of polyacrylamide functionalized polypyrrole/graphene oxide (PAM/PPy/GO) nanosheets. The obtained Ag/PAM/PPy/GO composite nanosheets exhibited an excellent catalytic activity for reduction of 4-nitrophenol by NaBH4 with the kinetic reaction rate constant of 3.38 × 10-2 s-1 due to the synergistic effect of all the components of the composite nanosheets. The corresponding catalytic mechanism has been revealed by investigating the effect of different components of Ag/PAM/PPy/GO composite nanosheets on the catalytic performance: GO with the excellent two-dimensional structures offered large surface area for the immobilization of more Ag NPs; PPy with a high electric conductivity promoted the electron transport in the reduction of 4-NP; PAM did not only act as a good linker between Ag NPs and PPy/GO nanosheets for the synthesis of Ag/PAM/PPy/GO composite nanosheets, but also could facilitate the efficient contact between 4-NP and Ag NPs; Ag NPs were the catalytic active site for the reduction of 4-NP, respectively.

  12. Influence of Mg doping on ZnO nanoparticles decorated on graphene oxide (GO) crumpled paper like sheet and its high photo catalytic performance under sunlight

    Science.gov (United States)

    Labhane, P. K.; Sonawane, S. H.; Sonawane, G. H.; Patil, S. P.; Huse, V. R.

    2018-03-01

    Mg doped ZnO nanoparticles decorated on graphene oxide (GO) sheets were synthesized by a wet impregnation method. The effect of Mg doping on ZnO and ZnO-GO composite has been evaluated by using x-ray diffraction (XRD), Williamson-Hall Plot (Wsbnd H Plot), field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM) and energy dispersive x-ray spectroscopy (EDX). The physical parameters of as-prepared samples were estimated by XRD data. FESEM and HR-TEM images showed the uniform distribution of nanoparticles on GO crumpled paper like sheet. Solar light photocatalytic activities of samples were evaluated spectrophotometrically by the degradation of p-nitrophenol (PNP) and indigo carmine (IC) solution. Mgsbnd ZnO decorated on GO sheets exhibit excellent catalytic efficiency compared to all other prepared samples under identical conditions, degrading PNP and IC nearly 99% within 60 min under sunlight. The effective degradation by Mgsbnd ZnO decorated on GO sheet would be due to extended solar light absorption, enhanced adsorptivity on the composite catalyst surface and efficient charge separation of photo-induced electrons. Finally, plausible mechanism was suggested with the help of scavengers study.

  13. The decomposition of mixed oxide Ag2Cu2O3: Structural features and the catalytic properties in CO and C2H4 oxidation

    Science.gov (United States)

    Svintsitskiy, Dmitry A.; Kardash, Tatyana Yu.; Slavinskaya, Elena M.; Stonkus, Olga A.; Koscheev, Sergei V.; Boronin, Andrei I.

    2018-01-01

    The mixed silver-copper oxide Ag2Cu2O3 with a paramelaconite crystal structure is a promising material for catalytic applications. The as-prepared sample of Ag2Cu2O3 consisted of brick-like particles extended along the [001] direction. A combination of physicochemical techniques such as TEM, XPS and XRD was applied to investigate the structural features of this mixed silver-copper oxide. The thermal stability of Ag2Cu2O3 was investigated using in situ XRD under different reaction conditions, including a catalytic CO + O2 mixture. The first step of Ag2Cu2O3 decomposition was accompanied by the appearance of ensembles consisting of silver nanoparticles with sizes of 5-15 nm. Silver nanoparticles were strongly oriented to each other and to the surface of the initial Ag2Cu2O3 bricks. Based on the XRD data, it was shown that the release of silver occurred along the a and b axes of the paramelaconite structure. Partial decomposition of Ag2Cu2O3 accompanied by the formation of silver nanoparticles was observed during prolonged air storage under ambient conditions. The high reactivity is discussed as a reason for spontaneous decomposition during Ag2Cu2O3 storage. The full decomposition of the mixed oxide into metallic silver and copper (II) oxide took place at temperatures higher than 300 °C regardless of the nature of the reaction medium (helium, air, CO + O2). Catalytic properties of partially and fully decomposed samples of mixed silver-copper oxide were measured in low-temperature CO oxidation and C2H4 epoxidation reactions.

  14. LARGE-SCALE MECURY CONTROL TECHNOLOGY TESTING FOR LIGNITE-FIRED UTILITIES-OXIDATION SYSTEMS FOR WET FGD

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Holmes; Steven A. Benson; Jeffrey S. Thompson

    2004-03-01

    The Energy & Environmental Research Center (EERC) is conducting a consortium-based effort directed toward resolving the mercury (Hg) control issues facing the lignite industry. Specifically, the EERC team--the EERC, EPRI, URS, ADA-ES, Babcock & Wilcox, the North Dakota Industrial Commission, SaskPower, and the Mercury Task Force, which includes Basin Electric Power Cooperative, Otter Tail Power Company, Great River Energy, Texas Utilities (TXU), Montana-Dakota Utilities Co., Minnkota Power Cooperative, BNI Coal Ltd., Dakota Westmoreland Corporation, and the North American Coal Company--has undertaken a project to significantly and cost-effectively oxidize elemental mercury in lignite combustion gases, followed by capture in a wet scrubber. This approach will be applicable to virtually every lignite utility in the United States and Canada and potentially impact subbituminous utilities. The oxidation process is proven at the pilot-scale and in short-term full-scale tests. Additional optimization is continuing on oxidation technologies, and this project focuses on longer-term full-scale testing. The lignite industry has been proactive in advancing the understanding of and identifying control options for Hg in lignite combustion flue gases. Approximately 1 year ago, the EERC and EPRI began a series of Hg-related discussions with the Mercury Task Force as well as utilities firing Texas and Saskatchewan lignites. This project is one of three being undertaken by the consortium to perform large-scale Hg control technology testing to address the specific needs and challenges to be met in controlling Hg from lignite-fired power plants. This project involves Hg oxidation upstream of a system equipped with an electrostatic precipitator (ESP) followed by wet flue gas desulfurization (FGD). The team involved in conducting the technical aspects of the project includes the EERC, Babcock & Wilcox, URS, and ADA-ES. The host sites include Minnkota Power Cooperative Milton R. Young

  15. A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Sanjay; Dosani, Talib; Karakoti, Ajay S.; Kumar, Amit; Seal, Sudipta; Self, William

    2011-10-01

    Cerium oxide nanoparticles (CeNPs) have shown promise as catalytic antioxidants in cell culture and animal models as both superoxide dismutase and catalase mimetics. The reactivity of the cerium (Ce) atoms at the surface of its oxide particle is critical to such therapeutic properties, yet little is known about the potential for a protein or small molecule corona to form on these materials in vivo. Moreover Ce atoms in these active sites have the potential to interact with small molecule anions, peptides, or sugars when administered in culture or animal models. Several nanomaterials have been shown to alter or aggregate under these conditions, rendering them less useful for biomedical applications. In this work we have studied the change in catalytic properties of CeNPs when exposed to various biologically relevant conditions in vitro. We have found that CeNPs are resistant to broad changes in pH and also not altered by incubation in cell culture medium. However to our surprise phosphate anions significantly altered the characteristics of these nanomaterials and shifted the catalytic behavior due to the binding of phosphate anions to cerium. Given the abundance of phosphate in biological systems in an inorganic form, it is likely that the action of CeNPs as a catalyst may be strongly influenced by the local concentration of phosphate in the cells and/or tissues in which it has been introduced.

  16. Pronounced Size Dependence in Structure and Morphology of Gas-Phase Produced, Partially Oxidized Cobalt Nanoparticles under Catalytic Reaction Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bartling, Stephan; Yin, Chunrong; Barke, Ingo; Oldenburg, Kevin; Hartmann, Hannes; von Oeynhausen, Viola; Pohl, Marga-Martina; Houben, Kelly; Tyo, Eric C.; Seifert, Sönke; Lievens, Peter; Meiwes-Broer, Karl-Heinz; Vajda, Stefan

    2015-06-23

    It is generally accepted that optimal particle sizes are key for efficient nanocatalysis. Much less attention is paid to the role of morphology and atomic arrangement during catalytic reactions. Here we unravel the structural, stoichiometric, and morphological evolution of gas-phase produced cobalt nanoparticles in a broad size range. Particles with diameters between 1.4 nm and 22nm generated in cluster sources are size selected and deposited on amorphous alumina (Al2O3) and ultrananocrystalline diamond (UNCD) films. A combination of different techniques is employed to monitor particle properties at the stages of production, exposure to ambient conditions, and catalytic reaction, in this case the oxidative dehydrogenation of cyclohexane at elevated temperatures. A pronounced size dependence is found, naturally classifying the particles into three size regimes. While small and intermediate clusters essentially retain their compact morphology, large particles transform into hollow spheres due to the nanoscale Kirkendall effect. Depending on the substrate an isotropic (Al2O3) or anisotropic (UNCD) Kirkendall effect is observed. The latter results in dramatic lateral size changes. Our results shed light on the interplay between chemical reactions and the catalyst's structure and provide an approach to tailor the cobalt oxide phase composition required for specific catalytic schemes.

  17. Carbon isotope analysis of dissolved organic carbon in fresh and saline (NaCl) water via continuous flow cavity ring-down spectroscopy following wet chemical oxidation.

    Science.gov (United States)

    Conaway, Christopher H; Thomas, Burt; Saad, Nabil; Thordsen, James J; Kharaka, Yousif K

    2015-01-01

    This work examines the performance and limitations of a wet chemical oxidation carbon analyser interfaced with a cavity ring-down spectrometer (WCO-CRDS) in a continuous flow (CF) configuration for measuring δ(13)C of dissolved organic carbon (δ(13)C-DOC) in natural water samples. Low-chloride matrix (towards lighter δ(13)C-DOC was observed because of incomplete oxidation despite using high-concentration oxidant, extended reaction time, or post-wet chemical oxidation gas-phase combustion. However, through a combination of dilution, chloride removal, and increasing the oxidant:sample ratio, high-salinity samples with sufficient DOC (>22.5 µg C/aliquot) may be analysed. The WCO-CRDS approach requires more total carbon (µg C/aliquot) than conventional CF-isotope ratio mass spectrometer, but is nonetheless applicable to a wide range of DOC concentration and water types, including brackish water, produced water, and basinal brines.

  18. Performance of a Novel Hydrophobic Mesoporous Material for High Temperature Catalytic Oxidation of Naphthalene

    Directory of Open Access Journals (Sweden)

    Guotao Zhao

    2014-01-01

    Full Text Available A high surface area, hydrophobic mesoporous material, MFS, has been successfully synthesized by a hydrothermal synthesis method using a perfluorinated surfactant, SURFLON S-386, as the single template. N2 adsorption and TEM were employed to characterize the pore structure and morphology of MFS. Static water adsorption test indicates that the hydrophobicity of MFS is significantly higher than that of MCM-41. XPS and Py-GC/MS analysis confirmed the existence of perfluoroalkyl groups in MFS which led to its high hydrophobicity. MFS was used as a support for CuO in experiments of catalytic combustion of naphthalene, where it showed a significant advantage over MCM-41 and ZSM-5. SEM was helpful in understanding why CuO-MFS performed so well in the catalytic combustion of naphthalene. Experimental results indicated that MFS was a suitable support for catalytic combustion of large molecular organic compounds, especially for some high temperature catalytic reactions when water vapor was present.

  19. Simulation Analysis of Sludge Disposal and Volatile Fatty Acids Production from Gravity Pressure Reactor via Wet Air Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gwon Woo [Biomass and Waste Energy Laboratory, KIER, Daejeon (Korea, Republic of); Seo, Tae Wan; Lee, Hong-Cheol; Hwang, In-Ju [Environmental and Plant Engineering Research Institute, KICT, Goyang (Korea, Republic of)

    2016-04-15

    Efficacious wastewater treatment is essential for increasing sewage sludge volume and implementing strict environmental regulations. The operation cost of sludge treatment amounts up to 50% of the total costs for wastewater treatment plants, therefore, an economical sludge destruction method is crucially needed. Amid several destruction methods, wet air oxidation (WAO) can efficiently treat wastewater containing organic pollutants. It can be used not only for sludge destruction but also for useful by-product production. Volatile fatty acids (VFAs), one of many byproducts, is considered to be an important precursor of biofuel and chemical materials. Its high reaction condition has instituted the study of gravity pressure reactor (GPR) for an economical process of WAO to reduce operation cost. Simulation of subcritical condition was conducted using Aspen Plus with predictive Soave-Redlich-Kwong (PSRK) equation of state. Conjointly, simulation analysis for GPR depth, oxidizer type, sludge flow rate and oxidizer injection position was carried out. At GPR depth of 1000m and flow rate of 2 ton/h, the conversion and yield of VFAs were 92.02% and 0.17g/g, respectively.

  20. Simulation Analysis of Sludge Disposal and Volatile Fatty Acids Production from Gravity Pressure Reactor via Wet Air Oxidation

    International Nuclear Information System (INIS)

    Park, Gwon Woo; Seo, Tae Wan; Lee, Hong-Cheol; Hwang, In-Ju

    2016-01-01

    Efficacious wastewater treatment is essential for increasing sewage sludge volume and implementing strict environmental regulations. The operation cost of sludge treatment amounts up to 50% of the total costs for wastewater treatment plants, therefore, an economical sludge destruction method is crucially needed. Amid several destruction methods, wet air oxidation (WAO) can efficiently treat wastewater containing organic pollutants. It can be used not only for sludge destruction but also for useful by-product production. Volatile fatty acids (VFAs), one of many byproducts, is considered to be an important precursor of biofuel and chemical materials. Its high reaction condition has instituted the study of gravity pressure reactor (GPR) for an economical process of WAO to reduce operation cost. Simulation of subcritical condition was conducted using Aspen Plus with predictive Soave-Redlich-Kwong (PSRK) equation of state. Conjointly, simulation analysis for GPR depth, oxidizer type, sludge flow rate and oxidizer injection position was carried out. At GPR depth of 1000m and flow rate of 2 ton/h, the conversion and yield of VFAs were 92.02% and 0.17g/g, respectively

  1. Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Klinke, Helene Bendstrup; Thomsen, A.B.; Ahring, Birgitte Kiær

    2001-01-01

    /l), aliphatic carboxylic acids (6 g/l), phenols (0.27 g/l or 1.7 mM), and 2-furoic acid (0.007 g/l). The wet-oxidized wheat straw hydrolysate caused no inhibition of ethanol yield by the anaerobic thermophilic bacterium Thermoanaerobacter mathranii. Nine phenols and 2-furoic acid, identified to be present...... in the hydrolysate, were each tested in concentrations of 10-100x the concentration found in the hydrolysate for their effect on fermentation by T. mathranii. At 2 mM, these aromatic compounds were not inhibitory to growth or ethanol yield in T mathranii. When the concentration of aromatics was increased to 10 m...

  2. Wet etching mechanism and crystallization of indium–tin oxide layer for application in light-emitting diodes

    Science.gov (United States)

    Su, Shui-Hsiang; Kong, Hsieng-Jen; Tseng, Chun-Lung; Chen, Guan-Yu

    2018-01-01

    In the article, we describe the etching mechanism of indium–tin oxide (ITO) film, which was wet-etched using a solution of hydrochloric acid (HCl) and ferric chloride (FeCl3). The etching mechanism is analyzed at various etching durations of ITO films by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and selective area diffraction (SAD) analysis. In comparison with the crystalline phase of SnO2, the In2O3 phase can be more easily transformed to In3+ and can form an inverted conical structure during the etching process. By adjusting the etching duration, the residual ITO is completely removed to show a designed pattern. This is attributed to the negative Gibbs energy of In2O3 transformed to In3+. The result also corresponds to the finding of energy-dispersive X-ray spectroscopy (EDS) analysis that the Sn/In ratio increases with increasing etching duration.

  3. Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation

    DEFF Research Database (Denmark)

    Uellendahl, Hinrich; Wang, Guangtao; Møller, Henrik B.

    2008-01-01

    Perennial crops need far less energy to plant, require less fertilizer and pesticides, and show a lower negative environmental impact compared with annual crops like for example corn. This makes the cultivation of perennial crops as energy crops more sustainable than the use of annual crops....... The conversion into biogas in anaerobic digestion plants shows however much lower specific methane yields for the raw perennial crops like miscanthus and willow due to their lignocellulosic structure. Without pretreatment the net energy gain is therefore lower for the perennials than for corn. When applying wet...... oxidation to the perennial crops, however, the specific methane yield increases significantly and the ratio of energy output to input and of costs to benefit for the whole chain of biomass supply and conversion into biogas becomes higher than for corn. This will make the use of perennial crops as energy...

  4. Catalytic oxidation of dibromomethane over Ti-modified Co3O4 catalysts: Structure, activity and mechanism.

    Science.gov (United States)

    Mei, Jian; Huang, Wenjun; Qu, Zan; Hu, Xiaofang; Yan, Naiqiang

    2017-11-01

    Ti-modified Co 3 O 4 catalysts with various Co/Ti ratios were synthesized using the co-precipitation method and were used in catalytic oxidation of dibromomethane (CH 2 Br 2 ), which was selected as the model molecule for brominated volatile organic compounds (BVOCs). Addition of Ti distorted the crystal structure and led to the formation of a Co-O-Ti solid solution. Co 4 Ti 1 (Co/Ti molar ratio was 4) achieved higher catalytic activity with a T 90 (the temperature needed for 90% conversion) of approximately 245°C for CH 2 Br 2 oxidation and higher selectivity to CO 2 at a low temperature than the other investigated catalysts. In addition, Co 4 Ti 1 was stable for at least 30h at 500ppm CH 2 Br 2 , 0 or 2vol% H 2 O, 0 or 500ppm p-xylene (PX), and 10% O 2 at a gas hourly space velocity of 60,000h -1 . The final products were CO x , Br 2 , and HBr, without the formation of other Br-containing organic byproducts. The high catalytic activity was attributed to the high Co 3+ /Co 2+ ratio and high surface acidity. Additionally, the synergistic effect of Co and Ti made it superior for CH 2 Br 2 oxidation. Furthermore, based on the analysis of products and in situ DRIFTs studies, a receivable reaction mechanism for CH 2 Br 2 oxidation over Ti-modified Co 3 O 4 catalysts was proposed. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Manganese zinc ferrite nanoparticles as efficient catalysts for wet ...

    Indian Academy of Sciences (India)

    http://www.ias.ac.in/article/fulltext/jcsc/127/03/0537-0546. Keywords. Spinel ferrites; catalytic activity; wet peroxide oxidation; 4-chlorophenol; water treatment. Abstract. Manganese substituted zinc nanoparticles, MnxZn1−xFe2O4 (x = 0.0, 0.25, 0.5, 0.75, 1.0) prepared by sol gel method were found to be efficient catalysts for ...

  6. Preparation and characterization of Ni-Zr-O nanoparticles and its catalytic behavior for ethane oxidative dehydrogenation

    International Nuclear Information System (INIS)

    Wu Ying; Gao Jing; He Yiming; Wu Tinghua

    2012-01-01

    Ni-Zr-O nanoparticles with various Zr contents were prepared by a modified sol-gel method and characterized by X-ray diffraction (XRD), scanning/high-resolution transmission electron microscope (SEM/HRTEM), BET surface area analysis, H 2 temperature-programmed reduction (H 2 -TPR), X-ray photoelectron spectroscopy (XPS) and O 2 temperature-programmed desorption (O 2 -TPD). The oxidative dehydrogenation of ethane (ODHE) to ethylene was applied to evaluate catalytic performance of the samples. The results show that the doping of Zr affected the cell parameter and the chemical environment of the catalysts, indicating the existence of strong interaction between Ni and Zr. The interaction plays an important role in the lessened reducibility and the distribution of adsorbed oxygen species, consequently influence their catalytic performance. The best yield to ethylene was obtained over the 10% Ni-Zr-O catalyst with 60% ethane conversion and 66% ethylene selectivity.

  7. Production of gaseous fuel from jatropha oil by cerium oxide based catalytic fuel reactor and its utilisation on diesel engine

    Directory of Open Access Journals (Sweden)

    Mylswamy Thirunavukkarasu

    2016-01-01

    Full Text Available In this study, an attempt is made to produce a hydrocarbon fuel from jatropha vegetable oil for Diesel engine applications. The “catalytic cracking” a process recently introduced by the researchers is chosen as an alternative method to trans-esterification process to match the fuel properties to diesel. Jatropha vegetable oil was cracked into a gas using the cerium oxide catalyst in a fixed bed catalytic reactor. The produced gas is introduced at constant rate into the inlet manifold of the Diesel engine. The experimental work was carried out in single cylinder water cooled direct injection Diesel engine coupled with eddy current dynamometer. The combustion parameters are measured by AVL combustion analyser. From the experimental results, the increase in brake thermal efficiency of the engine for full load was observed to be 10% (relative compared with diesel. Notably, emissions such as HC, CO, and smoke are reduced by 18%, 61%, and 18%, respectively, when compared with diesel.

  8. Water resistant surfaces using zinc oxide structured nanorod arrays with switchable wetting property

    OpenAIRE

    Ennaceri, H.; Wang, L.; Erfurt, D.; Riedel, W.; Mangalgiri, G.; Khaldoun, A.; El Kenz, A.; Benyoussef, A.; Ennaoui, A

    2016-01-01

    This study presents an experimental approach for fabricating super hydrophobic coatings based on a dual roughness structure composed of zinc oxide nanorod arrays coated with a sputtered zinc oxide nano layer. The ZnO nanorod arrays were grown by means of a low temperature electrochemical deposition technique 75 C on FTO substrates. The ZnO nanorods show a 002 orientation along the c axis, and have a hexagonal structure, with an average length of 710 nm, and average width of 156 nm. On th...

  9. Hydrolysis of solubilized hemicellulose derived from wet-oxidized wheat straw by a mixture of commercial fungal enzyme preparations

    Energy Technology Data Exchange (ETDEWEB)

    Skammelsen Schmidt, Anette; Thomsen, Alle Belinda; Woidemann, Anders [Risoe National Lab. (Denmark); Tenkanen, Maija [VTT Biotechnology and Food Research (Finland)

    1998-04-01

    The enzymatic hydrolysis of the solubilized hemicellulose fraction from wet-oxidized wheat straw was investigated for quantification purposes. An optimal hydrolysis depends on factors such as composition of the applied enzyme mixture and the hydrolysis conditions (enzyme loading, hydrolysis time, pH-value, and temperature). A concentrated enzyme mixture was used in this study prepared at VTT Biotechnology and Food Research, Finland, by mixing four commercial enzyme preparations. No distinctive pH-value and temperature optima were identified after a prolonged incubation of 24 hours. By reducing the hydrolysis time to 2 hours a temperature optimum was found at 50 deg. C, where a pH-value higher than 5.2 resulted in reduced activity. An enzyme-substrate-volume-ratio of 0.042, a pH-value of 5.0, and a temperature of 50 deg. C were chosen as the best hydrolysis conditions due to an improved monosaccharide yield. The hydrolysis time was chosen to be 24 hours to ensure equilibrium and total quantification. Even under the best hydrolysis conditions, the overall sugar yield from the enzymatic hydrolysis was only 85% of that of the optimal acid hydrolysis. The glucose yield were approximately the same for the two types of hydrolyses, probably due to the high cellulase activity in the VTT-enzyme mixture. For xylose and arabinose the enzymatic hydrolysis yielded only 80% of that of the acid hydrolysis. As the pentoses existed mainly as complex polymers their degradation required many different enzymes, some of which might be missing from the VTT-enzyme mixture. Furthermore, the removal of side-choins from the xylan backbone during the wet-oxidation pretreatment process might enable the hemicellulosic polymers to interact and precipitate, hence, reducing the enzymatic digestibility of the hemicellulose. (au) 8 tabs., 10 ills., 65 refs.

  10. Catalytic Performance of Zeolite-Supported Vanadia in the Aerobic Oxidation of 5-hydroxymethylfurfural to 2,5- diformylfuran

    DEFF Research Database (Denmark)

    Sádaba, Irantzu; Gorbanev, Yury; Kegnæs, Søren

    2013-01-01

    /Vis spectrophotometry. The H-beta zeolite catalysts were found to contain highly dispersed vanadium oxide species at all loadings, and provided the highest reaction selectivity towards DFF and the lowest metal leaching of the examined systems. In particular, 1 wt % V2O5/H-beta was found to be a stable, recyclable......The catalytic performance of zeolite-supported vanadia catalysts was examined for the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformylfuran (DFF) in organic solvents such as N,N-dimethylformamide (DMF), methyl isobutyl ketone, toluene, trifluorotoluene and DMSO. Catalysts based......, and non-leaching catalyst for the production of DFF under mild conditions in DMF as solvent, although with low DFF yield. To increase the yield, oxidation of HMF at elevated pressures was also investigated with this catalyst. Under optimized conditions, a reaction selectivity towards DFF of >99 % at 84...

  11. Selective catalytic reduction of nitric oxide with acetaldehyde over NaY zeolite catalyst in lean exhaust feed

    International Nuclear Information System (INIS)

    Schmieg, Steven J.; Cho, Byong K.; Oh, Se H.

    2004-01-01

    Steady-state selective catalytic reduction (SCR) of nitric oxide (NO) was investigated under simulated lean-burn conditions using acetaldehyde (CH 3 CHO) as the reductant. This work describes the influence of catalyst space velocity and the impact of nitric oxide, acetaldehyde, oxygen, sulfur dioxide, and water on NO x reduction activity over NaY zeolite catalyst. Results indicate that with sufficient catalyst volume 90% NO x conversion can be achieved at temperatures relevant to light-duty diesel exhaust (150-350C). Nitric oxide and acetaldehyde react to form N 2 , HCN, and CO 2 . Oxygen is necessary in the exhaust feed stream to oxidize NO to NO 2 over the catalyst prior to reduction, and water is required to prevent catalyst deactivation. Under conditions of excess acetaldehyde (C 1 :N>6:1) and low temperature ( x conversion is apparently very high; however, the NO x conversion steadily declines with time due to catalytic oxidation of some of the stored (adsorbed) NO to NO 2 , which can have a significant impact on steady-state NO x conversion. With 250ppm NO in the exhaust feed stream, maximum NO x conversion at 200C can be achieved with =400ppm of acetaldehyde, with higher acetaldehyde concentrations resulting in production of acetic acid and breakthrough of NO 2 causing lower NO x conversion levels. Less acetaldehyde is necessary at lower NO concentrations, while more acetaldehyde is required at higher temperatures. Sulfur in the exhaust feed stream as SO 2 can cause slow deactivation of the catalyst by poisoning the adsorption and subsequent reaction of nitric oxide and acetaldehyde, particularly at low temperature

  12. Polymer-Controlled Crystallization of Molybdenum Oxides from Peroxomolybdates: Structural Diversity and Application to Catalytic Epoxidation

    International Nuclear Information System (INIS)

    Munoz-Espf, R.; Burger, C.; Krishnan, C.; Chu, B.

    2008-01-01

    The influence of polyoxyethylene-containing polymers on the crystal structure and habit of molybdenum-oxide-based products crystallized from peroxomolybdate solutions was investigated. Polyoxyethylene homopolymers of various molar masses were compared with a polyoxyethylene alkyl ether and a triblock copolymer of polyoxyethylene and polypropylene. Conventional hydrothermal synthesis at temperatures between 70 and 180 C was compared with an ultrasonic pathway at 70 C. The structure of the products was investigated by small- and wide-angle X-ray scattering. Different crystal phases were obtained depending on the polymer concentration and the preparation methods. At 70 C, a compound with tentative formula MoO3-x(O2)x nH2O (n ? 1), showing X-ray diffraction patterns matching those of triclinic monohydrate molybdenum trioxide, was the product found in the absence of any polymer. However, small concentrations of any polyoxyethylene-containing polymer led to a monoclinic hemihydrate phase under the same conditions and temperature. At temperatures above 90 C, the patterns of the resulting products could be indexed according to orthorhombic anhydrous MoO3, although the blue color of certain samples indicated an oxygen deficiency. At high polymer concentrations and temperatures under 90 C, the material crystallized in an unusual primitive cubic structure, independent of the exact type of polyoxyethylene polymer used, with a very large cubic lattice constant of 5 nm. However, the molar mass and the structure of the polymer do influence the lattice constants of the final crystal leading to a slight decrease with increasing molar mass. At high polymer concentrations and 180 C, the product was identified as MoO2. The polymer acts not only as a structure-directing agent but also as a mild reducing agent, as judged from the nontrivial redox behavior of the molybdenum ions when the crystallization occurs in the presence of polymer. The excellent catalytic properties of

  13. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer.

    Science.gov (United States)

    Sun, Tonghua; Shen, Yafei; Jia, Jinping

    2014-02-18

    This paper proposes a novel self-developed JTS-01 desulfurizer and JZC-80 alkaline adsorbent for H2S removal and gas cleaning of the COREX coal gas in small-scale and commercial desulfurizing devices. JTS-01 desulfurizer was loaded with metal oxide (i.e., ferric oxides) catalysts on the surface of activated carbons (AC), and the catalyst capacity was improved dramatically by means of ultrasonically assisted impregnation. Consequently, the sulfur saturation capacity and sulfur capacity breakthrough increased by 30.3% and 27.9%, respectively. The whole desulfurizing process combined selective adsorption with catalytic oxidation. Moreover, JZC-80 adsorbent can effectively remove impurities such as HCl, HF, HCN, and ash in the COREX coal gas, stabilizing the system pressure drop. The JTS-01 desulfurizer and JZC-80 adsorbent have been successfully applied for the COREX coal gas cleaning in the commercial plant at Baosteel, Shanghai. The sulfur capacity of JTS-01 desulfurizer can reach more than 50% in industrial applications. Compared with the conventional dry desulfurization process, the modified AC desulfurizers have more merit, especially in terms of the JTS-01 desulfurizer with higher sulfur capacity and low pressure drop. Thus, this sorption enhanced catalytic desulfurization has promising prospects for H2S removal and other gas cleaning.

  14. Enhanced catalytic hydrogenation activity of Ni/reduced graphene oxide nanocomposite prepared by a solid-state method

    Science.gov (United States)

    Li, Yizhao; Cao, Yali; Jia, Dianzeng

    2018-01-01

    A simple solid-state method has been applied to synthesize Ni/reduced graphene oxide (Ni/rGO) nanocomposite under ambient condition. Ni nanoparticles with size of 10-30 nm supported on reduced graphene oxide (rGO) nanosheets are obtained through one-pot solid-state co-reduction among nickel chloride, graphene oxide, and sodium borohydride. The Ni/rGO nanohybrid shows enhanced catalytic activity toward the reduction of p-nitrophenol (PNP) into p-aminophenol compared with Ni nanoparticles. The results of kinetic research display that the pseudo-first-order rate constant for hydrogenation reaction of PNP with Ni/rGO nanocomposite is 7.66 × 10-3 s-1, which is higher than that of Ni nanoparticles (4.48 × 10-3 s-1). It also presents superior turnover frequency (TOF, 5.36 h-1) and lower activation energy ( E a, 29.65 kJ mol-1) in the hydrogenation of PNP with Ni/rGO nanocomposite. Furthermore, composite catalyst can be magnetically separated and reused for five cycles. The large surface area and high electron transfer property of rGO support are beneficial for good catalytic performance of Ni/rGO nanocomposite. Our study demonstrates a simple approach to fabricate metal-rGO heterogeneous nanostructures with advanced functions.

  15. Catalytic properties of nickel ferrites for oxidation of glucose, β-nicotiamide adenine dinucleotide (NADH) and methanol

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, R. [Departamento de Química, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, C.P. 36040 Guanajuato, Gto (Mexico); Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco s/n, C.P. 28049 Madrid (Spain); Gutiérrez, S. [Departamento de Química, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, C.P. 36040 Guanajuato, Gto (Mexico); Menéndez, N. [Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco s/n, C.P. 28049 Madrid (Spain); Herrasti, P., E-mail: pilar.herrasti@uam.es [Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco s/n, C.P. 28049 Madrid (Spain)

    2014-02-15

    Highlights: ► NiFe{sub 2}O{sub 4} nanoparticles obtained by electrochemical method are effective catalyst. ► A partially inverse spinel was obtained with 57% Fe{sup 3+} in tetrahedral position. ► A non-enzymatic electrode using NiFe{sub 2}O{sub 4} nanoparticles has been manufactured. -- Abstract: Nickel ferrite nanoparticles (NiFe{sub 2}O{sub 4}) were synthesized by electrochemical method and used as catalyst for direct oxidation of glucose, NADH and methanol. Characterization of these nanoparticles was carried out by X-ray diffraction, Mössbauer spectroscopy, and colloidal properties such as hydrodynamic radius and Zeta potential. To evaluate the catalytic properties of these nanoparticles against the oxidation process, paste graphite electrodes mixing nickel ferrites and different conductive materials (graphite, carbon nanotubes) and binders agents (mineral oil, 1-octylpyridinium hexafluorophosphate (nOPPF6)) were used. The results prove good catalytic properties of these materials, with an oxidation potential around 0.75, 0.5 and 0.8 V for glucose, NADH, and methanol, respectively.

  16. Effect of mesoporous g-C3N4 substrate on catalytic oxidation of CO over Co3O4

    Science.gov (United States)

    Yang, Heng; Lv, Kangle; Zhu, Junjiang; Li, Qin; Tang, Dingguo; Ho, Wingkei; Li, Mei; Carabineiro, Sónia A. C.

    2017-04-01

    Mesoporous graphitic carbon nitride (mpg-CN) was synthesized using Triton X-100, a surfactant containing a hydrophilic polyethylene oxide group and a tert-octyl-phenyl hydrophobic moiety, as a soft template. The obtained mpg-CN was used as a support for Co3O4, and this supported catalyst was used for CO oxidation. The effects of the amount of Triton X-100, weight ratio of Co3O4 to mpg-CN and calcination temperature on the catalytic performances for CO oxidation of Co3O4/mpg-CN composites were systematically studied. It was found that the presence of Triton X-100 not only retarded the polymerization of dicyandiamide, but also affected the microstructure of Co3O4. Bubbles formed because of the hydrophobic group of the surfactant Triton X-100 can be act as a soft template for the synthesis of mesoporous g-C3N4. The enhanced catalytic activity of Co3O4/mpg-CN was attributed to a synergistic effect, enlarged BET surface areas, increased Co3+ and lattice oxygen contents, and the porous structure of mpg-CN support. The high stability of 12.5% Co3O4/mpg-CN(1.0) makes it a promising catalyst for practical applications.

  17. Binuclear ruthenium(III) bis(thiosemicarbazone) complexes: synthesis, spectral, electrochemical studies and catalytic oxidation of alcohol.

    Science.gov (United States)

    Mohamed Subarkhan, M; Ramesh, R

    2015-03-05

    A new series of binuclear ruthenium(III) thiosemicarbazone complexes of general formula [(EPh3)2(X)2Ru-L-Ru(X)2(EPh3)2] (where E=P or As; X=Cl or Br; L=NS chelating bis(thiosemicarbazone ligands) has been synthesized and characterized by analytical and spectral (FT-IR, UV-Vis and EPR). IR spectra show that the thiosemicarbazones behave as monoanionic bidentate ligands coordinating through the azomethine nitrogen and thiolate sulphur. The electronic spectra of the complexes indicate that the presence of d-d and intense LMCT transitions in the visible region. The complexes are paramagnetic (low spin d(5)) in nature and all the complexes show rhombic distortion around the ruthenium ion with three different 'g' values (gx≠gy≠gz) at 77K. All the complexes are redox active and exhibit an irreversible metal centered redox processes (Ru(III)-Ru(III)/Ru(IV)-Ru(IV); Ru(III)-Ru(III)/Ru(II)-Ru(II)) within the potential range of 0.38-0.86V and -0.39 to -0.66 V respectively, versus Ag/AgCl. Further, the catalytic efficiency of one of the complexes [Ru2Cl2(AsPh3)4(L1)] (4) has been investigated in the case of oxidation of primary and secondary alcohols into their corresponding aldehydes and ketones in the presence of N-methylmorpholine-N-oxide(NMO) as co-oxidant. The formation of high valent Ru(V)O species is proposed as catalytic intermediate for the catalytic cycle. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Understanding Trends in Catalytic Activity: The Effect of Adsorbate-Adsorbate Interactions for CO Oxidation Over Transition Metals

    DEFF Research Database (Denmark)

    Grabow, Lars; Larsen, Britt Hvolbæk; Nørskov, Jens Kehlet

    2010-01-01

    Using high temperature CO oxidation as the example, trends in the reactivity of transition metals are discussed on the basis of density functional theory (DFT) calculations. Volcano type relations between the catalytic rate and adsorption energies of important intermediates are introduced...... and the effect of adsorbate-adsorbate interaction on the trends is discussed. We find that adsorbate-adsorbate interactions significantly increase the activity of strong binding metals (left side of the volcano) but the interactions do not change the relative activity of different metals and have a very small...... influence on the position of the top of the volcano, that is, on which metal is the best catalyst....

  19. Removal of ethylene from air stream by adsorption and plasma-catalytic oxidation using silver-based bimetallic catalysts supported on zeolite.

    Science.gov (United States)

    Trinh, Quang Hung; Lee, Sang Baek; Mok, Young Sun

    2015-03-21

    Dynamic adsorption of ethylene on 13X zeolite-supported Ag and Ag-M(x)O(y) (M: Co, Cu, Mn, and Fe), and plasma-catalytic oxidation of the adsorbed ethylene were investigated. The experimental results showed that the incorporation of Ag into zeolite afforded a marked enhancement in the adsorptivity for ethylene. The addition of transition metal oxides was found to have a positive influence on the ethylene adsorption, except Fe(x)O(y). The presence of the additional metal oxides, however, appeared to somewhat interrupt the diffusion of ozone into the zeolite micro-pores, leading to a decrease in the plasma-catalytic oxidation efficiency of the ethylene adsorbed there. Among the second additional metal oxides, Fe(x)O(y) was able to reduce the emission of ozone during the plasma-catalytic oxidation stage while keeping a high effectiveness for the oxidative removal of the adsorbed ethylene. The periodical treatment consisting of adsorption followed by plasma-catalytic oxidation may be a promising energy-efficient ethylene abatement method. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Evaluation of wet air oxidation as a pretreatment strategy for bioethanol production from rice husk and process optimization

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Saumita [Environmental Biotechnology Division, National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440 020 Maharashtra (India); Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721 302 West Bengal (India); Sen, Ramkrishna [Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721 302 West Bengal (India); Pandey, R.A.; Chakrabarti, Tapan; Satpute, Dewanand; Giri, Balendu Shekher; Mudliar, Sandeep [Environmental Biotechnology Division, National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440 020 Maharashtra (India)

    2009-12-15

    The pretreatment of rice husk by the wet air oxidation (WAO) technique was investigated by means of a statistically designed set of experiments. Reaction temperature, air pressure, and reaction time were the process parameters considered. WAO pretreatment of rice husk increased the cellulose content of the solid fraction by virtue of lignin removal and hemicellulose solubilization. The cellulose recovery was around 92%, while lignin recovery was in the tune of 8-20%, indicating oxidation of a bulk quantity of lignin. The liquid fraction was found to be rich in hexose and pentose sugars, which could be directly utilized as substrate for ethanol fermentation. The WAO process was optimized by multi-objective numerical optimization with the help of MINITAB 14 suite of statistical software, and an optimum WAO condition of 185 C, 0.5 MPa, and 15 min was predicted and experimentally validated to give 67% (w/w) cellulose content in the solid fraction, along with 89% lignin removal, and 70% hemicellulose solubilization; 13.1 gl{sup -1} glucose and 3.4 gl{sup -1} xylose were detected in the liquid fraction. The high cellulose content and negligible residual lignin in the solid fraction would greatly facilitate subsequent enzymatic hydrolysis, and result in improved ethanol yields from rice husk. (author)

  1. Catalytic Properties of Fe-containing Layered Aluminosilicates in Photo-oxidation of Dye “Methyl Green”

    Science.gov (United States)

    Shadrina, O. A.; Dashinamzhilova, E. Ts; Khankhasaeva, S. Ts

    2017-11-01

    The iron-containing materials with an iron content of 40 mg/g and 52.5 mg/g, a specific surface area of 107 m2/g and 96 m2/g are developed on the basis of natural layered aluminosilicate (montmorillonite) and polyhydroxo complexes of iron. It is shown that the materials exhibit high catalytic activity in the photo-oxidation of dye “Methyl Green”. The influence of physicochemical parameters (loading of the catalyst, a ratio of initial concentrations [H2O2]/[MG] on the efficiency of the dye photo-oxidation was established. The optimum conditions, which made it possible to achieve high mineralization and 100 % the dye oxidation efficiency were determined: the catalyst loading equal to 1.0 g/l and the ratio of [H2O2] and [MG] equal to stoichiometric ratio (55 mol/mol). The decrease of the total organic carbon content after photo-oxidation reaction was 56.5%. The average value of the quantum yield of the dye photo-oxidation was to 0.30 mol/Einstein. The results of the conducted research show that the developed iron-containing materials are the promising catalysts for photo-Fenton processes of oxidative degradation of organic compounds. The materials are of interest for use in wastewater treatment processes from toxic organic pollutants.

  2. Denitration of medium level liquid radioactive wastes by catalytic destruction of nitrogen oxides

    International Nuclear Information System (INIS)

    Donato, A.; Ricci, G.

    1984-01-01

    The catalytic abatement by means of NH 3 of the NOsub(x) produced in the radwaste conditioning has been studied. With reference to the gas produced in a bituminization plant, the thermodynamics and the chemistry of the NOsub(x) catalytic reduction to nitrogen and H 2 O have been evaluated. The following operational parameters have been experimentally studied: the catalyst bed temperature; the gas residence time; the vapour concentration; the NOsub(x) concentration; the gas velocity; the catalyst grain size distribution; the catalyst time-life. Abatement yields of the order of 99,5% have been obtained following experimental conditions must be selected. In the case of a bituminization plant, a NOsub(x) catalytic reactor, if installed between the evaporator denitrator and the condenser, could reduce to less than 1/100 the volume of the NaNO 3 secondary wastes produced by the gas scrubbing

  3. Catalytic oxidation of volatile organic compounds (n-hexane, benzene, toluene, o-xylene promoted by cobalt catalysts supported on γ-Al2O3-CeO2

    Directory of Open Access Journals (Sweden)

    R. Balzer

    2014-09-01

    Full Text Available Cobalt catalysts supported on γ-alumina, ceria and γ-alumina-ceria, with 10 or 20%wt of cobalt load, prepared by the wet impregnation method and characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, field emission transmission electron microscopy (FETEM, N2 adsorption-desorption isotherms (BET/BJH methods, energy-dispersive X-ray spectroscopy (EDX, X-ray photoemission spectroscopy (XPS, O2-chemisorption and temperature programmed reduction (TPR were used to promote the oxidation of volatile organic compounds (n-hexane, benzene, toluene and o-xylene. For a range of low temperatures (50-350 °C, the activity of the catalysts with a higher cobalt load (20% wt was greater than that of the catalysts with a lower cobalt load (10% wt. The Co/γ-Al2O3-CeO2 catalytic systems presented the best performances. The results obtained in the characterization suggest that the higher catalytic activity of the Co20/γ-Al2O3-CeO2 catalyst may be attributed to the higher metal content and amount of oxygen vacancies, as well as the effects of the interaction between the cobalt and the alumina and cerium oxides.

  4. Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by ¤Thermoanaerobacter mathranii¤

    DEFF Research Database (Denmark)

    Klinke, H.B.; Thomsen, A.B.; Ahring, B.K.

    2001-01-01

    Alkaline wet oxidation (WO) (using water, 6.5 g/l sodium carbonate, and 12 bar oxygen at 195 degreesC) was used for pre-treating wheat straw (60 g/l), resulting in a hemicellulose-rich hydrolysate and a cellulose-rich solid fraction. The hydrolysate consisted of soluble hemicellulose (9 g/l), ali...

  5. Preparation of magnetic imprinted graphene oxide composite for catalytic degradation of Congo red under dark ambient conditions.

    Science.gov (United States)

    Yang, Xiaochao; You, Xiaoxiao; Zhang, Bin; Guo, Chuigen; Yu, Chaosheng

    2017-10-01

    Magnetic imprinted N-doped P25/Fe 3 O 4 -graphene oxide (MIGNT) was prepared with methyl orange as the dummy template and pyrrole as functional monomer for catalytic degradation of Congo red (CR). Hummers method and the hydrothermal method were used to synthesize Fe 3 O 4 -GO and N-doped P25, respectively. The results of adsorption and degradation experiments showed that the adsorption capacity and catalytic degradation ability of the imprinted composite for CR were obviously higher than those of a non-imprinted one. Moreover, the effect factors on degradation efficiency of CR, such as the initial concentration of CR, catalysis time, pH of the solution and temperature, were investigated. The MIGNT was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, a physical property measurement system and a thermal gravimetric analyzer. The degradation products of CR were detected with high performance liquid chromatography and a mass spectrometer. The MIGNT was a brand-new imprinted composite and had high degradation efficiency for CR under dark ambient conditions. The MIGNT could be recycled conveniently, due to its magnetic property, and could be used as an effective, environmentally friendly and low-cost catalytic degradation material for the treatment of water contaminated by CR.

  6. Large-Scale Mercury Control Technology Testing for Lignite-Fired Utilities - Oxidation Systems for Wet FGD

    Energy Technology Data Exchange (ETDEWEB)

    Steven A. Benson; Michael J. Holmes; Donald P. McCollor; Jill M. Mackenzie; Charlene R. Crocker; Lingbu Kong; Kevin C. Galbreath

    2007-03-31

    Mercury (Hg) control technologies were evaluated at Minnkota Power Cooperative's Milton R. Young (MRY) Station Unit 2, a 450-MW lignite-fired cyclone unit near Center, North Dakota, and TXU Energy's Monticello Steam Electric Station (MoSES) Unit 3, a 793-MW lignite--Powder River Basin (PRB) subbituminous coal-fired unit near Mt. Pleasant, Texas. A cold-side electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber are used at MRY and MoSES for controlling particulate and sulfur dioxide (SO{sub 2}) emissions, respectively. Several approaches for significantly and cost-effectively oxidizing elemental mercury (Hg{sup 0}) in lignite combustion flue gases, followed by capture in an ESP and/or FGD scrubber were evaluated. The project team involved in performing the technical aspects of the project included Babcock & Wilcox, the Energy & Environmental Research Center (EERC), the Electric Power Research Institute, and URS Corporation. Calcium bromide (CaBr{sub 2}), calcium chloride (CaCl{sub 2}), magnesium chloride (MgCl{sub 2}), and a proprietary sorbent enhancement additive (SEA), hereafter referred to as SEA2, were added to the lignite feeds to enhance Hg capture in the ESP and/or wet FGD. In addition, powdered activated carbon (PAC) was injected upstream of the ESP at MRY Unit 2. The work involved establishing Hg concentrations and removal rates across existing ESP and FGD units, determining costs associated with a given Hg removal efficiency, quantifying the balance-of-plant impacts of the control technologies, and facilitating technology commercialization. The primary project goal was to achieve ESP-FGD Hg removal efficiencies of {ge}55% at MRY and MoSES for about a month.

  7. Improved surface-enhanced Raman and catalytic activities of reduced graphene oxide-osmium hybrid nano thin films

    Science.gov (United States)

    Kavitha, C.; Bramhaiah, K.; John, Neena S.; Aggarwal, Shantanu

    2017-09-01

    Reduced graphene oxide-osmium (rGO-Os) hybrid nano dendtrites have been prepared by simple liquid/liquid interface method for the first time. The method involves the introduction of phase-transfered metal organic precursor in toluene phase and GO dispersion in the aqueous phase along with hydrazine hydrate as the reducing agent. Dendritic networks of Os nanoparticles and their aggregates decorating rGO layers are obtained. The substrate shows improved catalytic and surface-enhanced activities comparable with previous reports. The catalytic activity was tested for the reduction of p-nitroaniline into p-phenyldiamine with an excess amount of NaBH4. The catalytic activity factors of these hybrid films are 2.3 s-1 g-1 (Os film) and 4.4 s-1 g-1 (rGO-Os hybrid film), which are comparable with other noble metal nanoparticles such as Au, Ag, but lower than Pd-based catalysts. Surface-enhanced Raman spectroscopy (SERS) measurements have been done on rhodamine 6G (R6G) and methylene blue dyes. The enhancement factor for the R6G adsorbed on rGO-Os thin film is 1.0 × 105 and for Os thin film is 7 × 103. There is a 14-fold enhancement observed for Os hybrids with rGO. The enhanced catalytic and SERS activities of rGO-Os hybrid thin film prepared by simple liquid/liquid interface method open up new challenges in electrocatalytic application and SERS-based detection of biomolecules.

  8. Removal of Humic Substances from Water by Advanced Oxidation Process Using UV/TiO2 Photo Catalytic Technology

    Directory of Open Access Journals (Sweden)

    Hassan Khorsandi

    2009-01-01

    Full Text Available Humic substances have been known as precursors to disinfection by-products. Because conventional treatment processes cannot meet disinfection by-product standards, novel methods have been increasingly applied for the removal of disinfection by-products precursors. The UV/TiO2 process is one of the advanced oxidation processes using the photocatalytic technology. The most important advantages of this process are its stability and high efficiency removal. The present study aims to investigate the effect of UV/TiO2 photo-catalytic technology on removal of humic substances. The study was conducted in a lab-scale batch photo-catalytic reactor using the interval experimental method. The UV irradiation source was a low pressure mercury vapor lamp 55w that was axially centered and was immersed in a humic acids solution within a stainless steel tubular 2.8 L reaction volume. Each of the samples taken from the UV/TiO2 process and other processes studied were analyzed for their dissolved organic carbon, UV absorbance at 254nm, and specific UV254 absorbance. The results indicated the high efficiency of the UV/TiO2 photo-catalytic process (TiO2=0.1 g/L and pH=5, compared to other processes, for humic substances removal from water sources. The process was also found to be capable of decreasing the initial dissolved organic carbon from 5 to 0.394 mg/L. The Specific UV254 Absorbance of 2.79 L/mg.m was attained after 1.5 hr. under photo-catalytic first order reaction (k= 0.0267 min-1. It may be concluded that the UV/TiO2 process can provide desirable drinking water quality in terms of humic substance content.

  9. Synthesis of Ru nanoparticles confined in magnesium oxide-modified mesoporous alumina and their enhanced catalytic performance during ammonia decomposition

    KAUST Repository

    Tan, Hua

    2012-09-01

    In this work, Ru nanoparticles confined in the channels of ordered mesoporous alumina (MA) and magnesium oxide-modified ordered MA are prepared for the first time via a two-solvent technique, combined with the amorphous citrate route. Structural characterizations reveal that uniform 2-3 nm Ru nanoparticles are highly dispersed in the blockage-free channels of mesoporous supports. The Ru nanoparticles confined in MA modified with 20% molar ratio magnesium oxide exhibited a high catalytic activity and stability during ammonia decomposition due to the optimized particle size, basic support, lack of chlorine, and confined space provided by the channels of the mesoporous supports. © 2012 Elsevier B.V. All rights reserved.

  10. System and method for controlling ammonia levels in a selective catalytic reduction catalyst using a nitrogen oxide sensor

    Science.gov (United States)

    None

    2017-07-25

    A system according to the principles of the present disclosure includes an air/fuel ratio determination module and an emission level determination module. The air/fuel ratio determination module determines an air/fuel ratio based on input from an air/fuel ratio sensor positioned downstream from a three-way catalyst that is positioned upstream from a selective catalytic reduction (SCR) catalyst. The emission level determination module selects one of a predetermined value and an input based on the air/fuel ratio. The input is received from a nitrogen oxide sensor positioned downstream from the three-way catalyst. The emission level determination module determines an ammonia level based on the one of the predetermined value and the input received from the nitrogen oxide sensor.

  11. Novel Cage-Like Hexanuclear Nickel(II Silsesquioxane. Synthesis, Structure, and Catalytic Activity in Oxidations with Peroxides

    Directory of Open Access Journals (Sweden)

    Alexey N. Bilyachenko

    2016-05-01

    Full Text Available New hexanuclear nickel(II silsesquioxane [(PhSiO1.512(NiO6(NaCl] (1 was synthesized as its dioxane-benzonitrile-water complex (PhSiO1,512(NiO6(NaCl(C4H8O213(PhCN2(H2O2 and studied by X-ray and topological analysis. The compound exhibits cylinder-like type of molecular architecture and represents very rare case of polyhedral complexation of metallasilsesquioxane with benzonitrile. Complex 1 exhibited catalytic activity in activation of such small molecules as light alkanes and alcohols. Namely, oxidation of alcohols with tert-butylhydroperoxide and alkanes with meta-chloroperoxybenzoic acid. The oxidation of methylcyclohexane gave rise to the isomeric ketones and unusual distribution of alcohol isomers.

  12. Comparison of catalytic activity of Ru(3) cloride and Ru(8) oxide in oxidation of 2-methyl cyclohexanol by Ce(4) sulfate in aqueous solutions of sulfuric acid

    International Nuclear Information System (INIS)

    Tondeon, P.K.; Krishna, B.

    1985-01-01

    The catalytic activity of Ru(3) chloride and Ru(8) oxide in the course of 2-methyl cyclohexanol (MCH) oxidation by Ce(4) sulfate in sulfuric acid is compared. In the presepce of RU(3) the reaction kinetics obeys the equation of the first order relative to organic substrate concentration (at its low concentrations) and tends to zero order at its higher concentrations. For ruthenium (3) chloride the first order is observed. In the presence of Ru(8) the reaction rate is proportional to substrate and catalyst concentrations only in the low concentrations region of the latter while at RU(8) high concentrations a decrease of the catalytic effect is observed. In both cases the process rate is inversely proportional to the sulfuric acid concentration square at its great values and directly proportional-at small ones. An assumption is made that cyclic alcohol oxidation occurs through the activated complex formed as a result of alcohol interaction with Ru(3) or ruthenium (8) hydride

  13. Benzenoid-like CuFeO2@reduced graphene oxide: Facile synthesis and its excellent catalytic performance in selective oxidation

    Science.gov (United States)

    Xu, Tingting; He, Guangyu; Zhao, Yitao; Gu, Hanyun; Jiang, Zhengyuan; Chen, Qun; Sun, Xiaoqiang; Chen, Haiqun

    2016-12-01

    A novel flake composite benzenoid-like CuFeO2@reduced graphene oxide (CuFeO2@RGO) was fabricated via a one-step low temperature solvothermal route. The obtained samples were characterized by XRD, FTIR, Raman, SEM, TEM and XPS, which indicated that the hexagonal CuFeO2 nanocrystals sized 150-200 nm were well dispersed on the surface of the RGO sheets. For the first time, we applied such CuFeO2@RGO composite as a Fenton-like catalyst in selective oxidation of phenol to dihydroxybenzenes with H2O2 as oxidant. The results showed that the CuFeO2@RGO composite exhibited remarkably enhanced catalytic ability compared with the previously reported CuFe2O4-RGO system. The introduction of RGO in the composite was propitious to increase the specific surface area and promoted the dispersibility of CuFeO2 nanocrystals, as well as the formation of unique hexagonal CuFeO2 with Cu (I) and Fe (III) as the active sites, which synergistically accounted for the enhancement of catalytic activity. Moreover, the stability of the catalyst was investigated.

  14. Microwave-Assisted Synthesis of Nickel Oxide Nanoparticles Using Coriandrum sativum Leaf Extract and Their Structural-Magnetic Catalytic Properties

    Directory of Open Access Journals (Sweden)

    Ramakrishnan Azhagu Raj

    2017-04-01

    Full Text Available In this paper, using Coriandrum sativum L., a leaf-extracted, assisted microwave method (MM was used to synthesize nickel oxide formation. We synthesized nickel oxide nanoparticles (NiO with a crystal size in the range of 15–16 nm by a Coriandrum sativum leaf-assisted microwave method (LAMM. The synthesized materials show that an X-ray diffraction (XRD study confirmed the formation of a single phase structure exhibiting a crystallite size in the range of 15–16 nm using Scherrer’s method. The nickel oxide prepared by the MM had a surface area of 60.35 m2/g, pore volume of 0.9427 cm3/g and an average pore diameter of 13.27 Å. Surface morphology was analyzed by the scanning electron microscope (SEM, X-ray photoelectron spectroscope, Brunauer-Emmett-Teller (BET analysis, and the vibrating sample magnetometer (VSM. Catalytic activity (CA tended toward the oxidation of styrene to benzaldehyde. The inexpensive catalyst tested is likely effective as a catalyst due to synergistic interactions between metal oxides with high dispersion. In comparison with other findings, LAMM is easy and eco-friendly. The current study obtained nanocrystalline NiO that was suitable for potential applications in catalysis. The synthesized NiO could potentially be used in therapeutic field due to their competent antibacterial activity.

  15. Catalytic Hydrolysis of Ammonia Borane by Cobalt Nickel Nanoparticles Supported on Reduced Graphene Oxide for Hydrogen Generation

    Directory of Open Access Journals (Sweden)

    Yuwen Yang

    2014-01-01

    Full Text Available Well dispersed magnetically recyclable bimetallic CoNi nanoparticles (NPs supported on the reduced graphene oxide (RGO were synthesized by one-step in situ coreduction of aqueous solution of cobalt(II chloride, nickel (II chloride, and graphite oxide (GO with ammonia borane (AB as the reducing agent under ambient condition. The CoNi/RGO NPs exhibits excellent catalytic activity with a total turnover frequency (TOF value of 19.54 mol H2 mol catalyst−1 min−1 and a low activation energy value of 39.89 kJ mol−1 at room temperature. Additionally, the RGO supported CoNi NPs exhibit much higher catalytic activity than the monometallic and RGO-free CoNi counterparts. Moreover, the as-prepared catalysts exert satisfying durable stability and magnetically recyclability for the hydrolytic dehydrogenation of AB, which make the practical reusing application of the catalysts more convenient. The usage of the low-cost, easy-getting catalyst to realize the production of hydrogen under mild condition gives more confidence for the application of ammonia borane as a hydrogen storage material. Hence, this general method indicates that AB can be used as both a potential hydrogen storage material and an efficient reducing agent, and can be easily extended to facile preparation of other RGO-based metallic systems.

  16. The surface behaviour and catalytic properties of Nd2-XSrXCoO4±Λ mixed oxides

    Directory of Open Access Journals (Sweden)

    Laitao Luo

    2006-12-01

    Full Text Available The mixed oxides, Nd2-xSrxCoO4±λ (0.4 ≤ x ≤ 1.2, ( = non-stochiometric oxygen with the K2NiF4 structure were prepared by the polyglycol gel method and used as catalysts for NO reduction. The samples were investigated by IR, TPD, TPR, and XRD methods and iodometry and the effects of the coefficient x on the structure and catalytic activity of the samples were studied. The results show that the Nd2-xSrxCoO4±λ mixed oxides have the K2NiF4 structure; other phases are found when x 1.2. The amount of Co3+ and the lattice oxygen in Nd2-xSrxCoO4±λ increase with increasing x. The catalytic activity of Nd2-xSrxCoO4±λfor NO reduction is closely correlated with the concentration of oxygen vacancies and the amount of Co3+.

  17. Extraction-wet oxidation process using sulphuric acid for treatment of TBP-dodecane wastes

    International Nuclear Information System (INIS)

    Deshingkar, D.S.; Kartha, P.K.S.

    1998-03-01

    In the nuclear fuel reprocessing plants, 30% n-tributyl phosphate in hydrocarbon diluent is used for extraction of uranium and plutonium from the spent fuel by Purex process. When TBP-dodecane can no longer be purified from its degradation products, it is discarded as alpha bearing, intermediate level wastes containing plutonium and ruthenium-106. To overcome shortcomings of extraction-pyrolysis and saponification processes, studies were undertaken to find the suitability of H 2 SO 4 as an alternative extractant for TBP. Oxidation of TBP to H 3 PO 4 using H 2 O 2 was also explored as H 3 PO 4 can be treated by known procedures for removal of plutonium and ruthenium-106. The experiments were conducted with aged spent solvent wastes discharged from reprocessing plant at Trombay using H 2 SO 4 and H 2 SO 4 - H 3 PO 4 mixture. The decontamination factors (DFs) for alpha activity were found to be satisfactory. The DFs for ruthenium were lower as compared to those obtained in experiments with simulated degraded waste. The gas chromatographic analysis of separated diluent revealed high branched alkane content and low n-dodecane content of separated diluent. It is very much different from that of diluent currently in use. Hence incineration of separated diluent is recommended. (author)

  18. Effect of the preparation method on the structural and catalytic properties of spinel cobalt-iron oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hammiche-Bellal, Yasmina, E-mail: yasminahammiche@gmail.com [Laboratoire des Matériaux Catalytiques et Catalyse en Chimie Organique, Faculté de Chimie, USTHB, BP32 El Alia, Bab Ezzouar, 16111, Alger (Algeria); Djadoun, Amar [Laboratoire de Géophysique, FSTGAT, USTHB, BP32 El Alia, Bab Ezzouar, 16111, Alger (Algeria); Meddour-Boukhobza, Laaldja; Benadda, Amel [Laboratoire des Matériaux Catalytiques et Catalyse en Chimie Organique, Faculté de Chimie, USTHB, BP32 El Alia, Bab Ezzouar, 16111, Alger (Algeria); Auroux, Aline [Université Lyon 1, CNRS, UMR 5256, IRCELYON, Institut de Recherches sur la Catalyse et l' Environnement de Lyon, 2 Avenue Albert Einstein, F-69626, Villeurbanne (France); Berger, Marie-Hélène [Centre des Matériaux PIERRE-MARIE Fourt, UMR 7633, Paris (France); Mernache, Fateh [UDEC-CRND, COMENA, BP 43 Draria, 16050, Alger (Algeria)

    2016-07-01

    Spinel cobalt-iron oxide was synthesized by co-precipitation and hydrothermal routes. The effect of the co-precipitation experimental conditions, the calcination temperature and the hydrothermal synthesis time and temperature on the properties of the solids was studied. The prepared powders were evaluated as catalysts in the ethanol combustion reaction, and were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM/EDX), nitrogen adsorption–desorption isotherms (BET, BJH) and temperature programmed reduction (TPR) techniques. Using chloride salts as starting materials and sodium hydroxide as precipitating agent, the CoFe{sub 2}O{sub 4} prepared powders displayed a mesoporous structure with a pore distribution strongly dependent on the experimental conditions. A monophasic spinel phase in the case of the calcined solids was obtained while the hydrothermal process led to the formation of a mixture of single oxides in addition to the spinel phase. The variation of the crystallite size and the lattice parameter as a function of calcination temperature was similar, whereas this variation found to be irregular when the synthesis residence time in autoclave was increased. The hydrothermally treated solids show the best catalytic performance in the total oxidation of ethanol. The catalytic behavior was correlated with the crystallite size and the reduction temperature of cobalt species determined by the TPR analysis. - Highlights: • Pure CoFe{sub 2}O{sub 4} phase is obtained by co-precipitation method at calcination temperatures 500–900 °C. • The temperature of co-precipitation procedure influences strongly the growth of the solids during the calcination step. • The hydrothermal synthesis gives a mixture of oxides; CoFe{sub 2}O{sub 4} is the predominant phase. • The CoFe{sub 2}O{sub 4} spinel showed a good catalytic reactivity in the ethanol combustion reaction. • The catalysts prepared by hydrothermal process are more reactive and

  19. Selective catalytic reduction of nitric oxide by ammonia over Cu-exchanged Cuban natural zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Tost, Ramon; Santamaria-Gonzalez, Jose; Rodriguez-Castellon, Enrique; Jimenez-Lopez, Antonio [Departamento de Quimica Inorganica, Cristalografia y Mineralogia, Facultad de Ciencias, Unidad Asociada del Instituto de Catalisis y Petroleoquimica, CSIC, Universidad de Malaga, Campus de Teatinos, 29071 Malaga (Spain); Autie, Miguel A.; Glacial, Marisol Carreras [Centro Nacional de Investigaciones Cientificas, Ciudad de la Habana, La Habana (Cuba); Gonzalez, Edel [Instituto Superior Pedagogico ' Enrique Jose Varona' , La Habana (Cuba); Pozas, Carlos De las [Centro de Gerencia de Programas y Proyectos Priorizados, La Habana (Cuba)

    2004-07-15

    The catalytic selective reduction of NO over Cu-exchanged natural zeolites (mordenite (MP) and clinoptilolite (HC)) from Cuba using NH{sub 3} as reducing agent and in the presence of excess oxygen was studied. Cu(II)-exchanged zeolites are very active catalysts, with conversions of NO of 95%, a high selectivity to N{sub 2} at low temperatures, and exhibiting good water tolerance. The chemical state of the Cu(II) in exchanged zeolites was characterized by H{sub 2}-TPR and XPS. Cu(II)-exchanged clinoptilolite underwent a severe deactivation in the presence of SO{sub 2}. However, Cu(II)-exchanged mordenite not only maintained its catalytic activity, but even showed a slight improvement after 20h of reaction in the presence of 100ppm of SO{sub 2}.

  20. Selective catalytic reduction of nitric oxide by ammonia over Cu-exchanged Cuban natural zeolites

    International Nuclear Information System (INIS)

    Moreno-Tost, Ramon; Santamaria-Gonzalez, Jose; Rodriguez-Castellon, Enrique; Jimenez-Lopez, Antonio; Autie, Miguel A.; Glacial, Marisol Carreras; Gonzalez, Edel; Pozas, Carlos De las

    2004-01-01

    The catalytic selective reduction of NO over Cu-exchanged natural zeolites (mordenite (MP) and clinoptilolite (HC)) from Cuba using NH 3 as reducing agent and in the presence of excess oxygen was studied. Cu(II)-exchanged zeolites are very active catalysts, with conversions of NO of 95%, a high selectivity to N 2 at low temperatures, and exhibiting good water tolerance. The chemical state of the Cu(II) in exchanged zeolites was characterized by H 2 -TPR and XPS. Cu(II)-exchanged clinoptilolite underwent a severe deactivation in the presence of SO 2 . However, Cu(II)-exchanged mordenite not only maintained its catalytic activity, but even showed a slight improvement after 20h of reaction in the presence of 100ppm of SO 2

  1. Degradation of cellulose at the wet-dry interface. II. Study of oxidation reactions and effect of antioxidants.

    Science.gov (United States)

    Jeong, Myung-Joon; Dupont, Anne-Laurence; de la Rie, E René

    2014-01-30

    To better understand the degradation of cellulose upon the formation of a tideline at the wet-dry interface when paper is suspended in water, the production of chemical species involved in oxidation reactions was studied. The quantitation of hydroperoxides and hydroxyl radicals was carried out in reverse phase chromatography using triphenylphosphine and terephthalic acid, respectively, as chemical probes. Both reactive oxygen species were found in the tideline immediately after its formation, in the range of micromoles and nanomoles per gram of paper, respectively. The results indicate that hydroxyl radicals form for the most part in paper before the tideline experiment, whereas hydroperoxides appear to be produced primarily during tideline formation. Iron sulfate impregnation of the paper raised the production of hydroperoxides. After hygrothermal aging in sealed vials the hydroxyl radical content in paper increased significantly. When aged together in the same vial, tideline samples strongly influenced the degradation of samples from other areas of the paper (multi-sample aging). Different types of antioxidants were added to the paper before the tideline experiment to investigate their effect on the oxidation reactions taking place. In samples treated with iron sulfate or artificially aged, the addition of Irgafos 168 (tris(2,4-ditert-butylphenyl) phosphate) and Tinuvin 292 (bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate and methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacate) reduced the concentration of hydroperoxides and hydroxyl radicals, respectively. Tinuvin 292 was also found to considerably lower the rate of cellulose chain scission reactions during hygrothermal aging of the paper. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Preparation and Photocatalytic Activity of Potassium- Incorporated Titanium Oxide Nanostructures Produced by the Wet Corrosion Process Using Various Titanium Alloys

    Directory of Open Access Journals (Sweden)

    So Yoon Lee

    2015-08-01

    Full Text Available Nanostructured potassium-incorporated Ti-based oxides have attracted much attention because the incorporated potassium can influence their structural and physico-chemical properties. With the aim of tuning the structural and physical properties, we have demonstrated the wet corrosion process (WCP as a simple method for nanostructure fabrication using various Ti-based materials, namely Ti–6Al–4V alloy (TAV, Ti–Ni (TN alloy and pure Ti, which have 90%, 50% and 100% initial Ti content, respectively. We have systematically investigated the relationship between the Ti content in the initial metal and the precise condition of WCP to control the structural and physical properties of the resulting nanostructures. The WCP treatment involved various concentrations of KOH solutions. The precise conditions for producing K-incorporated nanostructured titanium oxide films (nTOFs were strongly dependent on the Ti content of the initial metal. Ti and TAV yielded one-dimensional nanowires of K-incorporated nTOFs after treatment with 10 mol/L-KOH solution, whereas TN required a higher concentration (20 mol/L-KOH solution to produce comparable nanostructures. The obtained nanostructures revealed a blue-shift in UV absorption spectra due to the quantum confinement effects. A significant enhancement of the photocatalytic activity was observed via the chromomeric change and the intermediate formation of methylene blue molecules under UV irradiation. This study demonstrates the WCP as a simple, versatile and scalable method for the production of nanostructured K-incorporated nTOFs to be used as high-performance photocatalysts for environmental and energy applications.

  3. Wet air oxidation of resorcinol as a model treatment for refractory organics in wastewaters from the wood processing industry.

    Science.gov (United States)

    Weber, Bernd; Chavez, Alma; Morales-Mejia, Julio; Eichenauer, Sabrina; Stadlbauer, Ernst A; Almanza, Rafael

    2015-09-15

    Wastewater treatment systems are important tools to enhance sustainability in terms of reducing environmental impact and complying with sanitary requirements. This work addresses the wet air oxidation (WAO) process for pre-treatment of phenolic wastewater effluents. The aim was to increase biodegradability prior to a subsequent anaerobic stage. In WAO laboratory experiments using a micro-autoclave, the model compound resorcinol was degraded under different oxygen availability regims within the temperature range 150 °C-270 °C. The activation energy was determined to be 51.5 kJ/mol. Analysis of the products revealed that after 3 h of reaction at 230 °C, 97.5% degradation of resorcinol was achieved. At 250 °C and the same reaction time complete removal of resorcinol was observed. In this case the total organic carbon content was reduced down to 29%, from 118.0 mg/L down to 34.4 mg/L. Under these process conditions, the pollutant was only partially mineralized and the ratio of the biological oxygen demand relative to the chemical oxygen demand, which is 0.07 for resorcinol, was increased to a value exceeding 0.5. The main by-product acetic acid, which is a preferred compound for methanogenic bacteria, was found to account for 33% of the total organic carbon. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Zeolite encapsulated Fe-porphyrin for catalytic oxidation with iodobenzene diacetate (PhI(OAc){sub 2})

    Energy Technology Data Exchange (ETDEWEB)

    Karimipour, G.; Rezaei, M.; Ashouri, D. [Yasouj University, Department of Chemistry, 75918-74831 Yasouj (Iran, Islamic Republic of)

    2013-07-01

    meso-Tetrakis(3-pyridyl)porphyrin ato iron(III) chloride encapsulated on NaY Zeolite [Fe(T-3-PyP)-NaY] was synthesized as a heterogeneous ship-in-a-bottle type catalyst and characterized by Fourier transform infrared, atomic absorption, diffused reflectance UV-Vis, X-ray diffraction and scanning electron microscopy analysis. The catalytic activity of Fe(T-3-PyP-NaY was examined for the epoxidation of cyclohexene by PhI(OAc){sub 2} in CH{sub 3}CN/H{sub 2}O (5:1) and compared to that of Fe(T-3-PyP) as a homogeneous catalyst. We found that the heterogeneous catalyst Fe(T-3-PyP-NaY was stable and reusable for several times, and provided a mild condition and exhibited high activity and selectivity in the oxidation of alkenes to epoxides (16-94%). As representative examples for the use of Fe(T-3-PyP-NaY/ PhI(OAc){sub 2} in organic oxidations, oxidation of 4-nitro benzylalcohol to 4-nitrobenzaldehyde (97%), oxidative dehydrogenation of diethyl 4-(2,6-dichlorophenyl)-2,6-dimethyl-1,4-dihydro-3,5-pyridinedicarboxylate to the corresponding pyridine (100%), diphenylacetic acid to benzophenone (64%) was achieved. (Author)

  5. An investigation of alumina-supported catalysts for the selective catalytic oxidation of ammonia in biomass gasification

    Energy Technology Data Exchange (ETDEWEB)

    Darvell, L.I.; Jones, J.M.; Ross, A.B.; Williams, A. [Department of Fuel and Energy, SPEME, University of Leeds, Leeds LS2 9JT (United Kingdom); Heiskanen, K.; Simell, P. [VTT Processes, P.O. Box 1601, FIN-02044 VTT (Finland)

    2003-07-01

    Alumina-supported catalysts containing different transition metals (Ni, Cu, Cr, Mn, Fe and Co) were prepared and tested for their activity in the selective oxidation of ammonia reaction at high temperatures (between 700 and 900C) using a synthetic gasification gas mixture. The catalysts were also characterised for their acidic properties by infrared studies of pyridine and ammonia adsorption and reaction/desorption. The Ni/Al{sub 2}O{sub 3} and Cr/Al{sub 2}O{sub 3} catalyst displayed the highest selective catalytic oxidation (SCO) activity in that temperature range with excellent N{sub 2} selectivities. FT-IR studies of adsorbed pyridine and NH{sub 3} indicate that Lewis acid sites dominate and that NH{sub 3} adsorption on these sites is likely to be the first step in the SCO reaction. FT-IR studies on less active catalysts, particularly on Cu/Al{sub 2}O{sub 3} allowed the detection of oxidation intermediates, amide (NH{sub 2}), and possibly hydrazine and imido and nitroxyl species. The amide and hydrazine intermediate gives credence to a proposed SCO mechanism involving a hydrazine intermediate, while the proposed imide, =N-H, and/or nitroxyl, HNO species could be intermediates in incomplete oxidation of NH{sub 3} to N{sub 2}O.

  6. Thermodynamic study contribution of U-Fe and U-Ga alloys by high temperature mass spectroscopy, and of the wetting of yttrium oxide by uranium

    International Nuclear Information System (INIS)

    Gardie, P.

    1992-01-01

    High temperature thermodynamic properties study of U-Fe and U-Ga alloys, and wetting study of yttrium oxide by uranium are presented. High temperature mass spectrometry coupled to a Knudsen effusion multi-cell allows to measure iron activity in U-Fe alloys and of gallium in U-Ga alloys, the U activity is deduced from Gibbs-Duhem equation. Wetting of the system U/Y 2 O 3-x is studied between 1413 K and 1973 K by the put drop method visualized by X-rays. This technique also furnishes density, surface tension of U and of U-Fe alloys put on Y 2 O 3-x . A new model of the interfacial oxygen action on wetting is done for the system U/Y 2 O 3-x . (A.B.)

  7. Atomic-Scale Determination of Active Facets on the MoVTeNb Oxide M1 Phase and Their Intrinsic Catalytic Activity for Ethane Oxidative Dehydrogenation.

    Science.gov (United States)

    Melzer, Daniel; Xu, Pinghong; Hartmann, Daniela; Zhu, Yuanyuan; Browning, Nigel D; Sanchez-Sanchez, Maricruz; Lercher, Johannes A

    2016-07-25

    Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) has been used to image the basal {001} plane of the catalytically relevant M1 phase in MoVTeNb complex oxides. Facets {010}, {120}, and {210} are identified as the most frequent lateral termination planes of the crystals. Combination of STEM with He ion microscopy (HIM) images, Rietveld analysis, and kinetic tests reveals that the activation of ethane is correlated to the availability of facets {001}, {120}, and {210} at the surface of M1 crystals. The lateral facets {120} and {210} expose crystalline positions related to the typical active centers described for propane oxidation. Conversely, the low activity of the facet {010} is attributed to its configuration, consisting of only stable M6 O21 units connected by a single octahedron. Thus, we quantitatively demonstrated that differences in catalytic activity among M1 samples of equal chemical composition depend primarily on the morphology of the particles, which determines the predominant terminating facets. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Preparation and characterization of mu-nitrido diiron phthalocyanines with electron-withdrawing substituents: application for catalytic aromatic oxidation.

    Science.gov (United States)

    Işci, Umit; Afanasiev, Pavel; Millet, Jean-Marc M; Kudrik, Evgeny V; Ahsen, Vefa; Sorokin, Alexander B

    2009-09-28

    Mu-nitrido-bis [tetra-(hexyl-sulfonyl)phthalocyaninatoiron] (3a) and mu-nitrido-bis [tetra-(tert-butylsulfonyl) phthalocyaninatoiron] (3b) complexes have been prepared and fully characterized by electrospray ionization mass spectrometry, UV-Vis, FTIR, EPR, Mössbauer techniques as well as by X-ray photoelectron and Fe K-edge X-ray absorption spectroscopies. Small changes at the periphery of the phthalocyanine ligand introduce a difference in the iron oxidation state. While 3b with tert-butyl substituents is a neutral complex with a mixed-valence Fe(3.5)-N-Fe(3.5) structural unit, 3a having n-hexyl substituents is an oxidized cationic Fe(IV)-N-Fe(IV) complex. The structural parameters of N-bridged diiron phthalocyanine with a Fe(3.5)-N-Fe(3.5) unit were determined for the first time. Iron atoms in 3b are displaced out of plane by 0.24 A and the Fe-N bond distance of the linear Fe-N-Fe fragment is equal to 1.67 A. Both complexes selectively catalyze benzylic oxidation of alkyl aromatic compounds by tBuOOH. Toluene was oxidized to benzoic acid with 80% selectivity, and the total turnover number was as high as 197. p-Toluic acid was the principal product of p-xylene oxidation. In this case the turnover number achieved 587 substrate molecules per molecule of catalyst. The described catalytic system is complementary to the recently reported system based on mu-nitrido diiron tetrabutylphthalocyanine-H2O2 which effectively oxidizes the benzene ring.

  9. Catalytic Aerobic Dehydrogenation of Nitrogen Heterocycles Using Heterogeneous Cobalt Oxide Supported on Nitrogen-Doped Carbon.

    Science.gov (United States)

    Iosub, Andrei V; Stahl, Shannon S

    2015-09-18

    Dehydrogenation of (partially) saturated heterocycles provides an important route to heteroaromatic compounds. A heterogeneous cobalt oxide catalyst, previously employed for aerobic oxidation of alcohols and amines, is shown to be effective for aerobic dehydrogenation of various 1,2,3,4-tetrahydroquinolines to the corresponding quinolines. The reactions proceed in good yields under mild conditions. Other N-heterocycles are also successfully oxidized to their aromatic counterparts.

  10. Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes.

    Science.gov (United States)

    Doyle, Richard L; Godwin, Ian J; Brandon, Michael P; Lyons, Michael E G

    2013-09-07

    This paper presents a review of the redox and electrocatalytic properties of transition metal oxide electrodes, paying particular attention to the oxygen evolution reaction. Metal oxide materials may be prepared using a variety of methods, resulting in a diverse range of redox and electrocatalytic properties. Here we describe the most common synthetic routes and the important factors relevant to their preparation. The redox and electrocatalytic properties of the resulting oxide layers are ascribed to the presence of extended networks of hydrated surface bound oxymetal complexes termed surfaquo groups. This interpretation presents a possible unifying concept in water oxidation catalysis - bridging the fields of heterogeneous electrocatalysis and homogeneous molecular catalysis.

  11. Catalytic reduction of 4-nitrophenol over Ni-Pd nanodimers supported on nitrogen-doped reduced graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lijun, E-mail: liulj@wtu.edu.cn [College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, People' s Republic of China (China); Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Chen, Ruifen; Liu, Weikai [College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, People' s Republic of China (China); Wu, Jiamin [Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Gao, Di, E-mail: gaod@pitt.edu [Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2016-12-15

    Catalytic reduction of toxic 4-nitrophenol to 4-aminophenol over magnetically recoverable nanocatalysts has attracted much attention. Herein, we report a Ni-Pd/NrGO catalyst through the growth of Ni-Pd nanodimers (NDs) on nitrogen-doped reduced graphene oxide (NrGO). The Ni-Pd NDs show a heterogeneous nanostructure with Ni and Pd subparts contacting with each other, remarkably different from the frequently-observed core/shell nanoparticles (NPs) or nanoalloy. The formation of Ni-Pd NDs follows an initial deposition of Pd NPs on the graphene and in-situ catalytic generation of Ni subparts over the newly-generated Pd NPs. The resulting Ni-Pd/NrGO exhibits a superior catalytic activity towards the reduction of 4-nitrophenol at room temperature with a high rate constant (3400 s{sup -1} g{sup -1}) and a low activated energy (29.1 kJ mol{sup -1}) as compared to unsupported Ni-Pd NDs and supported monometallic catalysts. The conversion rate of 4-NP is calculated to be 99.5% and the percent yield (%) of 4-AP is as high as 99.1%. A synergistic catalysis mechanism is rationally proposed, which is ascribed to the electronic modification of Ni-Pd metals due to the strong metal/support interaction (SMSI) effect as well as the electron transfer between Ni and Pd. The hybrid catalyst shows soft ferromagnetic properties and can be magnetically separated and recycled without obvious loss of activity.

  12. Modification of Titanium Dioxide Nanoparticles With Copper Oxide Co-Catalyst for Photo catalytic Degradation of 2,4-Dichlorophenoxyacetic Acid

    International Nuclear Information System (INIS)

    Leny Yuliati; Siah, W.R.; Nur Azmina Roslan; Mustaffa Shamsuddin

    2016-01-01

    2,4-dichlorophenoxyacetic acid (2,4-D) is a common herbicide that has been used widely. Due to its excessive usage, the 2,4-D herbicides can cause contamination over agricultural land and water bodies. In the present work, a simple impregnation method was used to modify the commercial titanium dioxide (P25 TiO 2 ) nanoparticles with the copper oxide. The prepared samples were characterized by X-ray Diffraction (XRD), reflectance UV-visible and fluorescence spectroscopies. It was observed that the incorporation of copper oxide did not significantly affect the crystal structure of P25 TiO 2 . On the other hand, the presence of copper oxide was confirmed by reflectance UV-visible and fluorescence spectroscopies. The activity of the prepared sample was evaluated for photo catalytic removal of the 2,4-D. The photo catalytic activity of the TiO 2 increased with the increase of copper oxide loading up to 0.5 mol %. Unfortunately, the higher loading amount of copper oxide resulted in the lower photo catalytic activity. This study suggested that the higher photo catalytic activities obtained on the low loading samples were due to the lower electron-hole recombination. (author)

  13. Effect of phase interaction on catalytic CO oxidation over the SnO{sub 2}/Al{sub 2}O{sub 3} model catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Shujing [Collaborative Innovation Center of Chemical Science & Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300354 (China); The Institute of Seawater Desalination and Miltipurpose Utilization, State Oceanic Administration, Tianjin 300192 (China); Bai, Xueqin; Li, Jing; Liu, Cheng; Ding, Tong; Tian, Ye; Liu, Chang [Collaborative Innovation Center of Chemical Science & Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300354 (China); Xian, Hui [Tianjin Polytechnic University, School of Computer Science & Software Engineering, Tianjin 300387 (China); Mi, Wenbo [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Faculty of Science, Tianjin University, Tianjin 300354 (China); Li, Xingang, E-mail: xingang_li@tju.edu.cn [Collaborative Innovation Center of Chemical Science & Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300354 (China)

    2017-04-30

    Highlights: • Activity for CO oxidation is greatly enhanced by interaction between SnO{sub 2} and Al{sub 2}O{sub 3}. • Interaction between SnO{sub 2} and Al{sub 2}O{sub 3} phases can generate oxygen vacancies. • Oxygen vacancies play an import role for catalytic CO oxidation. • Sn{sup 4+} cations are the effective sites for catalytic CO oxidation. • Langmuir-Hinshelwood model is preferred for catalytic CO oxidation. - Abstract: We investigated the catalytic CO oxidation over the SnO{sub 2}/Al{sub 2}O{sub 3} model catalysts. Our results show that interaction between the Al{sub 2}O{sub 3} and SnO{sub 2} phases results in the significantly improved catalytic activity because of the formation of the oxygen vacancies. The oxygen storage capacity of the SnO{sub 2}/Al{sub 2}O{sub 3} catalyst prepared by the physically mixed method is nearly two times higher than that of the SnO{sub 2}, which probably results from the change of electron concentration on the interface of the SnO{sub 2} and Al{sub 2}O{sub 3} phases. Introducing water vapor to the feeding gas would a little decrease the activity of the catalysts, but the reaction rate could completely recover after removal of water vapor. The kinetics results suggest that the surface Sn{sup 4+} cations are effective CO adsorptive sites, and the surface adsorbed oxygen plays an important role upon CO oxidation. The reaction pathways upon the SnO{sub 2}-based catalysts for CO oxidation follow the Langmuir-Hinshelwood model.

  14. Co3O4-CeO2 mixed oxide-based catalytic materials for diesel soot oxidation

    Czech Academy of Sciences Publication Activity Database

    Dhakad, M.; Mitshuhashi, T.; Rayalu, S.; Doggali, P.; Bakardjieva, Snejana; Šubrt, Jan; Fino, D.; Haneda, H.; Labhsetwar, N.

    2008-01-01

    Roč. 132, 1-4 (2008), s. 188-193 ISSN 0920-5861 R&D Projects: GA MŠk LC523 Institutional research plan: CEZ:AV0Z40320502 Keywords : soot oxidation * diesel particulate * Co3O4-CeO2 type mixed oxide Subject RIV: CA - Inorganic Chemistry Impact factor: 3.004, year: 2008

  15. Synthesis, Characterization, and Relative Study on the Catalytic Activity of Zinc Oxide Nanoparticles Doped MnCO3, –MnO2, and –Mn2O3 Nanocomposites for Aerial Oxidation of Alcohols

    Directory of Open Access Journals (Sweden)

    Mohamed E. Assal

    2017-01-01

    Full Text Available Zinc oxide nanoparticles doped manganese carbonate catalysts [X% ZnOx–MnCO3] (where X = 0–7 were prepared via a facile and straightforward coprecipitation procedure, which upon different calcination treatments yields different manganese oxides, that is, [X% ZnOx–MnO2] and [X% ZnOx–Mn2O3]. A comparative catalytic study was conducted to evaluate the catalytic efficiency between carbonates and oxides for the selective oxidation of secondary alcohols to corresponding ketones using molecular oxygen as a green oxidizing agent without using any additives or bases. The prepared catalysts were characterized by different techniques such as SEM, EDX, XRD, TEM, TGA, BET, and FTIR spectroscopy. The 1% ZnOx–MnCO3 calcined at 300°C exhibited the best catalytic performance and possessed highest surface area, suggesting that the calcination temperature and surface area play a significant role in the alcohol oxidation. The 1% ZnOx–MnCO3 catalyst exhibited superior catalytic performance and selectivity in the aerial oxidation of 1-phenylethanol, where 100% alcohol conversion and more than 99% product selectivity were obtained in only 5 min with superior specific activity (48 mmol·g−1·h−1 and 390.6 turnover frequency (TOF. The specific activity obtained is the highest so far (to the best of our knowledge compared to the catalysts already reported in the literatures used for the oxidation of 1-phenylethanol. It was found that ZnOx nanoparticles play an essential role in enhancing the catalytic efficiency for the selective oxidation of alcohols. The scope of the oxidation process is extended to different types of alcohols. A variety of primary, benzylic, aliphatic, allylic, and heteroaromatic alcohols were selectively oxidized into their corresponding carbonyls with 100% convertibility without overoxidation to the carboxylic acids under base-free conditions.

  16. A facile and sensitive peptide-modulating graphene oxide nanoribbon catalytic nanoplasmon analytical platform for human chorionic gonadotropin.

    Science.gov (United States)

    Liang, Aihui; Li, Chongning; Li, Dan; Luo, Yanghe; Wen, Guiqing; Jiang, Zhiliang

    2017-01-01

    The nanogold reaction between HAuCl 4 and citrate is very slow, and the catalyst graphene oxide nanoribbon (GONR) enhanced the nanoreaction greatly to produce gold nanoparticles (AuNPs) that exhibited strong surface plasmon resonance (SPR) absorption (Abs) at 550 nm and resonance Rayleigh scattering (RRS) at 550 nm. Upon addition of the peptide of human chorionic gonadotropin (hCG), the peptide could adsorb on the GONR surface, which inhibited the catalysis. When hCG was added, peptides were separated from the GONR surface due to the formation of stable peptide-hCG complex, which led to the activation of GONR catalytic effect. With the increase in hCG concentration, the RRS and Abs signal enhanced linearly. The enhanced RRS value showed a good linear relationship with hCG concentration in the range of 0.2-20 ng/mL, with a detection limit of 70 pg/mL. Accordingly, two new GONR catalytic RRS/Abs methods were established for detecting hCG in serum samples.

  17. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters

    Science.gov (United States)

    Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki

    2016-08-01

    Understanding of the “structure-activity” relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au3+ ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size.

  18. Catalytic Reduction of Nitrous Oxide with Carbon Monoxide over Calcined Co–Mn–Al Hydrotalcite

    Czech Academy of Sciences Publication Activity Database

    Pacultová, K.; Obalová, L.; Kovanda, F.; Jirátová, Květa

    2008-01-01

    Roč. 137, 2-4 (2008), s. 358-389 ISSN 0920-5861 R&D Projects: GA ČR(CZ) GA106/05/0366 Institutional research plan: CEZ:AV0Z40720504 Keywords : nitrous oxide * carbon monoxide * mixed oxide catalysts Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.004, year: 2008

  19. Alumina supported Co-K-Mo based catalytic material for diesel soot oxidation

    Czech Academy of Sciences Publication Activity Database

    Dhakad, M.; Joshi, A.G.; Rayalu, S.; Tanwar, P.; Bassin, J.K.; Kumar, R.; Lokhande, S.; Šubrt, Jan; Mitsuhashi, T.; Labhsetwar, N.

    2009-01-01

    Roč. 52, 13-20 (2009), s. 2070-2075 ISSN 1022-5528 Institutional research plan: CEZ:AV0Z40320502 Keywords : soot oxidation * diesel particulate filter * catalyst carbon oxidation Subject RIV: CA - Inorganic Chemistry Impact factor: 2.379, year: 2009

  20. Importance of the oxygen bond strength for catalytic activity in soot oxidation

    DEFF Research Database (Denmark)

    Christensen, Jakob M.; Grunwaldt, Jan-Dierk; Jensen, Anker D.

    2016-01-01

    energies for soot oxidation follow linear Brønsted-Evans-Polanyi relationships with the heat of oxygen chemisorption. Among the tested metal or metal oxide catalysts Co3O4 and CeO2 were nearest to the optimal bond strength in tight contact oxidation, while Cr2O3 was nearest to the optimum in loose contact......The oxygen bond strength on a catalyst, as measured by the heat of oxygen chemisorption, is observed to be a very important parameter for the activity of the catalyst in soot oxidation. With both intimate contact between soot and catalyst (tight contact) and with the solids stirred loosely together...... oxidation. The optimum of the volcano curve in loose contact is estimated to occur between the bond strengths of α-Fe2O3 and α-Cr2O3. Guided by an interpolation principle FeaCrbOx binary oxides were tested, and the activity of these oxides was observed to pass through an optimum for an FeCr2Ox binary oxide...

  1. Synthesis, Characterization and Catalytic Performance in the Selective Oxidation of Alcohols by Metallophthalocyanines Supported on Zinc Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Amin Ebadi

    2017-01-01

    Full Text Available Unsubstituted phthalocyanines of Co, Fe and Mn supported on zinc oxide nanoparticles were prepared and were well characterized with X-ray diffraction and scanning electron microscopy. The oxidation of alcohols with tert-butylhydroperoxide, in the presence of metallophthalocyanines supported on zinc oxide nanoparticles was investigated. These MPc/ZnO nanocomposites were effective catalysts for the oxidation of alcohols such as cyclohexanol (83.4% conversion; 100% selectivity, benzyl alcohol (70.5% conversion; 100% selectivity and hexanol (62.3% conversion; 100% selectivity. The influences of reaction time, various metals and type of substrates and oxidants on the oxidation of alcohols were also studied, and optimized conditions were investigated. Under these reaction conditions, the activity of the catalysts decreases in the following order:  CoPc/nano-ZnO > FePc/nano-ZnO > MnPc/nano-ZnO. It shows that TBHP is more efficient oxidant due to weaker O-O bond with respect to H2O2 and the following order has been observed for the percentage of conversions of alcohols: 2º > benzylic > 1º.

  2. A study of the electro-catalytic oxidation of methanol on a cobalt hydroxide modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Jafarian, M.; Mahjani, M.G.; Heli, H.; Gobal, F.; Khajehsharifi, H.; Hamedi, M.H.

    2003-01-01

    Cobalt hydroxide modified glassy carbon electrodes (CHM/GC) prepared by the anodic deposition in presence of tartrate ions have been used for the electro-catalytic oxidation of methanol in alkaline solutions where the methods of cyclic voltammetery (CV), chronoamperometry (CA) and impedance spectroscopy (IS) have been employed. In CV studies, in the presence of methanol the peak current of the oxidation of cobalt hydroxide increase is followed by a decrease in the corresponding cathodic current. This suggests that the oxidation of methanol is being catalysed through the mediated electron transfer across the cobalt hydroxide layer comprising of cobalt ions of various valence states. A mechanism based on the electro-chemical generation of Co(IV) active sites and their subsequent consumptions by methanol have been discussed and the corresponding rate law under the control of charge transfer has been developed and kinetic parameters have been derived. In this context the charge transfer resistance accessible both theoretically and through the IS studies have been used as a criteria. Under the CA regimes the reaction followed a Cottrellian behaviour

  3. Preparation of mesoporous alumina films by anodization: Effect of pretreatments on the aluminum surface and MTBE catalytic oxidation

    International Nuclear Information System (INIS)

    Vazquez, A.L.; Carrera, R.; Arce, E.; Castillo, N.; Castillo, S.; Moran-Pineda, M.

    2009-01-01

    Mesoporous materials are both scientifically and technologically important because of the presence of voids of controllable dimensions at atomic, molecular, and nanometric scales. Over the last decade, there has been both an increasing interest and research effort in the synthesis and characterization of these types of materials. The purposes of this work are to study the physical and chemical changes in the properties of mesoporous alumina films produced by anodization in sulphuric acid by different pretreatments on the aluminium surface such as mechanical polishing [MP] and electropolishing [EP]; and to compare their properties such as morphology, structure and catalytic activity with those present in commercial alumina. The morphologic and physical characterizations of the alumina film samples were carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The chemical evaluations were performed by the oxidation of methyl-tert-butyl-ether (MTBE) at 400 deg. C under O 2 /He oxidizing conditions (Praxair, 2.0% O 2 /He balance). According to the results, the samples that presented higher activities than those in Al 2 O 3 /Al [MP] and commercial alumina in the MTBE oxidation (69%), were those prepared by Al 2 O 3 /Al [EP]. The average mesoporous diameter was 17 nm, and the morphological shape was equiaxial; thus, that pore distribution was the smallest of all with a homogeneous distribution.

  4. Model-based design of low-temperature carbon nanotube synthesis via catalytic oxidation for supercapacitor application.

    Science.gov (United States)

    Vasenkov, A V; Carnahan, D L

    2010-12-01

    Novel electrochemical double layer capacitors with carbon nanotube (CNT) electrode, often referred to as supercapacitors, have a potential to bridge a power and energy gap between traditional dielectric capacitors and chemical batteries. However, their future is uncertain because current fabrication technologies involve difficult-to-control post-growth manipulations of CNTs. This paper addresses this problem by introducing model-based design of low-temperature CNT synthesis that is suitable for in-situ fabrication of CNT-based supercapacitor electrode. The insight to the surface kinetics during low-temperature CNT synthesis via catalytic oxidation was obtained via coupled Molecular Dynamics and Quantum Semiempirical Hamiltonian simulations. It was determined that the presence of oxygen on the surface of catalyst increases, by several times, the time necessary for the decomposition of hydrocarbons as well as shifts the reaction zone from the surface of catalyst to the catalyst underlayer. Theoretical trends were confirmed by CNT growth experiments. A contact between conducting CNTs and zinc oxide binding layer was analyzed in detail since its properties strongly affect the performance of CNT electrode. It was demonstrated that the formed CNT-zinc oxide interface was free from unbonded oxygen atoms and/or clusters of zinc atoms and was weakly affected by defects in CNTs.

  5. Preparation of mesoporous alumina films by anodization: Effect of pretreatments on the aluminum surface and MTBE catalytic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, A.L., E-mail: avazquezd@ipn.m [Departamento de Ingenieria Metalurgica, ESIQIE-IPN, AP 75-876, Mexico, D.F. (Mexico); Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Lazaro Cardenas 152, C.P. 07730, Mexico, D.F. (Mexico); Carrera, R. [Departamento de Ingenieria Metalurgica, ESIQIE-IPN, AP 75-876, Mexico, D.F. (Mexico); Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Lazaro Cardenas 152, C.P. 07730, Mexico, D.F. (Mexico); Arce, E. [Departamento de Ingenieria Metalurgica, ESIQIE-IPN, AP 75-876, Mexico, D.F. (Mexico); Castillo, N. [CINVESTAV, Departamento de Fisica. Av. IPN 2508, 07360, Mexico, D.F (Mexico); Castillo, S. [Departamento de Ingenieria Metalurgica, ESIQIE-IPN, AP 75-876, Mexico, D.F. (Mexico); Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Lazaro Cardenas 152, C.P. 07730, Mexico, D.F. (Mexico); Moran-Pineda, M. [Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Lazaro Cardenas 152, C.P. 07730, Mexico, D.F. (Mexico)

    2009-08-26

    Mesoporous materials are both scientifically and technologically important because of the presence of voids of controllable dimensions at atomic, molecular, and nanometric scales. Over the last decade, there has been both an increasing interest and research effort in the synthesis and characterization of these types of materials. The purposes of this work are to study the physical and chemical changes in the properties of mesoporous alumina films produced by anodization in sulphuric acid by different pretreatments on the aluminium surface such as mechanical polishing [MP] and electropolishing [EP]; and to compare their properties such as morphology, structure and catalytic activity with those present in commercial alumina. The morphologic and physical characterizations of the alumina film samples were carried out by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The chemical evaluations were performed by the oxidation of methyl-tert-butyl-ether (MTBE) at 400 deg. C under O{sub 2}/He oxidizing conditions (Praxair, 2.0% O{sub 2}/He balance). According to the results, the samples that presented higher activities than those in Al{sub 2}O{sub 3}/Al [MP] and commercial alumina in the MTBE oxidation (69%), were those prepared by Al{sub 2}O{sub 3}/Al [EP]. The average mesoporous diameter was 17 nm, and the morphological shape was equiaxial; thus, that pore distribution was the smallest of all with a homogeneous distribution.

  6. Size Control of Iron Oxide Nanoparticles Using Reverse Microemulsion Method: Morphology, Reduction, and Catalytic Activity in CO Hydrogenation

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Housaindokht

    2013-01-01

    Full Text Available Iron oxide nanoparticles were prepared by microemulsion method and evaluated in Fischer-Tropsch synthesis. The precipitation process was performed in a single-phase microemulsion operating region. Different HLB values of surfactant were prepared by mixing of sodium dodecyl sulfate (SDS and Triton X-100. Transmission electron microscopy (TEM, surface area, pore volume, average pore diameter, pore size distribution, and XRD patterns were used to analyze size distribution, shape, and structure of precipitated hematite nanoparticles. Furthermore, temperature programmed reduction (TPR and catalytic activity in CO hydrogenation were implemented to assess the performance of the samples. It was found that methane and CO2 selectivity and also the syngas conversion increased as the HLB value of surfactant decreased. In addition, the selectivity to heavy hydrocarbons and chain growth probability (α decreased by decreasing the catalyst crystal size.

  7. Catalytic partial oxidation and membrane separation to optimize the conversion of natural gas to syngas and hydrogen.

    Science.gov (United States)

    Capoferri, Daniela; Cucchiella, Barbara; Iaquaniello, Gaetano; Mangiapane, Alessia; Abate, Salvatore; Centi, Gabriele

    2011-12-16

    The multistep integration of hydrogen-selective membranes into catalytic partial oxidation (CPO) technology to convert natural gas into syngas and hydrogen is reported. An open architecture for the membrane reactor is presented, in which coupling of the reaction and hydrogen separation is achieved independently and the required feed conversion is reached through a set of three CPO reactors working at 750, 750 and 920 °C, compared to 1030 °C for conventional CPO technology. Obtaining the same feed conversion at milder operating conditions translates into less natural gas consumption (and CO(2) emissions) and a reduction of variable operative costs of around 10 %. It is also discussed how this energy-efficient process architecture, which is suited particularly to small-to-medium applications, may improve the sustainability of other endothermic, reversible reactions to form hydrogen. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Free-Standing Metal Oxide Nanoparticle Superlattices Constructed with Engineered Protein Containers Show in Crystallo Catalytic Activity.

    Science.gov (United States)

    Lach, Marcel; Künzle, Matthias; Beck, Tobias

    2017-12-11

    The construction of defined nanostructured catalysts is challenging. In previous work, we established a strategy to assemble binary nanoparticle superlattices with oppositely charged protein containers as building blocks. Here, we show that these free-standing nanoparticle superlattices are catalytically active. The metal oxide nanoparticles inside the protein scaffold are accessible for a range of substrates and show oxidase-like and peroxidase-like activity. The stable superlattices can be reused for several reaction cycles. In contrast to bulk nanoparticle-based catalysts, which are prone to aggregation and difficult to characterize, nanoparticle superlattices based on engineered protein containers provide an innovative synthetic route to structurally defined heterogeneous catalysts with control over nanoparticle size and composition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Understanding Catalytic Activity Trends for NO Decomposition and CO Oxidation using Density Functional Theory and Microkinetic Modeling

    DEFF Research Database (Denmark)

    Falsig, Hanne

    towards rationalizing trends in catalytic activity of transition metal catalysts for NO decomposition by combining microkinetic modelling with density functional theory calculations. We establish the full potential energy diagram for the direct NO decomposition reaction over stepped transition...... and Pt are the best direct NO decomposition catalysts among the 3d, 4d, and 5d metals. We analyze the NO decomposition reaction in terms of the Sabatier analysis and a Sabatier–Gibbs-type analysis and obtain an activity trend in agreement with experimental results. We show specifically why the key...... problem in using transition metal surfaces to catalyze direct NO decomposition is their significant relative overbinding of atomic oxygen compared to atomic nitrogen. We calculate adsorption and transition state energies for the full CO oxidation reaction pathway by the use of DFT for a number...

  10. Synthesis of New Chiral Ligands Based on Thiophene Derivatives for Use in Catalytic Asymmetric Oxidation of Sulfides

    International Nuclear Information System (INIS)

    Jeong, Yong Chul; Ahn, Dae Jun; Lee, Woo Sun; Lee, Seung Han; Ahn, Kwang Hyun

    2011-01-01

    We discovered that the vanadium complexes of new Schiff base ligands and prepared from thiophene derivatives efficiently catalyze the asymmetric oxidation of sulfides by hydrogen peroxide to provide sulfoxides with enantioselectivities up to 79% ee and in yields up to 89%. Notably, Schiff base showed better or similar enantioselectivity than the well-studied Schiff base. These results suggest possible applications of Schiff bases derived from and in other catalytic asymmetric reactions. Chiral sulfoxides are important functional groups for various applications. For example, the biological activities of sulfoxide containing drugs such as omeprazole are strongly related to the chirality of the sulfoxide group; for this reason, esomeprazole, the enantiomerically pure form of omeprazole, was later developed. There are several chiral sulfoxide based drugs that have been introduced by the pharmaceutical industry including armodafinil, aprikalim, oxisurane, and ustiloxin. Chiral sulfoxides have also been utilized as chiral auxiliaries in asymmetric syntheses of chiral intermediates

  11. Advanced oxidation removal of hypophosphite by O3/H2O2 combined with sequential Fe(II) catalytic process.

    Science.gov (United States)

    Zhao, Zilong; Dong, Wenyi; Wang, Hongjie; Chen, Guanhan; Wang, Wei; Liu, Zekun; Gao, Yaguang; Zhou, Beili

    2017-08-01

    Elimination of hypophosphite (HP) was studied as an example of nickel plating effluents treatment by O 3 /H 2 O 2 and sequential Fe(II) catalytic oxidation process. Performance assessment performed with artificial HP solution by varying initial pH and employing various oxidation processes clearly showed that the O 3 /H 2 O 2 ─Fe(II) two-step oxidation process possessed the highest removal efficiency when operating under the same conditions. The effects of O 3 dosing, H 2 O 2 concentration, Fe(II) addition and Fe(II) feeding time on the removal efficiency of HP were further evaluated in terms of apparent kinetic rate constant. Under improved conditions (initial HP concentration of 50 mg L -1 , 75 mg L -1 O 3 , 1 mL L -1 H 2 O 2 , 150 mg L -1 Fe(II) and pH 7.0), standard discharge (<0.5 mg L -1 in China) could be achieved, and the Fe(II) feeding time was found to be the limiting factor for the evolution of apparent kinetic rate constant in the second stage. Characterization studies showed that neutralization process after oxidation treatment favored the improvement of phosphorus removal due to the formation of more metal hydroxides. Moreover, as a comparison with lab-scale Fenton approach, the O 3 /H 2 O 2 ─Fe(II) oxidation process had more competitive advantages with respect to applicable pH range, removal efficiency, sludge production as well as economic costs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Reaction phenomena of catalytic partial oxidation of methane under the impact of carbon dioxide addition and heat recirculation

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Lin, Shih-Cheng

    2015-01-01

    The reaction phenomena of CPOM (catalytic partial oxidation of methane) in a Swiss-roll reactor are studied numerically where a rhodium-based catalyst bed is embedded at the center of the reactor. CO 2 is added into the feed gas and excess enthalpy recovery is performed to evaluate their influences on CPOM performance. In the study, the mole ratio of O 2 to CH 4 (O 2 /CH 4 ratio) is fixed at 0.5 and the mole ratio of CO 2 to O 2 (CO 2 /O 2 ratio) is in the range of 0–2. The results reveal that CO 2 addition into the influent has a slight effect on methane combustion, but significantly enhances dry reforming and suppresses steam reforming. The reaction extents of steam reforming and dry reforming in CPOM without heat recovery and CO 2 addition are in a comparable state. Once CO 2 is added into the feed gas, the dry reforming is enhanced, thereby dominating CH 4 consumption. Compared to the reactor without excess enthalpy recovery, heat recirculation drastically increases the maximum reaction temperature and CH 4 conversion in the catalyst bed; it also intensifies the H 2 selectivity, H 2 yield, CO 2 conversion, and syngas production rate. The predictions indicate that the heat recirculation is able to improve the syngas formation up to 45%. - Highlights: • Catalytic partial oxidation of methane with CO 2 addition and heat recovery is studied. • CO 2 addition has a slight effect on methane combustion. • CO 2 addition significantly enhances dry reforming and suppresses steam reforming. • Dry reforming dominates CH 4 consumption when CO 2 addition is large. • Heat recirculation can improve the syngas formation up to 45%

  13. Adsorption and bio-sorption of nickel ions and reuse for 2-chlorophenol catalytic ozonation oxidation degradation from water.

    Science.gov (United States)

    Ma, Wei; Zong, Panpan; Cheng, Zihong; Wang, Baodong; Sun, Qi

    2014-02-15

    This work explored the preparation of an effective and low-cost catalyst and investigated its catalytic capacity for 2-chlorophenol ozonation oxidation degradation in wastewater by using an ozone oxidation batch reactor. The catalyst was directly prepared by the reuse of fly ash and sawdust after saturated adsorption of nickel ions from wastewater, which was proposed as an efficient and economic approach. The obtained catalyst was characterized by TGA, BET, FTIR, XRD, and SEM, the results showed that fly ash as the basic framework has high specific surface area and the addition of sawdust as the porogen agent could improve the pore structure of the catalyst. The adsorption of nickel ions by fly ash and sawdust from aqueous solution was also investigated in this study. The results obtained from the experiments indicated that adsorption of nickel ions by fly ash and biomass sawdust could be well described by Langmuir isotherm model and pseudo second order kinetic model. The catalytic performance of catalyst was studied in terms of the effect of time, liquid-solid ratio and pH on 2-chlorophenol ozonation degradation. It was found that the catalyst could effectively improve the ozonation reaction rate at pH=7 with a 2:1 liquid-solid ratio. The kinetic study demonstrated that the reaction followed the first order model, and the rate constant increased 267% (0.03-0.1 min(-1)) of 2-chlorophenol ozonation degradation with 5 mmol/L concentration at pH=7.0 compared with ozonation alone. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Influence of fuel properties, nitrogen oxides, and exhaust treatment by an oxidation catalytic converter on the mutagenicity of diesel engine emissions.

    Science.gov (United States)

    Bünger, Jürgen; Krahl, Jürgen; Weigel, Andreas; Schröder, Olaf; Brüning, Thomas; Müller, Michael; Hallier, Ernst; Westphal, Götz

    2006-08-01

    Particle emissions of diesel engines (DEP) content polycyclic aromatic hydrocarbons (PAH) these compounds cause a strong mutagenicity of solvent extracts of DEP. We investigated the influence of fuel properties, nitrogen oxides (NO( x )), and an oxidation catalytic converter (OCC) on the mutagenic effects of DEP. The engine was fuelled with common diesel fuel (DF), low-sulphur diesel fuel (LSDF), rapeseed oil methyl ester (RME), and soybean oil methyl ester (SME) and run at five different load modes in two series with and without installation of an OCC in the exhaust pipe. Particles from the cooled and diluted exhaust were sampled onto glass fibre filters and extracted with dichloromethane in a soxhlet apparatus. The mutagenicity of the extracts was tested using the Salmonella typhimurium/mammalian microsome assay with tester strains TA98 and TA100. Without OCC the number of revertant colonies was lower in extracts of LSDF than in extracts of DF. The lowest numbers of revertant colonies were induced by the plant oil derived fuels. In three load modes, operation with the OCC led to a reduction of the mutagenicity. However, direct mutagenic effects under heavy duty conditions (load mode A) were significantly increased for RME (TA98, TA100) and SME (TA98). A consistent but not significant increase in direct mutagenicity was observed for DF and LSDF at load mode A, and for DF at idling (load mode E) when emissions were treated with the OCC. These results raise concern over the use of oxidation catalytic converters with diesel engines. We hypothesise that the OCC increases formation of direct acting mutagens under certain conditions by the reaction of NO( x ) with PAH resulting in the formation of nitrated-PAH. Most of these compounds are powerful direct acting mutagens.

  15. THE DIMINISHING OF THE CONTENT OF TEXTILE DIRECT DYES AND AUXILIARY COMPOUNDS DURING THEIR CATALYTIC OXIDATION

    Directory of Open Access Journals (Sweden)

    Maria Gonta

    2014-06-01

    Full Text Available Advanced oxidation methods of organic compounds lead to their partial mineralization and increase of the adsorption process efficiency on the surface of oxidized activated carbon. We have studied the oxidation process using model solutions containing mixture of dye direct brown (DB, ethylene glycol (EGL and sodium lauryl sulfate (SLS under the action of Fenton reagent, in the presence and absence of UV irradiation or under the action of electric current (in the electrochemical cell. The same studies were performed by replacing the iron (II ion with titanium dioxide.

  16. Catalytic activity of CuO-Gd0.1Ti0.1Zr0.1Ce0.7O2 in CO oxidation

    Indian Academy of Sciences (India)

    after accounting for instrumental broadening using ger- manium as reference. Quantitative phase analysis was ... with an X-ray microanalysis system INCA Energy 350. (Oxford Instruments). The catalytic activity of the synthesized samples in the oxidation of CO was determined by the flow method at atmospheric pressure.

  17. A new 3-D open-framework cadmium borovanadate with plane-shaped channels and high catalytic activity for the oxidation of cyclohexanol.

    Science.gov (United States)

    Feng, Yuquan; Qiu, Dongfang; Fan, Huitao; Li, Min; Huang, Qunzeng; Shi, Hengzhen

    2015-05-21

    A new 3-D open-framework cadmium borovanadate with 6-connected topology was hydrothermally obtained and structurally characterized. It not only features new cadmium(II) borovanadate which possesses an open-framework structure with unique plane-shaped channels, but also exhibits interesting absorption properties and high catalytic activities for the oxidation of cyclohexanol.

  18. Life cycle assessment of selective non-catalytic reduction (SNCR) of nitrous oxides in a full-scale municipal solid waste incinerator

    DEFF Research Database (Denmark)

    Møller, Jacob; Munk, Bjarne; Crillesen, Kim

    2011-01-01

    Selective non-catalytic reduction (SNCR) of nitrous oxides in a full-scale municipal solid waste incinerator was investigated using LCA. The relationship between NOx-cleaning and ammonia dosage was measured at the plant. Un-reacted ammonia – the ammonia slip – leaving the flue-gas cleaning system......-removal in flue-gas cleaning from waste incineration....

  19. Molybdenum-based additives to mixed-metal oxides for use in hot gas cleanup sorbents for the catalytic decomposition of ammonia in coal gases

    Science.gov (United States)

    Ayala, Raul E.

    1993-01-01

    This invention relates to additives to mixed-metal oxides that act simultaneously as sorbents and catalysts in cleanup systems for hot coal gases. Such additives of this type, generally, act as a sorbent to remove sulfur from the coal gases while substantially simultaneously, catalytically decomposing appreciable amounts of ammonia from the coal gases.

  20. Production of C(3)/C(4) Olefins from n-Hexane: Conceptual design of a catalytic oxidative cracking process and comparison to steam cracking

    NARCIS (Netherlands)

    Boyadjian, C.A.; Seshan, Kulathuiyer; Lefferts, Leonardus; van der Ham, Aloysius G.J.; van den Berg, Henderikus

    2011-01-01

    A conceptual design of the catalytic oxidative cracking (COC) of hexane as a model compound of naphtha is reported. The design is based on experimental data which are elaborated through a structural design method to a process flow sheet. The potential of COC as an alternative to steam cracking (SC)