WorldWideScience

Sample records for catalytic reduction scr

  1. COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS

    Science.gov (United States)

    The report provides a methodology for estimating budgetary costs associated with retrofit applications of selective catalytic reduction (SCR) technology on coal-fired boilers. SCR is a postcombustion nitrogen oxides (NOx) control technology capable of providing NOx reductions >90...

  2. Selective catalytic reduction (SCR) NOx control for small natural gas-fired prime movers

    International Nuclear Information System (INIS)

    Shareef, G.S.; Stone, D.K.; Ferry, K.R.; Johnson, K.L.; Locke, K.S.

    1992-01-01

    The application of selective catalytic reduction (SCR) to small natural gas-fired prime movers at cogeneration facilities and compressor stations could possibly increase due to regulatory forces to limit NO x from such sources. The natural gas industry is presently without a current database with which to evaluate the cost and operating characteristics of SCR under the conditions anticipated for small prime movers. This paper presents the results from a two-phase study undertaken to document SCR applications with emphasis on SCR system performance and costs. The database of small natural gas-fired prime mover SCR experience, focusing on prime mover characterization, SCR system performance, and SCR system costs will be described. Result from analysis of performance and cost data will be discussed, including analytical tools developed to project SCR system performance and costs

  3. Adaptive Model Predictive Control of Diesel Engine Selective Catalytic Reduction (SCR) Systems

    Science.gov (United States)

    McKinley, Thomas L.

    2009-01-01

    Selective catalytic reduction or SCR is coming into worldwide use for diesel engine emissions reduction for on- and off-highway vehicles. These applications are characterized by broad operating range as well as rapid and unpredictable changes in operating conditions. Significant nonlinearity, input and output constraints, and stringent performance…

  4. Selective Catalytic Reduction (SCR) for mobile application - heavy duty diesel; Selektive Katalytische Reduktion (SCR) fuer die mobile Anwendung - LKW

    Energy Technology Data Exchange (ETDEWEB)

    Huennekes, E.; Neubauer, T. [Engelhard Technologies GmbH, Hannover (Germany); Roth, S.A.; Patchett, J.A. [Engelhard Corp., R and D, Iselin, NJ (United States)

    2006-07-01

    Different system configurations of particulate and NOx control via selective catalytic reduction (SCR) were discussed. Advantages and disadvantages were described and the final choice of the optimum system will strongly depend on the application, the market (US, EU) and the system costs. Especially when considering low temperature NOx control, the optimum adjustment of the NO{sub 2}/NO{sub x} ratio in front of an SCR system plays an important role. When generating NO2 over an oxidation catalyst, the resulting NO{sub 2}/NO{sub x} ratio strongly depends on temperature and space velocity. Steady state data show an optimum NO{sub 2}/NO{sub x} ratio between 35 and 60% at temperatures about 240 C. Three DOC systems in front of an SCR system were investigated with the purpose to generate high, low and optimum NO{sub 2}/NO{sub x} ratios. The fast SCR reaction at 1:1 NO: NO2 with NH{sub 3} is the preferred reaction pathway until either NO or NO{sub 2} are consumed. The benefit of an optimum designed DOC system can be seen in the transient response after a sudden increase in urea dosing. The time for the optimum designed system to reach maximum NO{sub x} conversion is much shorter compared with systems having excess NO or NO{sub 2} Ammonia oxidation catalysts (AMOX) are effective means in controlling ammonia from SCR systems. To be effective, AMOX must have selectivity to nitrogen over N{sub 2}O and NO{sub x}. (orig.)

  5. NOx Selective Catalytic Reduction (SCR) on Self-Supported V-W-doped TiO2 Nanofibers

    DEFF Research Database (Denmark)

    Marani, Debora; Silva, Rafael Hubert; Dankeaw, Apiwat

    2017-01-01

    Electrospun V–W–TiO2 catalysts, resulting in a solid solution of V and W in the anatase phase, are prepared as nonwoven nanofibers for NOx selective catalytic reduction (SCR). Preliminary catalytic characterization indicates their superior NOx conversion efficiency to the-state-of-the-art materia...

  6. Emission reduction from a diesel engine fueled by pine oil biofuel using SCR and catalytic converter

    Science.gov (United States)

    Vallinayagam, R.; Vedharaj, S.; Yang, W. M.; Saravanan, C. G.; Lee, P. S.; Chua, K. J. E.; Chou, S. K.

    2013-12-01

    In this work, we propose pine oil biofuel, a renewable fuel obtained from the resins of pine tree, as a potential substitute fuel for a diesel engine. Pine oil is endowed with enhanced physical and thermal properties such as lower viscosity and boiling point, which enhances the atomization and fuel/air mixing process. However, the lower cetane number of the pine oil hinders its direct use in diesel engine and hence, it is blended in suitable proportions with diesel so that the ignition assistance could be provided by higher cetane diesel. Since lower cetane fuels are prone to more NOX formation, SCR (selective catalyst reduction), using urea as reducing agent, along with a CC (catalytic converter) has been implemented in the exhaust pipe. From the experimental study, the BTE (brake thermal efficiency) was observed to be increased as the composition of pine oil increases in the blend, with B50 (50% pine oil and 50% diesel) showing 7.5% increase over diesel at full load condition. The major emissions such as smoke, CO, HC and NOX were reduced by 70.1%, 67.5%, 58.6% and 15.2%, respectively, than diesel. Further, the average emissions of B50 with SCR and CC assembly were observed to be reduced, signifying the positive impact of pine oil biofuel on atmospheric environment. In the combustion characteristics front, peak heat release rate and maximum in-cylinder pressure were observed to be higher with longer ignition delay.

  7. Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China

    Science.gov (United States)

    Li, Zhen; Jiang, Jingkun; Ma, Zizhen; Wang, Shuxiao; Duan, Lei

    2015-11-01

    Nitrogen oxides (NOx) emission abatement of coal-fired power plants (CFPPs) requires large-scaled installation of selective catalytic reduction (SCR), which would reduce secondary fine particulate matter (PM2.5) (by reducing nitrate aerosol) in the atmosphere. However, our field measurement of two CFPPs equipped with SCR indicates a significant increase of SO42- and NH4+ emission in primary PM2.5, due to catalytic enhancement of SO2 oxidation to SO3 and introducing of NH3 as reducing agent. The subsequent formation of (NH4)2SO4 or NH4HSO4 aerosol is commonly concentrated in sub-micrometer particulate matter (PM1) with a bimodal pattern. The measurement at the inlet of stack also showed doubled primary PM2.5 emission by SCR operation. This effect should therefore be considered when updating emission inventory of CFPPs. By rough estimation, the enhanced primary PM2.5 emission from CFPPs by SCR operation would offset 12% of the ambient PM2.5 concentration reduction in cities as the benefit of national NOx emission abatement, which should draw attention of policy-makers for air pollution control.

  8. Hybrid selective noncatalytic reduction (SNCR)/selective catalytic reduction (SCR) for NOx removal using low-temperature SCR with Mn-V2O5/TiO2 catalyst.

    Science.gov (United States)

    Choi, Sung-Woo; Choi, Sang-Ki; Bae, Hun-Kyun

    2015-04-01

    A hybrid selective noncatalytic reduction/selective catalytic reduction (SNCR/SCR) system that uses two types of technology, low-temperature SCR process and SNCR process, was designed to develop nitrogen oxide (NOx) reduction technology. SCR was conducted with space velocity (SV)=2400 hr(-1) and hybrid SNCR/SCR with SV=6000 hr(-1), since the study focused on reducing the amount of catalyst and both achieved 98% NOx reduction efficiency. Characteristics of NOx reduction by NH3 were studied for low-temperature SCR system at 150 °C using Mn-V2O5/TiO2 catalyst. Mn-added V2O5/TiO2 catalyst was produced, and selective catalyst reduction of NOx by NH3 was experimented. NOx reduction rate according to added Mn content in Mn-V2O5/TiO2 catalyst was studied with varying conditions of reaction temperature, normalized stoichiometric ratio (NSR), SV, and O2 concentration. In the catalyst experiment according to V2O5 concentration, 1 wt.% V2O5 catalyst showed the highest NOx reduction rate: 98% reduction at temperature window of 200~250 °C. As a promoter of the V2O5 catalyst, 5 wt.% Mn was added, and the catalyst showed 47~90% higher efficiency even with low temperatures, 100~200 °C. Mn-V2O5/TiO2 catalyst, prepared by adding 5 wt.% Mn in V2O5/TiO2 catalyst, showed increments of catalyst activation at 150 °C as well as NOx reduction. Mn-V2O5/TiO2 catalyst showed 8% higher rate for NOx reduction compared with V2O5/TiO2 catalyst in 150 °C SCR. Thus, (5 wt.%)Mn-(1 wt.%)V2O5/TiO2 catalyst was applied in SCR of hybrid SNCR/SCR system of low temperature at 150 °C. Low-temperature SCR hybrid SNCR/SCR (150 °C) system and hybrid SNCR/SCR (350 °C) showed 91~95% total reduction rate with conditions of SV=2400~6000 hr(-1) SCR and 850~1050 °C SNCR, NSR=1.5~2.0, and 5% O2. Hybrid SNCR/SCR (150 °C) system proved to be more effective than the hybrid SNCR/SCR (350 °C) system at low temperature. NOx control is very important, since they are the part of greenhouse gases as well as the

  9. Mercury Oxidation over Selective Catalytic Reduction (SCR) Catalysts - Ph.d. thesis Karin Madsen

    DEFF Research Database (Denmark)

    Madsen, Karin

    The vanadium-based SCR catalyst used for NOx-control promotes the oxidation of elemental mercury Hg0 to Hg2+ in flue gases from coal-fired power plants. Hg2+ is water soluble and can effectively be captured in a wet scrubber. This means that the combination of an SCR with a wet FGD can offer an e...

  10. HYBRID SELECTIVE NON-CATALYTIC REDUCTION (SNCR)/SELECTIVE CATALYTIC REDUCTION (SCR) DEMONSTRATION FOR THE REMOVAL OF NOx FROM BOILER FLUE GASES; FINAL

    International Nuclear Information System (INIS)

    Jerry B. Urbas

    1999-01-01

    The U. S. Department of Energy (DOE), Electric Power Research Institute (EPRI), Pennsylvania Electric Energy Research Council, (PEERC), New York State Electric and Gas and GPU Generation, Inc. jointly funded a demonstration to determine the capabilities for Hybrid SNCR/SCR (Selective Non-Catalytic Reduction/Selective Catalytic Reduction) technology. The demonstration site was GPU Generation's Seward Unit No.5 (147MW) located in Seward Pennsylvania. The demonstration began in October of 1997 and ended in December 1998. DOE funding was provided through Grant No. DE-FG22-96PC96256 with T. J. Feeley as the Project Manager. EPRI funding was provided through agreements TC4599-001-26999 and TC4599-002-26999 with E. Hughes as the Project Manager. This project demonstrated the operation of the Hybrid SNCR/SCR NO(sub x) control process on a full-scale coal fired utility boiler. The hybrid technology was expected to provide a cost-effective method of reducing NO(sub x) while balancing capital and operation costs. An existing urea based SNCR system was modified with an expanded-duct catalyst to provide increased NO(sub x) reduction efficiency from the SNCR while producing increased ammonia slip levels to the catalyst. The catalyst was sized to reduce the ammonia slip to the air heaters to less than 2 ppm while providing equivalent NO(sub x) reductions. The project goals were to demonstrate hybrid technology is capable of achieving at least a 55% reduction in NO(sub x) emissions while maintaining less than 2ppm ammonia slip to the air heaters, maintain flyash marketability, verify the cost benefit and applicability of Hybrid post combustion technology, and reduce forced outages due to ammonium bisulfate (ABS) fouling of the air heaters. Early system limitations, due to gas temperature stratification, restricted the Hybrid NO(sub x) reduction capabilities to 48% with an ammonia slip of 6.1 mg/Nm(sup 3) (8 ppm) at the catalyst inlet. After resolving the stratification problem

  11. HYBRID SELECTIVE NON-CATALYTIC REDUCTION (SNCR)/SELECTIVE CATALYTIC REDUCTION (SCR) DEMONSTRATION FOR THE REMOVAL OF NOx FROM BOILER FLUE GASES

    Energy Technology Data Exchange (ETDEWEB)

    Jerry B. Urbas

    1999-05-01

    The U. S. Department of Energy (DOE), Electric Power Research Institute (EPRI), Pennsylvania Electric Energy Research Council, (PEERC), New York State Electric and Gas and GPU Generation, Inc. jointly funded a demonstration to determine the capabilities for Hybrid SNCR/SCR (Selective Non-Catalytic Reduction/Selective Catalytic Reduction) technology. The demonstration site was GPU Generation's Seward Unit No.5 (147MW) located in Seward Pennsylvania. The demonstration began in October of 1997 and ended in December 1998. DOE funding was provided through Grant No. DE-FG22-96PC96256 with T. J. Feeley as the Project Manager. EPRI funding was provided through agreements TC4599-001-26999 and TC4599-002-26999 with E. Hughes as the Project Manager. This project demonstrated the operation of the Hybrid SNCR/SCR NO{sub x} control process on a full-scale coal fired utility boiler. The hybrid technology was expected to provide a cost-effective method of reducing NO{sub x} while balancing capital and operation costs. An existing urea based SNCR system was modified with an expanded-duct catalyst to provide increased NO{sub x} reduction efficiency from the SNCR while producing increased ammonia slip levels to the catalyst. The catalyst was sized to reduce the ammonia slip to the air heaters to less than 2 ppm while providing equivalent NO{sub x} reductions. The project goals were to demonstrate hybrid technology is capable of achieving at least a 55% reduction in NO{sub x} emissions while maintaining less than 2ppm ammonia slip to the air heaters, maintain flyash marketability, verify the cost benefit and applicability of Hybrid post combustion technology, and reduce forced outages due to ammonium bisulfate (ABS) fouling of the air heaters. Early system limitations, due to gas temperature stratification, restricted the Hybrid NO{sub x} reduction capabilities to 48% with an ammonia slip of 6.1 mg/Nm{sup 3} (8 ppm) at the catalyst inlet. After resolving the stratification

  12. Evaluation of mechanical properties in metal wire mesh supported selective catalytic reduction (SCR) catalyst structures

    Science.gov (United States)

    Rajath, S.; Siddaraju, C.; Nandakishora, Y.; Roy, Sukumar

    2018-04-01

    The objective of this research is to evaluate certain specific mechanical properties of certain stainless steel wire mesh supported Selective catalytic reduction catalysts structures wherein the physical properties of the metal wire mesh and also its surface treatments played vital role thereby influencing the mechanical properties. As the adhesion between the stainless steel wire mesh and the catalyst material determines the bond strength and the erosion resistance of catalyst structures, surface modifications of the metal- wire mesh structure in order to facilitate the interface bonding is therefore very important to realize enhanced level of mechanical properties. One way to enhance such adhesion properties, the stainless steel wire mesh is treated with the various acids, i.e., chromic acid, phosphoric acid including certain mineral acids and combination of all those in various molar ratios that could generate surface active groups on metal surface that promotes good interface structure between the metal- wire mesh and metal oxide-based catalyst material and then the stainless steel wire mesh is dipped in the glass powder slurry containing some amount of organic binder. As a result of which the said catalyst material adheres to the metal-wire mesh surface more effectively that improves the erosion profile of supported catalysts structure including bond strength.

  13. Innovative clean coal technology (ICCT): demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NOx) emission from high-sulfur, coal-fired boilers - economic evaluation of commercial-scale SCR applications for utility boilers

    International Nuclear Information System (INIS)

    Healy, E.C.; Maxwell, J.D.; Hinton, W.S.

    1996-09-01

    This report presents the results of an economic evaluation produced as part of the Innovative Clean Coal Technology project, which demonstrated selective catalytic reduction (SCR) technology for reduction of NO x emissions from utility boilers burning U.S. high-sulfur coal. The document includes a commercial-scale capital and O ampersand M cost evaluation of SCR technology applied to a new facility, coal-fired boiler utilizing high-sulfur U.S. coal. The base case presented herein determines the total capital requirement, fixed and variable operating costs, and levelized costs for a new 250-MW pulverized coal utility boiler operating with a 60-percent NO x removal. Sensitivity evaluations are included to demonstrate the variation in cost due to changes in process variables and assumptions. This report also presents the results of a study completed by SCS to determine the cost and technical feasibility of retrofitting SCR technology to selected coal-fired generating units within the Southern electric system

  14. Influence of flue gas desulfurization (FGD) installations on emission characteristics of PM2.5 from coal-fired power plants equipped with selective catalytic reduction (SCR).

    Science.gov (United States)

    Li, Zhen; Jiang, Jingkun; Ma, Zizhen; Fajardo, Oscar A; Deng, Jianguo; Duan, Lei

    2017-11-01

    Flue gas desulfurization (FGD) and selective catalytic reduction (SCR) technologies have been widely used to control the emissions of sulphur dioxide (SO 2 ) and nitrogen oxides (NO X ) from coal-fired power plants (CFPPs). Field measurements of emission characteristics of four conventional CFPPs indicated a significant increase in particulate ionic species, increasing PM 2.5 emission with FGD and SCR installations. The mean concentrations of PM 2.5 from all CFPPs tested were 3.79 ± 1.37 mg/m 3 and 5.02 ± 1.73 mg/m 3 at the FGD inlet and outlet, respectively, and the corresponding contributions of ionic species were 19.1 ± 7.7% and 38.2 ± 7.8%, respectively. The FGD was found to enhance the conversion of NH 3 slip from the SCR to NH 4 + in the PM 2.5 , together with the conversion of SO 2 to SO 4 2- , and increased the primary NH 4 + and SO 4 2- aerosol emissions by approximately 18.9 and 4.2 times, respectively. This adverse effect should be considered when updating the emission inventory of CFPPs and should draw the attention of policy-makers for future air pollution control. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. EMISSION REDUCTION FROM A DIESEL ENGINE FUELED BY CERIUM OXIDE NANO-ADDITIVES USING SCR WITH DIFFERENT METAL OXIDES COATED CATALYTIC CONVERTER

    Directory of Open Access Journals (Sweden)

    B. JOTHI THIRUMAL

    2015-11-01

    Full Text Available This paper reports the results of experimental investigations on the influence of the addition of cerium oxide in nanoparticle form on the major physiochemical properties and the performance of diesel. The fuel is modified by dispersing the catalytic nanoparticle by ultrasonic agitation. The physiochemical properties of sole diesel fuel and modified fuel are tested with ASTM standard procedures. The effects of the additive nanoparticles on the individual fuel properties, the engine performance, and emissions are studied, and the dosing level of the additive is optimized. Cerium oxide acts as an oxygen-donating catalyst and provides oxygen for the oxidation of CO during combustion. The active energy of cerium oxide acts to burn off carbon deposits within the engine cylinder at the wall temperature and prevents the deposition of non-polar compounds on the cylinder wall which results in reduction in HC emission by 56.5%. Furthermore, a low-cost metal oxide coated SCR (selective catalyst reduction, using urea as a reducing agent, along with different types of CC (catalytic converter, has been implemented in the exhaust pipe to reduce NOx. It was observed that a reduction in NOx emission is 50–60%. The tests revealed that cerium oxide nanoparticles can be used as an additive in diesel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  16. Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, first and second quarters 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involve injecting ammonia into the flue gas generated from coal combustion in a boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; and (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The project is being conducted in the following three phases: permitting, environmental monitoring plan and preliminary engineering; detailed design engineering and construction; and operation, testing, disposition and final report. The project was in the operation and testing phase during this reporting period. Accomplishments for this period are described.

  17. Innovative Clean Coal Technology (ICCT): Demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers. Technical progress report, third and fourth quarters 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The objective of this project is to demonstrate and evaluate commercially available selective catalytic reduction (SCR) catalysts from U.S., Japanese, and European catalyst suppliers on a high-sulfur U.S. Coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO{sub x} to form nitrogen and water vapor. Although SCR is widely practiced in Japan and European gas-, oil-, and low-sulfur coal-fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels; (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}; performance of a wide variety of SCR catalyst compositions, geometries, and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties are being explored by operating a series of small- scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. The demonstration is being performed at Gulf Power Company`s Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project is funded by the U.S. Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), the Electric Power Research Institute (EPRI), and Ontario Hydro. SCS is the participant responsible for managing al aspects of this project. 1 ref., 69 figs., 45 tabs.

  18. Urea thermolysis and NOx reduction with and without SCR catalysts

    International Nuclear Information System (INIS)

    Fang, Howard L.; DaCosta, Herbert F.M.

    2003-01-01

    Urea-selective catalytic reduction (SCR) has been a leading contender for removal of nitrogen oxides (deNO x ) from diesel engine emissions. Despite its advantages, the SCR technology faces some critical detriments to its catalytic performance such as catalyst surface passivation (caused by deposit formation) and consequent stoichiometric imbalance of the urea consumption. Deposit formation deactivates catalytic performance by not only consuming part of the ammonia produced during urea decomposition but also degrading the structural and thermal properties of the catalyst surface. We have characterized the urea thermolysis with and without the urea-SCR catalyst using both spectroscopic (DRIFTS and Raman) and thermal techniques (thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC)) to identify the deposit components and their corresponding thermal properties. Urea thermolysis exhibits two decomposition stages, involving ammonia generation and consumption, respectively. The decomposition after the second stage leads to the product of melamine complexes, (HNC=NH) x (HNCO) y , that hinder catalytic performance. The presence of catalyst accompanied with a good spray of the urea solution helps to eliminate the second stage. In this work, kinetics of the direct reduction of NO x by urea is determined and the possibility of using additives to the urea solution in order to rejuvenate the catalyst surface and improve its performance will be discussed

  19. Fabrication of doped Titania (TiO2) nanofibers to serve as catalysts in NH3-Selective CatalyticReduction (SCR)

    DEFF Research Database (Denmark)

    Marani, Debora; Silva, Rafael Hubert; Dankeaw, Apiwat

    2016-01-01

    conversion efficiencies are obtained andassociated with the unique features deriving from the synergism among the doping approach, the nanoscaleconfinement, and the nano-fibrous texture. A novel concept of self-supported, lightweight and ultra-compactdesign SCR reactor is defined....... of either one or moredimensions into the nanoscale level. Among others the large surface-to-volume ratio is a feature that greatlyincreases the reactivity of the nanomaterials towards gaseous species when compared with the non-nanodimensional materials. With this regards, catalysis is one of those...... applications that unquestionable benefitsfrom this novel feature. In addition, when nanofibers (1D nanostructure) are used as catalysts, the furtheradvantage of a self-supported wide open and well-interconnected porous structure is achieved.Herein we demonstrate nanofibers as catalysts for the removal...

  20. INDUSTRIAL BOILER RETROFIT FOR NOX CONTROL: COMBINED SELECTIVE NONCATALYTIC REDUCTION AND SELECTIVE CATALYTIC REDUCTION

    Science.gov (United States)

    The paper describes retrofitting and testing a 590 kW (2 MBtu/hr), oil-fired, three-pass, fire-tube package boiler with a combined selective noncatalytic reduction (SNCR) and selective catalytic reduction (SCR) system. The system demonstrated 85% nitrogen oxides (NOx) reduction w...

  1. Mn-Ce-V-WOx/TiO2 SCR Catalysts: Catalytic Activity, Stability and Interaction among Catalytic Oxides

    Directory of Open Access Journals (Sweden)

    Xuteng Zhao

    2018-02-01

    Full Text Available A series of Mn-Ce-V-WOx/TiO2 composite oxide catalysts with different molar ratios (active components/TiO2 = 0.1, 0.2, 0.3, 0.6 have been prepared by wet impregnation method and tested in selective catalytic reduction (SCR of NO by NH3 in a wide temperature range. These catalysts were also characterized by X-ray diffraction (XRD, Transmission Electron Microscope (TEM, in situ Fourier Transform infrared spectroscopy (in situ FTIR, H2-Temperature programmed reduction (H2-TPR and X-ray photoelectron spectroscopy (XPS. The results show the catalyst with a molar ratio of active components/TiO2 = 0.2 exhibits highest NO conversion value between 150 °C to 400 °C and good resistance to H2O and SO2 at 250 °C with a gas hourly space velocity (GHSV value of 40,000 h−1. Different oxides are well dispersed and interact with each other. NH3 and NO are strongly adsorbed on the catalyst surface and the adsorption of the reactant gas leads to a redox cycle with the valence state change among the surface oxides. The adsorption of SO2 on Mn4+ and Ce4+ results in good H2O and SO2 resistance of the catalyst, but the effect of Mn and Ce are more than superior water and sulfur resistance. The diversity of valence states of the four active components and their high oxidation-reduction performance are the main reasons for the high NO conversion in this system.

  2. GENERIC VERIFICATION PROTOCOL FOR DETERMINATION OF EMISSIONS REDUCTIONS FROM SELECTIVE CATALYTIC REDUCTIONS CONTROL TECHNOLOGIES FOR HIGHWAY, NONROAD, AND STATIONARY USE DIESEL ENGINES

    Science.gov (United States)

    The protocol describes the Environmental Technology Verification (ETV) Program's considerations and requirements for verification of emissions reduction provided by selective catalytic reduction (SCR) technologies. The basis of the ETV will be comparison of the emissions and perf...

  3. Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems

    Energy Technology Data Exchange (ETDEWEB)

    Harold, Michael [Univ. of Houston, TX (United States); Crocker, Mark [Univ. of Kentucky, Lexington, KY (United States); Balakotaiah, Vemuri [Univ. of Houston, TX (United States); Luss, Dan [Univ. of Houston, TX (United States); Choi, Jae-Soon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dearth, Mark [Ford Motor Company, Dearborn, MI (United States); McCabe, Bob [Ford Motor Company, Dearborn, MI (United States); Theis, Joe [Ford Motor Company, Dearborn, MI (United States)

    2013-09-30

    Oxides of nitrogen in the form of nitric oxide (NO) and nitrogen dioxide (NO2) commonly referred to as NOx, is one of the two chemical precursors that lead to ground-level ozone, a ubiquitous air pollutant in urban areas. A major source of NOx} is generated by equipment and vehicles powered by diesel engines, which have a combustion exhaust that contains NOx in the presence of excess O2. Catalytic abatement measures that are effective for gasoline-fueled engines such as the precious metal containing three-way catalytic converter (TWC) cannot be used to treat O2-laden exhaust containing NOx. Two catalytic technologies that have emerged as effective for NOx abatement are NOx storage and reduction (NSR) and selective catalytic reduction (SCR). NSR is similar to TWC but requires much larger quantities of expensive precious metals and sophisticated periodic switching operation, while SCR requires an on-board source of ammonia which serves as the chemical reductant of the NOx. The fact that NSR produces ammonia as a byproduct while SCR requires ammonia to work has led to interest in combining the two together to avoid the need for the cumbersome ammonia generation system. In this project a comprehensive study was carried out of the fundamental aspects and application feasibility of combined NSR/SCR. The project team, which included university, industry, and national lab researchers, investigated the kinetics and mechanistic features of the underlying chemistry in the lean NOx trap (LNT) wherein NSR was carried out, with particular focus on identifying the operating conditions such as temperature and catalytic properties which lead to the production of ammonia in the LNT. The performance features of SCR on both model and commercial catalysts focused on the synergy between the LNT and SCR converters in terms of utilizing the upstream-generated ammonia and

  4. A consistent reaction scheme for the selective catalytic reduction of nitrogen oxides with ammonia

    DEFF Research Database (Denmark)

    Janssens, Ton V.W.; Falsig, Hanne; Lundegaard, Lars Fahl

    2015-01-01

    For the first time, the standard and fast selective catalytic reduction of NO by NH3 are described in a complete catalytic cycle, that is able to produce the correct stoichiometry, while only allowing adsorption and desorption of stable molecules. The standard SCR reaction is a coupling of the ac...... for standard SCR. Finally, the role of a nitrate/nitrite equilibrium and the possible in uence of Cu dimers and Brønsted sites are discussed, and an explanation is offered as to how a catalyst can be effective for SCR, while being a poor catalyst for NO oxidation to NO2....... spectroscopy (FTIR). A consequence of the reaction scheme is that all intermediates in fast SCR are also part of the standard SCR cycle. The calculated activation energy by density functional theory (DFT) indicates that the oxidation of an NO molecule by O2 to a bidentate nitrate ligand is rate determining...

  5. Experimental investigation on emission reduction in neem oil biodiesel using selective catalytic reduction and catalytic converter techniques.

    Science.gov (United States)

    Viswanathan, Karthickeyan

    2018-05-01

    In the present study, non-edible seed oil namely raw neem oil was converted into biodiesel using transesterification process. In the experimentation, two biodiesel blends were prepared namely B25 (25% neem oil methyl ester with 75% of diesel) and B50 (50% neem oil methyl ester with 50% diesel). Urea-based selective catalytic reduction (SCR) technique with catalytic converter (CC) was fixed in the exhaust tail pipe of the engine for the reduction of engine exhaust emissions. Initially, the engine was operated with diesel as a working fluid and followed by refilling of biodiesel blends B25 and B50 to obtain the baseline readings without SCR and CC. Then, the same procedure was repeated with SCR and CC technique for emission reduction measurement in diesel, B25 and B50 sample. The experimental results revealed that the B25 blend showed higher break thermal efficiency (BTE) and exhaust gas temperature (EGT) with lower break-specific fuel consumption (BSFC) than B50 blend at all loads. On comparing with biodiesel blends, diesel experiences increased BTE of 31.9% with reduced BSFC of 0.29 kg/kWh at full load. A notable emission reduction was noticed for all test fuels in SCR and CC setup. At full load, B25 showed lower carbon monoxide (CO) of 0.09% volume, hydrocarbon (HC) of 24 ppm, and smoke of 14 HSU and oxides of nitrogen (NOx) of 735 ppm than diesel and B50 in SCR and CC setup. On the whole, the engine with SCR and CC setup showed better performance and emission characteristics than standard engine operation.

  6. Impacts of halogen additions on mercury oxidation, in a slipstream selective catalyst reduction (SCR), reactor when burning sub-bituminous coal.

    Science.gov (United States)

    Cao, Yan; Gao, Zhengyang; Zhu, Jiashun; Wang, Quanhai; Huang, Yaji; Chiu, Chengchung; Parker, Bruce; Chu, Paul; Pant, Wei-Ping

    2008-01-01

    This paper presents a comparison of impacts of halogen species on the elemental mercury (Hg(0)) oxidation in a real coal-derived flue gas atmosphere. It is reported there is a higher percentage of Hg(0) in the flue gas when burning sub-bituminous coal (herein Powder River Basin (PRB) coal) and lignite, even with the use of selective catalytic reduction (SCR). The higher Hg(0)concentration in the flue gas makes it difficult to use the wet-FGD process for the mercury emission control in coal-fired utility boilers. Investigation of enhanced Hg(0) oxidation by addition of hydrogen halogens (HF, HCl, HBr, and HI) was conducted in a slipstream reactor with and without SCR catalysts when burning PRB coal. Two commercial SCR catalysts were evaluated. SCR catalyst no. 1 showed higher efficiencies of both NO reduction and Hg(0) oxidation than those of SCR catalyst no. 2. NH3 addition seemed to inhibit the Hg(0) oxidation, which indicated competitive processes between NH3 reduction and Hg(0) oxidation on the surface of SCR catalysts. The hydrogen halogens, in the order of impact on Hg(0) oxidation, were HBr, HI, and HCl or HF. Addition of HBr at approximately 3 ppm could achieve 80% Hg(0) oxidation. Addition of HI at approximately 5 ppm could achieve 40% Hg(0) oxidation. In comparison to the empty reactor, 40% Hg(0) oxidation could be achieved when HCl addition was up to 300 ppm. The enhanced Hg(0) oxidation by addition of HBr and HI seemed not to be correlated to the catalytic effects by both evaluated SCR catalysts. The effectiveness of conversion of hydrogen halogens to halogen molecules or interhalogens seemed to be attributed to their impacts on Hg(0) oxidation.

  7. State Estimation for the Automotive SCR Process

    DEFF Research Database (Denmark)

    Zhou, Guofeng; Huusom, Jakob Kjøbsted; Jørgensen, John Bagterp

    2012-01-01

    Selective catalytic reduction (SCR) of NOx is a widely applied diesel engine exhaust gas aftertreatment technology. For advanced SCR process control, like model predictive control, full state information of the process is required. The ammonia coverage ratio inside the catalyst is difficult to me...

  8. Mesoporous Fe-containing ZSM-5 zeolite single crystal catalysts for selective catalytic reduction of nitric oxide by ammonia

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Egeblad, Kresten; Kustova, Marina

    2007-01-01

    Mesoporous and conventional Fe-containing ZSM-5 catalysts (0.5–8 wt% Fe) were prepared using a simple impregnationmethod and tested in NO selective catalytic reduction (SCR) with NH3. It was found that mesoporous Fe-ZSM-5 catalysts exhibit higher SCR activities than comparable conventional cataly...

  9. Catalytic Destruction of a Surrogate Organic Hazardous Air Pollutant as a Potential Co-benefit for Coal-fired Selective Catalyst Reduction Systems

    Science.gov (United States)

    Catalytic destruction of benzene (C6H6), a surrogate for organic hazardous air pollutants (HAPs) produced from coal combustion, was investigated using a commercial selective catalytic reduction (SCR) catalyst for evaluating the potential co-benefit of the SCR technology for reduc...

  10. Ammonia sensor for closed-loop SCR control

    NARCIS (Netherlands)

    Wang, D.Y.; Yao, S.; Shost, M.; Yoo, J.H.; Cabush, D.; Racine, D.; Cloudt, R.P.M.; Willems, F.P.T.

    2009-01-01

    Selective Catalytic Reduction (SCR) is the dominant solution for meeting future NOx reduction regulations for heavy-duty diesel powertrains. SCR systems benefit from closed-loop control if an appropriate exhaust gas sensor were available. An ammonia sensor has recently been developed for use as a

  11. Ammonia sensor for closed-loop SCR control

    NARCIS (Netherlands)

    Wang, D.Y.; Yao, S.; Shost, M.; Yoo, J.H.; Cabush, D.; Racine, D.; Cloudt, R.P.M.; Willems, F.P.T.

    2008-01-01

    Selective Catalytic Reduction (SCR) is the dominant solution for meeting future NOx reduction regulations for heavy-duty diesel powertrains. SCR systems benefit from closed-loop control if an appropriate exhaust gas sensor were available. An ammonia sensor has recently been developed for use as a

  12. COMPARISON OF WEST GERMAN AND U.S. FLUE GAS DESULFURIZATION AND SELECTIVE CATALYTIC REDUCTION COSTS

    Science.gov (United States)

    The report documents a comparison of the actual cost retrofitting flue gas desulfurization (FGD) and selective catalytic reduction (SCR) on Federal Republic of German (FRG) boilers to cost estimating procedures used in the U.S. to estimate the retrofit of these controls on U.S. b...

  13. Uniformity index measurement technology using thermocouples to improve performance in urea-selective catalytic reduction systems

    Science.gov (United States)

    Park, Sangki; Oh, Jungmo

    2018-05-01

    The current commonly used nitrogen oxides (NOx) emission reduction techniques employ hydrocarbons (HCs), urea solutions, and exhaust gas emissions as the reductants. Two of the primary denitrification NOx (DeNOx) catalyst systems are the HC-lean NOx trap (HC-LNT) catalyst and urea-selective catalytic reduction (urea-SCR) catalyst. The secondary injection method depends on the type of injector, injection pressure, atomization, and spraying technique. In addition, the catalyst reaction efficiency is directly affected by the distribution of injectors; hence, the uniformity index (UI) of the reductant is very important and is the basis for system optimization. The UI of the reductant is an indicator of the NOx conversion efficiency (NCE), and good UI values can reduce the need for a catalyst. Therefore, improving the UI can reduce the cost of producing a catalytic converter, which are expensive due to the high prices of the precious metals contained therein. Accordingly, measurement of the UI is an important process in the development of catalytic systems. Two of the commonly used methods for measuring the reductant UI are (i) measuring the exhaust emissions at many points located upstream/downstream of the catalytic converter and (ii) acquisition of a reductant distribution image on a section of the exhaust pipe upstream of the catalytic converter. The purpose of this study is to develop a system and measurement algorithms to measure the exothermic response distribution in the exhaust gas as the reductant passes through the catalytic converter of the SCR catalyst system using a set of thermocouples downstream of the SCR catalyst. The system is used to measure the reductant UI, which is applied in real-time to the actual SCR system, and the results are compared for various types of mixtures for various engine operating conditions and mixer types in terms of NCE.

  14. System analysis regarding NO{sub x} reduction with combined SNCR/SCR; Systemstudie avseende kombinerad NO{sub x}-reducering med SNCR/SCR

    Energy Technology Data Exchange (ETDEWEB)

    Niemann, Therese; Henningsson, Claes [S.E.P. Scandinavian Energy Project AB, Stockholm (Sweden); Andersson, Christer [Vattenfall Utveckling AB, Stockholm (Sweden)

    2000-06-01

    Systems with combined SNCR/SCR on biomass fired CFB:s have been focused on lately since they are regarded as very load flexible. Furthermore, synergy effects between the two parts are supposed to result in better performance for the combined system than for the two systems separately. The aim of this study is to investigate whether the combined SNCR/SCR matches the outlined expectations above. The plant chosen for the measurements was Brista Kraft AB. This particular plant is equipped with a CFB boiler of 122 MW{sub th}, which in turn is equipped with the deNO{sub x} system mentioned above. The measurements are made by a 'concentration gradient measurement system', developed by Vattenfall. Consequently, the study indicates that it is very useful to add a catalyst to the SNCR system, both from an environmental- and an economical point of view. However, since the full scale data for the SCR alone is missing, the results for SCR compared with combined SNCR/SCR is harder to decide. Simulations indicate that both systems produces the same emission levels, although, the SCR system may be a bit more cost effective in the long run. The synergy effect between the systems in combination is obvious. Predominantly because the NO{sub x} reduction efficiency in the SNCR zone can be increased (in this case about 10-12%) since a higher amount of ammonia can be accepted downstream of the SNCR zone. Combined systems will achieve a comparable good load independence. The reduction in the SNCR will decrease at lower loads, simultaneously as the reduction in the SCR increases. Thus, the total reduction efficiency will almost be independent of the load. In the project investigations have been made to figure out if two points injection in SNCR give more or less mol distribution of NH{sub 3}/NO quota over the catalyst crosses sectional area. The measurements indicates that two point injection may cause a more uneven distribution of stoichiometries. However, the results seems to

  15. Catalytic activity of Co-Mg-Al, Cu-Mg-Al and Cu-Co-Mg-Al mixed oxides derived from hydrotalcites in SCR of NO with ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Chmielarz, Lucjan; Kustrowski, Piotr; Rafalska-Lasocha, Alicja [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow (Poland); Majda, Dorota; Dziembaj, Roman [Regional Laboratory for Physicochemical Analyses and Structural Research, Ingardena 3, 30-060 Krakow (Poland)

    2002-01-10

    M-Mg-Al hydrotalcites (where M=Cu{sup 2+}, Co{sup 2+} and Cu{sup 2+}+Co{sup 2+}) with M ranging from 5 to 20% (as atomic ratio) were prepared by co-precipitation method. Obtained samples were characterised by XRD and TGA techniques. The influence of transition metal content on thermal decomposition of hydrotalcites was observed. Calcination of the hydrotalcites at 600C resulted in the formation of mixed oxides with surface areas in the range 71-154m{sup 2}/g. Calcined hydrotalcites were tested as catalysts in the selective reduction of NO with ammonia (NO-SCR). The catalytic activity depends on the kind of transition metal, as well as its content. For the NO-SCR the following reactivity order was found: Cu-Mg-Al>Cu-Co-Mg-Al>Co-Mg-Al. Temperature-programmed methods (TPD, TPSR, stop flow-TPD), as well as FT-IR spectroscopy have been applied to determine interaction of NO and NH{sub 3} molecules with the catalyst surface.

  16. System and method for controlling an engine based on ammonia storage in multiple selective catalytic reduction catalysts

    Science.gov (United States)

    Sun, MIn; Perry, Kevin L.

    2015-11-20

    A system according to the principles of the present disclosure includes a storage estimation module and an air/fuel ratio control module. The storage estimation module estimates a first amount of ammonia stored in a first selective catalytic reduction (SCR) catalyst and estimates a second amount of ammonia stored in a second SCR catalyst. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the first amount, the second amount, and a temperature of a substrate disposed in the second SCR catalyst.

  17. Impact of selective catalytic reduction systems on the operation of coal and oil fired boilers and downstream equipment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The history of the development of selective catalytic reduction (SCR) technology has clearly demonstrated that whenever the technology arrives in a new region of the world new challenges are met. This paper discusses some of these historical challenges and their particular solutions in some detail. The paper shows that the design of successful SCR systems is extremely site-specific, but that the technology continues to evolve to meet these continuously changing demands. Most recently the increased power of CFD technology has enabled SCR to meet the more stringent North American emissions criteria through optimal fluid dynamic design. 4 figs.

  18. Selective catalytic reduction system and process using a pre-sulfated zirconia binder

    Science.gov (United States)

    Sobolevskiy, Anatoly; Rossin, Joseph A.

    2010-06-29

    A selective catalytic reduction (SCR) process with a palladium catalyst for reducing NOx in a gas, using hydrogen as a reducing agent is provided. The process comprises contacting the gas stream with a catalyst system, the catalyst system comprising (ZrO.sub.2)SO.sub.4, palladium, and a pre-sulfated zirconia binder. The inclusion of a pre-sulfated zirconia binder substantially increases the durability of a Pd-based SCR catalyst system. A system for implementing the disclosed process is further provided.

  19. Design and testing of an independently controlled urea SCR retrofit system for the reduction of NOx emissions from marine diesels.

    Science.gov (United States)

    Johnson, Derek R; Bedick, Clinton R; Clark, Nigel N; McKain, David L

    2009-05-15

    Diesel engine emissions for on-road, stationary and marine applications are regulated in the United States via standards set by the Environmental Protection Agency (EPA). A major component of diesel exhaust that is difficult to reduce is nitrogen oxides (NOx). Selective catalytic reduction (SCR) has been in use for many years for stationary applications, including external combustion boilers, and is promising for NOx abatement as a retrofit for mobile applications where diesel compression ignition engines are used. The research presented in this paper is the first phase of a program focused on the reduction of NOx by use of a stand-alone urea injection system, applicable to marine diesel engines typical of work boats (e.g., tugs). Most current urea SCR systems communicate with engine controls to predict NOx emissions based on signals such as torque and engine speed, however many marine engines in use still employ mechanical injection technology and lack electronic communication abilities. The system developed and discussed in this paper controls NOx emissions independentof engine operating parameters and measures NOx and exhaust flow using the following exhaust sensor inputs: absolute pressure, differential pressure, temperature, and NOx concentration. These sensor inputs were integrated into an independent controller and open loop architecture to estimate the necessary amount of urea needed, and the controller uses pulse width modulation (PWM) to power an automotive fuel injector for airless urea delivery. The system was tested in a transient test cell on a 350 hp engine certified at 4 g/bhp-hr of NOx, with a goal of reducing the engine out NOx levels by 50%. NOx reduction capabilities of 41-67% were shown on the non road transient cycle (NRTC) and ICOMIA E5 steady state cycles with system optimization during testing to minimize the dilute ammonia slip to cycle averages of 5-7 ppm. The goal of 50% reduction of NOx can be achieved dependent upon cycle. Further

  20. System and method for selective catalytic reduction of nitrogen oxides in combustion exhaust gases

    Science.gov (United States)

    Sobolevskiy, Anatoly; Rossin, Joseph A

    2014-04-08

    A multi-stage selective catalytic reduction (SCR) unit (32) provides efficient reduction of NOx and other pollutants from about 50-550.degree. C. in a power plant (19). Hydrogen (24) and ammonia (29) are variably supplied to the SCR unit depending on temperature. An upstream portion (34) of the SCR unit catalyzes NOx+NH.sub.3 reactions above about 200.degree. C. A downstream portion (36) catalyzes NOx+H.sub.2 reactions below about 260.degree. C., and catalyzes oxidation of NH.sub.3, CO, and VOCs with oxygen in the exhaust above about 200.degree. C., efficiently removing NOx and other pollutants over a range of conditions with low slippage of NH.sub.3. An ammonia synthesis unit (28) may be connected to the SCR unit to provide NH.sub.3 as needed, avoiding transport and storage of ammonia or urea at the site. A carbonaceous gasification plant (18) on site may supply hydrogen and nitrogen to the ammonia synthesis unit, and hydrogen to the SCR unit.

  1. Multi-stage selective catalytic reduction of NOx in lean burn engine exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    Many studies suggest that the conversion of NO to NO{sub 2} is an important intermediate step in the selective catalytic reduction (SCR) of NO{sub x} to N{sub 2}. Some effort has been devoted to separating the oxidative and reductive functions of the catalyst in a multi-stage system. This method works fine for systems that require hydrocarbon addition. The hydrocarbon has to be injected between the NO oxidation catalyst and the NO{sub 2} reduction catalyst; otherwise, the first-stage oxidation catalyst will also oxidize the hydrocarbon and decrease its effectiveness as a reductant. The multi-stage catalytic scheme is appropriate for diesel engine exhausts since they contain insufficient hydrocarbons for SCR, and the hydrocarbons can be added at the desired location. For lean-burn gasoline engine exhausts, the hydrocarbons already present in the exhausts will make it necessary to find an oxidation catalyst that can oxidize NO to NO{sub 2} but not oxidize the hydrocarbon. A plasma can also be used to oxidize NO to NO{sub 2}. Plasma oxidation has several advantages over catalytic oxidation. Plasma-assisted catalysis can work well for both diesel engine and lean-burn gasoline engine exhausts. This is because the plasma can oxidize NO in the presence of hydrocarbons without degrading the effectiveness of the hydrocarbon as a reductant for SCR. In the plasma, the hydrocarbon enhances the oxidation of NO, minimizes the electrical energy requirement, and prevents the oxidation of SO{sub 2}. This paper discusses the use of multi-stage systems for selective catalytic reduction of NO{sub x}. The multi-stage catalytic scheme is compared to the plasma-assisted catalytic scheme.

  2. Real-world exhaust temperature profiles of on-road heavy-duty diesel vehicles equipped with selective catalytic reduction.

    Science.gov (United States)

    Boriboonsomsin, Kanok; Durbin, Thomas; Scora, George; Johnson, Kent; Sandez, Daniel; Vu, Alexander; Jiang, Yu; Burnette, Andrew; Yoon, Seungju; Collins, John; Dai, Zhen; Fulper, Carl; Kishan, Sandeep; Sabisch, Michael; Jackson, Doug

    2018-09-01

    On-road heavy-duty diesel vehicles are a major contributor of oxides of nitrogen (NO x ) emissions. In the US, many heavy-duty diesel vehicles employ selective catalytic reduction (SCR) technology to meet the 2010 emission standard for NO x . Typically, SCR needs to be at least 200°C before a significant level of NO x reduction is achieved. However, this SCR temperature requirement may not be met under some real-world operating conditions, such as during cold starts, long idling, or low speed/low engine load driving activities. The frequency of vehicle operation with low SCR temperature varies partly by the vehicle's vocational use. In this study, detailed vehicle and engine activity data were collected from 90 heavy-duty vehicles involved in a range of vocations, including line haul, drayage, construction, agricultural, food distribution, beverage distribution, refuse, public work, and utility repair. The data were used to create real-world SCR temperature and engine load profiles and identify the fraction of vehicle operating time that SCR may not be as effective for NO x control. It is found that the vehicles participated in this study operate with SCR temperature lower than 200°C for 11-70% of the time depending on their vocation type. This implies that real-world NO x control efficiency could deviate from the control efficiency observed during engine certification. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Influence of hydrogen treatment on SCR catalysts

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes

    stream, i.e. by in situ treatment of the Pt-catalyst by reductive H2-gas. However, the introduction of H2 gas in the gas stream could also affect other units in the tail pipe gas cleaning system. Of special interest in this study is the effect of hydrogen gas on the performance of the selective catalytic...... reduction (SCR) process, i.e. the catalytic removal of NOx from the flue gas. A series of experiments was conducted to reveal the impact on the NO SCR activity of a industrial DeNOX catalyst (3%V2O5-7%WO3/TiO2) by treatment of H2. Standard conditions were treatment of the SCR catalyst for 60 min with three...... different concentrations of H2 (0-2%) in a 8% O2/N2 mixture, where the SCR activity was measured before and after the hydrogen treatment. The results show that the activity of the SCR catalyst is only negligible affected during exposure to the H2/O2 gas and in all cases it returned reversibly to the initial...

  4. A fuzzy logic urea dosage controller design for two-cell selective catalytic reduction systems.

    Science.gov (United States)

    You, Kun; Wei, Lijiang; Jiang, Kai

    2017-12-22

    Diesel engines have dominated in the heavy-duty vehicular and marine power source. However, the induced air pollution is a big problem. As people's awareness of environmental protection increasing, the emission regulations of diesel-engine are becoming more stringent. In order to achieve the emission regulations, the after-treatment system is a necessary choice. Specifically, the selective catalytic reduction (SCR) system has been widely applied to reduce the NO X emissions of diesel engine. Different from single-cell SCR systems, the two-cell systems have various benefits from the modeling and control perspective. In this paper, the urea dosage controller design for two-cell SCR systems was investigated. Firstly, the two-cell SCR modeling was introduced. Based on the developed model, the design procedure for the fuzzy logic urea dosage controller was well addressed. Secondly, simulations and comparisons were employed via an experimental verification of the whole vehicle simulator. And the results showed that the designed controller simultaneously achieved high NO X reduction rate and low tail-pipe ammonia slip. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. NO_x reduction and N_2O emissions in a diesel engine exhaust using Fe-zeolite and vanadium based SCR catalysts

    International Nuclear Information System (INIS)

    Cho, Chong Pyo; Pyo, Young Dug; Jang, Jin Young; Kim, Gang Chul; Shin, Young Jin

    2017-01-01

    Highlights: • NO_x reduction and N_2O emission of urea-SCR catalysts with the oxidation precatalysts were investigated. • Fe-zeolite and V-based catalysts were noticeably affected by the NO_2/NOx ratio. • Remarkable N_2O formation was observed only for the Fe-zeolite catalyst. - Abstract: Among various approaches used to comply with strict diesel engine exhaust regulations, there is increasing interest in urea based selective catalytic reduction (SCR) as a NO_x reduction technology, due to its high reduction and excellent fuel efficiencies. NO_x reduction by SCR catalysts is affected by variations in the NO_2/NO_x ratio, caused by oxidation catalysts such as the diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) installed in diesel engines. Recently, it has been reported that the greenhouse gas (GHG) variant N_2O, which is a by-product of the NO_x conversion process in the after-treatment system, will be subject to regulation. Using a real diesel engine installed with DOC and DPF, the NO_x reduction and N_2O emission performances of commonly used Fe-zeolite and V_2O_5-WO_3/TiO_2 catalysts were investigated under various operating conditions. The exhaust of the diesel engine used in this study had a NO_2/NO_x ratio of over 50% for temperatures below 400 °C due to the oxidation catalysts, while the NO_2/NO_x ratio was significantly lower for temperatures above 400 °C. Under such conditions, it was found that the Fe-zeolite and V_2O_5-WO_3/TiO_2 catalysts were noticeably affected by the NO_2/NOx ratio and exhaust temperature. Although both catalysts showed satisfactory NO conversions, the V_2O_5-WO_3/TiO_2 catalyst showed decreasing NO_2 conversion rates between 250 °C and 320 °C. The V_2O_5-WO_3/TiO_2 catalyst exhibited NH_3 slip relatively frequently because of its low NH_3 storage capacity. For the Fe-zeolite catalyst, a significant increase in the amount of generated N_2O was observed for high NO_x conversion conditions due to side

  6. Catalytic reduction of ruthenium tetroxide

    International Nuclear Information System (INIS)

    Nakhutin, I.E.; Polyakov, A.S.; Ananyan, O.S.; Blinnikov, S.A.; Kulakov, A.I.; Takmazyan, A.S.

    1978-01-01

    RuO 4 removal from the gaseous phase by reduction to solid RuO 2 with carbon oxide has been investigated. The reaction has been shown to be autocatalytic. A catalyst (RuO 2 on Al 2 O 3 ) for the reduction has been developed. There have been determined the region of reaction RuO 4 +CO on the catalyst containing RuO 2 , the temperature dependence of the decontamination factor and the reaction order in RuO 4 . The feasibility of RuO 4 thermal decomposition on the catalyst has been shown. A number of other metal oxides that can catalyze the process is listed

  7. Impacts of acid gases on mercury oxidation across SCR catalyst

    International Nuclear Information System (INIS)

    Zhuang, Ye; Laumb, Jason; Liggett, Richard; Holmes, Mike; Pavlish, John

    2007-01-01

    A series of bench-scale experiments were completed to evaluate acid gases of HCl, SO 2 , and SO 3 on mercury oxidation across a commercial selective catalytic reduction (SCR) catalyst. The SCR catalyst was placed in a simulated flue gas stream containing O 2 , CO 2 , H 2 O, NO, NO 2 , and NH 3 , and N 2 . HCl, SO 2 , and SO 3 were added to the gas stream either separately or in combination to investigate their interactions with mercury over the SCR catalyst. The compositions of the simulated flue gas represent a medium-sulfur and low- to medium-chlorine coal that could represent either bituminous or subbituminous. The experimental data indicated that 5-50 ppm HCl in flue gas enhanced mercury oxidation within the SCR catalyst, possibly because of the reactive chlorine species formed through catalytic reactions. An addition of 5 ppm HCl in the simulated flue gas resulted in mercury oxidation of 45% across the SCR compared to only 4% mercury oxidation when 1 ppm HCl is in the flue gas. As HCl concentration increased to 50 ppm, 63% of Hg oxidation was reached. SO 2 and SO 3 showed a mitigating effect on mercury chlorination to some degree, depending on the concentrations of SO 2 and SO 3 , by competing against HCl for SCR adsorption sites. High levels of acid gases of HCl (50 ppm), SO 2 (2000 ppm), and SO 3 (50 ppm) in the flue gas deteriorate mercury adsorption on the SCR catalyst. (author)

  8. Enhanced catalytic activity over MIL-100(Fe) loaded ceria catalysts for the selective catalytic reduction of NO{sub x} with NH{sub 3} at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng [School of Environmental Science and Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), Dalian 116024 (China); Sun, Hong [School of Environmental & Chemical Engineering, Dalian Jiaotong University, Dalian 116028 (China); Quan, Xie, E-mail: quanxie@dlut.edu.cn [School of Environmental Science and Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), Dalian 116024 (China); Chen, Shuo [School of Environmental Science and Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), Dalian 116024 (China)

    2016-01-15

    Highlights: • Nano-ceria was successfully encapsulated into MIL-100(Fe) for the SCR of NO{sub x}. • The incorporated ceria in MIL-100(Fe) showed high content of chemisorbed oxygen. • The added ceria into MIL-100(Fe) improved the formation of adsorbed NO{sub 2} species. • The addition of ceria into MIL-100(Fe) enhanced SCR activity at low temperature. - Abstract: The development of catalysts for selective catalytic reduction (SCR) reactions that are highly active at low temperatures and show good resistance to SO{sub 2} and H{sub 2}O is still a challenge. In this study, we have designed and developed a high-performance SCR catalyst based on nano-sized ceria encapsulated inside the pores of MIL-100(Fe) that combines excellent catalytic power with a metal organic framework architecture synthesized by the impregnation method (IM). Transmission electron microscopy (TEM) revealed the encapsulation of ceria in the cavities of MIL-100(Fe). The prepared IM-CeO{sub 2}/MIL-100(Fe) catalyst shows improved catalytic activity both at low temperatures and throughout a wide temperature window. The temperature window for 90% NO{sub x} conversion ranges from 196 to 300 °C. X-ray photoelectron spectroscopy (XPS) and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) analysis indicated that the nano-sized ceria encapsulated inside MIL-100(Fe) promotes the production of chemisorbed oxygen on the catalyst surface, which greatly enhances the formation of the NO{sub 2} species responsible for fast SCR reactions.

  9. Experimental demonstration of a new model-based SCR control strategy for cleaner heavy-duty diesel engines

    NARCIS (Netherlands)

    Willems, F.P.T.; Cloudt, R.P.M.

    2011-01-01

    Selective catalytic reduction (SCR) is a promising diesel aftertreatment technology that enables low nitrogen oxides (NOx) tailpipe emissions with relatively low fuel consumption. Future emission legislation is pushing the boundaries for SCR control systems to achieve high NOx conversion within a

  10. Enhanced catalytic activity over MIL-100(Fe) loaded ceria catalysts for the selective catalytic reduction of NOx with NH₃ at low temperature.

    Science.gov (United States)

    Wang, Peng; Sun, Hong; Quan, Xie; Chen, Shuo

    2016-01-15

    The development of catalysts for selective catalytic reduction (SCR) reactions that are highly active at low temperatures and show good resistance to SO2 and H2O is still a challenge. In this study, we have designed and developed a high-performance SCR catalyst based on nano-sized ceria encapsulated inside the pores of MIL-100(Fe) that combines excellent catalytic power with a metal organic framework architecture synthesized by the impregnation method (IM). Transmission electron microscopy (TEM) revealed the encapsulation of ceria in the cavities of MIL-100(Fe). The prepared IM-CeO2/MIL-100(Fe) catalyst shows improved catalytic activity both at low temperatures and throughout a wide temperature window. The temperature window for 90% NOx conversion ranges from 196 to 300°C. X-ray photoelectron spectroscopy (XPS) and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) analysis indicated that the nano-sized ceria encapsulated inside MIL-100(Fe) promotes the production of chemisorbed oxygen on the catalyst surface, which greatly enhances the formation of the NO2 species responsible for fast SCR reactions. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Urea-SCR Temperature Investigation for NOx Control of Diesel Engine

    Directory of Open Access Journals (Sweden)

    Asif Muhammad

    2015-01-01

    Full Text Available SCR (selective catalytic reduction system is continuously being analyzed by many researchers worldwide on various concerns due to the stringent nitrogen oxides (NOx emissions legislation for heavy-duty diesel engines. Urea-SCR includes AdBlue as urea source, which subsequently decomposes to NH3 (ammonia being the reducing agent. Reaction temperature is a key factor for the performance of urea-SCR system, as urea decomposition rate is sensitive to a specific temperature range. This particular study was directed to investigate the temperature of the SCR system in diesel engine with the objective to confirm that whether the appropriate temperature is attained for occurrence of urea based catalytic reduction or otherwise and how the system performs on the prescribed temperature range. Diesel engine fitted with urea-SCR exhaust system has been operated on European standard cycle for emission testing to monitor the temperature and corresponding nitrogen oxides (NOx values on specified points. Moreover, mathematical expressions for approximation of reaction temperature are also proposed which are derived by applying energy conservation principal and gas laws. Results of the investigation have shown that during the whole testing cycle system temperature has remained in the range where urea-SCR can take place with best optimum rate and the system performance on account of NOx reduction was exemplary as excellent NOx conversion rate is achieved. It has also been confirmed that selective catalytic reduction (SCR is the best suitable technology for automotive engine-out NOx control.

  12. Alkali resistivity of Cu based selective catalytic reduction catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Jensen, Anker Degn; Riisager, Anders

    2012-01-01

    The deactivation of V2O5–WO3–TiO2, Cu–HZSM5 and Cu–HMOR plate type monolithic catalysts was investigated when exposed to KCl aerosols in a bench-scale reactor. Fresh and exposed catalysts were characterized by selective catalytic reduction (SCR) activity measurements, scanning electron microscope......–energy dispersive X-ray spectroscopy (SEM–EDX) and NH3-temperature programmed desorption (NH3-TPD). 95% deactivation was observed for the V2O5–WO3–TiO2 catalyst, while the Cu–HZSM5 and Cu–HMOR catalysts deactivated only 58% and 48%, respectively, after 1200 h KCl exposure. SEM analysis of the KCl aerosol exposed...... catalysts revealed that the potassium salt not only deposited on the catalyst surface, but also penetrated into the catalyst wall. Thus, the K/M ratio (M = V or Cu) was high on V2O5–WO3–TiO2 catalyst and comparatively less on Cu–HZSM5 and Cu–HMOR catalysts. NH3-TPD revealed that the KCl exposed Cu–HZSM5...

  13. Enhanced Activity of Nanocrystalline Zeolites for Selective Catalytic Reduction of NOx

    International Nuclear Information System (INIS)

    Sarah C. Larson; Vicki H. Grassian

    2006-01-01

    Nanocrystalline zeolites with discrete crystal sizes of less than 100 nm have different properties relative to zeolites with larger crystal sizes. Nanocrystalline zeolites have improved mass transfer properties and very large internal and external surface areas that can be exploited for many different applications. The additional external surface active sites and the improved mass transfer properties of nanocrystalline zeolites offer significant advantages for selective catalytic reduction (SCR) catalysis with ammonia as a reductant in coal-fired power plants relative to current zeolite based SCR catalysts. Nanocrystalline NaY was synthesized with a crystal size of 15-20 nm and was thoroughly characterized using x-ray diffraction, electron paramagnetic resonance spectroscopy, nitrogen adsorption isotherms and Fourier Transform Infrared (FT-IR) spectroscopy. Copper ions were exchanged into nanocrystalline NaY to increase the catalytic activity. The reactions of nitrogen dioxides (NO x ) and ammonia (NH 3 ) on nanocrystalline NaY and CuY were investigated using FT-IR spectroscopy. Significant conversion of NO 2 was observed at room temperature in the presence of NH 3 as monitored by FT-IR spectroscopy. Copper-exchanged nanocrystalline NaY was more active for NO 2 reduction with NH 3 relative to nanocrystalline NaY

  14. Research and proposal on selective catalytic reduction reactor optimization for industrial boiler.

    Science.gov (United States)

    Yang, Yiming; Li, Jian; He, Hong

    2017-08-24

    The advanced computational fluid dynamics (CFD) software STAR-CCM+ was used to simulate a denitrification (De-NOx) project for a boiler in this paper, and the simulation result was verified based on a physical model. Two selective catalytic reduction (SCR) reactors were developed: reactor 1 was optimized and reactor 2 was developed based on reactor 1. Various indicators, including gas flow field, ammonia concentration distribution, temperature distribution, gas incident angle, and system pressure drop were analyzed. The analysis indicated that reactor 2 was of outstanding performance and could simplify developing greatly. Ammonia injection grid (AIG), the core component of the reactor, was studied; three AIGs were developed and their performances were compared and analyzed. The result indicated that AIG 3 was of the best performance. The technical indicators were proposed for SCR reactor based on the study. Flow filed distribution, gas incident angle, and temperature distribution are subjected to SCR reactor shape to a great extent, and reactor 2 proposed in this paper was of outstanding performance; ammonia concentration distribution is subjected to ammonia injection grid (AIG) shape, and AIG 3 could meet the technical indicator of ammonia concentration without mounting ammonia mixer. The developments above on the reactor and the AIG are both of great application value and social efficiency.

  15. Oxidation of mercury across selective catalytic reduction catalysts in coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Constance L. Senior [Reaction Engineering International, Salt Lake City, UT (United States)

    2006-01-15

    A kinetic model for predicting the amount of mercury (Hg) oxidation across selective catalytic reduction (SCR) systems in coal-fired power plants was developed and tested. The model incorporated the effects of diffusion within the porous SCR catalyst and the competition between ammonia and Hg for active sites on the catalyst. Laboratory data on Hg oxidation in simulated flue gas and slipstream data on Hg oxidation in flue gas from power plants were modeled. The model provided good fits to the data for eight different catalysts, both plate and monolith, across a temperature range of 280-420{sup o}C, with space velocities varying from 1900 to 5000 hr{sup -1}. Space velocity, temperature, hydrochloric acid content of the flue gas, ratio of ammonia to nitric oxide, and catalyst design all affected Hg oxidation across the SCR catalyst. The model can be used to predict the impact of coal properties, catalyst design, and operating conditions on Hg oxidation across SCRs. 20 refs., 9 figs., 2 tabs.

  16. INVESTIGATION OF AMMONIA ADSORPTION ON FLY ASH DUE TO INSTALLATION OF SELECTIVE CATALYTIC REDUCTION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    G.F. Brendel; J.E. Bonetti; R.F. Rathbone; R.N. Frey Jr.

    2000-11-01

    This report summarizes an investigation of the potential impacts associated with the utilization of selective catalytic reduction (SCR) systems at coal-fired power plants. The study was sponsored by the U.S. Department of Energy Emission Control By-Products Consortium, Dominion Generation, the University of Kentucky Center for Applied Energy Research and GAI Consultants, Inc. SCR systems are effective in reducing nitrogen oxides (NOx) emissions as required by the Clean Air Act (CAA) Amendments. However, there may be potential consequences associated with ammonia contamination of stack emissions and combustion by-products from these systems. Costs for air quality, landfill and pond environmental compliance may increase significantly and the marketability of ash may be seriously reduced, which, in turn, may also lead to increased disposal costs. The potential impacts to air, surface water, groundwater, ash disposal, ash utilization, health and safety, and environmental compliance can not be easily quantified based on the information presently available. The investigation included: (1) a review of information and data available from published and unpublished sources; (2) baseline ash characterization testing of ash samples produced from several central Appalachian high-volatile bituminous coals from plants that do not currently employ SCR systems in order to characterize the ash prior to ammonia exposure; (3) an investigation of ammonia release from fly ash, including leaching and thermal studies; and (4) an evaluation of the potential impacts on plant equipment, air quality, water quality, ash disposal operations, and ash marketing.

  17. Alternative SILP-SCR Catalysts based on Guanidinium Chromates

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes; Riisager, Anders; Ståhl, Kenny

    There is an increasing global concern about human caused emissions of pollutants like sulfur and nitrogen oxides to the atmosphere leading to, e.g. smog and acid rain damaging to the human health and the environment. Selective catalytic reduction (SCR) of NOx with ammonia as reductant is the most...... duct. There is therefore a demand for alkali-resistant SCR catalysts more flexible regarding temperature of operation and position in the duct. Supported ionic liquid phase (SILP) catalysts with 1,1,3,3-Tetramethylguanidinium (TMGH+) and a chromium oxide anion supported on anatase have exhibited...

  18. State Estimation in the Automotive SCR DeNOx Process

    DEFF Research Database (Denmark)

    Zhou, Guofeng; Jørgensen, John Bagterp; Duwig, Christophe

    2012-01-01

    on exhaust gas emissions. For advanced control, e.g. Model Predictive Control (MPC), of the SCR process, accurate state estimates are needed. We investigate the performance of the ordinary and the extended Kalman filters based on a simple first principle system model. The performance is tested through......Selective catalytic reduction (SCR) of nitrogen oxides (NOx) is a widely applied diesel engine exhaust gas after-treatment technology. For effective NOx removal in a transient operating automotive application, controlled dosing of urea can be used to meet the increasingly restrictive legislations...

  19. Retrofit SCR system for NOx control from heavy-duty mining equipment

    International Nuclear Information System (INIS)

    Mannan, M.A.

    2009-01-01

    Diesel engines are used extensively in the mining industry and offer many advantages. However, particulate matter (PM) emissions and nitrogen oxide emissions (NOx) are among its disadvantages. A significant concern related to PM and NOx in an underground mine involves the use of diesel exhaust after treatment systems such as diesel particulate filters and selective catalytic reduction (SCR). This presentation discussed NOx and PM control and provided a description of an SCR system and examples of SCR retrofits. Options for NOx control were discussed and a case study involving the installation of an SCR retrofit system in an underground mine operated by Sifto Salt was also presented. The purpose of the case study was to identify cost effective retrofit solutions to lower nitrogen dioxide emissions from heavy-duty trucks operating in underground mines. The case study illustrated and presented the candidate vehicle, baseline emissions, a BlueMax SCR retrofit solution, and BlueMax installation. 1 tab., 6 figs.

  20. Long-time experience in catalytic flue gas cleaning and catalytic NO{sub x} reduction in biofueled boilers

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen, M [Tampella Power Inc., Tampere (Finland)

    1997-12-31

    NO emissions are reduced by primary or secondary methods. Primary methods are based on NO reduction in the combustion zone and secondary methods on flue gas cleaning. The most effective NO reduction method is selective catalytic reduction (SCR). It is based on NO reduction by ammonia on the surface of a catalyst. Reaction products are water and nitrogen. A titanium-dioxide-based catalyst is very durable and selective in coal-fired power plants. It is not poisoned by sulphur dioxide and side reactions with ammonia and sulphur dioxide hardly occur. The long time experience and suitability of a titanium-dioxide-based catalyst for NO reduction in biofuel-fired power plants was studied. The biofuels were: peat, wood and bark. It was noticed that deactivation varied very much due to the type of fuel and content of alkalinities in fuel ash. The deactivation in peat firing was moderate, close to the deactivation noticed in coal firing. Wood firing generally had a greater deactivation effect than peat firing. Fuel and fly ash were analyzed to get more information on the flue gas properties. The accumulation of alkali and alkaline earth metals and sulphates was examined together with changes in the physical composition of the catalysts. In the cases where the deactivation was the greatest, the amount of alkali and alkaline earth metals in fuels and fly ashes and their accumulation were very significant. (author) (3 refs.)

  1. Long-time experience in catalytic flue gas cleaning and catalytic NO{sub x} reduction in biofueled boilers

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen, M. [Tampella Power Inc., Tampere (Finland)

    1996-12-31

    NO emissions are reduced by primary or secondary methods. Primary methods are based on NO reduction in the combustion zone and secondary methods on flue gas cleaning. The most effective NO reduction method is selective catalytic reduction (SCR). It is based on NO reduction by ammonia on the surface of a catalyst. Reaction products are water and nitrogen. A titanium-dioxide-based catalyst is very durable and selective in coal-fired power plants. It is not poisoned by sulphur dioxide and side reactions with ammonia and sulphur dioxide hardly occur. The long time experience and suitability of a titanium-dioxide-based catalyst for NO reduction in biofuel-fired power plants was studied. The biofuels were: peat, wood and bark. It was noticed that deactivation varied very much due to the type of fuel and content of alkalinities in fuel ash. The deactivation in peat firing was moderate, close to the deactivation noticed in coal firing. Wood firing generally had a greater deactivation effect than peat firing. Fuel and fly ash were analyzed to get more information on the flue gas properties. The accumulation of alkali and alkaline earth metals and sulphates was examined together with changes in the physical composition of the catalysts. In the cases where the deactivation was the greatest, the amount of alkali and alkaline earth metals in fuels and fly ashes and their accumulation were very significant. (author) (3 refs.)

  2. Model predictive control of a lean-burn gasoline engine coupled with a passive selective catalytic reduction system

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pingen [Tennessee Technological University (TTU); Lin, Qinghua [Tennessee Technological University (TTU); Prikhodko, Vitaly Y. [ORNL

    2017-10-01

    Lean-burn gasoline engines have demonstrated 10–20% engine efficiency gain over stoichiometric engines and are widely considered as a promising technology for meeting the 54.5 miles-per-gallon (mpg) Corporate Average Fuel Economy standard by 2025. Nevertheless, NOx emissions control for lean-burn gasoline for meeting the stringent EPA Tier 3 emission standards has been one of the main challenges towards the commercialization of highly-efficient lean-burn gasoline engines in the United States. Passive selective catalytic reduction (SCR) systems, which consist of a three-way catalyst and SCR, have demonstrated great potentials of effectively reducing NOx emissions for lean gasoline engines but may cause significant fuel penalty due to ammonia generation via rich engine combustion. The purpose of this study is to develop a model-predictive control (MPC) scheme for a lean-burn gasoline engine coupled with a passive SCR system to minimize the fuel penalty associated with passive SCR operation while satisfying stringent NOx and NH3 emissions requirements. Simulation results demonstrate that the MPC-based control can reduce the fuel penalty by 47.7% in a simulated US06 cycle and 32.0% in a simulated UDDS cycle, compared to the baseline control, while achieving over 96% deNOx efficiency and less than 15 ppm tailpipe ammonia slip. The proposed MPC control can potentially enable high engine efficiency gain for highly-efficient lean-burn gasoline engine while meeting the stringent EPA Tier 3 emission standards.

  3. Flowthrough Reductive Catalytic Fractionation of Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Eric M.; Stone, Michael L.; Katahira, Rui; Reed, Michelle; Beckham, Gregg T.; Román-Leshkov, Yuriy

    2017-11-01

    Reductive catalytic fractionation (RCF) has emerged as a leading biomass fractionation and lignin valorization strategy. Here, flowthrough reactors were used to investigate RCF of poplar. Most RCF studies to date have been conducted in batch, but a flow-based process enables the acquisition of intrinsic kinetic and mechanistic data essential to accelerate the design, optimization, and scale-up of RCF processes. Time-resolved product distributions and yields obtained from experiments with different catalyst loadings were used to identify and deconvolute events during solvolysis and hydrogenolysis. Multi-bed RCF experiments provided unique insights into catalyst deactivation, showing that leaching, sintering, and surface poisoning are causes for decreased catalyst performance. The onset of catalyst deactivation resulted in higher concentrations of unsaturated lignin intermediates and increased occurrence of repolymerization reactions, producing high-molecular-weight species. Overall, this study demonstrates the concept of flowthrough RCF, which will be vital for realistic scale-up of this promising approach.

  4. Effects of Particle Filters and Selective Catalytic Reduction on In-Use Heavy-Duty Diesel Truck Emissions

    Science.gov (United States)

    Preble, C.; Cados, T.; Harley, R.; Kirchstetter, T.

    2016-12-01

    Heavy-duty diesel trucks (HDDT) are a major source of nitrogen oxides (NOx) and black carbon (BC) in urban environments, contributing to persistent ozone and particulate matter air quality problems. Diesel particle filters (DPFs) and selective catalytic reduction (SCR) systems that target PM and NOx emissions, respectively, have recently become standard equipment on new HDDT. DPFs can also be installed on older engines as a retrofit device. Previous work has shown that DPF and SCR systems can reduce NOx and BC emissions by up to 70% and 90%, respectively, compared to modern trucks without these after-treatment controls (Preble et al., ES&T 2015). DPFs can have the undesirable side-effect of increasing ultrafine particle (UFP) and nitrogen dioxide (NO2) emissions. While SCR systems can partially mitigate DPF-related NO2 increases, these systems can emit nitrous oxide (N2O), a potent greenhouse gas. We report new results from a study of HDDT emissions conducted in fall 2015 at the Port of Oakland and Caldecott Tunnel in California's San Francisco Bay Area. We report pollutant emission factors (g kg-1) for emitted NOx, NO2, BC, PM2.5, UFP, and N2O on a truck-by-truck basis. Using a roadside license plate recognition system, we categorize each truck by its engine model year and installed after-treatment controls. From this, we develop emissions profiles for trucks with and without DPF and SCR. We evaluate the effectiveness of these devices as a function of their age to determine whether degradation is an issue. We also compare the emission profiles of trucks traveling at low speeds along a level, arterial road en route to the port and at high speeds up a 4% grade highway approaching the tunnel. Given the climate impacts of BC and N2O, we also examine the global warming potential of emissions from trucks with and without DPF and SCR.

  5. The influence of a silica pillar in lamellar tetratitanate for selective catalytic reduction of NOx using NH3

    International Nuclear Information System (INIS)

    Nogueira da Cunha, Beatriz; Gonçalves, Alécia Maria; Gomes da Silveira, Rafael; Urquieta-González, Ernesto A.; Magalhães Nunes, Liliane

    2015-01-01

    Highlights: • Potassium ions significantly affected the SCR. • The introduction of silica in the catalyst promotes the NH 3 -SCR reaction. • The catalysts activities were not significantly influenced by SO 2 addition. - Abstract: Silica-pillared layered titanate (SiO 2 –Ti 4 O 9 ) was prepared by intercalating organosilanes into the interlayers of a layered K 2 Ti 4 O 9 followed by calcination at 500 °C. The lamellar titanates produced were used as a support to prepare vanadium catalysts (1 and 2 wt%) through wet impregnation for selective catalytic reduction (SCR) of NO. The catalysts were characterized using nitrogen adsorption (BET), X-ray diffraction (XRD), temperature programmed reduction (H 2 -TPR), nuclear magnetic resonance ( 29 Si NMR), and infrared spectroscopy (FT-IR). Reduction of NO by NH 3 was studied in a fixed-bed reactor packed with the catalysts and fed a mixture comprising 1% NH 3 , 1% NO, 10% O 2 , and 34 ppm SO 2 (when used) in helium. The results demonstrate that activity is correlated with the support, i.e., with acidic strength of catalysts. The potassium in the support, K 2 Ti 4 O 9 , significantly affected the reaction and level of vanadium species reduction. The catalyst (1VSiT) with 1 wt% vanadium impregnated on the SiO 2 –Ti 4 O 9 support reduced ∼80% of the NO. Approximately the same conversion rate was generated on the catalyst (2VSiT) with 2 wt% vanadium using the same support. The increased NH 3 adsorption demonstrate that introduction of silica in the catalyst promotes the NH 3 -SCR reaction. More importantly, 2VSiT and 1VSiT were strongly resistant to SO 2 poisoning

  6. Ethanol-selective catalytic reduction of NO by Ag/Al2O3 catalysts: Activity and deactivation by alkali salts

    DEFF Research Database (Denmark)

    Schill, Leonhard; Putluru, Siva Sankar Reddy; Jacobsen, Casper Funk

    2012-01-01

    Ag/Al2O3 catalysts with and without potassium doping were prepared by incipient wetness impregnation and characterized by N2 physisorption, XRPD, NH3-TPD and SEM. The influence of the Ag content from 1 to 5 wt.% was investigated for the selective catalytic reduction (SCR) of NO with ethanol. The 3...... wt.% Ag/Al2O3 catalyst was found to be the most active and CO2 selective over a wide temperature window (300–500 ◦C). Addition of 500 ppm of H2 has a mild promotional effect on the activity while SO2 has a strong negative influence on the SCR activity. Furthermore, the Ag/Al2O3 ethanol-SCR catalyst......3 ethanol-SCR catalyst compared to the conventional NH3-SCR catalyst. The still low potassium resistance, in combination with the high sensitivity to SO2, seems not to make these catalysts a real option for biomass fired boilers....

  7. Efficient selective catalytic reduction of NO by novel carbon-doped metal catalysts made from electroplating sludge.

    Science.gov (United States)

    Zhang, Jia; Zhang, Jingyi; Xu, Yunfeng; Su, Huimin; Li, Xiaoman; Zhou, Ji Zhi; Qian, Guangren; Li, Li; Xu, Zhi Ping

    2014-10-07

    Electroplating sludges, once regarded as industrial wastes, are precious resources of various transition metals. This research has thus investigated the recycling of an electroplating sludge as a novel carbon-doped metal (Fe, Ni, Mg, Cu, and Zn) catalyst, which was different from a traditional carbon-supported metal catalyst, for effective NO selective catalytic reduction (SCR). This catalyst removed >99.7% NO at a temperature as low as 300 °C. It also removed NO steadily (>99%) with a maximum specific accumulative reduced amount (MSARA) of 3.4 mmol/g. Gas species analyses showed that NO removal was accompanied by evolving N2 and CO2. Moreover, in a wide temperature window, the sludge catalyst showed a higher CO2 selectivity (>99%) than an activated carbon-supported metal catalyst. Structure characterizations revealed that carbon-doped metal was transformed to metal oxide in the sludge catalyst after the catalytic test, with most carbon (2.33 wt %) being consumed. These observations suggest that NO removal over the sludge catalyst is a typical SCR where metals/metal oxides act as the catalytic center and carbon as the reducing reagent. Therefore, our report probably provides an opportunity for high value-added utilizations of heavy-metal wastes in mitigating atmospheric pollutions.

  8. Reductive Catalytic Fractionation of Corn Stover Lignin

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Eric M.; Katahira, Rui; Reed, Michelle; Resch, Michael G.; Karp, Eric M.; Beckham, Gregg T.; Román-Leshkov, Yuriy

    2016-12-05

    Reductive catalytic fractionation (RCF) has emerged as an effective biomass pretreatment strategy to depolymerize lignin into tractable fragments in high yields. We investigate the RCF of corn stover, a highly abundant herbaceous feedstock, using carbon-supported Ru and Ni catalysts at 200 and 250 degrees C in methanol and, in the presence or absence of an acid cocatalyst (H3PO4 or an acidified carbon support). Three key performance variables were studied: (1) the effectiveness of lignin extraction as measured by the yield of lignin oil, (2) the yield of monomers in the lignin oil, and (3) the carbohydrate retention in the residual solids after RCF. The monomers included methyl coumarate/ferulate, propyl guaiacol/syringol, and ethyl guaiacol/syringol. The Ru and Ni catalysts performed similarly in terms of product distribution and monomer yields. The monomer yields increased monotonically as a function of time for both temperatures. At 6 h, monomer yields of 27.2 and 28.3% were obtained at 250 and 200 degrees C, respectively, with Ni/C. The addition of an acid cocatalysts to the Ni/C system increased monomer yields to 32% for acidified carbon and 38% for phosphoric acid at 200 degrees C. The monomer product distribution was dominated by methyl coumarate regardless of the use of the acid cocatalysts. The use of phosphoric acid at 200 degrees C or the high temperature condition without acid resulted in complete lignin extraction and partial sugar solubilization (up to 50%) thereby generating lignin oil yields that exceeded the theoretical limit. In contrast, using either Ni/C or Ni on acidified carbon at 200 degrees C resulted in moderate lignin oil yields of ca. 55%, with sugar retention values >90%. Notably, these sugars were amenable to enzymatic digestion, reaching conversions >90% at 96 h. Characterization studies on the lignin oils using two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance and gel permeation chromatrography revealed

  9. Catalytic/non-catalytic combination process for nitrogen oxides reduction

    International Nuclear Information System (INIS)

    Luftglass, B.K.; Sun, W.H.; Hofmann, J.E.

    1992-01-01

    This patent describes a process for the reduction of nitrogen oxides in the effluent from the combustion of a carbonaceous fuel. It comprises introducing a nitrogenous treatment agent comprising urea, one or more of the hydrolysis products of urea, ammonia, compounds which produce ammonia as a by-product, ammonium salts of organic acids, 5- or 6-membered heterocyclic hydrocarbons having at least one cyclic nitrogen, hydroxy amino hydrocarbons, or mixtures thereof into the effluent at an effluent temperature between about 1200 degrees F and about 2100 degrees F; and contacting the treated effluent under conditions effective to reduce the nitrogen oxides in the effluent with a catalyst effective for the reduction of nitrogen oxides in the presence of ammonia

  10. Effect of the sol-gel conditions on the morphology and SCR performance of electrospun V-W-TiO2 catalysts

    DEFF Research Database (Denmark)

    Marani, Debora; Silva, Rafael Hubert; Dankeaw, Apiwat

    2018-01-01

    V-W-TiO2 catalysts are prepared as nanofibers for the removal of the NOx in exhausts via the NH3 Selective Catalytic Reduction (SCR) method. By combining electrospinning and soft chemistry, materials are processed as nanofibers with the catalytic components (e. g. V2O5-WO3) incorporated as dopant...

  11. Influence of nitrogen surface functionalities on the catalytic activity of activated carbon in low temperature SCR of NOx with NH3

    International Nuclear Information System (INIS)

    Szymanski, Grzegorz S.; Grzybek, Teresa; Papp, Helmut

    2004-01-01

    The reduction of nitrogen oxide with ammonia was studied using carbon catalysts with chemically modified surfaces. Carbon samples with different surface chemistry were obtained from commercial activated carbon D43/1 (CarboTech, Essen, Germany) by chemical modification involving oxidation with conc. nitric acid (DOx) (1); high temperature treatment (=1000K) under vacuum (DHT) (2); or in ammonia (DHTN, DOxN) (3). Additionally, a portion of the DOx sample was promoted with iron(III) ions (DOxFe). The catalytic tests were performed in a microreactor at a temperature range of 413-573K. The carbon sample annealed under vacuum (DHT) showed the lowest activity. The formation of surface acidic surface oxides by nitric acid treatment (DOx) enhanced the catalytic activity only slightly. However, as can be expected, subsequent promotion of the DOx sample with iron(III) ions increased drastically its catalytic activity. However, this was accompanied by some loss of selectivity, i.e. formation of N 2 O as side product. This effect can be avoided using ammonia-treated carbons which demonstrated reasonable activity with simultaneous high selectivity. The most active and selective among them was the sample that was first oxidized with nitric acid and then heated in an ammonia stream (DOxN). A correlation between catalytic activity and surface nitrogen content was observed. Surface nitrogen species seem to play an important role in catalytic selective reduction of nitrogen oxide with ammonia, possibly facilitating NO 2 formation (a reaction intermediate) as a result of easier chemisorption of oxygen and nitrogen oxide

  12. Influence of nitrogen surface functionalities on the catalytic activity of activated carbon in low temperature SCR of NO{sub x} with NH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Szymanski, Grzegorz S. [Faculty of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87-100 Torun (Poland); Grzybek, Teresa [Faculty of Fuels and Energy, AGH, University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Papp, Helmut [Faculty of Chemistry and Mineralogy, Institute of Technical Chemistry, University of Leipzig, Linnerstrasse 3, 04103 Leipzig (Germany)

    2004-06-15

    The reduction of nitrogen oxide with ammonia was studied using carbon catalysts with chemically modified surfaces. Carbon samples with different surface chemistry were obtained from commercial activated carbon D43/1 (CarboTech, Essen, Germany) by chemical modification involving oxidation with conc. nitric acid (DOx) (1); high temperature treatment (=1000K) under vacuum (DHT) (2); or in ammonia (DHTN, DOxN) (3). Additionally, a portion of the DOx sample was promoted with iron(III) ions (DOxFe). The catalytic tests were performed in a microreactor at a temperature range of 413-573K. The carbon sample annealed under vacuum (DHT) showed the lowest activity. The formation of surface acidic surface oxides by nitric acid treatment (DOx) enhanced the catalytic activity only slightly. However, as can be expected, subsequent promotion of the DOx sample with iron(III) ions increased drastically its catalytic activity. However, this was accompanied by some loss of selectivity, i.e. formation of N{sub 2}O as side product. This effect can be avoided using ammonia-treated carbons which demonstrated reasonable activity with simultaneous high selectivity. The most active and selective among them was the sample that was first oxidized with nitric acid and then heated in an ammonia stream (DOxN). A correlation between catalytic activity and surface nitrogen content was observed. Surface nitrogen species seem to play an important role in catalytic selective reduction of nitrogen oxide with ammonia, possibly facilitating NO{sub 2} formation (a reaction intermediate) as a result of easier chemisorption of oxygen and nitrogen oxide.

  13. Validation of the catalytic properties of Cu-Os/13X using single fixed bed reactor in selective catalytic reduction of NO

    International Nuclear Information System (INIS)

    Oh, Kwang Seok; Woo, Seong Ihl

    2007-01-01

    Catalytic decomposition of NO over Cu-Os/13X has been carried out in a tubular fixed bed reactor at atmospheric pressure and the results were compared with literature data performed by high-throughput screening (HTS). The activity and durability of Cu-Os/13X prepared by conventional ion-exchange method have been investigated in the presence of H 2 O and SO 2 . It was found that Cu-Os/13X prepared by ion-exchange shows a high activity in a wide temperature range in selective catalytic reduction (SCR) of NO with C 3 H 6 compared to Cu/13X, proving the existence of more NO adsorption site on Cu-Os/13X. However, Cu-Os/13X exhibited low activity in the presence of water, and was quite different from the result reported in literature. SO 2 resistance is also low and does not recover its original activity when the SO 2 was blocked in the feed gas stream. This result suggested that catalytic activity between combinatorial screening and conventional testing should be compared to confirm the validity of high-throughput screening

  14. The energy consumption and environmental impacts of SCR technology in China

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Zengying; Ma, Xiaoqian; Lin, Hai; Tang, Yuting [School of Electric Power, Guangdong Key Laboratory of Clean Energy Technology, South China University of Technology, Guangzhou 510640 (China)

    2011-04-15

    Energy and environment are drawing greater attention today, particularly with the rapid development of the economy and increase consumption of energy in China. At present, coal-fired power plants are mainly responsible for atmospheric air pollution. The selective catalytic reduction (SCR) technology is a highly effective method for NO{sub X} control. The present study identified and quantified the energy consumption and the environmental impacts of SCR system throughout the whole life cycle, including production and transportation of manufacturing materials, installation and operation of SCR technology. The analysis was conducted with the utilization of life cycle assessment (LCA) methodology which provided a quantitative basis for assessing potential improvements in the environmental performance of the system. The functional unit of the study was 5454 t NO{sub X} emission from an existing Chinese pulverized coal power plant for 1 year. The current study compared life cycle emissions from two types of de-NO{sub X} technologies, namely the SCR technology and the selective non-catalytic reduction (SNCR) technology, and the case that NO{sub X} was emitted into atmosphere directly. The results showed that the environmental impact loading resulting from SCR technology (66810 PET{sub 2000}) was smaller than that of flue gas emitted into atmosphere directly (164121 PET{sub 2000}) and SNCR technology (105225 PET{sub 2000}). More importantly, the SCR technology is much more effective at the elimination of acidification and nutrient enrichment than SNCR technology and the case that NO{sub X} emitted into atmosphere directly. This SCR technology is more friendly to the environment, and can play an important role in NO{sub X} control for coal-fired power plants as well as industrial boilers. (author)

  15. STUDY OF THE EFFECT OF CHLORINE ADDITION ON MERCURY OXIDATION BY SCR CATALYST UNDER SIMULATED SUBBITUMINOUS COAL FLUE GAS

    Science.gov (United States)

    An entrained flow reactor is used to study the effect of addition of chlorine-containing species on the oxidation of elemental mercury (Hgo)by a selective catalytic reduction (SCR) catalyst in simulated subbituminous coal combustion flue gas. The combustion flue gas was doped wit...

  16. STUDY OF MERCURY OXIDATION BY SCR CATALYST IN AN ENTRAINED-FLOW REACTOR UNDER SIMULATED PRB CONDITIONS

    Science.gov (United States)

    A bench-scale entrained-flow reactor system was constructed for studying elemental mercury oxidation under selective catalytic reduction (SCR) reaction conditions. Simulated flue gas was doped with fly ash collected from a subbituminous Powder River Basin (PRB) coal-fired boiler ...

  17. Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems

    Energy Technology Data Exchange (ETDEWEB)

    J. A. Withum; S. C. Tseng; J. E. Locke

    2006-01-31

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that these data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the ninth in a series of topical reports, describes the results and analysis of mercury sampling performed on Unit 1 at Plant 7, a 566 MW unit burning a bituminous coal containing 3.6% sulfur. The unit is equipped with a SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO

  18. Highly efficient catalytic reductive degradation of various organic ...

    Indian Academy of Sciences (India)

    aDepartment of Applied Sciences (Chemical Science Division), GUIST, Gauhati University, ... Highly improved catalytic reductive degradation of different organic dyes, in the ... was prepared by a facile co-precipitation method using ultra-high dilute aqueous solutions. ...... face chemical-modification for engineering the intrin-.

  19. Catalytic membrane in reduction of aqueous nitrates: operational principles and catalytic performance

    NARCIS (Netherlands)

    Ilinitch, O.M.; Cuperus, F.P.; Nosova, L.V.; Gribov, E.N.

    2000-01-01

    The catalytic membrane with palladium-copper active component supported over the macroporous ceramic membrane, and a series of γ-Al 2O 3 supported Pd-Cu catalysts were prepared and investigated. In reduction of nitrate ions by hydrogen in water at ambient temperature, pronounced internal diffusion

  20. The Effect of Acidic and Redox Properties of V2O5/CeO2-ZrO2 Catalysts in Selective Catalytic Reduction of NO by NH3

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Riisager, Anders; Fehrmann, Rasmus

    2009-01-01

    V2O5 supported ZrO2 and CeO2–ZrO2 catalysts were prepared and characterized by N2 physisorption, XRPD, TPR, and NH3-TPD methods. The influence of calcination temperature from 400 to 600 °C on crystallinity, acidic and redox properties were studied and compared with the catalytic activity...... in the selective catalytic reduction (SCR) of NO with ammonia. The surface area of the catalysts decreased gradually with increasing calcination temperature. The SCR activity of V2O5/ZrO2 catalysts was found to be related with the support crystallinity, whereas V2O5/CeO2–ZrO2 catalysts were also dependent...... on acidic and redox properties of the catalyst. The V2O5/CeO2–ZrO2 catalysts showed high activity and selectivity for reduction of NO with NH3....

  1. Combustion, performance, and selective catalytic reduction of NOx for a diesel engine operated with combined tri fuel (H_2, CH_4, and conventional diesel)

    International Nuclear Information System (INIS)

    Abu-Jrai, Ahmad M.; Al-Muhtaseb, Ala'a H.; Hasan, Ahmad O.

    2017-01-01

    In this study, the effect of tri fuel (ULSD, H_2, and CH_4) operation under real exhaust gas conditions with different gaseous fuel compositions on the combustion characteristics, engine emissions, and selective catalytic reduction (SCR) after treatment was examined at low, medium, and high engine loads. Pt/Al_2O_3-SCR reactor was used and operated at different exhaust gas temperatures. Results revealed that at low load, the two gaseous fuels (H_2 and CH_4) have the same trend on combustion proccess, where both reduce the in-cylinder pressure and rate of heat release. At the high engine load there was a considerable influence appeared as an increase of the premixed combustion phase and a significant decrease of the total combustion duration. In terms of emissions, it was observed that at high engine load, fuels with high CH_4 content tend to reduce NOx formation, whereas, fuels with high H_2 content tend to reduce PM formation, moreover, combustion of tri fuel with 50:50 fuel mixture resulted in lower BSFC compared to the other ratios and hence, the best engine efficiency. The hydrocarbon-SCR catalyst has shown satisfactory performance in NOx reduction under real diesel exhaust gas in a temperature window of 180–280 °C for all engine loads. - Highlights: • Effect of tri fuel (ULSD, H_2, CH_4) on combustion and engine emissions was examined. • Fuel with high CH_4 content (H50-M50 and H25-M75) tend to reduce NOx formation. • Fuel with high H_2 content (H75-M25 and H50-M50) tend to reduce PM formation. • Increasing the percentage of H_2 in the feed gas improved the NO_x reduction. • The hydrocarbon-SCR catalyst has shown satisfactory performance in NO_x reduction.

  2. System and method for controlling ammonia levels in a selective catalytic reduction catalyst using a nitrogen oxide sensor

    Science.gov (United States)

    None

    2017-07-25

    A system according to the principles of the present disclosure includes an air/fuel ratio determination module and an emission level determination module. The air/fuel ratio determination module determines an air/fuel ratio based on input from an air/fuel ratio sensor positioned downstream from a three-way catalyst that is positioned upstream from a selective catalytic reduction (SCR) catalyst. The emission level determination module selects one of a predetermined value and an input based on the air/fuel ratio. The input is received from a nitrogen oxide sensor positioned downstream from the three-way catalyst. The emission level determination module determines an ammonia level based on the one of the predetermined value and the input received from the nitrogen oxide sensor.

  3. Catalytic and inhibitory effects of thechnetium on reduction processes

    International Nuclear Information System (INIS)

    Grases, F.; Genestar, C.; March, J.G.; March, P.

    1986-01-01

    Interactions between technetium and some anthraquinones and tartrazin in the presence of tin(II) are described. It was found that whereas the reductive process between Sn(II) and 1-amino-4-hydroxyanthraquinone is catalyzed by technetium, the reduction of tartrazin is inhibited by this element. Study of such process seems to indicate that the catalytic effect of technetium on the reduction processes is due to Tc(V) action whereas the inhibitory effect is due to the Tc(IV) species. (author)

  4. Radio-Frequency-Based NH3-Selective Catalytic Reduction Catalyst Control: Studies on Temperature Dependency and Humidity Influences

    Directory of Open Access Journals (Sweden)

    Markus Dietrich

    2017-07-01

    Full Text Available The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF catalyst state determination offers the only approach for directly measuring the NH3 loading on selective catalytic reduction (SCR catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH3 storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13 was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH3 storage control, the influence of the storage degree on the catalyst performance, i.e., on NOx conversion and NH3 slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH3 storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals.

  5. Radio-Frequency-Based NH₃-Selective Catalytic Reduction Catalyst Control: Studies on Temperature Dependency and Humidity Influences.

    Science.gov (United States)

    Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf

    2017-07-12

    The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF) catalyst state determination offers the only approach for directly measuring the NH₃ loading on selective catalytic reduction (SCR) catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH₃ storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13) was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH₃ storage control, the influence of the storage degree on the catalyst performance, i.e., on NO x conversion and NH₃ slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH₃ storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals.

  6. Radio-Frequency-Based NH3-Selective Catalytic Reduction Catalyst Control: Studies on Temperature Dependency and Humidity Influences

    Science.gov (United States)

    Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf

    2017-01-01

    The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF) catalyst state determination offers the only approach for directly measuring the NH3 loading on selective catalytic reduction (SCR) catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH3 storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13) was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH3 storage control, the influence of the storage degree on the catalyst performance, i.e., on NOx conversion and NH3 slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH3 storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals. PMID:28704929

  7. LPV gain-scheduled control of SCR aftertreatment systems

    Science.gov (United States)

    Meisami-Azad, Mona; Mohammadpour, Javad; Grigoriadis, Karolos M.; Harold, Michael P.; Franchek, Matthew A.

    2012-01-01

    Hydrocarbons, carbon monoxide and some of other polluting emissions produced by diesel engines are usually lower than those produced by gasoline engines. While great strides have been made in the exhaust aftertreatment of vehicular pollutants, the elimination of nitrogen oxide (NO x ) from diesel vehicles is still a challenge. The primary reason is that diesel combustion is a fuel-lean process, and hence there is significant unreacted oxygen in the exhaust. Selective catalytic reduction (SCR) is a well-developed technology for power plants and has been recently employed for reducing NO x emissions from automotive sources and in particular, heavy-duty diesel engines. In this article, we develop a linear parameter-varying (LPV) feedforward/feedback control design method for the SCR aftertreatment system to decrease NO x emissions while keeping ammonia slippage to a desired low level downstream the catalyst. The performance of the closed-loop system obtained from the interconnection of the SCR system and the output feedback LPV control strategy is then compared with other control design methods including sliding mode, and observer-based static state-feedback parameter-varying control. To reduce the computational complexity involved in the control design process, the number of LPV parameters in the developed quasi-LPV (qLPV) model is reduced by applying the principal component analysis technique. An LPV feedback/feedforward controller is then designed for the qLPV model with reduced number of scheduling parameters. The designed full-order controller is further simplified to a first-order transfer function with a parameter-varying gain and pole. Finally, simulation results using both a low-order model and a high-fidelity and high-order model of SCR reactions in GT-POWER interfaced with MATLAB/SIMULINK illustrate the high NO x conversion efficiency of the closed-loop SCR system using the proposed parameter-varying control law.

  8. Heteropoly acid promoted catalyst for SCR of NOx with ammonia

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention concerns the selective removal of nitrogen oxides (NOx) from gases. In particular, the invention concerns a process, a highly alkali metal resistant heteropoly acid promoted catalyst and the use of said catalyst for removal of NOx from exhaust or flue gases, said gases...... comprising alkali or earth alkali metals. Such gases comprise for example flue gases arising from the burning of biomass, combined biomass and fossil fuel, and from waste incineration units. The process comprises the selective catalytic reduction (SCR) of NOx, such as nitrogen dioxide (NO2) and nitrogen...

  9. Design of a periodically operated SCR reactor

    International Nuclear Information System (INIS)

    Kotter, M.; Lintz, H.G.; Turek, T.

    1993-01-01

    A new NO x abatement process uses the rotating Ljungstroem air heater of the power plant for the selective catalytic reduction (SCR) of nitrogen monoxide with ammonia. For this purpose the air heater elements are covered by a catalytically active layer. The transformation can be carried out by simple replacement of the original air heater elements. Thus nitrogen monoxide control is possible without requiring major modifications of existing power plant equipment. Two oxidic catalysts have been developed to be employed in the different temperature sections of the air heater. The activity of the catalysts has been quantified with the aid of laboratory scale experiments. The results can be described using a simple expression for the rate of the chemical reaction. NO conversion and NH 3 slip to be expected in a catalytically active Ljungstroem heat exchanger are calculated with a reactor model taking into account the gas phase mass transfer resistances. The calculations show that the proposed device can be used if the NO concentration in the flue gas does not exceed 300 ppm. Recently Kraftanlagen AG, Heidelberg, installed a catalyst air heater system at Mandalay Generating Station in Oxnard, California. The comparison of the predicted results with preliminary experimental data proves the validity of the chosen reactor model. Under the given conditions NO conversions of more than 60% can be achieved maintaining the NH 3 slip below the specified value of 10 ppm. (orig.). 19 figs., 35 refs [de

  10. Development of a chronocoulometric method for uranium traces determination with basis on nitrate catalytic reduction

    International Nuclear Information System (INIS)

    Cantagallo, M.I.C.; Gutz, I.G.R.

    1990-01-01

    The application of chronocoulometric technique with catalytic reduction of uranium/nitrate with catalytic reduction of uranium/nitrate system is described to give a detection limits on the sub-nanomolar region of uranium. (author)

  11. Catalytic activity of lanthanum oxide for the reduction of cyclohexanone

    International Nuclear Information System (INIS)

    Sugunan, S.; Sherly, K.B.

    1994-01-01

    Lanthanum oxides, La 2 O 3 has been found to be an effective catalyst for the liquid phase reduction of cyclohexanone. The catalytic activities of La 2 O 3 activated at 300, 500 and 800 degC and its mixed oxides with alumina for the reduction of cylcohexanone with 2-propanol have been determined and the data parallel that of the electron donating properties of the catalysts. The electron donating properties of the catalysts have been determined from the adsorption of electron acceptors of different electron affinities on the surface of these oxides. (author). 15 refs., 2 figs., 1 tab

  12. Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems

    Energy Technology Data Exchange (ETDEWEB)

    J. A. Withum; J. E. Locke

    2006-02-01

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the tenth in a series of topical reports, describes the results and analysis of mercury sampling performed on two 468 MW units burning bituminous coal containing 1.3-1.7% sulfur. Unit 2 is equipped with an SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO{sub 2} emissions

  13. Catalytic briquettes from low-rank coal for NO reduction

    Energy Technology Data Exchange (ETDEWEB)

    A. Boyano; M.E. Galvez; R. Moliner; M.J. Lazaro [Instituto de Carboquimica, CSIC, Zaragoza (Spain)

    2007-07-01

    The briquetting is one of the most ancient and widespread techniques of coal agglomeration which is nowadays becoming useless for combustion home applications. However, the social increasing interest in environmental protection opens new applications to this technique, especially in developed countries. In this work, a series of catalytic briquettes were prepared from low-rank Spanish coal and commercial pitch by means of a pressure agglomeration method. After that, they were cured in air and doped by equilibrium impregnation with vanadium compounds. Preparation conditions (especially those of activation and oxidizing process) were changed to study their effects on catalytic behaviour. Catalytic briquettes showed a relative high NO conversion at low temperatures in all cases, however, a strong relation between the preparation process and the reached NO conversion was observed. Preparation procedure has an effect not only on the NO reduction efficiency but also on the mechanical strength of the briquettes as a consequence of the structural and chemical changes carried out during the activation and oxidation procedures. Generally speaking mechanical resistance is enhanced by an optimal porous volume and the creation of new carboxyl groups on surface. Just on the contrary, NO reduction is promoted by high microporous structures and higher amounts of surface oxygen groups. Both facts force to find an optimum point in the preparation produce which will depend on the application. 24 refs., 4 figs., 3 tabs.

  14. Low NOx combustion and SCR flow field optimization in a low volatile coal fired boiler.

    Science.gov (United States)

    Liu, Xing; Tan, Houzhang; Wang, Yibin; Yang, Fuxin; Mikulčić, Hrvoje; Vujanović, Milan; Duić, Neven

    2018-08-15

    Low NO x burner redesign and deep air staging have been carried out to optimize the poor ignition and reduce the NO x emissions in a low volatile coal fired 330 MW e boiler. Residual swirling flow in the tangentially-fired furnace caused flue gas velocity deviations at furnace exit, leading to flow field unevenness in the SCR (selective catalytic reduction) system and poor denitrification efficiency. Numerical simulations on the velocity field in the SCR system were carried out to determine the optimal flow deflector arrangement to improve flow field uniformity of SCR system. Full-scale experiment was performed to investigate the effect of low NO x combustion and SCR flow field optimization. Compared with the results before the optimization, the NO x emissions at furnace exit decreased from 550 to 650 mg/Nm³ to 330-430 mg/Nm³. The sample standard deviation of the NO x emissions at the outlet section of SCR decreased from 34.8 mg/Nm³ to 7.8 mg/Nm³. The consumption of liquid ammonia reduced from 150 to 200 kg/h to 100-150 kg/h after optimization. Copyright © 2018. Published by Elsevier Ltd.

  15. Research progress on catalytic denitrification technology in chemical industry

    Science.gov (United States)

    Jin, Yezhi

    2017-12-01

    In recent years, due to the rising emission of NOx annually, attention has been aroused widely by people on more and more severe environmental problems. This paper first discusses applying NOx removal and control technologies and relating chemical principles. Of many technologies, selective reduction reaction (SCR) is the most widely used. Catalysts, the concentration of NOx at the entrance of SCR catalytic reactor, reaction temperature, NH3/NOx mole ratio and NH3 slip rate analyzed later contributes to the removal efficiency of NOx. Finally, the processing and configuration of SCR de-NOx system are briefly introduced.

  16. Improved Automotive NO (x) Aftertreatment System: Metal Ammine Complexes as NH3 Source for SCR Using Fe-Containing Zeolite Catalysts

    DEFF Research Database (Denmark)

    Johannessen, Tue; Schmidt, Henning; Frey, Anne Mette

    2009-01-01

    Ammonia storage is a challenge in the selective catalytic reduction of NO (x) in vehicles. We propose a new system, based on metal ammines as the ammonia source. In combination with iron containing zeolites as the SCR catalyst it should be possible to obtain a low temperature system for NO (x...

  17. Spectroscopic Insights into Copper-Based Microporous Zeolites for NH3-SCR of NOx and Methane-to-Methanol Activation

    OpenAIRE

    Oord, R.

    2017-01-01

    Smog has received a lot of attention and is still a major problem in big cities all over the world. A major contribution to smog are nitrogen oxides (NOx), which are mainly produced by road transport, industrial processes and power plants. A lot of research has been put into the reduction of these pollutants, and heterogeneous catalysts have made a major contribution to this field. Selective catalytic reduction (SCR) is an efficient technology to reduce these NOx, and is already used in diese...

  18. The effect of soot on ammonium nitrate species and NO2 selective catalytic reduction over Cu-zeolite catalyst-coated particulate filter.

    Science.gov (United States)

    Mihai, Oana; Tamm, Stefanie; Stenfeldt, Marie; Olsson, Louise

    2016-02-28

    A selective catalytic reduction (SCR)-coated particulate filter was evaluated by means of dynamic tests performed using NH3, NO2, O2 and H2O. The reactions were examined both prior to and after soot removal in order to study the effect of soot on ammonium nitrate formation and decomposition, ammonia storage and NO2 SCR. A slightly larger ammonia storage capacity was observed when soot was present in the sample, which indicated that small amounts of ammonia can adsorb on the soot. Feeding of NO2 and NH3 in the presence of O2 and H2O at low temperature (150, 175 and 200°C) leads to a large formation of ammonium nitrate species and during the subsequent temperature ramp using H2O and argon, a production of nitrous oxides was observed. The N2O formation is often related to ammonium nitrate decomposition, and our results showed that the N2O formation was clearly decreased by the presence of soot. We therefore propose that in the presence of soot, there are fewer ammonium nitrate species on the surface due to the interactions with the soot. Indeed, we do observe CO2 production during the reaction conditions also at 150°C, which shows that there is a reaction with these species and soot. In addition, the conversion of NOx due to NO2 SCR was significantly enhanced in the presence of soot; we attribute this to the smaller amount of ammonium nitrate species present in the experiments where soot is available since it is well known that ammonium nitrate formation is a major problem at low temperature due to the blocking of the catalytic sites. Further, a scanning electron microscopy analysis of the soot particles shows that they are about 30-40 nm and are therefore too large to enter the pores of the zeolites. There are likely CuxOy or other copper species available on the outside of the zeolite crystallites, which could have been enhanced due to the hydrothermal treatment at 850°C of the SCR-coated filter prior to the soot loading. We therefore propose that soot is

  19. SNCR technology for NO sub x reduction in the cement industry. [Selective non-catalytic reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kupper, D; Brentrup, L [Krupp Polysius AG, Beckum (Germany)

    1992-03-01

    This article discusses the selective non-catalytic (SNCR) process for reducing nitrogen oxides in exhaust gases from cement plants. Topics covered include operating experience, injection of additives, selection of the additive, operating costs, reduction efficiency of SNCR, capital expenditure, secondary emissions and cycles of ammonium. (UK).

  20. Mn/TiO2 and Mn–Fe/TiO2 catalysts synthesized by deposition precipitation—promising for selective catalytic reduction of NO with NH3 at low temperatures

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Schill, Leonhard; Jensen, Anker Degn

    2015-01-01

    Mn/TiO2and Mn–Fe/TiO2catalysts have been prepared by impregnation (IMP) and deposition-precipitation (DP) techniques and characterized by N2 physisorption, XRPD, NH3-TPD, H2-TPR, XPS and TGA. 25 wt% Mn0.75Fe0.25Ti-DP catalyst, prepared by deposition precipitation with ammonium carbamate (AC......) as a precipitating agent, showed superior low-temperature SCR (selective catalytic reduction) of NO with NH3. The superior catalytic activity of the 25 wt% Mn0.75Fe0.25Ti-DP catalyst is probably due to the presence of amorphous phases of manganese oxide, iron oxide, high surface area, high total acidity......, acidstrength and ease of reduction of manganese oxide and iron oxide on TiO2in addition to formation of an SCR active MnOx phase with high content of chemisorbed oxygen (Oα). The optimum catalyst might beused as tail-end SCR catalysts in, e.g., biomass-fired power plants and waste incineration plants....

  1. Effects of NOX Storage Component on Ammonia Formation in TWC for Passive SCR NOX Control in Lean Gasoline Engines

    Energy Technology Data Exchange (ETDEWEB)

    Prikhodko, Vitaly Y. [ORNL; Pihl, Josh A. [ORNL; Toops, Todd J. [ORNL; Parks, II, James E. [ORNL

    2018-04-01

    A prototype three-way catalyst (TWC) with NOX storage component was evaluated for ammonia (NH3) generation on a 2.0-liter BMW lean burn gasoline direct injection engine as a component in a passive ammonia selective catalytic reduction (SCR) system. The passive NH3 SCR system is a potential approach for controlling nitrogen oxides (NOX) emissions from lean burn gasoline engines. In this system, NH3 is generated over a close-coupled TWC during periodic slightly-rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. Adding a NOX storage component to a TWC provides two benefits in the context of a passive SCR system: (1) enabling longer lean operation by storing NOX upstream and preserving NH3 inventory on the downstream SCR catalyst; and (2) increasing the quantity and rate of NH3 production during rich operation. Since the fuel penalty associated with passive SCR NOX control depends on the fraction of time that the engine is running rich rather than lean, both benefits (longer lean times and shorter rich times achieved via improved NH3 production) will decrease the passive SCR fuel penalty. However, these benefits are primarily realized at low to moderate temperatures (300-500 °C), where the NOX storage component is able to store NOX, with little to no benefit at higher temperatures (>500 °C), where NOX storage is no longer effective. This study discusses engine parameters and control strategies affecting the NH3 generation over a TWC with NOX storage component.

  2. Selective catalytic reduction of NO{sub x} by olefins

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, F

    1997-12-31

    The removal of nitrogen oxides from the exhaust of lean-burn gasoline fuelled and diesel-fuelled engines, operating under net oxidizing conditions, has recently attracted considerable attention. In this work, three different catalytic systems (Al{sub 2}O{sub 3}, Cu/Al{sub 2}O{sub 3} and Cu/ZSM-5) are investigated for their suitability as catalysts for the selective reduction of nitrogen oxides by hydrocarbons in excess oxygen. Special emphasis is given to the formation of potentially harmful byproducts such as hydrogen cyanide (HCN), cyanic acid (HNCO), ammonia (NH{sub 3}) and nitrous oxide (N{sub 2}O). The effect of reaction temperature, nitrogen oxide (NO, NO{sub 2}), hydrocarbon (ethene, propene) and water on activity and the formation of byproducts is investigated. In situ FTIR spectroscopy and temperature-programmed surface reactions (TPSR) of absorbed species in different atmospheres were used to investigate the nature and reactivity of adsorbates formed under reaction conditions. The catalytic activity was strongly influenced by the presence of water in the feed. The effects of the other parameters were suppressed and the performance generally decreased, except when propene was used for the reduction of NO{sub x} over Cu/ZSM-5. Over Cu/ZSM-5 clearly higher conversion was obtained, when ethene was used as reducing agent, while there was no significant difference when starting from NO or NO{sub 2}. In contrast, with {gamma}-Al{sub 2}O{sub 3} NO{sub 2} was reduced more efficiently than NO with both reductants. The impregnation of {gamma}-Al{sub 2}O{sub 3} with copper led to an extensive loss of this performance. For dry feeds and with increasing CuO loading, the catalysts reached maximum activity at lower temperature and the maximum yield of nitrogen slightly decreased. (author) figs., tabs., refs.

  3. Catalytic Reduction of NO and NOx Content in Tobacco Smoke

    Directory of Open Access Journals (Sweden)

    Cvetkovic N

    2014-12-01

    Full Text Available In order to reduce the nitric oxide (NO and nitrogen oxides (NO content in mainstream tobacco smoke, a new class of catalyst based on Cu-ZSM-5 zeolite has been synthesized. The effectiveness of the new catalyst (degree of reduction and specific catalytic ability was tested both by adding Cu-ZSM-5 zeolite directly to the tobacco blend and by addition to the filter. We have determined that adding the catalyst to the tobacco blend does not cause any changes in the physical, chemical or organoleptic properties of the cigarette blend. But, the addition reduces the yield of nitrogen oxides while having no influence on nicotine and “tar” content in the tobacco smoke of the modified blend. The catalyst addition increases the static burning rate (SBR. The changes in the quantity of NO and NOmay be explained by changes in burning conditions due to the increase of Oobtained from catalytic degradation of NO and NO, and adsorptive and diffusive properties of the catalyst. The changes in mainstream smoke analytes are also given on a puff-by-puff basis.

  4. Selective catalytic reduction of nitric oxide with acetaldehyde over NaY zeolite catalyst in lean exhaust feed

    International Nuclear Information System (INIS)

    Schmieg, Steven J.; Cho, Byong K.; Oh, Se H.

    2004-01-01

    Steady-state selective catalytic reduction (SCR) of nitric oxide (NO) was investigated under simulated lean-burn conditions using acetaldehyde (CH 3 CHO) as the reductant. This work describes the influence of catalyst space velocity and the impact of nitric oxide, acetaldehyde, oxygen, sulfur dioxide, and water on NO x reduction activity over NaY zeolite catalyst. Results indicate that with sufficient catalyst volume 90% NO x conversion can be achieved at temperatures relevant to light-duty diesel exhaust (150-350C). Nitric oxide and acetaldehyde react to form N 2 , HCN, and CO 2 . Oxygen is necessary in the exhaust feed stream to oxidize NO to NO 2 over the catalyst prior to reduction, and water is required to prevent catalyst deactivation. Under conditions of excess acetaldehyde (C 1 :N>6:1) and low temperature ( x conversion is apparently very high; however, the NO x conversion steadily declines with time due to catalytic oxidation of some of the stored (adsorbed) NO to NO 2 , which can have a significant impact on steady-state NO x conversion. With 250ppm NO in the exhaust feed stream, maximum NO x conversion at 200C can be achieved with =400ppm of acetaldehyde, with higher acetaldehyde concentrations resulting in production of acetic acid and breakthrough of NO 2 causing lower NO x conversion levels. Less acetaldehyde is necessary at lower NO concentrations, while more acetaldehyde is required at higher temperatures. Sulfur in the exhaust feed stream as SO 2 can cause slow deactivation of the catalyst by poisoning the adsorption and subsequent reaction of nitric oxide and acetaldehyde, particularly at low temperature

  5. Investigation of PCDD/F emissions from mobile source diesel engines: impact of copper zeolite SCR catalysts and exhaust aftertreatment configurations.

    Science.gov (United States)

    Liu, Z Gerald; Wall, John C; Barge, Patrick; Dettmann, Melissa E; Ottinger, Nathan A

    2011-04-01

    This study investigated the impact of copper zeolite selective catalytic reduction (SCR) catalysts and exhaust aftertreatment configurations on the emissions of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) from mobile source diesel engines. Emissions of PCDD/Fs, reported as the weighted sum of 17 congeners called the toxic equivalency quotient (TEQ), were measured using a modified EPA Method 0023A in the absence and presence of exhaust aftertreatment. Engine-out emissions were measured as a reference, while aftertreatment configurations included various combinations of diesel oxidation catalyst (DOC), diesel particulate filter (DPF), Cu-zeolite SCR, Fe-zeolite SCR, ammonia oxidation catalyst (AMOX), and aqueous urea dosing. In addition, different chlorine concentrations were evaluated. Results showed that all aftertreatment configurations reduced PCDD/F emissions in comparison to the engine-out reference, consistent with reduction mechanisms such as thermal decomposition or combined trapping and hydrogenolysis reported in the literature. Similarly low PCDD/F emissions from the DOC-DPF and the DOC-DPF-SCR configurations indicated that PCDD/F reduction primarily occurred in the DOC-DPF with no noticeable contribution from either the Cu- or Fe-zeolite SCR systems. Furthermore, experiments performed with high chlorine concentration provided no evidence that chlorine content has an impact on the catalytic synthesis of PCDD/Fs for the chlorine levels investigated in this study.

  6. Catalytic reduction of NO{sub x}. Final report; Katalytisk Reduktion av NO{sub x}. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Khodayari, Raziyeh; Odenbrand, Ingemar [Lund Univ. (Sweden). Chemical Engineering II

    2002-02-01

    This report is intended to show the work regarding the SCR technique performed at Chemical Engineering II, Lund Inst. of Tech. since the start in 1982. The emphasis is on work performed the last 7 years which deals with deactivation and regeneration of SCR catalysts. In chapter 1 a short general introduction to the SCR technique is given. Chapter 2 describes the work performed up to 1995. It shows the kinetics for the reaction between NO and NH{sub 3}, reactions between NO{sub 2} and NH{sub 3} as well as patents for a new process for cleaning flue gases based on our research results. Later work on using zeolites as catalysts for the reduction and for the oxidation of NO was presented. Then a series of characterisations were performed on model catalysts consisting of 2-30 wt.% V{sub 2}O{sub 5} on a coprecipitated silica-titania support. The formation of nitrous oxide was studied and found to be noticeable when water is not present in the gas and on a catalyst which contains large amounts of crystallites of V{sub 2}O{sub 5}. Chapter 3 deals with international research in the area of deactivation of SCR catalysts in i.e. biofuelled applications. Material from a literature search from December 2001 is presented. It contains general material on the deactivation with alkali metals and SO{sub 2}. Chapter 4 deals with our studies of deactivated SCR catalysts. During 1995-2001 we have studied the deactivation of catalysts in a number of Swedish plants. The sensitivity of zeolites to poisoning in waste combustion (GRAAB) was tested by artificial poisoning with 2 wt.% metal of the elements; Na, K, Mg, Fe, Zn, Cu, Al, Ni and Cr. The combustion of waste at SYSAV gave high contents of Na, Y, Ca, Pb and Zn on the catalyst after 2000 hours on stream. Activity measurements showed that low concentrations of ammonium sulphate, 1-5 vol.%, promotes the SCR reaction. A maximal activity is obtained at around 5 vol.%. There exists an optimal content of ammonium sulphate on the catalyst

  7. In situ DRIFTS investigation of NH3-SCR reaction over CeO2/zirconium phosphate catalyst

    Science.gov (United States)

    Zhang, Qiulin; Fan, Jie; Ning, Ping; Song, Zhongxian; Liu, Xin; Wang, Lanying; Wang, Jing; Wang, Huimin; Long, Kaixian

    2018-03-01

    A series of ceria modified zirconium phosphate catalysts were synthesized for selective catalytic reduction of NO with ammonia (NH3-SCR). Over 98% NOx conversion and 98% N2 selectivity were obtained by the CeO2/ZrP catalyst with 20 wt.% CeO2 loading at 250-425 °C. The interaction between CeO2 and zirconium phosphate enhanced the redox abilities and surface acidities of the catalysts, resulting in the improvement of NH3-SCR activity. The in situ DRIFTS results indicated that the NH3-SCR reaction over the catalysts followed both Eley-Rideal and Langmuir-Hinshelwood mechanisms. The amide (sbnd NH2) groups and the NH4+ bonded to Brønsted acid sites were the important intermediates of Eley-Rideal mechanism.

  8. Multi-Stage Selective Catalytic Reduction of NOx in Lean-Burn Engine Exhaust

    National Research Council Canada - National Science Library

    Penetrante, B

    1997-01-01

    .... A plasma can also be used to oxidize NO to NO2. This paper compares the multi-stage catalytic scheme with the plasma-assisted catalytic scheme for reduction of NOx in lean-burn engine exhausts. The advantages of plasma oxidation over catalytic oxidation are presented.

  9. Mathematical optimization techniques for managing selective catalytic reduction for a fleet of coal-fired power plants

    Science.gov (United States)

    Alanis Pena, Antonio Alejandro

    Major commercial electricity generation is done by burning fossil fuels out of which coal-fired power plants produce a substantial quantity of electricity worldwide. The United States has large reserves of coal, and it is cheaply available, making it a good choice for the generation of electricity on a large scale. However, one major problem associated with using coal for combustion is that it produces a group of pollutants known as nitrogen oxides (NO x). NOx are strong oxidizers and contribute to ozone formation and respiratory illness. The Environmental Protection Agency (EPA) regulates the quantity of NOx emitted to the atmosphere in the United States. One technique coal-fired power plants use to reduce NOx emissions is Selective Catalytic Reduction (SCR). SCR uses layers of catalyst that need to be added or changed to maintain the required performance. Power plants do add or change catalyst layers during temporary shutdowns, but it is expensive. However, many companies do not have only one power plant, but instead they can have a fleet of coal-fired power plants. A fleet of power plants can use EPA cap and trade programs to have an outlet NOx emission below the allowances for the fleet. For that reason, the main aim of this research is to develop an SCR management mathematical optimization methods that, with a given set of scheduled outages for a fleet of power plants, minimizes the total cost of the entire fleet of power plants and also maintain outlet NO x below the desired target for the entire fleet. We use a multi commodity network flow problem (MCFP) that creates edges that represent all the SCR catalyst layers for each plant. This MCFP is relaxed because it does not consider average daily NOx constraint, and it is solved by a binary integer program. After that, we add the average daily NOx constraint to the model with a schedule elimination constraint (MCFPwSEC). The MCFPwSEC eliminates, one by one, the solutions that do not satisfy the average daily

  10. Radio-Frequency-Controlled Urea Dosing for NH₃-SCR Catalysts: NH₃ Storage Influence to Catalyst Performance under Transient Conditions.

    Science.gov (United States)

    Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf

    2017-11-28

    Current developments in exhaust gas aftertreatment led to a huge mistrust in diesel driven passenger cars due to their NO x emissions being too high. The selective catalytic reduction (SCR) with ammonia (NH₃) as reducing agent is the only approach today with the capability to meet upcoming emission limits. Therefore, the radio-frequency-based (RF) catalyst state determination to monitor the NH₃ loading on SCR catalysts has a huge potential in emission reduction. Recent work on this topic proved the basic capability of this technique under realistic conditions on an engine test bench. In these studies, an RF system calibration for the serial type SCR catalyst Cu-SSZ-13 was developed and different approaches for a temperature dependent NH₃ storage were determined. This paper continues this work and uses a fully calibrated RF-SCR system under transient conditions to compare different directly measured and controlled NH₃ storage levels, and NH₃ target curves. It could be clearly demonstrated that the right NH₃ target curve, together with a direct control on the desired level by the RF system, is able to operate the SCR system with the maximum possible NO x conversion efficiency and without NH₃ slip.

  11. Synergy of CuO and CeO2 combination for mercury oxidation under low-temperature selective catalytic reduction atmosphere

    KAUST Repository

    Li, Hailong

    2016-07-19

    Synergy for low temperature Hg0 oxidation under selective catalytic reduction (SCR) atmosphere was achieved when copper oxides and cerium oxides were combined in a CuO-CeO2/TiO2 (CuCeTi) catalyst. Hg0 oxidation efficiency as high as 99.0% was observed on the CuCeTi catalyst at 200 °C, even the gas hourly space velocity was extremely high. To analyze the synergistic effect, comparisons of catalyst performance in the presence of different SCR reaction gases were systematically conducted over CuO/TiO2 (CuTi), CeO2/TiO2 (CeTi) and CuCeTi catalysts prepared by sol-gel method. The interactions between copper oxides and cerium oxides in CuCeTi catalyst yielded more surface chemisorbed oxygen, and facilitated the conversion of gas-phase O2 to surface oxygen, which are favorable for Hg0 oxidation. Copper oxides in the combination interacted with NO forming more chemisorbed oxygen for Hg0 oxidation in the absence of gas-phase O2. Cerium oxides in the combination promoted Hg0 oxidation through enhancing the transformations of NO to NO2. In the absence of NO, NH3 exhibited no inhibitive effect on Hg0 oxidation, because enough Lewis acid sites due to the combination of copper oxides and cerium oxides scavenged the competitive adsorption between NH3 and Hg0. In the presence of NO, although NH3 lowered Hg0 oxidation rate through inducing reduction of oxidized mercury, complete recovery of Hg0 oxidation activity over the CuCeTi catalyst was quickly achieved after cutting off NH3. This study revealed the synergistic effect of the combination of copper oxides and cerium oxides on Hg0 oxidation, and explored the involved mechanisms. Such knowledge would help obtaining maximum Hg0 oxidation co-benefit from SCR units in coal-fired power plants.

  12. Influence on the oxidative potential of a heavy-duty engine particle emission due to selective catalytic reduction system and biodiesel blend

    International Nuclear Information System (INIS)

    Godoi, Ricardo H.M.; Polezer, Gabriela; Borillo, Guilherme C.; Brown, Andrew; Valebona, Fabio B.; Silva, Thiago O.B.; Ingberman, Aline B.G.; Nalin, Marcelo; Yamamoto, Carlos I.; Potgieter-Vermaak, Sanja; Penteado Neto, Renato A.; Marchi, Mary Rosa R. de; Saldiva, Paulo H.N.; Pauliquevis, Theotonio; Godoi, Ana Flavia L.

    2016-01-01

    Although the particulate matter (PM) emissions from biodiesel fuelled engines are acknowledged to be lower than those of fossil diesel, there is a concern on the impact of PM produced by biodiesel to human health. As the oxidative potential of PM has been suggested as trigger for adverse health effects, it was measured using the Electron Spin Resonance (OP"E"S"R) technique. Additionally, Energy Dispersive X-ray Fluorescence Spectroscopy (EDXRF) was employed to determine elemental concentration, and Raman Spectroscopy was used to describe the amorphous carbon character of the soot collected on exhaust PM from biodiesel blends fuelled test-bed engine, with and without Selective Catalytic Reduction (SCR). OP"E"S"R results showed higher oxidative potential per kWh of PM produced from a blend of 20% soybean biodiesel and 80% ULSD (B20) engine compared with a blend of 5% soybean biodiesel and 95% ULSD (B5), whereas the SCR was able to reduce oxidative potential for each fuel. EDXRF data indicates a correlation of 0.99 between concentration of copper and oxidative potential. Raman Spectroscopy centered on the expected carbon peaks between 1100 cm"−"1 and 1600 cm"−"1 indicate lower molecular disorder for the B20 particulate matter, an indicative of a more graphitic carbon structure. The analytical techniques used in this study highlight the link between biodiesel engine exhaust and increased oxidative potential relative to biodiesel addition on fossil diesel combustion. The EDXRF analysis confirmed the prominent role of metals on free radical production. As a whole, these results suggest that 20% of biodiesel blends run without SCR may pose an increased health risk due to an increase in OH radical generation. - Highlights: • PM emission from biodiesel burning may be more harmful to human health than diesel. • Euro V (SCR) engine fuelled with B5 and B20 tested in a bench dynamometer • Electron Spin Resonance (ESR) to access the oxidative potential of PM emission

  13. Influence on the oxidative potential of a heavy-duty engine particle emission due to selective catalytic reduction system and biodiesel blend

    Energy Technology Data Exchange (ETDEWEB)

    Godoi, Ricardo H.M., E-mail: rhmgodoi@ufpr.br [Environmental Engineering Department, Federal University of Parana, Curitiba, PR (Brazil); Polezer, Gabriela; Borillo, Guilherme C. [Environmental Engineering Department, Federal University of Parana, Curitiba, PR (Brazil); Brown, Andrew [Division of Chemistry and Environmental Science, School of Science and the Environment, Manchester Metropolitan University, Manchester (United Kingdom); Valebona, Fabio B.; Silva, Thiago O.B.; Ingberman, Aline B.G. [Environmental Engineering Department, Federal University of Parana, Curitiba, PR (Brazil); Nalin, Marcelo [LAVIE - Institute of Chemistry, São Paulo State University - UNESP, Araraquara (Brazil); Yamamoto, Carlos I. [Chemical Engineering Department, Federal University of Parana, Curitiba, PR (Brazil); Potgieter-Vermaak, Sanja [Division of Chemistry and Environmental Science, School of Science and the Environment, Manchester Metropolitan University, Manchester (United Kingdom); Penteado Neto, Renato A. [Vehicle Emissions Laboratory, Institute of Technology for Development (LACTEC), Curitiba, PR (Brazil); Marchi, Mary Rosa R. de [Analytical Chemistry Department, Institute of Chemistry, São Paulo State University - UNESP, Araraquara (Brazil); Saldiva, Paulo H.N. [Laboratory of Experimental Air Pollution, Department of Pathology, School of Medicine, University of São Paulo, São Paulo (Brazil); Pauliquevis, Theotonio [Department of Natural and Earth Sciences, Federal University of São Paulo, Diadema (Brazil); Godoi, Ana Flavia L. [Environmental Engineering Department, Federal University of Parana, Curitiba, PR (Brazil)

    2016-08-01

    Although the particulate matter (PM) emissions from biodiesel fuelled engines are acknowledged to be lower than those of fossil diesel, there is a concern on the impact of PM produced by biodiesel to human health. As the oxidative potential of PM has been suggested as trigger for adverse health effects, it was measured using the Electron Spin Resonance (OP{sup ESR}) technique. Additionally, Energy Dispersive X-ray Fluorescence Spectroscopy (EDXRF) was employed to determine elemental concentration, and Raman Spectroscopy was used to describe the amorphous carbon character of the soot collected on exhaust PM from biodiesel blends fuelled test-bed engine, with and without Selective Catalytic Reduction (SCR). OP{sup ESR} results showed higher oxidative potential per kWh of PM produced from a blend of 20% soybean biodiesel and 80% ULSD (B20) engine compared with a blend of 5% soybean biodiesel and 95% ULSD (B5), whereas the SCR was able to reduce oxidative potential for each fuel. EDXRF data indicates a correlation of 0.99 between concentration of copper and oxidative potential. Raman Spectroscopy centered on the expected carbon peaks between 1100 cm{sup −1} and 1600 cm{sup −1} indicate lower molecular disorder for the B20 particulate matter, an indicative of a more graphitic carbon structure. The analytical techniques used in this study highlight the link between biodiesel engine exhaust and increased oxidative potential relative to biodiesel addition on fossil diesel combustion. The EDXRF analysis confirmed the prominent role of metals on free radical production. As a whole, these results suggest that 20% of biodiesel blends run without SCR may pose an increased health risk due to an increase in OH radical generation. - Highlights: • PM emission from biodiesel burning may be more harmful to human health than diesel. • Euro V (SCR) engine fuelled with B5 and B20 tested in a bench dynamometer • Electron Spin Resonance (ESR) to access the oxidative potential of

  14. EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    J. A. Withum; S.C. Tseng; J. E. Locke

    2004-10-31

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on Hg speciation and the efficacy of different FGD technologies for Hg capture. This document, the second in a series of topical reports, describes the results and analysis of mercury sampling performed on a 330 MW unit burning a bituminous coal containing 1.0% sulfur. The unit is equipped with a SCR system for NOx control and a spray dryer absorber for SO{sub 2} control followed by a baghouse unit for particulate emissions control. Four sampling tests were performed in March 2003. Flue gas mercury speciation and concentrations were determined at the SCR inlet, air heater outlet (ESP inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. Due to mechanical problems with the boiler feed water pumps, the actual gross output was between 195 and 221 MW during the tests. The results showed that the SCR/air heater combination oxidized nearly 95% of the elemental mercury. Mercury removal, on a

  15. The influence of a silica pillar in lamellar tetratitanate for selective catalytic reduction of NO{sub x} using NH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira da Cunha, Beatriz; Gonçalves, Alécia Maria; Gomes da Silveira, Rafael [Institute of Chemistry, Federal University of Goiás, C. Postal 131, CEP 74001-970 Goiânia, GO (Brazil); Urquieta-González, Ernesto A. [Laboratory of Applied Catalysis, Department of Chemical Engineering, Federal University of Sao Carlos, Rodovia Washington Luis Km 235, C. Postal 676, CEP 13565-905 São Carlos, SP (Brazil); Magalhães Nunes, Liliane, E-mail: lilianemnunes@gmail.com [Institute of Chemistry, Federal University of Goiás, C. Postal 131, CEP 74001-970 Goiânia, GO (Brazil)

    2015-01-15

    Highlights: • Potassium ions significantly affected the SCR. • The introduction of silica in the catalyst promotes the NH{sub 3}-SCR reaction. • The catalysts activities were not significantly influenced by SO{sub 2} addition. - Abstract: Silica-pillared layered titanate (SiO{sub 2}–Ti{sub 4}O{sub 9}) was prepared by intercalating organosilanes into the interlayers of a layered K{sub 2}Ti{sub 4}O{sub 9} followed by calcination at 500 °C. The lamellar titanates produced were used as a support to prepare vanadium catalysts (1 and 2 wt%) through wet impregnation for selective catalytic reduction (SCR) of NO. The catalysts were characterized using nitrogen adsorption (BET), X-ray diffraction (XRD), temperature programmed reduction (H{sub 2}-TPR), nuclear magnetic resonance ({sup 29}Si NMR), and infrared spectroscopy (FT-IR). Reduction of NO by NH{sub 3} was studied in a fixed-bed reactor packed with the catalysts and fed a mixture comprising 1% NH{sub 3}, 1% NO, 10% O{sub 2}, and 34 ppm SO{sub 2} (when used) in helium. The results demonstrate that activity is correlated with the support, i.e., with acidic strength of catalysts. The potassium in the support, K{sub 2}Ti{sub 4}O{sub 9}, significantly affected the reaction and level of vanadium species reduction. The catalyst (1VSiT) with 1 wt% vanadium impregnated on the SiO{sub 2}–Ti{sub 4}O{sub 9} support reduced ∼80% of the NO. Approximately the same conversion rate was generated on the catalyst (2VSiT) with 2 wt% vanadium using the same support. The increased NH{sub 3} adsorption demonstrate that introduction of silica in the catalyst promotes the NH{sub 3}-SCR reaction. More importantly, 2VSiT and 1VSiT were strongly resistant to SO{sub 2} poisoning.

  16. Diesel Engine Emission Reduction Using Catalytic Nanoparticles: An Experimental Investigation

    Directory of Open Access Journals (Sweden)

    Ajin C. Sajeevan

    2013-01-01

    Full Text Available Cerium oxide being a rare earth metal with dual valance state existence has exceptional catalytic activity due to its oxygen buffering capability, especially in the nanosized form. Hence when used as an additive in the diesel fuel it leads to simultaneous reduction and oxidation of nitrogen dioxide and hydrocarbon emissions, respectively, from diesel engine. The present work investigates the effect of cerium oxide nanoparticles on performance and emissions of diesel engine. Cerium oxide nanoparticles were synthesized by chemical method and techniques such as TEM, EDS, and XRD have been used for the characterization. Cerium oxide was mixed in diesel by means of standard ultrasonic shaker to obtain stable suspension, in a two-step process. The influence of nanoparticles on various physicochemical properties of diesel fuel has also been investigated through extensive experimentation by means of ASTM standard testing methods. Load test was done in the diesel engine to investigate the effect of nanoparticles on the efficiency and the emissions from the engine. Comparisons of fuel properties with and without additives are also presented.

  17. Reaction mechanisms of CO2 activation and catalytic reduction

    International Nuclear Information System (INIS)

    Wolff, Niklas von

    2016-01-01

    The use of CO 2 as a C1 chemical feedstock for the fine chemical industry is interesting both economically and ecologically, as CO 2 is non-toxic, abundant and cheap. Nevertheless, transformations of CO 2 into value-added products is hampered by its high thermodynamic stability and its inertness toward reduction. In order to design new catalysts able to overcome this kinetic challenge, a profound understanding of the reaction mechanisms at play in CO 2 reduction is needed. Using novel N/Si+ frustrated Lewis pairs (FLPs), the influence of CO 2 adducts and different hydro-borane reducing agents on the reaction mechanism in the catalytic hydroboration of CO 2 were investigated, both by DFT calculations and experiments. In a second step, the reaction mechanism of a novel reaction for the creation of C-C bonds from CO 2 and pyridyl-silanes (C 5 H 4 N-SiMe 3 ) was analyzed by DFT calculations. It was shown that CO 2 plays a double role in this transformation, acting both as a catalyst and a C1-building block. The fine understanding of this transformation then led to the development of a novel approach for the synthesis of sulfones and sulfonamides. Starting from SO 2 and aromatic silanes/amine silanes, these products were obtained in a single step under metal-free conditions. Noteworthy, sulfones and sulfonamides are common motifs in organic chemistry and found in a variety of highly important drugs. Finally, this concept was extended to aromatic halides as coupling partners, and it was thus shown for the first time that a sulfonylative Hiyama reaction is a possible approach to the synthesis of sulfones. (author) [fr

  18. An insight on hydrogen fuel injection techniques with SCR system for NO{sub X} reduction in a hydrogen-diesel dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, N. [ERC Engines, Hall 11A, Tata Motors, Pimpri, Pune 411019, Maharashtra (India); Nagarajan, G. [Department of Mechanical Engineering, ICE Division, College of Engineering, Guindy, Anna University-Chennai, Chennai 600 025 (India)

    2009-11-15

    Internal combustion engines continue to dominate in many fields like transportation, agriculture and power generation. Among the various alternative fuels, hydrogen is a long-term renewable and less polluting fuel (Produced from renewable energy sources). In the present experimental investigation, the performance and emission characteristics were studied on a direct injection diesel engine in dual fuel mode with hydrogen inducted along with air adopting carburetion, timed port and manifold injection techniques. Results showed that in timed port injection, the specific energy consumption reduces by 15% and smoke level by 18%. The brake thermal efficiency and NO{sub X} increases by 17% and 34% respectively compared to baseline diesel. The variation in performance between port and manifold injection is not significant. The unburnt hydrocarbons and carbon monoxide emissions are lesser in port injection. The oxides of nitrogen are higher in hydrogen operation (both port and manifold injection) compared to diesel engine. In order to reduce the NO{sub X} emissions, a selective catalytic converter was used in hydrogen port fuel injection. The NO{sub X} emission reduced upto a maximum of 74% for ANR (ratio of flow rate of ammonia to the flow rate of NO) of 1.1 with a marginal reduction in efficiency. Selective catalytic reduction technique has been found to be effective in reducing the NO{sub X} emission from hydrogen fueled diesel engines. (author)

  19. Influence on the oxidative potential of a heavy-duty engine particle emission due to selective catalytic reduction system and biodiesel blend.

    Science.gov (United States)

    Godoi, Ricardo H M; Polezer, Gabriela; Borillo, Guilherme C; Brown, Andrew; Valebona, Fabio B; Silva, Thiago O B; Ingberman, Aline B G; Nalin, Marcelo; Yamamoto, Carlos I; Potgieter-Vermaak, Sanja; Penteado Neto, Renato A; de Marchi, Mary Rosa R; Saldiva, Paulo H N; Pauliquevis, Theotonio; Godoi, Ana Flavia L

    2016-08-01

    Although the particulate matter (PM) emissions from biodiesel fuelled engines are acknowledged to be lower than those of fossil diesel, there is a concern on the impact of PM produced by biodiesel to human health. As the oxidative potential of PM has been suggested as trigger for adverse health effects, it was measured using the Electron Spin Resonance (OP(ESR)) technique. Additionally, Energy Dispersive X-ray Fluorescence Spectroscopy (EDXRF) was employed to determine elemental concentration, and Raman Spectroscopy was used to describe the amorphous carbon character of the soot collected on exhaust PM from biodiesel blends fuelled test-bed engine, with and without Selective Catalytic Reduction (SCR). OP(ESR) results showed higher oxidative potential per kWh of PM produced from a blend of 20% soybean biodiesel and 80% ULSD (B20) engine compared with a blend of 5% soybean biodiesel and 95% ULSD (B5), whereas the SCR was able to reduce oxidative potential for each fuel. EDXRF data indicates a correlation of 0.99 between concentration of copper and oxidative potential. Raman Spectroscopy centered on the expected carbon peaks between 1100cm(-1) and 1600cm(-1) indicate lower molecular disorder for the B20 particulate matter, an indicative of a more graphitic carbon structure. The analytical techniques used in this study highlight the link between biodiesel engine exhaust and increased oxidative potential relative to biodiesel addition on fossil diesel combustion. The EDXRF analysis confirmed the prominent role of metals on free radical production. As a whole, these results suggest that 20% of biodiesel blends run without SCR may pose an increased health risk due to an increase in OH radical generation. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Effect of metal ions doping (M = Ti4+, Sn4+) on the catalytic performance of MnOx/CeO2 catalyst for low temperature selective catalytic reduction of NO with NH3

    Science.gov (United States)

    Xiong, Yan; Tang, Changjin; Dong, Lin

    2015-04-01

    Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China The abatement of nitrogen oxides (NOx) emission from exhaust gases of diesel and stationary sources is a significant challenge for economic and social development. Ceria-based solid solutions were synthesized and used as supports to prepare MnOx/Ce0.8Ti0.2O2 and MnOx/Ce0.8Sn0.2O2 catalysts (Mn/CeTi and Mn/CeSn) for low temperature selective catalytic reduction of NO by NH3 (NH3-SCR). The effects of Ti or Sn doping on the catalytic performance of MnOx/CeO2 catalyst were investigated. Experimental results show that doping of Ti or Sn increases the NO removal efficiency of MnOx/CeO2. The NO conversion of Mn/CeTi catalyst is more than 90 % at temperature window of 175 ~ 300 °C under a gas hour space velocity of 60,000 mL.g-1.h-1. Modified catalysts are also found to exhibit greatly improved resistance to sulfur-poisoning. NH3-TPD results suggest that NH3 desorption on the catalysts is observed over a wide temperature range, due to the variability of adsorbed NH3 species with different thermal stabilities. Doping of Ti and Sn into Mn/CeO2 greatly increased the NH3 adsorption ability of the composites which could promote the SCR reaction. Characterization results also indicate that doping of Ti or Sn brings about catalysts with higher BET surface area, enhanced oxygen storage capacity and increased surface acidity.

  1. Process identification of the SCR system of coal-fired power plant for de-NOx based on historical operation data.

    Science.gov (United States)

    Li, Jian; Shi, Raoqiao; Xu, Chuanlong; Wang, Shimin

    2018-05-08

    The selective catalytic reduction (SCR) system, as one principal flue gas treatment method employed for the NO x emission control of the coal-fired power plant, is nonlinear and time-varying with great inertia and large time delay. It is difficult for the present SCR control system to achieve satisfactory performance with the traditional feedback and feedforward control strategies. Although some improved control strategies, such as the Smith predictor control and the model predictive control, have been proposed for this issue, a well-matched identification model is essentially required to realize a superior control of the SCR system. Industrial field experiment is an alternative way to identify the SCR system model in the coal-fired power plant. But it undesirably disturbs the operation system and is costly in time and manpower. In this paper, a process identification model of the SCR system is proposed and developed by applying the asymptotic method to the sufficiently excited data, selected from the original historical operation database of a 350 MW coal-fired power plant according to the condition number of the Fisher information matrix. Numerical simulations are carried out based on the practical historical operation data to evaluate the performance of the proposed model. Results show that the proposed model can efficiently achieve the process identification of the SCR system.

  2. Promoted V2O5/TiO2 catalysts for selective catalytic reduction of NO with NH3 at low temperatures

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Schill, Leonhard; Godiksen, Anita

    2016-01-01

    characterized by N2 physisorption, XRPD, NH3-TPD, H2-TPR, Raman, FTIR and EPR spectroscopy to investigate the properties of the catalysts. XRPD, Raman and FTIR showed that promotion with 15 wt.% HPA does not cause V2O5 to be present in crystalline form, also at a loading of 5 wt.% V2O5. Hence, use of HPAs does......The influence of varying the V2O5 content (3–6 wt.%) was studied for the selective catalytic reduction (SCR) of nitrogen oxides by ammonia on heteropoly acid (HPA)- and tungsten oxide (WO3)-promoted V2O5/TiO2 catalysts. The SCR activity and alkali deactivation resistance of HPA-promoted V2O5/TiO2...... catalysts was found to be much higher than for WO3-promoted catalysts. By increasing the vanadium content from 3 to 5 wt.% the catalysts displayed a two fold increase in activity at 225 °C and retained their initial activity after alkali doping at a molar K/V ratio of 0.181. Furthermore, the catalysts were...

  3. A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide.

    Science.gov (United States)

    Anthonysamy, Shahreen Binti Izwan; Afandi, Syahidah Binti; Khavarian, Mehrnoush; Mohamed, Abdul Rahman Bin

    2018-01-01

    Various types of carbon-based and non-carbon-based catalyst supports for nitric oxide (NO) removal through selective catalytic reduction (SCR) with ammonia are examined in this review. A number of carbon-based materials, such as carbon nanotubes (CNTs), activated carbon (AC), and graphene (GR) and non-carbon-based materials, such as Zeolite Socony Mobil-5 (ZSM-5), TiO 2 , and Al 2 O 3 supported materials, were identified as the most up-to-date and recently used catalysts for the removal of NO gas. The main focus of this review is the study of catalyst preparation methods, as this is highly correlated to the behaviour of NO removal. The general mechanisms involved in the system, the Langmuir-Hinshelwood or Eley-Riedeal mechanism, are also discussed. Characterisation analysis affecting the surface and chemical structure of the catalyst is also detailed in this work. Finally, a few major conclusions are drawn and future directions for work on the advancement of the SCR-NH 3 catalyst are suggested.

  4. Physical chemistry of catalytic reduction of nitroarenes using various nanocatalytic systems: past, present, and future

    International Nuclear Information System (INIS)

    Begum, Robina; Rehan, Rida; Farooqi, Zahoor H.; Butt, Zonarah; Ashraf, Sania

    2016-01-01

    The catalytic reduction of nitroarenes under various catalytic systems has been widely reported in the flood of publications during last twenty years. This reaction has become a benchmark for testing catalytic activity of inorganic nanoparticles stabilized in various systems. This tutorial review presents design and classification of inorganic nanocatalysts along with their stabilizing agents used for catalytic reduction of nitroarenes. The techniques used for characterization of catalysts have been highlighted in this review. The mechanism of catalytic reduction has been described in a tutorial way. Factors affecting the rate of reduction of nitroarenes in the presence of metal nanoparticles stabilized in polyelectrolyte brushes, polyionic liquids, micelles, dendrimers, and microgels have been discussed for further development in this area.Graphical abstract

  5. Physical chemistry of catalytic reduction of nitroarenes using various nanocatalytic systems: past, present, and future

    Energy Technology Data Exchange (ETDEWEB)

    Begum, Robina [University of the Punjab, Centre for Undergraduate Studies (Pakistan); Rehan, Rida; Farooqi, Zahoor H., E-mail: zhfarooqi@gmail.com; Butt, Zonarah; Ashraf, Sania [University of the Punjab, Institute of Chemistry (Pakistan)

    2016-08-15

    The catalytic reduction of nitroarenes under various catalytic systems has been widely reported in the flood of publications during last twenty years. This reaction has become a benchmark for testing catalytic activity of inorganic nanoparticles stabilized in various systems. This tutorial review presents design and classification of inorganic nanocatalysts along with their stabilizing agents used for catalytic reduction of nitroarenes. The techniques used for characterization of catalysts have been highlighted in this review. The mechanism of catalytic reduction has been described in a tutorial way. Factors affecting the rate of reduction of nitroarenes in the presence of metal nanoparticles stabilized in polyelectrolyte brushes, polyionic liquids, micelles, dendrimers, and microgels have been discussed for further development in this area.Graphical abstract.

  6. SCR in biomass and waste fuelled plants. Benchmarking of Swedish and European plants; SCR i biobraensle- och avfallseldade anlaeggningar. Erfarenheter fraan svenska och europeiska anlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Barbara; Olsson, Henrik; Lindstroem, Erica

    2010-11-15

    In this report the state-of-art of SCR technology in biomass and waste fired plants is investigated. The aim of the investigation is to answer the question why new Swedish biomass combustion and co-combustion plants often prefer SNCR technology, whilst European waste combustion plants often choose SCR technology. In the report positives and negatives of various types of SCR installations are discussed, high-dust versus tail-end, 'normal' SCR versus low-temperature SCR, etc. Experiences, e g catalyst lifetime, deactivation and maintenance requirement, are discussed. The investigation is based partly on literature, but mainly on interviews with plant owners and with suppliers of SCR installations. The interviewed suppliers are mentioned in the reference list and the interviewed plant owners are mentioned in appendix A and B. The experiences from the Swedish and European plants are quite similar. Tail-end SCR is often operated without serious problems in both biomass and waste fuelled plants. The catalyst lifetimes are as long or even longer than for coal fired plants with high-dust SCR. In waste incineration plants high-dust SCR causes big problems and these plants are almost always equipped with tail-end SCR. In co-combustion boilers, where coal and biomass is co-combusted, high-dust SCR is more common, especially if the boilers were originally coal fired. In plants with both SNCR and high-dust SCR, i.e. slip-SCR, the SCR installation is considered to be much less of a problem. Although the activity loss of the catalyst is as quick as in conventional high-dust SCR, the catalyst can be changed less often. This is due to the fact that installed slip-SCR catalysts often are as large as conventional SCR catalysts, although less NO{sub x} reduction is required after the initial SNCR step. Thus, the catalyst lifetime is prolonged.

  7. Technical presentation of SCR

    CERN Multimedia

    FI Department

    2008-01-01

    SCR Société des Composants Record, Montierchaume, France Monday 20 October 2008 from 9:45 to 12:00 – Room A Main Building (Bldg. 61/1-017) http://www.scr.fr SCR develops, manufactures and markets plastic dielectric capacitors (polypropylene, polyester, Teflon) for use in various applications: audio amplifiers, high-end loudspeakers, fans and extractors (multi-capacitance capacitors), pulsed lasers, flash lamps, defibrillators, beacons, power supplies, converters for rail traction drives, railway signalling devices, voltage dividers and multipliers, high voltage laboratories, etc. The company is renowned for its precision wire-wound resistors for use in power electronics and consumer electronics marketed under the SETA brand name. SCR is also experienced in the design and production of electronic circuits for various applications, such as speed variators for mono and three-phase motors, dimmers, passive filters for audio speakers, etc. Contact : M. Urs V. Rölli, e-mail: mailto:info@technictrade.ch.

  8. Two-stage Catalytic Reduction of NOx with Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Umit S. Ozkan; Erik M. Holmgreen; Matthew M. Yung; Jonathan Halter; Joel Hiltner

    2005-12-21

    A two-stage system for the catalytic reduction of NO from lean-burn natural gas reciprocating engine exhaust is investigated. Each of the two stages uses a distinct catalyst. The first stage is oxidation of NO to NO{sub 2} and the second stage is reduction of NO{sub 2} to N{sub 2} with a hydrocarbon. The central idea is that since NO{sub 2} is a more easily reduced species than NO, it should be better able to compete with oxygen for the combustion reaction of hydrocarbon, which is a challenge in lean conditions. Early work focused on demonstrating that the N{sub 2} yield obtained when NO{sub 2} was reduced was greater than when NO was reduced. NO{sub 2} reduction catalysts were designed and silver supported on alumina (Ag/Al{sub 2}O{sub 3}) was found to be quite active, able to achieve 95% N{sub 2} yield in 10% O{sub 2} using propane as the reducing agent. The design of a catalyst for NO oxidation was also investigated, and a Co/TiO{sub 2} catalyst prepared by sol-gel was shown to have high activity for the reaction, able to reach equilibrium conversion of 80% at 300 C at GHSV of 50,000h{sup -1}. After it was shown that NO{sub 2} could be more easily reduced to N{sub 2} than NO, the focus shifted on developing a catalyst that could use methane as the reducing agent. The Ag/Al{sub 2}O{sub 3} catalyst was tested and found to be inactive for NOx reduction with methane. Through iterative catalyst design, a palladium-based catalyst on a sulfated-zirconia support (Pd/SZ) was synthesized and shown to be able to selectively reduce NO{sub 2} in lean conditions using methane. Development of catalysts for the oxidation reaction also continued and higher activity, as well as stability in 10% water, was observed on a Co/ZrO{sub 2} catalyst, which reached equilibrium conversion of 94% at 250 C at the same GHSV. The Co/ZrO{sub 2} catalyst was also found to be extremely active for oxidation of CO, ethane, and propane, which could potential eliminate the need for any separate

  9. Catalytic reduction of NO by methane using a Pt/C/polybenzimidazole/Pt/C fuel cell

    DEFF Research Database (Denmark)

    Petrushina, Irina; Cleemann, Lars Nilausen; Refshauge, Rasmus

    2007-01-01

    with participation of H+ or electrochemically produced hydrogen. When added, methane partially suppresses the electrochemical reduction of NO. Methane outlet concentration monitoring has shown the CH4 participation in the chemical catalytic reduction, i.e., methane co-adsorption with NO inhibited the electrochemical...... NO reduction and introduced a dominant chemical path of the NO reduction. The products of the NO reduction with methane were N2, C2H4, and water. The catalytic NO reduction by methane was promoted when the catalyst was negatively polarized (−0.2 V). Repeated negative polarization of the catalyst increased...

  10. On the Effect of Preparation Methods of PdCe-MOR Catalysts as NOx CH4-SCR System for Natural Gas Vehicles Application

    Directory of Open Access Journals (Sweden)

    Acácio Nobre Mendes

    2015-10-01

    Full Text Available In the present work, the effect of several parameters involved in the preparation of PdCe-HMOR catalysts active for NOx selective catalytic reduction with methane (NOx CH4-SCR was studied. Results show that the catalytic performance of Pd-HMOR is better when palladium is introduced by ion-exchange, namely at room temperature. It was also shown that Pd loading does not influence the formation of cerium species, namely surface Ce4+ (CeO2 species and CeO2 species in interaction with Pd. However, when Ce is introduced before Pd, more surface CeO2 species are stabilized in the support and less CeO2 become in interaction with Pd, which results in a worse NOx CH4-SCR catalytic performance.

  11. Program to reduce NOx emissions of HNO{sub 3} plants with selective catalytic reduction; Programme visant a reduire les emissions de NOx d'ateliers d'HNO{sub 3} par reduction catalytique selective

    Energy Technology Data Exchange (ETDEWEB)

    Gry, Ph. [Grande Paroisse SA, Group ATOFINA, 92 - Paris la Defense (France)

    2001-07-01

    Grande Paroisse well known as G.P. has been created in 1919. Nowadays, it is an affiliated company of ATOFINA. The Company is the first French producer of fertilizers and the third West European. In its sites G.P. controls 1.3 millions metric tons per year of nitric acid, on 13 units. Continuous improvement of its technology together with productivity development make G.P. one of the most competitive fertilizer manufacturer. A technical team achieves this objective and maintains a world wide reputable technology. For the past 15 years, industry has tried to reduce NO{sub x} atmospheric pollution. The SCR (Selective Catalytic Reduction) is most used with ammonia for nitric acid units and described here under. (author)

  12. Demonstration of Selective Catalytic Reduction Technology to Control Nitrogen Oxide Emissions From High-Sulfur, Coal-Fired Boilers: A DOE Assessment

    International Nuclear Information System (INIS)

    Federal Energy Technology Center

    1999-01-01

    The goal of the U.S. Department of Energy (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment of a project selected in CCT Round 2. The project is described in the report ''Demonstration of Selective Catalytic Reduction (SCR) Technology for the Control of Nitrogen Oxide (NO(sub x)) Emissions from High-Sulfur, Coal-Fired Boilers'' (Southern Company Services 1990). In June 1990, Southern Company Services (Southern) entered into a cooperative agreement to conduct the study. Southern was a cofunder and served as the host at Gulf Power Company's Plant Crist. Other participants and cofunders were EPRI (formerly the Electric Power Research Institute) and Ontario Hydro. DOE provided 40 percent of the total project cost of$23 million. The long-term operation phase of the demonstration was started in July 1993 and was completed in July 1995. This independent evaluation is based primarily on information from Southern's Final Report (Southern Company Services 1996). The SCR process consists of injecting ammonia (NH(sub 3)) into boiler flue gas and passing the 3 flue gas through a catalyst bed where the NO(sub x) and NH(sub 3) react to form nitrogen and water vapor. The objectives of the demonstration project were to investigate: Performance of a wide variety of SCR catalyst compositions, geometries, and manufacturing methods at typical U.S. high-sulfur coal-fired utility operating conditions; Catalyst resistance to poisoning by trace metal species present in U.S. coals but not present, or present at much lower concentrations, in fuels from other countries; and Effects on the balance-of-plant equipment

  13. Alkali resistant Fe-zeolite catalysts for SCR of NO with NH3 in flue gases

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Jensen, Anker Degn; Riisager, Anders

    2011-01-01

    . The effect of potassium doping on the acidic and redox properties of the Fe-zeolite catalysts were studied. The prepared catalysts showed high surface area and surface acidity. This is essential for increased alkali resistivity in comparison with conventional metal oxide supports like, e.g. TiO2 and ZrO2......, towards e.g. potassium salts in flue gases from biomass fired power plants. These properties allowed both undoped and potassium doped Fe-zeolite catalysts to posses high activity during the selective catalytic reduction (SCR) of NO with NH3. The extent of deactivation of the Fe-zeolite catalysts...

  14. Novel, Regenerable Microlith Catalytic Reactor for CO2 Reduction via Bosch Process, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision Combustion, Inc. (PCI) proposes to develop an extremely compact, lightweight and regenerable MicrolithREG catalytic CO2 reduction reactor, capable of...

  15. EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    J.A. Withum; S.C. Tseng; J.E. Locke

    2005-11-01

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dryer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the seventh in a series of topical reports, describes the results and analysis of mercury sampling performed on a 1,300 MW unit burning a bituminous coal containing three percent sulfur. The unit was equipped with an ESP and a limestone-based wet FGD to control particulate and SO2 emissions, respectively. At the time of sampling an SCR was not installed on this unit. Four sampling tests were performed in September 2003. Flue gas mercury speciation and concentrations were determined at the ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. The results show that the FGD inlet flue gas oxidized:elemental mercury ratio was roughly 2:1, with 66% oxidized mercury and 34% elemental mercury. Mercury removal, on a coal

  16. Low-temperature SCR of NO with NH{sub 3} over activated semi-coke composite-supported rare earth oxides

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jinping; Yan, Zheng; Liu, Lili; Zhang, Yingyi; Zhang, Zuotai; Wang, Xidong, E-mail: xidong@pku.edu.cn

    2014-08-01

    The catalysts with different rare earth oxides (La, Ce, Pr and Nd) loaded onto activated semi-coke (ASC) via hydrothermal method are prepared for the selective catalytic reduction (SCR) of NO with NH{sub 3} at low temperature (150–300 °C). It is evidenced that CeO{sub 2} loaded catalysts present the best performance, and the optimum loading amount of CeO{sub 2} is about 10 wt%. Composite catalysts by doping La, Pr and Nd into CeO{sub 2} are prepared to obtain further improved catalytic properties. The SCR mechanism is investigated through various characterizations, including XRD, Raman, XPS and FT-IR, the results of which indicate that the oxygen defect plays an important role in SCR process and the doped rare earth elements effectively serve as promoters to increase the concentration of oxygen vacancies. It is also found that the oxygen vacancies in high concentration are favored for the adsorption of O{sub 2} and further oxidation of NO, which facilitates a rapid progressing of the following reduction reactions. The SCR process of NO with NH{sub 3} at low temperature over the catalysts of ASC composite-supported rare earth oxides mainly follows the Langmuir–Hinshlwood mechanism.

  17. Selective catalytic reduction converter design: The effect of ammonia nonuniformity at inlet

    International Nuclear Information System (INIS)

    Paramadayalan, Thiyagarajan; Pant, Atul

    2013-01-01

    A three-dimensional CFD model of SCR converter with detailed chemistry is developed. The model is used to study the effects of radial variation in inlet ammonia profile on SCR emission performance at different temperatures. The model shows that radial variation in inlet ammonia concentration affects the SCR performance in the operating range of 200-400 .deg. C. In automotive SCR systems, ammonia is non-uniformly distributed due to evaporation/reaction of injected urea, and using a 1D model or a 3D model with flat ammonia profile at inlet for these conditions can result in erroneous emission prediction. The 3D SCR model is also used to study the effect of converter design parameters like inlet cone angle and monolith cell density on the SCR performance for a non-uniform ammonia concentration profile at the inlet. The performance of SCR is evaluated using DeNO x efficiency and ammonia slip

  18. HiSCR (Hidradenitis Suppurativa Clinical Response)

    DEFF Research Database (Denmark)

    Kimball, B. A.; Sobell, J. M.; Zouboulis, C C

    2016-01-01

    Background: Determining treatment response for patients with hidradenitis suppurativa (HS) can be challenging due to limitations of current disease activity evaluations. Objective: Evaluate the novel, validated endpoint, Hidradenitis Suppurativa Clinical Response (HiSCR) and its utility as an out......Background: Determining treatment response for patients with hidradenitis suppurativa (HS) can be challenging due to limitations of current disease activity evaluations. Objective: Evaluate the novel, validated endpoint, Hidradenitis Suppurativa Clinical Response (HiSCR) and its utility...... as an outcome measure. Methods: Patients with baseline total abscess and inflammatory nodule count (AN count) of at least three and draining fistula count of 20 or fewer comprised the post hoc subpopulation analysed. HiSCR (at least a 50% reduction in total AN count, with no increase in abscess count...... week, or placebo (1 : 1 : 1). Results: The subpopulation included 132 (85.7%) patients; 70.5% women and 73.5% white. At week 16, HiSCR was achieved by 54.5% receiving weekly adalimumab, 33.3% every other week, and 25.6% placebo and HS-PGA Response was achieved by 20.5% receiving weekly adalimumab, 6...

  19. A particle filter for ammonia coverage ratio and input simultaneous estimations in Diesel-engine SCR system.

    Science.gov (United States)

    Sun, Kangfeng; Ji, Fenzhu; Yan, Xiaoyu; Jiang, Kai; Yang, Shichun

    2018-01-01

    As NOx emissions legislation for Diesel-engines is becoming more stringent than ever before, an aftertreatment system has been widely used in many countries. Specifically, to reduce the NOx emissions, a selective catalytic reduction(SCR) system has become one of the most promising techniques for Diesel-engine vehicle applications. In the SCR system, input ammonia concentration and ammonia coverage ratio are regarded as essential states in the control-oriental model. Currently, an ammonia sensor placed before the SCR Can is a good strategy for the input ammonia concentration value. However, physical sensor would increase the SCR system cost and the ammonia coverage ratio information cannot be directly measured by physical sensor. Aiming to tackle this problem, an observer based on particle filter(PF) is investigated to estimate the input ammonia concentration and ammonia coverage ratio. Simulation results through the experimentally-validated full vehicle simulator cX-Emission show that the performance of observer based on PF is outstanding, and the estimation error is very small.

  20. Catalytic reduction of nitric oxide with ammonia over transition metal ion-exchanged Y zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Sciyama, T; Arakawa, T; Matsuda, T; Yamazoe, N; Takita, Y

    1975-01-01

    The catalytic reduction of nitric oxide with ammonia was studied over transition metal ion-exchanged Y zeolite (Me-Y) catalysts. The reaction products are nitrogen, nitrous oxide, and water in all cases. Selectivities to N/sub 2/ are 60 to 80% on all the cation exchanged zeolite catalysts exhibiting a relatively minor variation with the cationic species exchanged. The copper (II)-Y catalyst exhibits low temperature activity and has an unusual catalytic activity-temperature profile with a maximum at 120/sup 0/C. The catalytic activity is enhanced considerably when a second cation, especially cobalt (II) or iron (III) is coexchanged together with Cu (II) in Y zeolite.

  1. Combination of Ag/Al2O3 and Fe-BEA for High-Activity Catalyst System for H2-Assisted NH3-SCR of NO x for Light-Duty Diesel Car Applications

    DEFF Research Database (Denmark)

    Fogel, S.; Doronkin, D. E.; Høj, J. W.

    2013-01-01

    Low-temperature active Ag/Al2O3 and high-temperature active Fe-BEA zeolite were combined and tested for H2-assisted NH3-selective catalytic reduction (SCR) of NO x . The catalysts were either washcoated onto separate monoliths that were placed up- or downstream of each other (dual-brick layout) o...

  2. Carbon-based catalytic briquettes for the reduction of NO: Effect of H{sub 2}SO{sub 4} and HNO{sub 3} carbon support treatment

    Energy Technology Data Exchange (ETDEWEB)

    A. Boyano; M.E. Galvez; R. Moliner; M.J. Lazaro [Instituto de Carboquimica CSIC, Zaragoza (Spain)

    2008-08-15

    The influence of treating carbon with sulphuric and nitric acids on the activity of a carbon-based briquette catalyst for NO reduction with NH{sub 3} was examined in a fixed-bed reactor at low temperature (150{sup o}C). The briquette catalysts were prepared from a low-rank coal and a commercial tar pitch. The active phase was impregnated from a suspension of ashes of petroleum coke by means of an equilibrium adsorption method. The catalytic behaviour of NO reduction over acid treated briquettes was found to vary with the surface characteristics of the carbon support. This suggests that the number of oxygen-containing sites as well as vanadium load and dispersion affect the reaction activity. In the presence of oxygen, the SCR activity is enhanced with a nitric acid treatment, activity is promoted by the presence of acidic surface groups such as carboxyl and lactone, which can help not only to create a reservoir of reactants on the catalysts surface but also to improve the dispersion or even increase the amount of vanadium loading. Therefore, the results of this study suggest that the formation of acidic sites on the surface is an important step for NO reduction with NH{sub 3} over carbon-based catalysts. Additional techniques such as XPS and TPD to characterize the oxygen surface and those such as N{sub 2} adsorption to characterize the textural properties were also used in this study. 46 refs., 6 figs., 5 tabs.

  3. In-line localized monitoring of catalyst activity in selective catalytic NO.sub.x reduction systems

    Science.gov (United States)

    Muzio, Lawrence J [Laguna Niguel, CA; Smith, Randall A [Huntington Beach, CA

    2009-12-22

    Localized catalyst activity in an SCR unit for controlling emissions from a boiler, power plant, or any facility that generates NO.sub.x-containing flue gases is monitored by one or more modules that operate on-line without disrupting the normal operation of the facility. Each module is positioned over a designated lateral area of one of the catalyst beds in the SCR unit, and supplies ammonia, urea, or other suitable reductant to the catalyst in the designated area at a rate that produces an excess of the reductant over NO.sub.x on a molar basis through the designated area. Sampling probes upstream and downstream of the designated area draw samples of the gas stream for NO.sub.x analysis, and the catalyst activity is determined from the difference in NO.sub.x levels between the two probes.

  4. Catalytic properties of Ru-mordenite for NO reduction

    Czech Academy of Sciences Publication Activity Database

    Labhsetwar, NK.; Minamino, H.; Mukherjee, M.; Mitsuhashi, T.; Rayalu, S.; Dhakad, M.; Haneda, H.; Šubrt, Jan; Devotta, S.

    2007-01-01

    Roč. 261, č. 2 (2007), s. 213-217 ISSN 1381-1169 Grant - others:CSIR(IN) CORE(08) Institutional research plan: CEZ:AV0Z40320502 Keywords : NO reduction * catalyst * Ru-zeolite Subject RIV: CA - Inorganic Chemistry Impact factor: 2.707, year: 2007

  5. Surface Species and Metal Oxidation State during H2-Assisted NH3-SCR of NOx over Alumina-Supported Silver and Indium

    Directory of Open Access Journals (Sweden)

    Linda Ström

    2018-01-01

    Full Text Available Alumina-supported silver and indium catalysts are investigated for the hydrogen-assisted selective catalytic reduction (SCR of NOx with ammonia. Particularly, we focus on the active phase of the catalyst and the formation of surface species, as a function of the gas environment. Diffuse reflectance ultraviolet-visible (UV-vis spectroscopy was used to follow the oxidation state of the silver and indium phases, and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS was used to elucidate the formation of surface species during SCR conditions. In addition, the NOx reduction efficiency of the materials was evaluated using H2-assisted NH3-SCR. The DRIFTS results show that the Ag/Al2O3 sample forms NO-containing surface species during SCR conditions to a higher extent compared to the In/Al2O3 sample. The silver sample also appears to be more reduced by H2 than the indium sample, as revealed by UV-vis spectroscopic experiments. Addition of H2, however, may promote the formation of highly dispersed In2O3 clusters, which previously have been suggested to be important for the SCR reaction. The affinity to adsorb NH3 is confirmed by both temperature programmed desorption (NH3-TPD and in situ DRIFTS to be higher for the In/Al2O3 sample compared to Ag/Al2O3. The strong adsorption of NH3 may inhibit (self-poison the NH3 activation, thereby hindering further reaction over this catalyst, which is also shown by the lower SCR activity compared to Ag/Al2O3.

  6. Integrated Removal of NOx with Carbon Monoxide as Reductant, and Capture of Mercury in a Low Temperature Selective Catalytic and Adsorptive Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Neville Pinto; Panagiotis Smirniotis; Stephen Thiel

    2010-08-31

    Coal will likely continue to be a dominant component of power generation in the foreseeable future. This project addresses the issue of environmental compliance for two important pollutants: NO{sub x} and mercury. Integration of emission control units is in principle possible through a Low Temperature Selective Catalytic and Adsorptive Reactor (LTSCAR) in which NO{sub x} removal is achieved in a traditional SCR mode but at low temperature, and, uniquely, using carbon monoxide as a reductant. The capture of mercury is integrated into the same process unit. Such an arrangement would reduce mercury removal costs significantly, and provide improved control for the ultimate disposal of mercury. The work completed in this project demonstrates that the use of CO as a reductant in LTSCR is technically feasible using supported manganese oxide catalysts, that the simultaneous warm-gas capture of elemental and oxidized mercury is technically feasible using both nanostructured chelating adsorbents and ceria-titania-based materials, and that integrated removal of mercury and NO{sub x} is technically feasible using ceria-titania-based materials.

  7. An efficient catalytic reductive amination: A facile one-pot access to ...

    Indian Academy of Sciences (India)

    An efficient catalytic reductive amination: A facile one-pot access to ... itors and in the manufacture of detergents and plastics.1 ... ammoniaborane/Ti(OiPr)4,5e ... demonstrated the first method for synthesis of 1,2- ... and column chromatography (Silica gel, n-hexane/ethyl .... supporting information at www.ias.ac.in/chemsci.

  8. Azeotropic distillation assisted fabrication of silver nanocages and their catalytic property for reduction of 4-nitrophenol.

    Science.gov (United States)

    Min, Jianzhong; Wang, Fei; Cai, Yunliang; Liang, Shuai; Zhang, Zhenwei; Jiang, Xingmao

    2015-01-14

    Monodisperse silver nanocages (AgNCs) with specific interiors were successfully synthesized by an azeotropic distillation (AD) assisted method and exhibited excellent catalytic activities for reduction of 4-nitrophenol (4-NP) into 4-aminophenol (4-AP) due to the unique hollow morphology and small thickness of the silver shell.

  9. Catalytic reduction of hexaminecobalt(III) by pitch-based spherical activated carbon (PBSAC)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu; Mao, Yan-Peng; Zhu, Hai-Song; Cheng, Jing-Yi; Long, Xiang-Li; Yuan, Wei-Kang [State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai (China)

    2010-07-15

    The wet ammonia (NH{sub 3}) desulfurization process can be retrofitted to remove nitric oxide (NO) and sulfur dioxide (SO{sub 2}) simultaneously by adding soluble cobalt(II) salt into the aqueous ammonia solution. Activated carbon is used as a catalyst to regenerate hexaminecobalt(II), Co(NH{sub 3}){sub 6}{sup 2+}, so that NO removal efficiency can be maintained at a high level for a long time. In this study, the catalytic performance of pitch-based spherical activated carbon (PBSAC) in the simultaneous removal of NO and SO{sub 2} with this wet ammonia scrubbing process has been studied systematically. Experiments have been performed in a batch stirred cell to test the catalytic characteristics of PBSAC in the catalytic reduction of hexaminecobalt(III), Co(NH{sub 3}){sub 6}{sup 3+}. The experimental results show that PBSAC is a much better catalyst in the catalytic reduction of Co(NH{sub 3}){sub 6}{sup 3+} than palm shell activated carbon (PSAC). The Co(NH{sub 3}){sub 6}{sup 3+} reduction reaction rate increases with PBSAC when the PBSAC dose is below 7.5 g/L. The Co(NH{sub 3}){sub 6}{sup 3+} reduction rate increases with its initial concentration. Best Co(NH{sub 3}){sub 6}{sup 3+} conversion is gained at a pH range of 2.0-6.0. A high temperature is favorable to such reaction. The intrinsic activation energy of 51.00 kJ/mol for the Co(NH{sub 3}){sub 6}{sup 3+} reduction catalyzed by PBSAC has been obtained. The experiments manifest that the simultaneous elimination of NO and SO{sub 2} by the hexaminecobalt solution coupled with catalytic regeneration of hexaminecobalt(II) can maintain a NO removal efficiency of 90% for a long time. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  10. Gaseous emissions from a heavy-duty engine equipped with SCR aftertreatment system and fuelled with diesel and biodiesel: Assessment of pollutant dispersion and health risk

    Energy Technology Data Exchange (ETDEWEB)

    Tadano, Yara S.; Borillo, Guilherme C.; Godoi, Ana Flávia L.; Cichon, Amanda; Silva, Thiago O.B.; Valebona, Fábio B.; Errera, Marcelo R. [Environmental Engineering Department, Federal University of Parana, 210 Francisco H. dos Santos St., Curitiba, PR, 81531-980 Brazil (Brazil); Penteado Neto, Renato A.; Rempel, Dennis; Martin, Lucas [Institute of Technology for Development, Lactec–Leme Division, 01 LothárioMeissner Ave., Curitiba, PR, 80210-170 (Brazil); Yamamoto, Carlos I. [Chemical Engineering Department, Federal University of Parana, 210 Francisco H. dos Santos St., Curitiba, PR, 81531-980 Brazil (Brazil); Godoi, Ricardo H.M., E-mail: rhmgodoi@ufpr.br [Environmental Engineering Department, Federal University of Parana, 210 Francisco H. dos Santos St., Curitiba, PR, 81531-980 Brazil (Brazil)

    2014-12-01

    The changes in the composition of fuels in combination with selective catalytic reduction (SCR) emission control systems bring new insights into the emission of gaseous and particulate pollutants. The major goal of our study was to quantify NO{sub x}, NO, NO{sub 2}, NH{sub 3} and N{sub 2}O emissions from a four-cylinder diesel engine operated with diesel and a blend of 20% soybean biodiesel. Exhaust fume samples were collected from bench dynamometer tests using a heavy-duty diesel engine equipped with SCR. The target gases were quantified by means of Fourier transform infrared spectrometry (FTIR). The use of biodiesel blend presented lower concentrations in the exhaust fumes than using ultra-low sulfur diesel. NO{sub x} and NO concentrations were 68% to 93% lower in all experiments using SCR, when compared to no exhaust aftertreatment. All fuels increased NH{sub 3} and N{sub 2}O emission due to SCR, a precursor secondary aerosol, and major greenhouse gas, respectively. An AERMOD dispersion model analysis was performed on each compound results for the City of Curitiba, assumed to have a bus fleet equipped with diesel engines and SCR system, in winter and summer seasons. The health risks of the target gases were assessed using the Risk Assessment Information System For 1-h exposure of NH{sub 3}, considering the use of low sulfur diesel in buses equipped with SCR, the results indicated low risk to develop a chronic non-cancer disease. The NO{sub x} and NO emissions were the lowest when SCR was used; however, it yielded the highest NH{sub 3} concentration. The current results have paramount importance, mainly for countries that have not yet adopted the Euro V emission standards like China, India, Australia, or Russia, as well as those already adopting it. These findings are equally important for government agencies to alert the need of improvements in aftertreatment technologies to reduce pollutants emissions. - Highlights: • Emission, dispersion and risk assessment

  11. I.C. Engine emission reduction by copper oxide catalytic converter

    Science.gov (United States)

    Venkatesan, S. P.; Shubham Uday, Desai; Karan Hemant, Borana; Rajarshi Kushwanth Goud, Kagita; Lakshmana Kumar, G.; Pavan Kumar, K.

    2017-05-01

    The toxic gases emitted from diesel engines are more than petrol engines. Predicting the use of diesel engines, even more in future, this system is developed and can be used to minimize the harmful gases. Toxic gases include NOX, CO, HC and Smoke which are harmful to the atmosphere as well as to the human beings. The main aim of this work is to fabricate system, where the level of intensity of toxic gases is controlled through chemical reaction to more agreeable level. This system acts itself as an exhaust system; hence there is no needs to fit separate the silencer. The whole assembly is fitted in the exhaust pipe from engine. In this work, catalytic converter with copper oxide as a catalyst, by replacing noble catalysts such as platinum, palladium and rhodium is fabricated and fitted in the engine exhaust. With and without catalytic converter, the experimentations are carried out at different loads such as 0%, 25%, 50%, 75%, and 100% of maximum rated load. From the experimental results it is found that the maximum reduction is 32%, 61% and 21% for HC, NOx and CO respectively at 100% of maximum rated load when compared to that of without catalytic converter. This catalytic converter system is cash effective and more economical than the existing catalytic converter.

  12. Synthesis and kinetics investigation of meso-microporous Cu-SAPO-34 catalysts for the selective catalytic reduction of NO with ammonia.

    Science.gov (United States)

    Liu, Jixing; Yu, Fuhong; Liu, Jian; Cui, Lifeng; Zhao, Zhen; Wei, Yuechang; Sun, Qianyao

    2016-10-01

    A series of meso-microporous Cu-SAPO-34 catalysts were successfully synthesized by a one-pot hydrothermal crystallization method, and these catalysts exhibited excellent NH 3 -SCR performance at low temperature. Their structure and physic chemical properties were characterized by means of X-ray diffraction patterns (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), N 2 sorption-desorption, nuclear magnetic resonance (NMR), Inductively Coupled Plasma-Atomic Emission spectrometer (ICP-AES), X-ray absorption spectroscopy (XPS), Temperature-programmed desorption of ammonia (NH 3 -TPD), Ultraviolet visible diffuse reflectance spectroscopy (UV-Vis DRS) and Temperature programmed reduction (TPR). The analysis results indicate that the high activities of Cu-SAPO-34 catalysts could be attributed to the enhancement of redox property, the formation of mesopores and the more acid sites. Furthermore, the kinetic results verify that the formation of mesopores remarkably reduces diffusion resistance and then improves the accessibility of reactants to catalytically active sites. The 1.0-Cu-SAPO-34 catalyst exhibited the high NO conversion (>90%) among the wide activity temperature window in the range of 150-425°C. Copyright © 2016. Published by Elsevier B.V.

  13. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  14. Selective catalytic reduction of nitrogen oxides from industrial gases by hydrogen or methane

    International Nuclear Information System (INIS)

    Engelmann Pirez, M.

    2004-12-01

    This work deals with the selective catalytic reduction of nitrogen oxides (NO x ), contained in the effluents of industrial plants, by hydrogen or methane. The aim is to replace ammonia, used as reducing agent, in the conventional process. The use of others reducing agents such as hydrogen or methane is interesting for different reasons: practical, economical and ecological. The catalyst has to convert selectively NO into N 2 , in presence of an excess of oxygen, steam and sulfur dioxide. The developed catalyst is constituted by a support such as perovskites, particularly LaCoO 3 , on which are dispersed noble metals (palladium, platinum). The interaction between the noble metal and the support, generated during the activation of the catalyst, allows to minimize the water and sulfur dioxide inhibitor phenomena on the catalytic performances, particularly in the reduction of NO by hydrogen. (O.M.)

  15. The selective catalytic reduction of NO with NH3 over a novel Ce-Sn-Ti mixed oxides catalyst: Promotional effect of SnO2

    Science.gov (United States)

    Yu, Ming'e.; Li, Caiting; Zeng, Guangming; Zhou, Yang; Zhang, Xunan; Xie, Yin'e.

    2015-07-01

    A series of novel catalysts (CexSny) for the selective catalytic reduction of NO by NH3 were prepared by the inverse co-precipitation method. The aim of this novel design was to improve the NO removal efficiency of CeTi by the introduction of SnO2. It was found that the Ce-Sn-Ti catalyst was much more active than Ce-Ti and the best Ce:Sn molar ratio was 2:1. Ce2Sn1 possessed a satisfied NO removal efficiency at low temperature (160-280 °C), while over 90% NO removal efficiency maintained in the temperature range of 280-400 °C at the gas hourly space velocity (GHSV) of 50,000 h-1. Besides, Ce2Sn1 kept a stable NO removal efficiency within a wide range of GHSV and a long period of reacting time. Meanwhile, Ce2Sn1 exhibited remarkable resistance to both respectively and simultaneously H2O and SO2 poisoning due to the introduction of SnO2. The promotional effect of SnO2 was studied by N2 adsorption-desorption, X-ray diffraction (XRD), Raman spectra, X-ray photoelectron spectroscopy (XPS) and H2 temperature programmed reduction (H2-TPR) for detail information. The characterization results revealed that the excellent catalytic performance of Ce2Sn1 was associated with the higher specific surface area, larger pore volume and poorer crystallization. Besides, the introduction of SnO2 could result in not only greater conversion of Ce4+ to Ce3+ but also the increase amount of chemisorbed oxygen, which are beneficial to improve the SCR activity. More importantly, a novel peak appearing at lower temperatures through the new redox equilibrium of 2Ce4+ + Sn2+ ↔ 2Ce3+ + Sn4+ and higher total H2 consumption can be obtained by the addition of SnO2. Finally, the possible reaction mechanism of the selective catalytic reduction over Ce2Sn1 was also proposed.

  16. Natural clinoptilolite exchanged with iron: characterization and catalytic activity in nitrogen monoxide reduction

    Directory of Open Access Journals (Sweden)

    Daria Tito-Ferro

    2016-12-01

    Full Text Available The aim of this work was to characterize the natural clinoptilolite from Tasajeras deposit, Cuba, modified by hydrothermal ion-exchange with solutions of iron (II sulfate and iron (III nitrate in acid medium. Besides this, its catalytic activity to reduce nitrogen monoxide with carbon monoxide/propene in the presence of oxygen was evaluated. The characterization was performed by Mössbauer and UV-Vis diffuse reflectance spectroscopies and adsorption measurements. The obtained results lead to conclude that in exchanged samples, incorporated divalent and trivalent irons are found in octahedral coordination. Both irons should be mainly in cationic extra-framework positions inside clinoptilolite channels as charge compensating cations, and also as iron oxy-hydroxides resulting from limited hydrolysis of these cations. The iron (III exchanged samples has a larger amount of iron oxy-hydroxides agglomerates. The iron (II exchanged samples have additionally iron (II sulfate adsorbed. The catalytic activity in the nitrogen monoxide reduction is higher in the exchanged zeolites than starting. Among all samples, those exchanged of iron (II has the higher catalytic activity. This lead to outline that, main catalytically active centers are associated with divalent iron.

  17. Modeling the selective catalytic reduction of NOx by ammonia over a Vanadia-based catalyst from heavy duty diesel exhaust gases

    International Nuclear Information System (INIS)

    Yun, Byoung Kyu; Kim, Man Young

    2013-01-01

    A numerical simulation for prediction of NO X conversion over a commercial V 2 O 5 catalyst with NH 3 as a reductant was performed for a heavy duty diesel engine applications. The chemical behaviors of the SCR reactor are described by using the global NO X kinetics including standard, fast, and NH 3 oxidation reactions with the Langmuir–Hinshelwood (LH) mechanism incorporated into the commercial Boost code. After introducing mathematical models for the SCR reaction with specific reaction parameters, the effects of various parameters such as space velocities, the O 2 , H 2 O, NO 2 , and NH 3 concentrations on the NOx conversion are thoroughly studied and validated by comparing with the experimental data available in the literature. It is found that NO X conversion increases with decreasing space velocity, H 2 O concentration, and NH 3 /NO X ratio, and increasing O 2 concentration and NO 2 /NO X ratio. The study shows that not only is the present approach adopted is flexible in treating performance of the commercial V 2 O 5 based SCR catalyst, it is also accurate and efficient for the prediction of NO X conversion in diesel exhaust environments. - Highlights: ► To find the reaction parameters for LH mechanism over a commercial V2O5 catalyst. ► To investigate the effects of various parameters on the SCR NO X conversion. ► To present benchmark solutions on SCR behavior with diesel exhaust environments.

  18. Sulfated Zirconia as Alkali-Resistant Support for Catalytic NOx Removal

    DEFF Research Database (Denmark)

    The use of bio-fuels as alternatives to traditional fossil fuels has attracted much attention recent years since bio-fuels belong to a family of renewable types of energy sources and do not contribute to the green-house effect. Selective catalytic reduction (SCR) of NOx with ammonia as reductant ...... interact with potassium stronger than active metal species. Among potential carriers, sulfated zirconia is of high interest because its acidic and textural properties can be modified by varying preparation conditions....

  19. The poisoning effect of PbO on Mn-Ce/TiO{sub 2} catalyst for selective catalytic reduction of NO with NH{sub 3} at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Lingling [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Li, Caiting, E-mail: ctli@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zhao, Lingkui; Zeng, Guangming; Gao, Lei; Wang, Yan; Yu, Ming’e [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2016-12-15

    Highlights: • The poisoning effects of PbO-doped Mn-Ce/TiO{sub 2} catalysts for low temperature NH{sub 3}-SCR were investigated. • Low concentration of Mn{sup 4+} and chemisorbed oxygen (O{sub b}) were not favorable for the generation of intermediates. • The decreased Ce{sup 3+} and less reducible of manganese oxides hindered the redox cycle (Mn{sup 3+} + Ce{sup 4+} ↔ Mn{sup 4+} + Ce{sup 3+}). • The doping of PbO not only altered acid sites but also inhibited ammonia adsorption as well as activation. • The poisoning of PbO resulted in the decrease of ad-NO{sub x} species (only a spot of bidentate nitrates remained). - Abstract: Lead oxide (PbO) as one of the typical heavy metals in flue gas from power plants has strong accumulation as well as poisoning effects on SCR catalysts. In this paper, a series of PbO-doped Mn-Ce/TiO{sub 2} catalysts were synthesized by impregnation method. The poisoning effects of PbO over Mn-Ce/TiO{sub 2} samples for selective catalytic reduction of NO by NH{sub 3} were investigated based on catalytic activity test and characterizations. The NO conversion of Mn-Ce/TiO{sub 2} was greatly decreased after the addition of PbO. It was obvious that the NO conversion efficiency of Mn-Ce/TiO{sub 2} catalyst declined from 96.75% to about 40% at 200 °C when Pb:Mn molar ratio reached 0.5. Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Hydrogen temperature programmed reduction (H{sub 2}-TPR), Ammonia temperature programmed desorption (NH{sub 3}-TPD) and Fourier transform infrared spectroscopy (FT-IR) were carried out to study the deactivation reasons of PbO poisoned catalysts. Manganese oxides’ crystallization, less reducible of manganese and cerium oxides, the decreasing of surface area, Mn{sup 4+} as well as Ce{sup 3+} concentration and chemisorbed oxygen (O{sub b}) after the introduction of PbO, all of these resulted in a poor SCR performance

  20. Selective catalytic reduction of NO{sub x} with NH{sub 3} over iron-cerium-tungsten mixed oxide catalyst prepared by different methods

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Zhi-bo, E-mail: xzb328@163.com [School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai 200093 (China); Collaborative Innovation Research Institute, University of Shanghai for Science & Technology, Shanghai 200093 (China); Shanghai Power Equipment Research Institute, Shanghai 200240 (China); Liu, Jing; Zhou, Fei; Liu, Dun-yu; Lu, Wei [School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai 200093 (China); Jin, Jing [School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai 200093 (China); Collaborative Innovation Research Institute, University of Shanghai for Science & Technology, Shanghai 200093 (China); Ding, Shi-fa [Shanghai Power Equipment Research Institute, Shanghai 200240 (China)

    2017-06-01

    Highlights: • Iron-cerium-tungsten mixed oxide catalysts were prepared through three different methods. • The effect of preparation methods on the NH{sub 3}-SCR activity and the surface structure properties of catalyst were investigated. • Iron-cerium-tungsten mixed oxide prepared through microwave irradiation assistant critic acid sol-gel shows higher NH{sub 3}-SCR activity. - Abstract: A series of magnetic Fe{sub 0.85}Ce{sub 0.10}W{sub 0.05}O{sub z} catalysts were synthesized by three different methods(Co-precipitation(Fe{sub 0.85}Ce{sub 0.10}W{sub 0.05}O{sub z}-CP), Hydrothermal treatment assistant critic acid sol-gel method(Fe{sub 0.85}Ce{sub 0.10}W{sub 0.05}O{sub z}-HT) and Microwave irradiation assistant critic acid sol-gel method(Fe{sub 0.85}Ce{sub 0.10}W{sub 0.05}O{sub z}-MW)), and the catalytic activity was evaluated for selective catalytic reduction of NO with NH{sub 3}. The catalyst was characterized by XRD, N{sub 2} adsorption-desorption, XPS, H{sub 2}-TPR and NH{sub 3}-TPD. Among the tested catalysts, Fe{sub 0.85}Ce{sub 0.10}W{sub 0.05}O{sub z}-MW shows the highest NO{sub x} conversion over per gram in unit time with NO{sub x} conversion of 60.8% at 350 °C under a high gas hourly space velocity of 1,200,000 ml/(g h). Different from Fe{sub 0.85}Ce{sub 0.10}W{sub 0.05}O{sub z}-CP catalyst, there exists a large of iron oxide crystallite(γ-Fe{sub 2}O{sub 3} and α-Fe{sub 2}O{sub 3}) scattered in Fe{sub 0.85}Ce{sub 0.10}W{sub 0.05}O{sub z} catalysts prepared through hydrothermal treatment or microwave irradiation assistant critic acid sol-gel method, and higher iron atomic concentration on their surface. And Fe{sub 0.85}Ce{sub 0.10}W{sub 0.05}O{sub z}-MW shows higher surface absorbed oxygen concentration and better dispersion compared with Fe{sub 0.85}Ce{sub 0.10}W{sub 0.05}O{sub z}-HT catalyst. These features were favorable for the high catalytic performance of NO reduction with NH{sub 3} over Fe{sub 0.85}Ce{sub 0.10}W{sub 0.05}O{sub z}-MW catalyst.

  1. IN SITU DESTRUCTION OF CHLORINATED HYDROCARBON COMPOUNDS IN GROUNDWATER USING CATALYTIC REDUCTIVE REDUCTIVE DEHALOGENATION IN A REACTIVE WELL: TESTING AND OPERATIONAL EXPERIENCES. (R825421)

    Science.gov (United States)

    A groundwater treatment technology based on catalytic reductive dehalogenation has been developed to efficiently destroy chlorinated hydrocarbons in situ using a reactive well approach. The treatment process utilizes dissolved H2 as an electron donor, in...

  2. Communication: Towards catalytic nitric oxide reduction via oligomerization on boron doped graphene

    Energy Technology Data Exchange (ETDEWEB)

    Cantatore, Valentina, E-mail: valcan@chalmers.se; Panas, Itai [Department of Chemistry and Chemical Engineering, Energy & Materials, Chalmers University of Technology, Gothenburg (Sweden)

    2016-04-21

    We use density functional theory to describe a novel way for metal free catalytic reduction of nitric oxide NO utilizing boron doped graphene. The present study is based on the observation that boron doped graphene and O—N=N—O{sup −} act as Lewis acid-base pair allowing the graphene surface to act as a catalyst. The process implies electron assisted N=N bond formation prior to N—O dissociation. Two N{sub 2} + O{sub 2} product channels, one of which favoring N{sub 2}O formation, are envisaged as outcome of the catalytic process. Besides, we show also that the N{sub 2} + O{sub 2} formation pathways are contrasted by a side reaction that brings to N{sub 3}O{sub 3}{sup −} formation and decomposition into N{sub 2}O + NO{sub 2}{sup −}.

  3. Mean field approximation for the kinetics of the selective catalytic reduction of NO by ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Santos, M.; Bodanese, J.P. [Centro de Ensino Sao Jose, Universidade do Vale do Itajai (Brazil); S. Grandi, B.C. da [Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis (Brazil)

    2007-04-15

    In this work we study a catalytic reaction model among three monomers in order to understand the chemical kinetics of the selective catalytic reduction of nitrogen oxide by ammonia (4NO+4NH{sub 3}+O{sub 2}{yields}4N{sub 2}+6H{sub 2}O). Our model takes into account the formation of the intermediate species in the global scheme of the reaction. In order to determine the dynamical behaviour of the model we used single site approximation method. In this approach we have observed that, depending on the values of the control parameters, the model presents an active or an inactive phase. In fact, the dynamical phase diagram of the model exhibits a first order line separating these two phases. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Modelling of catalytic oxidation of NH3 and reduction of NO on limestone during sulphur capture

    DEFF Research Database (Denmark)

    Kiil, Søren; Bhatia, Suresh K.; Dam-Johansen, Kim

    1996-01-01

    activity with respect to each species involved. An existing particle model, the Grain-Micrograin Model, which simulates sulphur capture on limestone under oxidizing conditions is considered in the modelling. Simulation results in good qualitative agreement with experimental data are obtained here......A theoretical study of the complex transient system of simultaneous sulphur capture and catalytic reactions of N-containing compounds taking place on a single limestone particle is conducted. The numerical technique developed previously by the authors (Kiil et al. 1994) based on collocation...... for the catalytic chemistry of NH3 during simultaneous sulphur capture on a Stevns Chalk particle. The reduction of NO by NH3 over CaSO4 (which is the product of the reaction between SO2, O2 and limestone) was found to be important because this reaction could explain the change in selectivity with increased solid...

  5. Selective catalytic reduction of nitric oxide by ammonia over Cu-exchanged Cuban natural zeolites

    International Nuclear Information System (INIS)

    Moreno-Tost, Ramon; Santamaria-Gonzalez, Jose; Rodriguez-Castellon, Enrique; Jimenez-Lopez, Antonio; Autie, Miguel A.; Glacial, Marisol Carreras; Gonzalez, Edel; Pozas, Carlos De las

    2004-01-01

    The catalytic selective reduction of NO over Cu-exchanged natural zeolites (mordenite (MP) and clinoptilolite (HC)) from Cuba using NH 3 as reducing agent and in the presence of excess oxygen was studied. Cu(II)-exchanged zeolites are very active catalysts, with conversions of NO of 95%, a high selectivity to N 2 at low temperatures, and exhibiting good water tolerance. The chemical state of the Cu(II) in exchanged zeolites was characterized by H 2 -TPR and XPS. Cu(II)-exchanged clinoptilolite underwent a severe deactivation in the presence of SO 2 . However, Cu(II)-exchanged mordenite not only maintained its catalytic activity, but even showed a slight improvement after 20h of reaction in the presence of 100ppm of SO 2

  6. Speciation analysis and leaching behaviors of selected trace elements in spent SCR catalyst.

    Science.gov (United States)

    Dai, Zejun; Wang, Lele; Tang, Hao; Sun, Zhijun; Liu, Wei; Sun, Yi; Su, Sheng; Hu, Song; Wang, Yi; Xu, Kai; Liu, Liang; Ling, Peng; Xiang, Jun

    2018-09-01

    This study investigated heavy metal chemical speciation and leaching behavior from a board-type spent selective catalytic reduction (SCR) catalyst containing high concentrations of vanadium, chromium, nickel, copper, zinc, and lead. A three-step sequential extraction method, standard toxicity characteristic leaching procedure (TCLP), and leaching characteristic tests have been performed. It was found that the mobility of six heavy metals in the spent SCR catalyst was significantly different. The mobility of the six heavy metals exhibited the following order: Ni > Zn > V > Cr > As > Cu. Meanwhile, TCLP test results revealed relatively high Zn and Cr leaching rate of 83.20% and 10.35%, respectively. It was found that leaching rate was positively correlated with available contents (sum of acid soluble, reducible and oxidizable fractions). Leaching characteristics tests indicated that pH substantially affected the leaching of these heavy metals. In particular, the leaching of Cr, Ni, Cu, and Zn was positively influenced by strong acid, while V and As were easily released in the presence of strong acid and strong alkali (pH 11). In terms of kinetics, the leaching of Cr, Ni, Cu, Zn, and As within the spent catalyst was dominated by erosion and dissolution processes, which were rapid reaction processes. V was released in large amounts within 1 h, but its leaching amount sharply decreased with time due to readsorption. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Monitoring the ammonia loading of zeolite-based ammonia SCR catalysts by a microwave method

    Energy Technology Data Exchange (ETDEWEB)

    Reiss, S.; Schoenauer, D.; Hagen, G.; Moos, R. [University of Bayreuth, Department of Functional Materials, Bayreuth (Germany); Fischerauer, G. [University of Bayreuth, Department of Metrology and Control, Bayreuth (Germany)

    2011-05-15

    Exhaust gas aftertreatment systems, which reduce nitrogen oxide emissions of heavy-duty diesel engines, commonly use a selective catalytic reduction (SCR) catalyst. Currently, emissions are controlled by evaluating NO{sub x} or NH{sub 3} in the gas phase downstream the catalyst and calculating the NH{sub 3} loading via a chemical storage model. Here, a microwave-cavity perturbation method is proposed in which electromagnetic waves are excited by probe feeds and the reflected signals are measured. At distinct resonance frequencies, the reflection coefficient shows a pronounced minimum. These resonance frequencies depend almost linearly on the NH{sub 3} loading of a zeolite-based SCR catalyst. Since the NH{sub 3} loading-dependent electrical properties of the catalyst material itself are measured, the amount of stored ammonia can be determined directly and in situ. The cross-sensitivity towards water can be reduced almost completely by selecting an appropriate frequency range. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. The protective effect of SCR(15-18) on cerebral ischemia-reperfusion injury.

    Science.gov (United States)

    Li, Shu; Xian, Jinhong; He, Li; Luo, Xue; Tan, Bing; Yang, Yongtao; Liu, Gaoke; Wang, Zhengqing

    2011-10-01

    Soluble complement receptor type 1 (sCR1), a potent inhibitor of complement activation, has been shown to protect brain cells against cerebral ischemic/reperfusion (CI/R) injury due to its decay-accelerating activity for C3/C5 convertase and co-factor activity for C3b/C4b degradation. However, the effect of short consensus repeats (SCRs) 15-18, one of active domains of sCR1 with high C3b/C4b degradability, has not been demonstrated. Here, we investigated the protective effect of recombinant SCR(15-18) protein in middle cerebral artery occlusion (MCAO)-induced focal CI/R injury. Recombinant SCR(15-18) protein was successfully expressed in Escherichia coli and refolded to its optimal bioactivity. Seventy-five Sprague-Dawley rats were randomly assigned into three groups: sham-operated group, CI/R group, and SCR(15-18)+CI/R group pretreated with 20 mg/kg SCR(15-18) protein. After 2 hours of MCAO and subsequent 24 hours of reperfusion, rats were evaluated for neurological deficits and cerebral infarction. Polymorphonuclear leukocyte accumulation, C3b deposition, and morphological changes in cerebral tissue were also estimated. SCR(15-18) pretreatment induced a 20% reduction of infarct size and an improvement of neurological function with 22·2% decrease of neurological deficit scores. Inhibition of cerebral neutrophils infiltration by SCR(15-18) was indicated from the reduction of myeloperoxidase activity in SCR(15-18)+CI/R rats. Decreased C3b deposition and improved morphological changes were also found in cerebral tissue of SCR(15-18)-treated rats. Our studies suggest a definitive moderately protective effect of SCR(15-18) against CI/R damage and provide preclinical experimental evidence supporting the possibility of using it as a small anti-complement therapeutic agent for CI/R injury therapy.

  9. Experimental study on the particulate matter and nitrogenous compounds from diesel engine retrofitted with DOC+CDPF+SCR

    Science.gov (United States)

    Zhang, Yunhua; Lou, Diming; Tan, Piqiang; Hu, Zhiyuan

    2018-03-01

    The increasingly stringent emission regulations will mandate the retrofit of after-treatment devices for in-use diesel vehicles, in order to reduce their substantial particulate matter and nitrogen oxides (NOX) emissions. In this paper, a combination of DOC (diesel oxidation catalyst), CDPF (catalytic diesel particulate filter) and SCR (selective catalytic reduction) retrofit for a heavy-duty diesel engine was employed to perform experiment on the engine test bench to evaluate the effects on the particulate matter emissions including particle number (PN), particle mass (PM), particle size distributions and nitrogenous compounds emissions including NOX, nitrogen dioxide (NO2)/NOX, nitrous oxide (N2O) and ammonia (NH3) slip. In addition, the urea injection was also of our concern. The results showed that the DOC+CDPF+SCR retrofit almost had no adverse effect on the engine power and fuel consumption. Under the test loads, the upstream DOC and CDPF reduced the PN and PM by an average of 91.6% and 90.9%, respectively. While the downstream SCR brought about an average decrease of 85% NOX. Both PM and NOX emission factors based on this retrofit were lower than China-Ⅳ limits (ESC), and even lower than China-Ⅴ limits (ESC) at medium and high loads. The DOC and CDPF changed the particle size distributions, leading to the increase in the proportion of accumulation mode particles and the decrease in the percentage of nuclear mode particles. This indicates that the effect of DOC and CDPF on nuclear mode particles was better than that of accumulation mode ones. The upstream DOC could increase the NO2/NOX ratio to 40%, higher NO2/NOX ratio improved the efficiency of CDPF and SCR. Besides, the N2O emission increased by an average of 2.58 times after the retrofit and NH3 slip occurred with the average of 26.7 ppm. The rate of urea injection was roughly equal to 8% of the fuel consumption rate. The DOC+CDPF+SCR retrofit was proved a feasible and effective measurement in terms

  10. Evaluation of the first SCR-plants in Sweden; Utvaerdering av de foersta SCR-anlaeggningarna i Sverige

    Energy Technology Data Exchange (ETDEWEB)

    Hanell, B [Vattenfall AB, Stockholm (Sweden); and others

    1996-05-01

    This report presents operational experience of SCR systems at five power plants in Sweden; the diesel cogeneration plants in Linkoeping, Oskarshamn, Skultuna and Visby and the coal fired power plant in Vaesteraas. The experience represents the first years of operation of the SCR systems. The SCR-systems involved in this project achieve the following: * Uneven flue gas flow and concentration of ammonia and NO{sub x} through the SCR reactor results in lower efficiency. Hence it is important to achieve a thorough mixing of the ammonia in the flue gas in order to achieve high NO{sub x} reduction efficiencies, * Inferior control systems can cause unnecessary ammonia slip, * The diesel plants with an operating time of a couple of thousand hours have had major problems with deposits on the catalyst surface, * Guarantees regarding the lifetime of the catalyst are important. At commissioning the catalyst has to be over-dimensioned since the system has to reach the guaranteed emissions during the whole guarantee period, * There should be enough space in the reactor to install additional catalyst layers. This project verifies that additional layers need to be installed at later stages, * The mechanical construction of the SCR-reactor is important. The efficiency decreases when there is a leakage of flue gases past the reactor, * No considerable amounts of N{sub 2}O are generated by the catalyst. 21 refs, 27 figs, 47 tabs

  11. Green synthesis of gold nanoparticles using aspartame and their catalytic activity for p-nitrophenol reduction

    Science.gov (United States)

    Wu, Shufen; Yan, Songjing; Qi, Wei; Huang, Renliang; Cui, Jing; Su, Rongxin; He, Zhimin

    2015-05-01

    We demonstrated a facile and environmental-friendly approach to form gold nanoparticles through the reduction of HAuCl4 by aspartame. The single-crystalline structure was illustrated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The energy-dispersive X-ray spectroscopy (EDS) and Fourier transform infrared (FTIR) results indicated that aspartame played a pivotal role in the reduction and stabilization of the gold crystals. The crystals were stabilized through the successive hydrogen-bonding network constructed between the water and aspartame molecules. Additionally, gold nanoparticles synthesized through aspartame were shown to have good catalytic activity for the reduction of p-nitrophenol to p-aminophenol in the presence of NaBH4.

  12. Catalytic selective reduction of NO with ethylene over a series of copper catalysts on amorphous silicas

    International Nuclear Information System (INIS)

    Carniti, P.; Gervasini, A.; Modica, V.H.; Ravasio, N.

    2000-01-01

    Catalytic selective reduction of NO to N 2 was studied comparing a series of Cu-based catalysts (ca. 8wt.%) supported over amorphous pure and modified silicas: SiO 2 , SiO 2 -Al 2 O 3 , SiO 2 -TiO 2 , SiO 2 -ZrO 2 . The catalysts were prepared by the chemisorption-hydrolysis method which ensured the formation of a unique copper phase well dispersed over all supports, as confirmed by scanning electron micrographs (SEMs). Temperature-programmed reduction (TPR) analyses confirmed the presence of dispersed copper species which underwent complete reduction at a temperature of about 220C, independently of the support. It was found that the support affects the extent of NO reduction as well as the selectivity to N 2 formation. Maximum N 2 yield was found in the range 275-300C. The catalyst prepared over SiO 2 -Al 2 O 3 was the most active and selective with respect to the other silicas. Competitiveness factors (c.f.'s) as high as 13-20% in the temperature range 200-250C could be calculated. For all catalysts, the temperature of the N 2 peak maximum did not correspond to that of the maximum C 2 H 4 oxidation to CO 2 , suggesting the presence of two different sites for the oxidation and the reduction activity. On the catalyst prepared on SiO 2 -Al 2 O 3 , a kinetic interpretation of catalytic data collected at different contact times and temperatures permitted evaluating the ratio between kinetic coefficients as well as the difference between activation energies of NO reduction by C 2 H 4 and C 2 H 4 oxidation by O 2

  13. Selective catalytic reduction of sulfur dioxide to elemental sulfur. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

    1995-06-01

    This project has investigated new metal oxide catalysts for the single stage selective reduction of SO{sub 2} to elemental sulfur by a reductant, such as CO. Significant progress in catalyst development has been made during the course of the project. We have found that fluorite oxides, CeO{sub 2} and ZrO{sub 2}, and rare earth zirconates such as Gd{sub 2}Zr{sub 2}O{sub 7} are active and stable catalysts for reduction Of SO{sub 2} by CO. More than 95% sulfur yield was achieved at reaction temperatures about 450{degrees}C or higher with the feed gas of stoichiometric composition. Reaction of SO{sub 2} and CO over these catalysts demonstrated a strong correlation of catalytic activity with the catalyst oxygen mobility. Furthermore, the catalytic activity and resistance to H{sub 2}O and CO{sub 2} poisoning of these catalysts were significantly enhanced by adding small amounts of transition metals, such as Co, Ni, Co, etc. The resulting transition metal-fluorite oxide composite catalyst has superior activity and stability, and shows promise in long use for the development of a greatly simplified single-step sulfur recovery process to treat variable and dilute SO{sub 2} concentration gas streams. Among various active composite catalyst systems the Cu-CeO{sub 2} system has been extensively studied. XRD, XPS, and STEM analyses of the used Cu-CeO{sub 2} catalyst found that the fluorite crystal structure of ceria was stable at the present reaction conditions, small amounts of copper was dispersed and stabilized on the ceria matrix, and excess copper oxide particles formed copper sulfide crystals of little contribution to catalytic activity. A working catalyst consisted of partially sulfated cerium oxide surface and partially sulfided copper clusters. The overall reaction kinetics were approximately represented by a first order equation.

  14. Surface coverage of Pt atoms on PtCo nanoparticles and catalytic kinetics for oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Rongzhong, E-mail: rongzhong.jiang@us.army.mi [Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1197 (United States); Rong, Charles; Chu, Deryn [Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1197 (United States)

    2011-02-01

    The surface coverage of Pt atoms on PtCo nanoparticles and its effect on catalytic kinetics for oxygen reduction were investigated. The PtCo nanoparticles with different surface coverage of Pt atoms were synthesized with various methods, including normal chemical method, microemulsion synthesis, and ultrasound-assisted microemulsion. A model of Pt atoms filling into a spherical nanoparticle was proposed to explain the relationship of surface metal atoms and nanoparticle size. The catalytic activity of the PtCo nano-particles is highly dependent on the synthetic methods, even if they have the same chemical composition. The PtCo nano-particles synthesized with ultrasound-assisted microemulsion showed the highest activity, which is attributed to an increase of active surface coverage of Pt atoms on the metal nanoparticles. The rate of oxygen reduction at 0.5 V (vs. SCE) catalyzed by the PtCo synthesized with ultrasound-assisted micro-emulsion was about four times higher than that of the PtCo synthesized with normal chemical method. As demonstrated with rotating-ring disk electrode measurement, the PtCo nano-particles can catalyze oxygen 4-electron reduction to water without intermediate H{sub 2}O{sub 2} detected.

  15. Development of a choronocoulometric method for determining traces of uranium using the catalytic nitrate reduction

    International Nuclear Information System (INIS)

    Cantagallo, M.I.C.; Gutz, I.G.R.

    1990-01-01

    With the aim of improving the sensitivity of the electroanalytical determination of uranium at trace levels. The uranium catalyzed reduction of nitrate on mercury electrode and the technique of chronocoulometry were used. Several experimental parameters were investigated (electrolyte composition, potential program, integration time, blank correction, temperature, previous separation) and adequate conditions were selected for the analytical determination. Under these conditions it was possible to exceed the best reported sensitivity for the catalytic determination, extending the detection limit to 3.10 -10 M. Exploratory study of the combination of this procedure with pre-concentration of uranium ions on the electrode revealed a detection limit ten limes lower. (author) [pt

  16. Hydrogen cyanide formation in selective catalytic reduction of nitrogen oxides over Cu/ZSM-5

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, F; Koeppel, R; Baiker, A [Department of Chemical Engineering and Industrial Chemistry, Swiss Federal Institute of Technology, Zurich, (Switzerland)

    1994-01-06

    Hydrogen cyanide is formed over Cu/ZSM-5 during the selective catalytic reduction of NO[sub x] by either propylene or ethylene in the temperature range 450-600 K. Under the reaction conditions used (reactant feed: 973 ppm NO, 907 ppm propene or 1448 ppm ethylene, 2% oxygen, W/F=0.1 g s cm[sup -3]), the concentration of hydrogen cyanide reaches 20, respectively, 30 ppm, depending on whether ethylene or propene are used as hydrocarbons. In addition, significant N[sub 2]O formation is observed at temperatures lower than 700 K, independent of the hydrocarbon used

  17. Semi-catalytic reduction of secondary amides to imines and aldehydes.

    Science.gov (United States)

    Lee, Sun-Hwa; Nikonov, Georgii I

    2014-06-21

    Secondary amides can be reduced by silane HSiMe2Ph into imines and aldehydes by a two-stage process involving prior conversion of amides into iminoyl chlorides followed by catalytic reduction mediated by the ruthenium complex [Cp(i-Pr3P)Ru(NCCH3)2]PF6 (1). Alkyl and aryl amides bearing halogen, ketone, and ester groups were converted with moderate to good yields under mild reaction conditions to the corresponding imines and aldehydes. This procedure does not work for substrates bearing the nitro-group and fails for heteroaromatic amides. In the case of cyano substituted amides, the cyano group is reduced to imine.

  18. Reactivity of Surface Nitrates in H2-Assisted SCR of NOx Over Ag/Al2O3 Catalyst

    DEFF Research Database (Denmark)

    Sadokhina, N. A.; Doronkin, Dmitry E.; Baeva, G. N.

    2013-01-01

    The role of nitrate ad-species in H2-assisted SCR over Ag/Al2O3 was compared in NH3-SCR and n-C6H14-SCR processes. It was found that nitrates could be reduced by NH3 or n-C6H14 at similar rates with H2 co-feeding which indicates a common rate-limiting step. However, contributions of surface nitrate...... reduction to the overall NH3-SCR or n-C6H14-SCR are different as revealed by comparing the rates of nitrate reduction with the rates of steady-state processes. The rate of the steady-state n-C6H14-SCR is virtually identical to the rate of surface nitrate reduction suggesting a significant contribution...... of the surface nitrates reduction to the overall n-C6H14-SCR process. On the other hand, the steady-state rate of NH3-SCR is by ~15 times higher, which indicates that the reduction of surface nitrates plays a marginal role in the overall NH3-SCR....

  19. Regeneration of Pt-catalysts deactivated in municipal waste flue gas with H2/N2 and the effect of regeneration step on the SCR catalyst

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes; Rasmussen, Søren Birk; Kustov, Arkadii

    Municipal waste flue gas was previously found to deactivate the Pt-based CO oxidation catalyst severely. In the specific case studied, siloxanes were found to cause the deactivation. An on-site method for complete regeneration of the catalyst activity was found without shutdown of the flue gas...... stream, i.e. by in situ treatment of the Pt-catalyst by reductive H2-gas. However, introduction of H2 gas in the gas stream could also affect other units in the tail pipe gas cleaning system. Of special interest here, is the effect of hydrogen gas on the performance of the deNOx + SCR catalytic process...

  20. Gold Decorated Graphene for Rapid Dye Reduction and Efficient Electro Catalytic Oxidation of Ethanol

    Science.gov (United States)

    Siddhardha, R. S.; Kumar v, Lakshman; Kaniyoor, A.; Podila, R.; Kumar, V. S.; Venkataramaniah, K.; Ramaprabhu, S.; Rao, A.; Ramamurthy, S. S.; Clemson University Team; Sri Sathya Sai Institute of Higher Learning Team; IITMadras Team

    2013-03-01

    A well known disadvantage in fabrication of metal-graphene composite is the use of surfactants that strongly adsorb on the surface and reduce the performance of the catalyst. Here, we demonstrate a novel one pot synthesis of gold nanoparticles (AuNPs) by laser ablation of gold strip and simultaneous decoration of these on functionalized graphene derivatives. Not only the impregnation of AuNPs was linker free, but also the synthesis by itself was surfactant free. This resulted in in-situ decoration of pristine AuNPs on functionalized graphene derivatives. These materials were well characterized and tested for catalytic applications pertaining to dye reduction and electrooxidation. The catalytic reduction rates are 1.4 x 102 and 9.4x102 times faster for Rhodamine B and Methylene Blue dyes respectively, compared to earlier reports. The enhanced rate involves synergistic interplay of electronic relay between AuNPs and the dye, also charge transfer between the graphene system and dye. In addition, the onset potential for ethanol oxidation was found to be more negative ~ 100 mV, an indication of its promising application in direct ethanol fuel cells.

  1. Poly(N-isopropylacrylamide-co-methacrylic acid microgel stabilized copper nanoparticles for catalytic reduction of nitrobenzene

    Directory of Open Access Journals (Sweden)

    Farooqi Zahoor H.

    2015-09-01

    Full Text Available Poly(N-isopropylacrylamide-co-methacrylic acid microgels [p(NIPAM-co-MAAc] were synthesized by precipitation polymerization of N-isopropylacrylamide and methacrylic acid in aqueous medium. These microgels were characterized by dynamic light scattering and Fourier transform infrared spectroscopy. These microgels were used as micro-reactors for in situ synthesis of copper nanoparticles using sodium borohydride (NaBH4 as reducing agent. The hybrid microgels were used as catalysts for the reduction of nitrobenzene in aqueous media. The reaction was performed with different concentrations of cat­alyst and reducing agent. A linear relationship was found between apparent rate constant (kapp and amount of catalyst. When the amount of catalyst was increased from 0.13 to 0.76 mg/mL then kapp was increased from 0.03 to 0.14 min-1. Activation parameters were also determined by performing reaction at two different temperatures. The catalytic process has been discussed in terms of energy of activation, enthalpy of activation and entropy of activation. The synthesized particles were found to be stable even after 14 weeks and showed catalytic activity for the reduction of nitrobenzene.

  2. Preparation of silver nanoparticles/polydopamine functionalized polyacrylonitrile fiber paper and its catalytic activity for the reduction 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shixiang, E-mail: shixianglu@bit.edu.cn [School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 – IEMN, Lille F-59000 (France); Yu, Jianying; Cheng, Yuanyuan [School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Wang, Qian; Barras, Alexandre [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 – IEMN, Lille F-59000 (France); Xu, Wenguo [School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Szunerits, Sabine [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 – IEMN, Lille F-59000 (France); Cornu, David [Institut Européen des Membranes, UMR 5635, Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), CNRS, Université Montpellier 2, 276 rue de la Galéra, Montpellier 34000 (France); Boukherroub, Rabah, E-mail: rabah.boukherroub@iemn.univ-lille1.fr [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 – IEMN, Lille F-59000 (France)

    2017-07-31

    Graphical abstract: Illustration of the preparation of Ag nanoparticles coated paper and its catalytic application for 4-nitrophenol reduction into the corresponding 4-aminophenol. - Highlights: • Polyacrylonitrile paper was functionalized with polydopamine and Ag nanoparticles. • Polydopamine coating layer played both reductive and adhesive roles. • The composite material displayed good catalytic activity for 4-nitrophenol reduction. • The process was environmentally benign and facile. - Abstract: The study reports on the preparation of polyacrylonitrile fiber paper (PANFP) functionalized with polydopamine (PD) and silver nanoparticles (Ag NPs), named as Ag NPs/PD/PANFP. The composite material was obtained via a simple two-step chemical process. First, a thin polydopamine layer was coated onto the PANFP surface through immersion into an alkaline dopamine (pH 8.5) aqueous solution at room temperature. The reductive properties of polydopamine were further exploited for the deposition of Ag NPs. The morphology and chemical composition of the composite material were characterized using scanning electron microscopy (SEM), X-ray diffraction pattern (XRD) and X-ray photoelectron spectroscopy (XPS). The catalytic activity of the nanocomposite was evaluated for the reduction of 4-nitrophenol using sodium borohydride (NaBH{sub 4}) at room temperature. The Ag NPs/PD/PANFP displayed good catalytic performance with a full reduction of 4-nitrophenol into the corresponding 4-aminophenol within 30 min. Moreover, the composite material exhibited a good stability up to 4 cycles without a significant loss of its catalytic activity.

  3. Electrochemical preparation of iron cuboid nanoparticles and their catalytic properties for nitrite reduction

    International Nuclear Information System (INIS)

    Chen Yanxin; Chen Shengpei; Chen Qingsong; Zhou Zhiyou; Sun Shigang

    2008-01-01

    Iron cuboid nanoparticles supported on glassy carbon (denoted nm-Fe/GC) were prepared by electrochemical deposition under cyclic voltammetric (CV) conditions. The structure and composition of the Fe nanomaterials were characterized by scanning electron microscopy (SEM), selected area electron diffraction (SAED), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDX). The results demonstrated that the Fe cuboid nanoparticles are dispersed discretely on GC substrate with an average size ca. 171 nm, and confirmed that the electrochemical synthesized nanocubes are single crystals of pure Fe. The catalytic properties of the Fe cuboid nanoparticles towards nitrite electroreduction were investigated, and enhanced electrocatalytic activity of the Fe nanocubes has been determined. In comparison with the data obtained on a bulk-Fe electrode, the onset potential of nitrite reduction on nm-Fe/GC is positively sifted by 100 mV, and the steady reduction current density is enhanced about 2.4-3.2 times

  4. Catalytic reduction of NO and N20 for CO on Co-ZSM-5

    International Nuclear Information System (INIS)

    Rios, Luis Alberto; Aristizabal, Gladys Liliana; Ruiz, Julio Fernando; Montes Consuelo

    1996-01-01

    Several catalysts with the help of ZSM-5 with Co were tested in the catalytic reduction of NO and N2O using CO like agent reducer and in presence of variable quantities of O2 The cobalt incorporated in the zeolite ZSM-5 for the methods of ionic exchange, impregnation and substitution. ZSM-5 exchanged with Co presented the highest conversions of NO (80% to 5OO oC), in presence of 3000 ppm of O2; When adding 25.700 ppm of O2 the conversion it diminished notably, that which shows an effect inhibitor of the O2. The substituted catalysts and impregnated they were less active for the reduction of the NO. With all the catalysts conversions of 70-90% were achieved for the N2O; Additionally, marked deactivation of the catalyst was not presented with the time

  5. The black rock series supported SCR catalyst for NO x removal.

    Science.gov (United States)

    Xie, Bin; Luo, Hang; Tang, Qing; Du, Jun; Liu, Zuohua; Tao, Changyuan

    2017-09-01

    Black rock series (BRS) is of great potential for their plenty of valued oxides which include vanadium, iron, alumina and silica oxides, etc. BRS was used for directly preparing of selective catalytic reduction (SCR) catalyst by modifying its surface texture with SiO 2 -TiO 2 sols and regulating its catalytic active constituents with V 2 O 5 and MoO 3 . Consequently, 90% NO removal ratio was obtained within 300-400 °C over the BRS-based catalyst. The structure and properties of the BRS-based catalyst were characterized by the techniques of N 2 adsorption-desorption, X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), H 2 -temperature programmed reduction (H 2 -TPR), and NH 3 -temperature programmed desorption (NH 3 -TPD). The results revealed that the BRS-based catalyst possesses favorable properties for NO x removal, including highly dispersed active components, abundant surface-adsorbed oxygen O α , well redox property, and numerous Brønsted acid sites. Particularly, the BRS-based catalyst exhibited considerable anti-poisoning performance compared with commercial TiO 2 -based catalyst. The former catalyst shows a NO conversion surpassing 80% from 300 to 400 °C for potassium poisoning, and a durability of SO 2 and H 2 O exceeding 85% at temperatures from 300 to 450 °C.

  6. Data and Summaries for Catalytic Destruction of a Surrogate Organic Hazardous Air Pollutant as a Potential Co-benefit for Coal-Fired Selective Catalytic Reduction Systems

    Data.gov (United States)

    U.S. Environmental Protection Agency — Table 1 summarizes and explanis the Operating Conditions of the SCR Reactor used in the Benzene-Destruction. Table 2 summarizes and explains the Experimental Design...

  7. Effect of process parameters and injector position on the efficiency of NOx reduction by selective non catalytic reduction technique

    International Nuclear Information System (INIS)

    Hamid, A.; Mehmood, M.A.; Irfan, N.; Javed, M.T.; Waheed, K.

    2009-01-01

    An experimental investigation has been performed to study the effect of atomizer pressure dilution of the reducing reagent and the injector position on the efficiency or the NOx reduction by a selective non-catalytic reduction technique using urea as a reducing agent. Experiments were performed with a flow reactor in which flue gas was generated by the combustion of methane in air at stoichiometric amount of oxygen and the desired levels of initial NOx (400-450 ppm) were achieved by doping the flame with ammonia. The work was directed to investigate the effect of atomizer pressure, dilution of urea reagent and the injector position. The atomizer pressure was varied from 1 to 3bar and 20-25% increase in efficiency was observed by decreasing the pressure. Effect of dilution of urea solution was investigated by varying the strength of the solution from the 8 to 32% and 40-45% increase in the efficiency was observed. Effects of injector position was investigated by injecting the urea solution both in co current and counter current direction of the flue gases and 20-25% increase in the efficiency was observed in counter current direction. (author)

  8. Catalytically supported reduction of emissions from small-scale biomass furnace systems

    International Nuclear Information System (INIS)

    Hartmann, Ingo; Lenz, Volker; Schenker, Marian; Thiel, Christian; Kraus, Markus; Matthes, Mirjam; Roland, Ulf; Bindig, Rene; Einicke, Wolf-Dietrich

    2011-01-01

    The increased use of solid biomass in small combustion for generating heat from renewable energy sources is unfortunately associated with increased emissions of airborne pollutants. The reduction is possible on the one hand by the use of high-quality modern furnaces to the latest state of the art. On the other hand, several promising approaches method for retrofitting small-scale furnaces are currently being developed that will allow an effective emission reduction by the subsequent treatment of the exhaust gas. The overview of current available emission control technologies for small-scale biomass combustion plants shows that there is still considerable need for research on the sustainable production of heat from solid biofuels. The amendment to the 1st BImSchV provides a necessary drastic reduction of discharged pollutants from small-scale biomass furnaces. When using the fuel wood in modern central heating boilers the required limits can be met at full load. However, dynamic load changes can cause brief dramatic emission increases even with wood central heating boilers. Firebox and control optimization must contribute in the future to a further reduction of emissions. The typical simple single-room fireplaces like hand-fed wood stoves are suitable under type test conditions to comply the limit values. By contrast, in practical operation, the harmful gas emissions be exceeded without secondary measures normally. The performed experimental investigations show that a reduction of both CO and of organic compounds by catalytic combustion is possible. In addition to developing specially adapted catalysts, it is necessary to provide additional dust separation by combined processes, since conventional catalysts are not suitable for deposition and retention of particulate matter or would lose their activity due to dust accumulation on the active surface, when the catalyst would act as a filter at the same time. To enable sufficiently high reaction temperatures and thus a

  9. On the Pt(+) and Rh(+) Catalytic Activity in the Nitrous Oxide Reduction by Carbon Monoxide.

    Science.gov (United States)

    Rondinelli, F; Russo, N; Toscano, M

    2008-11-11

    Nitrous oxide activation by CO in the presence of platinum and rhodium monocations was elucidated by density functional methods for ground and first excited states. Platinum and rhodium cations fulfill the thermodynamic request for the oxygen-atom transport that allows the catalytic cycle to be completed, but actually, just the first one meaningfully improves the kinetics of the process. For both catalysts, the reaction pathways show the only activation barrier in correspondence of nitrogen release and monoxide cation formation. The kinetic analysis of the potential energy profile, in agreement with ICP/SIFT MS experimental data, indicates that platinum performs more in the reduction, while the whole process is not sufficiently fast in the case of rhodium ionic catalyst.

  10. Heteropoly acid promoted Cu and Fe catalysts for the selective catalytic reduction of NO with ammonia

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Mossin, Susanne L.; Riisager, Anders

    2011-01-01

    Cu/TiO2, Fe/TiO2 and heteropoly acid promoted Cu/TiO2, Fe/TiO2 catalysts were prepared and characterized by N2 physisorption, XRPD, NH3-TPD, H2-TPR and EPR. The catalysts exhibited only crystalline TiO2 phases with the active metals and promoters in highly dispersed state. The acidic properties...... activity and acidity was lower for promoted catalysts than for unpromoted catalysts. In the heteropoly acid promoted catalysts the SCR active Cu and Fe metals were protected from potassium poisons by bonding of the potassium to the Brønsted acid centres. Thus heteropoly acid promoted catalysts might...... be suitable for biomass fired power plant SCR applications....

  11. Hollow ZSM-5 encapsulated Pt nanoparticles for selective catalytic reduction of NO by hydrogen

    Science.gov (United States)

    Hong, Zhe; Wang, Zhong; Chen, Dan; Sun, Qiang; Li, Xuebing

    2018-05-01

    Pt nanoparticles were successfully encapsulated in hollow ZSM-5 single crystals by tetrapropylammonium hydroxide (TPAOH) hydrothermal treatment with an "dissolution-recrystallization" process. The prepared Pt/hollow ZSM-5 (Pt/h-ZSM-5re) sample exhibited the best activity and a maximum NO conversion of 84% can be achieved at 90 °C with N2 selectivity of 92% (GHSV = 50,000 h-1). Meanwhile, Pt/h-ZSM-5re catalyst exhibited excellent SO2, H2O resistance and durability, which was related to the stabilization of Pt active sites by hollow structure during H2-SCR. It was found that the increase of NO2 concentration in the feed gas mixture led to an activity decline. In addition, the H2-SCR reaction routes over Pt/hollow ZSM-5 catalyst at different temperature were investigated.

  12. Comparative study involving the uranium determination through catalytic reduction of nitrates and nitrides by using decoupled plasma nitridation (DPN)

    International Nuclear Information System (INIS)

    Aguiar, Marco Antonio Souza; Gutz, Ivano G. Rolf

    1999-01-01

    This paper reports a comparative study on the determination of uranium through the catalytic reduction of nitrate and nitride using the decoupled plasma nitridation. The uranyl ions are a good catalyst for the reduction of NO - 3 and NO - 2 ions on the surface of a hanging drop mercury electrode (HDME). The presence of NO - in a solution with p H = 3 presented a catalytic signal more intense than the signal obtained with NO - 3 (concentration ten times higher). A detection limit of 1x10 9 M was obtained using the technique of decoupled plasma nitridation (DPN), suggesting the development of a sensitive way for the determination of uranium in different matrixes

  13. Effects of a TiC substrate on the catalytic activity of Pt for NO reduction.

    Science.gov (United States)

    Chu, Xingli; Fu, Zhaoming; Li, Shasha; Zhang, Xilin; Yang, Zongxian

    2016-05-11

    Density functional theory calculations are used to elucidate the catalytic properties of a Pt monolayer supported on a TiC(001) substrate (Pt/TiC) toward NO reduction. It is found that the compound system of Pt/TiC has a good stability due to the strong Pt-TiC interaction. The diverse dissociation paths (namely the direct dissociation mechanism and the dimeric mechanism) are investigated. The transition state searching calculations suggest that NO has strong diffusion ability and small activation energy for dissociation on the Pt/TiC. For NO reduction on the Pt/TiC surface, we have found that the direct dissociation mechanisms (NO + N + O → NO2 + N and NO + N + O → N2 + O + O) are easier with a smaller dissociation barrier than those on the Pt(111) surface; and the dimeric process (NO + NO → (NO)2 → N2O + O → N2 + O + O) is considered to be dominant or significant with even a lower energy barrier than that of the direct dissociation. The results show that Pt/TiC can serve as an efficient catalyst for NO reduction.

  14. Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction.

    Science.gov (United States)

    Zitolo, Andrea; Ranjbar-Sahraie, Nastaran; Mineva, Tzonka; Li, Jingkun; Jia, Qingying; Stamatin, Serban; Harrington, George F; Lyth, Stephen Mathew; Krtil, Petr; Mukerjee, Sanjeev; Fonda, Emiliano; Jaouen, Frédéric

    2017-10-16

    Single-atom catalysts with full utilization of metal centers can bridge the gap between molecular and solid-state catalysis. Metal-nitrogen-carbon materials prepared via pyrolysis are promising single-atom catalysts but often also comprise metallic particles. Here, we pyrolytically synthesize a Co-N-C material only comprising atomically dispersed cobalt ions and identify with X-ray absorption spectroscopy, magnetic susceptibility measurements and density functional theory the structure and electronic state of three porphyrinic moieties, CoN 4 C 12 , CoN 3 C 10,porp and CoN 2 C 5 . The O 2 electro-reduction and operando X-ray absorption response are measured in acidic medium on Co-N-C and compared to those of a Fe-N-C catalyst prepared similarly. We show that cobalt moieties are unmodified from 0.0 to 1.0 V versus a reversible hydrogen electrode, while Fe-based moieties experience structural and electronic-state changes. On the basis of density functional theory analysis and established relationships between redox potential and O 2 -adsorption strength, we conclude that cobalt-based moieties bind O 2 too weakly for efficient O 2 reduction.Nitrogen-doped carbon materials with atomically dispersed iron or cobalt are promising for catalytic use. Here, the authors show that cobalt moieties have a higher redox potential, bind oxygen more weakly and are less active toward oxygen reduction than their iron counterpart, despite similar coordination.

  15. Influence of real-world engine load conditions on nanoparticle emissions from a DPF and SCR equipped heavy-duty diesel engine.

    Science.gov (United States)

    Thiruvengadam, Arvind; Besch, Marc C; Carder, Daniel K; Oshinuga, Adewale; Gautam, Mridul

    2012-02-07

    The experiments aimed at investigating the effect of real-world engine load conditions on nanoparticle emissions from a Diesel Particulate Filter and Selective Catalytic Reduction after-treatment system (DPF-SCR) equipped heavy-duty diesel engine. The results showed the emission of nucleation mode particles in the size range of 6-15 nm at conditions with high exhaust temperatures. A direct result of higher exhaust temperatures (over 380 °C) contributing to higher concentration of nucleation mode nanoparticles is presented in this study. The action of an SCR catalyst with urea injection was found to increase the particle number count by over an order of magnitude in comparison to DPF out particle concentrations. Engine operations resulting in exhaust temperatures below 380 °C did not contribute to significant nucleation mode nanoparticle concentrations. The study further suggests the fact that SCR-equipped engines operating within the Not-To-Exceed (NTE) zone over a critical exhaust temperature and under favorable ambient dilution conditions could contribute to high nanoparticle concentrations to the environment. Also, some of the high temperature modes resulted in DPF out accumulation mode (between 50 and 200 nm) particle concentrations an order of magnitude greater than typical background PM concentrations. This leads to the conclusion that sustained NTE operation could trigger high temperature passive regeneration which in turn would result in lower filtration efficiencies of the DPF that further contributes to the increased solid fraction of the PM number count.

  16. Low Temperature Selective Catalytic Reduction of Nitrogen Oxides in Production of Nitric Acid by the Use of Liquid

    Directory of Open Access Journals (Sweden)

    Kabljanac, Ž.

    2011-11-01

    Full Text Available This paper presents the application of low-temperature selective catalytic reduction of nitrous oxides in the tail gas of the dual-pressure process of nitric acid production. The process of selective catalytic reduction is carried out using the TiO2/WO3 heterogeneous catalyst applied on a ceramic honeycomb structure with a high geometric surface area per volume. The process design parameters for nitric acid production by the dual-pressure procedure in a capacity range from 75 to 100 % in comparison with designed capacity for one production line is shown in the Table 1. Shown is the effectiveness of selective catalytic reduction in the temperature range of the tail gas from 180 to 230 °C with direct application of liquid ammonia, without prior evaporation to gaseous state. The results of inlet and outlet concentrations of nitrous oxides in the tail gas of the nitric acid production process are shown in Figures 1 and 2. Figure 3 shows the temperature dependence of the selective catalytic reduction of nitrous oxides expressed as NO2in the tail gas of nitric acid production with the application of a constant mass flow of liquid ammonia of 13,0 kg h-1 and average inlet mass concentration of the nitrous oxides expressed as NO2of 800,0 mgm-3 during 100 % production capacity. The specially designed liquid-ammonia direct-dosing system along with the effective homogenization of the tail gas resulted in emission levels of nitrous oxides expressed as NO2 in tail gas ranging from 100,0 to 185,0 mg m-3. The applied low-temperature selective catalytic reduction of the nitrous oxides in the tail gases by direct use of liquid ammonia is shown in Figure 4. It is shown that low-temperature selective catalytic reduction with direct application of liquid ammonia opens a new opportunity in the reduction of nitrous oxide emissions during nitric acid production without the risk of dangerous ammonium nitrate occurring in the process of subsequent energy utilization of

  17. Catalytic pyrolysis of LDPE leads to valuable resource recovery and reduction of waste problems

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Jasmin [Institute of Chemical Sciences, University of Peshawar, N.W.F.P. (Pakistan); Jan, M. Rasul [University of Malakand, Chakdara, N.W.F.P. (Pakistan); Mabood, Fazal [Department of Chemistry, University of Malakand, Chakdara, N.W.F.P. (Pakistan); Jabeen, Farah [Department of Chemistry, Sarhad University, N.W.F.P. (Pakistan)

    2010-12-15

    . This was further confirmed by Bromine number tests. The values of which lie in the range of 0.1-12.8 g/ml, which fall in the range for olefin mixture. Phenol and carbonyl contents were quantified using UV/Visible spectroscopy and the values lie in the range of 1-8920 {mu}g/ml and 5-169 {mu}g/ml for both phenols and carbonyls respectively. The components of different hydrocarbons in the oil mixture were separated by using column chromatography and fractional distillation followed by characterization with FT-IR spectroscopy. The interpretation of FT-IR spectra shows that catalytic pyrolysis of LDPE leads to the formation of a complex mixture of alkanes, alkenes, carbonyl group containing compounds like aldehydes, ketones, aromatic compounds and substituted aromatic compounds like phenols. It could be concluded, that catalytic pyrolysis of LDPE leads to valuable resource recovery and reduction of waste problem. (author)

  18. A novel green synthesis and characterization of Ag NPs with its ultra-rapid catalytic reduction of methyl green dye

    International Nuclear Information System (INIS)

    Junejo, Y.; Sirajuddin; Baykal, A.; Safdar, M.; Balouch, A.

    2014-01-01

    Ampicillin derived silver nanoparticles were synthesized in an aqueous medium. Particle size and shape were determined by Transmission electron microscopy which showed the monodispersed morphology. The Fourier transform infrared spectra were represented the interaction of Ampicillin with surface of Ampicillin derived silver nanoparticles. X-ray powder diffraction study gave crystalline nature of the Ampicillin derived silver nanoparticles which exhibited exceptional catalytic activity for the reduction of Methylene Green dye. However, complete reduction of dye was accomplished by Ampicillin derived silver nanoparticles within 4 min only. The catalytic performance of these nanoparticles was adsorbed on glass. They were recovered easily from reaction medium and reused with enhanced catalytic potential. Based upon these results it has been concluded that Ampicillin derived silver nanoparticles are novel, rapid and highly economical alternative for environmental safety against pollution by dyes and extendable for control of other reducible contaminants as well.

  19. Application of chronocoulomentry for trace levels uranium determination using catalytic nitrate reduction on mercury electrode

    International Nuclear Information System (INIS)

    Cantagallo, M.I.C.

    1988-01-01

    With the aim of improving the sensitivity of the electro-analytical determination of uranium at trace levels, the uranium catalyzed reduction of nitrate on mercury electrodes was used and the technique of chronocoulometry was compared with other voltammetric techniques. The catalytic process offers high sensitivity in comparison with uranyl reduction in absence of nitrate. The chronocoulometry, virtually unexplored for analytical applications, was found to be specially well suited for determinations based on this kind of electrode process, when using current integration times in the range of several seconds. Under these conditions the interference from diffusion controlled faradaic processes is reduced to a minimum. Several experimental parameters were investigated (eletrolyte composition, potential program, integration time, blank correction, temperature, previous separation) and adequate conditions were selected for the analytical determination of pure and real samples. The proposed method was applied and evaluated with real and, when necessary, an adapted liquid-liquid extraction procedure was used. Reference materials with complex matrices like rocks were first solubilized by hot digestion under pressure. The obtained results are in good agreement with the values obtained with other techniques such as X-ray fluorescence, mass spectrometry-isotope dilution and epithermal netron activation analysis. (author) [pt

  20. Efficient Catalytic Reduction of Hexavalent Chromium With Pd-decorated Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Dang; Choi, Hyun Chul [Chonnam National University, Gwangju (Korea, Republic of)

    2016-05-15

    Heavy metal pollution is currently a serious environmental issue. Chromium (Cr) and chromium compounds are commonly found in wastewater discharged by various industries such as wood preservation, leather tanning, electroplating, metal finishing, and the production of chemicals. Pd nanoparticles can easily be introduced into CNTs by performing DCC-activated amidation. Our TEM and XRD results indicate that well-dispersed metallic Pd nanoparticles are anchored on the surface of the amidated CNTs. The XPS results suggest that the Pd content of the sample is approximately 9.8 atomic %. In comparison with the commercial Pd catalyst, the prepared Pd-CNTs were demonstrated to exhibit good catalytic activity in the reduction of 4-NP by NaBH4. Moreover, the Pd-CNT catalyst can easily be separated by performing a simple filtration and reused over at least 10 cycles. This Pd-CNT catalyst is therefore believed to have significant potential for use as a reusable catalyst in the reduction of Cr(Vi)

  1. Selective catalytic reduction of NOx and N{sub 2}O by NH{sub 3} over Fe-FER; Developpement d'un traitement catalytique combine des NOx et de N{sub 2}O par NH{sub 3} sur Fe-Fer

    Energy Technology Data Exchange (ETDEWEB)

    Kieger, St. [Grande Paroisse, 76 - Grand-Quevilly (France); Navascues, L.; Gry, Ph. [Grande Paroisse, 92 - Paris la Defense (France)

    2001-07-01

    The emission of nitrogen oxides from anthropogenic activities is a major environmental issue. N{sub 2}O is taking part to the global warming and depletion of the stratospheric ozone layer, and NOx to acid rains. At the Kyoto Conference in 1997, the European Union committed itself to reduce by 8% the release of greenhouse gases at the horizon 2010. The selective catalytic reduction (SCR) of NOx by NH{sub 3} is nowadays the main control technology for the emissions from nitric acid plant. Therefore, Grande Paroisse and IRMA have developed a new catalyst (Fe-FER) for the SCR of N{sub 2}O by NH{sub 3}. The catalyst was evaluated in a pilot plant and in the same operating conditions than a DeNOx catalyst. At a space velocity of 9000 to 12000 h{sup -1}, a decomposition of 50% of N{sub 2}O was achieved at 440 deg C. Moreover for the same decomposition level, the temperature could be shifted to 390 deg C by adding ammonia, and the complete reduction of NOx was also observed. This new catalyst is rather bi-functional. Also after months of using, the catalyst did not show major loss of activity nor mechanical strength. (authors)

  2. Simultaneous removal of NO and Hg{sup 0} over Ce-Cu modified V{sub 2}O{sub 5}/TiO{sub 2} based commercial SCR catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Guilong [School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300401 (China); College of Environmental Science & Engineering, Nankai University, Tianjin 300350 (China); Shen, Boxiong, E-mail: shenbx@nankai.edu.cn [School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300401 (China); Yu, Ranran [School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300401 (China); He, Chuan; Zhang, Xiao [College of Environmental Science & Engineering, Nankai University, Tianjin 300350 (China)

    2017-05-15

    Highlights: • Simultaneous removal of NO and Hg{sup 0} over the novel modified commercial SCR catalysts. • 7% Ce-1% Cu/SCR catalyst exhibited excellent activity of NO conversion and Hg{sup 0} oxidation. • 7% Ce-1% Cu/SCR catalyst showed higher resistance to SO{sub 2} and H{sub 2}O than other catalysts. • The synergistic interaction between Ce and Cu in the catalyst improved the activity greatly. - Abstract: A series of novel Ce-Cu modified V{sub 2}O{sub 5}/TiO{sub 2} based commercial SCR catalysts were prepared via ultrasonic-assisted impregnation method for simultaneous removal of NO and elemental mercury (Hg{sup 0}). Nitrogen adsorption, X-ray diffraction (XRD), temperature programmed reduction of H{sub 2} (H{sub 2}-TPR) and X-ray photoelectron spectroscopy (XPS) were used to characterize the catalysts. 7% Ce-1% Cu/SCR catalyst exhibited the highest NO conversion efficiency (>97%) at 200–400 °C, as well as the best Hg{sup 0} oxidation activity (>75%) at 150–350 °C among all the catalysts. The XPS and H{sub 2}-TPR results indicated that 7% Ce-1% Cu/SCR possess abundant chemisorbed oxygen and good redox ability, which was due to the strong synergy between Ce and Cu in the catalyst. The existence of the redox cycle of Ce{sup 4+} + Cu{sup 1+} ↔ Ce{sup 3+} + Cu{sup 2+} could greatly improve the catalytic activity. 7% Ce-1% Cu/SCR showed higher resistance to SO{sub 2} and H{sub 2}O than other catalysts. NO has a promoting effect on Hg{sup 0} oxidation. The Hg{sup 0} oxidation activity was inhibited by the injection of NH{sub 3}, which was due to the competitive adsorption and oxidized mercury could be reduced by ammonia at temperatures greater than 325 °C. Therefore, Hg{sup 0} oxidation could easily occurred at the outlet of SCR catalyst layer due to the consumption of NH{sub 3}.

  3. Fe-BEA Zeolite Catalysts for NH3-SCR of NOx

    DEFF Research Database (Denmark)

    Frey, Anne Mette; Mert, Selcuk; Due-Hansen, Johannes

    2009-01-01

    Iron-containing zeolites are known to be promising catalysts for the NH3-SCR reaction. Here, we will investigate the catalytic activity of iron-based BEA catalysts, which was found to exhibit improved activities compared to previously described iron-containing zeolite catalysts, such as ZSM-5...... and ZSM-12. Series of Fe-BEA zeolite catalysts were prepared using a range of different preparation methods. Furthermore, we found that an iron concentration around 3 wt% on BEA showed a small optimum in SCR activity compared to the other iron loadings studied....

  4. High performance vanadia-anatase nanoparticle catalysts for the selective catalytic reduction of NO by ammonia

    DEFF Research Database (Denmark)

    Kristensen, Steffen Buus; Kunov-Kruse, Andreas Jonas; Riisager, Anders

    2011-01-01

    Highly active nanoparticle SCR deNO(x) catalysts composed of amorphous vanadia on crystalline anatase have been prepared by a sol-gel, co-precipitation method using decomposable crystallization seeds. The catalysts were characterized by means of XRPD, TEM/SEM, FT-IR, nitrogen physisorption and NH(3......) catalysts reported in the literature in the examined temperature range of 200-400 degrees C. The catalysts showed very high resistivity towards potassium poisoning maintaining a 15-30 times higher activity than the equally poisoned industrial reference catalyst, upon impregnation by 280 mu mole potassium....../g of catalyst. (C) 2011 Elsevier Inc. All rights reserved....

  5. Optimization research on the concentration field of NO in selective catalytic reduction flue gas denitration system

    Science.gov (United States)

    Zheng, Qingyu; Zhang, Guoqiang; Che, Kai; Shao, Shikuan; Li, Yanfei

    2017-08-01

    Taking 660 MW generator unit denitration system as a study object, an optimization and adjustment method shall be designed to control ammonia slip, i.e. adjust ammonia injection system based on NO concentration distribution at inlet/outlet of the denitration system to make the injected ammonia distribute evenly. The results shows that, this method can effectively improve NO concentration distribution at outlet of the denitration system and decrease ammonia injection amount and ammonia slip concentration. Reduce adverse impact of SCR denitration process on the air preheater to realize safe production by guaranteeing that NO discharge shall reach the standard.

  6. Defect-meditated efficient catalytic activity toward p-nitrophenol reduction: A case study of nitrogen doped calcium niobate system

    International Nuclear Information System (INIS)

    Su, Yiguo; Huang, Shushu; Wang, Tingting; Peng, Liman; Wang, Xiaojing

    2015-01-01

    Graphical abstract: A series of nitrogen doped Ca 2 Nb 2 O 7 was successfully prepared via ion-exchange method, which was found to be an efficient and green noble-metal-free catalyst toward catalytic reduction of p-nitrophenol. - Highlights: • Nitrogen doped Ca 2 Nb 2 O 7 was found to be an efficient and green noble-metal-free catalyst toward catalytic reduction of p-nitrophenol. • Defective nitrogen and oxygen species were found to play synergetic roles in the reduction of p-nitrophenol. • Nitrogen doped Ca 2 Nb 2 O 7 showed photo-synergistic promotion effects toward p-nitrophenol reduction under UV light irradiation. - Abstract: This work reported on the synthesis of a series of nitrogen doped Ca 2 Nb 2 O 7 with tunable nitrogen content that were found to be efficient and green noble-metal-free catalysts toward catalytic reduction of p-nitrophenol. XPS and ESR results indicated that the introduction of nitrogen in Ca 2 Nb 2 O 7 gave rise to a large number of defective nitrogen and oxygen species. Defective nitrogen and oxygen species were found to play synergetic roles in the reduction of p-nitrophenol. The underlying mechanism is completely different from those reported for metallic nanoparticles. Moreover, the more negative conduction band edge potential enabled nitrogen doped Ca 2 Nb 2 O 7 to show photo-synergistic effects that could accelerate the reduction rate toward p-nitrophenol under UV light irradiation. This work may provide a strategy for tuning the catalytic performance by modulating the chemical composition, electronic structure as well as surface defect chemistry

  7. Ultra-fast catalytic reduction of dyes by ionic liquid recoverable and reusable mefenamic acid derived gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Syeda Sara [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Sirajuddin, E-mail: drsiraj03@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Solangi, Amber Rehana [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Agheem, Mohammad Hassan [Center for Pure and Applied Geology, University of Sindh, Jamshoro 76080 (Pakistan); Junejo, Yasmeen; Kalwar, Nazar Hussain; Tagar, Zulfiqar Ali [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)

    2011-06-15

    Highlights: {yields} Gold nanoparticles (AuNps) have been fabricated by a simple chemical method. {yields} AuNps were capped successfully in one step by mefenamic acid (MA). {yields} MA capped AuNps catalytically reduced the mixture of 3 dyes in just 15 s. {yields} AuNps were recovered by ionic liquid and reused for dye(s) reduction effectively. - Abstract: We synthesized mefenamic acid (MA) derived gold nanoparticles (MA-AuNps) in aqueous solution (MA-Au sol). Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) of the sol at 1, 5, 15 and 60 min showed changes in size and shape of formed AuNps. Fourier Transform Infrared (FTIR) Spectroscopy revealed the interaction between AuNps and MA. Each Au sol exhibited exceptional catalytic activity for the reduction of Methylene Blue (MB), Rose Bengal (RB) and Eosin B (EB) dye individually as well as collectively. However, complete reduction of dye(s) was accomplished by Au sol of 5 min in just 15 s. The catalytic performance of Ma-Au sol was far superior to that adsorbed on glass. AuNps were recovered with the help of water insoluble room temperature ionic liquid and reused with enhanced catalytic potential. This finding is a novel, rapid and highly economical alternative for environmental safety against pollution by dyes and extendable for control of other reducible contaminants as well.

  8. Green and facile synthesis of fibrous Ag/cotton composites and their catalytic properties for 4-nitrophenol reduction

    Science.gov (United States)

    Li, Ziyu; Jia, Zhigang; Ni, Tao; Li, Shengbiao

    2017-12-01

    Natural cotton, featuring abundant oxygen-containing functional groups, has been utilized as a reductant to synthesize Ag nanoparticles on its surface. Through the facile and environment-friendly reduction process, the fibrous Ag/cotton composite (FAC) was conveniently synthesized. Various characterization techniques including XRD, XPS, TEM, SEM, EDS and FT-IR had been utilized to study the material microstructure and surface properties. The resulting FAC exhibited favorable activity on the catalytic reduction of 4-nitrophenol with high reaction rate. Moreover, the fibrous Ag/cotton composites were capable to form a desirable catalytic mat for catalyzing and simultaneous product separation. Reactants passing through the mat could be catalytically transformed to product, which is of great significance for water treatment. Such catalyst (FAC) was thus expected to have the potential as a highly efficient, cost-effective and eco-friendly catalyst for industrial applications. More importantly, this newly developed synthetic methodology could serve as a general tool to design and synthesize other metal/biomass composites catalysts for a wider range of catalytic applications.

  9. Ultra-fast catalytic reduction of dyes by ionic liquid recoverable and reusable mefenamic acid derived gold nanoparticles

    International Nuclear Information System (INIS)

    Hassan, Syeda Sara; Sirajuddin; Solangi, Amber Rehana; Agheem, Mohammad Hassan; Junejo, Yasmeen; Kalwar, Nazar Hussain; Tagar, Zulfiqar Ali

    2011-01-01

    Highlights: → Gold nanoparticles (AuNps) have been fabricated by a simple chemical method. → AuNps were capped successfully in one step by mefenamic acid (MA). → MA capped AuNps catalytically reduced the mixture of 3 dyes in just 15 s. → AuNps were recovered by ionic liquid and reused for dye(s) reduction effectively. - Abstract: We synthesized mefenamic acid (MA) derived gold nanoparticles (MA-AuNps) in aqueous solution (MA-Au sol). Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) of the sol at 1, 5, 15 and 60 min showed changes in size and shape of formed AuNps. Fourier Transform Infrared (FTIR) Spectroscopy revealed the interaction between AuNps and MA. Each Au sol exhibited exceptional catalytic activity for the reduction of Methylene Blue (MB), Rose Bengal (RB) and Eosin B (EB) dye individually as well as collectively. However, complete reduction of dye(s) was accomplished by Au sol of 5 min in just 15 s. The catalytic performance of Ma-Au sol was far superior to that adsorbed on glass. AuNps were recovered with the help of water insoluble room temperature ionic liquid and reused with enhanced catalytic potential. This finding is a novel, rapid and highly economical alternative for environmental safety against pollution by dyes and extendable for control of other reducible contaminants as well.

  10. Catalytic reduction of NOx in gasoline engine exhaust over copper- and nickel-exchanged X-zeolite catalysts

    International Nuclear Information System (INIS)

    Bhattacharyya, S.; Das, R.K.

    2001-01-01

    Catalytic removal of NO x in engine exhaust gases can be accomplished by non-selective reduction, selective reduction and decomposition. Noble metals are extensively used for non-selective reduction of NO x and up to 90% of engine NO x emissions can be reduced in a stoichiometric exhaust. This requirement of having the stoichiometric fuel-air ratio acts against efficiency improvement of engines. Selective NO x reduction in the presence of different reductants such as, NH 3 , urea or hydrocarbons, requires close control of the amount of reductant being injected which otherwise may be emitted as a pollutant. Catalytic decomposition is the best option for NO x removal. Nevertheless, catalysts which are durable, economic and active for NO x reduction at normal engine exhaust temperature ranges are still being investigated. Three catalysts based on X-zeolite have been developed by exchanging the Na+ ion with copper, nickel and copper-nickel metal ions and applied to the exhaust of a stationary gasoline engine to explore their potential for catalytic reduction of NO x under a wide range of engine and exhaust conditions. Some encouraging results have been obtained. The catalyst Cu-X exhibits much better NO x reduction performance at any temperature in comparison to Cu-Ni-X and Ni-X; while Cu-Ni-X catalyst exhibits slightly better performance than Ni-X catalyst. Maximum NO x efficiency achieved with Cu-X catalyst is 59.2% at a space velocity (sv) of 31 000 h -1 ; while for Cu-Ni-X and Ni-X catalysts the equivalent numbers are 60.4% and 56% respectively at a sv of 22 000 h -1 . Unlike noble metals, the doped X-zeolite catalysts exhibit significant NO x reduction capability for a wide range of air/fuel ratio and with a slower rate of decline as well with increase in air/fuel ratio. (author)

  11. Tungsten Recovery from Spent SCR Catalyst Using Alkaline Leaching and Ion Exchange

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Wu

    2016-10-01

    Full Text Available The recovery of tungsten (W from a honeycomb-type spent selective catalytic reduction (SCR catalyst using an alkaline leaching–ion exchange method was investigated. Spent SCR catalyst mainly consists of TiO2 and other oxides (6.37% W, 1.57% vanadium (V, and 2.81% silicon (Si, etc.. The ground catalyst was leached at the optimal conditions, as follows: NaOH concentration of 0.3 kg/kg of catalyst, pulp density of 3%, leaching temperature of 70 °C, particle size of −74 μm, and leaching time of 30 min. In this study, the leaching rate values of V and W under the above conditions were 87 wt %, and 91 wt %, respectively. The pregnant solution was then passed through a strong base anion exchange resin (Amberlite IRA900. At high pH conditions, the use of strong base anion exchange resin led to selective loading of divalent WO42− from the solution, because the fraction of two adjacent positively-charged sites on the IRA900 resin was higher and separate from the coexisting VO43−. The adsorbed W could then be eluted with 1 M NaCl + 0.5 M NaOH. The final concentrated W solution had 8.4 g/L of W with 98% purity. The application of this process in industry is expected to have an important impact on the recovery of W from secondary sources of these metals.

  12. Environmental and economic evaluation of selective non-catalytic reduction of nitrogen oxides

    Science.gov (United States)

    Parchevskii, V. M.; Shchederkina, T. E.; Proshina, A. O.

    2017-11-01

    There are two groups of atmosphere protecting measures: technology (primary) and treatment (secondary). When burning high-calorie low-volatile brands of coals in the furnaces with liquid slag removal to achieve emission standards required joint use of these two methods, for example, staged combustion and selective non-catalytic reduction recovery (SNCR). For the economically intelligent combination of these two methods it is necessary to have information not only about the environmental performance of each method, but also the operating costs per unit of reduced emission. The authors of this report are made an environmental-economic analysis of SNCR on boiler Π-50P Kashirskaya power station. The obtained results about the dependence of costs from the load of the boiler and the mass emissions of nitrogen oxides then approximates into empirical formulas, is named as environmental and economic characteristics, which is suitable for downloading into controllers and other control devices for subsequent implementation of optimal control of emissions to ensure compliance with environmental regulations at the lowest cost at any load of the boiler.

  13. A catalytic wet oxidation process for mixed waste volume reduction/recycling

    International Nuclear Information System (INIS)

    Dhooge, Patrick M.

    1992-01-01

    Mixed wastes have presented a challenge to treatment and destruction technologies. A recently developed catalytic wet oxidation method has promising characteristics for volume reduction and recycling of mixed wastes. The process utilizes iron (III) as an oxidant in the presence of homogeneous cocatalysts which increase organics' oxidation rates and the rate of oxidation of iron (II) by oxygen. The reaction is conducted in an aqueous mineral acid solution at temperatures of 373 - 573 deg K. The mineral acid should solvate a number of heavy metals, including U and Pu. Studies of reaction rates show that the process can oxidize a wide range of organic compounds including aromatics and chlorinated hydrocarbons. Rate constants in the range of 10 -7 to 10 -4 sec -1 , depending on the cocatalyst, acidity, type of anions, type of organic, temperature, and time. Activation energies ranged from 25. to 32. KJ/mole. Preliminary measurements of the extent of oxidation which could be obtained ranged from 80% for trichloroethylene to 99.8% for 1,2,4-trimethylbenzene; evidence was obtained that absorption by the fluorocarbon liners of the reaction bombs allowed some of the organics to escape exposure to the catalyst solution. The results indicate that complete oxidation of the organics used here, and presumably many others, can be achieved. (author)

  14. Synergetic Effects of Alcohol/Water Mixing on the Catalytic Reductive Fractionation of Poplar Wood

    Energy Technology Data Exchange (ETDEWEB)

    Renders, Tom; Van den Bosch, Sander; Vangeel, Thijs; Ennaert, Thijs; Koelewijn, Steven-Friso; Van den Bossche, Gil; Courtin, Christophe M.; Schutyser, Wouter; Sels, Bert F.

    2016-12-05

    One of the foremost challenges in lignocellulose conversion encompasses the integration of effective lignin valorization in current carbohydrate-oriented biorefinery schemes. Catalytic reductive fractionation (CRF) of lignocellulose offers a technology to simultaneously produce lignin-derived platform chemicals and a carbohydrate-enriched pulp via the combined action of lignin solvolysis and metal-catalyzed hydrogenolysis. Herein, the solvent (composition) plays a crucial role. In this contribution, we study the influence of alcohol/water mixtures by processing poplar sawdust in varying MeOH/water and EtOH/water blends. The results show particular effects that strongly depend on the applied water concentration. Low water concentrations enhance the removal of lignin from the biomass, while the majority of the carbohydrates are left untouched (scenario A). Contrarily, high water concentrations favor the solubilization of both hemicellulose and lignin, resulting in a more pure cellulosic residue (scenario B). For both scenarios, an evaluation was made to determine the most optimal solvent composition, based on two earlier introduced empirical efficiency descriptors (denoted LFDE and LFFE). According to these measures, 30 (A) and 70 vol % water (B) showed to be the optimal balance for both MeOH/water and EtOH/water mixtures. This successful implementation of alcohol/water mixtures allows operation under milder processing conditions in comparison to pure alcohol solvents, which is advantageous from an industrial point of view.

  15. Alumina- and titania-based monolithic catalysts for low temperature selective catalytic reduction of nitrogen oxides

    International Nuclear Information System (INIS)

    Blanco, J.; Avila, P.; Suarez, S.; Martin, J.A.; Knapp, C.

    2000-01-01

    The selective catalytic reduction of NO+NO 2 (NO x ) at low temperature (180-230C) with ammonia has been investigated with copper-nickel and vanadium oxides supported on titania and alumina monoliths. The influence of the operating temperature, as well as NH 3 /NO x and NO/NO 2 inlet ratios has been studied. High NO x conversions were obtained at operating conditions similar to those used in industrial scale units with all the catalysts. Reaction temperature, ammonia and nitrogen dioxide inlet concentration increased the N 2 O formation with the copper-nickel catalysts, while no increase was observed with the vanadium catalysts. The vanadium-titania catalyst exhibited the highest DeNO x activity, with no detectable ammonia slip and a low N 2 O formation when NH 3 /NO x inlet ratio was kept below 0.8. TPR results of this catalyst with NO/NH 3 /O 2 , NO 2 /NH 3 /O 2 and NO/NO 2 /NH 3 /O 2 feed mixtures indicated that the presence of NO 2 as the only nitrogen oxide increases the quantity of adsorbed species, which seem to be responsible for N 2 O formation. When NO was also present, N 2 O formation was not observed

  16. Catalytic reduction of emissions from small-scale combustion of biomass

    International Nuclear Information System (INIS)

    Berg, Magnus; Gustavsson, Patrik; Berge, Niklas

    1998-01-01

    This report covers a study on the prospect of using catalytic techniques for the abatement of emissions from small-scale combustion of biomass. The results show that there is a great potential for catalytic techniques and that the emissions of primarily CO and unburned hydrocarbons can be reduced but also that indirectly the emissions of NO x can be reduced. The aim of the project was to methodically indicate the requirement that both the catalyst and the stove must meet to enable the development of low emission stoves utilising this technique. The project should also aim at the development of catalysts that meet these requirements and apply the technique on small-scale stoves. By experimental work these appliances have been evaluated and conclusions drawn on the optimisation of the technique. The project has been performed in close collaboration between TPS Termiska Processer AB, Department of Chemical Technology at KTH, Perstorp AB and CTC-PARCA AB. The development of new catalysts have been conduc ted by KTH in collaboration with Perstorp while the work performed by TPS have been directed towards the integration of the monolithic catalysts in two different stoves that have been supplied by CTC. In one of these stoves a net based catalyst developed by KATATOR have also been tested. Within the project it has been verified experimentally that in a wood fired stove a reduction of the CO-emissions of 60% can be achieved for the monolithic catalysts. This reduction could be achieved even without any optimisation of the design. Experiments in a smaller scale and under well controlled conditions have shown that almost 100% reduction of CO can be achieved. The parameters that limits the conversion over the catalyst, and thereby prevents that the targeted low emissions can be reached, have been identified as: * Short residence time, * Mass transport limitations caused by the large channel width, * Uneven temperature profile over the catalyst, and * Insufficient mixing

  17. The development and application of SCR denitrification technology in power plant

    Science.gov (United States)

    Wu, Junnan

    2017-12-01

    In recent decades, the emission of the nitrogen oxides (NOX) has been increasing with the years of the thermal power plant. The environment pollution caused by the emission of quantities of nitrogen oxides became more and more serious, so people now put more emphasis on the control of the emission of the nitrogen oxides. Especially, our country and the society are paying much more attention to the environment protection and the environment problems cannot be neglected. In this paper, we introduced the related research background of the technology of SCR denitrification which was as the symbol of the technology of the catalytic denitrification and discussed the reaction principles of the SCR denitrification and frequently used catalysts, the process of the technology, and the configuration. In the end, we pointed the way of the future research of the technology of the SCR denitrification.

  18. Oxygen Reduction Reaction for Generating H2 O2 through a Piezo-Catalytic Process over Bismuth Oxychloride.

    Science.gov (United States)

    Shao, Dengkui; Zhang, Ling; Sun, Songmei; Wang, Wenzhong

    2018-02-09

    Oxygen reduction reaction (ORR) for generating H 2 O 2 through green pathways have gained much attention in recent years. Herein, we introduce a piezo-catalytic approach to obtain H 2 O 2 over bismuth oxychloride (BiOCl) through an ORR pathway. The piezoelectric response of BiOCl was directly characterized by piezoresponse force microscopy (PFM). The BiOCl exhibits efficient catalytic performance for generating H 2 O 2 (28 μmol h -1 ) only from O 2 and H 2 O, which is above the average level of H 2 O 2 produced by solar-to-chemical processes. A piezo-catalytic mechanism was proposed: with ultrasonic waves, an alternating electric field will be generated over BiOCl, which can drive charge carriers (electrons) to interact with O 2 and H 2 O, then to form H 2 O 2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Catalytic conversion of CO, NO and SO2 on supported sulfide catalysts. Part 2. Catalytic reduction of NO and SO2 by CO

    International Nuclear Information System (INIS)

    Zhuang, S.-X.; Yamazaki, M.; Omata, K.; Takahashi, Y.; Yamada, M.

    2001-01-01

    To investigate the possibility of simultaneous catalytic reduction of NO and SO 2 by CO, reactions of NO, NO-CO, and NO-SO 2 -CO were performed on γ-alumina-supported sulfides of transition metals including Co, Mo, CoMo and FeMo. NO was decomposed into N 2 O and N 2 accompanied with the formation of SO 2 ; this serious oxidation of lattice sulfur resulted in the deactivation of the catalysts. The addition of CO to the NO stream suppressed SO 2 formation and yielded COS instead. A stoichiometric conversion of NO and CO to N 2 and CO 2 was observed above 350C on the CoMo and the FeMo catalysts. Although the CO addition lengthened catalyst life, it was not enough to maintain activity. After the NO-CO reaction, an XPS analysis showed the growth of Mo 6+ and SO 4 2- peaks, especially for the sulfided FeMo/Al 2 O 3 ; the FeMo catalyst underwent strong oxidation in the NO-CO reaction. The NO and the NO-CO reactions proceeded non-catalytically, consuming catalyst lattice sulfur to yield SO 2 or COS. The addition of SO 2 in the NO-CO system enabled in situ regeneration of the catalysts; the catalysts oxidized through abstraction of lattice sulfur experienced anew reduction and sulfurization through the SO 2 -CO reaction at higher temperature. NO and SO 2 were completely and catalytically converted at 400C on the sulfided CoMo/Al 2 O 3 . By contrast, the sulfided FeMo/Al 2 O 3 was easily oxidized by NO and hardly re-sulfided under the test conditions. Oxidation states of the metals before and after the reactions were determined. Silica and titania-supported CoMo catalysts were also evaluated to study support effects

  20. Does Density of Cationic Sites Affect Catalytic Activity of Co Zeolites in Selective Catalytic Reduction of NO with Methane?

    Czech Academy of Sciences Publication Activity Database

    Dědeček, Jiří; Kaucký, Dalibor; Wichterlová, Blanka

    2002-01-01

    Roč. 18, 3/4 (2002), s. 283-290 ISSN 1022-5528 R&D Projects: GA AV ČR IBS4040016 Institutional research plan: CEZ:AV0Z4040901 Keywords : Co zeolites * ZSM-5 * NO reduction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.648, year: 2002

  1. In situ IR studies of Co and Ce doped Mn/TiO{sub 2} catalyst for low-temperature selective catalytic reduction of NO with NH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Lu; Pang, Dandan; Zhang, Changliang; Meng, Jiaojiao; Zhu, Rongshu; Ouyang, Feng, E-mail: ouyangfh@hit.edu.cn

    2015-12-01

    Highlights: • A SCR mechanistic pathway over Mn–Co–Ce/TiO{sub 2} is proposed. • The cobalt oxide produces lots of Brønsted acid sites, which favor to the adsorption of coordinated NH{sub 3} through NH{sub 3} migration. • Ce addition improves amide ions formation to reach best NO reduction selectivity. • At low-temperature coordinated NH{sub 3} reacts with NO{sub 2}{sup −}, or amide reacts with NO (ad) or NO (g) to form N{sub 2}. At high temperature, the reaction also occurs between coordinated NH{sub 3} and nitrate species. - Abstract: The Mn–Co–Ce/TiO{sub 2} catalyst was prepared by wet co-impregnation method for selective catalytic reduction of NO by NH{sub 3} in the presence of oxygen. The adsorption and co-adsorption of NH{sub 3}, NO and O{sub 2} on catalysts were investigated by in situ FTIR spectroscopy. The results suggested that addition of cobalt and cerium oxides increased the numbers of acid and redox sites. Especially, the cobalt oxide produced lots of Brønsted acid sites, which favor to the adsorption of coordinated NH{sub 3} through NH{sub 3} migration. Ce addition improved amide ions formation to reach best NO reduction selectivity. A mechanistic pathway over Mn–Co–Ce/TiO{sub 2} was proposed. At low-temperature SCR reaction, coordinated NH{sub 3} reacted with NO{sub 2}{sup −}, and amide reacted with NO (ad) or NO (g) to form N{sub 2}. NO{sub 2} was related to the formation of nitrite on Co-contained catalysts and the generation of −NH{sub 2}{sup −} on Ce-contained catalysts. At high temperature, the other branch reaction also occurred between the coordinated NH{sub 3} and nitrate species, resulting in N{sub 2}O yield increase.

  2. Hydrolysis of isocyanic acid on SCR catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Elsener, M; Kleemann, M; Koebel, M [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Standard SCR catalysts possess high activity for the hydrolysis of HNCO and thus explain the suitability of urea as a selective reducing agent for NO{sub x}. At high space velocities HNCO-slip can get perceptible over the entire temperature range. This can be attributed to the fact that the temperature dependence is strong for the SCR reaction, but weak for the hydrolysis reaction. (author) 3 figs., 5 refs.

  3. NOx formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass

    International Nuclear Information System (INIS)

    Mahmoudi, Shiva; Baeyens, Jan; Seville, Jonathan P.K.

    2010-01-01

    Caledonian Paper (CaPa) is a major paper mill, located in Ayr, Scotland. For its steam supply, it previously relied on the use of a Circulating Fluidized Bed Combustor (CFBC) of 58 MW th , burning coal, wood bark and wastewater treatment sludge. It currently uses a bubbling fluidized bed combustor (BFBC) of 102 MW th to generate steam at 99 bar, superheated to 465 o C. The boiler is followed by steam turbines and a 15 kg/s steam circuit into the mill. Whereas previously coal, wood bark and wastewater treatment sludge were used as fuel, currently only plantation wood (mainly spruce), demolition wood, wood bark and sludge are used. Since these biosolids contain nitrogen, fuel NO x is formed at the combustion temperature of 850-900 o C. NO x emissions (NO + NO 2 ) vary on average between 300 and 600 mg/Nm 3 (dry gas). The current emission standard is 350 mg/Nm 3 but will be reduced in the future to a maximum of 233 mg/Nm 3 for stand-alone biomass combustors of capacity between 50 and 300 MW th according to the EU LCP standards. NO x abatement is therefore necessary. In the present paper we firstly review the NO x formation mechanisms, proving that for applications of fluidized bed combustion, fuel NO x is the main consideration, and the contribution of thermal NO x to the emissions insignificant. We then assess the deNO x techniques presented in the literature, with an updated review and special focus upon the techniques that are applicable at CaPa. From these techniques, Selective Non-catalytic Reduction (SNCR) using ammonia or urea emerges as the most appropriate NO x abatement solution. Although SNCR deNO x is a selective reduction, the reactions of NO x reduction by NH 3 in the presence of oxygen, and the oxidation of NH 3 proceed competitively. Both reactions were therefore studied in a lab-scale reactor and the results were transformed into design equations starting from the respective reaction kinetics. An overall deNO x yield can then be predicted for any

  4. Selective catalytic reduction system and process for treating NOx emissions using a palladium and rhodium or ruthenium catalyst

    Science.gov (United States)

    Sobolevskiy, Anatoly [Orlando, FL; Rossin, Joseph A [Columbus, OH; Knapke, Michael J [Columbus, OH

    2011-07-12

    A process for the catalytic reduction of nitrogen oxides (NOx) in a gas stream (29) in the presence of H.sub.2 is provided. The process comprises contacting the gas stream with a catalyst system (38) comprising zirconia-silica washcoat particles (41), a pre-sulfated zirconia binder (44), and a catalyst combination (40) comprising palladium and at least one of rhodium, ruthenium, or a mixture of ruthenium and rhodium.

  5. ADVANCED BYPRODUCT RECOVERY: DIRECT CATALYTIC REDUCTION OF SO2 TO ELEMENTAL SULFUR; FINAL

    International Nuclear Information System (INIS)

    Robert S. Weber

    1999-01-01

    Arthur D. Little, Inc., together with its commercialization partner, Engelhard Corporation, and its university partner Tufts, investigated a single-step process for direct, catalytic reduction of sulfur dioxide from regenerable flue gas desulfurization processes to the more valuable elemental sulfur by-product. This development built on recently demonstrated SO(sub 2)-reduction catalyst performance at Tufts University on a DOE-sponsored program and is, in principle, applicable to processing of regenerator off-gases from all regenerable SO(sub 2)-control processes. In this program, laboratory-scale catalyst optimization work at Tufts was combined with supported catalyst formulation work at Engelhard, bench-scale supported catalyst testing at Arthur D. Little and market assessments, also by Arthur D. Little. Objectives included identification and performance evaluation of a catalyst which is robust and flexible with regard to choice of reducing gas. The catalyst formulation was improved significantly over the course of this work owing to the identification of a number of underlying phenomena that tended to reduce catalyst selectivity. The most promising catalysts discovered in the bench-scale tests at Tufts were transformed into monolith-supported catalysts at Engelhard. These catalyst samples were tested at larger scale at Arthur D. Little, where the laboratory-scale results were confirmed, namely that the catalysts do effectively reduce sulfur dioxide to elemental sulfur when operated under appropriate levels of conversion and in conditions that do not contain too much water or hydrogen. Ways to overcome those limitations were suggested by the laboratory results. Nonetheless, at the end of Phase I, the catalysts did not exhibit the very stringent levels of activity or selectivity that would have permitted ready scale-up to pilot or commercial operation. Therefore, we chose not to pursue Phase II of this work which would have included further bench-scale testing

  6. ADVANCED BYPRODUCT RECOVERY: DIRECT CATALYTIC REDUCTION OF SO2 TO ELEMENTAL SULFUR

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Weber

    1999-05-01

    Arthur D. Little, Inc., together with its commercialization partner, Engelhard Corporation, and its university partner Tufts, investigated a single-step process for direct, catalytic reduction of sulfur dioxide from regenerable flue gas desulfurization processes to the more valuable elemental sulfur by-product. This development built on recently demonstrated SO{sub 2}-reduction catalyst performance at Tufts University on a DOE-sponsored program and is, in principle, applicable to processing of regenerator off-gases from all regenerable SO{sub 2}-control processes. In this program, laboratory-scale catalyst optimization work at Tufts was combined with supported catalyst formulation work at Engelhard, bench-scale supported catalyst testing at Arthur D. Little and market assessments, also by Arthur D. Little. Objectives included identification and performance evaluation of a catalyst which is robust and flexible with regard to choice of reducing gas. The catalyst formulation was improved significantly over the course of this work owing to the identification of a number of underlying phenomena that tended to reduce catalyst selectivity. The most promising catalysts discovered in the bench-scale tests at Tufts were transformed into monolith-supported catalysts at Engelhard. These catalyst samples were tested at larger scale at Arthur D. Little, where the laboratory-scale results were confirmed, namely that the catalysts do effectively reduce sulfur dioxide to elemental sulfur when operated under appropriate levels of conversion and in conditions that do not contain too much water or hydrogen. Ways to overcome those limitations were suggested by the laboratory results. Nonetheless, at the end of Phase I, the catalysts did not exhibit the very stringent levels of activity or selectivity that would have permitted ready scale-up to pilot or commercial operation. Therefore, we chose not to pursue Phase II of this work which would have included further bench-scale testing

  7. Chemiluminescence analyzer of NOx as a high-throughput screening tool in selective catalytic reduction of NO

    International Nuclear Information System (INIS)

    Oh, Kwang Seok; Woo, Seong Ihl

    2011-01-01

    A chemiluminescence-based analyzer of NO x gas species has been applied for high-throughput screening of a library of catalytic materials. The applicability of the commercial NO x analyzer as a rapid screening tool was evaluated using selective catalytic reduction of NO gas. A library of 60 binary alloys composed of Pt and Co, Zr, La, Ce, Fe or W on Al 2 O 3 substrate was tested for the efficiency of NO x removal using a home-built 64-channel parallel and sequential tubular reactor. The NO x concentrations measured by the NO x analyzer agreed well with the results obtained using micro gas chromatography for a reference catalyst consisting of 1 wt% Pt on γ-Al 2 O 3 . Most alloys showed high efficiency at 275 °C, which is typical of Pt-based catalysts for selective catalytic reduction of NO. The screening with NO x analyzer allowed to select Pt-Ce (X) (X=1–3) and Pt–Fe (2) as the optimal catalysts for NO x removal: 73% NO x conversion was achieved with the Pt–Fe (2) alloy, which was much better than the results for the reference catalyst and the other library alloys. This study demonstrates a sequential high-throughput method of practical evaluation of catalysts for the selective reduction of NO.

  8. Photo catalytic reduction of benzophenone on TiO2: Effect of preparation method and reaction conditions

    International Nuclear Information System (INIS)

    Albiter E, E.; Valenzuela Z, M. A.; Alfaro H, S.; Flores V, S. O.; Rios B, O.; Gonzalez A, V. J.; Cordova R, I.

    2010-01-01

    The photo catalytic reduction of benzophenone was studied focussing on improving the yield to benzhydrol. TiO 2 was synthesized by means of a hydrothermal technique. TiO 2 (Degussa TiO 2 -P25) was used as a reference. Catalysts were characterized by X-ray diffraction and nitrogen physisorption. The photo catalytic reduction was carried out in a batch reactor at 25 C under nitrogen atmosphere, acetonitrile as solvent and isopropanol as electron donor. A 200 W Xe-Hg lamp (λ= 360 nm) was employed as irradiation source. The chemical composition of the reaction system was determined by HPLC. Structural and textural properties of the synthesized TiO 2 depended on the type of acid used during sol formation step. Using HCl, a higher specific surface area and narrower pore size distribution of TiO 2 was obtained in comparison with acetic acid. As expected, the photochemical reduction of benzophenone yielded benzopinacol as main product, whereas, benzhydrol is only produced in presence of TiO 2 (i.e. photo catalytic route). In general, the hydrothermally synthesized catalysts were less active and with a lower yield to benzhydrol. The optimal reaction conditions to highest values of benzhydrol yield (70-80%) were found at 2 g/L (catalyst loading) and 0.5 m M of initial concentration of benzophenone, using commercial TiO 2 -P25. (Author)

  9. Photo catalytic reduction of benzophenone on TiO{sub 2}: Effect of preparation method and reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Albiter E, E.; Valenzuela Z, M. A.; Alfaro H, S.; Flores V, S. O.; Rios B, O.; Gonzalez A, V. J.; Cordova R, I., E-mail: mavalenz@ipn.m [IPN, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Laboratorio de Catalisis y Materiales, Zacatenco, 07738 Mexico D. F. (Mexico)

    2010-07-01

    The photo catalytic reduction of benzophenone was studied focussing on improving the yield to benzhydrol. TiO{sub 2} was synthesized by means of a hydrothermal technique. TiO{sub 2} (Degussa TiO{sub 2}-P25) was used as a reference. Catalysts were characterized by X-ray diffraction and nitrogen physisorption. The photo catalytic reduction was carried out in a batch reactor at 25 C under nitrogen atmosphere, acetonitrile as solvent and isopropanol as electron donor. A 200 W Xe-Hg lamp ({lambda}= 360 nm) was employed as irradiation source. The chemical composition of the reaction system was determined by HPLC. Structural and textural properties of the synthesized TiO{sub 2} depended on the type of acid used during sol formation step. Using HCl, a higher specific surface area and narrower pore size distribution of TiO{sub 2} was obtained in comparison with acetic acid. As expected, the photochemical reduction of benzophenone yielded benzopinacol as main product, whereas, benzhydrol is only produced in presence of TiO{sub 2} (i.e. photo catalytic route). In general, the hydrothermally synthesized catalysts were less active and with a lower yield to benzhydrol. The optimal reaction conditions to highest values of benzhydrol yield (70-80%) were found at 2 g/L (catalyst loading) and 0.5 m M of initial concentration of benzophenone, using commercial TiO{sub 2}-P25. (Author)

  10. Electrochemical characterization of praseodymia doped zircon. Catalytic effect on the electrochemical reduction of molecular oxygen in polar organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Domenech, Antonio, E-mail: antonio.domenech@uv.es [Departament de Quimica Analitica, Universitat de Valencia, Dr. Moliner, 50, 46100 Burjassot, Valencia (Spain); Montoya, Noemi; Alarcon, Javier [Departament de Quimica Inorganica, Universitat de Valencia, Dr. Moliner, 50, 46100 Burjassot, Valencia (Spain)

    2011-08-01

    Highlights: > Electrochemical characterization of Pr centers in praseodymia-doped zircon. > Study of the catalytic effect on the reduction of peroxide radical anion in nonaqueous solvents. > Assessment of non-uniform distribution of Pr centers in the zircon grains. - Abstract: The voltammetry of microparticles and scanning electrochemical microscopy methodologies are applied to characterize praseodymium centers in praseodymia-doped zircon (Pr{sub x}Zr{sub (1-y)}Si{sub (1-z)}O{sub 4}; y + z = x; 0.02 < x < 0.10) specimens prepared via sol-gel synthetic routes. In contact with aqueous electrolytes, two overlapping Pr-centered cathodic processes, attributable to the Pr (IV) to Pr (III) reduction of Pr centers in different sites are obtained. In water-containing, air-saturated acetone and DMSO solutions as solvent, Pr{sub x}Zr{sub (1-y)}Si{sub (1-z)}O{sub 4} materials produce a significant catalytic effect on the electrochemical reduction of peroxide radical anion electrochemically generated. These electrochemical features denote that most of the Pr centers are originally in its 4+ oxidation state in the parent Pr{sub x}Zr{sub (1-y)}Si{sub (1-z)}O{sub 4} specimens. The variation of the catalytic performance of such specimens with potential scan rate, water concentration and Pr loading suggests that Pr is not uniformly distributed within the zircon grains, being concentrated in the outer region of such grains.

  11. The effect of the gas composition on hydrogen-assisted NH3-SCR over Ag/Al2O3

    DEFF Research Database (Denmark)

    Tamm, Stefanie; Fogel, Sebastian; Gabrielsson, Pär

    2013-01-01

    In addition to high activity in hydrocarbon-SCR, Ag/Al2O3 catalysts show excellent activity for NOx reduction for H2-assisted NH3-SCR already at 200°C. Here, we study the influence of different gas compositions on the activity of a pre-sulfated 6wt% Ag/Al2O3 catalyst for NOx reduction, and oxidat...

  12. Characterization of Co and Fe-MCM-56 catalysts for NH3-SCR and N2O decomposition: An in situ FTIR study

    Science.gov (United States)

    Grzybek, Justyna; Gil, Barbara; Roth, Wieslaw J.; Skoczek, Monika; Kowalczyk, Andrzej; Chmielarz, Lucjan

    2018-05-01

    Two-step preparation of iron and cobalt-containing MCM-56 zeolites has been undertaken to evaluate the influence of their physicochemical properties in the selective catalytic reduction (NH3-SCR or DeNOx) of NO using NH3 as a reductant. Zeolites were prepared by the selective leaching of the framework cations by concentrated HNO3 solution and NH4F/HF mixture and consecutively, introduction of Co and Fe heteroatoms, in quantities below 1 wt%. Further calcination allowed to obtain highly dispersed active species. Their evaluation and speciation was realized by adsorption of pyridine and NO, followed by FTIR spectroscopy. Both Fe-MCM-56 zeolites showed excellent activities (maximum NO conversion 92%) with high selectivity to dinitrogen (above 99%) in the high temperature NH3-SCR process. High catalytic activity of Fe-MCM-56 zeolites was assigned to the formation of stable nitrates, delivering NO to react with NH3 at higher temperatures and suppressing the direct NO oxidation. It was found that more nitrates was formed in Fe-MCM-56 (HNO3) than in Fe-MCM-56 (HF/NH4F) and that could compensate for the lower Fe loading, resulting in very similar catalytic activity of both catalysts. At the same time both Co-and Fe-MCM-56 zeolites were moderately active in direct N2O decomposition, with maximum N2O conversion not higher than 80% and activity window starting at 500 °C. This phenomenon was expected since both types of catalysts contained well dispersed active centers, not beneficial for this reaction.

  13. Ni0 encapsulated in N-doped carbon nanotubes for catalytic reduction of highly toxic hexavalent chromium

    Science.gov (United States)

    Yao, Yunjin; Zhang, Jie; Chen, Hao; Yu, Maojing; Gao, Mengxue; Hu, Yi; Wang, Shaobin

    2018-05-01

    N-doped carbon nanotubes encapsulating Ni0 nanoparticles (Ni@N-C) were fabricated via thermal reduction of dicyandiamide and NiCl2·6H2O, and used to remove CrVI in polluted water. The resultant products present an excellent catalytic activity for CrVI reduction using formic acid under relatively mild conditions. The CrVI reduction efficiency of Ni@N-C was significantly affected by the preparation conditions including the mass of nickel salt and synthesis temperatures. The impacts of several reaction parameters, such as initial concentrations of CrVI and formic acid, solution pH and temperatures, as well as inorganic anions in solution on CrVI reduction efficiency were also evaluated in view of scalable industrial applications. Owing to the synergistic effects amongst tubes-coated Ni0, doped nitrogen, oxygen containing groups, and the configuration of carbon nanotubes, Ni@N-C catalysts exhibit excellent catalytic activity and recyclable capability for CrVI reduction. Carbon shell can efficiently protect inner Ni0 core and N species from corrosion and subsequent leaching, while Ni0 endows the Ni@N-C catalysts with ferromagnetism, so that the composites can be easily separated via a permanent magnet. This study opens up an avenue for design of N-doped carbon nanotubes encapsulating Ni0 nanoparticles with high CrVI removal efficiency and magnetic recyclability as low-cost catalysts for industrial applications.

  14. Catalytic reduction of NO{sub x}; Katalytisk reduktion av NO{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Odenbrand, I. [Lund Univ. (Sweden). Dept. of Chemical Engineering

    2001-10-01

    In the project conventional and bio-modified SCR catalysts and the possibilities to regenerate deactivated ones have been studied. The catalysts were deactivated by use in commercial plants in the CFB furnaces at Brista and Vaexjoe and in the PC burner at Drefviken. The methods for regeneration that were applied were: a) washing with water, sulphuric acid or ammonium salts and b) sulphation by sulphur dioxide. The catalysts are deactivated when used by the enrichment of alkali and alkaline earth metals on their surface and in their pores. At bio-fuelled furnaces the accumulation of potassium is the major problem. When these deactivated catalysts are washed with water, potassium and some acidic components (sulphates) are dissolved from both types of catalysts. In addition small amounts of the active component vanadium are dissolved. When sulphuric acid is used an optimal activity after regeneration is obtained at 0.5 M sulphuric acid. At higher concentrations the leached amount of vanadia is too large counteracting the removal of potassium. The same tendency, with an optimum at 0.5 M, was obtained when the washing was performed with ammonium sulphate solutions. It is not possible to regenerate strongly deactivated catalysts by only washing with water. It is necessary to either wash with sulphuric acid/ammonium sulphate solutions or to sulphate with sulphur dioxide after washing with water. The thermal stability of introduced sulphate groups is good at least up to 420 deg C. A catalyst, which has been sulphated and contains large amounts of potassium, is not chemically stable in an SCR environment (in the presence of ammonia, nitric oxide and water) at 400 deg C. At 350 deg C it is stable however. Electron microscopy using X-ray analysis showed that a washing time of 60 minutes was enough to remove all visual deposits from the catalyst surface. The analysis did also show that potassium is distributed homogeneously throughout the monolith material both before and

  15. SCR at bio fuel combustion

    International Nuclear Information System (INIS)

    Andersson, Christer; Odenbrand, I.; Andersson, L.H.

    1998-10-01

    by sulphatisation with sulphur dioxide. After a sulphatisation procedure with 500 ppm SO 2 (without washing) the activity was regained to at least 90 % even for heavily deactivated samples. The use of sulphatisation, periodic washing, lower flue gas temperature and use of an optimised catalyst are very promising measures to increase the catalyst lifetime and to reduce the operation costs for SCR in bio fuel fluidized bed based power plants. Therefore, a thorough investigation of these measures is warranted Figures and tables with text in English. 36 refs, 26 figs, 5 tabs

  16. In situ DRIFTs investigation of the reaction mechanism over MnO{sub x}-MO{sub y}/Ce{sub 0.75}Zr{sub 0.25}O{sub 2} (M = Fe, Co, Ni, Cu) for the selective catalytic reduction of NO{sub x} with NH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Hang; Zha, Kaiwen; Li, Hongrui; Shi, Liyi; Zhang, Dengsong, E-mail: dszhang@shu.edu.cn

    2016-11-30

    Highlights: • MnO{sub x}-FeO{sub y}/Ce{sub 0.75}Zr{sub 0.25}O{sub 2} catalyst has a strong NO oxidation ability. • A high dispersion of active components is achieved on catalyst surface. • At high temperatures, bidentate nitrate is the common active species. • The addition of Fe can improve the reactivity of gaseous NO{sub 2} and bridged nitrates. - Abstract: A series of MnO{sub x}-MO{sub y}/Ce{sub 0.75}Zr{sub 0.25}O{sub 2} (M = Fe, Co, Ni, Cu) catalysts were synthesized by an impregnation method and used for selective catalytic reduction (SCR) of NO{sub x} with NH{sub 3}. The catalytic performances of various MnO{sub x}-MO{sub y}/Ce{sub 0.75}Zr{sub 0.25}O{sub 2} catalysts were studied. It was found that MnO{sub x}-FeO{sub y}/Ce{sub 0.75}Zr{sub 0.25}O{sub 2} catalyst showed excellent low-temperature activity and a broad temperature window. The catalysts were characterized by N{sub 2} adsorption/desorption, X-ray diffraction, X-ray photoelectron spectroscopy and in situ diffuse reflectance infrared transform spectroscopy (DRIFTS). Characterization of the catalyst confirmed the addition of iron oxide can enhance the NO oxidation ability of the catalyst which results in the outstanding low-temperature SCR activity. Meanwhile, iron oxides were well dispersed on catalyst surface which could avoid the agglomeration of active species, contributing to the strong interaction between active species and the support. More importantly, in situ DRIFTS results confirmed that bidentate nitrates are general active species on these catalysts, whereas the reactivity of gaseous NO{sub 2} and bridged nitrates got improved because of the addition of Fe.

  17. Ultra-fast catalytic reduction of dyes by ionic liquid recoverable and reusable mefenamic acid derived gold nanoparticles.

    Science.gov (United States)

    Hassan, Syeda Sara; Sirajuddin; Solangi, Amber Rehana; Agheem, Mohammad Hassan; Junejo, Yasmeen; Kalwar, Nazar Hussain; Tagar, Zulfiqar Ali

    2011-06-15

    We synthesized mefenamic acid (MA) derived gold nanoparticles (MA-AuNps) in aqueous solution (MA-Au sol). Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) of the sol at 1, 5, 15 and 60 min showed changes in size and shape of formed AuNps. Fourier Transform Infrared (FTIR) Spectroscopy revealed the interaction between AuNps and MA. Each Au sol exhibited exceptional catalytic activity for the reduction of Methylene Blue (MB), Rose Bengal (RB) and Eosin B (EB) dye individually as well as collectively. However, complete reduction of dye(s) was accomplished by Au sol of 5 min in just 15s. The catalytic performance of Ma-Au sol was far superior to that adsorbed on glass. AuNps were recovered with the help of water insoluble room temperature ionic liquid and reused with enhanced catalytic potential. This finding is a novel, rapid and highly economical alternative for environmental safety against pollution by dyes and extendable for control of other reducible contaminants as well. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Selective Catalytic Reduction of NO with NH3 Over V-MCM-41 Catalyst.

    Science.gov (United States)

    Kwon, Woo Hyun; Park, Sung Hoon; Kim, Ji Man; Park, Su Bin; Jung, Sang-Chul; Kim, Sang Chai; Jeon, Jong-Ki; Park, Young-Kwon

    2016-02-01

    V-MCM-41, a mesoporous catalyst doped with V2O5, was applied for the first time to the removal of atmospheric NO. The quantity of V2O5 added was 10 wt% and 30 wt%. The characteristics of the synthesized catalysts were examined using XRD, N2 soprtion, and NH3-TPD. With increasing quantity of V2O5 added, specific surface area decreased and pore size increased. When the quantity of V2O5 was 10 wt%, the MCM-41 structure was retained, whereas considerable collapse of mesoporous structure was observed when 30 wt% V2O5 was added. The examination of acid characteristics using NH3-TPD showed that 30 wt% V-MCM-41 had the higher NH3 adsorption ability, implying that it would exhibit high activity for NH3 SCR reaction. In the NO removal experiments, 30 wt% V-MCM-41 showed much higher NO removal efficiency than 10 wt% V-MCM-41, which was attributed to its high NH3 adsorption ability.

  19. Selective catalytic reduction of nitrogen oxide. Pt. 2. Side flow system for the provision of gaseous ammonia; Selektive katalytische Reduktion von Strickoxiden. T. 2. Nebenstromverfahren zur Bereitstellung gasfoermigen Ammoniaks

    Energy Technology Data Exchange (ETDEWEB)

    Heubuch, Alexander; Wachtmeister, Georg [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Verbrennungskraftmaschinen; Toshev, Plamen [MAN Diesel and Turbo SE, Augsburg (Germany); Sattelmayer, Thomas [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Thermodynamik

    2012-12-01

    The limitation of NO{sub x} emissions from diesel engines has been significantly tightened, among other things by the introduction of Euro 5 and Euro 6. In numerous applications on passenger car diesel engines, SCR catalytic converters were introduced to reduce NO{sub x} emissions in order to comply with the strict standards. Insufficient properties make the use of the required aqueous urea solution more difficult. The first part of this article published in MTZ 11 reported on the findings achieved at the Paul Scherrer Institute on the use of guanidinium formiate (GuFo) and its properties as an alternative to established urea SCR technology. In the second part, the TU Munich presents the application on a diesel engine and the ammonia generator (NH{sub 3} generator) with a bypass system developed for this purpose.

  20. On the activation of Pt/Al2O3 catalysts in HC-SCR by sintering. Determination of redox-active sites using Multitrack

    International Nuclear Information System (INIS)

    Vaccaro, A.R.; Mul, G.; Moulijn, J.A.; Perez-Ramirez, J.

    2003-01-01

    A highly dispersed Pt/Al 2 O 3 catalyst was used for the selective catalytic reduction of NO x using propene (HC-SCR). Contact with the reaction gas mixture led to a significant activation of the catalyst at temperatures above 523K. According to CO chemisorption data and HRTEM analysis, Pt particles on the activated catalyst had sintered. The redox behavior of the fresh and sintered catalysts was investigated using Multitrack, a TAP-like pulse reactor. If Pt particles on the catalyst are highly dispersed (average size below =2nm), only a small part (=10%) of the total number of Pt surface sites as determined by CO chemisorption (Pt surf ) participates in H 2 /O 2 redox cycles (Pt surf,redox ) in Multitrack conditions. For a sintered catalyst, with an average particle size of 2.7nm, the number of Pt surf and Pt surf,redox sites are in good agreement. Similar results were obtained for both catalysts using NO as the oxidant. The low number of Pt surf,redox sites on highly dispersed Pt/Al 2 O 3 is explained by the presence of a kinetically more stable-probably ionic-form of Pt-O bonds on all surface sites of the smaller Pt particles, including corner, edge and terrace sites. When the average particle size shifts to =2.7nm, the kinetic stability of all Pt-O bonds is collectively decreased, enabling the participation of all Pt surface sites in the redox cycles. A linear correlation between the NO x conversion in HC-SCR, and the amount of Pt surf,redox was found. This suggests that redox-active Pt sites are necessary for catalytic activity. In addition, the correlation could be significantly improved by assuming that Pt surf,terrace sites of the particles larger than 2.7nm are mainly responsible for HC-SCR activity in steady state conditions. Implications of these results for the pathway of HC-SCR over Pt catalysts are discussed

  1. Pt skin coated hollow Ag-Pt bimetallic nanoparticles with high catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Fu, Tao; Huang, Jianxing; Lai, Shaobo; Zhang, Size; Fang, Jun; Zhao, Jinbao

    2017-10-01

    The catalytic activity and stability of electrocatalyst is critical for the commercialization of fuel cells, and recent reports reveal the great potential of the hollow structures with Pt skin coat for developing high-powered electrocatalysts due to their highly efficient utilization of the Pt atoms. Here, we provide a novel strategy to prepare the Pt skin coated hollow Ag-Pt structure (Ag-Pt@Pt) of ∼8 nm size at room temperature. As loaded on the graphene, the Ag-Pt@Pt exhibits a remarkable mass activity of 0.864 A/mgPt (at 0.9 V, vs. reversible hydrogen electrode (RHE)) towards oxygen reduction reaction (ORR), which is 5.30 times of the commercial Pt/C catalyst, and the Ag-Pt@Pt also shows a better stability during the ORR catalytic process. The mechanism of this significant enhancement can be attributed to the higher Pt utilization and the unique Pt on Ag-Pt surface structure, which is confirmed by the density functional theory (DFT) calculations and other characterization methods. In conclusion, this original work offers a low-cost and environment-friendly method to prepare a high active electrocatalyst with cheaper price, and this work also discloses the correlation between surface structures and ORR catalytic activity for the hollow structures with Pt skin coat, which can be instructive for designing novel advanced electrocatalysts for fuel cells.

  2. Catalytic reduction of emissions from small scale wood combustion. State of the art

    Energy Technology Data Exchange (ETDEWEB)

    Hargitai, T.; Silversand, F.A. [Katator AB, Lund (Sweden)

    1998-12-31

    Small-scale combustion of big-fuel often results in excessive emissions of volatile organic compounds (VOC), polyaromatic compounds (PAM) and carbon monoxide (CO). These compounds have a negative impact on human health and urban air quality. The predominant volatile organic compounds present in flue gases from big-fuel combustion are propylene, ethylene, butadiene, methanol, ethanol, methane, phenol and benzene. The poor combustion performance of some wood stoves has in certain cases led to legislation against small-scale combustion of big-fuel in urban areas. Catalytic cleaning is one very efficient way of decreasing the environmental impacts of big-fuel combustion. Several studies concerning catalytic purification of flue gases from big-fuel combustion have been presented over the years. Several problems must be addressed when designing a catalyst for this application: Clogging problems from deposition of ashes and particulates in the catalyst; Catalyst poisoning by sulphur, phosphorus, alkali metals etc.; Catalyst fouling due to deposition of ashes and particulates; Catalyst overheating at high flue-gas temperatures and Poor catalyst performance during start-up Most studies have been focused on monolith-type catalysts and- the conversion of CO, VOC and PAH typically is above 80 %. The observed problems are associated with increased pressure drop due to catalyst clogging and decreased catalyst performance due to fouling and poisoning. In most cases precious metals, preferably Pt. have been used as active combustion catalyst. Precious metals have a high activity for the combustion of CO and hydrocarbons and a fair stability against poisoning with compounds present in flue gases from big-fuel, e.g. sulphur and alkali metals. The majority of the studies on precious metals have been focused on Pt. Rh and Pd, which are especially active in catalytic combustion. Some metal oxides are used in catalytic combustion, especially at low temperatures (e.g. in VOC abatement

  3. Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of Aspergillus sp. WL-Au

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wenli; Qu, Yuanyuan, E-mail: qyy@dlut.edu.cn; Pei, Xiaofang; Li, Shuzhen; You, Shengnan; Wang, Jingwei; Zhang, Zhaojing; Zhou, Jiti

    2017-01-05

    Highlights: • A green process for AuNPs synthesis was achieved by fungus Aspergillus. • Uniform spherical AuNPs with well dispersity and stability were biosynthesized. • The biogenic AuNPs possessed remarkable catalytic activities for 4-NP reduction. - Abstract: A facile one-pot eco-friendly process for synthesis of gold nanoparticles (AuNPs) with high catalytic activity was achieved using cell-free extracts of Aspergillus sp. WL-Au as reducing, capping and stabilizing agents. The surface plasmon resonance band of UV–vis spectrum at 532 nm confirmed the presence of AuNPs. Transmission electron microscopy images showed that quite uniform spherical AuNPs were synthesized and the average size of nanoparticles increased from 4 nm to 29 nm with reaction time. X-ray diffraction analysis verified the formation of nano-crystalline gold particles. Fourier transform infrared spectra showed the presence of functional groups on the surface of biosynthesized AuNPs, such as O−H, N−H, C=O, C−H, C−OH and C−O−C groups, which increased the stability of AuNPs. The biogenic AuNPs could serve as a highly efficient catalyst for 4-nitrophenol reduction. The reaction rate constant was linearly correlated with the concentration of AuNPs, which increased from 0.59 min{sup −1} to 1.51 min{sup −1} with the amount of AuNPs increasing form 1.46 × 10{sup −6} to 17.47 × 10{sup −6} mmol. Moreover, the as-synthesized AuNPs exhibited a remarkable normalized catalytic activity (4.04 × 10{sup 5} min{sup −1} mol{sup −1}), which was much higher than that observed for AuNPs synthesized by other biological and conventional chemical methods.

  4. Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of Aspergillus sp. WL-Au

    International Nuclear Information System (INIS)

    Shen, Wenli; Qu, Yuanyuan; Pei, Xiaofang; Li, Shuzhen; You, Shengnan; Wang, Jingwei; Zhang, Zhaojing; Zhou, Jiti

    2017-01-01

    Highlights: • A green process for AuNPs synthesis was achieved by fungus Aspergillus. • Uniform spherical AuNPs with well dispersity and stability were biosynthesized. • The biogenic AuNPs possessed remarkable catalytic activities for 4-NP reduction. - Abstract: A facile one-pot eco-friendly process for synthesis of gold nanoparticles (AuNPs) with high catalytic activity was achieved using cell-free extracts of Aspergillus sp. WL-Au as reducing, capping and stabilizing agents. The surface plasmon resonance band of UV–vis spectrum at 532 nm confirmed the presence of AuNPs. Transmission electron microscopy images showed that quite uniform spherical AuNPs were synthesized and the average size of nanoparticles increased from 4 nm to 29 nm with reaction time. X-ray diffraction analysis verified the formation of nano-crystalline gold particles. Fourier transform infrared spectra showed the presence of functional groups on the surface of biosynthesized AuNPs, such as O−H, N−H, C=O, C−H, C−OH and C−O−C groups, which increased the stability of AuNPs. The biogenic AuNPs could serve as a highly efficient catalyst for 4-nitrophenol reduction. The reaction rate constant was linearly correlated with the concentration of AuNPs, which increased from 0.59 min −1 to 1.51 min −1 with the amount of AuNPs increasing form 1.46 × 10 −6 to 17.47 × 10 −6 mmol. Moreover, the as-synthesized AuNPs exhibited a remarkable normalized catalytic activity (4.04 × 10 5 min −1 mol −1 ), which was much higher than that observed for AuNPs synthesized by other biological and conventional chemical methods.

  5. Catalytic reduction of 4-nitrophenol over Ni-Pd nanodimers supported on nitrogen-doped reduced graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lijun, E-mail: liulj@wtu.edu.cn [College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, People' s Republic of China (China); Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Chen, Ruifen; Liu, Weikai [College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, People' s Republic of China (China); Wu, Jiamin [Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Gao, Di, E-mail: gaod@pitt.edu [Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2016-12-15

    Catalytic reduction of toxic 4-nitrophenol to 4-aminophenol over magnetically recoverable nanocatalysts has attracted much attention. Herein, we report a Ni-Pd/NrGO catalyst through the growth of Ni-Pd nanodimers (NDs) on nitrogen-doped reduced graphene oxide (NrGO). The Ni-Pd NDs show a heterogeneous nanostructure with Ni and Pd subparts contacting with each other, remarkably different from the frequently-observed core/shell nanoparticles (NPs) or nanoalloy. The formation of Ni-Pd NDs follows an initial deposition of Pd NPs on the graphene and in-situ catalytic generation of Ni subparts over the newly-generated Pd NPs. The resulting Ni-Pd/NrGO exhibits a superior catalytic activity towards the reduction of 4-nitrophenol at room temperature with a high rate constant (3400 s{sup -1} g{sup -1}) and a low activated energy (29.1 kJ mol{sup -1}) as compared to unsupported Ni-Pd NDs and supported monometallic catalysts. The conversion rate of 4-NP is calculated to be 99.5% and the percent yield (%) of 4-AP is as high as 99.1%. A synergistic catalysis mechanism is rationally proposed, which is ascribed to the electronic modification of Ni-Pd metals due to the strong metal/support interaction (SMSI) effect as well as the electron transfer between Ni and Pd. The hybrid catalyst shows soft ferromagnetic properties and can be magnetically separated and recycled without obvious loss of activity.

  6. AuPd Bimetallic Nanocrystals Embedded in Magnetic Halloysite Nanotubes: Facile Synthesis and Catalytic Reduction of Nitroaromatic Compounds

    Directory of Open Access Journals (Sweden)

    Lei Jia

    2017-10-01

    Full Text Available In this research, a facile and effective approach was developed for the preparation of well-designed AuPd alloyed catalysts supported on magnetic halloysite nanotubes (HNTs@Fe3O4@AuPd. The microstructure and the magnetic properties of HNTs@Fe3O4@AuPd were confirmed by transmission electron microscopy (TEM, high resolution TEM (HRTEM, energy-dispersive X-ray spectroscopy (EDS, and vibrating sample magnetometry (VSM analyses. The catalysts, fabricated by a cheap, environmentally friendly, and simple surfactant-free formation process, exhibited high activities during the reduction of 4-nitrophenol and various other nitroaromatic compounds. Moreover, the catalytic activities of the HNTs@Fe3O4@AuPd nanocatalysts were tunable via adjusting the atomic ratio of AuPd during the synthesis. As compared with the monometallic nanocatalysts (HNTs@Fe3O4@Au and HNTs@Fe3O4@Pd, the bimetallic alloyed HNTs@Fe3O4@AuPd nanocatalysts exhibited excellent catalytic activities toward the reduction of 4-nitrophenol (4-NP to 4-aminophenol. Furthermore, the as-obtained HNTs@Fe3O4@AuPd can be recycled several times, while retaining its functionality due to the stability and magnetic separation property.

  7. Abroma augusta Linn bark extract-mediated green synthesis of gold nanoparticles and its application in catalytic reduction

    Science.gov (United States)

    Das, Subhajit; Bag, Braja Gopal; Basu, Ranadhir

    2015-10-01

    The bark extract of Abroma augusta Linn is rich in medicinally important phytochemicals including antioxidants and polyphenols. First one step green synthesis of gold nanoparticles (AuNPs) has been described utilizing the bark extract of Abroma augusta L. and chloroauric acid under very mild reaction conditions. The phytochemicals present in the bark extract acted both as a reducing as well as a stabilizing agent, and no additional stabilizing and capping agents were needed. Detailed characterizations of the stabilized AuNPs were carried out by surface plasmon resonance spectroscopy, high resolution transmission electron microscopy, and X-ray diffraction studies. The catalytic activity of the freshly synthesized gold nanoparticles has been demonstrated for the sodium borohydride reduction of 4-nitrophenol to 4-aminophenol, and the kinetics of the reduction reaction have been studied spectrophotometrically.

  8. Analysis and study on the performance variation of SCR DeNOx catalyst of Coal-Fired Boilers

    International Nuclear Information System (INIS)

    Jianxing, Ren; Fangqin, Li; Jiang, Wu; Qingrong, Liu; Yongwen, Yang; Zhongzhu, Qiu

    2010-01-01

    Nitrogen oxides (NO x ) are one kind of harmful substances from the burning process of fossil fuel and air at high temperature. NO x emissions cause serious pollution on atmospheric environment. In this paper, coal-fired utility boilers were chosen as the object, NO x formation mechanism and control were studied, and SCR deNO x technology was used to control NO x emissions from coal-fired boilers. Analyzed the relationship between deNO x efficiency and characteristics of SCR DeNO x catalyst. Through analysis, affecting SCR DeNO x catalyst failure factors, change law of catalytic properties and technical measures to extend the service life of the catalyst were gotten. (author)

  9. Combined effects Na and SO{sub 2} in flue gas on Mn-Ce/TiO{sub 2} catalyst for low temperature selective catalytic reduction of NO by NH{sub 3} simulated by Na{sub 2}SO{sub 4} doping

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Aiyi [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023 (China); Yu, Danqing [School of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan 430081 (China); Yang, Liu [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023 (China); Sheng, Zhongyi, E-mail: 09377@njnu.edu.cn [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023 (China)

    2016-08-15

    Highlights: • Sodium sulfate (Na{sub 2}SO{sub 4}) was deposited on Mn-Ce/TiO{sub 2} catalyst to simulate the co-existing of sodium and SO{sub 2} in the flue gas. • Na{sub 2}SO{sub 4} had strong and fluctuant influence on Mn-Ce/TiO{sub 2} catalyst’s performance in SCR of NOx with NH{sub 3}, due to the combined effect of the deactivation of sodium salts and the enhanced performance of ceria with surface sulfation. • The changes of the surface chemical species and acid sites on the Na{sub 2}SO{sub 4} deposited catalysts could be considered as the main reasons for the fluctuation changes with the catalytic activity. - Abstract: A series of Mn-Ce/TiO{sub 2} catalysts were synthesized through an impregnation method and used for low temperature selective catalytic reduction (SCR) of NOx with ammonia (NH{sub 3}). Na{sub 2}SO{sub 4} was added into the catalyst to simulate the combined effects of alkali metal and SO{sub 2} in the flue gas. Experimental results showed that Na{sub 2}SO{sub 4} had strong and fluctuant influence on the activity of Mn-Ce/TiO{sub 2}, because the effect of Na{sub 2}SO{sub 4} included pore occlusion and sulfation effect simultaneously. When Na{sub 2}SO{sub 4} loading content increased from 0 to 1 wt.%, the SCR activities of Na{sub 2}SO{sub 4}-doped catalysts decreased greatly. With further increasing amount of Na{sub 2}SO{sub 4}, however, the catalytic activity increased gradually. XRD results showed that Na{sub 2}SO{sub 4} doping could induce the crystallization of MnOx phases, which were also confirmed by TEM and SEM results. BET results showed that the surface areas decreased and a new bimodal mesoporous structure formed gradually with the increasing amount of Na{sub 2}SO{sub 4}. XPS results indicated that part of Ce{sup 4+} and Mn{sup 3+} were transferred to Ce{sup 3+} and Mn{sup 4+} due to the sulfation after Na{sub 2}SO{sub 4} deposition on the surface of the catalysts. When the doped amounts of Na{sub 2}SO{sub 4} increased, NH{sub 3

  10. Promotion effect of H2 on ethanol oxidation and NOx reduction with ethanol over Ag/Al2O3 catalyst.

    Science.gov (United States)

    Yu, Yunbo; Li, Yi; Zhang, Xiuli; Deng, Hua; He, Hong; Li, Yuyang

    2015-01-06

    The catalytic partial oxidation of ethanol and selective catalytic reduction of NOx with ethanol (ethanol-SCR) over Ag/Al2O3 were studied using synchrotron vacuum ultraviolet (VUV) photoionization mass spectrometry (PIMS). The intermediates were identified by PIMS and their photoionization efficiency (PIE) spectra. The results indicate that H2 promotes the partial oxidation of ethanol to acetaldehyde over Ag/Al2O3, while the simultaneously occurring processes of dehydration and dehydrogenation were inhibited. H2 addition favors the formation of ammonia during ethanol-SCR over Ag/Al2O3, the occurrence of which creates an effective pathway for NOx reduction by direct reaction with NH3. Simultaneously, the enhancement of the formation of ammonia benefits its reaction with surface enolic species, resulting in producing -NCO species again, leading to enhancement of ethanol-SCR over Ag/Al2O3 by H2. Using VUV-PIMS, the reactive vinyloxy radical was observed in the gas phase during the NOx reduction by ethanol for the first time, particularly in the presence of H2. Identification of such a reaction occurring in the gas phase may be crucial for understanding the reaction pathway of HC-SCR over Ag/Al2O3.

  11. Contribution of gold nanoparticles to the catalytic DNA strand displacement in leakage reduction and signal amplification.

    Science.gov (United States)

    Wang, Bei; Zhou, Xiang; Yao, Dongbao; Sun, Xianbao; He, Miao; Wang, Xiaojing; Yin, Xue; Liang, Haojun

    2017-10-03

    A new model using a gold nanoparticle (AuNP)-DNA system to constrain leakage and improve efficiency of catalytic toehold-mediated strand displacement reactions was outlined. A 10-bp spacer on AuNPs and fourfold amount of fuels were determined for good performance of this model with an optimized toehold strategy. After the reaction at 25 °C for 10 h, a 258 pM target could be identified, which is a remarkable improvement compared with the traditional AuNP-DNA system without fuel. Moreover, this model was also studied to differentiate specific single nucleotide polymorphism on target with superior selection factors. This model may help by introducing a proposition of target detection to guide further investigation.

  12. Boosting catalytic activity of metal nanoparticles for 4-nitrophenol reduction: Modification of metal naoparticles with poly(diallyldimethylammonium chloride)

    Energy Technology Data Exchange (ETDEWEB)

    You, Jyun-Guo; Shanmugam, Chandirasekar [Department of Chemistry, National Sun Yat-sen University, Taiwan (China); Liu, Yao-Wen; Yu, Cheng-Ju [Department of Applied Physics and Chemistry, University of Taipei, Taiwan (China); Tseng, Wei-Lung, E-mail: tsengwl@mail.nsysu.edu.tw [Department of Chemistry, National Sun Yat-sen University, Taiwan (China); School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Taiwan (China); Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, Taiwan (China)

    2017-02-15

    Highlights: • The choice of capping ligand determines catalytic activity of metal nanocatalysts. • PDDA-capped metal nanoparticles electrostatically interact with 4-NP and BH4{sup −}. • PDDA-capped metal nanoparticles have good recyclability and large scalability. • PDDA-capped Pd nanoparticles show the highest rate constant and activity parameter. - Abstract: Most of the previously reported studies have focused on the change in the size, morphology, and composition of metal nanocatalysts for improving their catalytic activity. Herein, we report poly(diallyldimethylammonium chloride) [PDDA]-stabilized nanoparticles (NPs) of platinum (Pt) and palladium (Pd) as highly active and efficient catalysts for hydrogenation of 4-nitrophenol (4-NP) in the presence of NaBH4. PDDA-stabilized Pt and Pd NPs possessed similar particle size and same facet with citrate-capped Pt and Pd NPs, making this study to investigate the inter-relationship between catalytic activity and surface ligand without the consideration of the effects of particle size and facet. Compared to citrate-capped Pt and Pd NPs, PDDA-stabilized Pt and Pd NPs exhibited excellent pH and salt stability. PDDA could serve as an electron acceptor for metal NPs to produce the net positive charges on the metal surface, which provide strong electrostatic attraction with negatively charged nitrophenolate and borohydride ions. The activity parameter and rate constant of PDDA-stabilized metal NPs were higher than those of citrate-capped metal NPs. Compared to the previously reported Pd nanomaterials for the catalysis of NaBH4-mediated reduction of 4-NP, PDDA-stabilized Pd NPs exhibited the extremely high activity parameter (195 s{sup −1} g{sup −1}) and provided excellent scalability and reusability.

  13. Catalytic reduction of organic dyes at gold nanoparticles impregnated silica materials: influence of functional groups and surfactants

    International Nuclear Information System (INIS)

    Azad, Uday Pratap; Ganesan, Vellaichamy; Pal, Manas

    2011-01-01

    Gold nanoparticles (Au NPs) in three different silica based sol–gel matrixes with and without surfactants are prepared. They are characterized by UV–vis absorbance and transmission electron microscopic (TEM) studies. The size and shape of Au NPs varied with the organo-functional group present in the sol–gel matrix. In the presence of mercaptopropyl functionalized organo-silica, large sized (200–280 nm) spherical Au NPs are formed whereas in the presence of aminopropyl functionalized organo-silica small sized (5–15 nm) Au NPs are formed inside the tube like organo-silica. Further, it is found that Au NPs act as efficient catalyst for the reduction of organic dyes. The catalytic rate constant is evaluated from the decrease in absorbance of the dye molecules. Presence of cationic or anionic surfactants greatly influences the catalytic reaction. The other factors like hydrophobicity of the organic dyes, complex formation of the dyes with anionic surfactants, repulsion between dyes and cationic surfactant, adsorption of dyes on the Au NPs also play important role on the reaction rate.

  14. Catalytic reduction of organic dyes at gold nanoparticles impregnated silica materials: influence of functional groups and surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Uday Pratap; Ganesan, Vellaichamy, E-mail: velganesh@yahoo.com; Pal, Manas [Banaras Hindu University, Department of Chemistry, Faculty of Science (India)

    2011-09-15

    Gold nanoparticles (Au NPs) in three different silica based sol-gel matrixes with and without surfactants are prepared. They are characterized by UV-vis absorbance and transmission electron microscopic (TEM) studies. The size and shape of Au NPs varied with the organo-functional group present in the sol-gel matrix. In the presence of mercaptopropyl functionalized organo-silica, large sized (200-280 nm) spherical Au NPs are formed whereas in the presence of aminopropyl functionalized organo-silica small sized (5-15 nm) Au NPs are formed inside the tube like organo-silica. Further, it is found that Au NPs act as efficient catalyst for the reduction of organic dyes. The catalytic rate constant is evaluated from the decrease in absorbance of the dye molecules. Presence of cationic or anionic surfactants greatly influences the catalytic reaction. The other factors like hydrophobicity of the organic dyes, complex formation of the dyes with anionic surfactants, repulsion between dyes and cationic surfactant, adsorption of dyes on the Au NPs also play important role on the reaction rate.

  15. Graphene oxide nanoplatforms to enhance catalytic performance of iron phthalocyanine for oxygen reduction reaction in bioelectrochemical systems

    Science.gov (United States)

    Costa de Oliveira, Maida Aysla; Mecheri, Barbara; D'Epifanio, Alessandra; Placidi, Ernesto; Arciprete, Fabrizio; Valentini, Federica; Perandini, Alessando; Valentini, Veronica; Licoccia, Silvia

    2017-07-01

    We report the development of electrocatalysts based on iron phthalocyanine (FePc) supported on graphene oxide (GO), obtained by electrochemical oxidation of graphite in aqueous solution of LiCl, LiClO4, and NaClO4. Structure, surface chemistry, morphology, and thermal stability of the prepared materials were investigated by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, atomic force microscopy (AFM), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The catalytic activity toward oxygen reduction reaction (ORR) at neutral pH was evaluated by cyclic voltammetry. The experimental results demonstrate that the oxidation degree of GO supports affects the overall catalytic activity of FePc/GO, due to a modulation effect of the interaction between FePc and the basal plane of GO. On the basis of electrochemical, spectroscopic, and morphological investigations, FePc/GO_LiCl was selected to be assembled at the cathode side of a microbial fuel cell prototype, demonstrating a good electrochemical performance in terms of voltage and power generation.

  16. Comparative catalytic reduction of 4-nitrophenol by polyacrylamide-gold nanocomposite synthesized by hydrothermal autoclaving and conventional heating routes

    Science.gov (United States)

    Salaheldin, Hosam I.

    2017-12-01

    Gold nanoparticles (AuNPs) in polymeric polyacrylamide (PAAm) matrix were synthesized using conventional heating and autoclaving thermal techniques. The synthesized Au/PAAm nanocomposite was characterized using UV-vis spectroscopy and high-resolution transmission electron microscopy. The size of the synthesized particles was approximately 6.37 nm and 8.19 nm with the conventional heating and autoclaving thermal techniques, respectively. Electron diffraction x-ray spectroscopy and the Fourier transformation infrared spectroscopy were used for the composition and elemental studies, which confirmed that the Au metallic atoms were synthesized and embedded within a PAAm matrix via a coordination bond between the carbonyl (-CONH2) group and the metallic NPs. X-ray diffraction confirmed the crystalline nature of the fabricated AuNPs with face centered cubic of nanocrystals. The catalytic activity of the as-prepared Au/PAAm nanocomposite for the reduction of 4-nitrophenol to 4-aminophenol was studied in the presence of sodium borohydrate. The synthesized AuNPs had an effective catalytic activity; the smaller NPs synthesized NPs with the conventional heating technique had a higher reaction kinetic rate in comparation with those synthesized with the autoclaving technique. Therefore, the Au/PAAm nanocomposite can be widely used as an eco-friendly, non-toxic, a fast and cost-effective product to remove versatile organic pollutants such as aromatic nitro compounds.

  17. A facile approach to fabricate Au nanoparticles loaded SiO{sub 2} microspheres for catalytic reduction of 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Mingyi, E-mail: mingyitjucu@163.com [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Huang, Guanbo, E-mail: gbhuang2007@hotmail.com [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Li, Xianxian; Pang, Xiaobo [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Qiu, Haixia [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China)

    2015-07-15

    Hydrophilic and biocompatible macromolecules were used to improve and simplify the process for the fabrication of core/shell SiO{sub 2}@Au composite particles. The influence of polymers on the morphology of SiO{sub 2}@Au particles with different size of SiO{sub 2} cores was analyzed by transmission electron microscopy and scanning electron microscopy. The optical property of the SiO{sub 2}@Au particles was studied with UV–Vis spectroscopy. The results indicate that the structure and composition of macromolecules affect the morphology of Au layers on SiO{sub 2} microspheres. The SiO{sub 2}@Au particles prepared in the presence of polyvinyl alcohol (PVA) or polyvinylpyrrolidone (PVP) have thin and complete Au nanoshells owing to their inducing act in preferential growth of Au nanoparticles along the surface of SiO{sub 2} microspheres. SiO{sub 2}@Au particles can be also prepared from SiO{sub 2} microspheres modified with 3-aminopropyltrimethoxysilane in the presence of PVA or PVP. This offers a simple way to fabricate a Au layer on SiO{sub 2} or other microspheres. The SiO{sub 2}@Au particles demonstrated high catalytic activity in the reduction of 4-nitrophenol. - Highlights: • Facile direct deposition method for Au nanoparticles on silica microspheres. • Influence of different types of macromolecule on the formation of Au shell. • High catalytic performance of Au nanoparticles on silica microspheres.

  18. A facile approach to fabricate Au nanoparticles loaded SiO2 microspheres for catalytic reduction of 4-nitrophenol

    International Nuclear Information System (INIS)

    Tang, Mingyi; Huang, Guanbo; Li, Xianxian; Pang, Xiaobo; Qiu, Haixia

    2015-01-01

    Hydrophilic and biocompatible macromolecules were used to improve and simplify the process for the fabrication of core/shell SiO 2 @Au composite particles. The influence of polymers on the morphology of SiO 2 @Au particles with different size of SiO 2 cores was analyzed by transmission electron microscopy and scanning electron microscopy. The optical property of the SiO 2 @Au particles was studied with UV–Vis spectroscopy. The results indicate that the structure and composition of macromolecules affect the morphology of Au layers on SiO 2 microspheres. The SiO 2 @Au particles prepared in the presence of polyvinyl alcohol (PVA) or polyvinylpyrrolidone (PVP) have thin and complete Au nanoshells owing to their inducing act in preferential growth of Au nanoparticles along the surface of SiO 2 microspheres. SiO 2 @Au particles can be also prepared from SiO 2 microspheres modified with 3-aminopropyltrimethoxysilane in the presence of PVA or PVP. This offers a simple way to fabricate a Au layer on SiO 2 or other microspheres. The SiO 2 @Au particles demonstrated high catalytic activity in the reduction of 4-nitrophenol. - Highlights: • Facile direct deposition method for Au nanoparticles on silica microspheres. • Influence of different types of macromolecule on the formation of Au shell. • High catalytic performance of Au nanoparticles on silica microspheres

  19. Anisotropic electrical conduction and reduction in dangling-bond density for polycrystalline Si films prepared by catalytic chemical vapor deposition

    Science.gov (United States)

    Niikura, Chisato; Masuda, Atsushi; Matsumura, Hideki

    1999-07-01

    Polycrystalline Si (poly-Si) films with high crystalline fraction and low dangling-bond density were prepared by catalytic chemical vapor deposition (Cat-CVD), often called hot-wire CVD. Directional anisotropy in electrical conduction, probably due to structural anisotropy, was observed for Cat-CVD poly-Si films. A novel method to separately characterize both crystalline and amorphous phases in poly-Si films using anisotropic electrical conduction was proposed. On the basis of results obtained by the proposed method and electron spin resonance measurements, reduction in dangling-bond density for Cat-CVD poly-Si films was achieved using the condition to make the quality of the included amorphous phase high. The properties of Cat-CVD poly-Si films are found to be promising in solar-cell applications.

  20. Size Control of Iron Oxide Nanoparticles Using Reverse Microemulsion Method: Morphology, Reduction, and Catalytic Activity in CO Hydrogenation

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Housaindokht

    2013-01-01

    Full Text Available Iron oxide nanoparticles were prepared by microemulsion method and evaluated in Fischer-Tropsch synthesis. The precipitation process was performed in a single-phase microemulsion operating region. Different HLB values of surfactant were prepared by mixing of sodium dodecyl sulfate (SDS and Triton X-100. Transmission electron microscopy (TEM, surface area, pore volume, average pore diameter, pore size distribution, and XRD patterns were used to analyze size distribution, shape, and structure of precipitated hematite nanoparticles. Furthermore, temperature programmed reduction (TPR and catalytic activity in CO hydrogenation were implemented to assess the performance of the samples. It was found that methane and CO2 selectivity and also the syngas conversion increased as the HLB value of surfactant decreased. In addition, the selectivity to heavy hydrocarbons and chain growth probability (α decreased by decreasing the catalyst crystal size.

  1. Carbothermal reduction of Ti-modified IRMOF-3: an adaptable synthetic method to support catalytic nanoparticles on carbon.

    Science.gov (United States)

    Kim, Jongsik; McNamara, Nicholas D; Her, Theresa H; Hicks, Jason C

    2013-11-13

    This work describes a novel method for the preparation of titanium oxide nanoparticles supported on amorphous carbon with nanoporosity (Ti/NC) via the post-synthetic modification of a Zn-based MOF with an amine functionality, IRMOF-3, with titanium isopropoxide followed by its carbothermal pyrolysis. This material exhibited high purity, high surface area (>1000 m(2)/g), and a high dispersion of metal oxide nanoparticles while maintaining a small particle size (~4 nm). The material was shown to be a promising catalyst for oxidative desulfurization of diesel using dibenzothiophene as a model compound as it exhibited enhanced catalytic activity as compared with titanium oxide supported on activated carbon via the conventional incipient wetness impregnation method. The formation mechanism of Ti/NC was also proposed based on results obtained when the carbothermal reduction temperature was varied.

  2. Reduction of nitrogen oxides from simulated exhaust gas by using plasma-catalytic process

    International Nuclear Information System (INIS)

    Mok, Young Sun; Koh, Dong Jun; Shin, Dong Nam; Kim, Kyong Tae

    2004-01-01

    Removal of nitrogen oxides (NO x ) using a nonthermal plasma reactor (dielectric-packed bed reactor) combined with monolith V 2 O 5 /TiO 2 catalyst was investigated. The effect of initial NO x concentration, feed gas flow rate (space velocity), humidity, and reaction temperature on the removal of NO x was examined. The plasma reactor used can be energized by either ac or pulse voltage. An attempt was made to utilize the electrical ignition system of an internal combustion engine as a high-voltage pulse generator for the plasma reactor. When the plasma reactor was energized by the electrical ignition system, NO was readily oxidized to NO 2 . Performance was as good as with ac energization. Increasing the fraction of NO 2 in NO x , which is the main role of the plasma reactor, largely enhanced the NO x removal efficiency. In the plasma-catalytic reactor, the increases in initial NO x concentration, space velocity (feed gas flow rate) and humidity lowered the NO x removal efficiency. However, the reaction temperature in the range up to 473 K did not significantly affect the NO x removal efficiency in the presence of plasma discharge

  3. SCR系统尿素结晶结石研究%Research on Selective Catalytic Reduction about Crystal Stones

    Institute of Scientific and Technical Information of China (English)

    桑心成

    2016-01-01

    随着汽车排放法规的严格要求,SCR后处理系统在重型柴油机得到了广泛的应用。文章基于SCR系统在重型柴油机上试验及实际应用过程中,出现尿素喷嘴座结石、尿素喷嘴座结晶问题、排气管路结晶结石问题以及控制策略问题,利用称重方法以及红外法对尿素结晶结石进行分析,提出了解决SCR系统结晶结石方法。%As the vehicle emission regulations strictly requirements,SCR system has been widely used in heavy-duty diesel engine.Based on the SCR system on heavy duty diesel engine test and actually application,this paper points out the problems and control strategies,such as urea nozzle block stones,urea crystallization of the nozzle seat,exhaust line crystal stones,analyzes urea crystal stone by usingweighing method and infrared,and puts forward measures to solve crystal stone SCR system.

  4. Identification of intrinsic catalytic activity for electrochemical reduction of water molecules to generate hydrogen

    KAUST Repository

    Shinagawa, Tatsuya

    2015-01-01

    Insufficient hydronium ion activities at near-neutral pH and under unbuffered conditions induce diffusion-limited currents for hydrogen evolution, followed by a reaction with water molecules to generate hydrogen at elevated potentials. The observed constant current behaviors at near neutral pH reflect the intrinsic electrocatalytic reactivity of the metal electrodes for water reduction. This journal is © the Owner Societies.

  5. The J3 SCR model applied to resonant converter simulation

    Science.gov (United States)

    Avant, R. L.; Lee, F. C. Y.

    1985-01-01

    The J3 SCR model is a continuous topology computer model for the SCR. Its circuit analog and parameter estimation procedure are uniformly applicable to popular computer-aided design and analysis programs such as SPICE2 and SCEPTRE. The circuit analog is based on the intrinsic three pn junction structure of the SCR. The parameter estimation procedure requires only manufacturer's specification sheet quantities as a data base.

  6. AuCu@Pt Nanoalloys for Catalytic Application in Reduction of 4-Nitrophenol

    Directory of Open Access Journals (Sweden)

    Sadia Mehmood

    2016-01-01

    Full Text Available To enhance and optimize nanocatalyst ability for nitrophenol (4-NP reduction reaction we look beyond Au-metal nanoparticles and describe a new class of Au nanoalloys with controlled composition for core of AuCu-metals and Pt-metal shell. The reduction of 4-NP was investigated in aqueous media spectroscopically on 7.8 nm Au nanospheres (AuNSs, 8.3 nm AuCuNSs, and 9.1 nm AuCu@Pt core-shell NSs in diameter. The rate constants of the catalyzed reaction at room temperature, activation energies, and entropies of activation of reactions catalyzed by the AuCu@Pt core-shell NSs are found to have different values to those of the pure metal NSs. The results strongly support the proposal that catalysis by nanoparticles is taking place efficiently on the surface of NSs. These core-shell nanocatalysts exhibited stability throughout the reduction reaction and proved that heterogonous type mechanisms are most likely to be dominant in nanoalloy based catalysis if the surface of the NSs is not defected upon shell incorporation.

  7. Theophylline-assisted, eco-friendly synthesis of PtAu nanospheres at reduced graphene oxide with enhanced catalytic activity towards Cr(VI) reduction.

    Science.gov (United States)

    Hu, Ling-Ya; Chen, Li-Xian; Liu, Meng-Ting; Wang, Ai-Jun; Wu, Lan-Ju; Feng, Jiu-Ju

    2017-05-01

    Theophylline as a naturally alkaloid is commonly employed to treat asthma and chronic obstructive pulmonary disorder. Herein, a facile theophylline-assisted green approach was firstly developed for synthesis of PtAu nanospheres/reduced graphene oxide (PtAu NSs/rGO), without any surfactant, polymer, or seed involved. The obtained nanocomposites were applied for the catalytic reduction and removal of highly toxic chromium (VI) using formic acid as a model reductant at 50°C, showing the significantly enhanced catalytic activity and improved recyclability when compared with commercial Pt/C (50%) and home-made Au nanocrystals supported rGO (Au NCs/rGO). It demonstrates great potential applications of the catalyst in wastewater treatment and environmental protection. The eco-friendly route provides a new platform to fabricate other catalysts with enhanced catalytic activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Experimental investigation of N2O formation in selective non-catalytic NOx reduction processes performed in stoker boiler

    Directory of Open Access Journals (Sweden)

    Krawczyk Piotr

    2016-12-01

    Full Text Available Stoker fired boiler plants are common throughout Eastern Europe. Increasingly strict emission standards will require application of secondary NOx abatement systems on such boilers. Yet operation of such systems, in addition to reducing NOx emissions, may also lead to emission of undesirable substances, for example N2O. This paper presents results of experimental tests concerning N2O formation in the selective non-catalytic NOx emission reduction process (SNCR in a stoker boiler (WR 25 type. Obtained results lead to an unambiguous conclusion that there is a dependency between the NOx and N2O concentrations in the exhaust gas when SNCR process is carried out in a coal-fired stoker boiler. Fulfilling new emission standards in the analysed equipment will require 40–50% reduction of NOx concentration. It should be expected that in such a case the N2O emission will be approximately 55–60 mg/m3, with the NOx to N2O conversion factor of about 40%.

  9. Gold nanocatalyst-based immunosensing strategy accompanying catalytic reduction of 4-nitrophenol for sensitive monitoring of chloramphenicol residue.

    Science.gov (United States)

    Que, Xiaohua; Tang, Dianyong; Xia, Biyun; Lu, Minghua; Tang, Dianping

    2014-06-09

    A new competitive-type immunosensing system based on gold nanoparticles toward catalytic reduction of 4-nitrophenol (4-NP) was developed for sensitive monitoring of antibiotic residue (chloramphenicol, CAP, used in this case) by using ultraviolet-visible (UV-vis) spectrometry. Gold nanoparticle (AuNP) with 16 nm in diameter was initially synthesized and functionalized with CAP-bovine serum albumin (CAP-BSA) conjugate, which were used as the competitor on monoclonal anti-CAP antibody-coated polystyrene microtiter plate (MTP). In the presence of target CAP, the labeled CAP-BSA on the AuNP competed with target CAP for the immobilized antibody on the MTP. The conjugated amount of CAP-BSA-AuNP on the MTP decreased with the increase of target CAP in the sample. Upon addition of 4-NP and NaBH4 into the MTP, the carried AuNP could catalytically reduce 4-NP to 4-aminophenol (4-AP), and the as-produced 4-AP could be monitored by using UV-vis absorption spectroscopy. Experimental results indicated that the absorbance at 403 nm increased with the increment of target CAP concentration in the sample, and exhibited a dynamic range from 0.1 to 100 ng mL(-1) with a detection limit (LOD) of 0.03 ng mL(-1) at the 3s(blank) level. Intra- and inter-assay coefficients of variation were lower than 5.5% and 8.0%, respectively. In addition, the methodology was evaluated for CAP spiked honey and milk samples, respectively. The recovery was 92-112%. Copyright © 2014. Published by Elsevier B.V.

  10. Synergistic effect of Nitrogen-doped hierarchical porous carbon/graphene with enhanced catalytic performance for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Dewang; Yuan, Wenjing; Li, Cun; Song, Jiming; Xie, Anjian, E-mail: anjx@163.com; Shen, Yuhua, E-mail: s_yuhua@163.com

    2017-01-30

    Graphical abstract: This work demonstrates an example for turning rubbish into valuable products and addresses the disposal issue of waste biomass simultaneously for environment clean. And the typical sample exhibits excellent catalytic performance toward ORR, which is similar to that of commercial Pt/C. - Highlights: • This work demonstrates an example for turning rubbish into valuable products and addresses the disposal issue of waste biomass. • The HPC/RGO composite not only prevents the aggregation of RGO, but also takes advantage of the synergy between them. • This method was accessible, without using any activator, which is an effective strategy for the large scale application of FCs. - Abstract: Developing efficient and economical catalysts for the oxygen reduction reaction (ORR) is important to promote the commercialization of fuel cells. Here, we report a simple and environmentally friendly method to prepare nitrogen (N) –doped hierarchical porous carbon (HPC)/reduced graphene oxide (RGO) composites by reusing waste biomass (pomelo peel) coupled with graphene oxide (GO). This method is green, low-cost and without using any acid or alkali activator. The typical sample (N-HPC/RGO-1) contains 5.96 at.% nitrogen and larger BET surface area (1194 m{sup 2}/g). Electrochemical measurements show that N-HPC/RGO-1 exhibits not only a relatively positive onset potential and high current density, but also considerable methanol tolerance and long-term durability in alkaline media as well as in acidic media. The electron transfer number is close to 4, which means that it is mostly via a four-electron pathway toward ORR. The excellent catalytic performance of N-HPC/RGO-1 is due to the synergistic effect of the inherent interwoven network structure of HPC, the good electrical conductivity of RGO, and the heteroatom doping for the composite. More importantly, this work demonstrates a good example for turning discarded rubbish into valuable functional products and

  11. Catalytic reduction of nitrate and nitrite ions by hydrogen : investigation of the reaction mechanism over Pd and Pd-Cu catalysts

    NARCIS (Netherlands)

    Ilinitch, OM; Nosova, LV; Gorodetskii, VV; Ivanov, VP; Trukhan, SN; Gribov, EN; Bogdanov, SV; Cuperus, FP

    2000-01-01

    The catalytic behavior of mono- and bimetallic catalysts with Pd and/or Cu supported over gamma-Al2O3 in the reduction of aqueous nitrate and nitrite ions by hydrogen was investigated. The composition of the supported metal catalysts was analysed using secondary ion mass spectroscopy (SIMS) and

  12. Substantial Humic Acid Adsorption to Activated Carbon Air Cathodes Produces a Small Reduction in Catalytic Activity.

    Science.gov (United States)

    Yang, Wulin; Watson, Valerie J; Logan, Bruce E

    2016-08-16

    Long-term operation of microbial fuel cells (MFCs) can result in substantial degradation of activated carbon (AC) air-cathode performance. To examine a possible role in fouling from organic matter in water, cathodes were exposed to high concentrations of humic acids (HA). Cathodes treated with 100 mg L(-1) HA exhibited no significant change in performance. Exposure to 1000 mg L(-1) HA decreased the maximum power density by 14% (from 1310 ± 30 mW m(-2) to 1130 ± 30 mW m(-2)). Pore blocking was the main mechanism as the total surface area of the AC decreased by 12%. Minimization of external mass transfer resistances using a rotating disk electrode exhibited only a 5% reduction in current, indicating about half the impact of HA adsorption was associated with external mass transfer resistance and the remainder was due to internal resistances. Rinsing the cathodes with deionized water did not restore cathode performance. These results demonstrated that HA could contribute to cathode fouling, but the extent of power reduction was relatively small in comparison to large mass of humics adsorbed. Other factors, such as biopolymer attachment, or salt precipitation, are therefore likely more important contributors to long-term fouling of MFC cathodes.

  13. A Mild and Convenient Method for the Reduction of Carbonyl Compounds with NaBH4 in the Presence of Catalytic Amounts of MoCl5

    International Nuclear Information System (INIS)

    Zeynizadeh, Behzad; Yahyaei, Saiedeh

    2003-01-01

    NaBH 4 with catalytic amounts of MoCl 5 can readily reduce a variety of carbonyl compounds such as aldehydes, ketones, acyloins, α-diketones and conjugated enones to their corresponding alcohols in good to excellent yields. Reduction reactions were performed under aprotic condition in CH 3 CN at room temperature or reflux. In addition, the chemoselective reduction of aldehydes over ketones was accomplished successfully with this reducing system

  14. MECHANISTIC STUDIES AND DESIGN OF HIGHLY ACTIVE CUPRATE CATALYSTS FOR THE DIRECT DECOMPOSITION AND SELECTIVE REDUCTION OF NITRIC OXIDE AND HYDROCARBONS TO NITROGEN FOR ABATEMENT OF STACK EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-04-30

    A flow trough type catalytic reactor system was adequately modified for NO related catalytic and adsorption measurements, including the on-line connection of a digital chemiluminescent NO-NO{sub x} analyzer to the reactor outlet system. Moreover, we have largely completed the installation of an FTIR coupled catalytic system containing a HTEC cell for high temperature DRIFT studies. Three different barium cuprate samples, Ba{sub 2}CuO{sub 3}, BaCuO{sub 2}, and Ba{sub 2}Cu{sub 3}O{sub 5} were synthesized and characterized by powder XRD for catalytic tests. Prior to catalytic studies over these cuprates, a new, liquid indium based supported molten metal catalyst (In-SMMC) was tested in the reduction of NO by various reductants. In the presence of excess O{sub 2} and H{sub 2}O, the In-SMMC proved to be more active for the selective catalytic reduction (SCR) of NO to N{sub 2} by ethanol than most other catalysts. Using C{sub 1}-C{sub 3} alcohols as reductants, self sustained periodic oscillations observed in the NO{sub x} concentrations of reactor effluents indicated the first time that radical intermediates can be involved in the SCR of NO by alcohols. Further, In-SMMC is the only effective and water tolerant SCR catalyst reported thus far which contains SiO{sub 2} support. Thus, this novel catalyst opens up a promising new alternative for developing an effective and durable catalyst for NO{sub x} abatement in stack emission.

  15. Deactivation of SCR Catalysts by Additives

    DEFF Research Database (Denmark)

    Castellino, Francesco

    2008-01-01

    forskellige opløsninger af K3PO4. Resultaterne viste, at hvis K bindes i K-P saltforbindelser ville dette ikke reducere hastigheden af katalysatorens deaktivering. Regenereringstest udført i laboratoriet på katalysatorplader viste, at regenerering af de eksponerede katalysatorer var muligt ved at vaske demmed...... 0.5Mvandig opløsning af H2SO4. Somdet sidste blev en kommerciel V2O5-WO3-TiO2 SCR monolit eksponer et i 1000 timer for røggas tilsat en vandig opløsning af KCl, Ca(OH)2, H3PO4 og H2SO4 i en pilotopstilling. Blandingens sammensætning blev justeret med henblik på at have et P/K og P/Ca forhold på...... for KCl eller K3PO4. Dette faktum indikerer at kemisk binding af K i P-K-Ca-forbindelser er en effektiv måde at reducere den negative indflydelse på levetiden af vanadium baserede SCR katalysatorer hidrørende fra alkalimetaller. På den anden side blev fosforafsætning og -belægningsdannelse favoriseret ved...

  16. Rejuvenation of the SCR catalyst at Mehrum

    Energy Technology Data Exchange (ETDEWEB)

    Nagai, Y.; Inatsume, Y.; Morita, I.; Kato, Y.; Yokoyama, K.; Ito, K. [Babcock Hitachi K.K., Kure-shi, Hiroshima-ken (Japan)

    2004-07-01

    Babcock Hitachi K.K. (BHK) received the contract of the rejuvenation of the SCR catalyst at the 750 MW coal-fired Mehrum Power Station (in Hohenhameln, Germany) in March 2003. The contractual coverage was 160 m{sup 3} of the entire catalyst layer. The catalyst, which had been in operation for 16 years since 1987, was originally supplied by BHK. The rejuvenation process developed for the Mehrum project consisted of two major steps: the first is to dust off the catalyst and remove the catalyst poison, and the second step is to add active material to enhance the catalyst activity. The catalyst must be dried after each washing. In order to minimize transportation cost and time, the rejuvenation work was done at the Mehrum station site. The scope of the rejuvenation work was shared between the owner and BHK. It took about one and a half months to complete the (total) on-site rejuvenation worked. The performance of the rejuvenated catalyst was superior to show the same level of activity as the unused catalyst and maintain the same SO{sub 2} conversion rate as the spent catalyst. This paper gives the details of the spent coal-fired SCR catalyst rejuvenation work. 13 figs., 1 tab.

  17. Experimental Studies for CPF and SCR Model, Control System, and OBD Development for Engines Using Diesel and Biodiesel Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, John; Naber, Jeffrey; Parker, Gordon; Yang, Song-Lin; Stevens, Andrews; Pihl, Josh

    2013-04-30

    The research carried out on this project developed experimentally validated Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF), and Selective Catalytic Reduction (SCR) high‐fidelity models that served as the basis for the reduced order models used for internal state estimation. The high‐fidelity and reduced order/estimator codes were evaluated by the industrial partners with feedback to MTU that improved the codes. Ammonia, particulate matter (PM) mass retained, PM concentration, and NOX sensors were evaluated and used in conjunction with the estimator codes. The data collected from PM experiments were used to develop the PM kinetics using the high‐fidelity DPF code for both NO2 assisted oxidation and thermal oxidation for Ultra Low Sulfur Fuel (ULSF), and B10 and B20 biodiesel fuels. Nine SAE papers were presented and this technology transfer process should provide the basis for industry to improve the OBD and control of urea injection and fuel injection for active regeneration of the PM in the DPF using the computational techniques developed. This knowledge will provide industry the ability to reduce the emissions and fuel consumption from vehicles in the field. Four MS and three PhD Mechanical Engineering students were supported on this project and their thesis research provided them with expertise in experimental, modeling, and controls in aftertreatment systems.

  18. Regeneration of Pt-catalysts deactivated in municipal waste flue gas with H2/N2 and the effect of regeneration step on the SCR catalyst

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes; Rasmussen, Søren Brik; Kustov, Arkady

    The deactivation performance of Pt-catalysts for CO oxidation has been studied in relation to use in sewage sludge municipal waste burners, where HMDS was found to poison the industrial catalyst in a similar way to the model Pt/TiO2 catalyst. A promising regeneration procedure was developed based...... on reduction with hydrogen. This procedure had negligible effect on the performance of the SCR catalyst. After treatment with 2% H2, 8% O2 in N2 for one hour, a slight better NO SCR activity was observed due to increase in the concentration V4+ sites. However, after exposure in normal NO SCR gases the activity...

  19. Catalytic reduction of NOx with H2/CO/CH4 over PdMOR catalysts

    International Nuclear Information System (INIS)

    Pieterse, Johannis A.Z.; Booneveld, Saskia

    2007-01-01

    Conversion of NO x with reducing agents H 2 , CO and CH 4 , with and without O 2 , H 2 O, and CO 2 were studied with catalysts based on MOR zeolite loaded with palladium and cerium. The catalysts reached high NO x to N 2 conversion with H 2 and CO (>90% conversion and N 2 selectivity) range under lean conditions. The formation of N 2 O is absent in the presence of both H 2 and CO together with oxygen in the feed, which will be the case in lean engine exhaust. PdMOR shows synergic co-operation between H 2 and CO at 450-500 K. The positive effect of cerium is significant in the case of H 2 and CH 4 reducing agent but is less obvious with H 2 /CO mixture and under lean conditions. Cerium lowers the reducibility of Pd species in the zeolite micropores. The catalysts showed excellent stability at temperatures up to 673 K in a feed with 2500 ppm CH 4 , 500 ppm NO, 5% O 2 , 10% H 2 O (0-1% H 2 ), N 2 balance but deactivation is noticed at higher temperatures. Combining results of the present study with those of previous studies it shows that the PdMOR-based catalysts are good catalysts for NO x reduction with H 2 , CO, hydrocarbons, alcohols and aldehydes under lean conditions at temperatures up to 673 K. (author)

  20. Screening of catalytic oxygen reduction reaction activity of metal-doped graphene by density functional theory

    International Nuclear Information System (INIS)

    Chen, Xin; Chen, Shuangjing; Wang, Jinyu

    2016-01-01

    Highlights: • The screened M-G structures are very thermodynamically stable, and the stability is even higher than that of the corresponding bulk metal surfaces. • The binding energies of ORR intermediates suggest that they are not linear dependence, which are different form the cases found on some metal-based catalysts. • The Au-, Co-, and Ag-G structures could be used as the ORR catalysts. - Abstract: Graphene doping is a promising direction for developing effective oxygen reduction reaction (ORR) catalysts. In this paper, we computationally investigated the ORR performance of 10 kinds of metal-doped graphene (M-G) catalysts, namely, Al-, Si-, Mn-, Fe-, Co-, Ni-, Pd-, Ag-, Pt-, and Au-G. The results shown that the binding energies of the metal atoms incorporated into the graphene vacancy are higher than their bulk cohesive energies, indicating the formed M-G catalysts are even more stable than the corresponding bulk metal surfaces, and thus avoid the metals dissolution in the reaction environment. We demonstrated that the linear relation among the binding energies of the ORR intermediates that found on metal-based materials does not hold for the M-G catalysts, therefore a single binding energy of intermediate alone is not sufficient to evaluate the ORR activity of an arbitrary catalyst. By analysis of the detailed ORR processes, we predicted that the Au-, Co-, and Ag-G materials can be used as the ORR catalysts.

  1. Technology Roadmap: Energy and GHG reductions in the chemical industry via catalytic processes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    The chemical industry is a large energy user; but chemical products and technologies also are used in a wide array of energy saving and/or renewable energy applications so the industry has also an energy saving role. The chemical and petrochemical sector is by far the largest industrial energy user, accounting for roughly 10% of total worldwide final energy demand and 7% of global GHG emissions. The International Council of Chemical Associations (ICCA) has partnered with the IEA and DECHEMA (Society for Chemical Engineering and Biotechnology) to describe the path toward further improvements in energy efficiency and GHG reductions in the chemical sector. The roadmap looks at measures needed from the chemical industry, policymakers, investors and academia to press on with catalysis technology and unleash its potential around the globe. The report uncovers findings and best practice opportunities that illustrate how continuous improvements and breakthrough technology options can cut energy use and bring down greenhouse gas (GHG) emission rates. Around 90% of chemical processes involve the use of catalysts – such as added substances that increase the rate of reaction without being consumed by it – and related processes to enhance production efficiency and reduce energy use, thereby curtailing GHG emission levels. This work shows an energy savings potential approaching 13 exajoules (EJ) by 2050 – equivalent to the current annual primary energy use of Germany.

  2. Selective catalytic reduction system and process for control of NO.sub.x emissions in a sulfur-containing gas stream

    Science.gov (United States)

    Sobolevskiy, Anatoly

    2015-08-11

    An exhaust gas treatment process, apparatus, and system for reducing the concentration of NOx, CO and hydrocarbons in a gas stream, such as an exhaust stream (29), via selective catalytic reduction with ammonia is provided. The process, apparatus and system include a catalytic bed (32) having a reducing only catalyst portion (34) and a downstream reducing-plus-oxidizing portion (36). Each portion (34, 36) includes an amount of tungsten. The reducing-plus-oxidizing catalyst portion (36) advantageously includes a greater amount of tungsten than the reducing catalyst portion (36) to markedly limit ammonia salt formation.

  3. Numerical simulation of urea based selective non-catalytic reduction deNOx process for industrial applications

    International Nuclear Information System (INIS)

    Baleta, Jakov; Mikulčić, Hrvoje; Vujanović, Milan; Petranović, Zvonimir; Duić, Neven

    2016-01-01

    Highlights: • SNCR is a simple method for the NOx reduction from large industrial facilities. • Capabilities of the developed mathematical framework for SNCR simulation were shown. • Model was used on the geometry of experimental reactor and municipal incinerator. • Results indicate suitability of the developed model for real industrial cases. - Abstract: Industrial processes emit large amounts of diverse pollutants into the atmosphere, among which NOx takes a significant portion. Selective non-catalytic reduction (SNCR) is a relatively simple method for the NOx reduction in large industrial facilities such as power plants, cement plants and waste incinerator plants. It consists of injecting the urea-water solution in the hot flue gas stream and its reaction with the NOx. During this process flue gas enthalpy is used for the urea-water droplet heating and for the evaporation of water content. After water evaporates, thermolysis of urea occurs, during which ammonia, a known NO_x reductant, and isocyanic acid are generated. In order to cope with the ever stringent environmental norms, equipment manufacturers need to develop energy efficient products that are at the same time benign to environment. This is becoming increasingly complicated and costly, and one way to reduce production costs together with the maintaining the same competitiveness level is to employ computational fluid dynamics (CFD) as a tool, in a process today commonly known under the term “virtual prototyping”. The aim of this paper is to show capabilities of the developed mathematical framework implemented in the commercial CFD code AVL FIRE®, to simulate physical processes of all relevant phenomena occurring during the SNCR process. First, mathematical models for description of SNCR process are presented and afterwards, models are used on the 3D geometry of an industrial reactor and a real industrial case to predict SNCR efficiency, temperature and velocity field. Influence of the main

  4. Evaluating the Catalytic Effects of Carbon Materials on the Photocatalytic Reduction and Oxidation Reactions of TiO2

    International Nuclear Information System (INIS)

    Khan, Gulzar; Kim, Young Kwang; Choi, Sung Kyu; Han, Dong Suk; Abdelwahab, Ahmed; Park, Hyunwoong

    2013-01-01

    TiO 2 composites with seven different carbon materials (activated carbons, graphite, carbon fibers, single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene oxides, and reduced graphene oxides) that are virgin or treated with nitric acid are prepared through an evaporation method. The photocatalytic activities of the as-prepared samples are evaluated in terms of H 2 production from aqueous methanol solution (photo-catalytic reduction: PCR) and degradation of aqueous pollutants (phenol, methylene blue, and rhodamine B) (photocatalytic oxidation: PCO) under AM 1.5-light irradiation. Despite varying effects depending on the kinds of carbon materials and their surface treatment, composites typically show enhanced PCR activity with maximum 50 times higher H 2 production as compared to bare TiO 2 . Conversely, the carbon-induced synergy effects on PCO activities are insignificant for all three substrates. Colorimetric quantification of hydroxyl radicals supports the absence of carbon effects. However, platinum deposition on the binary composites displays the enhanced effect on both PCR and PCO reactions. These differing effects of carbon materials on PCR and PCO reactions of TiO 2 are discussed in terms of physicochemical properties of carbon materials, coupling states of TiO 2 /carbon composites, interfacial charge transfers. Various surface characterizations of composites (UV-Vis diffuse reflectance, SEM, FTIR, surface area, electrical conductivity, and photoluminescence) are performed to gain insight on their photocatalytic redox behaviors

  5. The SS-SCR Scheme for Dynamic Spectrum Access

    Directory of Open Access Journals (Sweden)

    Vinay Thumar

    2012-01-01

    Full Text Available We integrate the two models of Cognitive Radio (CR, namely, the conventional Sense-and-Scavenge (SS Model and Symbiotic Cooperative Relaying (SCR. The resultant scheme, called SS-SCR, improves the efficiency of spectrum usage and reliability of the transmission links. SS-SCR is enabled by a suitable cross-layer optimization problem in a multihop multichannel CR network. Its performance is compared for different PU activity patterns with those schemes which consider SS and SCR separately and perform disjoint resource allocation. Simulation results depict the effectiveness of the proposed SS-SCR scheme. We also indicate the usefulness of cloud computing for a practical deployment of the scheme.

  6. Catalytic reduction of methane/unburned hydrocarbons in smoke from lean-burn gas engines

    International Nuclear Information System (INIS)

    Wit, Jan de.

    1999-01-01

    The aim of this project has been: To describe the flue gas conditions of typical stationary gas engines for cogeneration; To evaluate the predominant causes of deactivation of oxidation catalysts under realistic operation conditions; To develop improved long-term stable oxidation catalysts; To evaluate alternative catalyst-based methane reduction technologies. Most gas engines for stationary purposes are efficient lean-burn gas engines. Both the high efficiency and the very lean operation lead to low exhaust temperatures. However, there is now a tendency to design engines with un-cooled exhaust manifolds. This leads to higher shaft efficiency and increases the exhaust temperature. Exhaust gas composition and temperatures during continuous operation and start/stops are given in this report. Analyses have been made of catalyst samples to find predominant causes for oxidation catalyst deactivation. The analyses have shown that the presence of sulphur dioxide in the flue gas causes sulphur poisoning on the active catalyst surface. This effect is dependent on both the catalyst formulation and the catalyst support material composition. Neither sintering, nor other poisoning components than sulphur have been on the examined catalyst samples. The sulphur dioxide in the exhaust is a result of the sulphur in the odorisation additive used in the natural gas (approx. 10 mg/n 3 m THT) and of the sulphur present in combusted lubrication oil. These sources leads to a level of approx. 0.3 - 0.6 ppm (vol) SO 2 in the exhaust gas. Based on a large number of laboratory tests, a new oxidation catalyst formulation has been developed and successfully tested over 5000 hours of operation at a commercial cogeneration plant. This long-term testing has been additionally supplemented by short-term testings at test sites to see performance under other operation conditions. It has been shown that a rise in flue gas temperature (from e.g. 450 deg. C) will significantly reduce the necessary

  7. Characterization and reaction studies of dimeric molybdenum(III) complexes with bridging dithiolate ligands. Catalytic reduction of acetylene to ethylene

    International Nuclear Information System (INIS)

    DuBois, M.R.; Haltiwanger, R.C.; Miller, D.J.; Glatzmaier, G.

    1979-01-01

    The complexes [C 5 H 5 MoSC/sub n/H/sub 2n/S] 2 (where n = 2 and 3) have been prepared by the reaction of ethylene sulfide and propylene sulfide, respectively, with C 5 H 5 MoH(CO) 3 or with [C 5 H 5 Mo(CO) 3 ] 2 . Cyclic voltammetry shows that each complex undergoes two reversible oxidations at 0.13 and 0.79 V vs. SCE (in acetonitrile with 0.1 M Bu 4 NBF 4 ). Both the one-electron and two-electron oxidation products have been synthesized and characterized by spectral and magnetic data. Electrochemical data for the oxidized complexes support the conclusion that the complexes have the same gross structural features in all three oxidation states. A single crystal of the monocation [C 5 H 5 MoSC 3 H 6 S] 2 BF 4 has been characterized by an x-ray diffraction study. The compound crystallizes in the space group C2/c with a = 18.266 (1) A, b = 9.206 (4) A, c = 12.911 (5) A, β = 100.83 (3) 0 , and V = 2128 A 3 . The metal ions of the cation are bridged by two 1,2-propanedithiolate ligands. The four sulfur atoms of these ligands form a plane which bisects the metal-metal distance. The neutral dimeric complexes undergo a unique reaction with alkenes and alkynes in which the hydrocarbon portion of the bridging dithiolate ligands is exchanged. The reaction has been characterized with olefinswith both electron-withdrawing and electron-donating substituents. When [C 5 H 5 MoSC 2 H 4 S] 2 (1) is reacted with acetylene at 25 0 C, ethene is produced and the complex [C 5 H 5 MoSC 2 H 2 S] 2 is isolated. The latter complex is reduced by hydrogen (2 atm) at 60 0 C to re-form 1. The utility of these reactions in the catalytic reduction of acetylene to ethylene has been investigated. The role of the sulfur ligands in this catalytic cycle is discussed. 50 references, 2 figures, 5 tables

  8. Amorphous saturated Cerium-Tungsten-Titanium oxide nanofibers catalysts for NOx selective catalytic reaction

    DEFF Research Database (Denmark)

    Dankeaw, Apiwat; Gualandris, Fabrizio; Silva, Rafael Hubert

    2018-01-01

    experiments at the best working conditions (dry and in absence of SO2) are performed to characterize the intrinsic catalytic behavior of the new catalysts. At temeprature lower than 300 °C, superior NOx conversion properties of the amorphous TiOx nanofibers over the crystallized TiO2 (anatase) nanofibers......Herein for the first time, Ce0.184W0.07Ti0.748O2-δ nanofibers are prepared by electrospinning to serve as catalyst in the selective catalytic reduction (SCR) process. The addition of cerium is proven to inhibit crystallization of TiO2, yielding an amorphous TiOx-based solid solution stable up...... temperatures (catalysts in a wide range...

  9. An SCR inverter for electric vehicles

    Science.gov (United States)

    Latos, T.; Bosack, D.; Ehrlich, R.; Jahns, T.; Mezera, J.; Thimmesch, D.

    1980-01-01

    An inverter for an electric vehicle propulsion application has been designed and constructed to excite a polyphase induction motor from a fixed propulsion battery source. The inverter, rated at 35kW peak power, is fully regenerative and permits vehicle operation in both the forward and reverse directions. Thyristors are employed as the power switching devices arranged in a dc bus commutated topology. This paper describes the major role the controller plays in generating the motor excitation voltage and frequency to deliver performance similar to dc systems. Motoring efficiency test data for the controller are presented. It is concluded that an SCR inverter in conjunction with an ac induction motor is a viable alternative to present dc vehicle propulsion systems on the basis of performance and size criteria.

  10. Oxidation of elemental mercury by modified spent TiO2-based SCR-DeNOx catalysts in simulated coal-fired flue gas.

    Science.gov (United States)

    Zhao, Lingkui; Li, Caiting; Zhang, Xunan; Zeng, Guangming; Zhang, Jie; Xie, Yin'e

    2016-01-01

    In order to reduce the costs, the recycle of spent TiO2-based SCR-DeNOx catalysts were employed as a potential catalytic support material for elemental mercury (Hg(0)) oxidation in simulated coal-fired flue gas. The catalytic mechanism for simultaneous removal of Hg(0) and NO was also investigated. The catalysts were characterized by Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) method. Results indicated that spent TiO2-based SCR-DeNOx catalyst supported Ce-Mn mixed oxides catalyst (CeMn/SCR1) was highly active for Hg(0) oxidation at low temperatures. The Ce1.00Mn/SCR1 performed the best catalytic activities, and approximately 92.80% mercury oxidation efficiency was obtained at 150 °C. The inhibition effect of NH3 on Hg(0) oxidation was confirmed in that NH3 consumed the surface oxygen. Moreover, H2O inhibited Hg(0) oxidation while SO2 had a promotional effect with the aid of O2. The XPS results illustrated that the surface oxygen was responsible for Hg(0) oxidation and NO conversion. Besides, the Hg(0) oxidation and NO conversion were thought to be aided by synergistic effect between the manganese and cerium oxides.

  11. Catalytic and peroxidase-like activity of carbon based-AuPd bimetallic nanocomposite produced using carbon dots as the reductant

    International Nuclear Information System (INIS)

    Yang, Liuqing; Liu, Xiaoying; Lu, Qiujun; Huang, Na; Liu, Meiling; Zhang, Youyu; Yao, Shouzhuo

    2016-01-01

    In this report, carbon-based AuPd bimetallic nanocomposite (AuPd/C NC) was synthesized using carbon dots (C-dots) as the reducing agent and stabilizer by a simple green sequential reduction strategy, without adding other agents. The as synthesized AuPd/C NC showed good catalytic activity and peroxidase-like property. The structure and morphology of these nanoparticles were clearly characterized by UV–Vis spectroscopy, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The AuPd/C NC catalyst exhibits noticeably higher catalytic activity than Pd and Au nanoparticles in catalysis reduction of 4-nitrophenol (4-NP). Moreover, based on the high peroxidase-like property of AuPd/C NC, a new colorimetric detection method for hydrogen peroxide (H 2 O 2 ) has been designed using 3,3′,5,5′-tetramethyl-benzidine (TMB) as the substrate, which provides a simple and sensitive means to detect H 2 O 2 in wide linear range of 5 μM–500 μM and 500 μM–4 mM with low detection limit of 1.6 μM (S/N = 3). Therefore, the facile synthesis strategy for bimetallic nanoparticles by the mild reductant of carbon dot will provide some new thoughts for preparing of carbon-based metal nanomaterials and expand their application in catalysis and analytical chemistry areas. - Highlights: • Carbon-based AuPd bimetallic nanocomposite was synthesized using carbon dots. • The green sequential reduction strategy synthesis method is simple, green, convenient and effective. • The as synthesized AuPd/C NC showed good catalytic activity and peroxidase-like activity. • The AuPd/C NC exhibits noticeably higher catalytic activity in reduction of 4-nitrophenol. • A new colorimetric detection method for hydrogen peroxide based on AuPd/C NC was proposed.

  12. Drastic reduction in the surface recombination velocity of crystalline silicon passivated with catalytic chemical vapor deposited SiNx films by introducing phosphorous catalytic-doped layer

    International Nuclear Information System (INIS)

    Thi, Trinh Cham; Koyama, Koichi; Ohdaira, Keisuke; Matsumura, Hideki

    2014-01-01

    We improve the passivation property of n-type crystalline silicon (c-Si) surface passivated with a catalytic chemical vapor deposited (Cat-CVD) Si nitride (SiN x ) film by inserting a phosphorous (P)-doped layer formed by exposing c-Si surface to P radicals generated by the catalytic cracking of PH 3 molecules (Cat-doping). An extremely low surface recombination velocity (SRV) of 2 cm/s can be achieved for 2.5 Ω cm n-type (100) floating-zone Si wafers passivated with SiN x /P Cat-doped layers, both prepared in Cat-CVD systems. Compared with the case of only SiN x passivated layers, SRV decreases from 5 cm/s to 2 cm/s. The decrease in SRV is the result of field effect created by activated P atoms (donors) in a shallow P Cat-doped layer. Annealing process plays an important role in improving the passivation quality of SiN x films. The outstanding results obtained imply that SiN x /P Cat-doped layers can be used as promising passivation layers in high-efficiency n-type c-Si solar cells.

  13. Pt-Ag cubic nanocages with wall thickness less than 2 nm and their enhanced catalytic activity toward oxygen reduction.

    Science.gov (United States)

    Sun, Xiaojun; Yang, Xuan; Zhang, Yun; Ding, Yong; Su, Dong; Qin, Dong

    2017-10-12

    We report a facile synthesis of Pt-Ag nanocages with walls thinner than 2 nm by depositing a few atomic layers of Pt as conformal shells on Ag nanocubes and then selectively removing the Ag template via wet etching. In a typical process, we inject a specific volume of aqueous H 2 PtCl 6 into a mixture of Ag nanocubes, ascorbic acid (H 2 Asc), NaOH, and poly(vinylpyrrolidone) in water under ambient conditions. At an initial pH of 11.9, the Pt(iv) precursor is quickly reduced by an ascorbate monoanion, a strong reducing agent derived from the neutralization of H 2 Asc with NaOH. The newly formed Pt atoms are deposited onto the edges and then corners and side faces of Ag nanocubes, leading to the generation of Ag@Pt core-shell nanocubes with a conformal Pt shell of approximately three atomic layers (or, about 0.6 nm in thickness) when 0.4 mL of 0.2 mM H 2 PtCl 6 is involved. After the selective removal of Ag in the core using an etchant based on a mixture of Fe(NO 3 ) 3 and HNO 3 , we transform the core-shell nanocubes into Pt-Ag alloy nanocages with an ultrathin wall thickness of less than 2 nm. We further demonstrate that the as-obtained nanocages with a composition of Pt 42 Ag 58 exhibit an enhanced catalytic activity toward the oxygen reduction reaction, with a mass activity of 0.30 A mg -1 and a specific activity of 0.93 mA cm -2 , which are 1.6 and 2.5 times, respectively, greater than those of a commercial Pt/C catalyst.

  14. The addition of bio-butanol to GHGenius and a review of the GHG emissions from diesel engines with urea SCR

    International Nuclear Information System (INIS)

    2007-01-01

    The GHGenius model was developed to analyze the emissions of contaminants associated with the use and production of traditional and alternative transportation fuels. Over 140 vehicle and fuel combinations can be used with the model, which is continuously updated with new information on existing processes, new pathways, and new features. This paper provided details of the addition of a butanol production pathway and a urea system for heavy duty diesel engines. Butanol has recently been proposed as a gasoline additive for use with ethanol or as an alternative to ethanol in low-level gasoline blends. A corn to butanol pathway for low level blends was considered as the most appropriate pathway for North American applications. Estimates of energy required were made based on economic assessments and the estimated cost of energy at the time the estimates were made. In the second approach, an ethanol process model was modified to have the same water and feedstock ratios as a butanol feedstock. Total energy balances for the traditional butanol production system were poor due to the large energy requirement in the butanol production process. Low butanol concentrations were attributed to butanol toxicity to fermentation organisms. However, energy credits from co-products were large compared to many other pathways, and were attributed to the energy intensity of hydrogen and acetone. This report also provided details of selective catalytic reduction (SCR) processes that used ammonia or urea with a catalyst to produce water and gaseous nitrogen. Total energy balances and emissions impacts on the full lifecycle of SCR systems for diesel engines were provided. 13 refs., 17 tabs., 8 figs

  15. Anodically-grown TiO_2 nanotubes: Effect of the crystallization on the catalytic activity toward the oxygen reduction reaction

    International Nuclear Information System (INIS)

    Sacco, Adriano; Garino, Nadia; Lamberti, Andrea; Pirri, Candido Fabrizio; Quaglio, Marzia

    2017-01-01

    Highlights: • Anodically-grown TiO_2 nanotubes as catalysts for the oxygen reduction reaction. • Amorphous NTs compared to thermal- and vapor-treated crystalline nanostructures. • The selection of the crystallization conditions leads to performance similar to Pt. - Abstract: In this work we investigated the behavior of TiO_2 nanotube (NT) arrays, grown by anodic oxidation of Ti foil, as catalysts for the oxygen reduction reaction (ORR) in alkaline water solution. In particular, as-grown amorphous NTs were compared to crystalline anatase nanostructures, obtained following two different procedures, namely thermal and vapor-induced crystallizations. The catalytic activity of these materials toward the ORR was evaluated by cyclic voltammetry measurements. ORR polarization curves, combined with the rotating disk technique, indicated a predominant four-electrons reduction path, especially for crystalline samples. The effect of the structural characteristics of the investigated materials on the catalytic activity was analyzed in details by electrochemical impedance spectroscopy. The catalytic performance of the crystalline NTs is only slightly lower with respect to the reference material for fuel cell applications, namely platinum, but is in line with other cost-effective catalysts recently proposed in the literature. However, if compared to the larger part of these low-cost catalysts, anodically-grown TiO_2 NTs are characterized by a synthesis route which is highly reproducible and easily up-scalable.

  16. Anodically-grown TiO{sub 2} nanotubes: Effect of the crystallization on the catalytic activity toward the oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, Adriano, E-mail: adriano.sacco@iit.it [Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino (Italy); Garino, Nadia [Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino (Italy); Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino (Italy); Lamberti, Andrea, E-mail: andrea.lamberti@polito.it [Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino (Italy); Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino (Italy); Pirri, Candido Fabrizio [Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino (Italy); Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino (Italy); Quaglio, Marzia [Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino (Italy)

    2017-08-01

    Highlights: • Anodically-grown TiO{sub 2} nanotubes as catalysts for the oxygen reduction reaction. • Amorphous NTs compared to thermal- and vapor-treated crystalline nanostructures. • The selection of the crystallization conditions leads to performance similar to Pt. - Abstract: In this work we investigated the behavior of TiO{sub 2} nanotube (NT) arrays, grown by anodic oxidation of Ti foil, as catalysts for the oxygen reduction reaction (ORR) in alkaline water solution. In particular, as-grown amorphous NTs were compared to crystalline anatase nanostructures, obtained following two different procedures, namely thermal and vapor-induced crystallizations. The catalytic activity of these materials toward the ORR was evaluated by cyclic voltammetry measurements. ORR polarization curves, combined with the rotating disk technique, indicated a predominant four-electrons reduction path, especially for crystalline samples. The effect of the structural characteristics of the investigated materials on the catalytic activity was analyzed in details by electrochemical impedance spectroscopy. The catalytic performance of the crystalline NTs is only slightly lower with respect to the reference material for fuel cell applications, namely platinum, but is in line with other cost-effective catalysts recently proposed in the literature. However, if compared to the larger part of these low-cost catalysts, anodically-grown TiO{sub 2} NTs are characterized by a synthesis route which is highly reproducible and easily up-scalable.

  17. Fabrication and characterisation of gold nano-particle modified polymer monoliths for flow-through catalytic reactions and their application in the reduction of hexacyanoferrate

    International Nuclear Information System (INIS)

    Floris, Patrick; Twamley, Brendan; Nesterenko, Pavel N.; Paull, Brett; Connolly, Damian

    2014-01-01

    Polymer monoliths in capillary (100 μm i.d.) and polypropylene pipette tip formats (vol: 20 μL) were modified with gold nano-particles (AuNP) and subsequently used for flow-through catalytic reactions. Specifically, methacrylate monoliths were modified with amine-reactive monomers using a two-step photografting method and then reacted with ethylenediamine to provide amine attachment sites for the subsequent immobilisation of 4 nm, 7 nm or 16 nm AuNP. This was achieved by flushing colloidal suspensions of gold nano-particles through each aminated polymer monolith which resulted in a multi-point covalent attachment of gold via the lone pair of electrons on the nitrogen of the free amine groups. Field emission scanning electron microscopy and scanning capacitively coupled conductivity detection was used to characterise the surface coverage of AuNP on the monoliths. The catalytic activity of AuNP immobilised on the polymer monoliths in both formats was then demonstrated using the reduction of Fe(III) to Fe(II) by sodium borohydride as a model reaction by monitoring the reduction in absorbance of the hexacyanoferrate (III) complex at 420 nm. Catalytic activity was significantly enhanced on monoliths modified with smaller AuNP with almost complete reduction (95 %) observed when using monoliths agglomerated with 7 nm AuNPs. (author)

  18. New insights into Cu/SSZ-13 SCR catalyst acidity. Part I: Nature of acidic sites probed by NH 3 titration

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Jinyong; Gao, Feng; Kamasamudram, Krishna; Currier, Neal; Peden, Charles H. F.; Yezerets, Aleksey

    2017-04-01

    In this work we investigated an unusual acidity feature of a Cu/SSZ-13 catalyst used in selective catalytic reduction of NOx with NH3 (NH3-SCR). In particular, this catalyst showed two distinct NH3 desorption peaks in NH3-TPD measurements, in contrast to single, unresolved desorption peaks observed for other Cu-exchanged zeolites conventionally used in the SCR studies, including its isostructural but chemically different analogue Cu/SAPO-34. We further observed that the intensities of the two TPD peaks, which represented the amount of stored NH3, changed in opposite directions in response to progressive mild hydrothermal aging, while the total storage capacity was preserved. We proposed an explanation for this remarkable behavior, by using model reference samples and additional characterization techniques. At least three NH3 storage sites were identified: two distinct populations of Cu sites responsible for low-temperature NH3 storage, and Brønsted acid sites responsible for high-temperature NH3 storage. Contrary to the commonly accepted mechanism that Brønsted acid site loss during hydrothermal aging is driven by dealumination, we concluded that the decline in the number of Brønsted acid sites upon mild hydrothermal aging for Cu/SSZ-13 was not due to dealumination, but rather transformation of Cu sites, i.e., gradual conversion of ZCuOH (Cu2+ singly coordinated with Zeolite) to Z2Cu (Cu2+ doubly coordinated with Zeolite). This transformation was responsible for the increased low-temperature desorption peak in NH3-TPD since each ZCuOH adsorbed ~1 NH3 molecule while each Z2Cu adsorbed ~2 NH3 molecules under the conditions used here. These findings were used in Part II of this series of studies to develop a method for quantifying hydrothermal ageing of industrial Cu/SSZ-13 SCR catalysts. Authors would like to thank Randall Jines for his help with collecting the reactor data, Nancy W. Washton for measuring the NMR data and Tamas Varga for in-situ XRD measurements

  19. Mordenite - Type Zeolite SCR Catalysts with Iron or Copper

    DEFF Research Database (Denmark)

    2012-01-01

    Cu/mordenite catalysts were found to be highly active for the SCR of NO with NH3 and exhibited high resistance to alkali poisoning. Redox and acidic properties of Cu/mordenite were well preserved after poisoning with potassium unlike that of vanadium catalysts. Fe-mordenite catalysts also reveale...... to be essential requirements for the high alkali resistance. Mordenite-type zeolite based catalysts could therefore be attractive alternatives to conventional SCR catalysts for biomass fired power plant flue gas treatment....

  20. Dynamic flow control strategies of vehicle SCR Urea Dosing System

    Science.gov (United States)

    Lin, Wei; Zhang, Youtong; Asif, Malik

    2015-03-01

    Selective Catalyst Reduction(SCR) Urea Dosing System(UDS) directly affects the system accuracy and the dynamic response performance of a vehicle. However, the UDS dynamic response is hard to keep up with the changes of the engine's operating conditions. That will lead to low NO X conversion efficiency or NH3 slip. In order to optimize the injection accuracy and the response speed of the UDS in dynamic conditions, an advanced control strategy based on an air-assisted volumetric UDS is presented. It covers the methods of flow compensation and switching working conditions. The strategy is authenticated on an UDS and tested in different dynamic conditions. The result shows that the control strategy discussed results in higher dynamic accuracy and faster dynamic response speed of UDS. The inject deviation range is improved from being between -8% and 10% to -4% and 2% and became more stable than before, and the dynamic response time was shortened from 200 ms to 150 ms. The ETC cycle result shows that after using the new strategy the NH3 emission is reduced by 60%, and the NO X emission remains almost unchanged. The trade-off between NO X conversion efficiency and NH3 slip is mitigated. The studied flow compensation and switching working conditions can improve the dynamic performance of the UDS significantly and make the UDS dynamic response keep up with the changes of the engine's operating conditions quickly.

  1. Catalytic reduction of NO{sub x} in gasoline engine exhaust over copper- and nickel-exchanged X-zeolite catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, S. [Indian Inst. of Technology, Kharagpur (India). Dept. of Mechanical Engineering; Das, R.K. [Indian School of Mines, Dhanbad (India). Dept. of Engineering and Mining Machinery

    2001-10-11

    Catalytic removal of NO{sub x} in engine exhaust gases can be accomplished by non-selective reduction, selective reduction and decomposition. Noble metals are extensively used for non-selective reduction of NO{sub x} and up to 90% of engine NO{sub x} emissions can be reduced in a stoichiometric exhaust. This requirement of having the stoichiometric fuel-air ratio acts against efficiency improvement of engines. Selective NO{sub x} reduction in the presence of different reductants such as, NH{sub 3}, urea or hydrocarbons, requires close control of the amount of reductant being injected which otherwise may be emitted as a pollutant. Catalytic decomposition is the best option for NO{sub x} removal. Nevertheless, catalysts which are durable, economic and active for NO{sub x} reduction at normal engine exhaust temperature ranges are still being investigated. Three catalysts based on X-zeolite have been developed by exchanging the Na+ ion with copper, nickel and copper-nickel metal ions and applied to the exhaust of a stationary gasoline engine to explore their potential for catalytic reduction of NO{sub x} under a wide range of engine and exhaust conditions. Some encouraging results have been obtained. The catalyst Cu-X exhibits much better NO{sub x} reduction performance at any temperature in comparison to Cu-Ni-X and Ni-X; while Cu-Ni-X catalyst exhibits slightly better performance than Ni-X catalyst. Maximum NO{sub x} efficiency achieved with Cu-X catalyst is 59.2% at a space velocity (sv) of 31 000 h{sup -1}; while for Cu-Ni-X and Ni-X catalysts the equivalent numbers are 60.4% and 56% respectively at a sv of 22 000 h{sup -1}. Unlike noble metals, the doped X-zeolite catalysts exhibit significant NO{sub x} reduction capability for a wide range of air/fuel ratio and with a slower rate of decline as well with increase in air/fuel ratio. (author)

  2. Selective catalytic reduction of nitrogen oxides from industrial gases by hydrogen or methane; Reduction catalytique selective des oxydes d'azote (NO{sub x}) provenant d'effluents gazeux industriels par l'hydrogene ou le methane

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann Pirez, M

    2004-12-15

    This work deals with the selective catalytic reduction of nitrogen oxides (NO{sub x}), contained in the effluents of industrial plants, by hydrogen or methane. The aim is to replace ammonia, used as reducing agent, in the conventional process. The use of others reducing agents such as hydrogen or methane is interesting for different reasons: practical, economical and ecological. The catalyst has to convert selectively NO into N{sub 2}, in presence of an excess of oxygen, steam and sulfur dioxide. The developed catalyst is constituted by a support such as perovskites, particularly LaCoO{sub 3}, on which are dispersed noble metals (palladium, platinum). The interaction between the noble metal and the support, generated during the activation of the catalyst, allows to minimize the water and sulfur dioxide inhibitor phenomena on the catalytic performances, particularly in the reduction of NO by hydrogen. (O.M.)

  3. Uniformly active phase loaded selective catalytic reduction catalysts (V_2O_5/TNTs) with superior alkaline resistance performance

    International Nuclear Information System (INIS)

    Wang, Haiqiang; Wang, Penglu; Chen, Xiongbo; Wu, Zhongbiao

    2017-01-01

    Highlights: • VOSO_4 exhibited better synergistic effect with titanate nanotubes than NH_4VO_3. • Ion-exchange reaction occurs between VOSO_4 and titanate nanotubes. • Ion-exchange resulting in uniformly vanadium distribution on titanate nanotubes. • VOSO_4-based catalyst exhibited impressive SCR activity and alkaline resistance. - Abstract: In this work, protonated titanate nanotubes was performed as a potential useful support and different vanadium precursors (NH_4VO_3 and VOSO_4) were used to synthesize deNO_x catalysts. The results showed that VOSO_4 exhibited better synergistic effect with titanate nanotubes than NH_4VO_3, which was caused by the ion-exchange reaction. Then high loading content of vanadium, uniformly active phase distribution, better dispersion of vanadium, more acid sites, better V"5"+/V"4"+ redox cycles and superior oxygen mobility were achieved. Besides, VOSO_4-based titanate nanotubes catalysts also showed enhanced alkaline resistance than particles (P25) based catalysts. It was strongly associated with its abundant acid sites, large surface area, flexible redox cycles and oxygen transfer ability. For the loading on protonated titanate nanotubes, active metal with cation groups was better precursors than anion ones. V_2O_5/TNTs catalyst was a promising substitute for the commercial vanadium catalysts and the work conducted herein provided a useful idea to design uniformly active phase loaded catalyst.

  4. Liquid-phase pulsed laser ablation synthesis of graphitized carbon-encapsulated palladium core–shell nanospheres for catalytic reduction of nitrobenzene to aniline

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu-jin; Ma, Rory; Reddy, D. Amaranatha; Kim, Tae Kyu, E-mail: tkkim@pusan.ac.kr

    2015-12-01

    Graphical abstract: - Highlights: • Graphitized carbon-encapsulated palladium core–shell nanospheres fabricated by laser ablation. • Physical characterizations of synthesized Pd@C nanospheres. • Assessments of catalytic performance of Pd@C nanospheres for the reduction of nitrobenzene to aniline. • Significant improvement of the catalytic activity due to the graphitized carbon-layered structure and the high specific surface area. - Abstract: Graphitized carbon-encapsulated palladium (Pd) core–shell nanospheres were produced via pulsed laser ablation of a solid Pd foil target submerged in acetonitrile. The microstructural features and optical properties of these nanospheres were characterized via high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. Microstructural analysis indicated that the core–shell nanostructures consisted of single-crystalline cubic metallic Pd spheres that serve as the core material, over which graphitized carbon was anchored as a heterogeneous shell. The absorbance spectrum of the synthesized nanostructures exhibited a broad (absorption) band at ∼264 nm; this band corresponded to the typical inter-band transition of a metallic system and resulted possibly from the absorbance of the ionic Pd{sup 2+}. The catalytic properties of the Pd and Pd@C core–shell nanostructures were investigated using the reduction of nitrobenzene to aniline by an excess amount of NaBH{sub 4} in an aqueous solution at room temperature, as a model reaction. Owing to the graphitized carbon-layered structure and the high specific surface area, the resulting Pd@C nanostructures exhibited higher conversion efficiencies than their bare Pd counterparts. In fact, the layered structure provided access to the surface of the Pd nanostructures for the hydrogenation reaction, owing to the synergistic effect between graphitized carbon and the nanostructures. Their

  5. Liquid-phase pulsed laser ablation synthesis of graphitized carbon-encapsulated palladium core–shell nanospheres for catalytic reduction of nitrobenzene to aniline

    International Nuclear Information System (INIS)

    Kim, Yu-jin; Ma, Rory; Reddy, D. Amaranatha; Kim, Tae Kyu

    2015-01-01

    Graphical abstract: - Highlights: • Graphitized carbon-encapsulated palladium core–shell nanospheres fabricated by laser ablation. • Physical characterizations of synthesized Pd@C nanospheres. • Assessments of catalytic performance of Pd@C nanospheres for the reduction of nitrobenzene to aniline. • Significant improvement of the catalytic activity due to the graphitized carbon-layered structure and the high specific surface area. - Abstract: Graphitized carbon-encapsulated palladium (Pd) core–shell nanospheres were produced via pulsed laser ablation of a solid Pd foil target submerged in acetonitrile. The microstructural features and optical properties of these nanospheres were characterized via high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. Microstructural analysis indicated that the core–shell nanostructures consisted of single-crystalline cubic metallic Pd spheres that serve as the core material, over which graphitized carbon was anchored as a heterogeneous shell. The absorbance spectrum of the synthesized nanostructures exhibited a broad (absorption) band at ∼264 nm; this band corresponded to the typical inter-band transition of a metallic system and resulted possibly from the absorbance of the ionic Pd 2+ . The catalytic properties of the Pd and Pd@C core–shell nanostructures were investigated using the reduction of nitrobenzene to aniline by an excess amount of NaBH 4 in an aqueous solution at room temperature, as a model reaction. Owing to the graphitized carbon-layered structure and the high specific surface area, the resulting Pd@C nanostructures exhibited higher conversion efficiencies than their bare Pd counterparts. In fact, the layered structure provided access to the surface of the Pd nanostructures for the hydrogenation reaction, owing to the synergistic effect between graphitized carbon and the nanostructures. Their unique

  6. Facile Fabrication of Highly Active Magnetic Aminoclay Supported Palladium Nanoparticles for the Room Temperature Catalytic Reduction of Nitrophenol and Nitroanilines

    Directory of Open Access Journals (Sweden)

    Lei Jia

    2018-06-01

    Full Text Available Magnetically recyclable nanocatalysts with excellent performance are urgent need in heterogeneous catalysis, due to their magnetic nature, which allows for convenient and efficient separation with the help of an external magnetic field. In this research, we developed a simple and rapid method to fabricate a magnetic aminoclay (AC based an AC@Fe3O4@Pd nanocatalyst by depositing palladium nanoparticles (Pd NPs on the surface of the magnetic aminoclay nanocomposite. The microstructure and the magnetic properties of as-prepared AC@Fe3O4@Pd were tested using transmission electron microscopy (TEM, energy-dispersive X-ray spectroscopy (EDS, X-ray diffraction (XRD, and vibrating sample magnetometry (VSM analyses. The resultant AC@Fe3O4@Pd nanocatalyst with the magnetic Fe-based inner shell, catalytically activate the outer noble metal shell, which when combined with ultrafine Pd NPs, synergistically enhanced the catalytic activity and recyclability in organocatalysis. As the aminoclay displayed good water dispersibility, the nanocatalyst indicated satisfactory catalytic performance in the reaction of reducing nitrophenol and nitroanilines to the corresponding aminobenzene derivatives. Meanwhile, the AC@Fe3O4@Pd nanocatalyst exhibited excellent reusability, while still maintaining good activity after several catalytic cycles.

  7. Local Environment and Nature of Cu Active Sites in Zeolite-Based Catalysts for the Selective Catalytic Reduction of NOx

    NARCIS (Netherlands)

    Deka, U.|info:eu-repo/dai/nl/325811202; Lezcano-Gonzalez, I.; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397; Beale, A.M.|info:eu-repo/dai/nl/325802068

    2013-01-01

    Cu-exchanged zeolites have demonstrated widespread use as catalyst materials in the abatement of NOx, especially from mobile sources. Recent studies focusing on Cu-exchanged zeolites with the CHA structure have demonstrated them to be excellent catalysts in the ammonia-assisted selective catalytic

  8. Catalytic and peroxidase-like activity of carbon based-AuPd bimetallic nanocomposite produced using carbon dots as the reductant

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liuqing [Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China); Liu, Xiaoying [College of Science, Science and Technological Innovation Platform, Hunan Agricultural University, Hunan, Changsha 410128 (China); Lu, Qiujun; Huang, Na [Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China); Liu, Meiling, E-mail: liumeilingww@126.com [Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China); Zhang, Youyu; Yao, Shouzhuo [Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China)

    2016-08-03

    In this report, carbon-based AuPd bimetallic nanocomposite (AuPd/C NC) was synthesized using carbon dots (C-dots) as the reducing agent and stabilizer by a simple green sequential reduction strategy, without adding other agents. The as synthesized AuPd/C NC showed good catalytic activity and peroxidase-like property. The structure and morphology of these nanoparticles were clearly characterized by UV–Vis spectroscopy, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The AuPd/C NC catalyst exhibits noticeably higher catalytic activity than Pd and Au nanoparticles in catalysis reduction of 4-nitrophenol (4-NP). Moreover, based on the high peroxidase-like property of AuPd/C NC, a new colorimetric detection method for hydrogen peroxide (H{sub 2}O{sub 2}) has been designed using 3,3′,5,5′-tetramethyl-benzidine (TMB) as the substrate, which provides a simple and sensitive means to detect H{sub 2}O{sub 2} in wide linear range of 5 μM–500 μM and 500 μM–4 mM with low detection limit of 1.6 μM (S/N = 3). Therefore, the facile synthesis strategy for bimetallic nanoparticles by the mild reductant of carbon dot will provide some new thoughts for preparing of carbon-based metal nanomaterials and expand their application in catalysis and analytical chemistry areas. - Highlights: • Carbon-based AuPd bimetallic nanocomposite was synthesized using carbon dots. • The green sequential reduction strategy synthesis method is simple, green, convenient and effective. • The as synthesized AuPd/C NC showed good catalytic activity and peroxidase-like activity. • The AuPd/C NC exhibits noticeably higher catalytic activity in reduction of 4-nitrophenol. • A new colorimetric detection method for hydrogen peroxide based on AuPd/C NC was proposed.

  9. Study on Optimization Experiment of SCR Denitrification Technologies in a Coal-fired Power Plant

    Science.gov (United States)

    Zhang, Limeng; Dong, Xinguang; Hou, Fanjun; Liu, Ke; Che, Gang

    2018-01-01

    Optimization experiment of SCR denitrification technologies on a 300MW unit was conducted. Adjustment of ammonia injection quantity of corresponding AIG was conducted after measuring the SCR export NOx concentration field in 250MW load, the distribution uniformity of NOx volume fraction at the outlet of both reactor A and B was improved significantly, where the relative standard deviation of NOx reduced respectively from 29.83% to 13.01% and 24.54% to 9.26%, simultaneously, the amount of ammonia escape of A, B reactor decrease respectively by 24.76%, 19.45%. The results of optimization experiment show that, optimal adjustment can improve the NOx concentration distribution, reduce the amount of ammonia escape in a certain extent, and judge whether the catalytic activity of the regional catalyzer is in good condition. As to the area where catalyst is ineffective, the effect of optimization experiment is limited, the catalyzer should be the timely replacement, so as to better protect downstream equipment.

  10. Catalytic activity of dual catalysts system based on nano-manganese oxide and cobalt octacyanophthalocyanine toward four-electron reduction of oxygen in alkaline media

    International Nuclear Information System (INIS)

    Zhang, Dun; Chi, Dahe; Okajima, Takeyoshi; Ohsaka, Takeo

    2007-01-01

    The electrocatalysis of the dual functional catalysts system composed of electrolytic nano-manganese oxide (nano-MnOx) and cobalt octacyanophthalocyanine (CoPcCN) toward 4-electron reduction of oxygen (O 2 ) in alkaline media was studied. Nano-MnOx electrodeposited on the CoPcCN monolayer-modified glassy carbon (GC) electrode was clarified as the nano-rods with ca. 10-20 nm diameter by scanning electron microscopy. The peak current for O 2 reduction at the dual catalysts-modified GC electrode increases largely and the peak potential shifts by ca. 160 mV to the positive direction in cyclic voltammograms compared with those obtained at the bare GC electrode. The Koutecky-Levich plots indicate that the O 2 reduction at the dual catalysts-modified GC electrode is an apparent 4-electron process. Collection efficiencies obtained at the dual catalysts-modified GC electrode are much lower than those at the GC electrode and are almost similar to those at the Pt nano-particles modified GC electrode. The obtained results demonstrate that the dual catalysts system possesses a bifuctional catalytic activity for redox-mediating 2-electron reduction of O 2 to HO 2 - by CoPcCN as well as catalyzing the disproportionation of HO 2 - to OH - and O 2 by nano-MnOx, and enables an apparent 4-electron reduction of O 2 at a relatively low overpotential in alkaline media. In addition, it has been found that the cleaning of the dual catalysts-modified electrode by soaking in 0.1 M sulfuric acid solution enhances its catalytic activity toward the reduction of O 2

  11. Preparation and Performance of Modified Red Mud-Based Catalysts for Selective Catalytic Reduction of NOx with NH3

    Directory of Open Access Journals (Sweden)

    Jingkun Wu

    2018-01-01

    Full Text Available Bayer red mud was selected, and the NH3-SCR activity was tested in a fixed bed in which the typical flue gas atmosphere was simulated. Combined with XRF, XRD, BET, SEM, TG and NH3-Temperature Programmed Desorption (TPD characterization, the denitration characteristics of Ce-doped red mud catalysts were studied on the basis of alkali-removed red mud. The results showed that typical red mud was a feasible material for denitration catalyst. Acid washing and calcining comprised the best treatment process for raw red mud, which reduced the content of alkaline substances, cleared the catalyst pore and optimized the particle morphology with dispersion. In the temperature range of 300–400 °C, the denitrification efficiency of calcined acid washing of red mud catalyst (ARM was more than 70%. The doping of Ce significantly enhanced NH3 adsorption from weak, medium and strong acid sites, reduced the crystallinity of α-Fe2O3 in ARM, optimized the specific surface area and broadened the active temperature window, which increased the NOx conversion rate by an average of nearly 20% points from 250–350 °C. The denitration efficiency of Ce0.3/ARM at 300 °C was as high as 88%. The optimum conditions for the denitration reaction of the Ce0.3/ARM catalyst were controlled as follows: Gas Hourly Space Velocity (GHSV of 30,000 h−1, O2 volume fraction of 3.5–4% and the NH3/NO molar ratio ([NH3/NO] of 1.0. The presence of SO2 in the feed had an irreversible negative effect on the activity of the Ce0.3/ARM catalyst.

  12. The Poisoning Effect of Na Doping over Mn-Ce/TiO2 Catalyst for Low-Temperature Selective Catalytic Reduction of NO by NH3

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2014-01-01

    Full Text Available Sodium carbonate (Na2CO3, sodium nitrate (NaNO3, and sodium chloride (NaCl were chosen as the precursors to prepare the Na salts deposited Mn-Ce/TiO2 catalysts through an impregnation method. The influence of Na on the performance of the Mn-Ce/TiO2 catalyst for low-temperature selective catalytic reduction of NOx by NH3 was investigated. Experimental results showed that Na salts had negative effects on the activity of Mn-Ce/TiO2 and the precursors of Na salts also affected the catalytic activity. The precursor Na2CO3 had a greater impact on the catalytic activity, while NaNO3 had minimal effect. The characterization results indicated that the significant changes in physical and chemical properties of Mn-Ce/TiO2 were observed after Na was doped on the catalysts. The significant decreases in surface areas and NH3 adsorption amounts were observed after Na was doped on the catalysts, which could be considered as the main reasons for the deactivation of Na deposited Mn-Ce/TiO2.

  13. Fabrication of magnetically recyclable Fe3O4@Cu nanocomposites with high catalytic performance for the reduction of organic dyes and 4-nitrophenol

    International Nuclear Information System (INIS)

    Tang, Mingyi; Zhang, Sai; Li, Xianxian; Pang, Xiaobo; Qiu, Haixia

    2014-01-01

    A facile and efficient approach to synthesize Fe 3 O 4 @Cu nanocomposites using L-Lysine as a linker was developed. The morphology, composition and crystallinity of the Fe 3 O 4 @Cu nanocomposites were characterized by Fourier Transform infrared spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and powder X-ray diffraction. In addition, the magnetic properties were determined with vibrating sample magnetometer. The surface of the Fe 3 O 4 contained many small Cu nanoparticles with sizes of about 3 nm. It was found that the Fe 3 O 4 @Cu nanocomposites could catalyze the degradation of organic dyes. The catalytic activities of the Fe 3 O 4 @Cu nanocomposites for the reduction of nitrophenol were also studied. The Fe 3 O 4 @Cu nanocomposites are more efficient catalysts compared with Cu nanoparticles and can easily be recovered from the reaction mixture with magnet. The cost effective and recyclable Fe 3 O 4 @Cu nanocomposites provide an exciting new material for environmental protection applications. - Highlights: • Cu nanoparticles as small as 3 nm are synthesized. • Low cost Fe 3 O 4 @Cu magnetical nanoparticles show catalytic activity for organic dyes and 4-nitrophenol. • The Fe 3 O 4 @Cu display high catalytic activity after 13 cycles

  14. Fabrication of magnetically recyclable Fe{sub 3}O{sub 4}@Cu nanocomposites with high catalytic performance for the reduction of organic dyes and 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Mingyi, E-mail: mingyitjucu@163.com [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Zhang, Sai; Li, Xianxian; Pang, Xiaobo [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Qiu, Haixia [School of Science, Tianjin University, Tianjin 300072 (China)

    2014-12-15

    A facile and efficient approach to synthesize Fe{sub 3}O{sub 4}@Cu nanocomposites using L-Lysine as a linker was developed. The morphology, composition and crystallinity of the Fe{sub 3}O{sub 4}@Cu nanocomposites were characterized by Fourier Transform infrared spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and powder X-ray diffraction. In addition, the magnetic properties were determined with vibrating sample magnetometer. The surface of the Fe{sub 3}O{sub 4} contained many small Cu nanoparticles with sizes of about 3 nm. It was found that the Fe{sub 3}O{sub 4}@Cu nanocomposites could catalyze the degradation of organic dyes. The catalytic activities of the Fe{sub 3}O{sub 4}@Cu nanocomposites for the reduction of nitrophenol were also studied. The Fe{sub 3}O{sub 4}@Cu nanocomposites are more efficient catalysts compared with Cu nanoparticles and can easily be recovered from the reaction mixture with magnet. The cost effective and recyclable Fe{sub 3}O{sub 4}@Cu nanocomposites provide an exciting new material for environmental protection applications. - Highlights: • Cu nanoparticles as small as 3 nm are synthesized. • Low cost Fe{sub 3}O{sub 4}@Cu magnetical nanoparticles show catalytic activity for organic dyes and 4-nitrophenol. • The Fe{sub 3}O{sub 4}@Cu display high catalytic activity after 13 cycles.

  15. Selective catalytic reduction of NO{sub x} to nitrogen over Co-Pt/ZSM-5: Part A. Characterization and kinetic studies

    Energy Technology Data Exchange (ETDEWEB)

    Maisuls, S.E.; Seshan, K.; Feast, S.; Lercher, J.A. [Laboratory for Catalytic Processes and Materials, Faculty of Chemical Technology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2001-01-01

    The selective catalytic reduction of NO by propene in the presence of excess oxygen has been studied over catalysts based on Co-Pt supported on ZSM-5. Pure Pt based catalysts are highly active, but produce large amounts of N{sub 2}O. Bimetallic Co-Pt/ZSM-5 catalysts with low Pt contents (0.1wt.%) show a synergistic effect by combining high stability and activity of Pt catalysts with the high N{sub 2} selectivity of Co catalysts. The lower selectivity to N{sub 2}O is attributed to its selective conversion over Co. The catalysts also showed high water and sulfur tolerance above 350C.

  16. Demonstration of SCR technology for the control of NOx emissions from high-sulfur coal-fired utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Hinton, W.S. [W.S. Hinton and Associates, Cantonment, FL (United States); Maxwell, J.D.; Healy, E.C.; Hardman, R.R. [Southern Company Services, Inc., Birmingham, AL (United States); Baldwin, A.L. [Dept. of Energy, Pittsburgh, PA (United States)

    1997-12-31

    This paper describes the completed Innovative Clean Coal Technology project which demonstrated SCR technology for reduction of flue gas NO{sub x} emissions from a utility boiler burning US high-sulfur coal. The project was sponsored by the US Department of Energy, managed and co-funded by Southern Company Services, Inc. on behalf of the Southern Company, and also co-funded by the Electric Power Research Institute and Ontario Hydro. The project was located at Gulf Power Company`s Plant Crist Unit 5 (a 75 MW tangentially-fired boiler burning US coals that had a sulfur content ranging from 2.5--2.9%), near Pensacola, Florida. The test program was conducted for approximately two years to evaluate catalyst deactivation and other SCR operational effects. The SCR test facility had nine reactors: three 2.5 MW (5,000 scfm), and operated on low-dust flue gas. The reactors operated in parallel with commercially available SCR catalysts obtained from suppliers throughout the world. Long-term performance testing began in July 1993 and was completed in July 1995. A brief test facility description and the results of the project are presented in this paper.

  17. The Catalytic Bias of 2-Oxoacid:ferredoxin Oxidoreductase in CO_2: evolution and reduction through a ferredoxin-mediated electrocatalytic assay

    International Nuclear Information System (INIS)

    Li, Bin; Elliott, Sean J.

    2016-01-01

    Enzymes from the 2-oxoacid: ferredoxin oxidoreductase (OFOR) family engage in both CO_2 evolution and reduction in nature, depending on their physiological roles. Two enzymes and their redox partner ferredoxins (Fds) from Hydrogenobacter thermophilus and Desulfovibrio africanus were examined to investigate the basis of the catalytic bias. The Fd1 from H. thermophilus demonstrated a potential of ∼ −485 mV at room temperature, the lowest for known single [4Fe-4S] cluster Fds. It suggests a low potential electron donor may be the key factor in overcoming the large thermodynamic barrier of CO_2 reduction. The Fd-mediated electrocatalytic experiments further demonstrated the impact of Fd’s potential on the direction of the OFOR reaction: as OFOR enzymes could essentially catalyze both CO_2 evolution and reduction in vitro, the difference in their physiological roles is associated with the reduction potential of the redox partner Fd. The electrocatalytic assay could study both CO_2 evolution and reduction in one setup and is a good tool to probe Fds’ reactivity that arise from their reduction potentials.

  18. A microwave assisted one-pot route synthesis of bimetallic PtPd alloy cubic nanocomposites and their catalytic reduction for 4-nitrophenol

    Science.gov (United States)

    Zhang, Jian; Gan, Wei; Fu, Xucheng; Hao, Hequn

    2017-10-01

    We herein report a simple, rapid, and eco-friendly chemical route to the one-pot synthesis of bimetallic PtPd alloy cubic nanocomposites under microwave irradiation. During this process, water was employed as an environmentally benign solvent, while dimethylformamide served as a mild reducing agent, and polyvinylpyrrolidone was used as both a dispersant and a stabilizer. The structure, morphology, and composition of the resulting alloy nanocomposites were examined by x-ray diffraction, transmission electron microscopy, and energy dispersive x-ray spectroscopy. A detailed study was then carried out into the catalytic activity of the PtPd nanocomposites with a Pt:Pd molar ratio of 50:50 in the reduction of 4-nitrophenol (4-NP) by sodium borohydride as a model reaction. Compared with pristine Pt and Pd monometallic nanoparticles (PtNPs and PdNPs), the bimetallic PtPd alloy nanocomposites exhibited enhanced catalytic activities and were readily recyclable in the reduction of 4-NP due to synergistic effects.

  19. Preparation of FeO(OH Modified with Polyethylene Glycol and Its Catalytic Activity on the Reduction of Nitrobenzene with Hydrazine Hydrate

    Directory of Open Access Journals (Sweden)

    Ke Ying Cai

    2016-10-01

    Full Text Available Iron oxyhydroxide was prepared by dropping ammonia water to Fe(NO33.9H2O dispersed in polyethylene glycol (PEG 1000. The catalyst was characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy and laser particle size analyzer. The results showed the catalyst modified with polyethylene glycol was amorphous. The addition of PEG during the preparation make the particle size of the catalyst was smaller and more uniform. The catalytic performance was tested in the reduction of nitroarenes to corresponding amines with hydrazine hydrate, and the catalyst showed excellent activity and stability. Copyright © 2016 BCREC GROUP. All rights reserved Received: 2nd February 2016; Revised: 26th April 2016; Accepted: 7th June 2016 How to Cite: Cai, K.Y., Liu, Y.S., Song, M., Zhou, Y.M., Liu, Q., Wang, X.H. (2016. Preparation of FeO(OH Modified with Polyethylene Glycol and Its Catalytic Activity on the Reduction of Nitrobenzene with Hydrazine Hydrate. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (3: 363-368 (doi:10.9767/bcrec.11.3.576.363-368 Permalink/DOI: http://doi.org/10.9767/bcrec.11.3.576.363-368

  20. Enhanced hydrothermal stability of Cu-ZSM-5 catalyst via surface modification in the selective catalytic reduction of NO with NH_3

    International Nuclear Information System (INIS)

    Zhang, Tao; Shi, Juan; Liu, Jian; Wang, Daxi; Zhao, Zhen; Cheng, Kai; Li, Jianmei

    2016-01-01

    Highlights: • The hydrothermal stability of Cu-ZSM-5 catalyst was enhanced after surface modification. • An inert silica layer was deposited on the surface of Cu-ZSM-5 and formed a protective layer. • The contact between Si and Cu and Al atoms could form Si-O-Al and Si- O−Cu bonds. • The redox and acidity properties of Cu-ZSM-5-CLD-Aged catalyst were largely retained. • The adsorption and activation of NO and NH_3 was almost unchanged over Cu-ZSM-5-CLD catalyst before and after hydrothermal treatment. - Abstract: The surface of Cu-ZSM-5 catalyst was modified by chemical liquid deposition (CLD) of tetraethoxysilane (TEOS) for enhancing its hydrothermal stability in the selective catalytic reduction of NO with NH_3. After hydrothermal aging at 750 °C for 13 h, the catalytic performance of Cu-ZSM-5-Aged catalyst was significantly reduced for NO reduction in the entire temperature range, while that of Cu-ZSM-5-CLD-Aged catalyst was affected very little. The characterization results indicated that an inert silica layer was deposited on the surface of Cu-ZSM-5 and formed a protective layer, which prevents the detachment of Cu"2"+ from ZSM-5 ion-exchange positions and the dealumination of zeolite during the hydrothermal aging process. Based on the data it is hypothesized to be the primary reason for the high hydrothermal stability of Cu-ZSM-5-CLD catalyst.

  1. Highly recyclable and ultra-rapid catalytic reduction of organic pollutants on Ag-Cu@ZnO bimetal nanocomposite synthesized via green technology

    Science.gov (United States)

    Gangarapu, Manjari; Sarangapany, Saran; Suja, Devipriya P.; Arava, Vijaya Bhaskara Rao

    2018-04-01

    In this study, synthesis of Ag-Cu alloy bimetal nanoparticles anchored on high surface and porous ZnO using a facile, greener and low-cost aqeous bark extract of Aglaia roxburghiana for highly active, ultra-rapid and stable catalyst is performed. The nanocomposite was scrupulously characterized using UV-Vis spectrophotometer, X-ray diffraction, Raman spectrophotometer, high-resolution transmission electron microscope, selected area (electron) diffraction, scanning electron microscope with energy dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. The catalytic activity of the green synthesized Ag-Cu bimetal nanocomposite was evaluated in the reduction of 4-nitrophenol (4-NP), methylene blue (MB) and rhodamine B (Rh B) dyes. The different types of dye exhibited very high and effective catalytic activity within few seconds. The theoretical investigations reveal that the unique synergistic effect of Ag-Cu nanoparticles and immobilization over ZnO assists in the reduction of 4-NP, MB and Rh B. Loading and leaching of metal nanoparticles were obtained using inductively coupled plasma atomic emission spectroscopy. Moreover, the stable and efficient recyclability of nanocomposite by centrifugation after completion of the reaction was demonstrated. The results lead to the design different possible bimetal on ZnO with boosting and an effective catalyst for the environmental applications.

  2. Remarkable promoting effect of rhodium on the catalytic performance of Ag/Al2O3 for the selective reduction of NO with decane

    International Nuclear Information System (INIS)

    Sato, Kazuhito; Yoshinari, Tomohiro; Kintaichi, Yoshiaki; Haneda, Masaaki; Hamada, Hideaki

    2003-01-01

    The addition of small amounts of rhodium enhanced the activity of Ag/Al 2 O 3 catalyst for the selective reduction of NO with decane at low temperatures. The Rh-promoted Ag/Al 2 O 3 showed its high performance even in the presence of low concentrations of SO 2 . Based on the catalytic activity for elementary reactions, it was suggested that the role of added rhodium is to enhance the reaction between NO x and decane-derived species, leading to NO reduction. Catalyst characterization by UV-Vis spectroscopy indicated that the major silver species on Rh-promoted Ag/Al 2 O 3 is Ag nn δ+ clusters, which would be responsible for the high activity. FT-IR measurements revealed that the formation rate of isocyanate species, which is a major reaction intermediate, is higher on Rh-promoted Ag/Al 2 O 3

  3. Advanced byproduct recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Quarterly report, April 1--June 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The team of Arthur D. Little, Tufts University and Engelhard Corporation are conducting Phase 1 of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an on-going DOE-sponsored, University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicate that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. The performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams. The principal objective of the Phase 1 program is to identify and evaluate the performance of a catalyst which is robust and flexible with regard to choice of reducing gas. In order to achieve this goal, the authors have planned a structured program including: Market/process/cost/evaluation; Lab-scale catalyst preparation/optimization studies; Lab-scale, bulk/supported catalyst kinetic studies; Bench-scale catalyst/process studies; and Utility review. Progress is reported from all three organizations.

  4. Remarkably enhanced density and specific activity of active sites in Al-rich Cu-, Fe- and Co-beta zeolites for selective catalytic reduction of NOx

    Czech Academy of Sciences Publication Activity Database

    Sazama, Petr; Pilař, Radim; Mokrzycki, Lukasz; Vondrová, Alena; Kaucký, Dalibor; Plšek, Jan; Sklenák, Štěpán; Šťastný, Petr; Klein, Petr

    2016-01-01

    Roč. 189, JUL 2016 (2016), s. 65-74 ISSN 0926-3373 R&D Projects: GA TA ČR(CZ) TH01021259 Institutional support: RVO:61388955 Keywords : SCR-NOx * Al-rich beta zeolite (*BEA) * Cobalt Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 9.446, year: 2016

  5. Synergy of CuO and CeO2 combination for mercury oxidation under low-temperature selective catalytic reduction atmosphere

    KAUST Repository

    Li, Hailong; Zhu, Lei; Wu, Shaokang; Liu, Yang; Shih, Kaimin

    2016-01-01

    .0% was observed on the CuCeTi catalyst at 200 °C, even the gas hourly space velocity was extremely high. To analyze the synergistic effect, comparisons of catalyst performance in the presence of different SCR reaction gases were systematically conducted over Cu

  6. Simple one-pot synthesis of platinum-palladium nanoflowers with enhanced catalytic activity and methanol-tolerance for oxygen reduction in acid media

    International Nuclear Information System (INIS)

    Zheng, Jie-Ning; He, Li-Li; Chen, Fang-Yi; Wang, Ai-Jun; Xue, Meng-Wei; Feng, Jiu-Ju

    2014-01-01

    Graphical abstract: PtPd nanoflowers were fabricated by one-pot solvothermal co-reduction method in oleylamine system, which exhibited the improved electrocatalytic activity and higher methanol tolerance for oxygen reduction, compared with commercial Pt and Pd black catalysts. - Highlights: • Bimetallic alloyed PtPd nanoflowers are prepared by a simple one-pot solvothermal co-reduction method. • PtPd nanoflowers display high catalytic performance for ORR dominated by a four-electron pathway. • PtPd nanoflowers show good methanol tolerance for ORR. - Abstract: In this work, bimetallic alloyed platinum-palladium (PtPd) nanoflowers are fabricated by one-pot solvothermal co-reduction of Pt (II) acetylacetonate and Pd (II) acetylacetonate in oleylamine system. The as-prepared nanostructures show the enhanced electrocatalytic activity for oxygen reduction reaction (ORR), dominated by a four-electron pathway based on the Koutecky-Levich plots, mainly owing to the inhibition of the formation of Pt–OH ad via the downshift of d-band center for Pt. Meanwhile, PtPd nanoflowers display good methanol tolerance and improved stability for ORR. The chronoamperometry test reveals that the current of PtPd nanoflowers remains 45.9% of its original value within 6000 s, much higher than those of commercial Pt (36.7%) and Pd (32.2%) black catalysts. Therefore, PtPd nanoflowers with unique interconnected structures can be used as a promising cathode catalyst in direct methanol fuel cells

  7. Urea-SCR technology for deNOx after treatment of diesel exhausts

    CERN Document Server

    Nova, Isabella

    2014-01-01

    Of intense interest both to academics and industry professionals, this groundbreaking book-length treatment of selective catalytic reduction of NOx using ammonia/urea includes papers by researchers at the leading edge of diesel exhaust abatement.

  8. Catalyst for reduction of nitrogen oxides

    Science.gov (United States)

    Ott, Kevin C.

    2010-04-06

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  9. Vanadia supported on zeolites for SCR of NO by ammonia

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Riisager, Anders; Fehrmann, Rasmus

    2010-01-01

    , acidity and micropore structure of the support. Apparently the support hosted the potassium oxide on the acid sites, thereby protecting the active vanadium species from poisoning. Zeolite based catalysts might therefore prove useful for SCR of NO in alkali-containing flue gases from, e.g. biomass fired...

  10. Regenerative Snubber For GTO-Commutated SCR Inverter

    Science.gov (United States)

    Rippel, Wally E.; Edwards, Dean B.

    1992-01-01

    Proposed regenerative snubbing circuit substituted for dissipative snubbing circuit in inverter based on silicon controlled rectifiers (SCR's) commutated by gate-turn-off thyristor (GTO). Intended to reduce loss of power that occurs in dissipative snubber. Principal criteria in design: low cost, simplicity, and reliability.

  11. Catalytic role of Cu(II) in the reduction of Cr(VI) by citric acid under an irradiation of simulated solar light.

    Science.gov (United States)

    Li, Ying; Chen, Cheng; Zhang, Jing; Lan, Yeqing

    2015-05-01

    The catalytic role of Cu(II) in the reduction of Cr(VI) by citric acid with simulated solar light was investigated. The results demonstrated that Cu(II) could significantly accelerate Cr(VI) reduction and the reaction obeyed to pseudo zero-order kinetics with respect to Cr(VI). The removal of Cr(VI) was related to the initial concentrations of Cu(II), citric acid, and the types of organic acids. The optimal removal of Cr(VI) was achieved at pH 4, and the rates of Cu(II) photocatalytic reduction of Cr(VI) by organic acids were in the order: tartaric acid (two α-OH groups, two -COOH groups)>citric acid (one α-OH group, three -COOH groups)>malic acid (one α-OH group, two -COOH groups)>lactic acid (one α-OH group, one -COOH group)≫succinic acid (two -COOH groups), suggesting that the number of α-OH was the key factor for the reaction, followed by the number of -COOH. The formation of Cu(II)-citric acid complex could generate Cu(I) and radicals through a pathway of metal-ligand-electron transfer, promoting the reduction of Cr(VI). This study is helpful to fully understanding the conversion of Cr(VI) in the existence of both organic acids and Cu(II) with solar light in aquatic environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Cost and Fuel Efficient SCR-only Solution for post-2010 HD Emission Standards

    NARCIS (Netherlands)

    Cloudt, R.P.M.; Willems, F.P.T.; Heijden, van der P.

    2009-01-01

    A promising SCR-only solution is presented to meetpost-2010 NOx emission targets for heavy dutyapplications. The proposed concept is based on anengine from a EURO IV SCR application, which isconsidered optimal with respect to fuel economy andcosts. The addition of advanced SCR after

  13. Cost and fuel efficient SCR-only solution for post-2010 HD emission standards

    NARCIS (Netherlands)

    Cloudt, R.P.M.; Willems, F.P.T.; Heijden, P.V.A.M. van der

    2009-01-01

    A promising SCR-only solution is presented to meet post-2010 NOx emission targets for heavy duty applications. The proposed concept is based on an engine from a EURO IV SCR application, which is considered optimal with respect to fuel economy and costs. The addition of advanced SCR after treatment

  14. Microwave-irradiated preparation of reduced graphene oxide-Ni nanostructures and their enhanced performance for catalytic reduction of 4-nitrophenol

    International Nuclear Information System (INIS)

    Qiu, Hanxun; Qiu, Feilong; Han, Xuebin; Li, Jing; Yang, Junhe

    2017-01-01

    Highlights: • Nickel nanoparticle-decorated reduced graphene-oxide nanostructures were prepared by an environmentally friendly, one-pot strategy via an efficient microwave irradiation approach. • Upon microwave irradiation, the composites could be prepared within only a few hundred seconds, much faster than using the widely used traditional hydrothermal methods that may take tens of hours generally. • The nanostructure exhibits superior catalytic activity and selectivity towards transforming the highly toxic nitroaromatic compounds to industrially useful intermediates • The corresponding kinetic reaction rate constant (κ) is even four-fold compared to pure Ni nanoparticles. - Abstract: Here we report an environmentally friendly, one-pot strategy toward preparation of nickel nanoparticle-decorated reduced graphene-oxide (Ni-RGO) nanostructures, by employing Ni(AC) 2 as nickel source and ethylene glycol as both solvent and reducing agent via a facile microwave irradiation heating approach. The results show that Ni nanoparticles with an average diameter of around 40 nm are homogeneously anchored onto the surface of RGO sheets. As compared to the pure Ni nanoparticles and RGO sheets, Ni-RGO composites with over 64 wt% loading of Ni nanoparticles possess superior catalytic activities and selectivity toward the reduction of 4-nitrophenol. The corresponding kinetic reaction rate constant (defined as κ) is even four-fold compared to pure Ni nanoparticles. Such promising composites show great potential for friendly treatment of industrial waste containing nitrophenol in a simple, sustainable and green way.

  15. Liquid-phase pulsed laser ablation synthesis of graphitized carbon-encapsulated palladium core-shell nanospheres for catalytic reduction of nitrobenzene to aniline

    Science.gov (United States)

    Kim, Yu-jin; Ma, Rory; Reddy, D. Amaranatha; Kim, Tae Kyu

    2015-12-01

    Graphitized carbon-encapsulated palladium (Pd) core-shell nanospheres were produced via pulsed laser ablation of a solid Pd foil target submerged in acetonitrile. The microstructural features and optical properties of these nanospheres were characterized via high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. Microstructural analysis indicated that the core-shell nanostructures consisted of single-crystalline cubic metallic Pd spheres that serve as the core material, over which graphitized carbon was anchored as a heterogeneous shell. The absorbance spectrum of the synthesized nanostructures exhibited a broad (absorption) band at ∼264 nm; this band corresponded to the typical inter-band transition of a metallic system and resulted possibly from the absorbance of the ionic Pd2+. The catalytic properties of the Pd and Pd@C core-shell nanostructures were investigated using the reduction of nitrobenzene to aniline by an excess amount of NaBH4 in an aqueous solution at room temperature, as a model reaction. Owing to the graphitized carbon-layered structure and the high specific surface area, the resulting Pd@C nanostructures exhibited higher conversion efficiencies than their bare Pd counterparts. In fact, the layered structure provided access to the surface of the Pd nanostructures for the hydrogenation reaction, owing to the synergistic effect between graphitized carbon and the nanostructures. Their unique structure and excellent catalytic performance render Pd@C core-shell nanostructures highly promising candidates for catalysis applications.

  16. Microwave-irradiated preparation of reduced graphene oxide-Ni nanostructures and their enhanced performance for catalytic reduction of 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Hanxun, E-mail: hxqiu@usst.edu.cn; Qiu, Feilong; Han, Xuebin; Li, Jing; Yang, Junhe, E-mail: jhyang@usst.edu.cn

    2017-06-15

    Highlights: • Nickel nanoparticle-decorated reduced graphene-oxide nanostructures were prepared by an environmentally friendly, one-pot strategy via an efficient microwave irradiation approach. • Upon microwave irradiation, the composites could be prepared within only a few hundred seconds, much faster than using the widely used traditional hydrothermal methods that may take tens of hours generally. • The nanostructure exhibits superior catalytic activity and selectivity towards transforming the highly toxic nitroaromatic compounds to industrially useful intermediates • The corresponding kinetic reaction rate constant (κ) is even four-fold compared to pure Ni nanoparticles. - Abstract: Here we report an environmentally friendly, one-pot strategy toward preparation of nickel nanoparticle-decorated reduced graphene-oxide (Ni-RGO) nanostructures, by employing Ni(AC){sub 2} as nickel source and ethylene glycol as both solvent and reducing agent via a facile microwave irradiation heating approach. The results show that Ni nanoparticles with an average diameter of around 40 nm are homogeneously anchored onto the surface of RGO sheets. As compared to the pure Ni nanoparticles and RGO sheets, Ni-RGO composites with over 64 wt% loading of Ni nanoparticles possess superior catalytic activities and selectivity toward the reduction of 4-nitrophenol. The corresponding kinetic reaction rate constant (defined as κ) is even four-fold compared to pure Ni nanoparticles. Such promising composites show great potential for friendly treatment of industrial waste containing nitrophenol in a simple, sustainable and green way.

  17. A method of formal requirements analysis for NPP I and C systems based on object-oriented visual modeling with SCR

    International Nuclear Information System (INIS)

    Koo, S. R.; Seong, P. H.

    1999-01-01

    In this work, a formal requirements analysis method for Nuclear Power Plant (NPP) I and C systems is suggested. This method uses Unified Modeling Language (UML) for modeling systems visually and Software Cost Reduction (SCR) formalism for checking the system models. Since object-oriented method can analyze a document by the objects in a real system, UML models that use object-oriented method are useful for understanding problems and communicating with everyone involved in the project. In order to analyze the requirement more formally, SCR tabular notations is converted from UML models. To help flow-through from UML models to SCR specifications, additional syntactic extensions for UML notation and a converting procedure are defined. The combined method has been applied to Dynamic Safety System (DSS). From this application, three kinds of errors were detected in the existing DSS requirements

  18. Microwave-irradiated preparation of reduced graphene oxide-Ni nanostructures and their enhanced performance for catalytic reduction of 4-nitrophenol

    Science.gov (United States)

    Qiu, Hanxun; Qiu, Feilong; Han, Xuebin; Li, Jing; Yang, Junhe

    2017-06-01

    Here we report an environmentally friendly, one-pot strategy toward preparation of nickel nanoparticle-decorated reduced graphene-oxide (Ni-RGO) nanostructures, by employing Ni(AC)2 as nickel source and ethylene glycol as both solvent and reducing agent via a facile microwave irradiation heating approach. The results show that Ni nanoparticles with an average diameter of around 40 nm are homogeneously anchored onto the surface of RGO sheets. As compared to the pure Ni nanoparticles and RGO sheets, Ni-RGO composites with over 64 wt% loading of Ni nanoparticles possess superior catalytic activities and selectivity toward the reduction of 4-nitrophenol. The corresponding kinetic reaction rate constant (defined as κ) is even four-fold compared to pure Ni nanoparticles. Such promising composites show great potential for friendly treatment of industrial waste containing nitrophenol in a simple, sustainable and green way.

  19. Metal-Carbon-CNF Composites Obtained by Catalytic Pyrolysis of Urban Plastic Residues as Electro-Catalysts for the Reduction of CO2

    Directory of Open Access Journals (Sweden)

    Jesica Castelo-Quibén

    2018-05-01

    Full Text Available Metal–carbon–carbon nanofibers composites obtained by catalytic pyrolysis of urban plastic residues have been prepared using Fe, Co or Ni as pyrolitic catalysts. The composite materials have been fully characterized from a textural and chemical point of view. The proportion of carbon nanofibers and the final content of carbon phases depend on the used pyrolitic metal with Ni being the most active pyrolitic catalysts. The composites show the electro-catalyst activity in the CO2 reduction to hydrocarbons, favoring all the formation of C1 to C4 hydrocarbons. The tendency of this activity is in accordance with the apparent faradaic efficiencies and the linear sweep voltammetries. The cobalt-based composite shows high selectivity to C3 hydrocarbons within this group of compounds.

  20. Life cycle assessment of selective non-catalytic reduction (SNCR) of nitrous oxides in a full-scale municipal solid waste incinerator

    DEFF Research Database (Denmark)

    Møller, Jacob; Munk, Bjarne; Crillesen, Kim

    2011-01-01

    Selective non-catalytic reduction (SNCR) of nitrous oxides in a full-scale municipal solid waste incinerator was investigated using LCA. The relationship between NOx-cleaning and ammonia dosage was measured at the plant. Un-reacted ammonia – the ammonia slip – leaving the flue-gas cleaning system......-cleaning efficiency, the fate of the ammonia slip as well as the environmental impact from ammonia production, the potential acidification and nutrient enrichment from NOx-cleaning was calculated as a function of ammonia dosage. Since the exact fate of the ammonia slip could not be measured directly, a number...... of scenarios were set up ranging from “best case” with no ammonia from the slip ending up in the environment to “worst case” where all the ammonia slip eventually ended up in the environment and contributed to environmental pollution. In the “best case” scenario the highest ammonia dosage was most beneficial...

  1. Macrodynamic study and catalytic reduction of NO by ammonia under mild conditions over Pt-La-Ce-O/Al2O3 catalysts

    International Nuclear Information System (INIS)

    Wang, Yanhui; Zhu, Jingli; Ma, Runyu

    2007-01-01

    Catalytic reduction of NO using ammonia upon series prepared catalysts under 423-573 K in a fixed bed reactor was investigated. Results showed that the performance of supported platinum catalyst could be improved by addition of La and Ce to it. Experimental studies indicated that the suitable molar ratio of Pt:La:Ce would be 1.0:3.78:3.56, Pt-La-Ce (c). Results also found Pt-La-Ce (c) catalyst had good stability and tolerance to certain amounts of sulfur compounds under the used experimental conditions. Characterization for the fresh and used catalysts showed the Pt-La-Ce (c) catalyst had a stable structure. In addition, based on experimental data and using a nonlinear regression algorithm method, an empirical macrodynamic equation was obtained in this study

  2. Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction

    Science.gov (United States)

    Park, Jisu; Cha, Song-Hyun; Cho, Seonho; Park, Youmie

    2016-06-01

    In the present report, gallic acid was used as both a reducing and stabilizing agent to synthesize gold and silver nanoparticles. The synthesized gold and silver nanoparticles exhibited characteristic surface plasmon resonance bands at 536 and 392 nm, respectively. Nanoparticles that were approximately spherical in shape were observed in high-resolution transmission electron microscopy and atomic force microscopy images. The hydrodynamic radius was determined to be 54.4 nm for gold nanoparticles and 33.7 nm for silver nanoparticles in aqueous medium. X-ray diffraction analyses confirmed that the synthesized nanoparticles possessed a face-centered cubic structure. FT-IR spectra demonstrated that the carboxylic acid functional groups of gallic acid contributed to the electrostatic binding onto the surface of the nanoparticles. Zeta potential values of -41.98 mV for the gold nanoparticles and -53.47 mV for the silver nanoparticles indicated that the synthesized nanoparticles possess excellent stability. On-the-shelf stability for 4 weeks also confirmed that the synthesized nanoparticles were quite stable without significant changes in their UV-visible spectra. The synthesized nanoparticles exhibited catalytic activity toward the reduction reaction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. The rate constant of the silver nanoparticles was higher than that of the gold nanoparticles in the catalytic reaction. Furthermore, the conversion yield (%) of 4-nitrophenol to 4-aminophenol was determined using reversed-phase high-performance liquid chromatography with UV detection at 254 nm. The silver nanoparticles exhibited an excellent conversion yield (96.7-99.9 %), suggesting that the synthesized silver nanoparticles are highly efficient catalysts for the 4-nitrophenol reduction reaction.

  3. Electronic coupling induced high performance of N, S-codoped graphene supported CoS2 nanoparticles for catalytic reduction and evolution of oxygen

    Science.gov (United States)

    Chen, Bohong; Jiang, Zhongqing; Zhou, Lingshan; Deng, Binglu; Jiang, Zhong-Jie; Huang, Jianlin; Liu, Meilin

    2018-06-01

    A simple synthetic method is developed for the synthesis of CoS2/N, S-codoped graphene. The result shows the existence of a strong electronic coupling between CoS2 and N, S-codoped graphene. The pyrrolic and pyridinic type nitrogen and S in the form of C-S-C in N, S-codoped graphene are found to be the anchoring sites of the CoS2 nanoparticles. As a bifunctional catalyst, the CoS2/N, S-codoped graphene exhibits an oxygen reduction onset potential of 0.963 V vs. RHE and delivers an oxygen evolution overpotential of 393 mV at the current density of 10 mA cm-2. Its oxygen reduction and evolution catalytic activities are comparable to those of the Pt/C and the state-of-art RuO2/C, respectively. Most impressively, the CoS2/N, S-codoped graphene exhibits a potential gap of 771 mV. This value is lower than those of most bifuntional catalysts reported, clearly indicating its potential use as the bifunctional catalyst to replace the noble-metal based catalysts for practical applications. Additionally, our results also suggest a great importance to prepare a single pure phase CoS2 in improving the catalytic bifunctionality of the CoS2/N, S-codoped graphene. The primary Zn-air battery with CoS2/N, S-codoped graphene shows a higher discharge peak power density than that with Pt/C.

  4. Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction

    International Nuclear Information System (INIS)

    Park, Jisu; Cha, Song-Hyun; Cho, Seonho; Park, Youmie

    2016-01-01

    In the present report, gallic acid was used as both a reducing and stabilizing agent to synthesize gold and silver nanoparticles. The synthesized gold and silver nanoparticles exhibited characteristic surface plasmon resonance bands at 536 and 392 nm, respectively. Nanoparticles that were approximately spherical in shape were observed in high-resolution transmission electron microscopy and atomic force microscopy images. The hydrodynamic radius was determined to be 54.4 nm for gold nanoparticles and 33.7 nm for silver nanoparticles in aqueous medium. X-ray diffraction analyses confirmed that the synthesized nanoparticles possessed a face-centered cubic structure. FT-IR spectra demonstrated that the carboxylic acid functional groups of gallic acid contributed to the electrostatic binding onto the surface of the nanoparticles. Zeta potential values of −41.98 mV for the gold nanoparticles and −53.47 mV for the silver nanoparticles indicated that the synthesized nanoparticles possess excellent stability. On-the-shelf stability for 4 weeks also confirmed that the synthesized nanoparticles were quite stable without significant changes in their UV–visible spectra. The synthesized nanoparticles exhibited catalytic activity toward the reduction reaction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. The rate constant of the silver nanoparticles was higher than that of the gold nanoparticles in the catalytic reaction. Furthermore, the conversion yield (%) of 4-nitrophenol to 4-aminophenol was determined using reversed-phase high-performance liquid chromatography with UV detection at 254 nm. The silver nanoparticles exhibited an excellent conversion yield (96.7–99.9 %), suggesting that the synthesized silver nanoparticles are highly efficient catalysts for the 4-nitrophenol reduction reaction.

  5. Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jisu [Inje University, College of Pharmacy (Korea, Republic of); Cha, Song-Hyun; Cho, Seonho [Seoul National University, Department of Naval Architecture and Ocean Engineering (Korea, Republic of); Park, Youmie, E-mail: youmiep@inje.ac.kr [Inje University, College of Pharmacy (Korea, Republic of)

    2016-06-15

    In the present report, gallic acid was used as both a reducing and stabilizing agent to synthesize gold and silver nanoparticles. The synthesized gold and silver nanoparticles exhibited characteristic surface plasmon resonance bands at 536 and 392 nm, respectively. Nanoparticles that were approximately spherical in shape were observed in high-resolution transmission electron microscopy and atomic force microscopy images. The hydrodynamic radius was determined to be 54.4 nm for gold nanoparticles and 33.7 nm for silver nanoparticles in aqueous medium. X-ray diffraction analyses confirmed that the synthesized nanoparticles possessed a face-centered cubic structure. FT-IR spectra demonstrated that the carboxylic acid functional groups of gallic acid contributed to the electrostatic binding onto the surface of the nanoparticles. Zeta potential values of −41.98 mV for the gold nanoparticles and −53.47 mV for the silver nanoparticles indicated that the synthesized nanoparticles possess excellent stability. On-the-shelf stability for 4 weeks also confirmed that the synthesized nanoparticles were quite stable without significant changes in their UV–visible spectra. The synthesized nanoparticles exhibited catalytic activity toward the reduction reaction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. The rate constant of the silver nanoparticles was higher than that of the gold nanoparticles in the catalytic reaction. Furthermore, the conversion yield (%) of 4-nitrophenol to 4-aminophenol was determined using reversed-phase high-performance liquid chromatography with UV detection at 254 nm. The silver nanoparticles exhibited an excellent conversion yield (96.7–99.9 %), suggesting that the synthesized silver nanoparticles are highly efficient catalysts for the 4-nitrophenol reduction reaction.

  6. Enhanced hydrothermal stability of Cu-ZSM-5 catalyst via surface modification in the selective catalytic reduction of NO with NH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tao; Shi, Juan; Liu, Jian, E-mail: liujian@cup.edu.cn; Wang, Daxi; Zhao, Zhen, E-mail: zhenzhao@cup.edu.cn; Cheng, Kai; Li, Jianmei

    2016-07-01

    Highlights: • The hydrothermal stability of Cu-ZSM-5 catalyst was enhanced after surface modification. • An inert silica layer was deposited on the surface of Cu-ZSM-5 and formed a protective layer. • The contact between Si and Cu and Al atoms could form Si-O-Al and Si- O−Cu bonds. • The redox and acidity properties of Cu-ZSM-5-CLD-Aged catalyst were largely retained. • The adsorption and activation of NO and NH{sub 3} was almost unchanged over Cu-ZSM-5-CLD catalyst before and after hydrothermal treatment. - Abstract: The surface of Cu-ZSM-5 catalyst was modified by chemical liquid deposition (CLD) of tetraethoxysilane (TEOS) for enhancing its hydrothermal stability in the selective catalytic reduction of NO with NH{sub 3}. After hydrothermal aging at 750 °C for 13 h, the catalytic performance of Cu-ZSM-5-Aged catalyst was significantly reduced for NO reduction in the entire temperature range, while that of Cu-ZSM-5-CLD-Aged catalyst was affected very little. The characterization results indicated that an inert silica layer was deposited on the surface of Cu-ZSM-5 and formed a protective layer, which prevents the detachment of Cu{sup 2+} from ZSM-5 ion-exchange positions and the dealumination of zeolite during the hydrothermal aging process. Based on the data it is hypothesized to be the primary reason for the high hydrothermal stability of Cu-ZSM-5-CLD catalyst.

  7. A kinetic model of the hydrogen assisted selective catalytic reduction of NO with ammonia over Ag/Al2O3

    DEFF Research Database (Denmark)

    Tamm, Stefanie; Olsson, Louise; Fogel, Sebastian

    2013-01-01

    A global kinetic model which describes H2-assisted NH3-SCR over an Ag/Al2O3 monolith catalyst has been developed. The intention is that the model can be applied for dosing NH3 and H2 to an Ag/Al2O3 catalyst in a real automotive application as well as contribute to an increased understanding of th...

  8. Charge transfer-resistance in nitrogen-doped/undoped graphene: Its influence on the electro-catalytic reduction of H2O2

    International Nuclear Information System (INIS)

    Magerusan, Lidia; Pogacean, Florina; Socaci, Crina; Coros, Maria; Rosu, Marcela-Corina; Pruneanu, Stela

    2016-01-01

    Nitrogen doped (N-Gr) and undoped (TRGO) graphene were chemically synthesized and characterized by TEM, STEM-EDX and XPS. The electrochemical reduction of H 2 O 2 was investigated with bare glassy carbon (GC) electrode and with GC modified with each graphene sample. The active area of TRGO/GC and N-Gr/GC modified electrodes were found to be 0.75 and 0.295 cm 2 , respectively. Both were considerably larger than that of bare GC (0.07 cm 2 ). We carefully looked at the kinetic of interfacial electron transfer process and found that the charge-transfer resistance (R ct ) of TRGO/GC electrode (7.83 × 10 6 Ω) was significantly lower than that of N-Gr/GC electrode (4.81 × 10 7 Ω) or bare GC (1.74 × 10 9 Ω). Interestingly, although TRGO/GC electrode had the largest active area and the smallest charge transfer resistance, it did not promote the H 2 O 2 electrochemical reduction. In contrast, N-Gr/GC modified electrode exhibited an enhanced electro-catalytic activity towards H 2 O 2 reduction, which was related to the presence of heterogeneous atoms into the sp 2 carbon network.

  9. The enhancement of CuO modified V2O5-WO3/TiO2 based SCR catalyst for Hg° oxidation in simulated flue gas

    Science.gov (United States)

    Chen, Chuanmin; Jia, Wenbo; Liu, Songtao; Cao, Yue

    2018-04-01

    CuO modified V2O5-WO3/TiO2 based SCR catalysts prepared by improved impregnation method were investigated to evaluate the catalytic activity for elemental mercury (Hg°) oxidation in simulated flue gas at 150-400 °C. Nitrogen adsorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterize the catalysts. It was found that V0.8WTi-Cu3 catalyst exhibited the superior Hg° oxidation activity and wide operating temperature window at the gas hourly space velocity (GHSV) of 3 × 105 h-1. The BET and XRD results showed that CuO was well loaded and highly dispersed on the catalysts surface. The XPS results suggested that the addition of CuO generated abundant chemisorbed oxygen, which was due to the synergistic effect between CuO and V2O5. The existence of the redox cycle of V4+ + Cu2+ ↔ V5+ + Cu+ in V0.8WTi-Cu3 catalyst enhanced Hg° oxidation activity. The effects of flue gas components (O2, NO, SO2 and H2O) on Hg° oxidation over V0.8WTi-Cu3 catalyst were also explored. Moreover, the co-presence of NO and NH3 remarkably inhibited Hg° oxidation, which was due to the competitive adsorption and reduction effect of NH3 at SCR condition. Fortunately, this inhibiting effect was gradually scavenged with the decrease of GHSV. The mechanism of Hg° oxidation was also investigated.

  10. Simulated solarlight catalytic reduction of Cr(VI) on microwave–ultrasonication synthesized flower-like CuO in the presence of tartaric acid

    International Nuclear Information System (INIS)

    Xu, Zhihui; Yu, Yaqun; Fang, Di; Liang, Jianru; Zhou, Lixiang

    2016-01-01

    In this study, flower-like CuO was successfully synthesized by a microwave–ultrasound assisted method and well characterized by X-ray diffractions, Fourier transform infrared spectrum, scanning electron microscopy, transmission electron microscopy, specific surface area, UV–vis diffused reflection spectra, X-ray photoelectron spectroscopy and point of zero charge. The photocatalytic performance of the as-prepared CuO was examined on the Cr(VI) reduction in the presence of tartaric acid under simulated solarlight irradiation. The results show that the developed CuO catalyst exhibited good photocatalytic activity with 100% reduction of Cr(VI) after irradiation of 30 min under the test condition of c(Cr(VI)) = 100 μM, catalyst loading = 400 mg/L, c(tartaric acid) = 4 mM and initial pH = 3. The reaction mechanism was proposed. The effects of test parameters, such as catalyst loading, tartaric acid concentration and initial pH, on Cr(VI) reduction efficiency were also investigated. It is worth mentioning that the developed catalyst can work at a relatively wide range of pH with quite high catalytic performance. - Highlights: • Flower-like CuO microstructure was prepared by MW-US assisted method. • The prepared CuO can catalyze the reduction Cr(VI) by tartaric acid under simulated solarlight. • The formation of ≡Cu(II)-tartaric acid complex play a key role in the reduction of Cr(VI). • The catalyst can operate effectively at a relatively wide range of pH.

  11. Structure Investigation of Ti(IV)BODOLates Involved in the Catalytic Asymmetric Reduction of Ketones Using Catecholborane

    DEFF Research Database (Denmark)

    Sarvary, Ian; Norrby, Per-Ola; Frejd, Torbjörn

    2004-01-01

    The complexes formed on mixing Ti(OiPr)4 and bicyclo-octanediols (BODOLs) 1 and 2 (1:1) are useful as chiral catalysts in asymmetric reductions and were investigated by 1HNMR-spectroscopy and by computational methods. A consistent picture emerged of head-to-tail dimers being kept together via a T...

  12. Reduction of light cycle oil in catalytic cracking of bitumen-derived crude HGOs through catalyst selection

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Fuchen; Xu, Chunming [State Key Laboratory of Heavy Oil Processing, China University of Petroleum Beijing, 102200 (China); Ng, Siauw H. [National Centre for Upgrading Technology, 1 Oil Patch Drive, Suite A202, Devon, Alberta (Canada); Yui, Sok [Syncrude Research Centre, 9421-17 Avenue, Edmonton, Alberta (Canada)

    2007-09-15

    In an attempt to reduce the production of light cycle oil (LCO), a non-premium fluid catalytic cracking (FCC) product in North America, a large-pore catalyst containing rare-earth-exchanged Y (REY) zeolite, was used to crack two Canadian bitumen-derived crude heavy gas oils (HGOs) hydrotreated to different extents. For comparison, a regular equilibrium FCC catalyst with ultra-stable Y (USY) zeolite and a conventional western Canadian crude HGO were also included in the study. Cracking experiments were conducted in a fixed-bed microactivity test (MAT) reactor at 510 C, 30 s oil injection time, and varying catalyst-to-oil ratios for different conversions. The results show that pre-cracking of heavy molecules with wide-pore matrix, followed by zeolite cracking, enhanced conversion at the expense of light and heavy cycle oils at a constant catalyst-to-oil ratio, giving improved product selectivities (e.g., higher gasoline and lower dry gas, LCO, and coke yields, in general, at a given conversion). To systematically assess the benefits of employing the specialty catalyst over the regular catalyst in cracking Canadian HGOs, individual product yields were compared at common bases, including constant catalyst-to-oil ratios, conversions, and coke yields for three feeds, and at maximum gasoline yield for one feed. In most cases, the preferred choice of large-pore zeolite-rich catalyst over its counterpart was evident. The observed cracking phenomena were explained based on properties of catalysts and characterization data of feedstocks, including their hydrocarbon type analyses by gas chromatograph with a mass-selective detector (GC-MSD). (author)

  13. Numerical Investigation of AdBlue Droplet Evaporation and Thermal Decomposition in the Context of NOx-SCR Using a Multi-Component Evaporation Model

    Directory of Open Access Journals (Sweden)

    Kaushal Nishad

    2018-01-01

    Full Text Available To cope with the progressive tightening of the emission regulations, gasoline and diesel engines will continuously require highly improved exhaust after-treatment systems. In the case of diesel engines, the selective catalytic reduction (SCR appears as one of the widely adopted technologies to reduce NOx (nitrogen oxides emissions. Thereby, with the help of available heat from exhaust gas, the injected urea–water solution (UWS turns inside the exhaust port immediately into gaseous ammonia (NH3 by evaporation of mixture and thermal decomposition of urea. The reaction and conversion efficiency mostly depend upon the evaporation and subsequent mixing of the NH3 into the exhaust gas, which in turn depends upon the engine loading conditions. Up to now, the aggregation of urea after evaporation of water and during the thermal decomposition of urea is not clearly understood. Hence, various scenarios for the urea depletion in the gaseous phase that can be envisaged have to be appraised under SCR operating conditions relying on an appropriate evaporation description. The objective of the present paper is therefore fourfold. First, a reliable multi-component evaporation model that includes a proper binary diffusion coefficient is developed for the first time in the Euler–Lagrangian CFD (computational fluid dynamics framework to account properly for the distinct evaporation regimes of adBlue droplets under various operating conditions. Second, this model is extended for thermal decomposition of urea in the gaseous phase, where, depending on how the heat of thermal decomposition of urea is provided, different scenarios are considered. Third, since the evaporation model at and around the droplet surface is based on a gas film approach, how the material properties are evaluated in the film influences the process results is reported, also for the first time. Finally, the impact of various ambient temperatures on the adBlue droplet depletion characteristics

  14. Catalytic Activity Enhancement for Oxygen Reduction on Epitaxial Perovskite Thin Films for Solid-Oxide Fuel Cells

    KAUST Repository

    la O', Gerardo Jose; Ahn, Sung-Jin; Crumlin, Ethan; Orikasa, Yuki; Biegalski, Michael D.; Christen, Hans M.; Shao-Horn, Yang

    2010-01-01

    Figure Presented The active ingredient: La0.8Sr 0.2CoO3-δ (LSC) epitaxial thin films are prepared on (001 )-oriented yttria-stabilized zirconia (YSZ) single crystals with a gadolinium-doped ceria (GDC) buffer layer (see picture). The LSC epitaxial films exhibit better oxygen reduction kinetics than bulk LSC. The enhanced activity is attributed in part to higher oxygen nonstoichiometry. © 2010 Wiley-VCH Verlag GmbH & Co. KCaA, Weinheim.

  15. Catalytic Activity Enhancement for Oxygen Reduction on Epitaxial Perovskite Thin Films for Solid-Oxide Fuel Cells

    KAUST Repository

    la O', Gerardo Jose

    2010-06-22

    Figure Presented The active ingredient: La0.8Sr 0.2CoO3-δ (LSC) epitaxial thin films are prepared on (001 )-oriented yttria-stabilized zirconia (YSZ) single crystals with a gadolinium-doped ceria (GDC) buffer layer (see picture). The LSC epitaxial films exhibit better oxygen reduction kinetics than bulk LSC. The enhanced activity is attributed in part to higher oxygen nonstoichiometry. © 2010 Wiley-VCH Verlag GmbH & Co. KCaA, Weinheim.

  16. Multiphase catalysts for selective reduction of NOx with hydrocarbons

    International Nuclear Information System (INIS)

    Maisuls, S.E.

    2000-01-01

    Among the existing proposed solutions to reduce emission of NOx there is a promising alternative, the so-called (HC-SCR) selective catalytic reduction of NOx using hydrocarbons as reductant. This thesis is part of a worldwide effort devoted to gain knowledge on the selective catalytic reduction of NOx with hydrocarbons with the final goal to contribute to the development of suitable catalysts for the above mentioned process. Chapter 2 describes the details of the experimental set-up and of the analytical methods employed. Among the catalyst for HC-SCR, Co-based catalyst are known to be active and selective, thus, a study on a series of Co-based catalysts, supported on zeolites, was undertaken and the results are presented in Chapter 3. Correlation between catalytic characteristics and kinetic results are employed to understand the working catalyst and this is used as a basis for catalyst optimization. With the intention to prepare a multi-functional catalyst that will preserve the desired characteristics of the individual components, minimizing their negative aspects, catalysts based on Co-Pt, supported on ZSM-5, were investigated. In Chapter 4 the results of this study are discussed. A bimetallic Co-Pt/ZSM-5 catalysts with low Pt contents (0.1 wt %) showed a synergistic effect by combining high stability and activity of Pt catalysts with the high N2 selectivity of Co catalysts. Furthermore, it was found to be sulfur- and water-tolerant. Its positive qualities brought us to study the mechanism that takes place over this catalyst during HC-SCR. The results of an in-situ i.r mechanistic study over this catalyst is reported in Chapter 5. From the results presented in Chapter 5 a mechanism operating over the Co-Pt/ZSM-5 catalyst is proposed. The modification of Co catalyst with Pt improved the catalysts. However, further improvement was found to be hindered by high selectivity to N2O. Since Rh catalysts are generally less selective to N2O, the modification of Co

  17. Catalytic N2O decomposition and reduction by NH3 over Fe/Beta and Fe/SSZ-13 catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Aiyong; Wang, Yilin; Walter, Eric D.; Kukkadapu, Ravi K.; Guo, Yanglong; Lu, Guanzhong; Weber, Robert S.; Wang, Yong; Peden, Charles H. F.; Gao, Feng

    2018-02-01

    Fe/zeolites are important N2O abatement catalysts, efficient in direct N2O decomposition and (selective) catalytic N2O reduction. In this study, Fe/Beta and Fe/SSZ-13 were synthesized via solution ion-exchange and used to catalyze these two reactions. Nature of the Fe species was probed with UV-vis, Mössbauer and EPR spectroscopies and H2-TPR. The characterizations collectively indicate that isolated and dinuclear Fe sites dominate in Fe/SSZ-13, whereas Fe/Beta contains higher concentrations of oligomeric FexOy species. H2-TPR results suggest that Fe-O interactions are weaker in Fe/SSZ-13, as evidenced by the lower reduction temperatures and higher extents of autoreduction during high-temperature pretreatments in inert gas. Kinetic measurements show that Fe/SSZ-13 has higher activity in catalytic N2O decomposition, thus demonstrating a positive correlation between activity and Fe-O binding, consistent with O2 desorption being rate-limiting for this reaction. However, Fe/Beta was found to be more active in catalyzing N2O reduction by NH3. This indicates that larger active ensembles (i.e., oligomers) are more active for this reaction, consistent with the fact that both N2O and NH3 need to be activated in this case. The authors from PNNL gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle. Aiyong Wang gratefully acknowledges the China Scholarship Council for the Joint-Training Scholarship Program with the Pacific

  18. Alloy SCR-3 resistant to stress corrosion cracking

    International Nuclear Information System (INIS)

    Kowaka, Masamichi; Fujikawa, Hisao; Kobayashi, Taiki

    1977-01-01

    Austenitic stainless steel is used widely because the corrosion resistance, workability and weldability are excellent, but the main fault is the occurrence of stress corrosion cracking in the environment containing chlorides. Inconel 600, most resistant to stress corrosion cracking, is not necessarily safe under some severe condition. In the heat-affected zone of SUS 304 tubes for BWRs, the cases of stress corrosion cracking have occurred. The conventional testing method of stress corrosion cracking using boiling magnesium chloride solution has been problematical because it is widely different from actual environment. The effects of alloying elements on stress corrosion cracking are remarkably different according to the environment. These effects were investigated systematically in high temperature, high pressure water, and as the result, Alloy SCR-3 with excellent stress corrosion cracking resistance was found. The physical constants and the mechanical properties of the SCR-3 are shown. The states of stress corrosion cracking in high temperature, high pressure water containing chlorides and pure water, polythionic acid, sodium phosphate solution and caustic soda of the SCR-3, SUS 304, Inconel 600 and Incoloy 800 are compared and reported. (Kako, I.)

  19. A Catalytic Path for Electrolyte Reduction in Lithium-Ion Cells Revealed by in Situ Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy

    KAUST Repository

    Shi, Feifei; Ross, Philip N.; Zhao, Hui; Liu, Gao; Somorjai, Gabor A.; Komvopoulos, Kyriakos

    2015-01-01

    © 2015 American Chemical Society. Although controlling the interfacial chemistry of electrodes in Li-ion batteries (LIBs) is crucial for maintaining the reversibility, electrolyte decomposition has not been fully understood. In this study, electrolyte decomposition on model electrode surfaces (Au and Sn) was investigated by in situ attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. Simultaneously obtained ATR-FTIR spectra and cyclic voltammetry measurements show that lithium ethylene dicarbonate and lithium propionate form on the Au electrode at 0.6 V, whereas diethyl 2,5-dioxahexane dicarboxylate and lithium propionate form on the Sn electrode surface at 1.25 V. A noncatalytic reduction path on the Au surface and a catalytic reduction path on the Sn surface are introduced to explain the surface dependence of the overpotential and product selectivity. This represents a new concept for explaining electrolyte reactions on the anode of LIBs. The present investigation shows that catalysis plays a dominant role in the electrolyte decomposition process and has important implications in electrode surface modification and electrolyte recipe selection, which are critical factors for enhancing the efficiency, durability, and reliability of LIBs.

  20. A Catalytic Path for Electrolyte Reduction in Lithium-Ion Cells Revealed by in Situ Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy

    KAUST Repository

    Shi, Feifei

    2015-03-11

    © 2015 American Chemical Society. Although controlling the interfacial chemistry of electrodes in Li-ion batteries (LIBs) is crucial for maintaining the reversibility, electrolyte decomposition has not been fully understood. In this study, electrolyte decomposition on model electrode surfaces (Au and Sn) was investigated by in situ attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. Simultaneously obtained ATR-FTIR spectra and cyclic voltammetry measurements show that lithium ethylene dicarbonate and lithium propionate form on the Au electrode at 0.6 V, whereas diethyl 2,5-dioxahexane dicarboxylate and lithium propionate form on the Sn electrode surface at 1.25 V. A noncatalytic reduction path on the Au surface and a catalytic reduction path on the Sn surface are introduced to explain the surface dependence of the overpotential and product selectivity. This represents a new concept for explaining electrolyte reactions on the anode of LIBs. The present investigation shows that catalysis plays a dominant role in the electrolyte decomposition process and has important implications in electrode surface modification and electrolyte recipe selection, which are critical factors for enhancing the efficiency, durability, and reliability of LIBs.

  1. Artificial neural networks study of the catalytic reduction of resazurin: stopped-flow injection kinetic-spectrophotometric determination of Cu(II) and Ni(II)

    International Nuclear Information System (INIS)

    Magni, Diana M.; Olivieri, Alejandro C.; Bonivardi, Adrian L.

    2005-01-01

    An artificial neural network (ANN) procedure was used in the development of a catalytic spectrophotometric method for the determination of Cu(II) and Ni(II) employing a stopped-flow injection system. The method is based on the catalytic action of these ions on the reduction of resazurin by sulfide. ANNs trained by back-propagation of errors allowed us to model the systems in a concentration range of 0.5-6 and 1-15 mg l -1 for Cu(II) and Ni(II), respectively, with a low relative error of prediction (REP) for each cation: REP Cu(II) = 0.85% and REP Ni(II) = 0.79%. The standard deviations of the repeatability (s r ) and of the within-laboratory reproducibility (s w ) were measured using standard solutions of Cu(II) and Ni(II) equal to 2.75 and 3.5 mg l -1 , respectively: s r [Cu(II)] = 0.039 mg l -1 , s r [Ni(II)] = 0.044 mg l -1 , s w [Ni(II)] = 0.045 mg l -1 and s w [Ni(II)] = 0.050 mg l -1 . The ANNs-kinetic method has been applied to the determination of Cu(II) and Ni(II) in electroplating solutions and provided satisfactory results as compared with flame atomic absorption spectrophotometry method. The effect of resazurin, NaOH and Na 2 S concentrations and the reaction temperature on the analytical sensitivity is discussed

  2. Mixture of fuels approach for the synthesis of SrFeO(3-δ) nanocatalyst and its impact on the catalytic reduction of nitrobenzene.

    Science.gov (United States)

    Naveenkumar, Akula; Kuruva, Praveena; Shivakumara, Chikkadasappa; Srilakshmi, Chilukoti

    2014-11-17

    A modified solution combustion approach was applied in the synthesis of nanosize SrFeO(3-δ) (SFO) using single as well as mixture of citric acid, oxalic acid, and glycine as fuels with corresponding metal nitrates as precursors. The synthesized and calcined powders were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis and derivative thermogravimetric analysis (TG-DTG), scanning electron microscopy, transmission electron microscopy, N2 physisorption methods, and acidic strength by n-butyl amine titration methods. The FT-IR spectra show the lower-frequency band at 599 cm(-1) corresponds to metal-oxygen bond (possible Fe-O stretching frequencies) vibrations for the perovskite-structure compound. TG-DTG confirms the formation temperature of SFO ranging between 850-900 °C. XRD results reveal that the use of mixture of fuels in the preparation has effect on the crystallite size of the resultant compound. The average particle size of the samples prepared from single fuels as determined from XRD was ∼50-35 nm, whereas for samples obtained from mixture of fuels, particles with a size of 30-25 nm were obtained. Specifically, the combination of mixture of fuels for the synthesis of SFO catalysts prevents agglomeration of the particles, which in turn leads to decrease in crystallite size and increase in the surface area of the catalysts. It was also observed that the present approach also impacted the catalytic activity of the SFO in the catalytic reduction of nitrobenzene to azoxybenzene.

  3. A Mild and Convenient Method for the Reduction of Carbonyl Compounds with NaBH{sub 4} in the Presence of Catalytic Amounts of MoCl{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Zeynizadeh, Behzad; Yahyaei, Saiedeh [Urmia University, Urmia (Iran, Islamic Republic of)

    2003-11-15

    NaBH{sub 4} with catalytic amounts of MoCl{sub 5} can readily reduce a variety of carbonyl compounds such as aldehydes, ketones, acyloins, α-diketones and conjugated enones to their corresponding alcohols in good to excellent yields. Reduction reactions were performed under aprotic condition in CH{sub 3}CN at room temperature or reflux. In addition, the chemoselective reduction of aldehydes over ketones was accomplished successfully with this reducing system.

  4. Synthesis of honeycomb-like palladium nanostructures by using cucurbit[7]uril and their catalytic activities for reduction of 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Premkumar, Thathan [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); The University College/Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Geckeler, Kurt E., E-mail: keg@gist.ac.kr [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Department of Nanobio Materials and Electronics (WCU), Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2014-12-15

    An eco-friendly one-pot method to synthesize self-assembled palladium nanoclusters using a macrocycle, namely cucurbit[7]uril, in the alkaline medium without employing any special reducing or capping agents and/or external energy at room temperature is described. This greener approach, which utilizes water as a benign solvent and biocompatible cucurbit[7]uril as both reducing and protecting agents, can be applied to synthesize other noble metal nanoparticles such as gold, silver, and platinum. Owing to unique structural arrangement of cucurbit[7]uril, it was possible to prepare palladium nanoclusters of honeycomb-like structure irrespective of the reaction conditions. The honeycomb-like palladium nanoclusters were characterized using transmission electron microscopy (TEM), higher-resolution TEM (HR-TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), UV–vis, and FT-IR spectroscopy. Significantly, the synthesized palladium nanoclusters exhibited catalytic activity for the reduction reaction of 4-nitrophenol at room temperature. The approach launched here is easy, green, and user-friendly in contrast to the conventional techniques using polymers or surfactants and harsh reductants. - Highlights: • A simple and one-pot method to synthesis palladium nanostructures with honey-comb like structure. • The strategy established here does not require any harsh and toxic reducing agents. • It has a potential to be a general method for the synthesis of metal nanoparticles in water medium. • Palladium nanoclusters can be used as catalyst for the reduction reaction of 4-nitrophenol. • This system makes a novel platform for industrial and biomedical applications.

  5. A novel bio-degradable polymer stabilized Ag/TiO2 nanocomposites and their catalytic activity on reduction of methylene blue under natural sun light.

    Science.gov (United States)

    Geetha, D; Kavitha, S; Ramesh, P S

    2015-11-01

    In the present work we defined a novel method of TiO2 doped silver nanocomposite synthesis and stabilization using bio-degradable polymers viz., chitosan (Cts) and polyethylene glycol (PEG). These polymers are used as reducing agents. The instant formation of AgNPs was analyzed by visual observation and UV-visible spectrophotometer. TiO2 nanoparticles doped at different concentrations viz., 0.03, 0.06 and 0.09mM on PEG/Cts stabilized silver (0.04wt%) were successfully synthesized. This study presents a simple route for the in situ synthesis of both metal and polymer confined within the nanomaterial, producing ternary hybrid inorganic-organic nanomaterials. The results reveal that they have higher photocatalytic efficiencies under natural sun light. The synthesized TiO2 doped Ag nanocomposites (NCs) were characterized by SEM/EDS, TEM, XRD, FTIR and DLS with zeta potential. The stability of Ag/TiO2 nanocomposite is due to the high negative values of zeta potential and capping of constituents present in the biodegradable polymer which is evident from zeta potential and FT-IR studies. The XRD and EDS pattern of synthesized Ag/TiO2 NCs showed their crystalline structure, with face centered cubic geometry oriented in (111) plane. AFM and DLS studies revealed that the diameter of stable Ag/TiO2 NCs was approximately 35nm. Moreover the catalytic activity of synthesize Ag/TiO2 NCs in the reduction of methylene blue was studied by UV-visible spectrophotometer. The synthesized Ag/TiO2 NCs are observed to have a good catalytic activity on the reduction of methylene blue by bio-degradable which is confirmed by the decrease in absorbance maximum value of methylene blue with respect to time using UV-vis spectrophotometer. The significant enhancement in the photocatalytic activity of Ag/TiO2 nanocomposites under sun light irradiation can be ascribed to the effect of noble metal Ag by acting as electron traps in TiO2 band gap. Copyright © 2015. Published by Elsevier Inc.

  6. Selective catalytic reduction of NO by ammonia using mesoporous Fe-containing HZSM-5 and HZSM-12 zeolite catalysts: An option for automotive applications

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Hansen, T. W.; Kustova, Marina

    2007-01-01

    , the activity of the mesoporous samples in NO SCR with NH3 is significantly higher than for conventional samples. Such a difference in the activity is probably related with the better diffusion of reactants and products in the mesopores and better dispersion of the iron particles in the mesoporous zeolite...... as was confirmed by SEM analysis. Moreover, the maximum activity for the mesoporous zeolites is found at higher Fe concentrations than for the conventional zeolites. This also illustrates that the mesoporous zeolites allow a better dispersion of the metal component than the conventional zeolites. Finally...

  7. Selective catalytic reduction of NOx in lean-burn engine exhaust over a Pt/V/MCM-41 catalyst

    International Nuclear Information System (INIS)

    Jeon, Jong Yeol; Kim, Hee Young; Woo, Seong Ihl

    2003-01-01

    The activities of Pt supported on various metal-substituted MCM-41 (V-, Ti-, Fe-, Al-, Ga-, La-, Co-, Mo-, Ce-, and Zr-MCM-41) and V-impregnated MCM-41 were investigated for the reduction of NO by C 3 H 6 . Among these catalysts, Pt supported on V-impregnated MCM-41 showed the best activity. The maximum conversion of NO into N 2 +N 2 O over this Pt/V/MCM-41 catalyst (Pt=1wt.%, V=3.8wt.%) was 73%, and this maximum conversion was sustained over a temperature range of 70C from 270 to 340C. The high activity of Pt/V/MCM-41 over a broad temperature range resulted from two additional reactions besides the reaction occurring on usual supported Pt, the reaction of NO with surface carbonaceous materials, and the reaction of NO occurring on support V-impregnated MCM-41. The former additional reaction showed an oscillation characteristic, a phenomenon in which the concentrations of parts of reactant and product gases oscillate continuously. At low temperature, some water vapor injected into the reactant gas mixture promoted the reaction occurring on usual supported Pt, whereas at high temperature, it suppressed the additional reaction related to carbonaceous materials. Five-hundred parts per million of SO 2 added to the reactant gas mixture only slightly decreased the NO conversion of Pt/V/MCM-41

  8. Preparation of zeolite supported TiO{sub 2}, ZnO and ZrO{sub 2} and the study on their catalytic activity in NO{sub x} reduction and 1-pentanol dehydration

    Energy Technology Data Exchange (ETDEWEB)

    Fatimah, Is [Chemistry Department, Islamic University of Indonesia Kampus Terpadu UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta (Indonesia)

    2016-03-29

    Preparation of zeolite supported TiO{sub 2}, ZnO and ZrO{sub 2} and their catalytic activity was studied. Activated natural zeolite from Indonesia was utilized for the preparation and catalytic activity test on NO{sub x} reduction by NH{sub 3} and also 1-pentanol dehydration were examined. Physicochemical characterization of materials was studied by x-ray diffraction (XRD) measurement, scanning electron microscope, solid acidity determination and also gas sorption analysis. The results confirmed that the preparation gives some improvements on physicochemical characters suitable for catalysis mechanism in those reactions. Solid acidity and specific surface area contributed significantly to the activity.

  9. Long term deactivation test of high dust SCR catalysts by straw co-firing

    Energy Technology Data Exchange (ETDEWEB)

    Weigang Lin; Degn Jensen, A.; Bjerkvig, J.

    2009-12-15

    The consequences of carbon dioxide induced global warming cause major concern worldwide. The consumption of energy produced with fossil fuels is the major factor that contributes to the global warming. Biomass is a renewable energy resource and has a nature of CO{sub 2} neutrality. Co-combustion of biomass in existing coal fired power plants can maintain high efficiency and reduce the emission of CO{sub 2} at same time. However, one of the problems faced by co-firing is deactivation of the SCR catalysts. Understanding of the mechanisms of deactivation of the catalyst elements at co-firing conditions is crucial for long term runs of the power plants. Twenty six SCR catalyst elements were exposed at two units (SSV3 and SSV4) in the Studstrup Power Plant for a long period. Both units co-fire coal and straw with a typical fraction of 8-10% straw on an energy basis during co-firing. SSV4 unit operated in co-firing mode most of the time; SSV3 unit co-fired straw half of the operating time. The main objective of this PSO-project is to gain knowledge of a long term influence on catalyst activity when co-firing straw in coal-fired power plants, thus, to improve the basis for operating the SCR-plants for NO{sub x}-reduction. The exposure time of the applied catalyst elements (HTAS and BASF) varied from approximately 5000 to 19000 hours in the power plant by exchanging the element two times. The activity of all elements was measured before and after exposure in a bench scale test rig at the Department of Chemical and Biochemical Engineering, Technical University of Denmark. The results show that the activity, estimated by exclusion of channel clogging of the elements, decreases gradually with the total exposure time. It appears that the exposure time under co-firing condition has little effect on the deactivation of the catalyst elements and no sharp decrease of the activity was observed. The average deactivation rate of the catalyst elements is 1.6 %/1000 hours. SEM

  10. Optimization of the fluid catalytic cracking unit performance by application of a high motor Octane catalyst and reduction of gasoline vapour pressure

    International Nuclear Information System (INIS)

    Chavdarov, I.; Stratiev, D.; Shishkova, I.; Dinkov, R.; Petkov, P.

    2013-01-01

    Full text: The fluid catalytic cracking (FCC) gasoline is the main contributor to the refinery gasoline pool in the LUKOIL Neftohim Burgas (LNB) refinery. Next in quantity contributor in the refinery gasoline pool is the reformate. The FCC gasoline sensitivity (MON-RON) is about 12 points. The reformer gasoline sensitivity is 11 points. The high sensitivity of the main contributors to the LNB refinery gasoline pool leads to a shortage in the motor octane number. For that reason a selection of an FCC catalyst that is capable of increasing the motor octane number of the FCC gasoline was performed. The application of this catalyst in the LNB FCC unit has led to an increase of the motor octane number of the FCC gasoline by 0.5 points, which enabled the refinery to increase the production of automotive gasolines by 1.3 % and to increase the share of premium automotive gasoline by 5 %. This had an effect of improvement of the refinery economics by a six figure number of US $ per year. The optimization of the FCC gasoline Reid Vapor Pressure (RVP) during the winter season, consisting in a reduction of the RVP from 60 to 50 kPa and an increase of the FCC C 4 olefins yield, has led to an augmentation of high motor octane number alkylate production. As a result the refinery economics was improved by a five figure number of US $ per year. key words: FCC gasoline motor octane number, gasoline RVP, FCC operation profitability

  11. Facile approach to synthesize uniform Au@mesoporous SnO{sub 2} yolk–shell nanoparticles and their excellent catalytic activity in 4-nitrophenol reduction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ya [Changchun University of Science and Technology, School of Chemistry & Environmental Engineering (China); Li, Lu; Wang, Chungang, E-mail: wangcg925@nenu.edu.cn [Northeast Normal University, Faculty of Chemistry (China); Wang, Tingting, E-mail: wangtt@cust.edu.cn [Changchun University of Science and Technology, School of Chemistry & Environmental Engineering (China)

    2016-01-15

    Monodispersed and uniform Au@mesoporous SnO{sub 2} yolk–shell nanoparticles (Au@mSnO{sub 2} yolk–shell NPs) composed of the moveable Au NP cores and mSnO{sub 2} shells have been successfully fabricated via a facile and reproducible approach. The outside mSnO{sub 2} shells of Au@mSnO{sub 2} yolk–shell NPs not only prevent Au NPs from aggregating and corroding by the reaction solution but also allow the Au NPs to contact with reactant molecules easily through the mesoporous channels. The obtained Au@mSnO{sub 2} yolk–shell NPs are characterized by means of transmission electron microscope, scanning electron microscopy, X-ray powder diffraction, X-ray photoelectron spectrum, and UV–vis absorption spectroscopy. The synthesized materials exhibit excellent catalytic performance and high stability towards the reduction of 4-nitrophenol with NaBH{sub 4} as a reducing agent, which may be ascribed to their high specific surface area and unique mesoporous structure. Moreover, the synthetic strategy reported in this paper can be extended to fabricate a series of multifunctional noble metal@metal oxide yolk–shell nanocomposite materials with unique properties for various applications.

  12. Reducing NO(x) emissions from a nitric acid plant of domestic petrochemical complex: enhanced conversion in conventional radial-flow reactor of selective catalytic reduction process.

    Science.gov (United States)

    Abbasfard, Hamed; Hashemi, Seyed Hamid; Rahimpour, Mohammad Reza; Jokar, Seyyed Mohammad; Ghader, Sattar

    2013-01-01

    The nitric acid plant of a domestic petrochemical complex is designed to annually produce 56,400 metric tons (based on 100% nitric acid). In the present work, radial-flow spherical bed reactor (RFSBR) for selective catalytic reduction of nitric oxides (NO(x)) from the stack of this plant was modelled and compared with the conventional radial-flow reactor (CRFR). Moreover, the proficiency of a radial-flow (water or nitrogen) membrane reactor was also compared with the CRFR which was found to be inefficient at identical process conditions. In the RFSBR, the space between the two concentric spheres is filled by a catalyst. A mathematical model, including conservation of mass has been developed to investigate the performance of the configurations. The model was checked against the CRFR in a nitric acid plant located at the domestic petrochemical complex. A good agreement was observed between the modelling results and the plant data. The effects of some important parameters such as pressure and temperature on NO(x) conversion were analysed. Results show 14% decrease in NO(x) emission annually in RFSBR compared with the CRFR, which is beneficial for the prevention of NO(x) emission, global warming and acid rain.

  13. Deactivation of La-Fe-ZSM-5 catalyst for selective catalytic reduction of NO with NH{sup 3}. Field study results

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Gongshin; Yang, Ralph T. [Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Chang, Ramsay; Cardoso, Sylvio [Air Pollution Control, Power Generation, Electric Power Research Institute, Palo Alto, CA 94304-1395 (United States); Smith, Randall A. [Fossil Energy Research Corporation, Laguna Hills, CA 92653 (United States)

    2004-11-08

    Results are summarized for a study on the effects of poisons on the La-Fe-ZSM-5 catalyst activity for the selective catalytic reduction of NO by ammonia. The deactivation of La-Fe-ZSM-5 honeycombs was studied in field tests. A honeycomb catalyst containing 25%La-Fe-ZSM-5 had an overall activity similar to that of a commercial vanadia honeycomb catalyst. Long-term activity test results show that the 25%La-Fe-ZSM-5 catalyst activity decreased to 50% after 300h and 25% after 1769h of on-stream flue gas exposure. The deactivation is correlated to the amounts of poisons deposited on the catalyst. Poisons include alkali and alkaline earth metals, As and Hg. Hg was found to be ion-exchanged from HgCl{sup 2} to form Hg-ZSM-5, and Hg was found to be among the strongest poisons. The poisoning effects of these elements appeared to be additive. Thus, from the chemical analysis of the deactivated catalyst, the deactivation of Fe-ZSM-5 can be predicted.

  14. Fe-N-C electrocatalysts for oxygen reduction reaction synthesized by using aniline salt and Fe3+/H2O2 catalytic system

    KAUST Repository

    Bukola, Saheed; Merzougui, Belabbes A.; Akinpelu, Akeem; Laoui, Tahar; Hedhili, Mohamed N.; Swain, Greg M.; Shao, Minhua

    2014-01-01

    Non-precious metal (NPM) catalysts are synthesized by polymerizing aniline salt using an aqueous Fe3+/H2O2 coupled catalytic system on a carbon matrix with a porous creating agent. The sulfur containing compunds such as ammonium peroxydisulfate, are eliminated in this method resulting in a much simpler process. The catalysts' porous structures are enhanced with ammonium carbonate as a sacrificial material that yields voids when decomposed during the heat treatment at 900 °C in N2 atmosphere. Two catalysts Fe-N-C/Vu and Fe-N-C/KB (Vu = Vulcan and KB = Ketjen black) were synthesized and characterized. Their oxygen reduction reaction (ORR) activities were investigated using a rotating ring-disk electrode (RRDE) in both 0.1 M KOH and 0.1 M HClO4. The catalysts show improved ORR activities close to that of Pt-based catalysts, low H2O2 formation and also demonstrated a remarkable tolerance towards methanol oxidation.

  15. Fe-N-C electrocatalysts for oxygen reduction reaction synthesized by using aniline salt and Fe3+/H2O2 catalytic system

    KAUST Repository

    Bukola, Saheed

    2014-11-01

    Non-precious metal (NPM) catalysts are synthesized by polymerizing aniline salt using an aqueous Fe3+/H2O2 coupled catalytic system on a carbon matrix with a porous creating agent. The sulfur containing compunds such as ammonium peroxydisulfate, are eliminated in this method resulting in a much simpler process. The catalysts\\' porous structures are enhanced with ammonium carbonate as a sacrificial material that yields voids when decomposed during the heat treatment at 900 °C in N2 atmosphere. Two catalysts Fe-N-C/Vu and Fe-N-C/KB (Vu = Vulcan and KB = Ketjen black) were synthesized and characterized. Their oxygen reduction reaction (ORR) activities were investigated using a rotating ring-disk electrode (RRDE) in both 0.1 M KOH and 0.1 M HClO4. The catalysts show improved ORR activities close to that of Pt-based catalysts, low H2O2 formation and also demonstrated a remarkable tolerance towards methanol oxidation.

  16. Adaptation of HepG2 cells to a steady-state reduction in the content of protein phosphatase 6 (PP6) catalytic subunit

    Energy Technology Data Exchange (ETDEWEB)

    Boylan, Joan M. [Department of Pediatrics, Brown University and Rhode Island Hospital, Providence, RI (United States); Salomon, Arthur R. [Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI (United States); Department of Chemistry, Brown University, Providence, RI (United States); Tantravahi, Umadevi [Division of Genetics, Department of Pathology, Brown University and Women and Infants Hospital, Providence, RI (United States); Gruppuso, Philip A., E-mail: philip_gruppuso@brown.edu [Department of Pediatrics, Brown University and Rhode Island Hospital, Providence, RI (United States); Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI (United States)

    2015-07-15

    Protein phosphatase 6 (PP6) is a ubiquitous Ser/Thr phosphatase involved in an array of cellular processes. To assess the potential of PP6 as a therapeutic target in liver disorders, we attenuated expression of the PP6 catalytic subunit in HepG2 cells using lentiviral-transduced shRNA. Two PP6 knock-down (PP6KD) cell lines (90% reduction of PP6-C protein content) were studied in depth. Both proliferated at a rate similar to control cells. However, flow cytometry indicated G2/M cell cycle arrest that was accounted for by a shift of the cells from a diploid to tetraploid state. PP6KD cells did not show an increase in apoptosis, nor did they exhibit reduced viability in the presence of bleomycin or taxol. Gene expression analysis by microarray showed attenuated anti-inflammatory signaling. Genes associated with DNA replication were downregulated. Mass spectrometry-based phosphoproteomic analysis yielded 80 phosphopeptides representing 56 proteins that were significantly affected by a stable reduction in PP6-C. Proteins involved in DNA replication, DNA damage repair and pre-mRNA splicing were overrepresented among these. PP6KD cells showed intact mTOR signaling. Our studies demonstrated involvement of PP6 in a diverse set of biological pathways and an adaptive response that may limit the effectiveness of targeting PP6 in liver disorders. - Highlights: • Lentiviral-transduced shRNA was used to generate a stable knockdown of PP6 in HepG2 cells. • Cells adapted to reduced PP6; cell proliferation was unaffected, and cell survival was normal. • However, PP6 knockdown was associated with a transition to a tetraploid state. • Genomic profiling showed downregulated anti-inflammatory signaling and DNA replication. • Phosphoproteomic profiling showed changes in proteins associated with DNA replication and repair.

  17. Adaptation of HepG2 cells to a steady-state reduction in the content of protein phosphatase 6 (PP6) catalytic subunit

    International Nuclear Information System (INIS)

    Boylan, Joan M.; Salomon, Arthur R.; Tantravahi, Umadevi; Gruppuso, Philip A.

    2015-01-01

    Protein phosphatase 6 (PP6) is a ubiquitous Ser/Thr phosphatase involved in an array of cellular processes. To assess the potential of PP6 as a therapeutic target in liver disorders, we attenuated expression of the PP6 catalytic subunit in HepG2 cells using lentiviral-transduced shRNA. Two PP6 knock-down (PP6KD) cell lines (90% reduction of PP6-C protein content) were studied in depth. Both proliferated at a rate similar to control cells. However, flow cytometry indicated G2/M cell cycle arrest that was accounted for by a shift of the cells from a diploid to tetraploid state. PP6KD cells did not show an increase in apoptosis, nor did they exhibit reduced viability in the presence of bleomycin or taxol. Gene expression analysis by microarray showed attenuated anti-inflammatory signaling. Genes associated with DNA replication were downregulated. Mass spectrometry-based phosphoproteomic analysis yielded 80 phosphopeptides representing 56 proteins that were significantly affected by a stable reduction in PP6-C. Proteins involved in DNA replication, DNA damage repair and pre-mRNA splicing were overrepresented among these. PP6KD cells showed intact mTOR signaling. Our studies demonstrated involvement of PP6 in a diverse set of biological pathways and an adaptive response that may limit the effectiveness of targeting PP6 in liver disorders. - Highlights: • Lentiviral-transduced shRNA was used to generate a stable knockdown of PP6 in HepG2 cells. • Cells adapted to reduced PP6; cell proliferation was unaffected, and cell survival was normal. • However, PP6 knockdown was associated with a transition to a tetraploid state. • Genomic profiling showed downregulated anti-inflammatory signaling and DNA replication. • Phosphoproteomic profiling showed changes in proteins associated with DNA replication and repair

  18. Reduction of Nitrogen Oxides using zeolite catalysts exchanged with cobalt

    International Nuclear Information System (INIS)

    Garcia M, E.A.; Bustamante L, F.; Montes de C, C.

    1999-01-01

    The Selective Catalytic Reduction (SCR) of NOx by methane in excess oxygen was studied over several zeolite catalysts; namely cobalt loaded mordenite, ferrierite, SM-5 and the corresponding acid forms. When NO2 predominated n the NOx mixture the acid forms showed the highest N2 formation rates under dry conditions. Mordenite supported catalysts were the most active ones followed by ferrierite and ZSM-5. The most active Co-Mordenite catalyst was tested using a NOx mixture, containing mostly NO, under dry conditions and in the presence of water and SO2. The addition of 8 % water to the reaction mixture lead to a reversible deactivation, mainly at low temperatures. When the reaction mixture contained 60 ppm SO2, the N2 formation rate decreased about a half likely due to SO2 poisoning

  19. Catalyst and method for reduction of nitrogen oxides

    Science.gov (United States)

    Ott, Kevin C [Los Alamos, NM

    2008-05-27

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  20. Synthesis of Superparamagnetic Core-Shell Structure Supported Pd Nanocatalysts for Catalytic Nitrite Reduction with Enhanced Activity, No Detection of Undesirable Product of Ammonium, and Easy Magnetic Separation Capability.

    Science.gov (United States)

    Sun, Wuzhu; Yang, Weiyi; Xu, Zhengchao; Li, Qi; Shang, Jian Ku

    2016-01-27

    Superparamagnetic nanocatalysts could minimize both the external and internal mass transport limitations and neutralize OH(-) produced in the reaction more effectively to enhance the catalytic nitrite reduction efficiency with the depressed product selectivity to undesirable ammonium, while possess an easy magnetic separation capability. However, commonly used qusi-monodispersed superparamagnetic Fe3O4 nanosphere is not suitable as catalyst support for nitrite reduction because it could reduce the catalytic reaction efficiency and the product selectivity to N2, and the iron leakage could bring secondary contamination to the treated water. In this study, protective shells of SiO2, polymethylacrylic acid, and carbon were introduced to synthesize Fe3O4@SiO2/Pd, Fe3O4@PMAA/Pd, and Fe3O4@C/Pd catalysts for catalytic nitrite reduction. It was found that SiO2 shell could provide the complete protection to Fe3O4 nanosphere core among these shells. Because of its good dispersion, dense structure, and complete protection to Fe3O4, the Fe3O4@SiO2/Pd catalyst demonstrated the highest catalytic nitrite reduction activity without the detection of NH4(+) produced. Due to this unique structure, the activity of Fe3O4@SiO2/Pd catalysts for nitrite reduction was found to be independent of the Pd nanoparticle size or shape, and their product selectivity was independent of the Pd nanoparticle size, shape, and content. Furthermore, their superparamagnetic nature and high saturation magnetization allowed their easy magnetic separation from treated water, and they also demonstrated a good stability during the subsequent recycling experiment.

  1. Laser diagnosis and plasma technology: Fundamentals for reduction of emissions and fuel consumption in DI internal combustion engines. Sub-project: Purification of diesel exhaust in pulsed plasma. Final report; Laserdiagnostische und plasmatechnologische Grundlagen zur Verminderung von Emissionen und Kraftstoffverbrauch von DI-Verbrennungsmotoren. Teilvorhaben: Reinigung von Dieselabgasen in gepulsten Plasmen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, T.; Kishimoto, T.; Birckigt, R.

    2000-12-01

    Selective catalytic reduction using ammonia based reducing agents is known to reduce the NOx-emissions from Diesel cars. However, it does not work efficiently under cold starting and urban driving conditions, because efficient reduction requires catalyst temperatures above 170 C. Without additional measures, pulsed plasma treatment does not cause reduction but mainly oxidation of nitric oxides preferably emitted as NO. By the combination of pulsed DBD-plasma treatment with selective catalytic reduction efficient NOx-reduction was obtained at catalyst temperatures below 170 C. It could be shown, that this low temperature reduction is a synergistic effect caused by plasma induced oxidation of some fraction of the NO. Based on this knowledge of the reaction mechanism plasma- and SCR-reactors were built, which were tested on a test bench equipped with a modern cars Diesel engine. Under cold starting and urban driving conditions by application of average plasma powers below 300 W the NOx-emissions were reduced for about 60%, the maximum degree of NOx-reduction was 85%. The plasma induced removal of hydrocarbons and particles, as well as the formation of by-products and the influence of hydrocarbons on the plasma induced selective catalytic reduction processes were investigated. No disadvantageous by-products could be found. (orig.) [German] Die selektive katalytische Reduktion mit Ammoniak als Reduktionsmittel ist ein bekanntes Verfahren zur Reduktion der Stickoxidemissionen von Diesel-Pkw, arbeitet aber erst ab Katalysatortemperaturen oberhalb 170 C und ist damit unter Kaltstart- und Stadtverkehrsbedingungen wenig wirksam. Gepulste Plasmen bewirken ohne zusaetzliche Massnahmen keine ausreichende chemische Reduktion sondern ueberwiegend Oxidation der als NO emittierten Stickoxide. Durch Kombination von DBE-Plasmen mit der selektiven katalytischen Reduktion hingegen konnte auch bei Katalysatortemperaturen unter 170 C wirkungsvolle NOx-Reduktion erzielt werden. Es konnte

  2. New self-assembled material based on Ru nanoparticles and 4-sulfocalix[4]arene as an efficient and recyclable catalyst for reduction of brilliant yellow azo dye in water: a new model catalytic reaction

    Energy Technology Data Exchange (ETDEWEB)

    Rambabu, Darsi; Pradeep, Chullikkattil P.; Dhir, Abhimanew, E-mail: abhimanew@iitmandi.ac.in [Indian Institute of Technology (India)

    2016-12-15

    New self-assembled material (Ru@SC) with ruthenium nanoparticles (Ru NPs) and 4-sulfocalix[4]arene (SC) is synthesized in water at room temperature. Ru@SC is characterized by thermal gravimetric analysis, FT-IR, powder x-ray diffraction, TEM and SEM analysis. The size of Ru nanoparticles in the self-assembly is approximately 5 nm. The self-assembled material Ru@SC shows an efficient catalytic reduction of toxic ‘brilliant yellow’ (BY) azo dye. The reduced amine products were successfully separated and confirmed by single-crystal XRD, NMR and UV-Vis spectroscopy. Ru@SC showed a better catalytic activity in comparison with commercial catalysts Ru/C (ruthenium on charcoal 5 %) and Pd/C (palladium on charcoal 5 and 10 %). The catalyst also showed a promising recyclability and heterogeneous nature as a catalyst for reduction of ‘BY’ azo dye.

  3. Fabrication of Bi-Fe{sub 3}O{sub 4}@RGO hybrids and their catalytic performance for the reduction of 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuefang; Xia, Fengling; Li, Xichuan; Xu, Xiaoyang; Wang, Huan; Yang, Nian; Gao, Jianping, E-mail: jianpinggaols@126.com [Tianjin University, School of Science (China)

    2015-11-15

    Nanocatalysts are frequently connected to magnetic nanoparticles. These composites are easy to be retrieved from the reaction system under a magnetic field because of their magnetic properties. Magnetic separation is particularly promising in industry since it can solve many issues present in filtration, centrifugation, or gravitation separation. Herein, a facile method to prepare bismuth and Fe{sub 3}O{sub 4} nanoparticles loaded on reduced graphene oxide magnetic hybrids (Bi-Fe{sub 3}O{sub 4}@RGO) using soluble starch as a dispersant is demonstrated. The magnetic Fe{sub 3}O{sub 4} nanoparticles were synthesized by the co-precipitation of Fe{sup 2+} and Fe{sup 3+} ions, and Bi nanoparticles were fabricated by the redox reactions between sodium borohydride and ammonium bismuth citrate in the presence of soluble starch. Transmission electron microscopy images demonstrate that the average diameter of the Fe{sub 3}O{sub 4} nanoparticles is about 5 nm and the diameters of Bi nanoparticles range from 10 to 20 nm. The magnetic Bi-Fe{sub 3}O{sub 4}@RGO hybrids exhibit high catalytic activity in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by NaBH{sub 4} with a first-order rate constant (K) of 0.00808 s{sup −1} and is magnetically recyclable for at least five cycles. This strategy provides an efficient and recyclable catalyst for the use in environmental protection applications.

  4. Assessment of Malawi's success in child mortality reduction through the lens of the Catalytic Initiative Integrated Health Systems Strengthening programme: Retrospective evaluation.

    Science.gov (United States)

    Doherty, Tanya; Zembe, Wanga; Ngandu, Nobubelo; Kinney, Mary; Manda, Samuel; Besada, Donela; Jackson, Debra; Daniels, Karen; Rohde, Sarah; van Damme, Wim; Kerber, Kate; Daviaud, Emmanuelle; Rudan, Igor; Muniz, Maria; Oliphant, Nicholas P; Zamasiya, Texas; Rohde, Jon; Sanders, David

    2015-12-01

    Malawi is estimated to have achieved its Millennium Development Goal (MDG) 4 target. This paper explores factors influencing progress in child survival in Malawi including coverage of interventions and the role of key national policies. We performed a retrospective evaluation of the Catalytic Initiative (CI) programme of support (2007-2013). We developed estimates of child mortality using four population household surveys undertaken between 2000 and 2010. We recalculated coverage indicators for high impact child health interventions and documented child health programmes and policies. The Lives Saved Tool (LiST) was used to estimate child lives saved in 2013. The mortality rate in children under 5 years decreased rapidly in the 10 CI districts from 219 deaths per 1000 live births (95% confidence interval (CI) 189 to 249) in the period 1991-1995 to 119 deaths (95% CI 105 to 132) in the period 2006-2010. Coverage for all indicators except vitamin A supplementation increased in the 10 CI districts across the time period 2000 to 2013. The LiST analysis estimates that there were 10 800 child deaths averted in the 10 CI districts in 2013, primarily attributable to the introduction of the pneumococcal vaccine (24%) and increased household coverage of insecticide-treated bednets (19%). These improvements have taken place within a context of investment in child health policies and scale up of integrated community case management of childhood illnesses. Malawi provides a strong example for countries in sub-Saharan Africa of how high impact child health interventions implemented within a decentralised health system with an established community-based delivery platform, can lead to significant reductions in child mortality.

  5. Assessment of Malawi’s success in child mortality reduction through the lens of the Catalytic Initiative Integrated Health Systems Strengthening programme: Retrospective evaluation

    Directory of Open Access Journals (Sweden)

    Tanya Doherty

    2015-12-01

    Full Text Available Malawi is estimated to have achieved its Millennium Development Goal (MDG 4 target. This paper explores factors influencing progress in child survival in Malawi including coverage of interventions and the role of key national policies. We performed a retrospective evaluation of the Catalytic Initiative (CI programme of support (2007–2013. We developed estimates of child mortality using four population household surveys undertaken between 2000 and 2010. We recalculated coverage indicators for high impact child health interventions and documented child health programmes and policies. The Lives Saved Tool (LiST was used to estimate child lives saved in 2013. The mortality rate in children under 5 years decreased rapidly in the 10 CI districts from 219 deaths per 1000 live births (95% confidence interval (CI 189 to 249 in the period 1991–1995 to 119 deaths (95% CI 105 to 132 in the period 2006–2010. Coverage for all indicators except vitamin A supplementation increased in the 10 CI districts across the time period 2000 to 2013. The LiST analysis estimates that there were 10 800 child deaths averted in the 10 CI districts in 2013, primarily attributable to the introduction of the pneumococcal vaccine (24% and increased household coverage of insecticide–treated bednets (19%. These improvements have taken place within a context of investment in child health policies and scale up of integrated community case management of childhood illnesses. Malawi provides a strong example for countries in sub–Saharan Africa of how high impact child health interventions implemented within a decentralised health system with an established community–based delivery platform, can lead to significant reductions in child mortality.

  6. 77 FR 34149 - Heavy-Duty Highway Program: Revisions for Emergency Vehicles and SCR Maintenance

    Science.gov (United States)

    2012-06-08

    ... selective catalytic reduction technologies. Third, EPA is proposing to offer short-term relief for nonroad..., Attention Docket No. EPA-HQ-OAR-2011-1032. Such deliveries are only accepted during the Docket's normal..., especially given some emergency vehicles' extreme duty cycles. By this action, EPA intends to help our nation...

  7. Unique catalytic properties of a butoxy chain-containing ruthenated porphyrin towards oxidation of uric acid and reduction of dioxygen for visible light-enhanced fuel cells

    International Nuclear Information System (INIS)

    Liu, Junchen; Wang, Yi; Deng, Qiang; Zhu, Licai; Chao, Hui; Li, Hong

    2016-01-01

    Highlights: • Ru(II)PTPP/CdS shows two Ru(II)-based oxidation peaks at 0.296 V and 0.830 V. • Photoelectrocatalytic oxidation of UA exhibits good linear responses. • The butoxy chain endows Ru(II)PTPP with multifunctional catalytic properties. • Ru(II)PTPP on CF electrode can remarkably promote the reduction of oxygen. • The assembled cell has I_S_C of 0.136 mA cm"−"2 and P_m_a_x of 31.50 μW cm"−"2. - Abstract: This paper reports the photoelectrocatalytic activities of a ruthenated porphyrin [Ru(phen)_2(IP-C_4O-TPP)]"2"+ (denoted as Ru(II)PTPP, phen = 1,10-phenanthroline, IP = imidazo[4,5-f][1,10]phenanthroline and TPP = 5,10,15,20-tetraphenylporphyrin) containing a covalently-linked butoxy chain (-C_4O-) between IP and TPP moieties by means of various electrochemical techniques in combination with absorption spectroscopy and scanning electronic microscopy. Ru(II)PTPP is assembled on the surface of CdS nanoparticles, showing two Ru(II)-based peaks at 0.296 V and 0.830 V, where uric acid (UA) can be photoelectrocatalytically oxidized in a linear range of 0.01-10.0 mmol L"−"1. The −C_4O- chain endows the Ru(II)PTPP/carbon felt (CF) electrode with favorable dioxygen (O_2) binding sites to achieve a couple of new redox peaks at −0.213 V, where O_2 involves electrocatalytic reduction reactions. While employing 5.0 mmol L"−"1 UA as fuel, and 60 mL min"−"1 O_2 as oxidant, the proposed photoelectrochemical fuel cell shows open-circuit photovoltage of 0.656 V, short-circuit photocurrent density of 0.136 mA cm"−"2, and maximum power density of 31.50 μW cm"−"2 at 0.497 V under visible-light illumination of 0.18 mW cm"−"2. The present study provides an interesting platform for the utilization of renewable energy sources.

  8. An unsaturated metal site-promoted approach to construct strongly coupled noble metal/HNb3O8 nanosheets for efficient thermo/photo-catalytic reduction.

    Science.gov (United States)

    Shen, Lijuan; Xia, Yuzhou; Lin, Sen; Liang, Shijing; Wu, Ling

    2017-10-05

    Creating two-dimensional (2D) crystal-metal heterostructures with an ultrathin thickness has spurred increasing research endeavors in catalysis because of its fascinating opportunities in tuning the electronic state at the surface and enhancing the chemical reactivity. Here we report a novel and facile Nb 4+ -assisted strategy for the in situ growth of highly dispersed Pd nanoparticles (NPs) on monolayer HNb 3 O 8 nanosheets (HNb 3 O 8 NS) constituting a 2D Pd/HNb 3 O 8 NS heterostructure composite without using extra reducing agents and stabilizing agents. The Pd NP formation is directed via a redox reaction between an oxidative Pd salt precursor (H 2 PdCl 4 ) and reductive unsaturated surface metal (Nb 4+ ) sites induced by light irradiation on monolayer HNb 3 O 8 NS. The periodic arrangement of metal Nb nodes on HNb 3 O 8 NS leads to a homogeneous distribution of Pd NPs. Density functional theory (DFT) calculations reveal that the direct redox reaction between the Nb 4+ and Pd 2+ ions leads to a strong chemical interaction between the formed Pd metal NPs and the monolayer HNb 3 O 8 support. Consequently, the as-obtained Pd/HNb 3 O 8 composite serves as a highly efficient bifunctional catalyst in both heterogeneous thermocatalytic and photocatalytic selective reduction of aromatic nitro compounds in water under ambient conditions. The achieved high activity originates from the unique 2D nanosheet configuration and in situ Pd incorporation, which leads to a large active surface area, strong metal-support interaction and enhanced charge transport capability. Moreover, this facile Nb 4+ -assisted synthetic route has demonstrated to be general, which can be applied to load other metals such as Au and Pt on monolayer HNb 3 O 8 NS. It is anticipated that this work can extend the facile preparation of noble metal/nanosheet 2D heterostructures, as well as promote the simultaneous capture of duple renewable thermal and photon energy sources to drive an energy efficient

  9. Catalytically supported reduction of emissions from small-scale biomass furnace systems; Katalytisch unterstuetzte Minderung von Emissionen aus Biomasse-Kleinfeuerungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Ingo; Lenz, Volker; Schenker, Marian; Thiel, Christian [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany); Kraus, Markus; Matthes, Mirjam; Roland, Ulf [Helmholtz-Zentrum fuer Umweltforschung GmbH - UFZ, Leipzig (Germany); Bindig, Rene; Einicke, Wolf-Dietrich [Leipzig Univ. (Germany)

    2011-06-29

    The increased use of solid biomass in small combustion for generating heat from renewable energy sources is unfortunately associated with increased emissions of airborne pollutants. The reduction is possible on the one hand by the use of high-quality modern furnaces to the latest state of the art. On the other hand, several promising approaches method for retrofitting small-scale furnaces are currently being developed that will allow an effective emission reduction by the subsequent treatment of the exhaust gas. The overview of current available emission control technologies for small-scale biomass combustion plants shows that there is still considerable need for research on the sustainable production of heat from solid biofuels. The amendment to the 1st BImSchV provides a necessary drastic reduction of discharged pollutants from small-scale biomass furnaces. When using the fuel wood in modern central heating boilers the required limits can be met at full load. However, dynamic load changes can cause brief dramatic emission increases even with wood central heating boilers. Firebox and control optimization must contribute in the future to a further reduction of emissions. The typical simple single-room fireplaces like hand-fed wood stoves are suitable under type test conditions to comply the limit values. By contrast, in practical operation, the harmful gas emissions be exceeded without secondary measures normally. The performed experimental investigations show that a reduction of both CO and of organic compounds by catalytic combustion is possible. In addition to developing specially adapted catalysts, it is necessary to provide additional dust separation by combined processes, since conventional catalysts are not suitable for deposition and retention of particulate matter or would lose their activity due to dust accumulation on the active surface, when the catalyst would act as a filter at the same time. To enable sufficiently high reaction temperatures and thus a

  10. Catalytically supported reduction of emissions from small-scale biomass furnace systems; Katalytisch unterstuetzte Minderung von Emissionen aus Biomasse-Kleinfeuerungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Ingo; Lenz, Volker; Schenker, Marian; Thiel, Christian [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany); Kraus, Markus; Matthes, Mirjam; Roland, Ulf [Helmholtz-Zentrum fuer Umweltforschung GmbH - UFZ, Leipzig (Germany); Bindig, Rene; Einicke, Wolf-Dietrich [Leipzig Univ. (Germany)

    2011-06-29

    The increased use of solid biomass in small combustion for generating heat from renewable energy sources is unfortunately associated with increased emissions of airborne pollutants. The reduction is possible on the one hand by the use of high-quality modern furnaces to the latest state of the art. On the other hand, several promising approaches method for retrofitting small-scale furnaces are currently being developed that will allow an effective emission reduction by the subsequent treatment of the exhaust gas. The overview of current available emission control technologies for small-scale biomass combustion plants shows that there is still considerable need for research on the sustainable production of heat from solid biofuels. The amendment to the 1st BImSchV provides a necessary drastic reduction of discharged pollutants from small-scale biomass furnaces. When using the fuel wood in modern central heating boilers the required limits can be met at full load. However, dynamic load changes can cause brief dramatic emission increases even with wood central heating boilers. Firebox and control optimization must contribute in the future to a further reduction of emissions. The typical simple single-room fireplaces like hand-fed wood stoves are suitable under type test conditions to comply the limit values. By contrast, in practical operation, the harmful gas emissions be exceeded without secondary measures normally. The performed experimental investigations show that a reduction of both CO and of organic compounds by catalytic combustion is possible. In addition to developing specially adapted catalysts, it is necessary to provide additional dust separation by combined processes, since conventional catalysts are not suitable for deposition and retention of particulate matter or would lose their activity due to dust accumulation on the active surface, when the catalyst would act as a filter at the same time. To enable sufficiently high reaction temperatures and thus a

  11. Simulation and Optimization of SCR System for Direct-injection Diesel Engine

    Directory of Open Access Journals (Sweden)

    Guanqiang Ruan

    2014-11-01

    Full Text Available The turbo diesel SCR system has been researched and analyzed in this paper. By using software of CATIA, three-dimensional physical model of SCR system has been established, and with software of AVL-FIRE, the boundary conditions have been set, simulated and optimized. In the process of SCR system optimizing, it mainly optimized the pray angle. Compare the effects of processing NO to obtain batter optimization results. At last the optimization results are compared by bench test, and the experimental results are quite consistent with simulation.

  12. Catalytic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bindley, W T.R.

    1931-04-18

    An apparatus is described for the catalytic treatment of liquids, semi-liquids, and gases comprising a vessel into which the liquid, semi-liquid, or gas to be treated is introduced through a common inlet to a chamber within the vessel whence it passes to contact with a catalyst through radially arranged channels or passages to a common outlet chamber.

  13. Enhanced catalytic four-electron dioxygen (O2) and two-electron hydrogen peroxide (H2O2) reduction with a copper(II) complex possessing a pendant ligand pivalamido group.

    Science.gov (United States)

    Kakuda, Saya; Peterson, Ryan L; Ohkubo, Kei; Karlin, Kenneth D; Fukuzumi, Shunichi

    2013-05-01

    A copper complex, [(PV-tmpa)Cu(II)](ClO4)2 (1) [PV-tmpa = bis(pyrid-2-ylmethyl){[6-(pivalamido)pyrid-2-yl]methyl}amine], acts as a more efficient catalyst for the four-electron reduction of O2 by decamethylferrocene (Fc*) in the presence of trifluoroacetic acid (CF3COOH) in acetone as compared with the corresponding copper complex without a pivalamido group, [(tmpa)Cu(II)](ClO4)2 (2) (tmpa = tris(2-pyridylmethyl)amine). The rate constant (k(obs)) of formation of decamethylferrocenium ion (Fc*(+)) in the catalytic four-electron reduction of O2 by Fc* in the presence of a large excess CF3COOH and O2 obeyed first-order kinetics. The k(obs) value was proportional to the concentration of catalyst 1 or 2, whereas the k(obs) value remained constant irrespective of the concentration of CF3COOH or O2. This indicates that electron transfer from Fc* to 1 or 2 is the rate-determining step in the catalytic cycle of the four-electron reduction of O2 by Fc* in the presence of CF3COOH. The second-order catalytic rate constant (k(cat)) for 1 is 4 times larger than the corresponding value determined for 2. With the pivalamido group in 1 compared to 2, the Cu(II)/Cu(I) potentials are -0.23 and -0.05 V vs SCE, respectively. However, during catalytic turnover, the CF3COO(-) anion present readily binds to 2 shifting the resulting complex's redox potential to -0.35 V. The pivalamido group in 1 is found to inhibit anion binding. The overall effect is to make 1 easier to reduce (relative to 2) during catalysis, accounting for the relative k(cat) values observed. 1 is also an excellent catalyst for the two-electron two-proton reduction of H2O2 to water and is also more efficient than is 2. For both complexes, reaction rates are greater than for the overall four-electron O2-reduction to water, an important asset in the design of catalysts for the latter.

  14. Supported Metal Zeolites as Environmental Catalysts for Reduction of NOx Molecules

    International Nuclear Information System (INIS)

    May Nwe Win; Tin Tin Aye; Kyaw Myo Naing; Nyunt Wynn; Maung Maung Htay

    2005-09-01

    The NOx contamination of air is a major pollutant due to its reaction with the volatile organic compounds, which give rise to ground level (tropospheric) ozone. It is a conventional fact that NOx are one of the major components of car exhaust. In view of that fact, to sustain the tropospheric ozone is to reduce the amount of NOx in the air. Therefore, this paper is concerned with the catalytic activity of Fe-loaded zeolite and Cu-loaded zeolite used to decompose NIOx by SCR (selective catalytic reduction) reaction with very high activity have been studied. Their preparations, characterization by XRD, FT-IR and SEM were also studied. Fe and Cu containig were prepared by soild state ion-exchange method under ambient presure and at the temperature of 600C for 4 hours. From this study, selective catalytic reduction rection was observed, showing about 87% conversion of the NOx molecule with the corresponding optimum amount of catalyst (1.0+-0.5)g working under the reactor space volume of 30cm3 at ambient temperature (30-32)C

  15. Facile synthesis of SiO{sub 2}@Cu{sub x}O@TiO{sub 2} heterostructures for catalytic reductions of 4-nitrophenol and 2-nitroaniline organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Zelekew, Osman Ahmed; Kuo, Dong-Hau, E-mail: dhkuo@mail.ntust.edu.tw

    2017-01-30

    Highlights: • The synthesis of SiO{sub 2}@Cu{sub x}O@TiO{sub 2}catalystwasillustrated (*). • The p-n junction between p-type Cu{sub x}O and n-type TiO{sub 2} built electric field. • The electric field results in avoiding the recombination of electron and hole. • The n-type TiO{sub 2} rich in electron outward facilitates the reduction. - Abstract: Herein, we designed the p-type Cu{sub x}O (x = 1 or 2) nanoparticles deposited on SiO{sub 2} spherical particle inside and coated with thin layered n-type TiO{sub 2} semiconductors outside for reduction purpose. The composite material, abbreviated as SiO{sub 2}@Cu{sub x}O@TiO{sub 2}, was characterized. The catalytic performance of the composite was tested for the reductions of 4-nitrophenol (4-NP) and 2-nitroaniline (2-NA). Complete reductions of 4-NP and 2-NA took, 210 and 150 s, respectively. The catalytic efficiency of the composite material may be associated with electron and hole separation resulted from the p-n junction formation between p-type Cu{sub x}O and n-type TiO{sub 2} and the built-in electric field. Moreover, the hydride ion and electrons released from NaBH{sub 4} together with outward electrons from n-type TiO{sub 2}, synergistically, are also responsible for the reduction of nitro aromatic compounds. Our design of composite material from low-priced metal oxides was successful towards reduction of nitro-aromatic compounds.

  16. TiO2/SiO2 prepared via facile sol-gel method as an ideal support for green synthesis of Ag nanoparticles using Oenothera biennis extract and their excellent catalytic performance in the reduction of 4-nitrophenol

    Directory of Open Access Journals (Sweden)

    Bahar Khodadadi

    2017-01-01

    Full Text Available In the present study, the extract of the plant of Oenothera biennis was used to green synthesis of silver nanoparticles (Ag NPs as an environmentally friendly, simple and low cost method. And Additionally, TiO2/SiO2 was prepared via facile sol-gel method using starch as an important, naturally abundant organic polymer as an ideal support. The Ag NPs/TiO2/SiO2 as an effective catalyst was prepared through reduction of Ag+ ions using Oenothera biennis extract as the reducing and stabilizing agent and Ag NPs immobilization on TiO2/SiO2 surface in the absence of any stabilizer or surfactant. Several techniques such as FT-IR spectroscopy, UV-Vis spectroscopy, X-ray Diffraction (XRD, sScanning eElectron mMicroscopy (FE-SEM, Eenergy dDispersive X-ray sSpectroscopy (EDS, and Ttransmission Eelectron Mmicroscopy (TEM were used to characterize TiO2/SiO2, silver nanoparticles (Ag NPs, and Ag NPs/TiO2/SiO2. Moreover, the catalytic activity of the Ag NPs/ TiO2/SiO2 was investigated in the reduction of 4-nitrophenol (4-NP at room temperature. On the basis of the results, the Ag NPs/TiO2/SiO2 was found to be high catalytic activity highly active catalyst according to the experimental results in this study. In addition, Ag NPs/TiO2/SiO2 can be recovered and reused several times in the reduction of 4-NP with no significant loss of catalytic activity.

  17. A Study of Different Doped Metal Cations on the Physicochemical Properties and Catalytic Activities of Ce20 M1 Ox (M=Zr, Cr, Mn, Fe, Co, Sn) Composite Oxides for Nitric Oxide Reduction by Carbon Monoxide.

    Science.gov (United States)

    Deng, Changshun; Li, Min; Qian, Junning; Hu, Qun; Huang, Meina; Lin, Qingjin; Ruan, Yongshun; Dong, Lihui; Li, Bin; Fan, Minguang

    2016-08-05

    This work is mainly focused on investigating the effects of different doped metal cations on the formation of Ce20 M1 Ox (M=Zr, Cr, Mn, Fe, Co, Sn) composite oxides and their physicochemical and catalytic properties for NO reduction by CO as a model reaction. The obtained samples were characterized by using N2 physisorption, X-ray diffraction, laser Raman spectroscopy, UV/Vis diffuse reflectance spectroscopy, inductively coupled plasma atomic emission spectroscopy, X-ray photoelectron spectroscopy, temperature-programmed reduction by hydrogen and by oxygen (H2 -TPR and O2 -TPD), in situ diffuse reflectance infrared Fourier transform spectroscopy, and the NO+CO model reaction. The results imply that the introduction of M(x+) into the lattice of CeO2 increases the specific surface area and pore volume, especially for variable valence metal cations, and enhances the catalytic performance to a great extent. In this regard, increases in the oxygen vacancies, reduction properties, and chemisorbed O2 (-) (and/or O(-) ) species of these Ce20 M1 Ox composite oxides (M refers to variable valence metals) play significant roles in this reaction. Among the samples, Ce20 Cr1 Ox exhibited the best catalytic performance, mainly because it has the best reducibility and more chemisorbed oxygen, and significant reasons for these attributes may be closely related to favorable synergistic interactions of the vacancies and near-surface Ce(3+) and Cr(3+) . Finally, a possible reaction mechanism was tentatively proposed to understand the reactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Deactivation of SCR catalysts by potassium: A study of potential alkali barrier materials

    DEFF Research Database (Denmark)

    Olsen, Brian Kjærgaard; Kügler, Frauke; Castellino, Francesco

    2017-01-01

    The use of coatings in order to protect vanadia based SCR catalysts against potassium poisoning has been studied by lab- and pilot-scale experiments. Three-layer pellets, consisting of a layer ofa potential coating material situated between layers of fresh and potassium poisoned SCR catalyst, were...... the coating process. Potassium had to some extent penetrated the MgO coat, and SEM analysis revealed it to be rather thick and fragile. Despite these observations, the coating did protect the SCR catalyst against potassium poisoning to some degree, leaving promise of further optimization....... used to test the ability of the barrier layer to block the diffusion of potassium across the pellet. Of MgO, sepiolite and Hollandite manganese oxide, MgO was the most effective potassium barrier, and no potassium was detected in the MgO layer upon exposure to SCR conditions for 7 days. Two monoliths...

  19. Deactivation of SCR catalysts in biomass fired power plants

    DEFF Research Database (Denmark)

    Olsen, Brian Kjærgaard

    composition and operating conditions, is not available. The main objective of the work presented in this thesis has been to conduct an in depth investigation of the deactivation mechanism of vanadia based SCR catalysts, when subjected to potassium rich aerosols. It has furthermore been a goal to suggest...... for up to 600 hours. The activity of fresh and exposed catalysts was measured in the temperature range 250-400 °C in a laboratory-scale reactor. All samples exposed for more than 240 hours proved to have deactivated significantly, however, catalysts exposed at 150 °C showed higher remaining activity......-scale setup at 350 °C for up to 1100 hours, and their activities were followed by in situ measurements. A 3%V2O5-7%WO3/TiO2 reference catalyst deactivated with a rate of 0.91 %/day during 960 hours of exposure, and a subsequent SEM-EDS analysis showed complete potassium penetration of the catalyst wall...

  20. Uniformly active phase loaded selective catalytic reduction catalysts (V{sub 2}O{sub 5}/TNTs) with superior alkaline resistance performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiqiang; Wang, Penglu [Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University, 310058 Hangzhou (China); Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou 310027 (China); Chen, Xiongbo [South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655 (China); Wu, Zhongbiao, E-mail: zbwu@zju.edu.cn [Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resources Science, Zhejiang University, 310058 Hangzhou (China); Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, Hangzhou 310027 (China)

    2017-02-15

    Highlights: • VOSO{sub 4} exhibited better synergistic effect with titanate nanotubes than NH{sub 4}VO{sub 3}. • Ion-exchange reaction occurs between VOSO{sub 4} and titanate nanotubes. • Ion-exchange resulting in uniformly vanadium distribution on titanate nanotubes. • VOSO{sub 4}-based catalyst exhibited impressive SCR activity and alkaline resistance. - Abstract: In this work, protonated titanate nanotubes was performed as a potential useful support and different vanadium precursors (NH{sub 4}VO{sub 3} and VOSO{sub 4}) were used to synthesize deNO{sub x} catalysts. The results showed that VOSO{sub 4} exhibited better synergistic effect with titanate nanotubes than NH{sub 4}VO{sub 3}, which was caused by the ion-exchange reaction. Then high loading content of vanadium, uniformly active phase distribution, better dispersion of vanadium, more acid sites, better V{sup 5+}/V{sup 4+} redox cycles and superior oxygen mobility were achieved. Besides, VOSO{sub 4}-based titanate nanotubes catalysts also showed enhanced alkaline resistance than particles (P25) based catalysts. It was strongly associated with its abundant acid sites, large surface area, flexible redox cycles and oxygen transfer ability. For the loading on protonated titanate nanotubes, active metal with cation groups was better precursors than anion ones. V{sub 2}O{sub 5}/TNTs catalyst was a promising substitute for the commercial vanadium catalysts and the work conducted herein provided a useful idea to design uniformly active phase loaded catalyst.

  1. Toward Rational Design of Cu/SSZ-13 Selective Catalytic Reduction Catalysts: Implications from Atomic-Level Understanding of Hydrothermal Stability

    Energy Technology Data Exchange (ETDEWEB)

    Song, James [Institute; The; amp, Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, P.O. Box 646515, Pullman, Washington 99164, United States; Wang, Yilin [Institute; Walter, Eric D. [Environmental; Washton, Nancy M. [Environmental; Mei, Donghai [Institute; Kovarik, Libor [Environmental; Engelhard, Mark H. [Environmental; Prodinger, Sebastian [Institute; Wang, Yong [Institute; The; amp, Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, P.O. Box 646515, Pullman, Washington 99164, United States; Peden, Charles H. F. [Institute; Gao, Feng [Institute

    2017-11-03

    The hydrothermal stability of Cu/SSZ-13 SCR catalysts has been extensively studied, yet atomic level understanding of changes to the zeolite support and the Cu active sites during hydrothermal aging are still lacking. In this work, via the utilization of spectroscopic methods including solid-state 27Al and 29Si NMR, EPR, DRIFTS, and XPS, together with imaging and elemental mapping using STEM, detailed kinetic analyses, and theoretical calculations with DFT, various Cu species, including two types of isolated active sites and CuOx clusters, were precisely quantified for samples hydrothermally aged under varying conditions. This quantification convincingly confirms the exceptional hydrothermal stability of isolated Cu2+-2Z sites, and the gradual conversion of [Cu(OH)]+-Z to CuOx clusters with increasing aging severity. This stability difference is rationalized from the hydrolysis activation barrier difference between the two isolated sites via DFT. Discussions are provided on the nature of the CuOx clusters, and their possible detrimental roles on catalyst stability. Finally, a few rational design principles for Cu/SSZ-13 are derived rigorously from the atomic-level understanding of this catalyst obtained here. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. Computing time was granted by a user proposal at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) and by the National Energy Research Scientific Computing Center (NERSC). The experimental studies described in this paper were performed in the EMSL, a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.

  2. New developments of high dust-SCR technology in the cement industry results of pilot tests in Solnhofen and development state of a full scale SCR unit; Nouveaux developpements de la technologie SCR ''High Dust'' dans l'industrie du ciment - resultats de tests pilotes a Solnhoffen et etat de developpement d'une unite pilote a l'echelle

    Energy Technology Data Exchange (ETDEWEB)

    Samant, G. [Lurgi Energie und Entsorgung GmbH, Frankfurt (Germany); Sauter, G. [Soinhofer Portland Zementwerke AG, Solnhofen (Germany); Haug, N. [Agence Federale de l' Environnement, Berlin (Germany)

    2001-07-01

    The production of clinker in the cement industry involve the formation of nitrous oxides, and the emission limits are becoming more stringent from year to year. The added up total NOx emissions from the European cement industry amounts at present approx. 450.000 Mg/year. As such it is high time for the decision to develop and implement a technology to reduce NOx-emissions. At present SCR technology which is implemented in the glass industry, waste incineration and power plants seems to be the best economical and ecological solution for cement industry. In the period time from 1997 to the end of 1999 pilot plant test work was carried out by the companies 'Solnhofer Portland Zementwerke AG' and 'mg Engineering Lurgi' in the cement plant in Solnhofen. The results of pilot plan test work show that NOx reduction rates above 90% with NH{sub 3} slip less then 5 vppm can be achieved. The results of the test work with different type of catalysts are discussed. Based on the results of the test work a suitable SCR-process for cement industry is developed. At present a High-Dust-SCR demonstration plant at 'Solnhofer Portland Zementwerke AG' with the help of German Federal Environmental Agency, UBA-Berlin, is under commissioning and going on stream. (authors)

  3. Outstanding low temperature HC-SCR of NOx over platinum-group catalysts supported on mesoporous materials expecting diesel-auto emission regulation

    International Nuclear Information System (INIS)

    Komatsu, Tamikuni; Tomokuni, Keizou; Yamada, Issaku

    2006-01-01

    Outstanding low temperature HC-SCR of NOx over platinum-group catalysts supported on mesoporous materials, which does not rely on the conventional NOx-absorption-reduction-catalysts, is presented for the purpose of de-NOx of diesel-auto emissions. The established catalysts basically consist of mesoporous silica or metal-substituted mesoporous silicates for supports and platinum for active species, which is operated under lean- and rich-conditions. The new catalysts are very active at 150-200 o C and free from difficult problems of SOx-deactivation and hydrothermal ageing of the NOx-absorption-reduction catalyst. (author)

  4. Selective catalytic reduction of nitrogen oxides from industrial gases by hydrogen or methane; Reduction catalytique selective des oxydes d'azote (NO{sub x}) provenant d'effluents gazeux industriels par l'hydrogene ou le methane

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann Pirez, M

    2004-12-15

    This work deals with the selective catalytic reduction of nitrogen oxides (NO{sub x}), contained in the effluents of industrial plants, by hydrogen or methane. The aim is to replace ammonia, used as reducing agent, in the conventional process. The use of others reducing agents such as hydrogen or methane is interesting for different reasons: practical, economical and ecological. The catalyst has to convert selectively NO into N{sub 2}, in presence of an excess of oxygen, steam and sulfur dioxide. The developed catalyst is constituted by a support such as perovskites, particularly LaCoO{sub 3}, on which are dispersed noble metals (palladium, platinum). The interaction between the noble metal and the support, generated during the activation of the catalyst, allows to minimize the water and sulfur dioxide inhibitor phenomena on the catalytic performances, particularly in the reduction of NO by hydrogen. (O.M.)

  5. Iron loading effects in Fe/SSZ-13 NH3-SCR catalysts: nature of the Fe-ions and structure-function relationships

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng; Zheng, Yang; Kukkadapu, Ravi K.; Wang, Yilin; Walter, Eric D.; Schwenzer, Birgit; Szanyi, Janos; Peden, Charles HF

    2016-05-06

    Using a traditional aqueous solution ion-exchange method under a protecting atmosphere of N2, a series of Fe/SSZ-13 catalysts with various Fe loadings were synthesized. UV-Vis, EPR and Mössbauer spectroscopies, coupled with temperature programmed reduction and desorption techniques, were used to probe the nature of the Fe sites. The major monomeric and dimeric Fe species are extra-framework [Fe(OH)2]+ and [HO-Fe-O-Fe-OH]2+. Larger oligomers with unknown nuclearity, poorly crystallized Fe2O3 particles, together with isolated Fe2+ ions, are minor Fe-containing moieties. Reaction rate and Fe loading correlations suggest that isolated Fe3+ ions are the active sites for standard SCR while the dimeric sites are the active centers for NO oxidation. NH3 oxidation, on the other hand, is catalyzed by sites with higher nuclearity. A low-temperature standard SCR reaction network is proposed that includes redox cycling of both monomeric and dimeric Fe species, for SCR and NO2 generation, respectively. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Program for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle.

  6. Functional characterization of sucrose phosphorylase and scrR, a regulator of sucrose metabolism in Lactobacillus reuteri.

    Science.gov (United States)

    Teixeira, Januana S; Abdi, Reihaneh; Su, Marcia Shu-Wei; Schwab, Clarissa; Gänzle, Michael G

    2013-12-01

    Lactobacillus reuteri harbours alternative enzymes for sucrose metabolism, sucrose phosphorylase, fructansucrases, and glucansucrases. Sucrose phosphorylase and fructansucrases additionally contribute to raffinose metabolism. Glucansucrases and fructansucrases produce exopolysaccharides as alternative to sucrose hydrolysis. L. reuteri LTH5448 expresses a levansucrase (ftfA) and sucrose phosphorylase (scrP), both are inducible by sucrose. This study determined the contribution of scrP to sucrose and raffinose metabolism in L. reuteri LTH5448, and elucidated the role of scrR in regulation sucrose metabolism. Disruption of scrP and scrR was achieved by double crossover mutagenesis. L. reuteri LTH5448, LTH5448ΔscrP and LTH5448ΔscrR were characterized with respect to growth and metabolite formation with glucose, sucrose, or raffinose as sole carbon source. Inactivation of scrR led to constitutive transcription of scrP and ftfA, demonstrating that scrR is negative regulator. L. reuteri LTH5448 and the LTH5448ΔscrP or LTH5448ΔscrR mutant strains did not differ with respect to glucose, sucrose or raffinose utilization. However, L. reuteri LTH5448ΔscrP produced more levan, indicating that the lack of sucrose phosphorylase is compensated by an increased metabolic flux through levansucrase. In conclusion, the presence of alternate pathways for sucrose and raffinose metabolism and their regulation indicate that these substrates, which are abundant in plants, are preferred carbohydrate sources for L. reuteri. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Catalytic exhaust control

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H

    1973-09-01

    Recent achievements and problems in the development of exhaust control devices in the USA are reviewed. To meet the 1976 emission standards, catalytic systems for the oxidation of carbon monoxide and hydrocarbons and for the reduction of nitrogen oxides to nitrogen and water are needed. While oxidizing catalysts using platinum, palladium, copper, vanadium, and chromium appplied on alumina or ceramic materials are more or less effective in emission control, there are no catalytic devices for the reduction of nitrogen oxides with the required useful life of 25,000 to 50,000 miles as yet available. In the case of platinum catalysts on monolithic supports, the operating temperature of 650 to 750/sup 0/C as required for the oxidation process may cause inactivation of the catalysts and fusion of the support material. The oxidation of CO and hydrocarbons is inhibited by high concentrations of CO, nitric oxide, and hydrocarbons. The use of catalytic converters requires the use of lead-free or low-lead gasoline. The nitrogen oxides conversion efficiency is considerably influenced by the oxygen-to-CO ratio of the exhaust gas, which makes limitation of this ratio necessary.

  8. Tracing the origin of S-Cr. novac 'money'

    Directory of Open Access Journals (Sweden)

    Vlajić-Popović Jasna

    2010-01-01

    Full Text Available The paper points at the imprecision of the hitherto prevailing etymology of S-Cr. novac ‘money’ as an univerbization departing from the adjective nov ‘new’, through an undated and undefined *novi penez /dinar. After a review of previous interpretations and the corpus of lexicographic attestations of the noun novac, the areal distribution of its earliest Croatian and Serbian attestations (from the 16th and 17th centuries respectively, as well as the 18th century Sln. novz ‘nummus ungaricus’ is taken as an indication of Hungarian source of influence. Hence the nomination impulse is found in Latin, the official language in medieval Hungary, where in some 15th century legal documents from the Zagreb court the syntagm novorum denariorum (Gen. pl. occurs simultaneously and synonymously with the nominalized adj. novos (Acc. pl.. The semantic borrowing into local Slavic novac /novec ‘new coin (initially 1/100 of a dukat’, evolves into ‘coin of small value’ and eventually, through a negative phrase nemati ni novca ‘to be broke’ (lit.: ‘to have not a single penny’ into ‘money (in general; wealth’. In both meanings it entered the vernaculars of the entire Štokavian territory (some time during the 18th century, which is reflected in folk poetry, paremiology, etc. The term novac has suppressed the previously widespread Slavic term penezi /pjenezi /pinezi and entered a co-existence with the Turcism para f. ‘coin’, pare pl. ‘money’ which lasts into this day. Since the nomination from the adj. nov is unique among standardly known terms for money (cf. Buck s.v., a precious onomasiological parallelism to this formation is discovered in Serb. dial. novica ‘a Turkish 20 gr coin’, ‘a fake coin’.

  9. A study on synthetic method and material characteristics of magnesium ammine chloride as ammonia transport materials for solid SCR

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jong Kook; Yoon, Cheon Seog [Dept. of Mechanical Engineering, Hannam University, Daejeon (Korea, Republic of); Kim, Hong Suk [Engine Research Center, Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2015-11-15

    Among various ammonium salts and metal ammine chlorides used as solid materials for the sources of ammonia with solid SCR for lean NOx reduction, magnesium ammine chloride was taken up for study in this paper because of its ease of handling and safety. Lab-scale synthetic method of magnesium ammine chloride were studied for different durations, temperatures, and pressures with proper ammonia gas charged, as a respect of ammonia gas adsorption rate(%). To understand material characteristics for lab-made magnesium ammine chloride, DA, IC, FT-IR, XRD and SDT analyses were performed using the published data available in literature. From the analytical results, the water content in the lab-made magnesium ammine chloride can be determined. A new test procedure for water removal was proposed, by which the adsorption rate of lab-made sample was found to be approximately 100%.

  10. A study on synthetic method and material characteristics of magnesium ammine chloride as ammonia transport materials for solid SCR

    International Nuclear Information System (INIS)

    Shin, Jong Kook; Yoon, Cheon Seog; Kim, Hong Suk

    2015-01-01

    Among various ammonium salts and metal ammine chlorides used as solid materials for the sources of ammonia with solid SCR for lean NOx reduction, magnesium ammine chloride was taken up for study in this paper because of its ease of handling and safety. Lab-scale synthetic method of magnesium ammine chloride were studied for different durations, temperatures, and pressures with proper ammonia gas charged, as a respect of ammonia gas adsorption rate(%). To understand material characteristics for lab-made magnesium ammine chloride, DA, IC, FT-IR, XRD and SDT analyses were performed using the published data available in literature. From the analytical results, the water content in the lab-made magnesium ammine chloride can be determined. A new test procedure for water removal was proposed, by which the adsorption rate of lab-made sample was found to be approximately 100%

  11. Geopolymer based catalysts-New group of catalytic materials

    Czech Academy of Sciences Publication Activity Database

    Sazama, Petr; Bortnovsky, O.; Dědeček, Jiří; Tvarůžková, Zdenka; Sobalík, Zdeněk

    2011-01-01

    Roč. 164, č. 1 (2011), s. 92-99 ISSN 0920-5861. [Joint International Conference /1./ of the Tokyo Conference on Advanced Catalytic Science and Technology /11./ Asia Pacific Congress on Catalysis /5./. Sapporo, 18.07.2010-23.07.2010] R&D Projects: GA MPO FT-TA4/068; GA AV ČR KAN100400702 Institutional research plan: CEZ:AV0Z40400503 Keywords : geopolymers * redox catalysis * SCR-NOx Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.407, year: 2011

  12. Exmination of catalytic reduction of NO by CH4 in a Pt-polybenimidazole membrane-Pt system with and without polarization

    DEFF Research Database (Denmark)

    Petrushina, Irina; Cleemann, Lars Nilausen; Bjerrum, Niels

    “NO reduction in the NO, CH4, Ar/Pt/C//polybenzimidazole-H3PO4//Pt/C/H2, Ar was studied at 135°C”......“NO reduction in the NO, CH4, Ar/Pt/C//polybenzimidazole-H3PO4//Pt/C/H2, Ar was studied at 135°C”...

  13. A comparative study on methods of improving SCR for ship detection in SAR image

    Science.gov (United States)

    Lang, Haitao; Shi, Hongji; Tao, Yunhong; Ma, Li

    2017-10-01

    Knowledge about ship positions plays a critical role in a wide range of maritime applications. To improve the performance of ship detector in SAR image, an effective strategy is improving the signal-to-clutter ratio (SCR) before conducting detection. In this paper, we present a comparative study on methods of improving SCR, including power-law scaling (PLS), max-mean and max-median filter (MMF1 and MMF2), method of wavelet transform (TWT), traditional SPAN detector, reflection symmetric metric (RSM), scattering mechanism metric (SMM). The ability of SCR improvement to SAR image and ship detection performance associated with cell- averaging CFAR (CA-CFAR) of different methods are evaluated on two real SAR data.

  14. Operational Choices for Risk Aggregation in Insurance: PSDization and SCR Sensitivity

    Directory of Open Access Journals (Sweden)

    Xavier Milhaud

    2018-04-01

    Full Text Available This work addresses crucial questions about the robustness of the PSDization process for applications in insurance. PSDization refers to the process that forces a matrix to become positive semidefinite. For companies using copulas to aggregate risks in their internal model, PSDization occurs when working with correlation matrices to compute the Solvency Capital Requirement (SCR. We examine how classical operational choices concerning the modelling of risk dependence impacts the SCR during PSDization. These operations refer to the permutations of risks (or business lines in the correlation matrix, the addition of a new risk, and the introduction of confidence weights given to the correlation coefficients. The use of genetic algorithms shows that theoretically neutral transformations of the correlation matrix can surprisingly lead to significant sensitivities of the SCR (up to 6%. This highlights the need for a very strong internal control around the PSDization step.

  15. Final Technical Report on Investigation of Selective Non-Catalytic Processes for In-Situ Reduction of NOx and CO Emissions from Marine Gas Turbines and Diesel Engines

    National Research Council Canada - National Science Library

    Bowman, Craig

    1997-01-01

    .... These observations suggest the possibility of utilizing SNCR for reducing NO(x) emissions from marine gas turbines and Diesel engines by direct injection of a reductant species into the combustion chamber, possibly as a fuel...

  16. Cloning and Characterization of ThSHRs and ThSCR Transcription Factors in Taxodium Hybrid 'Zhongshanshan 406'.

    Science.gov (United States)

    Wang, Zhiquan; Yin, Yunlong; Hua, Jianfeng; Fan, Wencai; Yu, Chaoguang; Xuan, Lei; Yu, Fangyuan

    2017-07-20

    Among the GRAS family of transcription factors, SHORT ROOT (SHR) and SCARECROW (SCR) are key regulators of the formation of root tissues. In this study, we isolated and characterized two genes encoding SHR proteins and one gene encoding an SCR protein: ThSHR1 (Accession Number MF045148), ThSHR2 (Accession Number MF045149) and ThSCR (Accession Number MF045152) in the adventitious roots of Taxodium hybrid 'Zhongshanshan'. Gene structure analysis indicated that ThSHR1 , ThSHR2 and ThSCR are all intron free. Multiple protein sequence alignments showed that each of the corresponding proteins, ThSHR1, ThSHR2 and ThSCR, contained five well-conserved domains: leucine heptad repeat I (LHRI), the VHIID motif, leucine heptad repeat II (LHR II), the PFYRE motif, and the SAW motif. The phylogenetic analysis indicated that ThSCR was positioned in the SCR clade with the SCR proteins from eight other species, while ThSHR1 and ThSHR2 were positioned in the SHR clade with the SHR proteins from six other species. Temporal expression patterns of these genes were profiled during the process of adventitious root development on stem cuttings. Whereas expression of both ThSHR2 and ThSCR increased up to primary root formation before declining, that of ThSHR1 increased steadily throughout adventitious root formation. Subcellular localization studies in transgenic poplar protoplasts revealed that ThSHR1, ThSHR2 and ThSCR were localized in the nucleus. Collectively, these results suggest that the three genes encode Taxodium GRAS family transcription factors, and the findings contribute to improving our understanding of the expression and function of SHR and SCR during adventitious root production, which may then be manipulated to achieve high rates of asexual propagation of valuable tree species.

  17. SCR-1: Design and construction of a small modular stellarator for magnetic confinement of plasma

    International Nuclear Information System (INIS)

    Barillas, L; Vargas, V I; Alpizar, A; Asenjo, J; Carranza, J M; Cerdas, F; Gutiérrez, R; Monge, J I; Mora, J; Morera, J; Peraza, H; Rojas, C; Rozen, D; Saenz, F; Sánchez, G; Sandoval, M; Trimiño, H; Umaña, J; Villegas, L F; Queral, V

    2014-01-01

    This paper describes briefly the design and construction of a small modular stellarator for magnetic confinement of plasma, called Stellarator of Costa Rica 1, or SCR-1; developed by the Plasma Physics Group of the Instituto Tecnológico de Costa Rica, PlasmaTEC. The SCR-1 is based on the small Spanish stellarator UST 1 , created by the engineer Vicente Queral. The SCR-1 will employ stainless steel torus-shaped vacuum vessel with a major radius of 460.33 mm and a cross section radius of 110.25 mm. A typical SCR-1 plasma will have an average radius 42.2 mm and a volume of 8 liters (0.01 m 3 ), and an aspect ratio of 5.7. The magnetic resonant field will be 0.0878 T, and a period of 2 (m=2) with a rotational transform of 0.3. The magnetic field will be provided by 12 modular coils, with 8 turns each, with an electrical current of 8704 A per coil (1088 A per turn of each coil). This current will be fed by a bank of cell batteries. The plasma will be heated by ECRH with magnetrons of a total power of 5 kW, in the first harmonic at 2.45 GHz. The expected electron temperature and density are 15 eV and 10 17 m −3 respectively with an estimated confinement time of 7.30 x 10 −4 ms. The initial diagnostics on the SCR-1 will consist of a Langmuir probe, a heterodyne microwave interferometer, and a field mapping system. The first plasma of the SCR-1 is expected at the end of 2011.

  18. Nitrous Oxide Formation and Destruction by Industrial No Abatement Techniques Including Scr Emissions des protoxides d'azote par des techniques industrielles d'abattement de NO y compris le SCR

    Directory of Open Access Journals (Sweden)

    De Soete G. G.

    2006-11-01

    Full Text Available Systematic investigations on N2O emission from full scale stationary combustion units, equipped with primary or secondary NO control techniques, are scarce or inexistent. Recent results obtained from laboratory scale studies are presented, from which it appears that fuel staging, selective non catalytic NO reduction with ammonia and selective catalytic NO reduction in the presence of ammonia, should be considered as potential sources of nitrous oxide emission enhancement. For the two mentioned gas phase NO abatement techniques (fuel staging and NCSR, this N2O emission enhancement is clearly linked with a decrease of the temperature, a result that might have been expected from the known gas phase reactions of N2O formation and destruction. Production of N2O from NCSR is more important than from fuel staging, and increases with ammonia concentration; this probably is related to the fact that ammonia yields N2O precursors (NH, NH2 readily by its decomposition. Separate injection of pure NO or NH3 suggests that N2O is a product of the interaction of those two reactants, whereas NO also is formed as a primary ammonia decomposition product in the presence of oxygen. A kinetic investigation of N2O formation from SCR has been made. It is shown that catalytic decomposition of neat ammonia yields both NO and N2O, the former as a primary product (from adsorbed ammonia and solid bound oxygen, the latter as a secondary product (from NO and adsorbed ammonia. Both NO and N2O subsequently undergo catalytic decomposition. In the presence of molecular oxygen, another NO formation (from O2 and adsorbed ammonia manifests itself at somewhat higher temperatures, creating the well known optimum temperature window . Comparative tests conducted on a number of metal oxides, tend to show that high efficiency for NO decomposition is often related to high production of N2O within the temperature window . On ne dispose actuellement pas encore de résultats d

  19. Novel selective catalytic reduction with tritium: synthesis of the GABAA receptor radioligand 1-(4-ethynylphenyl)-4-[2,3-3H2]propyl-2,6,7-trioxabicyclo[2.2.2 ]octane

    International Nuclear Information System (INIS)

    Palmer, C.J.; Casida, J.E.

    1991-01-01

    Protection of the terminal alkyne function in 1-(4-ethynylphenyl)-4-(prop-2-enyl)-2,6,7-trioxabicyclo[2.2.2] octane with a trimethylsilyl group permits the selective catalytic reduction of the olefin moiety with tritium gas to give after deprotection 1-(4-ethynylphenyl)-4-[2,3- 3 H 2 ] propyl-2,6,7-trioxabicyclo-[2.2.2] octane. The labeled product at high specific activity is an improved radioligand for the GABA-gated chloride channel of insects and mammals and the intermediate 4-[2,3- 3 H 2 ]propyl-1-[4-[(trimethylsilyl)ethynyl]phenyl]-2,6,7-trioxabicyclo[2.2.2]octane is useful for studies on the metabolic activation of this selective proinsecticide. (author)

  20. Novel selective catalytic reduction with tritium: synthesis of the GABA sub A receptor radioligand 1-(4-ethynylphenyl)-4-(2,3- sup 3 H sub 2 )propyl-2,6,7-trioxabicyclo(2. 2. 2 )octane

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, C J; Casida, J E [California Univ., Berkeley, CA (United States). Pesticide Chemistry and Toxicology Lab.

    1991-07-01

    Protection of the terminal alkyne function in 1-(4-ethynylphenyl)-4-(prop-2-enyl)-2,6,7-trioxabicyclo(2.2.2) octane with a trimethylsilyl group permits the selective catalytic reduction of the olefin moiety with tritium gas to give after deprotection 1-(4-ethynylphenyl)-4-(2,3-{sup 3}H{sub 2}) propyl-2,6,7-trioxabicyclo-(2.2.2) octane. The labeled product at high specific activity is an improved radioligand for the GABA-gated chloride channel of insects and mammals and the intermediate 4-(2,3-{sup 3}H{sub 2})propyl-1-(4-((trimethylsilyl)ethynyl)phenyl)-2,6,7-trioxabicyclo(2.2.2)octane is useful for studies on the metabolic activation of this selective proinsecticide. (author).

  1. Green synthesis, characterization and catalytic activity of natural bentonite-supported copper nanoparticles for the solvent-free synthesis of 1-substituted 1H-1,2,3,4-tetrazoles and reduction of 4-nitrophenol

    Directory of Open Access Journals (Sweden)

    Akbar Rostami-Vartooni

    2015-12-01

    Full Text Available In this study, Cu nanoparticles were immobilized on the surface of natural bentonite using Thymus vulgaris extract as a reducing and stabilizing agent. The natural bentonite-supported copper nanoparticles (Cu NPs/bentonite were characterized by FTIR spectroscopy, X-ray diffraction (XRD, X-ray fluorescence (XRF, field emission scanning electron microscopy (FE-SEM, energy dispersive X-ray spectroscopy (EDS, transmission electron microscopy (TEM, selected area electron diffraction (SAED and Brunauer–Emmett–Teller (BET analysis. Afterward, the catalytic performance of the prepared catalyst was investigated for the solvent-free synthesis of 1-substituted 1H-1,2,3,4-tetrazoles and reduction of 4-nitrophenol (4-NP in water. It was found that the Cu NPs/bentonite is a highly active and recyclable catalyst for related reactions.

  2. Initial Reduction of CO2 on Pd-, Ru-, and Cu-Doped CeO2(111) Surfaces: Effects of Surface Modification on Catalytic Activity and Selectivity.

    Science.gov (United States)

    Guo, Chen; Wei, Shuxian; Zhou, Sainan; Zhang, Tian; Wang, Zhaojie; Ng, Siu-Pang; Lu, Xiaoqing; Wu, Chi-Man Lawrence; Guo, Wenyue

    2017-08-09

    Surface modification by metal doping is an effective treatment technique for improving surface properties for CO 2 reduction. Herein, the effects of doped Pd, Ru, and Cu on the adsorption, activation, and reduction selectivity of CO 2 on CeO 2 (111) were investigated by periodic density functional theory. The doped metals distorted the configuration of a perfect CeO 2 (111) by weakening the adjacent Ce-O bond strength, and Pd doping was beneficial for generating a highly active O vacancy. The analyses of adsorption energy, charge density difference, and density of states confirmed that the doped metals were conducive for enhancing CO 2 adsorption, especially for Cu/CeO 2 (111). The initial reductive dissociation CO 2 → CO* + O* on metal-doped CeO 2 (111) followed the sequence of Cu- > perfect > Pd- > Ru-doped CeO 2 (111); the reductive hydrogenation CO 2 + H → COOH* followed the sequence of Cu- > perfect > Ru- > Pd-doped CeO 2 (111), in which the most competitive route on Cu/CeO 2 (111) was exothermic by 0.52 eV with an energy barrier of 0.16 eV; the reductive hydrogenation CO 2 + H → HCOO* followed the sequence of Ru- > perfect > Pd-doped CeO 2 (111). Energy barrier decomposition analyses were performed to identify the governing factors of bond activation and scission along the initial CO 2 reduction routes. Results of this study provided deep insights into the effect of surface modification on the initial reduction mechanisms of CO 2 on metal-doped CeO 2 (111) surfaces.

  3. Synthesis of TiO2-loaded Co0.85Se thin films with heterostructure and their enhanced catalytic activity for p-nitrophenol reduction and hydrazine hydrate decomposition

    International Nuclear Information System (INIS)

    Zuo, Yong; Song, Ji-Ming; Niu, He-Lin; Mao, Chang-Jie; Zhang, Sheng-Yi; Shen, Yu-Hua

    2016-01-01

    P-nitrophenol (4-NP) and hydrazine hydrate are considered to be highly toxic pollutants in wastewater, and it is of great importance to remove them. Herein, TiO 2 -loaded Co 0.85 Se thin films with heterostructure were successfully synthesized by a hydrothermal route. The as-synthesized samples were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, transmission electron microscopy and selective-area electron diffraction. The results demonstrate that TiO 2 nanoparticles with a size of about 10 nm are easily loaded on the surface of graphene-like Co 0.85 Se nanofilms, and the NH 3  · H 2 O plays an important role in the generation and crystallization of TiO 2 nanoparticles. Brunauer–Emmett–Teller measurement shows that the obtained nanocomposites have a larger specific surface area (199.3 m 2 g −1 ) than that of Co 0.85 Se nanofilms (55.17 m 2 g −1 ) and TiO 2 nanoparticles (19.49 m 2 g −1 ). The catalytic tests indicate Co 0.85 Se–TiO 2 nanofilms have the highest activity for 4-NP reduction and hydrazine hydrate decomposition within 10 min and 8 min, respectively, compared with the corresponding precursor Co 0.85 Se nanofilms and TiO 2 nanoparticles. The enhanced catalytic performance can be attributed to the larger specific surface area and higher rate of interfacial charge transfer in the heterojunction than that of the single components. In addition, recycling tests show that the as-synthesized sample presents stable conversion efficiency for 4-NP reduction. (paper)

  4. Catalytic reduction of NH4NO3 by NO. Effects of solid acids and implications for low temperature DeNOx processes

    International Nuclear Information System (INIS)

    Savara, Aditya; Li, Mei-Jun; Sachtler, Wolfgang M.H.; Weitz, Eric

    2008-01-01

    Ammonium nitrate is thermally stable below 250 C and could potentially deactivate low temperature NO x reduction catalysts by blocking active sites. It is shown that NO reduces neat NH 4 NO 3 above its 170 C melting point, while acidic solids catalyze this reaction even at temperatures below 100 C. NO 2 , a product of the reduction, can dimerize and then dissociate in molten NH 4 NO 3 to NO + + NO 3 - , and may be stabilized within the melt as either an adduct or as HNO 2 formed from the hydrolysis of NO + or N 2 O 4 . The other product of reduction, NH 4 NO 2 , readily decomposes at ≤100 C to N 2 and H 2 O, the desired end products of DeNO x catalysis. A mechanism for the acid catalyzed reduction of NH 4 NO 3 by NO is proposed, with HNO 3 as an intermediate. These findings indicate that the use of acidic catalysts or promoters in DeNO x systems could help mitigate catalyst deactivation at low operating temperatures (<150 C). (author)

  5. Catalytic asymmetric Meerwein-Ponndorf-Verley reduction of glyoxylates induced by a chiral N,N'-dioxide/Y(OTf)3 complex.

    Science.gov (United States)

    Wu, Wangbin; Zou, Sijia; Lin, Lili; Ji, Jie; Zhang, Yuheng; Ma, Baiwei; Liu, Xiaohua; Feng, Xiaoming

    2017-03-18

    An asymmetric Meerwein-Ponndorf-Verley (MPV) reduction of glyoxylates was for the first time accomplished via an N,N'-dioxide/Y(OTf) 3 complex with aluminium alkoxide and molecular sieves (MSs) as crucial additives. A variety of optically active α-hydroxyesters were obtained with excellent results. A possible reaction mechanism was proposed based on the experiments.

  6. SCR: A Toolset for Specifying and Analyzing Requirements

    National Research Council Canada - National Science Library

    Heitmeyer, Constance; Bull, Alan; Gasarch, Carolyn; Labaw, Bruce

    1995-01-01

    ... (Software Cost Reduction) tabular notation. The tools include an editor for building the specifications, a consistency checker for testing the specifications for consistency with a formal requirements model, a simulator for symbolically...

  7. Parameter estimation and analysis of an automotive heavy-duty SCR catalyst model

    DEFF Research Database (Denmark)

    Åberg, Andreas; Widd, Anders; Abildskov, Jens

    2017-01-01

    A single channel model for a heavy-duty SCR catalyst was derived based on first principles. The model considered heat and mass transfer between the channel gas phase and the wash coat phase. The parameters of the kinetic model were estimated using bench-scale monolith isothermal data. Validation ...

  8. SCR activity of conformed CuOx/ZrO2-SO4 catalysts

    DEFF Research Database (Denmark)

    Rasmussen, Søren Birk; Yates, Malcolm; Due-Hansen, Johannes

    2010-01-01

    CuOX/ZrO2-SO4 catalysts have been synthesised as conformed materials with the use of sepiolite as agglomerant and the performance in the NH3-SCR reaction with relation to biomass fired boiler units have been studied. The optimal Cu-loading of the catalysts is 3 wt.% CuO, both in terms of activity...

  9. Deactivation of vanadia-based commercial SCR catalysts by polyphosphoric acids

    DEFF Research Database (Denmark)

    Castellino, Francesco; Rasmussen, Søren Birk; Jensen, Anker Degn

    2008-01-01

    Commercial vanadia-based SCR monoliths have been exposed to flue gases in a pilot-scale Setup into which phosphoric acid has been added and the deactivation has been followed during the exposure time. Separate measurements by SMPS showed that the phosphoric acid formed polyphosphoric acid aerosols...

  10. Low cost SCR lamp driver indicates contents of digital computer registers

    Science.gov (United States)

    Cliff, R. A.

    1967-01-01

    Silicon Controlled Rectifier /SCR/ lamp driver is adapted for use in integrated circuit digital computers where it indicates the contents of the various registers. The threshold voltage at which visual indication begins is very sharply defined and can be adjusted to suit particular system requirements.

  11. Bio-hydrogen production based on catalytic reforming of volatiles generated by cellulose pyrolysis: An integrated process for ZnO reduction and zinc nanostructures fabrication

    International Nuclear Information System (INIS)

    Maciel, Adriana Veloso; Job, Aldo Eloizo; Nova Mussel, Wagner da; Brito, Walter de; Duarte Pasa, Vanya Marcia

    2011-01-01

    The paper presents a process of cellulose thermal degradation with bio-hydrogen generation and zinc nanostructures synthesis. Production of zinc nanowires and zinc nanoflowers was performed by a novel processes based on cellulose pyrolysis, volatiles reforming and direct reduction of ZnO. The bio-hydrogen generated in situ promoted the ZnO reduction with Zn nanostructures formation by vapor-solid (VS) route. The cellulose and cellulose/ZnO samples were characterized by thermal analyses (TG/DTG/DTA) and the gases evolved were analyzed by FTIR spectroscopy (TG/FTIR). The hydrogen was detected by TPR (Temperature Programmed Reaction) tests. The results showed that in the presence of ZnO the cellulose thermal degradation produced larger amounts of H 2 when compared to pure cellulose. The process was also carried out in a tubular furnace with N 2 atmosphere, at temperatures up to 900 o C, and different heating rates. The nanostructures growth was catalyst-free, without pressure reduction, at temperatures lower than those required in the carbothermal reduction of ZnO with fossil carbon. The nanostructures were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The optical properties were investigated by photoluminescence (PL). One mechanism was presented in an attempt to explain the synthesis of zinc nanostructures that are crystalline, were obtained without significant re-oxidation and whose morphologies are dependent on the heating rates of the process. This route presents a potential use as an industrial process taking into account the simple operational conditions, the low costs of cellulose and the importance of bio-hydrogen and nanostructured zinc.

  12. Nitric Oxide Reduction by Carbon Monoxide over Supported Hexaruthenium Cluster Catalysts. 1. The Active Site Structure That Depends on Supporting Metal Oxide and Catalytic Reaction Conditions.

    Science.gov (United States)

    Minato, Taketoshi; Izumi, Yasuo; Aika, Ken-Ichi; Ishiguro, Atsushi; Nakajima, Takayuki; Wakatsuki, Yasuo

    2003-08-28

    Ruthenium site structures supported on metal oxide surfaces were designed by reacting organometallic Ru cluster [Ru6C(CO)16](2-) or [Ru6(CO)18](2-) with various metal oxides, TiO2, Al2O3, MgO, and SiO2. The surface Ru site structure, formed under various catalyst preparation and reaction conditions, was investigated by the Ru K-edge extended X-ray absorption fine structure (EXAFS). Samples of [Ru6C(CO)16](2-)/TiO2(anatase) and [Ru6C(CO)16](2-)/TiO2(rutile) were found to retain the original Ru6C framework when heated in the presence of NO (2.0 kPa) or NO (2.0 kPa) + CO (2.0 kPa) at 423 K, i.e., catalytic reaction conditions for NO decomposition. At 523 K, the Ru-Ru bonds of the Ru6C framework were cleaved by the attack of NO. In contrast, the Ru site became spontaneously dispersed over TiO2 (anatase). When being supported over TiO2 (mesoporous), MgO, or Al2O3, the Ru6C framework split into fragments in gaseous NO or NO + CO even at 423 K. The Ru6 framework of [Ru6(CO)18](2-) was found to break easily into smaller ensembles in the presence of NO and/or CO at 423 K on support. Taking into consideration the realistic environments in which these catalysts will be used, we also examined the effect of water and oxygen. When water was introduced to the sample [Ru6C(CO)16](2-)/TiO2(anatase) at 423 K, it did not have any effects on the stabilized Ru6C framework structure. In the presence of oxygen gas, however, the Ru hexanuclear structure decomposed into isolated Ru cations bound to surface oxygen atoms of TiO2 (anatase).

  13. A novel approach for the synthesis of ultrathin silica-coated iron oxide nanocubes decorated with silver nanodots (Fe3O4/SiO2/Ag) and their superior catalytic reduction of 4-nitroaniline

    Science.gov (United States)

    Abbas, Mohamed; Torati, Sri Ramulu; Kim, Cheolgi

    2015-07-01

    A novel sonochemical approach was developed for the synthesis of different core/shell structures of Fe3O4/SiO2/Ag nanocubes and SiO2/Ag nanospheres. The total reaction time of the three sonochemical steps for the synthesis of Fe3O4/SiO2/Ag nanocubes is shorter than that of the previously reported methods. A proposed reaction mechanism for the sonochemical functionalization of the silica and the silver on the surface of magnetic nanocubes was discussed in detail. Transmission electron microscopy revealed that the surface of Fe3O4/SiO2 nanocubes was decorated with small Ag nanoparticles of approximately 10-20 nm in size, and the energy dispersive spectroscopy mapping analysis confirmed the morphology of the structure. Additionally, X-ray diffraction data were used to confirm the formation of both phases of a cubic inverse spinel structure for Fe3O4 and bcc structures for Ag in the core/shell structure of the Fe3O4/SiO2/Ag nanocubes. The as-synthesized Fe3O4/SiO2/Ag nanocubes showed a high efficiency in the catalytic reduction reaction of 4-nitroaniline to 4-phenylenediamine and a better performance than both Ag and SiO2/Ag nanoparticles. The grafted silver catalyst was recycled and reused at least fifteen times without a significant loss of catalytic efficiency.A novel sonochemical approach was developed for the synthesis of different core/shell structures of Fe3O4/SiO2/Ag nanocubes and SiO2/Ag nanospheres. The total reaction time of the three sonochemical steps for the synthesis of Fe3O4/SiO2/Ag nanocubes is shorter than that of the previously reported methods. A proposed reaction mechanism for the sonochemical functionalization of the silica and the silver on the surface of magnetic nanocubes was discussed in detail. Transmission electron microscopy revealed that the surface of Fe3O4/SiO2 nanocubes was decorated with small Ag nanoparticles of approximately 10-20 nm in size, and the energy dispersive spectroscopy mapping analysis confirmed the morphology of the

  14. Special requirements for the fluid mechanical design of hard coal-fired SCR retrofit units

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The system design of high-dust SCR units for retrofits is a challenge that is to be mastered in order to meet the fluid mechanical requirements. Retrofitting power plants with NOx control technologies is a cost-intensive adventure that many utilities are undertaking. Except for a few recent new boiler installations, SCR installations must be considered as retrofit projects. In most cases the limitation of space on site entails unfavorable conditions that do not allow appropriate upstream conditions for SCR catalysts. To comply with the requirements of high performance DeNOx systems and to lower the investment costs for retrofit units, several technical solutions and concepts for the reactor layout, for NOx and dust distribution, for flow stabilization in diffusers, and advanced ammonia injection systems are explained in this paper. Balcke-Duerr offers customer-tailored solutions for flow optimization, which are evaluated by model studies. Physical flow and dust model tests in an appropriate scale provide flexibility to test various engineering concepts. The experience of Balcke-Duerr is based on continuous research and development activities over the last 25 years and more than 350 executed projects for gas flow optimization applications. The success of these installations is a direct result of the key decisions based on the improved fluid mechanical design and proper system integration. This paper also identifies the sensible design particularities and solutions that have two be considered in the fluid mechanical design of high-dust SCR retrofit units. This article demonstrates that the layout of SCR units must be carefully reviewed in order to meet the performance requirements and to avoid problems, i.e. wear, catalyst plugging and ammonia slip. 9 refs., 18 figs.

  15. Dicationic ionic liquid mediated fabrication of Au@Pt nanoparticles supported on reduced graphene oxide with highly catalytic activity for oxygen reduction and hydrogen evolution

    Science.gov (United States)

    Shi, Ya-Cheng; Chen, Sai-Sai; Feng, Jiu-Ju; Lin, Xiao-Xiao; Wang, Weiping; Wang, Ai-Jun

    2018-05-01

    Ionic liquids as templates or directing agents have attracted great attention for shaping-modulated synthesis of advanced nanomaterials. In this work, reduced graphene oxide supported uniform core-shell Au@Pt nanoparticles (Au@Pt NPs/rGO) were fabricated by a simple one-pot aqueous approach, using N-methylimidazolium-based dicationic ionic liquid (1,1-bis(3-methylimadazoilum-1-yl)butylene bromide, [C4(Mim)2]2Br) as the shape-directing agent. The morphology evolution, structural information and formation mechanism of Au@Pt NPs anchored on rGO were investigated by a series of characterization techniques. The obtained nanocomposites displayed superior electrocatalytic features toward hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) compared with commercial Pt/C catalyst. This approach provides a novel route for facile synthesis of nanocatalysts in fuel cells.

  16. Selective catalytic reduction of nitric oxide by ethylene over metal-modified ZSM-5- and {gamma}-Al{sub 2}O{sub 3}-catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Eraenen, K; Kumar, N; Lindfors, L E [Aabo Akademi, Turku (Finland). Lab. of Industrial Chemistry

    1997-12-31

    Metal-modified ZSM-5 and {gamma}-Al{sub 2}O{sub 3} catalysts were tested in reduction of nitric oxide by ethylene. Different metals were introduced into the ZSM-5 catalyst by ion-exchange and by introduction of metals during the zeolite synthesis. To prepare bimetallic catalysts a combination of these methods was used. The {gamma}-Al{sub 2}O{sub 3} was impregnated with different metals by the incipient wetness technique and by adsorption. Activity measurements showed that the ZSM-5 based catalysts were more active than the {gamma}-Al{sub 2}O{sub 3} based catalysts. The highest conversion was obtained over a ZSM-5 catalyst prepared by introduction of Pd during synthesis of the zeolite and subsequently ion-exchanged with copper. (author)

  17. Selective catalytic reduction of nitric oxide by ethylene over metal-modified ZSM-5- and {gamma}-Al{sub 2}O{sub 3}-catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Eraenen, K.; Kumar, N.; Lindfors, L.E. [Aabo Akademi, Turku (Finland). Lab. of Industrial Chemistry

    1996-12-31

    Metal-modified ZSM-5 and {gamma}-Al{sub 2}O{sub 3} catalysts were tested in reduction of nitric oxide by ethylene. Different metals were introduced into the ZSM-5 catalyst by ion-exchange and by introduction of metals during the zeolite synthesis. To prepare bimetallic catalysts a combination of these methods was used. The {gamma}-Al{sub 2}O{sub 3} was impregnated with different metals by the incipient wetness technique and by adsorption. Activity measurements showed that the ZSM-5 based catalysts were more active than the {gamma}-Al{sub 2}O{sub 3} based catalysts. The highest conversion was obtained over a ZSM-5 catalyst prepared by introduction of Pd during synthesis of the zeolite and subsequently ion-exchanged with copper. (author)

  18. Intercalation assembly of Li{sub 3}VO{sub 4} nanoribbons/graphene sandwich-structured composites with enhanced oxygen reduction catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Huang, K.; Ling, Q.N.; Huang, C.H.; Bi, K. [State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Wang, W.J.; Yang, T.Z. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Lu, Y.K. [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Liu, J., E-mail: liujun4982004@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Zhang, R.; Fan, D.Y.; Wang, Y.G. [State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Lei, Ming, E-mail: mlei@bupt.edu.cn [State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2015-10-15

    Novel sandwich-like nanocomposites of alternative stacked ultrathin Li{sub 3}VO{sub 4} nanoribbons and graphene sheets (LVO-G) were successfully developed by a facile intercalation assembly method with a post heating treatment. The characterization results demonstrate that the average size of the Li{sub 3}VO{sub 4} nanoribbons with a non-layered crystal structure is a few micrometers in length, 50–100 nm in width and a few atomic layers in height. The addition of graphene sheets can modify the preferred orientation of the Li{sub 3}VO{sub 4} nanoribbons from (110) to (011) plane and restrict the growth of impurity phase at the same time. In addition, EIS analysis has also verified the reduced resistance and thus the enhance conductivity of LVO-G nanocomposites compared with bare Li{sub 3}VO{sub 4} nanoribbons. What's more, the electrocatalytic performances of these novel LVO-G nanocomposites for oxygen reduction reaction (ORR) in alkaline solution are further investigated by cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometry test. It is found that the enhanced activity and stability of LVO-G can be attributed to the synergistic effect between the Li{sub 3}VO{sub 4} nanoribbons and graphene sheets with a larger reduction current density and a smaller onset potential value for LVO-G25 compared with LVO-G50 due to the change of components. - Highlights: • Novel sandwich-structured LVO-G by a facile intercalation assembly method. • Addition of G sheets can modify the preferred orientation of Li{sub 3}VO{sub 4} nanoribbon. • Enhanced ORR activity and stability due to synergistic effect are demonstrated.

  19. A Au/Cu2O-TiO2 system for photo-catalytic hydrogen production. A pn-junction effect or a simple case of in situ reduction?

    KAUST Repository

    Sinatra, Lutfan

    2015-02-01

    Photo-catalytic H2 production from water has been studied over Au-Cu2O nanoparticle deposited on TiO2 (anatase) in order to probe into both the plasmon resonance effect (Au nanoparticles) and the pn-junction at the Cu2O-TiO2 interface. The Au-Cu2O composite is in the form of ∼10 nm Au nanoparticles grown on ∼475 nm Cu2O octahedral nanocrystals with (111) facets by partial galvanic replacement. X-ray Photoelectron Spectroscopy (XPS) Cu2p and Auger L3M4,5M4,5 lines indicate that the surface of Cu2O is mainly composed of Cu+. The rate for H2 production (from 95 water/5 ethylene glycol; vol.%) over 2 wt.% (Au/Cu2O)-TiO2 is found to be ∼10 times faster than that on 2 wt.% Au-TiO2 alone. Raman spectroscopy before and after reaction showed the disappearance of Cu+ lines (2Eu) at 220 cm-1. These observations coupled with the induction time observed for the reaction rate suggest that in situ reduction from Cu+ to Cu0 occurs upon photo-excitation. The reduction requires the presence of TiO2 (electron transfer). The prolonged activity of the reaction (with no signs of deactivation) despite the reduction to Cu0 indicates that the latter takes part in the reaction by providing additional sites for the reaction, most likely as recombination centers for hydrogen atoms to form molecular hydrogen. This phenomenon provides an additional route for enhancing the efficiency and lifetime of Cu2O-TiO2 photocatalytic systems, beyond the usually ascribed pn-junction effect.

  20. Bromine based mercury abatement in waste and coal combustion. Mercury retention in the catalyst bed of a tail-end-SCR

    Energy Technology Data Exchange (ETDEWEB)

    Vosteen, Bernhard W. [Vosteen Consulting GmbH, Koeln (Germany); Kanefke, Rico; Beyer, Joachim; Bonkhofer, Theodor Gerhard [CURRENTA GmbH und Co. OHG, Leverkusen (Germany); Ullrich, Rick [WastePro Engineering Inc., Kennett Square, PA (United States)

    2008-07-01

    Observations and testing at a CURRENTA waste incineration plant and several coal fired power plants has derived the following aspects of mercury behavior in the plant's waste heat boiler and its gas cleaning train: - Hg{sub met} is oxidized to Hg{sub ion} most readily by bromine, and also by chlorine, - sulfur (SO{sub 2}) inhibit the Hg{sub met} chlorination but not the Hg{sub met} bromination, - Hg{sub met} passes through scrubbers and is adsorbed onto the catalyst bed of a tail-end SCR, slowly oxidized and finally elutes off as Hg{sub ion}, - sulfur (SO{sub 2}) impacts the reduction of molecular halogens in different ways; SO{sub 2} reduces Cl{sub 2} at elevated temperatures (boiler range), but reduces Br{sub 2} only at low temperatures (scrubber range) The operational tests and studies performed in the spring and summer of 2000 at this plant led to some specific knowledge about Hg{sub met} adsorption and also Hg{sub ion} desorption at the catalyst bed of a tail-end SCR. This knowledge, which was at that time in many respects novel, has provided more insight into the mercury oxidation behaviour. Today, process options derived from this knowledge could be implemented in hazardous waste incineration plants and also municipal solid waste incineration plants, to achieve complete mercury halogenation in the boiler flue gas, ahead of the scrubber system, at any time. This might prevent penetration of metallic mercury to the tail-end SCR and avoid the corresponding long time mercury elution. For effective prevention to be achieved in practice, it is strongly recommended to also install a continuously measuring (possibly uncalibrated) AAS mercury monitor for immediate detection of any unexpected Hg{sub met} breakthrough, for example caused by ''hidden mercury'' in the waste feed, and to initiate the rapid (preferably automized) injection of some bromine compound before even more mercury is transferred into the tail-end SCR, stored there as Hg

  1. Selective catalytic reduction of NO{sub x} in lean-burn engine exhaust over a Pt/V/MCM-41 catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jong Yeol; Kim, Hee Young [Division of Advanced Chemical Technology, Korea Reasearch Institute of Chemical Technology, P.O. Box 107, Yusong, Taejon 305-600 (Korea, Republic of); Woo, Seong Ihl [Department of Chemical and Biomolecular Engineering, Center for Ultramicrochemical Process Systems, Korea Advanced Institute of Science and Technology, 373-1, Kusong-dong, Yusong-gu, Taejon, 305-701 (Korea, Republic of)

    2003-09-08

    The activities of Pt supported on various metal-substituted MCM-41 (V-, Ti-, Fe-, Al-, Ga-, La-, Co-, Mo-, Ce-, and Zr-MCM-41) and V-impregnated MCM-41 were investigated for the reduction of NO by C{sub 3}H{sub 6}. Among these catalysts, Pt supported on V-impregnated MCM-41 showed the best activity. The maximum conversion of NO into N{sub 2}+N{sub 2}O over this Pt/V/MCM-41 catalyst (Pt=1wt.%, V=3.8wt.%) was 73%, and this maximum conversion was sustained over a temperature range of 70C from 270 to 340C. The high activity of Pt/V/MCM-41 over a broad temperature range resulted from two additional reactions besides the reaction occurring on usual supported Pt, the reaction of NO with surface carbonaceous materials, and the reaction of NO occurring on support V-impregnated MCM-41. The former additional reaction showed an oscillation characteristic, a phenomenon in which the concentrations of parts of reactant and product gases oscillate continuously. At low temperature, some water vapor injected into the reactant gas mixture promoted the reaction occurring on usual supported Pt, whereas at high temperature, it suppressed the additional reaction related to carbonaceous materials. Five-hundred parts per million of SO{sub 2} added to the reactant gas mixture only slightly decreased the NO conversion of Pt/V/MCM-41.

  2. Catalytic modification of cellulose and hemicellulose - Sugarefine

    Energy Technology Data Exchange (ETDEWEB)

    Repo, T. [Helsinki Univ. (Finland),Laboratory of Inorganic Chemistry], email: timo.repo@helsinki.fi

    2012-07-01

    The main goal of the project is to develop catalytic methods for the modification of lignocellulose-based saccharides in the biorefineries. The products of these reactions could be used for example as biofuel components, raw materials for the chemical industry, solvents and precursors for biopolymers. The catalyst development aims at creating efficient, selective and green catalytic methods for profitable use in biorefineries. The project is divided in three work packages: In WP1 (Catalytic dehydration of cellulose) the aim is at developing non-toxic, efficient methods for the catalytic dehydration of cellulose the target molecule being here 5-hydroxymethylfurfural (5-HMF). 5-HMF is an interesting platform chemical for the production of fuel additives, solvents and polymers. In WP2 (Catalytic reduction), the objective of the catalytic reduction studies is to produce commercially interesting monofunctional chemicals, such as 1-butanol or 2-methyltetrahydrofuran (2-MeTHF). In WP3 (Catalytic oxidation), the research focuses on developing a green and efficient oxidation method for producing acids. Whereas acetic and formic acids are bulk chemicals, diacids such as glucaric and xylaric acids are valuable specialty chemicals for detergent, polymer and food production.

  3. Catalytic Wittig and aza-Wittig reactions

    Directory of Open Access Journals (Sweden)

    Zhiqi Lao

    2016-11-01

    Full Text Available This review surveys the literature regarding the development of catalytic versions of the Wittig and aza-Wittig reactions. The first section summarizes how arsenic and tellurium-based catalytic Wittig-type reaction systems were developed first due to the relatively easy reduction of the oxides involved. This is followed by a presentation of the current state of the art regarding phosphine-catalyzed Wittig reactions. The second section covers the field of related catalytic aza-Wittig reactions that are catalyzed by both phosphine oxides and phosphines.

  4. Understanding NOx SCR Mechanism and Activity on Cu/Chabazite Structures throughout the Catalyst Life Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Fabio; Delgass, Nick; Gounder, Rajmani; Schneider, William F.; Miller, Jeff; Yezerets, Aleksey; McEwen, Jean-Sabin; Peden, Charles HF; Howden, Ken

    2014-12-09

    Oxides of nitrogen (NOx) compounds contribute to acid rain and photochemical smog and have been linked to respiratory ailments. NOx emissions regulations continue to tighten, driving the need for high performance, robust control strategies. The goal of this project is to develop a deep, molecular level understanding of the function of Cu-SSZ-13 and Cu-SAPO-34 materials that catalyze the SCR of NOx with NH3.

  5. Major issues in the design and construction of the stellarator of Costa Rica: SCR-1

    International Nuclear Information System (INIS)

    Mora, J; Vargas, V I; Villegas, L F; Barillas, L; Monge, J I; Rivas, L

    2012-01-01

    This paper aims at briefly describing the design and construction issues of the stellarator of Costa Rica 1 (SCR-1). The SCR-1 is a small modular Stellarator for magnetic confinement of plasma developed by the Plasma Physics Group of the Instituto Tecnologico de Costa Rica (ITCR). The SCR-1 is based on the small Spanish Stellarator UST 1 (Ultra Small Torus 1), created by Eng. Vicente Queral. These mains issues consist of the size of the Stellarator, closeness between coils, coupling of ECH to the vacuum chamber and the device for support. The size has become a problem because the vacuum chamber does not allow a lot of space to attach diagnosis devices, the heating system, the vacuum system and the very same support of the chamber. As a result of this lack of space, the Stellarator's coils are placed very close to each other; this means that two of the coils around of the vacuum chamber clash and cannot be placed as designed. The issue regarding the coupling of the ECH (electron cyclotron radio-frequency) to the vacuum chamber comprises the fact that the wave guide with rectangular shape does not match the CF port with circular shape on the vacuum chamber. In addition, the device for supporting the Stellarator has presented a challenge because of its size and the placement of the coils; in other words, there is not enough space between the ports and coils in the Stellarator to place appropriately the device for support.

  6. Characteristics of Sucrose Transport through the Sucrose-Specific Porin ScrY Studied by Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Liping eSun

    2016-02-01

    Full Text Available Sucrose-specific porin (ScrY is a transmembrane protein that allows for the uptake of sucrose under growth-limiting conditions. The crystal structure of ScrY was resolved before by X-ray crystallography, both in its uncomplexed form and with bound sucrose. However, little is known about the molecular characteristics of the transport mechanism of ScrY. To date, there has not yet been any clear demonstration for sucrose transport through the ScrY.Here, the dynamics of the ScrY trimer embedded in a phospholipid bilayer as well as the characteristics of sucrose translocation were investigated by means of atomistic molecular dynamics (MD simulations. The potential of mean force (PMF for sucrose translocation through the pore showed two main energy barriers within the constriction region of ScrY. Energy decomposition allowed to pinpoint three aspartic acids as key residues opposing the passage of sucrose, all located within the L3 loop. Mutation of two aspartic acids to uncharged residues resulted in an accordingly modified electrostatics and decreased PMF barrier. The chosen methodology and results will aid in the design of porins with modified transport specificities.

  7. A study on post impingement effects of urea-water solution spray on the heated wall of automotive SCR systems

    Science.gov (United States)

    Shahariar, G. M. H.; Wardana, M. K. A.; Lim, O. T.

    2018-04-01

    The post impingement effects of urea-water solution spray on the heated wall of automotive SCR systems was numerically investigated in a constant volume chamber using STAR CCM+ CFD code. The turbulence flow was modelled by realizable k-ε two-layer model together with standard wall function and all y+ treatment was applied along with two-layer approach. The Eulerian-Lagrangian approach was used for the modelling of multi phase flow. Urea water solution (UWS) was injected onto the heated wall for the wall temperature of 338, 413, 473, 503 & 573 K. Spray development after impinging on the heated wall was visualized and measured. Droplet size distribution and droplet evaporation rates were also measured, which are vital parameters for the system performance but still not well researched. Specially developed user defined functions (UDF) are implemented to simulate the desired conditions and parameters. The investigation reveals that wall temperature has a great impact on spray development after impingement, droplet size distribution and evaporation. Increasing the wall temperature leads to longer spray front projection length, smaller droplet size and faster droplet evaporation which are preconditions for urea crystallization reduction. The numerical model and parameters are validated comparing with experimental data.

  8. Influence of zeolite structure on the activity and durability of Co-Pd-zeolite catalysts in the reduction of NOx with methane

    International Nuclear Information System (INIS)

    Pieterse, J.A.Z.; Van den Brink, R.W.; Booneveld, S.; De Bruijn, F.A.

    2003-01-01

    Selective catalytic reduction of NO with CH 4 was studied over ZSM-5, MOR, FER and BEA zeolite-based cobalt (Co) and palladium (Pd) catalysts in the presence of oxygen and water. As compared to other catalytic systems reported in literature for CH 4 -SCR in the presence of water, zeolite supported Co-Pd combination catalysts are very active and selective. The most active catalysts, based on MOR and ZSM-5, are characterised by well-dispersed Pd ions in the zeolite that activate methane. Wet ion exchange is a good method to achieve high dispersion of Pd provided that it is carried out in a competitive manner. The presence of cobalt (Co 3 O 4 , Co-oxo ions) boosts SCR activity by oxidising NO to NO 2 . The activity of the zeolite-based Co-Pd combination catalysts decreases with prolonged times on stream. The severity of the deactivation was found to be different for different zeolite topologies. The characterisation and evaluation of freshly calcined catalysts and spent catalysts show two things that occur during reaction: (1) zeolite solvated metal cations disappear in favour of (inactive) metal oxides and presumably larger metal entities, i.e. loss of dispersion; (2) loss of crystallinity affiliated with steam-dealumination and the concomitant formation of extra-framework aluminium (EFAL) in the presence of water. Both phenomena strongly depend on the (reaction) temperature. The deactivation of Co-Pd-zeolite resembles the deactivation of Pd-zeolite. Hence, future research could encompass the stabilisation of Pd (cations) in the zeolite pores by exploring additives other than cobalt. For this, detailed understanding on the siting of Pd in zeolites is important

  9. Ti and Si doping as a way to increase low temperature activity of sulfated Ag/Al2O3 in H2-assisted NH3-SCR of NOx

    DEFF Research Database (Denmark)

    Doronkin, Dmitry E.; Fogel, Sebastian; Gabrielsson, Pär

    2013-01-01

    Ag/Al2O3 catalysts modified by Si, Ti, Mg and W were studied to obtain higher NOx SCR activity and potentially also higher SO2 resistance than the pure silver-based catalyst for automotive applications. Addition of Ti or Si to the alumina support leads to a better NOx removal at low temperature i......-TPR) and temperature-programmed desorption of ammonia (NH3-TPD). The obtained results suggest a better silver dispersion and better regeneration capability in the case of Ti- and Si-modified Ag/Al2O3 catalysts........e. reduces the SCR onset temperature by about 10°C under the applied conditions. However, it does not increase the SO2 resistance. The catalysts and the supports have been characterized by BET, conventional and synchrotron XRD, X-ray absorption spectroscopy during temperature-programmed reduction (XAS......Ag/Al2O3 catalysts modified by Si, Ti, Mg and W were studied to obtain higher NOx SCR activity and potentially also higher SO2 resistance than the pure silver-based catalyst for automotive applications. Addition of Ti or Si to the alumina support leads to a better NOx removal at low temperature i...

  10. Preparation of Cu/La{sub 2}O{sub 3}-ZrO{sub 2}-Al{sub 2}O{sub 3} catalyst and its catalytic properties for selective reduction of NO

    Energy Technology Data Exchange (ETDEWEB)

    Xi-kun Guo; Ping-ping Xie; Shu-dong Lin [Shantou University, Shantou (China). Department of Chemistry

    2008-12-15

    An La{sub 2}O{sub 3}-ZrO{sub 2}-Al{sub 2}O{sub 3} composite support was prepared by co-precipitation with the mixed aqueous solution of La(NO{sub 3}{sub 3}, Al(NO{sub 3){sub 3}, and ZrOCl{sub 2} dropping into the precipitant of (NH{sub 4})2CO{sub 3} aqueous solution. The Cu/La{sub 2}O{sub 3}-ZrO{sub 2}-Al{sub 2}O{sub 3} catalyst was prepared by the impregnation of La{sub 2}O{sub 3}-ZrO{sub 2}-Al{sub 2}O{sub 3} with active component Cu{sup 2+} aqueous solution. The effects of the catalyst on the selective catalytic reduction of NO with propylene in excess oxygen were investigated. The relationships between the preparation method, structure and properties of the Cu/La{sub 2}O{sub 3}-ZrO{sub 2}-Al{sub 2}O{sub 3} catalyst were also explored by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), surface area measurements (BET), pyridine absorption infrared spectrum (Py-IR), thermal gravimetry (TG), and temperature-programmed reduction (TPR). The results indicate that the support {gamma}-Al{sub 2}O{sub 3} prepared by Al(NO{sub 3})3 dropping into (NH{sub 4}{sub 2} CO{sub 3} can remarkably enlarge the surface area; the addition of La{sub 2}O{sub 3} contributes mainly to the enhancement of the thermal stability; and the introduction of ZrO{sub 2} can increase the amount of Lewis and Broenstead acid. Consequently, the catalyst Cu/La{sub 2}O{sub 3}-ZrO{sub 2}-Al{sub 2}O{sub 3} has excellent activity for the selective reduction of NO with propylene in excess oxygen. NO conversion is up to 88.9% at 300{sup o}C and 81.9% even at the presence of 10% volume fraction of water vapor. 15 refs., 8 figs., 1 tab.

  11. Experimental research of technology activating catalysts for SCR DeNOx in boiler

    Science.gov (United States)

    Zeng, Xi; Yang, Zhengde; Li, Yan; Chen, Donglin

    2018-01-01

    In order to improve activity of the catalysts used in SCR DeNOx system of flue gas, a series of catalysts activated by different activating liquids under varied conditions in boiler directly were conducted. Then these catalysts were characterized by SEM, FT-IR and BET technology. And NO conversions of the activated catalysts were studied and compared with that of inactivated catalyst. The above experiment shows that NO conversion of the activated catalyst can be up to 99%, which 30% higher than that of inactivated catalyst, so activity of catalysts were improved greatly. Furthermore, optimal activating liquid labeled L2 and effective technology parameters were gained in the experiment.

  12. Strategies of Coping with Deactivation of NH3-SCR Catalysts Due to Biomass Firing

    DEFF Research Database (Denmark)

    Schill, Leonhard; Fehrmann, Rasmus

    2018-01-01

    silicates, often in the form of coal fly ash, is an industrially proven method of removing K aerosols from flue gases. Tail-end placement of the SCR unit was also reported to result in acceptable catalyst stability; however, flue-gas reheating after the flue gas desulfurization is, at present, unavoidable...... number of acid sites. This can be achieved by, e.g., using zeolites as support, replacing WO3 with heteropoly acids, and by preparing highly loaded, high surface area, very active V2O5/TiO2 catalyst using a special sol-gel method....

  13. High voltage series resonant inverter ion engine screen supply. [SCR series resonant inverter for space applications

    Science.gov (United States)

    Biess, J. J.; Inouye, L. Y.; Shank, J. H.

    1974-01-01

    A high-voltage, high-power LC series resonant inverter using SCRs has been developed for an Ion Engine Power Processor. The inverter operates within 200-400Vdc with a maximum output power of 2.5kW. The inverter control logic, the screen supply electrical and mechanical characteristics, the efficiency and losses in power components, regulation on the dual feedback principle, the SCR waveforms and the component weight are analyzed. Efficiency of 90.5% and weight density of 4.1kg/kW are obtained.

  14. Catalytic Organometallic Reactions of Ammonia

    Science.gov (United States)

    Klinkenberg, Jessica L.

    2012-01-01

    Until recently, ammonia had rarely succumbed to catalytic transformations with homogeneous catalysts, and the development of such reactions that are selective for the formation of single products under mild conditions has encountered numerous challenges. However, recently developed catalysts have allowed several classes of reactions to create products with nitrogen-containing functional groups from ammonia. These reactions include hydroaminomethylation, reductive amination, alkylation, allylic substitution, hydroamination, and cross-coupling. This Minireview describes examples of these processes and the factors that control catalyst activity and selectivity. PMID:20857466

  15. A proposal to pulse the Bevatron/Bevalac main guide field magnet with SCR power supplies

    International Nuclear Information System (INIS)

    Frias, B.; Alonso, J.; Dwinell, R.; Lothrop, F.

    1989-01-01

    The Bevatron/Bevalac Main Guide Field Power Supply was originally designed to provide a 15,250 Volt DC. at sign 8400 Ampere peak magnet pulse. Protons were accelerated to 6.2 Gev. The 128 Megawatt (MW) pulse required two large motor-generator (MG) sets with 67 ton flywheels to store 680 Megajoules of energy. Ignitron rectifiers are used to rectify the generator outputs. Acceleration of heavy ions results in an operating schedule with a broad range of peak fields. The maximum field of 12.5 kilogauss requires a peak pulse of 80 MW. Acceleration of ions to 1.0 kilogauss requires an 8 MW peak pulse. One MG set can provide pulses below 45 MW. Peak pulses of less than 15 MW are now a large block of the operating schedule. A proposal has been made to replace the existing MG system with eight SCR power supplies for low field operation. The SCR supplies will be powered directly from the Lawrence Berkeley Laboratory's 12.3 KV. power distribution system. This paper describes the many advantages of the plan. 4 refs., 3 figs., 3 tabs

  16. Synthesis of FBD-based PLC design from NuSCR formal specification

    International Nuclear Information System (INIS)

    Yoo, Junbeom; Cha, Sungdeok; Kim, Chang Hwoi; Song, Duck Yong

    2005-01-01

    NuSCR is a formal specification language to document requirements for real-time embedded software with nuclear engineering applications in mind. Domain experts actively participated in selecting how to best represent various aspects. It uses tabular notations to specify required computations and automata to document state- or time-dependent behavior. As programmable logic controllers (PLCs) are widely used to implement real-time embedded software, synthesis of PLC code from a formal specification is desirable if transformation rules can be rigorously defined. In addition to improved productivity, results of safety analysis performed on requirements remain valid. In this paper, we demonstrate how NuSCR specification can be translated into semantically equivalent function block diagram (FBD) code. The process, except the initial phase where user provides information on missing or implicit details, is automated. Since executable code can be automatically generated using CASE tools from FBD, much of software development is automated. Proposed technique is currently being used in developing reactor protection system (RPS) for nuclear power plants in Korea, and experience to date has been positive. We demonstrate the proposed approach using the fixed set-point rising trip which is one of the most complex trip logics included in the RPS

  17. Catalytic production of biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Theilgaard Madsen, A.

    2011-07-01

    The focus of this thesis is the catalytic production of diesel from biomass, especially emphasising catalytic conversion of waste vegetable oils and fats. In chapter 1 an introduction to biofuels and a review on different catalytic methods for diesel production from biomass is given. Two of these methods have been used industrially for a number of years already, namely the transesterification (and esterification) of oils and fats with methanol to form fatty acid methyl esters (FAME), and the hydrodeoxygenation (HDO) of fats and oils to form straight-chain alkanes. Other possible routes to diesel include upgrading and deoxygenation of pyrolysis oils or aqueous sludge wastes, condensations and reductions of sugars in aqueous phase (aqueous-phase reforming, APR) for monofunctional hydrocarbons, and gasification of any type of biomass followed by Fischer-Tropsch-synthesis for alkane biofuels. These methods have not yet been industrialised, but may be more promising due to the larger abundance of their potential feedstocks, especially waste feedstocks. Chapter 2 deals with formation of FAME from waste fats and oils. A range of acidic catalysts were tested in a model fat mixture of methanol, lauric acid and trioctanoin. Sulphonic acid-functionalised ionic liquids showed extremely fast convertion of lauric acid to methyl laurate, and trioctanoate was converted to methyl octanoate within 24 h. A catalyst based on a sulphonated carbon-matrix made by pyrolysing (or carbonising) carbohydrates, so-called sulphonated pyrolysed sucrose (SPS), was optimised further. No systematic dependency on pyrolysis and sulphonation conditions could be obtained, however, with respect to esterification activity, but high activity was obtained in the model fat mixture. SPS impregnated on opel-cell Al{sub 2}O{sub 3} and microporous SiO{sub 2} (ISPS) was much less active in the esterification than the original SPS powder due to low loading and thereby low number of strongly acidic sites on the

  18. Sulfur poisoning and regeneration of the Ag/γ-Al2O3 catalyst for H2-assisted SCR of NOx by ammonia

    DEFF Research Database (Denmark)

    Doronkin, Dmitry E.; Khan, Tuhin Suvra; Bligaard, Thomas

    2012-01-01

    Sulfur poisoning and regeneration mechanisms for a 2% Ag/γ-Al2O3 catalyst for the H2-assisted selective catalytic reduction of NOx by NH3 are investigated. The catalyst has medium sulfur tolerance at low temperatures, however a good capability of regeneration at 670°C under lean conditions when H...

  19. A Au/Cu2O-TiO2 system for photo-catalytic hydrogen production. A pn-junction effect or a simple case of in situ reduction?

    KAUST Repository

    Sinatra, Lutfan; LaGrow, Alec P.; Peng, Wei; Kirmani, Ahmad R.; Amassian, Aram; Idriss, Hicham; Bakr, Osman

    2015-01-01

    Photo-catalytic H2 production from water has been studied over Au-Cu2O nanoparticle deposited on TiO2 (anatase) in order to probe into both the plasmon resonance effect (Au nanoparticles) and the pn-junction at the Cu2O-TiO2 interface. The Au-Cu2O

  20. Catalytic hydrogenation of carbon monoxide

    International Nuclear Information System (INIS)

    Wayland, B.B.

    1993-12-01

    Focus of this project is on developing new approaches for hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. The strategies to accomplish CO reduction are based on favorable thermodynamics manifested by rhodium macrocycles for producing a series of intermediates implicated in the catalytic hydrogenation of CO. Metalloformyl complexes from reactions of H 2 and CO, and CO reductive coupling to form metallo α-diketone species provide alternate routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics are promising candidates for future development

  1. Study for a stress joint at the top of a SCR (Steel Catenary Risers); Estudo de 'stress joints' para o topo de um SCR (Steel Catenary Risers)

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, Elizabeth Frauches Netto; Andrade, Edmundo Queiroz de [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Steel Catenary Risers, SCRs, need a top connection that bears the force transmitted to the platform. Essentially, two types of connections exist on the market: flex joint and stress joint (SJ). PETROBRAS has a SCR with top connection of flex joint type installed on one of its platforms; however, the company has been studying SJ as an option out of SCR top connection. A stress joint is a monolithic structure and can be inspected during manufacture and service, without so many difficult. They are metal structures composed of a uniform bore inserted in a tapered wall that increases gradually to support the force coming from the riser. The objective of this paper is to present a SJ sensitivity study for a production SCR supposedly hardwired to a unit of production of the semi-submersible type. The data used is based on real SCR data. For this study, global and local analyses were conducted for some models of stress joints, varying some parameters such as material and dimensions, allowing for the verification of some of the critical points of this type of connection. The results obtained will be shown in graphs and tensions maps to illustrate comparatively the critical points of the models analyzed. (author)

  2. SHORT COMMUNICATION CATALYTIC KINETIC ...

    African Journals Online (AJOL)

    IV) catalyzes the discoloring reaction of DBS-arsenazo oxidized by potassium bromate, a new catalytic kinetic spectrophotometric method for the determination of trace titanium (IV) was developed. The linear range of the determination of ...

  3. Catalytic distillation process

    Science.gov (United States)

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  4. Catalytic distillation structure

    Science.gov (United States)

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  5. SCR96, a small cysteine-rich secretory protein of Phytophthora cactorum, can trigger cell death in the Solanaceae and is important for pathogenicity and oxidative stress tolerance.

    Science.gov (United States)

    Chen, Xiao-Ren; Li, Yan-Peng; Li, Qi-Yuan; Xing, Yu-Ping; Liu, Bei-Bei; Tong, Yun-Hui; Xu, Jing-You

    2016-05-01

    Peptides and small molecules produced by both the plant pathogen Phytophthora and host plants in the apoplastic space mediate the relationship between the interplaying organisms. Various Phytophthora apoplastic effectors, including small cysteine-rich (SCR) secretory proteins, have been identified, but their roles during interaction remain to be determined. Here, we identified an SCR effector encoded by scr96, one of three novel genes encoding SCR proteins in P. cactorum with similarity to the P. cactorum phytotoxic protein PcF. Together with the other two genes, scr96 was transcriptionally induced throughout the developmental and infection stages of the pathogen. These genes triggered plant cell death (PCD) in the Solanaceae, including Nicotiana benthamiana and tomato. The scr96 gene did not show single nucleotide polymorphisms in a collection of P. cactorum isolates from different countries and host plants, suggesting that its role is essential and non-redundant during infection. Homologues of SCR96 were identified only in oomycetes, but not in fungi and other organisms. A stable protoplast transformation protocol was adapted for P. cactorum using green fluorescent protein as a marker. The silencing of scr96 in P. cactorum caused gene-silenced transformants to lose their pathogenicity on host plants and these transformants were significantly more sensitive to oxidative stress. Transient expression of scr96 partially recovered the virulence of gene-silenced transformants on plants. Overall, our results indicate that the P. cactorum scr96 gene encodes an important virulence factor that not only causes PCD in host plants, but is also important for pathogenicity and oxidative stress tolerance. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  6. Methodology for Analysing the NOx-NH3 Trade-off for the Heavy-duty Automotive SCR Catalyst

    DEFF Research Database (Denmark)

    Åberg, Andreas; Widd, Anders; Abildskov, Jens

    2017-01-01

    This paper presents a methodology where pareto fronts were used to analyse how changes in the control structure for the urea dosing to the automotive SCR catalyst can improve the trade-o_ between NOx slip and NH3 slip. A previously developed simulation model was used to simulate the European...

  7. L-Cysteine inhibits root elongation through auxin/PLETHORA and SCR/SHR pathway in Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Zhen; Mao, Jie-Li; Zhao, Ying-Jun; Li, Chuan-You; Xiang, Cheng-Bin

    2015-02-01

    L-Cysteine plays a prominent role in sulfur metabolism of plants. However, its role in root development is largely unknown. Here, we report that L-cysteine reduces primary root growth in a dosage-dependent manner. Elevating cellular L-cysteine level by exposing Arabidopsis thaliana seedlings to high L-cysteine, buthionine sulphoximine, or O-acetylserine leads to altered auxin maximum in root tips, the expression of quiescent center cell marker as well as the decrease of the auxin carriers PIN1, PIN2, PIN3, and PIN7 of primary roots. We also show that high L-cysteine significantly reduces the protein level of two sets of stem cell specific transcription factors PLETHORA1/2 and SCR/SHR. However, L-cysteine does not downregulate the transcript level of PINs, PLTs, or SCR/SHR, suggesting that an uncharacterized post-transcriptional mechanism may regulate the accumulation of PIN, PLT, and SCR/SHR proteins and auxin transport in the root tips. These results suggest that endogenous L-cysteine level acts to maintain root stem cell niche by regulating basal- and auxin-induced expression of PLT1/2 and SCR/SHR. L-Cysteine may serve as a link between sulfate assimilation and auxin in regulating root growth. © 2014 Institute of Botany, Chinese Academy of Sciences.

  8. SCR series switch and impulse crowbar at the Lawrence Berkeley Laboratory for CTR neutral beam source development

    International Nuclear Information System (INIS)

    Franck, J.V.; Arthur, A.A.; Brusse, L.A.; Low, W.

    1977-10-01

    The series switch is designed to operate at 120kV and pass 65A for 0.5 sec every 30 sec on the Lawrence Berkeley Laboratory CTR Neutral Beam Source Test Stand IIIB. The series switch consists of 400 individual SCR circuits connected in series and is turned on by a simple system of cascaded pulse transformers with multiple single turn secondaries each driving the individual SCR gates. It is turned off by an SCR impulse crowbar that momentarily shorts the power supply allowing the series switch to recover. The SCR switch has been tested in the impulse crowbar configuration and will reliably commutate up to 90A at 120kV. The series switch and impulse crowbar are now in service in Test Stand IIIB. A series switch and impulse crowbar similar in concept is routinely powering a 10 x 10 cm source at 150kV, 20A, 0.5 sec with a 1% duty cycle on the Lawrence Berkeley Laboratory CTR NSB Test Stand IIIA

  9. Vanadia-based SCR Catalysts Supported on Tungstated and Sulfated Zirconia: Influence of Doping with Potassium

    DEFF Research Database (Denmark)

    Due-Hansen, Johannes; Boghosian, Soghomon; Kustov, Arkadii

    2007-01-01

    A series of vanadium-based SCR catalysts supported on sulfated or tungstated ZrO2 were synthesized and characterized by means of N2-BET, XRD, NH3-TPD and in situ Raman spectroscopy. The effect of potassium doping on the properties of vanadia species is studied in detail. A number of catalyst...... and morphology, the surface composition and the molecular configuration of the dispersed vanadates. It was observed that poisoning with potassium had a negligible effect on the surface vanadate species (especially the V=O stretching frequency observed by in situ Raman spectroscopy) if supported on the sulfated...... the observed decrease in V=O stretching frequency and the higher proportion of dimers and higher polymers through coordination between K+ and two neighbouring V=O. The results suggest an increased resistance towards potassium doping for the vanadia-based catalysts supported on sulfated zirconia....

  10. Preparation of highly active manganese oxides supported on functionalized MWNTs for low temperature NOx reduction with NH3

    Science.gov (United States)

    Pourkhalil, Mahnaz; Moghaddam, Abdolsamad Zarringhalam; Rashidi, Alimorad; Towfighi, Jafar; Mortazavi, Yadollah

    2013-08-01

    Manganese oxide catalysts (MnOx) supported on functionalized multi-walled carbon nanotubes (FMWNTs) for low temperature selective catalytic reduction (LTSCR) of nitrogen oxides (NOx) with NH3 in the presence of excess O2 were prepared by the incipient wetness impregnation method. These catalysts were characterized by N2 adsorption, Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), X-ray diffraction (XRD), thermal gravimetric analysis (TGA) and H2-temperature programmed reduction (H2-TPR) methods. The effects of reaction temperature, MnOx loading, calcination temperature and calcination time were investigated. The presence of surface nitrate species under moderate calcination conditions may play a favorable role in the LTSCR of NOx with NH3. Under the reaction conditions of 200 °C, 1 bar, NO = NH3 = 900 ppm, O2 = 5 vol%, GHSV = 30,000 h-1 and 12 wt% MnOx, NOx conversion and N2 selectivity were 97% and 99.5%, respectively. The SCR activity was reduced in the presence of 100 ppm SO2 and 2.5 vol% H2O from 97% to 92% within 6 h at 200 °C, however such an effect was shown to be reversible by exposing the catalyst to a helium flow for 2 h at 350 °C due to thermal decomposition of ammonium sulphate salts.

  11. Development of selective catalytic oxidation (SCO) for NH{sub 3} and HCN removal from gasification gas; Selektiivisen katalyyttisen hapetusprosessin (SCO) kehittaeminen kaasutuskaasun NH{sub 3}:n ja HCN:n poistoon

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T.; Heiskanen, K. [VTT Energy, Espoo (Finland)

    1997-10-01

    In gasification, reactive nitrogen compounds (mainly NH{sub 3} and HCN) are formed from fuel nitrogen. If the gas containing NH{sub 3} is burned, a high NO{sub x} emission may be formed. The content of nitrogen compounds of the hot gasification gas could be reduced in Selective Catalytic Oxidation (SCO) process. In this process small amounts of reactive oxidisers are injected into the gas in order to convert NH{sub 3} to N{sub 2}. The utilization of SCO process together with low NO{sub x} burners in advanced gasification power stations might offer an alternative for flue gas treatment technologies like SCR (Selective Catalytic Reduction). In the earlier research, conditions were found, where oxidizers reacted selectively with ammonia in the gasification gas. Highest ammonia reduction took place in the aluminium oxide bed in the presence of NO and O{sub 2}. The aim of this study is to examine the reaction mechanism in order to be able to further evaluate the development possibilities of this kind process. The effect of composition and the amount of added oxidizer, the content of combustible gas components, space velocity, pressure and temperature will be studied. The experiments are carried out with the laboratory scale high pressure flow reactor of VTT Energy. Kinetic modelling of the experimental results is carried out in co-operation with the combustion chemistry group of Aabo Akademi. The aim of the modelling work is to bring insight to the gas-phase reactions that are important for the SCO-process. (orig.)

  12. Catalytic nanoporous membranes

    Science.gov (United States)

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  13. Steam reformer with catalytic combustor

    Science.gov (United States)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  14. Selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J; Koljonen, T [VTT Energy, Espoo (Finland)

    1997-12-31

    In the combustion of fossil fuels, the principal source of nitrogen oxides is nitrogen bound in the fuel structure. In gasification, a large part of fuel nitrogen forms NH{sub 3}, which may form nitrogen oxides during gas combustion. If NH{sub 3} and other nitrogen species could be removed from hot gas, the NO emission could be considerably reduced. However, relatively little attention has been paid to finding new means of removing nitrogen compounds from the hot gasification gas. The possibility of selectively oxidizing NH{sub 3} to N{sub 2} in the hot gasification has been studied at VTT Energy. The largest NH{sub 3} reductions have been achieved by catalytic oxidation on aluminium oxides. (author) (4 refs.)

  15. Studies of Catalytic Model Systems

    DEFF Research Database (Denmark)

    Holse, Christian

    The overall topic of this thesis is within the field of catalysis, were model systems of different complexity have been studied utilizing a multipurpose Ultra High Vacuum chamber (UHV). The thesis falls in two different parts. First a simple model system in the form of a ruthenium single crystal...... of the Cu/ZnO nanoparticles is highly relevant to industrial methanol synthesis for which the direct interaction of Cu and ZnO nanocrystals synergistically boost the catalytic activity. The dynamical behavior of the nanoparticles under reducing and oxidizing environments were studied by means of ex situ X......-ray Photoelectron Electron Spectroscopy (XPS) and in situ Transmission Electron Microscopy (TEM). The surface composition of the nanoparticles changes reversibly as the nanoparticles exposed to cycles of high-pressure oxidation and reduction (200 mbar). Furthermore, the presence of metallic Zn is observed by XPS...

  16. Selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-31

    In the combustion of fossil fuels, the principal source of nitrogen oxides is nitrogen bound in the fuel structure. In gasification, a large part of fuel nitrogen forms NH{sub 3}, which may form nitrogen oxides during gas combustion. If NH{sub 3} and other nitrogen species could be removed from hot gas, the NO emission could be considerably reduced. However, relatively little attention has been paid to finding new means of removing nitrogen compounds from the hot gasification gas. The possibility of selectively oxidizing NH{sub 3} to N{sub 2} in the hot gasification has been studied at VTT Energy. The largest NH{sub 3} reductions have been achieved by catalytic oxidation on aluminium oxides. (author) (4 refs.)

  17. An engineering approach to the design and construction of a small modular stellarator for magnetic confinement of plasma. SCR-1

    International Nuclear Information System (INIS)

    Barillas, Laura; Vargas, V. Iván; Alpízar, Asdrúval

    2011-01-01

    This paper briefly describes the design and construction of Stellarator of Costa Rica 1 (SCR-1) from an engineering perspective. SCR-1 is a small modular Stellarator for magnetic confinement of plasma developed by the Plasma Physics Group of the Instituto Tecnológico de Costa Rica (ITCR). The SCR-1 is based on the small Spanish Stellarator UST 1 (Ultra Small Torus 1), created by engineer Vicente Queral. Some of the characteristics of the SCR-1 are the following: it will be a 2-field period modular stellarator with an aspect ratio ≈ 6; low shear configuration with core and edge rotational transform equal to 0.32 and 0.28; it will employ stainless steel torus-shaped vacuum vessel which will hold a plasma with an average radius a ≈ 42.2 mm, a volume of 8 liters (0.008 m 3 ), and major radius R = 238 mm. This plasma will be confined by a magnetic field (B ≈ 90 mT) given by 12 modular coils with 12 turns each, carrying a current of 725 A per turn providing a total toroidal field (TF) current of 8.7 kA-turn per coil. The coils will be supplied by a bank of cell batteries of 120 V. Typical length of the plasma pulse will be between 4 s to 10 s. The plasma heating will be achieved by electron cyclotron radio-frequency (ECH) from two magnetrons providing a total power of 5 kW, at a frequency of 2.45 GHz corresponding to the first harmonic (B 0 = 87.8 mT). The expected electron temperature and density are 15 eV and 7x10 16 m -3 respectively. The initial diagnostics on the SCR-1 will consist of a Langmuir probe with a displacement system, a heterodyne microwave interferometer (frequency of 28 GHz, corresponding to a wavelength of λ = 10.71 mm). The first plasma of the SCR-1 is expected at the beginning of 2012. (author)

  18. Analysis of the offshore installations regulations 2005 (SCR05r12) within Brazilian reality; Analise da regulacao das instalacoes offshore 2005 (SCR05r12) dentro da realidade brasileira

    Energy Technology Data Exchange (ETDEWEB)

    Nalvarte, Gladys; Storch, Rafael; Araujo, Pedro; Oliveira, Luiz Fernando [Det Norske Veritas (Brazil)

    2008-07-01

    The main motivation for the present study is the modifications presented in the guidance Offshore Installations (Safety Case) Regulations 2005 (SCR05 r12), released by HSE, in relation to the Offshore Installation Regulation 1992, SCR92. A critical analysis of the new regulation issued by HSE is developed and conclusions are obtained. A cost-benefit approach applied to the Quantitative Risk Analysis (QRA), using computational fluid dynamics (CFD) techniques, is suggested. Thereby, a method to identify the mitigation measures that most reduces the risks with the minimum cost is obtained. On the other hand, this new QRA approach combined with a cost benefit analysis is intended to have a total cost diminished. In this case, the cost of the new QRA study is dependant on the number of reevaluations needed to determine the mitigation measures to be applied. (author)

  19. Catalytic pyrolysis of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Vail' eva, N A; Buyanov, R A

    1979-01-01

    Catalytic pyrolysis of petroleum fractions (undecane) was performed with the object of clarifying such questions as the mechanism of action of the catalyst, the concepts of activity and selectivity of the catalyst, the role of transport processes, the temperature ranges and limitations of the catalytic process, the effect of the catalyst on secondary processes, and others. Catalysts such as quartz, MgO, Al/sub 2/O/sub 3/, were used. Analysis of the experimental findings and the fact that the distribution of products is independent of the nature of the surface, demonstrate that the pyrolysis of hydrocarbons in the presence of catalysts is based on the heterogeneous-homogeneous radical-chain mechanism of action, and that the role of the catalysts reduces to increasing the concentration of free radicals. The concept of selectivity cannot be applied to catalysts here, since they do not affect the mechanism of the unfolding of the process of pyrolysis and their role consists solely in initiating the process. In catalytic pyrolysis the concepts of kinetic and diffusive domains of unfolding of the catalytic reaction do not apply, and only the outer surface of the catalyst is engaged, whereas the inner surface merely promotes deletorious secondary processes reducing the selectivity of the process and the activity of the catalyst. 6 references, 2 figures.

  20. Catalytic Conversion of Biofuels

    DEFF Research Database (Denmark)

    Jørgensen, Betina

    This thesis describes the catalytic conversion of bioethanol into higher value chemicals. The motivation has been the unavoidable coming depletion of the fossil resources. The thesis is focused on two ways of utilising ethanol; the steam reforming of ethanol to form hydrogen and the partial oxida...