WorldWideScience

Sample records for catalytic three-phase reactors

  1. Dynamic\tmodelling of catalytic three-phase reactors for hydrogenation and oxidation processes

    Directory of Open Access Journals (Sweden)

    Salmi T.

    2000-01-01

    Full Text Available The dynamic modelling principles for typical catalytic three-phase reactors, batch autoclaves and fixed (trickle beds were described. The models consist of balance equations for the catalyst particles as well as for the bulk phases of gas and liquid. Rate equations, transport models and mass balances were coupled to generalized heterogeneous models which were solved with respect to time and space with algorithms suitable for stiff differential equations. The aspects of numerical solution strategies were discussed and the procedure was illustrated with three case studies: hydrogenation of aromatics, hydrogenation of aldehydes and oxidation of ferrosulphate. The case studies revealed the importance of mass transfer resistance inside the catalyst pallets as well as the dynamics of the different phases being present in the reactor. Reliable three-phase reactor simulation and scale-up should be based on dynamic heterogeneous models.

  2. Periodic Operation of Three-Phase Catalytic Reactors

    Czech Academy of Sciences Publication Activity Database

    Silveston, P.T.; Hanika, Jiří

    2005-01-01

    Roč. 82, č. 6 (2005), s. 1105-1142 ISSN 0008-4034 Institutional research plan: CEZ:AV0Z4072921 Keywords : three-phase reactors * trickle bed * periodic operation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.574, year: 2005

  3. Catalytic wet-air oxidation of lignin in a three-phase reactor with aromatic aldehyde production

    Directory of Open Access Journals (Sweden)

    Sales F.G.

    2004-01-01

    Full Text Available In the present work a process of catalytic wet air oxidation of lignin obtained from sugar-cane bagasse is developed with the objective of producing vanillin, syringaldehyde and p-hydroxybenzaldehyde in a continuous regime. Palladium supported on g-alumina was used as the catalyst. The reactions in the lignin degradation and aldehyde production were described by a kinetic model as a system of complex parallel and series reactions, in which pseudo-first-order steps are found. For the purpose of producing aromatic aldehydes in continuous regime, a three-phase fluidized reactor was built, and it was operated using atmospheric air as the oxidizer. The best yield in aromatic aldehydes was of 12%. The experimental results were compatible with those values obtained by the pseudo-heterogeneous axial dispersion model (PHADM applied to the liquid phase.

  4. Simulation and calculation of three-reactor system of catalytic reforming

    International Nuclear Information System (INIS)

    Rikalovska, Tatjana; Markovska, Liljana; Meshko, Vera; Poposka, Filimena

    1999-01-01

    The process of catalytic reforming has been operated for quite a long time, one can not always find real data for the kinetics and thermodynamics of the reactions that take place during the catalytic reforming process in order to facilitate the designing of reactor system or its simulation in a wide:ran e of process parameters. Kinetic and thermodynamic data have been collected for the reactions that take place during the catalytic reforming process. The stress has been pointed on four major reactions: dehydrogenation of naphthenes (aromatization), dehydrocyclization of paraffins and hydrocracking of naphthenes and paraffins. On the base of such a kinetic model, the reforming process has been described with a system of differential equations. For the purpose of solving these equations computer programs for simulation of a three-reactor system for adiabatic operation of the reactors. The computer simulation of the mathematical model of this three-reactor system has been accomplished by use of the ISIM-dynamic simulator. The results obtained out of the simulation agree very good with the data of the real process of catalytic reforming in OKTA Crude Oil Refinery in Skopje, Macedonia. (Author)

  5. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is ...

  6. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    126, No. 2, March 2014, pp. 341–351. c Indian Academy of Sciences. ... enhancement was realized by catalyst design, appropriate choice of reactor, better injection and .... Gas–liquid and liquid–solid transport processes in catalytic reactors.5.

  7. Mathematical modeling of a three-phase trickle bed reactor

    Directory of Open Access Journals (Sweden)

    J. D. Silva

    2012-09-01

    Full Text Available The transient behavior in a three-phase trickle bed reactor system (N2/H2O-KCl/activated carbon, 298 K, 1.01 bar was evaluated using a dynamic tracer method. The system operated with liquid and gas phases flowing downward with constant gas flow Q G = 2.50 x 10-6 m³ s-1 and the liquid phase flow (Q L varying in the range from 4.25x10-6 m³ s-1 to 0.50x10-6 m³ s-1. The evolution of the KCl concentration in the aqueous liquid phase was measured at the outlet of the reactor in response to the concentration increase at reactor inlet. A mathematical model was formulated and the solutions of the equations fitted to the measured tracer concentrations. The order of magnitude of the axial dispersion, liquid-solid mass transfer and partial wetting efficiency coefficients were estimated based on a numerical optimization procedure where the initial values of these coefficients, obtained by empirical correlations, were modified by comparing experimental and calculated tracer concentrations. The final optimized values of the coefficients were calculated by the minimization of a quadratic objective function. Three correlations were proposed to estimate the parameters values under the conditions employed. By comparing experimental and predicted tracer concentration step evolutions under different operating conditions the model was validated.

  8. Oxyfuel combustion using a catalytic ceramic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiaoyao; Li, K. [Department of Chemical Engineering, Imperial College London, University of London, South Kensington, London SW7 2AZ (United Kingdom); Thursfield, A.; Metcalfe, I.S. [School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom)

    2008-02-29

    Membrane catalytic combustion (MCC) is an environmentally friendly technique for heat and power generation from methane. This work demonstrates the performances of a MCC perovskite hollow fibre membrane reactor for the catalytic combustion of methane. The ionic-electronic La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{alpha}} (LSCF6428) mixed conductor, in the form of an oxygen-permeable hollow fibre membrane, has been prepared successfully by means of a phase-inversion spinning/sintering technique. For this process polyethersulfone (PESf) was used as a binder, N-methyl-2-pyrrollidone (NMP) as solvent and polyvinylpyrrolidone (PVP, K16-18) as an additive. With the prepared LSCF6428 hollow fibre membranes packed with catalyst, hollow fibre membrane reactors (HFMRs) have been assembled to perform the catalytic combustion of methane. A simple mathematical model that combines the local oxygen permeation rate with approximate catalytic reaction kinetics has been developed and can be used to predict the performance of the HFMRs for methane combustion. The effects of operating temperature and methane and air feed flow rates on the performance of the HFMR have been investigated both experimentally and theoretically. Both the methane conversion and oxygen permeation rate can be improved by means of coating platinum on the air side of the hollow fibre membranes. (author)

  9. Microchannel Reactor System for Catalytic Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Adeniyi Lawal; Woo Lee; Ron Besser; Donald Kientzler; Luke Achenie

    2010-12-22

    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstrated on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.

  10. Catalytic wet oxidation of phenol in a trickle bed reactor over a Pt/TiO2 catalyst.

    Science.gov (United States)

    Maugans, Clayton B; Akgerman, Aydin

    2003-01-01

    Catalytic wet oxidation of phenol was studied in a batch and a trickle bed reactor using 4.45% Pt/TiO2 catalyst in the temperature range 150-205 degrees C. Kinetic data were obtained from batch reactor studies and used to model the reaction kinetics for phenol disappearance and for total organic carbon disappearance. Trickle bed experiments were then performed to generate data from a heterogeneous flow reactor. Catalyst deactivation was observed in the trickle bed reactor, although the exact cause was not determined. Deactivation was observed to linearly increase with the cumulative amount of phenol that had passed over the catalyst bed. Trickle bed reactor modeling was performed using a three-phase heterogeneous model. Model parameters were determined from literature correlations, batch derived kinetic data, and trickle bed derived catalyst deactivation data. The model equations were solved using orthogonal collocations on finite elements. Trickle bed performance was successfully predicted using the batch derived kinetic model and the three-phase reactor model. Thus, using the kinetics determined from limited data in the batch mode, it is possible to predict continuous flow multiphase reactor performance.

  11. Novel, Regenerable Microlith Catalytic Reactor for CO2 Reduction via Bosch Process, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision Combustion, Inc. (PCI) proposes to develop an extremely compact, lightweight and regenerable MicrolithREG catalytic CO2 reduction reactor, capable of...

  12. Mercury Oxidation via Catalytic Barrier Filters Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

    2007-09-30

    In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

  13. Catalytic Reactor for Inerting of Aircraft Fuel Tanks

    Science.gov (United States)

    1974-06-01

    Aluminum Panels After Triphase Corrosion Test 79 35 Inerting System Flows in Various Flight Modes 82 36 High Flow Reactor Parametric Data 84 37 System...AD/A-000 939 CATALYTIC REACTOR FOR INERTING OF AIRCRAFT FUEL TANKS George H. McDonald, et al AiResearch Manufacturing Company Prepared for: Air Force...190th Street 2b. GROUP Torrance, California .. REPORT TITLE CATALYTIC REACTOR FOR INERTING OF AIRCRAFT FUEL TANKS . OESCRIP TIVE NOTEs (Thpe of refpoft

  14. A study on naphtha catalytic reforming reactor simulation and analysis.

    Science.gov (United States)

    Liang, Ke-min; Guo, Hai-yan; Pan, Shi-wei

    2005-06-01

    A naphtha catalytic reforming unit with four reactors in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to describe the naphtha catalytic reforming reactions characteristics based on idealizing the complex naphtha mixture by representing the paraffin, naphthene, and aromatic groups by single compounds. The simulation results based above models agree very well with actual operation unit data.

  15. A study on naphtha catalytic reforming reactor simulation and analysis

    OpenAIRE

    Liang, Ke-min; Guo, Hai-yan; Pan, Shi-wei

    2005-01-01

    A naphtha catalytic reforming unit with four reactors in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to describe the naphtha catalytic reforming reactions characteristics based on idealizing the complex naphtha mixture by representing the paraffin, naphthene, and aromatic groups by single compounds. The simulation results based above models agree very well with actual operation uni...

  16. High aspect ratio catalytic reactor and catalyst inserts therefor

    Science.gov (United States)

    Lin, Jiefeng; Kelly, Sean M.

    2018-04-10

    The present invention relates to high efficient tubular catalytic steam reforming reactor configured from about 0.2 inch to about 2 inch inside diameter high temperature metal alloy tube or pipe and loaded with a plurality of rolled catalyst inserts comprising metallic monoliths. The catalyst insert substrate is formed from a single metal foil without a central supporting structure in the form of a spiral monolith. The single metal foil is treated to have 3-dimensional surface features that provide mechanical support and establish open gas channels between each of the rolled layers. This unique geometry accelerates gas mixing and heat transfer and provides a high catalytic active surface area. The small diameter, high aspect ratio tubular catalytic steam reforming reactors loaded with rolled catalyst inserts can be arranged in a multi-pass non-vertical parallel configuration thermally coupled with a heat source to carry out steam reforming of hydrocarbon-containing feeds. The rolled catalyst inserts are self-supported on the reactor wall and enable efficient heat transfer from the reactor wall to the reactor interior, and lower pressure drop than known particulate catalysts. The heat source can be oxygen transport membrane reactors.

  17. Process Intensification. Continuous Two-Phase Catalytic Reactions in a Table-Top Centrifugal Contact Separator

    NARCIS (Netherlands)

    Kraai, Gerard N.; Schuur, Boelo; van Zwol, Floris; Haak, Robert M.; Minnaard, Adriaan J.; Feringa, Ben L.; Heeres, Hero J.; de Vries, Johannes G.; Prunier, ML

    2009-01-01

    Production of fine chemicals is mostly performed in batch reactors. Use of continuous processes has many advantages which may reduce the cost of production. We have developed the use of centrifugal contact separators (CCSs) for continuous two-phase catalytic reactions. This equipment has previously

  18. A novel approach of solid waste management via aromatization using multiphase catalytic pyrolysis of waste polyethylene.

    Science.gov (United States)

    Gaurh, Pramendra; Pramanik, Hiralal

    2018-01-01

    A new and innovative approach was adopted to increase the yield of aromatics like, benzene, toluene and xylene (BTX) in the catalytic pyrolysis of waste polyethylene (PE). The BTX content was significantly increased due to effective interaction between catalystZSM-5 and target molecules i.e., lower paraffins within the reactor. The thermal and catalytic pyrolysis both were performed in a specially designed semi-batch reactor at the temperature range of 500 °C-800 °C. Catalytic pyrolysis were performed in three different phases within the reactor batch by batch systematically, keeping the catalyst in A type- vapor phase, B type- liquid phase and C type- vapor and liquid phase (multiphase), respectively. Total aromatics (BTX) of 6.54 wt% was obtained for thermal pyrolysis at a temperature of 700 °C. In contrary, for the catalytic pyrolysis A, B and C types reactor arrangement, the aromatic (BTX) contents were progressively increased, nearly 6 times from 6.54 wt% (thermal pyrolysis) to 35.06 wt% for C-type/multiphase (liquid and vapor phase). The pyrolysis oil were characterized using GC-FID, FT-IR, ASTM distillation and carbon residue test to evaluate its end use and aromatic content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A review of liquid-phase catalytic hydrodechlorination

    Directory of Open Access Journals (Sweden)

    Alba Nelly Ardila Arias

    2007-09-01

    Full Text Available This survey was aimed at introducing the effect of light organochlorinated compound emissions on the envi-ronment, particularly on water, air, soil, biota and human beings. The characteristics and advantages of liquid phase catalytic hydrodechlorination as a technology for degrading these chlorinated compounds is also outlined and the main catalysts used in the hydrodechlorination process are described. Special emphasis is placed on palladium catalysts, their activity, the nature of active species and deactivation. The effect of several parameters is introduced, such as HCl, solvent, base addition and type of reducing agent used. The main results of kinetic studies, reactors used and the most important survey conclusions are presented.

  20. Catalytic-Dielectric Barrier Discharge Plasma Reactor For Methane and Carbon Dioxide Conversion

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2007-10-01

    Full Text Available A catalytic - DBD plasma reactor was designed and developed for co-generation of synthesis gas and C2+ hydrocarbons from methane. A hybrid Artificial Neural Network - Genetic Algorithm (ANN-GA was developed to model, simulate and optimize the reactor. Effects of CH4/CO2 feed ratio, total feed flow rate, discharge voltage and reactor wall temperature on the performance of catalytic DBD plasma reactor was explored. The Pareto optimal solutions and corresponding optimal operating parameters ranges based on multi-objectives can be suggested for catalytic DBD plasma reactor owing to two cases, i.e. simultaneous maximization of CH4 conversion and C2+ selectivity, and H2 selectivity and H2/CO ratio. It can be concluded that the hybrid catalytic DBD plasma reactor is potential for co-generation of synthesis gas and higher hydrocarbons from methane and carbon dioxide and showed better than the conventional fixed bed reactor with respect to CH4 conversion, C2+ yield and H2 selectivity for CO2 OCM process. © 2007 BCREC UNDIP. All rights reserved.[Presented at Symposium and Congress of MKICS 2007, 18-19 April 2007, Semarang, Indonesia][How to Cite: I. Istadi, N.A.S. Amin. (2007. Catalytic-Dielectric Barrier Discharge Plasma Reactor For Methane and Carbon Dioxide Conversion. Bulletin of Chemical Reaction Engineering and Catalysis, 2 (2-3: 37-44.  doi:10.9767/bcrec.2.2-3.8.37-44][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.2.2-3.8.37-44 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/8][Cited by: Scopus 1 |

  1. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  2. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  3. Numerical study of the behavior of methane-hydrogen/air pre-mixed flame in a micro reactor equipped with catalytic segmented bluff body

    International Nuclear Information System (INIS)

    Baigmohammadi, Mohammadreza; Tabejamaat, Sadegh; Zarvandi, Jalal

    2015-01-01

    In this work, combustion characteristics of premixed methane-hydrogen/air in a micro reactor equipped with a catalytic bluff body is investigated numerically. In this regard, the detailed chemistry schemes for gas phase (homogeneous) and the catalyst surface (heterogeneous) are used. The applied catalytic bluff body is coated with a thin layer of platinum (Pt) on its surface. Also, the lean reactive mixture is entered to the reactor with equivalence ratio 0.9. The results of this study showed that the use of catalytic bluff body in the center of a micro reactor can significantly increase the flame stability, especially at high velocities. Moreover, it is found that a catalytic bluff body with several cavities on its surface and also high thermal conductivity improves the flame stability more than a catalytic bluff body without cavities and low thermal conductivity. Finally, it is maintained that the most advantage of using the catalytic bluff body is its easy manufacturing process as compared to the catalytic wall. This matter seems to be more prevalent when we want to create several cavities with various sizes on the bluff-body. - Highlights: • Presence of a bluff body in a micro reactor can move the flame towards the upstream. • Catalytic bluff body can significantly increase flame stability at high velocities. • Creating non-catalytic cavities on the bluff body promotes homogeneous reactions. • Segmented catalytic bluff body improves the flame stability more than a simple one. • Creating the segments on a bluff body is easier compared to a wall

  4. Molecular beam mass spectrometer equipped with a catalytic wall reactor for in situ studies in high temperature catalysis research

    International Nuclear Information System (INIS)

    Horn, R.; Ihmann, K.; Ihmann, J.; Jentoft, F.C.; Geske, M.; Taha, A.; Pelzer, K.; Schloegl, R.

    2006-01-01

    A newly developed apparatus combining a molecular beam mass spectrometer and a catalytic wall reactor is described. The setup has been developed for in situ studies of high temperature catalytic reactions (>1000 deg. C), which involve besides surface reactions also gas phase reactions in their mechanism. The goal is to identify gas phase radicals by threshold ionization. A tubular reactor, made from the catalytic material, is positioned in a vacuum chamber. Expansion of the gas through a 100 μm sampling orifice in the reactor wall into differentially pumped nozzle, skimmer, and collimator chambers leads to the formation of a molecular beam. A quadrupole mass spectrometer with electron impact ion source designed for molecular beam inlet and threshold ionization measurements is used as the analyzer. The sampling time from nozzle to detector is estimated to be less than 10 ms. A detection time resolution of up to 20 ms can be reached. The temperature of the reactor is measured by pyrometry. Besides a detailed description of the setup components and the physical background of the method, this article presents measurements showing the performance of the apparatus. After deriving the shape and width of the energy spread of the ionizing electrons from measurements on N 2 and He we estimated the detection limit in threshold ionization measurements using binary mixtures of CO in N 2 to be in the range of several hundreds of ppm. Mass spectra and threshold ionization measurements recorded during catalytic partial oxidation of methane at 1250 deg. C on a Pt catalyst are presented. The detection of CH 3 · radicals is successfully demonstrated

  5. Molecular beam mass spectrometer equipped with a catalytic wall reactor for in situ studies in high temperature catalysis research

    Science.gov (United States)

    Horn, R.; Ihmann, K.; Ihmann, J.; Jentoft, F. C.; Geske, M.; Taha, A.; Pelzer, K.; Schlögl, R.

    2006-05-01

    A newly developed apparatus combining a molecular beam mass spectrometer and a catalytic wall reactor is described. The setup has been developed for in situ studies of high temperature catalytic reactions (>1000°C), which involve besides surface reactions also gas phase reactions in their mechanism. The goal is to identify gas phase radicals by threshold ionization. A tubular reactor, made from the catalytic material, is positioned in a vacuum chamber. Expansion of the gas through a 100μm sampling orifice in the reactor wall into differentially pumped nozzle, skimmer, and collimator chambers leads to the formation of a molecular beam. A quadrupole mass spectrometer with electron impact ion source designed for molecular beam inlet and threshold ionization measurements is used as the analyzer. The sampling time from nozzle to detector is estimated to be less than 10ms. A detection time resolution of up to 20ms can be reached. The temperature of the reactor is measured by pyrometry. Besides a detailed description of the setup components and the physical background of the method, this article presents measurements showing the performance of the apparatus. After deriving the shape and width of the energy spread of the ionizing electrons from measurements on N2 and He we estimated the detection limit in threshold ionization measurements using binary mixtures of CO in N2 to be in the range of several hundreds of ppm. Mass spectra and threshold ionization measurements recorded during catalytic partial oxidation of methane at 1250°C on a Pt catalyst are presented. The detection of CH3• radicals is successfully demonstrated.

  6. On the study of catalytic membrane reactor for water detritiation: Modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Liger, Karine, E-mail: karine.liger@cea.fr [CEA, DEN, DTN/SMTA/LIPC Cadarache, Saint Paul-lez-Durance F-13108 (France); Mascarade, Jérémy [CEA, DEN, DTN/SMTA/LIPC Cadarache, Saint Paul-lez-Durance F-13108 (France); Joulia, Xavier; Meyer, Xuan-Mi [Université de Toulouse, INPT, UPS, Laboratoire de Génie Chimique, 4, Allée Emile Monso, Toulouse F-31030 (France); CNRS, Laboratoire de Génie Chimique, Toulouse F-31030 (France); Troulay, Michèle; Perrais, Christophe [CEA, DEN, DTN/SMTA/LIPC Cadarache, Saint Paul-lez-Durance F-13108 (France)

    2016-11-01

    Highlights: • Experimental results for the conversion of tritiated water (using deuterium as a simulant of tritium) by means of a catalytic membrane reactor in view of tritium recovery. • Phenomenological 2D model to represent catalytic membrane reactor behavior including the determination of the compositions of gaseous effluents. • Good agreement between the simulation results and experimental measurements performed on the dedicated facility. • Explanation of the unexpected behavior of the catalytic membrane reactor by the modeling results and in particular the gas composition estimation. - Abstract: In the framework of tritium recovery from tritiated water, efficiency of packed bed membrane reactors have been successfully demonstrated. Thanks to protium isotope swamping, tritium bonded water can be recovered under the valuable Q{sub 2} form (Q = H, D or T) by means of isotope exchange reactions occurring on catalyst surface. The use of permselective Pd-based membrane allows withdrawal of reactions products all along the reactor, and thus limits reverse reaction rate to the benefit of the direct one (shift effect). The reactions kinetics, which are still little known or unknown, are generally assumed to be largely greater than the permeation ones so that thermodynamic equilibriums of isotope exchange reactions are generally assumed. This paper proposes a new phenomenological 2D model to represent catalytic membrane reactor behavior with the determination of gas effluents compositions. A good agreement was obtained between the simulation results and experimental measurements performed on a dedicated facility. Furthermore, the gas composition estimation permits to interpret unexpected behavior of the catalytic membrane reactor. In the next future, further sensitivity analysis will be performed to determine the limits of the model and a kinetics study will be conducted to assess the thermodynamic equilibrium of reactions.

  7. On the study of catalytic membrane reactor for water detritiation: Modeling approach

    International Nuclear Information System (INIS)

    Liger, Karine; Mascarade, Jérémy; Joulia, Xavier; Meyer, Xuan-Mi; Troulay, Michèle; Perrais, Christophe

    2016-01-01

    Highlights: • Experimental results for the conversion of tritiated water (using deuterium as a simulant of tritium) by means of a catalytic membrane reactor in view of tritium recovery. • Phenomenological 2D model to represent catalytic membrane reactor behavior including the determination of the compositions of gaseous effluents. • Good agreement between the simulation results and experimental measurements performed on the dedicated facility. • Explanation of the unexpected behavior of the catalytic membrane reactor by the modeling results and in particular the gas composition estimation. - Abstract: In the framework of tritium recovery from tritiated water, efficiency of packed bed membrane reactors have been successfully demonstrated. Thanks to protium isotope swamping, tritium bonded water can be recovered under the valuable Q_2 form (Q = H, D or T) by means of isotope exchange reactions occurring on catalyst surface. The use of permselective Pd-based membrane allows withdrawal of reactions products all along the reactor, and thus limits reverse reaction rate to the benefit of the direct one (shift effect). The reactions kinetics, which are still little known or unknown, are generally assumed to be largely greater than the permeation ones so that thermodynamic equilibriums of isotope exchange reactions are generally assumed. This paper proposes a new phenomenological 2D model to represent catalytic membrane reactor behavior with the determination of gas effluents compositions. A good agreement was obtained between the simulation results and experimental measurements performed on a dedicated facility. Furthermore, the gas composition estimation permits to interpret unexpected behavior of the catalytic membrane reactor. In the next future, further sensitivity analysis will be performed to determine the limits of the model and a kinetics study will be conducted to assess the thermodynamic equilibrium of reactions.

  8. A spectroscopic and catalytic investigation of active phase-support interactions

    Energy Technology Data Exchange (ETDEWEB)

    Haller, G.L.

    1991-01-01

    Active catalytic phases (metal, mixed metals, oxide or mixed oxides) interacting with oxide support on which the active phase is dispersed can affect the percentage exposed, the morphology of supported particles, the degree of reducibility of cations, etc., in a variety of ways. Our objective is to characterize the physical chemistry of the active phase-oxide support by spectroscopic methods and to correlate this structure with catalytic function. The three systems discussed in this progress report are Ag/TiO{sub 2}, Ru-Cu/SiO{sub 2} and SiO{sub 2}/Al{sub 2}O{sub 3}. 24 refs., 3 figs., 2 tabs.

  9. POST: a postprocessor computer code for producing three-dimensional movies of two-phase flow in a reactor vessel

    International Nuclear Information System (INIS)

    Taggart, K.A.; Liles, D.R.

    1977-08-01

    The development of the TRAC computer code for analysis of LOCAs in light-water reactors involves the use of a three-dimensional (r-theta-z), two-fluid hydrodynamics model to describe the two-phase flow of steam and water through the reactor vessel. One of the major problems involved in interpreting results from this code is the presentation of three-dimensional flow patterns. The purpose of the report is to present a partial solution to this data display problem. A first version of a code which produces three-dimensional movies of flow in the reactor vessel has been written and debugged. This code (POST) is used as a postprocessor in conjunction with a stand alone three-dimensional two-phase hydrodynamics code (CYLTF) which is a test bed for the three-dimensional algorithms to be used in TRAC

  10. ISOBUTANOL FROM SYNGAS IN A THREE PHASE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Peter Tijrn

    2002-12-29

    With growing interest in oxygenates as octane booster for automotive fuels, various synthesis routes for these chemicals are being investigated. Among others, alternative routes to isobutene, the C4-components in MTBE-synthesis are under investigation. A promising path to isobutene is the heterogeneously catalyzed CO-hydrogenation to isobutanol with following dehydration (Fig. 1). As shown by thermodynamical studies, the heterogeneously catalyzed CO-hydrogenation to isobutanol is not expected to experience any thermodynamic constraints. However, heterogeneous hydrogenation of CO is a very exothermic process, a problem which can only be partly solved when being conducted in a plug flow reactor. When carried out in reaction vessels with moving catalyst bed (e.g. three phase stirred tank), heat transfer problems can be resolved, along with additional benefits connected with this reactor type. Several heterogeneous catalytic systems have been under investigation for their capability of isobutanol synthesis from syngas. Most promising catalysts for an active and selective isobutanol synthesis from CO are modified high temperature methanol catalysts.

  11. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  12. Determination of the gas-to-membrane mass transfer coefficient in a catalytic membrane reactor

    NARCIS (Netherlands)

    Veldsink, J.W.; Versteeg, G.F.; Swaaij, W.P.M. van

    1995-01-01

    A novel method to determine the external mass transfer coefficient in catalytic membrane reactors (Sloot et al., 1992a, b) was presented in this study. In a catalytically active membrane reactor, in which a very fast reaction occurs, the external transfer coefficient can conveniently be measured by

  13. The coupling effect of gas-phase chemistry and surface reactions on oxygen permeation and fuel conversion in ITM reactors

    KAUST Repository

    Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.

    2015-01-01

    © 2015 Elsevier B.V. The effect of the coupling between heterogeneous catalytic reactions supported by an ion transport membrane (ITM) and gas-phase chemistry on fuel conversion and oxygen permeation in ITM reactors is examined. In ITM reactors

  14. Research and proposal on selective catalytic reduction reactor optimization for industrial boiler.

    Science.gov (United States)

    Yang, Yiming; Li, Jian; He, Hong

    2017-08-24

    The advanced computational fluid dynamics (CFD) software STAR-CCM+ was used to simulate a denitrification (De-NOx) project for a boiler in this paper, and the simulation result was verified based on a physical model. Two selective catalytic reduction (SCR) reactors were developed: reactor 1 was optimized and reactor 2 was developed based on reactor 1. Various indicators, including gas flow field, ammonia concentration distribution, temperature distribution, gas incident angle, and system pressure drop were analyzed. The analysis indicated that reactor 2 was of outstanding performance and could simplify developing greatly. Ammonia injection grid (AIG), the core component of the reactor, was studied; three AIGs were developed and their performances were compared and analyzed. The result indicated that AIG 3 was of the best performance. The technical indicators were proposed for SCR reactor based on the study. Flow filed distribution, gas incident angle, and temperature distribution are subjected to SCR reactor shape to a great extent, and reactor 2 proposed in this paper was of outstanding performance; ammonia concentration distribution is subjected to ammonia injection grid (AIG) shape, and AIG 3 could meet the technical indicator of ammonia concentration without mounting ammonia mixer. The developments above on the reactor and the AIG are both of great application value and social efficiency.

  15. Three-dimensional reactor dynamics code for VVER type nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kyrki-Rajamaeki, R. [VTT Energy, Espoo (Finland)

    1995-10-01

    A three-dimensional reactor dynamics computer code has been developed, validated and applied for transient and accident analyses of VVER type nuclear reactors. This code, HEXTRAN, is a part of the reactor physics and dynamics calculation system of the Technical Research Centre of Finland, VTT. HEXTRAN models accurately the VVER core with hexagonal fuel assemblies. The code uses advanced mathematical methods in spatial and time discretization of neutronics, heat transfer and the two-phase flow equations of hydraulics. It includes all the experience of VTT from 20 years on the accurate three-dimensional static reactor physics as well as on the one-dimensional reactor dynamics. The dynamic coupling with the thermal hydraulic system code SMABRE also allows the VVER circuit-modelling experience to be included in the analyses. (79 refs.).

  16. Three-dimensional reactor dynamics code for VVER type nuclear reactors

    International Nuclear Information System (INIS)

    Kyrki-Rajamaeki, R.

    1995-10-01

    A three-dimensional reactor dynamics computer code has been developed, validated and applied for transient and accident analyses of VVER type nuclear reactors. This code, HEXTRAN, is a part of the reactor physics and dynamics calculation system of the Technical Research Centre of Finland, VTT. HEXTRAN models accurately the VVER core with hexagonal fuel assemblies. The code uses advanced mathematical methods in spatial and time discretization of neutronics, heat transfer and the two-phase flow equations of hydraulics. It includes all the experience of VTT from 20 years on the accurate three-dimensional static reactor physics as well as on the one-dimensional reactor dynamics. The dynamic coupling with the thermal hydraulic system code SMABRE also allows the VVER circuit-modelling experience to be included in the analyses. (79 refs.)

  17. Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish. 2: Modeling and analysis

    Science.gov (United States)

    Skocypec, Russell D.; Hogan, Roy E., Jr.; Muir, James F.

    1991-01-01

    The catalytically enhanced solar absorption receiver (CAESAR) experiment was conducted to determine the thermal, chemical, and mechanical performance of a commercial-scale, dish-mounted, direct catalytic absorption receiver (DCAR) reactor over a range of steady state and transient (cloud) operating conditions. The focus of the experiment is on global performance such as receiver efficiencies and overall methane conversion; it was not intended to provide data for code validation. A numerical model was previously developed to provide guidance in the design of the absorber. The one-dimensional, planar and steady-state model incorporates, the following energy transfer mechanisms: solar and infrared radiation, heterogeneous chemical reaction, conduction in the solid phase, and convection between the fluid and solid phases. A number of upgrades to the model and improved property values are presented here. Model predictions are shown to bound the experimental axial thermocouple data when experimental uncertainties are included. Global predictions are made using a technique in which the incident solar flux distribution is subdivided into flux contour bands. Model predictions for each band are then spatially integrated to provide global predictions such as reactor efficiencies and methane conversions. Global predictions are shown to compare well with experimental data. Reactor predictions for anticipated operating conditions suggest a further decrease in optical density at the front of the absorber inner disk may be beneficial. The need to conduct code-validation experiments is identified as being essential in improving the confidence in the capability to predict large-scale reactor operation.

  18. Catalytic pyrolysis of woody biomass in a fluidized bed reactor: influence of the zeolite structure

    Energy Technology Data Exchange (ETDEWEB)

    A. Aho; N. Kumar; K. Eranen; T. Salmi; M. Hupa; D.Yu. Murzin [Aabo Akademi University, Aabo/Turku (Finland). Process Chemistry Centre, Laboratory of Industrial Chemistry and Reaction Engineering

    2008-09-15

    Catalytic pyrolysis of biomass from pine wood was carried out in a fluidized bed reactor at 450{sup o}C. Different structures of acidic zeolite catalysts were used as bed material in the reactor. Proton forms of Beta, Y, ZSM-5, and Mordenite were tested as catalysts in the pyrolysis of pine, while quartz sand was used as a reference material in the non-catalytic pyrolysis experiments. The yield of the pyrolysis product phases was only slightly influenced by the structures, at the same time the chemical composition of the bio-oil was dependent on the structure of acidic zeolite catalysts. Ketones and phenols were the dominating groups of compounds in the bio-oil. The formation of ketones was higher over ZSM-5 and the amount of acids and alcohols lower than over the other bed materials tested. Mordenite and quartz sand produced smaller quantities of polyaromatic hydrocarbons than the other materials tested. It was possible to successfully regenerate the spent zeolites without changing the structure of the zeolite. 12 refs., 9 figs., 5 tabs.

  19. Advanced computational model for three-phase slurry reactors

    International Nuclear Information System (INIS)

    Goodarz Ahmadi

    2001-10-01

    In the second year of the project, the Eulerian-Lagrangian formulation for analyzing three-phase slurry flows in a bubble column is further developed. The approach uses an Eulerian analysis of liquid flows in the bubble column, and makes use of the Lagrangian trajectory analysis for the bubbles and particle motions. An experimental set for studying a two-dimensional bubble column is also developed. The operation of the bubble column is being tested and diagnostic methodology for quantitative measurements is being developed. An Eulerian computational model for the flow condition in the two-dimensional bubble column is also being developed. The liquid and bubble motions are being analyzed and the results are being compared with the experimental setup. Solid-fluid mixture flows in ducts and passages at different angle of orientations were analyzed. The model predictions were compared with the experimental data and good agreement was found. Gravity chute flows of solid-liquid mixtures is also being studied. Further progress was also made in developing a thermodynamically consistent model for multiphase slurry flows with and without chemical reaction in a state of turbulent motion. The balance laws are obtained and the constitutive laws are being developed. Progress was also made in measuring concentration and velocity of particles of different sizes near a wall in a duct flow. The technique of Phase-Doppler anemometry was used in these studies. The general objective of this project is to provide the needed fundamental understanding of three-phase slurry reactors in Fischer-Tropsch (F-T) liquid fuel synthesis. The other main goal is to develop a computational capability for predicting the transport and processing of three-phase coal slurries. The specific objectives are: (1) To develop a thermodynamically consistent rate-dependent anisotropic model for multiphase slurry flows with and without chemical reaction for application to coal liquefaction. Also establish the

  20. COMPUTATIONAL AND EXPERIMENTAL MODELING OF THREE-PHASE SLURRY-BUBBLE COLUMN REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Isaac K. Gamwo; Dimitri Gidaspow

    1999-09-01

    Considerable progress has been achieved in understanding three-phase reactors from the point of view of kinetic theory. In a paper in press for publication in Chemical Engineering Science (Wu and Gidaspow, 1999) we have obtained a complete numerical solution of bubble column reactors. In view of the complexity of the simulation a better understanding of the processes using simplified analytical solutions is required. Such analytical solutions are presented in the attached paper, Large Scale Oscillations or Gravity Waves in Risers and Bubbling Beds. This paper presents analytical solutions for bubbling frequencies and standing wave flow patterns. The flow patterns in operating slurry bubble column reactors are not optimum. They involve upflow in the center and downflow at the walls. It may be possible to control flow patterns by proper redistribution of heat exchangers in slurry bubble column reactors. We also believe that the catalyst size in operating slurry bubble column reactors is not optimum. To obtain an optimum size we are following up on the observation of George Cody of Exxon who reported a maximum granular temperature (random particle kinetic energy) for a particle size of 90 microns. The attached paper, Turbulence of Particles in a CFB and Slurry Bubble Columns Using Kinetic Theory, supports George Cody's observations. However, our explanation for the existence of the maximum in granular temperature differs from that proposed by George Cody. Further computer simulations and experiments involving measurements of granular temperature are needed to obtain a sound theoretical explanation for the possible existence of an optimum catalyst size.

  1. Advanced computational model for three-phase slurry reactors

    International Nuclear Information System (INIS)

    Goodarz Ahmadi

    2000-11-01

    In the first year of the project, solid-fluid mixture flows in ducts and passages at different angle of orientations were analyzed. The model predictions are compared with the experimental data and good agreement was found. Progress was also made in analyzing the gravity chute flows of solid-liquid mixtures. An Eulerian-Lagrangian formulation for analyzing three-phase slurry flows in a bubble column is being developed. The approach uses an Eulerian analysis of gas liquid flows in the bubble column, and makes use of the Lagrangian particle tracking procedure to analyze the particle motions. Progress was also made in developing a rate dependent thermodynamically consistent model for multiphase slurry flows in a state of turbulent motion. The new model includes the effect of phasic interactions and leads to anisotropic effective phasic stress tensors. Progress was also made in measuring concentration and velocity of particles of different sizes near a wall in a duct flow. The formulation of a thermodynamically consistent model for chemically active multiphase solid-fluid flows in a turbulent state of motion was also initiated. The general objective of this project is to provide the needed fundamental understanding of three-phase slurry reactors in Fischer-Tropsch (F-T) liquid fuel synthesis. The other main goal is to develop a computational capability for predicting the transport and processing of three-phase coal slurries. The specific objectives are: (1) To develop a thermodynamically consistent rate-dependent anisotropic model for multiphase slurry flows with and without chemical reaction for application to coal liquefaction. Also to establish the material parameters of the model. (2) To provide experimental data for phasic fluctuation and mean velocities, as well as the solid volume fraction in the shear flow devices. (3) To develop an accurate computational capability incorporating the new rate-dependent and anisotropic model for analyzing reacting and

  2. Phenolic Wastewater Treatment using Activated Carbon in a Three Phase Fluidized-Bed Reactor

    Directory of Open Access Journals (Sweden)

    Pornsiri Tongprem

    2009-11-01

    Full Text Available Phenolic wastewater treatment was investigated using activated carbon in a lab scale three phase fluidized-bed reactor. The reactor with effective volume of 272 ml, 300 mm in height and 40 mm in diameter was made from transparent acrylic that allowed to observe the phenomena occurring inside. Phenol 10 mg/l and air were used as representative agents that were continuously fed to the reactor at a constant flow rate of 1 and 2 l/min with co-current and up-flow, respectively. Comparison of the phenolic adsorption under five different conditions: (a fresh Acs, (b 1st reused Acs, (c fresh Fe/Acs, (d 1st reused Fe/Acs, and (e 2nd reused Fe/Acs, have been carried out. The phenolic wastewater was re-circulated through the reactor and its concentration was measured with respect to time. The experimental adsorption results revealed that both fresh Acs and Fe/Acs gave the better results than reused Acs and reused Fe/Acs, respectively. The adsorption in all cases of Acs and Fe/Acs would follow Pseudo-second order kinetic.

  3. Chemically-modified cellulose paper as a microstructured catalytic reactor.

    Science.gov (United States)

    Koga, Hirotaka; Kitaoka, Takuya; Isogai, Akira

    2015-01-15

    We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry.

  4. Chemically-Modified Cellulose Paper as a Microstructured Catalytic Reactor

    Directory of Open Access Journals (Sweden)

    Hirotaka Koga

    2015-01-01

    Full Text Available We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry.

  5. μ-reactor measurements of catalytic activity of mass selected nano-particles

    DEFF Research Database (Denmark)

    Riedel, Jakob Nordheim

    The work of this thesis revolves around catalytic activity measurements of nano-particles tested using a μ-reactor platform, developed and produced at DTU, in a collaboration between CINF and Nanotech. The thesis contains the results from two separate research projects; both utilising μ-reactors ......The work of this thesis revolves around catalytic activity measurements of nano-particles tested using a μ-reactor platform, developed and produced at DTU, in a collaboration between CINF and Nanotech. The thesis contains the results from two separate research projects; both utilising μ......-reactors in combination with surface science techniques and computer simulations. The first project described is a study of hydrogen dissociation on mono-disperse platinum clusters. The second project studies methanation from carbon monoxide and hydrogen on nano-particles of nickel-iron alloys. The second study is a work...... in progress, and the corresponding chapter aims to summarise the results so far. Other projects are not included in the thesis because they are inconclusive or dead ends. Hydrogen dissociation was studied by the H2/D2 exchange reaction on SiO2-supported mono-disperse platinum clusters in a -reactor...

  6. Industrial applications of multi-functional, multi-phase reactors

    NARCIS (Netherlands)

    Harmsen, G.J.; Chewter, L.A.

    1999-01-01

    To reveal trends in the design and operation of multi-functional, multi-phase reactors, this paper describes, in historical sequence, three industrial applications of multi-functional, multi-phase reactors developed and operated by Shell Chemicals during the last five decades. For each case, we

  7. Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors

    Directory of Open Access Journals (Sweden)

    Rahat Javaid

    2013-06-01

    Full Text Available The inner surface of a metallic tube (i.d. 0.5 mm was coated with a palladium (Pd-based thin metallic layer by flow electroless plating. Simultaneous plating of Pd and silver (Ag from their electroless-plating solution produced a mixed distributed bimetallic layer. Preferential acid leaching of Ag from the Pd–Ag layer produced a porous Pd surface. Hydrogenation of p-nitrophenol was examined in the presence of formic acid simply by passing the reaction solution through the catalytic tubular reactors. p-Aminophenol was the sole product of hydrogenation. No side reaction occurred. Reaction conversion with respect to p-nitrophenol was dependent on the catalyst layer type, the temperature, pH, amount of formic acid, and the residence time. A porous and oxidized Pd (PdO surface gave the best reaction conversion among the catalytic reactors examined. p-Nitrophenol was converted quantitatively to p-aminophenol within 15 s of residence time in the porous PdO reactor at 40 °C. Evolution of carbon dioxide (CO2 was observed during the reaction, although hydrogen (H2 was not found in the gas phase. Dehydrogenation of formic acid did not occur to any practical degree in the absence of p-nitrophenol. Consequently, the nitro group was reduced via hydrogen transfer from formic acid to p-nitrophenol and not by hydrogen generated by dehydrogenation of formic acid.

  8. Water detritiation: better catalysts for liquid phase catalytic exchange

    International Nuclear Information System (INIS)

    Braet, J.

    2005-01-01

    Fusion reactors are our hope for a clean nuclear energy. But as they shall handle huge amounts of tritium, 1.5 10 19 Bq GWth -1 a -1 or about 50 000 times more tritium than light water fission reactors, they need detritiation. Most tritium losses can be trapped as or can easily be transformed into tritiated water. Water detritiation is preferably based on the multiplication of the large equilibrium isotope effect during the exchange reaction of tritium between hydrogen gas and liquid water in a counter current trickle bed reactor. Such LPCE (Liquid Phase Catalytic Exchange) requires an efficient hydrophobic catalyst. SCK-CEN invented and developed such a catalyst in the past. In combination with an appropriate packing, different batches of this catalyst performed very well during years of extensive testing, allowing to develop the ELEX process for water detritiation at inland reprocessing plants. The main objectives of this study were to reproduce and possibly improve the SCK-CEN catalyst for tritium exchange between hydrogen and liquid water; and to demonstrate the high overall exchange rate and thus high detritiation factors that can be realized with it in a small and simple LPCE column under typical but conservative operating conditions

  9. Experimental Investigation of Flow Resistance in a Coal Mine Ventilation Air Methane Preheated Catalytic Oxidation Reactor

    OpenAIRE

    Zheng, Bin; Liu, Yongqi; Liu, Ruixiang; Meng, Jian; Mao, Mingming

    2015-01-01

    This paper reports the results of experimental investigation of flow resistance in a coal mine ventilation air methane preheated catalytic oxidation reactor. The experimental system was installed at the Energy Research Institute of Shandong University of Technology. The system has been used to investigate the effects of flow rate (200 Nm3/h to 1000 Nm3/h) and catalytic oxidation bed average temperature (20°C to 560°C) within the preheated catalytic oxidation reactor. The pressure drop and res...

  10. Catalytic reactor for low-Btu fuels

    Science.gov (United States)

    Smith, Lance; Etemad, Shahrokh; Karim, Hasan; Pfefferle, William C.

    2009-04-21

    An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

  11. Degradation pathway of malachite green in a novel dual-tank photoelectrochemical catalytic reactor

    International Nuclear Information System (INIS)

    Diao, Zenghui; Li, Mingyu; Zeng, Fanyin; Song, Lin; Qiu, Rongliang

    2013-01-01

    Highlights: • A novel dual-tank photoelectrochemical catalytic reactor was designed. • Malachite green degraded in bipolar double-effect mode. • Salt bridge replaced by a cation exchange membrane in the reactor. • Degradation pathways of malachite green in the cathode and anode tanks were similar. -- Abstract: A novel dual-tank photoelectrochemical catalytic reactor was designed to investigate the degradation pathway of malachite green. A thermally formed TiO 2 /Ti thin film electrode was used as photoanode, graphite was used as cathode, and a saturated calomel electrode was employed as the reference electrode in the reactor. In the reactor, the anode and cathode tanks were connected by a cation exchange membrane. Results showed that the decolorization ratio of malachite green in the anode and cathode was 98.5 and 96.5% after 120 min, respectively. Malachite green in the two anode and cathode tanks was oxidized, achieving the bipolar double effect. Malachite green in both the anode and cathode tanks exhibited similar catalytic degradation pathways. The double bond of the malachite green molecule was attacked by strong oxidative hydroxyl radicals, after which the organic compound was degraded by the two pathways into 4,4-bis(dimethylamino) benzophenone, 4-(dimethylamino) benzophenone, 4-(dimethylamino) phenol, and other intermediate products. Eventually, malachite green was degraded into oxalic acid as a small molecular organic acid, which was degraded by processes such as demethylation, deamination, nitration, substitution, addition, and other reactions

  12. Recent advances in AFB biomass gasification pilot plant with catalytic reactors in a downstream slip flow

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M P; Gil, J; Martin, J A; Frances, E; Olivares, A; Caballero, M A; Perez, P [Saragossa Univ. (Spain). Dept. of Chemistry and Environment; Corella, J [Madrid Univ. (Spain)

    1997-12-31

    A new 3rd generation pilot plant is being used for hot catalytic raw gas cleaning. It is based on a 15 cm. i.d. fluidized bed with biomass throughputs of 400-650 kg/h.m{sup 2}. Gasification is performed using mixtures of steam and oxygen. The produced gas is passed in a slip flow by two reactors in series containing a calcined dolomite and a commercial reforming catalyst. Tars are periodically sampled and analysed after the three reactors. Tar conversions of 99.99 % and a 300 % increase of the hydrogen content in the gas are obtained. (author) (2 refs.)

  13. Recent advances in AFB biomass gasification pilot plant with catalytic reactors in a downstream slip flow

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M.P.; Gil, J.; Martin, J.A.; Frances, E.; Olivares, A.; Caballero, M.A.; Perez, P. [Saragossa Univ. (Spain). Dept. of Chemistry and Environment; Corella, J. [Madrid Univ. (Spain)

    1996-12-31

    A new 3rd generation pilot plant is being used for hot catalytic raw gas cleaning. It is based on a 15 cm. i.d. fluidized bed with biomass throughputs of 400-650 kg/h.m{sup 2}. Gasification is performed using mixtures of steam and oxygen. The produced gas is passed in a slip flow by two reactors in series containing a calcined dolomite and a commercial reforming catalyst. Tars are periodically sampled and analysed after the three reactors. Tar conversions of 99.99 % and a 300 % increase of the hydrogen content in the gas are obtained. (author) (2 refs.)

  14. Experimental Investigation of Flow Resistance in a Coal Mine Ventilation Air Methane Preheated Catalytic Oxidation Reactor

    Directory of Open Access Journals (Sweden)

    Bin Zheng

    2015-01-01

    Full Text Available This paper reports the results of experimental investigation of flow resistance in a coal mine ventilation air methane preheated catalytic oxidation reactor. The experimental system was installed at the Energy Research Institute of Shandong University of Technology. The system has been used to investigate the effects of flow rate (200 Nm3/h to 1000 Nm3/h and catalytic oxidation bed average temperature (20°C to 560°C within the preheated catalytic oxidation reactor. The pressure drop and resistance proportion of catalytic oxidation bed, the heat exchanger preheating section, and the heat exchanger flue gas section were measured. In addition, based on a large number of experimental data, the empirical equations of flow resistance are obtained by the least square method. It can also be used in deriving much needed data for preheated catalytic oxidation designs when employed in industry.

  15. Advanced treatment of biologically pretreated coal chemical industry wastewater using the catalytic ozonation process combined with a gas-liquid-solid internal circulating fluidized bed reactor.

    Science.gov (United States)

    Li, Zhipeng; Liu, Feng; You, Hong; Ding, Yi; Yao, Jie; Jin, Chao

    2018-04-01

    This paper investigated the performance of the combined system of catalytic ozonation and the gas-liquid-solid internal circulating fluidized bed reactor for the advanced treatment of biologically pretreated coal chemical industry wastewater (CCIW). The results indicated that with ozonation alone for 60min, the removal efficiency of chemical oxygen demand (COD) could reach 34%. The introduction of activated carbon, pumice, γ-Al 2 O 3 carriers improved the removal performance of COD, and the removal efficiency was increased by 8.6%, 4.2%, 2%, respectively. Supported with Mn, the catalytic performance of activated carbon and γ-Al 2 O 3 were improved significantly with COD removal efficiencies of 46.5% and 41.3%, respectively; however, the promotion effect of pumice supported with Mn was insignificant. Activated carbon supported with Mn had the best catalytic performance. The catalytic ozonation combined system of MnO X /activated carbon could keep ozone concentration at a lower level in the liquid phase, and promote the transfer of ozone from the gas phase to the liquid phase to improve ozonation efficiency.

  16. Numerical Investigations of the Influencing Factors on a Rotary Regenerator-Type Catalytic Combustion Reactor

    Directory of Open Access Journals (Sweden)

    Zhenkun Sang

    2018-04-01

    Full Text Available Ultra-low calorific value gas (ULCVG not only poses a problem for environmental pollution, but also createsa waste of energy resources if not utilized. A novel reactor, a rotary regenerator-type catalytic combustion reactor (RRCCR, which integrates the functions of a regenerator and combustor into one component, is proposed for the elimination and utilization of ULCVG. Compared to reversal-flow reactor, the operation of the RRCCR is achieved by incremental rotation rather than by valve control, and it has many outstanding characteristics, such as a compact structure, flexible application, and limited energy for circulation. Due to the effects of the variation of the gas flow and concentration on the performance of the reactor, different inlet velocities and concentrations are analyzed by numerical investigations. The results reveal that the two factors have a major impact on the performance of the reactor. The performance of the reactor is more sensitive to the increase of velocity and the decrease of methane concentration. When the inlet concentration (2%vol. is reduced by 50%, to maintain the methane conversion over 90%, the inlet velocity can be reduced by more than three times. Finally, the highly-efficient and stable operating envelope of the reactor is drawn.

  17. [Kinetics of catalytic wet air oxidation of phenol in trickle bed reactor].

    Science.gov (United States)

    Li, Guang-ming; Zhao, Jian-fu; Wang, Hua; Zhao, Xiu-hua; Zhou, Yang-yuan

    2004-05-01

    By using a trickle bed reactor which was designed by the authors, the catalytic wet air oxidation reaction of phenol on CuO/gamma-Al2O3 catalyst was studied. The results showed that in mild operation conditions (at temperature of 180 degrees C, pressure of 3 MPa, liquid feed rate of 1.668 L x h(-1) and oxygen feed rate of 160 L x h(-1)), the removal of phenol can be over 90%. The curve of phenol conversion is similar to "S" like autocatalytic reaction, and is accordance with chain reaction of free radical. The kinetic model of pseudo homogenous reactor fits the catalytic wet air oxidation reaction of phenol. The effects of initial concentration of phenol, liquid feed rate and temperature for reaction also were investigated.

  18. A reverse flow catalytic membrane reactor for the production of syngas: an experimental study

    NARCIS (Netherlands)

    Smit, J.; Bekink, G.J.; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    In this paper experimental results are presented for a demonstration unit of a recently proposed novel integrated reactor concept (Smit et. al., 2005) for the partial oxidation of natural gas to syngas (POM), namely a Reverse Flow Catalytic Membrane Reactor (RFCMR). Natural gas has great potential

  19. Emergence of traveling wave endothermic reaction in a catalytic fixed bed under microwave heating

    International Nuclear Information System (INIS)

    Gerasev, Alexander P.

    2017-01-01

    This paper presents a new phenomenon in a packed bed catalytic reactor under microwave heating - traveling wave (moving reaction zones) endothermic chemical reaction. A two-phase model is developed to simulate the nonlinear dynamic behavior of the packed bed catalytic reactor with an irreversible first-order chemical reaction. The absorbed microwave power was obtained from Lambert's law. The structure of traveling wave endothermic chemical reaction was explored. The effects of the gas velocity and microwave power on performance of the packed bed catalytic reactor were presented. Finally, the effects of the change in the location of the microwave source at the packed bed reactor was demonstrated. - Highlights: • A new phenomenon - traveling waves of endothermic reaction - is predicted. • The physical and mathematical model of a packed bed catalytic reactor under microwave heating is presented. • The structure of the traveling waves is explored. • The configuration of heating the packed bed reactor via microwave plays a key role.

  20. Modeling of a three-phase reactor for bitumen-derived gas oil hydrotreating

    International Nuclear Information System (INIS)

    Chacon, R.; Canale, A.; Bouza, A.; Sanchez, Y.

    2012-01-01

    A three-phase reactor model for describing the hydrotreating reactions of bitumen-derived gas oil was developed. The model incorporates the mass-transfer resistance at the gas-liquid and liquid-solid interfaces and a kinetic rate expression based on a Langmuir-Hinshelwood-type model. We derived three correlations for determining the solubility of hydrogen (H 2 ), hydrogen sulfide (H 2 S) and ammonia (NH 3 ) in hydrocarbon mixtures and the calculation of the catalyst effectiveness factor was included. Experimental data taken from the literature were used to determine the kinetic parameters (stoichiometric coefficients, reaction orders, reaction rate and adsorption constants for hydrodesulfuration (HDS) and hydrodenitrogenation (HDN)) and to validate the model under various operating conditions. Finally, we studied the effect of operating conditions such as pressure, temperature, LHSV, H 2 /feed ratio and the inhibiting effect of H 2 S on HDS and NH 3 on HDN. (author)

  1. A catalytic reactor for the organocatalyzed enantioselective continuous flow alkylation of aldehydes.

    Science.gov (United States)

    Porta, Riccardo; Benaglia, Maurizio; Puglisi, Alessandra; Mandoli, Alessandro; Gualandi, Andrea; Cozzi, Pier Giorgio

    2014-12-01

    The use of immobilized metal-free catalysts offers the unique possibility to develop sustainable processes in flow mode. The challenging intermolecular organocatalyzed enantioselective alkylation of aldehydes was performed for the first time under continuous flow conditions. By using a packed-bed reactor filled with readily available supported enantiopure imidazolidinone, different aldehydes were treated with three distinct cationic electrophiles. In the organocatalyzed α-alkylation of aldehydes with 1,3-benzodithiolylium tetrafluoroborate, excellent enantioselectivities, in some cases even better than those obtained in the flask process (up to 95% ee at 25 °C), and high productivity (more than 3800 h(-1) ) were obtained, which thus shows that a catalytic reactor may continuously produce enantiomerically enriched compounds. Treatment of the alkylated products with Raney-nickel furnished enantiomerically enriched α-methyl derivatives, key intermediates for active pharmaceutical ingredients and natural products. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Pyrolysis of aseptic packages (tetrapak) in a laboratory screw type reactor and secondary thermal/catalytic tar decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Haydary, J., E-mail: juma.haydary@stuba.sk [Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava (Slovakia); Susa, D.; Dudáš, J. [Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava (Slovakia)

    2013-05-15

    Highlights: ► Pyrolysis of aseptic packages was carried out in a laboratory flow reactor. ► Distribution of tetrapak into the product yields was obtained. ► Composition of the pyrolysis products was estimated. ► Secondary thermal and catalytic decomposition of tars was studied. ► Two types of catalysts (dolomite and red clay marked AFRC) were used. - Abstract: Pyrolysis of aseptic packages (tetrapak cartons) in a laboratory apparatus using a flow screw type reactor and a secondary catalytic reactor for tar cracking was studied. The pyrolysis experiments were realized at temperatures ranging from 650 °C to 850 °C aimed at maximizing of the amount of the gas product and reducing its tar content. Distribution of tetrapak into the product yields at different conditions was obtained. The presence of H{sub 2}, CO, CH{sub 4}, CO{sub 2} and light hydrocarbons, HCx, in the gas product was observed. The Aluminum foil was easily separated from the solid product. The rest part of char was characterized by proximate and elemental analysis and calorimetric measurements. The total organic carbon in the tar product was estimated by elemental analysis of tars. Two types of catalysts (dolomite and red clay marked AFRC) were used for catalytic thermal tar decomposition. Three series of experiments (without catalyst in a secondary cracking reactor, with dolomite and with AFRC) at temperatures of 650, 700, 750, 800 and 850 °C were carried out. Both types of catalysts have significantly affected the content of tars and other components in pyrolytic gases. The effect of catalyst on the tetrapack distribution into the product yield on the composition of gas and on the total organic carbon in the tar product is presented in this work.

  3. Modeling of a three-phase reactor for bitumen-derived gas oil hydrotreating

    Energy Technology Data Exchange (ETDEWEB)

    Chacon, R.; Canale, A.; Bouza, A. [Departamento de Termodinamica y Fenomenos de Transporte. Universidad Simon Bolivar, Caracas (Venezuela, Bolivarian Republic of); Sanchez, Y. [Departamento de Procesos y Sistemas. Universidad Simon Bolivar (Venezuela, Bolivarian Republic of)

    2012-01-15

    A three-phase reactor model for describing the hydrotreating reactions of bitumen-derived gas oil was developed. The model incorporates the mass-transfer resistance at the gas-liquid and liquid-solid interfaces and a kinetic rate expression based on a Langmuir-Hinshelwood-type model. We derived three correlations for determining the solubility of hydrogen (H{sub 2}), hydrogen sulfide (H{sub 2}S) and ammonia (NH{sub 3}) in hydrocarbon mixtures and the calculation of the catalyst effectiveness factor was included. Experimental data taken from the literature were used to determine the kinetic parameters (stoichiometric coefficients, reaction orders, reaction rate and adsorption constants for hydrodesulfuration (HDS) and hydrodenitrogenation (HDN)) and to validate the model under various operating conditions. Finally, we studied the effect of operating conditions such as pressure, temperature, LHSV, H{sub 2}/feed ratio and the inhibiting effect of H{sub 2}S on HDS and NH{sub 3} on HDN. (author)

  4. Heterogeneous catalytic materials solid state chemistry, surface chemistry and catalytic behaviour

    CERN Document Server

    Busca, Guido

    2014-01-01

    Heterogeneous Catalytic Materials discusses experimental methods and the latest developments in three areas of research: heterogeneous catalysis; surface chemistry; and the chemistry of catalysts. Catalytic materials are those solids that allow the chemical reaction to occur efficiently and cost-effectively. This book provides you with all necessary information to synthesize, characterize, and relate the properties of a catalyst to its behavior, enabling you to select the appropriate catalyst for the process and reactor system. Oxides (used both as catalysts and as supports for cata

  5. Measurement of two phase flow properties using the nuclear reactor instruments

    International Nuclear Information System (INIS)

    Albrecht, R.W.; Washington Univ., Seattle; Crowe, R.D.; Dailey, D.J.; Kosaly, G.; Damborg, M.J.

    1982-01-01

    A procedure is introduced for characterizing one dimensional, two phase flow in terms of three properties; propagation, structure, and dynamics. It is shown that all of these properties can be measured by analyzing the response of the reactor neutron field to a two phase flow perturbation. Therefore, a nuclear reactor can be regarded as a two phase flow instrument. (author)

  6. Catalytic Chan–Lam coupling using a ‘tube-in-tube’ reactor to deliver molecular oxygen as an oxidant

    Directory of Open Access Journals (Sweden)

    Carl J. Mallia

    2016-07-01

    Full Text Available A flow system to perform Chan–Lam coupling reactions of various amines and arylboronic acids has been realised employing molecular oxygen as an oxidant for the re-oxidation of the copper catalyst enabling a catalytic process. A tube-in-tube gas reactor has been used to simplify the delivery of the oxygen accelerating the optimisation phase and allowing easy access to elevated pressures. A small exemplification library of heteroaromatic products has been prepared and the process has been shown to be robust over extended reaction times.

  7. Low concentration volatile organic pollutants removal in combined adsorber-desorber-catalytic reactor system

    Directory of Open Access Journals (Sweden)

    Arsenijević Zorana

    2008-01-01

    Full Text Available The removal of volatile organic compounds (VOCs from numerous emission sources is of crucial importance due to more rigorous demands on air quality. Different technologies can be used to treat the VOCs from effluent gases: absorption, physical adsorption, open flame combustion, thermal and catalytic incineration. Their appropriateness for the specific process depends on several factors such as efficiency, energy consumption, secondary pollution, capital investments etc. The distinctive features of the catalytic combustion are high efficiency and selectivity toward be­nign products, low energy consumption and absence of secondary polluti­on. The supported noble catalysts are widely used for catalytic incineration due to their low ignition temperatures and high thermal and chemical stability. In our combined system adsorption and desorption are applied in the spouted bed with draft tube (SBDT unit. The annular zone, loaded with sorbent, was divided in adsorption and desorption section. Draft tube enabled sorbent recirculation between sections. Combustion of desorbed gases to CO2 and water vapor are realized in additive catalytic reactor. This integrated device provided low concentrations VOCs removal with reduced energy consumption. Experiments were conducted on a pilot unit of 220 m3/h nominal capacity. The sorbent was activated carbon, type K81/B - Trayal Corporation, Krusevac. A sphere shaped commercial Pt/Al2O3 catalyst with "egg-shell" macro-distribution was used for the investigation of xylene deep oxidation. Within this paper the investigations of removal of xylene vapors, a typical pollutant in production of liquid pesticides, in combined adsorber/desorber/catalytic reactor system is presented.

  8. N2O Catalytic Decomposition – from Laboratory Experiment to Industry Reactor

    Czech Academy of Sciences Publication Activity Database

    Obalová, L.; Jirátová, Květa; Karásková, K.; Chromčáková, Ž.

    2012-01-01

    Roč. 191, č. 1 (2012), s. 116-120 ISSN 0920-5861 R&D Projects: GA TA ČR TA01020336 Institutional support: RVO:67985858 Keywords : N2O * catalytic decomposition * fixed bed reactor Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.980, year: 2012

  9. ADVANCED DIAGNOSTIC TECHNIQUES FOR THREE-PHASE SLURRY BUBBLE COLUMN REACTORS(SBCR)

    Energy Technology Data Exchange (ETDEWEB)

    M.H. Al-Dahhan; L.S. Fan; M.P. Dudukovic

    2002-07-25

    This report summarizes the accomplishment made during the third year of this cooperative research effort between Washington University, Ohio State University and Air Products and Chemicals. Data processing of the performed Computer Automated Radioactive Particle Tracking (CARPT) experiments in 6 inch column using air-water-glass beads (150 {micro}m) system has been completed. Experimental investigation of time averaged three phases distribution in air-Therminol LT-glass beads (150 {micro}m) system in 6 inch column has been executed. Data processing and analysis of all the performed Computed Tomography (CT) experiments have been completed, using the newly proposed CT/Overall gas holdup methodology. The hydrodynamics of air-Norpar 15-glass beads (150 {micro}m) have been investigated in 2 inch slurry bubble column using Dynamic Gas Disengagement (DGD), Pressure Drop fluctuations, and Fiber Optic Probe. To improve the design and scale-up of bubble column reactors, a correlation for overall gas holdup has been proposed based on Artificial Neural Network and Dimensional Analysis.

  10. OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

    1998-04-01

    The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

  11. Three-phase packed bed reactor with an evaporating solvent—I. Experimental: the hydrogenation of 2,4,6-trinitrotoluene in methanol

    NARCIS (Netherlands)

    van Gelder, K.B.; Damhof, J.K.; Kroijenga, P.J.; Westerterp, K.R.

    1990-01-01

    In this paper we present experimental data on the three-phase hydrogenation of 2,4,6-trinitrotoluene (TNT) to triaminotoluene. The experiments are performed in a cocurrent upflow packed bed reactor. Methanol is used as an evaporating solvent. The influence of the main operating parameters, the

  12. Degradation pathway of malachite green in a novel dual-tank photoelectrochemical catalytic reactor.

    Science.gov (United States)

    Diao, Zenghui; Li, Mingyu; Zeng, Fanyin; Song, Lin; Qiu, Rongliang

    2013-09-15

    A novel dual-tank photoelectrochemical catalytic reactor was designed to investigate the degradation pathway of malachite green. A thermally formed TiO₂/Ti thin film electrode was used as photoanode, graphite was used as cathode, and a saturated calomel electrode was employed as the reference electrode in the reactor. In the reactor, the anode and cathode tanks were connected by a cation exchange membrane. Results showed that the decolorization ratio of malachite green in the anode and cathode was 98.5 and 96.5% after 120 min, respectively. Malachite green in the two anode and cathode tanks was oxidized, achieving the bipolar double effect. Malachite green in both the anode and cathode tanks exhibited similar catalytic degradation pathways. The double bond of the malachite green molecule was attacked by strong oxidative hydroxyl radicals, after which the organic compound was degraded by the two pathways into 4,4-bis(dimethylamino) benzophenone, 4-(dimethylamino) benzophenone, 4-(dimethylamino) phenol, and other intermediate products. Eventually, malachite green was degraded into oxalic acid as a small molecular organic acid, which was degraded by processes such as demethylation, deamination, nitration, substitution, addition, and other reactions. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Development of a coupled reactor with a catalytic combustor and steam reformer for a 5 kW solid oxide fuel cell system

    International Nuclear Information System (INIS)

    Kang, Sanggyu; Lee, Kanghun; Yu, Sangseok; Lee, Sang Min; Ahn, Kook-Young

    2014-01-01

    Highlights: • Proposes the scale-up strategy to develop a large-scale coupled reactor. • Investigation of performance of steam reformer coupled with catalytic combustor. • Experimental parameters are inlet temp., air excess ratio, SCR, fuel utilization. • Evaluation of the heat transfer distribution along the gas flow direction. • The mean value of methane conversion rate is approximately 93.4%. - Abstract: The methane (CH 4 ) conversion rate of a steam reformer can be increased by thermal integration with a catalytic combustor, called a coupled reactor. In the present study, a 5 kW coupled reactor has been developed based on a 1 kW coupled reactor in previous work. The geometric parameters of the space velocity, diameter and length of the coupled reactor selected from the 1 kW coupled reactor are tuned and applied to the design of the 5 kW coupled reactor. To confirm the scale-up strategy, the performance of 5 kW coupled reactor is experimentally investigated with variations of operating parameters such as the fuel utilization in the solid oxide fuel cell (SOFC) stack, the inlet temperature of the catalytic combustor, the excess air ratio of the catalytic combustor, and the steam to carbon ratio (SCR) in the steam reformer. The temperature distributions of coupled reactors are measured along the gas flow direction. The gas composition at the steam reformer outlet is measured to find the CH 4 conversion rate of the coupled reactor. The maximum value of the CH 4 conversion rate is approximately 93.4%, which means the proposed scale-up strategy can be utilized to develop a large-scale coupled reactor

  14. Operation of a catalytic reverse flow reactor for the purification of air contamined with volatile organic compounds

    NARCIS (Netherlands)

    van de Beld, L.; van de Beld, L.; Westerterp, K.R.

    1997-01-01

    Catalytic oxidation in a reverse flow reactor is an attractive process for the decontamination of air polluted with volatile organic compounds (VOCs). In this paper several aspects of operating this type of reactor for air purification under strongly varying conditions will be discussed. For a

  15. Experimental and Numerical Evaluation of the By-Pass Flow in a Catalytic Plate Reactor for Hydrogen Production

    DEFF Research Database (Denmark)

    Sigurdsson, Haftor Örn; Kær, Søren Knudsen

    2011-01-01

    Numerical and experimental study is performed to evaluate the reactant by-pass flow in a catalytic plate reactor with a coated wire mesh catalyst for steam reforming of methane for hydrogen generation. By-pass of unconverted methane is evaluated under different wire mesh catalyst width to reactor...

  16. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor.

    Science.gov (United States)

    Ranieri, Giuseppe; Mazzei, Rosalinda; Wu, Zhentao; Li, Kang; Giorno, Lidietta

    2016-03-14

    Biocatalytic membrane reactors (BMR) combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%), which remains constant after 6 reaction cycles.

  17. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Giuseppe Ranieri

    2016-03-01

    Full Text Available Biocatalytic membrane reactors (BMR combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%, which remains constant after 6 reaction cycles.

  18. Feasibility study of a reverse flow catalytic membrane reactor with porous membranes for the production of syngas

    NARCIS (Netherlands)

    Smit, J.; van Sint Annaland, M.; Kuipers, J.A.M.

    2005-01-01

    In this paper a novel reverse flow catalytic membrane reactor (RFCMR) is proposed for the partial oxidation of CH4 to syngas. The feasibility of the RFCMR concept has been investigated for industrial conditions on basis of a simulation study employing a reactor model, which includes a detailed

  19. Catalytic membrane reactors for tritium recovery from tritiated water in the ITER fuel cycle

    International Nuclear Information System (INIS)

    Tosti, S.; Violante, V.; Basile, A.; Chiappetta, G.; Castelli, S.; De Francesco, M.; Scaglione, S.; Sarto, F.

    2000-01-01

    Palladium and palladium-silver permeators have been obtained by coating porous ceramic tubes with a thin metal layer. Three coating techniques have been studied and characterized: chemical electroless deposition (PdAg film thickness of 10 μm), ion sputtering (about 1 μm) and rolling of thin metal sheets (50 μm). The Pd-ceramic membranes have been used for manufacturing catalytic membrane reactors (CMR) for hydrogen and its isotopes recovering and purifying. These composite membranes and the CMR have been studied and developed for a closed-loop process with reference to the design requirements of the international thermonuclear experimental reactor (ITER) blanket tritium recovery system in the enhanced performance phase of operation. The membranes and CMR have been tested in a pilot plant equipped with temperature, pressure and flow-rate on-line measuring and controlling devices. The conversion value for the water gas shift reaction in the CMR has been measured close to 100% (always above the equilibrium one, 80% at 350 deg. C): the effect of the membrane is very clear since the reaction is moved towards the products because of the continuous hydrogen separation. The rolled thin film membranes have separated the hydrogen from other gases with a complete selectivity and exhibited a slightly larger mass transfer resistance with respect to the electroless membranes. Preliminary tests on the sputtered membranes have also been carried out with a promising performance. Considerations on the use of different palladium alloy in order to improve the performances of the membranes in terms of permeation flux and mechanical strength, such as palladium/yttrium, are also reported

  20. Removal of toxic Cr(VI) ions from tannery industrial wastewater using a newly designed three-phase three-dimensional electrode reactor

    Science.gov (United States)

    Grace Pavithra, K.; Senthil Kumar, P.; Carolin Christopher, Femina; Saravanan, A.

    2017-11-01

    In this research, the wastewater samples were collected from leather tanning industry at different time intervals. The parameters like pH, electrical conductivity, temperature, turbidity, chromium and chemical oxygen demand (COD) of the samples were analyzed. A three-phase three-dimensional fluidized type electrode reactor (FTER) was newly designed for the effective removal of toxic pollutants from wastewater. The influencing parameters were optimized for the maximum removal of toxic pollutants from wastewater. The optimum condition for the present system was calculated as: contact time of 30 min, applied voltage of 3 V and the particle electrodes of 15 g. The particle electrode was characterized by using FT-IR analysis. Langmuir-Hinshelwood and pseudo-second order kinetic models were fits well with the experimental data. The results showed that the FTER can be successfully employed for the treatment of industrial wastewater.

  1. Catalytic Reactor For Oxidizing Mercury Vapor

    Science.gov (United States)

    Helfritch, Dennis J.

    1998-07-28

    A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.

  2. Computer-aided modeling framework – a generic modeling template for catalytic membrane fixed bed reactors

    DEFF Research Database (Denmark)

    Fedorova, Marina; Sin, Gürkan; Gani, Rafiqul

    2013-01-01

    and users to generate and test models systematically, efficiently and reliably. In this way, development of products and processes can be faster, cheaper and very efficient. In this contribution, as part of the framework a generic modeling template for the systematic derivation of problem specific catalytic...... membrane fixed bed models is developed. The application of the modeling template is highlighted with a case study related to the modeling of a catalytic membrane reactor coupling dehydrogenation of ethylbenzene with hydrogenation of nitrobenzene....

  3. Optimal conditions in direct dimethyl ether synthesis from syngas utilizing a dual-type fluidized bed reactor

    International Nuclear Information System (INIS)

    Yousefi, Ahmad; Eslamloueyan, Reza; Kazerooni, Nooshin Moradi

    2017-01-01

    Concerns over environmental pollution and ever-increasing energy demand have urged the global community to tap clean-burning fuels among which dimethyl ether is a promising candidate for contribution in the transportation sector. Direct dimethyl ether synthesis from syngas, in which methanol production and dehydration take place simultaneously, is arguably the preferred route for large scale production. In this study, direct dimethyl ether synthesis is proposed in an industrial dual-type fluidized bed reactor. This configuration involves two fluidized bed reactors operating in different conditions. In the first catalytic reactor (water-cooled reactor), the synthesis gas is partly converted to methanol after being preheated by the reaction heat in the second reactor (gas-cooled reactor). A two-phase generalized comprehensive reactor model, comprised of the flow in three different regimes is applied and a smooth transition between flow regimes is provided based on the probabilistic averaging approach. The optimal operating conditions are sought by employing differential evolution algorithm as a robust optimization strategy. The dimethyl ether mole fraction is considered as the objective function during the optimization. The results show considerable dimethyl ether enhancement by 16% and 14% compared to the conventional direct dimethyl ether synthesis reactor and dual-type fixed bed dimethyl ether reactor arrangements, respectively. - Highlights: • Dual-type catalytic fluidized bed reactors for dimethyl ether synthesis is studied. • A two-phase comprehensive model comprised of flow in three regimes is used. • Probabilistic averaging approach is applied for smooth transitions between regimes. • Differential evolution method is employed to determine optimal operating conditions. • Production capacity is remarkably enhanced compared to conventional reactor.

  4. Progress in catalytic naphtha reforming process: A review

    International Nuclear Information System (INIS)

    Rahimpour, Mohammad Reza; Jafari, Mitra; Iranshahi, Davood

    2013-01-01

    Catalytic naphtha reforming process is a vital process for refineries due to the production of high-octane components, which is intensely demanded in our modern life. The significance of this industrial process induced researchers to investigate different aspects of catalytic naphtha reforming process intensively. Some of the investigators try to improve this process by representing more effective catalysts, while others try to elucidate its kinetic and deactivation mechanisms and design more efficient reactor setups. The amount of these established papers is so much that may confuse some of the researchers who want to find collective information about catalytic naphtha reforming process. In the present paper, the published studies from 1949 until now are categorized into three main groups including finding suitable catalyst, revealing appropriate kinetic and deactivation model, and suggesting efficient reactor configuration and mode of operation. These studies are reviewed separately, and a suitable reference is provided for those who want to have access to generalized information about catalytic naphtha reforming process. Finally, various suggestions for revamping the catalytic naphtha reforming process have been proposed as a guideline for further investigations

  5. The coupling effect of gas-phase chemistry and surface reactions on oxygen permeation and fuel conversion in ITM reactors

    KAUST Repository

    Hong, Jongsup

    2015-08-01

    © 2015 Elsevier B.V. The effect of the coupling between heterogeneous catalytic reactions supported by an ion transport membrane (ITM) and gas-phase chemistry on fuel conversion and oxygen permeation in ITM reactors is examined. In ITM reactors, thermochemical reactions take place in the gas-phase and on the membrane surface, both of which interact with oxygen permeation. However, this coupling between gas-phase and surface chemistry has not been examined in detail. In this study, a parametric analysis using numerical simulations is conducted to investigate this coupling and its impact on fuel conversion and oxygen permeation rates. A thermochemical model that incorporates heterogeneous chemistry on the membrane surface and detailed chemical kinetics in the gas-phase is used. Results show that fuel conversion and oxygen permeation are strongly influenced by the simultaneous action of both chemistries. It is shown that the coupling somewhat suppresses the gas-phase kinetics and reduces fuel conversion, both attributed to extensive thermal energy transfer towards the membrane which conducts it to the air side and radiates to the reactor walls. The reaction pathway and products, in the form of syngas and C2 hydrocarbons, are also affected. In addition, the operating regimes of ITM reactors in which heterogeneous- or/and homogeneous-phase reactions predominantly contribute to fuel conversion and oxygen permeation are elucidated.

  6. The performance of a three-phase fluidized bed reactor in treatment of wastewater with high organic load

    Directory of Open Access Journals (Sweden)

    R. R. Souza

    2004-06-01

    Full Text Available An experimental study was carried out aiming to evaluate the performance of a three-phase fluidized bed bioreactor (FBBR used to treat milk wastewater. In this study three different concentrations of milk wastewater substrate (462, 825 and 1473 mg O2/L were tested. Using the same number of support particles, the results demonstrate that the average efficiency of COD removal decreased as the concentration of organic load in the substrate was increased. The growth of microorganism in the FBBR was followed by a count of viable cells in both liquid phase and the biofilms attached to the support. An increased number of viable cells were observed inside the reactor when it was used to degrade higher organic loads, with most of the cells on the support. The higher concentration of active biomass was responsible for achieving a relatively high absolute degradation of the wastewater containing the high organic load.

  7. A novel approach to the design and operation scheduling of heterogeneous catalytic reactors

    International Nuclear Information System (INIS)

    Ghodasara, Kamlesh; Smith, Robin; Hwang, Sungwon

    2014-01-01

    A number of studies have been conducted to reduce the overall level of catalyst deactivation in heterogeneous catalytic reactors, and improve the performance of reactors, such as yield, conversion or selectivity. The methodology generally includes optimization of the following: (1) operating conditions of the reaction system, such as feed temperature, normal operating temperature, pressure, and composition of feed streams; (2) reactor design parameters, such as dimension of the reactor, side stream distribution along the axis of the reactor beds, the mixing ratio of inert catalyst at each bed; and (3) catalyst design parameters, such as the pore size distribution across the pellet, active material distribution, size and shape of the catalyst, etc. Few studies have examined optimization of the overall catalyst reactor performance throughout the catalyst lifetime, considering catalyst deactivation. Furthermore, little attention has been given to the impact of various configurations of reactor networks and scheduling of the reactor operation (i.e., online and offline-regeneration) on the overall reactor performance throughout the catalyst lifetime. Therefore, we developed a range of feasible sequences of reactors and scheduling of reactors for operation and regeneration, and compared the overall reactor performance of multiple cases. Furthermore, a superstructure of reactor networks was developed and optimized to determine the optimum reactor network that shows the maximum overall reactor performance. The operating schedule of each reactor in the network was considered further. Lastly, the methodology was illustrated using a case study of the MTO (methanol to olefin) process

  8. Bubbling bed catalytic hydropyrolysis process utilizing larger catalyst particles and smaller biomass particles featuring an anti-slugging reactor

    Science.gov (United States)

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-09-23

    This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.

  9. Bubbling bed catalytic hydropyrolysis process utilizinig larger catalyst particles and small biomass particles featuring an anti-slugging reactor

    Science.gov (United States)

    Marker, Terry L.; Felix, Larry G.; Linck, Martin B.; Roberts, Michael J.

    2016-12-06

    This invention relates to a process for thermochemically transforming biomass or other oxygenated feedstocks into high quality liquid hydrocarbon fuels. In particular, a catalytic hydropyrolysis reactor, containing a deep bed of fluidized catalyst particles is utilized to accept particles of biomass or other oxygenated feedstocks that are significantly smaller than the particles of catalyst in the fluidized bed. The reactor features an insert or other structure disposed within the reactor vessel that inhibits slugging of the bed and thereby minimizes attrition of the catalyst. Within the bed, the biomass feedstock is converted into a vapor-phase product, containing hydrocarbon molecules and other process vapors, and an entrained solid char product, which is separated from the vapor stream after the vapor stream has been exhausted from the top of the reactor. When the product vapor stream is cooled to ambient temperatures, a significant proportion of the hydrocarbons in the product vapor stream can be recovered as a liquid stream of hydrophobic hydrocarbons, with properties consistent with those of gasoline, kerosene, and diesel fuel. Separate streams of gasoline, kerosene, and diesel fuel may also be obtained, either via selective condensation of each type of fuel, or via later distillation of the combined hydrocarbon liquid.

  10. FLUIDDYNAMIC ASPECTS OF GAS-PHASE ETHYLENE POLYMERIZATION REACTOR DESIGN

    Directory of Open Access Journals (Sweden)

    Guardani R.

    1998-01-01

    Full Text Available The relative importance of design variables affecting the fluiddynamic behavior of a fluidized bed reactor for the gas-phase ethylene polymerization is discussed, based on mathematical modeling. The three-phase bubbling fluidized bed model is based on axially distributed properties for the bubble, cloud and emulsion phases, combined with correlations for population balance and entrainment. Under the operating conditions adopted in most industrial processes, the reactor performance is affected mainly by the reaction rate and solids entrainment. Simulation results indicate that an adequate design of the freeboard and particle collecting equipment is of primary importance in order to produce polymeric particles with the desired size distribution, as well as to keep entrainment and catalyst feed rates at adequate levels.

  11. Prediction of Improved Performance of Catalytic Hydrogenation Reactor by Periodic Modulation of the Feed Rate

    Czech Academy of Sciences Publication Activity Database

    Staněk, Vladimír; Hanika, Jiří; Jiřičný, Vladimír; Stavárek, Petr; Tukač, V.; Lederer, J.

    2009-01-01

    Roč. 23, č. 3 (2009), s. 251-257 ISSN 1451-9372 R&D Projects: GA MPO FT-TA/039 Institutional research plan: CEZ:AV0Z40720504 Keywords : trickle bed * feed modulation * catalytic reactor Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  12. Review of literature on catalytic recombination of hydrogen--oxygen

    International Nuclear Information System (INIS)

    Homsy, R.V.; Glatron, C.A.

    1968-01-01

    The results are reported of a literature search for information concerning the heterogeneous, gas phase, catalytic hydrogen-oxygen recombination. Laboratory scale experiments to test the performance of specific metal oxide catalysts under conditions simulating the atmosphere within a nuclear reactor containment vessel following a loss-of-coolant blowdown accident are suggested

  13. Enantioselective syntheses of aeruginosin 298-A and its analogues using a catalytic asymmetric phase-transfer reaction and epoxidation.

    Science.gov (United States)

    Ohshima, Takashi; Gnanadesikan, Vijay; Shibuguchi, Tomoyuki; Fukuta, Yuhei; Nemoto, Tetsuhiro; Shibasaki, Masakatsu

    2003-09-17

    We developed a versatile synthetic process for aeruginosin 298-A as well as several attractive analogues, in which all stereocenters were controlled by a catalytic asymmetric phase-transfer reaction and epoxidation. Furthermore, drastic counteranion effects in phase-transfer catalysis were observed for the first time, making it possible to three-dimensionally fine-tune the catalyst (ketal part, aromatic part, and counteranion).

  14. Esterification of oleic acid in a three-phase, fixed-bed reactor packed with a cation exchange resin catalyst.

    Science.gov (United States)

    Son, Sung Mo; Kimura, Hiroko; Kusakabe, Katsuki

    2011-01-01

    Esterification of oleic acid was performed in a three-phase fixed-bed reactor with a cation exchange resin catalyst (Amberlyst-15) at high temperature, which was varied from 80 to 120 °C. The fatty acid methyl ester (FAME) yields in the fixed-bed reactor were increased with increases in the reaction temperature, methanol flow rate and bed height. Moreover, the FAME yields were higher than those obtained using a batch reactor due to an equilibrium shift toward the product that resulted from continuous evaporation of the produced water. In addition, there was no catalyst deactivation during the esterification of oleic acid. However, addition of sunflower oil to the oleic acid reduced the FAME yield obtained from simultaneous esterification and transesterification. The FAME yield was 97.5% at a reaction temperature of 100 °C in the fixed-bed with a height of 5 cm when the methanol and oleic acid feed rates were 8.6 and 9.0 mL/h, respectively. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Modeling and Simulation of the Hydrogenation of α-Methylstyrene on Catalytically Active Metal Foams as Tubular Reactor Packing

    Directory of Open Access Journals (Sweden)

    Farzad Lali

    2016-01-01

    Full Text Available This work presents a one-dimensional reactor model for a tubular reactor packed with a catalytically active foam packing with a pore density of 30 PPI in cocurrent upward flow in the example of hydrogenation reaction of α-methylstyrene to cumene. This model includes material, enthalpy, and momentum balances as well as continuity equations. The model was solved within the parameter space applied for experimental studies under assumption of a bubbly flow. The method of orthogonal collocation on finite elements was applied. For isothermal and polytropic processes and steady state conditions, axial profiles for concentration, temperature, fluid velocities, pressure, and liquid holdup were computed and the conversions for various gas and liquid flow rates were validated with experimental results. The obtained results were also compared in terms of space time yield and catalytic activity with experimental results and stirred tank and also with random packed bed reactor. The comparison shows that the application of solid foams as reactor packing is advantageous compared to the monolithic honeycombs and random packed beds.

  16. Low temperature catalytic combustion of propane over Pt-based catalyst with inverse opal microstructure in microchannel reactor

    NARCIS (Netherlands)

    Guan, G.; Zapf, R.; Kolb, G.A.; Men, Y.; Hessel, V.; Löwe, H.; Ye, J.; Zentel, R.

    2007-01-01

    novel Pt-based catalyst with highly regular, periodic inverse opal microstructure was fabricated in a microchannel reactor, and catalytic testing revealed excellent conversion and stable activity for propane combustion at low temperatures

  17. The transport phase of pyrolytic oil exiting a fast fluidized bed reactor

    Science.gov (United States)

    Daugaard, Daren Einar

    An unresolved and debated aspect in the fast pyrolysis of biomass is whether the bio-oil exits as a vapor or as an aerosol from the pyrolytic reactor. The determination of the bio-oil transport phase will have direct and significant impact on the design of fast pyrolysis systems. Optimization of both the removal of particulate matter and collection of bio-oil will require this information. In addition, the success of catalytic reforming of bio-oil to high-value chemicals will depend upon this transport phase. A variety of experimental techniques were used to identify the transport phase. Some tests were as simple as examining the catch of an inline filter while others attempted to deduce whether vapor or aerosol predominated by examining the pressure drop across a flow restriction. In supplementary testing, the effect of char on aerosol formation and the potential impact of cracking during direct contact filtering are evaluated. The study indicates that for pyrolysis of red oak approximately 90 wt-% of the collected bio-oil existed as a liquid aerosol. Conversely, the pyrolysis of corn starch produced bio-oil predominately in the vapor phase at the exit of the reactor. Furthermore, it was determined that the addition of char promotes the production of aerosols during pyrolysis of corn starch. Direct contact filtering of the product stream did not collect any liquids and the bio-oil yield was not significantly reduced indicating measurable cracking or coking did not occur.

  18. Hybrid Reactor Simulation and 3-D Information Display of BWR Out-of-Phase Oscillation

    International Nuclear Information System (INIS)

    Edwards, Robert; Huang, Zhengyu

    2001-01-01

    The real-time hybrid reactor simulation (HRS) capability of the Penn State TRIGA reactor has been expanded for boiling water reactor (BWR) out-of-phase behavior. During BWR out-of-phase oscillation half of the core can significantly oscillate out of phase with the other half, while the average power reported by the neutronic instrumentation may show a much lower amplitude for the oscillations. A description of the new HRS is given; three computers are employed to handle all the computations required, including real-time data processing and graph generation. BWR out-of-phase oscillation was successfully simulated. By adjusting the reactivity feedback gains from boiling channels to the TRIGA reactor and to the first harmonic mode power simulation, limit cycle can be generated with both reactor power and the simulated first harmonic power. A 3-D display of spatial power distributions of fundamental mode, first harmonic, and total powers over the reactor cross section is shown

  19. Continuous-flow processes for the catalytic partial hydrogenation reaction of alkynes

    Directory of Open Access Journals (Sweden)

    Carmen Moreno-Marrodan

    2017-04-01

    Full Text Available The catalytic partial hydrogenation of substituted alkynes to alkenes is a process of high importance in the manufacture of several market chemicals. The present paper shortly reviews the heterogeneous catalytic systems engineered for this reaction under continuous flow and in the liquid phase. The main contributions appeared in the literature from 1997 up to August 2016 are discussed in terms of reactor design. A comparison with batch and industrial processes is provided whenever possible.

  20. Environmentally benign synthesis of amides and ureas via catalytic dehydrogenation coupling of volatile alcohols and amines in a Pd-Ag membrane reactor

    KAUST Repository

    Chen, Tao

    2016-05-31

    In this study, we report the direct synthesis of amides and ureas via the catalytic dehydrogenation of volatile alcohols and amines using the Milstein catalyst in a Pd-Ag/ceramic membrane reactor. A series of amides and ureas, which could not be synthesized in an open system by catalytic dehydrogenation coupling, were obtained in moderate to high yields via catalytic dehydrogenation of volatile alcohols and amines. This process could be monitored by the hydrogen produced. Compared to the traditional method of condensation, this catalytic system avoids the stoichiometric pre-activation or in situ activation of reagents, and is a much cleaner process with high atom economy. This methodology, only possible by employing the Pd-Ag/ceramic membrane reactor, not only provides a new environmentally benign synthetic approach of amides and ureas, but is also a potential method for hydrogen storage.

  1. Environmentally benign synthesis of amides and ureas via catalytic dehydrogenation coupling of volatile alcohols and amines in a Pd-Ag membrane reactor

    KAUST Repository

    Chen, Tao; Zeng, Gaofeng; Lai, Zhiping; Huang, Kuo-Wei

    2016-01-01

    In this study, we report the direct synthesis of amides and ureas via the catalytic dehydrogenation of volatile alcohols and amines using the Milstein catalyst in a Pd-Ag/ceramic membrane reactor. A series of amides and ureas, which could not be synthesized in an open system by catalytic dehydrogenation coupling, were obtained in moderate to high yields via catalytic dehydrogenation of volatile alcohols and amines. This process could be monitored by the hydrogen produced. Compared to the traditional method of condensation, this catalytic system avoids the stoichiometric pre-activation or in situ activation of reagents, and is a much cleaner process with high atom economy. This methodology, only possible by employing the Pd-Ag/ceramic membrane reactor, not only provides a new environmentally benign synthetic approach of amides and ureas, but is also a potential method for hydrogen storage.

  2. A review of liquid-phase catalytic hydrodechlorination

    OpenAIRE

    Alba Nelly Ardila Arias; Consuelo Montes de Correa

    2007-01-01

    This survey was aimed at introducing the effect of light organochlorinated compound emissions on the envi-ronment, particularly on water, air, soil, biota and human beings. The characteristics and advantages of liquid phase catalytic hydrodechlorination as a technology for degrading these chlorinated compounds is also outlined and the main catalysts used in the hydrodechlorination process are described. Special emphasis is placed on palladium catalysts, their activity, the nature of active sp...

  3. Biotemplating of Luffa cylindrica sponges to self-supporting hierarchical zeolite macrostructures for bio-inspired structured catalytic reactors

    International Nuclear Information System (INIS)

    Zampieri, Alessandro; Mabande, Godwin T.P.; Selvam, Thangaraj; Schwieger, Wilhelm; Rudolph, Alexander; Hermann, Ralph; Sieber, Heino; Greil, Peter

    2006-01-01

    Biomorphic self-supporting MFI-type zeolite frameworks with hierarchical porosity and complex architecture were prepared using a 2-step (in-situ seeding and secondary crystal growth) hydrothermal synthesis in the presence of a biological template (Luffa sponge), employed as a macroscale sacrificial structure builder. The bio-inspired zeolitic replica inherited the complex spongy morphology and the intricate open-porous architecture of the biotemplate. Moreover, it exhibited reasonable mechanical stability in order to study the applicability of the biomorphic catalyst in a technical catalytic process. A bio-inspired catalytic reactor utilising the self-supporting ZSM-5 scaffold in monolithic configuration was developed in order to test the catalytic performance of the material

  4. Catalytic effect of different reactor materials under subcritical water conditions: decarboxylation of cysteic acid into taurine

    Science.gov (United States)

    Faisal, M.

    2018-03-01

    In order to understand the influence of reactor materials on the catalytic effect for a particular reaction, the decomposition of cysteic acid from Ni/Fe-based alloy reactors under subcritical water conditions was examined. Experiments were carried out in three batch reactors made of Inconel 625, Hastelloy C-22 and SUS 316 over temperatures of 200 to 300 °C. The highest amount of eluted metals was found for SUS 316. The results demonstrated that reactor materials contribute to the resulting product. Under the tested conditions, cysteic acid decomposes readily with SUS 316. However, the Ni-based materials (Inconel 625 and Hastelloy C-22) show better resistance to metal elution. It was found that among the materials used in this work, SUS 316 gave the highest reaction rate constant of 0.1934 s‑1. The same results were obtained at temperatures of 260 and 300 °C. Investigation of the Arrhenius activation energy revealed that the highest activation energy was for Hastelloy C-22 (109 kJ/mol), followed by Inconel 625 (90 kJ/mol) and SUS 316 (70 kJ/mol). The decomposition rate of cysteic acid was found to follow the results for the trend of the eluted metals. Therefore, it can be concluded that the decomposition of cysteic acid was catalyzed by the elution of heavy metals from the surface of the reactor. The highest amount of taurine from the decarboxylation of cysteic acid was obtained from SUS 316.

  5. Effect of inlet temperature on the performance of a catalytic reactor. [air pollution control

    Science.gov (United States)

    Anderson, D. N.

    1978-01-01

    A 12 cm diameter by 15 cm long catalytic reactor was tested with No. 2 diesel fuel in a combustion test rig at inlet temperatures of 700, 800, 900, and 1000 K. Other test conditions included pressures of 3 and 6 x 10 to the 5th power Pa, reference velocities of 10, 15, and 20 m/s, and adiabatic combustion temperatures in the range 1100 to 1400 K. The combustion efficiency was calculated from measurements of carbon monoxide and unburned hydrocarbon emissions. Nitrogen oxide emissions and reactor pressure drop were also measured. At a reference velocity of 10 m/s, the CO and unburned hydrocarbons emissions, and, therefore, the combustion efficiency, were independent of inlet temperature. At an inlet temperature of 1000 K, they were independent of reference velocity. Nitrogen oxides emissions resulted from conversion of the small amount (135 ppm) of fuel-bound nitrogen in the fuel. Up to 90 percent conversion was observed with no apparent effect of any of the test variables. For typical gas turbine operating conditions, all three pollutants were below levels which would permit the most stringent proposed automotive emissions standards to be met.

  6. One-pot aqueous phase catalytic conversion of sorbitol to gasoline over nickel catalyst

    International Nuclear Information System (INIS)

    Weng, Yujing; Qiu, Songbai; Xu, Ying; Ding, Mingyue; Chen, Lungang; Zhang, Qi; Ma, Longlong; Wang, Tiejun

    2015-01-01

    Highlights: • Directly production gasoline (C5–C12 alkanes) from biomass-derived sugar alcohol sorbitol. • Temperature of STG (553–593 K) was lower than that of traditional methanol to gasoline (MTG) (623–773 K). • Gasoline yield of 46.9% and C7–C12 hydrocarbons reached up to 45.5% in the gasoline products. - Abstract: The carbon chain extension and hydrodeoxygenation steps play critical roles in the high-energy-density hydrocarbons production. In this paper, a systematic study had been carried out to investigate one-pot aqueous phase catalytic conversion of sorbitol to gasoline (STG) over bifunctional Ni-based catalysts. Characterization technologies of N 2 physisorption, X-ray diffraction (XRD), Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and NH 3 temperature-programmed desorption (NH 3 -TPD) were used to study the textural properties, phase compositions, acid behavior and morphologies of the catalysts. The catalytic performances were tested in a fixed bed reactor. It was found that the physically mixed Ni/HZSM-5 and Ni/silica-gel (mesoporous SG) catalyst realized the carbon chain extension and exhibited excellent performances on hydrodeoxygenation (HDO) reaction (46.9% of gasoline (C5–C12) yield and 45.5% of C7–C12 hydrocarbons in the gasoline products). Especially, the temperature of STG (553–593 K) was lower obviously than that of the traditional methanol to gasoline (MTG) process (623–773 K). It provided a novel transformation of sorbitol to long-chain alkanes by one-pot process over the bifunctional catalyst (Ni@HZSM-5/SG), wherein hydrodeoxygenation, ketonization and aldol condensation steps were integrated

  7. Pretreated Landfill Gas Conversion Process via a Catalytic Membrane Reactor for Renewable Combined Fuel Cell-Power Generation

    Directory of Open Access Journals (Sweden)

    Zoe Ziaka

    2013-01-01

    Full Text Available A new landfill gas-based reforming catalytic processing system for the conversion of gaseous hydrocarbons, such as incoming methane to hydrogen and carbon oxide mixtures, is described and analyzed. The exit synthesis gas (syn-gas is fed to power effectively high-temperature fuel cells such as SOFC types for combined efficient electricity generation. The current research work is also referred on the description and design aspects of permreactors (permeable reformers carrying the same type of landfill gas-reforming reactions. Membrane reactors is a new technology that can be applied efficiently in such systems. Membrane reactors seem to perform better than the nonmembrane traditional reactors. The aim of this research includes turnkey system and process development for the landfill-based power generation and fuel cell industries. Also, a discussion of the efficient utilization of landfill and waste type resources for combined green-type/renewable power generation with increased processing capacity and efficiency via fuel cell systems is taking place. Moreover, pollution reduction is an additional design consideration in the current catalytic processors fuel cell cycles.

  8. Experimental studies on catalytic hydrogen recombiners for light water reactors

    International Nuclear Information System (INIS)

    Drinovac, P.

    2006-01-01

    In the course of core melt accidents in nuclear power plants a large amount of hydrogen can be produced and form an explosive or even detonative gas mixture with aerial oxygen in the reactor building. In the containment atmosphere of pressurized water reactors hydrogen combines a phlogistically with the oxygen present to form water vapor even at room temperature. In the past, experimental work conducted at various facilities has contributed little or nothing to an understanding of the operating principles of catalytic recombiners. Hence, the purpose of the present study was to conduct detailed investigations on a section of a recombiner essentially in order to deepen the understanding of reaction kinetics and heat transport processes. The results of the experiments presented in this dissertation form a large data base of measurements which provides an insight into the processes taking place in recombiners. The reaction-kinetic interpretation of the measured data confirms and deepens the diffusion theory - proposed in an earlier study. Thus it is now possible to validate detailed numeric models representing the processes in recombiners. Consequently the present study serves to broaden and corroborate competence in this significant area of reactor technology. In addition, the empirical knowledge thus gained may be used for a critical reassessment of previous numeric model calculations. (orig.)

  9. DISA- a computer code for accident analysis of fast reactor during disassembly phase

    International Nuclear Information System (INIS)

    Yadav, R.D.S.; Gupta, H.P.

    2005-01-01

    Analysis of the hypothetical transients in fast rectors that result in the disassembly of the reactor generally consists of three phases. In the phase-l, some initiating event like control rod ejection, coolant pump failure etc. is assumed to have taken place which leads the reactor to prompt critical state where fuel melting, sodium voiding etc. take place. In fast reactor normally the fuel is not in the optimum shape and further positive reactivity may be introduced into the system due to fuel melting. Fuel slumping is assumed to take place in this phase. If prompt criticality is reached as a result of the first phase, then disassembly phase is assumed to start. In this phase the neutron transient is followed till it is terminated by the disassembly of the core which takes place due to generation of high pressure gradients and which lead the core material to move from more worth region to less worth region. Doppler feed back is taken into account and reactivity feedback due to material movement is calculated by solving the hydrodynamics equations. The third phase will calculate the effect of this transient on the reactor vessel and containment. A computer code DISA for fast reactor DISAssembly phase, which is similar to the well known code VENUS has been developed. (author)

  10. Catalytic fast pyrolysis of white oak wood in-situ using a bubbling fluidized bed reactor

    Science.gov (United States)

    Catalytic fast pyrolysis was performed on white oak wood using two zeolite-type catalysts as bed material in a bubbling fluidized bed reactor. The two catalysts chosen, based on a previous screening study, were Ca2+ exchanged Y54 (Ca-Y54) and a proprietary ß-zeolite type catalyst (catalyst M) both ...

  11. Catalytic distillation process

    Science.gov (United States)

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  12. Modelling of an adiabatic trickle-bed reactor with phase change

    DEFF Research Database (Denmark)

    Ramirez Castelan, Carlos Eduardo; Hidalgo-Vivas, Angelica; Brix, Jacob

    2017-01-01

    This paper describes a modelling approach of the behavior of trickle-bed reactors used for catalytic hydrotreating of oil fractions. A dynamic plug-flow heterogeneous one-dimensional adiabatic model was used to describe the main reactions present in the hydrotreating process: hydrodesulfurization...

  13. Safe design and operation of fluidized-bed reactors: Choice between reactor models

    NARCIS (Netherlands)

    Westerink, E.J.; Westerterp, K.R.

    1990-01-01

    For three different catalytic fluidized bed reactor models, two models presented by Werther and a model presented by van Deemter, the region of safe and unique operation for a chosen reaction system was investigated. Three reaction systems were used: the oxidation of benzene to maleic anhydride, the

  14. Production of hydrogen from bio-ethanol in catalytic membrane reactor

    International Nuclear Information System (INIS)

    Gernot, E.; Aupretre, F.; Deschamps, A.; Etievant, C.; Epron, F.; Marecot, P.; Duprez, D.

    2006-01-01

    Production of hydrogen from renewable energy sources offers a great potential for CO 2 emission reduction, responsible for global warming. Among renewable energies, liquid biofuels are very convenient hydrogen carriers for decentralized applications such as micro-cogeneration and transports. Ethanol, produced from sugar plants and cereals, allows a reduction of more than 60% of CO 2 emissions in comparison to gasoline. BIOSTAR is an R and D project, co-funded by the French Agency for Environment and Energy Management (ADEME) which aims at developing an efficient source of hydrogen from bio-ethanol, suitable for proton exchange membrane fuel cell systems. The objectives are to obtain, through catalytic process at medium temperature range, an efficient conversion of bio-ethanol into pure hydrogen directly usable for PEMFC. CETH has developed a catalytic membrane reformer (CMR), based on a patented technology, integrating a steam reforming catalyst as well as a combustion catalyst. Both catalysts have been developed and optimized for membrane reactor in partnership with the University of Poitiers. The composite metallic membrane developed by CETH allows hydrogen extraction near the hydrogen production sites, which enhances both efficiency and compactness. (authors)

  15. Procedure for the preparation of catalysts for application in catalytic gas phase reactions

    International Nuclear Information System (INIS)

    1976-01-01

    The invention describes the preparation of catalysts to be used in catalytic reactions in the gaseous phase. The catalytic material is disposed at the surface of a ceramic or carbon substrate (av. particle size 0.1 μ - 0.5 cm, surface area smaller than 20 m 2 /g) by bombardment of the catalytic material (Pt, Rh, Pd, Ru, Os, Ir) with energetic ions (Ne, Ar, Kr, Xe) in the vicinity of the substrate in medium vacuum

  16. Catalytic Gas-Phase Production of Lactide from Renewable Alkyl Lactates.

    Science.gov (United States)

    De Clercq, Rik; Dusselier, Michiel; Makshina, Ekaterina; Sels, Bert F

    2018-03-12

    A new route to lactide, which is a key building block of the bioplastic polylactic acid, is proposed involving a continuous catalytic gas-phase transesterification of renewable alkyl lactates in a scalable fixed-bed setup. Supported TiO 2 /SiO 2 catalysts are highly selective to lactide, with only minimal lactide racemization. The solvent-free process allows for easy product separation and recycling of unconverted alkyl lactates and recyclable lactyl intermediates. The catalytic activity of TiO 2 /SiO 2 catalysts was strongly correlated to their optical properties by DR UV/Vis spectroscopy. Catalysts with high band-gap energy of the supported TiO 2 phase, indicative of a high surface spreading of isolated Ti centers, show the highest turnover frequency per Ti site. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Dynamic simulation of pure hydrogen production via ethanol steam reforming in a catalytic membrane reactor

    International Nuclear Information System (INIS)

    Hedayati, Ali; Le Corre, Olivier; Lacarrière, Bruno; Llorca, Jordi

    2016-01-01

    Ethanol steam reforming (ESR) was performed over Pd-Rh/CeO 2 catalyst in a catalytic membrane reactor (CMR) as a reformer unit for production of fuel cell grade pure hydrogen. Experiments were performed at 923 K, 6–10 bar, and fuel flow rates of 50–200 μl/min using a mixture of ethanol and distilled water with steam to carbon ratio of 3. A static model for the catalytic zone was derived from the Arrhenius law to calculate the total molar production rates of ESR products, i.e. CO, CO 2 , CH 4 , H 2 , and H 2 O in the catalytic zone of the CMR (coefficient of determination R 2  = 0.993). The pure hydrogen production rate at steady state conditions was modeled by means of a static model based on the Sieverts' law. Finally, a dynamic model was developed under ideal gas law assumptions to simulate the dynamics of pure hydrogen production rate in the case of the fuel flow rate or the operating pressure set point adjustment (transient state) at isothermal conditions. The simulation of fuel flow rate change dynamics was more essential compared to the pressure change one, as the system responded much faster to such an adjustment. The results of the dynamic simulation fitted very well to the experimental values at P = 7–10 bar, which proved the robustness of the simulation based on the Sieverts' law. The simulation presented in this work is similar to the hydrogen flow rate adjustments needed to set the electrical load of a fuel cell, when fed online by the pure hydrogen generating reformer studied. - Highlights: • Ethanol steam reforming (ESR) experiments were performed in a Pd-Ag membrane reactor. • The model of the catalytic zone of the reactor was derived from the Arrhenius law. • The permeation zone (membrane) was modeled based on the Sieverts' law. • The Sieverts' law model showed good results for the range of P = 7–10 bar. • Pressure and fuel flow rate adjustments were considered for dynamic simulation.

  18. Validation of the catalytic properties of Cu-Os/13X using single fixed bed reactor in selective catalytic reduction of NO

    International Nuclear Information System (INIS)

    Oh, Kwang Seok; Woo, Seong Ihl

    2007-01-01

    Catalytic decomposition of NO over Cu-Os/13X has been carried out in a tubular fixed bed reactor at atmospheric pressure and the results were compared with literature data performed by high-throughput screening (HTS). The activity and durability of Cu-Os/13X prepared by conventional ion-exchange method have been investigated in the presence of H 2 O and SO 2 . It was found that Cu-Os/13X prepared by ion-exchange shows a high activity in a wide temperature range in selective catalytic reduction (SCR) of NO with C 3 H 6 compared to Cu/13X, proving the existence of more NO adsorption site on Cu-Os/13X. However, Cu-Os/13X exhibited low activity in the presence of water, and was quite different from the result reported in literature. SO 2 resistance is also low and does not recover its original activity when the SO 2 was blocked in the feed gas stream. This result suggested that catalytic activity between combinatorial screening and conventional testing should be compared to confirm the validity of high-throughput screening

  19. Modeling and simulation of ammonia removal from purge gases of ammonia plants using a catalytic Pd-Ag membrane reactor

    International Nuclear Information System (INIS)

    Rahimpour, M.R.; Asgari, A.

    2008-01-01

    In this work, the removal of ammonia from synthesis purge gas of an ammonia plant has been investigated. Since the ammonia decomposition is thermodynamically limited, a membrane reactor is used for complete decomposition. A double pipe catalytic membrane reactor is used to remove ammonia from purge gas. The purge gas is flowing in the reaction side and is converted to hydrogen and nitrogen over nickel-alumina catalyst. The hydrogen is transferred through the Pd-Ag membrane of tube side to the shell side. A mathematical model including conservation of mass in the tube and shell side of reactor is proposed. The proposed model was solved numerically and the effects of different parameters on the rector performance were investigated. The effects of pressure, temperature, flow rate (sweep ratio), membrane thickness and reactor diameter have been investigated in the present study. Increasing ammonia conversion was observed by raising the temperature, sweep ratio and reducing membrane thickness. When the pressure increases, the decomposition is gone toward completion but, at low pressure the ammonia conversion in the outset of reactor is higher than other pressures, but complete destruction of the ammonia cannot be achieved. The proposed model can be used for design of an industrial catalytic membrane reactor for removal of ammonia from ammonia plant and reducing NO x emissions

  20. Catalytic performance improvement of styrene hydrogenation in trickle bed reactor by using periodic operation

    International Nuclear Information System (INIS)

    Wongkia, Atittahn; Praserthdam, Piyasan; Assabumrungrat, Suttichai; Suriye, Kongkiat; Nonkhamwong, Anuwat

    2013-01-01

    We investigated the catalytic performance improvement of styrene hydrogenation in a trickle bed reactor by using periodic operation. The effects of cycle period and split on relative conversion, which is defined as styrene conversion obtained from periodic operation over that from steady state operation, were examined at various operating conditions including gas and average liquid flow rates, pressure and temperature. The experimental results reveal that both cycle period and split have strong influence on the catalytic performance. The fast mode (short cycle period) is a favorable condition. The improvement by the periodic operation becomes less pronounced for operations at high average liquid flow rate, pressure and temperature. From this study, a maximum improvement of styrene conversion of 18% is observed

  1. Catalytic performance improvement of styrene hydrogenation in trickle bed reactor by using periodic operation

    Energy Technology Data Exchange (ETDEWEB)

    Wongkia, Atittahn; Praserthdam, Piyasan; Assabumrungrat, Suttichai [Chulalongkorn University, Bangkok (Thailand); Suriye, Kongkiat; Nonkhamwong, Anuwat [SCG Chemicals Co. Ltd., Bangkok (Thailand)

    2013-03-15

    We investigated the catalytic performance improvement of styrene hydrogenation in a trickle bed reactor by using periodic operation. The effects of cycle period and split on relative conversion, which is defined as styrene conversion obtained from periodic operation over that from steady state operation, were examined at various operating conditions including gas and average liquid flow rates, pressure and temperature. The experimental results reveal that both cycle period and split have strong influence on the catalytic performance. The fast mode (short cycle period) is a favorable condition. The improvement by the periodic operation becomes less pronounced for operations at high average liquid flow rate, pressure and temperature. From this study, a maximum improvement of styrene conversion of 18% is observed.

  2. Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions.

    Science.gov (United States)

    Jiang, Hai-Long; Singh, Sanjay Kumar; Yan, Jun-Min; Zhang, Xin-Bo; Xu, Qiang

    2010-05-25

    There is a demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. Lithium and sodium borohydride, ammonia borane, hydrazine, and formic acid have been extensively investigated as promising hydrogen storage materials based on their relatively high hydrogen content. Significant advances, such as hydrogen generation temperatures and reaction kinetics, have been made in the catalytic hydrolysis of aqueous lithium and sodium borohydride and ammonia borane as well as in the catalytic decomposition of hydrous hydrazine and formic acid. In this Minireview we briefly survey the research progresses in catalytic hydrogen generation from these liquid-phase chemical hydrogen storage materials.

  3. Dynamical and technological consequences of multiple isolas of steady states in a catalytic fluidised-bed reactor

    Directory of Open Access Journals (Sweden)

    Bizon Katarzyna

    2017-09-01

    Full Text Available Steady-state characteristics of a catalytic fluidised bed reactor and its dynamical consequences are analyzed. The occurrence of an untypical steady-state structure manifesting in a form of multiple isolas is described. A two-phase bubbling bed model is used for a quantitative description of the bed of catalyst. The influence of heat exchange intensity and a fluidisation ratio onto the generation of isolated solution branches is presented for two kinetic schemes. Dynamical consequences of the coexistence of such untypical branches of steady states are presented. The impact of linear growth of the fluidisation ratio and step change of the cooling medium temperature onto the desired product yield is analyzed. The results presented in this study confirm that the identification of a region of the occurrence of multiple isolas is important due to their strong impact both on the process start-up and its control.

  4. Three dimensional diffusion calculations of nuclear reactors

    International Nuclear Information System (INIS)

    Caspo, N.

    1981-07-01

    This work deals with the three dimensional calculation of nuclear reactors using the code TRITON. The purposes of the work were to perform three-dimensional computations of the core of the Soreq nuclear reactor and of the power reactor ZION and to validate the TRITON code. Possible applications of the TRITON code in Soreq reactor calculations and in power reactor research are suggested. (H.K.)

  5. Experiment and modeling of low-concentration methane catalytic combustion in a fluidized bed reactor

    International Nuclear Information System (INIS)

    Yang, Zhongqing; Yang, Peng; Zhang, Li; Guo, Mingnv; Ran, Jingyu

    2016-01-01

    Highlights: • The catalytic combustion of 0.15~3 vol. % low concentration methane in a fluidized bed was studied. • A mathematical model was proposed on the basis of gas–solid flow theory. • A comparative analysis of the established model with plug flow, mixed flow and K-L models was carried out. • The axial methane profile along fluidized bed was predicted by using the mathematical model. • The bed temperature has greater impact on methane conversion than fluidized velocity. - Abstract: This study undertakes a theoretical analysis and an experimental investigation into the characteristics of low-concentration methane catalytic combustion in a bubbling fluidized bed reactor using 0.5 wt.% Pd/Al_2O_3 as catalytic particles. A mathematical model is established based on gas–solid flow theory and is used to study the effects of bed temperature and fluidized velocity on methane catalytic combustion, and predict the dimensionless methane concentration axial profile in reactor. It is shown that methane conversion increases with bed temperature, but decreases with increasing fluidized velocity. These theoretical results are found to correlate well with the experimental measurement, with a deviation within 5%. A comparative analysis of the developed model with plug flow, mixed flow and K-L models is also carried out, and this further verifies that the established model better reflects the characteristics of low-concentration methane catalytic combustion in a bubbling fluidized bed. Using this reaction model, it was found that the difference in methane conversion between dense and freeboard zones gradually increases with bed temperature; the dense zone reaction levels off at 650 °C, thereby minimizing the difference between the dense and freeboard regions to around 15%. With an increase in bed temperature, the dimensionless methane concentration in the dense zone decreases exponentially, while in the splash zone, it varies from an exponential decay to a slow

  6. Effect of UV on De-NOx performance and microbial community of a hybrid catalytic membrane biofilm reactor

    Science.gov (United States)

    Chen, Zhouyang; Huang, Zhensha; He, Yiming; Xiao, Xiaoliang; Wei, Zaishan

    2018-02-01

    The hybrid membrane catalytic biofilm reactor provides a new way of flue gas denitration. However, the effects of UV on denitrification performance, microbial community and microbial nitrogen metabolism are still unknown. In this study, the effects of UV on deNO x performance, nitrification and denitrification, microbial community and microbial nitrogen metabolism of a bench scale N-TiO2/PSF hybrid catalytic membrane biofilm reactor (HCMBR) were evaluated. The change from nature light to UV in the HCMBR leads to the fall of NO removal efficiency of HCMBR from 92.8% to 81.8%. UV affected the microbial community structure, but did not change microbial nitrogen metabolism, as shown by metagenomics sequencing method. Some dominant phyla, such as Gammaproteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, and Alphaproteobacteria, increased in abundance, whereas others, such as Proteobacteria and Betaproteobacteria, decreased. There were nitrification, denitrification, nitrogen fixation, and organic nitrogen metabolism in the HCMBR.

  7. Reactor for tracking catalyst nanoparticles in liquid at high temperature under a high-pressure gas phase with X-ray absorption spectroscopy.

    Science.gov (United States)

    Nguyen, Luan; Tao, Franklin Feng

    2018-02-01

    Structure of catalyst nanoparticles dispersed in liquid phase at high temperature under gas phase of reactant(s) at higher pressure (≥5 bars) is important for fundamental understanding of catalytic reactions performed on these catalyst nanoparticles. Most structural characterizations of a catalyst performing catalysis in liquid at high temperature under gas phase at high pressure were performed in an ex situ condition in terms of characterizations before or after catalysis since, from technical point of view, access to the catalyst nanoparticles during catalysis in liquid phase at high temperature under high pressure reactant gas is challenging. Here we designed a reactor which allows us to perform structural characterization using X-ray absorption spectroscopy including X-ray absorption near edge structure spectroscopy and extended X-ray absorption fine structure spectroscopy to study catalyst nanoparticles under harsh catalysis conditions in terms of liquid up to 350 °C under gas phase with a pressure up to 50 bars. This reactor remains nanoparticles of a catalyst homogeneously dispersed in liquid during catalysis and X-ray absorption spectroscopy characterization.

  8. Modelling of non-catalytic reactors in a gas-solid trickle flow reactor: Dry, regenerative flue gas desulphurization using a silica-supported copper oxide sorbent

    NARCIS (Netherlands)

    Kiel, J.H.A.; Kiel, J.H.A.; Prins, W.; van Swaaij, Willibrordus Petrus Maria

    1992-01-01

    A one-dimensional, two-phase dispersed plug flow model has been developed to describe the steady-state performance of a relatively new type of reactor, the gas-solid trickle flow reactor (GSTFR). In this reactor, an upward-flowing gas phase is contacted with as downward-flowing dilute solids phase

  9. Effects of Weight Hourly Space Velocity and Catalyst Diameter on Performance of Hybrid Catalytic-Plasma Reactor for Biodiesel Synthesis over Sulphated Zinc Oxide Acid Catalyst

    Directory of Open Access Journals (Sweden)

    Luqman Buchori

    2017-05-01

    Full Text Available Biodiesel synthesis through transesterification of soybean oil with methanol on hybrid catalytic-plasma reactor over sulphated zinc oxide (SO42-/ZnO active acid catalyst was investigated. This research was aimed to study effects of Weight Hourly Space Velocity (WHSV and the catalyst diameter on performance of the hybrid catalytic-plasma reactor for biodiesel synthesis. The amount (20.2 g of active sulphated zinc oxide solid acid catalysts was loaded into discharge zone of the reactor. The WHSV and the catalyst diameter were varied between 0.89 to 1.55 min-1 and 3, 5, and 7 mm, respectively. The molar ratio of methanol to oil as reactants of 15:1 is fed to the reactor, while operating condition of the reactor was kept at reaction temperature of 65 oC and ambient pressure. The fatty acid methyl ester (FAME component in biodiesel product was identified by Gas Chromatography - Mass Spectrometry (GC-MS. The results showed that the FAME yield decreases with increasing WHSV. It was found that the optimum FAME yield was achieved of 56.91 % at WHSV of 0.89 min-1 and catalyst diameter of 5 mm and reaction time of 1.25 min. It can be concluded that the biodiesel synthesis using the hybrid catalytic-plasma reactor system exhibited promising the FAME yield. Copyright © 2017 BCREC Group. All rights reserved Received: 15th November 2016; Revised: 24th December 2016; Accepted: 16th February 2017 How to Cite: Buchori, L., Istadi, I., Purwanto, P. (2017. Effects of Weight Hourly Space Velocity and Catalyst Diameter on Performance of Hybrid Catalytic-Plasma Reactor for Biodiesel Synthesis over Sulphated Zinc Oxide Acid Catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2: 227-234 (doi:10.9767/bcrec.12.2.775.227-234 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.775.227-234

  10. Effect of catalytic cylinders on autothermal reforming of methane for hydrogen production in a microchamber reactor.

    Science.gov (United States)

    Yan, Yunfei; Guo, Hongliang; Zhang, Li; Zhu, Junchen; Yang, Zhongqing; Tang, Qiang; Ji, Xin

    2014-01-01

    A new multicylinder microchamber reactor is designed on autothermal reforming of methane for hydrogen production, and its performance and thermal behavior, that is, based on the reaction mechanism, is numerically investigated by varying the cylinder radius, cylinder spacing, and cylinder layout. The results show that larger cylinder radius can promote reforming reaction; the mass fraction of methane decreased from 26% to 21% with cylinder radius from 0.25 mm to 0.75 mm; compact cylinder spacing corresponds to more catalytic surface and the time to steady state is decreased from 40 s to 20 s; alteration of staggered and aligned cylinder layout at constant inlet flow rates does not result in significant difference in reactor performance and it can be neglected. The results provide an indication and optimize performance of reactor; it achieves higher conversion compared with other reforming reactors.

  11. Catalytic combustion of propane in a membrane reactor with separate feed of reactants—II. Operation in presence of trans-membrane pressure gradients

    NARCIS (Netherlands)

    Saracco, Guido; Veldsink, Jan Willem; Versteeg, Geert F.; Swaaij, Wim P.M. van

    1995-01-01

    This is the second communication of a series dealing with an experimental and modelling study on propane catalytic combustion in a membrane reactor with separate feed of reactants. In paper I the behaviour of the reactor in the absence of trans-membrane pressure gradients was presented and

  12. Catalytic Oxidation of Vanillyl Alcohol Using FeMCM-41 Nanoporous Tubular Reactor

    Science.gov (United States)

    Elamathi, P.; Kolli, Murali Krishna; Chandrasekar, G.

    Iron containing nanoporous MCM-41 (FeMCM-41) with different Si/Fe ratios of 50, 100 and 150 was synthesized by hydrothermal synthesis process. The materials obtained from hydrothermal synthesis were characterized by various physico chemical techniques such as XRD, N2 adsorption, DR UV-vis, EPR and FTIR spectroscopy. XRD analyses of FeMCM-41 materials confirmed the presence of well-ordered crystalline structure. N2 isotherm of FeMCM-41 materials showed type IV adsorption isotherm. EPR and DR UV-vis analysis of FeMCM-41 samples indicates the presence of high tetrahedral coordination at the Si/Fe ratios of 100 and 150. The catalytic performance of FeMCM-41 nano tubular reactor was tested in the liquid phase oxidation of vanillyl alcohol into vanillin using H2O2 (50wt% in water). The reaction products were analyzed by gas chromatography in DB-5 capillary column with flame ionization detector. The products were confirmed by 1H NMR, 13C NMR and LC-Mass spectroscopy. The maximum conversion of vanillyl alcohol (85%) and selectivity towards vanillin (82%) were observed using the catalyst FeMCM-41(100) in 30min at 60∘C. The influence of reaction temperature, reaction time, reactants molar ratio, Si/Fe ratio and amount of catalyst were investigated.

  13. Catalytic effect of additional metallic phases on the hydrogen absorption behavior of a Zr-Based alloy

    International Nuclear Information System (INIS)

    Ruiz, F; Peretti, H; Castro, E; Real, S; Visitin, A; Triaca, W

    2005-01-01

    The electrochemical hydrogen absorption of electrodes containing Zr 0 .9Ti 0 .1(Ni 0 .5Mn 0 .25Cr 0 .20V 0 .05) 2 is studied in alkaline media by monitoring the activation and discharge capacity along charge-discharge cycling.The considered alloy is tested in both as melted and annealed condition in order to investigate the catalytic effect of small amounts of micro segregated secondary phases of the Zr-Ni system. Since these catalytic phases are only present in the as melted alloys, tests are also carried out using a composite material elaborated from powders of the annealed alloy with the addition of 18 wt.% of the suspected catalytic phases, melted separately.The hydrogen absorption-desorption behavior for the different cases is discussed and correlated with the metallurgical characterization of the materials.The catalytic effects are studied employing cyclic voltammetry and electrochemical impedance techniques. The results are analyzed in terms of a developed physicochemical model

  14. Multiphase flows with phase change

    Indian Academy of Sciences (India)

    Multiphase flows with phase change are ubiquitous in many industrial sectors ranging from energy and infra-structure to specialty chemicals and pharmaceuticals. My own interest in mul- tiphase flows with phase change started more than 15 years ago when I had initiated work on riser reactor for fluid catalytic cracking and ...

  15. Catalytic destruction of tar in biomass derived producer gas

    International Nuclear Information System (INIS)

    Zhang Ruiqin; Brown, Robert C.; Suby, Andrew; Cummer, Keith

    2004-01-01

    The purpose of this study is to investigate catalytic destruction of tar formed during gasification of biomass, with the goal of improving the quality of the producer gas. This work focuses on nickel based catalysts treated with alkali in an effort to promote steam gasification of the coke that deposits on catalyst surfaces. A tar conversion system consisting of a guard bed and catalytic reactor was designed to treat the producer gas from an air blown, fluidized bed biomass gasifier. The guard bed used dolomite to crack the heavy tars. The catalytic reactor was used to evaluate three commercial steam reforming catalysts. These were the ICI46-1 catalyst from Imperial Chemical Industry and Z409 and RZ409 catalysts from Qilu Petrochemical Corp. in China. A 0.5-3 l/min slipstream from a 5 tpd biomass gasifier was used to test the tar conversion system. Gas and tar were sampled before and after the tar conversion system to evaluate the effectiveness of the system. Changes in gas composition as functions of catalytic bed temperature, space velocity and steam/TOC (total organic carbon) ratio are presented. Structural changes in the catalysts during the tests are also described

  16. Oxidative coupling of methane using inorganic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.H.; Moser, W.R.; Dixon, A.G. [Worcester Polytechnic Institute, MA (United States)] [and others

    1995-12-31

    The goal of this research is to improve the oxidative coupling of methane in a catalytic inorganic membrane reactor. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and relatively higher yields than in fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for formation of CO{sub x} products. Such gas phase reactions are a cause for decreased selectivity in oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Modeling work which aimed at predicting the observed experimental trends in porous membrane reactors was also undertaken in this research program.

  17. Mathematical Modelling of Catalytic Fixed-Bed Reactor for Carbon Dioxide Reforming of Methane over Rh/Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    New Pei Yee

    2008-04-01

    Full Text Available A one-dimensional mathematical model was developed to simulate the performance of catalytic fixed bedreactor for carbon dioxide reforming of methane over Rh/Al2O3 catalyst at atmospheric pressure. The reactionsinvolved in the system are carbon dioxide reforming of methane (CORM and reverse water gas shiftreaction (RWGS. The profiles of CH4 and CO2 conversions, CO and H2 yields, molar flow rate and molefraction of all species as well as reactor temperature along the axial bed of catalyst were simulated. In addition,the effects of different reactor temperature on the reactor performance were also studied. The modelscan also be applied to analyze the performances of lab-scale micro reactor as well as pilot-plant scale reactorwith certain modifications and model verification with experimental data. © 2008 BCREC UNDIP. All rights reserved.[Received: 20 August 2008; Accepted: 25 September 2008][How to Cite: N.A.S. Amin, I. Istadi, N.P. Yee. (2008. Mathematical Modelling of Catalytic Fixed-Bed Reactor for Carbon Dioxide Reforming of Methane over Rh/Al2O3 Catalyst. Bulletin of Chemical Reaction Engineering and Catalysis, 3 (1-3: 21-29. doi:10.9767/bcrec.3.1-3.19.21-29

  18. Highly efficient catalytic systems based on Pd-coated microbeads

    Science.gov (United States)

    Lim, Jin Hyun; Cho, Ahyoung; Lee, Seung Hwan; Park, Bumkyo; Kang, Dong Woo; Koo, Chong Min; Yu, Taekyung; Park, Bum Jun

    2018-01-01

    The efficiency of two prototype catalysis systems using palladium (Pd)-coated microparticles was investigated with regard to the recovery and recyclability of the catalytic particles. One such system was the interface-adsorption method, in which polymer particles coated with Pd nanoparticles strongly and irreversibly attach to the oil-water interface. Due to the irreversible adsorption of the catalytic particles to the interface, particle loss was completely prevented while mixing the aqueous solution and while collecting the products. The other system was based on the magnetic field-associated particle recovery method. The use of polymeric microparticles containing Pd nanoparticles and magnetite nanoparticles accelerated the sedimentation of the particles in the aqueous phase by applying a strong magnetic field, consequently suppressing drainage of the particles from the reactor along the product stream. Upon multiple runs of the catalytic reactions, it was found that conversion does not change significantly, demonstrating the excellent recyclability and performance efficiency in the catalytic processes.

  19. Study of parameters affecting the conversion in a plug flow reactor for reactions of the type 2A→B

    Science.gov (United States)

    Beltran-Prieto, Juan Carlos; Long, Nguyen Huynh Bach Son

    2018-04-01

    Modeling of chemical reactors is an important tool to quantify reagent conversion, product yield and selectivity towards a specific compound and to describe the behavior of the system. Proposal of differential equations describing the mass and energy balance are among the most important steps required during the modeling process as they play a special role in the design and operation of the reactor. Parameters governing transfer of heat and mass have a strong relevance in the rate of the reaction. Understanding this information is important for the selection of reactor and operating regime. In this paper we studied the irreversible gas-phase reaction 2A→B. We model the conversion that can be achieved as function of the reactor volume and feeding temperature. Additionally, we discuss the effect of activation energy and the heat of reaction on the conversion achieved in the tubular reactor. Furthermore, we considered that dimerization occurs instantaneously in the catalytic surface to develop equations for the determination of rate of reaction per unit area of three different catalytic surface shapes. This data can be combined with information about the global rate of conversion in the reactor to improve regent conversion and yield of product.

  20. Catalytic heat exchangers for small-scale production of hydrogen - feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, F [Catator AB, Lund (Sweden)

    2002-02-01

    A feasibility study concerning heat-exchanger reactors in small-scale production of hydrogen has been performed on the request of Svenskt Gastekniskt Center AB and SWEP International AB. The basic idea is to implement different catalysts into brazed plate-type heat exchangers. This can be achieved by installing catalytic cylinders in the inlet-and outlet ports of the heat exchangers or through treatment of the plates to render them catalytically active. It is also possible to sandwich catalytically active wire meshes between the plates. Experiments concerning steam reforming of methanol and methane have been performed in a micro-reactor to gather kinetic data for modelling purposes. Performance calculations concerning heat exchanger reactors have then been conducted with Catator's generic simulation code for catalytic reactors (CatalystExplorer). The simulations clearly demonstrate the technical performance of these reactors. Indeed, the production rate of hydrogen is expected to be about 10 nm{sup 3}/h per litre of heat exchanger. The corresponding value for a conventional steam-reforming unit is about 1 nm{sup 3}/h or less per litre of reactor volume. Also, the compactness and the high degree of integration together with the possibilities of mass production will give an attractive cost for such units. Depending on the demands concerning the purity of the hydrogen it is possible to add secondary catalytic steps like water-gas shifters, methanation and selective oxidation, into a one-train unit, i.e. to design an all-inclusive design. Such reactors can be used for the supply of hydrogen to fuel cells. The production cost for hydrogen can be cut by 60 - 70% through the utilisation of heat exchanger reactors instead of conventional electrolysis. This result is primarily a result of the high price for electricity compared to the feed stock prices in steam reforming. It is important to verify the performance calculations and the simulation results through experimental

  1. Catalytic heat exchangers for small-scale production of hydrogen - feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, F. [Catator AB, Lund (Sweden)

    2002-02-01

    A feasibility study concerning heat-exchanger reactors in small-scale production of hydrogen has been performed on the request of Svenskt Gastekniskt Center AB and SWEP International AB. The basic idea is to implement different catalysts into brazed plate-type heat exchangers. This can be achieved by installing catalytic cylinders in the inlet-and outlet ports of the heat exchangers or through treatment of the plates to render them catalytically active. It is also possible to sandwich catalytically active wire meshes between the plates. Experiments concerning steam reforming of methanol and methane have been performed in a micro-reactor to gather kinetic data for modelling purposes. Performance calculations concerning heat exchanger reactors have then been conducted with Catator's generic simulation code for catalytic reactors (CatalystExplorer). The simulations clearly demonstrate the technical performance of these reactors. Indeed, the production rate of hydrogen is expected to be about 10 nm{sup 3}/h per litre of heat exchanger. The corresponding value for a conventional steam-reforming unit is about 1 nm{sup 3}/h or less per litre of reactor volume. Also, the compactness and the high degree of integration together with the possibilities of mass production will give an attractive cost for such units. Depending on the demands concerning the purity of the hydrogen it is possible to add secondary catalytic steps like water-gas shifters, methanation and selective oxidation, into a one-train unit, i.e. to design an all-inclusive design. Such reactors can be used for the supply of hydrogen to fuel cells. The production cost for hydrogen can be cut by 60 - 70% through the utilisation of heat exchanger reactors instead of conventional electrolysis. This result is primarily a result of the high price for electricity compared to the feed stock prices in steam reforming. It is important to verify the performance calculations and the simulation results through

  2. On-line Analysis of Catalytic Reaction Products Using a High-Pressure Tandem Micro-reactor GC/MS.

    Science.gov (United States)

    Watanabe, Atsushi; Kim, Young-Min; Hosaka, Akihiko; Watanabe, Chuichi; Teramae, Norio; Ohtani, Hajime; Kim, Seungdo; Park, Young-Kwon; Wang, Kaige; Freeman, Robert R

    2017-01-01

    When a GC/MS system is coupled with a pressurized reactor, the separation efficiency and the retention time are directly affected by the reactor pressure. To keep the GC column flow rate constant irrespective of the reaction pressure, a restrictor capillary tube and an open split interface are attached between the GC injection port and the head of a GC separation column. The capability of the attached modules is demonstrated for the on-line GC/MS analysis of catalytic reaction products of a bio-oil model sample (guaiacol), produced under a pressure of 1 to 3 MPa.

  3. Fischer-Tropsch synthesis in a two-phase reactor with presaturation

    Energy Technology Data Exchange (ETDEWEB)

    Wache, W. [Bayernoil Raffineriegesellschaft mbH, Ingolstadt (Germany); Datsevich, L.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2006-07-01

    In industry, the Fischer-Tropsch (FTS) synthesis is mostly carried out in multiphase slurry or multitubular reactors (MTR), where gaseous reactants and liquid products (hydrocarbons up to waxes) are contacted in the presence of a solid catalyst. Such reactors are characterized by a complex temperature control, necessity of gas recycling, complicated design and problematic scale-up. A new alternative to conventional FTS-processes is the presaturated-one-liquid-phase (POLF) technology. The basic principle of this concept is a recirculation of the liquid phase, in which a gaseous reactant(s) is (are) solved before entering the fixed-bed reactor. In a simple column reactor, this technology ensures the effective heat removal and intensive fluid-solid mass transfer. In comparison to conventional reactors, the plant design is very simple, the temperature control is uncomplicated and there is no danger of any runaways. That results in lower investment and operation costs as well as in higher reliability. The experiments show that the conversion of CO and the product distribution of hydrocarbons are practically independent on the mode of operation (two- or three-phase system). However, in the lab-scale apparatus, water is accumulated in the loop, which leads to a loss of the catalyst activity (due to Fe-carbonate). In a technical process, the water accumulation in a loop can be eluded by taking an oil free of water from the oil work-up unit. Our experiments with the removal of water from the stream by a zeolite demonstrate a much promising applicability of the POLF process to the industrial FTS. (orig.)

  4. A microcatalytic flow reactor for the study of heterogeneous catalytic reactions at elevated pressures

    Energy Technology Data Exchange (ETDEWEB)

    Belyi, A S; Fomichev, Yu V; Duplyakin, V K; Alfeev, V S

    1977-07-01

    A microcatalytic flow reactor for the study of heterogeneous catalytic reactions at elevated pressures (i.e., up to 40 atm) and nearly isothermal conditions up to 600/sup 0/C was designed for the conversion of small quantities of petrochemical feeds or feed mixtures at uniform, controllable flow rates of 0.5-5.0 cc/hr, for direct gas-chromatographic analysis of product samples at the reactor outlet, and for continuous monitoring of the degree of conversion in processes that evolve or absorb hydrogen. The device includes a feed injection system with a unique sealing feature that ensures a constant flow of liquid from a feed buret under positive displacement by a counterweight piston at very low rates into a tubular reactor of the perfect mixing type, a highly efficient vaporizer-mixer, and a two-channel sampler leading to the chromatograph. The apparatus has proved reliable, accurate, and convenient in two years of regular use. Diagrams.

  5. Effect of Catalytic Cylinders on Autothermal Reforming of Methane for Hydrogen Production in a Microchamber Reactor

    Directory of Open Access Journals (Sweden)

    Yunfei Yan

    2014-01-01

    Full Text Available A new multicylinder microchamber reactor is designed on autothermal reforming of methane for hydrogen production, and its performance and thermal behavior, that is, based on the reaction mechanism, is numerically investigated by varying the cylinder radius, cylinder spacing, and cylinder layout. The results show that larger cylinder radius can promote reforming reaction; the mass fraction of methane decreased from 26% to 21% with cylinder radius from 0.25 mm to 0.75 mm; compact cylinder spacing corresponds to more catalytic surface and the time to steady state is decreased from 40 s to 20 s; alteration of staggered and aligned cylinder layout at constant inlet flow rates does not result in significant difference in reactor performance and it can be neglected. The results provide an indication and optimize performance of reactor; it achieves higher conversion compared with other reforming reactors.

  6. Gas-phase photocatalysis in μ-reactors

    DEFF Research Database (Denmark)

    Vesborg, Peter Christian Kjærgaard; Olsen, Jakob Lind; Henriksen, Toke Riishøj

    2010-01-01

    Gas-phase photocatalysis experiments may benefit from the high sensitivity and good time response in product detection offered by μ-reactors. We demonstrate this by carrying out CO oxidation and methanol oxidation over commercial TiO2 photocatalysts in our recently developed high-sensitivity reac......Gas-phase photocatalysis experiments may benefit from the high sensitivity and good time response in product detection offered by μ-reactors. We demonstrate this by carrying out CO oxidation and methanol oxidation over commercial TiO2 photocatalysts in our recently developed high...

  7. Comparison of three ICF reactor designs

    International Nuclear Information System (INIS)

    Hogan, W.J.

    1984-01-01

    Three concepts for inertial confinement fusion (ICF) reactors are described and compared with each other, and with magnetic fusion and fission reactors on the basis of environmental impact, safety and efficiency. The critical technical developments of each concept are described. The three concepts represent alternative development paths for inertial fusion

  8. Hydrodynamics of multi-phase packed bed micro-reactors

    NARCIS (Netherlands)

    Márquez Luzardo, N.M.

    2010-01-01

    Why to use packed bed micro-reactors for catalyst testing? Miniaturized packed bed reactors have a large surface-to-volume ratio at the reactor and particle level that favors the heat- and mass-transfer processes at all scales (intra-particle, inter-phase and inter-particle or reactor level). If the

  9. Catalytic properties of three catalases from Kohlrabi ( Brassica ...

    African Journals Online (AJOL)

    Catalase (EC 1.11.1.6) was extracted from kohlrabi bulbs (Brassica oleracea gongylodes) with 0.05 M phosphate buffer, pH 7.0. On the basis of kinetic studies and activity stain for catalase, only three isoenzymes of catalases were detected in kohlrabi bulbs extract with pH optima at 4.5, 6.5 and 10. Highest catalytic ...

  10. Transient two-phase performance of LOFT reactor coolant pumps

    International Nuclear Information System (INIS)

    Chen, T.H.; Modro, S.M.

    1983-01-01

    Performance characteristics of Loss-of-Fluid Test (LOFT) reactor coolant pumps under transient two-phase flow conditions were obtained based on the analysis of two large and small break loss-of-coolant experiments conducted at the LOFT facility. Emphasis is placed on the evaluation of the transient two-phase flow effects on the LOFT reactor coolant pump performance during the first quadrant operation. The measured pump characteristics are presented as functions of pump void fraction which was determined based on the measured density. The calculated pump characteristics such as pump head, torque (or hydraulic torque), and efficiency are also determined as functions of pump void fractions. The importance of accurate modeling of the reactor coolant pump performance under two-phase conditions is addressed. The analytical pump model, currently used in most reactor analysis codes to predict transient two-phase pump behavior, is assessed

  11. Experimental demonstration of the reverse flow catalytic membrane reactor concept for energy efficient syngas production. Part 2: Model development

    NARCIS (Netherlands)

    Smit, J.; Bekink, G.J.; Sint Annaland, van M.; Kuipers, J.A.M.

    2007-01-01

    In this contribution the technical feasibility of the reverse flow catalytic membrane reactor (RFCMR) concept with porous membranes for energy efficient syngas production is investigated. In earlier work an experimental proof of principle was already provided [Smit, J., Bekink, G.J., van Sint

  12. Catalytic wet air oxidation of bisphenol A solution in a batch-recycle trickle-bed reactor over titanate nanotube-based catalysts.

    Science.gov (United States)

    Kaplan, Renata; Erjavec, Boštjan; Senila, Marin; Pintar, Albin

    2014-10-01

    Catalytic wet air oxidation (CWAO) is classified as an advanced oxidation process, which proved to be highly efficient for the removal of emerging organic pollutant bisphenol A (BPA) from water. In this study, BPA was successfully removed in a batch-recycle trickle-bed reactor over bare titanate nanotube-based catalysts at very short space time of 0.6 min gCAT g(-1). The as-prepared titanate nanotubes, which underwent heat treatment at 600 °C, showed high activity for the removal of aqueous BPA. Liquid-phase recycling (5- or 10-fold recycle) enabled complete BPA conversion already at 200 °C, together with high conversion of total organic carbon (TOC), i.e., 73 and 98 %, respectively. The catalyst was chemically stable in the given range of operating conditions for 189 h on stream.

  13. Development and validation of three-dimensional CFD techniques for reactor safety applications. Final report

    International Nuclear Information System (INIS)

    Buchholz, Sebastian; Palazzo, Simone; Papukchiev, Angel; Scheurer Martina

    2016-12-01

    The overall goal of the project RS 1506 ''Development and Validation of Three Dimensional CFD Methods for Reactor Safety Applications'' is the validation of Computational Fluid Dynamics (CFD) software for the simulation of three -dimensional thermo-hydraulic heat and fluid flow phenomena in nuclear reactors. For this purpose a wide spectrum of validation and test cases was selected covering fluid flow and heat transfer phenomena in the downcomer and in the core of pressurized water reactors. In addition, the coupling of the system code ATHLET with the CFD code ANSYS CFX was further developed and validated. The first choice were UPTF experiments where turbulent single- and two-phase flows were investigated in a 1:1 scaled model of a German KONVOI reactor. The scope of the CFD calculations covers thermal mixing and stratification including condensation in single- and two-phase flows. In the complex core region, the flow in a fuel assembly with spacer grid was simulated as defined in the OECD/NEA Benchmark MATIS-H. Good agreement are achieved when the geometrical and physical boundary conditions were reproduced as realistic as possible. This includes, in particular, the consideration of heat transfer to walls. The influence of wall modelling on CFD results was investigated on the TALL-3D T01 experiment. In this case, the dynamic three dimensional fluid flow and heat transfer phenomena were simulated in a Generation IV liquid metal cooled reactor. Concurrently to the validation work, the coupling of the system code ATHLET with the ANSYS CFX software was optimized and expanded for two-phase flows. Different coupling approaches were investigated, in order to overcome the large difference between CPU-time requirements of system and CFD codes. Finally, the coupled simulation system was validated by applying it to the simulation of the PSI double T-junction experiment, the LBE-flow in the MYRRA Spallation experiment and a demonstration test case simulating a pump trip

  14. Photo-catalytic reactors for in-building grey water reuse. Comparison with biological processes and market potential

    Energy Technology Data Exchange (ETDEWEB)

    Jefferson, B.; Murray, C.; Diaper, C.; Parsons, S.A.; Jeffrey, P. [School of Water Sciences, Cranfield Univ., Cranfield, Bedfordshire (United Kingdom); Bedel, C. [Dept. of Industrial Process, National Inst. of Applied Sciences (France); Centeno, C. [Dept. of the Faculty of Engineering, Univ. of Santo Tomas, Manila (Philippines)

    2003-07-01

    Photo catalytic reactors potentially have a market in the reuse of grey water as they do not suffer from problems associated with toxic shocks and can be compact. The process is dependant upon the ratio of TOC to TiO{sub 2} concentration such that a greater proportion of the feed is degraded when either are increased. Economic assessment of grey water recycling showed both scale of operation and regional location to be the two most important factors in deciding the financial acceptability of any reuse technology. Overall the assessment suggested that photo catalytic oxidation (PCO) technology was suitable for grey water recycling and that the technology should be marketed at large buildings such as residential accommodation and offices. (orig.)

  15. Hydrogenation of Maltose in Catalytic Membrane Reactor for Maltitol Production

    Directory of Open Access Journals (Sweden)

    Makertihartha I.G.B.N.

    2018-01-01

    Full Text Available Maltitol is one of the low-calorie sweeteners which has a major role in food industries. Due to its characteristics of comparable sweetness level to sucrose, maltitol can be a suitable sugar replacement. In this work, catalytic membrane reactor (CMR was examined in maltitol production through hydrogenation of maltose. Commercial ceramic membrane impregnated with Kalcat 8030 Nickel was used as the CMR. The reaction was conducted at a batch mode operation, 95 to 110°C of temperature, and 5 to 8 bar of pressure. In the range of working conditions used in this study, up to 47% conversion was achieved. The reaction conversion was significantly affected by temperature and pressure. Results of this preliminary study indicated that CMR can be used for hydrogenation of maltose with good performance under a relatively low operating pressure.

  16. A study of the isobutane dehydrogenation in a porous membrane catalytic reactor: design, use and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Casanave, D

    1996-01-26

    The aim of this study was to set up and model a catalytic fixed-bed membrane reactor for the isobutane dehydrogenation. The catalyst, developed at Catalysis Research Institute (IRC), was a silicalite-supported Pt-based catalyst. Their catalytic performances (activity, selectivity, stability) where found better adapted to the membrane reactor, when compared with commercial Pt or Cr based catalysts. The kinetic study of the reaction has been performed in a differential reactor and led to the determination of a kinetic law, suitable when the catalyst is used near thermodynamic equilibrium. The mass transfer mechanisms were determined in meso-porous and microporous membranes through both permeability and gas mixtures (iC{sub 4}/H{sub 2}/N{sub 2}) separation measurements. For the meso-porous {gamma}-alumina, the mass transfer is ensured by a Knudsen diffusion mechanism which can compete with surface diffusion for condensable gas like isobutane. The resulting permselectivity H{sub 2}/iC4 of this membrane is low ({approx} 4). For the microporous zeolite membrane, molecular sieving occurs due to steric hindrance, leading to higher permselectivity {approx}14. Catalyst/membrane associations were compared in terms of isobutane dehydrogenation performances, for both types of membranes (meso-porous and microporous) and for two different reactor configurations (co-current and counter-current sweep gas flow). The best experimental results were obtained with the zeolite membrane, when sweeping the outer compartment in a co-current flow. The equilibrium displacement observed with the {gamma}-alumina membrane was lower and mainly due to a dilution effect of the reaction mixture by the sweep gas. A mathematical model was developed, which correctly describes all the experimental results obtained with the zeolite membrane, when the co-current mode is used. (Abstract Truncated)

  17. Monitoring of itaconic acid hydrogenation in a trickle bed reactor using fiber-optic coupled near-infrared spectroscopy.

    Science.gov (United States)

    Wood, Joseph; Turner, Paul H

    2003-03-01

    Near-infrared (NIR) spectroscopy has been applied to determine the conversion of itaconic acid in the effluent stream of a trickle bed reactor. Hydrogenation of itaconic to methyl succinic acid was carried out, with the trickle bed operating in recycle mode. For the first time, NIR spectra of itaconic and methyl succinic acids in aqueous solution, and aqueous mixtures withdrawn from the reactor over a range of reaction times, have been recorded using a fiberoptic sampling probe. The infrared spectra displayed a clear isolated absorption band at a wavenumber of 6186 cm(-1) (wavelength 1.617 microm) resulting from the =C-H bonds of itaconic acid, which was found to decrease in intensity with increasing reaction time. The feature could be more clearly observed from plots of the first derivatives of the spectra. A partial least-squares (PLS) model was developed from the spectra of 13 reference samples and was used successfully to calculate the concentration of the two acids in the reactor effluent solution. Itaconic acid conversions of 23-29% were calculated after 360 min of reaction time. The potential of FT-NIR with fiber-optic sampling for remote monitoring of three-phase catalytic reactors and validation of catalytic reactor models is highlighted in the paper.

  18. Microfluidic Manufacturing of Polymeric Nanoparticles: Comparing Flow Control of Multiscale Structure in Single-Phase Staggered Herringbone and Two-Phase Reactors.

    Science.gov (United States)

    Xu, Zheqi; Lu, Changhai; Riordon, Jason; Sinton, David; Moffitt, Matthew G

    2016-12-06

    We compare the microfluidic manufacturing of polycaprolactone-block-poly(ethylene oxide) (PCL-b-PEO) nanoparticles (NPs) in a single-phase staggered herringbone (SHB) mixer and in a two-phase gas-liquid segmented mixer. NPs generated from two different copolymer compositions in both reactors and at three different flow rates, along with NPs generated using a conventional bulk method, are compared with respect to morphologies, dimensions, and internal crystallinities. Our work, the first direct comparison between alternate microfluidic NP synthesis methods, shows three key findings: (i) NP morphologies and dimensions produced in the bulk are different from those produced in a microfluidic mixer, whereas NP crystallinities produced in the bulk and in the SHB mixer are similar; (ii) NP morphologies, dimensions, and crystallinities produced in the single-phase SHB and two-phase mixers at the lowest flow rate are similar; and (iii) NP morphologies, dimensions, and crystallinities change with flow rate in the two-phase mixer but not in the single-phase SHB mixer. These findings provide new insights into the relative roles of mixing and shear in the formation and flow-directed processing of polymeric NPs in microfluidics, informing future reactor designs for manufacturing NPs of low polydispersity and controlled multiscale structure and function.

  19. A kinetic study on non-catalytic reactions in hydroprocessing Boscan crude oil

    Energy Technology Data Exchange (ETDEWEB)

    A. Marafi; E. Kam; A. Stanislaus [Kuwait Institute for Scientific Research, Safat (Kuwait). Petroleum Refining Department, Petroleum Research and Studies Center

    2008-08-15

    Non-catalytic hydrothermal cracking reactions are known to associate with catalytic hydrocracking reactions. In a recent study on hydroprocessing of Boscan crude over a specific catalyst system containing three distinct catalysts, it was found that hydrodesulfurization (HDS) and hydrodemetallation (HDM) reactions continued even when the catalyst is severely deactivated. Since the reactor was packed with considerable amount of inert material besides the three catalysts, it will be advantage to determine if the inert materials can also facilitate hydroprocessing reactions. A series of kinetic experiments for the inert particles was undertaken under different space velocity and temperature conditions. The extent of catalytic and non-catalytic hydroprocessing reactions was assessed. Through statistical analysis, the initial reaction rate constant, reaction order and activation energy for various hydroprocessing reactions were then determined. The absolute average deviations (AAD) of the kinetics values obtained for inert materials are less than 10%. 25 refs., 7 figs., 4 tabs.

  20. Reaction pathways for catalytic gas-phase oxidation of glycerol over mixed metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Suprun, W.; Glaeser, R.; Papp, H. [Leipzig Univ. (Germany). Inst. of Chemical Technology

    2011-07-01

    Glycerol as a main by-product from bio-diesel manufacture is a cheap raw material with large potential for chemical or biochemical transformations to value-added C3-chemicals. One possible way of glycerol utilization involves its catalytic oxidation to acrylic acid as an alternative to petrochemical routes. However, this catalytic conversion exhibits various problems such as harsh reaction conditions, severe catalyst coking and large amounts of undesired by-products. In this study, the reaction pathways for gas-phase conversion of glycerol over transition metal oxides (Mo, V und W) supported on TiO{sub 2} and SiO{sub 2} were investigated by two methods: (i) steady state experiments of glycerol oxidation and possible reactions intermediates, i.e., acrolein, 3-hydroxy propionaldehyde and acetaldehyde, and (ii) temperature-programmed surface reaction (TPSR) studies of glycerol conversion in the presence and in the absence of gas-phase oxygen. It is shown that the supported W-, V and Mo-oxides possess an ability to catalyze the oxidation of glycerol to acrylic acid. These investigations allowed us to gain a deeper insight into the reaction mechanism. Thus, based on the obtained results, three possible reactions pathways for the selective oxidation of glycerol to acrylic acid on the transition metal-containing catalysts are proposed. The major pathways in presence of molecular oxygen are a fast successive destructive oxidation of glycerol to CO{sub x} and the dehydration of glycerol to acrolein which is a rate-limiting step. (orig.)

  1. Monte Carlo neutronics analysis of the ANS reactor three-element core design

    International Nuclear Information System (INIS)

    Wemple, C.A.

    1995-01-01

    The advanced neutron source (ANS) is a world-class research reactor and experimental center for neutron research, currently being designed at the Oak Ridge National Laboratory (ORNL). The reactor consists of a 330-MW(fission) highly enriched uranium core, which is cooled, moderated, and reflected with heavy water. It was designed to be the preeminent ultrahigh neutron flux reactor in the world, with facilities for research programs in biology, materials science, chemistry, fundamental and nuclear physics, and analytical chemistry. Irradiation facilities are provided for a variety of isotope production capabilities, as well as materials irradiation. This paper summarizes the neutronics efforts at the Idaho National Engineering Laboratory in support of the development and analysis of the three-element core for the advanced conceptual design phase

  2. Report on 1981 result of Sunshine Project. Research on direct liquefaction reactor of coal; 1981 nendo sekitan no chokusetsu ekika hannoki no kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-07-01

    This paper explains the results of research on direct liquefaction reaction of coal in fiscal 1981. The direct liquefaction is a reaction of three phases, gas-liquid-solid, under high temperature and high pressure. A tube type was employed in order to increase volume efficiency of the reactor, the continuous phase disperse number was decreased in order to bring it close to plug flow, and the paste Re number was increased to some extent in order to prevent sedimentation of coal particles. Hydrogen was supplied from the tube halfway for the purpose of supplementing the lowering of hydrogen partial pressure with the progress of reaction. A gas-liquid separator was installed so that increase in gas quantity was controlled in the rear stage of the reactor. As for catalysts, iron ore-sulfur system was examined which was promising as a disposable catalyst in place of the conventional iron system. Effect of catalytic addition was clearly recognizable in comparison with non-catalytic, with an exothermic peak observed comparable to the coal hydrogenation reaction of 350-420 degree C. Its catalytic effect was also presumable from the high pressure differential thermal analysis curve. The catalytic mechanism in the case where sulfur is added to hematite and limonite is similar to that of Fe{sub 2}O{sub 3} - sulfur catalyst, with the center of activity supposed to be Fe{sub 1-x}S. The catalytic effect is largely dependent on the particle size. (NEDO)

  3. Combined UHV/high-pressure catalysis setup for depth-resolved near-surface spectroscopic characterization and catalytic testing of model catalysts

    International Nuclear Information System (INIS)

    Mayr, Lukas; Klötzer, Bernhard; Penner, Simon; Rameshan, Raffael; Rameshan, Christoph

    2014-01-01

    An ultra-high vacuum (UHV) setup for “real” and “inverse” model catalyst preparation, depth-resolved near-surface spectroscopic characterization, and quantification of catalytic activity and selectivity under technologically relevant conditions is described. Due to the all-quartz reactor attached directly to the UHV-chamber, transfer of the catalyst for in situ testing without intermediate contact to the ambient is possible. The design of the UHV-compatible re-circulating batch reactor setup allows the study of reaction kinetics under close to technically relevant catalytic conditions up to 1273 K without contact to metallic surfaces except those of the catalyst itself. With the attached differentially pumped exchangeable evaporators and the quartz-microbalance thickness monitoring equipment, a reproducible, versatile, and standardised sample preparation is possible. For three-dimensional near-surface sample characterization, the system is equipped with a hemispherical analyser for X-ray photoelectron spectroscopy (XPS), electron-beam or X-ray-excited Auger-electron spectroscopy, and low-energy ion scattering measurements. Due the dedicated geometry of the X-ray gun (54.7°, “magic angle”) and the rotatable sample holder, depth analysis by angle-resolved XPS measurements can be performed. Thus, by the combination of characterisation methods with different information depths, a detailed three-dimensional picture of the electronic and geometric structure of the model catalyst can be obtained. To demonstrate the capability of the described system, comparative results for depth-resolved sample characterization and catalytic testing in methanol steam reforming on PdGa and PdZn near-surface intermetallic phases are shown

  4. Combined UHV/high-pressure catalysis setup for depth-resolved near-surface spectroscopic characterization and catalytic testing of model catalysts

    Science.gov (United States)

    Mayr, Lukas; Rameshan, Raffael; Klötzer, Bernhard; Penner, Simon; Rameshan, Christoph

    2014-05-01

    An ultra-high vacuum (UHV) setup for "real" and "inverse" model catalyst preparation, depth-resolved near-surface spectroscopic characterization, and quantification of catalytic activity and selectivity under technologically relevant conditions is described. Due to the all-quartz reactor attached directly to the UHV-chamber, transfer of the catalyst for in situ testing without intermediate contact to the ambient is possible. The design of the UHV-compatible re-circulating batch reactor setup allows the study of reaction kinetics under close to technically relevant catalytic conditions up to 1273 K without contact to metallic surfaces except those of the catalyst itself. With the attached differentially pumped exchangeable evaporators and the quartz-microbalance thickness monitoring equipment, a reproducible, versatile, and standardised sample preparation is possible. For three-dimensional near-surface sample characterization, the system is equipped with a hemispherical analyser for X-ray photoelectron spectroscopy (XPS), electron-beam or X-ray-excited Auger-electron spectroscopy, and low-energy ion scattering measurements. Due the dedicated geometry of the X-ray gun (54.7°, "magic angle") and the rotatable sample holder, depth analysis by angle-resolved XPS measurements can be performed. Thus, by the combination of characterisation methods with different information depths, a detailed three-dimensional picture of the electronic and geometric structure of the model catalyst can be obtained. To demonstrate the capability of the described system, comparative results for depth-resolved sample characterization and catalytic testing in methanol steam reforming on PdGa and PdZn near-surface intermetallic phases are shown.

  5. Influence of the phase composition on the catalytic properties of ammonia synthesis catalysts

    International Nuclear Information System (INIS)

    Peev, T.M.; Bojinova, A.I.; Krylova, A.V.

    1981-01-01

    The phase composition of CA-1-type catalysts for ammonia synthesis was investigated by means of Moessbauer spectroscopy. A correlation was found between the catalytic activity of the samples and their wuestite content. (author)

  6. Modeling and simulation of heterogeneous catalytic processes

    CERN Document Server

    Dixon, Anthony

    2014-01-01

    Heterogeneous catalysis and mathematical modeling are essential components of the continuing search for better utilization of raw materials and energy, with reduced impact on the environment. Numerical modeling of chemical systems has progressed rapidly due to increases in computer power, and is used extensively for analysis, design and development of catalytic reactors and processes. This book presents reviews of the state-of-the-art in modeling of heterogeneous catalytic reactors and processes. Reviews by leading authorities in the respective areas Up-to-date reviews of latest techniques in modeling of catalytic processes Mix of US and European authors, as well as academic/industrial/research institute perspectives Connections between computation and experimental methods in some of the chapters.

  7. Single-reactor process for producing liquid-phase organic compounds from biomass

    Science.gov (United States)

    Dumesic, James A [Verona, WI; Simonetti, Dante A [Middleton, WI; Kunkes, Edward L [Madison, WI

    2011-12-13

    Disclosed is a method for preparing liquid fuel and chemical intermediates from biomass-derived oxygenated hydrocarbons. The method includes the steps of reacting in a single reactor an aqueous solution of a biomass-derived, water-soluble oxygenated hydrocarbon reactant, in the presence of a catalyst comprising a metal selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu, Mo, Tc, Ru, Rh, Pd, Ag, W, Re, Os, Ir, Pt, and Au, at a temperature, and a pressure, and for a time sufficient to yield a self-separating, three-phase product stream comprising a vapor phase, an organic phase containing linear and/or cyclic mono-oxygenated hydrocarbons, and an aqueous phase.

  8. Process for forming a homogeneous oxide solid phase of catalytically active material

    Science.gov (United States)

    Perry, Dale L.; Russo, Richard E.; Mao, Xianglei

    1995-01-01

    A process is disclosed for forming a homogeneous oxide solid phase reaction product of catalytically active material comprising one or more alkali metals, one or more alkaline earth metals, and one or more Group VIII transition metals. The process comprises reacting together one or more alkali metal oxides and/or salts, one or more alkaline earth metal oxides and/or salts, one or more Group VIII transition metal oxides and/or salts, capable of forming a catalytically active reaction product, in the optional presence of an additional source of oxygen, using a laser beam to ablate from a target such metal compound reactants in the form of a vapor in a deposition chamber, resulting in the deposition, on a heated substrate in the chamber, of the desired oxide phase reaction product. The resulting product may be formed in variable, but reproducible, stoichiometric ratios. The homogeneous oxide solid phase product is useful as a catalyst, and can be produced in many physical forms, including thin films, particulate forms, coatings on catalyst support structures, and coatings on structures used in reaction apparatus in which the reaction product of the invention will serve as a catalyst.

  9. Experimental demonstration of the reverse flow catalytic membrane reactor concept for energy efficient syngas production. Part 1: Influence of operating conditions

    NARCIS (Netherlands)

    Smit, J.; Bekink, G.J.; Sint Annaland, van M.; Kuipers, J.A.M.

    2007-01-01

    In this contribution the technical feasibility of the reverse flow catalytic membrane reactor (RFCMR) concept with porous membranes for energy efficient syngas production is investigated. In earlier work an experimental proof of principle was already provided [Smit, J., Bekink, G.J., van Sint

  10. Selective oxidations in microstructured catalytic reactions - A review and an overview of own work on fuel processing for fuel cells

    NARCIS (Netherlands)

    Hessel, V.; Kolb, G.A.; Cominos, V.; Loewe, H.; Nikolaidis, G.; Zapf, R.; Ziogas, A.; Schouten, J.C.; Delsman, E.R.; Croon, de M.H.J.M.; Santamaria, J.; Iglesia, de la O.; Mallada, R.

    2006-01-01

    This review is concerned about catalytic gas-phase oxidation reactions in microreactors, typically being performed in wall-coated microchannels. Not included are liquid and gas-liquid oxidations which are typically done in reactor designs different from the ones considered here. The first part of

  11. In-situ catalytic upgrading of biomass pyrolysis vapor: Co-feeding with methanol in a multi-zone fixed bed reactor

    International Nuclear Information System (INIS)

    Asadieraghi, Masoud; Wan Daud, Wan Mohd Ashri

    2015-01-01

    Highlights: • Aromatics yield improved with increasing H/C eff ratio of the feed. • HZSM-5 catalyst was an effective catalyst for in-situ bio-oil upgrading. • Biomass/methanol co-feeding attenuated the coke formation. • Methanol co-feeding enhanced the bio-oil quality. - Abstract: The in-situ catalytic upgrading of the biomass pyrolysis vapor and its mixture with methanol were conducted in a fixed bed multi-zone reactor. The steps were comprised; thermally converting the biomass in the pyrolysis reactor, passing its vapor in contact with the HZSM-5 zeolite catalyst in the presence of methanol vapor, and transformation of the resulting upgraded pyrolysis vapor into the liquid product. The biomass pyrolysis and catalytic pyrolysis vapor upgrading were performed at 500 °C. The highly valuable chemicals production was a function of the hydrogen to carbon effective ratio (H/C eff ) of the feed. This ratio was regulated by changing the relative amount of biomass and methanol. More aromatic hydrocarbons (50.02 wt.%) and less coke deposition on the catalyst (1.3 wt.%) were yielded from the biomass, when methanol was co-fed to the catalytic pyrolysis process (H/C eff = 1.35). In this contribution, the deposited coke on the catalyst was profoundly investigated. The coke, with high contents of oxo-aromatics and aromatic compounds, was generated by polymerization of biomass lignin derived components activated by catalyst acid sites

  12. Experimental, kinetic and numerical modeling of hydrogen production by catalytic reforming of crude ethanol over a commercial catalyst in packed bed tubular reactor and packed bed membrane reactor

    International Nuclear Information System (INIS)

    Aboudheir, Ahmed; Akande, Abayomi; Idem, Raphael

    2006-01-01

    The demand for hydrogen energy has increased tremendously in recent years essentially because of the increase in the word energy consumption as well as recent developments in fuel cell technologies. The energy information administration has projected that world energy consumption will increase by 59% over the next two decades, from 1999 to 2020, in which the largest share is still dominated by fossil fuels (oil, natural gas and coal). Carbon dioxide (CO 2 ) emissions resulting from the combustion of these fossil fuels currently are estimated to account for three-fourth of human-caused CO 2 emissions worldwide. Greenhouse gas emission, including CO 2 , should be limited, as recommended at the Kyoto Conference, Japan, in December 1997. In this regard, hydrogen (H 2 ) has a significant future potential as an alternative fuel that can solve the problems of CO 2 emissions as well as the emissions of other air contaminants. One of the techniques to produce hydrogen is by reforming of hydrocarbons or biomass. Crude ethanol (a form of biomass, which essentially is fermentation broth) is easy to produce, is free of sulphur, has low toxicity, and is also safe to handle, transport and store. In addition, crude ethanol consists of oxygenated hydrocarbons, such as ethanol, lactic acid, glycerol, and maltose. These oxygenated hydrocarbons can be reformed completely to H 2 and CO 2 , the latter of which could be separated from H 2 by membrane technology. This provides for CO 2 capture for eventual storage or destruction. In the case of using crude ethanol, this will result in negative CO 2 , emissions. In this paper, we conducted experimental work on production of hydrogen by the catalytic reforming of crude ethanol over a commercial promoted Ni-based catalyst in a packed bed tubular reactor as well as a packed bed membrane reactor. As well, a rigorous numerical model was developed to simulate this process in both the catalytic packed bed tubular reactor and packed bed membrane

  13. Three-Dimensional Structure and Catalytic Mechanism of Cytosine Deaminase

    Energy Technology Data Exchange (ETDEWEB)

    R Hall; A Fedorov; C Xu; E Fedorov; S Almo; F Raushel

    2011-12-31

    Cytosine deaminase (CDA) from E. coli is a member of the amidohydrolase superfamily. The structure of the zinc-activated enzyme was determined in the presence of phosphonocytosine, a mimic of the tetrahedral reaction intermediate. This compound inhibits the deamination of cytosine with a K{sub i} of 52 nM. The zinc- and iron-containing enzymes were characterized to determine the effect of the divalent cations on activation of the hydrolytic water. Fe-CDA loses activity at low pH with a kinetic pKa of 6.0, and Zn-CDA has a kinetic pKa of 7.3. Mutation of Gln-156 decreased the catalytic activity by more than 5 orders of magnitude, supporting its role in substrate binding. Mutation of Glu-217, Asp-313, and His-246 significantly decreased catalytic activity supporting the role of these three residues in activation of the hydrolytic water molecule and facilitation of proton transfer reactions. A library of potential substrates was used to probe the structural determinants responsible for catalytic activity. CDA was able to catalyze the deamination of isocytosine and the hydrolysis of 3-oxauracil. Large inverse solvent isotope effects were obtained on k{sub cat} and k{sub cat}/K{sub m}, consistent with the formation of a low-barrier hydrogen bond during the conversion of cytosine to uracil. A chemical mechanism for substrate deamination by CDA was proposed.

  14. Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes

    KAUST Repository

    Hong, Jongsup

    2013-10-01

    The catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.

  15. Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes

    KAUST Repository

    Hong, Jongsup; Kirchen, Patrick; Ghoniem, Ahmed F.

    2013-01-01

    The catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.

  16. An Evaluation of the Vapor Phase Catalytic Ammonia Removal Process for Use in a Mars Transit Vehicle

    Science.gov (United States)

    Flynn, Michael; Borchers, Bruce

    1998-01-01

    An experimental program has been developed to evaluate the potential of the Vapor Phase Catalytic Ammonia Reduction (VPCAR) technology for use as a Mars Transit Vehicle water purification system. Design modifications which will be required to ensure proper operation of the VPCAR system in reduced gravity are also evaluated. The VPCAR system is an integrated wastewater treatment technology that combines a distillation process with high temperature catalytic oxidation. The distillation portion of the system utilizes a vapor compression distillation process to provide an energy efficient phase change separation. This portion of the system removes any inorganic salts and large molecular weight, organic contaminates, i.e., non-volatile, from the product water stream and concentrates these contaminates into a byproduct stream. To oxidize the volatile organic compounds and ammonia, a vapor phase, high temperature catalytic oxidizer is used. This catalytic system converts these compounds along with the aqueous product into CO2, H2O, and N2O. A secondary catalytic bed can then be used to reduce the N2O to nitrogen and oxygen (although not evaluated in this study). This paper describes the design specification of the VPCAR process, the relative benefits of its utilization in a Mars Transit Vehicle, and the design modification which will be required to ensure its proper operation in reduced gravity. In addition, the results of an experimental evaluation of the processors is presented. This evaluation presents the processors performance based upon product water purity, water recovery rates, and power.

  17. Method of producing gaseous products using a downflow reactor

    Science.gov (United States)

    Cortright, Randy D; Rozmiarek, Robert T; Hornemann, Charles C

    2014-09-16

    Reactor systems and methods are provided for the catalytic conversion of liquid feedstocks to synthesis gases and other noncondensable gaseous products. The reactor systems include a heat exchange reactor configured to allow the liquid feedstock and gas product to flow concurrently in a downflow direction. The reactor systems and methods are particularly useful for producing hydrogen and light hydrocarbons from biomass-derived oxygenated hydrocarbons using aqueous phase reforming. The generated gases may find used as a fuel source for energy generation via PEM fuel cells, solid-oxide fuel cells, internal combustion engines, or gas turbine gensets, or used in other chemical processes to produce additional products. The gaseous products may also be collected for later use or distribution.

  18. Experimental and numerical investigation of the catalytic partial oxidation of methane to synthesis gas for power generation applications[Dissertation 17183

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, A.

    2007-07-01

    The present work addresses the catalytic partial oxidation (CPO) of methane to synthesis gas, with particular emphasis on power generation applications. A combined experimental and numerical investigation of methane partial oxidation to synthesis gas (H{sub 2}, CO) over rhodium-based catalysts has been carried out at pressures of up to 10 bar. The reactivity of the produced hydrogen and the suitably-low light-off temperatures of the CPO reactor, greatly facilitate operation of power generation gas turbines with reduced NO{sub x} emissions, stable operation with low calorific value fuels, and new combustion strategies for efficient CO{sub 2} capture. Those strategies utilize CPO of methane with oxygen (separated from air) and large exhaust gas recycle (H{sub 2}O and CO{sub 2}). An optically accessible catalytic channel-flow reactor was used to carry out Raman spectroscopy of major gas-phase species and laser induced fluorescence (LIF) of formaldehyde, in order to gain fundamental information on the catalytic and gas-phase chemical pathways. Transverse concentration profiles measured by the spontaneous Raman scattering technique determined the catalytic reactivity, while the LIF provided flame shapes and anchoring positions that, in turn, characterized the gaseous reactivity. Comparison between measurements and 2-D CFD computations, led to the validation of detailed catalytic and gas-phase reaction mechanisms. Experiments in a subscale gas-turbine honeycomb catalytic reactor have shown that the foregoing reaction mechanisms were also appropriate under gas-turbine relevant conditions with short reactant residence times. The light-off behavior of the subscale honeycomb reactor was reproduced by transient 2-D CFD computations. Ignition and extinction in CPO was studied. It was shown that, despite the chemical impact of the H{sub 2}O diluent during the transient catalytic ignition event, the light-off times themselves were largely unaffected by the exhaust gas dilution

  19. Catalytic ozonation of fenofibric acid over alumina-supported manganese oxide

    Energy Technology Data Exchange (ETDEWEB)

    Rosal, Roberto, E-mail: roberto.rosal@uah.es [Departamento de Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, E-28771 Alcala de Henares (Spain); Gonzalo, Maria S.; Rodriguez, Antonio; Garcia-Calvo, Eloy [Departamento de Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, E-28771 Alcala de Henares (Spain)

    2010-11-15

    The catalytic ozonation of fenofibric acid was studied using activated alumina and alumina-supported manganese oxide in a semicontinuous reactor. The rate constants at 20 deg. C for the non-catalytic reaction of fenofibric acid with ozone and hydroxyl radicals were 3.43 {+-} 0.20 M{sup -1} s{sup -1} and (6.55 {+-} 0.33) x 10{sup 9} M{sup -1} s{sup -1}, respectively. The kinetic constant for the catalytic reaction between fenofibric acid and hydroxyl radicals did not differ significantly from that of homogeneous ozonation, either using Al{sub 2}O{sub 3} or MnO{sub x}/Al{sub 2}O{sub 3}. The results showed a considerable increase in the generation of hydroxyl radicals due to the use of catalysts even in the case of catalytic runs performed using a real wastewater matrix. Both catalysts promoted the decomposition of ozone in homogeneous phase, but the higher production of hydroxyl radicals corresponded to the catalyst with more activity in terms of ozone decomposition. We did not find evidence of the catalysts having any effect on rate constants, which suggests that the reaction may not involve the adsorption of organics on catalyst surface.

  20. Reactor container

    International Nuclear Information System (INIS)

    Kojima, Yoshihiro; Hosomi, Kenji; Otonari, Jun-ichiro.

    1997-01-01

    In the present invention, a catalyst for oxidizing hydrogen to be disposed in a reactor container upon rupture of pipelines of a reactor primary coolant system is prevented from deposition of water droplets formed from a reactor container spray to suppress elevation of hydrogen concentration in the reactor container. Namely, a catalytic combustion gas concentration control system comprises a catalyst for oxidizing hydrogen and a support thereof. In addition, there is also disposed a water droplet deposition-preventing means for preventing deposition of water droplets in a reactor pressure vessel on the catalyst. Then, the effect of the catalyst upon catalytic oxidation reaction of hydrogen can be kept high. The local elevation of hydrogen concentration can be prevented even upon occurrence of such a phenomenon that various kinds of mobile forces in the container such as dry well cooling system are lost. (I.S.)

  1. Problems of two-phase flows in water cooled and moderated reactors

    International Nuclear Information System (INIS)

    Syu, Yu.

    1984-01-01

    Heat exchange in two-phase flows of coolant in loss of coolant accidents in PWR and BWR reactors has been investigated. Three main stages of accident history are considered: blowdown, reflooding using emergency core cooling system and rewetting. Factors, determining the rate of coolant leakage and the rate of temperature increase in fuel cladding during blowdown, processes of vapour during reflooding and liquid priming by vapour during rewetting, are discussed

  2. Application of data mining in three-dimensional space time reactor model

    International Nuclear Information System (INIS)

    Jiang Botao; Zhao Fuyu

    2011-01-01

    A high-fidelity three-dimensional space time nodal method has been developed to simulate the dynamics of the reactor core for real time simulation. This three-dimensional reactor core mathematical model can be composed of six sub-models, neutron kinetics model, cay heat model, fuel conduction model, thermal hydraulics model, lower plenum model, and core flow distribution model. During simulation of each sub-model some operation data will be produced and lots of valuable, important information reflecting the reactor core operation status could be hidden in, so how to discovery these information becomes the primary mission people concern. Under this background, data mining (DM) is just created and developed to solve this problem, no matter what engineering aspects or business fields. Generally speaking, data mining is a process of finding some useful and interested information from huge data pool. Support Vector Machine (SVM) is a new technique of data mining appeared in recent years, and SVR is a transformed method of SVM which is applied in regression cases. This paper presents only two significant sub-models of three-dimensional reactor core mathematical model, the nodal space time neutron kinetics model and the thermal hydraulics model, based on which the neutron flux and enthalpy distributions of the core are obtained by solving the three-dimensional nodal space time kinetics equations and energy equations for both single and two-phase flows respectively. Moreover, it describes that the three-dimensional reactor core model can also be used to calculate and determine the reactivity effects of the moderator temperature, boron concentration, fuel temperature, coolant void, xenon worth, samarium worth, control element positions (CEAs) and core burnup status. Besides these, the main mathematic theory of SVR is introduced briefly next, on the basis of which SVR is applied to dealing with the data generated by two sample calculation, rod ejection transient and axial

  3. Catalytic conversion of light alkanes-proof-of-concept stage - Phase IV. Topical report, February 1, 1994--January 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This report details the research performed on Phase IV of the extended Cooperative Agreement. This Phase, entitled C{sub 1}-C{sub 4} Research, provides the research support which accompanies the C{sub 4} Proof-of-Concept Phase (Phase V) as the two major activities of the Cooperative Agreement during calendar 1993. It is the objective of this phase to understand the nature of the catalysts and catalytic activity of perhaloporphyrin complexes uncovered during Phases I-III in order that superior catalytic materials can be made and tested which meet commercial criteria for the oxidation of the C{sub 1}-C{sub 4} light alkane gases found in natural gas and other available hydrocarbon streams. During Phase IV, we have examined the physical and electronic structures of the very active perhaloporphyrin catalysts which we have developed, and have gained an understanding of the properties which make them active. This has led us to design and synthesize materials which are cheaper, more active, more robust and, in general superior for carrying out practical catalysis. Our early generation perhaloporphyrin catalysts, while exhibiting unprecedented catalytic activity, were far too expensive for use in converting natural gas or its C{sub 1}-C{sub 4} components.

  4. Numerical study of methanol–steam reforming and methanol–air catalytic combustion in annulus reactors for hydrogen production

    International Nuclear Information System (INIS)

    Chein, Reiyu; Chen, Yen-Cho; Chung, J.N.

    2013-01-01

    Highlights: ► Performance of mini-scale integrated annulus reactors for hydrogen production. ► Flow rates fed to combustor and reformer control the reactor performance. ► Optimum performance is found from balance of flow rates to combustor and reformer. ► Better performance can be found when shell side is designed as combustor. -- Abstract: This study presents the numerical simulation on the performance of mini-scale reactors for hydrogen production coupled with liquid methanol/water vaporizer, methanol/steam reformer, and methanol/air catalytic combustor. These reactors are designed similar to tube-and-shell heat exchangers. The combustor for heat supply is arranged as the tube or shell side. Based on the obtained results, the methanol/air flow rate through the combustor (in terms of gas hourly space velocity of combustor, GHSV-C) and the methanol/water feed rate to the reformer (in terms of gas hourly space velocity of reformer, GHSV-R) control the reactor performance. With higher GHSV-C and lower GHSV-R, higher methanol conversion can be achieved because of higher reaction temperature. However, hydrogen yield is reduced and the carbon monoxide concentration is increased due to the reversed water gas shift reaction. Optimum reactor performance is found using the balance between GHSV-C and GHSV-R. Because of more effective heat transfer characteristics in the vaporizer, it is found that the reactor with combustor arranged as the shell side has better performance compared with the reactor design having the combustor as the tube side under the same operating conditions.

  5. ADVANCED COMPUTATIONAL MODEL FOR THREE-PHASE SLURRY REACTORS

    International Nuclear Information System (INIS)

    Ahmadi, Goodarz

    2004-01-01

    In this project, an Eulerian-Lagrangian formulation for analyzing three-phase slurry flows in a bubble column was developed. The approach used an Eulerian analysis of liquid flows in the bubble column, and made use of the Lagrangian trajectory analysis for the bubbles and particle motions. The bubble-bubble and particle-particle collisions are included the model. The model predictions are compared with the experimental data and good agreement was found An experimental setup for studying two-dimensional bubble columns was developed. The multiphase flow conditions in the bubble column were measured using optical image processing and Particle Image Velocimetry techniques (PIV). A simple shear flow device for bubble motion in a constant shear flow field was also developed. The flow conditions in simple shear flow device were studied using PIV method. Concentration and velocity of particles of different sizes near a wall in a duct flow was also measured. The technique of Phase-Doppler anemometry was used in these studies. An Eulerian volume of fluid (VOF) computational model for the flow condition in the two-dimensional bubble column was also developed. The liquid and bubble motions were analyzed and the results were compared with observed flow patterns in the experimental setup. Solid-fluid mixture flows in ducts and passages at different angle of orientations were also analyzed. The model predictions were compared with the experimental data and good agreement was found. Gravity chute flows of solid-liquid mixtures were also studied. The simulation results were compared with the experimental data and discussed A thermodynamically consistent model for multiphase slurry flows with and without chemical reaction in a state of turbulent motion was developed. The balance laws were obtained and the constitutive laws established

  6. 3D printing in chemical engineering and catalytic technology: structured catalysts, mixers and reactors.

    Science.gov (United States)

    Parra-Cabrera, Cesar; Achille, Clement; Kuhn, Simon; Ameloot, Rob

    2018-01-02

    Computer-aided fabrication technologies combined with simulation and data processing approaches are changing our way of manufacturing and designing functional objects. Also in the field of catalytic technology and chemical engineering the impact of additive manufacturing, also referred to as 3D printing, is steadily increasing thanks to a rapidly decreasing equipment threshold. Although still in an early stage, the rapid and seamless transition between digital data and physical objects enabled by these fabrication tools will benefit both research and manufacture of reactors and structured catalysts. Additive manufacturing closes the gap between theory and experiment, by enabling accurate fabrication of geometries optimized through computational fluid dynamics and the experimental evaluation of their properties. This review highlights the research using 3D printing and computational modeling as digital tools for the design and fabrication of reactors and structured catalysts. The goal of this contribution is to stimulate interactions at the crossroads of chemistry and materials science on the one hand and digital fabrication and computational modeling on the other.

  7. Small liquid metal reactor for an initial phase of fast breeder reactor introduction

    International Nuclear Information System (INIS)

    Ishiguro, Y.; Nascimento, J.A. do.

    1985-01-01

    Safety and burnup characteristics of a 1000 MWth liquid metal reactor have been examined for various fuel types. With metallic Pu/Th fuel containing a small amount of zirconium hydride, low sodium-void reactivity, a high Doppler coefficient, and small burnup reactivity swings can be achieved. A conservative design is considered for an initial phase of fast breeder reactor development and possible modifications are discussed. (Author) [pt

  8. Reactor physics studies in the GCFR phase-II critical assembly

    International Nuclear Information System (INIS)

    Pond, R.B.

    1976-09-01

    The reactor physics studies performed in the gas cooled fast reactor (GCFR) mockup on ZPR-9 are covered. This critical assembly, designated Phase II in the GCFR program, had a single zone PuO 2 -UO 2 core composition and UO 2 radial and axial blankets. The assembly was built both with and without radial and axial stainless steel reflectors. The program included the following measurements: small-sample reactivity worths of reactor constituent materials (including helium); 238 U Doppler effect; uranium and plutonium reaction rate distributions; thorium, uranium, and plutonium α and reactor kinetics. Analysis of the measurements used ENDF/B-IV nuclear data; anisotropic diffusion coefficients were used to account for neutron streaming effects. Comparison of measurements and calculations to GCFR Phase I are also made

  9. Non-thermal plasmas for non-catalytic and catalytic VOC abatement

    International Nuclear Information System (INIS)

    Vandenbroucke, Arne M.; Morent, Rino; De Geyter, Nathalie; Leys, Christophe

    2011-01-01

    Highlights: → We review the current status of catalytic and non-catalytic VOC abatement based on a vast number of research papers. → The underlying mechanisms of plasma-catalysis for VOC abatement are discussed. → Critical process parameters that determine the influent are discussed and compared. - Abstract: This paper reviews recent achievements and the current status of non-thermal plasma (NTP) technology for the abatement of volatile organic compounds (VOCs). Many reactor configurations have been developed to generate a NTP at atmospheric pressure. Therefore in this review article, the principles of generating NTPs are outlined. Further on, this paper is divided in two equally important parts: plasma-alone and plasma-catalytic systems. Combination of NTP with heterogeneous catalysis has attracted increased attention in order to overcome the weaknesses of plasma-alone systems. An overview is given of the present understanding of the mechanisms involved in plasma-catalytic processes. In both parts (plasma-alone systems and plasma-catalysis), literature on the abatement of VOCs is reviewed in close detail. Special attention is given to the influence of critical process parameters on the removal process.

  10. THE PHASE REACTOR INDUCTANCE SELECTION TECHNIQUE FOR POWER ACTIVE FILTER

    Directory of Open Access Journals (Sweden)

    D. V. Tugay

    2016-12-01

    Full Text Available Purpose. The goal is to develop technique of the phase inductance power reactors selection for parallel active filter based on the account both low-frequency and high-frequency components of the electromagnetic processes in a power circuit. Methodology. We have applied concepts of the electrical circuits theory, vector analysis, mathematical simulation in Matlab package. Results. We have developed a new technique of the phase reactors inductance selection for parallel power active filter. It allows us to obtain the smallest possible value of THD network current. Originality. We have increased accuracy of methods of the phase reactor inductance selection for power active filter. Practical value. The proposed technique can be used in the design and manufacture of the active power filter for real objects of energy supply.

  11. Detailed flow analysis for the Three Mile Island unit 2 reactor accident

    International Nuclear Information System (INIS)

    Lillington, J.N.; Lyons, A.J.

    1990-01-01

    Some particular characteristics of the steam flow in the accident at the Three Mile Island unit 2 pressurized water reactor are investigated using the AEA Technology Flow3D code. Natural circulation flows with heat removal from the core and deposition in the upper plenum are predicted during the primary heating phase. The structure of the upper plenum cylinder and core blockage, owing to material relocation, are shown to force the flow into a complex three-dimensional pattern. The flows and temperature distributions from the calculations are shown to be consistent with the observed damage pattern above the core. Despite high core temperatures, damage was limited by the operation of one of the pumps at the end of the initial heating phase. Flow3D calculations are also carried out to demonstrate that the three-dimensional buoyancy driven flows are completely destroyed by the high steam generation rates arising from the pump operation. (author)

  12. Fluid dynamics of airlift reactors; Two-phase friction factors

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Calvo, E. (Ingenieria Quimica, Facultad de Ciencias, Univ. de Alcala, 28871 Alcala de Henares (Spain))

    1992-10-01

    Airlift loop reactors (ALR) are useful equipment in biotechnology in a wide range of uses, however their design is not a simple task since prediction of fluid dynamics in these reactors is difficult. Most of the different strategies found in the literature in order to predict two main parameters, namely, gas holdup and liquid velocity, are based on energy or momentum balances. The balances include frictional effects, and it is not yet clear how to predict these effects. The objective of this article is to show how criteria corresponding to one-phase flow may be used in order to predict the frictional effects in ALRs. Based on a model proposed by Garcia-Calvo (1989, 1991), we simulated experimental data of liquid velocity profiles and gas holdup obtained by Young et al. in an ALR with two different configurations. Experimental data obtained in other three external ALRs with different shapes and sizes are also simulated.

  13. Monolitni katalizatori i reaktori: osnovne značajke, priprava i primjena (Monolith catalysts and reactors: preparation and applications

    Directory of Open Access Journals (Sweden)

    Tomašić, V.

    2004-12-01

    Full Text Available Monolithic (honeycomb catalysts are continuous unitary structures containing many narrow, parallel and usually straight channels (or passages. Catalytically active components are dispersed uniformly over the whole porous ceramic monolith structure (so-called incorporated monolithic catalysts or are in a layer of porous material that is deposited on the walls of channels in the monolith's structure (washcoated monolithic catalysts. The material of the main monolithic construction is not limited to ceramics but includes metals, as well. Monolithic catalysts are commonly used in gas phase catalytic processes, such as treatment of automotive exhaust gases, selective catalytic reduction of nitrogen oxides, catalytic removal of volatile organic compounds from industrial processes, etc. Monoliths continue to be the preferred support for environmental applications due to their high geometric surface area, different design options, low pressure drop, high temperature durability, mechanical strength, ease of orientation in a reactor and effectiveness as a support for a catalytic washcoat. As known, monolithic catalysts belong to the class of the structured catalysts and/or reactors (in some cases the distinction between "catalyst" and "reactor" has vanished. Structured catalysts can greatly intensify chemical processes, resulting in smaller, safer, cleaner and more energy efficient technologies. Monolith reactors can be considered as multifunctional reactors, in which chemical conversion is advantageously integrated with another unit operation, such as separation, heat exchange, a secondary reaction, etc. Finally, structured catalysts and/or reactors appear to be one of the most significant and promising developments in the field of heterogeneous catalysis and chemical engineering of the recent years. This paper gives a description of the background and perspectives for application and development of monolithic materials. Different methods and techniques

  14. Effect of phase interaction on catalytic CO oxidation over the SnO_2/Al_2O_3 model catalyst

    International Nuclear Information System (INIS)

    Chai, Shujing; Bai, Xueqin; Li, Jing; Liu, Cheng; Ding, Tong; Tian, Ye; Liu, Chang; Xian, Hui; Mi, Wenbo; Li, Xingang

    2017-01-01

    Highlights: • Activity for CO oxidation is greatly enhanced by interaction between SnO_2 and Al_2O_3. • Interaction between SnO_2 and Al_2O_3 phases can generate oxygen vacancies. • Oxygen vacancies play an import role for catalytic CO oxidation. • Sn"4"+ cations are the effective sites for catalytic CO oxidation. • Langmuir-Hinshelwood model is preferred for catalytic CO oxidation. - Abstract: We investigated the catalytic CO oxidation over the SnO_2/Al_2O_3 model catalysts. Our results show that interaction between the Al_2O_3 and SnO_2 phases results in the significantly improved catalytic activity because of the formation of the oxygen vacancies. The oxygen storage capacity of the SnO_2/Al_2O_3 catalyst prepared by the physically mixed method is nearly two times higher than that of the SnO_2, which probably results from the change of electron concentration on the interface of the SnO_2 and Al_2O_3 phases. Introducing water vapor to the feeding gas would a little decrease the activity of the catalysts, but the reaction rate could completely recover after removal of water vapor. The kinetics results suggest that the surface Sn"4"+ cations are effective CO adsorptive sites, and the surface adsorbed oxygen plays an important role upon CO oxidation. The reaction pathways upon the SnO_2-based catalysts for CO oxidation follow the Langmuir-Hinshelwood model.

  15. Partial catalytic oxidation of CH{sub 4} to synthesis gas for power generation - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mantzaras, I.; Schneider, A.

    2006-03-15

    The partial oxidation of methane to synthesis gas over rhodium catalysts has been investigated experimentally and numerically in the pressure range of 4 to 10 bar. The methane/oxidizer feed has been diluted with large amounts of H{sub 2}O and CO{sub 2} (up to 70% vol.) in order to simulate new power generation cycles with large exhaust gas recycle. Experiments were carried out in an optically accessible channel-flow reactor that facilitated laser-based in situ measurements, and also in a subscale gas-turbine catalytic reactor. Full-elliptic steady and transient two-dimensional numerical codes were used, which included elementary hetero-/homogeneous chemical reaction schemes. The following are the key conclusions: a) Heterogeneous (catalytic) and homogeneous (gas-phase) schemes have been validated for the partial catalytic oxidation of methane with large exhaust gas recycle. b) The impact of added H{sub 2}O and CO{sub 2} has been elucidated. The added H{sub 2}O increased the methane conversion and hydrogen selectivity, while it decreased the CO selectivity. The chemical impact of CO{sub 2} (dry reforming) was minimal. c) The numerical model reproduced the measured catalytic ignition times. It was further shown that the chemical impact of H{sub 2}O and CO{sub 2} on the catalytic ignition delay times was minimal. d) The noble metal dispersion increased with different support materials, in the order Rh/{alpha}-Al{sub 2}O{sub 3}, Rh/ZrO{sub 2}, and Rh/Ce-ZrO{sub 2}. An evident relationship was established between the noble metal dispersion and the catalytic behavior. (authors)

  16. Catalytic combustion of propane in a membrane reactor with separate feed of reactants—I. Operation in absence of trans-membrane pressure gradients

    NARCIS (Netherlands)

    Saracco, Guido; Veldsink, Jan Willem; Versteeg, Geert F.; Swaaij, Wim P.M. van

    1995-01-01

    A pilot plant study on propane catalytic combustion in a membrane reactor with separate reactant feeds is presented. The membrane consisted of a porous alumina tube activated by insertion into its pores of a Pt/γ-Al2O3 catalyst. The role of reactants concentration and of the feed flow rates were

  17. Tuning Catalytic Performance through a Single or Sequential Post-Synthesis Reaction(s) in a Gas Phase

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Junjun [Department; Department; Zhang, Shiran [Department; Department; Choksi, Tej [Department; Nguyen, Luan [Department; Department; Bonifacio, Cecile S. [Department; Li, Yuanyuan [Department; Zhu, Wei [Department; Department; College; Tang, Yu [Department; Department; Zhang, Yawen [College; Yang, Judith C. [Department; Greeley, Jeffrey [Department; Frenkel, Anatoly I. [Department; Tao, Franklin [Department; Department

    2016-12-05

    Catalytic performance of a bimetallic catalyst is determined by geometric structure and electronic state of the surface or even the near-surface region of the catalyst. Here we report that single and sequential postsynthesis reactions of an as-synthesized bimetallic nanoparticle catalyst in one or more gas phases can tailor surface chemistry and structure of the catalyst in a gas phase, by which catalytic performance of this bimetallic catalyst can be tuned. Pt–Cu regular nanocube (Pt–Cu RNC) and concave nanocube (Pt–Cu CNC) are chosen as models of bimetallic catalysts. Surface chemistry and catalyst structure under different reaction conditions and during catalysis were explored in gas phase of one or two reactants with ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The newly formed surface structures of Pt–Cu RNC and Pt–Cu CNC catalysts strongly depend on the reactive gas(es) used in the postsynthesis reaction(s). A reaction of Pt–Cu RNC-as synthesized with H2 at 200 °C generates a near-surface alloy consisting of a Pt skin layer, a Cu-rich subsurface, and a Pt-rich deep layer. This near-surface alloy of Pt–Cu RNC-as synthesized-H2 exhibits a much higher catalytic activity in CO oxidation in terms of a low activation barrier of 39 ± 4 kJ/mol in contrast to 128 ± 7 kJ/mol of Pt–Cu RNC-as synthesized. Here the significant decrease of activation barrier demonstrates a method to tune catalytic performances of as-synthesized bimetallic catalysts. A further reaction of Pt–Cu RNC-as synthesized-H2 with CO forms a Pt–Cu alloy surface, which exhibits quite different catalytic performance in CO oxidation. It suggests the capability of generating a different surface by using another gas. The capability of tuning surface chemistry and structure of bimetallic catalysts was also demonstrated in restructuring of Pt–Cu CNC-as synthesized.

  18. Hydrogen Production From catalytic reforming of greenhouse gases ...

    African Journals Online (AJOL)

    ADOWIE PERE

    a fixed bed stainless steel reactor. The 20wt%. ... catalytic activity for hydrogen production with the highest yield and selectivity of 32.5% and 17.6% respectively. © JASEM ... CO2 reforming of methane is however not fully developed ..... Design and preparation of .... catalytic nickel membrane for gas to liquid (GTL) process.

  19. A comparison of the electrochemical recovery of palladium using a parallel flat plate flow-by reactor and a rotating cylinder electrode reactor

    International Nuclear Information System (INIS)

    Terrazas-Rodriguez, J.E.; Gutierrez-Granados, S.; Alatorre-Ordaz, M.A.; Ponce de Leon, C.; Walsh, F.C.

    2011-01-01

    The production of catalytic converters generates large amounts of waste water containing Pd 2+ , Rh 3+ and Nd 3+ ions. The electrochemical treatment of these solutions offers an economic and effective alternative to recover the precious metals in comparison with other traditional metal recovery technologies. The separation of palladium from this mixture of metal ions by catalytic deposition was carried out using a rotating cylinder electrode reactor (RCER) and a parallel plate reactor (FM01-LC) with the same cathode area (64 cm 2 ) and electrolyte volume (300 cm 3 ). The study was carried out at mean linear flow velocities of 1.27 -1 (120 e /v -1 (7390 2+ ions in the parallel plate electrode reactor was 35% while the recovery of 97% of Pd 2+ in the RCER was 62%. The volumetric energy consumption during the electrolysis was 0.56 kW h m -3 and 2.1 kW h m -3 for the RCER and the FM01-LC reactors, respectively. Using a three-dimensional stainless steel electrode in the FM01-LC laboratory reactor, 99% of palladium ions were recovered after 30 min of electrolysis while in the RCER, 120 min were necessary.

  20. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rokkam, Ram [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  1. Improved deep desulphurisation of middle distillates by a two-phase reactor with pre-saturator

    Energy Technology Data Exchange (ETDEWEB)

    Wieland Wache; Leonid Datsevich; Andreas Jess; Gerhard Neumann [University of Bayreuth, Bayreuth (Germany). Department of Chemical Engineering, Faculty of Applied Sciences

    2006-08-15

    Hydrodesulphurisation (HDS) of middle distillates is up to now performed in trickle bed reactors equipped with an expensive H{sub 2}-recycle. To meet future low S-limits, hydrotreating of already pre-desulphurised oils is needed. The H{sub 2}-supply is then far beyond what is chemically consumed. In addition, conventional three-phase HDS-reactors are generally problematic with respect to mass transfer, hydrodynamics, and therefore, scale-up. In this paper, an improved HDS-concept based on a two-phase reactor is discussed. The oil is thereby externally saturated with H{sub 2} and only the liquid is passed over the fixed bed. This concept was proven by experiments with light fuel oils (582 and 2252 ppm S, CoMo-catalyst, 1-6 MPa, 330-400{sup o}C, up to 100 days continuous operation). In addition, kinetic studies were done with model oil consisting of a mixture of n-dodecane and selected S-species such as di-, tri- and tetra-methyl-dibenzothiophenes. In case of the presented two-phase concept, the H{sub 2}-recycle is redundant, the intrinsic reaction rate can be utilised (and accurately measured), and scale-up problems do not occur. 18 refs., 9 figs., 5 tabs.

  2. Catalytic conversion of light alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  3. Efficient fully controlled up-to-date equipment for catalytic treatment of waste gases

    International Nuclear Information System (INIS)

    Dvorak, Radek; Stulir, Roman; Cagas, Pavel

    2007-01-01

    This paper describes research and development of a new unit for catalytic destruction of waste gases polluted mainly by volatile organic compounds (VOC), halogenated organic compounds (HOC) or carbon monoxide. Novel equipment has considerable advantages compared with commonly used arrangement (combustion chamber (catalytic reactor)-pipeline-heat exchanger). It is very compact and light and has the combustion chamber, catalytic reactor and heat exchanger integrated into one unit. Maximum utilizing heat losses in the combustion chamber and catalytic reactor is achieved. During the development of this unit experience from tests of previously developed equipment used for thermal treatment of waste gases was used, as well as from experimental studies of catalytic disposal of various VOC carried out in the newly built experimental unit. During the development calculation methods were created allowing design modifications of this unit for real industrial applications. The newly developed unit can be used in various branches of industry such as paint shops, refining plants, sewage treatment plants, food processing industry, pharmaceutical industry, but also in companies processing and transporting crude-oil or natural gas, etc

  4. Treatment of ammonia by catalytic wet oxidation process over platinum-rhodium bimetallic catalyst in a trickle-bed reactor: effect of pH.

    Science.gov (United States)

    Hung, Chang-Mao; Lin, Wei-Bang; Ho, Ching-Lin; Shen, Yun-Hwei; Hsia, Shao-Yi

    2010-08-01

    This work adopted aqueous solutions of ammonia for use in catalytic liquid-phase reduction in a trickle-bed reactor with a platinum-rhodium bimetallic catalyst, prepared by the co-precipitation of chloroplatinic acid (H2PtCl6) and rhodium nitrate [Rh(NO3)3]. The experimental results demonstrated that a minimal amount of ammonia was removed from the solution by wet oxidation in the absence of any catalyst, while approximately 97.0% of the ammonia was removed by wet oxidation over the platinum-rhodium bimetallic catalyst at 230 degrees C with an oxygen partial pressure of 2.0 MPa. The oxidation of ammonia has been studied as a function of pH, and the main reaction products were determined. A synergistic effect is manifest in the platinum-rhodium bimetallic structure, in which the material has the greatest capacity to reduce ammonia. The reaction pathway linked the oxidizing ammonia to nitric oxide, nitrogen, and water.

  5. Dynamic simulation of industrial Fluidized-bed Catalytic Cracking - FCC unit

    Energy Technology Data Exchange (ETDEWEB)

    Secchi, Argimiro R.; Neumann, Gustavo A.; Trierweiler, Jorge O. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Engenharia Quimica]. E-mail: arge@enq.ufrgs.br; gneumann@enq.ufrgs.br; jorge@enq.ufrgs.br; Santos, Marlova G. [PETROBRAS S.A., Canoas, RS (Brazil). Refinaria Alberto Pasqualini]. E-mail: marlova@petrobras.com.br

    2000-07-01

    In this work a mathematical model for the dynamic simulation of the Fluidized-bed Catalytic Cracking (FCC) Reactor, to be used in the analysis, control, and optimization of this system is developed. Based on the full range of published data in FCC performance and kinetic rates, and adapted to the industrial unit of the PETROBRAS' Alberto Pasqualini Refinery (REFAP), an integrated dynamic model is build up. The model is sufficiently complex to capture the major dynamics effects that occur in this system. The regenerator is modeled as emulsion and bubble phases that exchange mass and heat. The riser is modeled as an adiabatic plug flow reactor. The fluid dynamic is taking into account for the catalyst circulation, and the dynamics of the gas phase and the riser are also considered into the model. The model, represented by a non-linear system of differential-algebraic equations, was written in language C and implemented in MATLAB/SIMULINK. The results are compared with the data obtained from the industrial plant of REFAP. (author)

  6. Continuous production of glycerol by catalytic high pressure hydrogenolysis of sucrose

    NARCIS (Netherlands)

    van Ling, Gerrit; Driessen, Alfons J.; Piet, Arie C.; Vlugter, Jozef C.

    1970-01-01

    Several continuous reactor systems have been discussed for the catalytic high pressure hydrogenolysis of sucrose to glycerol. Theoretically and actually, continuous reactors lead to lower glycerol yields than in a batch process. Two continuous stirred tank reactors in cascade constitute a reasonable

  7. Low-temperature catalytic gasification of wet industrial wastes

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D C; Neuenschwander, G G; Baker, E G; Sealock, Jr, L J; Butner, R S

    1991-04-01

    Bench-scale reactor tests are in progress at Pacific Northwest Laboratory to develop a low-temperature, catalytic gasification system. The system, licensed under the trade name Thermochemical Environmental Energy System (TEES{reg sign}), is designed for treating a wide variety of feedstocks ranging from dilute organics in water to waste sludges from food processing. This report describes a test program which used a continuous-feed tubular reactor. This test program is an intermediate stage in the process development. The reactor is a laboratory-scale version of the commercial concept as currently envisioned by the process developers. An energy benefit and economic analysis was also completed on the process. Four conceptual commercial installations of the TEES process were evaluated for three food processing applications and one organic chemical manufacturing application. Net energy production (medium-Btu gas) was achieved in all four cases. The organic chemical application was found to be economically attractive in the present situation. Based on sensitivity studies included in the analysis, the three food processing cases will likely become attractive in the near future as waste disposal regulations tighten and disposal costs increase. 21 refs., 2 figs., 9 tabs.

  8. Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: Comparison of start-up, reactor stability and process performance

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh, Rangaraj [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France); Torrijos, Michel, E-mail: michel.torrijos@supagro.inra.fr [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France); Sousbie, Philippe [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France); Lugardon, Aurelien [Naskeo Environnment, 52 rue Paul Vaillant Couturier, F-92240 Malakoff (France); Steyer, Jean Philippe; Delgenes, Jean Philippe [INRA, UR50, Laboratoire de Biotechnologie de l’Environnement, Avenue des Etangs, Narbonne F-11100 (France)

    2014-05-01

    Highlights: • Single-phase and two-phase systems were compared for fruit and vegetable waste digestion. • Single-phase digestion produced a methane yield of 0.45 m{sup 3} CH{sub 4}/kg VS and 83% VS removal. • Substrate solubilization was high in acidification conditions at 7.0 kg VS/m{sup 3} d and pH 5.5–6.2. • Energy yield was lower by 33% for two-phase system compared to the single-phase system. • Simple and straight-forward operation favored single phase process over two-phase process. - Abstract: Single-phase and two-phase digestion of fruit and vegetable waste were studied to compare reactor start-up, reactor stability and performance (methane yield, volatile solids reduction and energy yield). The single-phase reactor (SPR) was a conventional reactor operated at a low loading rate (maximum of 3.5 kg VS/m{sup 3} d), while the two-phase system consisted of an acidification reactor (TPAR) and a methanogenic reactor (TPMR). The TPAR was inoculated with methanogenic sludge similar to the SPR, but was operated with step-wise increase in the loading rate and with total recirculation of reactor solids to convert it into acidification sludge. Before each feeding, part of the sludge from TPAR was centrifuged, the centrifuge liquid (solubilized products) was fed to the TPMR and centrifuged solids were recycled back to the reactor. Single-phase digestion produced a methane yield of 0.45 m{sup 3} CH{sub 4}/kg VS fed and VS removal of 83%. The TPAR shifted to acidification mode at an OLR of 10.0 kg VS/m{sup 3} d and then achieved stable performance at 7.0 kg VS/m{sup 3} d and pH 5.5–6.2, with very high substrate solubilization rate and a methane yield of 0.30 m{sup 3} CH{sub 4}/kg COD fed. The two-phase process was capable of high VS reduction, but material and energy balance showed that the single-phase process was superior in terms of volumetric methane production and energy yield by 33%. The lower energy yield of the two-phase system was due to the loss of

  9. Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: Comparison of start-up, reactor stability and process performance

    International Nuclear Information System (INIS)

    Ganesh, Rangaraj; Torrijos, Michel; Sousbie, Philippe; Lugardon, Aurelien; Steyer, Jean Philippe; Delgenes, Jean Philippe

    2014-01-01

    Highlights: • Single-phase and two-phase systems were compared for fruit and vegetable waste digestion. • Single-phase digestion produced a methane yield of 0.45 m 3 CH 4 /kg VS and 83% VS removal. • Substrate solubilization was high in acidification conditions at 7.0 kg VS/m 3 d and pH 5.5–6.2. • Energy yield was lower by 33% for two-phase system compared to the single-phase system. • Simple and straight-forward operation favored single phase process over two-phase process. - Abstract: Single-phase and two-phase digestion of fruit and vegetable waste were studied to compare reactor start-up, reactor stability and performance (methane yield, volatile solids reduction and energy yield). The single-phase reactor (SPR) was a conventional reactor operated at a low loading rate (maximum of 3.5 kg VS/m 3 d), while the two-phase system consisted of an acidification reactor (TPAR) and a methanogenic reactor (TPMR). The TPAR was inoculated with methanogenic sludge similar to the SPR, but was operated with step-wise increase in the loading rate and with total recirculation of reactor solids to convert it into acidification sludge. Before each feeding, part of the sludge from TPAR was centrifuged, the centrifuge liquid (solubilized products) was fed to the TPMR and centrifuged solids were recycled back to the reactor. Single-phase digestion produced a methane yield of 0.45 m 3 CH 4 /kg VS fed and VS removal of 83%. The TPAR shifted to acidification mode at an OLR of 10.0 kg VS/m 3 d and then achieved stable performance at 7.0 kg VS/m 3 d and pH 5.5–6.2, with very high substrate solubilization rate and a methane yield of 0.30 m 3 CH 4 /kg COD fed. The two-phase process was capable of high VS reduction, but material and energy balance showed that the single-phase process was superior in terms of volumetric methane production and energy yield by 33%. The lower energy yield of the two-phase system was due to the loss of energy during hydrolysis in the TPAR and the

  10. Catalytic biomass pyrolysis process

    Science.gov (United States)

    Dayton, David C.; Gupta, Raghubir P.; Turk, Brian S.; Kataria, Atish; Shen, Jian-Ping

    2018-04-17

    Described herein are processes for converting a biomass starting material (such as lignocellulosic materials) into a low oxygen containing, stable liquid intermediate that can be refined to make liquid hydrocarbon fuels. More specifically, the process can be a catalytic biomass pyrolysis process wherein an oxygen removing catalyst is employed in the reactor while the biomass is subjected to pyrolysis conditions. The stream exiting the pyrolysis reactor comprises bio-oil having a low oxygen content, and such stream may be subjected to further steps, such as separation and/or condensation to isolate the bio-oil.

  11. Reactor hydrodynamics during the reflood phase of a loss-of-coolant accident

    International Nuclear Information System (INIS)

    Gay, R.R.

    1977-01-01

    The thermohydraulics of a nuclear reactor during the reflood phase of a hypothetical loss-of-coolant accident can be represented by moving control volume methodology in which six control volumes are used to represent the downcomer, lower plenum, and reactor core. The one-dimensional, homogeneous, equilibrium constitutive equations for two-phase steam/water flow are solved in each control volume and connecting junctions. One of the three core control volumes represents the quench region; it changes size and position based on the axial location of the clad quench temperature and the condensed liquid level in the flow channel. The lengths of the remaining two core control volumes are determined by the position of the quench region. Simulation of actual reflood experiments demonstrates that the methodology predicts reflood-like flow oscillations and reproduces the correct trends in experimental data. The moving control volume methodology has proven itself as a valid concept for reflood hydrodynamics, but further development of the existing EFLOD code is required for simulation of actual reflood experiments

  12. Thermo-catalytic pyrolysis of waste polyethylene bottles in a packed bed reactor with different bed materials and catalysts

    International Nuclear Information System (INIS)

    Obeid, Farah; Zeaiter, Joseph; Al-Muhtaseb, Ala’a H.; Bouhadir, Kamal

    2014-01-01

    Highlights: • Thermo-catalytic pyrolysis of waste polyethylene bottles was investigated. • The highest yield of liquid (82%) was obtained over a cement powder bed. • Acidic catalysts narrowed the carbon chain length of the paraffins to C 10 –C 28 . • Combination of cement bed with HBeta catalyst gave the highest yield of liquid. • Significant yield of aromatics was obtained mainly naphthalene and D-limonene. - Abstract: Plastic waste is an increasing economic and environmental problem as such there is a great need to process this waste and reduce its environmental impact. In this work, the pyrolysis of high density polyethylene (HDPE) waste products was investigated using both thermal and catalytic cracking techniques. The experimental work was carried out using packed bed reactor operating under an inert atmosphere at 450 °C. Different reactor bed materials, including sand, cement and white clay were used to enhance the thermal cracking of HDPE. In addition, the catalytic effect of sodium hydroxide, HUSY and HBeta zeolite catalysts on the degradation of HDPE waste was also investigated. The reactor beds were found to significantly alter the yield as well as the product composition. Products such as paraffins (⩽C 44 ), olefins (⩽C 22 ), aromatics (⩽C 14 ) and alcohols (C 16 and C 17 ) were obtained at varying rates. The highest yield of liquid (82%) was obtained over a cement powder bed with a paraffin yield of 58%. The yield of paraffins and olefins followed separate paths, for paraffins it was found to increase in the order or Cement > White clay > Silica Sand, whereas for the olefins it was in the reverse order Silica Sand > White clay > Cement. The results obtained in this work exhibited a higher P/O ratio than expected, where the amount of generated paraffins was greater than 60% in most cases. Less olefin was generated as a consequence. This indicates that the product generated is more suited to be used as a fuel rather than as a chemical

  13. Catalytic combustion of the retentate gas from a CO2/H2 separation membrane reactor for further CO2 enrichment and energy recovery

    International Nuclear Information System (INIS)

    Hwang, Kyung-Ran; Park, Jin-Woo; Lee, Sung-Wook; Hong, Sungkook; Lee, Chun-Boo; Oh, Duck-Kyu; Jin, Min-Ho; Lee, Dong-Wook; Park, Jong-Soo

    2015-01-01

    The CCR (catalytic combustion reaction) of the retentate gas, consisting of 90% CO 2 and 10% H 2 obtained from a CO 2 /H 2 separation membrane reactor, was investigated using a porous Ni metal catalyst in order to recover energy and further enrich CO 2 . A disc-shaped porous Ni metal catalyst, namely Al[0.1]/Ni, was prepared by a simple method and a compact MCR (micro-channel reactor) equipped with a catalyst plate was designed for the CCR. CO 2 and H 2 concentrations of 98.68% and 0.46%, respectively, were achieved at an operating temperature of 400 °C, GHSV (gas-hourly space velocity) of 50,000 h −1 and a H 2 /O 2 ratio (R/O) of 2 in the unit module. In the case of the MCR, a sheet of the Ni metal catalyst was easily installed along with the other metal plates and the concentration of CO 2 in the retentate gas increased up to 96.7%. The differences in temperatures measured before and after the CCR were 31 °C at the product outlet and 19 °C at the N 2 outlet in the MCR. The disc-shaped porous metal catalyst and MCR configuration used in this study exhibit potential advantages, such as high thermal transfer resulting in improved energy recovery rate, simple catalyst preparation, and easy installation of the catalyst in the MCR. - Highlights: • The catalytic combustion of a retentate gas obtained from the H 2 /CO 2 separation membrane. • A disc-shaped porous nickel metal catalyst and a micro-channel reactor for catalytic hydrogen combustion. • CO 2 enrichment up to 98.68% at 400 °C, 50,000 h −1 and H 2 /O 2 ratio of 2.

  14. Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity

    International Nuclear Information System (INIS)

    Esteban, Ivan; Gonzalez-Garcia, M.C.; Maltoni, Michele; Martinez-Soler, Ivan; Schwetz, Thomas

    2017-01-01

    We perform a combined fit to global neutrino oscillation data available as of fall 2016 in the scenario of three-neutrino oscillations and present updated allowed ranges of the six oscillation parameters. We discuss the differences arising between the consistent combination of the data samples from accelerator and reactor experiments compared to partial combinations. We quantify the confidence in the determination of the less precisely known parameters θ 23 , δ CP , and the neutrino mass ordering by performing a Monte Carlo study of the long baseline accelerator and reactor data. We find that the sensitivity to the mass ordering and the θ 23 octant is below 1σ. Maximal θ 23 mixing is allowed at slightly more than 90% CL. The best fit for the CP violating phase is around 270 ∘ , CP conservation is allowed at slightly above 1σ, and values of δ CP ≃90 ∘ are disfavored at around 99% CL for normal ordering and higher CL for inverted ordering.

  15. Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor

    International Nuclear Information System (INIS)

    Ryskamp, J.M.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

    1992-07-01

    This report describes the EG ampersand G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options

  16. Contact structure for use in catalytic distillation

    Science.gov (United States)

    Jones, E.M. Jr.

    1984-03-27

    A method is described for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor, contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catalyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column. 7 figs.

  17. Joint European contribution to phase 5 of the BN600 hybrid reactor benchmark core analysis (European ERANOS formulaire for fast reactor core analysis)

    International Nuclear Information System (INIS)

    Rimpault, G.

    2004-01-01

    Hybrid UOX/MOX fueled core of the BN-600 reactor was endorsed as an international benchmark. BFS-2 critical facility was designed for full size simulation of core and shielding of large fast reactors (up tp 3000 MWe). Wide experimental programme including measurements of criticality, fission rates, rod worths, and SVRE was established. Four BFS-62 critical assemblies have been designed to study changes in BN-600 reactor physics-when moving to a hybrid MOX core. BFS-62-3A assembly is a full scale model of the BN-600 reactor hybrid core. it consists of three regions of UO 2 fuel, axial and radial fertile blankets, MOX fuel added in a ring between MC and OC zones, 120 deg sector of stainless steel reflector included within radial blanket. Joint European contribution to the Phase 5 benchmark analysis was performed by Serco Assurance Winfrith (UK) and CEA Cadarache (France). Analysis was carried out using Version 1.2 of the ERANOS code; and data system for advanced and fast reactor core applications. Nuclear data is based on the JEF2.2 nuclear data evaluation (including sodium). Results for Phase 5 of the BN-600 benchmark have been determined for criticality and SVRE in both diffusion and transport theory. Full details of the results are presented in a paper posted on the IAEA Business Collaborator website nad a brief summary is provided in this paper

  18. A Navier-Stokes/Cahn-Hilliard model for the simulation of three phase immiscible incompressible flows

    International Nuclear Information System (INIS)

    Celine Lapuerta; Bruno Piar; Franck Boyer; Philippe Angot; Michel Quintard

    2005-01-01

    This paper presents a Navier-Stokes/Cahn-Hilliard model designed for incompressible flows of three immiscible phases, characterized by different surface tensions and without phase change. This physical context is relevant to study the late phase of a hypothetical severe accident in a nuclear pressurized water reactor. Thanks to a suitable choice of a free energy and a particular form of the Cahn-Hilliard equation, the evolution of the three phases is described by only two order parameters. Moreover, this model allows the simulation of purely two phase flows as a limiting case: no artificial apparition of the third phase occurs if this later is physically absent which contrasts with others models of the literature. We examine the spreading of a liquid lens at the interface between two stratified phases. We present results showing that the method gives correct contact angles and pressure jumps, at equilibrium. (authors)

  19. Decommissioning three nuclear reactors at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Montoya, G.M.; Salazar, M.

    1992-01-01

    Three nuclear reactors, including the historic water boiler reactor, were decommissioned at Los Alamos National Laboratory (LANL). The decommissioning of the facilities involved removing the reactors and their associated components. Planning for the decommissioning operation included characterizing the facilities, estimating the costs of decommissioning operations, preparing environmental documentation, establishing systems to track costs and work progress, and preplanning to correct health and safety concerns in each facility

  20. Mass transfer in liquid phase catalytic exchange column of trickle bed type

    International Nuclear Information System (INIS)

    Yamanishi, Toshihiko; Iwai, Yasunori; Okuno, Kenji

    1995-09-01

    The mechanism of mass transfer in a liquid phase catalytic exchange column was discussed for a trickle bed type. A new model has been proposed on the basis of this mass transfer mechanism; and several problems for the previous reported models were pointed out in the derivation of the model. An overall rate equation was first derived from the vapor-hydrogen exchange in the model. The mass transfer for the vapor-hydrogen exchange was decomposed to the following three steps: the mass transfer in a gas boundary layer on a catalyst particle; the mass transfer within the pores in the catalyst; and the chemical reaction on the surface of the catalyst. The water-vapor scrubbing process was considered as a series of the mass transfers in gas and liquid boundary layers on the wetted surfaces of the catalyst and packings or wall of the column. Significant subjects to be studied were proposed from the viewpoint of the validity of the model and the optimization of the column. (author)

  1. FLICA-4 (version 1). A computer code for three dimensional thermal analysis of nuclear reactor cores

    International Nuclear Information System (INIS)

    Raymond, P.; Allaire, G.; Boudsocq, G.; Caruge, D.; Gramont, T. de; Toumi, I.

    1995-01-01

    FLICA-4 is a thermal-hydraulic computer code, developed at the French Atomic Energy Commission (CEA) for three-dimensional steady-state or transient two-phase flow, and aimed at design and safety thermal analysis of nuclear reactor cores. It is available for various UNIX workstations and CRAY computers under UNICOS.It is based on four balance equations which include three balance equations for the mixture and a mass balance equation for the less concentrated phase which allows for the calculation of non equilibrium flows such as sub-cooled boiling and superheated steam. A drift velocity model takes into account the velocity unbalance between phases. The equations are solved using a finite volume numerical scheme. Typical running time, specific features (coupling with other codes) and auxiliary programs are presented. 1 tab., 9 refs

  2. Mechanisms of catalytic cleavage of benzyl phenyl ether in aqueous and apolar phases

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiayue; Lu, Lu; Zhao, Chen; Mei, Donghai; Lercher, Johannes A.

    2014-03-01

    Catalytic pathways for the cleavage of ether bonds in benzyl phenyl ether (BPE) in liquid phase using Ni- and zeolite-based catalysts are explored. In the absence of catalysts, the C-O bond is selectively cleaved in water by hydrolysis, forming phenol and benzyl alcohol as intermediates, followed by alkylation. The hydronium ions catalyzing the reactions are provided by the dissociation of water at 523 K. Upon addition of HZSM-5, rates of hydrolysis and alkylation are markedly increased in relation to proton concentrations. In the presence of Ni/SiO2, the selective hydrogenolysis dominates for cleaving the Caliphatic-O bond. Catalyzed by the dual-functional Ni/HZSM-5, hydrogenolysis occurs as the major route rather than hydrolysis (minor route). In apolar undecane, the non-catalytic thermal pyrolysis route dominates. Hydrogenolysis of BPE appears to be the major reaction pathway in undecane in the presence of Ni/SiO2 or Ni/HZSM-5, almost completely suppressing radical reactions. Density functional theory (DFT) calculations strongly support the proposed C-O bond cleavage mechanisms on BPE in aqueous and apolar phases. These calculations show that BPE is initially protonated and subsequently hydrolyzed in the aqueous phase. Finally, DFT calculations suggest that the radical reactions in non-polar solvents lead to primary benzyl and phenoxy radicals in undecane, which leads to heavier condensation products as long as metals are absent for providing dissociated hydrogen.

  3. Gas pollutant cleaning by a membrane reactor

    Directory of Open Access Journals (Sweden)

    Kaldis Sotiris

    2006-01-01

    Full Text Available An alternative technology for the removal of gas pollutants at the integrated gasification combined cycle process for power generation is the use of a catalytic membrane reactor. In the present study, ammonia decomposition in a catalytic reactor, with a simultaneous removal of hydrogen through a ceramic membrane, was investigated. A Ni/Al2O3 catalyst was prepared by the dry and wet impregnation method and characterized by the inductively coupled plasma method, scanning electron microscopy, X-ray diffraction, and N2 adsorption before and after activation. Commercially available a-Al2O3 membranes were also characterized and the permeabilities and permselectivities of H2, N2, and CO2 were measured by the variable volume method. In parallel with the experimental analysis, the necessary mathematical models were developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. .

  4. The gas-solid trickle-flow reactor for the catalytic oxidation of hydrogen sulphide: a trickle-phase model

    NARCIS (Netherlands)

    Verver, A.B.; van Swaaij, Willibrordus Petrus Maria

    1987-01-01

    The oxidation of H2S by O2 producing elemental sulphur has been studied at temperatures of 100–300°C and at atmospheric pressure in a laboratory-scale gas-solid trickle-flow reactor. In this reactor one of the reaction products, i.e. sulphur, is removed continuously by flowing solids. A porous,

  5. The Catalytic Activity of Modified Zeolite Lanthanum on the Catalytic Cracking of Al-Duara Atmospheric Distillation Residue

    Directory of Open Access Journals (Sweden)

    Karim Khalifa Esgair

    2016-03-01

    Full Text Available Atmospheric residue fluid catalytic cracking was selected as a probe reaction to test the catalytic performance of modified NaY zeolites and prepared NaY zeolites. Modified NaY zeolites have been synthesized by simple ion exchange methods. Three samples of modified zeolite Y have been obtained by replacing the sodium ions in the original sample with lanthanum and the weight percent added are 0.28, 0.53, and 1.02 respectively. The effects of addition of lanthanum to zeolite Y in different weight percent on the cracking catalysts were investigated using an experimental laboratory plant scale of fluidized bed reactor. The experiments have been performed with weight hourly space velocity (WHSV range of 6 to 24 h-1, and the range of temperature from 450 to 510 oC. The activity of the catalyst with 1.02 wt% lanthanum has been shown to be much greater than that of the sample parent NaY. Also it was observed that the addition of the lanthanum causes an increase in the thermal stability of the zeolite.

  6. [Synergetic effects of silicon carbide and molecular sieve loaded catalyst on microwave assisted catalytic oxidation of toluene].

    Science.gov (United States)

    Wang, Xiao-Hui; Bo, Long-Li; Liu, Hai-Nan; Zhang, Hao; Sun, Jian-Yu; Yang, Li; Cai, Li-Dong

    2013-06-01

    Molecular sieve loaded catalyst was prepared by impregnation method, microwave-absorbing material silicon carbide and the catalyst were investigated for catalytic oxidation of toluene by microwave irradiation. Research work examined effects of silicon carbide and molecular sieve loading Cu-V catalyst's mixture ratio as well as mixed approach changes on degradation of toluene, and characteristics of catalyst were measured through scanning electron microscope, specific surface area test and X-ray diffraction analysis. The result showed that the fixed bed reactor had advantages of both thermal storage property and low-temperature catalytic oxidation when 20% silicon carbide was filled at the bottom of the reactor, and this could effectively improve the utilization of microwave energy as well as catalytic oxidation efficiency of toluene. Under microwave power of 75 W and 47 W, complete-combustion temperatures of molecular sieve loaded Cu-V catalyst and Cu-V-Ce catalyst to toluene were 325 degrees C and 160 degrees C, respectively. Characteristics of the catalysts showed that mixture of rare-earth element Ce increased the dispersion of active components in the surface of catalyst, micropore structure of catalyst effectively guaranteed high adsorption capacity for toluene, while amorphous phase of Cu and V oxides increased the activity of catalyst greatly.

  7. A reactor/separator device for use in automated solid phase immunoassay

    International Nuclear Information System (INIS)

    Farina, P.R.; Ordonez, K.P.; Siewers, I.J.

    1979-01-01

    A reactor/separator device is described for use in automated solid phase immunoassay, including radioimmunoassays. The device is a column fitted at the bottom portion with a water impermeable disc which can hold, for example, immunoabsorbents, immobilized antisera or ion exchange resins. When the contents of the column supported by the disc are brought into contact with an aqueous phase containing reagents or reactants, a chemical reaction is initiated. After the reaction, centrifugally applied pressure forces the aqueous phase through the filter disc making it water permeable and separating a desired component for subsequent analysis. The reactor/separator device of the present invention permits kinetic solid phase assays (non-equilibrium conditions) to be carried out which would be difficult to perform by other conventional methods. (author)

  8. Experimental and theoretical studies on hydrogenation of olefins in multiphase fixed bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Battsengel, B.; Datsevitch, L.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2003-07-01

    Multi phase reactors like trickle bed systems are frequently used for gas-liquid reactions. In general, they have complex mass and heat transfer characteristics; scale-up is therefore difficult. The present work focuses on the role of mass transfer on the effective reaction rate, taking catalytic octene hydrogenation as a model reaction. The reaction rate in a trickle bed reactor is by a factor of about 20 smaller than (theoretically) in the absence of any mass transfer limitations. Based on the experimental results, the so-called pre-saturation concept is presented, where only the liquid saturated with hydrogen is fed into the reactor. The effective reaction rate in this two phase system (liquid and solid cat.) is equal or even higher than in a trickle bed reactor. Scale-up problems do not occur, and the pre-saturation concept has also other advantages (lower energy consumption), as discussed in detail in this paper. (orig.)

  9. Theoretical analysis of nuclear reactors (Phase II), I-V, Part III, Reactor poisoning; Razrada metoda teorijske analize nuklearnih reaktora (II faza) I-V, III Deo, Zatrovanje reaktora, II faza

    Energy Technology Data Exchange (ETDEWEB)

    Pop-Jordanov, J [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Serbia and Montenegro)

    1962-10-15

    This phase is dealing with influence of all the fission products except Xe{sup 135} on the reactivity of a reactor, usually named as reactor poisoning. The first part of the report is a review of methods for calculation of reactor poisoning. The second part shows the most frequently used method for calculation of cross sections and yields of pseudo products (for thermal neutrons). The system of equations was adopted dependent on the conditions of the available computer system. It is described in part three. Detailed method for their application is described in part four and results obtained are presented in part five.

  10. Polymer and Membrane Design for Low Temperature Catalytic Reactions

    KAUST Repository

    Villalobos, Luis Francisco; Xie, Yihui; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2016-01-01

    Catalytically active asymmetric membranes have been developed with high loadings of palladium nanoparticles located solely in the membrane's ultrathin skin layer. The manufacturing of these membranes requires polymers with functional groups, which can form insoluble complexes with palladium ions. Three polymers have been synthesized for this purpose and a complexation/nonsolvent induced phase separation followed by a palladium reduction step is carried out to prepare such membranes. Parameters to optimize the skin layer thickness and porosity, the palladium loading in this layer, and the palladium nanoparticles size are determined. The catalytic activity of the membranes is verified with the reduction of a nitro-compound and with a liquid phase Suzuki-Miyaura coupling reaction. Very low reaction times are observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Polymer and Membrane Design for Low Temperature Catalytic Reactions

    KAUST Repository

    Villalobos, Luis Francisco

    2016-02-29

    Catalytically active asymmetric membranes have been developed with high loadings of palladium nanoparticles located solely in the membrane\\'s ultrathin skin layer. The manufacturing of these membranes requires polymers with functional groups, which can form insoluble complexes with palladium ions. Three polymers have been synthesized for this purpose and a complexation/nonsolvent induced phase separation followed by a palladium reduction step is carried out to prepare such membranes. Parameters to optimize the skin layer thickness and porosity, the palladium loading in this layer, and the palladium nanoparticles size are determined. The catalytic activity of the membranes is verified with the reduction of a nitro-compound and with a liquid phase Suzuki-Miyaura coupling reaction. Very low reaction times are observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Phenomenological modeling and study of a catalytic membrane reactor for water detritiation

    International Nuclear Information System (INIS)

    Mascarade, Jeremy

    2015-01-01

    Tritium is produced in light and heavy water reactor fuel by ternary fission or neutron activation. This by-product is used as fuel in fusion fuel reactors such as JET in Culham or ITER in Cadarache (France). The growing interest of this research area will make the tritium fluxes increase; it is then worth addressing the question of its future whether it will be used or flushed out from liquid and gaseous effluents or waste. This thesis studies the recovery of tritium as fuel for fusion machines by means of packed bed membrane reactor (PBMR). Such a reactor combines catalytic conversion of tritiated water thanks to isotope exchange with hydrogen according to the reversible reaction Q 2 O+H 2 ↔H 2 O+Q 2 (Q=H,D or T) and selective permeation of Q 2 through Pd-based membrane. In fact, palladium has the ability to bond with hydrogen isotopes, creating a selective permeation barrier. In the PBMR, thanks to the reaction products withdrawal, these permeation fluxes drive the heavy water conversion rate, to higher values than those reached in conventional fixed bed reactors (Le Chatelier's law). In order to study PBMRs, the CEA has built a test bench, using deuterium instead of tritium, allowing the analysis of their conversion and separation performances at the laboratory scale. An in-house method has been developed to determine simultaneously hydrogen and water isotopologues content by mass spectrometer analysis. It was experimentally shown that the activity of Ni-based catalyst used in this study was sufficient to allow the isotope exchange reactions to reach their thermodynamic equilibrium in a very short time. In addition, hydrogen permeation flux was shown to follow a Richardson's law. Sensitivity studies performed on the PBMR's main operating parameters revealed that its global performance (i.e. de-deuteration factor) increases with the temperature, the transmembrane pressure difference, the sweep gas flow rate and the residence time in the catalyst

  13. New process model proves accurate in tests on catalytic reformer

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar-Rodriguez, E.; Ancheyta-Juarez, J. (Inst. Mexicano del Petroleo, Mexico City (Mexico))

    1994-07-25

    A mathematical model has been devised to represent the process that takes place in a fixed-bed, tubular, adiabatic catalytic reforming reactor. Since its development, the model has been applied to the simulation of a commercial semiregenerative reformer. The development of mass and energy balances for this reformer led to a model that predicts both concentration and temperature profiles along the reactor. A comparison of the model's results with experimental data illustrates its accuracy at predicting product profiles. Simple steps show how the model can be applied to simulate any fixed-bed catalytic reformer.

  14. Immediate catalytic upgrading of soybean shell bio-oil

    International Nuclear Information System (INIS)

    Bertero, Melisa; Sedran, Ulises

    2016-01-01

    The pyrolysis of soybean shell and the immediate catalytic upgrading of the bio-oil over an equilibrium FCC catalyst was studied in order to define its potential as a source for fuels and chemicals. The experiments of pyrolysis and immediate catalytic upgrading were performed at 550 °C during 7 min with different catalysts to oil relationships in an integrated fixed bed pyrolysis-conversion reactor. The results were compared under the same conditions against those from pine sawdust, which is a biomass source commonly used for the production of bio-oil. In the pyrolysis the pine sawdust produced more liquids (61.4%wt.) than the soybean shell (54.7%wt.). When the catalyst was presented, the yield of hydrocarbons increased, particularly in the case of soybean shell, which was four time higher than in the pyrolysis. The bio-oil from soybean shell produced less coke (between 3.1 and 4.3%wt.) in its immediate catalytic upgrading than that from pine sawdust (between 5 and 5.8%wt.), due to its lower content of phenolic and other high molecular weight compounds (three and five times less, respectively). Moreover, soybean shell showed a higher selectivity to hydrocarbons in the gasoline range, with more olefins and less aromatic than pine sawdust. - Highlights: • Soybean shell is a possible source of fuels with benefits as compared to pine sawdust. • Bio-oils upgraded over FCC catalyst in an integrated pyrolysis-conversion reactor. • Pine sawdust bio-oil had more phenols than soybean shell bio-oil. • Soybean shell bio-oil produced more hydrocarbons in gasoline range and less coke.

  15. High-Temperature Compatible Nickel Silicide Thermometer And Heater For Catalytic Chemical Microreactors

    DEFF Research Database (Denmark)

    Jensen, Søren; Quaade, U.J.; Hansen, Ole

    2005-01-01

    Integration of heaters and thermometers is important for agile and accurate control and measurement of the thermal reaction conditions in microfabricated chemical reactors (microreactors). This paper describes development and operation of nickel silicide heaters and temperature sensors...... for temperatures exceeding 700 °C. The heaters and thermometers are integrated with chemical microreactors for heterogeneous catalytic conversion of gasses, and thermally activated catalytic conversion of CO to CO2 in the reactors is demonstrated. The heaters and thermometers are shown to be compatible...

  16. In-situ stripping of H{sub 2}S in gasoil hydrodesulphurization - reactor design considerations

    Energy Technology Data Exchange (ETDEWEB)

    Nava, J.A.O.; Krishna, R. [Amsterdam Univ., Dept. of Chemical Engineering, Amsterdam (Netherlands)

    2004-02-01

    In order to meet future diesel specifications the sulphur content of diesel would need to be reduced to below 50 ppm. This requirement would require improved reactor configurations. In this study we examine the benefits of counter-current contacting of gas oil with H{sub 2}, over conventional co-current contacting in a trickle bed hydrodesulphurization (HDS) reactor. In counter-current contacting, we achieve in-situ stripping of H{sub 2}S from the liquid phase; this is beneficial to the HDS kinetics. A comparison simulation study shows that counter-current contacting would require about 20% lower catalyst load than co-current contacting. However, counter-current contacting of gas and liquid phases in conventionally used HDS catalysts, of 1.5 mm sizes, is not possible due to flooding limitations. The catalysts need to be housed in special wire gauze envelopes as in the catalytic bales or KATAPAK-S configurations. A preliminary hardware design of a counter-current HDS reactor using catalytic bales was carried out in order to determine the technical feasibility. Using a realistic sulphur containing feedstock, the target of 50 ppm S content of desulphurized oil could be met in a reactor of reasonable dimensions. The study also underlines the need for accurate modelling of thermal effects during desulphurization. Our study also shows that interphase mass transfer is unlikely to be a limiting factor and there is a need to develop improved reactor configurations allowing for increased catalyst loading, at the expense of gas-liquid interfacial area. (Author)

  17. Hydrogen production by aqueous phase catalytic reforming of glycerine

    International Nuclear Information System (INIS)

    Ozguer, Derya Oncel; Uysal, Bekir Zuehtue

    2011-01-01

    Hydrogen is believed to be the one of the main energy carriers in the near future. In this research glycerine, which is produced in large quantities as a by-product of biodiesel process, was converted to hydrogen aiming to contribute to clean energy initiative. Conversion of glycerol to hydrogen was achieved via aqueous-phase reforming (APR) with Pt/Al 2 O 3 catalyst. The experiments were carried out in an autoclave reactor and a continuous fixed-bed reactor. The effects of reaction temperature (160-280 o C), feed flow rate (0.05-0.5 mL/dak) and feed concentration (5-85 wt-% glycerine) on product distribution were investigated. Optimum temperature for hydrogen production with APR was determined as 230 o C. Maximum gas production rate was found at the feed flow rates around 0.1 mL/min. It was also found that hydrogen concentration in the gas product increased with decreasing glycerol concentration in the feed.

  18. Catalytic process for tritium exchange reaction

    International Nuclear Information System (INIS)

    Hansoo Lee; Kang, H.S.; Paek, S.W.; Hongsuk Chung; Yang Geun Chung; Sook Kyung Lee

    2001-01-01

    The catalytic activities for a hydrogen isotope exchange were measured through the reaction of a vapor and gas mixture. The catalytic activity showed to be comparable with the published data. Since the gas velocity is relatively low, the deactivation was not found clearly during the 5-hour experiment. Hydrogen isotope transfer experiments were also conducted through the liquid phase catalytic exchange reaction column that consisted of a catalytic bed and a hydrophilic bed. The efficiencies of both the catalytic and hydrophilic beds were higher than 0.9, implying that the column performance was excellent. (author)

  19. Gas pollutant cleaning by a membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Topis, S.; Koutsonikolas, D.; Kaldis, S. (and others) [Aristotle University of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering

    2005-07-01

    An alternative technology for the removal of gas pollutants at the integrated gasification combined cycle process for power generation is the use of a catalytic membrane reactor. In the present study, ammonia decomposition in a catalytic reactor, with simultaneous removal of hydrogen through a ceramic membrane, was investigated. A Ni/Al{sub 2}O{sub 3} catalyst was prepared by the dry and wet impregnation method and characterized by ICP, SEM, XRD and N{sub 2} adsorption before and after activation. Commercially available {alpha}-Al{sub 2}O{sub 3} membranes were also characterized and the permeabilities and selectivities of H{sub 2}, N{sub 2} and CO{sub 2} were measured by the variable volume method. In parallel with the experimental analysis, the necessary mathematical models were developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. 5 refs., 6 figs., 1 tab.

  20. Gas pollutant cleaning by a membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    George E. Skodras; Sotiris Kaldis; Savas G. Topis; Dimitris Koutsonikolas; George P. Sakellaropoulos [Aristotle University of Thessaloniki, Thessaloniki (Greece). Chemical Process Engineering Laboratory, Dept. of Chemical Engineering

    2006-07-01

    An alternative technology for the removal of gas pollutants at the intergrated gasification combined cycle process for power generation is the use of a catalytic membrane reactor. In the present study, ammonia decomposition in a catalytic reactor, with a simultaneous removal of hydrogen through a ceramic membrane, was investigated. A Ni/Al{sub 2}O{sub 3} catalyst was prepared by the dry and wet impregnation method and characterized by ICP, SEM, XRD and N{sub 2} adsorption before and after activation. Commercially available {alpha}-Al{sub 2}O{sub 3} membranes were also characterized and the permeabilities and permselectivities of H{sub 2}, N{sub 2} and CO{sub 2} were measured by the variable volume method. In parallel with the experimental analysis, the necessary mathematical models were developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. 9 refs., 6 figs., 1 tab.

  1. Two-phase flow heat transfer in nuclear reactor systems

    International Nuclear Information System (INIS)

    Koncar, Bostjan; Krepper, Eckhard; Bestion, Dominique; Song, Chul-Hwa; Hassan, Yassin A.

    2013-01-01

    Complete text of publication follows: Heat transfer and phase change phenomena in two-phase flows are often encountered in nuclear reactor systems and are therefore of paramount importance for their optimal design and safe operation.The complex phenomena observed especially during transient operation of nuclear reactor systems necessitate extensive theoretical and experimental investigations. This special issue brings seven research articles of high quality. Though small in number, they cover a wide range of topics, presenting high complexity and diversity of heat transfer phenomena in two-phase flow. In the last decades a vast amount of research has been devoted to theoretical work and computational simulations, yet the experimental work remains indispensable for understanding of two-phase flow phenomena and for model validation purposes. This is reflected also in this issue, where only one article is purely experimental, while three of them deal with theoretical modelling and the remaining three with numerical simulations. The experimental investigation of the critical heat flux (CHF) phenomena by means of photographic study is presented in the paper of J. Park et al. They have used a high-speed camera system to observe the transient boiling characteristics on a thin horizontal cylinder submerged in a pool of water or highly wetting liquid. Experiments show that the initial boiling process is strongly affected by the properties and wettability of the liquid. The authors have stressed the importance of the local scale observation leading to better understanding of the transient CHF phenomena. In the article of G. Espinosa-Paredes et al. a theoretical work concerning the derivation of transport equations for two-phase flow is presented. The author proposes a novel approach based on derivation of nonlocal volume averaged equations which contain new terms related to nonlocal transport effects. These non-local terms act as coupling elements between the phenomena

  2. Thermal properties of reactors and some instabilities

    Energy Technology Data Exchange (ETDEWEB)

    Hearfield, F.

    1979-03-01

    A discussion covers the thermal properties of adiabatic reactors and the failure of the reaction rate to increase with increasing temperature due to depletion of reagents, transition to mass transfer control, or reduction of adsorption at catalytic surfaces; non-adiabatic reactors and factors upsetting the balance between heat generation and removal and possibly causing a runaway reaction, including loss of agitation loop circulation, and cooling or heating media; multiple steady states, i.e. multiple balances between heat generation and removal, for a continuous stirred tank reactor and the conditions necessary for stability of a steady state; and the temperature distribution in a tubular reactor, including mechanisms for feedback of heat from downstream to upstream in the reactor, e.g. heat conduction and radiation from hot catalyst, or an added heat exchanger. Three case histories are presented in which reactants accumulated in the reactors and cooling was decreased, permitting the occurrence of violent runaway reactions.

  3. Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity

    Energy Technology Data Exchange (ETDEWEB)

    Esteban, Ivan [Departament de Fisíca Quàntica i Astrofísica and Institut de Ciencies del Cosmos,Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Gonzalez-Garcia, M.C. [Departament de Fisíca Quàntica i Astrofísica and Institut de Ciencies del Cosmos,Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA),Pg. Lluis Companys 23, 08010 Barcelona (Spain); C.N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook,Stony Brook, NY 11794-3840 (United States); Maltoni, Michele; Martinez-Soler, Ivan [Instituto de Física Teórica UAM/CSIC, Universidad Autónoma de Madrid,Calle de Nicolás Cabrera 13-15, Cantoblanco, E-28049 Madrid (Spain); Schwetz, Thomas [Institut für Kernphysik, Karlsruher Institut für Technologie (KIT),D-76021 Karlsruhe (Germany)

    2017-01-20

    We perform a combined fit to global neutrino oscillation data available as of fall 2016 in the scenario of three-neutrino oscillations and present updated allowed ranges of the six oscillation parameters. We discuss the differences arising between the consistent combination of the data samples from accelerator and reactor experiments compared to partial combinations. We quantify the confidence in the determination of the less precisely known parameters θ{sub 23}, δ{sub CP}, and the neutrino mass ordering by performing a Monte Carlo study of the long baseline accelerator and reactor data. We find that the sensitivity to the mass ordering and the θ{sub 23} octant is below 1σ. Maximal θ{sub 23} mixing is allowed at slightly more than 90% CL. The best fit for the CP violating phase is around 270{sup ∘}, CP conservation is allowed at slightly above 1σ, and values of δ{sub CP}≃90{sup ∘} are disfavored at around 99% CL for normal ordering and higher CL for inverted ordering.

  4. Phase 1 study of metallic cask systems for spent fuel management from reactor to repository. Volume I. Phase 1 study summary

    International Nuclear Information System (INIS)

    1986-02-01

    It was proposed to perform a systems evaluation of metallic cask systems in order to define and examine the use of various metallic cask concepts or combination of concepts for the overall inventory management of spent fuel starting with its discharge from reactors to its emplacement in geologic repositories. This systems evaluation occurs in three phases. This three phase systems evaluation leads to a definition and recommendation of a sound and practical metallic cask system to accomplish efficient and effective management of spent fuel in the back end of the nuclear fuel cycle. Phase 1 Study objectives: establish system-wide functional criteria and assumptions; perform the systems engineering needed to define the metallic cask concepts and their feasibility; perform a screening evaluation of the technical and economic merits of the concepts; and recommend those to be included for a more detailed systems evaluation in Phase 2. Phase 2 Study objectives: refine the system-wide functional criteria and assumptions; perform the design engineering needed to enhance the validity and workability of those concepts recommended in Phase 1; and perform a more detailed systems evaluation. Phase 3 Study objectives: conclude the systems evaluation and develop an implementation plan. Volume I presents an overview of the detailed systems evaluation presented in Volume II

  5. Phase composition and catalytic properties of oxide multicomponent molybdenum-containing catalysts for partial oxidation of propylene

    International Nuclear Information System (INIS)

    Malakhov, V.V.; Vlasov, A.A.; Boldyreva, N.N.; Dovlitova, L.S.; Plyasova, L.M.; Andrushkevich, T.V.; Kuznetsova, T.G.

    1996-01-01

    The catalytic properties and phase composition of multicomponent molybdenum-containing catalyst treated under various redox conditions have been studied. The phase composition has been considered by the methods of X-ray phase analysis and noncalibrated methods of differentiating dissolution (DD). Using the DD method the data on element composition, stoichiometry and quantitative content of phases of complex molybdates have been obtained for the first time. Data on modification of basic phases of the catalyst-cobalt and iron molybdates - by other cations from its composition suggest that the mechanism of action of the multicomponent catalyst is defined by the properties of one or several formed modified phases combining all the functions of an effective catalyst. 18 refs., 7 figs., 2 tabs

  6. Reversing flow catalytic converter for a natural gas/diesel dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Liu, E.; Checkel, M.D. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering; Hayes, R.E. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering; Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering; Zheng, M.; Mirosh, E. [Alternative Fuel Systems Inc., Calgary, AB (Canada)

    2001-07-01

    An experimental and modelling study was performed for a reverse flow catalytic converter attached to a natural gas/diesel dual fuel engine. The catalytic converter had a segmented ceramic monolith honeycomb substrate and a catalytic washcoat containing a predominantly palladium catalyst. A one-dimensional single channel model was used to simulate the operation of the converter. The kinetics of the CO and methane oxidation followed first-order behaviour. The activation energy for the oxidation of methane showed a change with temperature, dropping from a value of 129 to 35 kJ/mol at a temperature of 874 K. The reverse flow converter was able to achieve high reactor temperature under conditions of low inlet gas temperature, provided that the initial reactor temperature was sufficiently high. (author)

  7. Mass transfer model liquid phase catalytic exchange column simulation applicable to any column composition profile

    Energy Technology Data Exchange (ETDEWEB)

    Busigin, A. [NITEK USA Inc., Ocala, FL (United States)

    2015-03-15

    Liquid Phase Catalytic Exchange (LPCE) is a key technology used in water detritiation systems. Rigorous simulation of LPCE is complicated when a column may have both hydrogen and deuterium present in significant concentrations in different sections of the column. This paper presents a general mass transfer model for a homogenous packed bed LPCE column as a set of differential equations describing composition change, and equilibrium equations to define the mass transfer driving force within the column. The model is used to show the effect of deuterium buildup in the bottom of an LPCE column from non-negligible D atom fraction in the bottom feed gas to the column. These types of calculations are important in the design of CECE (Combined Electrolysis and Catalytic Exchange) water detritiation systems.

  8. An atmospheric pressure flow reactor: Gas phase kinetics and mechanism in tropospheric conditions without wall effects

    Science.gov (United States)

    Koontz, Steven L.; Davis, Dennis D.; Hansen, Merrill

    1988-01-01

    A new type of gas phase flow reactor, designed to permit the study of gas phase reactions near 1 atm of pressure, is described. A general solution to the flow/diffusion/reaction equations describing reactor performance under pseudo-first-order kinetic conditions is presented along with a discussion of critical reactor parameters and reactor limitations. The results of numerical simulations of the reactions of ozone with monomethylhydrazine and hydrazine are discussed, and performance data from a prototype flow reactor are presented.

  9. Design of a periodically operated SCR reactor

    International Nuclear Information System (INIS)

    Kotter, M.; Lintz, H.G.; Turek, T.

    1993-01-01

    A new NO x abatement process uses the rotating Ljungstroem air heater of the power plant for the selective catalytic reduction (SCR) of nitrogen monoxide with ammonia. For this purpose the air heater elements are covered by a catalytically active layer. The transformation can be carried out by simple replacement of the original air heater elements. Thus nitrogen monoxide control is possible without requiring major modifications of existing power plant equipment. Two oxidic catalysts have been developed to be employed in the different temperature sections of the air heater. The activity of the catalysts has been quantified with the aid of laboratory scale experiments. The results can be described using a simple expression for the rate of the chemical reaction. NO conversion and NH 3 slip to be expected in a catalytically active Ljungstroem heat exchanger are calculated with a reactor model taking into account the gas phase mass transfer resistances. The calculations show that the proposed device can be used if the NO concentration in the flue gas does not exceed 300 ppm. Recently Kraftanlagen AG, Heidelberg, installed a catalyst air heater system at Mandalay Generating Station in Oxnard, California. The comparison of the predicted results with preliminary experimental data proves the validity of the chosen reactor model. Under the given conditions NO conversions of more than 60% can be achieved maintaining the NH 3 slip below the specified value of 10 ppm. (orig.). 19 figs., 35 refs [de

  10. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption – Catalytic wet air oxidation on activated carbons

    International Nuclear Information System (INIS)

    Quesada-Peñate, I.; Julcour-Lebigue, C.; Jáuregui-Haza, U.J.; Wilhelm, A.M.; Delmas, H.

    2012-01-01

    Highlights: ► Three activated carbons (AC) compared as adsorbents and oxidation catalysts. ► Similar evolution for catalytic and adsorptive properties of AC over reuses. ► Acidic and mesoporous AC to be preferred, despite lower initial efficiency. ► Oxidative degradation of paracetamol improves biodegradability. ► Convenient hybrid adsorption–regenerative oxidation process for continuous treatment. - Abstract: The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  11. Biocatalytic methanation of hydrogen and carbon dioxide in an anaerobic three-phase system.

    Science.gov (United States)

    Burkhardt, M; Koschack, T; Busch, G

    2015-02-01

    A new type of anaerobic trickle-bed reactor was used for biocatalytic methanation of hydrogen and carbon dioxide under mesophilic temperatures and ambient pressure in a continuous process. The conversion of gaseous substrates through immobilized hydrogenotrophic methanogenic archaea in a biofilm is a unique feature of this type of reactor. Due to the formation of a three-phase system on the carrier surface and operation as a plug flow reactor without gas recirculation, a complete reaction could be observed. With a methane concentration higher than c(CH4) = 98%, the product gas exhibits a very high quality. A specific methane production of P(CH4) = 1.49 Nm(3)/(m(3)(SV) d) was achieved at a hydraulic loading rate of LR(H2) = 6.0 Nm(3)/(m(3)(SV) d). The relation between trickle flow through the reactor and productivity could be shown. An application for methane enrichment in combination with biogas facilities as a source of carbon dioxide has also been positively proven. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Catalytic cracking of the top phase fraction of bio-oil into upgraded liquid oil

    International Nuclear Information System (INIS)

    Sunarno; Rochmadi,; Mulyono, Panut; Budiman, Arief

    2016-01-01

    The energy consumption is increasing, while oil reserves as a primary energy resource are decreasing, so that is the reason seeking alternative energy source is inevitable. Biomass especially oil palm empty fruit bunches (EFB) which is abundant in Indonesia can be processed into bio-oil by pyrolysis process. The potential for direct substitution of bio-oil for petroleum may be limited due to the high viscosity, high oxygen content, low heating value, and corrosiveness. Consequently, upgrading of the bio-oil before use is inevitable to give a wider variety of applications of its liquid product. Furthermore, upgrading process to improve the quality of bio-oil by reduction of oxygenates involves process such as catalytic cracking. The objective of this research is to study the effect of operation temperature on yield and composition of upgraded liquid oil and to determine physical properties. Bio-oil derived from EFB was upgraded through catalytic cracking using series tubular reactor under atmospheric pressure on a silica-alumina catalyst. Results show that increasing temperature from 450 to 600 °C, resulting in decreasing of upgraded liquid oil (ULO) yield, decreasing viscosity and density of ULO, but increasing in calorimetric value of ULO. The increasing temperature of cracking also will increase the concentration of gasoline and kerosene in ULO.

  13. Catalytic cracking of the top phase fraction of bio-oil into upgraded liquid oil

    Energy Technology Data Exchange (ETDEWEB)

    Sunarno [Chemical Engineering Department, Riau University, Kampus Binawidya KM 12,5 Pekanbaru 28293 (Indonesia); Chemical Engineering Department, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur,Yogyakarta 55281 (Indonesia); Rochmadi,; Mulyono, Panut [Chemical Engineering Department, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur,Yogyakarta 55281 (Indonesia); Budiman, Arief, E-mail: abudiman@ugm.ac.id [Chemical Engineering Department, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur,Yogyakarta 55281(Indonesia); Center for Energy Studies, Gadjah Mada University, Sekip K1A, Yogyakarta 55281 (Indonesia)

    2016-06-03

    The energy consumption is increasing, while oil reserves as a primary energy resource are decreasing, so that is the reason seeking alternative energy source is inevitable. Biomass especially oil palm empty fruit bunches (EFB) which is abundant in Indonesia can be processed into bio-oil by pyrolysis process. The potential for direct substitution of bio-oil for petroleum may be limited due to the high viscosity, high oxygen content, low heating value, and corrosiveness. Consequently, upgrading of the bio-oil before use is inevitable to give a wider variety of applications of its liquid product. Furthermore, upgrading process to improve the quality of bio-oil by reduction of oxygenates involves process such as catalytic cracking. The objective of this research is to study the effect of operation temperature on yield and composition of upgraded liquid oil and to determine physical properties. Bio-oil derived from EFB was upgraded through catalytic cracking using series tubular reactor under atmospheric pressure on a silica-alumina catalyst. Results show that increasing temperature from 450 to 600 °C, resulting in decreasing of upgraded liquid oil (ULO) yield, decreasing viscosity and density of ULO, but increasing in calorimetric value of ULO. The increasing temperature of cracking also will increase the concentration of gasoline and kerosene in ULO.

  14. Three-dimensional harmonic control of a nuclear reactor

    International Nuclear Information System (INIS)

    Potapenko, P.T.

    1989-01-01

    Algorithms for neutron flux control based on harmonic three-dimensional core are considered. The essence of the considered approach includes determination of harmonics amplitudes by signals self-powered detectors placed in reactor channels and reconstruction of neutron field distribution over the reactor core volume using the data obtained. Neutron field harmonic control is shown to be reduced to independent measurement and calculation of height harmonics in channels using techniques developed for channel power control

  15. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y. S. [Arizona State Univ., Tempe, AZ (United States)

    2015-01-31

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO2 permeance in the range of 0.5-5×10-7 mol·m-2·s-1·Pa-1 in 500-900°C and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a

  16. Construction of an experimental simplified model for determining of flow parameters in chemical reactors, using nuclear techniques

    International Nuclear Information System (INIS)

    Araujo Paiva, J.A. de.

    1981-03-01

    The development of a simplified experimental model for investigation of nuclear techniques to determine the solid phase parameters in gas-solid flows is presented. A method for the measurement of the solid phase residence time inside a chemical reactor of the type utilised in the cracking process of catalytic fluids is described. An appropriate radioactive labelling technique of the solid phase and the construction of an eletronic timing circuit were the principal stages in the definition of measurement technique. (Author) [pt

  17. European supercritical water cooled reactor (HPLWR Phase 2 project)

    International Nuclear Information System (INIS)

    Schulenberg, Thomas; Starflinger, Joerg; Marsault, Philippe; Bittermann, Dietmar; Maraczy, Czaba; Laurien, Eckart; Lycklama, Jan Aiso; Anglart, Henryk; Andreani, Michele; Ruzickova, Mariana; Heikinheimo, Liisa

    2010-01-01

    The High Performance Light Water Reactor (HPLWR), how the European Supercritical Water Cooled Reactor is called, is a pressure vessel type reactor operated with supercritical water at 25 MPa feedwater pressure and 500 deg C maximum core outlet temperature. It is designed and analyzed by a European consortium of 13 partners from 8 Euratom member states in the second phase of the HPLWR project. Most emphasis has been laid on a core with a thermal neutron spectrum, consisting of small, housed fuel assemblies with 40 fuel pins each and a central water box to improve the neutron moderation despite the low coolant density. Peak cladding temperatures of the fuel rods have been minimized by heating up the coolant in three steps with intermediate coolant mixing. The innovative core design with upward and downward flow through its assemblies has been studied with neutronic, thermal-hydraulic and stress analyses and has been reviewed carefully in a mid-term assessment. The containment design with its safety and residual heat removal systems is based on the latest boiling water reactor concept, but with different passive high pressure coolant injection systems to cause a forced convection through the core. The design concept of the steam cycle is indicating the envisaged efficiency increase to around 44%. Moreover, it provides the constraints to design the components of the balance of the plant. The project is accompanied by numerical studies of heat transfer of supercritical water in fuel assemblies and by material tests of candidate cladding alloys, performed by the consortium and supported by additional tests of the Joint Research Centre of the European Commission. An overview of results achieved up to now, given in this paper, is illustrating the latest scientific and technological advances. (author)

  18. Microstructured reactors for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Aartun, Ingrid

    2005-07-01

    Small scale hydrogen production by partial oxidation (POX) and oxidative steam reforming (OSR) have been studied over Rh-impregnated microchannel Fecralloy reactors and alumina foams. Trying to establish whether metallic microchannel reactors have special advantages for hydrogen production via catalytic POX or OSR with respect to activity, selectivity and stability was of special interest. The microchannel Fecralloy reactors were oxidised at 1000 deg C to form a {alpha}-Al2O3 layer in the channels in order to enhance the surface area prior to impregnation. Kr-BET measurements showed that the specific surface area after oxidation was approximately 10 times higher than the calculated geometric surface area. Approximately 1 mg Rh was deposited in the channels by impregnation with an aqueous solution of RhCl3. Annular pieces (15 mm o.d.,4 mm i.d., 14 mm length) of extruded {alpha}-Al2O3 foams were impregnated with aqueous solutions of Rh(NO3)3 to obtain 0.01, 0.05 and 0.1 wt.% loadings, as predicted by solution uptake. ICP-AES analyses showed that the actual Rh loadings probably were higher, 0.025, 0.077 and 0.169 wt.% respectively. One of the microchannel Fecralloy reactors and all Al2O3 foams were equipped with a channel to allow for temperature measurement inside the catalytic system. Temperature profiles obtained along the reactor axes show that the metallic microchannel reactor is able to minimize temperature gradients as compared to the alumina foams. At sufficiently high furnace temperature, the gas phase in front of the Rh/Al2O3/Frecralloy microchannel reactor and the 0.025 wt.% Rh/Al2O3 foams ignites. Gas phase ignition leads to lower syngas selectivity and higher selectivity to total oxidation products and hydrocarbon by-products. Before ignition of the gas phase the hydrogen selectivity is increased in OSR as compared to POX, the main contribution being the water-gas shift reaction. After gas phase ignition, increased formation of hydrocarbon by

  19. Catalytic gasification in fluidized bed, of orange waste. Comparison with non catalytic gasification

    International Nuclear Information System (INIS)

    Aguiar Trujillo, Leonardo; Marquez Montesinos, Francisco; Ramos Robaina, Boris A.; Guerra Reyes, Yanet; Arauzo Perez, Jesus; Gonzalo Callejo, Alberto; Sanchez Cebrian, Jose L

    2011-01-01

    The industry processing of the orange, generates high volumes of solid waste. This waste has been used as complement in the animal feeding, in biochemical processes; but their energy use has not been valued by means of the gasification process. They were carried out gasification studies with air in catalytic fluidized bed (using dolomite and olivine as catalysts in a secondary reactor, also varying the temperature of the secondary reactor and the catalyst mass), of the solid waste of orange and the results are compared with those obtained in the gasification with non catalytic air. In the processes we use a design of complete factorial experiment of 2k, valuing the influence of the independent variables and their interactions in the answers, using the software Design-Expert version 7 and a grade of significance of 95 %. The results demonstrate the qualities of the solid waste of orange in the energy use by means of the gasification process for the treatment of these residuals, obtaining a gas of low caloric value. The use of catalysts also diminishes the yield of tars obtained in the gasification process, being more active the dolomite that the olivine in this process. (author)

  20. Energy production from distillery wastewater using single and double-phase upflow anaerobic sludge blanket (UASB) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Muyodi, F J; Rubindamayugi, M S.T. [Univ. of Dar es Salaam, Applied Microbiology Unit (Tanzania, United Republic of)

    1998-12-31

    A Single-phase (SP) and Double-phase (DP) Upflow Anaerobic Sludge Blanket (UASB) reactors treating distillery wastewater were operated in parallel. The DP UASB reactor showed better performance than the SP UASB reactor in terms of maximum methane production rate, methane content and Chemical Oxygen Demand (COD) removal efficiency. (au) 20 refs.

  1. Energy production from distillery wastewater using single and double-phase upflow anaerobic sludge blanket (UASB) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Muyodi, F.J.; Rubindamayugi, M.S.T. [Univ. of Dar es Salaam, Applied Microbiology Unit (Tanzania, United Republic of)

    1997-12-31

    A Single-phase (SP) and Double-phase (DP) Upflow Anaerobic Sludge Blanket (UASB) reactors treating distillery wastewater were operated in parallel. The DP UASB reactor showed better performance than the SP UASB reactor in terms of maximum methane production rate, methane content and Chemical Oxygen Demand (COD) removal efficiency. (au) 20 refs.

  2. Application of near ambient pressure gas-phase X-ray photoelectron spectroscopy to the investigation of catalytic properties of copper in methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Prosvirin, Igor P., E-mail: prosvirin@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva ave. 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Bukhtiyarov, Andrey V., E-mail: avb@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva ave. 5, 630090 Novosibirsk (Russian Federation); Research and Educational Center for Energy Efficient Catalysis, Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Bluhm, Hendrik, E-mail: hbluhm@lbl.gov [Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Bukhtiyarov, Valerii I., E-mail: vib@catalysis.ru [Boreskov Institute of Catalysis, Lavrentieva ave. 5, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation); Research and Educational Center for Energy Efficient Catalysis, Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk (Russian Federation)

    2016-02-15

    Graphical abstract: - Highlights: • Selective oxidation of CH{sub 3}OH to CH{sub 2}O over a Cu foil has been studied by in situ gas phase XPS. • C1s and O1s spectra were used for identification of reagents and reaction products in a gas phase. • Catalytic data (conversions and reaction products yields) calculated from XPS spectra are in a good agreement with QMS results. • The possible reasons of the observed variations in reaction mechanism have been discussed. - Abstract: Application of near ambient pressure (NAP) X-ray photoelectron spectroscopy for characterization of catalytic properties of a heterogeneous catalyst through measurement and analysis of the core-level spectra from gas phase constituents, which become measurable in submillibar pressure range, has been demonstrated for the reaction of methanol oxidation over polycrystalline copper foil. To improve the accuracy of quantitative analysis of the gas phase signals for the routine XPS spectrometer with double Al/Mg anode used in these experiments, the sample was removed from XPS analysis zone, but it was still located in high-pressure gas cell. As consequence, only gas phase peaks from reagents and reaction products have been observed in XPS spectra. Quantitative analysis of the spectra has allowed us to calculate conversions of the reagents and yields of the reaction products, or, other words, to characterize the catalytic properties of the catalyst and to track their changes with temperature. Further comparison of the catalytic properties with concentration of the surface species measured by in situ XPS in separate experiments, but under the same conditions, gives a possibility to discuss the reaction mechanisms.

  3. β-Molybdenum nitride: synthesis mechanism and catalytic response in the gas phase hydrogenation of p-chloronitrobenzene

    NARCIS (Netherlands)

    Cárdenas-Lizana, F.; Gómez-Quero, S.; Perret, N.; Kiwi-Minsker, L.; Keane, M.A.

    2011-01-01

    A temperature programmed treatment of MoO3 in flowing N2 + H2 has been employed to prepare β-phase molybdenum nitride (β-Mo2N) which has been used to promote, for the first time, the catalytic hydrogenation of p-chloronitrobenzene. The reduction/nitridation synthesis steps have been monitored in

  4. Three-Phase and Six-Phase AC at the Lab Bench

    Science.gov (United States)

    Caplan, George M.

    2009-01-01

    Utility companies generate three-phase electric power, which consists of three sinusoidal voltages with phase angles of 0 degrees, 120 degrees, and 240 degrees. The ac generators described in most introductory textbooks are single-phase generators, so physics students are not likely to learn about three-phase power. I have developed a simple way…

  5. Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion

    International Nuclear Information System (INIS)

    Pozan, Gulin Selda

    2012-01-01

    Highlights: ► α-Al 2 O 3 , obtained from Bohmite, as a support for enhancing of the activity. ► The support material for catalytic oxidation. ► The manganese state and oxygen species effect on the catalytic combustion reaction. - Abstract: The aim of this work was to study combustion of toluene (1000 ppm) over MnO 2 modified with different supports. α-Al 2 O 3 and γ-Al 2 O 3 obtained from Boehmite, γ-Al 2 O 3 (commercial), SiO 2 , TiO 2 and ZrO 2 were used as commercial support materials. In view of potential interest of this process, the influence of support material on the catalytic performance was discussed. The deposition of 9.5MnO 2 was performed by impregnation over support. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction and oxidation (TPR/TPO) and thermogravimetric analysis (TGA). The catalytic tests were carried out at atmospheric pressure in a fixed-bed flow reactor. 9.5MnO 2 /α-Al 2 O 3 (B) (synthesized from Boehmite) catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of 289 °C. Considering all the characterization and reaction data reported in this study, it was concluded that the manganese state and oxygen species played an important role in the catalytic activity.

  6. Direct numerical simulation of reactor two-phase flows enabled by high-performance computing

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jun; Cambareri, Joseph J.; Brown, Cameron S.; Feng, Jinyong; Gouws, Andre; Li, Mengnan; Bolotnov, Igor A.

    2018-04-01

    Nuclear reactor two-phase flows remain a great engineering challenge, where the high-resolution two-phase flow database which can inform practical model development is still sparse due to the extreme reactor operation conditions and measurement difficulties. Owing to the rapid growth of computing power, the direct numerical simulation (DNS) is enjoying a renewed interest in investigating the related flow problems. A combination between DNS and an interface tracking method can provide a unique opportunity to study two-phase flows based on first principles calculations. More importantly, state-of-the-art high-performance computing (HPC) facilities are helping unlock this great potential. This paper reviews the recent research progress of two-phase flow DNS related to reactor applications. The progress in large-scale bubbly flow DNS has been focused not only on the sheer size of those simulations in terms of resolved Reynolds number, but also on the associated advanced modeling and analysis techniques. Specifically, the current areas of active research include modeling of sub-cooled boiling, bubble coalescence, as well as the advanced post-processing toolkit for bubbly flow simulations in reactor geometries. A novel bubble tracking method has been developed to track the evolution of bubbles in two-phase bubbly flow. Also, spectral analysis of DNS database in different geometries has been performed to investigate the modulation of the energy spectrum slope due to bubble-induced turbulence. In addition, the single-and two-phase analysis results are presented for turbulent flows within the pressurized water reactor (PWR) core geometries. The related simulations are possible to carry out only with the world leading HPC platforms. These simulations are allowing more complex turbulence model development and validation for use in 3D multiphase computational fluid dynamics (M-CFD) codes.

  7. Reactor vessel and core two-phase flow ultrasonic densitometer

    International Nuclear Information System (INIS)

    Arave, A.E.

    1979-01-01

    A local ultrasonic density (LUD) detector has been developed by EG and G Idaho, Inc., at the Idaho National Engineering Laboratory (INEL) for the Loss-of-Fluid Test (LOFT) reactor vessel and core two-phase flow density measurements. The principle of operating the sensor is the change in propagation time of a torsional ultrasonic wave in a metal transmission line as a function of the density of the surrounding media. A theoretical physics model is presented which represents the total propagation time as a function of the sensor modulus of elasticity and polar moment of inertia. Separate effects tests and two-phase flow tests have been conducted to characterize the detector. Tests show the detector can perform in a 343 0 C pressurized water reactor environment and measure the average density of the media surrounding the sensor

  8. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Quesada-Penate, I. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Julcour-Lebigue, C., E-mail: carine.julcour@ensiacet.fr [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Jauregui-Haza, U. J. [Instituto Superior de Tecnologias y Ciencias Aplicadas, Ave. Salvador Allende y Luaces, Habana (Cuba); Wilhelm, A. M.; Delmas, H. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France)

    2012-06-30

    Highlights: Black-Right-Pointing-Pointer Three activated carbons (AC) compared as adsorbents and oxidation catalysts. Black-Right-Pointing-Pointer Similar evolution for catalytic and adsorptive properties of AC over reuses. Black-Right-Pointing-Pointer Acidic and mesoporous AC to be preferred, despite lower initial efficiency. Black-Right-Pointing-Pointer Oxidative degradation of paracetamol improves biodegradability. Black-Right-Pointing-Pointer Convenient hybrid adsorption-regenerative oxidation process for continuous treatment. - Abstract: The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  9. Catalytic bioreactors and methods of using same

    Science.gov (United States)

    Worden, Robert Mark; Liu, Yangmu Chloe

    2017-07-25

    Various embodiments provide a bioreactor for producing a bioproduct comprising one or more catalytically active zones located in a housing and adapted to keep two incompatible gaseous reactants separated when in a gas phase, wherein each of the one or more catalytically active zones may comprise a catalytic component retainer and a catalytic component retained within and/or thereon. Each of the catalytically active zones may additionally or alternatively comprise a liquid medium located on either side of the catalytic component retainer. Catalytic component may include a microbial cell culture located within and/or on the catalytic component retainer, a suspended catalytic component suspended in the liquid medium, or a combination thereof. Methods of using various embodiments of the bioreactor to produce a bioproduct, such as isobutanol, are also provided.

  10. Monolithic reactor : Higher yield, less energy

    NARCIS (Netherlands)

    Kreutzer, M.T.; Moulijn, J.A.; Kapteijn, F.; Mols, B.

    2004-01-01

    The production of margarine, the desulphurisation of crude oil, and the manufacture of synthetic diesel fuel, these are only three of the many industrial processes in which a three-phase reactor is used. Traditionally, this type of reactor is rather ill-defined. Success with a lab scale set-up is no

  11. Reticulated Vitreous Carbon Electrodes for Gas Phase Pulsed Corona Reactors

    National Research Council Canada - National Science Library

    Locke, B

    1998-01-01

    A new design for gas phase pulsed corona reactors incorporating reticulated vitreous carbon electrodes is demonstrated to be effective for the removal of nitrogen oxides from synthetic air mixtures...

  12. Reticulated Vitreous Carbon Electrodes for Gas Phase Pulsed Corona Reactors

    National Research Council Canada - National Science Library

    LOCKE, B

    1999-01-01

    A new design for gas phase pulsed corona reactors incorporating reticulated vitreous carbon electrodes is demonstrated to be effective for the removal of nitrogen oxides from synthetic air mixtures...

  13. 1-D Two-phase Flow Investigation for External Reactor Vessel Cooling

    International Nuclear Information System (INIS)

    Kim, Jae Cheol

    2007-02-01

    During a severe accident, when a molten corium is relocated in a reactor vessel lower head, the RCF(Reactor Cavity Flooding) system for ERVC (External Reactor Vessel Cooling) is actuated and coolants are supplied into a reactor cavity to remove a decay heat from the molten corium. This severe accident mitigation strategy for maintaining a integrity of reactor vessel was adopted in the nuclear power plants of APR1400, AP600, and AP1000. Under the ERVC condition, the upward two-phase flow is driven by the amount of the decay heat from the molten corium. To achieve the ERVC strategy, the two-phase natural circulation in the annular gap between the external reactor vessel and the insulation should be formed sufficiently by designing the coolant inlet/outlet area and gap size adequately on the insulation device. Also the natural circulation flow restriction has to be minimized. In this reason, it is needed to review the fundamental structure of insulation. In the existing power plants, the insulation design is aimed at minimizing heat losses under a normal operation. Under the ERVC condition, however, the ability to form the two-phase natural circulation is uncertain. Namely, some important factors, such as the coolant inlet/outlet areas, flow restriction, and steam vent etc. in the flow channel, should be considered for ERVC design. T-HEMES 1D study is launched to estimate the natural circulation flow under the ERVC condition of APR1400. The experimental facility is one-dimensional and scaled down as the half height and 1/238 channel area of the APR1400 reactor vessel. The air injection method was used to simulate the boiling at the external reactor vessel and generate the natural circulation two-phase flow. From the experimental results, the natural circulation flow rate highly depended on inlet/outlet areas and the circulation flow rate increased as the outlet height as well as the supplied water head increased. On the other hand, the simple analysis using the drift

  14. SYNTHESIS OF BIODIESEL ON A HYBRID CATALYTIC-PLASMA REACTOR OVER K2O/CaO-ZnO CATALYST

    Directory of Open Access Journals (Sweden)

    Luqman Buchori

    2017-10-01

    Full Text Available This paper aimed to study the synergistic effects of dielectric barrier discharge plasma and 5 % K2O/CaO-ZnO catalyst on biodiesel synthesis. The catalyst was prepared using co-precipitation followed by impregnation method. The catalyst was characterized by XRD, while the catalyst basicity was tested by titration method. The effects of voltage, weight hourly space velocity (WHSV, and catalyst pellet diameter on the yield of fatty acid methyl ester (FAME and biodiesel were studied. The transesterification process within and without plasma environment was investigated to find synergistic effect between the role of high energetic electrons from the plasma through the catalytic reaction zone and the role of basicity in the catalyst. From the results, an applied voltage of 5 kV, a WHSV of 1.186 min-1, and a catalyst diameter of 5 mm gave the better FAME yield of 77.19 %. The reaction time required was only 1.25 minutes at a discharge power of 530 W. This result proved that the plasma environment has a significant effect on performance of the hybrid catalytic-plasma reactor for biodiesel production.

  15. Effect of phase interaction on catalytic CO oxidation over the SnO{sub 2}/Al{sub 2}O{sub 3} model catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Chai, Shujing [Collaborative Innovation Center of Chemical Science & Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300354 (China); The Institute of Seawater Desalination and Miltipurpose Utilization, State Oceanic Administration, Tianjin 300192 (China); Bai, Xueqin; Li, Jing; Liu, Cheng; Ding, Tong; Tian, Ye; Liu, Chang [Collaborative Innovation Center of Chemical Science & Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300354 (China); Xian, Hui [Tianjin Polytechnic University, School of Computer Science & Software Engineering, Tianjin 300387 (China); Mi, Wenbo [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Faculty of Science, Tianjin University, Tianjin 300354 (China); Li, Xingang, E-mail: xingang_li@tju.edu.cn [Collaborative Innovation Center of Chemical Science & Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300354 (China)

    2017-04-30

    Highlights: • Activity for CO oxidation is greatly enhanced by interaction between SnO{sub 2} and Al{sub 2}O{sub 3}. • Interaction between SnO{sub 2} and Al{sub 2}O{sub 3} phases can generate oxygen vacancies. • Oxygen vacancies play an import role for catalytic CO oxidation. • Sn{sup 4+} cations are the effective sites for catalytic CO oxidation. • Langmuir-Hinshelwood model is preferred for catalytic CO oxidation. - Abstract: We investigated the catalytic CO oxidation over the SnO{sub 2}/Al{sub 2}O{sub 3} model catalysts. Our results show that interaction between the Al{sub 2}O{sub 3} and SnO{sub 2} phases results in the significantly improved catalytic activity because of the formation of the oxygen vacancies. The oxygen storage capacity of the SnO{sub 2}/Al{sub 2}O{sub 3} catalyst prepared by the physically mixed method is nearly two times higher than that of the SnO{sub 2}, which probably results from the change of electron concentration on the interface of the SnO{sub 2} and Al{sub 2}O{sub 3} phases. Introducing water vapor to the feeding gas would a little decrease the activity of the catalysts, but the reaction rate could completely recover after removal of water vapor. The kinetics results suggest that the surface Sn{sup 4+} cations are effective CO adsorptive sites, and the surface adsorbed oxygen plays an important role upon CO oxidation. The reaction pathways upon the SnO{sub 2}-based catalysts for CO oxidation follow the Langmuir-Hinshelwood model.

  16. Evaluation of catalytic combustion of actual coal-derived gas

    Science.gov (United States)

    Blanton, J. C.; Shisler, R. A.

    1982-01-01

    The combustion characteristics of a Pt-Pl catalytic reactor burning coal-derived, low-Btu gas were investigated. A large matrix of test conditions was explored involving variations in fuel/air inlet temperature and velocity, reactor pressure, and combustor exit temperature. Other data recorded included fuel gas composition, reactor temperatures, and exhaust emissions. Operating experience with the reactor was satisfactory. Combustion efficiencies were quite high (over 95 percent) over most of the operating range. Emissions of NOx were quite high (up to 500 ppm V and greater), owing to the high ammonia content of the fuel gas.

  17. Kinetics of two phase fuel reflected reactors

    International Nuclear Information System (INIS)

    Buzano, M.L.; Corno, S.E.; Mattioda, F.

    2000-01-01

    In the present work a self-consistent mathematical model for the local dynamics of a quite particular class of fission reactors has been developed and solved. These devices consist of an innermost multiplying region, in which a significant fraction of the fissile fuel is diluted into a liquid phase, while the complementary fuel fraction operates as a standing solid matrix. This unconventional active region is surrounded by a standard peripheral reflector. For cooling purposes, the fluid fraction of the fuel needs to be circulated through external heat exchangers. The pump driven circulation causes the delayed neutron precursors, dissolved inside the fluid phase, to be spatially homogenized in the core volume well before decaying, while a continuous removal of precursor nuclei from the core takes place as a consequence of the outside circulation. Furthermore, the fraction of the extracted precursors still surviving after the solenoidal trip through the heat exchangers is continuously reinserted into the core. A new type of dynamical model is required to account for these unusual technological features. The mathematical structure of the evolution model presented in this paper consists of a system of integro-differential-difference equations, whose solution is derived in closed-form, by means of fully analytical techniques. Many dynamics and safety features of reactors of this type can be clarified a priori, upon inspection of the mathematical properties of the solution of the model. The rigorous time-eigenvalue generating equation can be explicitly established in the present theoretical context, together with the evaluation of any kind of transients. A short survey on the possible fields of application of these reactors is also presented

  18. Precious Metals Supported on Alumina and Their Application for Catalytic Aqueous Phase Reforming of Glycerol

    Directory of Open Access Journals (Sweden)

    Kiky Corneliasari Sembiring

    2015-11-01

    Full Text Available The high cost of Pt based catalyst for aqueous phase reforming (APR reaction makes it advantageous to develop less cost of other metals for the same reaction. APR is hydrogen production process from biomass-derived source at mild condition near 500 K and firstly reported by Dumesic and co-worker. The use of hydrogen as environmentally friendly energy carrier has been massively encouraged over the last year. When hydrogen is used in fuel cell for power generation, it produces a little or no pollutants. The aim of this study is to study the effect of some precious metal catalysts for APR process. Due to investigation of metal catalysts for APR process, four precious metals (Cu, Co, Zn, Ni supported on γ-Al2O3 with 20% feeding amount have been successfully prepared by impregnation method. Those precious metals were identified as promising catalysts for APR. The catalysts were characterized by N2 physisorption at 77 K, X-Ray Diffraction (XRD and Fourier Transform-Infra Red (FT-IR. The catalytic performance was investigated at 523 K and autogenous pressure in a batch reactor with glycerol concentration of 10%. The gaseous hydrogen product was observed over the prepared catalysts by GC. It was found that performance of catalysts to yield the hydrogen product was summarized as follow Cu/γ-Al2O3 > Co/γ-Al2O3 > Zn/γ-Al2O3 > Ni/γ-Al2O3.

  19. Numerical simulations of subcritical reactor kinetics in thermal hydraulic transient phases

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J; Park, W S [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    A subcritical reactor driven by a linear proton accelerator has been considered as a nuclear waste incinerator at Korea Atomic Energy Research Institute (KAERI). Since the multiplication factor of a subcritical reactor is less than unity, to compensate exponentially decreasing fission neutrons, external neutrons form spallation reactions are essentially required for operating the reactor in its steady state. Furthermore, the profile of accelerator beam currents is very important in controlling a subcritical reactor, because the reactor power varies in accordance to the profile of external neutrons. We have developed a code system to find numerical solutions of reactor kinetics equations, which are the simplest dynamic model for controlling reactors. In a due course of our previous numerical study of point kinetics equations for critical reactors, however, we learned that the same code system can be used in studying dynamic behavior of the subcritical reactor. Our major motivation of this paper is to investigate responses of subcritical reactors for small changes in thermal hydraulic parameters. Building a thermal hydraulic model for the subcritical reactor dynamics, we performed numerical simulations for dynamic responses of the reactor based on point kinetics equations with a source term. Linearizing a set of coupled differential equations for reactor responses, we focus our research interest on dynamic responses of the reactor to variations of the thermal hydraulic parameters in transient phases. 5 refs., 8 figs. (Author)

  20. Numerical simulations of subcritical reactor kinetics in thermal hydraulic transient phases

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J.; Park, W. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A subcritical reactor driven by a linear proton accelerator has been considered as a nuclear waste incinerator at Korea Atomic Energy Research Institute (KAERI). Since the multiplication factor of a subcritical reactor is less than unity, to compensate exponentially decreasing fission neutrons, external neutrons form spallation reactions are essentially required for operating the reactor in its steady state. Furthermore, the profile of accelerator beam currents is very important in controlling a subcritical reactor, because the reactor power varies in accordance to the profile of external neutrons. We have developed a code system to find numerical solutions of reactor kinetics equations, which are the simplest dynamic model for controlling reactors. In a due course of our previous numerical study of point kinetics equations for critical reactors, however, we learned that the same code system can be used in studying dynamic behavior of the subcritical reactor. Our major motivation of this paper is to investigate responses of subcritical reactors for small changes in thermal hydraulic parameters. Building a thermal hydraulic model for the subcritical reactor dynamics, we performed numerical simulations for dynamic responses of the reactor based on point kinetics equations with a source term. Linearizing a set of coupled differential equations for reactor responses, we focus our research interest on dynamic responses of the reactor to variations of the thermal hydraulic parameters in transient phases. 5 refs., 8 figs. (Author)

  1. Visualization of Gas Distribution in a Model AP-XPS Reactor by PLIF: CO Oxidation over a Pd(100 Catalyst

    Directory of Open Access Journals (Sweden)

    Jianfeng Zhou

    2017-01-01

    Full Text Available In situ knowledge of the gas phase around a catalyst is essential to make an accurate correlation between the catalytic activity and surface structure in operando studies. Although ambient pressure X-ray photoelectron spectroscopy (AP-XPS can provide information on the gas phase as well as the surface structure of a working catalyst, the gas phase detected has not been spatially resolved to date, thus possibly making it ambiguous to interpret the AP-XPS spectra. In this work, planar laser-induced fluorescence (PLIF is used to visualize the CO2 distribution in a model AP-XPS reactor, during CO oxidation over a Pd(100 catalyst. The results show that the gas composition in the vicinity of the sample measured by PLIF is significantly different from that measured by a conventional mass spectrometer connected to a nozzle positioned just above the sample. In addition, the gas distribution above the catalytic sample has a strong dependence on the gas flow and total chamber pressure. The technique presented has the potential to increase our knowledge of the gas phase in AP-XPS, as well as to optimize the design and operating conditions of in situ AP-XPS reactors for catalysis studies.

  2. Catalytic and thermal cracking processes of waste cooking oil for bio-gasoline synthesis

    Science.gov (United States)

    Dewanto, Muhammad Andry Rizki; Januartrika, Aulia Azka; Dewajani, Heny; Budiman, Arief

    2017-03-01

    Non-renewable energy resources such as fossil fuels, and coal were depleted as the increase of global energy demand. Moreover, environmental aspect becomes a major concern which recommends people to utilize bio-based resources. Waste cooking oil is one of the economical sources for biofuel production and become the most used raw material for biodiesel production. However, the products formed during frying, can affect the trans-esterification reaction and the biodiesel properties. Therefore, it needs to convert low-quality cooking oil directly into biofuel by both thermal and catalytic cracking processes. Thermal and catalytic cracking sometimes are regarded as prospective bio-energy conversion processes. This research was carried out in the packed bed reactor equipped with 2 stages preheater with temperature of reactor was variated in the range of 450-550°C. At the same temperature, catalytic cracking had been involved in this experiment, using activated ZSM-5 catalyst with 1 cm in length. The organic liquid product was recovered by three stages of double pipe condensers. The composition of cracking products were analyzed using GC-MS instrument and the caloric contents were analyzed using Bomb calorimeter. The results reveal that ZSM-5 was highly selective toward aromatic and long aliphatic compounds formation. The percentage recovery of organic liquid product from the cracking process varies start from 8.31% and the optimal results was 54.08%. The highest heating value of liquid product was resulted from catalytic cracking process at temperature of 450°C with value of 10880.48 cal/gr and the highest product yield with 54.08% recovery was achieved from thermal cracking process with temperature of 450°C.

  3. Gas-Liquid Two-Phase Flows Through Packed Bed Reactors in Microgravity

    Science.gov (United States)

    Motil, Brian J.; Balakotaiah, Vemuri

    2001-01-01

    The simultaneous flow of gas and liquid through a fixed bed of particles occurs in many unit operations of interest to the designers of space-based as well as terrestrial equipment. Examples include separation columns, gas-liquid reactors, humidification, drying, extraction, and leaching. These operations are critical to a wide variety of industries such as petroleum, pharmaceutical, mining, biological, and chemical. NASA recognizes that similar operations will need to be performed in space and on planetary bodies such as Mars if we are to achieve our goals of human exploration and the development of space. The goal of this research is to understand how to apply our current understanding of two-phase fluid flow through fixed-bed reactors to zero- or partial-gravity environments. Previous experiments by NASA have shown that reactors designed to work on Earth do not necessarily function in a similar manner in space. Two experiments, the Water Processor Assembly and the Volatile Removal Assembly have encountered difficulties in predicting and controlling the distribution of the phases (a crucial element in the operation of this type of reactor) as well as the overall pressure drop.

  4. Enantioselective syntheses and biological studies of aeruginosin 298-A and its analogs: application of catalytic asymmetric phase-transfer reaction.

    Science.gov (United States)

    Fukuta, Yuhei; Ohshima, Takashi; Gnanadesikan, Vijay; Shibuguchi, Tomoyuki; Nemoto, Tetsuhiro; Kisugi, Takaya; Okino, Tatsufumi; Shibasaki, Masakatsu

    2004-04-13

    Aeruginosin 298-A was isolated from the freshwater cyanobacterium Microcystis aeruginosa (NIES-298) and is an equipotent thrombin and trypsin inhibitor. A variety of analogs were synthesized to gain insight into the structure-activity relations. We developed a versatile synthetic process for aeruginosin 298-A as well as several attractive analogs, in which all stereocenters were controlled by catalytic asymmetric phase-transfer reaction promoted by two-center asymmetric catalysts and catalytic asymmetric epoxidation promoted by a lanthanide-BINOL complex. Furthermore, serine protease inhibitory activities of aeruginosin 298-A and its analogs were examined.

  5. Lesson Learned in Preparation for Decommissioning of Three Canadian Prototype Power Reactors

    International Nuclear Information System (INIS)

    Vickerd, Meggan; Kenny, Stephen

    2016-01-01

    Lesson learned by Canadian Nuclear Laboratories (CNL)(former AECL) in preparation for decommissioning of three Prototype Reactors is a result of various strategies used for each site. CNL is responsible for the eventual decommissioning of three prototype power reactors; Nuclear Power Demonstration (NPD), Gentilly-1 and Douglas Point. Each of the Canadian prototype power reactor sites shutdown using different strategies. Depending on the site location, configuration, and intended designation of the respective sites, the individual facility systems (ventilation, electrical system, fire detection etc.) were also shut down using different strategies and operating objectives. As CNL embarks on decommissioning the first Canadian prototype reactor, this paper will reflect on the lessons learned over the past thirty years and what CNL is adjusting in the decommissioning strategy to prepare better plans for the future. The Nuclear Power Demonstration Nuclear Generating Station (NPDNGS) was constructed in late 1950's and operated from 1962 to 1987 when it was permanently shutdown after exceeding its operational goals. The NPD reactor was the first Canadian nuclear power reactor and it consisted of a single 20 MWe pressurized heavy water reactor located on a single facility site in Rolphton, Ontario. The NPD facility was shutdown to a 'Cold, Dark and Quiet' state and is maintained using an unmanned strategy by managing the site remotely with active fire detection and security surveillance systems, minimal electrical supply and an active ventilation system which is operated periodically to allow for intermittent inspections. The Douglas Point Nuclear Generating Station (DPNGS) was constructed in the early 1960's and operated from 1968 to 1984 when it was permanently shutdown. It consisted of a 200 MW prototype Canada Deuterium Uranium (CANDU) reactor and is embedded on the Bruce Power site near Kincardine, Ontario. The Douglas Point site is maintained in a

  6. Investigation of flow dynamics of liquid phase in a pilot-scale trickle bed reactor using radiotracer technique

    International Nuclear Information System (INIS)

    Pant, H.J.; Sharma, V.K.

    2016-01-01

    A radiotracer investigation was carried out to measure residence time distribution (RTD) of liquid phase in a trickle bed reactor (TBR). The main objectives of the investigation were to investigate radial and axial mixing of the liquid phase, and evaluate performance of the liquid distributor/redistributor at different operating conditions. Mean residence times (MRTs), holdups (H) and fraction of flow flowing along different quadrants were estimated. The analysis of the measured RTD curves indicated radial non-uniform distribution of liquid phase across the beds. The overall RTD of the liquid phase, measured at the exit of the reactor was simulated using a multi-parameter axial dispersion with exchange model (ADEM), and model parameters were obtained. The results of model simulations indicated that the TBR behaved as a plug flow reactor at most of the operating conditions used in the investigation. The results of the investigation helped to improve the existing design as well as to design a full-scale industrial TBR for petroleum refining applications. - Highlights: • Residence time distributions of liquid phase were measured in a trickle bed reactor. • Bromine-82 as ammonium bromide was used as a radiotracer. • Mean residence times, holdups and radial distribution of liquid phase were quantified. • Axial dispersion with exchange model was used to simulate the measured data. • The trickle bed reactor behaved as a plug flow reactor.

  7. A gas-phase reactor powered by solar energy and ethanol for H2 production

    International Nuclear Information System (INIS)

    Ampelli, Claudio; Genovese, Chiara; Passalacqua, Rosalba; Perathoner, Siglinda; Centi, Gabriele

    2014-01-01

    In the view of H 2 as the future energy vector, we presented here the development of a homemade photo-reactor working in gas phase and easily interfacing with fuel cell devices, for H 2 production by ethanol dehydrogenation. The process generates acetaldehyde as the main co-product, which is more economically advantageous with respect to the low valuable CO 2 produced in the alternative pathway of ethanol photoreforming. The materials adopted as photocatalysts are based on TiO 2 substrates but properly modified with noble (Au) and not-noble (Cu) metals to enhance light harvesting in the visible region. The samples were characterized by BET surface area analysis, Transmission Electron Microscopy (TEM) and UV–visible Diffusive Reflectance Spectroscopy, and finally tested in our homemade photo-reactor by simulated solar irradiation. We discussed about the benefits of operating in gas phase with respect to a conventional slurry photo-reactor (minimization of scattering phenomena, no metal leaching, easy product recovery, etc.). Results showed that high H 2 productivity can be obtained in gas phase conditions, also irradiating titania photocatalysts doped with not-noble metals. - Highlights: • A gas-phase photoreactor for H 2 production by ethanol dehydrogenation was developed. • The photocatalytic behaviours of Au and Cu metal-doped TiO 2 thin layers are compared. • Benefits of operating in gas phase with respect to a slurry reactor are presented. • Gas phase conditions and use of not-noble metals are the best economic solution

  8. Effect of temperature on two-phase anaerobic reactors treating slaughterhouse wastewater

    Directory of Open Access Journals (Sweden)

    Simone Beux

    2007-11-01

    Full Text Available The effectiveness of the anaerobic treatment of effluent from a swine and bovine slaughterhouse was assessed in two sets of two-phase anaerobic digesters, operated with or without temperature control. Set A, consisting of an acidogenic reactor with recirculation and an upflow biological filter as the methanogenic phase, was operated at room temperature, while set B, consisting of an acidogenic reactor without recirculation and an upflow biological filter as the methanogenic phase, was maintained at 32°C. The methanogenic reactors showed COD (Chemical Demand of Oxygen removal above 60% for HRT (Hydraulic Retention Time values of 20, 15, 10, 8, 6, 4, and 2 days. When the HRT value in those reactors was changed to 1 day, the COD percentage removal decreased to 50%. The temperature variations did not have harmful effects on the performance of reactors in set A.Avaliou-se a eficiência do tratamento anaeróbio de efluente de matadouro de suínos e bovinos em dois conjuntos de biodigestores anaeróbios de duas fases, operados com e sem controle de temperatura. O conjunto A, formado por um reator acidogênico com recirculação e um filtro biológico de fluxo ascendente, foi operado a temperatura ambiente e o conjunto B, formado por um reator de fluxo ascendente e um filtro biológico de fluxo ascendente, foi mantido a 32°C. Os reatores metanogênicos apresentaram remoção de DQO acima de 60 % para os TRHs de 20, 15, 10, oito, seis, quatro e dois dias. Quando o TRH destes reatores foi mudado para um dia observou-se uma queda da porcentagem de remoção de DQO para 50 %. As variações de temperatura parecem não ter prejudicado o desempenho dos reatores do conjunto A.

  9. Three-dimensional structure of a pre-catalytic human spliceosomal complex B.

    Science.gov (United States)

    Boehringer, Daniel; Makarov, Evgeny M; Sander, Bjoern; Makarova, Olga V; Kastner, Berthold; Lührmann, Reinhard; Stark, Holger

    2004-05-01

    Major structural changes occur in the spliceosome during its transition from the fully assembled complex B to the catalytically activated spliceosome. To understand the rearrangement, it is necessary to know the detailed three-dimensional structures of these complexes. Here, we have immunoaffinity-purified human spliceosomes (designated B Delta U1) at a stage after U4/U6.U5 tri-snRNP integration but before activation, and have determined the three-dimensional structure of B Delta U1 by single-particle electron cryomicroscopy at a resolution of approximately 40 A. The overall size of the complex is about 370 x 270 x 170 A. The three-dimensional structure features a roughly triangular body linked to a head domain in variable orientations. The body is very similar in size and shape to the isolated U4/U6.U5 tri-snRNP. This provides initial insight into the structural organization of complex B.

  10. Single phase inverter for a three phase power generation and distribution system

    Science.gov (United States)

    Lindena, S. J.

    1976-01-01

    A breadboard design of a single-phase inverter with sinusoidal output voltage for a three-phase power generation and distribution system was developed. The three-phase system consists of three single-phase inverters, whose output voltages are connected in a delta configuration. Upon failure of one inverter the two remaining inverters will continue to deliver three-phase power. Parallel redundancy as offered by two three-phase inverters is substituted by one three-phase inverter assembly with high savings in volume, weight, components count and complexity, and a considerable increase in reliability. The following requirements must be met: (1) Each single-phase, current-fed inverter must be capable of being synchronized to a three-phase reference system such that its output voltage remains phaselocked to its respective reference voltage. (2) Each single-phase, current-fed inverter must be capable of accepting leading and lagging power factors over a range from -0.7 through 1 to +0.7.

  11. Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion.

    Science.gov (United States)

    Pozan, Gulin Selda

    2012-06-30

    The aim of this work was to study combustion of toluene (1000ppm) over MnO(2) modified with different supports. α-Al(2)O(3) and γ-Al(2)O(3) obtained from Boehmite, γ-Al(2)O(3) (commercial), SiO(2), TiO(2) and ZrO(2) were used as commercial support materials. In view of potential interest of this process, the influence of support material on the catalytic performance was discussed. The deposition of 9.5MnO(2) was performed by impregnation over support. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction and oxidation (TPR/TPO) and thermogravimetric analysis (TGA). The catalytic tests were carried out at atmospheric pressure in a fixed-bed flow reactor. 9.5MnO(2)/α-Al(2)O(3)(B) (synthesized from Boehmite) catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of 289°C. Considering all the characterization and reaction data reported in this study, it was concluded that the manganese state and oxygen species played an important role in the catalytic activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Influence of subcooled boiling on out-of-phase oscillations in boiling water reactors

    International Nuclear Information System (INIS)

    Munoz-Cobo, J.L.; Chiva, S.; Escriva, A.

    2005-01-01

    In this paper, we develop a reduced order model with modal kinetics for the study of the dynamic behavior of boiling water reactors. This model includes the subcooled boiling in the lower part of the reactor channels. New additional equations have been obtained for the following dynamics magnitudes: the effective inception length for subcooled boiling, the average void fraction in the subcooled boiling region, the average void fraction in the bulk-boiling region, the mass fluxes at the boiling boundary and the channel exit, respectively, and so on. Each channel has three nodes, one of liquid, one with subcooled boiling, and one with bulk boiling. The reduced order model includes also a modal kinetics with the fundamental mode and the first subcritical one, and two channels representing both halves of the reactor core. Also, in this paper, we perform a detailed study of the way to calculate the feedback reactivity parameters. The model displays out-of-phase oscillations when enough feedback gain is provided. The feedback gain that is necessary to self-sustain these oscillations is approximately one-half the gain that is needed when the subcooled boiling node is not included

  13. Catalytic partial oxidation of pyrolysis oils

    Science.gov (United States)

    Rennard, David Carl

    2009-12-01

    details the catalytic partial oxidation of glycerol without preheat: droplets of glycerol are sprayed directly onto the top of the catalyst bed, where they react autothermally with contact times on the order of tau ≈ 30 ms. The reactive flash volatilization of glycerol results in equilibrium syngas production over Rh-Ce catalysts. In addition, water can be added to the liquid glycerol, resulting in true autothermal reforming. This highly efficient process can increase H2 yields and alter the H2 to CO ratio, allowing for flexibility in syngas quality depending on the purpose. Chapter 5 details the results of a time on stream experiment, in which optimal syngas conditions are chosen. Although conversion is 100% for 450 hours, these experiments demonstrate the deactivation of the catalyst over time. Deactivation is exhibited by decreases in H2 and CO 2 production accompanied by a steady increase in CO and temperature. These results are explained as a loss of water-gas shift equilibration. SEM images suggest catalyst sintering may play a role; EDS indicates the presence of impurities on the catalyst. In addition, the instability of quartz in the reactor is demonstrated by etching, resulting in a hole in the reactor tube at the end of the experiment. These results suggest prevaporization may be desirable in this application, and that quartz is not a suitable material for the reactive flash volatilization of oxygenated fuels. In Chapter 6, pyrolysis oil samples from three sources - poplar, pine, and hardwoods - are explored in the context of catalytic partial oxidation. Lessons derived from the tests with model compounds are applied to reactor design, resulting in the reactive flash vaporization of bio oils. Syngas is successfully produced, though deactivation due to coke and ash deposition keeps H2 below equlibrium. Coke formation is observed on the reactor walls, but is avoided between the fuel injection site and catalyst by increasing the proximity of these in the reactor

  14. Plasma-activated core-shell gold nanoparticle films with enhanced catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Llorca, Jordi, E-mail: jordi.llorca@upc.edu; Casanovas, Albert; Dominguez, Montserrat; Casanova, Ignasi [Universitat Politecnica de Catalunya, Institut de Tecniques Energetiques (Spain); Angurell, Inmaculada; Seco, Miquel; Rossell, Oriol [Universitat de Barcelona, Departament de Quimica Inorganica (Spain)

    2008-03-15

    Catalytically active gold nanoparticle films have been prepared from core-shell nanoparticles by plasma-activation and characterized by high-resolution transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Methane can be selectively oxidized into formic acid with an O{sub 2}-H{sub 2} mixture in a catalytic wall reactor functionalized with plasma-activated gold nanoparticle films containing well-defined Au particles of about 3.5 nm in diameter. No catalytic activity was recorded over gold nanoparticle films prepared by thermal decomposition of core-shell nanoparticles due to particle agglomeration.

  15. Plasma-activated core-shell gold nanoparticle films with enhanced catalytic properties

    International Nuclear Information System (INIS)

    Llorca, Jordi; Casanovas, Albert; Dominguez, Montserrat; Casanova, Ignasi; Angurell, Inmaculada; Seco, Miquel; Rossell, Oriol

    2008-01-01

    Catalytically active gold nanoparticle films have been prepared from core-shell nanoparticles by plasma-activation and characterized by high-resolution transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Methane can be selectively oxidized into formic acid with an O 2 -H 2 mixture in a catalytic wall reactor functionalized with plasma-activated gold nanoparticle films containing well-defined Au particles of about 3.5 nm in diameter. No catalytic activity was recorded over gold nanoparticle films prepared by thermal decomposition of core-shell nanoparticles due to particle agglomeration

  16. Catalytic activity of supported silver and potassium salts of tungstophosphoric acid in dehydration of ethanol

    International Nuclear Information System (INIS)

    Haber, J.; Matachowski, L.; Pamin, K.; Napruszewska, B.

    2002-01-01

    Potassium and silver salts of tungstophosphoric acid (HPW) have been supported on silica. Two series of potassium and silver salts of tungstophosphoric acid K x H 3-x PW 12 O 40 and Ag x H 3-x PW 12 O 40 where x = 1;2;3 supported on silica were prepared using incipient wetness method. In a typical synthesis, the heteropolyacid which after deposition on silica was washed with water to remove the part of heteropolyacid not bound to the support was reacted with silver or potassium salt. The vapor-phase dehydration of ethanol was employed as a test reaction. All the catalytic tests were carried out in a conventional flow type reactor, under atmospheric pressure, in the temperature range 125-500 o C. The results of these studies were used to explain the differences between the catalytic activities of heteropolysalts of potassium and silver supported on silica. (author)

  17. Non-catalytic alcoholysis process for production of biodiesel fuel by using bubble column reactor

    Science.gov (United States)

    Hagiwara, S.; Nabetani, H.; Nakajima, M.

    2015-04-01

    -edible lipids by use of the SMV reactor has not been examined yet. Therefore, this study aims to investigate the productivity of biodiesel produced from waste vegetable oils using the SMV reactor. Biodiesel fuel is a replacement for diesel as a fuel produced from biomass resources. It is generally produced as a FAME derived from vegetable oil by using alkaline catalyzed alcoholysis process. This alkaline method requires deacidification process prior to the reaction process and the alkaline catalyst removal process after the reaction. Those process increases the total cost of biodiesel fuel production. In order to solve the problems in the conventional alkaline catalyzed alcoholysis process, the authors proposed a non-catalytic alcoholysis process called the Superheated Methanol Vapor (SMV) method with bubble column reactor. So, this study aims to investigate the productivity of biodiesel produced from vegetable oils and other lipids using the SMV method with bubble column reactor.

  18. Non-catalytic alcoholysis process for production of biodiesel fuel by using bubble column reactor

    International Nuclear Information System (INIS)

    Hagiwara, S; Nabetani, H; Nakajima, M

    2015-01-01

    -edible lipids by use of the SMV reactor has not been examined yet. Therefore, this study aims to investigate the productivity of biodiesel produced from waste vegetable oils using the SMV reactor. Biodiesel fuel is a replacement for diesel as a fuel produced from biomass resources. It is generally produced as a FAME derived from vegetable oil by using alkaline catalyzed alcoholysis process. This alkaline method requires deacidification process prior to the reaction process and the alkaline catalyst removal process after the reaction. Those process increases the total cost of biodiesel fuel production. In order to solve the problems in the conventional alkaline catalyzed alcoholysis process, the authors proposed a non-catalytic alcoholysis process called the Superheated Methanol Vapor (SMV) method with bubble column reactor. So, this study aims to investigate the productivity of biodiesel produced from vegetable oils and other lipids using the SMV method with bubble column reactor

  19. Development of a catalytic system for gasification of wet biomass

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.; Sealock, L.J.; Phelps, M.R.; Neuenschwander, G.G.; Hart, T.R. [Pacific Northwest Lab., Richland, WA (United States)

    1993-12-31

    A gasification system is under development at Pacific Northwest Laboratory that can be used with high-moisture biomass feedstocks. The system operates at 350{degrees}C and 205 atm using a liquid water phase as the processing medium. Since a pressurized system is used, the wet biomass can be fed as a slurry to the reactor without drying. Through the development of catalysts, a useful processing system has been produced. This paper includes assessment of processing test results of different catalysts. Reactor system results including batch, bench-scale continuous, and engineering-scale processing results are presented to demonstrate the applicability of this catalytic gasification system to biomass. The system has utility both for direct conversion of biomass to fuel gas or as a wastewater cleanup system for treatment of unconverted biomass from bioconversion processes. By the use of this system high conversions of biomass to fuel gas can be achieved. Medium-Btu is the primary product. Potential exists for recovery/recycle of some of the unreacted inorganic components from the biomass in the aqueous byproduct stream.

  20. Computational fluid dynamics simulations of single-phase flow in a filter-press flow reactor having a stack of three cells

    International Nuclear Information System (INIS)

    Sandoval, Miguel A.; Fuentes, Rosalba; Walsh, Frank C.; Nava, José L.; Ponce de León, Carlos

    2016-01-01

    Highlights: • Computational fluid dynamic simulations in a filter-press stack of three cells. • The fluid velocity was different in each cell due to local turbulence. • The upper cell link pipe of the filter press cell acts as a fluid mixer. • The fluid behaviour tends towards a continuous mixing flow pattern. • Close agreement between simulations and experimental data was achieved. - Abstract: Computational fluid dynamics (CFD) simulations were carried out for single-phase flow in a pre-pilot filter press flow reactor with a stack of three cells. Velocity profiles and streamlines were obtained by solving the Reynolds-Averaged Navier-Stokes (RANS) equations with a standard k − ε turbulence model. The flow behaviour shows the appearance of jet flow at the entrance to each cell. At lengths from 12 to 15 cm along the cells channels, a plug flow pattern is developed at all mean linear flow rates studied here, 1.2 ≤ u ≤ 2.1 cm s −1 . The magnitude of the velocity profiles in each cell was different, due to the turbulence generated by the change of flow direction in the last fluid manifold. Residence time distribution (RTD) simulations indicated that the fluid behaviour tends towards a continuous mixing flow pattern, owing to flow at the output of each cell across the upper cell link pipe, which acts as a mixer. Close agreement between simulations and experimental RTD was obtained.

  1. The TITAN Reversed-Field Pinch fusion reactor study: Scoping phase report

    International Nuclear Information System (INIS)

    1987-01-01

    The TITAN research program is a multi-institutional effort to determine the potential of the Reversed-Field Pinch (RFP) magnetic fusion concept as a compact, high-power-density, and ''attractive'' fusion energy system from economic (cost of electricity, COE), environmental, and operational viewpoints. In particular, a high neutron wall loading design (18 MW/m 2 ) has been chosen as the reference case in order to quantify the issue of engineering practicality, to determine the physics requirements and plasma operating mode, to assess significant benefits of compact systems, and to illuminate the main drawbacks. The program has been divided into two phases, each roughly one year in length: the Scoping Phase and the Design Phase. During the scoping phase, the TITAN design team has defined the parameter space for a high mass power density (MPD) RFP reactor, and explored a variety of approaches to the design of major subsystems. Two major design approaches consistent with high MPD and low COE, the lithium-vanadium blanket design and aqueous loop-in-pool design, have been selected for more detailed engineering evaluation in the design phase. The program has retained a balance in its approach to investigating high MPD systems. On the one hand, parametric investigations of both subsystems and overall system performance are carried out. On the other hand, more detailed analysis and engineering design and integration are performed, appropriate to determining the technical feasibility of the high MPD approach to RFP fusion reactors. This report describes the work of the scoping phase activities of the TITAN program. A synopsis of the principal technical findings and a brief description of the TITAN multiple-design approach is given. The individual chapters on Plasma Physics and Engineering, Parameter Systems Studies, Divertor, Reactor Engineering, and Fusion Power Core Engineering have been cataloged separately

  2. The TITAN Reversed-Field Pinch fusion reactor study: Scoping phase report

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    The TITAN research program is a multi-institutional effort to determine the potential of the Reversed-Field Pinch (RFP) magnetic fusion concept as a compact, high-power-density, and ''attractive'' fusion energy system from economic (cost of electricity, COE), environmental, and operational viewpoints. In particular, a high neutron wall loading design (18 MW/m/sup 2/) has been chosen as the reference case in order to quantify the issue of engineering practicality, to determine the physics requirements and plasma operating mode, to assess significant benefits of compact systems, and to illuminate the main drawbacks. The program has been divided into two phases, each roughly one year in length: the Scoping Phase and the Design Phase. During the scoping phase, the TITAN design team has defined the parameter space for a high mass power density (MPD) RFP reactor, and explored a variety of approaches to the design of major subsystems. Two major design approaches consistent with high MPD and low COE, the lithium-vanadium blanket design and aqueous loop-in-pool design, have been selected for more detailed engineering evaluation in the design phase. The program has retained a balance in its approach to investigating high MPD systems. On the one hand, parametric investigations of both subsystems and overall system performance are carried out. On the other hand, more detailed analysis and engineering design and integration are performed, appropriate to determining the technical feasibility of the high MPD approach to RFP fusion reactors. This report describes the work of the scoping phase activities of the TITAN program. A synopsis of the principal technical findings and a brief description of the TITAN multiple-design approach is given. The individual chapters on Plasma Physics and Engineering, Parameter Systems Studies, Divertor, Reactor Engineering, and Fusion Power Core Engineering have been cataloged separately.

  3. Ambient Pressure Hydrodesulfurization of Refractory Sulfur Compounds in Highly Sensitive μ-Reactor Platform Coupled to a Time-of-Flight Mass Spectrometer

    DEFF Research Database (Denmark)

    Christoffersen, Ann-Louise N.; Bodin, Anders; Elkjær, Christian F.

    2018-01-01

    the refractory sulfur from different petroleum streams mostly found in the form of the alkyl-substituted dibenzothiophenes (β-DBTs). In this work we demonstrate how a setup dedicated to testing minute amounts (nanogram) of well-defined catalytic systems in μ-reactors can be used in the gas-phase HDS of the model...

  4. PWM control of current source type six-phase inverter with improved waveforms by coupling reactor; Ketsugo reactor ni yori hakei kaizen sareta denryugata rokuso inverter no PWM seigyo

    Energy Technology Data Exchange (ETDEWEB)

    Inami, K.; Danjo, M.; Kondo, Y.; Yamada, M. [Niihama Technical College, Ehime (Japan); Toki, K. [Shikoku Electric Power Co., Inc., Kagawa (Japan); Heike, J. [Shikoku Instrumentation Co. Ltd., Kagawa (Japan)

    1998-10-01

    A PWM method has been applied to a high capacity six phase current source inverter system in order to obtain sinusoidal output voltage and current. In this system, the three-phase coupling reactor is connected between the inverter output and an induction motor used as a load. Then the reactor eliminates harmonic components included in the inverter output current except 12k {+-} 1 (k=1,2,3)th order. As a result, the distortion factor of the inverter output current decreases. But the resonant circuit is composed of the capacitance of filter capacitor and the induction motor leakage inductance. Then the resonance current is superimposed on the induction motor phase currents. To solve this problem, the optimal PWM pattern is derived, so that the resonant current becomes very small. The order of the resonant frequency component of the induction motor phase current depend on the inverter frequency. Then total inverter frequency range is divided into several areas. The optimal PWM pattern is derived in each areas. As a result, the use of each optimal PWM pattern allows us to drive the induction motor, over a wide range of speed, under the condition of small distortion factor of phase currents. 5 refs., 10 figs., 1 tab.

  5. An easily regenerable enzyme reactor prepared from polymerized high internal phase emulsions

    International Nuclear Information System (INIS)

    Ruan, Guihua; Wu, Zhenwei; Huang, Yipeng; Wei, Meiping; Su, Rihui; Du, Fuyou

    2016-01-01

    A large-scale high-efficient enzyme reactor based on polymerized high internal phase emulsion monolith (polyHIPE) was prepared. First, a porous cross-linked polyHIPE monolith was prepared by in-situ thermal polymerization of a high internal phase emulsion containing styrene, divinylbenzene and polyglutaraldehyde. The enzyme of TPCK-Trypsin was then immobilized on the monolithic polyHIPE. The performance of the resultant enzyme reactor was assessed according to the conversion ability of N_α-benzoyl-L-arginine ethyl ester to N_α-benzoyl-L-arginine, and the protein digestibility of bovine serum albumin (BSA) and cytochrome (Cyt-C). The results showed that the prepared enzyme reactor exhibited high enzyme immobilization efficiency and fast and easy-control protein digestibility. BSA and Cyt-C could be digested in 10 min with sequence coverage of 59% and 78%, respectively. The peptides and residual protein could be easily rinsed out from reactor and the reactor could be regenerated easily with 4 M HCl without any structure destruction. Properties of multiple interconnected chambers with good permeability, fast digestion facility and easily reproducibility indicated that the polyHIPE enzyme reactor was a good selector potentially applied in proteomics and catalysis areas. - Graphical abstract: Schematic illustration of preparation of hypercrosslinking polyHIPE immobilized enzyme reactor for on-column protein digestion. - Highlights: • A reactor was prepared and used for enzyme immobilization and continuous on-column protein digestion. • The new polyHIPE IMER was quite suit for protein digestion with good properties. • On-column digestion revealed that the IMER was easy regenerated by HCl without any structure destruction.

  6. An easily regenerable enzyme reactor prepared from polymerized high internal phase emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, Guihua, E-mail: guihuaruan@hotmail.com [Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541004 (China); Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004 (China); Wu, Zhenwei; Huang, Yipeng; Wei, Meiping; Su, Rihui [Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541004 (China); Du, Fuyou, E-mail: dufu2005@126.com [Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541004 (China); Guangxi Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004 (China)

    2016-04-22

    A large-scale high-efficient enzyme reactor based on polymerized high internal phase emulsion monolith (polyHIPE) was prepared. First, a porous cross-linked polyHIPE monolith was prepared by in-situ thermal polymerization of a high internal phase emulsion containing styrene, divinylbenzene and polyglutaraldehyde. The enzyme of TPCK-Trypsin was then immobilized on the monolithic polyHIPE. The performance of the resultant enzyme reactor was assessed according to the conversion ability of N{sub α}-benzoyl-L-arginine ethyl ester to N{sub α}-benzoyl-L-arginine, and the protein digestibility of bovine serum albumin (BSA) and cytochrome (Cyt-C). The results showed that the prepared enzyme reactor exhibited high enzyme immobilization efficiency and fast and easy-control protein digestibility. BSA and Cyt-C could be digested in 10 min with sequence coverage of 59% and 78%, respectively. The peptides and residual protein could be easily rinsed out from reactor and the reactor could be regenerated easily with 4 M HCl without any structure destruction. Properties of multiple interconnected chambers with good permeability, fast digestion facility and easily reproducibility indicated that the polyHIPE enzyme reactor was a good selector potentially applied in proteomics and catalysis areas. - Graphical abstract: Schematic illustration of preparation of hypercrosslinking polyHIPE immobilized enzyme reactor for on-column protein digestion. - Highlights: • A reactor was prepared and used for enzyme immobilization and continuous on-column protein digestion. • The new polyHIPE IMER was quite suit for protein digestion with good properties. • On-column digestion revealed that the IMER was easy regenerated by HCl without any structure destruction.

  7. Ceramic oxygen transport membrane array reactor and reforming method

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.; Christie, Gervase Maxwell; Robinson, Charles; Wilson, Jamie R.; Gonzalez, Javier E.; Doraswami, Uttam R.

    2016-11-08

    The invention relates to a commercially viable modular ceramic oxygen transport membrane reforming reactor configured using repeating assemblies of oxygen transport membrane tubes and catalytic reforming reactors.

  8. Catalytic conversion of carboxylic acids in bio-oil for liquid hydrocarbons production

    International Nuclear Information System (INIS)

    Wang, Shurong; Guo, Zuogang; Cai, Qinjie; Guo, Long

    2012-01-01

    Bio-oil must be upgraded to be suitable for use as a high-grade transport fuel. Crude bio-oil has a high content of carboxylic acids which can cause corrosion, and the high oxygen content of these acids also reduces the oil’s heating value. In this paper, acetic acid and propanoic acid were chosen as the model carboxylic acids in bio-oil. Their behavior in the production of liquid hydrocarbons during a catalytic conversion process was investigated in a micro-fixed bed reactor. The liquid organic phase from this catalytic conversion process mainly consisted of liquid hydrocarbons and phenol derivatives. Under the condition of low Liquid Hourly Space Velocity (LHSV), the liquid organic phase from acetic acid cracking had a selectivity of 22% for liquid hydrocarbons and a selectivity of 65% for phenol derivatives. The composition of the organic products changed considerably with the LHSV increasing to 3 h −1 . The selectivity for liquid hydrocarbons increased up to 52% while that for phenol derivatives decreased to 32%. Propanoic acid performed much better in producing liquid hydrocarbons than acetic acid. Its selectivity for liquid hydrocarbons was as high as 80% at LHSV = 3 h −1 . A mechanism for this catalytic conversion process was proposed according to the analysis of the components in the liquid organic phases. The pathways of the main compounds formation in the liquid organic phases were proposed, and the reason why liquid hydrocarbons were more effectively produced when using propanoic acid rather than acetic acid was also successfully explained. In addition, BET and SEM characterization were used to analyze the catalyst coke deposition. -- Graphical abstract: Display Omitted Highlights: ► High content of carboxylic acids in bio-oil causes its corrosiveness. ► Acetic acid and propanoic acid are two dominant acids in bio-oil. ► Liquid hydrocarbons were produced by cracking of these two dominant acids. ► A mechanism model was proposed to explain

  9. Temperature stabilisation in Fischer–Tropsch reactors using phase change material (PCM)

    International Nuclear Information System (INIS)

    Odunsi, Ademola O.; O'Donovan, Tadhg S.; Reay, David A.

    2016-01-01

    The Fischer–Tropsch (FT) reaction is highly exothermic. The exothermicity combined with a high sensitivity of product selectivity to temperature constitute the main challenges in the design of FT reactors. Temperature control is particularly critical to the process in order to ensure longevity of the catalyst, optimise the product distribution, and to ensure thermo-mechanical reliability of the entire process. The use of encapsulated, Phase Change Material (PCM), in conjunction with a supervisory temperature control mechanism, could help mitigate these challenges and intensify the heat transport from the reactor. A 2D-axisymmetric, pseudo-homogeneous, steady-state model, with the dissipation of the enthalpy of reaction into an isothermal PCM sink, in a wall-cooled, single-tube fixed bed reactor is presented. Effective temperature control shows a shift in thermodynamic equilibrium, favouring the selectivity of longer chain hydrocarbons (C_5_+) to the disadvantage of CH_4 selectivity-a much desired outcome in the hydrocarbon Gas-to-Liquid (GTL) industry. - Highlights: • Phase change material is used to control temperature in a Fischer–Tropsch reactor. • Effective temperature control favours the production of C_5_+ over CH_4. • A 2D-axisymmetric, steady-state model is presented. • The model is verified against similar experimental work done in literature.

  10. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders

    2003-04-01

    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  11. Petrochemical promoters in catalytic cracking

    International Nuclear Information System (INIS)

    Gomez, Maria; Vargas, Clemencia; Lizcano, Javier

    2010-01-01

    This study is based on the current scheme followed by a refinery with available Catalytic Cracking capacity to process new feedstocks such as Straight Run Naphtha and Naphthas from FCC. These feedstocks are of petrochemical interest to produce Ethane, Ethylene, Propylene, i-Butane, Toluene and Xylene. To evaluate the potential of these new streams versus the Cracking-charged Residues, it was performed a detailed chemical analysis on the structural groups in carbons [C1-C12] at the reactor product obtained in pilot plant. A catalyst with and without Propylene Promoter Additive was used. This study analyzes the differences in the chemical composition of the feedstocks, relating them to the yield of each petrochemical product. Straight Run Naphthas with a high content of Naphthenes, and Paraffines n[C5-C12] and i[C7-C12] are selective to the production of i-Butane and Propane, while Naphthas from FCC with a high content of n[C5-C12]Olefins, i-Olefins, and Aromatics are more selective to Propylene, Toluene, and Xylene. Concerning Catalytic Cracking of Naphthas, the Additive has similar selectivity for all the petrochemical products, their yields increase by about one point with 4%wt of Additive, while in cracking of Residues, the Additive increases in three points Propylene yield, corresponding to a selectivity of 50% (?C3= / ?LPG).

  12. Estimation of transient heat flux density during the heat supply of a catalytic wall steam methane reformer

    Science.gov (United States)

    Settar, Abdelhakim; Abboudi, Saïd; Madani, Brahim; Nebbali, Rachid

    2018-02-01

    Due to the endothermic nature of the steam methane reforming reaction, the process is often limited by the heat transfer behavior in the reactors. Poor thermal behavior sometimes leads to slow reaction kinetics, which is characterized by the presence of cold spots in the catalytic zones. Within this framework, the present work consists on a numerical investigation, in conjunction with an experimental one, on the one-dimensional heat transfer phenomenon during the heat supply of a catalytic-wall reactor, which is designed for hydrogen production. The studied reactor is inserted in an electric furnace where the heat requirement of the endothermic reaction is supplied by electric heating system. During the heat supply, an unknown heat flux density, received by the reactive flow, is estimated using inverse methods. In the basis of the catalytic-wall reactor model, an experimental setup is engineered in situ to measure the temperature distribution. Then after, the measurements are injected in the numerical heat flux estimation procedure, which is based on the Function Specification Method (FSM). The measured and estimated temperatures are confronted and the heat flux density which crosses the reactor wall is determined.

  13. On the vapor-liquid equilibrium in hydroprocessing reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Munteanu, M.; Farooqi, H. [National Centre for Upgrading Technology, Devon, AB (Canada)

    2009-07-01

    When petroleum distillates undergo hydrotreating and hydrocracking, the feedstock and hydrogen pass through trickle-bed catalytic reactors at high temperatures and pressures with large hydrogen flow. As such, the oil is partially vaporized and the hydrogen is partially dissolved in liquid to form a vapor-liquid equilibrium (VLE) system with both vapor and liquid phases containing oil and hydrogen. This may result in considerable changes in flow rates, physical properties and chemical compositions of both phases. Flow dynamics, mass transfer, heat transfer and reaction kinetics may also be modified. Experimental observations of VLE behaviours in distillates with different feedstocks under a range of operating conditions were presented. In addition, VLE was predicted along with its effects on distillates in pilot and commercial scale plants. tabs., figs.

  14. Effect of Catalyst Pellet-Diameter and Basicity on Transesterification of Soybean Oil into Biodiesel using K2O/CaO-ZnO Catalyst over Hybrid Catalytic-Plasma Reactor

    Directory of Open Access Journals (Sweden)

    Istadi I.

    2018-01-01

    Full Text Available This research is aimed to study the effect of catalyst pellet-diameter and catalyst basicity on the transesterification process of soybean oil into biodiesel over a hybrid catalytic-plasma reactor. Various catalyst diameters (3, 5, and 7 mm were tested in this reaction system. Catalyst basicity was also examined by comparing fresh and used catalyst as well as with and without K2O promoter. All catalysts testing were performed in a hybrid plasma-catalytic reactor (dielectric barrier discharge – DBD type. From the results, the synergistic effects roles of the catalyst and the plasma in the transesterification process are important, in which the energetic electrons within plasma assist the reaction on the catalyst surface by an exciting bonded electron. The catalyst basicity was influenced by the composition of CaO on the catalyst as well as roles of the alkaline K2O promoter. Catalyst basicity is important in producing biodiesel with high performance. Yield of fatty acid alkyl ester (FAAE or biodiesel is slightly influenced by the catalyst diameter within the range of diameter studied.

  15. Catalytic wet air oxidation of coke-plant wastewater on ruthenium-based eggshell catalysts in a bubbling bed reactor.

    Science.gov (United States)

    Yang, M; Sun, Y; Xu, A H; Lu, X Y; Du, H Z; Sun, C L; Li, C

    2007-07-01

    Catalytic wet air of coke-plant wastewater was studied in a bubbling bed reactor. Two types of supported Ru-based catalysts, eggshell and uniform catalysts, were employed. Compared with the results in the wet air oxidation of coke-plant wastewater, supported Ru uniform catalysts showed high activity for chemical oxygen demand (COD) and ammonia/ammonium compounds (NH3-N) removal at temperature of 250 degrees C and pressure of 4.8 MPa, and it has been demonstrated that the catalytic activity of uniform catalyst depended strongly on the distribution of active sites of Ru on catalyst. Compared to the corresponding uniform catalysts with the same Ru loading (0.25 wt.% and 0.1 wt.%, respectively), the eggshell catalysts showed higher activities for CODcr removal and much higher activities for NH3-N degradation. The high activity of eggshell catalyst for treatment of coke-plant wastewater can be attributed to the higher density of active Ru sites in the shell layer than that of the corresponding uniform catalyst with the same Ru loading. It has been also evidenced that the active Ru sites in the internal core of uniform catalyst have very little or no contribution to CODcr and NH3-N removal in the total oxidation of coke-plant wastewater.

  16. Identification of two-phase flow patterns in a nuclear reactor by the high-frequency contribution fraction

    International Nuclear Information System (INIS)

    Wang, Y.W.; Pei, B.S.; King, C.H.; Lee, S.C.

    1989-01-01

    Recently, King et al. and Wang et al. analyzed the fluctuating characteristics of differential pressure and void fraction by the optimum modeling method and by spectral analysis, respectively. These two investigations presented some new concepts and deterministic criteria, which are based on purely empirical formulas, to identify two-phase flow patterns. These deterministic criteria on two-phase flow patterns' identification seem to show reasonable performance. In King's and Wang's studies, there are at least three problems that need further investigations for the applications to the nuclear reactor engineering field. These three problems are the following: 1. Is the response to a certain two-phase flow pattern, i.e., the fluctuating characteristics, of neutrons the same as that of differential pressure or void fraction? 2. Could those criteria developed from air/water flow be allowed to identify steam/water two-phase flow patterns? 3. Could those criteria be applied to identify two-phase flow patterns in rod bundles? In this paper, parts of the investigated results answer the first problem, and detailed comparisons with the previous work of the authors are given on a variety of items

  17. Radioisotope applications on fluidized catalytic cracking units

    International Nuclear Information System (INIS)

    Charlton, J.S.

    1997-01-01

    Radioisotopes are used to trace the flow of all the phases of Fluidized Catalytic Cracking process in oil refineries. The gaseous phases, steam, hydrocarbon vapour and air, are generally traced using a noble-gas isotope, 41 Ar, 79 Kr or 85 Kr. An appropriate tracer for the catalyst is produced by irradiating a catalyst sample in a nuclear reactor. The activation products, 140 La and 24 Na provide appropriate radioactive 'labels' for the catalyst, which is reinjected into the FCC. An advantage of this approach is that it facilitates the study of the behaviour of different particle size fractions. Radioisotopes as sealed sources of gamma radiation are used to measure catalyst density variations and density distributions in critical parts of the unit. An important trend in radioisotope applications is the increasing use of the information they produce as inputs to or as validation of, mathematical process models. In line with the increasing sophistication of the models, the technology is undergoing continuous refinement. Developments include the investigation of more efficient, more convenient tracers, the introduction of systems to facilitate more rapid and comprehensive data acquisition and software refinements for enhanced data analysis

  18. Characterization of the Three Mile Island Unit-2 reactor building atmosphere prior to the reactor building purge

    International Nuclear Information System (INIS)

    Hartwell, J.K.; Mandler, J.W.; Duce, S.W.; Motes, B.G.

    1981-05-01

    The Three Mile Island Unit-2 reactor building atmosphere was sampled prior to the reactor building purge. Samples of the containment atmosphere were obtained using specialized sampling equipment installed through penetration R-626 at the 358-foot (109-meter) level of the TMI-2 reactor building. The samples were subsequently analyzed for radionuclide concentration and for gaseous molecular components (O 2 , N 2 , etc.) by two independent laboratories at the Idaho National Engineering Laboratory (INEL). The sampling procedures, analysis methods, and results are summarized

  19. Study on the correlation between the surface active species of Pd/cordierite monolithic catalyst and its catalytic activity

    International Nuclear Information System (INIS)

    Liao, Hengcheng; Zuo, Peiyuan; Liu, Miaomiao

    2016-01-01

    Two Pd-loading routes and three Pd-precursor matters were adopted to prepare Pd/(Ce,Y)O_2/γ-Al_2O_3/cordierite monolithic catalyst. The surface active species on the catalyst were characterized by XPS, and its catalytic activity for methane combustion was tested, and the dynamics of the catalytic combustion reaction was also discussed. Pd-loading route and Pd-precursor mass have a significant influence on the catalytic activity and surface active species. The sol dipping method is more advanced than the aqueous solution impregnating method. PN-sol catalyst, by sol dipping combined with Pd(NO_3)_2-precursor, has the best catalytic activity. The physical reason is the unique active Pd phase coexisting with active PdO phase on the surface, and thus the Pd3d_5_/_2 binding energy of surface species and apparent activation energy of combustion reaction are considerably decreased. The catalytic activity index, Pd3d_5_/_2 binding energy and apparent activation energy are highly tied each other with exponential relations.

  20. Modernization of reactor instrumentation for research reactors at Trombay

    International Nuclear Information System (INIS)

    Darbhe, M.D.; Chaudhuri, H.

    1989-01-01

    The three research reactors at Trombay, viz., Apsara, Cirus and Zerlina were commissioned in 1956, 1960 and 1961 respectively. The nuclear instrumentation designs were based on the vacuum tube technology, which was prevalent during those days. The effect of component obsolescence of critical components like vacuum tubes, magnetic amplifiers and sensitrol meter relays was strongly felt since early 1970s. Also, the failure rates of the units were observed to show an increasing trend due to ageing and lack of good quality indigenous spares. Hence it was proposed to replace the nuclear instrumentation units for the three reactors, with those employing modern, state of the art solid state devices, keeping indigenous content as high as practicable. The work started in 1977 with the preparations of specifications and the project was scheduled to be completed in 1981. The project was divided into two phases. The Phase I comprising of nuclear channels common to all reactors and Phase II consisting exclusively of regulating system units of Cirus. The salient stages of project progress and completion were: (i) Fabrication and testing of final design prototypes was completed by end of 1982. (ii) Commissioning of new units at Apsara was completed in January 1984. (iii) Commissioning of new units at Cirus was completed in September 1984. An account of experience in all these stages and problems encountered is given. (author). 6 figs

  1. Sealing of leaks in the bioshield cooling system of three research reactors

    International Nuclear Information System (INIS)

    May, R.; Taylor, M.F.

    1995-01-01

    Water leaks have occurred in the bioshield cooling system of three research reactors. These leaks have been plugged with a sealant based on a blend of a water-based resin and a bentonite-type clay originally developed for sealing similar leaks on power reactors. The mechanism of sealing and development testing of the sealant are described. Application of the sealant to the three reactors sealed the leaks. However, unlike experience with leaks in steel and aluminium systems, some leaks reappeared after several months service - albeit at a leak rate only a very small fraction of the original leak rate. The recurrent defects were readily retreated with sealant and hence, in these instances, the treatment is an effective maintenance procedure for any ageing reactor rather than a permanent cure. (orig.)

  2. Microwave catalytic NOx and SO{sub 2} removal using FeCu/zeolite as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Z.S. Wei; G.H. Zeng; Z.R. Xie; C.Y. Ma; X.H. Liu; J.L. Sun; L.H. Liu [Sun Yat-sen University, Guangzhou (China). School of Environmental Science and Engineering

    2011-04-15

    Non-thermal plasma technology is a promising process for flue gas treatment. Microwave catalytic NOx and SO{sub 2} removal simultaneously has been investigated using FeCu/zeolite as catalyst. The experimental results showed that a microwave reactor with FeCu/zeolite only could be used to microwave catalytic oxidative 91.7% NOx to nitrates and 79.6% SO{sub 2} to sulfate; the reaction efficiencies of microwave catalytic reduction of NOx and SO{sub 2} in a microwave reactor with FeCu/zeolite and ammonium bicarbonate (NH{sub 4}HCO{sub 3}) as a reducing agent could be up to 95.8% and 93.4% respectively. Microwave irradiation accentuates catalytic reduction of SO{sub 2} and NOx treatment, and microwave addition can increases SO{sub 2} removal efficiency from 14.5% to 18.7%, and NOx removal efficiency from 13.4% to 18.7%, separately. FeCu/zeolite catalyst was characterized by X-ray diffraction (XRD), X-ray photoelectron spectrum analysis (XPS), scanning electron microscopy (SEM) and the Brunauer Emmett Teller (BET) method. Microwave catalytic NOx and SO{sub 2} removal follows Langmuir-Hinshelwood (L-H) kinetics. 25 refs., 7 figs., 1 tab.

  3. Performance characteristic of saturable three-phase interface transformers-investigations using a model simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gierse, G; Pestka, J

    1981-11-01

    For electric locomotive drives equipped with converter fed squirrel cage induction motors the influence of different three-phase interface transformers on the smoothing of the motor currents is shown. In combination with a modified pulse-width-controlled thyristor firing system the size of the interface transformers can be greatly reduced without the distortion currents being greater than in the case of reactors in the motor supply lines. Finally, it is shown how the additional magnetic coupling of two driving systems can influence the behaviour of the two motors.

  4. Catalytic decomposition of trichloroethylene over Pt-/Ni-catalyst under microwave heating

    Energy Technology Data Exchange (ETDEWEB)

    Takashima, Hideaki; Karches, Martin [Chemiace Laboratory, 36-13 Hon-cho, Hachioji 192-0066 (Japan); Kanno, Yoshinori [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511 (Japan)], E-mail: kanno@yamanashi.ac.jp

    2008-01-30

    Microwave (MW)-activated catalytic reactor system was studied and the results were compared with that of a conventional system based on the thermal activation method. Trichloroethylene (TCE) was decomposed under various MW-powers supply. Results showed that there is an optimum film thickness that was loaded on supports in MW heating system. The threshold may be within 1-3 {mu}m. Lower temperature cannot activate the catalyst, while higher temperature results in carbon deposition and catalyst deactivation. This means that the dechlorination reaction needs to fix an optimum film MW-power supply in order to avoid the deposition of carbon on the surface of the active phase. MW-activated system is also worth compensating the conventional system in VOCs decomposition reaction.

  5. Computer simulation of two-phase flow in nuclear reactors

    International Nuclear Information System (INIS)

    Wulff, W.

    1993-01-01

    Two-phase flow models dominate the requirements of economic resources for the development and use of computer codes which serve to analyze thermohydraulic transients in nuclear power plants. An attempt is made to reduce the effort of analyzing reactor transients by combining purpose-oriented modelling with advanced computing techniques. Six principles are presented on mathematical modeling and the selection of numerical methods, along with suggestions on programming and machine selection, all aimed at reducing the cost of analysis. Computer simulation is contrasted with traditional computer calculation. The advantages of run-time interactive access operation in a simulation environment are demonstrated. It is explained that the drift-flux model is better suited than the two-fluid model for the analysis of two-phase flow in nuclear reactors, because of the latter's closure problems. The advantage of analytical over numerical integration is demonstrated. Modeling and programming techniques are presented which minimize the number of needed arithmetical and logical operations and thereby increase the simulation speed, while decreasing the cost. (orig.)

  6. Three-batch reloading scheme for IRIS reactor extended cycles

    International Nuclear Information System (INIS)

    Jecmenica, R.; Pevec, D.; Grgic, D.

    2004-01-01

    To fully exploit the IRIS reactor optimized maintenance, and at the same time improve fuel utilization, a core design enabling a 4-year operating cycle together with a three-batch reloading scheme is desirable. However, this requires not only the increased allowed burnup but also use of fuel with uranium oxide enriched beyond 5%. This paper considers three-batch reloading scheme for a 4-year operating cycle with the assumptions of increased discharge burnup and fuel enrichment beyond 5%. Calculational model of IRIS reactor core has been developed based on FER FA2D code for group constants generation and NRC's PARCS nodal code for global core analysis. Studies have been performed resulting in a preliminary design of a three-batch core configuration for the first cycle. It must be emphasized that this study is outside the current IRIS licensing efforts, which rely on the present fuel technology (enrichment below 5%), but it is of long-term interest for potential future IRIS design upgrades. (author)

  7. Impact of the volume of gaseous phase in closed reactors on ANC results and modelling

    Science.gov (United States)

    Drapeau, Clémentine; Delolme, Cécile; Lassabatere, Laurent; Blanc, Denise

    2016-04-01

    The understanding of the geochemical behavior of polluted solid materials is often challenging and requires huge expenses of time and money. Nevertheless, given the increasing amounts of polluted solid materials and related risks for the environment, it is more and more crucial to understand the leaching of majors and trace metals elements from these matrices. In the designs of methods to quantify pollutant solubilization, the combination of experimental procedures with modeling approaches has recently gained attention. Among usual methods, some rely on the association of ANC and geochemical modeling. ANC experiments - Acid Neutralization Capacity - consists in adding known quantities of acid or base to a mixture of water and contaminated solid materials at a given liquid / solid ratio in closed reactors. Reactors are agitated for 48h and then pH, conductivity, redox potential, carbon, majors and heavy metal solubilized are quantified. However, in most cases, the amounts of matrix and water do not reach the total volume of reactors, leaving some space for air (gaseous phase). Despite this fact, no clear indication is given in standard procedures about the effect of this gaseous phase. Even worse, the gaseous phase is never accounted for when exploiting or modeling ANC data. The gaseous phase may exchange CO2 with the solution, which may, in turn, impact both pH and element release. This study lies within the most general framework for the use of geochemical modeling for the prediction of ANC results for the case of pure phases to real phase assemblages. In this study, we focus on the effect of the gaseous phase on ANC experiments on different mineral phases through geochemical modeling. To do so, we use PHREEQC code to model the evolution of pH and element release (including majors and heavy metals) when several matrices are put in contact with acid or base. We model the following scenarios for the gaseous phase: no gas, contact with the atmosphere (open system

  8. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons.

    Science.gov (United States)

    Quesada-Peñate, I; Julcour-Lebigue, C; Jáuregui-Haza, U J; Wilhelm, A M; Delmas, H

    2012-06-30

    The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Visualizing the mobility of silver during catalytic soot oxidation

    DEFF Research Database (Denmark)

    Gardini, Diego; Christensen, Jakob M.; Damsgaard, Christian Danvad

    2016-01-01

    The catalytic activity and mobility of silver nanoparticles used as catalysts in temperature programmed oxidation of soot:silver (1:5 wt:wt) mixtures have been investigated by means of flow reactor experiments and in situ environmental transmission electron microscopy (ETEM). The carbon oxidation...

  10. Development and validation of three-dimensional CFD techniques for reactor safety applications. Final report; Entwicklung und Validierung dreidimensionaler CFD Verfahren fuer Anwendungen in der Reaktorsicherheit. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Sebastian; Palazzo, Simone; Papukchiev, Angel; Scheurer Martina

    2016-12-15

    The overall goal of the project RS 1506 ''Development and Validation of Three Dimensional CFD Methods for Reactor Safety Applications'' is the validation of Computational Fluid Dynamics (CFD) software for the simulation of three -dimensional thermo-hydraulic heat and fluid flow phenomena in nuclear reactors. For this purpose a wide spectrum of validation and test cases was selected covering fluid flow and heat transfer phenomena in the downcomer and in the core of pressurized water reactors. In addition, the coupling of the system code ATHLET with the CFD code ANSYS CFX was further developed and validated. The first choice were UPTF experiments where turbulent single- and two-phase flows were investigated in a 1:1 scaled model of a German KONVOI reactor. The scope of the CFD calculations covers thermal mixing and stratification including condensation in single- and two-phase flows. In the complex core region, the flow in a fuel assembly with spacer grid was simulated as defined in the OECD/NEA Benchmark MATIS-H. Good agreement are achieved when the geometrical and physical boundary conditions were reproduced as realistic as possible. This includes, in particular, the consideration of heat transfer to walls. The influence of wall modelling on CFD results was investigated on the TALL-3D T01 experiment. In this case, the dynamic three dimensional fluid flow and heat transfer phenomena were simulated in a Generation IV liquid metal cooled reactor. Concurrently to the validation work, the coupling of the system code ATHLET with the ANSYS CFX software was optimized and expanded for two-phase flows. Different coupling approaches were investigated, in order to overcome the large difference between CPU-time requirements of system and CFD codes. Finally, the coupled simulation system was validated by applying it to the simulation of the PSI double T-junction experiment, the LBE-flow in the MYRRA Spallation experiment and a demonstration test case

  11. Active disturbance rejection controller for chemical reactor

    International Nuclear Information System (INIS)

    Both, Roxana; Dulf, Eva H.; Muresan, Cristina I.

    2015-01-01

    In the petrochemical industry, the synthesis of 2 ethyl-hexanol-oxo-alcohols (plasticizers alcohol) is of high importance, being achieved through hydrogenation of 2 ethyl-hexenal inside catalytic trickle bed three-phase reactors. For this type of processes the use of advanced control strategies is suitable due to their nonlinear behavior and extreme sensitivity to load changes and other disturbances. Due to the complexity of the mathematical model an approach was to use a simple linear model of the process in combination with an advanced control algorithm which takes into account the model uncertainties, the disturbances and command signal limitations like robust control. However the resulting controller is complex, involving cost effective hardware. This paper proposes a simple integer-order control scheme using a linear model of the process, based on active disturbance rejection method. By treating the model dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. Simulation results are provided to demonstrate the effectiveness of the proposed method

  12. Active disturbance rejection controller for chemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Both, Roxana; Dulf, Eva H.; Muresan, Cristina I., E-mail: roxana.both@aut.utcluj.ro [Technical University of Cluj-Napoca, 400114 Cluj-Napoca (Romania)

    2015-03-10

    In the petrochemical industry, the synthesis of 2 ethyl-hexanol-oxo-alcohols (plasticizers alcohol) is of high importance, being achieved through hydrogenation of 2 ethyl-hexenal inside catalytic trickle bed three-phase reactors. For this type of processes the use of advanced control strategies is suitable due to their nonlinear behavior and extreme sensitivity to load changes and other disturbances. Due to the complexity of the mathematical model an approach was to use a simple linear model of the process in combination with an advanced control algorithm which takes into account the model uncertainties, the disturbances and command signal limitations like robust control. However the resulting controller is complex, involving cost effective hardware. This paper proposes a simple integer-order control scheme using a linear model of the process, based on active disturbance rejection method. By treating the model dynamics as a common disturbance and actively rejecting it, active disturbance rejection control (ADRC) can achieve the desired response. Simulation results are provided to demonstrate the effectiveness of the proposed method.

  13. Catalytic Oxidation of CO and Soot over Ce-Zr-Pr Mixed Oxides Synthesized in a Multi-Inlet Vortex Reactor: Effect of Structural Defects on the Catalytic Activity.

    Science.gov (United States)

    Bensaid, Samir; Piumetti, Marco; Novara, Chiara; Giorgis, Fabrizio; Chiodoni, Angelica; Russo, Nunzio; Fino, Debora

    2016-12-01

    In the present work, ceria, ceria-zirconia (Ce = 80 at.%, Zr = 20 at.%), ceria praseodymia (Ce = 80 at.%, Pr = 20 at.%) and ceria-zirconia-praseodymia catalysts (Ce = 80 at.%, Zr = 10 at.% and Pr = 10 at.%) have been prepared by the multi-inlet vortex reactor (MIVR). For each set of samples, two inlet flow rates have been used during the synthesis (namely, 2 ml min -1 , and 20 ml min -1 ) in order to obtain different particle sizes. Catalytic activity of the prepared materials has been investigated for CO and soot oxidation reactions. As a result, when the catalysts exhibit similar crystallite sizes (in the 7.7-8.8 nm range), it is possible to observe a direct correlation between the O v /F 2g vibrational band intensity ratios and the catalytic performance for the CO oxidation. This means that structural (superficial) defects play a key role for this process. The incorporation of Zr and Pr species into the ceria lattice increases the population of structural defects, as measured by Raman spectroscopy, according to the order: CeO 2  oxidation activity for these catalysts, in contrast with nanostructured ones (e.g., Ce-Zr-O nanopolyhedra, Ce-Pr-O nanocubes) described elsewhere (Andana et al. Appl. Catal. B 197: 125-137, 2016; Piumetti et al., Appl Catal B 180: 271-282, 2016).

  14. Modélisation de l'oxydation catalytique du glucose dans un réacteur à lit fluidisé triphase

    Directory of Open Access Journals (Sweden)

    Ben-Abdesselam A.

    2000-01-01

    Full Text Available Modelling of glucose oxidation in a Verlifluid type reactor with a three phase fluidized bed. The catalytic oxidation of glucose gives rise to gluconic acid as well as other acids. This oxidation is assayed in a three-phase gas-liquid-solid fluidized bed. The alumina solid particles serving as support to the platinum catalyst are fluidized by an aqueous solution of glucose and by a co-current air flow. By modelling the reaction in the device it was found that the reactor performances are limited by the internal diffusional resistance.

  15. LCCT-derived three-level three-phase inverters

    DEFF Research Database (Denmark)

    Shults, Tatiana; Husev, Oleksandr; Blaabjerg, Frede

    2017-01-01

    Solutions for a family of the novel three-level neutral-point-clamped (NPC) inductor-capacitor-capacitor-transformer (LCCT)-derived three-phase inverters are described and compared. Component design guidelines and steady state analysis, current and voltage waveforms are given. The authors......' simulation results confirm the theoretical predictions. It was found that an asymmetrical three-level NPC LCCT-derived inverter with a single diode in the impedance source network is the most promising solution. Experimental results for an asymmetrical three-level NPC LCCT-derived inverter with a single...

  16. Advances in process intensification through multifunctional reactor engineering.

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Marcia A.; Miller, James Edward; O' Hern, Timothy John; Gill, Walter; Evans, Lindsey R.

    2011-02-01

    A multifunctional reactor is a chemical engineering device that exploits enhanced heat and mass transfer to promote production of a desired chemical, combining more than one unit operation in a single system. The main component of the reactor system under study here is a vertical column containing packing material through which liquid(s) and gas flow cocurrently downward. Under certain conditions, a range of hydrodynamic regimes can be achieved within the column that can either enhance or inhibit a desired chemical reaction. To study such reactors in a controlled laboratory environment, two experimental facilities were constructed at Sandia National Laboratories. One experiment, referred to as the Two-Phase Experiment, operates with two phases (air and water). The second experiment, referred to as the Three-Phase Experiment, operates with three phases (immiscible organic liquid and aqueous liquid, and nitrogen). This report describes the motivation, design, construction, operational hazards, and operation of the both of these experiments. Data and conclusions are included.

  17. Thermal and catalytic cracking of ethylene in presence of CaO, MgO, zeolite and calcined dolomite

    Energy Technology Data Exchange (ETDEWEB)

    Taralas, G; Sjoestroem, K; Jaeraas, S; Bjoernbom, E [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Technology

    1994-12-31

    The subject of the present work is to study the effect of catalysts such as calcined dolomite (CaO.MgO), CaO (quicklime), MgO and Zeolite (EKZ-4) on the cracking of ethylene in the presence and absence of steam. N-heptane, toluene, naphthalene, thiophene have been some suitable model compounds for studies of the thermal and catalytic decomposition of tar. Previous results showed that the reaction scheme of the thermal decomposition of n-heptane was consistent with the high yield of ethylene observed in thermal decomposition of n-heptane. The effect of the reactor wall and the ferric impurities in the dolomite are also subjects of the research in this study. The results may also throw some additional light on the nature of the gas-phase thermal and catalytic reactions occurring in the use of dolomite as tar cracking catalysts. 28 refs

  18. Mean field approximation for the kinetics of the selective catalytic reduction of NO by ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Santos, M.; Bodanese, J.P. [Centro de Ensino Sao Jose, Universidade do Vale do Itajai (Brazil); S. Grandi, B.C. da [Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis (Brazil)

    2007-04-15

    In this work we study a catalytic reaction model among three monomers in order to understand the chemical kinetics of the selective catalytic reduction of nitrogen oxide by ammonia (4NO+4NH{sub 3}+O{sub 2}{yields}4N{sub 2}+6H{sub 2}O). Our model takes into account the formation of the intermediate species in the global scheme of the reaction. In order to determine the dynamical behaviour of the model we used single site approximation method. In this approach we have observed that, depending on the values of the control parameters, the model presents an active or an inactive phase. In fact, the dynamical phase diagram of the model exhibits a first order line separating these two phases. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Measurement of capacity coefficient of inclined liquid phase catalytic exchange column for tritiated water processing

    International Nuclear Information System (INIS)

    Yamai, Hideki; Konishi, Satoshi; Yamanishi, Toshihiko; Okuno, Kenji

    1994-01-01

    Liquid phase catalytic exchange (LPCE) is effective method for enrichment and removal of tritium from tritiated water. Capacity coefficients of operating LPCE column that are essential to evaluate column performance were measured. Experiments were performed with short catalyst packed columns and effect of inclination was studied. Method for evaluation of capacity coefficients was established from measurement of isotope concentration of liquid, vapor, gas phases at the two ends of the column. The capacity coefficients were measured under various superficial gas velocities. Feasibility study of helical columns with roughened inner surface was performed with short inclined columns. The column performance was not strongly affected by the inclination. The result indicates technological feasibility of helical LPCE column, that is expected to have operation stability and reduced height

  20. Ozonation of Cephalexin Antibiotic Using Granular Activated Carbon in a Circulating Reactor

    International Nuclear Information System (INIS)

    Amin, N. S.; Akhtar, J.

    2015-01-01

    A circulating reactor was used to decompose cephalexin during catalytic ozonation. The effect of ozone supply and granular activated carbon (GAC) catalyst was investigated for removal of CEX and COD. The regeneration of exhausted activated carbon was investigated during in-situ ozonation. According to results, ozone supply appeared as the most influencing variable followed by dosage of granular activated carbon. The BET surface area, thermogravimetric analysis (TGA) and temperature programmed desorption (TPD) curves indicated that solid phase regeneration of activated carbon using ozone gas followed by mild thermal decomposition was very effective. The adsorption capacity of regenerated activated carbon was slightly lower than virgin activated carbon. The overall study revealed that catalytic ozonation was effective in removing cephalexin from solution and the method can be applied for in-situ ozonation processes. (author)

  1. Feasibility study of applying reactor oscillator phase method at the RB reactor; Razmatranje mogucnosti primene fazne metode reaktorskog oscilatora na reaktoru RB

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, M; Kocic, A; Markovic, V [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    This paper decsribes the principles of amplitude and phase methods for applying reactor oscillator; experimental procedure and choice of optimum parameters for usractor oscillator at the RB reactor, dependent on the values of absorption properties of moderator and construction materials. Short description of the oscillator and the electronic equipment is included.

  2. Catalytic production of biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Theilgaard Madsen, A.

    2011-07-01

    The focus of this thesis is the catalytic production of diesel from biomass, especially emphasising catalytic conversion of waste vegetable oils and fats. In chapter 1 an introduction to biofuels and a review on different catalytic methods for diesel production from biomass is given. Two of these methods have been used industrially for a number of years already, namely the transesterification (and esterification) of oils and fats with methanol to form fatty acid methyl esters (FAME), and the hydrodeoxygenation (HDO) of fats and oils to form straight-chain alkanes. Other possible routes to diesel include upgrading and deoxygenation of pyrolysis oils or aqueous sludge wastes, condensations and reductions of sugars in aqueous phase (aqueous-phase reforming, APR) for monofunctional hydrocarbons, and gasification of any type of biomass followed by Fischer-Tropsch-synthesis for alkane biofuels. These methods have not yet been industrialised, but may be more promising due to the larger abundance of their potential feedstocks, especially waste feedstocks. Chapter 2 deals with formation of FAME from waste fats and oils. A range of acidic catalysts were tested in a model fat mixture of methanol, lauric acid and trioctanoin. Sulphonic acid-functionalised ionic liquids showed extremely fast convertion of lauric acid to methyl laurate, and trioctanoate was converted to methyl octanoate within 24 h. A catalyst based on a sulphonated carbon-matrix made by pyrolysing (or carbonising) carbohydrates, so-called sulphonated pyrolysed sucrose (SPS), was optimised further. No systematic dependency on pyrolysis and sulphonation conditions could be obtained, however, with respect to esterification activity, but high activity was obtained in the model fat mixture. SPS impregnated on opel-cell Al{sub 2}O{sub 3} and microporous SiO{sub 2} (ISPS) was much less active in the esterification than the original SPS powder due to low loading and thereby low number of strongly acidic sites on the

  3. A three-phase comprehensive mathematical model of desulfurization in electroslag remelting process

    International Nuclear Information System (INIS)

    Wang, Qiang; Li, Guangqiang; He, Zhu; Li, Baokuan

    2017-01-01

    Highlights: • First developed a three-phase coupled model of desulfurization in ESR process. • The MHD thermal flow in the reactor was clarified. • Distributions of sulfur concentration in the three phases were demonstrated. • An experiment was carried out to validate the simulation. - Abstract: A three-phase comprehensive mathematical model has been established to study the desulfurization behavior in electroslag remelting (ESR) process. The solutions of the mass, momentum, energy, and species conservation equations were simultaneously calculated by the finite volume method. The Joule heating and Lorentz force were fully coupled through solving the Maxwell’s equations with the assistance of the magnetic potential vector. The movements of the air-slag and slag-metal interfaces were described by the volume of fluid (VOF) approach. In order to include the influences of the air, the slag and the electric current on the desulfurization, a thermodynamic and kinetic module was introduced. An experiment was conducted to validate the model. The completely comparison between the measured and simulated data indicates that the model can describe the desulfurization behavior in the ESR process with an acceptable accuracy. The sulfur in the metal would be transferred into the slag under the combined effect of the slag treatment and the electrochemical reaction, and is primarily achieved in the period of the droplet formation. The sulfur in the slag then could be transferred into the air because of the oxidation. The maximum calculated removal ratio in the whole process is around 88%.

  4. Catalytic conversion of light alkanes, Phase 3. Topical report, January 1990--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    The mission of this work is to devise a new catalyst which can be used in the first simple, economic process to convert the light alkanes in natural gas to an alcohol-rich oxygenated product which can either be used as an environmentally friendly, high-performance liquid fuel, or a precursor to a liquid hydrocarbon transportation fuel. The authors have entered the proof-of-concept stage for converting isobutane to tert butyl alcohol in a practical process and are preparing to enter proof-of-concept of a propane to isopropyl alcohol process in the near future. Methane and ethane are more refractory and thus more difficult to oxidize than the C{sub 3} and C{sub 4} hydrocarbons. Nonetheless, advances made in this area indicate that further research progress could achieve the goal of their direct conversion to alcohols. Progress in Phase 3 catalytic vapor phase methane and ethane oxidation over metals in regular oxidic lattices are the subject of this topical report.

  5. Fundamental study of manganese dioxide for catalytic recombustion of exhaust gas of motor car

    Energy Technology Data Exchange (ETDEWEB)

    Shimoyamada, T

    1974-01-01

    The catalytic activities of five manganese dioxide preparations were tested in a pulse reactor to assess their carbon monoxide-oxidizing capability in relation to the catalytic afterburning of automobile exhaust gases. Catalysts prepared from manganese sulfate showed diminished catalytic activity as a result of sulfate poisoning. Higher oxidation activity was obtained with a catalyst prepared by precipitating the permanganate salt in acidic solution. Two forms of carbon monoxide adsorption were demonstrated, each with a characteristic activation energy and reaction temperature.

  6. Development of a three dimension multi-physics code for molten salt fast reactor

    International Nuclear Information System (INIS)

    Cheng Maosong; Dai Zhimin

    2014-01-01

    Molten Salt Reactor (MSR) was selected as one of the six innovative nuclear reactors by the Generation IV International Forum (GIF). The circulating-fuel in the can-type molten salt fast reactor makes the neutronics and thermo-hydraulics of the reactor strongly coupled and different from that of traditional solid-fuel reactors. In the present paper: a new coupling model is presented that physically describes the inherent relations between the neutron flux, the delayed neutron precursor, the heat transfer and the turbulent flow. Based on the model, integrating nuclear data processing, CAD modeling, structured and unstructured mesh technology, data analysis and visualization application, a three dimension steady state simulation code system (MSR3DS) for the can-type molten salt fast reactor is developed and validated. In order to demonstrate the ability of the code, the three dimension distributions of the velocity, the neutron flux, the delayed neutron precursor and the temperature were obtained for the simplified MOlten Salt Advanced Reactor Transmuter (MOSART) using this code. The results indicate that the MSR3DS code can provide a feasible description of multi-physical coupling phenomena in can-type molten salt fast reactor. Furthermore, the code can well predict the flow effect of fuel salt and the transport effect of the turbulent diffusion. (authors)

  7. High quality bio-oil from catalytic flash pyrolysis of lignocellulosic biomass over alumina-supported sodium carbonate

    KAUST Repository

    Imran, Ali

    2014-11-01

    Performance of a novel alumina-supported sodium carbonate catalyst was studied to produce a valuable bio-oil from catalytic flash pyrolysis of lignocellulosic biomass. Post treatment of biomass pyrolysis vapor was investigated in a catalyst fixed bed reactor at the downstream of the pyrolysis reactor. In-situ catalytic upgrading of biomass pyrolysis vapor was conducted in an entrained flow pyrolysis reactor by feeding a premixed feedstock of the catalyst and biomass. Na2CO3/gamma-Al2O3 was very effective for de-oxygenation of the pyrolysis liquid and oxygen content of the bio-oil was decreased from 47.5 wt.% to 16.4 wt.%. An organic rich bio-oil was obtained with 5.8 wt.% water content and a higher heating value of 36.1 MJ/kg. Carboxylic acids were completely removed and the bio-oil had almost a neutral pH. This bio-oil of high calorific low, low water and oxygen content may be an attractive fuel precursor. In-situ catalytic upgrading of biomass pyrolysis vapor produced a very similar quality bio-oil compared to post treatment of pyrolysis vapors, and shows the possible application of Na2CO3/gamma-Al2O3 in a commercial type reactor system such as a fluidized bed reactor. (C) 2014 Elsevier B.V. All rights reserved.

  8. Biogas Catalytic Reforming Studies on Nickel-Based Solid Oxide Fuel Cell Anodes

    DEFF Research Database (Denmark)

    Johnson, Gregory B.; Hjalmarsson, Per; Norrman, Kion

    2016-01-01

    Heterogeneous catalysis studies were conducted on two crushed solid oxide fuel cell (SOFC) anodes in fixed-bed reactors. The baseline anode was Ni/ScYSZ (Ni/scandia and yttria stabilized zirconia), the other was Ni/ScYSZ modified with Pd/doped ceria (Ni/ScYSZ/Pd-CGO). Three main types......-programmed oxidation and time-of-flight secondary ion mass spectrometry. Results showed thatNi/ScYSZ/Pd-CGO was more active for catalytic dissociation of CH4 at 750°C and subsequent reactivity of deposited carbonaceous species. Sulfur deactivated most catalytic reactions except CO2 dissociation at 750°C. The presence...... of Pd-CGO helped to mitigate sulfur deactivation effect; e.g. lowering the onset temperature (up to 190°C) for CH4 conversion during temperature-programmed reactions. Both Ni/ScYSZ and Ni/ScYSZ/Pd-CGO anode catalysts were more active for dry reforming of biogas than they were for steam reforming...

  9. Catalytic combustion in gas stoves - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Hjelm, Anna-Karin [CATATOR AB, Lund (Sweden)

    2003-06-01

    Several independent studies show that gas stoves to some degree contribute to the indoor emissions of NO{sub x} especially in situations were the ventilation flow is poor. The peak-NO{sub x} concentrations can reach several hundred ppb but the integral concentration seldom exceeds about 20 - 50 ppb, which corresponds to an indoor-outdoor ratio of about 1 - 2.5. Epidemiological studies indicate increasing problems with respiratory symptoms in sensitive people at concentrations as low as 15 ppb of NO{sub 2}. Consequently, the NO{sub x}-concentration in homes where gas stoves are used is high enough to cause health effects. However, in situations where the ventilation flow is high (utilisation of ventilation hoods) the NO{sub x}-emissions are not likely to cause any health problems. This study has been aimed at investigating the possibilities to reduce the NO{sub x} emissions from gas stoves by replacing the conventional flame combustion with catalytic combustion. The investigation is requested by Swedish Gas Center, and is a following-up work of an earlier conducted feasibility study presented in April-2002. The present investigation reports on the possibility to use cheap and simple retro-fit catalytic design suggestions for traditional gas stoves. Experiments have been conducted with both natural and town gas, and parameters such as emissions of NO{sub x}, CO and unburned fuel gas and thermal efficiency, etc, have been examined and are discussed. The results show that it is possible to reduce the NO{sub x} emissions up to 80% by a simple retro-fit installation, without decreasing the thermal efficiency of the cooking plate. The measured source strengths correspond to indoor NO{sub x} concentrations that are below or equal to the average outdoor concentration, implying that no additional detrimental health effects are probable. The drawback of the suggested installations is that the concentration of CO and in some cases also CH{sub 4} are increased in the flue gases

  10. Staged catalytic gasification/steam reforming of pyrolysis oil

    NARCIS (Netherlands)

    van Rossum, G.; Kersten, Sascha R.A.; van Swaaij, Willibrordus Petrus Maria

    2009-01-01

    Gasification/steam reforming of pyrolysis oil was studied in a staged reactor concept, which consisted of an inert fluidized bed and a catalytic fixed bed. Methane and C2−C3 free syngas is produced at a single temperature around 800 °C at atmospheric pressure. By lowering the temperature of the

  11. Optimisation of hydrogenation reactors with heterogeneous catalysts operated in trickle phase

    Energy Technology Data Exchange (ETDEWEB)

    Knoche, M. [CRI KataLeuna GmbH, Leuna (Germany)

    2010-12-30

    Maldistribution in trickle phase reactors is to be blamed for hot spot formation and non-ideal reaction. For a simple and quick evaluation, a virtually divided reactor model is presented for a better understanding and analysis of the consequences of liquid maldistribution. Based on this modelization, different methods are described to resolve microscopic and macroscopic maldistribution. The same model provides information to produce guidelines for reactor loading and evaluating the uneven effects of coking. It is shown that areas with specifically high liquid loads may suffer from insufficient gas supply and might therewith prevent a proper stoechiometric conversion of the gas with the liquid. In areas with lower liquid load, the gas has less hydraulic resistance and bypasses the effective reaction zone. (orig.)

  12. Liquid phase catalytic hydrodebromination of tetrabromobisphenol A on supported Pd catalysts

    International Nuclear Information System (INIS)

    Wu, Ke; Zheng, Mengjia; Han, Yuxiang; Xu, Zhaoyi; Zheng, Shourong

    2016-01-01

    Highlights: • Pd catalysts supported on TiO_2, CeO_2, Al_2O_3 and SiO_2 were prepared. • Deposition-precipitation method resulted in positively charged smaller Pd particle. • Complete debromination of tetrabromobisphenol A could be achieved on Pd/TiO_2. • Pd/TiO_2 prepared by the deposition-precipitation method was more active. - Abstract: Tetrabromobisphenol A (TBBPA) is a widely used brominated flame retardant and reductive debromination is an effective method for the abatement of TBBPA pollution. In this study, Pd catalysts supported on TiO_2, CeO_2, Al_2O_3 and SiO_2 were prepared by the impregnation (the resulting catalyst denoted as im-Pd/support), deposition-precipitation (the resulting catalyst denoted as dp-Pd/support), and photo-deposition (the resulting catalyst denoted as pd-Pd/support) methods. The catalysts were characterized by N_2 adsorption-desorption isotherm, X-ray diffraction, transmission electron microscopy, measurement of zeta potential, CO chemisorption, and X-ray photoelectron spectroscopy. The results showed that at an identical Pd loading amount (2.0 wt.%) Pd particle size in dp-Pd/TiO_2 was much smaller than those in im-Pd/TiO_2 and pd-Pd/TiO_2. Pd particle size of the dp-Pd/TiO_2 catalyst increased with Pd loading amount. Additionally, Pd particles in the dp-Pd/TiO_2 catalysts were positively charged due to the strong metal-support interaction, whereas the cationization effect was gradually attenuated with the increase of Pd loading amount. For the liquid phase catalytic hydrodebromination (HDB) of TBBPA, tri-bromobisphenol A (tri-BBPA), di-bromobisphenol A (di-BBPA), and mono-bromobisphenol A (mono-BBPA) were identified as the intermediate products, indicative of a stepwise debromination process. The catalytic HDB of TBBPA followed the Langmuir-Hinshelwood model, reflecting an adsorption enhanced catalysis mechanism. At an identical Pd loading amount, the Pd catalyst supported on TiO_2 exhibited a much higher catalytic activity

  13. Elaboration by tape-casting and co-sintering of multilayer catalytic membrane reactor- performances

    International Nuclear Information System (INIS)

    Julian, A.

    2008-12-01

    This research deals with the increasing interest of the conversion of natural gas into liquid fuels (diesel, kerosene) using the Gas To Liquid (GTL) process. Within this context, Catalytic Membrane-based Reactors (CMR) would allow an improvement of the process efficiency and a reduction of investment and production costs with respect to the present technologies. They allow performing the separation of oxygen from air, and the conversion of natural gas into synthesis gas within a single step. After having highlighted the economical and technological advantages of using a ceramic membrane for the production of syngas (H 2 + CO 2 ), the author describes the protocols of synthesis of powders selected for the dense membrane and the porous support, and their physical characteristics. The obtained powders are then adapted to the tape-casting forming process. Graded-composition multilayer structures and microstructure are then elaborated by co-sintering. Performances in terms of membrane oxygen flows are presented. Mechanisms limiting the oxygen flow are discussed in order to propose ways of improving membrane performances. The limits of the studied system are defined in terms of elastic properties, and optimization ways are proposed for the dense membrane material composition in terms of mechanical properties and performance in oxygen semi-permeation

  14. Research of three-dimensional transient reactivity feedback in fast reactor

    International Nuclear Information System (INIS)

    Xu Li; Shi Gong; Ma Dayuan; Yu Hong

    2013-01-01

    To solve the three-dimensional time-spatial kinetics feedback problems in fast reactor, a mathematical model of the direct reactivity feedback was proposed. Based on the NAS code for fast reactor and the reactivity feedback mechanism, a feedback model which combined the direct reactivity feedback and feedback reflected by the cross section variation was provided for the transient calculation. Furthermore, the fast reactor group collapsing system was added to the code, thus the real time group collapsing calculation could be realized. The isothermal elevated temperature test of CEFR was simulated by using the code. By comparing the calculation result with the test result of the temperature reactivity coefficient, the validity of the model and the code is verified. (authors)

  15. Suppression of the water splitting back reaction on GaN:ZnO photocatalysts loaded with core/shell cocatalysts, investigated using a μ-reactor

    DEFF Research Database (Denmark)

    Dionigi, Fabio; Vesborg, Peter Christian Kjærgaard; Pedersen, Thomas

    2012-01-01

    Using silicon-based l-reactors, we have studied the photocatalytic water splitting reaction and the catalytic back reaction on the same catalysts. GaN:ZnO without cocatalyst and loaded with Rh, Pt, Cr2O3/Rh, Cr2O3/Pt, and Rh–Cr mixed oxide has been tested for gas-phase photocatalytic water splitt...

  16. Immersion calorimetry as a tool to evaluate the catalytic performance of titanosilicate materials in the epoxidation of cyclohexene.

    Science.gov (United States)

    Vernimmen, Jarian; Guidotti, Matteo; Silvestre-Albero, Joaquin; Jardim, Erika O; Mertens, Myrjam; Lebedev, Oleg I; Van Tendeloo, Gustaaf; Psaro, Rinaldo; Rodríguez-Reinoso, Francisco; Meynen, Vera; Cool, Pegie

    2011-04-05

    Different types of titanosilicates are synthesized, structurally characterized, and subsequently catalytically tested in the liquid-phase epoxidation of cyclohexene. The performance of three types of combined zeolitic/mesoporous materials is compared with that of widely studied Ti-grafted-MCM-41 molecular sieve and the TS-1 microporous titanosilicate. The catalytic test results are correlated with the structural characteristics of the different catalysts. Moreover, for the first time, immersion calorimetry with the same substrate molecule as in the catalytic test reaction is applied as an extra means to interpret the catalytic results. A good correlation between catalytic performance and immersion calorimetry results is found. This work points out that the combination of catalytic testing and immersion calorimetry can lead to important insights into the influence of the materials structural characteristics on catalysis. Moreover, the potential of using immersion calorimetry as a screening tool for catalysts in epoxidation reactions is shown.

  17. Application of ultrasonic phased array technique for inspection of stud bolts in nuclear reactor vessel

    International Nuclear Information System (INIS)

    Choi, Sang Woo; Lee, Joon Ho; Park, Min Su; Cho, Youn Ho; Park, Moon Ho

    2004-01-01

    The stud bolt is one of crucial parts for safety of reactor vessels in nuclear power plants. Cracks initiation and propagation were reported in stud bolts using closure of reactor vessel and head. Stud bolts are inspected by ultrasonic technique during overhaul periodically for the prevention of stud bolt failure and radioactive leakage from nuclear reactor. In conventional ultrasonic testing for inspection of stud bolts, crack was detected by using shadow effect. It take too much time to inspect stud bolt by using conventional ultrasonic technique. In addition, there were numerous spurious signal reflected from every thread. In this study, the advanced ultrasonic phased array technique was introduced for inspect stud bolts. The phased array technique provide fast inspection and high detectability of defects. There are sector scanning and linear scanning method in phased array technique, and these scanning methods were applied to inspect stud bolt and detectability was investigated.

  18. Catalytic conversion of light alkanes. Final report, January 1, 1990--October 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    During the course of the first three years of the Cooperative Agreement (Phase I-III), we uncovered a family of metal perhaloporphyrin complexes which had unprecedented activity for the selective air-oxidation of fight alkanes to alcohols. The reactivity of fight hydrocarbon substrates with air or oxygen was in the order: isobutane>propane>ethane>methane, in accord with their homolytic bond dissociation energies. Isobutane was so reactive that the proof-of concept stage of a process for producing tert-butyl alcohol from isobutane was begun (Phase V). It was proposed that as more active catalytic systems were developed (Phases IV, VI), propane, then ethane and finally methane oxidations will move into this stage (Phases VII through IX). As of this writing, however, the program has been terminated during the later stages of Phases V and VI so that further work is not anticipated. We made excellent progress during 1994 in generating a class of less costly new materials which have the potential for high catalytic activity. New routes were developed for replacing costly perfluorophenyl groups in the meso-position of metalloporphyrin catalysts with far less expensive and lower molecular weight perfluoromethyl groups.

  19. Grafting of VO x/TiO2 catalyst on anodized aluminum plates for structured catalytic reactors

    International Nuclear Information System (INIS)

    Giornelli, Thierry; Loefberg, Axel; Bordes-Richard, Elisabeth

    2005-01-01

    Structured reactors are promising to carry out exothermic reactions because the heat transfer is better controlled than in usual packed-bed reactors. However the coating by oxide powders which must exhibit catalytic activity/selectivity while being mechanically stable is not so straightforward. We have studied the parameters to be controlled to coat aluminum walls by V 2 O 5 /TiO 2 catalysts which are used in the mild oxidation of hydrocarbons and NO x abatement. The dip-coating technique using metallic alcoholates has been chosen for the grafting of TiO 2 on Al 2 O 3 /Al, which is controlled by X-ray Photoelectron Spectroscopy (XPS). A monolayer of TiO 2 is first grafted, and then a porous film of TiO 2 -anatase is deposited by sol-gel. Finally, VO x species are grafted on titania and their loading again determined by XPS. Techniques such as Laser Raman Spectroscopy, Scanning Electron Microscopy are used to characterize the samples after each step, and the porous texture is determined. The layers are mechanically and thermally stable. The dispersion and nature of VO x species on TiO 2 /Al 2 O 3 /Al are similar to what is found in literature for TiO 2 powders, showing thereby that the shaping of anatase support on plates has not modified the chemical properties of VO x /TiO 2 -anatase system

  20. Electrochemical catalytic treatment of phenol wastewater

    International Nuclear Information System (INIS)

    Ma Hongzhu; Zhang Xinhai; Ma Qingliang; Wang Bo

    2009-01-01

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  1. Electrochemical catalytic treatment of phenol wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Ma Hongzhu, E-mail: hzmachem@snnu.edu.cn [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Zhang Xinhai [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Ma Qingliang [Department of Applied Physics, College of Sciences, Taiyuan University of Technology, 030024 Taiyuan (China); Wang Bo [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)

    2009-06-15

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  2. Catalytic flash pyrolysis of oil-impregnated-wood and jatropha cake using sodium based catalysts

    KAUST Repository

    Imran, Ali

    2015-11-24

    Catalytic pyrolysis of wood with impregnated vegetable oil was investigated and compared with catalytic pyrolysis of jatropha cake making use of sodium based catalysts to produce a high quality bio-oil. The catalytic pyrolysis was carried out in two modes: in-situ catalytic pyrolysis and post treatment of the pyrolysis vapors. The in-situ catalytic pyrolysis was carried out in an entrained flow reactor system using a premixed feedstock of Na2CO3 and biomass and post treatment of biomass pyrolysis vapor was conducted in a downstream fixed bed reactor of Na2CO3/γ-Al2O3. Results have shown that both Na2CO3 and Na2CO3/γ-Al2O3 can be used for the production of a high quality bio-oil from catalytic pyrolysis of oil-impregnated-wood and jatropha cake. The catalytic bio-oil had very low oxygen content, water content as low as 1wt.%, a neutral pH, and a high calorific value upto 41.8MJ/kg. The bio-oil consisted of high value chemical compounds mainly hydrocarbons and undesired compounds in the bio-oil were either completely removed or considerably reduced. Increasing the triglycerides content (vegetable oil) in the wood enhanced the formation of hydrocarbons in the bio-oil. Post treatment of the pyrolysis vapor over a fixed bed of Na2CO3/γ-Al2O3 produced superior quality bio-oil compared to in-situ catalytic pyrolysis with Na2CO3. This high quality bio-oil may be used as a precursor in a fractionating process for the production of alternative fuels. © 2015 Elsevier B.V.

  3. An Assessment of the Technical Readiness of the Vapor Phase Catalytic Ammonia Removal Process (VPCAR) Technology

    Science.gov (United States)

    Flynn, Michael

    2000-01-01

    This poster provides an assessment of the technical readiness of the Vapor Phase Catalytic Ammonia Removal Process (VPCAR). The VPCAR technology is a fully regenerative water recycling technology designed specifically for applications such as a near term Mars exploration mission. The VPCAR technology is a highly integrated distillation/catalytic oxidation based water processor. It is designed to accept a combined wastewater stream (urine, condensate, and hygiene) and produces potable water in a single process step which requires -no regularly scheduled re-supply or maintenance for a 3 year mission. The technology is designed to be modular and to fit into a volume comparable to a single International Space Station Rack (when sized for a crew of 6). This poster provides a description of the VPCAR technology and a summary of the current performance of the technology. Also provided are the results of two separate NASA sponsored system trade studies which investigated the potential payback of further development of the VPCAR technology.

  4. The heating operational summarization in three winters of a 5 MW test heating reactor

    International Nuclear Information System (INIS)

    Wang Dazhong; Dong Duo; Su Qingshan; Zhang Yajun

    1992-09-01

    The 5 MW THR (5 MW test heating reactor) is a new type reactor with inherent safety developed by INET (Institute of Nuclear Energy Technology). It is the first 'pressure vessel type' heating reactor in operation in the world. It was put into operation in November, 1989. Since then it has operated for three winter seasons. The total operation time has reached to 8174 hours and its availability of heating has reached to 99%. The advanced technology of this reactor has been proved in the past three years operation. The characteristics of power regulating, load following, reactivity disturbance and the variation of parameters under the condition of ATWS (anticipated transients without scram) were studied with experiments in 5 MW THR. The 5 MW THR is an ideal heating reactor and has outstanding performances

  5. Three-Phased Wake Vortex Decay

    Science.gov (United States)

    Proctor, Fred H.; Ahmad, Nashat N.; Switzer, George S.; LimonDuparcmeur, Fanny M.

    2010-01-01

    A detailed parametric study is conducted that examines vortex decay within turbulent and stratified atmospheres. The study uses a large eddy simulation model to simulate the out-of-ground effect behavior of wake vortices due to their interaction with atmospheric turbulence and thermal stratification. This paper presents results from a parametric investigation and suggests improvements for existing fast-time wake prediction models. This paper also describes a three-phased decay for wake vortices. The third phase is characterized by a relatively slow rate of circulation decay, and is associated with the ringvortex stage that occurs following vortex linking. The three-phased decay is most prevalent for wakes imbedded within environments having low-turbulence and near-neutral stratification.

  6. Catalytic models developed through social work

    DEFF Research Database (Denmark)

    Jensen, Mogens

    2015-01-01

    of adolescents placed in out-of-home care and is characterised using three situated cases as empirical data. Afterwards the concept of catalytic processes is briefly presented and then applied in an analysis of pedagogical treatment in the three cases. The result is a different conceptualisation of the social......The article develops the concept of catalytic processes in relation to social work with adolescents in an attempt to both reach a more nuanced understanding of social work and at the same time to develop the concept of catalytic processes in psychology. The social work is pedagogical treatment...

  7. Single phase and two phase erosion corrosion in broilers of gas-cooled reactors

    International Nuclear Information System (INIS)

    Harrison, G.S.; Fountain, M.J.

    1988-01-01

    Erosion-corrosion is a phenomenon causing metal wastage in a variety of locations in water and water-steam circuits throughout the power generation industry. Erosion-corrosion can occur in a number of regions of the once-through boiler designs used in the later Magnox and AGR type of gas cooled nuclear reactor. This paper will consider two cases of erosion-corrosion damage (single and two phase) in once through boilers of gas cooled reactors and will describe the solutions that have been developed. The single phase problem is associated with erosion-corrosion damage of mild steel downstream of a boiler inlet flow control orifice. With metal loss rates of up to 1 mm/year at 150 deg. C and pH in the range 9.0-9.4 it was found that 5 μg/kg oxygen was sufficient to reduce erosion-corrosion rates to less than 0.02 mm/year. A combined oxygen-ammonia-hydrazine feedwater regime was developed and validated to eliminate oxygen carryover and hence give protection from stress corrosion in the austenitic section of the AGR once through boiler whilst still providing erosion-corrosion control. Two phase erosion-corrosion tube failures have occurred in the evaporator of the mild steel once through boilers of the later Magnox reactors operating at pressures in the range 35-40 bar. Rig studies have shown that amines dosed in the feedwater can provide a significant reduction in metal loss rates and a tube lifetime assessment technique has been developed to predict potential tube failure profiles in a fully operational boiler. The solutions identified for both problems have been successfully implemented and the experience obtained following implementation including any problems or other benefits arising from the introduction of the new regimes will be presented. Methods for monitoring and evaluating the efficiency of the solutions have been developed and the results from these exercises will also be discussed. Consideration will also be given to the similarities in the metal loss

  8. Single phase and two phase erosion corrosion in broilers of gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, G S; Fountain, M J [Operational Engineering Division (Northern Area), Central Electricity Generating Board, Manchester (United Kingdom)

    1988-07-01

    Erosion-corrosion is a phenomenon causing metal wastage in a variety of locations in water and water-steam circuits throughout the power generation industry. Erosion-corrosion can occur in a number of regions of the once-through boiler designs used in the later Magnox and AGR type of gas cooled nuclear reactor. This paper will consider two cases of erosion-corrosion damage (single and two phase) in once through boilers of gas cooled reactors and will describe the solutions that have been developed. The single phase problem is associated with erosion-corrosion damage of mild steel downstream of a boiler inlet flow control orifice. With metal loss rates of up to 1 mm/year at 150 deg. C and pH in the range 9.0-9.4 it was found that 5 {mu}g/kg oxygen was sufficient to reduce erosion-corrosion rates to less than 0.02 mm/year. A combined oxygen-ammonia-hydrazine feedwater regime was developed and validated to eliminate oxygen carryover and hence give protection from stress corrosion in the austenitic section of the AGR once through boiler whilst still providing erosion-corrosion control. Two phase erosion-corrosion tube failures have occurred in the evaporator of the mild steel once through boilers of the later Magnox reactors operating at pressures in the range 35-40 bar. Rig studies have shown that amines dosed in the feedwater can provide a significant reduction in metal loss rates and a tube lifetime assessment technique has been developed to predict potential tube failure profiles in a fully operational boiler. The solutions identified for both problems have been successfully implemented and the experience obtained following implementation including any problems or other benefits arising from the introduction of the new regimes will be presented. Methods for monitoring and evaluating the efficiency of the solutions have been developed and the results from these exercises will also be discussed. Consideration will also be given to the similarities in the metal loss

  9. Catalytic combustion for the elimination of methane, BTEX and other VOC : IV

    International Nuclear Information System (INIS)

    Hayes, R.E.; Wanke, S.E.

    2008-01-01

    Options for volatile organic compound combustion include homogeneous combustion (flaring) or catalytic combustion involving a flameless combustion process that uses a solid catalyst to promote the combustion reaction. This presentation discussed relative reactivity testing for volatile organic compounds (VOCs) over commercial catalysts. Several commercial pad catalysts were tested, as well as other powders. The relative reactivity of methane as well as benzene, toluene, ethylbenzene, and xylene (BTEX) were investigated. The purpose of the project was to evaluate combustion of concentrated methane streams that contained BTEX compounds; evaluate catalytic combustion using a counter diffusive radiant heater; develop mathematical models for the reactor to enhance design and understanding; improve the catalyst for BTEX combustion; and target application-dehydrator units. Topics that were addressed in the presentation included methane and benzene conversion; catalytic radiant heaters; small industrial and commercial units; measured temperature distribution; fuel slippage, methane conversion; the effect of water and hydrocarbons; the effect of water-liquid injection; and water addition as vapour. Several observations were offered, including that high percentages of injected liquid water can reduce reactor operating temperature; combustion of BTEX remained highly efficient, however liquid injection could also cause temperature reductions and ultimately the reactor would extinguish; and pre-heating the feed can eliminate the temperature drop and pad wetness problem. It was concluded that BTEX compounds are reactive, and the technology appears promising. 19 figs

  10. Catalytic combustion for the elimination of methane, BTEX and other VOC : IV

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, R.E.; Wanke, S.E. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2008-07-01

    Options for volatile organic compound combustion include homogeneous combustion (flaring) or catalytic combustion involving a flameless combustion process that uses a solid catalyst to promote the combustion reaction. This presentation discussed relative reactivity testing for volatile organic compounds (VOCs) over commercial catalysts. Several commercial pad catalysts were tested, as well as other powders. The relative reactivity of methane as well as benzene, toluene, ethylbenzene, and xylene (BTEX) were investigated. The purpose of the project was to evaluate combustion of concentrated methane streams that contained BTEX compounds; evaluate catalytic combustion using a counter diffusive radiant heater; develop mathematical models for the reactor to enhance design and understanding; improve the catalyst for BTEX combustion; and target application-dehydrator units. Topics that were addressed in the presentation included methane and benzene conversion; catalytic radiant heaters; small industrial and commercial units; measured temperature distribution; fuel slippage, methane conversion; the effect of water and hydrocarbons; the effect of water-liquid injection; and water addition as vapour. Several observations were offered, including that high percentages of injected liquid water can reduce reactor operating temperature; combustion of BTEX remained highly efficient, however liquid injection could also cause temperature reductions and ultimately the reactor would extinguish; and pre-heating the feed can eliminate the temperature drop and pad wetness problem. It was concluded that BTEX compounds are reactive, and the technology appears promising. 19 figs.

  11. Advanced numerical methods for three dimensional two-phase flow calculations in PWR

    International Nuclear Information System (INIS)

    Toumi, I.; Gallo, D.; Royer, E.

    1997-01-01

    This paper is devoted to new numerical methods developed for three dimensional two-phase flow calculations. These methods are finite volume numerical methods. They are based on an extension of Roe's approximate Riemann solver to define convective fluxes versus mean cell quantities. To go forward in time, a linearized conservative implicit integrating step is used, together with a Newton iterative method. We also present here some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. This kind of numerical method, which is widely used for fluid dynamic calculations, is proved to be very efficient for the numerical solution to two-phase flow problems. This numerical method has been implemented for the three dimensional thermal-hydraulic code FLICA-4 which is mainly dedicated to core thermal-hydraulic transient and steady-state analysis. Hereafter, we will also find some results obtained for the EPR reactor running in a steady-state at 60% of nominal power with 3 pumps out of 4, and a thermal-hydraulic core analysis for a 1300 MW PWR at low flow steam-line-break conditions. (author)

  12. German Phase B [risk study] highlights the role of [reactor] accident management

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Phase B of the German probabilistic risk assessment study, now scheduled for publication this month, suggests that reactor accident management measures can prevent or mitigate about 90 per cent of event sequences. (author)

  13. Dynamic model of organic pollutant degradation in three dimensional packed bed electrode reactor.

    Science.gov (United States)

    Pang, Tianting; Wang, Yan; Yang, Hui; Wang, Tianlei; Cai, Wangfeng

    2018-04-21

    A dynamic model of semi-batch three-dimensional electrode reactor was established based on the limiting current density, Faraday's law, mass balance and a series of assumptions. Semi-batch experiments of phenol degradation were carried out in a three-dimensional electrode reactor packed with activated carbon under different conditions to verify the model. The factors such as the current density, the electrolyte concentration, the initial pH value, the flow rate of organic and the initial organic concentration were examined to know about the pollutant degradation in the three-dimensional electrode reactor. The various concentrations and logarithm of concentration of phenol with time were compared with the dynamic model. It was shown that the calculated data were in good agreement with experimental data in most cases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Low and medium heating value coal gas catalytic combustor characterization

    Science.gov (United States)

    Schwab, J. A.

    1982-01-01

    Catalytic combustion with both low and medium heating value coal gases obtained from an operating gasifier was demonstrated. A practical operating range for efficient operation was determined, and also to identify potential problem areas were identified for consideration during stationary gas turbine engine design. The test rig consists of fuel injectors, a fuel-air premixing section, a catalytic reactor with thermocouple instrumentation and a single point, water cooled sample probe. The test rig included inlet and outlet transition pieces and was designed for installation into an existing test loop.

  15. Catalytic oxidation of cyanides in an aqueous phase over individual and manganese-modified cobalt oxide systems

    International Nuclear Information System (INIS)

    Christoskova, St.; Stoyanova, M.

    2009-01-01

    The possibility for purification of wastewaters containing free cyanides by applying of a new method based on cyanides catalytic oxidation with air to CO 2 and N 2 at low temperature and atmospheric pressure was investigated. On this purpose, individual and modified with manganese Co-oxide systems as active phase of environmental catalysts were synthesized. The applied method of synthesis favours the preparation of oxide catalytic systems with high active oxygen content (total-O* and surface-O* s ) possessing high mobility, and the metal ions being in a high oxidation state and in an octahedral coordination-factors determining high activity in reactions of complete oxidation. The catalysts employed were characterized by powder X-ray diffraction, Infrared spectroscopy, and chemical analysis. The effect of pH of the medium and catalyst loading on the effectiveness of the cyanide oxidation process, expressed by the degree of conversion (α, %), by the rate constant (k, min -1 ), and COD was studied. The results obtained reveal that using catalysts investigated a high cyanide removal efficiency could be achieved even in strong alkaline medium. The higher activity of the manganese promoted catalytic sample could be explained on the basis of higher total active oxygen content and its higher mobility both depending on the conditions, under which the synthesis of catalyst is being carried out.

  16. Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass

    Science.gov (United States)

    Elliott, Douglas C; Oyler, James

    2013-12-17

    Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogenous catalyst for gasification.

  17. A Novel Three Phase to Seven Phase Conversion Technique Using Transformer Winding Connections

    Directory of Open Access Journals (Sweden)

    M. Tabrez

    2017-10-01

    Full Text Available This paper proposes a novel multiphase transformer connection scheme which converts three phase balanced AC input to seven phase balanced AC output. Generalized theory to convert a three phase utility supply into any number of phases is presented. Based on the proposed generalized principle, a three phase to seven phase power converting transformer design is presented with connection scheme, analysis and simulation and experimental results of the proposed three phase to seven phase conversion transformer. The proposed transformer in this paper is analyzed and compared with the connection scheme for seven phase available in the literature. The connection scheme is found to have higher power density, lower core area and lower core requirement as compared to the available connection scheme of the same rating. Impedance mismatching between different phases of the transformer is observed in the three phase to seven phase transformer available in the literature. As this mismatching introduces error in study of per phase equivalent circuit diagrams as well as imbalance in voltage and currents. The present design also addresses the impedance mismatching issue and reduces mismatching in the proposed transformer design. A prototype of the proposed system is developed and waveforms are presented. The proposed design is verified using simulation and validated using experimental approach.

  18. Modelling of FCC (Fluid Catalytic Cracking) risers with six lumps; Modelo de elevadores de Unidades de Craqueamento Catalitico com cinetica de seis classes

    Energy Technology Data Exchange (ETDEWEB)

    Baldessar, Fabio; Negrao, Cezar O. Ribeiro; Palu, Claudia [Centro Federal de Educacao Tecnologica do Parana (CEFET-PR), Curitiba, PR (Brazil)

    2004-07-01

    The current work presents a mathematical model of an ascendant flow vertical reactor (riser) of a Fluid Catalytic Cracking Unit. The two-phase flow (gas-solid) and the cracking reactions are admitted one-dimensional and steady state. Mass, momentum and energy conservation equations are considered for each phase (solid and gas). A six-lump kinetic model is employed to evaluate gasoil, gasoline, GLP, fuel gas, light cycle oil and coke fractions. The model results are compared to experimental values from a pilot plant and to another model found in the literature. The results are in good agreement, showing the model has great potential. (author)

  19. Analytical evaluation of two-phase natural circulation flow characteristics under external reactor vessel cooling

    International Nuclear Information System (INIS)

    Park, Jong Woon

    2009-01-01

    This work proposes an analytical method of evaluating the effects of design and operating parameters on the low-pressure two-phase natural circulation flow through the annular shaped gap at the reactor vessel exterior surface heated by corium (molten core) relocated to the reactor vessel lower plenum after loss of coolant accidents. A natural circulation flow velocity equation derived from steady-state mass, momentum, and energy conservation equations for homogeneous two-phase flow is numerically solved for the core melting conditions of the APR1400 reactor. The solution is compared with existing experiments which measured natural circulation flow through the annular gap slice model. Two kinds of parameters are considered for this analytical method. One is the thermal-hydraulic conditions such as thermal power of corium, pressure and inlet subcooling. The others are those for the thermal insulation system design for the purpose of providing natural circulation flow path outside the reactor vessel: inlet flow area, annular gap clearance and system resistance. A computer program NCIRC is developed for the numerical solution of the implicit flow velocity equation.

  20. Two-phase reduced gravity experiments for a space reactor design

    International Nuclear Information System (INIS)

    Antoniak, Z.I.

    1986-08-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. New flow regime maps, models, and correlations are required if the codes are to be successfully applied to reduced-gravity flow and heat transfer. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from two-phase alkali-metal experiments. Because these reduced-gravity experiments will be very basic, and will employ small test loops of simple geometry, a large measure of commonality exists between them and experiments planned by other organizations. It is recommended that a committee be formed, to coordinate all ongoing and planned reduced gravity flow experiments

  1. Oxidative destruction of biomolecules by gasoline engine exhaust products and detoxifying effects of the three-way catalytic converter.

    Science.gov (United States)

    Blaurock, B; Hippeli, S; Metz, N; Elstner, E F

    1992-01-01

    Aqueous solutions of engine exhaust condensation products were derived from cars powered by diesel or four-stroke gasoline engines (with and without three-way catalytic converter). The cars were operated on a static test platform. Samples of the different exhaust solutions accumulated in a Grimmer-type distillation trap (VDI 3872) during standard test programs (Federal Test Procedure) were incubated with important biomolecules. As indicators of reactive oxygen species or oxidative destruction, ascorbic acid, cysteine, glutathione, serum albumin, the enzymes glycerinaldehyde phosphate dehydrogenase and xanthine oxidase, and the oxygen free-radical indicator keto-methylthiobutyrate were used. During and after the incubations, oxygen activation (consumption) and oxidative destruction were determined. Comparison of the oxidative activities of the different types of exhaust condensates clearly showed that the exhaust condensate derived from the four-stroke car equipped with a three-way catalytic converter exhibited by far the lowest oxidative and destructive power.

  2. Adaptive nonlinear control of single-phase to three-phase UPS system

    Directory of Open Access Journals (Sweden)

    Kissaoui M.

    2014-01-01

    Full Text Available This work deals with the problems of uninterruptible power supplies (UPS based on the single-phase to three-phase converters built in two stages: an input bridge rectifier and an output three phase inverter. The two blocks are joined by a continuous intermediate bus. The objective of control is threefold: i power factor correction “PFC”, ii generating a symmetrical three-phase system at the output even if the load is unknown, iii regulating the DC bus voltage. The synthesis of controllers has been reached by two nonlinear techniques that are the sliding mode and adaptive backstepping control. The performances of regulators have been validated by numerical simulation in MATLAB / SIMULINK.

  3. FLICA-4 (version 1) a computer code for three dimensional thermal analysis of nuclear reactor cores

    International Nuclear Information System (INIS)

    Raymond, P.; Allaire, G.; Boudsocq, G.

    1995-01-01

    FLICA-4 is a thermal-hydraulic computer code developed at the French Energy Atomic Commission (CEA) for three dimensional steady state or transient two phase flow for design and safety thermal analysis of nuclear reactor cores. The two phase flow model of FLICA-4 is based on four balance equations for the fluid which includes: three balance equations for the mixture and a mass balance equation for the less concentrated phase which permits the calculation of non-equilibrium flows as sub cooled boiling and superheated steam. A drift velocity model takes into account the velocity disequilibrium between phases. The thermal behaviour of fuel elements can be computed by a one dimensional heat conduction equation in plane, cylindrical or spherical geometries and coupled to the fluid flow calculation. Convection and diffusion of solution products which are transported either by the liquid or by the gas, can be evaluated by solving specific mass conservation equations. A one dimensional two phase flow model can also be used to compute 1-D flow in pipes, guide tubes, BWR assemblies or RBMK channels. The FLICA-4 computer code uses fast running time steam-water functions. Phasic and saturation physical properties are computed by using bi-cubic spline functions. Polynomial coefficients are tabulated from 0.1 to 22 MPa and 0 to 800 degrees C. Specific modules can be utilised in order to generate the spline coefficients for any other fluid properties

  4. Optimizing a three-element core design for the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    West, C.D.

    1995-01-01

    Source of neutrons in the proposed Advanced Neutron Source facility is a multipurpose research reactor providing 5-10 times the flux, for neutron beams, of the best existing facilities. Baseline design for the reactor core, based on the ''no new inventions'' rule, was an assembly of two annular fuel elements similar to those used in the Oak Ridge and Grenoble high flux reactors, containing highly enriched U silicide particles. DOE commissioned a study of the use of medium- or low-enriched U; a three-element core design was studied as a means to provide extra volume to accommodate the additional U compound required when the fissionable 235 U has to be diluted with 238 U to reduce the enrichment. This paper describes the design and optimization of that three-element core

  5. 1 - Aromatization of n-hexane and natural gasoline over ZSM-5 zeolite, 2- Wet catalytic oxidation of phenol on fixed bed of active carbon; 1 - Aromatisation de n-hexane et d'essence sur zeolithe ZSM-5, 2 - Oxydation catalytique en voie humide du phenol sur charbon actif

    Energy Technology Data Exchange (ETDEWEB)

    Suwanprasop, S.

    2005-04-15

    I - The production of aromatic hydrocarbons from n-hexane and natural gasoline over Pd loaded ZSM-5 zeolite in a tubular reactor was achieved under the suitable conditions at 400 deg. C, and 0.4 ml/min reactant feeding rate, employing ZSM-5 (0.5% Pd content) as a catalyst. Under these conditions, n-hexane and natural gasoline conversions were found to be 99.7% and 94.3%, respectively (with respective aromatic selectivity of 92.3% and 92.6%). II - Wet catalytic air oxidation of phenol over a commercial active carbon was studied in a three phase fixed bed reactor under mild temperature and oxygen partial pressure. Exit phenol concentration, COD, and intermediates were analysed. Oxidation of phenol was significantly improved when increasing operating temperature, oxygen partial pressure, and liquid space time, while up or down flow modes had only marginal effect. A complete model involving intrinsic kinetics and all mass transfer limitations gave convenient reactor simulation. (author)

  6. Overview of reactors for liquid phase Fischer-Tropsch synthesis

    International Nuclear Information System (INIS)

    Davis, Burtron H.

    2002-01-01

    The following overview is divided roughly into three sections. The first section covers the period from the late 1920s when the first liquid phase synthesis was first conducted until about 1960 when the interest in Fischer-Tropsch synthesis (FTS) declined because of the renewed view of an abundance of petroleum at a low price. The second period includes the activity that resulted from the oil shortage due to the Arab embargo in 1972 and covers from about 1960 to 1985 when the period of gloomy projections for rapidly increasing prices for crude had faded away. The third section covers the period from when the interest in FTS was no longer driven by the projected supply and/or price of petroleum but by the desire to monetize stranded natural gas and/or terminate flaring the gas associated with petroleum production and other environmental concerns (1985 to date). These sections are followed by a brief overview of the current status of the scientific and engineering understanding of slurry bubble column reactors

  7. Approach to developing reliable space reactor power systems

    International Nuclear Information System (INIS)

    Mondt, J.F.; Shinbrot, C.H.

    1991-01-01

    The Space Reactor Power System Project is in the engineering development phase of a three-phase program. During Phase II, the Engineering Development Phase, the SP-100 Project has defined and is pursuing a new approach to developing reliable power systems. The approach to developing such a system during the early technology phase is described in this paper along with some preliminary examples to help explain the approach. Developing reliable components to meet space reactor power system requirements is based on a top down systems approach which includes a point design based on a detailed technical specification of a 100 kW power system

  8. Computational fluid dynamics simulations of light water reactor flows

    International Nuclear Information System (INIS)

    Tzanos, C.P.; Weber, D.P.

    1999-01-01

    Advances in computational fluid dynamics (CFD), turbulence simulation, and parallel computing have made feasible the development of three-dimensional (3-D) single-phase and two-phase flow CFD codes that can simulate fluid flow and heat transfer in realistic reactor geometries with significantly reduced reliance, especially in single phase, on empirical correlations. The objective of this work was to assess the predictive power and computational efficiency of a CFD code in the analysis of a challenging single-phase light water reactor problem, as well as to identify areas where further improvements are needed

  9. Ultrasonic phased array examination of circumferential weld joint in reactor pressure vessel of BWR

    Energy Technology Data Exchange (ETDEWEB)

    Nanekar, Paritosh, E-mail: pnanekar@barc.gov.in [Quality Assurance Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Jothilakshmi, N. [Quality Assurance Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2013-12-15

    Highlights: • Phased array technique developed for weld joint inspection in BWR pressure vessel. • Simulation studies were carried out for conventional and phased array probe. • Conventional ultrasonic test shows in-adequate weld coverage and poor resolution. • Focused sound beam in phased array results in good resolution and sensitivity. • Ultrasonic phased array technique is validated on mock-up with reference defects. - Abstract: The weld joints in the reactor pressure vessel (RPV) of Boiling Water Reactors (BWR) are required to be examined periodically for assurance of structural integrity. Ultrasonic phased array examination technique has been developed in authors’ laboratory for inspection of the top flange to shell circumferential weld joint in RPV of BWRs, which are in operation in India since the late 1960s. The development involved detailed simulation studies for computation of focal laws followed by validation on mock-up. The paper brings out the limitations of the conventional ultrasonic technique and how this can be overcome by the phased array approach for the weld joint under consideration. The phased array technique was successfully employed for field examination of this weld joint in RPV during the re-fuelling outage.

  10. Modeling and control of a large nuclear reactor. A three-time-scale approach

    Energy Technology Data Exchange (ETDEWEB)

    Shimjith, S.R. [Indian Institute of Technology Bombay, Mumbai (India); Bhabha Atomic Research Centre, Mumbai (India); Tiwari, A.P. [Bhabha Atomic Research Centre, Mumbai (India); Bandyopadhyay, B. [Indian Institute of Technology Bombay, Mumbai (India). IDP in Systems and Control Engineering

    2013-07-01

    Recent research on Modeling and Control of a Large Nuclear Reactor. Presents a three-time-scale approach. Written by leading experts in the field. Control analysis and design of large nuclear reactors requires a suitable mathematical model representing the steady state and dynamic behavior of the reactor with reasonable accuracy. This task is, however, quite challenging because of several complex dynamic phenomena existing in a reactor. Quite often, the models developed would be of prohibitively large order, non-linear and of complex structure not readily amenable for control studies. Moreover, the existence of simultaneously occurring dynamic variations at different speeds makes the mathematical model susceptible to numerical ill-conditioning, inhibiting direct application of standard control techniques. This monograph introduces a technique for mathematical modeling of large nuclear reactors in the framework of multi-point kinetics, to obtain a comparatively smaller order model in standard state space form thus overcoming these difficulties. It further brings in innovative methods for controller design for systems exhibiting multi-time-scale property, with emphasis on three-time-scale systems.

  11. Advanced numerical methods for three dimensional two-phase flow calculations

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I. [Laboratoire d`Etudes Thermiques des Reacteurs, Gif sur Yvette (France); Caruge, D. [Institut de Protection et de Surete Nucleaire, Fontenay aux Roses (France)

    1997-07-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.

  12. Advanced numerical methods for three dimensional two-phase flow calculations

    International Nuclear Information System (INIS)

    Toumi, I.; Caruge, D.

    1997-01-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses an extension of Roe's method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations

  13. One-phase and two-phase homologous curves for coolant pumps of the pressurized light water nuclear reactors

    International Nuclear Information System (INIS)

    Santos, G.A. dos.

    1990-01-01

    The two-phase coolant pump model of pressurized light water nuclear reactors is an important point for the loss of primary coolant accident analysis. The single-phase pump characteristics are an essential feature for operational transients studies, for example, the shut-down and start-up of pump. These parameters, in terms of the homologous curves, set up the complete performance of the pump and are input for transients and accidents analysis thermal-hydraulic codes. This work propose a mathematical model able to predict the single-phase and two-phase homologous curves where it was incorporated geometric and operational pump condition. The results were compared with the experimental tests data from literature and it has showed a good agreement. (author)

  14. Catalytic oxidative pyrolysis of spent organic ion exchange resins from nuclear power plants

    International Nuclear Information System (INIS)

    Sathi Sasidharan, N.; Deshingkar, D.S.; Wattal, P.K.; Shirsat, A.N.; Bharadwaj, S.R.

    2005-08-01

    The spent IX resins from nuclear power reactors are highly active solid wastes generated during operations of nuclear reactors. Catalytic oxidative pyrolysis of these resins can lead to high volume reduction of these wastes. Low temperature pyrolysis of transition metal ion loaded IX resins in presence of nitrogen was carried out in order to optimize catalyst composition to achieve maximum weight reduction. Thermo gravimetric analysis of the pyrolysis residues was carried out in presence of air in order to compare the oxidative characteristics of transition metal oxide catalysts. Copper along with iron, chromium and nickel present in the spent IX resins gave the most efficient catalyst combination for catalytic and oxidative pyrolysis of the residues. During low temperature catalytic pyrolysis, 137 Cesium volatility was estimated to be around 0.01% from cationic resins and around 0.1% from anionic resins. During oxidative pyrolysis at 700 degC, nearly 10 to 40% of 137 Cesium was found to be released to off gases depending upon type of resin and catalyst loaded on to it. The oxidation of pyrolytic residues at 700 degC gave weight reduction of 15% for cationic resins and 93% for anionic resins. Catalytic oxidative pyrolysis is attractive for reducing weight and volume of spent cationic resins from PHWRs and VVERs. (author)

  15. Effect of two heavy metals, cadmium and nickel, on the organic load removal efficiency in a laboratory UASB reactor

    International Nuclear Information System (INIS)

    Forero, Luis Eduardo; Sierra, Jorge Humberto

    2004-01-01

    Experiments were carried out in three up flow anaerobic sludge blanket, UASB, reactors each with 3 L capacity, four hours of hydraulic retention time, (HRT) and volumetric organic load of 4,8 g/L/d. After the initial start phase, which was of 4.000 hours for the three reactors, they were affected in the following way: the first reactor was continuously feed with 5 mg/L of cadmium chloride, the second one was continuously feed with 10 mg/L of nickel chloride and the last one was not affected and served as reference. Efficiency in organic load removal was measured as oxygen chemical demand (OCD), the first reactor changed from 60% in the start phase (phase one) to 18% in the cadmium-affected phase (phase two), efficiency in removal (OCI) in reactor two varied from 60 to 24% and the last one did not change in a noticeable manner. Reactor one accumulated cadmium in the mud, whereas reactor two did not do that with nickel

  16. Catalytic conversion of alcohols having at least three carbon atoms to hydrocarbon blendstock

    Science.gov (United States)

    Narula, Chaitanya K.; Davison, Brian H.

    2015-11-13

    A method for producing a hydrocarbon blendstock, the method comprising contacting at least one saturated acyclic alcohol having at least three and up to ten carbon atoms with a metal-loaded zeolite catalyst at a temperature of at least 100°C and up to 550°C, wherein the metal is a positively-charged metal ion, and the metal-loaded zeolite catalyst is catalytically active for converting the alcohol to the hydrocarbon blendstock, wherein the method directly produces a hydrocarbon blendstock having less than 1 vol % ethylene and at least 35 vol % of hydrocarbon compounds containing at least eight carbon atoms.

  17. Catalytic conversion of alcohols having at least three carbon atoms to hydrocarbon blendstock

    Science.gov (United States)

    Narula, Chaitanya K.; Davison, Brian H.

    2018-04-17

    A method for producing a hydrocarbon blendstock, the method comprising contacting at least one saturated acyclic alcohol having at least three and up to ten carbon atoms with a metal-loaded zeolite catalyst at a temperature of at least 100.degree. C. and up to 550.degree. C., wherein the metal is a positively-charged metal ion, and the metal-loaded zeolite catalyst is catalytically active for converting the alcohol to the hydrocarbon blendstock, wherein the method directly produces a hydrocarbon blendstock having less than 1 vol % ethylene and at least 35 vol % of hydrocarbon compounds containing at least eight carbon atoms.

  18. Facile synthesis of three-dimensional diatomite/manganese silicate nanosheet composites for enhanced Fenton-like catalytic degradation of malachite green dye

    Science.gov (United States)

    Jiang, De Bin; Yuan, Yunsong; Zhao, Deqiang; Tao, Kaiming; Xu, Xuan; Zhang, Yu Xin

    2018-05-01

    In this work, we demonstrate a novel and simple approach for fabrication of the complex three-dimensional (3D) diatomite/manganese silicate nanosheet composite (DMSNs). The manganese silicate nanosheets are uniformly grown on the inner and outer surface of diatomite with controllable morphology using a hydrothermal method. Such structural features enlarged the specific surface area, resulting in more catalytic active sites. In the heterogeneous Fenton-like reaction, the DMSNs exhibited excellent catalytic capability for the degradation of malachite green (MG). Under optimum condition, 500 mg/L MG solution was nearly 93% decolorized at 70 min in the reaction. The presented results show an enhanced catalytic behavior of the DMSNs prepared by the low-cost natural diatomite material and simple controllable process, which indicates their potential for environmental remediation applications. [Figure not available: see fulltext.

  19. Biomass-to-hydrogen via fast pyrolysis and catalytic steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Chornet, E.; Wang, D.; Czernik, S. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-10-01

    Pyrolysis of lignocellulosic biomass and reforming the pyroligneous oils is being studied as a strategy for producing hydrogen. Novel technologies for the rapid pyrolysis of biomass have been developed in the past decade. They provide compact and efficient systems to transform biomass into vapors that are condensed to oils, with yields as high as 75-80 wt.% of the anhydrous biomass. This {open_quotes}bio-oil{close_quotes} is a mixture of aldehydes, alcohols, acids, oligomers from the constitutive carbohydrates and lignin, and some water derived from the dehydration reactions. Hydrogen can be produced by reforming the bio-oil or its fractions with steam. A process of this nature has the potential to be cost competitive with conventional means of producing hydrogen. The reforming facility can be designed to handle alternate feedstocks, such as natural gas and naphtha, if necessary. Thermodynamic modeling of the major constituents of the bio-oil has shown that reforming is possible within a wide range of temperatures and steam-to-carbon ratios. Existing catalytic data on the reforming of oxygenates have been studied to guide catalyst selection. Tests performed on a microreactor interfaced with a molecular beam mass spectrometer showed that, by proper selection of the process variables: temperature, steam-to-carbon ratio, gas hourly space velocity, and contact time, almost total conversion of carbon in the feed to CO and CO{sub 2} could be obtained. These tests also provided possible reaction mechanisms where thermal cracking competes with catalytic processes. Bench-scale, fixed bed reactor tests demonstrated high hydrogen yields from model compounds and carbohydrate-derived pyrolysis oil fractions. Reforming bio-oil or its fractions required proper dispersion of the liquid to avoid vapor-phase carbonization of the feed in the inlet to the reactor. A special spraying nozzle injector was designed and successfully tested with an aqueous fraction of bio-oil.

  20. Three-phase Photovoltaic Systems

    DEFF Research Database (Denmark)

    Kerekes, Tamas; Sera, Dezso; Máthé, Lászlo

    2015-01-01

    , detailing the different photovoltaic inverter structures and topologies as well as discussing the different control layers within a grid-connected photovoltaic plant. Modulation schemes for various photovoltaic inverter topologies, grid synchronization, current control, active and reactive power control......Photovoltaic technology has experienced unprecedented growth in the last two decades, transforming from mainly off-grid niche generation to a major renewable energy technology, reaching approximately 180 GW of capacity worldwide at the end of 2014. Large photovoltaic power plants interfacing...... the grid through a three-phase power electronic converter are now well on the way to becoming a major player in the power system in many countries. Therefore, this article gives an overview of photovoltaic systems with a focus on three-phase applications, presenting these both from a hardware point of view...

  1. Analysis of Loss-of-Coolant Accidents in the NIST Research Reactor - Early Phase

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Joo S.; Diamond, David

    2016-12-06

    A study of the fuel temperature during the early phase of a loss-of-coolant accident (LOCA) in the NIST research reactor (NBSR) was completed. Previous studies had been reported in the preliminary safety analysis report for the conversion of the NBSR from high-enriched uranium (HEU) fuel to low-enriched (LEU) fuel. Those studies had focused on the most vulnerable LOCA situation, namely, a double-ended guillotine break in the time period after reactor trip when water is drained from either the coolant channels inside the fuel elements or the region outside the fuel elements. The current study fills in a gap in the analysis which is the early phase of the event when there may still be water present but the reactor is at power or immediately after reactor trip and pumps have tripped. The calculations were done, for both the current HEU-fueled core and the proposed LEU core, with the TRACE thermal-hydraulic systems code. Several break locations and different break sizes were considered. In all cases the increase in the clad (or fuel meat) temperature was relatively small so that a large margin to the temperature threshold for blistering (the Safety Limit for the NBSR) remained.

  2. PtRu colloid nanoparticles for CO oxidation in microfabricated reactors

    DEFF Research Database (Denmark)

    Klerke, Asbjørn; Saadi, Souheil; Toftegaard, Maja Bøg

    2006-01-01

    The catalytic activity of PtRu colloid nanoparticles for CO oxidation is investigated in microfabricated reactors. The measured catalytic performance describes a volcano curve as a function of the Pt/Ru ratio. The apparent activation energies for the different alloy catalysts are between 21 and 1...

  3. Transient Effects in Fischer-Tropsch Reactor with a Fixed Bed of Catalyst Particles

    Directory of Open Access Journals (Sweden)

    I. V. Derevich

    2015-01-01

    Full Text Available Based on analysis of small temperature disturbances in the Fischer-Tropsch reactor with a fixed bed of catalyst particles various scenarios of thermal instability were investigated. There are two possible scenarios of thermal instability of the reactor. First, thermal explosion may occur due to growth of temperature disturbances inside a catalytic granule. Second scenario connected with loss of thermal stability as a result of an initial increase in temperature in the reactor volume. The boundaries of thermal stability of the reactor were estimated by solving the eigenvalue problems for spherical catalyst particles and cylindrical reactor. Processes of diffusional resistance inside the catalytic granule and heat transfer from wall of the reactor tube are taken into account. Estimation of thermal stability area is compared with the results of numerical simulation of behavior of temperature and concentration of synthesis gas.

  4. Investigation of hydrogen generation in a three reactor chemical looping reforming process

    International Nuclear Information System (INIS)

    Khan, Mohammed N.; Shamim, Tariq

    2016-01-01

    Highlights: • Three-reactor based chemical looping reforming system for hydrogen production. • Investigation of operating parameters using a system-level model. • Optimum operating conditions for hydrogen production are identified. • Different operating parameters affect the reactor temperatures differently. - Abstract: Chemical looping reforming (CLR) is a relatively new method to produce hydrogen (H_2) and is also used as an energy conversion method for solid, liquid or gaseous fuels. There are various advantages of this method such as inherent carbon dioxide (CO_2) capture, minimal NOx emissions and the H_2 production. In this process, there is no direct contact between the fuel and oxidizer. This method utilizes oxygen from an oxygen carrier which may be a transition metal. The idea is to split the combustion process into three separate sub-processes by employing three separate reactors: air reactor where the oxygen carrier is oxidized by air, fuel reactor where natural gas is oxidized to produce a stream of CO_2 and H_2O and steam reactor where the steam is reduced to produce H_2. In this study, a thermodynamic model with iron oxides as oxygen carrier has been developed using Aspen Plus by employing conservation of mass and energy for all the components of the CLR system. The developed model was employed to investigate the effect of various operating parameters such as mass flow rates of air, fuel, steam and oxygen carrier and fraction of inert material on H_2 and CO_2 production and key reactor temperatures. The results show that the H_2 production increases with the increase in air, fuel and steam flow rates up to a certain limit and stays constant for higher flow rates. The CO_2 production follows a similar trend. Similarly, the H_2 production also increases with the increase in oxide flow rate and fraction of inert material up to a particular value, but then decrease for higher oxide flow rates and inert fractions. Reactor temperatures were also

  5. Catalytic biofilms on structured packing for the production of glycolic acid.

    Science.gov (United States)

    Li, Xuan Zhong; Hauer, Bernhard; Rosche, Bettina

    2013-02-01

    While structured packing modules are known to be efficient for surface wetting and gas-liquid exchange in abiotic surface catalysis, this model study explores structured packing as a growth surface for catalytic biofilms. Microbial biofilms have been proposed as self-immobilized and self-regenerating catalysts for the production of chemicals. A concern is that the complex and dynamic nature of biofilms may cause fluctuations in their catalytic performance over time or may affect process reproducibility. An aerated continuous trickle-bed biofilm reactor system was designed with a 3 L structured packing, liquid recycling and pH control. Pseudomonas diminuta established a biofilm on the stainless steel structured packing with a specific surface area of 500 m2 m-3 and catalyzed the oxidation of ethylene glycol to glycolic acid for over two months of continuous operation. A steady-state productivity of up to 1.6 gl-1h-1 was achieved at a dilution rate of 0.33 h-1. Process reproducibility between three independent runs was excellent, despite process interruptions and activity variations in cultures grown from biofilm effluent cells. The results demonstrate the robustness of a catalytic biofilm on structured packing, despite its dynamic nature. Implementation is recommended for whole-cell processes that require efficient gas-liquid exchange, catalyst retention for continuous operation, or improved catalyst stability.

  6. Control of hydrogen concentration in reactor containment buildings by using passive catalytic recombiners

    International Nuclear Information System (INIS)

    Wolff, U.

    1993-01-01

    Severe accidents in nuclear power plants have the potential to generate hydrogen within the reactor containment building in concentrations likely to deflagrate or even detonate. This could endanger the containment integrity. Autocatalytic devices have been developed by the NIS company in Hanau, Germany, to control the hydrogen concentration within the containment. These devices have been tested by the Battelle Institute in Frankfurt, Germany, under conditions relevant to severe accidents. The catalytic device functions as required in a wide band of gas mixtures ranging from inerted conditions with low-hydrogen and/or low-oxygen concentrations up to detonable mixtures. The device starts up quickly, and has a high resistance against catalyst poisons including the effects of oil or cable fires. The device makes a strong contribution to gas mixing in the containment atmosphere. The paper summarizes the development work done and describes the final design of the device. Theoretical tools for analysis and prediction of catalyst performance in containment environments have been developed by the Battelle Institute and the Technical University of Munich. These tools have been verified and validated against experimental data. A phenomenological discussion of accident scenarios is used to explain the functional requirements for the autocatalytic devices in the control of hydrogen. Both the potential for and limitations of such devices for hydrogen control are discussed for large dry containments (PWRs) and for those which are originally inerted (BWRs)

  7. Single-phase DECT with VNCT compared with three-phase CTU in patients with haematuria

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Jae; Park, Byung Kwan; Kim, Chan Kyo [Sungkyunkwan University School of Medicine, Department of Radiology, Samsung Medical Center, Seoul (Korea, Republic of)

    2016-10-15

    To retrospectively evaluate the diagnostic performance of single-phase dual-energy CT (DECT) with virtual non-contrast CT (VNCT) compared with three-phase CT urography (CTU) in patients with haematuria. A total of 296 patients underwent three-phase CTU (NCT at 120 kVp; nephrographic phase and excretory phase DECTs at 140 kVp and 80 kVp) owing to haematuria. Diagnostic performances of CT scans were compared for detecting urothelial tumours and urinary stones. Dose-length product (DLP) was compared in relation to single-phase DECT and three-phase CTU Dose-length product (DLP) was compared in relation to single-phase DECT and three-phase CTU. Sensitivity and specificity for tumour were 95 % (19/20) and 98.9 % (273/276) on CTU, 95 % (19/20) and 98.2 % (271/276) on nephrographic phase DECT, and 90 % (18/20) and 98.2 % (271/276) on excretory phase DECT (P > 0.1). Of the 148 stones detected on NCT, 108 (73 %) and 100 (67.6 %) were detected on nephrographic phase and excretory phase VNCTs, respectively. The mean size of stones undetected on nephrographic and excretory VNCTs was measured as 1.5 ± 0.5 mm and 1.6 ± 0.6 mm, respectively. The mean DLPs of three-phase CTU, nephrographic phase DECT and excretory phase DECT were 1076 ± 248 mGy . cm, 410 ± 98 mGy . cm, and 360 ± 87 mGy . cm, respectively (P < 0.001). Single-phase DECT has a potential to replace three-phase CTU for detecting tumours with a lower radiation dose. (orig.)

  8. Core followup studies of the Tarapur Reactors with the three dimensional BWR simulator COMTEG

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, S. R.; Jagannathan, V.; Mohanakrishnan, P.; Srinivasan, K. R.; Rastogi, B. P.

    1976-07-01

    Both the units of the Tarapur Atomic Power Station started operation in the year 1969. Since then, these units have completed three cycles. For efficient operation and fuel management of these reactors, a three dimensional BWR simulator COMETG has been developed. The reactors are closely being followed using the simulator. The detailed analyses for cycle 3/4 operation of both the units are described in the paper. The results show very good agreement between calculated and measured values. It is concluded that reactor core behaviour could be predicted in a satisfactory manner with the core simulator COMETG.

  9. Liquid phase catalytic hydrodebromination of tetrabromobisphenol A on supported Pd catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ke [State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023 (China); Zheng, Mengjia [Kuang Yaming Honors School, Nanjing University, Nanjing 210023 (China); Han, Yuxiang [State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023 (China); Xu, Zhaoyi, E-mail: zhaoyixu@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023 (China); Zheng, Shourong [State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023 (China)

    2016-07-15

    Highlights: • Pd catalysts supported on TiO{sub 2}, CeO{sub 2}, Al{sub 2}O{sub 3} and SiO{sub 2} were prepared. • Deposition-precipitation method resulted in positively charged smaller Pd particle. • Complete debromination of tetrabromobisphenol A could be achieved on Pd/TiO{sub 2}. • Pd/TiO{sub 2} prepared by the deposition-precipitation method was more active. - Abstract: Tetrabromobisphenol A (TBBPA) is a widely used brominated flame retardant and reductive debromination is an effective method for the abatement of TBBPA pollution. In this study, Pd catalysts supported on TiO{sub 2}, CeO{sub 2}, Al{sub 2}O{sub 3} and SiO{sub 2} were prepared by the impregnation (the resulting catalyst denoted as im-Pd/support), deposition-precipitation (the resulting catalyst denoted as dp-Pd/support), and photo-deposition (the resulting catalyst denoted as pd-Pd/support) methods. The catalysts were characterized by N{sub 2} adsorption-desorption isotherm, X-ray diffraction, transmission electron microscopy, measurement of zeta potential, CO chemisorption, and X-ray photoelectron spectroscopy. The results showed that at an identical Pd loading amount (2.0 wt.%) Pd particle size in dp-Pd/TiO{sub 2} was much smaller than those in im-Pd/TiO{sub 2} and pd-Pd/TiO{sub 2}. Pd particle size of the dp-Pd/TiO{sub 2} catalyst increased with Pd loading amount. Additionally, Pd particles in the dp-Pd/TiO{sub 2} catalysts were positively charged due to the strong metal-support interaction, whereas the cationization effect was gradually attenuated with the increase of Pd loading amount. For the liquid phase catalytic hydrodebromination (HDB) of TBBPA, tri-bromobisphenol A (tri-BBPA), di-bromobisphenol A (di-BBPA), and mono-bromobisphenol A (mono-BBPA) were identified as the intermediate products, indicative of a stepwise debromination process. The catalytic HDB of TBBPA followed the Langmuir-Hinshelwood model, reflecting an adsorption enhanced catalysis mechanism. At an identical Pd

  10. Impact of the Three Mile Island accident on reactor safety and licensing in Canada

    International Nuclear Information System (INIS)

    Harvie, J.D.

    1980-06-01

    This paper discusses the implications of the accident at Three Mile Island on reactor safety and licensing in Canada. Reactor safety principles which can be learned from, or are reaffirmed by, the accident are reviewed. It is concluded that reactor safety demands a firm commitment to safety by all those involved in the nuclear industry. (auth)

  11. A cascaded three-phase symmetrical multistage voltage multiplier

    International Nuclear Information System (INIS)

    Iqbal, Shahid; Singh, G K; Besar, R; Muhammad, G

    2006-01-01

    A cascaded three-phase symmetrical multistage Cockcroft-Walton voltage multiplier (CW-VM) is proposed in this report. It consists of three single-phase symmetrical voltage multipliers, which are connected in series at their smoothing columns like string of batteries and are driven by three-phase ac power source. The smoothing column of each voltage multiplier is charged twice every cycle independently by respective oscillating columns and discharged in series through load. The charging discharging process completes six times a cycle and therefore the output voltage ripple's frequency is of sixth order of the drive signal frequency. Thus the proposed approach eliminates the first five harmonic components of load generated voltage ripples and sixth harmonic is the major ripple component. The proposed cascaded three-phase symmetrical voltage multiplier has less than half the voltage ripple, and three times larger output voltage and output power than the conventional single-phase symmetrical CW-VM. Experimental and simulation results of the laboratory prototype are given to show the feasibility of proposed cascaded three-phase symmetrical CW-VM

  12. A numerical study of boiling flow instability of a reactor thermosyphon system

    International Nuclear Information System (INIS)

    Nayak, A.K.; Lathouwers, D.; Hagen, T.H.J.J. van der; Schrauwen, Frans; Molenaar, Peter; Rogers, Andrew

    2006-01-01

    A numerical study has been carried out to investigate the boiling flow instability of a reactor thermosyphon system. The numerical model solves the conservation equations of mass, momentum and energy applicable to a two-fluid and three-field steam-water system using a finite difference technique. The computer code MONA was used for this purpose. The code was applied to the thermosyphon system of an EO (ethylene oxide) chemical reactor in which the heat released by a catalytic reaction is carried by boiling water under natural circulation conditions. The steady-state characteristics of the reactor thermosyphon system were predicted using the MONA code and conventional two-phase flow models in order to understand the model applicability for this type of thermosyphon system. The two-fluid model was found to predict the flow closest to the measured value of the plant. The stability behaviour of the thermosyphon system was investigated for a wide range of operating conditions. The effects of power, subcooling, riser length and riser diameter on the boiling flow instability were determined. The system was found to be unstable at higher power conditions which is typical for a Type II instability. However, with an increase in riser diameter, oscillations at low power were observed as well. These are classified as Type I instabilities. Stability maps were predicted for both Type I and Type II instabilities. Methods of improving the stability of the system are discussed

  13. A numerical study of boiling flow instability of a reactor thermosyphon system

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, A.K.; Lathouwers, D.; Hagen, T.H.J.J. van der [Interfaculty Reactor Institute, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Schrauwen, Frans; Molenaar, Peter; Rogers, Andrew [Shell Research and Technology Centre, Badhuisweg 3, 1031 CM Amsterdam (Netherlands)

    2006-04-01

    A numerical study has been carried out to investigate the boiling flow instability of a reactor thermosyphon system. The numerical model solves the conservation equations of mass, momentum and energy applicable to a two-fluid and three-field steam-water system using a finite difference technique. The computer code MONA was used for this purpose. The code was applied to the thermosyphon system of an EO (ethylene oxide) chemical reactor in which the heat released by a catalytic reaction is carried by boiling water under natural circulation conditions. The steady-state characteristics of the reactor thermosyphon system were predicted using the MONA code and conventional two-phase flow models in order to understand the model applicability for this type of thermosyphon system. The two-fluid model was found to predict the flow closest to the measured value of the plant. The stability behaviour of the thermosyphon system was investigated for a wide range of operating conditions. The effects of power, subcooling, riser length and riser diameter on the boiling flow instability were determined. The system was found to be unstable at higher power conditions which is typical for a Type II instability. However, with an increase in riser diameter, oscillations at low power were observed as well. These are classified as Type I instabilities. Stability maps were predicted for both Type I and Type II instabilities. Methods of improving the stability of the system are discussed. [Author].

  14. Review of light water reactor safety through the Three Mile Island accident

    International Nuclear Information System (INIS)

    Phung, D.L.

    1984-05-01

    This review of light water reactor safety through the Three Mile Island accident has the purpose of establishing the baseline over which safety achievement post-TMI is assessed, and the need for new reactor designs and business direction is judged. Five major areas of reactor safety pre-TMI are examined: (1) safety philosophy and institutions, (2) reactor design criteria, (3) operational problems, (4) the Rasmussen reactor safety study, and (5) the TMI accident and repercussions. Although nuclear power has made spectacular achievements over the period pre-TMI and although TMI is technically a minor accident, this review concludes that there were basic flaws in the technology and in the manner safety philosophy was conceived and carried out. These flaws included (1) a reactor design that has high core power density, low heat capacity, and low system tolerance to upsets, (2) reactor deployment that had been expedited without extensive operational experience, (3) rules and regulations that had to play catch-up with commercial reactor development, (4) an industry that was fragmented, short-sighted, and tended to rely on the Nuclear Regulatory Commission for safety guidance, (5) information that was not effectively shared, and (6) attention that was inadequate to the human aspects of reactor operation and to public reaction to the specter of a reactor accident, major or minor

  15. Evaluation of the conversion efficiency of ceramic and metallic three way catalytic converters

    International Nuclear Information System (INIS)

    Santos, H.; Costa, M.

    2008-01-01

    Ceramic and metallic three way catalytic converters have been compared to assess the influence of the substrate geometrical and physical parameters on the exhaust gas conversions for several vehicle operating conditions. Both catalysts were placed on a vehicle equipped with a 2.8 l DOHC V6 spark ignition engine that was tested on a chassis dynamometer under steady state conditions for several engine speeds and loads. The data obtained include exhaust gas species concentrations and temperature taken both upstream and downstream of the catalytic converter, as well as temperatures in various locations within the substrate of the catalysts. The experimental data revealed that: (i) at low space velocities, the ceramic substrate presents better conversions, particularly for HC and CO, as compared to the metallic substrate, possibly because of its lower thermal conductivity which facilitates local ignition; (ii) at high space velocities, the metallic substrate presents better conversions, as compared to the ceramic substrate, mainly because of its larger geometric surface area and lower transverse Peclet number; and (iii) in general, the HC conversion for small space velocities is kinetically controlled while for high space velocities it is mass transfer limited; both limitations are less pronounced for the CO conversion and insignificant for the NO x conversion

  16. System For Characterizing Three-Phase Brushless dc Motors

    Science.gov (United States)

    Howard, David E.; Smith, Dennis A.

    1996-01-01

    System of electronic hardware and software developed to automate measurements and calculations needed to characterize electromechanical performances of three-phase brushless dc motors, associated shaft-angle sensors needed for commutation, and associated brushless tachometers. System quickly takes measurements on all three phases of motor, tachometer, and shaft-angle sensor simultaneously and processes measurements into performance data. Also useful in development and testing of motors with not only three phases but also two, four, or more phases.

  17. Catalytic non-thermal plasma reactor for the decomposition of a ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Among the catalytic study, MnOx/SMF (manganese oxide on sintered metal fibres electrode) shows better performance, probably due to the formation of active oxygen species by in situ decomposition of ozone on the catalyst surface. Water vapour further enhanced the performance due to the in situ ...

  18. Degradation of gas-phase trichloroethylene over thin-film TiO2 photocatalyst in multi-modules reactor

    International Nuclear Information System (INIS)

    Kim, Sang Bum; Lee, Jun Yub; Kim, Gyung Soo; Hong, Sung Chang

    2009-01-01

    The present paper examined the photocatalytic degradation (PCD) of gas-phase trichloroethylene (TCE) over thin-film TiO 2 . A large-scale treatment of TCE was carried out using scale-up continuous flow photo-reactor in which nine reactors were arranged in parallel and series. The parallel or serial arrangement is a significant factor to determine the special arrangement of whole reactor module as well as to compact the multi-modules in a continuous flow reactor. The conversion of TCE according to the space time was nearly same for parallel and serial connection of the reactors.

  19. Developing a Steady-state Kinetic Model for Industrial Scale Semi-Regenerative Catalytic Naphtha Reforming Process

    Directory of Open Access Journals (Sweden)

    Seif Mohaddecy, R.

    2014-05-01

    Full Text Available Due to the demand for high octane gasoline as a transportation fuel, the catalytic naphtha reformer has become one of the most important processes in petroleum refineries. In this research, the steady-state modelling of a catalytic fixed-bed naphtha reforming process to predict the momentous output variables was studied. These variables were octane number, yield, hydrogen purity, and temperature of all reforming reactors. To do such a task, an industrial scale semi-regenerative catalytic naphtha reforming unit was studied and modelled. In addition, to evaluate the developed model, the predicted variables i.e. outlet temperatures of reactors, research octane number, yield of gasoline and hydrogen purity were compared against actual data. The results showed that there is a close mapping between the actual and predicted variables, and the mean relative absolute deviation of the mentioned process variables were 0.38 %, 0.52 %, 0.54 %, 0.32 %, 4.8 % and 3.2 %, respectively.

  20. High accuracy interface characterization of three phase material systems in three dimensions

    DEFF Research Database (Denmark)

    Jørgensen, Peter Stanley; Hansen, Karin Vels; Larsen, Rasmus

    2010-01-01

    Quantification of interface properties such as two phase boundary area and triple phase boundary length is important in the characterization ofmanymaterial microstructures, in particular for solid oxide fuel cell electrodes. Three-dimensional images of these microstructures can be obtained...... by tomography schemes such as focused ion beam serial sectioning or micro-computed tomography. We present a high accuracy method of calculating two phase surface areas and triple phase length of triple phase systems from subvoxel accuracy segmentations of constituent phases. The method performs a three phase...... polygonization of the interface boundaries which results in a non-manifold mesh of connected faces. We show how the triple phase boundaries can be extracted as connected curve loops without branches. The accuracy of the method is analyzed by calculations on geometrical primitives...

  1. Numerical method for three dimensional steady-state two-phase flow calculations

    International Nuclear Information System (INIS)

    Raymond, P.; Toumi, I.

    1992-01-01

    This paper presents the numerical scheme which was developed for the FLICA-4 computer code to calculate three dimensional steady state two phase flows. This computer code is devoted to steady state and transient thermal hydraulics analysis of nuclear reactor cores 1,3 . The first section briefly describes the FLICA-4 flow modelling. Then in order to introduce the numerical method for steady state computations, some details are given about the implicit numerical scheme based upon an approximate Riemann solver which was developed for calculation of flow transients. The third section deals with the numerical method for steady state computations, which is derived from this previous general scheme and its optimization. We give some numerical results for steady state calculations and comparisons on required CPU time and memory for various meshing and linear system solvers

  2. Two-phase coolant pump model of pressurized light water nuclear reactors

    International Nuclear Information System (INIS)

    Santos, G.A. dos; Freitas, R.L.

    1990-01-01

    The two-phase coolant pump model of pressurized light water nuclear reactors is an important point for the loss of primary coolant accident analysis. The homologous curves set up the complete performance of the pump and are input for accidents analysis thermal-hydraulic codes. This work propose a mathematical model able to predict the two-phase homologous curves where it was incorporated geometric and operational pump condition. The results were compared with the experimental tests data from literature and it has showed a good agreement. (author)

  3. Effect of Drawer Master Modeling of ZPPR15 Phase A Reactor Physics Experiment on Integral Parameter

    International Nuclear Information System (INIS)

    Yoo, Jae Woon; Kim, Sang Ji

    2011-01-01

    As a part of an International-Nuclear Engineering Research Initiative (I-NERI) Project, KAERI and ANL are analyzing the ZPPR-15 reactor physics experiments. The ZPPR-15 experiments were carried out in support of the Integral Fast Reactor (IFR) project. Because of lack of the experimental data, verifying and validating the core neutronics analysis code for metal fueled sodium cooled fast reactors (SFR) has been one of the big concerns. KAERI is developing the metal fuel loaded SFR and plans to construct the demonstration SFR by around 2028. Database built through this project and its result of analysis will play an important role in validating the SFR neutronics characteristics. As the first year work of I-NERI project, KAERI analyzed ZPPR-15 Phase A experiment among four phases (Phase A to D). The effect of a drawer master modeling on the integral parameter was investigated. The approximated benchmark configurations for each loading were constructed to be used for validating a deterministic code

  4. Description of reactor fuel breeding with three integral concepts

    International Nuclear Information System (INIS)

    Ott, K.O.; Hanan, N.A.; Maudlin, P.J.; Borg, R.C.

    1979-01-01

    The time-dependent breeding of fuel in a growing system of breeder reactors can be characterized by the transitory (instantaneous) growth rate, γ(t). The three most important aspects of γ(t) can be expressed by time-independent integral concepts. Two of these concepts are in widespread use. A third integral concept that links the two earlier ones is introduced. The time-dependent growth rate has an asymptotic value, γ/sup infinity/, the equilibrium growth rate, which is the basis for the calculation of the doubling time. The equilibrium growth rate measures the breeding capability and represents a reactor property. Maximum deviation of γ(t) and γ/sup infinity/ generally appears at the initial startup of the reactor, where γ(t = 0) = γ 0 . This deviation is due to the difference between the initial and asymptotic fuel inventory composition. The initial growth rate can be considered a second integral concept; it characterizes the breeding of a particular fuel in a given reactor. Growth rates are logarithmic derivatives of the growing mass of fuel in breeder reactors, especially γ/sup infinity/, which describes the asymptotic growth by exp(γ/sup infinity/t). There is, however, a variation in the fuel-mass factor in front of this exponential function during the transition from γ 0 to γ/sup infinity/. It is shown that this variation of the fuel mass during transitioncan be described by a third integral concept, termed the breeding bonus, b. The breeding bonus measures the quality of a fuel for its use in a given reactor in terms of its impact on the magnitude of the asymptotically growing fuel mass. The calculation of γ 0 and γ/sup infinity/ is facilitated by use of the critical mass (CM) worths and the breeding worth factors, respectively

  5. Phytoplankton distribution in three thermally different but edaphically similar reactor cooling reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Wilde, E W

    1982-01-01

    Phytoplankton community structure and the physicochemical characteristics of three reactor cooling reservoirs in close proximity and of similar age and bottom type were studied during 1978. The three reservoirs differed in thermal alteration resulting from reactor cooling water as follows: (1) considerable heating with lake-wide temperatures >30/sup 0/C, even in winter; (2) a maximal 5/sup 0/C increase occurring in only one of three major arms of the reservoir; and (3) no thermal effluent received during the study period. Considerable spatial and temporal differences in water quality and phytoplankton community structure were observed; however, water temperature independent of other environmental factors (e.g., light and nutrients) was found to be a relatively unimportant variable for explaining phytoplankton periodicity.

  6. Phytoplankton distribution in three thermally different but edaphically similar reactor cooling reservoirs

    International Nuclear Information System (INIS)

    Wilde, E.W.

    1982-01-01

    Phytoplankton community structure and the physicochemical characteristics of three reactor cooling reservoirs in close proximity and of similar age and bottom type were studied during 1978. The three reservoirs differed in thermal alteration resulting from reactor cooling water as follows: (1) considerable heating with lake-wide temperatures >30 0 C, even in winter; (2) a maximal 5 0 C increase occurring in only one of three major arms of the reservoir; and (3) no thermal effluent received during the study period. Considerable spatial and temporal differences in water quality and phytoplankton community structure were observed; however, water temperature independent of other environmental factors (e.g., light and nutrients) was found to be a relatively unimportant variable for explaining phytoplankton periodicity

  7. Efficient H2O2/CH3COOH oxidative desulfurization/denitrification of liquid fuels in sonochemical flow-reactors.

    Science.gov (United States)

    Calcio Gaudino, Emanuela; Carnaroglio, Diego; Boffa, Luisa; Cravotto, Giancarlo; Moreira, Elizabeth M; Nunes, Matheus A G; Dressler, Valderi L; Flores, Erico M M

    2014-01-01

    The oxidative desulfurization/denitrification of liquid fuels has been widely investigated as an alternative or complement to common catalytic hydrorefining. In this process, all oxidation reactions occur in the heterogeneous phase (the oil and the polar phase containing the oxidant) and therefore the optimization of mass and heat transfer is of crucial importance to enhancing the oxidation rate. This goal can be achieved by performing the reaction in suitable ultrasound (US) reactors. In fact, flow and loop US reactors stand out above classic batch US reactors thanks to their greater efficiency and flexibility as well as lower energy consumption. This paper describes an efficient sonochemical oxidation with H2O2/CH3COOH at flow rates ranging from 60 to 800 ml/min of both a model compound, dibenzotiophene (DBT), and of a mild hydro-treated diesel feedstock. Four different commercially available US loop reactors (single and multi-probe) were tested, two of which were developed in the authors' laboratory. Full DBT oxidation and efficient diesel feedstock desulfurization/denitrification were observed after the separation of the polar oxidized S/N-containing compounds (S≤5 ppmw, N≤1 ppmw). Our studies confirm that high-throughput US applications benefit greatly from flow-reactors. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Role of Precursor-Conversion Chemistry in the Crystal-Phase Control of Catalytically Grown Colloidal Semiconductor Quantum Wires.

    Science.gov (United States)

    Wang, Fudong; Buhro, William E

    2017-12-26

    Crystal-phase control is one of the most challenging problems in nanowire growth. We demonstrate that, in the solution-phase catalyzed growth of colloidal cadmium telluride (CdTe) quantum wires (QWs), the crystal phase can be controlled by manipulating the reaction chemistry of the Cd precursors and tri-n-octylphosphine telluride (TOPTe) to favor the production of either a CdTe solute or Te, which consequently determines the composition and (liquid or solid) state of the Bi x Cd y Te z catalyst nanoparticles. Growth of single-phase (e.g., wurtzite) QWs is achieved only from solid catalysts (y ≪ z) that enable the solution-solid-solid growth of the QWs, whereas the liquid catalysts (y ≈ z) fulfill the solution-liquid-solid growth of the polytypic QWs. Factors that affect the precursor-conversion chemistry are systematically accounted for, which are correlated with a kinetic study of the composition and state of the catalyst nanoparticles to understand the mechanism. This work reveals the role of the precursor-reaction chemistry in the crystal-phase control of catalytically grown colloidal QWs, opening the possibility of growing phase-pure QWs of other compositions.

  9. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification.

    Science.gov (United States)

    Castro-Dominguez, Bernardo; Mardilovich, Ivan P; Ma, Liang-Chih; Ma, Rui; Dixon, Anthony G; Kazantzis, Nikolaos K; Ma, Yi Hua

    2016-09-19

    Palladium-based catalytic membrane reactors (CMRs) effectively remove H₂ to induce higher conversions in methane steam reforming (MSR) and water-gas-shift reactions (WGS). Within such a context, this work evaluates the technical performance of a novel CMR, which utilizes two catalysts in series, rather than one. In the process system under consideration, the first catalyst, confined within the shell side of the reactor, reforms methane with water yielding H₂, CO and CO₂. After reforming is completed, a second catalyst, positioned in series, reacts with CO and water through the WGS reaction yielding pure H₂O, CO₂ and H₂. A tubular composite asymmetric Pd/Au/Pd membrane is situated throughout the reactor to continuously remove the produced H₂ and induce higher methane and CO conversions while yielding ultrapure H₂ and compressed CO₂ ready for dehydration. Experimental results involving (i) a conventional packed bed reactor packed (PBR) for MSR, (ii) a PBR with five layers of two catalysts in series and (iii) a CMR with two layers of two catalysts in series are comparatively assessed and thoroughly characterized. Furthermore, a comprehensive 2D computational fluid dynamics (CFD) model was developed to explore further the features of the proposed configuration. The reaction was studied at different process intensification-relevant conditions, such as space velocities, temperatures, pressures and initial feed gas composition. Finally, it is demonstrated that the above CMR module, which was operated for 600 h, displays quite high H₂ permeance and purity, high CH₄ conversion levels and reduced CO yields.

  10. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification

    Directory of Open Access Journals (Sweden)

    Bernardo Castro-Dominguez

    2016-09-01

    Full Text Available Palladium-based catalytic membrane reactors (CMRs effectively remove H2 to induce higher conversions in methane steam reforming (MSR and water-gas-shift reactions (WGS. Within such a context, this work evaluates the technical performance of a novel CMR, which utilizes two catalysts in series, rather than one. In the process system under consideration, the first catalyst, confined within the shell side of the reactor, reforms methane with water yielding H2, CO and CO2. After reforming is completed, a second catalyst, positioned in series, reacts with CO and water through the WGS reaction yielding pure H2O, CO2 and H2. A tubular composite asymmetric Pd/Au/Pd membrane is situated throughout the reactor to continuously remove the produced H2 and induce higher methane and CO conversions while yielding ultrapure H2 and compressed CO2 ready for dehydration. Experimental results involving (i a conventional packed bed reactor packed (PBR for MSR, (ii a PBR with five layers of two catalysts in series and (iii a CMR with two layers of two catalysts in series are comparatively assessed and thoroughly characterized. Furthermore, a comprehensive 2D computational fluid dynamics (CFD model was developed to explore further the features of the proposed configuration. The reaction was studied at different process intensification-relevant conditions, such as space velocities, temperatures, pressures and initial feed gas composition. Finally, it is demonstrated that the above CMR module, which was operated for 600 h, displays quite high H2 permeance and purity, high CH4 conversion levels and reduced CO yields.

  11. Catalytic non-thermal plasma reactor for the decomposition of a ...

    Indian Academy of Sciences (India)

    diseases), hence has a negative impact on the environ- ment.1–4 Some of the well-established technologies for. VOC abatement are thermal and catalytic ... motor driven syringe pump and mixed with ambient air. (300 ml/min at STP) in a mixing chamber. Air flow was regulated by pre-calibrated mass flow controllers.

  12. Lagrangian Approach to Study Catalytic Fluidized Bed Reactors

    Science.gov (United States)

    Madi, Hossein; Hossein Madi Team; Marcelo Kaufman Rechulski Collaboration; Christian Ludwig Collaboration; Tilman Schildhauer Collaboration

    2013-03-01

    Lagrangian approach of fluidized bed reactors is a method, which simulates the movement of catalyst particles (caused by the fluidization) by changing the gas composition around them. Application of such an investigation is in the analysis of the state of catalysts and surface reactions under quasi-operando conditions. The hydrodynamics of catalyst particles within a fluidized bed reactor was studied to improve a Lagrangian approach. A fluidized bed methanation employed in the production of Synthetic Natural Gas from wood was chosen as the case study. The Lagrangian perspective was modified and improved to include different particle circulation patterns, which were investigated through this study. Experiments were designed to evaluate the concepts of the model. The results indicate that the setup is able to perform the designed experiments and a good agreement between the simulation and the experimental results were observed. It has been shown that fluidized bed reactors, as opposed to fixed beds, can be used to avoid the deactivation of the methanation catalyst due to carbon deposits. Carbon deposition on the catalysts tested with the Lagrangian approach was investigated by temperature programmed oxidation (TPO) analysis of ex-situ catalyst samples. This investigation was done to identify the effects of particles velocity and their circulation patterns on the amount and type of deposited carbon on the catalyst surface. Ecole Polytechnique Federale de Lausanne(EPFL), Paul Scherrer Institute (PSI)

  13. Thermohydraulics of reactors

    International Nuclear Information System (INIS)

    Delhaye, J.M.

    2008-01-01

    This scientific and technical handbook about PWR reactors thermohydraulics is the result of many years of teaching in the framework of the CEA-INSTN's atomic engineering training courses, in engineering schools and during continuing training activities. Its main goal is to present in a rigorous and pedagogical way the basic knowledge necessary for the understanding and modeling of single phase and two-phase thermohydraulic phenomena encountered during the design and operation of nuclear reactors. In particular, heat transfers in two-phase flows are presented in a detailed way. Most chapters include some nuclear engineering examples of application of the studied concepts, and some exercises aiming at mastering these concepts. Each example or exercise is accompanied by its detailed solution. Content: - thermohydraulic characteristics of reactors; - design and thermal dimensioning of reactors; - thermal engineering of the fuel element; - two-phase flow configurations in ducts; - recalls about single-phase flow equations; - basic equations for two-phase flows; - modeling of two-phase flows inside ducts; - pressure drops in ducts; - boiling and vapor condensation heat transfers; - two-phase flow instabilities in ducts; - two-phase flow blocking; thermohydraulics of naval propulsion reactors

  14. Novel Topology of Three-Phase Electric Spring and Its Control

    DEFF Research Database (Denmark)

    Wang, Qingsong; Cheng, Ming; Jiang, Yunlei

    2017-01-01

    A novel topology is proposed for three-phase electric spring (TPES) to achieve specific functionalities. With respect to the existing one, the novel topology contains an additional three-phase transformer with the primaries located at the position of the non-critical three-phase load (NCL......) of the existing topology and its secondaries connected to the new three-phase NCL, thus forming a new three-phase smart load (SL). To control the novel topology, the so-called modified δ control utilized for the single-phase electric springs is extended to the three-phase case. Thanks to these solutions, TPES...

  15. Study of reactor parameters on the critical systems. Phase I; Ispitivanje reaktorskih parametara na kriticnim sistemima, I faza

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N et al [Boris Kidric Institute of Nuclear Sciences Vinca, Belgrade (Yugoslavia)

    1962-08-15

    Phase 1 of the report on reactor parameters study describes the preparation of the RB reactor for operation including the following tasks: Completing and verification of reactor safety system; arranging dosimetry instruments; formation of fuel elements with 2% enriched fuel and aluminium holders; improvement of the heavy water level-meter; mounting the horizontal experimental channel; formation of reactor lattice with 16 cm pitch; testing the reactor system; filling the tank with heavy water and preparing the safety report.

  16. Investigation of flow dynamics of liquid phase in a pilot-scale trickle bed reactor using radiotracer technique.

    Science.gov (United States)

    Pant, H J; Sharma, V K

    2016-10-01

    A radiotracer investigation was carried out to measure residence time distribution (RTD) of liquid phase in a trickle bed reactor (TBR). The main objectives of the investigation were to investigate radial and axial mixing of the liquid phase, and evaluate performance of the liquid distributor/redistributor at different operating conditions. Mean residence times (MRTs), holdups (H) and fraction of flow flowing along different quadrants were estimated. The analysis of the measured RTD curves indicated radial non-uniform distribution of liquid phase across the beds. The overall RTD of the liquid phase, measured at the exit of the reactor was simulated using a multi-parameter axial dispersion with exchange model (ADEM), and model parameters were obtained. The results of model simulations indicated that the TBR behaved as a plug flow reactor at most of the operating conditions used in the investigation. The results of the investigation helped to improve the existing design as well as to design a full-scale industrial TBR for petroleum refining applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Comparison of Simultaneous Nitrification and Denitrification for Three Different Reactors

    Directory of Open Access Journals (Sweden)

    W. Khanitchaidecha

    2015-01-01

    Full Text Available Discharge of high NH4-N containing wastewater into water bodies has become a critical and serious issue due to its negative impact on water and environmental quality. In this research, the performance of three different reactors was assessed and compared with regard to the removal of NH4-N from wastewater. The highest nitrogen removal efficiency of 98.3% was found when the entrapped sludge reactor (ESR, in which the sludge was entrapped in polyethylene glycol polymer, was used. Under intermittent aeration, nitrification and denitrification occurred simultaneously in the aerobic and anaerobic periods. Moreover, internal carbon was consumed efficiently for denitrification. On the other hand, internal carbon consumption was not found to occur in the suspended sludge reactor (SSR and the mixed sludge reactor (MSR and this resulted in nitrogen removal efficiencies of SSR and MSR being 64.7 and 45.1%, respectively. Nitrification and denitrification were the main nitrogen removal processes in the aerobic and anaerobic periods, respectively. However, due to the absence of sufficient organic carbon, denitrification was uncompleted resulting in high NO3-N contents in the effluent.

  18. Investigation/evaluation of water cooled fast reactor in the feasibility study on commercialized fast reactor cycle systems. Intermediate evaluation of phase-II study

    International Nuclear Information System (INIS)

    Kotake, Syoji; Nishikawa, Akira

    2005-01-01

    Feasibility study on commercialized fast reactor cycle systems aims at investigation and evaluation of FBR design requirement's attainability, operation and maintenance, and technical feasibility of the candidate system. Development targets are 1) ensuring safety, 2) economic competitiveness, 3) efficient utilization of resources, 4) reduction of environmental load and 5) enhancement of nuclear non-proliferation. Based on the selection of the promising concepts in the first phase, conceptual design for the plant system has proceeded with the following plant system: a) sodium cooled reactors at large size and medium size module reactors, b) a lead-bismuth cooled medium size reactor, c) a helium gas cooled large size reactor and d) a BWR type large size FBR. Technical development and feasibility has been assessed and the study considers the need of respective key technology development for the confirmation of the feasibility study. (T. Tanaka)

  19. Influence of alumina binder content on catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone.

    Directory of Open Access Journals (Sweden)

    Xiangjin Kong

    Full Text Available The influence of the amount of alumina binders on the catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone was investigated in a fixed-bed reactor. N2 sorption, X-ray diffraction, H2-chemisorption and temperature-programmed desorption of ammonia were used to characterize the catalysts. It can be observed that the Ni/HZSM-5 catalyst bound with 30 wt.% alumina binder exhibited the best catalytic performance. The high catalytic performance may be due to relatively good Ni metal dispersion, moderate mesoporosity, and proper acidity of the catalyst.

  20. Influence of alumina binder content on catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone.

    Science.gov (United States)

    Kong, Xiangjin; Liu, Junhai

    2014-01-01

    The influence of the amount of alumina binders on the catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone was investigated in a fixed-bed reactor. N2 sorption, X-ray diffraction, H2-chemisorption and temperature-programmed desorption of ammonia were used to characterize the catalysts. It can be observed that the Ni/HZSM-5 catalyst bound with 30 wt.% alumina binder exhibited the best catalytic performance. The high catalytic performance may be due to relatively good Ni metal dispersion, moderate mesoporosity, and proper acidity of the catalyst.

  1. Reducing NO(x) emissions from a nitric acid plant of domestic petrochemical complex: enhanced conversion in conventional radial-flow reactor of selective catalytic reduction process.

    Science.gov (United States)

    Abbasfard, Hamed; Hashemi, Seyed Hamid; Rahimpour, Mohammad Reza; Jokar, Seyyed Mohammad; Ghader, Sattar

    2013-01-01

    The nitric acid plant of a domestic petrochemical complex is designed to annually produce 56,400 metric tons (based on 100% nitric acid). In the present work, radial-flow spherical bed reactor (RFSBR) for selective catalytic reduction of nitric oxides (NO(x)) from the stack of this plant was modelled and compared with the conventional radial-flow reactor (CRFR). Moreover, the proficiency of a radial-flow (water or nitrogen) membrane reactor was also compared with the CRFR which was found to be inefficient at identical process conditions. In the RFSBR, the space between the two concentric spheres is filled by a catalyst. A mathematical model, including conservation of mass has been developed to investigate the performance of the configurations. The model was checked against the CRFR in a nitric acid plant located at the domestic petrochemical complex. A good agreement was observed between the modelling results and the plant data. The effects of some important parameters such as pressure and temperature on NO(x) conversion were analysed. Results show 14% decrease in NO(x) emission annually in RFSBR compared with the CRFR, which is beneficial for the prevention of NO(x) emission, global warming and acid rain.

  2. Three-Dimensional Modeling of a Steam-Line Break in a Boiling Water Reactor

    International Nuclear Information System (INIS)

    Tinoco, Hernan

    2002-01-01

    Because of weld problems, the core grids of Units 1 and 2 at the Forsmark nuclear power plant have been replaced by grids of a new design, consisting of a single machined piece without welds. The qualifying structural analysis has been carried out considering dynamic loads, which implies that even loss-of-coolant accidents have to be included. Therefore, a detailed time description of the loads acting on the different internal parts of the reactor is needed. To achieve sufficient space and time resolution, a computational fluid dynamics (CFD) analysis was considered to be a viable alternative.A CFD analysis of a steam-line break in the boiling water reactor of Unit 2 is the subject of this work. The study is based on the assumption that the timescale of the transient analysis is smaller than the relaxation time of the water-steam system. Therefore, a simulation of only the upper, steam part of the reactor with no two-phase effects (flashing) is feasible.The results obtained display a rather complex behavior of the decompression process, forcing the analysis of the pressure field to be accomplished through animation. In contrast, the computed instantaneous forces over different internal parts oscillate regularly and are approximately twice the forces estimated in the past by simpler methods, with frequencies of 30 to 40 Hz; top amplitudes of ∼1.64 MN; and relatively low damping, ∼25% after 0.5 s.According to the present results, this type of modeling is physically meaningful for simulation timescales smaller than the water-steam relaxation time, i.e., ∼0.5 s at reactor conditions. At larger times, a two-phase model is necessary to describe the decompression process since two-phase effects are dominant. The results have not yet been validated with experiments, but validation computations will be run in the future for comparison with results of the Marviken tests

  3. Gas/liquid separator for BWR type reactor

    International Nuclear Information System (INIS)

    Soma, Naoshi; Akimoto, Seiichi; Yokoyama, Iwao.

    1993-01-01

    A two phase gas/liquid flow generated at a heating portion of a nuclear reactor is swirled by inlet vanes. The phase gas/liquid flow uprises as a vortex flow in a vortex cylinder, and a liquid phase of a high density gathers at the outer circumference of the vortex cylinder. The liquid phase gathered at the outer circumference is collected at the inlet of a discharge flow channel which protrude into the vortex cylinder and in a three-step structure, and introduced into a recycling liquid phase passing through the discharge flow channel for liquid phase. There is provided a structure that separated liquid collected at the lowermost state in the inlet of the three-step discharge flow channel inlet descends in the discharge flow channel, then uprises in an uprising flow channel and is introduced into the recycling liquid phase by way of a discharge flow channel exit. The height of the discharge flow channel exit is determined equal to that of a liquid level of the recycling liquid phase during rated operation of the reactor. Accordingly, even in a case where the liquid level in the recycling liquid phase is lowered, the liquid level of the uprising flow channel is kept equal to that during rated operation. (I.N.)

  4. Hydrothermal Processing of Macroalgal Feedstocks in Continuous-Flow Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Roesijadi, Guri; Zacher, Alan H.; Magnuson, Jon K.

    2014-02-03

    Wet macroalgal slurries have been converted into a biocrude by hydrothermal liquefaction (HTL) in a bench-scale continuous-flow reactor system. Carbon conversion to a gravity-separable oil product of 58.8% was accomplished at relatively low temperature (350 °C) in a pressurized (subcritical liquid water) environment (20 MPa) when using feedstock slurries with a 21.7% concentration of dry solids. As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent, and biomass trace mineral components were removed by processing steps so that they did not cause processing difficulties. In addition, catalytic hydrothermal gasification (CHG) was effectively applied for HTL byproduct water cleanup and fuel gas production from water-soluble organics. Conversion of 99.2% of the carbon left in the aqueous phase was demonstrated. Finally, as a result, high conversion of macroalgae to liquid and gas fuel products was found with low levels of residual organic contamination in byproduct water. Both process steps were accomplished in continuous-flow reactor systems such that design data for process scale-up was generated.

  5. Anaerobic digestion of grain stillage at high organic loading rates in three different reactor systems

    International Nuclear Information System (INIS)

    Schmidt, Thomas; Pröter, Jürgen; Scholwin, Frank; Nelles, Michael

    2013-01-01

    In this study the anaerobic digestion of grain stillage in three different reactor systems (continuous stirred tank reactor, anaerobic sequencing batch reactor, fixed bed reactor) with and without immobilization of microorganisms was investigated to evaluate the performance during increase of the organic loading rate (OLR) from 1 to 10 g of volatile solids (VS) per liter reactor volume and day and decrease of the hydraulic retention time (HRT) from 40 to 6 days. No significant differences have been observed between the performances of the three examined reactor systems. The changes in OLR and HRT caused a reduction of the specific biogas production (SBP) of about 25% from about 650 to 550 L kg −1 of VS but would also diminish the necessary digester volume and investment costs of about 75% compared to the state of the art. -- Highlights: ► It was shown that without immobilization of microorganisms low HRT's are possible. ► No significant differences have been observed between different digester designs. ► Trace element supplementation is obligatory with grain stillage as substrate

  6. Comparative energetics of three fusion-fission symbiotic nuclear reactor systems

    International Nuclear Information System (INIS)

    Gordon, C.W.; Harms, A.A.

    1975-01-01

    The energetics of three symbiotic fusion-fission nuclear reactor concepts are investigated. The fuel and power balances are considered for various values of systems parameters. The results from this analysis suggest that symbiotic fusion-fission systems are advantageous from the standpoint of economy and resource utilization. (Auth.)

  7. Catalytic Reforming: Methodology and Process Development for a Constant Optimisation and Performance Enhancement

    Directory of Open Access Journals (Sweden)

    Avenier Priscilla

    2016-05-01

    Full Text Available Catalytic reforming process has been used to produce high octane gasoline since the 1940s. It would appear to be an old process that is well established and for which nothing new could be done. It is however not the case and constant improvements are proposed at IFP Energies nouvelles. With a global R&D approach using new concepts and forefront methodology, IFPEN is able to: propose a patented new reactor concept, increasing capacity; ensure efficiency and safety of mechanical design for reactor using modelization of the structure; develop new catalysts to increase process performance due to a high comprehension of catalytic mechanism by using, an experimental and innovative analytical approach (119Sn Mössbauer and X-ray absorption spectroscopies and also a Density Functional Theory (DFT calculations; have efficient, reliable and adapted pilots to validate catalyst performance.

  8. The catalytic oxidation of organic contaminants in a packed bed reactor

    NARCIS (Netherlands)

    van de Beld, L.; Bijl, M.P.G.; Reinders, A.; van der Wert, B.; Westerterp, K.R.

    1994-01-01

    The catalytic oxidation of several hydrocarbons was studied over noble metal and metal oxide catalysts. A fast empirical method was developed to determine the minimum operating temperature required to guarantee complete conversion of the hydrocarbon. The influence of the operating parameters such as

  9. Process for catalytic flue gas denoxing

    International Nuclear Information System (INIS)

    Woldhuis, A.; Goudriaan, F.; Groeneveld, M.; Samson, R.

    1991-01-01

    With the increasing concern for the environment, stringency of legislation and industry's awareness of its own environmental responsibility, the demand for the reduction of emission levels of nitrogen oxides is becoming increasingly urgent. This paper reports that Shell has developed a low temperature catalytic deNOx system for deep removal of nitrogen oxides, which includes a low-pressure-drop reactor. This process is able to achieve over 90% removal of nitrogen oxides and therefore can be expected to meet legislation requirements for the coming years. The development of a low-temperature catalyst makes it possible to operate at temperatures as low as 120 degrees C, compared to 300-400 degrees C for the conventional honeycomb and plate-type catalysts. This allows an add-on construction, which is most often a more economical solution than the retrofits in the hot section required with conventional deNOx catalysts. The Lateral Flow Reactor (LFR), which is used for dust-free flue gas applications, and the Parallel Passage Reactor (PPR) for dust-containing flue gas applications, have been developed to work with pressure drops below 10 mbar

  10. Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels

    International Nuclear Information System (INIS)

    Babich, I.V.; Hulst, M. van der; Lefferts, L.; Moulijn, J.A.; O'Connor, P.; Seshan, K.

    2011-01-01

    The pyrolytic conversion of chlorella algae to liquid fuel precursor in presence of a catalyst (Na 2 CO 3 ) has been studied. Thermal decomposition studies of the algae samples were performed using TGA coupled with MS. Liquid oil samples were collected from pyrolysis experiments in a fixed-bed reactor and characterized for water content and heating value. The oil composition was analyzed by GC-MS. Pretreatment of chlorella with Na 2 CO 3 influences the primary conversion of chlorella by shifting the decomposition temperature to a lower value. In the presence of Na 2 CO 3 , gas yield increased and liquid yield decreased when compared with non-catalytic pyrolysis at the same temperatures. However, pyrolysis oil from catalytic runs carries higher heating value and lower acidity. Lower content of acids in the bio-oil, higher aromatics, combined with higher heating value show promise for production of high-quality bio-oil from algae via catalytic pyrolysis, resulting in energy recovery in bio-oil of 40%. -- Highlights: → The pyrolytic catalytic conversion of chlorella algae to liquid fuel precursor. → Na 2 CO 3 as a catalyst for the primary conversion of chlorella. → Pyrolysis oil from catalytic runs carries higher heating value and lower acidity. → High-quality bio-oil from algae via catalytic pyrolysis with energy recovery in bio-oil of 40%.

  11. Degradation of gas-phase trichloroethylene over thin-film TiO{sub 2} photocatalyst in multi-modules reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Bum [New and Renewable Energy Team, Environment and Energy Division, Korea Institute of Industrial Technology (Korea, Republic of); Lee, Jun Yub, E-mail: ljy02191@hanafos.com [Power Engineering Research Institute, Korea Power Engineering Company, Inc. (Korea, Republic of); Kim, Gyung Soo [New and Renewable Energy Team, Environment and Energy Division, Korea Institute of Industrial Technology (Korea, Republic of); Hong, Sung Chang [Department of Environmental Engineering, Kyonggi University (Korea, Republic of)

    2009-07-30

    The present paper examined the photocatalytic degradation (PCD) of gas-phase trichloroethylene (TCE) over thin-film TiO{sub 2}. A large-scale treatment of TCE was carried out using scale-up continuous flow photo-reactor in which nine reactors were arranged in parallel and series. The parallel or serial arrangement is a significant factor to determine the special arrangement of whole reactor module as well as to compact the multi-modules in a continuous flow reactor. The conversion of TCE according to the space time was nearly same for parallel and serial connection of the reactors.

  12. The Phase Behavior Effect on the Reaction Engineering of Transesterification Reactions and Reactor Design for Continuous Biodiesel Production

    Science.gov (United States)

    Csernica, Stephen N.

    transitions from two phases to a single phase, or pseudo-single phase. The transition to a single phase or pseudo-single phase is a function of the methanol content. Regardless, the maximum observed reaction rate occurs at the point of the phase transition, when the concentration of triglycerides in the methanol phase is largest. The phase transition occurs due to the accumulation of the primary product, biodiesel methyl esters. Through various experiments, it was determined that the rate of the triglyceride mass transfer into the methanol phase, as well as the solubility of triglycerides in methanol, increases with increasing methyl ester concentration. Thus, there exists some critical methyl ester concentration which favors the formation of a single or pseudo-single phase system. The effect of the by-product glycerol on the reaction kinetics was also investigated. It was determined that at low methanol to triglyceride molar ratios, glycerol acts to inhibit the reaction rate and limit the overall triglyceride conversion. This occurs because glycerol accumulates in the methanol phase, i.e. the primary reaction volume. When glycerol is at relatively high concentrations within the methanol phase, triglycerides become excluded from the reaction volume. This greatly reduces the reaction rate and limits the overall conversion. As the concentration of methanol is increased, glycerol becomes diluted and the inhibitory effects become dampened. Assuming pseudo-homogeneous phase behavior, a simple kinetic model incorporating the inhibitory effects of glycerol was proposed based on batch reactor data. The kinetic model was primarily used to theoretically compare the performance of different types of continuous flow reactors for continuous biodiesel production. It was determined that the inhibitory effects of glycerol result in the requirement of very large reactor volumes when using continuous stirred tank reactors (CSTR). The reactor volume can be greatly reduced using tubular style

  13. Catalytic conversion of light alkanes. Quarterly progress report, April 1--June 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  14. Novel catalytic route to bulk production of high purity carbon nanotube

    International Nuclear Information System (INIS)

    Dasgupta, Kinshuk; Venugopalan, Ramani; Dey, G. K.; Sathiyamoorthy, D.

    2008-01-01

    Carbon nanotubes have been synthesized by catalytic chemical vapour deposition of acetylene diluted with argon using three different catalysts, namely, nickel formate, cobalt formate and ferrocene. The synthesis was carried out at 700 deg. C in a quartz reactor for 30 minutes. Thermal analysis was carried out in order to determine the yield of the nanotube. It was found that the deposit contains 86% nanotube, with nickel-based catalyst, which was the maximum. The yield of nanotube was 71 times that of the nickel loading. The TEM images reveal helical type of nanotubes with iron catalyst while cobalt and nickel catalysts yielded straight nanotubes. This technique can be explored for the bulk production of carbon nanotube in an economic way

  15. Experimental studies on hydrogen isotopic deuterium from gas to liquid phase by catalytic exchange

    International Nuclear Information System (INIS)

    Luo Yangming; Wang Heyi; Liu Jun; Fu Zhonghua; Wang Changbin; Han Jun; Xia Xiulong; Tang Lei

    2005-01-01

    The experimental studies on hydrogen isotopic deuterium from gas to liquid phase were completed by mixed ratio 1:4 of Pt-SDB hydrophobic catalyst and hydrophilic packing. The influencing factors on number of transfer units (NTU) and transformation efficiencies of deuterium were researched. The results show that preferable NTU can be obtained by choosing suitable operational temperature and flux of exchange gas. The transformation rate increases with increasing liquid flux, but it cannot obviously be improved when liquid flux attains some level. The length of catalytic column has an obvious influence on transformation rate and 90% of transformation rate is obtained by 4 m column length at gas flux with 2 m 3 /h, liquid flux with 1-2 kg/h and 45 degree C. (author)

  16. Methanol steam-reforming in a catalytic fixed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Duesterwald, H G; Hoehlein, B; Kraut, H; Meusinger, J; Peters, R [Research Centre Juelich (KFA) (Germany). Inst. of Energy Process Engineering; Stimming, U [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Festkoerperphysik und Techn. Phys.

    1997-12-01

    Designing an appropriate methanol steam reformer requires detailed knowledge about the processes within such a reactor. Thus, the axial temperature and concentration gradients and catalyst ageing were investigated. It was found that for a fresh catalyst load, the catalyst located in the reactor entrance was most active during the experiment. The activity of this part of the catalyst bed decreased after some time of operation due to ageing. With further operation, the most active zone moved through the catalyst bed. From the results concerning hydrogen production and catalyst degradation, the necessary amount of catalyst for a mobile PEMFC-system can be estimated. (orig.)

  17. Parametric study on catalytic tri-reforming of methane for syngas production

    International Nuclear Information System (INIS)

    Chein, Rei-Yu; Wang, Chien-Yu; Yu, Ching-Tsung

    2017-01-01

    A two-dimensional numerical model for syngas production from tri-reforming of methane (TRM) in adiabatic tubular fixed-bed reactors was established. From the results obtained, it was found that reactant must be preheated to certain temperatures for TRM activation. Although the delay factor accounting for the varying catalytic bed activities produced different temperature and species mole fraction profiles in the reactor upstream, the reactor performance was delay factor independent if the reactor outlet results were used because nearly identical temperature and species mole fraction variations were obtained at the reactor downstream. The numerical results also indicated that reverse water-gas shift reaction plays an important role for H 2 and CO yields. With higher O 2 in reactant, high temperature resulted, leading to lower H 2 /CO ratio. The absence of H 2 O in the reactant caused dry reforming of methane as the dominant reaction, resulting in H 2 /CO ratio close to unity. With the absence of CO 2 in the reactant, steam reforming of methane was the dominant reaction, resulting in H 2 /CO ratio close to 3. Using flue gas from combustion as TRM feedstock, it was found that H 2 /CO ratio was enhanced using lower CH 4 amount in reactant. High-temperature flue gas was suggested for TRM for the activation requirement. - Highlights: • Reactant must be preheated to certain temperature for tri-reforming of methane (TRM) activation. • A delay factor is used to account for varying catalytic activity. • TRM performance is delay factor independent when reactor outlet results are used. • Water-gas shift reaction plays an important role in H 2 yield, CO yield and H 2 /CO ratio in TRM. • Low CH 4 and high temperature are suggested when flue gas is used in TRM.

  18. Feasibility study on commercialized fast reactor cycle systems. Phase II final report

    International Nuclear Information System (INIS)

    Ieda, Yoshiaki; Uchikawa, Sadao; Okubo, Tsutomu; Ono, Kiyoshi; Kato, Atsushi; Kurisaka, Kenichi; Sakamoto, Yoshihiko; Sato, Kazujiro; Sato, Koji; Chikazawa, Yoshitaka; Nakai, Ryodai; Nakabayashi, Hiroki; Nakamura, Hirofumi; Namekawa, Takashi; Niwa, Hajime; Nomura, Kazunori; Hayashi, Hideyuki; Hayafune, Hiroki; Hirao, Kazunori; Mizuno, Tomoyasu; Muramatsu, Toshiharu; Ando, Masato; Ono, Katsumi; Ogata, Takanari; Kubo, Shigenobu; Kotake, Shoji; Sagayama, Yutaka; Takakuma, Katsuyuki; Tanaka, Toshihiko; Namba, Takashi; Fujii, Sumio; Muramatsu, Kazuyoshi

    2006-06-01

    A joint project team of Japan Atomic Energy Agency and the Japan Atomic Power Company (as the representative of the electric utilities) started the feasibility study on commercialized fast reactor cycle systems (F/S) in July 1999 in cooperation with Central Research Institute of Electric Power Industry and vendors. On the major premise of safety assurance, F/S aims to present an appropriate picture of commercialization of fast reactor (FR) cycle system which has economic competitiveness with light water reactor cycle systems and other electricity base load systems, and to establish FR cycle technologies for the future major energy supply. In the period from Japanese fiscal year (JFY) 1999 to 2000, the phase-I of F/S was carried out to screen our representative FR, reprocessing and fuel fabrication technologies. In the phase-II (JFY 2001-2005), the design study of FR cycle concepts, the development of significant technologies necessary for the feasibility evaluation, and the confirmation of key technical issues were performed to clarify the promising candidate concepts toward the commercialization. In this final phase-II report clarified the most promising concept, the R and D plan until around 2015, and the key issues for the commercialization. Based on the comprehensive evaluation in F/S, the combination of the sodium-cooled FR with MOX fuel core, the advanced-aqueous reprocessing process and the simplified-pelletizing fuel fabrication process was recommended as the mainline choice for the most promising concept. The concept exceeds in technical advancement, and the conformity to the development targets was higher compared with that of the others. Alternative technologies are prepared to be decrease the development risk of innovative technologies in the mainline choice. (author)

  19. [Studies on photo-electron-chemical catalytic degradation of the malachite green].

    Science.gov (United States)

    Li, Ming-yu; Diao, Zeng-hui; Song, Lin; Wang, Xin-le; Zhang, Yuan-ming

    2010-07-01

    A novel two-compartment photo-electro-chemical catalytic reactor was designed. The TiO2/Ti thin film electrode thermally formed was used as photo-anode, and graphite as cathode and a saturated calomel electrode (SCE) as the reference electrode in the reactor. The anode compartment and cathode compartment were connected with the ionic exchange membrane in this reactor. Effects of initial pH, initial concentration of malachite green and connective modes between the anode compartment and cathode compartment on the decolorization efficiency of malachite green were investigated. The degradation dynamics of malachite green was studied. Based on the change of UV-visible light spectrum, the degradation process of malachite green was discussed. The experimental results showed that, during the time of 120 min, the decolouring ratio of the malachite green was 97.7% when initial concentration of malachite green is 30 mg x L(-1) and initial pH is 3.0. The catalytic degradation of malachite green was a pseudo-first order reaction. In the degradation process of malachite green the azo bond cleavage and the conjugated system of malachite green were attacked by hydroxyl radical. Simultaneity, the aromatic ring was oxidized. Finally, malachite green was degraded into other small molecular compounds.

  20. Evaluation of the impact of a committed site on fusion reactor development

    International Nuclear Information System (INIS)

    Reid, R.L.; Nagy, A.

    1979-01-01

    The technical and economic merits of a committed fusion site for development of tokamak, mirror, and EBT reactor from ignition through demo phases were evaluated. Schedule compression resulting from evolving several reactor concepts and/or phases on a committed site as opposed to sequential use of independent sites was estimated. Land, water, and electrical power requirements for a committed fusion site were determined. A conceptual plot plan for siting three fusion reactors on a committed site was configured. Reactor support equipment common to the various concepts was identified as candidates for sharing. Licensing issues for fusion plants were briefly addressed

  1. Development of advanced mesostructured catalytic coatings on different substrates for fine chemical synthesis

    NARCIS (Netherlands)

    Protasova, L.N.

    2011-01-01

    Catalytic microstructured reactors are becoming widely recognized for their unique properties, such as high surface–to–volume ratios, isothermal conditions due to high heat transfer rates, enhanced safety, and potential applications in chemistry and in chemical industry. The efficient use of

  2. Probabilistic physical characteristics of phase transitions at highway bottlenecks: incommensurability of three-phase and two-phase traffic-flow theories.

    Science.gov (United States)

    Kerner, Boris S; Klenov, Sergey L; Schreckenberg, Michael

    2014-05-01

    Physical features of induced phase transitions in a metastable free flow at an on-ramp bottleneck in three-phase and two-phase cellular automaton (CA) traffic-flow models have been revealed. It turns out that at given flow rates at the bottleneck, to induce a moving jam (F → J transition) in the metastable free flow through the application of a time-limited on-ramp inflow impulse, in both two-phase and three-phase CA models the same critical amplitude of the impulse is required. If a smaller impulse than this critical one is applied, neither F → J transition nor other phase transitions can occur in the two-phase CA model. We have found that in contrast with the two-phase CA model, in the three-phase CA model, if the same smaller impulse is applied, then a phase transition from free flow to synchronized flow (F → S transition) can be induced at the bottleneck. This explains why rather than the F → J transition, in the three-phase theory traffic breakdown at a highway bottleneck is governed by an F → S transition, as observed in real measured traffic data. None of two-phase traffic-flow theories incorporates an F → S transition in a metastable free flow at the bottleneck that is the main feature of the three-phase theory. On the one hand, this shows the incommensurability of three-phase and two-phase traffic-flow theories. On the other hand, this clarifies why none of the two-phase traffic-flow theories can explain the set of fundamental empirical features of traffic breakdown at highway bottlenecks.

  3. Renewable Wood Pulp Paper Reactor with Hierarchical Micro/Nanopores for Continuous-Flow Nanocatalysis.

    Science.gov (United States)

    Koga, Hirotaka; Namba, Naoko; Takahashi, Tsukasa; Nogi, Masaya; Nishina, Yuta

    2017-06-22

    Continuous-flow nanocatalysis based on metal nanoparticle catalyst-anchored flow reactors has recently provided an excellent platform for effective chemical manufacturing. However, there has been limited progress in porous structure design and recycling systems for metal nanoparticle-anchored flow reactors to create more efficient and sustainable catalytic processes. In this study, traditional paper is used for a highly efficient, recyclable, and even renewable flow reactor by tailoring the ultrastructures of wood pulp. The "paper reactor" offers hierarchically interconnected micro- and nanoscale pores, which can act as convective-flow and rapid-diffusion channels, respectively, for efficient access of reactants to metal nanoparticle catalysts. In continuous-flow, aqueous, room-temperature catalytic reduction of 4-nitrophenol to 4-aminophenol, a gold nanoparticle (AuNP)-anchored paper reactor with hierarchical micro/nanopores provided higher reaction efficiency than state-of-the-art AuNP-anchored flow reactors. Inspired by traditional paper materials, successful recycling and renewal of AuNP-anchored paper reactors were also demonstrated while high reaction efficiency was maintained. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. Co-generation of synthesis gas and C{sub 2+} hydrocarbons from methane and carbon dioxide in a hybrid catalytic-plasma reactor: A review

    Energy Technology Data Exchange (ETDEWEB)

    Istadi; Nor Aishah Saidina Amin [Universiti Teknologi Malaysia, Johor Bahru (Malaysia). Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Natural Resources Engineering

    2006-03-15

    The topics on conversion and utilization of methane and carbon dioxide are important issues in tackling the global warming effects from the two greenhouse gases. Several technologies including catalytic and plasma have been proposed to improve the process involving conversion and utilization of methane and carbon dioxide. In this paper, an overview of the basic principles, and the effects of CH{sub 4}/CO{sub 2} feed ratio, total feed flow rate, discharge power, catalyst, applied voltage, wall temperature, and system pressure in dielectric-barrier discharge (DBD) plasma reactor are addressed. The discharge power, discharge gap, applied voltage and CH{sub 4}/CO{sub 2} ratio in the feed showed the most significant effects on the reactor performance. Co-feeding carbon dioxide with the methane feed stream reduced coking and increased methane conversion. The H{sub 2}/CO ratio in the products was significantly affected by CH{sub 4}/CO{sub 2} ratio. The synergism of the catalyst placed in the discharge gap and the plasma affected the products distribution significantly. Methane and carbon dioxide conversions were influenced significantly by discharge power and applied voltage. The drawbacks of DBD plasma application in the CH{sub 4}-CO{sub 2} conversion should be taken into consideration before a new plausible reactor system can be implemented. 76 refs., 4 figs., 2 tabs.

  5. Investigation of two-phase flow structure in model of draught pipe of water boiling reactor VK-300

    International Nuclear Information System (INIS)

    Efanov, A.D.; Kuznetzov, Y.N.; Kaliakin, S.G.; Lisitza, F.D.; Remizov, O.V.; Serdun, N.P.

    2001-01-01

    VK-300 reactor represents a vessel-type boiling reactor with integral arrangement of assemblies and in-vessel steam separation at one-circuit scheme. The circuit consists of core, draught pipes, and separation facilities. The vessel of VK-300 reactor is chosen on the base of the dimensions of that of VVER-1000 reactor. The following thermal-hydraulic parameters of nuclear power plant (NPP) were investigated experimentally: dependence of void fraction upon the steam quality in mixing chamber (on the draught section input); pressure losses at different, specific zones of up-flow and down-flow sections of the circuit with free circulation; degree of steam separation in the separating chamber (at the first step of phase separation) and its dependence upon steam quality; structure of steam-water flow in draught pipes (distribution of phases over the draught pipe cross- section); presence of steam hovering and height of this hovering in inter-pipe space of draught section. (author)

  6. Analysis of a hot-leg small break loss-of-coolant accident in a three-loop westinghouse pressurized water reactor plant

    International Nuclear Information System (INIS)

    Peterson, C.E.; Chexal, V.K.; Clements, T.B.

    1985-01-01

    The RETRAN-02 computer code was used to perform a best-estimate analysis of a 7.52-cm-diam hotleg break in a three-loop Westinghouse pressurized water reactor. This break size produced a net primary coolant mass depletion through the early portion of the transient. The primary system started to refill only after the accumulator valves opened. As the primary system refilled, there were extreme temperature differentials around the system with cold, denser fluid collecting at the lower elevations and two-phase fluid at higher elevations

  7. Three-phase scintigraphy in the Sudeck syndrome

    International Nuclear Information System (INIS)

    Koppers, B.

    1982-01-01

    37 patients with clinically and radiologically proved reflex sympathetic dystrophy syndrome were scintigraphied by sup(99)mTc-MDP (three-phase scintigraphy). In 87% of the examinations (all three-phases) an increased tracer accumulation in the region of the affected limb could be seen scintigraphically. The majority of the positive results (92% resp. 87%) were found in the intervall phase (phase II) and the late phase (phase III) of the scintigraphic examinations. - We recommend a staging of the increase of the tracer accumulation when examing the reflex sympathetic dystrophy syndrome. This staging doesn't significantly correlate with the familiar clinical and radiological stagings. However it may be useful when assessing the course of the syndrome. - Increased tracer accumulations could be observed in the case of clinically, radiologically and scintigraphically manifest reflex sympathetic dystrophy syndrome in the region of the foot, frequently in the ipsilateral knee region, rarely in the ipsilateral hip joint region, although clinically the syndrome could not be observed in these regions. (orig.) [de

  8. Catalytic destruction of organics and chlorinated organics with TEES II

    International Nuclear Information System (INIS)

    Baker, E.G.; Elliot, D.C.; Sealock, L.J. Jr.; Neuenschwander, G.G.

    1991-06-01

    A catalytic process is being developed at Pacific Northwest Laboratory (PNL) for destroying hazardous organics and chlorinated organics, including spent solvents, in aqueous waste streams. Experiments have been conducted in a batch reactor, a bench-scale continuous-stirred tank reactor (CSTR), and an continuous-flow tubular reactor. A 5-gal/h developmental unit is under construction and will be operational in 1991. The Thermochemical Environmental Energy System 2 can destroy a wide variety of organics and chlorinated organics by thermocatalytic treatment at 300 degrees C to 350 degrees C and 2000 to 3000 psig. This paper summarizes the batch reactor and CSTR results and presents new results obtained in the tubular reactor. The high levels of destruction achieved in the tubular reactor show that kinetic data obtained in CSTR can be used to design large-scale tubular reactors with little scaleup risk. Corrosion studies were completed, and it appears that less expensive materials of construction can be used in many applications, which will make the process more cost effective. Cost estimates for larger- scale facilities have been prepared by Onsite*Ofsite, Inc., who is working with PNL to transfer the technology to industry. 5 refs., 4 tabs., 1 fig

  9. Transient three-phase three-component flow. Pt. 3

    International Nuclear Information System (INIS)

    Kolev, N.I.

    1986-05-01

    A mathematical model of a transient three-dimensional three-phase three-component flow described by three-velocity fields in porous body is presented. A combination of separated mass and energy equations together with mixture momentum equations for the flow is used. The mixture equations are used in diffusion form with the assumption that the diffusion velocity can be calculated from empirical correlations. An analytical coupling between the governing equations is developed for calculation of the pressure field. The system is discretized semiimplicitly in 3D-cylindrical space and different solution methods for the algebraic problem are presented. Finally, numerical examples and comparisons with experimental data demonstrate that the method presented is a powerful tool for numerical multiphase flow simulation. (orig.) [de

  10. Phased Development of Accident Tolerant Fue

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon M.; Carmack, W. Jon

    2016-09-01

    The United States Department of Energy (U.S. DOE) Advanced Fuels Campaign (AFC) has adopted a three-phase approach for the development and eventual commercialization of enhanced, accident tolerant fuel (ATF) for light water reactors (LWRs). Extending from 2012 to 2016, AFC is currently coming to the end of Phase 1 research that has entailed Feasibility Assessment and Prioritization for a large number of proposed fuel systems (fuel and cladding) that could provide improved performance under accident conditions. Phase 1 activities will culminate with a prioritization of concepts for both near-term and long-term development based on the available experimental data and modeling predictions. This process will provide guidance to DOE on what concepts should be prioritized for investment in Phase 2 Development/Qualification activities based on technical performance improvements and probability of meeting the aggressive schedule to insert a lead fuel rod (LFR) in a commercial power reactor by 2022. While Phase 1 activities include small-scale fabrication work, materials characterization, and limited irradiation of samples, Phase 2 will require development teams to expand to industrial fabrication methods, conduct irradiation tests under more prototypic reactor conditions (i.e. in contact with reactor primary coolant at LWR conditions and in-pile transient testing), conduct additional characterization and post-irradiation examination, and develop a fuel performance code for the candidate ATF. Phase 2 will culminate in the insertion of an LFR (or lead fuel assembly) in a commercial power reactor. The Phase 3 Commercialization work will extend past 2022. Following post-irradiation examination of LFRs, partial-core reloads will be demonstrated. The commercialization phase will further entail the establishment of commercial fabrication capabilities and the transition of LWR cores to the new fuel. The three development phases described roughly correspond to the technology

  11. On application of CFD codes to problems of nuclear reactor safety

    International Nuclear Information System (INIS)

    Muehlbauer, Petr

    2005-01-01

    The 'Exploratory Meeting of Experts to Define an Action Plan on the Application of Computational Fluid Dynamics (CFD) Codes to Nuclear Reactor Safety Problems' held in May 2002 at Aix-en-Province, France, recommended formation of writing groups to report the need of guidelines for use and assessment of CFD in single-phase nuclear reactor safety problems, and on recommended extensions to CFD codes to meet the needs of two-phase problems in nuclear reactor safety. This recommendations was supported also by Working Group on the Analysis and Management of Accidents and led to formation oaf three Writing Groups. The first writing Group prepared a summary of existing best practice guidelines for single phase CFD analysis and made a recommendation on the need for nuclear reactor safety specific guidelines. The second Writing Group selected those nuclear reactor safety applications for which understanding requires or is significantly enhanced by single-phase CFD analysis, and proposed a methodology for establishing assesment matrices relevant to nuclear reactor safety applications. The third writing group performed a classification of nuclear reactor safety problems where extension of CFD to two-phase flow may bring real benefit, a classification of different modeling approaches, and specification and analysis of needs in terms of physical and numerical assessments. This presentation provides a review of these activities with the most important conclusions and recommendations (Authors)

  12. Laser fusion hybrid reactor systems study

    International Nuclear Information System (INIS)

    1976-07-01

    The work was performed in three phases. The first phase included a review of the many possible laser-reactor-blanket combinations and resulted in the selection of a ''demonstration size'' 500 MWe plant for further study. A number of fast fission blankets using uranium metal, uranium-molybdenum alloy, and uranium carbide as fuel were investigated. The second phase included design of the reactor vessel and internals, heat transfer system, tritium processing system, and the balance of plant, excluding the laser building and equipment. A fuel management scheme was developed, safety considerations were reviewed, and capital and operating costs were estimated. Costs developed during the second phase were unexpectedly high, and a thorough review indicated considerable unit cost savings could be obtained by scaling the plant to a larger size. Accordingly, a third phase was added to the original scope, encompassing the redesign and scaling of the plant from 500 MWe to 1200 MWe

  13. Characterization of the gas releasing behaviors of catalytic pyrolysis of rice husk using potassium over a micro-fluidized bed reactor

    International Nuclear Information System (INIS)

    Liu, Yuan; Wang, Yan; Guo, Feiqiang; Li, Xiaolei; Li, Tiantao; Guo, Chenglong; Chang, Jiafu

    2017-01-01

    Highlights: • Releasing propensity of CO, CO 2 , CH 4 and H 2 was studied in a micro-fluidized bed. • Gas releasing pattern was influenced by temperature and potassium concentration. • Variations in gas forming E a are indicative of catalytic performance of potassium. - Abstract: Influence of potassium on the gas releasing behaviors during rice husk high-temperature pyrolysis was investigated under isothermal conditions in a two stage micro-fluidized bed reactor. Reaction kinetics for generating H 2 , CO, CO 2 and CH 4 was investigated based on the Friedman and model-fitting approaches. Results indicated that different gas species had different times to start and end the gas release process, particularly at 600 °C, representing different chemical routes and mechanics for generating these gas components. The resulting apparent activation energies for H 2 , CO, and CO 2 decreased from 23.10 to 12.00 kJ/mol, 15.48 to 14.03 kJ/mol and 10.14 to 7.61 kJ/mol respectively with an increase in potassium concentration from 0 to 0.5 mol/kg, while that for CH 4 increased from 16.85 to 19.40 kJ/mol. The results indicated that the addition of potassium could promote the generation reactions of H 2 , CO and CO 2 while hinder the generation reactions of CH 4 . The pyrolysis reaction was further found to be subject to the three-dimensional diffusion model for all the samples.

  14. A polygeneration from a dual-gas partial catalytic oxidation coupling with an oxygen-permeable membrane reactor

    International Nuclear Information System (INIS)

    Hao, Yanhong; Huang, Yi; Gong, Minhui; Li, Wenying; Feng, Jie; Yi, Qun

    2015-01-01

    Highlights: • A new polygeneration system (PL-PCO-OPMR) to DME/methanol/power is proposed. • Exergeo-economic analysis is adopted to disclose the performance of systems. • Key technological conditions and parameters for PL-PCO-OPMR are optimized. • PL-PCO-OPMR shows high energy efficiency and low CO_2 emission. • PL-PCO-OPMR is an attractive way for high efficient and clean use of COG and CGG. - Abstract: Polygeneration system, typically involving chemicals/fuels and electricity co-production, is a promising technology for the sustainable development of energy and environment. In this study, a new polygeneration system based on coal and coke oven gas (COG) inputs for co-production of dimethyl ether (DME)/methanol and electricity is proposed. In the new system, an appropriate syngas for the synthesis of DME is from coal gasified gas (CGG) reforming of COG coupled with an oxygen-permeable membrane reactor, in which both COG and CGG reforming process and fuel combustion process are incorporated, which reduces exergy destruction in the whole reforming process. In order to obtain the best performance of CO_2 reduction, energy saving and economic benefit, the key operation parameters of the proposed process are analyzed and optimized. The new system is compared with the process based on CH_4/CO_2 dry reforming, in terms of exergy efficiency, exergy cost and CO_2 emissions. Through the new system, the exergy efficiency can be increased by 7.8%, the exergy cost can be reduced by 0.88 USD/GJ and the CO_2 emission can be reduced by 0.023 kg/MJ. These results suggest that the polygeneration system from CGG and COG partial catalytic oxidation coupling with an oxygen-permeable membrane reactor (PL-PCO-OPMR) would be a more attractive way for highly efficient and clean use of CGG and COG.

  15. Equations of motion for two-phase flow in a pin bundle of a nuclear reactor

    International Nuclear Information System (INIS)

    Chawla, T.C.; Ishii, M.

    1978-01-01

    By performing Eulerian area averaging over a channel area of the local continuity, momentum, and energy equations for single phase turbulent flow and assuming each phase in two-phase flows to be continuum but coupled by the appropriate 'jump' conditions at the interface, the corresponding axial macroscopic balances for two-fluid model in a pin bundle are obtained. To determine the crossflow, a momentum equation in transverse (to the gap between the pins) direction is obtained for each phase by carrying out Eulerian segment averaging of the local momentum equation, where the segment is taken parallel to the gap. By considering the mixture as a whole, a diffusion model based on drift-flux velocity is formulated. In the axial direction it is expressed in terms of three mixture conservation equations of mass, momentum, and energy with one additional continuity equation for the vapor phase. For the determination of crossflow, transverse momentum equation for a mixture is obtained. It is considered that the previous formulation of the two-phase flow based on the 'slip' flow model and the integral subchannel balances using finite control volumes is inadequate in that the model is heuristic and, a priori, assumes the order of magnitude of the terms, also the model is incomplete and incorrect when applied to two-phase mixtures in thermal non-equilibrium such as during accidental depressurization of a water cooled reactor. The governing equations presented are shown to be a very formal and sound physical basis and are indispensable for physically correct methods of analyzing two-phase flows in a pin bundle. (author)

  16. Abatement of phenolic mixtures by catalytic wet oxidation enhanced by Fenton's pretreatment: Effect of H2O2 dosage and temperature

    International Nuclear Information System (INIS)

    Santos, A.; Yustos, P.; Rodriguez, S.; Simon, E.; Garcia-Ochoa, F.

    2007-01-01

    Catalytic wet oxidation (CWO) of a phenolic mixture containing phenol, o-cresol and p-cresol (500 mg/L on each pollutant) has been carried out using a commercial activated carbon (AC) as catalyst, placed in a continuous three-phase reactor. Total pressure was 16 bar and temperature was 127 deg. C. Pollutant conversion, mineralization, intermediate distribution, and toxicity were measured at the reactor outlet. Under these conditions no detoxification of the inlet effluent was found even at the highest catalyst weight (W) to liquid flow rate (Q L ) ratio used. On the other hand, some Fenton Runs (FR) have been carried out in a batch way using the same phenolic aqueous mixture previously cited. The concentration of Fe 2+ was set to 10 mg/L. The influence of the H 2 O 2 amount (between 10 and 100% of the stoichiometric dose) and temperature (30, 50, and 70 deg. C) on phenols conversion, mineralization, and detoxification have been analyzed. Phenols conversion was near unity at low hydrogen peroxide dosage but mineralization and detoxification achieved an asymptotic value at each temperature conditions. The integration of Fenton reagent as pretreatment of the CWO process remarkably improves the efficiency of the CWO reactor and allows to obtain detoxified effluents at mild temperature conditions and relatively low W/Q L values. For a given phenolic mixture a temperature range of 30-50 deg. C in the Fenton pretreatment with a H 2 O 2 dosage between 20 and 40% of the stoichiometric amount required can be proposed

  17. High-power three-port three-phase bidirectional DC-DC converter

    NARCIS (Netherlands)

    Tao, H.; Duarte, J.L.; Hendrix, M.A.M.

    2007-01-01

    This paper proposes a three-port three-phase bidirectional dc-dc converter suitable for high-power applications. The converter combines a slow primary source and a fast storage to power a common load (e.g., an inverter). Since this type of system is gaining popularity in sustainable energy

  18. Measurements of liquid phase residence time distributions in a pilot-scale continuous leaching reactor using radiotracer technique.

    Science.gov (United States)

    Pant, H J; Sharma, V K; Shenoy, K T; Sreenivas, T

    2015-03-01

    An alkaline based continuous leaching process is commonly used for extraction of uranium from uranium ore. The reactor in which the leaching process is carried out is called a continuous leaching reactor (CLR) and is expected to behave as a continuously stirred tank reactor (CSTR) for the liquid phase. A pilot-scale CLR used in a Technology Demonstration Pilot Plant (TDPP) was designed, installed and operated; and thus needed to be tested for its hydrodynamic behavior. A radiotracer investigation was carried out in the CLR for measurement of residence time distribution (RTD) of liquid phase with specific objectives to characterize the flow behavior of the reactor and validate its design. Bromine-82 as ammonium bromide was used as a radiotracer and about 40-60MBq activity was used in each run. The measured RTD curves were treated and mean residence times were determined and simulated using a tanks-in-series model. The result of simulation indicated no flow abnormality and the reactor behaved as an ideal CSTR for the range of the operating conditions used in the investigation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Hydrogen production by steam reforming of bio-alcohols. The use of conventional and membrane-assisted catalytic reactors

    Energy Technology Data Exchange (ETDEWEB)

    Seelam, P. K.

    2013-11-01

    The energy consumption around the globe is on the rise due to the exponential population growth and urbanization. There is a need for alternative and non-conventional energy sources, which are CO{sub 2}-neutral, and a need to produce less or no environmental pollutants and to have high energy efficiency. One of the alternative approaches is hydrogen economy with the fuel cell (FC) technology which is forecasted to lead to a sustainable society. Hydrogen (H{sub 2}) is recognized as a potential fuel and clean energy carrier being at the same time a carbon-free element. Moreover, H{sub 2} is utilized in many processes in chemical, food, metallurgical, and pharmaceutical industry and it is also a valuable chemical in many reactions (e.g. refineries). Non-renewable resources have been the major feedstock for H{sub 2} production for many years. At present, {approx}50% of H{sub 2} is produced via catalytic steam reforming of natural gas followed by various down-stream purification steps to produce {approx}99.99% H{sub 2}, the process being highly energy intensive. Henceforth, bio-fuels like biomass derived alcohols (e.g. bio-ethanol and bio-glycerol), can be viable raw materials for the H{sub 2} production. In a membrane based reactor, the reaction and selective separation of H{sub 2} occur simultaneously in one unit, thus improving the overall reactor efficiency. The main motivation of this work is to produce H{sub 2} more efficiently and in an environmentally friendly way from bio-alcohols with a high H{sub 2} selectivity, purity and yield. In this thesis, the work was divided into two research areas, the first being the catalytic studies using metal decorated carbon nanotube (CNT) based catalysts in steam reforming of ethanol (SRE) at low temperatures (<450 deg C). The second part was the study of steam reforming (SR) and the water-gas-shift (WGS) reactions in a membrane reactor (MR) using dense and composite Pd-based membranes to produce high purity H{sub 2}. CNTs

  20. Numerical Simulation of Fixed-Bed Catalytic Reforming Reactors: Hydrodynamics / Chemical Kinetics Coupling Simulation numérique des réacteurs de reformage catalytique en lit fixe : couplage hydrodynamique-cinétique chimique

    Directory of Open Access Journals (Sweden)

    Ferschneider G.

    2006-11-01

    Full Text Available Fixed bed reactors with a single fluid phase are widely used in the refining or petrochemical industries for reaction processes catalysed by a solid phase. The design criteria for industrial reactors are relatively well known. However, they rely on a one-dimensional writing and on the separate resolution of the equation of conservation of mass and energy, and of momentum. Thus, with complex geometries, the influence of hydrodynamics on the effectiveness of the catalyst bed cannot be taken into account. The calculation method proposed is based on the multi-dimensional writing and the simultaneous resolution of the local conservation equations. The example discussed concerns fixed-bed catalytic reactors. These reactors are distinguished by their annular geometry and the radial circulation of the feedstock. The flow is assumed to be axisymmetric. The reaction process is reflected by a simplified kinetic mechanism involving ten chemical species. Calculation of the hydrodynamic (mean velocities, pressure, thermal and mass fields (concentration of each species serves to identify the influence of internal components in two industrial reactor geometries. The map of the quantity of coke formed and deposited on the catalyst, calculated by the model, reveals potential areas of poor operation. Les réacteurs à lit fixe avec une seule phase fluide sont largement utilisés dans l'industrie du raffinage et de la pétrochimie, pour mettre en oeuvre un processus réactionnel catalysé par une phase solide. Les règles de conception des réacteurs industriels sont relativement bien connues. Cependant, elles reposent sur l'écriture monodimensionnelle et la résolution séparée, d'une part, des équations de conservation de la masse et de l'énergie et d'autre part, de la quantité de mouvement. Ainsi dans le cas de géométries complexes, l'influence de l'hydrodynamique sur l'efficacité du lit catalytique ne peut être prise en compte. La méthode de calcul

  1. CFD Study of Industrial FCC Risers: The Effect of Outlet Configurations on Hydrodynamics and Reactions

    Directory of Open Access Journals (Sweden)

    Gabriela C. Lopes

    2012-01-01

    Full Text Available Fluid catalytic cracking (FCC riser reactors have complex hydrodynamics, which depend not only on operating conditions, feedstock quality, and catalyst particles characteristics, but also on the geometric configurations of the reactor. This paper presents a numerical study of the influence of different riser outlet designs on the dynamic of the flow and reactor efficiency. A three-dimensional, three-phase flow model and a four-lump kinetic scheme were used to predict the performance of the reactor. The phenomenon of vaporization of the liquid oil droplets was also analyzed. Results showed that small changes in the outlet configuration had a significant effect on the flow patterns and consequently, on the reaction yields.

  2. Removal of ammonia solutions used in catalytic wet oxidation processes.

    Science.gov (United States)

    Hung, Chang Mao; Lou, Jie Chung; Lin, Chia Hua

    2003-08-01

    Ammonia (NH(3)) is an important product used in the chemical industry, and is common place in industrial wastewater. Industrial wastewater containing ammonia is generally either toxic or has concentrations or temperatures such that direct biological treatment is unfeasible. This investigation used aqueous solutions containing more of ammonia for catalytic liquid-phase oxidation in a trickle-bed reactor (TBR) based on Cu/La/Ce composite catalysts, prepared by co-precipitation of Cu(NO(3))(2), La(NO(3))(2), and Ce(NO(3))(3) at 7:2:1 molar concentrations. The experimental results indicated that the ammonia conversion of the wet oxidation in the presence of the Cu/La/Ce composite catalysts was determined by the Cu/La/Ce catalyst. Minimal ammonia was removed from the solution by the wet oxidation in the absence of any catalyst, while approximately 91% ammonia removal was achieved by wet oxidation over the Cu/La/Ce catalyst at 230 degrees C with oxygen partial pressure of 2.0 MPa. Furthermore, the effluent streams were conducted at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes, and a reaction pathway was found linking the oxidizing ammonia to nitric oxide, nitrogen and water. The solution contained by-products, including nitrates and nitrites. Nitrite selectivity was minimized and ammonia removal maximized when the feed ammonia solution had a pH of around 12.0.

  3. Novel, Four-Switch, Z-Source Three-Phase Inverter

    DEFF Research Database (Denmark)

    Antal, Robert; Muntean, Nicolae; Boldea, Ion

    2010-01-01

    This paper presents a new z-source three phase inverter topology. The proposed topology combines the advantages of a traditional four-switch three-phase inverter with the advantages of the z impedance network (one front-end diode, two inductors and two X connected capacitors). This new topology......, besides the self-boost property, has low switch count and it can operate as a buck-boost inverter. In contrast to standard four-switch three-phase inverter which operates at half dc input voltage the proposed four-switch z-source inverter, by self boosting, brings the output voltage at same (or higher......) value as in six switch standard three-phase inverter. The article presents the derivation of the equations describing the operation of the converter based on space vector analysis, validation through digital simulations in PSIM and preliminary experimental results on a laboratory setup with a dsPIC30F...

  4. Measurements of liquid phase residence time distributions in a pilot-scale continuous leaching reactor using radiotracer technique

    International Nuclear Information System (INIS)

    Pant, H.J.; Sharma, V.K.; Shenoy, K.T.; Sreenivas, T.

    2015-01-01

    An alkaline based continuous leaching process is commonly used for extraction of uranium from uranium ore. The reactor in which the leaching process is carried out is called a continuous leaching reactor (CLR) and is expected to behave as a continuously stirred tank reactor (CSTR) for the liquid phase. A pilot-scale CLR used in a Technology Demonstration Pilot Plant (TDPP) was designed, installed and operated; and thus needed to be tested for its hydrodynamic behavior. A radiotracer investigation was carried out in the CLR for measurement of residence time distribution (RTD) of liquid phase with specific objectives to characterize the flow behavior of the reactor and validate its design. Bromine-82 as ammonium bromide was used as a radiotracer and about 40–60 MBq activity was used in each run. The measured RTD curves were treated and mean residence times were determined and simulated using a tanks-in-series model. The result of simulation indicated no flow abnormality and the reactor behaved as an ideal CSTR for the range of the operating conditions used in the investigation. - Highlights: • Radiotracer technique was applied for evaluation of design of a pilot-scale continuous leaching reactor. • Mean residence time and dead volume were estimated. Dead volume was found to be ranging from 4% to 15% at different operating conditions. • Tank-in-series model was used to simulate the measured RTD data and was found suitable to describe the flow in the reactor. • No flow abnormality was found and the reactor behaved as a well-mixed system. The design of the reactor was validated

  5. H2CAP - Hydrogen assisted catalytic biomass pyrolysis for green fuels

    DEFF Research Database (Denmark)

    Stummann, Magnus Zingler; Høj, Martin; Gabrielsen, Jostein

    -oil by catalytic hydrodeoxygenation (HDO) is challenged by severe polymerization and coking upon heating the oil. Alternatively, performing fast pyrolysis in high-pressure hydrogen atmosphere in a fluid bed reactor with a HDO catalyst as bed medium could immediately stabilize reactive pyrolysis vapors [2...

  6. Safety methodology implementation in the conceptual design phase of a fusion reactor

    International Nuclear Information System (INIS)

    Rodriguez-Rodrigo, L.; Elbez-Uzan, J.

    2007-01-01

    The licensing of ITER in France represents the first process for licensing a fusion facility in the framework of an experimental device with a total Tritium inventory of 3 kg. The main ITER parameters are far from those expected in the future demonstration reactors where the fusion power will be at least 5 times higher and the additional heating power could also reach up to 5 times the one foreseen in ITER. Main safety requirements for these reactors are based, among other conditions, on their inherent features as low amount of fuel, very low impurity content of structural materials, minimum waste repository, no active systems for safe shut-down, and no need for evacuation of population after the most severe accident. The design of such reactors is at the stage of conceptual studies and is mainly dealing with plasma performances, tritium breeding, blanket/divertor designs and solution of engineering issues, as well as bounding accidents or classification of waste. The methodological approach for integrating safety analysis as a tool for optimizing the design of the overall fusion installation for future reactors in the conceptual design phase is sketched, including the machine itself and the different auxiliary nuclear buildings. (author)

  7. Development of a TiO2-coated optical fiber reactor for water decontamination

    International Nuclear Information System (INIS)

    Danion, A.

    2004-09-01

    The objective of this study was to built and to study a photo-reactor composed by TiO 2 -coated optical fibers for water decontamination. The physico-chemical characteristics and the optical properties of the TiO 2 coating were first studied. Then, the influences of different parameters as the coating thickness, the coating length and the coating volume were investigated both on the light transmission in the TiO 2 - coated fiber and on the photo-catalytic activity of the fiber for a model compound (malic acid). The photo-catalytic degradation of malic acid was optimized using the experimental design methodology allowing to build a multi-fiber reactor comprising 57 optical fibers. The photo-degradation of malic acid was conducted in the multi-fiber reactor and it was demonstrated that the multi-fiber reactor was more efficient than the single-fiber reactor at the same fibers density. Finally, the multi-fiber reactor was applied to the photo-degradation of a fungicide, called fenamidone, and a degradation pathway was proposed. (author)

  8. Experimental data and numerical predictions of a single-phase flow in a batch square stirred tank reactor with a rotating cylinder agitator

    Science.gov (United States)

    Escamilla-Ruíz, I. A.; Sierra-Espinosa, F. Z.; García, J. C.; Valera-Medina, A.; Carrillo, F.

    2017-09-01

    Single-phase flows in stirred tank reactors have useful characteristics for a wide number of industrial applications. Usually, reactors are cylindrical vessels and complex impeller designs, which are often highly energy consuming and produce complicated flow patterns. Therefore, a novel configuration consisting of a square stirred tank reactor is proposed in this study with potential advantages over conventional reactors. In the present work hydrodynamics and turbulence have been studied for a single-phase flow in steady state operating in batch condition. The flow was induced by drag from a rotating cylinder with two diameters. The effects of drag from the stirrer as well as geometrical parameters of the system on the hydrodynamic behavior were investigated using Computational Fluids Dynamics (CFD) and non-intrusive Laser Doppler Anemometry, (LDA). Data obtained from LDA measurements were used for the validation of the CFD simulations, and to detecting the macro-instabilities inside the tank, based on the time series analysis for three rotational speeds N = 180, 1000 and 2000 rpm. The numerical results revealed the formation of flow patterns and macro-vortex structures in the upper part of the tank as consequence of the Reynolds number and the stream discharge emanated from the cylindrical stirrer. Moreover, increasing the cylinder diameter has an impact on the number of recirculation loops as well as the energy consumption of the entire system showing better performance in the presence of turbulent flows.

  9. Summary Report of Commercial reactor Criticality Data for Three Mile Island Unit 1

    International Nuclear Information System (INIS)

    Larry B. Wimmer

    2001-01-01

    The objective of the ''Summary Report of Commercial Reactor Criticality Data for Three Mile Island Unit I'' is to present the CRC data for the TMI-1 reactor. Results from the CRC evaluations will support the development and validation of the neutronics models used for criticality analyses involving commercial spent nuclear fuel. These models and their validation are discussed in the ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2000)

  10. Nuclear Reactor Component Code CUPID-I: Numerical Scheme and Preliminary Assessment Results

    International Nuclear Information System (INIS)

    Cho, Hyoung Kyu; Jeong, Jae Jun; Park, Ik Kyu; Kim, Jong Tae; Yoon, Han Young

    2007-12-01

    A component scale thermal hydraulic analysis code, CUPID (Component Unstructured Program for Interfacial Dynamics), is being developed for the analysis of components of a nuclear reactor, such as reactor vessel, steam generator, containment, etc. It adopted three-dimensional, transient, two phase and three-field model. In order to develop the numerical schemes for the three-field model, various numerical schemes have been examined including the SMAC, semi-implicit ICE, SIMPLE, Row Scheme and so on. Among them, the ICE scheme for the three-field model was presented in the present report. The CUPID code is utilizing unstructured mesh for the simulation of complicated geometries of the nuclear reactor components. The conventional ICE scheme that was applied to RELAP5 and COBRA-TF, therefore, were modified for the application to the unstructured mesh. Preliminary calculations for the unstructured semi-implicit ICE scheme have been conducted for a verification of the numerical method from a qualitative point of view. The preliminary calculation results showed that the present numerical scheme is robust and efficient for the prediction of phase changes and flow transitions due to a boiling and a flashing. These calculation results also showed the strong coupling between the pressure and void fraction changes. Thus, it is believed that the semi-implicit ICE scheme can be utilized for transient two-phase flows in a component of a nuclear reactor

  11. Nuclear Reactor Component Code CUPID-I: Numerical Scheme and Preliminary Assessment Results

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyoung Kyu; Jeong, Jae Jun; Park, Ik Kyu; Kim, Jong Tae; Yoon, Han Young

    2007-12-15

    A component scale thermal hydraulic analysis code, CUPID (Component Unstructured Program for Interfacial Dynamics), is being developed for the analysis of components of a nuclear reactor, such as reactor vessel, steam generator, containment, etc. It adopted three-dimensional, transient, two phase and three-field model. In order to develop the numerical schemes for the three-field model, various numerical schemes have been examined including the SMAC, semi-implicit ICE, SIMPLE, Row Scheme and so on. Among them, the ICE scheme for the three-field model was presented in the present report. The CUPID code is utilizing unstructured mesh for the simulation of complicated geometries of the nuclear reactor components. The conventional ICE scheme that was applied to RELAP5 and COBRA-TF, therefore, were modified for the application to the unstructured mesh. Preliminary calculations for the unstructured semi-implicit ICE scheme have been conducted for a verification of the numerical method from a qualitative point of view. The preliminary calculation results showed that the present numerical scheme is robust and efficient for the prediction of phase changes and flow transitions due to a boiling and a flashing. These calculation results also showed the strong coupling between the pressure and void fraction changes. Thus, it is believed that the semi-implicit ICE scheme can be utilized for transient two-phase flows in a component of a nuclear reactor.

  12. A Phase Current Reconstruction Approach for Three-Phase Permanent-Magnet Synchronous Motor Drive

    Directory of Open Access Journals (Sweden)

    Hao Yan

    2016-10-01

    Full Text Available Three-phase permanent-magnet synchronous motors (PMSMs are widely used in renewable energy applications such as wind power generation, tidal energy and electric vehicles owing to their merits such as high efficiency, high precision and high reliability. To reduce the cost and volume of the drive system, techniques of reconstructing three-phase current using a single current sensor have been reported for three-phase alternating current (AC control system using the power converts. In existing studies, the reconstruction precision is largely influenced by reconstructing dead zones on the Space Vector Pulse Width Modulation (SVPWM plane, which requires other algorithms to compensate either by modifying PWM modulation or by phase-shifting of the PWM signal. In this paper, a novel extended phase current reconstruction approach for PMSM drive is proposed. Six novel installation positions are obtained by analyzing the sampling results of the current paths between each two power switches. By arranging the single current sensor at these positions, the single current sensor is sampled during zero voltage vectors (ZVV without modifying the PWM signals. This proposed method can reconstruct the three-phase currents without any complex algorithms and is available in the sector boundary region and low modulation region. Finally, this method is validated by experiments.

  13. Preparation of polymer composites using nanostructured carbon produced at large scale by catalytic decomposition of methane

    International Nuclear Information System (INIS)

    Suelves, I.; Utrilla, R.; Torres, D.; Llobet, S. de; Pinilla, J.L.; Lázaro, M.J.; Moliner, R.

    2013-01-01

    Polymer-based composites were prepared using different concentrations of nanostructured carbons (NCs), produced by catalytic decomposition of methane (CDM). Four carbonaceous nanostructures were produced using different catalysts (with Ni and Fe as active phases) in a rotary bed reactor capable of producing up to 20 g of carbon per hour. The effect of nanostructured carbon on the thermal and electrical behaviour of epoxy-based composites is studied. An increase in the thermal stability and the decrease of electrical resistivity were observed for the composites at carbon contents as low as 1 wt%. The highest reduction of the electrical resistivity was obtained using multi-walled carbon nanotubes obtained with the Fe based catalysts. This effect could be related to the high degree of structural order of these materials. The results were compared with those obtained using a commercial carbon nanofibre, showing that the use of carbon nanostructures from CDM can be a valid alternative to the commercial nanofibres. -- Highlights: ► Preparation of polymer nanocomposites with enhanced thermal and electrical properties. ► Formation of nanostructured carbon materials with different textural and structural properties at large scale. ► Catalytic decomposition of methane to simultaneously produce hydrogen and carbon materials.

  14. Reactor physics studies in the steam flooded GCFR-Phase II critical assembly

    International Nuclear Information System (INIS)

    Bhattacharyya, S.K.

    1978-08-01

    A possible accident scenario in a Gas-Cooled Fast Reactor (GCFR) is the leakage of secondary steam into the core. Considerable analytical effort has gone into the study of the effects of such an accidental steam entry. The work described represents the first full scale experimental study of the steam-entry phenomenon in GCFRs. The reference GCFR model used for the study was the benchmark GCFR Phase II assembly, and polyethylene foam was used to provide a very homogeneous steam simulation. The reactivity worth of steam entry was measured for three different steam densities. In addition, a set of integral physics parameters were measured in the largest steam density (0.008 g/cm 3 ) configuration. The corresponding parameters were also measured in dry reference GCFR critical assembly for comparison. The experiments were analyzed using ENDF/B-IV data and two-dimensional diffusion theory methods. As in earlier GCFR critical experiments analysis, the Benoist method was used to treat the problem of neutron streaming

  15. Diffusion in porous structures containing three fluid phases

    International Nuclear Information System (INIS)

    Galani, A.N.; Kainourgiakis, M.E.; Stubos, A.K.; Kikkinides, E.S.

    2005-01-01

    In the present study, the tracer diffusion in porous media filled by three fluid phases (a non-wetting, an intermediate wetting and a wetting phase) is investigated. The disordered porous structure of porous systems like random sphere packing and the North Sea chalk, is represented by three-dimensional binary images. The random sphere pack is generated by a standard ballistic deposition procedure, while the chalk matrix by a stochastic reconstruction technique. Physically sound spatial distributions of the three phases filling the pore space are determined by the use of a simulated annealing algorithm, where those phases are initially randomly distributed in the pore space and trial-and-error swaps are performed in order to attain the global minimum of the total interfacial energy. The acceptance rule for a trial move during the annealing is modified properly improving the efficiency of the technique. The diffusivities of the resulting domains are computed by a random walk method. A parametric study with respect to the pore volume fraction occupied by each fluid phase and the ratio of the diffusivities in the fluid phases is performed. (authors)

  16. Fate of the Epsilon Phase in the Oklo Natural Reactors

    International Nuclear Information System (INIS)

    S. Utsunomiya; R.C. Ewing

    2005-01-01

    In spent nuclear fuel (SNF), the micron- to submicron-sized epsilon phase (Mo-Ru-Pd-Tc-Rh) is an important host of 99 Tc which has a long half life (2.13 x 10 5 years) and can be an important contributor to dose in safety assessments of nuclear waste repositories. In addition, Tc is predominantly present as TcO 4 - under oxidizing conditions at wide range of pH, weakly adsorbed onto mineral surfaces, and unlikely to be incorporated into alteration uranyl minerals. In the Oklo natural reactor (2.0 Ga), essentially all of the 99 Tc has decayed to 99 Ru. Thus, this study focuses on Ru and the other metals of the epsilon phase in order to investigate the occurrence and the fate of the epsilon phase during the corrosion of this natural SNF. Samples from reactor zone (RZ)-10 (836, 819, 687); from RZ-13 (864, 910); were investigated using TEM (transmission electron microscopy). Within the UO 2 matrix, a Bi-Pd particle (40-60 nm), fioodite, PdBi 2 , was observed with trace amounts of As, Fe, and Te surrounded by an amorphous Pb-rich area. (Pd,Rh) 2 As, palladodymite or rhodarsenide, was observed (400-500 nm in size). Ruthenarsinite, (Ru,Ni)As, was identified in most samples: with a representative composition of As, 59.9: Co, 2.5: Ni, 5.2; Ru, 18.6; Rh, 8.4; Pd, 3.1; Sb, 2.4 in atomic percent. The particles diameters are a few hundred nanometers and, in most cases, surrounded by a Pb-rich phase (400-500 nm). Typically, the ruthenarsenite does not occur as single particle but an aggregate of ∼200 nm-sized particles. Some Ru-particles revealed a complex phase separation within the grain such as a Ru-particle (600-700 nm) with Pb at the core of the particle and enrichment of Ni, Co, and As at the rim. Some ruthenarsenite crystals were embedded in chlorite immediately adjacent to uraninite. A few particles were still coated by Pb. These results suggest a history for the epsilon phases: (1) The original epsilon phase was transformed to, in most cases, ruthenarsenite. (2) All

  17. In situ and operando transmission electron microscopy of catalytic materials

    DEFF Research Database (Denmark)

    Crozier, Peter A.; Hansen, Thomas Willum

    2015-01-01

    measurements of gas-phase catalytic products. To overcome this deficiency, operando TEM techniques are being developed that combine atomic characterization with the simultaneous measurement of catalytic products. This article provides a short review of the current status and major developments......) is a powerful technique for revealing the atomic structures of materials at elevated temperatures in the presence of reactive gases. This approach can allow the structure-reactivity relations underlying catalyst functionality to be investigated. Thus far, ETEM has been limited by the absence of in situ...... in the application of ETEM to gas-phase catalysis over the past 10 years....

  18. Three-nucleon problem with phase equivalent potentials

    International Nuclear Information System (INIS)

    Pushkash, O.M.; Shapoval, D.V.; Simenog, I.V.

    1991-01-01

    The effect of the t-matrix off-shell variations with nonlocal phase equivalent N-N potentials on the three-nucleon parameters is studied. The variations, which lower or increase the tritium binding energy, are revealed. We show that under certain conditions, the three-nucleon low-energy observables are almost insensitive to the high energy behaviour of the negative parts of the scattering phase shifts. The inverse problem method is applied to reconstruct simple S-wave potentials which to provide a unified description of the two-nucleon and low-energy three-nucleon data. 22 refs.; 6 figs. (author)

  19. Estimated D2--DT--T2 phase diagram in the three-phase region

    International Nuclear Information System (INIS)

    Souers, P.C.; Hickman, R.G.; Tsugawa, R.T.

    1976-01-01

    A composite of experimental eH 2 -D 2 phase-diagram data at the three-phase line is assembled from the literature. The phase diagram is a smooth cigar shape without a eutectic point, indicating complete miscibility of liquid and solid phases. Additional data is used to estimate the D 2 -T 2 , D 2 DT, and DT-T 2 binary phase diagrams. These are assembled into the ternary D 2 -DT-T 2 phase diagram. A surface representing the chemical equilibrium of the three species is added to the phase diagram. At chemical equilibrium, it is estimated that 50-50 liquid D-T at 19.7 0 K is in equilibrium with 42 mole percent T vapor and 54 percent T solid. Infrared spectroscopy is suggested as a means of component analysis of liquid and solid mixtures

  20. A TECHNIQUE OF IDENTIFICATION OF THE PHASE-DISPLACEMENT GROUP OF THREE-PHASE TRANSFORMER

    International Nuclear Information System (INIS)

    Aburjania, A.; Begiashvili, V.; Rezan Turan

    2007-01-01

    It is demonstrated that the arbitrary choice of arbitrarily pisitive direction of induced currents and voltages contradicts the energy conservation law and leads to equilibrium equations and standards making no sense from the physical standpoint. Of 12 recognized standard phase-displacement groups of three-phase transformer, only three have real physical bases. The rest are based on a wrong assumption about mutual biasing of primary and secondary currents. They does not rule out the occurrence of emergency situations and, thus, must be eliminated from use. A new method of identification of the phase-displacement of three-phase transformer is proposed. The method is based on well-known physical laws with consideration for the dual character of the inertia of mutual inductance and exhausts for all possible versions of connection of transformer windings. (author)