WorldWideScience

Sample records for catalytic multi-stage liquefaction

  1. Catalytic multi-stage liquefaction (CMSL)

    Energy Technology Data Exchange (ETDEWEB)

    Comolli, A.G.; Ganguli, P.; Karolkiewicz, W.F.; Lee, T.L.K.; Pradhan, V.R.; Popper, G.A.; Smith, T.; Stalzer, R.

    1996-11-01

    Under contract with the U.S. Department of Energy, Hydrocarbon Technologies, Inc. has conducted a series of eleven catalytic, multi-stage, liquefaction (CMSL) bench scale runs between February, 1991, and September, 1995. The purpose of these runs was to investigate novel approaches to liquefaction relating to feedstocks, hydrogen source, improved catalysts as well as processing variables, all of which are designed to lower the cost of producing coal-derived liquid products. This report summarizes the technical assessment of these runs, and in particular the evaluation of the economic impact of the results.

  2. Catalytic multi-stage liquefaction of coal at HTI: Bench-scale studies in coal/waste plastics coprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, V.R.; Lee, L.K.; Stalzer, R.H. [Hydrocarbon Technologies, Inc., Lawrenceville, NJ (United States)] [and others

    1995-12-31

    The development of Catalytic Multi-Stage Liquefaction (CMSL) at HTI has focused on both bituminous and sub-bituminous coals using laboratory, bench and PDU scale operations. The crude oil equivalent cost of liquid fuels from coal has been curtailed to about $30 per barrel, thus achieving over 30% reduction in the price that was evaluated for the liquefaction technologies demonstrated in the late seventies and early eighties. Contrary to the common belief, the new generation of catalytic multistage coal liquefaction process is environmentally very benign and can produce clean, premium distillates with a very low (<10ppm) heteroatoms content. The HTI Staff has been involved over the years in process development and has made significant improvements in the CMSL processing of coals. A 24 month program (extended to September 30, 1995) to study novel concepts, using a continuous bench scale Catalytic Multi-Stage unit (30kg coal/day), has been initiated since December, 1992. This program consists of ten bench-scale operations supported by Laboratory Studies, Modelling, Process Simulation and Economic Assessments. The Catalytic Multi-Stage Liquefaction is a continuation of the second generation yields using a low/high temperature approach. This paper covers work performed between October 1994- August 1995, especially results obtained from the microautoclave support activities and the bench-scale operations for runs CMSL-08 and CMSL-09, during which, coal and the plastic components for municipal solid wastes (MSW) such as high density polyethylene (HDPE)m, polypropylene (PP), polystyrene (PS), and polythylene terphthlate (PET) were coprocessed.

  3. Multi-stage selective catalytic reduction of NOx in lean burn engine exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    Many studies suggest that the conversion of NO to NO{sub 2} is an important intermediate step in the selective catalytic reduction (SCR) of NO{sub x} to N{sub 2}. Some effort has been devoted to separating the oxidative and reductive functions of the catalyst in a multi-stage system. This method works fine for systems that require hydrocarbon addition. The hydrocarbon has to be injected between the NO oxidation catalyst and the NO{sub 2} reduction catalyst; otherwise, the first-stage oxidation catalyst will also oxidize the hydrocarbon and decrease its effectiveness as a reductant. The multi-stage catalytic scheme is appropriate for diesel engine exhausts since they contain insufficient hydrocarbons for SCR, and the hydrocarbons can be added at the desired location. For lean-burn gasoline engine exhausts, the hydrocarbons already present in the exhausts will make it necessary to find an oxidation catalyst that can oxidize NO to NO{sub 2} but not oxidize the hydrocarbon. A plasma can also be used to oxidize NO to NO{sub 2}. Plasma oxidation has several advantages over catalytic oxidation. Plasma-assisted catalysis can work well for both diesel engine and lean-burn gasoline engine exhausts. This is because the plasma can oxidize NO in the presence of hydrocarbons without degrading the effectiveness of the hydrocarbon as a reductant for SCR. In the plasma, the hydrocarbon enhances the oxidation of NO, minimizes the electrical energy requirement, and prevents the oxidation of SO{sub 2}. This paper discusses the use of multi-stage systems for selective catalytic reduction of NO{sub x}. The multi-stage catalytic scheme is compared to the plasma-assisted catalytic scheme.

  4. Compressor selection methods for multi-stage re-liquefaction system of liquefied CO2 transport ship for CCS

    International Nuclear Information System (INIS)

    Recently, CCS (carbon dioxide capture and sequestration) has been receiving considerable attention as a possible means of dealing with emissions of CO2, a greenhouse gas. To this end, EOR (enhanced oil recovery) and EGR (enhanced gas recovery) are regarded as being viable options for economically sequestrating large amounts of CO2. A feasible approach would involve capturing CO2 from large-scale CO2 emission sources such as power plants, and then transporting that captured gas to near-depleted oil and gas wells to maintain the reservoir pressure and enhance the oil/gas recovery rate. In the future, CO2 will be transported large distances from emission sources in developed countries to oil/gas producing regions by pipelines or ships. The long-distance ship-based transport of CO2 would require that the gas be compressed or liquefied (LCO2). Furthermore, an LCO2 transport ship would have to be capable of processing boil-off gas while at sea. In this study, the selection method of compressors for re-liquefaction system of dedicated LCO2 transport ship was investigated by computational method. The performance of same compression ratio (SCR) method exhibited low levels of efficiency and reliability as for coefficient of performance (COP) and compressor discharge temperature in terms of oil degradation compared to that of intermediate pressure optimization (IPO). Of these three methods, IPO produced the highest level of performance of all, but could not guarantee compressor reliability as like SCR, too. Intermediate pressure optimization with same discharge temperature (IPODT) method was found to be better in terms of reliability, with a decrease in performance of only 5% relative to that obtained by IPO. Consequently, we recommend the use of the IPODT method for the design of a multi-stage compression system for the re-liquefaction cycle of an LCO2 transport ship. - Highlights: • Compressor selection methods for CO2 re-liquefaction system are compared. • Simulation

  5. Catalytic hydrothermal liquefaction of water hyacinth.

    Science.gov (United States)

    Singh, Rawel; Balagurumurthy, Bhavya; Prakash, Aditya; Bhaskar, Thallada

    2015-02-01

    Thermal and catalytic hydrothermal liquefaction of water hyacinth was performed at temperatures from 250 to 300 °C under various water hyacinth:H2O ratio of 1:3, 1:6 and 1:12. Reactions were also carried out under various residence times (15-60 min) as well as catalytic conditions (KOH and K2CO3). The use of alkaline catalysts significantly increased the bio-oil yield. Maximum bio-oil yield (23 wt%) comprising of bio-oil1 and bio-oil2 as well as conversion (89%) were observed with 1N KOH solution. (1)H NMR and (13)C NMR data showed that both bio-oil1 and bio-oil2 have high aliphatic carbon content. FTIR of bio-residue indicated that the usage of alkaline catalyst resulted in bio-residue samples with lesser oxygen functionality indicating that catalyst has a marked effect on nature of the bio-residue and helps to decompose biomass to a greater extent compared to thermal case. PMID:25240515

  6. Catalytic activity of pyrite for coal liquefaction reaction; Tennen pyrite no shokubai seino ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, K.; Kozu, M.; Okada, T.; Kobayashi, M. [Nippon Coal Oil Co. Ltd., Tokyo (Japan)

    1996-10-28

    Since natural pyrite is easy to obtain and cheap as coal liquefaction catalyst, it is to be used for the 150 t/d scale NEDOL process bituminous coal liquefaction pilot plant. NEDO and NCOL have investigated the improvement of catalytic activity of pulverized natural pyrite for enhancing performance and economy of the NEDOL process. In this study, coal liquefaction tests were conducted using natural pyrite catalyst pulverized by dry-type bowl mill under nitrogen atmosphere. Mechanism of catalytic reaction of the natural pyrite was discussed from relations between properties of the catalyst and liquefaction product. The natural pyrite provided an activity to transfer gaseous hydrogen into the liquefaction product. It was considered that pulverized pyrite promotes the hydrogenation reaction of asphaltene because pulverization increases its contact rate with reactant and the amount of active points on its surface. It was inferred that catalytic activity of pyrite is affected greatly by the chemical state of Fe and S on its surface. 3 refs., 4 figs., 1 tab.

  7. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Huang, L.; Wenzel, K.; Saini, A.K.; Burgess, C.; Hatcher, P.G.; Schobert, H.H.

    1992-12-01

    During this quarterly period progress has been made in the following three subjects related to the effects of low-temperature thermal and catalytic pretreatments on coal structure and reactivity in liquefaction. First, the liquefaction behavior of three bituminous coals with a carbon content ranging from 77% to 85% was evaluated spectroscopically by [sup 13]C NMR and pyrolysis/gas chromatography/mass spectrometry to delineate the structural changes that occur in the coal during liquefaction. Complementary data includes ultimate and proximate analysis, along with optical microscopy for maceral determinations. Even though these are all bituminous coals they exhibit quite different physical and chemical characteristics. The coals vary in rank, ranging from HvC b to HvA b, in petrographic composition, different maceral percentages, and in chemical nature, percent of carbon and of volatiles. It is these variations that govern the products, their distribution, and conversion percentages. Some of the products formed can be traced to a specific maceral group. Second, pyrolysis-GC-MS and FTIR techniques were used to characterize Wyodak coal before and after drying in vacuum and in air and the residues from its thermal and catalytic liquefactions. The analysis of the air-dried coal shows a decrease in the phenolic type structures in the coal network and increase in the carbonyl structures as the oxidative drying proceeds. An enhanced decrease in the carbonyl structure is observed in the liquefaction residues from the raw coal as compared to that of the vacuum dried coal. The analyses of the liquefaction residues of the air-dried coal show an increase in the ether linkages which may have a negative impact on liquefaction. The extent of the solvent adduction also increases during liquefaction with the extent of oxidation of the coal. Finally, the effects of reaction conditions were investigated on conversion of low-rank coals using a Texas subbituminous coal.

  8. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Saini, A.; Huang, L.; Wenzel, K.; Hatcher, P.G.; Schobert, H.H.

    1992-01-01

    Low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals in the subsequent liquefaction. This report describes the progress of our work during the first quarterly period. Substantial progress has been made in the spectroscopic characterization of fresh and THF-extracted samples of two subbituminous coals and fresh samples of three bituminous coals using cross-polarization magic angle spinning (CPMAS) solid state {sup 13}C NMR and pyrolysis-GC-MS techniques. CPMAS {sup 13}C NMR and pyrolysis-GC-MS provided important information on carbon distribution/functionality and molecular components/structural units, respectively, for these coal samples. Pyrolysis-GC-MS revealed that there are remarkable structural differences in structural units between the subbituminous coals and the bituminous coals. Furthermore, significant progress has been made in the pretreatments and spectroscopic characterization of catalytically and thermally pretreated as well as physically treated Wyodak subbituminous coal, and temperature-staged and temperature-programmed thermal and catalytic liquefaction of a Montana subbituminous coal.

  9. HRI catalytic two-stage liquefaction (CTSL) process materials: chemical analysis and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.; Later, D.W.

    1985-12-01

    This report presents data from the chemical analysis and biological testing of coal liquefaction materials obtained from the Hydrocarbon Research, Incorporated (HRI) catalytic two-stage liquefaction (CTSL) process. Materials from both an experimental run and a 25-day demonstration run were analyzed. Chemical methods of analysis included adsorption column chromatography, high-resolution gas chromatography, gas chromatography/mass spectrometry, low-voltage probe-inlet mass spectrometry, and proton nuclear magnetic resonance spectroscopy. The biological activity was evaluated using the standard microbial mutagenicity assay and an initiation/promotion assay for mouse-skin tumorigenicity. Where applicable, the results obtained from the analyses of the CTSL materials have been compared to those obtained from the integrated and nonintegrated two-stage coal liquefaction processes. 18 refs., 26 figs., 22 tabs.

  10. Hydrothermal processing of fermentation residues in a continuous multistage rig – Operational challenges for liquefaction, salt separation, and catalytic gasification

    International Nuclear Information System (INIS)

    Fermentation residues are a waste stream of biomethane production containing substantial amounts of organic matter, and thus representing a primary energy source which is mostly unused. For the first time this feedstock was tested for catalytic gasification in supercritical water (T ≥ 374 °C, p ≥ 22 MPa) for methane production. The processing steps include hydrothermal liquefaction, salt separation, as well as catalytic gasification over a ruthenium catalyst in supercritical water. In continuous experiments at a feed rate of 1 kg h−1 a partial liquefaction and carbonization of some of the solids was observed. Significant amounts of heavy tars were formed. Around 50% of the feed carbon remained in the rig. Furthermore, a homogeneous coke was formed, presumably originating from condensed tars. The mineralization of sulfur and its separation in the salt separator was insufficient, because most of the sulfur was still organically bound after liquefaction. Desalination was observed at a salt separator set point temperature of 450 °C and 28 MPa; however, some of the salts could not be withdrawn as a concentrated brine. At 430 °C no salt separation took place. Higher temperatures in the salt separator were found to promote tar and coke formation, resulting in conflicting process requirements for efficient biomass liquefaction and desalination. In the salt separator effluent, solid crystals identified as struvite (magnesium ammonium phosphate) were found. This is the first report of struvite formation from a supercritical water biomass conversion process and represents an important finding for producing a fertilizer from the separated salt brine. - Highlights: • Continuous processing of fermentation residues in sub- and supercritical water. • Continuous separation of salt brines at supercritical water conditions. • Struvite crystals (magnesium ammonium phosphate) were recovered from the effluent. • Separation of sulfur from the biomass could not

  11. Catalytic cracking of crude bio-oil from glycerol-assisted liquefaction of swine manure

    International Nuclear Information System (INIS)

    Highlights: • Bio-oil from glycerol-assisted liquefaction of swine manure was cracked over zeolite. • 30-Min cracking on 5% catalyst at 400 °C yielded 46.1% bio-oil with 62.5% recovered energy. • 30-Min cracking on 5% catalyst at 400 °C removed 55.74% oxygen in the crude bio-oil. • The heating value and viscosity of the upgraded bio-oil were 41.4 MJ/kg and 3.6 cP. • Long chain acid methyl esters were cracked into alkanes, alkenes and short chain esters. - Abstract: The crude bio-oil produced from the glycerol-assisted liquefaction of swine manure which had large amount of long chain esters, was upgraded by thermal cracking over a modified zeolite catalyst. The effects of thermal cracking temperature (350–425 °C), reaction time (15–60 min) and catalyst loading (0–10 wt%) on the yield and quality of the upgraded oil were analyzed. The yield of upgraded bio-oil decreased with the increase of reaction temperature, reaction time and catalyst loading, but the viscosity, heating value and composition of the upgraded bio-oil became more desirable. Taking into the consideration both the yield and quality of the upgraded bio-oil, the optimal thermal cracking could be achieved over 5 wt% catalyst at 400 °C for 30 min. Under this condition, the yield of upgraded bio-oil was 46.14 wt% of the crude bio-oil, and 62.5% of the energy stored in the crude bio-oil was recovered. The oxygen content of the upgraded bio-oil was 15.04%, which was less than half of the original value of 33.98%. The viscosity of the upgraded bio-oil was 3.6 cP, compared with 188.9 cP for the crude bio-oil. The heating value of the upgraded bio-oil was 41.4 MJ/kg, compared with 30.54 MJ/kg for the crude bio-oil. Both the viscosity and heating value of the upgraded bio-oil were comparable to those of commercial diesel. The GC–MS analysis showed that the catalytic upgrading resulted in the increased cracking of long-chain acid methyl esters (such as hexadecanoic acid methyl ester

  12. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Technical progress report, August 1992--November 1992

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Huang, L.; Wenzel, K.; Saini, A.K.; Burgess, C.; Hatcher, P.G.; Schobert, H.H.

    1992-12-01

    During this quarterly period progress has been made in the following three subjects related to the effects of low-temperature thermal and catalytic pretreatments on coal structure and reactivity in liquefaction. First, the liquefaction behavior of three bituminous coals with a carbon content ranging from 77% to 85% was evaluated spectroscopically by {sup 13}C NMR and pyrolysis/gas chromatography/mass spectrometry to delineate the structural changes that occur in the coal during liquefaction. Complementary data includes ultimate and proximate analysis, along with optical microscopy for maceral determinations. Even though these are all bituminous coals they exhibit quite different physical and chemical characteristics. The coals vary in rank, ranging from HvC b to HvA b, in petrographic composition, different maceral percentages, and in chemical nature, percent of carbon and of volatiles. It is these variations that govern the products, their distribution, and conversion percentages. Some of the products formed can be traced to a specific maceral group. Second, pyrolysis-GC-MS and FTIR techniques were used to characterize Wyodak coal before and after drying in vacuum and in air and the residues from its thermal and catalytic liquefactions. The analysis of the air-dried coal shows a decrease in the phenolic type structures in the coal network and increase in the carbonyl structures as the oxidative drying proceeds. An enhanced decrease in the carbonyl structure is observed in the liquefaction residues from the raw coal as compared to that of the vacuum dried coal. The analyses of the liquefaction residues of the air-dried coal show an increase in the ether linkages which may have a negative impact on liquefaction. The extent of the solvent adduction also increases during liquefaction with the extent of oxidation of the coal. Finally, the effects of reaction conditions were investigated on conversion of low-rank coals using a Texas subbituminous coal.

  13. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Technical progress report, October 1991--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Saini, A.; Huang, L.; Wenzel, K.; Hatcher, P.G.; Schobert, H.H.

    1992-01-01

    Low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals in the subsequent liquefaction. This report describes the progress of our work during the first quarterly period. Substantial progress has been made in the spectroscopic characterization of fresh and THF-extracted samples of two subbituminous coals and fresh samples of three bituminous coals using cross-polarization magic angle spinning (CPMAS) solid state {sup 13}C NMR and pyrolysis-GC-MS techniques. CPMAS {sup 13}C NMR and pyrolysis-GC-MS provided important information on carbon distribution/functionality and molecular components/structural units, respectively, for these coal samples. Pyrolysis-GC-MS revealed that there are remarkable structural differences in structural units between the subbituminous coals and the bituminous coals. Furthermore, significant progress has been made in the pretreatments and spectroscopic characterization of catalytically and thermally pretreated as well as physically treated Wyodak subbituminous coal, and temperature-staged and temperature-programmed thermal and catalytic liquefaction of a Montana subbituminous coal.

  14. Continuous production of bio-oil by catalytic liquefaction from wet distiller’s grain with solubles (WDGS) from bio-ethanol production

    International Nuclear Information System (INIS)

    Bio-refinery concepts are currently receiving much attention due to the drive toward flexible, highly efficient systems for utilization of biomass for food, feed, fuel and bio-chemicals. One way of achieving this is through appropriate process integration, in this particular case combining enzymatic bio-ethanol production with catalytic liquefaction of the wet distillers grains with soluble, a byproduct from the bio-ethanol process. The catalytic liquefaction process is carried out at sub-critical conditions (280–370 °C and 25 MPa) in the presence of a homogeneous alkaline and a heterogeneous Zirconia catalyst, a process known as the Catliq® process. In the current work, catalytic conversion of WDGS was performed in a continuous pilot plant with a maximum capacity of 30 dm3 h−1 of wet biomass. In the process, WDGS was converted to bio-oil, gases and water-soluble organic compounds. The oil obtained was characterized using several analysis methods, among them elementary analysis and GC–MS. The study shows that WDGS can be converted to bio oil with high yields. The results also indicate that through the combination of bio-ethanol production and catalytic liquefaction, it is possible to significantly increase the liquid product yield and scope, opening up for a wider end use applicability. -- Highlights: ► Hydrothermal liquefaction of wet biomass. ► Product phase analysis: oil, acqeous, gas and mineral phase. ► Energy and mass balance evaluation.

  15. Catalytic subcritical water liquefaction of flax straw for high yield of furfural

    International Nuclear Information System (INIS)

    There is substantial interest in the application of biomass as a renewable fuel or for production of chemicals. Flax straw can be converted into valuable chemicals and biofuels via liquefaction in sub-critical water. In this study, the yield of furfural and the kinetics of flax straw liquefaction under sub-critical water conditions were investigated using a high-pressure autoclave reactor. The liquefaction was conducted in the temperature range of 175–325 °C, pressure of 0.1 MPa–8 MPa, retention time in the range of 0 min–120 min, and flax straw mass fraction (wF) of 5–20 %. Also, the effect of acid catalysts on furfural yield was studied. The kinetic parameters of flax straw liquefaction were determined using nonlinear regression of the experimental data, assuming second-order kinetics. The apparent activation energy was found to be 27.97 kJ mol−1 while the reaction order was 2.0. The optimum condition for furfural yield was at 250 °C, 6.0 MPa, wF of 5% and 0 retention time after reaching set conditions. An acid catalyst was found to selectively favour furfural yield with 40% flax straw conversion. - Highlights: • Flax straw liquefaction in subcritical water. • Creation of a reaction pathway that can be used to optimized furfural production. • Acid catalyst selectively favoured furfural yield with respect to other liquid products. • At the highest process temperature of 325 °C, a carbon conversion of 40% was achieved. • Activation energy and reaction order was 28 kJ/mol and 2.0 respectively

  16. Interconnected Levels of Multi-Stage Marketing

    DEFF Research Database (Denmark)

    Vedel, Mette; Geersbro, Jens; Ritter, Thomas

    2012-01-01

    different levels of multi-stage marketing and illustrates these stages with a case study. In addition, a triadic perspective is introduced as an analytical tool for multi-stage marketing research. The results from the case study indicate that multi-stage marketing exists on different levels. Thus, managers...... in a multi-stage marketing context. This understanding assists managers in assessing and balancing different aspects of multi- stage marketing. The triadic perspective also offers avenues for further research.......Multi-stage marketing gains increasing attention as knowledge of and influence on the customer's customer become more critical for the firm's success. Despite this increasing managerial relevance, systematic approaches for analyzing multi-stage marketing are still missing. This paper conceptualizes...

  17. Multi-stage complex contagions

    Science.gov (United States)

    Melnik, Sergey; Ward, Jonathan A.; Gleeson, James P.; Porter, Mason A.

    2013-03-01

    The spread of ideas across a social network can be studied using complex contagion models, in which agents are activated by contact with multiple activated neighbors. The investigation of complex contagions can provide crucial insights into social influence and behavior-adoption cascades on networks. In this paper, we introduce a model of a multi-stage complex contagion on networks. Agents at different stages—which could, for example, represent differing levels of support for a social movement or differing levels of commitment to a certain product or idea—exert different amounts of influence on their neighbors. We demonstrate that the presence of even one additional stage introduces novel dynamical behavior, including interplay between multiple cascades, which cannot occur in single-stage contagion models. We find that cascades—and hence collective action—can be driven not only by high-stage influencers but also by low-stage influencers.

  18. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Technical progress report, July--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Saini, A.K.; Huang, L.; Schobert, H.H.; Hatcher, P.G.

    1994-01-01

    In this quarter, progress has been made in the following two aspects: (1) spectroscopic and chemical reaction studies on the effects of drying and mild oxidation of a Wyodak subbituminous coal on its structure and pretreatment/liquefaction at 350{degrees}C; and (2) effects of dispersed catalyst and solvent on conversion and structural changes of a North Dakota lignite. Drying and oxidation of Wyodak subbituminous coal at 100-150{degrees}C have been shown to have significant effects on its structure and on its catalytic and non-catalytic low-severity liquefaction at 350{degrees}C for 30 min under 6.9 MPa H{sub 2}. Spectroscopic analyses using solid-state {sup 13}C NMR, Pyrolysis-GC-MS, and FT-IR revealed that oxidative drying at 100-150{degrees}C causes the transformation of phenolics and catechol into other related structures (presumably via condensation) and high-severity air drying at 150{degrees}C for 20 h leads to disappearance of catechol-like structure. Increasing air drying time or temperature increases oxidation to form more oxygen functional groups at the expense of aliphatic carbons. Such a clearly negative impact of severe oxidation is considered to arise from significantly increased oxygen functionality which enhances the cross-link formation in the early stage of coal liquefaction. Physical, chemical, and surface physicochemical aspects of drying and oxidation and the role of water are also discussed. A North Dakota lignite (DECS-1) coal was studied for its behaviors in non-catalytic and catalytic liquefaction. Reactions were carried out at temperatures between 250 and 450{degrees}C. Regardless the reaction solvents and the catalyst being used, the optimum temperature was found to be 400{degrees}C. The donor solvent has a significant effect over the conversion especially at temperatures higher than 350{degrees}C.

  19. Reaction engineering in direct coal liquefaction

    Science.gov (United States)

    Shah, Y. T.

    Processes for direct coal liquefaction by solvent extraction are considered along with the structure and properties of coal and the mechanism of coal liquefaction, heteroatom removal during liquefaction, kinetic models for donor-solvent coal liquefaction, the design of coal liquefaction reactors, and the refining of coal liquids. Attention is given to the catalytic hydrogenation of coal in the presence of a solvent, the origin and character of coal, laboratory reactors for rate measurements, reaction networks based on lumped fractions, free-radical reaction models, reactor types, the compatibility of coal-derived liquids and petroleum fuels, the stability of coal liquids, thermal cracking, catalytic hydrotreating, catalytic cracking, and catalytic reforming.

  20. Low-severity catalytic two-stage liquefaction process: Illinois coal conceptual commercial plant design and economics

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, L.M.; Comolli, A.G.; Popper, G.A.; Wang, C.; Wilson, G.

    1988-09-01

    Hydrocarbon Research, Inc. (HRI) is conducting a program for the United States Department of Energy (DOE) to evaluate a Catalytic Two-Stage Liquefaction (CTSL) Process. This program which runs through 1987, is a continuation of an earlier DOE sponsored program (1983--1985) at HRI to develop a new technology concept for CTSL. The earlier program included bench-scale testing of improved operating conditions for the CTSL Process on Illinois No. 6 bituminous coal and Wyoming sub-bituminous coal, and engineering screening studies to identify the economic incentive for CTSL over the single-stage H-Coal/reg sign/ Process for Illinois No. 6 coal. In the current program these engineering screening studies are extended to deep-cleaned Illinois coal and use of heavy recycle. The results from this comparison will be used as a guide for future experiments with respect to selection of coal feedstocks and areas for further process optimization. A preliminary design for CTSL of Illinois deep-cleaned coal was developed based on demonstrated bench-scale performance in Run No. 227-47(I-27), and from HRI's design experience on the Breckinridge Project and H-Coal/reg sign/ Process pilot plant operations at Catlettsburg. Complete conceptual commercial plant designs were developed for a grassroots facility using HRI's Process Planning Model. Product costs were calculated and economic sensitivities analyzed. 14 refs., 11 figs., 49 tabs.

  1. Impact of heterotrophically stressed algae for biofuel production via hydrothermal liquefaction and catalytic hydrotreating in continuous-flow reactors

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, Karl O.; Zhu, Yunhua; Schmidt, Andrew J.; Billing, Justin M.; Hart, Todd R.; Jones, Susanne B.; Maupin, Gary; Hallen, Richard; Ahrens, Toby; Anderson, Daniel

    2016-03-01

    Two algal feedstocks were prepared for direct comparison of their properties when converted to liquid hydrocarbon fuel. The first feedstock was prepared by growing an algal strain phototrophically using a bio-film based approach. The second feedstock employed the same algal strain but was stressed heterotrophically to significantly increase the lipid concentration. The algal feedstocks were converted to liquid hydrocarbon fuels. First, the whole algae (i.e. not defatted or lipid extracted) were converted to an intermediate biocrude using continuous hydrothermal liquefaction (HTL) at 350°C and 3000 psig. The biocrudes were subsequently upgraded via catalytic hydrotreating (HT) at 400°C and 1500 psig to remove oxygen and nitrogen as well as increase the hydrogen-to-carbon ratio. The yield and composition of the products from HTL and HT processing of the feedstocks are compared. A techno-economic analysis of the process for converting each feedstock to liquid fuels was also conducted. The capital and operating costs associated with converting the feedstocks to finished transportation fuels are reported. A fuel minimum selling price is presented as a function of the cost of the algal feedstock delivered to the HTL conversion plant.

  2. Multi-stage separations based on dielectrophoresis

    Science.gov (United States)

    Mariella, Jr., Raymond P.

    2004-07-13

    A system utilizing multi-stage traps based on dielectrophoresis. Traps with electrodes arranged transverse to the flow and traps with electrodes arranged parallel to the flow with combinations of direct current and alternating voltage are used to trap, concentrate, separate, and/or purify target particles.

  3. Experiments for Multi-Stage Processes

    DEFF Research Database (Denmark)

    Tyssedal, John; Kulahci, Murat

    2015-01-01

    Multi-stage processes are very common in both process and manufacturing industries. In this article we present a methodology for designing experiments for multi-stage processes. Typically in these situations the design is expected to involve many factors from different stages. To minimize the req...... number of stages and also show how to identify and estimate the effects. Both regular and non-regular designs are considered as base designs in generating the overall design.......Multi-stage processes are very common in both process and manufacturing industries. In this article we present a methodology for designing experiments for multi-stage processes. Typically in these situations the design is expected to involve many factors from different stages. To minimize the...... required number of experimental runs, we suggest using mirror image pairs of experiments at each stage following the first. As the design criterion, we consider their projectivity and mainly focus on projectivity 3 designs. We provide the methodology for generating these designs for processes with any...

  4. Multi-stage LTL transport systems in supply chain management

    OpenAIRE

    Gonzalez-Feliu, Jesus

    2013-01-01

    This paper aims to unify concepts and to describe the multi-stage transport systems and their integratyion to supply chain management. Multi-stage distribution systems are common logistics management, and often they are assimilated to multi-stage transport strategies. However, transport is often considered as an external operation or a specific stage, even when it is a multi-stage system. First, the paper presents the main concepts of multi-stage transport systems by defining the concept an m...

  5. Two-stage, close coupled catalytic liquefaction of coal. Eleventh quarterly report, 1 April 1991--30 June 1991

    Energy Technology Data Exchange (ETDEWEB)

    Comolli, A.G.; Johanson, E.S.; Panvelker, S.V.; Popper, G.A.; Stalzer, R.H.

    1991-10-01

    The overall purpose of the program is to achieve higher yields of better quality transportation and turbine fuels and to lower the capital and production costs in order to make the products from direct coal liquefaction competitive with other fossil fuel products.

  6. Two-stage, close coupled catalytic liquefaction of coal. [Catalysts: FeOOH and NiMo

    Energy Technology Data Exchange (ETDEWEB)

    Comolli, A.G.; Johanson, E.S.; Panvelker, S.V.; Popper, G.A.; Stalzer, R.H.

    1991-10-01

    The overall purpose of the program is to achieve higher yields of better quality transportation and turbine fuels and to lower the capital and production costs in order to make the products from direct coal liquefaction competitive with other fossil fuel products.

  7. The optimal multi-stage contest

    OpenAIRE

    Fu, Qiang; Lu, Jingfeng

    2006-01-01

    This paper investigates the optimal (effort-maximizing) structure of multi-stage sequential-elimination contests with pooling competition in each stage. We allow the contest organizer to design the contest structure in two arms: contest sequence (the number of stages, and the number of remaining contestants in each stage), and prize allocation. First, we find that the optimality of "winner-take-all" (single final winner, single final prize, no intermediate prizes) is independent of the contes...

  8. Multi-stage sampling in genetic epidemiology.

    Science.gov (United States)

    Whittemore, A S; Halpern, J

    When data are expensive to collect, it can be cost-efficient to sample in two or more stages. In the first stage a simple random sample is drawn and then stratified according to some easily measured attribute. In each subsequent stage a random subset of previously selected units is sampled for more detailed observation, with a unit's sampling probability determined by its attributes as observed in the previous stages. These designs are useful in many medical studies; here we use them in genetic epidemiology. Two genetic studies illustrate the strengths and limitations of the approach. The first study evaluates nuclear and mitochondrial DNA in U.S. blacks. The goal is to estimate the relative contributions of white male genes and white female genes to the gene pool of African-Americans. This example shows that the Horvitz-Thompson estimators proposed for multi-stage designs can be inefficient, particularly when used with unnecessary stratification. The second example is a multi-stage study of familial prostate cancer. The goal is to gather pedigrees, blood samples and archived tissue for segregation and linkage analysis of familial prostate cancer data by first obtaining crude family data from prostate cancer cases and cancer-free controls. This second example shows the gains in efficiency from multi-stage sampling when the individual likelihood or quasilikelihood scores vary substantially across strata. PMID:9004389

  9. Interconnected levels of multi-stage marketing: A triadic approach

    OpenAIRE

    Vedel, Mette; Geersbro, Jens; Ritter, Thomas

    2012-01-01

    Multi-stage marketing gains increasing attention as knowledge of and influence on the customer's customer become more critical for the firm's success. Despite this increasing managerial relevance, systematic approaches for analyzing multi-stage marketing are still missing. This paper conceptualizes different levels of multi-stage marketing and illustrates these stages with a case study. In addition, a triadic perspective is introduced as an analytical tool for multi-stage marketing research. ...

  10. Multi-stage magnetic induction mass accelerator

    International Nuclear Information System (INIS)

    The magnetic induction method of mass acceleration readily lends itself to multi-staging. In the limit of many stages, such an accelerator approaches a distributed energy source system where only closing switches are necessary. We describe the design and performance of a three-stage accelerator, each driven by a separate capacitor bank. This system was modeled using a previously reported computer code. In order to do this the code was modified to calculate projectile acceleration through a succession of driver coils: Thermal conductivity and surface melting models were also added. The former is necessary due to the extended transit time through many stages. The latter is needed in anticipation of the more extreme ohmic heating when the capacitor banks are replaced by explosive-driven, magnetic flux compression generators. The performance goal of this system is to at least double the kinetic energy of a 0.3 kgm copperclad, steel projectile injected at a velocity of 300 m/sec from an explosive-driven gun. We then plan to test the system at the thermal and mechanical limit by using explosive-driven, magnetic flux compression generators as energy sources. We envision a six-stage system driven by three generators

  11. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 2 - hydrogenative and hydrothermal pretreatments and spectroscopic characterization using pyrolysis-GC-MS, CPMAS {sup 13}C NMR and FT-IR

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Hatcher, P.G.; Saini, A.K.; Wenzel, K.A.

    1998-01-01

    It has been indicated by DOE COLIRN panel that low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals. As the second volume of the final report, here we summarize our work on spectroscopic characterization of four raw coals including two subbituminous coals and two bituminous coals, tetrahydrofuran (THF)-extracted but unreacted coals, the coals (THF-insoluble parts) that have been thermally pretreated. in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent, and the coals (THF-insoluble parts) that have been catalytically pretreated in the presence of a dispersed Mo sulfide catalyst in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent.

  12. Disjoint Paths Multi-stage Interconnection Networks Stability Problem

    CERN Document Server

    Rastogi, Ravi; Chauhan, Durg Singh; Govil, Mahesh Chandra

    2012-01-01

    This research paper emphasizes that the Stable Matching problems are the same as the problems of stable configurations of Multi-stage Interconnection Networks (MIN). The authors have solved the Stability Problem of Existing Regular Gamma Multi-stage Interconnection Network (GMIN), 3-Disjoint Gamma Multi-stage Interconnection Network (3DGMIN) and 3-Disjoint Path Cyclic Gamma Multi-stage Interconnection Network (3DCGMIN) using the approaches and solutions provided by the Stable Matching Problem. Specifically Stable Marriage Problem is used as an example of Stable Matching. For MINs to prove Stable two existing algorithms are used:-the first algorithm generates the MINs Preferences List in time and second algorithm produces a set of most Optimal Pairs of the Switching Elements (SEs) (derived from the MINs Preferences List) in time. Moreover, the paper also solves the problem of Ties that occurs between the Optimal Pairs. The results are promising as the comparison of the MINs based on their stability shows that ...

  13. PARALLEL MULTI-STAGE & MULTI-STEP METHOD IN ODES

    Institute of Scientific and Technical Information of China (English)

    Xiao-qiu Song

    2000-01-01

    In this paper, the theory of parallel multi-stage & multi-step method is dis cussed, which is a form of combining Runge-Kutta method with linear multi-step method that can be used for parallel computation.

  14. Some recommendations for multi-arm multi-stage trials.

    Science.gov (United States)

    Wason, James; Magirr, Dominic; Law, Martin; Jaki, Thomas

    2016-04-01

    Multi-arm multi-stage designs can improve the efficiency of the drug-development process by evaluating multiple experimental arms against a common control within one trial. This reduces the number of patients required compared to a series of trials testing each experimental arm separately against control. By allowing for multiple stages experimental treatments can be eliminated early from the study if they are unlikely to be significantly better than control. Using the TAILoR trial as a motivating example, we explore a broad range of statistical issues related to multi-arm multi-stage trials including a comparison of different ways to power a multi-arm multi-stage trial; choosing the allocation ratio to the control group compared to other experimental arms; the consequences of adding additional experimental arms during a multi-arm multi-stage trial, and how one might control the type-I error rate when this is necessary; and modifying the stopping boundaries of a multi-arm multi-stage design to account for unknown variance in the treatment outcome. Multi-arm multi-stage trials represent a large financial investment, and so considering their design carefully is important to ensure efficiency and that they have a good chance of succeeding. PMID:23242385

  15. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 1 - effects of solvents, catalysts and temperature conditions on conversion and structural changes of low-rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Lili Huang; Schobert, H.H.; Chunshan Song

    1998-01-01

    The main objectives of this project were to study the effects of low-temperature pretreatments on coal structure and their impacts on subsequent liquefaction. The effects of pretreatment temperatures, catalyst type, coal rank, and influence of solvent were examined. Specific objectives were to identify the basic changes in coal structure induced by catalytic and thermal pretreatments, and to determine the reactivity of the catalytically and thermally treated coals for liquefaction. In the original project management plan it was indicated that six coals would be used for the study. These were to include two each of bituminous, subbituminous, and lignite rank. For convenience in executing the experimental work, two parallel efforts were conducted. The first involved the two lignites and one subbituminous coal; and the second, the two bituminous coals and the remaining subbituminous coal. This Volume presents the results of the first portion of the work, studies on two lignites and one subbituminous coal. The remaining work accomplished under this project will be described and discussed in Volume 2 of this report. The objective of this portion of the project was to determine and compare the effects of solvents, catalysts and reaction conditions on coal liquefaction. Specifically, the improvements of reaction conversion, product distribution, as well as the structural changes in the coals and coal-derived products were examined. This study targeted at promoting hydrogenation of the coal-derived radicals, generated during thermal cleavage of chemical bonds, by using a good hydrogen donor-solvent and an effective catalyst. Attempts were also made in efforts to match the formation and hydrogenation of the free radicals and thus to prevent retrogressive reaction.

  16. Improved Heuristics for Multi-Stage Requirements Planning Systems

    OpenAIRE

    Joseph D. Blackburn; Robert A. Millen

    1982-01-01

    Most of the recent studies of heuristic lot-sizing techniques for multi-stage material requirements planning systems have investigated the problem in the context of a single stage. In this paper, the multi-stage problem is first modeled analytically to indicate the potential errors inherent in the commonly proposed single-pass, stage-by-stage approaches (e.g., Wagner-Whitin). Then, based on this analysis, several simple cost modifications are suggested to improve the global optimality of thes...

  17. Multi-Stage Bunch Compressors for the International Linear Collider

    OpenAIRE

    Tenenbaum, Peter G.; Raubenheimer, Tor O.; Wolski, Andrzej

    2005-01-01

    We present bunch compressor designs for the International Linear Collider (ILC) which achieve a reduction in RMS bunch length from 6 mm to 0.3 mm via multiple stages of compression, with stages of acceleration inserted between the stages of compression. The key advantage of multi-stage compression is that the maximum RMS energy spread is reduced to approximately 1 percent, compared to over 3 percent for a single-stage design. Analytic and simulation studies of the multi-stage bunch compr...

  18. Multi-Stage Bunch Compressors for the International Linear Collider

    International Nuclear Information System (INIS)

    We present bunch compressor designs for the International Linear Collider (ILC) which achieve a reduction in RMS bunch length from 6 mm to 0.3 mm via multiple stages of compression, with stages of acceleration inserted between the stages of compression. The key advantage of multi-stage compression is that the maximum RMS energy spread is reduced to approximately 1%, compared to over 3% for a single-stage design. Analytic and simulation studies of the multi-stage bunch compressors are presented, along with performance comparisons to a single-stage system. Parameters for extending the systems to a larger total compression factor are discussed

  19. Multi-Stage Bunch Compressors for the International Linear Collider

    CERN Document Server

    Tenenbaum, P G; Wolski, Andrzej

    2005-01-01

    We present bunch compressor designs for the International Linear Collider (ILC) which achieve a reduction in RMS bunch length from 6 mm to 0.3 mm via multiple stages of compression, with stages of acceleration inserted between the stages of compression. The key advantage of multi-stage compression is that the maximum RMS energy spread is reduced to approximately 1%, compared to over 3% for a single-stage design. Analytic and simulation studies of the multi-stage bunch compressors are presented, along with performance comparisons to a single-stage system. Parameters for extending the systems to a larger total compression factor are discussed.

  20. Effect of properties of iron compounds on the catalytic activity in direct coal liquefaction; Tetsu kagobutsu no keitai to sekitan ekika kassei

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, T.; Tazawa, K. [Mitsubishi Chemical Corp., Tokyo (Japan); Shimasaki, K. [Kobe Steel Ltd. (Japan)

    1998-08-20

    When considering merchandising scale of the coal liquefaction process, it is a preliminary condition that metal used for its catalyst is rich in resource volume, cheap in production cost, without pollution, and so forth, and application of cheap iron ore and ferrous compounds to disposable catalyst is desired. As liquefaction activity of the iron ore was hitherto improved by its micro crushing, its mechanical crush had a limit of about 2 {mu}m in mean particle diameter. However, together with recent crushing technique, crushers with high performance were developed, and then micro crushing by sub-micron became possible industri8ally even for iron ore. In this study, three kinds of Australian iron ores such as limonite of ferric hydroxide type iron ore, pyrite of ferrous sulfide type, and hematite of ferric oxide type were micro crushed to examine coal liquefaction activity and hydrogenation reaction activity of 1-methyl naphthalene (1-MN) and also relationship between properties and activity of catalyst for the latter before and after reaction. 11 refs., 8 figs., 5 tabs.

  1. Performance of Multi-Channel Multi-Stage Spectrum Sensing

    CERN Document Server

    Gabran, Wesam; Čabrić, Danijela

    2010-01-01

    We present an analytical framework which enables performance evaluation of different multi-channel multi-stage spectrum sensing protocols for Opportunistic Spectrum Access networks. Analyzed performance metrics include the average secondary user throughput and the average collision probability between the primary and secondary users. The analysis framework takes into account buffering of incoming secondary user traffic, parallel and single channel access, as well as prolonged channel observation periods at the first and last stage of sensing. The main results show that when a constraint is given upon the probability of primary user mis-detection, multi-stage sensing is in most cases superior to the single stage sensing counterpart. Further, prolonged channel observation at the first sensing stage decreases the collision probability considerably while keeping the throughput at an acceptable level. Finally, in most network scenarios considered in this work, two stages of sensing are enough to obtain the maximum...

  2. Process for multi-stage treatment of radioactive waste water

    International Nuclear Information System (INIS)

    For the multi-stage treatment of radioactive waste waters with a decanter the solids contained in the waste waters are dried up to a residual moisture of 10% and are subsequently disposed. Solids remaining in the liquid part are removed with a separator up to the colloidal range, whereas the liquid product of the decanter is filtered up to the molecular range so that it can be used as industrial water. (orig.)

  3. Multi-Stage Transportation Problem With Capacity Limit

    OpenAIRE

    I. Brezina; Z. Čičková; J. Pekár; M. Reiff

    2010-01-01

    The classical transportation problem can be applied in a more general way in practice. Related problems as Multi-commodity transportation problem, Transportation problems with different kind of vehicles, Multi-stage transportation problems, Transportation problem with capacity limit is an extension of the classical transportation problem considering the additional special condition. For solving such problems many optimization techniques (dynamic programming, linear programming, special algor...

  4. Analysis of multi-stage open shop processing systems

    OpenAIRE

    Eggermont, Christian E.J.; Schrijver, Alexander; Woeginger, Gerhard J.

    2011-01-01

    We study algorithmic problems in multi-stage open shop processing systems that are centered around reachability and deadlock detection questions. We characterize safe and unsafe system states. We show that it is easy to recognize system states that can be reached from the initial state (where the system is empty), but that in general it is hard to decide whether one given system state is reachable from another given system state. We show that the problem of identifying reachable deadlock ...

  5. Influence of catalytic activity and reaction conditions on the product distribution in coal liquefaction; Sekitan ekikayu no seiseibutsu bunpu ni taisuru shokubai kassei oyobi hanno joken no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Hasuo, H.; Sakanishi, K.; Mochida, I. [Kyushu University, Fukuoka (Japan). Institute of Advanced Material Study

    1996-10-28

    The NiMo sulfide supported on Ketjen Black (KB) was more effective and yielded lighter oil products containing light fractions with their boiling point below 300{degree}C during the two stage liquefaction combining low temperature and high temperature hydrogenation the conventional NiMo/alumina catalyst and FeS2 catalyst. Although the NiMo/alumina yielded increased oil products during the two stage liquefaction, the lighter oil fractions did not increase and the heavier fractions increased mainly. This suggests that the hydrogenation of aromatic rings and successive cleavage of the rings are necessary for producing the light oil, which is derived from the sufficient hydrogenation of aromatic rings using catalysts. For the two stage reaction with NiMo/KB catalyst, it was considered that sufficient hydrogen was directly transferred to coal molecules at the first stage of the low temperature reaction, which promoted the solubilization of coal and the successive hydrogenation at the high temperature reaction. Thus, high activity of the catalyst must be obtained. It is expected that further high quality distillates can be produced through the optimization of catalysts and solvents at the two stage reaction. 1 ref., 4 figs., 1 tab.

  6. Direct coal liquefaction using iron-titanium hydride as a hydrogen distribution and catalytic material. Yearly report No. 1, September 1, 1984-August 31, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.E. Jr.

    1985-09-29

    During this year the experimental apparatus was completed after substantial delays by the manufacturer and eight direct coal liquefaction experiments were accomplished. These experiments have produced conversion and selectivity data on samples of Utah coal slurried in tetralin and catalyzed using iron-titanium hydride. Hydrogen loading of the alloy, catalyst particle size, catalyst concentration, coal particle size, operating temperatures for alloy addition and liquefaction without the catalysts present, have all been studied during these experiments. Conversions as high as 61% DAF in 30 min have been recorded at 500/sup 0/F and 500 psia. Product selectivities favor the oil fraction during the initial phase of the reaction, but as the reaction proceeds the heavier fractions are observed to increase at the expense of the oil fraction. We are currently working on a kinetic model in an effort to predict these results. Additionally, proton NMR, fractional distillation, and chromatographic analyses are currently being performed on the recovered product. We have completed the study of Utah coal and are moving on to samples of Kentucky and Alabama coals after a minor modification of the experimental apparatus is completed. Equipment manufacture, delivery, and installation delays, totaling over 6 months, greatly reduced the time available for research, making a 6 month no cost extension necessary. The extended time will permit completion of the proposed research tasks. 10 figs., 8 tabs.

  7. Hydrothermal Liquefaction of Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.

    2010-12-10

    collaboration with Canada to investigate kelp (seaweed) as a biomass feedstock. The collaborative project includes process testing of the kelp in HydroThermal Liquefaction in the bench-scale unit at PNNL. HydroThermal Liquefaction at PNNL is performed in the hydrothermal processing bench-scale reactor system. Slurries of biomass are prepared in the laboratory from whole ground biomass materials. Both wet processing and dry processing mills can be used, but the wet milling to final slurry is accomplished in a stirred ball mill filled with angle-cut stainless steel shot. The PNNL HTL system, as shown in the figure, is a continuous-flow system including a 1-litre stirred tank preheater/reactor, which can be connected to a 1-litre tubular reactor. The product is filtered at high-pressure to remove mineral precipitate before it is collected in the two high-pressure collectors, which allow the liquid products to be collected batchwise and recovered alternately from the process flow. The filter can be intermittently back-flushed as needed during the run to maintain operation. By-product gas is vented out the wet test meter for volume measurement and samples are collected for gas chromatography compositional analysis. The bio-oil product is analyzed for elemental content in order to calculate mass and elemental balances around the experiments. Detailed chemical analysis is performed by gas chromatography-mass spectrometry and 13-C nuclear magnetic resonance is used to evaluate functional group types in the bio-oil. Sufficient product is produced to allow subsequent catalytic hydroprocessing to produce liquid hydrocarbon fuels. The product bio-oil from hydrothermal liquefaction is typically a more viscous product compared to fast pyrolysis bio-oil. There are several reasons for this difference. The HTL bio-oil contains a lower level of oxygen because of more extensive secondary reaction of the pyrolysis products. There are less amounts of the many light oxygenates derived from the

  8. Dynamics of multi-stage infections on networks

    CERN Document Server

    Sherborne, N; Kiss, I Z

    2015-01-01

    This paper investigates the dynamics of infectious diseases with a non-exponentially distributed infectious period. This is achieved by considering a multi-stage infection model on networks. Using pairwise approximation with a standard closure, a number of important characteristics of disease dynamics are derived analytically, including the final size of an epidemic and a threshold for epidemic outbreaks. Stochastic simulations of dynamics on networks are performed and compared to the results of pairwise models for several realistic examples of infectious diseases to illustrate the role played by the number of stages in the disease dynamics. The agreement between the pairwise and simulation methods is excellent in the cases we consider.

  9. Accuracy of transferring microparts in a multi stage former

    DEFF Research Database (Denmark)

    Mahshid, Rasoul; Hansen, Hans Nørgaard; Arentoft, Mogens

    2013-01-01

    Many fasteners used in electromechanical systems are micro metal parts which should be manufactured with high accuracy and reliability and in large quantities. Micro forming is promising to fulfill these demands. This research focuses on investigating a gripping unit in a multi stage former, as the...... and the second one is intended to depict how the unit transfers the parts with different diameters with respect to the front profile of the fingers. The experiments showed that the manipulator can handle the parts with 7 μm accuracy, 2 μm reproducibility and 9μm uncertainty for a 20mm distance between...

  10. Multi-stage fuzzy load frequency control using PSO

    International Nuclear Information System (INIS)

    In this paper, a particle swarm optimization (PSO) based multi-stage fuzzy (PSOMSF) controller is proposed for solution of the load frequency control (LFC) problem in a restructured power system that operate under deregulation based on the bilateral policy scheme. In this strategy the control is tuned on line from the knowledge base and fuzzy inference, which request fewer sources and has two rule base sets. In the proposed method, for achieving the desired level of robust performance, exact tuning of membership functions is very important. Thus, to reduce the design effort and find a better fuzzy system control, membership functions are designed automatically by PSO algorithm, that has a strong ability to find the most optimistic results. The motivation for using the PSO technique is to reduce fuzzy system effort and take large parametric uncertainties into account. This newly developed control strategy combines the advantage of PSO and fuzzy system control techniques and leads to a flexible controller with simple stricture that is easy to implement. The proposed PSO based MSF (PSOMSF) controller is tested on a three-area restructured power system under different operating conditions and contract variations. The results of the proposed PSOMSF controller are compared with genetic algorithm based multi-stage fuzzy (GAMSF) control through some performance indices to illustrate its robust performance for a wide range of system parameters and load changes

  11. Interconnected levels of Multi-Stage Marketing – A Triadic approach

    DEFF Research Database (Denmark)

    Vedel, Mette; Geersbro, Jens; Ritter, Thomas

    2012-01-01

    different levels of multi-stage marketing and illustrates these stages with a case study. In addition, a triadic perspective is introduced as an analytical tool for multi-stage marketing research. The results from the case study indicate that multi-stage marketing exists on different levels. Thus, managers......Multi-stage marketing gains increasing attention as knowledge of and influence on the customer's customer become more critical for the firm's success. Despite this increasing managerial relevance, systematic approaches for analyzing multi-stage marketing are still missing. This paper conceptualizes...... must not only decide in general on the merits of multi-stage marketing for their firm, but must also decide on which level they will engage in multi-stage marketing. The triadic perspective enables a rich and multi-dimensional understanding of how different business relationships influence each other...

  12. Silicon nanowire networks for multi-stage thermoelectric modules

    International Nuclear Information System (INIS)

    Highlights: • Fabricated flexible single, double, and quadruple stacked Si thermoelectric modules. • Measured an enhanced power production of 27%, showing vertical stacking is scalable. • Vertically scalable thermoelectric module design of semiconducting nanowires. • Design can utilize either p or n-type semiconductors, both types are not required. • ΔT increases with thickness therefore power/area can increase as modules are stacked. - Abstract: We present the fabrication and characterization of single, double, and quadruple stacked flexible silicon nanowire network based thermoelectric modules. From double to quadruple stacked modules, power production increased 27%, demonstrating that stacking multiple nanowire thermoelectric devices in series is a scalable method to generate power by supplying larger temperature gradient. We present a vertically scalable multi-stage thermoelectric module design using semiconducting nanowires, eliminating the need for both n-type and p-type semiconductors for modules

  13. Axial flow, multi-stage turbine and compressor models

    International Nuclear Information System (INIS)

    Design models of multi-stage, axial-flow turbine and compressor are developed for high temperature nuclear reactor power plants with Closed Brayton Cycle for energy conversion. The models are based on a mean-line through-flow analysis for free-vortex flow, account for the profile, secondary, end wall, trailing edge and tip clearance losses in the cascades, and calculate the geometrical parameters of the blade cascades. The effects of the mean-stage work coefficient, flow coefficient and stage reaction on the design and performance of helium turbine and compressor are investigated. The results compare favorably with those reported for 6 stages helium turbine and 20 stages helium compressor. Also presented and discussed are the results of parametric analyses of a 530-MW helium turbine, and a 251-MW helium compressor.

  14. Robust modified GA based multi-stage fuzzy LFC

    International Nuclear Information System (INIS)

    In this paper, a robust genetic algorithm (GA) based multi-stage fuzzy (MSF) controller is proposed for solution of the load frequency control (LFC) problem in a restructured power system that operates under deregulation based on the bilateral policy scheme. In this strategy, the control signal is tuned online from the knowledge base and the fuzzy inference, which request fewer sources and has two rule base sets. In the proposed method, for achieving the desired level of robust performance, exact tuning of the membership functions is very important. Thus, to reduce the design effort and find a better fuzzy system control, membership functions are designed automatically by modified genetic algorithms. The classical genetic algorithms are powerful search techniques to find the global optimal area. However, the global optimum value is not guaranteed using this method, and the speed of the algorithm's convergence is extremely reduced too. To overcome this drawback, a modified genetic algorithm is being used to tune the membership functions of the proposed MSF controller. The effectiveness of the proposed method is demonstrated on a three area restructured power system with possible contracted scenarios under large load demand and area disturbances in comparison with the multi-stage fuzzy and classical fuzzy PID controllers through FD and ITAE performance indices. The results evaluation shows that the proposed control strategy achieves good robust performance for a wide range of system parameters and load changes in the presence of system nonlinearities and is superior to the other controllers. Moreover, this newly developed control strategy has a simple structure, does not require an accurate model of the plant and is fairly easy to implement, which can be useful for the real world complex power systems

  15. Chemistry and catalysis of coal liquefaction: catalytic and thermal upgrading of coal liquid and hydrogenation of CO to produce fuels. Quarterly progress report, January-March 1980

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, W.H.

    1980-08-01

    Analysis of a group of coal liquids produced by catalytic hydrogenation of Utah coals with ZnCl/sub 2/ catalyst was begun. Carbon-13 nuclear magnetic resonance and liquid chromatography techniques will be used to correlate chemical properties with hydrogenation reactivity. Equipment previously used for downflow measurements of heat and momentum transfer in a gas-coal suspension was modified for upflow measurements. The catalytic hydrodeoxygenation of methyl benzoate has been studied to elucidate the reactions of ester during upgrading of coal-derived liquids. The kinetics of hydrogenation of phenanthrene have also been determined. The catalytic cracking mechanism of octahydroanthracene is reported in detail. Studies of the hydrodesulfurization of thiophene indicate that some thiophene is strongly adsorbed as a hydrogen-deficient polymer on cobalt-molybdate catalyst. Part of the polymer can be desorbed as thiophene by hydrogenation. Poisoning of the catalyst inhibits the hydrosulfurization activity to a greater degree than the hydrogenation activity. Iron-manganese catalysts for carbon monoxide hydrogenation is studied to determine the role of iron carbide formation on selectivity. Pure iron catalyst forms a Hagg iron carbide phase under reaction conditions.

  16. NDDP multi-stage flash desalination process simulator design

    International Nuclear Information System (INIS)

    A majority of large-scale desalination plants all over the world employ multi-stage flash (MSF) distillation process. Many of these MSF desalination plants have been set up near to nuclear power plants (generally called as nuclear desalination plants) to effectively utilize the low-grade steam from the power plants as the source of energy. A computer program called MSFSIM has been developed to simulate the MSF desalination plant operation both for steady state and various transients including start up. This code predicts the effect of number of stages, flashing temperature, velocity of brine flowing through the tubes of brine heater and evaporators, temperature of the condensing thin film etc. on the plant performance ratio. Such a code can be used for the design of a new plant and to predict its operating and startup characteristics. The code has been extensively validated with available start up data from the pilot MSF desalination plant of 425-m3/day capacity at Trombay, Mumbai. A MSF desalination plant of 4500-m3/day capacity is under construction by BARC at Kalpakkam, which will utilize the steam from Madras Atomic Power Station (MAPS). In this present work extensive parametric study of the 4500-m3/day capacity desalination plant at Kalpakkam has been done using the code MSFSIM for optimizing the operating parameters in order to maximize the performance ratio for stable plant operation. The aim of the work is prediction of plant performance under different operating conditions. (author)

  17. Controllability in Multi-Stage Laser Ion Acceleration

    Science.gov (United States)

    Kawata, S.; Kamiyama, D.; Ohtake, Y.; Barada, D.; Ma, Y. Y.; Kong, Q.; Wang, P. X.; Gu, Y. J.; Li, X. F.; Yu, Q.

    2015-11-01

    The present paper shows a concept for a future laser ion accelerator, which should have an ion source, ion collimators, ion beam bunchers and ion post acceleration devices. Based on the laser ion accelerator components, the ion particle energy and the ion energy spectrum are controlled, and a future compact laser ion accelerator would be designed for ion cancer therapy or for ion material treatment. In this study each component is designed to control the ion beam quality. The energy efficiency from the laser to ions is improved by using a solid target with a fine sub-wavelength structure or a near-critical density gas plasma. The ion beam collimation is performed by holes behind the solid target or a multi-layered solid target. The control of the ion energy spectrum and the ion particle energy, and the ion beam bunching are successfully realized by a multi-stage laser-target interaction. A combination of each component provides a high controllability of the ion beam quality to meet variable requirements in various purposes in the laser ion accelerator. The work was partly supported by MEXT, JSPS, ASHULA project/ ILE, Osaka University, CORE (Center for Optical Research and Education, Utsunomiya University, Japan), Fudan University and CDI (Creative Dept. for Innovation) in CCRD, Utsunomiya University.

  18. Multi-stage Stochastic Programming Models in Production Planning

    Directory of Open Access Journals (Sweden)

    Abas Esmaeili

    2013-10-01

    Full Text Available Production planing is a key area of operations management. An important methodology for production planing is mathematical programming. Traditonal mathematical programming models for production planing are deterministic, and canot provide robust production plans in the presence of uncertainty. As such, deterministic planing models may yield unsatisfactory decisions. Stochastic programming, an active branch of mathematical programming dealing with optimization problems involving uncertain data, has sen several sucesful aplications in production planing. Unlike alternative aproaches to decision making under uncertainty, such as Markov decision proceses, stochastic programming requires few asumptions on the underlying stochastic proceses and alows for modeling of complicated decision structures. On the other hand, stochastic programming asumes finite number of stages and exogenous uncertainties. With recent increase in computational power and algorithmic developments, the limitations of stochastic programming arising from computational dificulties have ben relieved to a large extent. Nowadays, god production planing is a considered as one of the reason for improvement in production and many studies have ben conducted in order to identify the models of production planing. The main purpose of this research is to study multi-stage stochastic programming models in production planing.

  19. Bodypart Recognition Using Multi-stage Deep Learning.

    Science.gov (United States)

    Yan, Zhennan; Zhan, Yiqiang; Peng, Zhigang; Liao, Shu; Shinagawa, Yoshihisa; Metaxas, Dimitris N; Zhou, Xiang Sean

    2015-01-01

    Automatic medical image analysis systems often start from identifying the human body part contained in the image; Specifically, given a transversal slice, it is important to know which body part it comes from, namely "slice-based bodypart recognition". This problem has its unique characteristic--the body part of a slice is usually identified by local discriminative regions instead of global image context, e.g., a cardiac slice is differentiated from an aorta arch slice by the mediastinum region. To leverage this characteristic, we design a multi-stage deep learning framework that aims at: (1) discover the local regions that are discriminative to the bodypart recognition, and (2) learn a bodypart identifier based on these local regions. These two tasks are achieved by the two stages of our learning scheme, respectively. In the pre-train stage, a convolutional neural network (CNN) is learned in a multi-instance learning fashion to extract the most discriminative local patches from the training slices. In the boosting stage, the learned CNN is further boosted by these local patches for bodypart recognition. By exploiting the discriminative local appearances, the learned CNN becomes more accurate than global image context-based approaches. As a key hallmark, our method does not require manual annotations of the discriminative local patches. Instead, it automatically discovers them through multi-instance deep learning. We validate our method on a synthetic dataset and a large scale CT dataset (7000+ slices from wholebody CT scans). Our method achieves better performances than state-of-the-art approaches, including the standard CNN. PMID:26221694

  20. Multi-stage and multi-orifice throttling analysis for thermal power generating sets

    Institute of Scientific and Technical Information of China (English)

    郭茂林; 王刚; 张瑞

    2002-01-01

    Multi-stage and multi-orifice throttling analysis for bypass valves in thermal power generating sets is important for normal operation of power generating equipment. It is improper to exclude the factor of flow resistance from the expansion coefficient for the flow formula used for analysing the multi-stage and multi-orifice flow of compressible fluid, which means expansion of gas has nothing to do with resistance. The authors put forward an expanded energy equation and related formula to overcome the drawback, and use them for multi-stage and multi-orifice throttling analysis of compressible fluid for thermal power generating sets.

  1. On Stability Problems of Omega and 3-Disjoint Paths Omega Multi-stage Interconnection Networks

    CERN Document Server

    Rastogi, Ravi; Chauhan, Durg Singh; Govil, Mahesh Chandra

    2012-01-01

    The research paper emphasizes that the Stable Matching problems are the same as the problems of stable configurations of Multi-stage Interconnection Networks (MIN). We have discusses the Stability Problems of Existing Regular Omega Multi-stage Interconnection Network (OMIN) and Proposed 3-Disjoint Paths Omega Multi-stage Interconnection Network (3DON) using the approaches and solutions provided by the Stable Matching Problem. Specifically, Stable Marriage Problem is used as an example of Stable Matching. On application of the concept of the Stable Marriage over the MINs states that OMIN is highly stable in comparison to 3DON.

  2. Mean squared error properties of the kernel-based multi-stage median predictor for time series

    NARCIS (Netherlands)

    J.G. de Gooijer; A. Gannoun; D. Zerom Godefay

    2002-01-01

    We propose a kernel-based multi-stage conditional median predictor for -mixing time series of Markovian structure. Mean squared error properties of single-stage and multi-stage conditional medians are derived and discussed.

  3. Cooperative research program in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. (ed.)

    1991-01-01

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  4. Coal liquefaction. Quarterly report, January--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    Current ERDA work in coal liquefaction is aimed at improved process configurations for both catalytic and non-catalytic processes to provide more attractive processing economics and lower capital investment. Coal liquefaction can now be achieved under more moderate processing conditions and more rapidly than was the case in the 1930's. The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquid fuels also have the potential for use as chemical feedstocks. To determine the most efficient means of utilizing coal resources, ERDA is sponsoring the development of several conversion processes that are currently in the pilot plant stage. Nineteen projects under development are described and progress for each in the quarter is detailed briefly. (LTN)

  5. EXPLORATORY RESEARCH ON NOVEL COAL LIQUEFACTION CONCEPT

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, S.D.; Winschel, R.A.

    1998-11-30

    The report presents a summary the work performed under DOE Contract No. DE-AC22-95PC95050. Investigations performed under Task 4--Integrated Flow Sheet Testing are detailed. In this program, a novel direct coal liquefaction technology was investigated by CONSOL Inc. with the University of Kentucky Center for Applied Energy Research and LDP Associates. The process concept explored consists of a first-stage coal dissolution step in which the coal is solubilized by hydride ion donation. In the second stage, the products are catalytically upgraded to refinery feedstocks. Integrated first-stage and solids-separation steps were used to prepare feedstocks for second-stage catalytic upgrading. An engineering and economic evaluation was conducted concurrently with experimental work throughout the program. Approaches to reduce costs for a conceptual commercial plant were recommended at the conclusion of Task 3. These approaches were investigated in Task 4. The economic analysis of the process as it was defined at the conclusion of Task 4, indicates that the production of refined product (gasoline) via this novel direct liquefaction technology is higher than the cost associated with conventional two-stage liquefaction technologies.

  6. DeepID-Net: multi-stage and deformable deep convolutional neural networks for object detection

    OpenAIRE

    Ouyang, Wanli; Luo, Ping; Zeng, Xingyu; Qiu, Shi; Tian, Yonglong; Li, Hongsheng; Yang, Shuo; Wang, Zhe; Xiong, Yuanjun; Qian, Chen; Zhu, Zhenyao; Wang, Ruohui; Loy, Chen-Change; Wang, Xiaogang; Tang, Xiaoou

    2014-01-01

    In this paper, we propose multi-stage and deformable deep convolutional neural networks for object detection. This new deep learning object detection diagram has innovations in multiple aspects. In the proposed new deep architecture, a new deformation constrained pooling (def-pooling) layer models the deformation of object parts with geometric constraint and penalty. With the proposed multi-stage training strategy, multiple classifiers are jointly optimized to process samples at different dif...

  7. Mechanical and mathematical models of multi-stage horizontal fracturing strings and their application

    OpenAIRE

    Zhanghua Lian; Ying Zhang; Xu Zhao; Shidong Ding; Tiejun Lin

    2015-01-01

    Multi-stage SRV fracturing in horizontal wells is a new technology developed at home and abroad in recent years to effectively develop shale gas or low-permeability reservoirs, but on the other hand makes the mechanical environment of fracturing strings more complicated at the same time. In view of this, based on the loading features of tubing strings during the multi-stage fracturing of a horizontal well, mechanical models were established for three working cases of multiple packer setting, ...

  8. Can multi-stage production explain the home bias in trade?

    OpenAIRE

    Kei-Mu Yi

    2008-01-01

    A large empirical literature finds that there is too little international trade, and too much intra-national trade to be rationalized by observed international trade costs such as tariffs and transport costs. The literature uses frameworks in which goods are assumed to be produced in just one stage. This paper investigates whether the multi-stage nature of production helps explain the home bias in trade. The author shows that multi-stage production magnifies the effects of trade costs. He the...

  9. Throughput and Collision Analysis of Multi-Channel Multi-Stage Spectrum Sensing Algorithms

    OpenAIRE

    Gabran, Wesam; Pawełczak, Przemysław; Čabrić, Danijela

    2010-01-01

    Multi-stage sensing is a novel concept that refers to a general class of spectrum sensing algorithms that divide the sensing process into a number of sequential stages. The number of sensing stages and the sensing technique per stage can be used to optimize performance with respect to secondary user throughput and the collision probability between primary and secondary users. So far, the impact of multi-stage sensing on network throughput and collision probability for a realistic network mode...

  10. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Rudolf, Andreas

    2011-01-01

    dehydration or decarboxylation. The chemical properties of bio-oil are highly dependent of the biomass substrate composition. Biomass constitutes of various components such as protein; carbohydrates, lignin and fat, and each of them produce distinct spectra of compounds during hydrothermal liquefaction. In......This article reviews the hydrothermal liquefaction of biomass with the aim of describing the current status of the technology. Hydrothermal liquefaction is a medium-temperature, high-pressure thermochemical process, which produces a liquid product, often called bio-oil or bi-crude. During the...... hydrothermal liquefaction process, the macromolecules of the biomass are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive and can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed by...

  11. Reduced models of multi-stage cyclic structures using cyclic symmetry reduction and component mode synthesis

    Science.gov (United States)

    Tran, Duc-Minh

    2014-10-01

    Reduced models of multi-stage cyclic structures such as bladed-disk assemblies are developed by using the multi-stage cyclic symmetry reduction and/or component mode synthesis methods. The multi-stage cyclic symmetry reduction consists in writing the equations of the bladed disks, the inter-disk structures, the inter-disk constraints and the whole multi-stage coupled system in terms of the traveling wave coordinates for all the phase indexes of the reference sectors and for all the bladed disks. Several reduced coupled systems are then solved by selecting at each time only one or a few phase indexes for each bladed disk and by applying the cyclic symmetry boundary conditions. On the other hand, component mode synthesis methods are used either independently or in combination with the multi-stage cyclic symmetry reduction to obtain reduced models of the multi-stage structure. Two of them are particularly efficient, that are firstly component mode synthesis methods with interface modes applied on the bladed disks and secondly component mode synthesis methods with traveling wave coordinates applied on the reference sectors.

  12. Changes of Hematological Markers during a Multi-stage Ultra-marathon Competition in the Heat.

    Science.gov (United States)

    Rama, L M; Minuzzi, L G; Carvalho, H M; Costa, R J S; Teixeira, A M

    2016-02-01

    This study examined the changes in resting hematological variables in ultra-endurance runners throughout a multi-stage ultra-marathon competition, and compared athletes that completed all stages with those that failed to complete at least one stage within the cut-off time of competition. 19 ultra-endurance runners competing in a 230 km multi-stage ultra-marathon, conducted over 5 consecutive days in hot ambient conditions (32-40°C T(max)), volunteered to participate in the study. Each day, whole blood samples were collected prior to stage commencement and analyzed for full cell counts by Coulter counter. Linear increases were observed for leukocytes, monocytes and lymphocytes; with increases until Stage 3 and a decrease thereafter. Granulocytes showed a cubic growth exponent, indicating decrements to baseline after the significant increments until Stage 3. Hemoglobin and hematocrit showed linear decrements throughout the multi-stage ultra-marathon. No changes in erythrocytes and platelets were observed throughout the multi-stage ultra-marathon. Granulocytes, erythrocytes, hemoglobin and hematocrit changes along the multi-stage ultra-marathon differed in runners that completed all stages compared to those who failed to complete at least one stage within the cut-off time. Multi-stage ultra-marathon in the heat has a large impact on hematological responses of ultra-endurance runners associated with altered performance. PMID:26509375

  13. Co-liquefaction of micro algae with coal using coal liquefaction catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ikenaga, N.; Ueda, C.; Matsui, T.; Ohtsuki, M.; Suzuki, T. [Kansai University, Osaka (Japan). Dept. of Chemical Engineering, Faculty of Engineering

    2001-04-01

    Co-liquefaction of micro algae (Chlorella, Spirulina and Littorale) with coal (Australian Yallourn brown coal and Illinois No. 6 coal) was carried out under pressurized H{sub 2} in 1-methylnaphthalene at 350-400{degree}C for 60 min with various catalysts. Co-liquefaction of Chlorella with Yallourn coal was successfully achieved with excess sulfur to iron (S/Fe = 4), where sufficient amount of Fe{sub 1-x}S, which is believed to be the active species in the coal liquefaction, was produced. The conversion and the yield of the hexane-soluble fraction were close to the values calculated from the additivity of the product yields of the respective homo-reactions. In the reaction with a one-to-one mixture of Chlorella and Yallourn coal, 99.8% of conversion and 65.5% of hexane-soluble fraction were obtained at 400{degree}C with Fe (CO){sub 5} at S/Fe = 4. When Littorale and Spirulina were used as micro algae, a similar tendency was observed with the iron catalyst. On the other hand, in the co-liquefaction with Illinois No. 6 coal, which is known to contain a large amount of sulfur in the form of catalytically active pyrite, the oil yield in the co-liquefaction was close to the additivity of the respective reaction with Fe(CO){sub 5}-S, even at SFe = 2. Ru{sub 3}(CO){sub 12} was also effective for the co-liquefaction of micro algae with coal. 26 refs., 12 figs., 1 tab.

  14. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Schobert, H.H.; Parfitt, D.P. [and others

    1997-11-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

  15. Coal liquefaction processes

    Energy Technology Data Exchange (ETDEWEB)

    Baker, N.R.; Blazek, C.F.; Tison, R.R.

    1979-07-01

    Coal liquefaction is an emerging technology receiving great attention as a possible liquid fuel source. Currently, four general methods of converting coal to liquid fuel are under active development: direct hydrogenation; pyrolysis/hydrocarbonization; solvent extraction; and indirect liquefaction. This work is being conducted at the pilot plant stage, usually with a coal feed rate of several tons per day. Several conceptual design studies have been published recently for large (measured in tens of thousands of tons per day coal feed rate) commercial liquefaction plants, and these reports form the data base for this evaluation. Products from a liquefaction facility depend on the particular method and plant design selected, and these products range from synthetic crude oils up through the lighter hydrocarbon gases, and, in some cases, electricity. Various processes are evaluated with respect to product compositions, thermal efficiency, environmental effects, operating and maintenance requirements, and cost. Because of the large plant capacities of current conceptual designs, it is not clear as to how, and on what scale, coal liquefaction may be considered appropriate as an energy source for Integrated Community Energy Systems (CES). Development work, both currently under way and planned for the future, should help to clarify and quantify the question of applicability.

  16. Liquefaction for cataract extraction

    Science.gov (United States)

    Labiris, Georgios; Toli, Aspasia; Polychroni, Damaskini; Gkika, Maria; Angelonias, Dimitrios; Kozobolis, Vassilios P.

    2016-01-01

    A systematic review of the recent literature regarding the implementation of the liquefaction in cataract surgery and its short-term and long-term outcomes in various parameters that affect the quality of patients' life, including visual rehabilitation and possible complications was performed based on the PubMed, Medline, Nature and the American Academy of Ophthalmology databases in November 2013 and data from 14 comparative studies were included in this narrative review. Liquefaction is an innovative technology for cataract extraction that uses micropulses of balanced salt solution to liquefy the lens nucleus. Most studies reported that liquefaction is a reliable technology for mild to moderate cataracts, while fragmentation difficulties may be encountered with harder nuclei. PMID:26949656

  17. Adaptation of Decoy Fusion Strategy for Existing Multi-Stage Search Workflows

    Science.gov (United States)

    Ivanov, Mark V.; Levitsky, Lev I.; Gorshkov, Mikhail V.

    2016-06-01

    A number of proteomic database search engines implement multi-stage strategies aiming at increasing the sensitivity of proteome analysis. These approaches often employ a subset of the original database for the secondary stage of analysis. However, if target-decoy approach (TDA) is used for false discovery rate (FDR) estimation, the multi-stage strategies may violate the underlying assumption of TDA that false matches are distributed uniformly across the target and decoy databases. This violation occurs if the numbers of target and decoy proteins selected for the second search are not equal. Here, we propose a method of decoy database generation based on the previously reported decoy fusion strategy. This method allows unbiased TDA-based FDR estimation in multi-stage searches and can be easily integrated into existing workflows utilizing popular search engines and post-search algorithms.

  18. Strategies and limits in multi-stage single-point incremental forming

    DEFF Research Database (Denmark)

    Skjødt, Martin; Silva, M.B.; Martins, P. A. F.;

    2010-01-01

    Multi-stage single-point incremental forming (SPIF) is a state-of-the-art manufacturing process that allows small-quantity production of complex sheet metal parts with vertical walls. This paper is focused on the application of multi-stage SPIF with the objective of producing cylindrical cups with...... vertical walls. The strategy consists of forming a conical cup with a taper angle in the first stage, followed by three subsequent stages that progressively move the conical shape towards the desired cylindrical geometry. The investigation includes material characterization, determination of forming......-limit curves and fracture forming-limit curves (FFLCs), numerical simulation, and experimentation, namely the evaluation of strain paths and fracture strains in actual multi-stage parts. Assessment of numerical simulation with experimentation shows good agreement between computed and measured strain and strain...

  19. Sequential maneuvering decisions based on multi-stage influence diagram in air combat

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A multi-stage influence diagram is used to model the pilot's sequential decision making in one on one air combat.The model based on the multi-stage influence diagram graphically describes the elements of decision process,and contains a point-mass model for the dynamics of an aircraft and takes into account the decision maker's Dreferences under uncertain conditions.Considering an active opponent,the opponent's maneuvers can be modeled stochastically.The solution of multistage influence diagram Can be obtained by converting the multistage influence diagram into a two-level optimization problem.The simulation results show the model is effective.

  20. Liquefaction of uranium tailings

    International Nuclear Information System (INIS)

    Numerical methods for assessing the liquefaction potential of soils are reviewed with a view to their application to uranium tailings. The method can be divided into two categories: total stress analysis, where changes in pore pressure are not considered in the soil model, and effective stress analysis, where changes in pore pressure are included in the soil model. Effective stress analysis is more realistic, but few computer programs exist for such analysis in two or three dimensions. A simple linearized, two-dimensional, finite element effective stress analysis which incorporates volumetric compaction due to shear motion is described and implemented. The new program is applied to the assessment of liquefaction potential of tailings in the Quirke Mine tailings area near Elliot Lake, Ontario. The results are compared with those of a total stress analysis. Both analyses indicate liquefaction would occur if a magnitude 6.0 earthquake were to occur near the area. However, the extent of liquefaction predicted by the effective stress analysis is much less than that predicted by the total stress analysis. The results of both methods are sensitive to assumed material properties and to the method used to determine the cyclic shear strength of the tailings. Further analysis, incorporating more in situ and/or laboratory data, is recommended before conclusions can be made concerning the dynamic stability of these tailings

  1. Strain Paths and Fractures in Rotational Symmetric Multi Stage Single Point Incremental Forming

    DEFF Research Database (Denmark)

    Skjødt, Martin; Silva, M.B.; Martins, P.A.F.;

    2008-01-01

    A multi stage strategy, which allows forming of SPIF parts with vertical walls, is investigated with emphasis on strain paths and fracture strains. Whereas downwards movement of the tool pin results in deformation close to plane strain upwards moving tool results in biaxial strains. A good correl...

  2. Multi-stage kernel-based conditional quantile prediction in time series

    NARCIS (Netherlands)

    J.G. de Gooijer; A. Gannoun; D. Zerom Godefay

    2001-01-01

    We present a multi-stage conditional quantile predictor for time series of Markovian structure. It is proved that at any quantile level p \\in (0,1), the asymptotic mean squared error (MSE) of the new predictor is smaller than the single-stage conditional quantile predictor. A simulation study confir

  3. Thickness distribution of multi-stage incremental forming with different forming stages and angle intervals

    Institute of Scientific and Technical Information of China (English)

    李军超; 杨芬芬; 周志强

    2015-01-01

    Although multi-stage incremental sheet forming has always been adopted instead of single-stage forming to form parts with a steep wall angle or to achieve a high forming performance, it is largely dependent on empirical designs. In order to research multi-stage forming further, the effect of forming stages (n) and angle interval between the two adjacent stages (Δα) on thickness distribution was investigated. Firstly, a finite element method (FEM) model of multi-stage incremental forming was established and experimentally verified. Then, based on the proposed simulation model, different strategies were adopted to form a frustum of cone with wall angle of 30° to research the thickness distribution of multi-pass forming. It is proved that the minimum thickness increases largely and the variance of sheet thickness decreases significantly as the value of n grows. Further, with the increase of Δα, the minimum thickness increases initially and then decreases, and the optimal thickness distribution is achieved with Δα of 10°. Additionally, a formula is deduced to estimate the sheet thickness after multi-stage forming and proved to be effective. And the simulation results fit well with the experimental results.

  4. Research on EMI Reduction of Multi-stage Interleaved Bridgeless Power Factor Corrector

    DEFF Research Database (Denmark)

    Li, Qingnan; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2012-01-01

    Working as an electronic pollution eliminator, the Power Factor Corrector's (PFC) own Electromagnetic Interference (EMI) problems have been blocking its performance improvement for long. In this paper, a systematic research on EMI generation of a multi-stage Two-Boost-Circuit Interleaved Bridgeless...

  5. Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study

    DEFF Research Database (Denmark)

    Kote-Jarai, Zsofia; Olama, Ali Amin Al; Giles, Graham G;

    2011-01-01

    Prostate cancer (PrCa) is the most frequently diagnosed male cancer in developed countries. We conducted a multi-stage genome-wide association study for PrCa and previously reported the results of the first two stages, which identified 16 PrCa susceptibility loci. We report here the results of st...

  6. Strain Paths and Fractures in Rotational Symmetric Multi Stage Single Point Incremental Forming

    DEFF Research Database (Denmark)

    Skjødt, Martin; Silva, M.B.; Martins, P.A.F.; Bay, Niels

    A multi stage strategy, which allows forming of SPIF parts with vertical walls, is investigated with emphasis on strain paths and fracture strains. Whereas downwards movement of the tool pin results in deformation close to plane strain upwards moving tool results in biaxial strains. A good correl...

  7. Cooperative research program in coal liquefaction. Quarterly report, May 1, 1993--October 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, G.P. [ed.

    1994-07-01

    This report summarizes progress in four areas of research under the general heading of Coal Liquefaction. Results of studies concerning the coliquefaction of coal with waste organic polymers or chemical products of these polymers were reported. Secondly, studies of catalytic systems for the production of clean transportation fuels from coal were discussed. Thirdly, investigations of the chemical composition of coals and their dehydrogenated counterparts were presented. These studies were directed toward elucidation of coal liquefaction processes on the chemical level. Finally, analytical methodologies developed for in situ monitoring of coal liquefaction were reported. Techniques utilizing model reactions and methods based on XAFS, ESR, and GC/MS are discussed.

  8. Mechanical and mathematical models of multi-stage horizontal fracturing strings and their application

    Directory of Open Access Journals (Sweden)

    Zhanghua Lian

    2015-03-01

    Full Text Available Multi-stage SRV fracturing in horizontal wells is a new technology developed at home and abroad in recent years to effectively develop shale gas or low-permeability reservoirs, but on the other hand makes the mechanical environment of fracturing strings more complicated at the same time. In view of this, based on the loading features of tubing strings during the multi-stage fracturing of a horizontal well, mechanical models were established for three working cases of multiple packer setting, open differential-pressure sliding sleeve, and open ball-injection sliding sleeve under a hold-down packer. Moreover, mathematical models were respectively built for the above three cases. According to the Lame formula and Von Mises stress calculation formula for the thick-walled cylinder in the theory of elastic mechanics, a mathematical model was also established to calculate the equivalent stress for tubing string safety evaluation when the fracturing string was under the combined action of inner pressure, external squeezing force and axial stress, and another mathematical model was built for the mechanical strength and safety evaluation of multi-stage fracturing strings. In addition, a practical software was developed for the mechanical safety evaluation of horizontal well multi-stage fracturing strings according to the mathematical model developed for the mechanical calculation of the multi-packer string in horizontal wells. The research results were applied and verified in a gas well of Tahe Oilfield in the Tarim Basin with excellent effects, providing a theoretical basis and a simple and reliable technical means for optimal design and safety evaluation of safe operational parameters of multi-stage fracturing strings in horizontal wells.

  9. 亚/超临界甲醇体系中磷钼酸催化液化木粉%Catalytic liquefaction of wood in sub/supercritical methanol under phosphomolybdic acid

    Institute of Scientific and Technical Information of China (English)

    曾常伟; 林星; 汪雪琴; 蔡政汉; 吕建华; 黄彪

    2016-01-01

    To discover bio-environmental and sustainable catalyst to effectively transform fir sawdust to biofuel, liquefaction process catalyzed by phosphomolybdic acid and using sub/supercritical methanol as solvent was evaluated. The optimum reaction condition was investigated in terms of temperature, duration, dosages of catalyst and sawdust. Results showed that phosphomolybdic acid to-gether with subcritical methanol significantly accelerated sawdust liquefaction. The optimum reaction condition was achieved at liquif-ying 1 g sawdust, 150 mL methanol and 0.5 g phosphomolybdic acid at 240℃ for 30 minutes, maximizing at 93.32%. Subsequent-ly, quantity and chemical composition of light bio-oil, heavy bio-oil and residue were characterized by scanning electron microscope, Fourier translation infrared spectrum and gas chromatography-mass spectrometer. Results showed that the residue was mainly consist of lignin and its derivatives, which was from the liquefaction of lignin from methanol. Light bio-oil obtained at optimum condition comprised of complex compounds such as ester, phenol, aldehyde and ketone, resulting from the reaction between cellulose and methanol. While, heavy bio-oil, mainly comprised of phenol, was obtained from lignin liquefaction.%以杉木屑为原料,研究磷钼酸在亚/超临界甲醇条件下的催化液化性能,并探讨反应温度、反应时间、催化剂用量和杉木屑用量对杉木屑液化率的影响.结果表明该磷钼酸在亚/超临界甲醇条件下具有很好的催化液化性能.在150 mL甲醇、0.5 g催化剂、1 g杉木屑、240℃条件下反应30 min,液化率达到93.32%.采用SEM、FT-IR和GC-MS对液化残渣、轻油和重油进行表征.结果表明,残渣主要是由木质素或木质素衍生物组成;而液化产物轻油主要是由酯类、酚类、醛类、酮类等组成,主要是由纤维素及半纤维素与甲醇反应得到;而液化产物重油中的酚类物质主要是由木质素液化反应得到.

  10. Co-liquefaction of the Elbistan Lignite and Poplar Sawdust. Part I: The Effect of the Liquefaction Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Karaca, H.; Acar, M.; Yilmaz, M.; Keklik, I. [Inonu University, Malatya (Turkey). Faculty of Engineering

    2009-07-01

    In this study, the liquefaction of Elbistan lignite and poplar sawdust, and the co-liquefaction of the Elbistan lignite and the poplar sawdust in an inert atmosphere and in non-catalytic conditions have been examined. Also, the effects of solvent/coal ratio and stirring speed on the total conversion derived as the result of the liquefaction process was attempted to be determined. Based on the results, although the effects of the solvent/coal ratio and the stirring speed on total conversion are similar for both the Elbistan lignite and the poplar sawdust, it was also noted that, under similar conditions, the conversion for the poplar sawdust was higher, as compared to the conversion of the Elbistan lignite. As the result of the liquefaction of Elbistan lignite and poplar sawdust under inert atmospheric conditions, the total conversion was increased partially, depending on both solvent/coal ratio and the speed of stirring. However, it was also noted that the total conversion did not change to a significant extent in high solvent/coal ratios and in stirring speed. As the result of the co-liquefaction of the Elbistan lignite and poplar sawdust under inert atmospheric conditions, total conversion was increased, based on the solvent/coal ratio. However, as in the case of the liquefaction of Elbistan lignite and poplar sawdust, it was noted that the high solvent/coal ratios (i.e., solvent/coal ratios of higher than 2/1) did not have a significant effect on the total conversion that was derived as the result of the co-liquefaction of the Elbistan lignite and poplar sawdust.

  11. Magnetic refrigerator for hydrogen liquefaction

    OpenAIRE

    Matsumoto, Koichi; Kondo, T.; Yoshioka, S; Kamiya, K.; Numazawa, T.

    2009-01-01

    Magnetic refrigeration which is based on the magnetocaloric effect of solids has the potential to achieve high thermal efficiency for hydrogen liquefaction. We have been developing a magnetic refrigerator for hydrogen liquefaction which cools down hydrogen gas from liquid natural gas temperature and liquefies at 20 K. The magnetic liquefaction system consists of two magnetic refrigerators: Carnot magnetic refrigerator (CMR) and active magnetic regenerator (AMR) device. CMR with Carnot cycle s...

  12. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica;

    2014-01-01

    can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed by dehy-dration or decarboxylation. The chemical properties of the product are mostly de-pendent of the biomass substrate composition. Biomass consists of various com-ponents such as......Biomass is one of the most abundant sources of renewable energy, and will be an important part of a more sustainable future energy system. In addition to direct combustion, there is growing attention on conversion of biomass into liquid en-ergy carriers. These conversion methods are divided into...... biochemical/biotechnical methods and thermochemical methods; such as direct combustion, pyrolysis, gasification, liquefaction etc. This chapter will focus on hydrothermal liquefaction, where high pressures and intermediate temperatures together with the presence of water are used to convert biomass into...

  13. Organosolv liquefaction of sugarcane bagasse catalyzed by acidic ionic liquids.

    Science.gov (United States)

    Chen, Zhengjian; Long, Jinxing

    2016-08-01

    An efficient and eco-friendly process is proposed for sugarcane bagasse liquefaction under mild condition using IL catalyst and environmental friendly solvent of ethanol/H2O. The relationship between IL acidic strength and its catalytic performance is investigated. The effects of reaction condition parameters such as catalyst dosage, temperature, time and solvent are also intensively studied. The results show that ethanol/H2O has a significant promotion effect on the simultaneous liquefaction of sugarcane bagasse carbohydrate and lignin. 97.5% of the bagasse can be liquefied with 66.46% of volatile product yield at 200°C for 30min. Furthermore, the IL catalyst shows good recyclability where no significant loss of the catalytic activity is exhibited even after five runs. PMID:27115746

  14. A Multi-Stage Optimization Model With Minimum Energy Consumption-Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    S. Krishnakumar

    2012-09-01

    Full Text Available Optimization models related with routing, bandwidth utilization and power consumption are developed in the wireless mesh computing environment using the operations research techniques such as maximal flow model, transshipment model and minimax optimizing algorithm. The Path creation algorithm is used to find the multiple paths from source to destination.A multi-stage optimization model is developed by combining the multi-path optimization model, optimization model in capacity utilization and energy optimization model and minimax optimizing algorithm. The input to the multi-stage optimization model is a network with many source and destination. The optimal solution obtained from this model is a minimum energy consuming path from source to destination along with the maximum data rate over each link. The performance is evaluated by comparing the data rate values of superimposed algorithm and minimax optimizing algorithm. The main advantage of this model is the reduction of traffic congestion in the network.

  15. Pricing convertible bonds based on a multi-stage compound-option model

    Science.gov (United States)

    Gong, Pu; He, Zhiwei; Zhu, Song-Ping

    2006-07-01

    In this paper, we introduce the concept of multi-stage compound options to the valuation of convertible bonds (CBs). Rather than evaluating a nested high-dimensional integral that has arisen from the valuation of multi-stage compound options, we found that adopting the finite difference method (FDM) to solve the Black-Scholes equation for each stage actually resulted in a better numerical efficiency. By comparing our results with those obtained by solving the Black-Scholes equation directly, we can show that the new approach does provide an approximation approach for the valuation of CBs and demonstrate that it offers a great potential for a further extension to CBs with more complex structures such as those with call and/or put provisions.

  16. Multi-stage high order semi-Lagrangian schemes for incompressible flows in Cartesian geometries

    CERN Document Server

    Cameron, Alexandre; Dormy, Emmanuel

    2016-01-01

    Efficient transport algorithms are essential to the numerical resolution of incompressible fluid flow problems. Semi-Lagrangian methods are widely used in grid based methods to achieve this aim. The accuracy of the interpolation strategy then determines the properties of the scheme. We introduce a simple multi-stage procedure which can easily be used to increase the order of accuracy of a code based on multi-linear interpolations. This approach is an extension of a corrective algorithm introduced by Dupont \\& Liu (2003, 2007). This multi-stage procedure can be easily implemented in existing parallel codes using a domain decomposition strategy, as the communications pattern is identical to that of the multi-linear scheme. We show how a combination of a forward and backward error correction can provide a third-order accurate scheme, thus significantly reducing diffusive effects while retaining a non-dispersive leading error term.

  17. A multi-stage noise adaptive switching filter for extremely corrupted images

    Science.gov (United States)

    Dinh, Hai; Adhami, Reza; Wang, Yi

    2015-07-01

    A multi-stage noise adaptive switching filter (MSNASF) is proposed for the restoration of images extremely corrupted by impulse and impulse-like noise. The filter consists of two steps: noise detection and noise removal. The proposed extrema-based noise detection scheme utilizes the false contouring effect to get better over detection rate at low noise density. It is adaptive and will detect not only impulse but also impulse-like noise. In the noise removal step, a novel multi-stage filtering scheme is proposed. It replaces corrupted pixel with the nearest uncorrupted median to preserve details. When compared with other methods, MSNASF provides better peak signal to noise ratio (PSNR) and structure similarity index (SSIM). A subjective evaluation carried out online also demonstrates that MSNASF yields higher fidelity.

  18. Multi-stage genetic fuzzy systems based on the iterative rule learning approach

    OpenAIRE

    González Muñoz, Antonio; Herrera Triguero, Francisco

    1997-01-01

    Genetic algorithms (GAs) represent a class of adaptive search techniques inspired by natural evolution mechanisms. The search properties of GAs make them suitable to be used in machine learning processes and for developing fuzzy systems, the so-called genetic fuzzy systems (GFSs). In this contribution, we discuss genetics-based machine learning processes presenting the iterative rule learning approach, and a special kind of GFS, a multi-stage GFS based on the iterative rule...

  19. A study of sulfur isotopes in the Sokli multi-stage carbonatite (Finland)

    International Nuclear Information System (INIS)

    S-isotope data for sulfide S in the Sokli multi-stage carbonatite show a variation of delta 34S from -0.6 to -5.6 permill. This is very similar to those of the Kovdor and Vuorijaervi carbonatite massifs in the same alkaline-rock province of the Kola peninsula, the former being from -1.9 to -6.4 permill and the latter from -1.0 to -4.3 permill

  20. Solar Multi-stage Refrigeration Systems on the Basis of Absorber with the Internal Evaporative Cooling

    OpenAIRE

    Doroshenko A.V.; Kirillov V.H.; Antonova A.R.; Liudnicky K.V.

    2015-01-01

    In the article, the developed schematics are presented for the alternative refrigeration systems and air-conditioning systems, based on the use of absorbing cycle and solar energy for the regeneration of absorbent solution. Multi-stage principle of construction of drying and cool contours of solar systems is used with growth of concentration of absorbent on the stages of cooler. An absorber with internal evaporative cooling, allowing to remove the separate evaporated cooler, usually included ...

  1. Flash flood detection through a multi-stage probabilistic warning system for heavy precipitation events

    OpenAIRE

    Alfieri, L.; Velasco, D.; Thielen, J.

    2011-01-01

    The deadly combination of short to no warning lead times and the vulnerability of urbanized areas makes flash flood events extremely dangerous for the modern society. This paper contributes to flash flood early warning by proposing a multi-stage warning system for heavy precipitation events based on threshold exceedances within a probabilistic framework. It makes use of meteorological products at different resolutions, namely, numerical weather predictions (NWP), radar-NWP b...

  2. Multi-stage phase retrieval algorithm based upon the gyrator transform

    OpenAIRE

    Rodrigo, José A.; Duadi, H.; Alieva, Tatiana; Zalevsky, Z.

    2010-01-01

    The gyrator transform is a useful tool for optical information processing applications. In this work we propose a multi-stage phase retrieval approach based on this operation as well as on the well-known Gerchberg-Saxton algorithm. It results in an iterative algorithm able to retrieve the phase information using several measurements of the gyrator transform power spectrum. The viability and performance of the proposed algorithm is demonstrated by means of several numerical simulations and exp...

  3. Dynamic Multi-Stage Placement of Phasor Measurement Units using Bat Optimization Algorithm

    OpenAIRE

    S. E. Razavi Asfali; H. Falaghi

    2014-01-01

    In recent years, utilization of phasor measurement units (PMUs) has increased in monitoring, control and protection of power systems. In reality, power systems are large scale, accordingly, financial limitations (due to PMU cost) and technical problems are avoiding to install all necessary PMUs in one stage. Therefore, the PMUs usually are installed in several stages. This paper proposes a new dynamic multi-stage PMU placement approach by introducing a new index related to network observabili...

  4. An integrated multi-stage supply chain inventory model with imperfect production process

    OpenAIRE

    Soumita Kundu; Tripti Chakrabarti

    2015-01-01

    This paper deals with an integrated multi-stage supply chain inventory model with the objective of cost minimization by synchronizing the replenishment decisions for procurement, production and delivery activities. The supply chain structure examined here consists of a single manufacturer with multi-buyer where manufacturer orders a fixed quantity of raw material from outside suppliers, processes the materials and delivers the finished products in unequal shipments to each customer. In this p...

  5. Cooperative research in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P.; Sendlein, L.V.A. (eds.)

    1991-05-28

    Significant progress was made in the May 1990--May 1991 contract period in three primary coal liquefaction research areas: catalysis, structure-reactivity studies, and novel liquefaction processes. A brief summary of the accomplishments in the past year in each of these areas is given.

  6. Application of multi-stage Monte Carlo method for solving machining optimization problems

    Directory of Open Access Journals (Sweden)

    Miloš Madić

    2014-08-01

    Full Text Available Enhancing the overall machining performance implies optimization of machining processes, i.e. determination of optimal machining parameters combination. Optimization of machining processes is an active field of research where different optimization methods are being used to determine an optimal combination of different machining parameters. In this paper, multi-stage Monte Carlo (MC method was employed to determine optimal combinations of machining parameters for six machining processes, i.e. drilling, turning, turn-milling, abrasive waterjet machining, electrochemical discharge machining and electrochemical micromachining. Optimization solutions obtained by using multi-stage MC method were compared with the optimization solutions of past researchers obtained by using meta-heuristic optimization methods, e.g. genetic algorithm, simulated annealing algorithm, artificial bee colony algorithm and teaching learning based optimization algorithm. The obtained results prove the applicability and suitability of the multi-stage MC method for solving machining optimization problems with up to four independent variables. Specific features, merits and drawbacks of the MC method were also discussed.

  7. Dynamic Multi-Stage Placement of Phasor Measurement Units using Bat Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    S. E. Razavi Asfali

    2014-07-01

    Full Text Available In recent years, utilization of phasor measurement units (PMUs has increased in monitoring, control and protection of power systems. In reality, power systems are large scale, accordingly, financial limitations (due to PMU cost and technical problems are avoiding to install all necessary PMUs in one stage. Therefore, the PMUs usually are installed in several stages. This paper proposes a new dynamic multi-stage PMU placement approach by introducing a new index related to network observability in planning stages. Despite of conventional methods, the proposed multi-stage PMU placement is investigated dependently, simultaneously, and dynamically. Moreover, the phasing of PMUs of all stages is achieved in a single optimization process. Furthermore, in order to consider the practical aspect, the channel and communication limitations are covered in this study. According to the complexity of the proposed model, Bat Algorithm is used as an optimization tool to solve the proposed dynamic multi-stage PMU placement model. The proposed approach is applied on standard IEEE 14-, 57- and 118- bus test systems as well as Iranian 230- and 400-kV transmission network. Finally, the obtained results are compared with the results of conventional methods and ability of the proposed approach is investigated.

  8. Residual Liquefaction under Standing Waves

    DEFF Research Database (Denmark)

    Kirca, V.S. Ozgur; Sumer, B. Mutlu; Fredsøe, Jørgen

    2012-01-01

    This paper summarizes the results of an experimental study which deals with the residual liquefaction of seabed under standing waves. It is shown that the seabed liquefaction under standing waves, although qualitatively similar, exhibits features different from that caused by progressive waves....... The experimental results show that the buildup of pore-water pressure and the resulting liquefaction first starts at the nodal section and spreads towards the antinodal section. The number of waves to cause liquefaction at the nodal section appears to be equal to that experienced in progressive waves for the same...... wave height. Recommendations are made as to how to assess liquefaction potential in standing waves. Copyright © 2012 by the International Society of Offshore and Polar Engineers (ISOPE)....

  9. Liquefaction of crop residues for polyol production

    OpenAIRE

    C Wan; Wang, T.; Zhang, L.; Zang, L.; Li, Y.; Mao, Z.; L. Liang

    2006-01-01

    The liquefaction of crop residues in the presence of ethylene glycol, ethylene carbonate, or polyethylene glycol using sulfuric acid as a catalyst was studied. For all experiments, the liquefaction was conducted at 160C and atmospheric pressure. The mass ratio of feedstock to liquefaction solvents used in all the experiments was 30:100. The results show that the acid catalyzed liquefaction process fit a pseudo-first-order kinetics model. Liquefaction yields of 80, 74, and 60% were obtained i...

  10. Algae liquefaction / Hope Baloyi

    OpenAIRE

    Baloyi, Hope

    2012-01-01

    The liquefaction of algae for the recovery of bio–oil was studied. Algae oil is a non–edible feedstock and has minimal impact on food security and food prices; furthermore, it has been identified as a favourable feedstock for the production of biodiesel and this is attributed to its high oil yield per hectare. Algae oil can be potentially used for fuel blending for conventional diesel. The recovery step for algae oil for the production of biodiesel is costly and demands a lot of energy due to...

  11. Hydrotreating of distillates from Spanish coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Benito, A.M.; Martinez, M.T.; Cebolla, V.; Fernandez, I.; Miranda, J.L. (Inst. de Carboquimica, CSIC, Zaragoza (Spain))

    1993-02-01

    Distillates obtained from a first-stage Spanish coal liquefaction process have been catalytically hydrotreated in microreactor in two steps. A commercially available Harshaw HT-400 E (Co-Mo/Al[sub 2]O[sub 3]) catalyst, 10 MPa hydrogen pressure and two temperatures (400 and 425deg C) have been used. The results have been evaluated for heteroatoms removal, oils yield, boiling point distribution and aromaticity by several techniques (GC, FT-i.r., [sup 1]H n.m.r., ultrasonic extraction and liquid chromatography). At the first step of hydrotreating, preasphaltenes rather than asphaltenes have been hydrocracked to produce smaller-size polar compounds in the oil fraction but aromaticity has not varied significatively. In the second step, heteroatoms content have been considerably reduced and the product meets refinery specifications for nitrogen but does not meet sulphur refinery specifications for feedstocks. (orig.).

  12. Elastic deflection and tilting effect in a multi-stage micro bulk former

    DEFF Research Database (Denmark)

    Mahshid, R.; Hansen, H. N.

    Previous studies have described a high performance transfer press for the application in micro forming. This research extends this finding by conducting a two-stage forming process for the machine tool in order to examine the efficiency of the machine in a real multi-stage process. In particular...... the analysis focuses on quantifying the effect the forming force has on the elastic deflection of the machine and the tools by examining the displacement of the moving plate under loaded and unloaded conditions. The results of the measurements were used to describe the tilting effect due to the off...

  13. Mathematical modeling on multi-stage series crushing ratio distribution based on fuzzy physical programming

    Institute of Scientific and Technical Information of China (English)

    Yu-Long QI; Chen-Chen CAI; Ping-Zhen LANG

    2013-01-01

    Double-layer,multi-roller plate crusher is a new device,that uses a multi-stage series crushing style to break particles,with the crushing ratio distribution directly influencing the machine's performance.Three crushing ratios of 2.25,2.15 and 2.0 1,used for fuzzy physical programming,were determined.The comparison of the optimized result between the double-layer multi-roller plate crusher and a high pressure roll grinder showed that the double-layer multi-roller plate crusher had a better performance,reducing crushing force and wear.

  14. Reduction of multi-stage disk models: Application to an industrial rotor

    OpenAIRE

    Sternchüss, Arnaud,; Balmes, Etienne; Jean, Pierrick; Lombard, Jean Pierre

    2009-01-01

    The present study deals with the reduction of models of multi-stage bladed disk assemblies. The proposed method relies on the substructuring of the rotor into sectors. The bladed disks are coupled by intermediate rings which remove the problem of incompatible meshes. The sectors are represented by super-elements whose kinematic subspaces are spanned by a set of cyclic modeshapes and a set of normal modes when their left and right interfaces are fixed. The first step is to compute the cyclic m...

  15. A theoretical analysis of price elasticity of energy demand in multi-stage energy conversion systems

    International Nuclear Information System (INIS)

    The objective of this paper is an analytical exploration of the problem of price elasticity of energy demand in multi-stage energy conversion systems. The paper describes in some detail an analytical model of energy demand in such systems. Under a clearly stated set of assumptions, the model makes it possible to explore both the impacts of the number of sub-systems, and of varying sub-system elasticities on overall system elasticity. The analysis suggests that overall price elasticity of energy demand for such systems will tend asymptotically to unity as the number of sub-systems increases

  16. A theoretical analysis of price elasticity of energy demand in multi-stage energy conversion systems

    OpenAIRE

    Lowe, R J

    2003-01-01

    The objective of this paper is an analytical exploration of the problem of price elasticity of energy demand in multi-stage energy conversion systems. The paper describes in some detail an analytical model of energy demand in such systems. Under a clearly stated set of assumptions, the model makes it possible to explore both the impacts of the number of sub-systems, and of varying sub-system elasticities on overall system elasticity. The analysis suggests that overall price elasticity of ener...

  17. Multi Stage Strategies for Single Point Incremental Forming of a Cup

    DEFF Research Database (Denmark)

    Skjødt, Martin; Bay, Niels; Endelt, Benny;

    2008-01-01

    comparing explicit FE analysis with experiments. Good agreement is found between calculated and measured thickness distribution, overall geometry and strains. Using the proposed multi stage strategy it is shown possible to produce a cup with a height close to the radius and side parallel to the symmetry......A five stage forming strategy for forming of a circular cylindrical cup with a height/radius ratio of one is presented. Geometrical relations are discussed and theoretical strains are calculated. The influence of forming direction (upwards or downwards) is investigated for the second stage...

  18. Lab-testing, predicting, and modeling multi-stage activated carbon adsorption of organic micro-pollutants from treated wastewater.

    Science.gov (United States)

    Zietzschmann, F; Altmann, J; Hannemann, C; Jekel, M

    2015-10-15

    Multi-stage reuse of powdered activated carbon (PAC) is often applied in practice for a more efficient exploitation of the PAC capacity to remove organic micro-pollutants (OMP). However, the adsorption mechanisms in multi-stage PAC reuse are rarely investigated, as large-scale experiments do not allow for systematic tests. In this study, a laboratory method for the separation of PAC/water suspensions and the subsequent reuse of the PAC and the water was developed. The method was tested on wastewater treatment plant (WWTP) effluent in a setup with up to 7 PAC reuse stages. The tests show that the overall OMP removal from WWTP effluent can be increased when reusing PAC. The reason is that a repeated adsorption in multi-stage PAC reuse results in similar equilibrium concentrations as a single-stage adsorption. Thus, a single relationship between solid and liquid phase OMP concentrations appears valid throughout all stages. This also means that the adsorption efficiency of multi-stage PAC reuse setups can be estimated from the data of a single-stage setup. Furthermore, the overall OMP removals in multi-stage setups coincide with the overall UV254 removals, and for each respective OMP one relationship to UV254 removal is valid throughout all stages. The results were modeled by a simple modification of the equivalent background compound model (EBCM) which was also used to simulate the additional OMP removals in multi-stage setups with up to 50 reuse stages. PMID:26117373

  19. Magnetic refrigerator for hydrogen liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, K; Kondo, T [Department of Physics, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Yoshioka, S; Kamiya, K; Numazawa, T [Tsukuba Magnet Laboratory, National Institute for Materials Science, 3-13 Sakura, Tsukuba 305-0003 (Japan)], E-mail: kmatsu@kenroku.kanazawa-u.ac.jp

    2009-02-01

    Magnetic refrigeration which is based on the magnetocaloric effect of solids has the potential to achieve high thermal efficiency for hydrogen liquefaction. We have been developing a magnetic refrigerator for hydrogen liquefaction which cools down hydrogen gas from liquid natural gas temperature and liquefies at 20 K. The magnetic liquefaction system consists of two magnetic refrigerators: Carnot magnetic refrigerator (CMR) and active magnetic regenerator (AMR) device. CMR with Carnot cycle succeeded in liquefying hydrogen at 20K. Above liquefaction temperature, a regenerative refrigeration cycle should be necessary to precool hydrogen gas, because adiabatic temperature change of magnetic material is reduced due to a large lattice specific heat of magnetic materials. We have tested an AMR device as the precooling stage. It was confirmed for the first time that AMR cycle worked around 20 K.

  20. Magnetic refrigerator for hydrogen liquefaction

    International Nuclear Information System (INIS)

    Magnetic refrigeration which is based on the magnetocaloric effect of solids has the potential to achieve high thermal efficiency for hydrogen liquefaction. We have been developing a magnetic refrigerator for hydrogen liquefaction which cools down hydrogen gas from liquid natural gas temperature and liquefies at 20 K. The magnetic liquefaction system consists of two magnetic refrigerators: Carnot magnetic refrigerator (CMR) and active magnetic regenerator (AMR) device. CMR with Carnot cycle succeeded in liquefying hydrogen at 20K. Above liquefaction temperature, a regenerative refrigeration cycle should be necessary to precool hydrogen gas, because adiabatic temperature change of magnetic material is reduced due to a large lattice specific heat of magnetic materials. We have tested an AMR device as the precooling stage. It was confirmed for the first time that AMR cycle worked around 20 K.

  1. Secondary liquefaction in ethanol production

    DEFF Research Database (Denmark)

    2007-01-01

    The invention relates to a method of producing ethanol by fermentation, said method comprising a secondary liquefaction step in the presence of a themostable acid alpha-amylase or, a themostable maltogenic acid alpha-amylase.......The invention relates to a method of producing ethanol by fermentation, said method comprising a secondary liquefaction step in the presence of a themostable acid alpha-amylase or, a themostable maltogenic acid alpha-amylase....

  2. Magnetic refrigerator for hydrogen liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Numazawa, T [National Institute for Materials Science, Tsukuba (Japan); Kamlya, K. [Japan Atomic Energy Agency, Naka (Japan); Utaki, T. [Osaka University, Osaka (Japan); Matsumoto, K. [Kanazawa University, Kanazawa (Japan)

    2013-06-15

    This paper reviews the development status of magnetic refrigeration system for hydrogen liquefaction. There is no doubt that hydrogen is one of most important energy sources in the near future. In particular, liquid hydrogen can be utilized for infrastructure construction consisting of storage and transportation. Liquid hydrogen is in cryogenic temperatures and therefore high efficient liquefaction method must be studied. Magnetic refrigeration which uses the magneto-caloric effect has potential to realize not only the higher liquefaction efficiency > 50 %, but also to be environmentally friendly and cost effective. Our hydrogen magnetic refrigeration system consists of Carnot cycle for liquefaction stage and AMR (active magnetic regenerator) cycle for precooling stages. For the Carnot cycle, we develop the high efficient system > 80 % liquefaction efficiency by using the heat pipe. For the AMR cycle, we studied two kinds of displacer systems, which transferred the working fluid. We confirmed the AMR effect with the cooling temperature span of 12 K for 1.8 T of the magnetic field and 6 second of the cycle. By using the simulation, we estimate the total efficiency of the hydrogen liquefaction plant for 10 kg/day. A FOM of 0.47 is obtained in the magnetic refrigeration system operation temperature between 20 K and 77 K including LN2 work input.

  3. Magnetic refrigerator for hydrogen liquefaction

    International Nuclear Information System (INIS)

    This paper reviews the development status of magnetic refrigeration system for hydrogen liquefaction. There is no doubt that hydrogen is one of most important energy sources in the near future. In particular, liquid hydrogen can be utilized for infrastructure construction consisting of storage and transportation. Liquid hydrogen is in cryogenic temperatures and therefore high efficient liquefaction method must be studied. Magnetic refrigeration which uses the magneto-caloric effect has potential to realize not only the higher liquefaction efficiency > 50 %, but also to be environmentally friendly and cost effective. Our hydrogen magnetic refrigeration system consists of Carnot cycle for liquefaction stage and AMR (active magnetic regenerator) cycle for precooling stages. For the Carnot cycle, we develop the high efficient system > 80 % liquefaction efficiency by using the heat pipe. For the AMR cycle, we studied two kinds of displacer systems, which transferred the working fluid. We confirmed the AMR effect with the cooling temperature span of 12 K for 1.8 T of the magnetic field and 6 second of the cycle. By using the simulation, we estimate the total efficiency of the hydrogen liquefaction plant for 10 kg/day. A FOM of 0.47 is obtained in the magnetic refrigeration system operation temperature between 20 K and 77 K including LN2 work input.

  4. A multi-stage sampling strategy for the delineation of soil pollution in a contaminated brownfield

    International Nuclear Information System (INIS)

    A multi-stage sampling strategy, based on sequential Gaussian simulation, was presented to optimize the step-wise selection of a small numbers of additional samples to delineate soil pollution. This strategy was applied to a Belgian brownfield of 5.2 ha polluted with lead (Pb). Starting from an initial number of 240 samples in stage 1, additional samples were added, 25 per stage, and the reduction of the uncertainty in the Pb delineation was monitored. Twenty stages were used. Already in stage 6 a local optimum was found based on the median conditional coefficient of variation. An independent validation confirmed that this index was to be preferred over the median conditional variance. So for the brownfield considered our procedure indicated that 365 selected samples would have been sufficient, representing a gain of 70.7% in sampling effort compared to current practice which resulted in a sampling effort of 1245 samples. - A multi-stage sampling strategy based on geostatistics provides an efficient procedure to delineate a pollution in a contaminated brownfield

  5. Multi-stage ponds-wetlands ecosystem for effective wastewater treatment

    Institute of Scientific and Technical Information of China (English)

    PENG Jian-feng; WANG Bao-zhen; WANG Lin

    2005-01-01

    The performance of the Dongying multi-stage ponds-wetlands ecosystem was investigated in this work. Study of the removal of different pollutants (BOD5, COD, SS, TP, TN, NH3-N, etc.) in different temperature seasons and different units in this system indicated that effluent BOD5 and SS were constant to less than 11 mg/L and 14 mg/L throughout the experimental processes; but that the removal efficiencies of pollutants such as TP, TN, NH3-N, COD varied greatly with season. The higher the temperature was, the higher was the observed removal in this system. Additionally, each unit of the system functioned differently in removing pollutants. BOD5 and SS were mainly removed in the first three units (hybrid facultative ponds, aeration ponds and aerated fish ponds), whereas nitrogen and phosphates were mainly removed in hydrophyte ponds and constructed reed wetlands.The multi-stage ponds-wetlands ecosystem exhibits good potential of removing different pollutants, and the effluent quality meet several standards for wastewater reuse.

  6. Multi-stage pulsed laser deposition of aluminum nitride at different temperatures

    Science.gov (United States)

    Duta, L.; Stan, G. E.; Stroescu, H.; Gartner, M.; Anastasescu, M.; Fogarassy, Zs.; Mihailescu, N.; Szekeres, A.; Bakalova, S.; Mihailescu, I. N.

    2016-06-01

    We report on multi-stage pulsed laser deposition of aluminum nitride (AlN) on Si (1 0 0) wafers, at different temperatures. The first stage of deposition was carried out at 800 °C, the optimum temperature for AlN crystallization. In the second stage, the deposition was conducted at lower temperatures (room temperature, 350 °C or 450 °C), in ambient Nitrogen, at 0.1 Pa. The synthesized structures were analyzed by grazing incidence X-ray diffraction (GIXRD), transmission electron microscopy (TEM), atomic force microscopy and spectroscopic ellipsometry (SE). GIXRD measurements indicated that the two-stage deposited AlN samples exhibited a randomly oriented wurtzite structure with nanosized crystallites. The peaks were shifted to larger angles, indicative for smaller inter-planar distances. Remarkably, TEM images demonstrated that the high-temperature AlN "seed" layers (800 °C) promoted the growth of poly-crystalline AlN structures at lower deposition temperatures. When increasing the deposition temperature, the surface roughness of the samples exhibited values in the range of 0.4-2.3 nm. SE analyses showed structures which yield band gap values within the range of 4.0-5.7 eV. A correlation between the results of single- and multi-stage AlN depositions was observed.

  7. Purification of High Salinity Brine by Multi-Stage Ion Concentration Polarization Desalination.

    Science.gov (United States)

    Kim, Bumjoo; Kwak, Rhokyun; Kwon, Hyukjin J; Pham, Van Sang; Kim, Minseok; Al-Anzi, Bader; Lim, Geunbae; Han, Jongyoon

    2016-01-01

    There is an increasing need for the desalination of high concentration brine (>TDS 35,000 ppm) efficiently and economically, either for the treatment of produced water from shale gas/oil development, or minimizing the environmental impact of brine from existing desalination plants. Yet, reverse osmosis (RO), which is the most widely used for desalination currently, is not practical for brine desalination. This paper demonstrates technical and economic feasibility of ICP (Ion Concentration Polarization) electrical desalination for the high saline water treatment, by adopting multi-stage operation with better energy efficiency. Optimized multi-staging configurations, dependent on the brine salinity values, can be designed based on experimental and numerical analysis. Such an optimization aims at achieving not just the energy efficiency but also (membrane) area efficiency, lowering the true cost of brine treatment. ICP electrical desalination is shown here to treat brine salinity up to 100,000 ppm of Total Dissolved Solids (TDS) with flexible salt rejection rate up to 70% which is promising in a various application treating brine waste. We also demonstrate that ICP desalination has advantage of removing both salts and diverse suspended solids simultaneously, and less susceptibility to membrane fouling/scaling, which is a significant challenge in the membrane processes. PMID:27545955

  8. Distribution characteristics of holdups in a multi-stage bubble column using electrical resistance tomography

    Institute of Scientific and Technical Information of China (English)

    Haibo Jin; Yicheng Lian; Yujian Qin; Suohe Yang; Guangxiang He

    2013-01-01

    Based on the principle of chemical reaction engineering,the addition of perforated plates can improve the performance of conventional bubble column and decrease the backmixing behaviors.The distribution characteristics of gas holdup in a multi-stage bubble column embedded with five types of sieve plates and three types of tongue plates were studied using electrical resistance tomography (ERT).The effects of superficial gas velocity and the geometric design of perforated plates on the gas holdup and its radial distribution above and below the plates of the bubble column were discussed.Experimental results show ERT is suitable as an online monitoring tool to provide useful information on the hydrodynamic parameters of multi-stage bubble columns.With increasing superficial gas velocity,local gas holdup increases,and gas holdup below the plate increases with decrease of free area (%FA),hole diameters or angle of tongue plates.ERT technique facilitates noninvasive and nonintrusive visualization of cross-sectional distribution of gas holdup in a bubble column.

  9. Simulation and analysis of multi-stage centrifugal fractional extraction process of 4-nitrobenzene glycine enantiomers☆

    Institute of Scientific and Technical Information of China (English)

    Ping Wen; Kewen Tang; Jicheng Zhou; Panliang Zhang

    2015-01-01

    Based on the interfacial ligand exchange model and the law of conservation of mass, the multi-stage enantioselective liquid–liquid extraction model has been established to analyze and discuss on multi-stage centrifugal fractional extraction process of 4-nitrobenzene glycine (PGL) enantiomers. The influence of phase ratio, extractant concentra-tion, and PF6−concentration on the concentrations of enantiomers in the extract and raffinate was investigated by experiment and simulation. A good agreement between model and experiment was obtained. On this basis, the influence of many parameters such as location of stage, concentration levels, extractant excess, and number of stages on the symmetric separation performance was simulated. The optimal location of feed stage is the middle of fractional extraction equipment. The feed flow must satisfy a restricted relationship on flow ratios and the liquid throughout of centrifugal device. For desired purity specification, the required flow ratios decrease with extractant concentration and increase with PF6−concentration. When the number of stages is 18 stages at extractant excess of 1.0 or 14 stages at extractant excess of 2.0, the eeeq (equal enantiomeric excess) can reach to 99%.

  10. Optimization Strategies for Single-Stage, Multi-Stage and Continuous ADRs

    Science.gov (United States)

    Shirron, Peter J.

    2014-01-01

    Adiabatic Demagnetization Refrigerators (ADR) have many advantages that are prompting a resurgence in their use in spaceflight and laboratory applications. They are solid-state coolers capable of very high efficiency and very wide operating range. However, their low energy storage density translates to larger mass for a given cooling capacity than is possible with other refrigeration techniques. The interplay between refrigerant mass and other parameters such as magnetic field and heat transfer points in multi-stage ADRs gives rise to a wide parameter space for optimization. This paper first presents optimization strategies for single ADR stages, focusing primarily on obtaining the largest cooling capacity per stage mass, then discusses the optimization of multi-stage and continuous ADRs in the context of the coordinated heat transfer that must occur between stages. The goal for the latter is usually to obtain the largest cooling power per mass or volume, but there can also be many secondary objectives, such as limiting instantaneous heat rejection rates and producing intermediate temperatures for cooling of other instrument components.

  11. Multi-stage shifter for subsecond time resolution of emulsion gamma-ray telescopes

    International Nuclear Information System (INIS)

    To observe gamma-ray sources precisely, a balloon-borne experiment with a new type of detector, the emulsion gamma-ray telescope, is planned. A multi-stage shifter mechanism based on the concept of an analog clock serves as a time stamper with subsecond time resolution and uses multiple moving stages mounted on the emulsion chambers. This new technique was employed in a test experiment using a small-scale model in a short-duration balloon flight. Tracks recorded in nuclear emulsion were read by a fully automated scanning system, were reconstructed, and time information were assigned by analysis of their position displacements in the shifter layers. The estimated time resolution was 0.06–0.15 s. The number of tracks passing through the detector was counted every second, and hadron jets were detected as significant excesses observed in the counting rate. In future, the multi-stage shifter is greatly contributing to ongoing efforts to increase the effective area of emulsion gamma-ray telescopes.

  12. Numerical simulation and performance prediction in multi-stage submersible centrifugal pump

    International Nuclear Information System (INIS)

    In order to study the inner flow field of multi-stage submersible centrifugal pump, the model named QD3-60/4-1.1 was selected. Steady turbulence characteristics of impellers, diffusers and return channel were calculated by Fluent software, the SIMPLEC algorithm and RNG κ-ε turbulence model with sliding mesh technology. Then, the distributions of pressure, velocity and Turbulence kinetic energy was obtained and the distributions of velocity field of a channel were analysed. The results show that the static pressure in impeller is increasing with the increasing of radius. The circumferential component of relative velocity is in the opposite direction of impeller rotating. At the same radius, the component value of pressure surface is larger than suction surface. With the increasing of flow rate, absolute velocity and relative velocity flow angle are becoming small, in opposite of the relative velocity and absolute velocity flow angle. The high turbulent zone of impeller is located in the gap of impellers and diffusers. Flow similarity and structure similarity of the multi-stage submersible pump are confirmed

  13. Inspection logistics planning for multi-stage production systems with applications to semiconductor fabrication lines

    Science.gov (United States)

    Chen, Kyle Dakai

    Since the market for semiconductor products has become more lucrative and competitive, research into improving yields for semiconductor fabrication lines has lately received a tremendous amount of attention. One of the most critical tasks in achieving such yield improvements is to plan the in-line inspection sampling efficiently so that any potential yield problems can be detected early and eliminated quickly. We formulate a multi-stage inspection planning model based on configurations in actual semiconductor fabrication lines, specifically taking into account both the capacity constraint and the congestion effects at the inspection station. We propose a new mixed First-Come-First-Serve (FCFS) and Last-Come-First-Serve (LCFS) discipline for serving the inspection samples to expedite the detection of potential yield problems. Employing this mixed FCFS and LCFS discipline, we derive approximate expressions for the queueing delays in yield problem detection time and develop near-optimal algorithms to obtain the inspection logistics planning policies. We also investigate the queueing performance with this mixed type of service discipline under different assumptions and configurations. In addition, we conduct numerical tests and generate managerial insights based on input data from actual semiconductor fabrication lines. To the best of our knowledge, this research is novel in developing, for the first time in the literature, near-optimal results for inspection logistics planning in multi-stage production systems with congestion effects explicitly considered.

  14. Multi-stage shifter for subsecond time resolution of emulsion gamma-ray telescopes

    Science.gov (United States)

    Rokujo, H.; Aoki, S.; Takahashi, S.; Kamada, K.; Mizutani, S.; Nakagawa, R.; Ozaki, K.

    2013-02-01

    To observe gamma-ray sources precisely, a balloon-borne experiment with a new type of detector, the emulsion gamma-ray telescope, is planned. A multi-stage shifter mechanism based on the concept of an analog clock serves as a time stamper with subsecond time resolution and uses multiple moving stages mounted on the emulsion chambers. This new technique was employed in a test experiment using a small-scale model in a short-duration balloon flight. Tracks recorded in nuclear emulsion were read by a fully automated scanning system, were reconstructed, and time information were assigned by analysis of their position displacements in the shifter layers. The estimated time resolution was 0.06-0.15 s. The number of tracks passing through the detector was counted every second, and hadron jets were detected as significant excesses observed in the counting rate. In future, the multi-stage shifter is greatly contributing to ongoing efforts to increase the effective area of emulsion gamma-ray telescopes.

  15. Sensor placement for active control of surge in multi-stage axial compressors

    International Nuclear Information System (INIS)

    In this paper, a methodology is presented to determine the optimal sensor choice for active control of surge in multi-stage axial flow compressors. In this method, the compression system is modeled based on the conservation equations of mass, momentum and energy. The model is then linearized at unstable steady-state points, and the Linear Quadratic Gaussian controllers are designed to stabilize the compression system. The effects of different sensor types and locations on active stabilization process are then investigated for both low and high compressor speeds. Based on this sensor placement methodology, the sensor location and type are selected in order to minimize the estimation error and air bleed mass flow. The results are presented to show the effectiveness of the methodology. These results show that the proper sensor location is dependent on the compressor rotational speed and the instability origination

  16. A motion study of a manipulator for transferring microparts in a multi stage former

    DEFF Research Database (Denmark)

    Mahshid, Rasoul; Hansen, Hans Nørgaard; Hansen, Casper;

    2013-01-01

    together. A motion study of the system gives an overview of different steps and movements inside the multi stage former. Significantly, increasing the production rate increases the acceleration and also causes the time frame tight. The time limitations put overlaps on the moving parts in terms of...... milliseconds. A high speed camera was used in the experiments with high resolution to show the details of the motion while enabling to detect any unwanted movement within milliseconds. Importantly, increasing the frequency of image capturing within the movement is another beneficial feature in the high speed...... works very well at a real process implementation. This significantly approves the techniques already were given to evaluate the precision in the positioning unit and the gripping unit. Copyright © 2013 by ASME....

  17. Decomposition and (importance) sampling techniques for multi-stage stochastic linear programs

    Energy Technology Data Exchange (ETDEWEB)

    Infanger, G.

    1993-11-01

    The difficulty of solving large-scale multi-stage stochastic linear programs arises from the sheer number of scenarios associated with numerous stochastic parameters. The number of scenarios grows exponentially with the number of stages and problems get easily out of hand even for very moderate numbers of stochastic parameters per stage. Our method combines dual (Benders) decomposition with Monte Carlo sampling techniques. We employ importance sampling to efficiently obtain accurate estimates of both expected future costs and gradients and right-hand sides of cuts. The method enables us to solve practical large-scale problems with many stages and numerous stochastic parameters per stage. We discuss the theory of sharing and adjusting cuts between different scenarios in a stage. We derive probabilistic lower and upper bounds, where we use importance path sampling for the upper bound estimation. Initial numerical results turned out to be promising.

  18. Generation of High Pressure Oxygen via Electrochemical Pumping in a Multi-stage Electrolysis Stack

    Science.gov (United States)

    Setlock, John A (Inventor); Green, Robert D (Inventor); Farmer, Serene (Inventor)

    2016-01-01

    An oxygen pump can produce high-purity high-pressure oxygen. Oxygen ions (O.sup.2-) are electrochemically pumped through a multi-stage electrolysis stack of cells. Each cell includes an oxygen-ion conducting solid-state electrolyte between cathode and anode sides. Oxygen dissociates into the ions at the cathode side. The ions migrate across the electrolyte and recombine at the anode side. An insulator is between adjacent cells to electrically isolate each individual cell. Each cell receives a similar volt potential. Recombined oxygen from a previous stage can diffuse through the insulator to reach the cathode side of the next stage. Each successive stage similarly incrementally pressurizes the oxygen to produce a final elevated pressure.

  19. Simulation of Multi-component Multi-stage Separation Process--An Improved Algorithm and Application

    Institute of Scientific and Technical Information of China (English)

    李春山; 张香平; 张锁江; 谭心舜; 项曙光

    2006-01-01

    This paper presents a flexible model and a robust algorithm for simulation of multi-stage multi-component separation processes in which multiple feeds, side streams, strippers and/or side heat exchangers are involved. The improved algorithm effectively accelerates the speed of convergence and offers better stability by introducing a damping factor for updating the stripping factor, and also reduces the requirement on the initial estimates by updating the Joacobian matrix directly with the stripping factor and enthalpy. On the other hand, an efficient algorithm was proposed to solve the approximate tri-diagonal matrix (containing the off-band elements) derived from the material balance equations (Mequations)and phase equilibrium equations (E equations), the advantages and simplicity of the "inside-out" technique of the Russell are retained. The present algorithm was demonstrated to be effective in simulating complex separation columns with typical case studies.

  20. An integrated multi-stage supply chain inventory model with imperfect production process

    Directory of Open Access Journals (Sweden)

    Soumita Kundu

    2015-09-01

    Full Text Available This paper deals with an integrated multi-stage supply chain inventory model with the objective of cost minimization by synchronizing the replenishment decisions for procurement, production and delivery activities. The supply chain structure examined here consists of a single manufacturer with multi-buyer where manufacturer orders a fixed quantity of raw material from outside suppliers, processes the materials and delivers the finished products in unequal shipments to each customer. In this paper, we consider an imperfect production system, which produces defective items randomly and assumes that all defective items could be reworked. A simple algorithm is developed to obtain an optimal production policy, which minimizes the expected average total cost of the integrated production-inventory system.

  1. Integrity test of multi-stage design packages of radioactive wastes under deepsea condition

    International Nuclear Information System (INIS)

    For sea disposal of the low-level radioactive wastes, high hydrostatic pressure tests on the full size (2000 l) multi-stage type packages were carried out in a pressure vessel. Using the data obtained, ingress of water through leak path was simulated by a computer analysis. In order to confirm the above results, a demonstration test on integrity of the package in deepsea (5,000 m depth) was carried out at 90 miles off Nojimazaki, Chiba-ken (143010'E, 33050'N) by hanging the package down to 5,000 m depth. In these tests, no appreciable damage of the packages was observed which could give rise to controversy in safety. (author)

  2. Development of a Multi-Stage Vaccine against Paratuberculosis in Cattle

    DEFF Research Database (Denmark)

    Thakur, Aneesh

    considerable economic losses to farming community. Paratuberculosis is a staged infection in which young calves acquire the infection in the first months of life, may progress into a prolonged asymptomatic stage of about 2-5 years and may eventually become clinically infected animals. Vaccination with whole......-cell live or inactivated vaccines prevents or delays the development of clinical stage of the disease but does not eliminate MAP and is usually accompanied by interference with bovine tuberculosis diagnostics as well as local tissue damage. Subunit vaccines with well-defined antigens in combination with a...... suitable adjuvant offer the possibility to avoid these limitations and induce a strong T helper 1 (TH1) type immune response that has been associated with protection against MAP. The aim of the study was to identify proteins from different stages of infection and formulate them into a multi-stage subunit...

  3. A multi-stage approach for damage detection in structural systems based on flexibility

    Science.gov (United States)

    Grande, E.; Imbimbo, M.

    2016-08-01

    The paper proposes a fusion approach for damage detection in structural applications in the case of multiple damage locations and three-dimensional systems. Based on the Dempster-Shafer evidence theory, a multi-stage approach is proposed with the mode shapes assumed as primary sources and local decisions based on a flexibility method. The proposed approach has been applied to two case studies, a a fixed end beam analyzed in other papers and a three dimensional structures codified in a Benchmark problem. Both the case studies have shown the ability and the efficiency of the proposed approach to detect damage also in the case of multiple damage, limited number of identified parameters and noise measurements.

  4. Development of an automated multi-stage modal synthesis system for NASTRAN

    Science.gov (United States)

    Herting, D. N.; Hoesly, R. L.

    1977-01-01

    A mode synthesis development to be scheduled in the NASTRAN multi-level substructuring system for general dynamics applications is described. The method combines the better features of several state of the art mode synthesis techniques, yet is general enough to provide for any arbitrary combination of boundary degrees of freedom and normal mode boundary conditions. Normal modes or complex eigenvectors may be used in the definition of a structure component which may be combined with other components of any type. Combination structures fabricated from component modes may be processed as normal substructures, including further multi-stage mode synthesis reductions. Included are discussions of the user control of the system and advantages in actual application.

  5. Solar Multi-stage Refrigeration Systems on the Basis of Absorber with the Internal Evaporative Cooling

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2015-08-01

    Full Text Available In the article, the developed schematics are presented for the alternative refrigeration systems and air-conditioning systems, based on the use of absorbing cycle and solar energy for the regeneration of absorbent solution. Multi-stage principle of construction of drying and cool contours of solar systems is used with growth of concentration of absorbent on the stages of cooler. An absorber with internal evaporative cooling, allowing to remove the separate evaporated cooler, usually included after the absorber of the proper stage, is developed. Heat-mass-transfer apparatus of film-type, entering in the complement of drying and cool contours compatible and executed on the basis of multichannel compositions from polymeric materials. The preliminary comparative analysis of possibilities of the solar refrigeration systems and air-conditioning systems is executed.

  6. Multi-Stage Optimization Based Automatic Voltage Control Systems Considering Wind Power Forecasting Errors

    DEFF Research Database (Denmark)

    Qin, Nan; Bak, Claus Leth; Abildgaard, Hans;

    2016-01-01

    This paper proposes an automatic voltage control (AVC) system for power systems with limited continuous voltage control capability. The objective is to minimize the operational cost over a period, which consists of the power loss in the grid, the shunt switching cost, the transformer tap change...... cost and the generator reactive power output cost. The problem is formulated in a multi-stage optimal reactive power flow (MORPF) framework, solved by the nonlinear programming techniques via a rolling process. The voltage uncertainty caused by wind power forecasting errors is considered in the optimal...... electricity control center, where study cases based on the western Danish power system demonstrate the superiority of the proposed AVC system in term of the cost minimization. Monte Carlo simulations are carried out to verify the proposed method on the robustness improvements....

  7. Modeling Humans as Reinforcement Learners: How to Predict Human Behavior in Multi-Stage Games

    Science.gov (United States)

    Lee, Ritchie; Wolpert, David H.; Backhaus, Scott; Bent, Russell; Bono, James; Tracey, Brendan

    2011-01-01

    This paper introduces a novel framework for modeling interacting humans in a multi-stage game environment by combining concepts from game theory and reinforcement learning. The proposed model has the following desirable characteristics: (1) Bounded rational players, (2) strategic (i.e., players account for one anothers reward functions), and (3) is computationally feasible even on moderately large real-world systems. To do this we extend level-K reasoning to policy space to, for the first time, be able to handle multiple time steps. This allows us to decompose the problem into a series of smaller ones where we can apply standard reinforcement learning algorithms. We investigate these ideas in a cyber-battle scenario over a smart power grid and discuss the relationship between the behavior predicted by our model and what one might expect of real human defenders and attackers.

  8. Multi-stage full waveform inversion strategy for 2D elastic VTI media

    KAUST Repository

    Oh, Ju-Won

    2015-08-19

    One of the most important issues in the multi-parametric full waveform inversion (FWI) is to find an optimal parameterization, which helps us recover the subsurface anisotropic parameters as well as seismic velocities, with minimal tradeoff. As a result, we analyze three different parameterizations for elastic VTI media in terms of the influence of the S-waves on the gradient direction for c13, the spatial coverage of gradient direction and the degree of trade-offs between the parameters. Based on the dependency results, we design a multi-stage elastic VTI FWI strategy to enhance both the spatial coverage of the FWI and the robustness to the trade-offs among the parameters as well as FWI for the c13 structure.

  9. Numerical investigation of flow through vegetated multi-stage compound cha-nnel

    Institute of Scientific and Technical Information of China (English)

    王雯; 槐文信; 高猛

    2014-01-01

    This paper addresses the problem of the renormalization group k-e turbulence modeling of a vegetated multi-stage compound channel. Results from Micro acoustic Doppler velocimeter (ADV) tests are used with time and spatial averaging (double-averaging method) in the analysis of the flow field and the characterization. Comparisons of the mean velocity, the Reynolds stress, and the turbulent energy distribution show the validity of the computational method. The mean velocity profile sees an obvious de-celeration in the terraces because of vegetation. Secondary flow exists mainly at the junction of the main channel and the vegetation region on the first terrace. The bed shear stress in the main channel is much greater than that in the terraces. The difference of the bed shear stress between two terraces is insignificant, and the presence of vegetation can effectively reduce the bed shear stress.

  10. Multi-stage drying of PVA aqueous solution film; PVA suiyoeki no bunri tofu kanso

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, M.; Inoue, S. [Dai Nippon Printing Co. Ltd., Tokyo (Japan); Imakawa, H. [Kobe University, Kobe (Japan), Faculty of Engineering; Okazaki, M. [Kyoto University, Kyoto (Japan). Faculty of Engineering

    1995-07-10

    In a multi-stage coating and drying process, in which PVA (Polyvinyl alcohol) film was formed by repeating twice a set of operations consisting of coating PVA aqueous solution and convective drying of it, the drying process was numerically simulated using a drying model based on mass transfer within a coated film. The possibility of minimizing drying time was also investigated. Total drying time, summed over the first and second stages, required to yield a target mean moisture concentration in the solution film was calculated while changing the final mean moisture concentration of the first stage. It was found that the minimum drying time appeared for each target concentration and the effect of reduction on the total drying time became significant with increasing target concentration. 12 refs., 5 figs., 1 tab.

  11. Developments of low cost coated conductors by multi-stage CVD process

    International Nuclear Information System (INIS)

    A low cost and a high-speed production process must be required for a realization of a YBCO coated conductor, especially in the electric power field applications. A multi-stage CVD is one of the most promising processes for manufacturing a coated conductor with a low cost and a high-speed production. Recent progress in developments of long YBCO coated conductors by multi-stage MO-CVD process and their properties would be described. The 203-m-long IBAD substrate (PLD-CeO2/IBAD-GZO/HastelloyC) was used for preparing the long YBCO tape. The tape traveling speed at the each passing was 50 m/h and number of passing was 14 times. We applied a 12-stage CVD hot-wall chamber system for preparing YBCO layer. As a result, the end-to-end Ic of 92.8 A (77 K self-field, 1 μV/cm criteria) was obtained. The Ic(A) x L(m) value corresponded to 18.8 kA. The n-value of the tape remained 15.5. Then we measured the Ic distribution for longitudinal direction at 0.5 m intervals. The obtained data showed us that the average Ic was roughly 140-150 A, however, we confirmed some low Ic regions, which is about 65-100 A. The origin of the low Ic regions was summarized. Concerning a high performance YBCO development, we achieved Ic of 294 A/cm by introducing a multi-temperature and composition control process

  12. Nonlinear resonances in a multi-stage free-electron laser amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, S. [Graduate Univ. for Advanced Studies, Ibaraki-ken (Japan); Takayama, K. [National Lab. for High Energy Physics, Ibaraki-ken (Japan)

    1995-12-31

    A two-beam accelerator (TBA) is a possible candidate of future linear colliders, in which the demanded rf power is provided by a multi-stage free-electron laser (MFEL). After if amplification in each stage, a driving beam is re-accelerated by an induction unit and propagates into the next stage. Recently it has been recognized that the multi-stage character of the MFEL causes resonances between its periodicity and the synchrotron motion in an rf bucket. Since the synchrotron oscillation is strongly modulated by the resonance and at the worst a large fraction of particles is trapped in the resonance islands, the nonlinear resonances in the FEL longitudinal beam dynamics can lead to notable degradation of the MFEL performance, such as output fluctuation and phase modulation which have been big concerns in the accelerator society. The overall efficiency of the MFEL and the quality of the amplified microwave power are key issues for realizing the TBA/FEL Particularly the rf phase and amplitude errors must be maintained within tolerance. One of significant obstacles is an amplification of undesired modes. If a small-size waveguide is employed, the FEL resonance energies for undesired higher order modes shift very far from that for a fundamental mode; so it is possible to prevent higher order modes from evolving. Such a small-size waveguide, however, gives a high power density in the FEL. Simulation results have demonstrated that the nonlinear resonances occur in die FEL longitudinal motion when the power density exceeds some threshold. An analytical method for studying the nonlinear resonance in the TBA/FEL is developed based on the macroparticle model which can describe analytically the drastic behaviors in the evolutions of the phase and amplitude. In the theory the basic 1D-FEL equations are reduced to a nonlinear pendulum equation with respect to the ponderomotive phase.

  13. Japan`s New Sunshine Project. 1996 Annual Summary of Coal Liquefaction and Gasification; 1996 nendo new sunshine keikaku seika hokokusho gaiyoshu. Sekitan no ekika gasuka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    In reference to the results of the research and development under the fiscal 1996 New Sunshine Project, a report was summed up on coal liquefaction and coal gasification. As to the R and D of coal liquefaction technology, researches were conducted on liquefaction characteristics and engineering properties by coal kind, catalysts for coal liquefaction, liquefaction reaction of coal and reformation utilization of the liquefied products, liquefaction reaction mechanism and coking mechanism, solubility of coal in solvent and catalytic reaction mechanism, solvent reaction mechanism by hydrogen donor solvent, etc. Concerning the R and D of coal gasification technology, made were the basic study of eco-technology adaptable gasification technology and the study of coal gasification enhancing technology. Further, as to the development of bituminous coal liquefaction technology, carried out were the study in pilot plants and the support study of pilot plants. Additionally, R and D were done of the basic technology of coal liquefaction such as upgrading technology and environmentally acceptable coal liquefaction technology, and of coal hydrogasification technology. 3 refs., 81 figs., 25 tabs.

  14. Influence of alkali catalyst on product yield and properties via hydrothermal liquefaction of barley straw

    DEFF Research Database (Denmark)

    Zhu, Z.; Toor, Saqib; Rosendahl, Lasse;

    2015-01-01

    Barley straw was successfully converted to bio-crude by hydrothermal liquefaction at temperature of 280 e400 C using an alkali catalyst (K2CO3) in our previous work, and the maximum bio-crude yield was obtained at 300 C. This paper extends previous work on studying liquefaction behavior of barley...... compounds identified in bio-crude were carboxylic acids, phenolic compounds and ketones, irrespective of whether the catalyst was used. However, the distribution and relative content of these compounds were different. More phenolic compounds and less carboxylic acids were observed in the catalytic run. In...

  15. A novel multi-stage subunit vaccine against paratuberculosis induces significant immunity and reduces bacterial burden in tissues (P4304)

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Aagaard, Claus; Riber, Ulla;

    2013-01-01

    Effective control of paratuberculosis is hindered by lack of a vaccine preventing infection, transmission and without diagnostic interference with tuberculosis. We have developed a novel multi-stage recombinant subunit vaccine in which a fusion of four early expressed MAP antigens is combined with...... characterized by a significant containment of bacterial burden in gut tissues compared to non-vaccinated animals. There was no cross-reaction with bovine tuberculosis in vaccinated animals. This novel multi-stage vaccine has the potential to become a marker vaccine for paratuberculosis....

  16. Research and Development for Multi-stage and Integrated Approach for Seafloor Massive Sulfides (SMSs) Exploration.

    Science.gov (United States)

    Asakawa, Eiichi; Sumi, Tomonori; Kadoshima, Kazuyuki; Kose, Masami; Lee, Sangkyun; Murakami, Fumitoshi; Tsukahara, Hitoshi; Koizumi, Akira; Koizumi, Yukiko; Ikeda, Makoto; Higashi, Michio

    2016-04-01

    The Cabinet Office, Government Japan started the Cross-ministerial Strategic Innovation Promotion Program (SIP) in 2014. "Next-generation Ocean Resource Exploration Techniques" is scheduled under SIP from 2014 to 2018. J-MARES (Research and Development Partnership for Next Generation Technology of Marine Resources Survey) participates this program and aims "Multi-stage and integrated approach for SMSs exploration" through the development of highly efficient and cost-effective geophysical exploration methods mainly on seismic and electric-magnetic methods, and combination of the known exploration tools and systems. J-MARES proposed Vertical Cable Seismic (VCS) technique as seismic survey. It is one of reflection seismic methods that uses hydrophone arrays vertically moored from the seafloor. It is useful to delineate detailed structures in a spatially-limited area efficiently. JGI, a member of J-MARES, has developed autonomous VCS systems and carried out several VCS surveys in hydrothermal fields in Okinawa Trough. By the VCS survey, the detailed subsurface structure is revealed and velocity is estimated up to 100m. Then we could recognize the buried sulfide deposit beneath the sediments. As for EM survey, the system has been originally developed by Waseda University. The system is towed closely to seafloor using ROV. It is one of Time Domain EM (TDEM) survey systems that consists of a loop coil and a 3 component high-sensitive magnetometer. By analyzing the decay curve of the transient magnetic field induced by the loop coil, the subsurface resistivity structure is estimated. The exploration depth depends on the measurement time and it is designed up to 100m enough for SMS exploration. We carried out the EM surveys around the north mound along VCS survey lines in Izena Hole, Okinawa-trough. The EM survey detects the highly conductive zone around the north mound. The efficiency is 3 times faster than the conventional TDEM measurement on the ocean bottom. Based on

  17. Multi-stage absorption of rendering plant odours using sodium hypochlorite and other reagents

    Science.gov (United States)

    Pope, D.; Davis, B. J.; Moss, R. L.

    Conditions for using sodium hypochlorite solution as the main component of a multi-stage absorption system for the treatment of malodorous process emissions were studied, together with the additional reagents needed for effective odour control. In laboratory experiments, mixtures containing vpm levels in air of trimethylamine, hydrogen sulphide, methyl mercaptan, dimethyl disulphide, n-butanal and sometimes ammonia were passed through three bubble-plate columns containing some of the following: water, dilute sulphuric acid, sodium hypochlorite solutions (varying in pH and available chlorine content) sodium hydroxide and sodium hydrogen sulphite. Odour removal was monitored by Chromatographic and sensory methods. Conclusions from laboratory experiments were supported by field-tests at four rendering plants in the U.K., treating both ventilation and process gases. Alkaline hypochlorite with considerable excess available chlorine removes many sulphur-compounds and aldehydes but effective odour control requires an acid pre-wash to prevent the generation of odorous chlorinated compounds from ammonia and amines. Acidic hypochlorite solution followed by sodium hydrogen sulphite (to remove aldehyde) and sodium hydroxide was a most effective combination in both laboratory and field tests. Odour generated in chlorination reactions involving acidic hypochlorite solution was analysed by GC-MS and GC-MPD-odour-port and the odour key compounds identified.

  18. Multi-Stage Metering Mechanism for Transplanting of Vegetable Seedlings in Paper Pots

    Science.gov (United States)

    Nandede, B. M.; Raheman, H.

    2015-12-01

    A multi-stage rotating cup type metering mechanism was developed for transplanting of vegetable seedlings of tomato, brinjal and chili raised in paper pots. The developed setup consisted of a seedling feeding wheel, metering wheel, fixed slotted plate, seedling delivery tube, furrow opener, furrow closer and a power transmission system. Its evaluation was carried out with pot seedlings of tomato, brinjal and chili of 8-11 cm height at five forward speeds (0.6, 0.9, 1.2, 2.2 and 3.2 km/h) and two plant spacings (45 and 60 cm) in controlled soil bin condition. The mean values of feeding efficiency, conveying efficiency, planting efficiency and overall efficiency of the multistage metering unit were observed to be higher than 90 % for forward speeds of 0.6 to 2.2 km/h. With further increase in speed to 3.2 km/h, the feeding and conveying efficiency were observed to be higher than 90 %, whereas, the planting efficiency drastically reduced to around 50 % due to the problem in getting the pot seedlings vertically in the furrow. Also the seedlings were falling into the furrow at an angle greater than 70° to the vertical, hence not suitable for transplanting.

  19. Rigging Test Bed Development for Validation of Multi-Stage Decelerator Extractions

    Science.gov (United States)

    Kenig, Sivan J.; Gallon, John C.; Adams, Douglas S.; Rivellini, Tommaso P.

    2013-01-01

    The Low Density Supersonic Decelerator project is developing new decelerator systems for Mars entry which would include testing with a Supersonic Flight Dynamics Test Vehicle. One of the decelerator systems being developed is a large supersonic ringsail parachute. Due to the configuration of the vehicle it is not possible to deploy the parachute with a mortar which would be the preferred method for a spacecraft in a supersonic flow. Alternatively, a multi-stage extraction process using a ballute as a pilot is being developed for the test vehicle. The Rigging Test Bed is a test venue being constructed to perform verification and validation of this extraction process. The test bed consists of a long pneumatic piston device capable of providing a constant force simulating the ballute drag force during the extraction events. The extraction tests will take place both inside a high-bay for frequent tests of individual extraction stages and outdoors using a mobile hydraulic crane for complete deployment tests from initial pack pull out to canopy extraction. These tests will measure line tensions and use photogrammetry to track motion of the elements involved. The resulting data will be used to verify packing and rigging as well, as validate models and identify potential failure modes in order to finalize the design of the extraction system.

  20. Hydraulic design to optimize the treatment capacity of Multi-Stage Filtration units

    Science.gov (United States)

    Mushila, C. N.; Ochieng, G. M.; Otieno, F. A. O.; Shitote, S. M.; Sitters, C. W.

    2016-04-01

    Multi-Stage Filtration (MSF) can provide a robust treatment alternative for surface water sources of variable water quality in rural communities at low operation and maintenance costs. MSF is a combination of Slow Sand Filters (SSFs) and Pre-treatment systems. The general objective of this research was to optimize the treatment capacity of MSF. A pilot plant study was undertaken to meet this objective. The pilot plant was monitored for a continuous 98 days from commissioning till the end of the project. Three main stages of MSF namely: The Dynamic Gravel Filter (DGF), Horizontal-flow Roughing Filter (HRF) and SSF were identified, designed and built. The response of the respective MSF units in removal of selected parameters guiding drinking water quality such as microbiological (Faecal and Total coliform), Suspended Solids, Turbidity, PH, Temperature, Iron and Manganese was investigated. The benchmark was the Kenya Bureau (KEBS) and World Health Organization (WHO) Standards for drinking water quality. With respect to microbiological raw water quality improvement, MSF units achieved on average 98% Faecal and 96% Total coliform removal. Results obtained indicate that implementation of MSF in rural communities has the potential to increase access to portable water to the rural populace with a probable consequent decrease in waterborne diseases. With a reduced down time due to illness, more time would be spent in undertaking other economic activities.

  1. Optimal phasing of district heating network investments using multi-stage stochastic programming

    Directory of Open Access Journals (Sweden)

    Romain Stephane Claude Lambert

    2016-06-01

    Full Text Available Most design optimisation studies for district heating systems have focused on the optimal sizing of network assets and on the location of production units. However, the strategic value of the flexibility in phasing of the inherently modular heat networks, which is an important aspect in many feasibility studies for district heating schemes in the UK, is almost always neglected in the scientific literature. This paper considers the sequential problem faced by a decision-maker in the phasing of long-term investments into district heating networks and their expansions. The problem is formulated as a multi-stage stochastic programme to determine the annual capital expenditure that maximises the expected net present value of the project. The optimisation approach is illustrated by applying it to the hypothetical case of the UK’s Marston Vale eco town. It was found that the approach is capable of simulating the optimal growth of a network, from both a single heat source or separate islands of growth, as well as the optimal marginal expansion of an existing district heating network. The proposed approach can be used by decision makers as a framework to determine both the optimal phasing and extension of district heating networks and can be adapted simply to various, more complex real-life situations by introducing additional constraints and parameters. The versatility of the base formulation also makes it a powerful approach regardless of the size of the network and also potentially applicable to cooling networks.

  2. Dynamic multi-stage dispatch of isolated wind–diesel power systems

    International Nuclear Information System (INIS)

    Highlights: • Optimal decision-making model for isolated hybrid wind–diesel power system is proposed. • Wind power uncertainty and conditional operating cost are considered. • Battery wear cost of the energy storage system is included in the model. • The results are compared with deterministic dispatch strategies. - Abstract: An optimal dispatch strategy is crucial for an isolated wind–diesel power system to save diesel fuel and maintain the system stability. The uncertainty associated with the stochastic character of the wind is, though, a challenging problem for this optimization. In this paper, a dynamic multi-stage decision-making model is proposed to determine the diesel power output that minimizes the cost of running and maintaining the wind–diesel power system. Optimized operational decisions for each time period are generated dynamically considering the path-dependent nature of the optimal dispatch policy, given the plausible future realizations of the wind power production. A numerical case study is analyzed and it is demonstrated that the proposed stochastic dynamic optimization model significantly outperforms the traditional deterministic dispatch strategies

  3. Remediation of soils contaminated with particulate depleted uranium by multi stage chemical extraction.

    Science.gov (United States)

    Crean, Daniel E; Livens, Francis R; Sajih, Mustafa; Stennett, Martin C; Grolimund, Daniel; Borca, Camelia N; Hyatt, Neil C

    2013-12-15

    Contamination of soils with depleted uranium (DU) from munitions firing occurs in conflict zones and at test firing sites. This study reports the development of a chemical extraction methodology for remediation of soils contaminated with particulate DU. Uranium phases in soils from two sites at a UK firing range, MOD Eskmeals, were characterised by electron microscopy and sequential extraction. Uranium rich particles with characteristic spherical morphologies were observed in soils, consistent with other instances of DU munitions contamination. Batch extraction efficiencies for aqueous ammonium bicarbonate (42-50% total DU extracted), citric acid (30-42% total DU) and sulphuric acid (13-19% total DU) were evaluated. Characterisation of residues from bicarbonate-treated soils by synchrotron microfocus X-ray diffraction and X-ray absorption spectroscopy revealed partially leached U(IV)-oxide particles and some secondary uranyl-carbonate phases. Based on these data, a multi-stage extraction scheme was developed utilising leaching in ammonium bicarbonate followed by citric acid to dissolve secondary carbonate species. Site specific U extraction was improved to 68-87% total U by the application of this methodology, potentially providing a route to efficient DU decontamination using low cost, environmentally compatible reagents. PMID:23998894

  4. Low-cost multi-stage filtration enhanced by coagulation-flocculation in upflow gravel filtration

    Directory of Open Access Journals (Sweden)

    L. D. Sánchez

    2012-12-01

    Full Text Available This paper assesses the operational and design aspects of coagulation and flocculation in upflow gravel filters (CF-UGF in a multi-stage filtration (MSF plant. This study shows that CF-UGF units improve the performance of MSF considerably, when the system operates with turbidity above 30 NTU. It strongly reduces the load of particulate material before the water enters in the slow sand filters (SSF and therewith avoids short filter runs and prevents early interruption in SSF operations. The removal efficiency of turbidity in the CF-UGF with coagulant was between 85 and 96%, whereas the average efficiency without coagulant dosing was 46% (range: 21–76%. Operating with coagulant also improves the removal efficiency for total coliforms, E-coli and HPC. No reduction was observed in the microbial activity of the SSF, no obstruction of the SSF bed was demonstrated and SSF runs were maintained between 50 and 70 days for a maximum head loss of 0.70 m. The most important advantage is the flexibility of the system to operate with and without coagulant according to the influent turbidity. It was only necessary for 20% of the time to operate with the coagulant. The CF-UGF unit represented 7% of total construction costs and the O&M cost for the use of coagulant represented only 0.3%.

  5. Transport line for a multi-staged laser-plasma acceleration: DACTOMUS

    Energy Technology Data Exchange (ETDEWEB)

    Chancé, Antoine, E-mail: antoine.chance@cea.fr [CEA, IRFU, SACM, Centre de Saclay, F-91191 Gif-sur-Yvette (France); Delferrière, Olivier; Schwindling, Jérôme [CEA, IRFU, SACM, Centre de Saclay, F-91191 Gif-sur-Yvette (France); Bruni, Christelle; Delerue, Nicolas [LAL, UMR9607, CNRS and Université Paris Sud, Orsay (France); Specka, Arnd [LLR, UMR7638, CNRS and Ecole Polytechnique, Palaiseau (France); Cros, Brgitte; Maynard, Gillies; Paradkar, Bhooshan S. [LPGP, UMR8578, CNRS and Université Paris Sud, Orsay (France); Mora, Patrick [CPhT, UMR7644, CNRS and Ecole Polytechnique, Palaiseau (France)

    2014-03-11

    Laser-plasma acceleration is one of the most promising techniques to reach very high acceleration gradients up to a few hundreds of GeV/m. In order to push this acceleration scheme in the domain of the very high energies, the CILEX project was launched with the laser APOLLON. One of the main topics of this project is to study multi-staged acceleration. It consists in generating and pre-accelerating electrons in a first laser-plasma stage, to transport them up to a second stage where the electrons are accelerated again thanks to another laser pulse. The DACTOMUS project, based on a collaboration CEA-IRFU, CEA-IRAMIS, LAL, LPGP, LULI and LLR, aims at the study and realization of such a transfer line between these two stages. Firstly, a prototype will be developed and tested by the groups of CEA-IRAMIS-SPAM, LPGP, and LULI on the UHI100 facility (CEA-SPAM). This collaboration must enable to realize the first acceleration stage. For the transport line prototype, the main difficulties are to realize a very compact and energy accepting line with diagnostics to characterize the electron beam. We will present here the optics of this line, its performances and the inserted diagnostics.

  6. Transport line for a multi-staged laser-plasma acceleration: DACTOMUS

    Science.gov (United States)

    Chancé, Antoine; Delferrière, Olivier; Schwindling, Jérôme; Bruni, Christelle; Delerue, Nicolas; Specka, Arnd; Cros, Brgitte; Maynard, Gillies; Paradkar, Bhooshan S.; Mora, Patrick

    2014-03-01

    Laser-plasma acceleration is one of the most promising techniques to reach very high acceleration gradients up to a few hundreds of GeV/m. In order to push this acceleration scheme in the domain of the very high energies, the CILEX project was launched with the laser APOLLON. One of the main topics of this project is to study multi-staged acceleration. It consists in generating and pre-accelerating electrons in a first laser-plasma stage, to transport them up to a second stage where the electrons are accelerated again thanks to another laser pulse. The DACTOMUS project, based on a collaboration CEA-IRFU, CEA-IRAMIS, LAL, LPGP, LULI and LLR, aims at the study and realization of such a transfer line between these two stages. Firstly, a prototype will be developed and tested by the groups of CEA-IRAMIS-SPAM, LPGP, and LULI on the UHI100 facility (CEA-SPAM). This collaboration must enable to realize the first acceleration stage. For the transport line prototype, the main difficulties are to realize a very compact and energy accepting line with diagnostics to characterize the electron beam. We will present here the optics of this line, its performances and the inserted diagnostics.

  7. INFLUENCE OF NANOFILTRATION PRETREATMENT ON SCALE DEPOSITION IN MULTI-STAGE FLASH THERMAL DESALINATION PLANTS

    Directory of Open Access Journals (Sweden)

    Aiman E Al-Rawajfeh

    2011-01-01

    Full Text Available Scale formation represents a major operational problem encountered in thermal desalination plants. In current installed plants, and to allow for a reasonable safety margin, sulfate scale deposition limits the top brine temperature (TBT in multi-stage flash (MSF distillers up to 110-112oC. This has significant effect on the unit capital, operational and water production cost. In this work, the influence of nanofiltration (NF pretreatment on the scale deposition potential and increasing TBT in MSF thermal desalination plants is modeled on the basis of mass transfer with chemical reaction of solutes in the brine. Full and partial NF-pretreatment of the feed water were investigated. TBT can be increased in MSF by increasing the percentage of NF-treated feed. Full NF pretreatment of the make-up allows TBT in the MSF plant to be raised up to 175oC in the case of di hybrid NF-MSF and up to 165oC in the case of tri hybrid NF-RO-MSF. The significant scale reduction is associated with increasing flashing range, unit recovery, unit performance, and will lead to reduction in heat transfer surface area, pumping power and therefore, water production cost.

  8. Short-Term Multi-Stage Stochastic Optimization of Hydropower Reservoirs Under Meteorological Uncertainty

    Science.gov (United States)

    Schwanenberg, D.; Naumann, S.; Allen, C.

    2014-12-01

    Hydroelectric power systems are characterized by variability and uncertainty in yield and water resources obligations. Market volatility and the growing number of operational constraints for flood control, navigation, environmental obligations and ancillary services (including load balancing requirements for renewable resources) further the need to quantify sources of uncertainty. This research presents an integrated framework to handle several sources of uncertainty. Main focus is on the meteorological forecast uncertainty based on deterministic and probabilistic Numerical Weather Predictions (NWP), its consistent propagation through load and streamflow forecasts, and the generation of scenario trees with novel multi-dimensional distance metrics. The scenario trees enable us to extend a deterministic optimization setup to a multi-stage stochastic optimization approach as the mathematical formulation of the short-term system management. The Federal Columbia River Power System (FCRPS), managed by the Bonneville Power Administration, the US Army Corps of Engineers and the Bureau of Reclamation, serves as a large-scale test case for the application of the new framework. We proof the feasibility of the new approach and verify the operational applicability within a real-time environment.

  9. A Multi-stage Method to Extract Road from High Resolution Satellite Image

    International Nuclear Information System (INIS)

    Extracting road information from high-resolution satellite images is complex and hardly achieves by exploiting only one or two modules. This paper presents a multi-stage method, consisting of automatic information extraction and semi-automatic post-processing. The Multi-scale Enhancement algorithm enlarges the contrast of human-made structures with the background. The Statistical Region Merging segments images into regions, whose skeletons are extracted and pruned according to geometry shape information. Setting the start and the end skeleton points, the shortest skeleton path is constructed as a road centre line. The Bidirectional Adaptive Smoothing technique smoothens the road centre line and adjusts it to right position. With the smoothed line and its average width, a Buffer algorithm reconstructs the road region easily. Seen from the last results, the proposed method eliminates redundant non-road regions, repairs incomplete occlusions, jumps over complete occlusions, and reserves accurate road centre lines and neat road regions. During the whole process, only a few interactions are needed

  10. Multi-stage identification scheme for detecting damage in structures under ambient excitations

    Science.gov (United States)

    Bao, Chunxiao; Hao, Hong; Li, Zhong-Xian

    2013-04-01

    Structural damage identification methods are critical to the successful application of structural health monitoring (SHM) systems to civil engineering structures. The dynamic response of civil engineering structures is usually characterized by high nonlinearity and non-stationarity. Accordingly, an improved Hilbert-Huang transform (HHT) method which is adaptive, output-only and applicable to system identification of in-service structures under ambient excitations is developed in this study. Based on this method, a multi-stage damage detection scheme including the detection of damage occurrence, damage existence, damage location and the estimation of damage severity is developed. In this scheme, the improved HHT method is used to analyse the structural acceleration response, the obtained instantaneous frequency detects the instant of damage occurrence, the instantaneous phase is sensitive to minor damage and provides reliable damage indication, and the damage indicator developed based on statistical analysis of the Hilbert marginal spectrum detects damage locations. Finally, the response sampled at the detected damage location is continuously analysed to estimate the damage severity. Numerical and experimental studies of frame structures under ambient excitations are performed. The results demonstrate that this scheme accomplishes the above damage detection functions within one flow. It is robust, time efficient, simply implemented and applicable to the real-time SHM of in-service structures.

  11. Low-cost multi-stage filtration enhanced by coagulation-flocculation in upflow gravel filtration

    Directory of Open Access Journals (Sweden)

    L. D. Sánchez

    2012-06-01

    Full Text Available This paper assesses the operational and design aspects of coagulation and flocculation in upflow gravel filters (CF-UGF in a multi-stage filtration (MSF plant. This study shows that CF-UGF units improve the performance of MSF considerably, when the system operates with turbidity above 30 NTU. It strongly reduces the load of particulate material before the water enters in the slow sand filters (SSF and therewith avoids short filter runs and prevents early interruption in SSF operations. The removal efficiency of turbidity in the CF-UGF with coagulant was between 85 and 96%, whereas the average efficiency without coagulant dosing was 46% (range: 21–76%. Operating with coagulant also improves the removal efficiency for total coliforms, E-coli and HPC. No reduction was observed in the microbial activity of the SSF, no obstruction of the SSF bed was demonstrated and SSF runs were maintained between 50 and 70 days for a maximum head loss of 0.70 m. The most important advantage is the flexibility of the system to operate with and without coagulant according to the influent turbidity. It was only necessary for 20% of the time to operate with the coagulant. The CF-UGF unit represented 7% of total construction costs and the O&M cost for the use of coagulant represented only 0.3%.

  12. Multi-stage identification scheme for detecting damage in structures under ambient excitations

    International Nuclear Information System (INIS)

    Structural damage identification methods are critical to the successful application of structural health monitoring (SHM) systems to civil engineering structures. The dynamic response of civil engineering structures is usually characterized by high nonlinearity and non-stationarity. Accordingly, an improved Hilbert–Huang transform (HHT) method which is adaptive, output-only and applicable to system identification of in-service structures under ambient excitations is developed in this study. Based on this method, a multi-stage damage detection scheme including the detection of damage occurrence, damage existence, damage location and the estimation of damage severity is developed. In this scheme, the improved HHT method is used to analyse the structural acceleration response, the obtained instantaneous frequency detects the instant of damage occurrence, the instantaneous phase is sensitive to minor damage and provides reliable damage indication, and the damage indicator developed based on statistical analysis of the Hilbert marginal spectrum detects damage locations. Finally, the response sampled at the detected damage location is continuously analysed to estimate the damage severity. Numerical and experimental studies of frame structures under ambient excitations are performed. The results demonstrate that this scheme accomplishes the above damage detection functions within one flow. It is robust, time efficient, simply implemented and applicable to the real-time SHM of in-service structures. (paper)

  13. Coal liquefaction. Quarterly report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The United States has more energy available in coal than in petroleum, natural gas, oil shale, and tar sands combined. Nationwide energy shortages, together with the availability of abundant coal reserves, make commercial production of synthetic fuels from coal vital to the Nation's total supply of clean energy. In response to this need, the Office of Fossil Energy of the Energy Research and Development Administration (ERDA) is conducting a research and development program to provide technology that will permit rapid commercialization of processes for converting coal to synthetic liquid and gaseous fuels and for improved direct combustion of coal. These fuels must be storable and suitable for power generation, transportation, and residential and industrial uses. ERDA's program for the conversion of coal to liquid fuels was begun by two of ERDA's predecessor agencies: Office of Coal Research (OCR) in 1962, and Bureau of Mines, U.S. Department of the Interior, in the 1930's. Current work in coal liquefaction is aimed at improved process configurations for both catalytic and non-catalytic processes to provide more attractive processing economics and lower capital investment. Coal liquefaction can now be achieved under more moderate processing conditions and more rapidly than was the case in the 1930's. The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquid fuels also have the potential for use as chemical feedstocks. To determine the most efficient means of utilizing coal resources, ERDA is sponsoring the development of several conversion processes that are currently in the pilot plant stage. Nineteen projects under development are described and progress for each in the quarter is detailed briefly

  14. Exploratory Research on Novel Coal Liquefaction Concept - Task 2: Evaluation of Process Steps.

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, S.D.; Winschel, R.A.

    1997-05-01

    A novel direct coal liquefaction technology is being investigated in a program being conducted by CONSOL Inc. with the University of Kentucky, Center for Applied Energy Research and LDP Associates under DOE Contract DE-AC22-95PC95050. The novel concept consists of a new approach to coal liquefaction chemistry which avoids some of the inherent limitations of current high-temperature thermal liquefaction processes. The chemistry employed is based on hydride ion donation to solubilize coal at temperatures (350-400{degrees}C) significantly lower than those typically used in conventional coal liquefaction. The process concept being explored consists of two reaction stages. In the first stage, the coal is solubilized by hydride ion donation. In the second, the products are catalytically upgraded to acceptable refinery feedstocks. The program explores not only the initial solubilization step, but integration of the subsequent processing steps, including an interstage solids-separation step, to produce distillate products. A unique feature of the process concept is that many of the individual reaction steps can be decoupled, because little recycle around the liquefaction system is expected. This allows for considerable latitude in the process design. Furthermore, this has allowed for each key element in the process to be explored independently in laboratory work conducted under Task 2 of the program.

  15. Indirect thermal liquefaction process for producing liquid fuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kuester, J.L.

    1980-01-01

    A progress report on an indirect liquefaction process to convert biomass type materials to quality liquid hydrocarbon fuels by gasification followed by catalytic liquid fuels synthesis has been presented. A wide variety of feedstocks can be processed through the gasification system to a gas with a heating value of 500 + Btu/SCF. Some feedstocks are more attractive than others with regard to producing a high olefin content. This appears to be related to hydrocarbon content of the material. The H/sub 2//CO ratio can be manipulated over a wide range in the gasification system with steam addition. Some feedstocks require the aid of a water-gas shift catalyst while others appear to exhibit an auto-catalytic effect to achieve the conversion. H/sub 2/S content (beyond the gasification system wet scrubber) is negligible for the feedstocks surveyed. The water gas shift reaction appears to be enhanced with an increase in pyrolysis reactor temperature over the range of 1300 to 1700/sup 0/F. Reactor temperature in the Fischer-Tropsch step is a significant factor with regard to manipulating product composition analysis. The optimum temperature however will probably correspond to maximum conversion to liquid hydrocarbons in the C/sub 5/ - C/sub 17/ range. Continuing research includes integrated system performance assessment, alternative feedstock characterization (through gasification) and factor studies for gasification (e.g., catalyst usage, alternate heat transfer media, steam usage, recycle effects, residence time study) and liquefaction (e.g., improved catalysts, catalyst activity characterization).

  16. Advances in Seabed Liquefaction and its Implications for Marine Structures

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu

    2013-01-01

    A review is presented of recent advances in seabed liquefaction and its implications for marine structures. The review is organized in seven sections: Residual liquefaction, including the sequence of liquefaction, mathematical modelling, centrifuge modelling and comparison with standard wave......-flume results; Momentary liquefaction; Floatation of buried pipelines; Sinking of pipelines and marine objects; Liquefaction at gravity structures; Stability of rock berms in liquefied soils; and Impact of seismic-induced liquefaction....

  17. Process Design and Economics for the Conversion of Algal Biomass to Hydrocarbons: Whole Algae Hydrothermal Liquefaction and Upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Zhu, Yunhua; Anderson, Daniel B.; Hallen, Richard T.; Elliott, Douglas C.; Schmidt, Andrew J.; Albrecht, Karl O.; Hart, Todd R.; Butcher, Mark G.; Drennan, Corinne; Snowden-Swan, Lesley J.; Davis, Ryan; Kinchin, Christopher

    2014-03-20

    This report provides a preliminary analysis of the costs associated with converting whole wet algal biomass into primarily diesel fuel. Hydrothermal liquefaction converts the whole algae into an oil that is then hydrotreated and distilled. The secondary aqueous product containing significant organic material is converted to a medium btu gas via catalytic hydrothermal gasification.

  18. Remediation of soils contaminated with particulate depleted uranium by multi stage chemical extraction

    International Nuclear Information System (INIS)

    Highlights: • Batch leaching was examined to remediate soils contaminated with munitions depleted uranium. • Site specific maximum extraction was 42–50% total U in single batch with NH4HCO3. • Analysis of residues revealed partial leaching and secondary carbonate phases. • Sequential batch leaching alternating between NH4HCO3 and citric acid was designed. • Site specific extraction was increased to 68–87% total U in three batch steps. -- Abstract: Contamination of soils with depleted uranium (DU) from munitions firing occurs in conflict zones and at test firing sites. This study reports the development of a chemical extraction methodology for remediation of soils contaminated with particulate DU. Uranium phases in soils from two sites at a UK firing range, MOD Eskmeals, were characterised by electron microscopy and sequential extraction. Uranium rich particles with characteristic spherical morphologies were observed in soils, consistent with other instances of DU munitions contamination. Batch extraction efficiencies for aqueous ammonium bicarbonate (42–50% total DU extracted), citric acid (30–42% total DU) and sulphuric acid (13–19% total DU) were evaluated. Characterisation of residues from bicarbonate-treated soils by synchrotron microfocus X-ray diffraction and X-ray absorption spectroscopy revealed partially leached U(IV)-oxide particles and some secondary uranyl-carbonate phases. Based on these data, a multi-stage extraction scheme was developed utilising leaching in ammonium bicarbonate followed by citric acid to dissolve secondary carbonate species. Site specific U extraction was improved to 68–87% total U by the application of this methodology, potentially providing a route to efficient DU decontamination using low cost, environmentally compatible reagents

  19. A Palaeoproterozoic multi-stage hydrothermal alteration system at Nalunaq gold deposit, South Greenland

    Science.gov (United States)

    Bell, Robin-Marie; Kolb, Jochen; Waight, Tod Earle; Bagas, Leon; Thomsen, Tonny B.

    2016-07-01

    Nalunaq is an orogenic, high gold grade deposit situated on the Nanortalik Peninsula, South Greenland. Mineralisation is hosted in shear zone-controlled quartz veins, located in fine- and medium-grained amphibolite. The deposit was the site of Greenland's only operating metalliferous mine until its closure in 2014, having produced 10.67 t of gold. This study uses a combination of field investigation, petrography and U/Pb zircon and titanite geochronology to define a multi-stage hydrothermal alteration system at Nalunaq. A clinopyroxene-plagioclase-garnet(-sulphide) alteration zone (CPGZ) developed in the Nanortalik Peninsula, close to regional peak metamorphism and prior to gold-quartz vein formation. The ca. 1783-1762-Ma gold-quartz veins are hosted in reactivated shear zones with a hydrothermal alteration halo of biotite-arsenopyrite-sericite-actinolite-pyrrhotite(-chlorite-plagioclase-löllingite-tourmaline-titanite), which is best developed in areas of exceptionally high gold grades. Aplite dykes dated to ca. 1762 Ma cross-cut the gold-quartz veins, providing a minimum age for mineralisation. A hydrothermal calcite-titanite alteration assemblage is dated to ca. 1766 Ma; however, this alteration is highly isolated, and as a result, its field relationships are poorly constrained. The hydrothermal alteration and mineralisation is cut by several generations of ca. 1745-Ma biotite granodiorite accompanied by brittle deformation. A ca. 1745-Ma lower greenschist facies hydrothermal epidote-calcite-zoisite alteration assemblage with numerous accessory minerals forms halos surrounding the late-stage fractures. The contrasting hydrothermal alteration styles at Nalunaq indicate a complex history of exhumation from amphibolite facies conditions to lower greenschist facies conditions in an orogenic belt which resembles modern Phanerozoic orogens.

  20. Advanced counter-current multi-stage centrifugal extractor for solvent extraction process

    International Nuclear Information System (INIS)

    Total actinide recovery, lanthanide/actinide separation and the selective partitioning of actinide from high level waste (HLW) are nowadays of a major interest. Actinide partitioning with a view to safe disposing of HLW or utilization in many other applications of recovered elements involve an extraction process usually by means of mixer-settler, pulse column or centrifugal contactor. The latter, presents some doubtless advantages and responds to the above mentioned goals. A new type of counter-current multistage centrifugal extractor has been designed and built. The counter-current multi-stage centrifugal extractor is a stainless steel cylinder with an effective length of 346 mm, the effective diameter of 100 mm and a volume of 1.5 liters, having horizontal position as working position. The new internal structure and geometry of the new advanced centrifugal extractor is shown. It consists of nine cells (units): five rotation units, two mixing units, two propelling units and two final plates which ensures the counter-current running of the two phases. The central shaft having the rotation cells fixed on it is connected to an electric motor of high rotation speed. The extractor has been tested at 1000-3000 rot/min for a ratio of the aqueous/organic phase = 1. The mechanical and hydrodynamic behavior of the two phases in counter-current are described. The results showed that the performances have been generally good. The new facility appears to be a promising idea to increase extraction rate of radionuclides and metals from liquid effluents. (authors)

  1. New improved counter-current multi-stage centrifugal extractor for solvent extraction process

    International Nuclear Information System (INIS)

    Total actinide recovery, lanthanide/actinide separation and the selective partitioning of actinide from high-level radioactive waste (HLRW) are nowadays of a major interest. Actinide partitioning with a view to safe disposal of HLRW or utilization in many other applications of recovered elements involved an extraction process usually by means of mixer-settler, pulse column or centrifugal contactor. The latter, presents some doubtless advantages and meets the above mentioned goals. A new type of counter-current multistage centrifugal extractor has been designed and operated. The counter-current multi-stage centrifugal extractor is a cylinder made of stainless steel with an effective length of 346 mm, effective diameter of 100 mm and a volume of 1.5 liters, having an horizontal working position. The new internal structure and geometry of the new advanced centrifugal extractor consisting of nine cells (units): five rotation units(R), two mixing units (M), two propelling units (P) and two final plates (S) ensure the counter-current running of the two phases. The central shaft (CS) having the rotation cells fixed on is provided with an intermediary connection to an electric motor of high rotation speed. The new designed extractor has been tested at 1000-3000 rot/min for a ratio of the aqueous/organic phase equal to 1. The results showed that the performances are good and the design demand was fulfilled. The new design of the counter-current multistage centrifugal extractor could be a promising idea to increase the extraction rate of radionuclides and metals from liquid effluents. (author)

  2. Energy consumption by multi-stage flash and reverse osmosis desalters

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, M.A.; Al-Najem, N.M. [Kuwait University, Safat (Kuwait). College of Engineering and Petroleum

    2000-04-01

    Kuwait and most of the Gulf countries, depend mainly on desalted water from the sea for satisfying their fresh water needs. These countries are using the multi-stage flash (MSF) desalting system, as the 'work horse' for their water production. This system is less efficient in energy consumption as compared to the reverse osmosis (RO) system. Moreover, large units based on the MSF system have to be combined with steam or gas turbines power plants for better utilization of steam supplied to the MSF units at moderately low temperature and pressure (as compared to steam produced by large steam generators). The value and the cost of the thermal energy supplied to the MSF desalting system depends on the method of supplying this energy. This steam can be supplied directly from a fuel operated boiler or heat recovery steam generator associated with a gas turbine. It can also be supplied from the exhaust of a steam back pressure turbine or bled from condensed extraction steam turbine at a pressure suitable for the desalting process. Any energy comparison should be based on simple criteria, either how much fuel energy is consumed to produce this energy or how much mechanical energy is needed per unit product. The energy consumed in the light of the practice used in most Gulf countries are discussed here. In this study, reference desalting and power plants are used for comparison purposes. This study shows that shifting from MSF desalting System to the RO system can save up to 66% of the fuel energy used to desalt seawater. (author)

  3. Earthquake Risk - MO 2013 Liquefaction Potential (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Soil liquefaction potential was determined using existing geologic and alluvium maps. Quaternary, Tertiary, and Cretaceous-age sediments, and alluvium deposits are...

  4. FABRICATION OF MESSAGE DIGEST TO AUTHENTICATE AUDIO SIGNALS WITH ALTERNATION OF COEFFICIENTS OF HARMONICS IN MULTI-STAGES (MDAC

    Directory of Open Access Journals (Sweden)

    Uttam Kr. Mondal

    2011-11-01

    Full Text Available Providing security to audio songs for maintaining its intellectual property right (IPR is one of chanllenging fields in commercial world especially in creative industry. In this paper, an effective approach has been incorporated to fabricate authentication of audio song through application of message digest method with alternation of coefficients of harmonics in multi-stages of higher frequency domain without affecting its audible quality. Decomposing constituent frequency components of song signal using Fourier transform with generating secret code via applying message digest followed by alternating coefficients of specific harmonics in multi-stages generates a secret code and this unique code is utilized to detect the originality of the song. A comparative study has been made with similar existing techniques and experimental results are also supported with mathematical formula based on Microsoft WAVE (".wav" stereo sound file.

  5. Multi-stage diffused bubble aeration system for the removal of volatile organics and radon--A case history

    International Nuclear Information System (INIS)

    Community acceptance of a water treatment plant project in the 1990's is just as important as the technical performance of the equipment. The low profile of the multi-stage diffused bubble aeration system, as well as the technical performance of this equipment, provides the perfect solution for water treatment facilities that are constructed in residential areas. This case history involves the installation of a multi-stage diffused bubble system in a residential neighborhood in New Jersey without compromising any of the aesthetic qualities. As a result of a routine monitoring program, low levels of trichloroethylene were detected in the outcrop area. At the same time, routine analysis for radon in the source of supplies indicated that the wells located in the outcrop area showed levels of radon between 800 and 1,150 picoCuries per liter

  6. A novel multi-stage subunit vaccine against paratuberculosis induces significant immunity and reduces bacterial burden in tissues (P4304)

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Aagaard, Claus; Riber, Ulla; Skovgaard, Kerstin; Andersen, Peter; Jungersen, Gregers

    Effective control of paratuberculosis is hindered by lack of a vaccine preventing infection, transmission and without diagnostic interference with tuberculosis. We have developed a novel multi-stage recombinant subunit vaccine in which a fusion of four early expressed MAP antigens is combined with...... followed for a year. The FET11 vaccine induced a significant T cell response against constituent vaccine proteins characterized by a high percentage of CD4+ T cells and participation of polyfunctional CD4+ T cells. Of the two different age groups, late FET11 vaccination conferred protective immunity...... characterized by a significant containment of bacterial burden in gut tissues compared to non-vaccinated animals. There was no cross-reaction with bovine tuberculosis in vaccinated animals. This novel multi-stage vaccine has the potential to become a marker vaccine for paratuberculosis....

  7. Development of the pressure driven AGMD process applicable to a multi-stage oxygen isotope separation system

    International Nuclear Information System (INIS)

    Membrane distillation (MD) has been developed especially for desalination of seawater since 1960's. MD process appears to be more useful for removal of salt compared to the conventional reverse osmosis (RO) process. However, it is still under the development stage due to its high energy expenditure for generating thermal gradient to membrane interface compared to the RO process. Nevertheless, its compactness, high separation factors and durability of materials are still attractive to the researchers and engineers searching for the advanced separation process. In addition to MD application to desalination, isotope separation of the light isotopes such as oxygen and hydrogen isotopes contained in water has been investigated for a decade since Chmielewski firstly showed its usefulness for isotope separation in early 90's. AGMD (Air Gap Membrane Distillation) of a single permeation cell showed separation of oxygen isotope with the degree of 1.01 ∼ 1.03. In practice, it is necessary to build a multi-stage MD system to enrich isotopes. Permeation fluxes and the degree of oxygen isotope separation of AGMD and VEMD (Vacuum Enhanced Membrane Distillation) were explored. VEMD shows slightly higher isotopic separation degree with higher permeation flux compared to AGMD. It is however virtually impossible to build a multi-stage system due to its system complexity. Although AGMD is suitable for constructing a multi-stage cascade system, permeation flux for AGMD is still too low to be applied to an operational production system. In this investigation, we increased permeation flux using the pressure driven AGMD process, which is different from VEMD, while isotope selectivity was also increased. Permeation flux and the degree of isotope separation of the pressure driven AGMD process were measured by using a multi-stage system

  8. A multi-arm multi-stage clinical trial design for binary outcomes with application to tuberculosis

    OpenAIRE

    Bratton, D. J.; Phillips, P. P.; Parmar, M. K.

    2013-01-01

    Background Randomised controlled trials are becoming increasingly costly and time-consuming. In 2011, Royston and colleagues proposed a particular class of multi-arm multi-stage (MAMS) designs intended to speed up the evaluation of new treatments in phase II and III clinical trials. Their design, which controls the type I error rate and power for each pairwise comparison, discontinues randomisation to poorly performing arms at interim analyses if they fail to show a pre-specified level of ben...

  9. Dynamic-programming approaches to single-and multi-stage stochastic knapsack problems for portfolio optimization

    OpenAIRE

    Khoo, Wai Gea

    1999-01-01

    This thesis proposes new methods, based on dynamic programming, for solving certain single-stage and multi-stage integer stochastic knapsack problems. These problems model stochastic portfolio optimization problems (SPOPs) which assume deterministic unit weight, and normally distributed unit return with known mean and variance for each item type. Given an initial wealth, the objective is to select a portfolio that maximizes the probability of achieving or exceeding a specified final return th...

  10. Characterization of the impregnated iron based catalyst for direct coal liquefaction by EXAFS

    Institute of Scientific and Technical Information of China (English)

    JianliYang; JishengZhun; 等

    2001-01-01

    Catalyst plays an important role in direct cola liquefaction(DCL)[1],Due to relatively high activity,low cost and environmentally benign for disposal,iron catalysts are regarded as the most attractive catalysts for DCL.To maximize catalytic effect and minimize catalyst usage,ultra-fine size catalysts are preferred.The most effective catalysts are found to be those impregnated onto coal because of their high dispersion on coal surface and intimate contact with coal particles.

  11. Simplified Multi-Stage and Per Capita Convergence. An analysis of two climate regimes for differentiation of commitments

    Energy Technology Data Exchange (ETDEWEB)

    Den Elzen, M.G.J.; Berk, M.M.; Lucas, P.

    2004-07-01

    This report describes and analyses in detail two climate regimes for differentiating commitments: the simplified Multi-Stage and Per Capita Convergence approaches. The Multi-Stage approach consists of a system to divide countries into groups with different types of commitments (stages). The Per Capita Convergence defines emission permits on the basis of a convergence of per capita emissions. The analysis focuses on two global greenhouse gas emission profiles resulting in long-term CO2-equivalent concentrations stabilising at 550 and 650 ppmv (S550e and S650e profile). The abatement efforts (allocations) for Annex I regions for S550e for all variants generally range from 25%-50% below 1990 levels in 2025 and 70-85% in 2050. For S650e, these efforts range from 10% increase to 25% reduction in 2025 and 40-60% reduction in 2050. For non-Annex I regions, the results are generally more differentiated for the various commitment schemes, stabilization targets and time horizons than for Annex I regions. The analysis further highlights the major strengths and weakness of the Multi-Stage and Per Capita Convergence variants, and points at important obstacles and pre-conditions for their feasibility and acceptability.

  12. Optimization of Unbalanced Multi-stage Logistics Systems Based on Prüfer Number and Effective Capacity Coding

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Unbalanced multi-stage logistics systems are optimized using an improved genetic algorithm based on the Prüfer number and the effective capacity coding. The improved decoding procedure uses the node capacity of the logistics system as an important factor, which influences the decoding procedure. As a result, any Prüfer number produced stochastically can be decoded to a feasible logistics pattern, which matchs the node capacities of the logistics system. With effective capacity coding, an unbalanced logistics system can be converted to a set of balanced systems. The effective capacity coding was combined with the Prüfer number to construct the chromosome for the new method to search the whole solution space of the unbalanced multi-stage logistics system. Simulation results show that the new method finds a better solution with less computational time than st-GA. Although using a little more memory, the new method is still an efficient and robust method for optimizing unbalanced multi-stage logistics systems.

  13. Simplified Multi-Stage and Per Capita Convergence. An analysis of two climate regimes for differentiation of commitments

    International Nuclear Information System (INIS)

    This report describes and analyses in detail two climate regimes for differentiating commitments: the simplified Multi-Stage and Per Capita Convergence approaches. The Multi-Stage approach consists of a system to divide countries into groups with different types of commitments (stages). The Per Capita Convergence defines emission permits on the basis of a convergence of per capita emissions. The analysis focuses on two global greenhouse gas emission profiles resulting in long-term CO2-equivalent concentrations stabilising at 550 and 650 ppmv (S550e and S650e profile). The abatement efforts (allocations) for Annex I regions for S550e for all variants generally range from 25%-50% below 1990 levels in 2025 and 70-85% in 2050. For S650e, these efforts range from 10% increase to 25% reduction in 2025 and 40-60% reduction in 2050. For non-Annex I regions, the results are generally more differentiated for the various commitment schemes, stabilization targets and time horizons than for Annex I regions. The analysis further highlights the major strengths and weakness of the Multi-Stage and Per Capita Convergence variants, and points at important obstacles and pre-conditions for their feasibility and acceptability

  14. A risk-based interactive multi-stage stochastic programming approach for water resources planning under dual uncertainties

    Science.gov (United States)

    Wang, Y. Y.; Huang, G. H.; Wang, S.; Li, W.; Guan, P. B.

    2016-08-01

    In this study, a risk-based interactive multi-stage stochastic programming (RIMSP) approach is proposed through incorporating the fractile criterion method and chance-constrained programming within a multi-stage decision-making framework. RIMSP is able to deal with dual uncertainties expressed as random boundary intervals that exist in the objective function and constraints. Moreover, RIMSP is capable of reflecting dynamics of uncertainties, as well as the trade-off between the total net benefit and the associated risk. A water allocation problem is used to illustrate applicability of the proposed methodology. A set of decision alternatives with different combinations of risk levels applied to the objective function and constraints can be generated for planning the water resources allocation system. The results can help decision makers examine potential interactions between risks related to the stochastic objective function and constraints. Furthermore, a number of solutions can be obtained under different water policy scenarios, which are useful for decision makers to formulate an appropriate policy under uncertainty. The performance of RIMSP is analyzed and compared with an inexact multi-stage stochastic programming (IMSP) method. Results of comparison experiment indicate that RIMSP is able to provide more robust water management alternatives with less system risks in comparison with IMSP.

  15. A Multi-Stage Wear Model for Grid-to-Rod Fretting of Nuclear Fuel Rods

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Peter Julian [ORNL

    2014-01-01

    The wear of fuel rod cladding against the supporting structures in the cores of pressurized water nuclear reactors (PWRs) is an important and potentially costly tribological issue. Grid-to-rod fretting (GTRF), as it is known, involves not only time-varying contact conditions, but also elevated temperatures, flowing hot water, aqueous tribo-corrosion, and the embrittling effects of neutron fluences. The multi-stage, closed-form analytical model described in this paper relies on published out-of-reactor wear and corrosion data and a set of simplifying assumptions to portray the conversion of frictional work into wear depth. The cladding material of interest is a zirconium-based alloy called Zircaloy-4, and the grid support is made of a harder and more wear-resistant material. Focus is on the wear of the cladding. The model involves an incubation stage, a surface oxide wear stage, and a base alloy wear stage. The wear coefficient, which is a measure of the efficiency of conversion of frictional work into wear damage, can change to reflect the evolving metallurgical condition of the alloy. Wear coefficients for Zircaloy-4 and for a polyphase zirconia layer were back-calculated for a range of times required to wear to a critical depth. Inputs for the model, like the friction coefficient, are taken from the tribology literature in lieu of in-reactor tribological data. Concepts of classical fretting were used as a basis, but are modified to enable the model to accommodate the complexities of the PWR environment. Factors like grid spring relaxation, pre-oxidation of the cladding, multiple oxide phases, gap formation, impact, and hydrogen embrittlement are part of the problem definition but uncertainties in their relative roles limits the ability to validate the model. Sample calculations of wear depth versus time in the cladding illustrate how GTRF wear might occur in a discontinuous fashion during months-long reactor operating cycles. A means to account for grid/rod gaps

  16. NDDP multi-stage flash desalination process simulator design process optimization

    International Nuclear Information System (INIS)

    The improvement of NDDP-MSF plant's performance ratio (PR) from design value of 9.0 to 13.1 was achieved by optimizing the plant's operating parameters within the feasible zone of operation. This plant has 20% excess heat transfer area over the design condition which helped us to get a PR of 15.1 after optimization. Thus we have obtained, (1) A 45% increase in the output over design value by the optimization carried out with design heat transfer area. (2) A 68% increase in the output over design value by the optimization carried out with increased heat transfer area. This report discusses the approach, methodology and results of the optimization study carried out. A simulator, MSFSIM which predicts the performance of a multi-stage flash (MSF) desalination plant has been coupled with Genetic Algorithm (GA) optimizer. Exhaustive optimization case studies have been conducted on this plant with an objective to increase the performance ratio (PR). The steady state optimization performed was based on obtaining the best stage wise pressure profile to enhance thermal efficiency which in-turn improves the performance ratio. Apart from this, the recirculating brine flow rate was also optimized. This optimization study enabled us to increase the PR of NDDP-MSF plant from design value of 9.0 to an optimized value 13.1. The actual plant is provided with 20% additional heat transfer area over and above the design heat transfer area. Optimization with this additional heat transfer area has taken the PR to 15.1. A desire to maintain equal flashing rates in all of the stages (a feature required for long life of the plant and to avoid cascading effect of non-flashing triggered by any stage) of the MSF plant has also been achieved. The deviation in the flashing rates within stages has been reduced. The startup characteristic of the plant (i.e the variation of stage pressure and the variation of recirculation flow rate with time), have been optimized with a target to minimize the

  17. Validation of multi-stage telephone-based identification of cognitive impairment and dementia

    Directory of Open Access Journals (Sweden)

    Chui Helena

    2005-04-01

    Full Text Available Abstract Background Many types of research on dementia and cognitive impairment require large sample sizes. Detailed in-person assessment using batteries of neuropyschologic testing is expensive. This study evaluates whether a brief telephone cognitive assessment strategy can reliably classify cognitive status when compared to an in-person "gold-standard" clinical assessment. Methods The gold standard assessment of cognitive status was conducted at the University of Southern California Alzheimer Disease Research Center (USC ADRC. It involved an examination of patients with a memory complaint by a neurologist or psychiatrist specializing in cognitive disorders and administration of a battery of neuropsychologic tests. The method being evaluated was a multi-staged assessment using the Telephone Interview of Cognitive Status-modified (TICSm with patients and the Telephone Dementia Questionnaire (TDQ with a proxy. Elderly male and female patients who had received the gold standard in-person assessment were asked to also undergo the telephone assessment. The unweighted kappa statistic was calculated to compare the gold standard and the multistage telephone assessment methods. Sensitivity for classification with dementia and specificity for classification as normal were also calculated. Results Of 50 patients who underwent the gold standard assessment and were referred for telephone assessment, 38 (76% completed the TICS. The mean age was 78.1 years and 26 (68% were female. When comparing the gold standard assessment and the telephone method for classifying subjects as having dementia or no dementia, the sensitivity of the telephone method was 0.83 (95% confidence interval 0.36, 1.00, the specificity was 1.00 (95% confidence interval 0.89,1.00. Kappa was 0.89 (95% confidence interval 0.69, 1.000. Considering a gold-standard assessment of age-associated memory impairment as cognitive impairment, the sensitivity of the telephone approach is 0.38 (95

  18. Recording-based identification of site liquefaction

    Institute of Scientific and Technical Information of China (English)

    Hu Yuxian; Zhang Yushan; Liang Jianwen; Ray Ruichong Zhang

    2005-01-01

    Reconnaissance reports and pertinent research on seismic hazards show that liquefaction is one of the key sources of damage to geotechnical and structural engineering systems. Therefore, identifying site liquefaction conditions plays an important role in seismic hazard mitigation. One of the widely used approaches for detecting liquefaction is based on the time-frequency analysis of ground motion recordings, in which short-time Fourier transform is typically used. It is known that recordings at a site with liquefaction are the result of nonlinear responses of seismic waves propagating in the liquefied layers underneath the site. Moreover, Fourier transform is not effective in characterizing such dynamic features as time-dependent frequency of the recordings rooted in nonlinear responses. Therefore, the aforementioned approach may not be intrinsically effective in detecting liquefaction. An alternative to the Fourier-based approach is presented in this study,which proposes time-frequency analysis of earthquake ground motion recordings with the aid of the Hilbert-Huang transform (HHT), and offers justification for the HHT in addressing the liquefaction features shown in the recordings. The paper then defines the predominant instantaneous frequency (PIF) and introduces the PIF-related motion features to identify liquefaction conditions at a given site. Analysis of 29 recorded data sets at different site conditions shows that the proposed approach is effective in detecting site liquefaction in comparison with other methods.

  19. Whole Algae Hydrothermal Liquefaction Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, M.; Davis, R.; Jones, S.

    2013-03-01

    This technology pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  20. Wave liquefaction in soils with clay content

    DEFF Research Database (Denmark)

    Kirca, Özgür; Sumer, B. Mutlu; Fredsøe, Jørgen

    2012-01-01

    The paper presents the results of an experimental study of the influence of clay content (in silt-clay and sand-clay mixtures) on liquefaction beneath progressive waves. The experiments showed that the influence of clay content is very significant. Susceptibility of silt to liquefaction is increa...

  1. Catalytic coal liquefaction with treated solvent and SRC recycle

    Science.gov (United States)

    Garg, Diwakar; Givens, Edwin N.; Schweighardt, Frank K.

    1986-01-01

    A process for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal.

  2. Kinetics assisted design of catalysts for coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Klein, M.T.; Foley, H.C.; Calkins, W.H.; Scouten, C.

    1998-02-01

    The thermal and catalytic reactions of 4-(1-naphthylmethyl)bibenzyl (NBBM), a resid and coal model compound, were examined. Catalytic reaction of NBBM was carried out at 400 C under hydrogen with a series of transition metal-based catalytic materials including Fe(CO){sub 4}PPh{sub 3}, Fe(CO){sub 3}(PPh{sub 3}){sub 2}, Fe(CO){sub 2}(PPh{sub 3}){sub 2}CS{sub 2}, Fe(CO){sub 5}, Mo(CO){sub 6}, Mn{sub 2}(CO){sub 10}, Fe{sub 2}O{sub 3} and MoS{sub 2}. Experimental findings and derived mechanistic insights were organized into molecular-level reaction models for NBBM pyrolysis and catalysis. Hydropyrolysis and catalysis reaction families occurring during NBBM hydropyrolysis at 420 C were summarized in the form of reaction matrices which, upon exhaustive application to the components of the reacting system, yielded the mechanistic reaction model. Each reaction family also had an associated linear free energy relationship (LFER) which provided an estimate of the rate constant k{sub i} given a structural property of species i or its reaction. Including the catalytic reaction matrices with those for the pyrolysis model provided a comprehensive NBBM catalytic reaction model and allowed regression of fundamental LFER parameters for the catalytic reaction families. The model also allowed specification of the property of an optimal catalyst. Iron, molybdenum and palladium were predicted to be most effective for model compound consumption. Due to the low costs associated with iron and its disposal, it is a good choice for coal liquefaction catalysis and the challenge remains to synthesize small particles able to access the full surface area of the coal macromolecule.

  3. Direct liquefaction proof-of-concept program. Topical report

    Energy Technology Data Exchange (ETDEWEB)

    Comolli, A.G.; Lee, L.K.; Pradhan, V.R. [and others

    1996-12-01

    This report presents the results of work conducted under the DOE Proof-of-Concept Program in direct coal liquefaction at Hydrocarbon Technologies, Inc. in Lawrenceville, New Jersey, from February 1994 through April 1995. The work includes modifications to HRI`s existing 3 ton per day Process Development Unit (PDU) and completion of the second PDU run (POC Run 2) under the Program. The 45-day POC Run 2 demonstrated scale up of the Catalytic Two-Stage Liquefaction (CTSL Process) for a subbituminous Wyoming Black Thunder Mine coal to produce distillate liquid products at a rate of up to 4 barrels per ton of moisture-ash-free coal. The combined processing of organic hydrocarbon wastes, such as waste plastics and used tire rubber, with coal was also successfully demonstrated during the last nine days of operations of Run POC-02. Prior to the first PDU run (POC-01) in this program, a major effort was made to modify the PDU to improve reliability and to provide the flexibility to operate in several alternative modes. The Kerr McGee Rose-SR{sup SM} unit from Wilsonville, Alabama, was redesigned and installed next to the U.S. Filter installation to allow a comparison of the two solids removal systems. The 45-day CTSL Wyoming Black Thunder Mine coal demonstration run achieved several milestones in the effort to further reduce the cost of liquid fuels from coal. The primary objective of PDU Run POC-02 was to scale-up the CTSL extinction recycle process for subbituminous coal to produce a total distillate product using an in-line fixed-bed hydrotreater. Of major concern was whether calcium-carbon deposits would occur in the system as has happened in other low rank coal conversion processes. An additional objective of major importance was to study the co-liquefaction of plastics with coal and waste tire rubber with coal.

  4. Coal liquefaction with preasphaltene recycle

    Science.gov (United States)

    Weimer, Robert F.; Miller, Robert N.

    1986-01-01

    A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

  5. Multi-stage supra-subduction metasomatism in the Cabo Ortegal Complex, Spain

    Science.gov (United States)

    Tilhac, Romain; O'Reilly, Suzanne; Griffin, William; Pearson, Norman; Ceuleneer, Georges; Grégoire, Michel

    2015-04-01

    Three harzburgitic massifs are exposed in the Cabo Ortegal Complex as part of the Variscan suture in Spain. Among these, the Herbeira massif has an unusually high volume of massive and layered pyroxenites whose formation has never comprehensively understood due to a particularly complex tectonothermal history (Ábalos et al., 2003). We use a detailed structural and geochemical approach to reveal a multi-stage metasomatic scenario unraveling the intricacy of magmatic and metamorphic features. Our new mapping of the Herbeira massif suggests that it consists of a single exposure of heterogeneous mantle cross-cut by different generations of mafic veins, outlining a potential metasomatic conduit developed in a subduction zone. The recognition of an overprinting sheath-fold deformation confirms that the whole massif has been deformed in a deep-subduction setting. However, thickness variations in pyroxenites may not only result from various degrees of shear deformation as previously suggested (Girardeau and Gil Ibarguchi, 1991), thus more than a single magmatic event potentially occurred. Structural and textural observations are consistent with the massive pyroxenites intruding the package of harzburgite and layered pyroxenites prior to its intrusion into the subduction zone. The massive pyroxenites display homogeneous enrichments of light rare earth elements (LREE) whereas layered pyroxenites are variously enriched, resulting in spoon-shaped to strongly LREE-fractionated patterns, characteristic of varying degrees of chromatographic re-equilibration. We suggest that an initial metasomatic episode occurred when the parental melt of the massive pyroxenites percolated through the massif, forming dunitic aureoles via additional melt extraction from harzburgites. After intrusion into the subduction zone, shear deformation was accompanied by fluid percolation controlled by inherited lithological heterogeneities and specifically the existence of dunitic channels, as evidenced

  6. Preparation of mesoporous activated carbons from coal liquefaction residue for methane decomposition

    Institute of Scientific and Technical Information of China (English)

    Jianbo Zhang; Lijun Jin; Shengwei Zhu; Haoquan Hu

    2012-01-01

    Mesoporous activated carbons were prepared from direct coal liquefaction residue (CLR) by KOH activation method,and the experiments were carried out to investigate the effects of KOH/CLR ratio,solvent for mixing the CLR and KOH,and carbonization procedure on the resultant carbon texture and catalytic activity for catalytic methane decomposition (CMD).The results showed that optimal KOH/CLR ratio of 2 ∶ 1;solvent with higher solubility to KOH or the CLR,and an appropriate carbonization procedure are conductive to improving the carbon pore structure and catalytic activity for CMD.The resultant mesoporous carbons show higher and more stable activity than microporous carbons.Additionally,the relationship between the carbon textural properties and the catalytic activity for CMD was also discussed.

  7. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan, Song; Kirby, S.; Schmidt, E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1995-12-31

    The objective of this project is to explore bimetallic dispersed catalysts for more efficient coal liquefaction. Coal liquefaction involves cleavage of methylene, dimethylene and ether bridges connecting various aromatic units and the reactions of various oxygen functional groups. This paper describes recent results on (1) hydrodeoxygenation of O-containing polycyclic model compounds using novel organometallic catalyst precursors; and (2) activity and selectivity of dispersed Fe catalysts from organometallic and inorganic precursors for hydrocracking of 4-(1-naphthylmethyl) bibenzyl. The results showed that some iron containing catalysts have higher activity in the sulfur-free form, contrary to conventional wisdom. Adding sulfur to Fe precursors with Cp-ligands decreased the activity of the resulting catalyst. This is in distinct contrast to the cases with iron pentacarbonyl and superfine Fe{sub 2}O{sub 3}, where S addition increased their catalytic activity substantially. A positive correlation between sulfur addition and increased activity can be seen, but a reversed trend between Fe cluster size and hydrocracking conversion could be observed, for carbonyl-type Fe precursors. It is apparent that the activity and selectivity of Fe catalysts for NMBB conversion depends strongly on both the type of ligand environment, the oxidation state and the number of intermetal bonds in the molecular precursor.

  8. Liquefaction of crop residues for polyol production

    Directory of Open Access Journals (Sweden)

    Wan, C.

    2006-11-01

    Full Text Available The liquefaction of crop residues in the presence of ethylene glycol, ethylene carbonate, or polyethylene glycol using sulfuric acid as a catalyst was studied. For all experiments, the liquefaction was conducted at 160C and atmospheric pressure. The mass ratio of feedstock to liquefaction solvents used in all the experiments was 30:100. The results show that the acid catalyzed liquefaction process fit a pseudo-first-order kinetics model. Liquefaction yields of 80, 74, and 60% were obtained in 60 minutes of reaction when corn stover was liquefied with ethylene glycol, a mixture of polyethylene glycol and glycerol (9:1, w/w, and ethylene carbonate, respectively. When ethylene carbonate was used as solvent, the liquefaction yields of rice straw and wheat straw were 67% and 73%, respectively, which is lower than that of corn stover (80%. When a mixture of ethylene carbonate and ethylene glycol (8:2, w/w was used as solvent, the liquefaction yields for corn stover, rice straw and wheat straw were 78, 68, and 70%, respectively.

  9. Earthquake-induced liquefaction in Ferland, Quebec

    International Nuclear Information System (INIS)

    Detailed geological investigations are under way at a number of liquefaction sites in the Ferland-Boilleau valley, Quebec, where sand boils, ground cracks and liquefaction-related damages to homes were documented immediately following the Ms=6.0, Mblg=6.5 Saguenay earthquake of November 25, 1988. To date, results obtained from these subsurface investigations of sand boils at two sites in Ferland, located about 26 km from the epicentre, indicate that: the Saguenay earthquake induced liquefaction in late-Pleistocene and Holocene sediments which was recorded as sand dikes, sills and vents in near-surface sediments and soils; earthquake-induced liquefaction and ground failure have occurred in this area at least three times in the past 10,000 years; and, the size and morphology of liquefaction features and the liquefaction susceptibility of source layers of the features may be indicative of the intensity of ground shaking. These preliminary results are very promising and suggest that with continued research liquefaction features will become a useful tool in glaciated terrains, such as northeastern North America, for determining not only the timing and location but also the size of past earthquakes

  10. Behavior of catalyst and mineral matter in coal liquefaction; Sekitan ekika hannochu no kobusshitsu to shokubai no kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Iwasaki, K.; Wang, J.; Tomita, A. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science

    1996-10-28

    Mineral matter in coals is important in various senses for coal liquefaction. It is possible that the catalytic activity is affected by the interaction between catalyst and mineral matter. Iron-based catalyst forms pyrrhotite in the process of liquefaction, but the interaction between it and mineral matter is not known in detail. In this study, the interaction between mineral matter and catalyst and the selective reaction between them were investigated. Tanito Harum coal was used for this study. This coal contains a slight amount of siderite and jarosite besides pyrite as iron compounds. Liquefaction samples were obtained from the 1 t/d NEDOL process PSU. The solid deposits in the reactor mainly contained pyrrhotite and quartz. A slight amount of kaolinite was observed, and pyrite was little remained. It was found that the catalyst (pyrrhotite) often coexisted with quartz, clay and calcite. 8 figs., 2 tabs.

  11. Scale-up in laminar and transient regimes of a multi-stage stirrer, a CFD approach

    OpenAIRE

    Letellier, Bertrand; Xuereb, Catherine; Swaels, Philippe; Hobbes, Phillippe; Bertrand, Joël

    2002-01-01

    A multi-stage industrial agitator system adapted to the mixing of a mixture whose viscosity varies during the process has been characterized by using CFD. In the entire study the mixture is supposed to have a Newtonian behavior even though it is rarely the case. It is shown that the well-adapted propeller is able to e7ciently blend high viscous media provided the Reynolds number is not too low. A scale-up study of the agitated system has also been carried out by respecting the classi...

  12. Multi-stage pulse tube cryocooler with acoustic impedance constructed to reduce transient cool down time and thermal loss

    Science.gov (United States)

    Gedeon, David R. (Inventor); Wilson, Kyle B. (Inventor)

    2008-01-01

    The cool down time for a multi-stage, pulse tube cryocooler is reduced by configuring at least a portion of the acoustic impedance of a selected stage, higher than the first stage, so that it surrounds the cold head of the selected stage. The surrounding acoustic impedance of the selected stage is mounted in thermally conductive connection to the warm region of the selected stage for cooling the acoustic impedance and is fabricated of a high thermal diffusivity, low thermal radiation emissivity material, preferably aluminum.

  13. Cooperative research program in coal liquefaction. Quarterly report, August 1, 1991--October 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1991-12-31

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  14. Cooperative Research Program in coal liquefaction. Technical report, May 1, 1994--October 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Progress reports are presented for the following tasks: coliquefaction of coal with waste materials; catalysts for coal liquefaction to clean transportation fuels; fundamental research in coal liquefaction; and in situ analytical techniques for coal liquefaction and coal liquefaction catalysts.

  15. Coal liquefaction. Quarterly report, July--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    ERDA's program for the conversion of coal to liquid fuels is aimed at improved process configurations for both catalytic and noncatalytic processes to provide more attractive processing economics and lower capital investment. The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquids also have the potential for use as chemical feedstocks. To provide efficient and practical means of utilizing coal resources, ERDA is sponsoring the development of several conversion processes that are currently in the pilot plant stage. Responsibility for the design, construction, and operation of these facilities is given and progress in the quarter is summarized. Several supporting or complementary projects are described similarly. (LTN)

  16. Coal liquefaction. Quarterly report, October-December 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    DOE's program for the conversion of coal to liquid fuels was begun by two of DOE's predecessor agencies: Office of Coal Research (OCR) in 1962, and ERDA. The Bureau of Mines, US Department of the Interior, had started work in the 1930's. Current work is aimed at improved process configurations for both catalytic and noncatalytic processes to provide more attractive processing economics and lower capital investment. The advantage of coal liquefaction is that the entire range of liquid products, especially boiler fuel, distillate fuel oil, and gasoline, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquids have the potential for use as chemical feedstocks. To provide efficient and practical means of utilizing coal resources, DOE is supporting the development of several conversion processes that are currently in the pilot plant stage. Each of these processes are described briefly.

  17. Multi-stage crustal growth and cratonization of the North China Craton

    Institute of Scientific and Technical Information of China (English)

    Mingguo Zhai

    2014-01-01

    The North China Craton (NCC) has a complicated evolutionary history with multi-stage crustal growth, recording nearly all important geological events in the early geotectonic history of the Earth. Our studies propose that the NCC can be divided into six micro-blocks with >w3.0e3.8 Ga old continental nuclei that are surrounded by Neoarchean greenstone belts (GRB). The micro-blocks are also termed as high-grade regions (HGR) and are mainly composed of orthogneisses with minor gabbros and BIF-bearing supracrustal beds or lenses, all of which underwent strong deformation and metamorphism of granu-lite-to high-grade amphibolite-facies. The micro-blocks are, in turn, from east to west, the Jiaoliao (JL), Qianhuai (QH), Ordos (ODS), Ji’ning (JN) and Alashan (ALS) blocks, and Xuchang (XCH) in the south. Recent studies led to a consensus that the basement of the NCC was composed of different blocks/ter-ranes that were finally amalgamated to form a coherent craton at the end of Neoarchean. Zircon U-Pb data show that TTG gneisses in the HGRs have two prominent age peaks at ca. 2.9e2.7 and 2.6e2.5 Ga which may correspond to the earliest events of major crustal growth in the NCC. Hafnium isotopic model ages range from ca. 3.8 to 2.5 Ga and mostly are in the range of 3.0e2.6 Ga with a peak at 2.82 Ga. Recent studies revealed a much larger volume of TTG gneisses in the NCC than previously considered, with a dominant ca. 2.7 Ga magmatic zircon ages. Most of the ca. 2.7 Ga TTG gneisses un-derwent metamorphism in 2.6e2.5 Ga as indicated by ubiquitous metamorphic rims around the cores of magmatic zircon in these rocks. Abundant ca. 2.6e2.5 Ga orthogneisses have Hf-in-zircon and Nd whole-rock model ages mostly around 2.9e2.7 Ga and some around 2.6e2.5 Ga, indicating the timing of pro-tolith formation or extraction of the protolith magma was from the mantle. Therefore, it is suggested that the 2.6e2.5 Ga TTGs probably represent a coherent event of continental accretion and major

  18. Steam pretreatment for coal liquefaction

    Science.gov (United States)

    Ivanenko, Olga

    The objectives of this work are to test the application of steam pretreatment to direct coal liquefaction, to investigate the reaction of model compounds with water, and to explore the use of zeolites in these processes. Previous work demonstrated the effectiveness of steam pretreatment in a subsequent flash pyrolysis. Apparently, subcritical steam ruptures nearly all of the ether cross links, leaving a partially depolymerized structure. It was postulated that very rapid heating of the pretreated coal to liquefaction conditions would be required to preserve the effects of such treatment. Accordingly, a method was adopted in which coal slurry is injected into a hot autoclave containing solvent. Since oxygen is capable of destroying the pretreatment effect, precautions were taken for its rigorous exclusion. Tests were conducted with Illinois No. 6 coal steam treated at 340sp°C, 750 psia for 15 minutes. Both raw and pretreated samples were liquified in deoxygenated tetralin at high severity (400sp°C, 30 min.) and low severity (a: 350sp°C, 30 min., and b: 385sp°C, 15 min.) conditions under 1500 psia hydrogen. Substantial improvement in liquid product quality was obtained and the need for rapid heating and oxygen exclusion demonstrated. Under low severity conditions, the oil yield was more than doubled, going from 12.5 to 29 wt%. Also chemistry of the pretreatment process was studied using aromatic ethers as model compounds. alpha-Benzylnaphthyl ether (alpha-BNE), alpha-naphthylmethyl phenyl (alpha-NMPE), and 9-phenoxyphenanthrene were exposed to steam and inert gas at pretreatment conditions and in some cases to liquid water at 315sp°C. alpha-BNE and alpha-NMPE showed little difference in conversion in inert gas and in steam. Hence, these compounds are poor models for coal in steam pretreatment. Thermally stable 9-phenoxyphenanthrene, however, was completely converted in one hour by liquid water at 315sp°C. At pretreatment conditions mostly rearranged starting

  19. Performance assessment and microbial diversity of two pilot scale multi-stage sub-surface flow constructed wetland systems.

    Science.gov (United States)

    Babatunde, A O; Miranda-CasoLuengo, Raul; Imtiaz, Mehreen; Zhao, Y Q; Meijer, Wim G

    2016-08-01

    This study assessed the performance and diversity of microbial communities in multi-stage sub-surface flow constructed wetland systems (CWs). Our aim was to assess the impact of configuration on treatment performance and microbial diversity in the systems. Results indicate that at loading rates up to 100gBOD5/(m(2)·day), similar treatment performances can be achieved using either a 3 or 4 stage configuration. In the case of phosphorus (P), the impact of configuration was less obvious and a minimum of 80% P removal can be expected for loadings up to 10gP/(m(2)·day) based on the performance results obtained within the first 16months of operation. Microbial analysis showed an increased bacterial diversity in stage four compared to the first stage. These results indicate that the design and configuration of multi-stage constructed wetland systems may have an impact on the treatment performance and the composition of the microbial community in the systems, and such knowledge can be used to improve their design and performance. PMID:27521934

  20. Studies of the impact of prerotation problem of the secondary impeller on performance of multi-stage centrifugal pumps

    International Nuclear Information System (INIS)

    In engineering practice, part of the multi-stage centrifugal pumps is designed without space guide vanes due to the size restrictions and the volute is distorted much in shape. In these pumps, tangential velocity of the fluid at the outlet of the first-stage impeller is so great that it has caused a prerotation problem which will affect the inlet flow conditions of the secondary impeller leading to serious efficiency and head decline of the secondary impeller. The head problem of the second stage in multi-stage centrifugal pumps caused by prerotation at the entrance of the second stage was analyzed and the internal hydraulic performance was optimized by setting clapboards in the volute in this paper. CFD numerical simulation method combined with experiment was applied to predict the effect of internal clapboards on the performance of the centrifugal pump. The original prototype was transformed according to the simulation result and tested to verify the optimization work. The experiment result shows that hydraulic performance is remarkably improved compared with the original one and the prerotation problem is basically solved.

  1. Application of multi-stage, multi-disk type downhole seismic source; Tadanshiki taso enbangata koseinai shingen no tekiyosei

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, N. [Japan National Oil Corp., Tokyo (Japan); Shoji, Y. [Oyo Corp., Tokyo (Japan)

    1997-05-27

    A multi-stage, multi-disk type seismic source was developed as a downhole seismic source. The seismic source is an improved version of the downhole seismic source of a system in which an elastic wave is generated by a weight accelerated by restitutive force of a spring striking the upper part of a laminated structure consisted of metal disks and elastic bodies installed in water in a well. Enhancing the vibration exciting efficiency requires impedance radiated from the disks to be increased. The multi-disk structure was adopted because of restrictions on the disk area under the limiting condition of being inside the well. Further limitation has still existed, which led to finally structuring the multi-disk type to a multi-stage construction to increase the radiated impedance. In order to increase average velocity on the radiation surface, mass relationship between the hammer and the anvil was sought so that the maximum velocity is achieved at the process of converting motion energies among the hammer, anvil and disks. The anvil mass may sufficiently be 50% to 100% of the hammer mass. The equipment was installed in an actual oil well for testing. This seismic source was verified to have sufficient applicability in the cross hole measurement. 5 refs., 7 figs., 1 tab.

  2. Coal liquefaction process streams characterization and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-03-01

    CONSOL R D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  3. Coal liquefaction process streams characterization and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Winschel, R.A.; Brandes, S.D.; Robbins, G.A.; Burke, F.P.

    1991-11-01

    Consol R D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-field: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  4. REVIEW OF NATURAL GAS LIQUEFACTION PROCESSES

    OpenAIRE

    2009-01-01

    High pressure pipelines are the most common way of natural gas transport from a gas field to a processing plant and further to consumers. In case when the distance between natural gas production and consumption regions is more than 4000 kilometers, and due to necessity of natural gas supply diversification, gas liquefaction and its transport by ships is being applied. The final choice of liquefaction process depends on the project variables, the development level of new or upgrading of alread...

  5. Progress in Coal Liquefaction Technologies

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Worldwide primary energy consumption is entering an era of pluralism and high quality under the influence of rapid economic development, increasing energy shortage and strict environmental policies. Although renewable energy technology is developing rapidly, fossil fuels (coal, oil and gas) are still the dominant energy sources in the world. As a country rich in coal but short ofoil and gas, China's oil imports have soared in the past few years. Government, research organizations and enterprises in China are paying more and more attention to the processes of converting coal into clean liquid fuels. Direct and indirect coal liquefaction technologies are compared in this paper based on China's current energy status and technological progress not only in China itself but also in the world.

  6. Status of health and environmental research relative to direct coal liquefaction: 1976 to the present

    Energy Technology Data Exchange (ETDEWEB)

    Gray, R.H.; Cowser, K.E. (eds.)

    1982-06-01

    This document describes the status of health and environmental research efforts, supported by the US Department of Energy (DOE), to assist in the development of environmentally acceptable coal liquefaction processes. Four major direct coal liquefaction processes are currently in (or have been investigated at) the pilot plant stage of development. Two solvent refined coal processes (SRC-I and -II), H-coal (a catalytic liquefaction process) and Exxon donor solvent (EDS). The Pacific Northwest Laboratory was assigned responsibility for evaluating SRC process materials and prepared comprehensive health and environmental effects research program plans for SRC-I and -II. A similar program plan was prepared for H-coal process materials by the Oak Ridge National Laboratory. A program has been developed for EDS process materials by Exxon Research and Engineering Co. The program includes short-term screening of coal-derived materials for potential health and ecological effects. Longer-term assays are used to evaluate materials considered most representative of potential commercial practice and with greatest potential for human exposure or release to the environment. Effects of process modification, control technologies and changing operational conditions on potential health and ecological effects are also being evaluated. These assessments are being conducted to assist in formulating cost-effective environmental research programs and to estimate health and environmental risks associated with a large-scale coal liquefaction industry. Significant results of DOE's health and environmental research efforts relative to coal liquefaction include the following: chemical characterization, health effects, ecological fate and effects, amelioration and risk assessment.

  7. Coal liquefaction and gas conversion: Proceedings. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    Volume II contains papers presented at the following sessions: Indirect Liquefaction (oxygenated fuels); and Indirect Liquefaction (Fischer-Tropsch technology). Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  8. Coal liquefaction and gas conversion: Proceedings. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    Volume I contains papers presented at the following sessions: AR-Coal Liquefaction; Gas to Liquids; and Direct Liquefaction. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  9. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 2, appendices. Final technical report, October 1, 1991--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Chander, S. [Pennsylvania State Univ., College Park, PA (United States); Gutterman, C.

    1995-04-01

    Liquefaction experiments were undertaken using subbituminous Black Thunder mine coal to observe the effects of aqueous SO{sub 2} coal beneficiation and the introduction of various coal swelling solvents and catalyst precursors. Aqueous SO{sub 2} beneficiation of Black Thunder coal removed alkali metals and alkaline earth metals, increased the sulfur content and increased the catalytic liquefaction conversion to THF solubles compared to untreated Black Thunder coal. The liquefaction solvent had varying effects on coal conversion, depending upon the type of solvent added. The hydrogen donor solvent, dihydroanthracene, was most effective, while a coal-derived Wilsonville solvent promoted more coal conversion than did relatively inert 1-methylnaphthalene. Swelling of coal with hydrogen bonding solvents tetrahydrofuran (THF), isopropanol, and methanol, prior to reaction resulted in increased noncatalytic conversion of both untreated and SO{sub 2} treated Black Thunder coals, while dimethylsulfoxide (DMSO), which was absorbed more into the coal than any other swelling solvent, was detrimental to coal conversion. Swelling of SO{sub 2} treated coal before liquefaction resulted in the highest coal conversions; however, the untreated coal showed the most improvements in catalytic reactions when swelled in either THF, isopropanol, or methanol prior to liquefaction. The aprotic solvent DMSO was detrimental to coal conversion.

  10. Optimization of Realistic Multi-Stage Hybrid Flow Shop Scheduling Problems with Missing Operations Using Meta-Heuristics

    Directory of Open Access Journals (Sweden)

    M. Saravanan

    2014-03-01

    Full Text Available A Hybrid flow shop scheduling is characterized ‘n’ jobs ‘m’ machines with ‘M’ stages by unidirectional flow of work with a variety of jobs being processed sequentially in a single-pass manner. The paper addresses the multi-stage hybrid flow shop scheduling problems with missing operations. It occurs in many practical situations such as stainless steel manufacturing company. The essential complexity of the problem necessitates the application of meta-heuristics to solve hybrid flow shop scheduling. The proposed Simulated Annealing algorithm (SA compared with Particle Swarm Optimization (PSO with the objective of minimization of makespan. It is show that the SA algorithm is efficient in finding out good quality solutions for the hybrid flow shop problems with missing operations.

  11. PATIENT-CENTRED SCREENING FOR PRIMARY IMMUNODEFICIENCY, A MULTI-STAGE DIAGNOSTIC PROTOCOL DESIGNED FOR NONIMMUNOLOGISTS: 2011 UPDATE

    Directory of Open Access Journals (Sweden)

    E. de Vries

    2013-01-01

    Full Text Available Abstract. Members of the European Society for Immunodeficiencies (ESID and other colleagues have updated themulti-stage expert-opinion-based diagnostic protocol for non-immunologists incorporating newly defined primary immunodeficiency diseases (PIDs. The protocol presented here aims to increase the awareness of PIDs among doctors working in different fields. Prompt identification of PID is important for prognosis, but this may not be an easy task. The protocol therefore starts from the clinical presentation of the patient. Because PIDs may present at all ages, this protocol is aimed at both adult and paediatric physicians. The multi-stage design allows cost-effective screening for PID of the large number of potential cases in the early phases, with more expensive tests reserved for definitive classification in collaboration with a specialist in the field of immunodeficiency at a later stage.

  12. Multi-stage FEL amplifier with diaphragm focusing line as direct energy driver for inertial confinement fusion

    International Nuclear Information System (INIS)

    An FEL based energy driver for Inertial Confinement Fusion (ICF) is proposed. The key element of the scheme is free electron laser system. Novel technical solutions, namely, using of multichannel, multi-stage FEL amplifier with diaphragm focusing line, reveal a possibility to construct the FEL system operating at radiation wavelength λ = 0.5 μm and providing flush energy E = 1 MJ and brightness 4 x 1022 W cm-2 sr-1 within steering pulse duration τ ∼ 0.1-2 ns. Total energy efficiency of the proposed ICF energy driver is about of 11% and repetition rate is 40 Hz. It is shown that the FEL based ICF energy driver may be constructed at the present level of accelerator technique R ampersand D

  13. Evidence of Multi-Stage Hydrocarbon Charging and Biodegradation of the Silurian Asphaltic Sandstones in the Tarim Basin, China

    Institute of Scientific and Technical Information of China (English)

    刘洛夫

    2002-01-01

    Asphalts distributed widely in the Silurian sandstones of the Tarim Basin include dry asphalt, soft asphalt and heavy oil. These asphaltic sandstones underwent multi-episodic sedimentary and tectonic events, and their occurrence is diverse and complex, being mixed with normal oil usually. So far, very little work has been done on the asphaltic sandstone origin and hydrocarbon charging ages. After detailed study on the Silurian sandstones, the following highlights were obtained from the analytical results: distribution of the mixed asphalt, heavy oil and normal oil in the Silurian sandstones is the result of multi-stage hydrocarbon charging from the Lower Paleozoic marine source rocks; the characters of asphalts formed from oils of different charging ages are of difference; the most important process constraining.the asphaltic sandstone origin is thought to be biodegradation.

  14. Flexible Design and Operation of Multi-Stage Flash (MSF Desalination Process Subject to Variable Fouling and Variable Freshwater Demand

    Directory of Open Access Journals (Sweden)

    Said Alforjani Said

    2013-10-01

    Full Text Available This work describes how the design and operation parameters of the Multi-Stage Flash (MSF desalination process are optimised when the process is subject to variation in seawater temperature, fouling and freshwater demand throughout the day. A simple polynomial based dynamic seawater temperature and variable freshwater demand correlations are developed based on actual data which are incorporated in the MSF mathematical model using gPROMS models builder 3.0.3. In addition, a fouling model based on stage temperature is considered. The fouling and the effect of noncondensable gases are incorporated into the calculation of overall heat transfer co-efficient for condensers. Finally, an optimisation problem is developed where the total daily operating cost of the MSF process is minimised by optimising the design (no of stages and the operating (seawater rejected flowrate and brine recycle flowrate parameters.

  15. Evaluation of the Stability and Performance of a Multi-Stage Riemann Solver in Relativistic Hydrodynamic Simulations

    CERN Document Server

    Sikorski, J; Kikoła, D; Słodkowski, M; Aszklar, P

    2015-01-01

    The work deals with assessing the quality of a multi-stage Riemann solver for relativistic hydrodynamic simulations of heavy-ion collisions. The physical system is described using hydrodynamic conservation laws and then solved numerically. Because of the nature of such hydrodynamic simulations the numerical method has to cope with problems containing both strong discontinuities and smooth solutions, and reproduce these features with a high precision and stability. Moreover, to verify the correctness of the proposed physical model, a massive number of simulations with a high spatial resolution is needed. Due to the high numerical cost, a highly e?cient implementation for solving such large-scale problems is required. The MUSTA-FORCE algorithm is a universal tool for hydrodynamic simulations. It uses simple central schemes and does not require any knowledge of the physical process's details, thus it can be used for virtually any physical system. We investigate the application of the MUSTA-FORCE scheme for relat...

  16. Study on the hot deformation behavior of Al-Zn-Mg-Cu-Craluminum alloy during multi-stage hot compression

    Institute of Scientific and Technical Information of China (English)

    Gaoyong LIN; Xiaoyan ZHENG; Wei YANG; Di FENG; Dashu PENG

    2009-01-01

    The mechanical behavior and microstructures of an Al-Zn-Mg-Cu-Cr aluminum alloy during multi-stage hot deformation were investigated by thermal stimulation test, optical microscopy, and transmission electron microscopy. The true stress vs true strain curves and the microstructure evolution of two hot deformation procedures were gained. The flow stress of the alloy studied decreases with increasing the deforming passes and declining the temperature, and the larger the temperature decline between adjacent stages, the larger the peak stress fall is. The stress-strain behavior mainly result from the dynamic recovery during deformation, the static recovery and re-crystallization in the delay time, and the second phases precipitated from the matrix at high temperature.

  17. Coal liquefaction process research quarterly report, October-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Bickel, T.C.; Curlee, R.M.; Granoff, B.; Stohl, F.V.; Thomas, M.G.

    1980-03-01

    This quarterly report summarizes the activities of Sandia's continuing program in coal liquefaction process research. The overall objectives are to: (1) provide a fundamental understanding of the chemistry of coal liquefaction; (2) determine the role of catalysts in coal liquefaction; and (3) determine the mechanism(s) of catalyst deactivation. The program is composed of three major projects: short-contact-time coal liquefaction, mineral effects, and catalyst studies. These projects are interdependent and overlap significantly.

  18. Coal liquefaction and gas conversion contractors review conference: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    This volume contains 55 papers presented at the conference. They are divided into the following topical sections: Direct liquefaction; Indirect liquefaction; Gas conversion (methane conversion); and Advanced research liquefaction. Papers in this last section deal mostly with coprocessing of coal with petroleum, plastics, and waste tires, and catalyst studies. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  19. Estimation of sand liquefaction based on support vector machines

    Institute of Scientific and Technical Information of China (English)

    苏永华; 马宁; 胡检; 杨小礼

    2008-01-01

    The origin and influence factors of sand liquefaction were analyzed, and the relation between liquefaction and its influence factors was founded. A model based on support vector machines (SVM) was established whose input parameters were selected as following influence factors of sand liquefaction: magnitude (M), the value of SPT, effective pressure of superstratum, the content of clay and the average of grain diameter. Sand was divided into two classes: liquefaction and non-liquefaction, and the class label was treated as output parameter of the model. Then the model was used to estimate sand samples, 20 support vectors and 17 borderline support vectors were gotten, then the parameters were optimized, 14 support vectors and 6 borderline support vectors were gotten, and the prediction precision reaches 100%. In order to verify the generalization of the SVM method, two other practical samples’ data from two cities, Tangshan of Hebei province and Sanshui of Guangdong province, were dealt with by another more intricate model for polytomies, which also considered some influence factors of sand liquefaction as the input parameters and divided sand into four liquefaction grades: serious liquefaction, medium liquefaction, slight liquefaction and non-liquefaction as the output parameters. The simulation results show that the latter model has a very high precision, and using SVM model to estimate sand liquefaction is completely feasible.

  20. Study of catalytic effects of mineral matter level on coal reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Mazzocco, Nestor J.; Klunder, Edgar B.; Krastman, Donald

    1981-03-01

    Coal liquefaction experiments using a 400-lb/day bubble-column reactor tested the catalytic effects of added mineral matter level on coal conversion, desulfurization, and distillate yields in continuous operation under recycle conditions, with specific emphasis on the use of a disposable pyrite catalyst indigenous to the feed coal. Western Kentucky No. 11 run-of-mine (ROM) and washed coals were used as feedstocks to determine the effects of levels of mineral matter, specifically iron compounds. Liquefaction reactivity as characterized by total distillate yield was lower for washed coal, which contained less mineral matter. Liquefaction reactivity was regained when pyrite concentrate was added as a disposable catalyst to the washed coal feed in sufficient quantity to match the feed iron concentration of the run-of-mine coal liquefaction test run.

  1. Prospect of coal liquefaction in Indonesia

    International Nuclear Information System (INIS)

    With the current known oil reserves of about 11 billion barrel and annual production of approximately 500 million barrel, the country's oil reserves will be depleted by 2010, and Indonesia would have become net oil importer if no major oil fields be found somewhere in the archipelago. Under such circumstances the development of new sources of liquid fuel becomes a must, and coal liquefaction can be one possible solution for the future energy problem in Indonesia, particularly in the transportation sector due to the availability of coal in huge amount. This paper present the prospect of coal liquefaction in Indonesia and look at the possibility of integrating the process with HTR as a heat supplier. Evaluation of liquidability of several low grade Indonesian coals will also be presented. Coal from South Banko-Tanjung Enim is found to be one of the most suitable coal for liquefaction. Several studies show that an advanced coal liquefaction technology recently developed has the potential to reduce not only the environmental impact but also the production cost. The price of oil produced in the year 2000 is expected to reach US $ 17.5 ∼ 19.2/barrel and this will compete with the current oil price. Not much conclusion can be drawn from the idea of integrating HTR with coal liquefaction plant due to limited information available. (author). 7 figs, 3 tabs

  2. Investigation on the two-stage active magnetic regenerative refrigerator for liquefaction of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Park, Inmyong; Park, Jiho; Jeong, Sangkwon [Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Kim, Youngkwon [Institute for Basic Science, Daejeon 305-811 (Korea, Republic of)

    2014-01-29

    An active magnetic regenerative refrigerator (AMRR) is expected to be useful for hydrogen liquefaction due to its inherent high thermodynamic efficiency. Because the temperature of the cold end of the refrigerator has to be approximately liquid temperature, a large temperature span of the active magnetic regenerator (AMR) is indispensable when the heat sink temperature is liquid nitrogen temperature or higher. Since magnetic refrigerants are only effective in the vicinity of their own transition temperatures, which limit the temperature span of the AMR, an innovative structure is needed to increase the temperature span. The AMR must be a layered structure and the thermophysical matching of magnetic field and flow convection effects is very important. In order to design an AMR for liquefaction of hydrogen, the implementation of multi-layered AMR with different magnetic refrigerants is explored with multi-staging. In this paper, the performance of the multi-layered AMR using four rare-earth compounds (GdNi{sub 2}, Gd{sub 0.1}Dy{sub 0.9}Ni{sub 2}, Dy{sub 0.85}Er{sub 0.15}Al{sub 2}, Dy{sub 0.5}Er{sub 0.5}Al{sub 2}) is investigated. The experimental apparatus includes two-stage active magnetic regenerator containing two different magnetic refrigerants each. A liquid nitrogen reservoir connected to the warm end of the AMR maintains the temperature of the warm end around 77 K. High-pressure helium gas is employed as a heat transfer fluid in the AMR and the maximum magnetic field of 4 T is supplied by the low temperature superconducting (LTS) magnet. The temperature span with the variation of parameters such as phase difference between magnetic field and mass flow rate of magnetic refrigerants in AMR is investigated. The maximum temperature span in the experiment is recorded as 50 K and several performance issues have been discussed in this paper.

  3. Investigation on the two-stage active magnetic regenerative refrigerator for liquefaction of hydrogen

    International Nuclear Information System (INIS)

    An active magnetic regenerative refrigerator (AMRR) is expected to be useful for hydrogen liquefaction due to its inherent high thermodynamic efficiency. Because the temperature of the cold end of the refrigerator has to be approximately liquid temperature, a large temperature span of the active magnetic regenerator (AMR) is indispensable when the heat sink temperature is liquid nitrogen temperature or higher. Since magnetic refrigerants are only effective in the vicinity of their own transition temperatures, which limit the temperature span of the AMR, an innovative structure is needed to increase the temperature span. The AMR must be a layered structure and the thermophysical matching of magnetic field and flow convection effects is very important. In order to design an AMR for liquefaction of hydrogen, the implementation of multi-layered AMR with different magnetic refrigerants is explored with multi-staging. In this paper, the performance of the multi-layered AMR using four rare-earth compounds (GdNi2, Gd0.1Dy0.9Ni2, Dy0.85Er0.15Al2, Dy0.5Er0.5Al2) is investigated. The experimental apparatus includes two-stage active magnetic regenerator containing two different magnetic refrigerants each. A liquid nitrogen reservoir connected to the warm end of the AMR maintains the temperature of the warm end around 77 K. High-pressure helium gas is employed as a heat transfer fluid in the AMR and the maximum magnetic field of 4 T is supplied by the low temperature superconducting (LTS) magnet. The temperature span with the variation of parameters such as phase difference between magnetic field and mass flow rate of magnetic refrigerants in AMR is investigated. The maximum temperature span in the experiment is recorded as 50 K and several performance issues have been discussed in this paper

  4. DIRECT LIQUEFACTION PROOF-OF-CONCEPT PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    A.G. Comolli; T.L.K. Lee; J. Hu; G. Popper; M.D. Elwell; J. Miller; D. Parfitt; P. Zhou

    1999-12-30

    This report presents the results of the bench-scale work, Bench Run PB-09, HTI Run Number 227-106, conducted under the DOE Proof-of-Concept Option Program indirect coal liquefaction at Hydrocarbon Technologies Inc. in Lawrenceville, New Jersey. Bench Run PB-09 was conducted using two types of Chinese coal, Shenhua No.2 and Shenhua No.3, and had several goals. One goal was to study the liquefaction performance of Shenhua No.2 and Shenhua No.3 with respect to coal conversion and distillate production. Another goal of Bench Run PB-09 was to study the effect of different GelCatw formulations and loadings. At the same time, the space velocity and the temperature of the fmt reactor, K-1, were varied to optimize the liquefaction of the two Chinese coals. The promoter-modified HTI GelCat{trademark} catalyst was very effective in the direct liquefaction of coal with nearly 92% maf coal conversion with Shenhua No.3 and 93% maf coal conversion with 9 Shenhua No.2. Distillate yields (CQ-524 C)varied from 52-68% maf for Shenhua No.3 coal to 54-63% maf for Shenhua No.2 coal. The primary conclusion from Bench Run PB-09 is that Shenhua No.3 coal is superior to Shenhua No.2 coal in direct liquefaction due to its greater distillate production, although coal conversion is slightly lower and C{sub 1}-C{sub 3} light gas production is higher for Shenhua No.3. The new promoter modified GelCat{trademark} proved successful in converting the two 9 Chinese coals and, under some conditions, producing good distillate yields for a coal-only bench run. Run PB-09 demonstrated significantly better performance of China Shenhua coal using HTI's coal direct liquefaction technology and GelCat{trademark} catalyst than that obtained at China Coal Research Institute (CCRI, coal conversion 88% and distillate yield 61%).

  5. Liquefaction chemistry and kinetics: Hydrogen utilization studies

    Energy Technology Data Exchange (ETDEWEB)

    Rothenberger, K.S.; Warzinski, R.P.; Cugini, A.V. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    The objectives of this project are to investigate the chemistry and kinetics that occur in the initial stages of coal liquefaction and to determine the effects of hydrogen pressure, catalyst activity, and solvent type on the quantity and quality of the products produced. The project comprises three tasks: (1) preconversion chemistry and kinetics, (2) hydrogen utilization studies, and (3) assessment of kinetic models for liquefaction. The hydrogen utilization studies work will be the main topic of this report. However, the other tasks are briefly described.

  6. Biomass Indirect Liquefaction Strategy Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-07-01

    This report is based on the proceedings of the U.S. Department of Energy Bioenergy Technologies Office Biomass Indirect Liquefaction Strategy Workshop. The workshop, held March 20–21, 2014, in Golden, Colorado, discussed and detailed the research and development needs for biomass indirect liquefaction. Discussions focused on pathways that convert biomass-based syngas (or any carbon monoxide, hydrogen gaseous stream) to liquid intermediates (alcohols or acids) and further synthesize those intermediates to liquid hydrocarbons that are compatible as either a refinery feed or neat fuel.

  7. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, Oleg

    2013-12-31

    Under the cooperative agreement program of DOE and funding from Wyoming State’s Clean Coal Task Force, Western Research Institute and Thermosolv LLC studied the direct conversion of Wyoming coals and coal-lignin mixed feeds into liquid fuels in conditions highly relevant to practice. During the Phase I, catalytic direct liquefaction of sub-bituminous Wyoming coals was investigated. The process conditions and catalysts were identified that lead to a significant increase of desirable oil fraction in the products. The Phase II work focused on systematic study of solvothermal depolymerization (STD) and direct liquefaction (DCL) of carbonaceous feedstocks. The effect of the reaction conditions (the nature of solvent, solvent/lignin ratio, temperature, pressure, heating rate, and residence time) on STD was investigated. The effect of a number of various additives (including lignin, model lignin compounds, lignin-derivable chemicals, and inorganic radical initiators), solvents, and catalysts on DCL has been studied. Although a significant progress has been achieved in developing solvothermal depolymerization, the side reactions – formation of considerable amounts of char and gaseous products – as well as other drawbacks do not render aqueous media as the most appropriate choice for commercial implementation of STD for processing coals and lignins. The trends and effects discovered in DCL point at the specific features of liquefaction mechanism that are currently underutilized yet could be exploited to intensify the process. A judicious choice of catalysts, solvents, and additives might enable practical and economically efficient direct conversion of Wyoming coals into liquid fuels.

  8. Multi-stage Continuous Culture Fermentation of Glucose-Xylose Mixtures to Fuel Ethanol using Genetically Engineered Saccharomyces cerevisiae 424A

    Science.gov (United States)

    Multi-stage continuous (chemostat) culture fermentation (MCCF) with variable fermentor volumes was carried out to study utilizing glucose and xylose for ethanol production by means of mixed sugar fermentation (MSF). Variable fermentor volumes were used to enable enhanced sugar u...

  9. Multi-Stage Feature Selection by Using Genetic Algorithms for Fault Diagnosis in Gearboxes Based on Vibration Signal

    Directory of Open Access Journals (Sweden)

    Mariela Cerrada

    2015-09-01

    Full Text Available There are growing demands for condition-based monitoring of gearboxes, and techniques to improve the reliability, effectiveness and accuracy for fault diagnosis are considered valuable contributions. Feature selection is still an important aspect in machine learning-based diagnosis in order to reach good performance in the diagnosis system. The main aim of this research is to propose a multi-stage feature selection mechanism for selecting the best set of condition parameters on the time, frequency and time-frequency domains, which are extracted from vibration signals for fault diagnosis purposes in gearboxes. The selection is based on genetic algorithms, proposing in each stage a new subset of the best features regarding the classifier performance in a supervised environment. The selected features are augmented at each stage and used as input for a neural network classifier in the next step, while a new subset of feature candidates is treated by the selection process. As a result, the inherent exploration and exploitation of the genetic algorithms for finding the best solutions of the selection problem are locally focused. The Sensors 2015, 15 23904 approach is tested on a dataset from a real test bed with several fault classes under different running conditions of load and velocity. The model performance for diagnosis is over 98%.

  10. Economic and thermal feasibility of multi stage flash desalination plant with brine–feed mixing and cooling

    International Nuclear Information System (INIS)

    Improving the performance of MSF (multi stage flash) desalination plants is a major challenge for desalination industry. High feed temperature in summer shortens the evaporation range of MSF plants and limits their yield. Installing a cooler at the feed intake expands the evaporation range of MSF plants and increases their yield. Adding a cooler and a mixing chamber increases the capital and operational costs of MSF plants. This paper presents thermal and economic analysis of installing a feed cooler at the plant intake. The profit of selling the additionally produced water must cover the cost of the cooling system. The selling prices for a reasonable breakeven depend on the selected cooling temperature. The cost of installing coolers capable of maintaining feed–brine mixture temperatures of 18–20 °C shows breakeven selling prices of 0.5–0.9 $/m3. These prices fall within the current range of potable water selling prices. - Highlights: • Thermo-economic analysis for MSF plant with brine mixing and cooling is presented. • Analysis is based on first and second laws of thermodynamics. • The profit gained from producing additional water covers the cooling cost. • The suggested modification is a promising technique for plants in hot climates

  11. Minimizing coupling loss by selection of twist pitch lengths in multi-stage cable-in-conduit conductors

    International Nuclear Information System (INIS)

    The numerical code JackPot-ACDC (van Lanen et al 2010 Cryogenics 50 139–48, van Lanen et al 2011 IEEE Trans. Appl. Supercond. 21 1926–9, van Lanen et al 2012 Supercond. Sci. Technol. 25 025012) allows fast parametric studies of the electro-magnetic performance of cable-in-conduit conductors (CICCs). In this paper the code is applied to the analysis of the relation between twist pitch length sequence and coupling loss in multi-stage ITER-type CICCs. The code shows that in the analysed conductors the coupling loss is at its minimum when the twist pitches of the successive cabling stages have a length ratio close to one. It is also predicted that by careful selection of the stage-to-stage twist pitch ratio, CICCs cabled according to long twist schemes in the initial stages can achieve lower coupling loss than conductors with shorter pitches. The result is validated by AC loss measurements performed on prototype conductors for the ITER Central Solenoid featuring different twist pitch sequences. (paper)

  12. Utilization of desulfurization gypsum to producing SO{sub 2} and CaO in multi-stage fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Zhu; Wang, Tao; Yang, Hairui; Zhang, Hai; Zhang, Zuyi [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Ministry of Education, Beijing (China). Key Lab. for Thermal Science and Power Engineering

    2013-07-01

    With emission control becomes more and more stringent, flue gas desulphurization (FGD) is commonly employed for desulfurization. However, the product of FGD, gypsum, causes the unexpected environmental problems. How to utilize the byproduct of FGD effectively and economically is a challenging task. This paper proposed the new technical process to produce SO{sub 2} and CaO by reducing the gypsum in multi-stage fluidized bed reactor with different atmosphere. In addition, some preliminary experiments were carried out in PTGA. The results show that CO concentration has little effect on the initial decomposing temperature, but affect the decomposing rate of phosphogypsum obviously. The decomposing product composed of CaS and CaO simultaneously. The ratio of the two products was determined by CO concentration. Lower CO content benefits to produce more CO product and more SO{sub 2}. The decomposition reaction of phosphogypsum in reducing atmosphere is parallel competition reaction. Therefore, it is necessary to eliminate the effect of CaS and other byproduct efficiently by the new technology, which utilize multi-atmosphere in multistage fluidized bed reactors.

  13. Multi-stage ranking of emergency technology alternatives for water source pollution accidents using a fuzzy group decision making tool.

    Science.gov (United States)

    Qu, Jianhua; Meng, Xianlin; You, Hong

    2016-06-01

    Due to the increasing number of unexpected water source pollution events, selection of the most appropriate disposal technology for a specific pollution scenario is of crucial importance to the security of urban water supplies. However, the formulation of the optimum option is considerably difficult owing to the substantial uncertainty of such accidents. In this research, a multi-stage technical screening and evaluation tool is proposed to determine the optimal technique scheme, considering the areas of pollutant elimination both in drinking water sources and water treatment plants. In stage 1, a CBR-based group decision tool was developed to screen available technologies for different scenarios. Then, the threat degree caused by the pollution was estimated in stage 2 using a threat evaluation system and was partitioned into four levels. For each threat level, a corresponding set of technique evaluation criteria weights was obtained using Group-G1. To identify the optimization alternatives corresponding to the different threat levels, an extension of TOPSIS, a multi-criteria interval-valued trapezoidal fuzzy decision making technique containing the four arrays of criteria weights, to a group decision environment was investigated in stage 3. The effectiveness of the developed tool was elaborated by two actual thallium-contaminated scenarios associated with different threat levels. PMID:26897576

  14. Integrity demonstration test of multi-stage type packages of radioactive wastes by free descent to deepsea bed

    International Nuclear Information System (INIS)

    Free descent tests of the multi-stage type packages, i.e., B-I (4. 3 ton), B-III (2. 6 ton) and LD-75 (1. 4 ton), containing simulated wastes, to deepsea bed of 4300 m depth were carried out in the Pacific Ocean 350 Km off Shikoku Island to demonstrate their integrity in sea dumping. A deepsea camera, a flash and a releaser were hung from a buoy by steel wire and the package was connected to the releaser, when dumped into sea. The package was successively photographed during its descent and for a short time after its arrival at the seabed. Subsequently, the camera, flash, etc. were disconnected from the package by action of the releaser, and recovered when they rose on sea surface. Recovery was successful at every dumping test. According to the judgement based on the photographs, the packages B-I and LD-75 remained intact; photographing of the package B-III was unsuccessful due to failure of the flash. (author)

  15. A Risk-Constrained Multi-Stage Decision Making Approach to the Architectural Analysis of Mars Missions

    Science.gov (United States)

    Kuwata, Yoshiaki; Pavone, Marco; Balaram, J. (Bob)

    2012-01-01

    This paper presents a novel risk-constrained multi-stage decision making approach to the architectural analysis of planetary rover missions. In particular, focusing on a 2018 Mars rover concept, which was considered as part of a potential Mars Sample Return campaign, we model the entry, descent, and landing (EDL) phase and the rover traverse phase as four sequential decision-making stages. The problem is to find a sequence of divert and driving maneuvers so that the rover drive is minimized and the probability of a mission failure (e.g., due to a failed landing) is below a user specified bound. By solving this problem for several different values of the model parameters (e.g., divert authority), this approach enables rigorous, accurate and systematic trade-offs for the EDL system vs. the mobility system, and, more in general, cross-domain trade-offs for the different phases of a space mission. The overall optimization problem can be seen as a chance-constrained dynamic programming problem, with the additional complexity that 1) in some stages the disturbances do not have any probabilistic characterization, and 2) the state space is extremely large (i.e, hundreds of millions of states for trade-offs with high-resolution Martian maps). To this purpose, we solve the problem by performing an unconventional combination of average and minimax cost analysis and by leveraging high efficient computation tools from the image processing community. Preliminary trade-off results are presented.

  16. Multi-stage filtering for improving confidence level and determining dominant clusters in clustering algorithms of gene expression data.

    Science.gov (United States)

    Kasim, Shahreen; Deris, Safaai; Othman, Razib M

    2013-09-01

    A drastic improvement in the analysis of gene expression has lead to new discoveries in bioinformatics research. In order to analyse the gene expression data, fuzzy clustering algorithms are widely used. However, the resulting analyses from these specific types of algorithms may lead to confusion in hypotheses with regard to the suggestion of dominant function for genes of interest. Besides that, the current fuzzy clustering algorithms do not conduct a thorough analysis of genes with low membership values. Therefore, we present a novel computational framework called the "multi-stage filtering-Clustering Functional Annotation" (msf-CluFA) for clustering gene expression data. The framework consists of four components: fuzzy c-means clustering (msf-CluFA-0), achieving dominant cluster (msf-CluFA-1), improving confidence level (msf-CluFA-2) and combination of msf-CluFA-0, msf-CluFA-1 and msf-CluFA-2 (msf-CluFA-3). By employing double filtering in msf-CluFA-1 and apriori algorithms in msf-CluFA-2, our new framework is capable of determining the dominant clusters and improving the confidence level of genes with lower membership values by means of which the unknown genes can be predicted. PMID:23930805

  17. Seven novel prostate cancer susceptibility loci identified by a multi-stage genome-wide association study

    Science.gov (United States)

    Kote-Jarai, Zsofia; Olama, Ali Amin Al; Giles, Graham G.; Severi, Gianluca; Schleutker, Johanna; Weischer, Maren; Canzian, Frederico; Riboli, Elio; Key, Tim; Gronberg, Henrik; Hunter, David J.; Kraft, Peter; Thun, Michael J; Ingles, Sue; Chanock, Stephen; Albanes, Demetrius; Hayes, Richard B; Neal, David E.; Hamdy, Freddie C.; Donovan, Jenny L.; Pharoah, Paul; Schumacher, Fredrick; Henderson, Brian E.; Stanford, Janet L.; Ostrander, Elaine A.; Sorensen, Karina Dalsgaard; Dörk, Thilo; Andriole, Gerald; Dickinson, Joanne L.; Cybulski, Cezary; Lubinski, Jan; Spurdle, Amanda; Clements, Judith A.; Chambers, Suzanne; Aitken, Joanne; Frank Gardiner, R. A.; Thibodeau, Stephen N.; Schaid, Dan; John, Esther M.; Maier, Christiane; Vogel, Walther; Cooney, Kathleen A.; Park, Jong Y.; Cannon-Albright, Lisa; Brenner, Hermann; Habuchi, Tomonori; Zhang, Hong-Wei; Lu, Yong-Jie; Kaneva, Radka; Muir, Ken; Benlloch, Sara; Leongamornlert, Daniel A.; Saunders, Edward J.; Tymrakiewicz, Malgorzata; Mahmud, Nadiya; Guy, Michelle; O’Brien, Lynne T.; Wilkinson, Rosemary A.; Hall, Amanda L.; Sawyer, Emma J.; Dadaev, Tokhir; Morrison, Jonathan; Dearnaley, David P.; Horwich, Alan; Huddart, Robert A.; Khoo, Vincent S.; Parker, Christopher C.; Van As, Nicholas; Woodhouse, Christopher J.; Thompson, Alan; Christmas, Tim; Ogden, Chris; Cooper, Colin S.; Lophatonanon, Aritaya; Southey, Melissa C.; Hopper, John L.; English, Dallas; Wahlfors, Tiina; Tammela, Teuvo LJ; Klarskov, Peter; Nordestgaard, Børge G.; Røder, M. Andreas; Tybjærg-Hansen, Anne; Bojesen, Stig E.; Travis, Ruth; Campa, Daniele; Kaaks, Rudolf; Wiklund, Fredrik; Aly, Markus; Lindstrom, Sara; Diver, W Ryan; Gapstur, Susan; Stern, Mariana C; Corral, Roman; Virtamo, Jarmo; Cox, Angela; Haiman, Christopher A.; Le Marchand, Loic; FitzGerald, Liesel; Kolb, Suzanne; Kwon, Erika M.; Karyadi, Danielle M.; Orntoft, Torben Falck; Borre, Michael; Meyer, Andreas; Serth, Jürgen; Yeager, Meredith; Berndt, Sonja I.; Marthick, James R; Patterson, Briony; Wokolorczyk, Dominika; Batra, Jyotsna; Lose, Felicity; McDonnell, Shannon K; Joshi, Amit D.; Shahabi, Ahva; Rinckleb, Antje E.; Ray, Ana; Sellers, Thomas A.; Lin, Huo-Yi; Stephenson, Robert A; Farnham, James; Muller, Heiko; Rothenbacher, Dietrich; Tsuchiya, Norihiko; Narita, Shintaro; Cao, Guang-Wen; Slavov, Chavdar; Mitev, Vanio; Easton, Douglas F.; Eeles, Rosalind A.

    2012-01-01

    Prostate cancer (PrCa) is the most frequently diagnosed male cancer in developed countries. To identify common PrCa susceptibility alleles, we conducted a multi-stage genome-wide association study and previously reported the results of the first two stages, which identified 16 novel susceptibility loci for PrCa. Here we report the results of stage 3 in which we evaluated 1,536 SNPs in 4,574 cases and 4,164 controls. Ten novel association signals were followed up through genotyping in 51,311 samples in 30 studies through the international PRACTICAL consortium. In addition to previously reported loci, we identified a further seven new prostate cancer susceptibility loci on chromosomes 2p, 3q, 5p, 6p, 12q and Xq (P=4.0 ×10−8 to P=2.7 ×10−24). We also identified a SNP in TERT more strongly associated with PrCa than that previously reported. More than 40 PrCa susceptibility loci, explaining ~25% of the familial risk in this disease, have now been identified. PMID:21743467

  18. Inhibition of cytochrome bc1 as a strategy for single-dose, multi-stage antimalarial therapy.

    Science.gov (United States)

    Stickles, Allison M; Ting, Li-Min; Morrisey, Joanne M; Li, Yuexin; Mather, Michael W; Meermeier, Erin; Pershing, April M; Forquer, Isaac P; Miley, Galen P; Pou, Sovitj; Winter, Rolf W; Hinrichs, David J; Kelly, Jane X; Kim, Kami; Vaidya, Akhil B; Riscoe, Michael K; Nilsen, Aaron

    2015-06-01

    Single-dose therapies for malaria have been proposed as a way to reduce the cost and increase the effectiveness of antimalarial treatment. However, no compound to date has shown single-dose activity against both the blood-stage Plasmodium parasites that cause disease and the liver-stage parasites that initiate malaria infection. Here, we describe a subset of cytochrome bc1 (cyt bc1) inhibitors, including the novel 4(1H)-quinolone ELQ-400, with single-dose activity against liver, blood, and transmission-stage parasites in mouse models of malaria. Although cyt bc1 inhibitors are generally classified as slow-onset antimalarials, we found that a single dose of ELQ-400 rapidly induced stasis in blood-stage parasites, which was associated with a rapid reduction in parasitemia in vivo. ELQ-400 also exhibited a low propensity for drug resistance and was active against atovaquone-resistant P. falciparum strains with point mutations in cyt bc1. Ultimately, ELQ-400 shows that cyt bc1 inhibitors can function as single-dose, blood-stage antimalarials and is the first compound to provide combined treatment, prophylaxis, and transmission blocking activity for malaria after a single oral administration. This remarkable multi-stage efficacy suggests that metabolic therapies, including cyt bc1 inhibitors, may be valuable additions to the collection of single-dose antimalarials in current development. PMID:25918204

  19. Site-specific multi-stage CVD of large-scale arrays of ultrafine ZnO nanorods

    International Nuclear Information System (INIS)

    Multi-stage growth of ZnO nanorod arrays has been carried out by Au-assisted chemical vapor deposition (CVD) in order to better understand and more precisely control the growth behaviors. It is evidenced that Au-catalyzed vapor-liquid-solid (VLS) growth only dominates the initial site-specific nucleation of the nanorods, while the subsequent growth is governed by a vapor-solid (VS) epitaxy mechanism. The sequential VLS and VS behaviors permit the fabrication of large-scale highly ordered arrays of ZnO nanorods with precisely tunable diameters and embedded junctions by controlling reactant concentration and nanorod top morphology. Based on the above results, two routes to fabricate ultrafine ZnO nanorod arrays are proposed and stepwise nanorod arrays with ultrafine top segment (∼10 nm in diameter) have been achieved. Temperature-dependent photoluminescence (PL) and spatial resolved PL were carried out on the nanorod arrays and on individual nanorods, indicating high quality optical properties and tunable light emission along the length of the stepwise nanorods.

  20. Task I: A Computational Model for Short Wavelength Stall Inception and Development In Multi-Stage Compressors

    Science.gov (United States)

    Suder, Kenneth (Technical Monitor); Tan, Choon-Sooi

    2003-01-01

    A computational model is presented for simulating axial compressor stall inception and development via disturbances with length scales on the order of several (typically about three) blade pitches. The model was designed for multi-stage compressors in which stall is initiated by these short wavelength disturbances, also referred to as spikes. The inception process described is fundamentally nonlinear, in contrast to the essentially linear behavior seen in so-called modal stall inception . The model was able to capture the following experimentally observed phenomena: (1) development of rotating stall via short wavelength disturbances, (2) formation and evolution of localized short wavelength stall cells in the first stage of a mismatched compressor, (3) the switch from long to short wavelength stall inception resulting from the re-staggering of the inlet guide vane, (4) the occurrence of rotating stall inception on the negatively sloped portion of the compressor characteristic. Parametric investigations indicated that (1) short wavelength disturbances were supported by the rotor blade row, (2) the disturbance strength was attenuated within the stators, and (3) the reduction of inter-blade row gaps can suppress the growth of short wavelength disturbances. It is argued that each local component group (rotor plus neighboring stators) has its own instability point (i.e. conditions at which disturbances are sustained) for short wavelength disturbances, with the instability point for the compressor set by the most unstable component group.

  1. Multi-stage Modeling of Lüders Elongation and Work-Hardening Behaviors of Ferrite Steels Under Tension

    Science.gov (United States)

    Zhang, Zhongyang; Liao, Yiliang

    2016-04-01

    For structural and engineering steels, accurate modeling of stress-strain relation of ferrite phase is of particular importance, since the modeling results could benefit new material system design and process-microstructure-property analysis. Several modeling efforts have been made to achieve this target. However, few efforts have been put on the Lüders elongation behavior of ferrite. As a result, the modeling results from proposed models do not match well with experimental data, particularly at a relatively low-strain range. Furthermore, without the consideration of yield point elongation due to the formation of Lüders bands, additional calibration parameters are required to capture the stress level of stress-strain curves. In this work, a multi-stage model is developed to predict the stress-strain relation of ferrite phase steel under room temperature tension. This model is capable of capturing the grain size effect on both Lüders elongation and work-hardening behaviors of ferrite. The modeling results are extensively validated by experimental data.

  2. A design methodology for a magnetorheological fluid damper based on a multi-stage radial flow mode

    Science.gov (United States)

    Liao, C. R.; Zhao, D. X.; Xie, L.; Liu, Q.

    2012-08-01

    In this paper, a magnetorheological (MR) fluid damper based on a multi-stage radial flow mode is put forward, compared with traditional ones with annular damping channel which are of low magnetic field utilization and high energy consumption. The equivalent magnetic circuit model is derived, along with the relation between the magnetic induction at the working gap and the exciting current in the field coils. The finite-element software ANYSY is used to analyze the distribution of the magnetic field in the MR valve. The flow differential equation for a MR fluid in radial flow is theoretically set up, and the numerical solution is validated by means of the Herschel-Bulkley constitutive model. A MR damper was designed and fabricated in Chongqing University in accordance with the technical requirements of a railway vehicle anti-yaw damper, and the force-displacement characteristic of the damper was tested with J95-I type shock absorber test-bed. The results show that the experimental damping forces are in good agreement with the analytical ones, and the methodology is believed to help predict the damping force of a MR damper.

  3. A design methodology for a magnetorheological fluid damper based on a multi-stage radial flow mode

    International Nuclear Information System (INIS)

    In this paper, a magnetorheological (MR) fluid damper based on a multi-stage radial flow mode is put forward, compared with traditional ones with annular damping channel which are of low magnetic field utilization and high energy consumption. The equivalent magnetic circuit model is derived, along with the relation between the magnetic induction at the working gap and the exciting current in the field coils. The finite-element software ANYSY is used to analyze the distribution of the magnetic field in the MR valve. The flow differential equation for a MR fluid in radial flow is theoretically set up, and the numerical solution is validated by means of the Herschel–Bulkley constitutive model. A MR damper was designed and fabricated in Chongqing University in accordance with the technical requirements of a railway vehicle anti-yaw damper, and the force–displacement characteristic of the damper was tested with J95-I type shock absorber test-bed. The results show that the experimental damping forces are in good agreement with the analytical ones, and the methodology is believed to help predict the damping force of a MR damper. (paper)

  4. Residual liquefaction of seabed under standing waves

    DEFF Research Database (Denmark)

    Kirca, V.S. Ozgur; Sumer, B. Mutlu; Fredsøe, Jørgen

    2013-01-01

    This paper presents the results of an experimental study of the seabed liquefaction beneath standing waves. Silt (with d50 =0.070mm) was used in the experiments. Two kinds of measurements were carried out: pore water pressure measurements and water surface elevation measurements. These measuremen...

  5. LIQUEFACTION AND DISPLACEMENT OF SATURATED SAND UNDER VERTICAL VIBRATION LOADING

    Institute of Scientific and Technical Information of China (English)

    LU Xiaobing; TAN Qingming; CHENG C.M.; YU Shanbing; CUI Peng

    2004-01-01

    In order to investigate the influence of the vertical vibration loading on the liquefaction of saturated sand, one dimensional model for the saturated sand with a vertical vibration is presented based on the two phase continuous media theory. The development of the liquefaction and the liquefaction region are analyzed. It is shown that the vertical vibration loading could induce liquefaction.The rate of the liquefaction increases with the increase of the initial limit strain or initial porosity or amplitude and frequency of loading, and increases with the decrease of the permeability or initial modulus. It is shown also that there is a phase lag in the sand column. When the sand permeability distribution is non-uniform, the pore pressure and the strain will rise sharply where the permeability is the smallest, and fracture might be induced. With the development of liquefaction, the strength of the soil foundation becomes smaller and smaller. In the limiting case, landslides or debris flows could occur.

  6. Experimental Results of the First Two Stages of an Advanced Transonic Core Compressor Under Isolated and Multi-Stage Conditions

    Science.gov (United States)

    Prahst, Patricia S.; Kulkarni, Sameer; Sohn, Ki H.

    2015-01-01

    NASA's Environmentally Responsible Aviation (ERA) Program calls for investigation of the technology barriers associated with improved fuel efficiency of large gas turbine engines. Under ERA the task for a High Pressure Ratio Core Technology program calls for a higher overall pressure ratio of 60 to 70. This mean that the HPC would have to almost double in pressure ratio and keep its high level of efficiency. The challenge is how to match the corrected mass flow rate of the front two supersonic high reaction and high corrected tip speed stages with a total pressure ratio of 3.5. NASA and GE teamed to address this challenge by using the initial geometry of an advanced GE compressor design to meet the requirements of the first 2 stages of the very high pressure ratio core compressor. The rig was configured to run as a 2 stage machine, with Strut and IGV, Rotor 1 and Stator 1 run as independent tests which were then followed by adding the second stage. The goal is to fully understand the stage performances under isolated and multi-stage conditions and fully understand any differences and provide a detailed aerodynamic data set for CFD validation. Full use was made of steady and unsteady measurement methods to isolate fluid dynamics loss source mechanisms due to interaction and endwalls. The paper will present the description of the compressor test article, its predicted performance and operability, and the experimental results for both the single stage and two stage configurations. We focus the detailed measurements on 97 and 100 of design speed at 3 vane setting angles.

  7. Exprimental Results of the First Two Stages of an Advanced Transonic Core Compressor Under Isolated and Multi-Stage Conditions.

    Science.gov (United States)

    Prahst, Patricia S.; Kulkarni, Sameer; Sohn, Ki H.

    2015-01-01

    NASA's Environmentally Responsible Aviation (ERA) Program calls for investigation of the technology barriers associated with improved fuel efficiency for large gas turbine engines. Under ERA, the highly loaded core compressor technology program attempts to realize the fuel burn reduction goal by increasing overall pressure ratio of the compressor to increase thermal efficiency of the engine. Study engines with overall pressure ratio of 60 to 70 are now being investigated. This means that the high pressure compressor would have to almost double in pressure ratio while keeping a high level of efficiency. NASA and GE teamed to address this challenge by testing the first two stages of an advanced GE compressor designed to meet the requirements of a very high pressure ratio core compressor. Previous test experience of a compressor which included these front two stages indicated a performance deficit relative to design intent. Therefore, the current rig was designed to run in 1-stage and 2-stage configurations in two separate tests to assess whether the bow shock of the second rotor interacting with the upstream stage contributed to the unpredicted performance deficit, or if the culprit was due to interaction of rotor 1 and stator 1. Thus, the goal was to fully understand the stage 1 performance under isolated and multi-stage conditions, and additionally to provide a detailed aerodynamic data set for CFD validation. Full use was made of steady and unsteady measurement methods to understand fluid dynamics loss source mechanisms due to rotor shock interaction and endwall losses. This paper will present the description of the compressor test article and its measured performance and operability, for both the single stage and two stage configurations. We focus the paper on measurements at 97% corrected speed with design intent vane setting angles.

  8. Performance evaluation of a once-through multi-stage flash distillation system: Impact of brine heater fouling

    International Nuclear Information System (INIS)

    Multi-stage flash distillation (MSF) system modeling involves a number of process variables. An estimation of all these process variables requires both analytical solutions and experimental/field analysis. However, the accurate estimate of variables related to the brine heater operation in a MSF system is very important for a reliable operation of the system. For example, steam operating conditions as well as the brine properties including fouling of the brine heater tubes have a significant effect on the heat transfer characteristics of the brine heater, which in turn influence the distillate output from the system. In this study, the effect of various design as well as operating conditions on the performance ratio (PR), brine temperature and salinity as it leaves the last flash stage are investigated in a once-through system. Increasing the number of stages from 24 to 32 has a significant effect on the PR, it ranges between 79% (for ΔT = 1.5) and 327% (for ΔT = 2.3) for a top-brine temperature of 106 oC. This value increase as the top-brine temperature increases. Increasing the stage-to-stage temperature difference increases the water salinity as it leaves the final stage and reduces its temperature that would imply better energy utilization within the plant. Results show that brine side heat exchanger fouling has a significant effect in decreasing the overall heat transfer coefficient, which reduces the production rate as the fouling increases with time. A sensitivity analysis to identify the key parameters, which can have a significant influence on the desalination plant performance, is carried out in an attempt to contribute a better understanding and operation of MSF desalination processes.

  9. Multi-Stage 20-m Shuttle Run Fitness Test, Maximal Oxygen Uptake and Velocity at Maximal Oxygen Uptake

    Directory of Open Access Journals (Sweden)

    Paradisis Giorgos P.

    2014-07-01

    Full Text Available The multi-stage 20-m shuttle run fitness test (20mMSFT is a popular field test which is widely used to measure aerobic fitness by predicting maximum oxygen uptake (VO2 max and performance. However, the velocity at which VO 2 max occurs (vVO 2 max is a better indicator of performance than VO 2 max, and can be used to explain inter-individual differences in performance that VO 2 max cannot. It has been reported as a better predictor for running performance and it can be used to monitor athletes’ training for predicting optimal training intensity. This study investigated the validity and suitability of predicting VO2max and vVO2max of adult subjects on the basis of the performance of the 20mMST. Forty eight (25 male and 23 female physical education students performed, in random order, a laboratory based continuous horizontal treadmill test to determine VO2max, vVO 2 max and a 20mMST, with an interval of 3 days between each test. The results revealed significant correlations between the number of shuttles in the 20mMSFT and directly determined VO 2 max (r = 0.87, p<0.05 and vVO 2 max (r = 0.93, p<0.05. The equation for prediction of VO 2 max was y = 0.0276x + 27.504, whereas for vVO 2 max it was y = 0.0937x + 6.890. It can be concluded that the 20mMSFT can accurately predict VO 2 max and vVO 2 max and this field test can provide useful information regarding aerobic fitness of adults. The predicted vVO 2 max can be used in monitoring athletes, especially in determining optimal training intensity.

  10. Iodine-catalyzed coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, J.T.; Duffield, J.E.; Davidson, M.G. (Amoco Oil Company, Naperville, IL (USA). Research and Development Dept.)

    Coals of two different ranks were liquefied in high yields using catalytic quantities of elemental iodine or iodine compounds. Iodine monochloride was found to be especially effective for enhancing both coal conversion and product quality. It appears that enhancement in coal conversion is due to the unique ability of iodine to catalyze radical-induced bond scission and hydrogen addition to the coal macromolecule or coal-derived free radicals. The starting iodine can be fully accounted for in the reaction products as both organic-bound and water-soluble forms. Unconverted coal and the heavy product fractions contain the majority of the organic-bound iodine. The results of iodine-catalyzed coal reactions emphasize the need for efficient hydrogen atom transfer along with bond scission to achieve high conversion and product quality. 22 refs., 12 tabs.

  11. Catalyst dispersion and activity under conditions of temperature- staged liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Davis, A.; Schobert, H.H.; Mitchell, G.D.; Artok, L.

    1991-09-01

    The general objectives of this research are (1) to investigate the use of highly dispersed catalysts for the pretreatment of coal by mild hydrogenation, (2) to identify the active forms of the catalysts under reaction conditions and (3) to clarify the mechanisms of catalysis. The ultimate objective is to ascertain if mild catalytic hydrogenation resulting in very limited or no coal solubilization is an advantageous pretreatment for the transformation of coal into transportable fuels. The experimental program will focus upon the development of effective methods of impregnating coal with catalysts, evaluating the conditions under which the catalysts are most active and establishing the relative impact of improved impregnation on conversion and product distributions obtained from coal hydrogenation. Liquefaction experiments of solvent-treated and untreated Blind Canyon (DECS-6) and Texas lignite (DECS-1) have been performed using ammonium tetrathiomolybdate (ATTM) and bis (dicarbonylcyclopentadienyl) iron (CPI) as catalyst precursors using temperature-staged conditions (275{degrees}C, 30 min; 425{degrees}C, 30 min). Solid state {sup 13}C NMR analysis was carried out for each coal and for selected residues. 12 refs., 14 figs., 9 tabs.

  12. Earthquake Risk - MO 2013 Liquefaction Potential St. Louis Area (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — Soil liquefaction potential was determined using existing surficial materials and floodplain alluvium maps. Alluvium deposits and artificial deposits are generally...

  13. Analysis and Evaluation of the Liquefaction on Layered Soil

    International Nuclear Information System (INIS)

    Liquefaction potential on the specific site of nuclear power plant is analyzed and reviewed. The layered site for this study consists of silt and sand. Based on the limited available soil data, maximum shear strength at critical locations using Seed and Idriss method and computer program SHAKE is calculated, and liquefaction potential is reviewed. As seismic input motion used for the assessment of liquefaction, the artificial time history compatible with the US NRC Regulatory Guide 1.60 is used. Assessment results of the liquefaction are validated by analyzing to the other typical soil foundations which can show the effects on the foundation depth and soil data. (authors)

  14. Thermal modelling of the multi-stage heating system with variable boundary conditions in the wafer based precision glass moulding process

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Hattel, Jesper Henri; Hansen, Hans Nørgaard;

    2012-01-01

    of the multi-stage heating system in a wafer based glass moulding process. In order to investigate the importance of the radiation from the interior and surface of the glass, a simple finite volume code is developed to model one dimensional radiation–conduction heat transfer in the glass wafer for an...... different pressures. Finally, the three-dimensional modelling of the multi-stage heating system in the wafer based glass moulding process is simulated with the FEM software ABAQUS for a particular industrial application for mobile phone camera lenses to obtain the temperature distribution in the glass wafer...... of the heating system in the glass moulding process considering detailed heating mechanisms therefore plays an important part in optimizing the heating system and the subsequent pressing stage in the lens manufacturing process.The current paper deals with three-dimensional transient thermal modelling...

  15. The development of time-resolved multi-stage shifter for GRAINE project, cosmic gamma-ray observation with emulsion telescope

    International Nuclear Information System (INIS)

    We are furthering GRAINE project which is the project of 10 MeV-100 GeV cosmic gamma-ray observation with precise (0.08deg(a)1-2GeV) and polarization sensitive large aperture area (∼10 m2) emulsion telescope by repeating long duration balloon flights. To determine gamma-ray direction on celestial coordinates, time resolution below a second is needed to emulsion tracks. We created new timestamp method 'multi-stage shifter' which brings a time resolution below a second a emulsion tracks with high reliability and high efficiency for large scale and inaccessible emulsion experiment. An overview and a status of multi-stage shifter development are described. (author)

  16. Power supply to the air-core transformer coils of a large tokamak by a multi-stage inductive energy storage system

    International Nuclear Information System (INIS)

    The multi-stage inductive energy storage circuits have been studied by a simplex method to obtain an optimum design of a power supply system for the air-core transformer coils of a large tokamak. Parameters of the electric circuits subject to various constraints were determined by the method. The multi-stage inductive energy storage system is better than the single-stage system in viewpoint of the energy necessary to build up the plasma current. Circuit analysis including the plasma was made for the two cases: (1) the plasma resistance given as a function of time, and (2) the plasma resistance determined from a zero-dimensional plasma model. The plasma self-inductance and its time variation play an important role during the build up of plasma current, and influence largely on the optimal circuit parameters. (auth.)

  17. Flat-topped and low loss silicon-nanowire-type optical MUX/DeMUX employing multi-stage microring resonator assisted delayed Mach-Zehnder interferometers.

    Science.gov (United States)

    Jeong, Seok-Hwan; Tanaka, Shinsuke; Akiyama, Tomoyuki; Sekiguchi, Shigeaki; Tanaka, Yu; Morito, Ken

    2012-11-01

    We propose a novel silicon-nanowire-type multiplexer (MUX) / demultiplexer (DeMUX) based on multi-stage microring resonator assisted delayed Mach-Zehnder interferometers. It is theoretically shown that spectral flatness of DeMUX spectra can be accomplished by incorporating nonlinear phase behaviors of microring resonators into the multi-stage delayed Mach-Zehnder interferometers. We experimentally demonstrate flat-topped 400GHz-spacing 1 × 4Ch demultiplexing operation in the fabricated device with silicon-nanowire waveguides. Furthermore, by integrating the micro-heaters on the top cladding layer of the fabricated device, the DeMUX performance is upgraded in terms of excess loss (flatness at each channel grid. PMID:23187415

  18. Performance of a modified multi-stage bubble column reactor for lead(II) and biological oxygen demand removal from wastewater using activated rice husk

    International Nuclear Information System (INIS)

    The excessive release of wastewater into the environment is a major concern worldwide. Adsorption is the one of the most effective technique for treatment of wastewater. In this work activated carbon prepared from rice husk has been used as an adsorbent. In the present investigation a three phase modified multi-stage bubble column reactor (MMBCR) has been designed to remove lead and biochemical oxygen demand (BOD) from wastewater by means of its adsorption onto the surface of activated rice husk. The multi-staging has been achieved by hydrodynamically induced continuous bubble generation, breakup and regeneration. Under optimum conditions, maximum lead and BOD reduction achieved using activated rice husk was 77.15% and 19.05%, respectively. Results showed MMBCR offered appreciated potential benefits for lead removal from wastewater and BOD removal, even this extent of removal is encouraging and the MMBCR can be used a pretreatment unit before subjecting the wastewater to biological treatment

  19. Cryogenic hydrogen-induced air liquefaction technologies

    Science.gov (United States)

    Escher, William J. D.

    1990-01-01

    Extensively utilizing a special advanced airbreathing propulsion archives database, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen-induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented. The resulting assessment report is summarized. Technical findings are presented relating the status of air liquefaction technology, both as a singular technical area, and also that of a cluster of collateral technical areas including: compact lightweight cryogenic heat exchangers; heat exchanger atmospheric constituents fouling alleviation; para/ortho hydrogen shift conversion catalysts; hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; hydrogen recycling using slush hydrogen as heat sink; liquid hydrogen/liquid air rocket-type combustion devices; air collection and enrichment systems (ACES); and technically related engine concepts.

  20. Whole Algae Hydrothermal Liquefaction Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, Mary J.; Davis, Ryan; Jones, Susanne B.; Zhu, Yunhua

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

  1. Corrosion studies in coal liquefaction plants

    Energy Technology Data Exchange (ETDEWEB)

    Keiser, J.R.; Olsen, A.R.

    1983-01-01

    During the past few years, four direct coal liquefaction pilot plants have been operated in the United States in order to evaluate several liquefaction processes. Oak Ridge National Laboratory has provided assistance to pilot plant operators in assessing materials performance through supply and examination of corrosion samples, on-site examination of equipment, and analysis of failed pilot plant components in our laboratory. This paper describes these examinations which have revealed chloride and polythionic acid stress corrosion cracking, water-side pitting, sulfidation, and a chloride-related acid attack. The results of these analyses have helped identify corrosion problems and make proper material selections or design changes, and the results have provided designers of demonstration and commercial plants with information useful in selecting materials for the proposed plants.

  2. Metallography for coal liquefaction pilot plants

    International Nuclear Information System (INIS)

    During the past few years, four direct coal liquefaction pilot plants have been operated in the United States to evaluate several liquefaction processes. Oak Ridge National Laboratory has assisted pilot plant operators by assessing materials performance through supply and examination of corrosion samples, on-site examination of equipment, and analysis of failed pilot plant components in our laboratory. This paper describes these examinations, which have revealed chloride and polythionic acid stress corrosion cracking, water-side pitting, sulfidation, and a chloride-related acid attack. The results of these analyses have helped identify corrosion problems and make proper material selections or design changes, and the results have provided designers of demonstration and commercial plants with information useful in selecting materials for the proposed plants

  3. Multi-stage open peer review: scientific evaluation integrating the strengths of traditional peer review with the virtues of transparency and self-regulation

    Directory of Open Access Journals (Sweden)

    Ulrich ePöschl

    2012-07-01

    Full Text Available The traditional forms of scientific publishing and peer review do not live up to the demands of efficient communication and quality assurance in today’s highly diverse and rapidly evolving world of science. They need to be advanced and complemented by interactive and transparent forms of review, publication, and discussion that are open to the scientific community and to the public.The advantages of open access, public peer review and interactive discussion can be efficiently and flexibly combined with the strengths of traditional scientific peer review. Since 2001 the benefits and viability of this approach are clearly demonstrated by the highly successful interactive open access journal Atmo¬sphe¬ric Chemistry and Physics (ACP and a growing number of sister journals launched and operated by the European Geosciences Union (EGU and the open access publisher Copernicus.The interactive open access journals are practicing an integrative multi-stage process of publication and peer review combined with interactive public discussion, which effectively resolves the dilemma between rapid scientific exchange and thorough quality assurance. The high efficiency and predictive validity of multi-stage open peer review have been confirmed in a series of dedicated studies by evaluation experts from the social sciences, and the same or similar concepts have recently also been adopted in other disciplines, including the life sciences and economics. Multi-stage open peer review can be flexibly adjusted to the needs and peculiarities of different scientific communities. Due to the flexibility and compatibility with traditional structures of scientific publishing and peer review, the multi-stage open peer review concept enables efficient evolution in scientific communication and quality assurance. It has the potential for swift replacement of hidden peer review as the standard of scientific quality assurance, and it provides a basis for open evaluation in

  4. Liquefaction necrosis of mitral annulus calcification.

    Science.gov (United States)

    Mallisho, Maram; Hwang, Inyong; Alsafwah, Shadwan F

    2014-01-01

    Liquefaction necrosis of the mitral annulus is a rare form of peri-annular calcification that the cardiologist must be able to differentiate from other cardiac masses. It classically looks like a round or semilunar hyperdense mass with a denser peripheral rim, located mainly in the posterior mitral annulus. The case we report here was diagnosed in a 78-year-old female patient who presented with an embolic cerebral vascular accident, which raises the question of its etiopathogenic responsibility. PMID:24420234

  5. Ultrasound-assisted liquefaction of honey

    OpenAIRE

    Kabbani, Dania

    2014-01-01

    Crystallization of honey is a common process of the honey industry. Liquid honey is preferred by most of the consumers and by food companies for ease of handling. Honey is commonly heated during pasteurization in order to liquefy it and inhibit any microbial growth. However, heating can degrade the main quality parameters of honey. A better method compared to expensive and time-consuming heating is desirable to pasteurize, accelerate the liquefaction and retard the crystallization process...

  6. Analysis of Non-Enzymatically Glycated Peptides: Neutral-Loss Triggered MS3 Versus Multi-Stage Activation Tandem Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qibin; Petyuk, Vladislav A.; Schepmoes, Athena A.; Orton, Daniel J.; Monroe, Matthew E.; Yang, Feng; Smith, Richard D.; Metz, Thomas O.

    2008-10-15

    Non-enzymatic glycation of tissue proteins has important implications in the development of complications of diabetes mellitus. While electron transfer dissociation (ETD) has been shown to outperform collision-induced dissociation (CID) in sequencing glycated peptides by tandem mass spectrometry, ETD instrumentation is not yet available in all laboratories. In this study, we evaluated different advanced CID techniques (i.e., neutral-loss triggered MS3 and multi-stage activation) during LC-MSn analyses of Amadori-modified peptides enriched from human serum glycated in vitro. During neutral-loss triggered MS3 experiments, MS3 scans triggered by neutral-losses of 3 H2O or 3 H2O + HCHO produced similar results in terms of glycated peptide identifications. However, neutral losses of 3 H2O resulted in significantly more glycated peptide identifications during multi-stage activation experiments. Overall, the multi-stage activation approach produced more glycated peptide identifications, while the neutral-loss triggered MS3 approach resulted in much higher specificity. Both techniques offer a viable alternative to ETD for identifying glycated peptides when that method is unavailable.

  7. Comparing a single-stage geocoding method to a multi-stage geocoding method: how much and where do they disagree?

    Directory of Open Access Journals (Sweden)

    Rice Kenneth

    2007-03-01

    Full Text Available Abstract Background Geocoding methods vary among spatial epidemiology studies. Errors in the geocoding process and differential match rates may reduce study validity. We compared two geocoding methods using 8,157 Washington State addresses. The multi-stage geocoding method implemented by the state health department used a sequence of local and national reference files. The single-stage method used a single national reference file. For each address geocoded by both methods, we measured the distance between the locations assigned by each method. Area-level characteristics were collected from census data, and modeled as predictors of the discordance between geocoded address coordinates. Results The multi-stage method had a higher match rate than the single-stage method: 99% versus 95%. Of 7,686 addresses were geocoded by both methods, 96% were geocoded to the same census tract by both methods and 98% were geocoded to locations within 1 km of each other by the two methods. The distance between geocoded coordinates for the same address was higher in sparsely populated and low poverty areas, and counties with local reference files. Conclusion The multi-stage geocoding method had a higher match rate than the single-stage method. An examination of differences in the location assigned to the same address suggested that study results may be most sensitive to the choice of geocoding method in sparsely populated or low-poverty areas.

  8. Triassic to Cenozoic multi-stage intra-plate deformation focused near the Bogd Fault system, Gobi Altai, Mongolia

    Institute of Scientific and Technical Information of China (English)

    Douwe J.J. van Hinsbergen; Dickson Cunningham; Gijsbert B. Straathof; Morgan Ganerød; Bart W.H. Hendriks; Arjan H. Dijkstra

    2015-01-01

    The Gobi Altai region of southern Mongolia has been in the Eurasian plate interior since the mid-Mesozoic, yet has experienced episodic phases of deformation since that time. In this paper, we docu-ment field evidence to characterize and date the intra-plate tectonic history of the Gobi Altai region from the Triassic to the present. To this end, we provide detailed mapping of the structure and stratigraphy of the eastern flanks of Mt. Ih Bogd that contains the widest variety of rock-time units in the area. We carry out geochronological analysis of basaltic lavas and basement granite in the area. We demonstrate that a crystalline basement with a 502 ? 8 Ma granitoid (U/Pb) underwent two phases of basin formation in the Mesozoic, which we date with new 40Ar/39Ar lava ages of 218.5 ? 1.5, 123.2 ? 0.7 and 124.8 ? 1.2 Ma, respectively. Both phases are linked to deposition of fluvio-lacustrine sediments and trap-like basaltic volcanics, with cumulative thicknesses of 1000e1500 m. Both basins were likely north-facing half-gra-bens that developed under wNeS extension, but were subsequently overthrusted by Paleozoic and older crystalline basement during a less well constrained, but likely mid-Cretaceous phase of NeS shortening and basin inversion. Our results are consistent with recent seismic imaging of rift basins w100 km to the NE of the study area where a similar history was reconstructed. The multiple phases of intra-plate deformation appear to have parallel structural trends, most likely due to reactivated Paleozoic base-ment structures created during the original terrane amalgamation of the Central Asian Orogenic Belt continental crust. This strong basement heterogeneity may predispose it to reactivation, and make it sensitive to changes in the overall stress field of the Eurasian plate driven by forces at its margins and base. Detailed study of Mongolia’s multi-stage tectonic history may thus provide a key proxy for the long-term dynamics of the Eurasian plate. In

  9. Simulation of a multi-stage adiabatic reactor with inter-stage quenching for dimethyl ether synthesis

    Directory of Open Access Journals (Sweden)

    Bai Ziyang

    2014-01-01

    Full Text Available Adiabatic fixed-bed reactor has proven commercially successful in large scale production of catalytic dehydration of methanol to dimethyl ether. A one dimensional pseudo-homogeneous model of an industrial reactor of dimethyl ether synthesis has been established. To verify the proposed model, the simulation results have been compared to available data from an industrial reactor. A good agreement has been found between them. The distribution of the catalyst bed temperature and concentration of each component was obtained under conditions of inlet temperature 260°C, reaction pressure 1.2MPa and gaseous hourly space velocity 950.7 h-1. With inlet catalyst bed temperature 240-280°C, operating pressure 0.6-1.8MPa and gaseous hourly space velocity 831.8-1069.5 h-1, the influence of these reaction conditions on temperature distribution of the reactor catalytic bed, outlet methanol conversion and the dimethyl ether yield were calculated. The results show that, with the rise of inlet temperature (240-280°C and operating pressure (0.6-1.8MPa, the outlet conversion of methanol, the hot spot temperature and the DME yield increased. The increase of gaseous hourly space velocity (831.8-1069.5 h-1 leads to a decrease in the hot spot temperature of catalytic bed and the outlet conversion of methanol. But the DME yield rise initially and then descend.

  10. Survey study of the efficiency and economics of hydrogen liquefaction

    Science.gov (United States)

    1975-01-01

    The production of liquid hydrogen, with coal as the starting material, is reported. The minimum practicable energy and cost for liquefaction of gaseous hydrogen in the 1985-2000 time period is presented to investigate the possible benefits of the integration of coal gasification processes with the liquefaction process.

  11. Co-liquefaction of micro- and macroalgae in subcritical water.

    Science.gov (United States)

    Jin, Binbin; Duan, Peigao; Xu, Yuping; Wang, Feng; Fan, Yunchang

    2013-12-01

    Co-liquefaction of microalgae (Spirulina platensis, SP) and macroalgae (Entermorpha prolifera, EP) was studied in subcritical water by using a stainless-steel batch reactor at different temperature (250 to 370°C), time (5 to 120 min), SP/EP mass ratio (0 to 100%), and water/algae mass ratio (1:1 to 6:1). The results suggested that a positive synergetic effect existed during the co-liquefaction of SP and EP, and this synergetic effect was dependent on reaction conditions. Co-liquefaction alleviated the severe reaction conditions compared to the separate liquefaction of SP and EP and also promoted the in situ deoxygenation of the bio-oil. The higher-heating-value of bio-oil produced from the co-liquefaction of SP and EP (wSP:wEP=1) is 35.3 MJ/kg. The energy recovery from the co-liquefaction is larger than the average value from the separate liquefaction of SP and EP. Co-liquefaction did not affect the molecular composition but affect the relative amount of each component in the bio-oil. PMID:24096026

  12. Chemical aspects of coal liquefaction by oxygen in alkaline slurries

    Energy Technology Data Exchange (ETDEWEB)

    Andreozzi, R.; Caprio, V.; Insola, A.

    1988-03-01

    Coal liquefaction by oxygen in alkaline slurries is reviewed from the chemical point of view. Available information is considered in the light of questions relating to coal liquefaction. A lack of chemical knowledge in this area is noted, especially on model compounds. 72 refs.

  13. An optimal design methodology for large-scale gas liquefaction

    International Nuclear Information System (INIS)

    Highlights: ► Configuration selection and parametric optimization carried out simultaneously for gas liquefaction systems. ► Effective Heat Transfer Factor proposed to indicate the performance of heat exchanger networks. ► Relatively high exergy efficiency of liquefaction process achievable under some general assumptions. -- Abstract: This paper presents an optimization methodology for thermodynamic design of large scale gas liquefaction systems. Such a methodology enables configuration selection and parametric optimization to be implemented simultaneously. Exergy efficiency and genetic algorithm have been chosen as an evaluation index and an evaluation criterion, respectively. The methodology has been applied to the design of expander cycle based liquefaction processes. Liquefaction processes of hydrogen, methane and nitrogen are selected as case studies and the simulation results show that relatively high exergy efficiencies (52% for hydrogen and 58% for methane and nitrogen) are achievable based on very general consumptions.

  14. Assessment of Soil Liquefaction Potential Based on Numerical Method

    DEFF Research Database (Denmark)

    Choobasti, A. Janalizadeh; Vahdatirad, Mohammad Javad; Torabi, M.;

    2012-01-01

    Paying special attention to geotechnical hazards such as liquefaction in huge civil projects like urban railways especially in susceptible regions to liquefaction is of great importance. A number of approaches to evaluate the potential for initiation of liquefaction, such as Seed and Idriss...... accuracy, also they lack the potential to predict the pore pressure developed in the soil. Therefore, it is necessary to carry out a ground response analysis to obtain pore pressures and shear stresses in the soil due to earthquake loading. Using soil historical, geological and compositional criteria, a...... zone of the corridor of Tabriz urban railway line 2 susceptible to liquefaction was recognized. Then, using numerical analysis and cyclic stress method using QUAKE/W finite element code, soil liquefaction potential in susceptible zone was evaluated based on design earthquake....

  15. Production of Advanced Biofuels via Liquefaction - Hydrothermal Liquefaction Reactor Design: April 5, 2013

    Energy Technology Data Exchange (ETDEWEB)

    Knorr, D.; Lukas, J.; Schoen, P.

    2013-11-01

    This report provides detailed reactor designs and capital costs, and operating cost estimates for the hydrothermal liquefaction reactor system, used for biomass-to-biofuels conversion, under development at Pacific Northwest National Laboratory. Five cases were developed and the costs associated with all cases ranged from $22 MM/year - $47 MM/year.

  16. Titanite-scale insights into multi-stage magma mixing in Early Cretaceous of NW Jiaodong terrane, North China Craton

    Science.gov (United States)

    Jiang, Peng; Yang, Kui-Feng; Fan, Hong-Rui; Liu, Xuan; Cai, Ya-Chun; Yang, Yue-Heng

    2016-08-01

    REEs contents, and Th/U ratios, but reveal high F contents (0.35-0.76 wt.%) and extreme high Nb/Ta ratios (up to 65.6). Such titanites are perceived to record late-stage mingling, during which F-rich and REE-poor hybrid granodioritic magma squeezed into the incompletely consolidated dioritic enclaves with accompanying fluid-rock interaction. Combining our results with previous isotopic studies, a new genetic model for Guojialing-type granodiorites is envisaged, which involves multi-stage magma mixing between Archean lower crust-derived felsic magma and mafic lower crust-derived dioritic magma, triggered by mantle-derived mafic magma underplating during the course of asthenospheric upwelling in Early Cretaceous. Such process further implicates the reactivation of Jiaodong lower crust during the destruction of NCC.

  17. Influence of alkali catalyst on product yield and properties via hydrothermal liquefaction of barley straw

    International Nuclear Information System (INIS)

    Barley straw was successfully converted to bio-crude by hydrothermal liquefaction at temperature of 280–400 °C using an alkali catalyst (K2CO3) in our previous work, and the maximum bio-crude yield was obtained at 300 °C. This paper extends previous work on studying liquefaction behavior of barley straw without and with K2CO3 at 300 °C. The effect of alkali catalyst on product distribution was investigated, and a detailed analysis of characteristic properties of bio-crude and solid residue has been performed by an elemental analyzer, FTIR (Fourier Transform infrared spectroscopy), TGA (thermogravimetric analysis) and GC-MS. The addition of K2CO3 increased the bio-crude yield to 34.85 wt%, and inhibited solid residue formation. Moreover, the bio-crude produced in the presence of a catalyst had better properties, in terms of higher heating value and lower O/C. GC-MS analysis showed that the major compounds identified in bio-crude were carboxylic acids, phenolic compounds and ketones, irrespective of whether the catalyst was used. However, the distribution and relative content of these compounds were different. More phenolic compounds and less carboxylic acids were observed in the catalytic run. In addition, the carbon and energy recovery with the addition of K2CO3 were twice as high as that without catalyst, indicating an improvement in energy efficiency. - Highlights: • The effect of an alkali catalyst (K2CO3) on HTL (hydrothermal liquefaction) of barley straw was studied. • High bio-crude yield (34.85 wt%) and energy recovery were achieved with K2CO3. • Comprehensive analysis of bio-crude and solid have been performed. • Bio-crude contained more phenolic compounds and less carboxylic acids with K2CO3. • Deoxygenation reactions were enhanced with K2CO3

  18. Pyrolysis characteristics and kinetics of residue from China Shenhua industrial direct coal liquefaction plant

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Pyrolysis behavior of direct coal liquefaction residue (DCLR) and its four fractions were investigated. • The inorganic components in DCLR have catalytic effects on both pyrolysis and gasification. • The pyrolysis activation energy of DCLR obtained from DAEM is in the range of 68.4–142.9 kJ/mol. - Abstract: The objective of this work is to comprehensively investigate the pyrolysis characteristics of the direct coal liquefaction residue (DCLR) from China Shenhua industrial direct coal liquefaction plant. The pyrolysis experiments were conducted with TGA under four kinds of atmospheres (N2, 10% H2, CO2, and air) and a fixed bed reactor in N2. Two obvious mass loss peaks at 470 °C and 770 °C, are mainly attributed to decomposition of the organic matrix and inorganic compounds in DCLR, respectively. The four fractions extracted from DCLR (hexane soluble fraction (HS), asphaltene fraction (A), preasphaltene (PA), and tetrahydrofuran insoluble (THFIS)) were studied separately by TG-FTIR, and the results show that the interaction among the fractions is unfavorable for the evolution of volatile matter. In addition, the inorganic compounds in DCLR exhibit catalysis behaviors on both pyrolysis under N2 and gasification under CO2. Moreover, the properties of DCLR pyrolysis products obtained from the fixed bed reactor were analyzed by GC–MS, SEM, and FTIR. Finally, a kinetic analysis of DCLR pyrolysis was performed using the distributed activation energy model (DAEM). The activation energy distribution of DCLR follows an approximate Gaussian distribution with a mean activation energy of 87.6 kJ/mol

  19. The direct liquefaction proof of concept program

    Energy Technology Data Exchange (ETDEWEB)

    Comolli, A.G.; Lee, L.K.; Pradhan, V.R.; Stalzer, R.H. [New York & Puritan Avenues, Lawrenceville, NJ (United States)

    1995-12-31

    The goal of the Proof of Concept (POC) Program is to develop Direct Coal Liquefaction and associated transitional technologies towards commercial readiness for economically producing premium liquid fuels from coal in an environmentally acceptable manner. The program focuses on developing the two-stage liquefaction (TSL) process by utilizing geographically strategic feedstocks, commercially feasible catalysts, new prototype equipment, and testing co-processing or alternate feedstocks and improved process configurations. Other high priority objectives include dispersed catalyst studies, demonstrating low rank coal liquefaction without solids deposition, improving distillate yields on a unit reactor volume basis, demonstrating ebullated bed operations while obtaining scale-up data, demonstrating optimum catalyst consumption using new concepts (e.g. regeneration, cascading), producing premium products through on-line hydrotreating, demonstrating improved hydrogen utilization for low rank coals using novel heteroatom removal methods, defining and demonstrating two-stage product properties for upgrading; demonstrating efficient and economic solid separation methods, examining the merits of integrated coal cleaning, demonstrating co-processing, studying interactions between the preheater and first and second-stage reactors, improving process operability by testing and incorporating advanced equipment and instrumentation, and demonstrating operation with alternate coal feedstocks. During the past two years major PDU Proof of Concept runs were completed. POC-1 with Illinois No. 6 coal and POC-2 with Black Thunder sub-bituminous coal. Results from these operations are continuing under review and the products are being further refined and upgraded. This paper will update the results from these operations and discuss future plans for the POC program.

  20. Piezometer Performance at Wildlife Liquefaction Site, California

    OpenAIRE

    Scott, Ronald F.; Hushmand, B.

    1995-01-01

    In response to an urgent need for field data from instrumented liquefaction sites, the U.S. Geological Survey in 1982 selected and instrumented a site in southern California called the Wildlife site. Two accelerometers (one at ground surface and one at a depth of 7.5 m) and six electrical pore-pressure transducers (five in a liquefiable silty sand layer) were placed at the site. The November 1987 Superstition Hills earthquake triggered sand boils and the desired instrumental response by gener...

  1. Hydrothermal Liquefaction Treatment Preliminary Hazard Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Peter P.; Wagner, Katie A.

    2015-08-31

    A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular hydrothermal liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public.

  2. Free-radical kinetics of coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M.; Smith, J.M.; McCoy, B.J.

    1994-07-16

    A rate expression with first- and second-order terms in the concentration of extractable compounds in solid coal particles is derived from a fundamental free-radical mechanism. The expression was suggested empirically by prior experiments for coal liquefaction in the presence of a hydrogen-donor solvent. Radical reactions are considered to occur in both coal and in solvent. The long-chain approximation justifies the neglect of initiation, hydrogen abstraction, and termination rates as quantitatively insignificant relative to propagation reaction rates.

  3. Gastrointestinal stromal tumor: acute liquefaction necrosis

    International Nuclear Information System (INIS)

    Stromal tumors, together with leiomyomas and schwannomas, constitute the sol-called mesenchymal tumors of the intestinal wall. Stromal tumors are histologically differentiated from other mesenchymal tumors in that they are derived from the interstitial cell of Cajal. These tumors can be encountered at any point throughout the entire digestive tract, by usually develop in stomach or small bowel. the clinical presentation in anemia secondary to gastrointestinal bleeding. Acute abdomen due to perforation or necrosis is rare. We present a case of jejunal stromal tumors with massive liquefaction necrosis, a circumstance that resulted in the peculiar radiological features observed. (Author) 9 refs,

  4. Chemical analysis and mutational assay of distilled oils from the H-coal direct liquefaction process: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B.W.; Later, D.W.; Wright, C.W.; Stewart, D.L.

    1985-01-01

    Samples from the H-Coal process, a catalytic, single-stage, coal liquefaction technology, were chemically characterized and screened for microbial mutagenicity. For these investigations, a blend of light and heavy H-Coal process oils was fractionally distilled into 50/sup 0/F boiling point cuts. The chemical analyses and biological testing results presented in this status report deal primarily with the blended material and the distillate fractions boiling above 650/sup 0/F. Results from the microbial mutagenicity assays indicated that onset of biological activity in the crude materials occurred above 700/sup 0/F. Similar trends have been observed for Solvent Refined Coal (SRC) I, SRC II, Integrated Two-Stage Liquefaction (ITSL) and Exxon EDS process materials. After chemical class fractionation, the primary source of microbial mutagenicity of the crude boiling point cuts was the nitrogen-containing polycyclic aromatic compound (N-PAC) fractions. Amino polycyclic aromatic hydrocarbons (amino-PAH) were present at sufficient concentration levels in the N-PAC fractions to account for the observed mutagenic responses. In general, the chemical composition of the H-Coal materials studied was similar to that of other single-stage liquefaction materials. The degree of alkylation in these materials was determined to be greater than in the SRC and less than in the EDS process distillate cuts. 13 references, 8 figures, 11 tables.

  5. A multi-stage heuristic algorithm for matching problem in the modified miniload automated storage and retrieval system of e-commerce

    Science.gov (United States)

    Wang, Wenrui; Wu, Yaohua; Wu, Yingying

    2016-04-01

    E-commerce, as an emerging marketing mode, has attracted more and more attention and gradually changed the way of our life. However, the existing layout of distribution centers can't fulfill the storage and picking demands of e-commerce sufficiently. In this paper, a modified miniload automated storage/retrieval system is designed to fit these new characteristics of e-commerce in logistics. Meanwhile, a matching problem, concerning with the improvement of picking efficiency in new system, is studied in this paper. The problem is how to reduce the travelling distance of totes between aisles and picking stations. A multi-stage heuristic algorithm is proposed based on statement and model of this problem. The main idea of this algorithm is, with some heuristic strategies based on similarity coefficients, minimizing the transportations of items which can not arrive in the destination picking stations just through direct conveyors. The experimental results based on the cases generated by computers show that the average reduced rate of indirect transport times can reach 14.36% with the application of multi-stage heuristic algorithm. For the cases from a real e-commerce distribution center, the order processing time can be reduced from 11.20 h to 10.06 h with the help of the modified system and the proposed algorithm. In summary, this research proposed a modified system and a multi-stage heuristic algorithm that can reduce the travelling distance of totes effectively and improve the whole performance of e-commerce distribution center.

  6. A multi-stage heuristic algorithm for matching problem in the modified miniload automated storage and retrieval system of e-commerce

    Science.gov (United States)

    Wang, Wenrui; Wu, Yaohua; Wu, Yingying

    2016-05-01

    E-commerce, as an emerging marketing mode, has attracted more and more attention and gradually changed the way of our life. However, the existing layout of distribution centers can't fulfill the storage and picking demands of e-commerce sufficiently. In this paper, a modified miniload automated storage/retrieval system is designed to fit these new characteristics of e-commerce in logistics. Meanwhile, a matching problem, concerning with the improvement of picking efficiency in new system, is studied in this paper. The problem is how to reduce the travelling distance of totes between aisles and picking stations. A multi-stage heuristic algorithm is proposed based on statement and model of this problem. The main idea of this algorithm is, with some heuristic strategies based on similarity coefficients, minimizing the transportations of items which can not arrive in the destination picking stations just through direct conveyors. The experimental results based on the cases generated by computers show that the average reduced rate of indirect transport times can reach 14.36% with the application of multi-stage heuristic algorithm. For the cases from a real e-commerce distribution center, the order processing time can be reduced from 11.20 h to 10.06 h with the help of the modified system and the proposed algorithm. In summary, this research proposed a modified system and a multi-stage heuristic algorithm that can reduce the travelling distance of totes effectively and improve the whole performance of e-commerce distribution center.

  7. Fused Mycobacterium tuberculosis multi-stage immunogens with an Fc-delivery system as a promising approach for the development of a tuberculosis vaccine.

    Science.gov (United States)

    Mosavat, Arman; Soleimanpour, Saman; Farsiani, Hadi; Sadeghian, Hamid; Ghazvini, Kiarash; Sankian, Mojtaba; Jamehdar, Saeid Amel; Rezaee, Seyed Abdolrahim

    2016-04-01

    Tuberculosis (TB) remains a major health problem worldwide. Currently, the Bacilli Calmette-Guérin (BCG) is the only available licensed TB vaccine, which has low efficacy in protection against adult pulmonary TB. Therefore, the development of a safe and effective vaccine against TB needs global attention. In the present study, a novel multi-stage subunit vaccine candidate from culture filtrate protein-10 (CFP-10) and heat shock protein X (HspX) of Mycobacterium tuberculosis fused to the Fc domain of mouse IgG2a as a selective delivery system for antigen-presenting cells (APCs) was produced and its immunogenicity assessed. The optimized gene constructs were introduced into pPICZαA expression vectors, and the resultant plasmids (pPICZαA-CFP-10:Hspx:Fcγ2a and pPICZαA-CFP-10:Hspx:His) were transferred into Pichia pastoris by electroporation. The identification of both purified recombinant fusion proteins was evaluated by SDS-PAGE and immunoblotting. Then the immunogenicity of the recombinant proteins with and without BCG was evaluated in BALB/c mice by assessing the level of IFN-γ, IL-12, IL-4, IL-17 and TGF-β cytokines. Both multi-stage vaccines (CFP-10:HspX:Fcγ2a and CFP-10:HspX:His) induced Th1-type cellular responses by producing high level of IFN-γ (272pg/mL, pBCG or CFP-10:HspX:His primed and boosted groups. Findings revealed that CFP-10:Hspx:Fcγ2a fusion protein can elicit strong Th1 antigen-specific immune responses in favor of protective immunity in mice and could provide new insight for introducing an effective multi-stage subunit vaccine against TB. PMID:26835592

  8. Steam pretreatment for coal liquefaction. Fourth quarterly report, 1 July 1991--30 September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Graff, R.A.; Balogh-Nair, V.

    1992-06-18

    Steam pretreatment is the reaction of coal with steam at temperatures well below those usually used for solubilization. The objective of the proposed work is to test the application of steam pretreatment to coal liquefaction. A 300 ml stirred autoclave for liquefaction tests is being installed. Pretreatment and extraction tests were made with Blind Canyon coal alone, mixed with Illinois No. 6 coal, impregnated with iron, and impregnated with iron and sulfided using phenyl disulfide. Measurements show an increase in volatiles yield and a decrease in extraction yield with catalyst addition. These results are not yet definitive, because both yields may be artificially decreased by insoluble residue from phenyl disulfide. About one ram of purified {alpha}-naphthylmethyl phenyl ether was prepared and an additional 0. 8 gram were synthesized. Steam pretreatment of the model compound {alpha}-benzylnaphthyl ether was repeated with a Pyrex liner for the reactor tube. No differences have yet appeared as a result of using this liner (compared to bare stainless steel), evidence against any catalytic wall effect.

  9. Assessment of liquefaction potential index for Mumbai city

    Directory of Open Access Journals (Sweden)

    J. Dixit

    2012-09-01

    Full Text Available Mumbai city is the financial capital of India and is fifth most densely populated city in the world. Seismic soil liquefaction is evaluated for Mumbai city in terms of the factors of safety against liquefaction (FS along the depths of soil profiles for different earthquakes with 2% probability of exceedance in 50 yr using standard penetration test (SPT-based simplified empirical procedure. This liquefaction potential is evaluated at 142 representative sites in the city using the borehole records from standard penetration tests. Liquefaction potential index (LPI is evaluated at each borehole location from the obtained factors of safety (FS to predict the potential of liquefaction to cause damage at the surface level at the site of interest. Spatial distribution of soil liquefaction potential is presented in the form of contour maps of LPI values. As the majority of the sites in the city are of reclaimed land, the vulnerability of liquefaction is observed to be very high at many places.

  10. Effect of in-situ solvent soaking and heating pre-treatment on coal conversion and oil yield during liquefaction of demineralized low-rank Malaysian coal

    Energy Technology Data Exchange (ETDEWEB)

    M.A.M. Ishak; M.F. Abdullah; K. Ismail; M.O.A. Kadir; A.R. Mohamed [University Technology MARA, Perlis (Malaysia). Fuel Combustion Research Laboratory, Faculty of Applied Sciences

    2005-07-01

    The effect of in-situ solvent soaking and heating (SSH) pre-treatment on demineralized low-rank Malaysian coal towards coal conversion and oil yield during direct liquefaction was investigated. Demineralization of coal was carried out by leaching with strong protic acids such as HCl, HF and HNO{sub 3} whereby more than 95 % of mineral content in the coal was reduced. Apparently, the mineral matter that was removed by the HCl treatment (i.e. cationics) exhibits more catalytic effect during the liquefaction process. The reduction in the mineral content increased the coal porosity that enabled the solvent to penetrate into the coal macropores during the SSH pre-treatment process. The results of liquefaction on the pre-treated SSH demineralized coal at 420{sup o}C and at 4 MPa, however show comparable amount of coal conversion with slightly lower amount of oil yield being obtained with comparison to the raw and SSH-raw coals. Thus, besides the in-situ solvent soaking and heating pre-treatment, the presence of mineral matters in coal prove to be beneficial during coal liquefaction process.

  11. Earthquake Risk - EARTHQUAKE_LIQUEFACTION_POTENTIAL_MM81_IN: Liquefaction Potential of Surficial Materials in Indiana (Indiana Geological Survey, 1:500,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — EARTHQUAKE_LIQUEFACTION_POTENTIAL_MM81_IN is a polygon shapefile that shows highly generalized categories (low, moderate, and high) of liquefaction potential, based...

  12. Combustion, pyrolysis, gasification, and liquefaction of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Reed, T.B.

    1980-09-01

    All the products now obtained from oil can be provided by thermal conversion of the solid fuels biomass and coal. As a feedstock, biomass has many advantages over coal and has the potential to supply up to 20% of US energy by the year 2000 and significant amounts of energy for other countries. However, it is imperative that in producing biomass for energy we practice careful land use. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed-bed combustion on a grate or the fluidized-bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products - gas, wood tars, and charcoal - can be used. Gasification of biomass with air is perhaps the most flexible and best-developed process for conversion of biomass to fuel today, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  13. Direct liquefaction proof-of-concept facility

    Energy Technology Data Exchange (ETDEWEB)

    Alfred G. Comolli; Peizheng Zhou; HTI Staff

    2000-01-01

    The main objective of the U.S. DOE, Office of Fossil Energy, is to ensure the US a secure energy supply at an affordable price. An integral part of this program was the demonstration of fully developed coal liquefaction processes that could be implemented if market and supply considerations so required, Demonstration of the technology, even if not commercialized, provides a security factor for the country if it is known that the coal to liquid processes are proven and readily available. Direct liquefaction breaks down and rearranges complex hydrocarbon molecules from coal, adds hydrogen, and cracks the large molecules to those in the fuel range, removes hetero-atoms and gives the liquids characteristics comparable to petroleum derived fuels. The current processes being scaled and demonstrated are based on two reactor stages that increase conversion efficiency and improve quality by providing the flexibility to adjust process conditions to accommodate favorable reactions. The first stage conditions promote hydrogenation and some oxygen, sulfur and nitrogen removal. The second stage hydrocracks and speeds the conversion to liquids while removing the remaining sulfur and nitrogen. A third hydrotreatment stage can be used to upgrade the liquids to clean specification fuels.

  14. Combustion, pyrolysis, gasification, and liquefaction of biomas

    Science.gov (United States)

    Reed, T. B.

    1980-09-01

    The advantages of biomass as a feedstock are examined and biomass conversion techniques are described. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed bed combustion on a grate or the fluidized bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products gas, wood tars, and charcoal can be used. Gasification of biomass with air is perhaps the most flexible and best developed process for conversion of biomass to fuel, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  15. Vibrating Liquefaction Experiment and Mechanism Study in Saturated Granular Media

    Institute of Scientific and Technical Information of China (English)

    Li Jianhua; Xu Ming; Ju Haiyan; Zhao Jiangqian; Huang Hongyuan; Sun Yezhi

    2006-01-01

    By the vibrating liquefaction experiment of tailings and fine-ores of iron, it is observed and noted that the change of pore water pressure when the vibrating liquefaction takes place. Based on relevant suppositions, the equation of wave propagation in saturated granular media is obtained. This paper postulates the potential vector equation and the velocity expression of three kinds of body waves under normal conditions.Utilizing the wave theory and the experimental results, the influence of three body waves on pore water pressure and granules has been analyzed in detail. This revealed the rapid increment mechanism of pore water pressure and the wave mechanism of vibrating liquefaction.

  16. A Review of Hydrothermal Liquefaction Bio-Crude Properties and Prospects for Upgrading to Transportation Fuels

    Directory of Open Access Journals (Sweden)

    Jerome A. Ramirez

    2015-07-01

    Full Text Available Hydrothermal liquefaction (HTL presents a viable route for converting a vast range of materials into liquid fuel, without the need for pre-drying. Currently, HTL studies produce bio-crude with properties that fall short of diesel or biodiesel standards. Upgrading bio-crude improves the physical and chemical properties to produce a fuel corresponding to diesel or biodiesel. Properties such as viscosity, density, heating value, oxygen, nitrogen and sulphur content, and chemical composition can be modified towards meeting fuel standards using strategies such as solvent extraction, distillation, hydrodeoxygenation and catalytic cracking. This article presents a review of the upgrading technologies available, and how they might be used to make HTL bio-crude into a transportation fuel that meets current fuel property standards.

  17. Selection of the optimal completion of horizontal wells with multi-stage hydraulic fracturing of the low-permeable formation, field C

    Science.gov (United States)

    Bozoev, A. M.; Demidova, E. A.

    2016-03-01

    At the moment, many fields of Western Siberia are in the later stages of development. In this regard, the multilayer fields are actually involved in the development of hard to recover reserves by conducting well interventions. However, most of these assets may not to be economical profitable without application of horizontal drilling and multi-stage hydraulic fracturing treatment. Moreover, location of frac ports in relative to each other, number of stages, volume of proppant per one stage are the main issues due to the fact that the interference effect could lead to the loss of oil production. The optimal arrangement of horizontal wells with multi-stage hydraulic fracture was defined in this paper. Several analytical approaches have been used to predict the started oil flow rate and chose the most appropriate for field C reservoir J1. However, none of the analytical equations could not take into account the interference effect and determine the optimum number of fractures. Therefore, the simulation modelling was used. Finally, the universal equation is derived for this field C, the reservoir J1. This tool could be used to predict the flow rate of the horizontal well with hydraulic fracturing treatment on the qualitative level without simulation model.

  18. Technical and economic aspects of brown coal gasification and liquefaction

    International Nuclear Information System (INIS)

    A number of gasification and liquefaction processes for Rhenish brown coal are investigated along with the technical and economic aspects of coal beneficiation. The status of coal beneficiation and the major R + D activities are reviewed. (orig.)

  19. Whole Algae Hydrothermal Liquefaction: 2014 State of Technology

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Susanne B.; Zhu, Yunhua; Snowden-Swan, Lesley J.; Anderson, Daniel; Hallen, Richard T.; Schmidt, Andrew J.; Albrecht, Karl O.; Elliott, Douglas C.

    2014-07-30

    This report describes the base case yields and operating conditions for converting whole microalgae via hydrothermal liquefaction and upgrading to liquid fuels. This serves as the basis against which future technical improvements will be measured.

  20. On the risk of liquefaction of buffer and backfill

    International Nuclear Information System (INIS)

    The necessary prerequisites for liquefaction of buffers and backfills in a KBS-3 repository exist but the stress conditions and intended densities practically eliminate the risk of liquefaction for single earthquakes with magnitudes up to M=8 and normal duration. For buffers rich in expandable minerals it would be possible to reduce the density at water saturation to 1,700 - 1,800 kg/m3 or even less without any significant risk of liquefaction, while the density at saturation of backfills with 10 - 15% expandable clay should not be reduced to less than about 1,900 kg/m3. Since the proposed densities of both buffers and backfills will significantly exceed these minimum values it is concluded that there is no risk of liquefaction of the engineered soil barriers in a KBS-3 repository even for very significant earthquakes

  1. An Advanced Wet Expansion Turbine for Hydrogen Liquefaction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is responsive to NASA SBIR Topic X10.01, specifically, the need for efficient small- to medium-scale hydrogen liquefaction technologies, including...

  2. An Advanced Wet Expansion Turbine for Hydrogen Liquefaction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is responsive to NASA SBIR Topic X10.01, specifically, the need for efficient small- to medium-scale hydrogen liquefaction technologies including...

  3. Coal liquefaction. Quarterly report, October--December 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-05-01

    Progress on seventeen projects related to coal liquefaction or the upgrading of coal liquids and supported by US DOE is reported with emphasis on funding, brief process description history and current progress. (LTN)

  4. Self-organized criticality of liquefaction in saturated granules

    Institute of Scientific and Technical Information of China (English)

    吴爱祥; 孙业志; 李青松

    2003-01-01

    Utilizing the dissipative structure theory, the evolutionary process of vibrating liquefaction in saturatedgranules was analyzed. When the irreversible force increases to some degree, the system will be in a state far fromequilibrium, and the new structure probably occurs. According to synergetics, the equation of liquefaction evolutionwas deduced, and the evolutionary process was analyzed by dynamics. The evolutionary process of vibrating lique-faction is a process in which the period doubling accesses to chaos, and the fluctuation is the original driving force ofsystem evolution. The liquefaction process was also analyzed by fractal geometry. The steady process of vibratingliquefaction obeys the scaling form, and shows self-organized criticality in the course of vibration. With the incre-ment of the recurrence number, the stress of saturated granules will decrease rapidly or lose completely, and thestrain will increase rapidly, so that the granules can not sustain load and the "avalanche" phenomenon takes place.

  5. Liquefaction Potential for Soil Deposits in Muscat, Oman

    Science.gov (United States)

    El Hussain, I. W.; Deif, A.; Girgis, M.; Al-Rawas, G.; Mohamed, A.; Al-Jabri, K.; Al-Habsi, Z.

    2015-12-01

    Muscat is located in the northeastern part of Oman on a narrow strip between Oman coast and Oman Mountains, which is the place for at least four earthquakes of order of 5.2 magnitude in the last 1300 years. The near surface geology of Muscat varies from hard rocks in the eastern, southern and western parts to dense and lose sediments in the middle and northern parts. Liquefaction occurs in saturated cohesionless soils when its shear strength decreased to zero due to the increase of pore pressure. More than 500 boreholes in Muscat area were examined for their liquefaction susceptibility based on the soil characteristics data. Only soils susceptible to liquefaction are further considered for liquefaction hazard assessment. Liquefaction occurs if the cyclic stress ratio (CSR) caused by the earthquake is higher than the cyclic resistance ratio (CRR) of the soil. CSR values were evaluated using PGA values at the surface obtained from previously conducted seismic hazard and microzonation studies. CRR for Muscat region is conducted using N values of SPT tests from numerous borehole data and the shear wave velocity results from 99 MASW surveys over the entire region. All the required corrections are conducted to get standardized (N1) 60 values, to correct shear-wave velocity, and scale the results for Mw 6.0 instead of the proposed 7.5 (magnitude scaling factor). Liquefaction hazard maps are generated using the minimum factor of safety (FS) at each site as a representative of the FS against liquefaction at that location. Results indicate that under the current level of seismic hazard, liquefaction potential is possible at few sites along the northern coast where alluvial soils and shallow ground water table are present. The expected soft soil settlement is also evaluated at each liquefiable site.

  6. Asspects Concerning the Improvement of Soils Against Liquefaction

    Directory of Open Access Journals (Sweden)

    Costel Pleşcan

    2010-01-01

    Full Text Available The specialized literature concerning the Geotechnical Engineering Field indicates the problems due to soil liquefaction and the aggravating consequences that liquefaction phenomenon may cause to buildings. Some procedures of foundation soil improvement for both existing and future foundations are presented. The paper also presents three soil remediation methods involving a low level of vibration generated in the process of foundation soil improvement and two case studies representing the usual method in Romania.

  7. Liquefaction and saccharification of mandarin orange

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, N.; Oku, Y.; Kawamura, D.; Nagai, S.

    1979-01-01

    Liquefaction and saccharification of mandarin orange peel with H/sub 2/SO/sub 4/ in an autoclave and with macerating enzymes from Aspergillus niger were studied. The acid hydrolysis with 0.8N H/sub 2/SO/sub 4/ under 1 kg/square cm for 15 minutes yielded 0.36 grams of reducing sugars from 1 gram of dried orange peel, approximately 36% of which was identified as glucose. Enzymic hydrolysis with 0.2% crude enzyme at 40 degrees for 24 hours yielded 0.59 grams of reducing sugars/g peal, consisting mainly of glucose, arabinose, and galacturonic acid. Comparison of the macerating enzyme with commercial available cellulase and pectinase indicated that the macerating enzyme of A. niger contained mainly pectinase with a little cellulase.

  8. Liquefaction and saccharification of mandarin orange

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, N.; Oku, Y.; Kawamura, D.; Nagai, S.

    1979-01-01

    Liquefaction and saccharification of mandarin orange peel with H2SO4 in an autoclave and with macerating enzymes from Aspergillus niger were studied. The acid hydrolysis with 0.8N H2SO4 under 1 kg/square cm for 15 minutes yielded 0.36 grams of reducing sugars from 1 gram of dried orange peel, approximately 36% of which was identified as glucose. Enzymic hydrolysis with 0.2% crude enzyme at 40 degrees for 24 hours yielded 0.59 grams of reducing sugars/g peal, consisting mainly of glucose, arabinose, and galacturonic acid. Comparison of the macerating enzyme with commercial available cellulase and pectinase indicated that the macerating enzyme of A. niger contained mainly pectinase with a little cellulase.

  9. Mongolian coal liquefaction test; Mongorutan no ekika tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H.; Kubo, H. [Mitsui SRC Development Co. Ltd., Tokyo (Japan); Tsedevsuren, T. [National Research Center of Chemistry and Technology of Coal in Mongoria (Mongolia)

    1996-10-28

    This paper describes the results of liquefaction tests of Mongolian coals using an autoclave and a flow micro reactor. Uvdughudag coal, Hootiinhonhor coal, and Shivee-Ovoo coal were used for liquefaction tests with an autoclave. Oil yields of Uvdughudag and Hootiinhonhor coals were 55.56 wt% and 55.29 wt%, respectively, which were similar to that of Wyoming coal. Similar results were obtained, as to produced gas and water yields. These coals were found to be suitable for coal liquefaction. Lower oil yield, 42.55 wt% was obtained for Shivee-Ovoo coal, which was not suitable for liquefaction. Liquefaction tests were conducted for Uvdughudag coal with a flow micro reactor. The oil yield was 55.7 wt%, which was also similar to that of Wyoming coal, 56.1 wt%. Hydrogen consumption of Uvdughudag coal was also similar to that of Wyoming coal. From these, Uvdughudag coal can be a prospective coal for liquefaction. From the distillation distribution of oil, distillate fraction yield below 350{degree}C of Uvdughudag coal was 50.7 wt%, which was much higher than that of Wyoming coal, 35.6 wt%. Uvdughudag coal is a coal with high light oil fraction yield. 2 figs., 5 tabs.

  10. Two-stage liquefaction of a Spanish subbituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, M.T.; Fernandez, I.; Benito, A.M.; Cebolla, V.; Miranda, J.L.; Oelert, H.H. (Instituto de Carboquimica, Zaragoza (Spain))

    1993-05-01

    A Spanish subbituminous coal has been processed in two-stage liquefaction in a non-integrated process. The first-stage coal liquefaction has been carried out in a continuous pilot plant in Germany at Clausthal Technical University at 400[degree]C, 20 MPa hydrogen pressure and anthracene oil as solvent. The second-stage coal liquefaction has been performed in continuous operation in a hydroprocessing unit at the Instituto de Carboquimica at 450[degree]C and 10 MPa hydrogen pressure, with two commercial catalysts: Harshaw HT-400E (Co-Mo/Al[sub 2]O[sub 3]) and HT-500E (Ni-Mo/Al[sub 2]O[sub 3]). The total conversion for the first-stage coal liquefaction was 75.41 wt% (coal d.a.f.), being 3.79 wt% gases, 2.58 wt% primary condensate and 69.04 wt% heavy liquids. The heteroatoms removal for the second-stage liquefaction was 97-99 wt% of S, 85-87 wt% of N and 93-100 wt% of O. The hydroprocessed liquids have about 70% of compounds with boiling point below 350[degree]C, and meet the sulphur and nitrogen specifications for refinery feedstocks. Liquids from two-stage coal liquefaction have been distilled, and the naphtha, kerosene and diesel fractions obtained have been characterized. 39 refs., 3 figs., 8 tabs.

  11. U.S. DOE indirect coal liquefaction program: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Shen, J.; Schmetz, E.; Winslow, J.; Tischer, R. [Dept. of Energy, Germantown, MD (United States); Srivastava, R.

    1997-12-31

    Coal is the most abundant domestic energy resource in the United States. The Fossil Energy Organization within the US Department of Energy (DOE) has been supporting a coal liquefaction program to develop improved technologies to convert coal to clean and cost-effective liquid fuels to complement the dwindling supply of domestic petroleum crude. The goal of this program is to produce coal liquids that are competitive with crude at $20 to $25 per barrel. Indirect and direct liquefaction routes are the two technologies being pursued under the DOE coal liquefaction program. This paper will give an overview of the DOE indirect liquefaction program. More detailed discussions will be given to the F-T diesel and DME fuels which have shown great promises as clean burning alternative diesel fuels. The authors also will briefly discuss the economics of indirect liquefaction and the hurdles and opportunities for the early commercial deployment of these technologies. Discussions will be preceded by two brief reviews on the liquid versus gas phase reactors and the natural gas versus coal based indirect liquefaction.

  12. Intensity measures for seismic liquefaction hazard evaluation of sloping site

    Institute of Scientific and Technical Information of China (English)

    陈志雄; 程印; 肖杨; 卢谅; 阳洋

    2015-01-01

    This work investigates the correlation between a large number of widely used ground motion intensity measures (IMs) and the corresponding liquefaction potential of a soil deposit during earthquake loading. In order to accomplish this purpose the seismic responses of 32 sloping liquefiable site models consisting of layered cohesionless soil were subjected to 139 earthquake ground motions. Two sets of ground motions, consisting of 80 ordinary records and 59 pulse-like near-fault records are used in the dynamic analyses. The liquefaction potential of the site is expressed in terms of the the mean pore pressure ratio, the maximum ground settlement, the maximum ground horizontal displacement and the maximum ground horizontal acceleration. For each individual accelerogram, the values of the aforementioned liquefaction potential measures are determined. Then, the correlation between the liquefaction potential measures and the IMs is evaluated. The results reveal that the velocity spectrum intensity (VSI) shows the strongest correlation with the liquefaction potential of sloping site. VSI is also proven to be a sufficient intensity measure with respect to earthquake magnitude and source-to-site distance, and has a good predictability, thus making it a prime candidate for the seismic liquefaction hazard evaluation.

  13. Liquefaction of Fir Sawdust Catalyzed by [ Psmim] HSO4 and Characterization of Liquefaction Products%[Psmim]HSO4离子液体催化液化木材及其产物表征

    Institute of Scientific and Technical Information of China (English)

    郑怀玉; 卢泽湘; 范立维; 黄彪; 廖益强; 胡阳

    2014-01-01

    1-( 4-sulfopropyl )-3-methylimidazolium hydrosulfate ( [ Psmim ] HSO4 ) was synthesized and its structure was characterized by FT-IR and 13C NMR . The catalytic performance of [ Psmim ] HSO4 in liquefaction of fir sawdust was preliminarily investigated using 1-octanol as solvent. The liquefaction products were characterized by FT-IR, XRD, TG, GC-MS. The structure of the synthesized ionic liquid was confirmed by the analysis of FT-IR and 13C NMR characterization. The liquefaction experimental results showed that the ionic liquid exhibited a good catalytic performance for the liquefaction of sawdust. The conversion of 66. 5% was achieved when 8. 6 mmol of catalyst was used with application of 10 g fir sawdust and 60 g 1-octanol at the temperature of 150 ℃ for 60 min. The surface of the solid residue was covered with lignin derivatives. The light oil mainly contained the liquefied products originated from cellulose and hemicellulose, and the heavy oil consisted mainly of the degradation products from lignin.%合成了1-磺酸丙基-3-甲基咪唑硫酸氢盐离子液体([ Psmim] HSO4),对其结构进行了傅里叶红外光谱( FT-IR)和核磁共振(13C NMR)表征。以正辛醇为溶剂,初步考察了该离子液体对杉木屑液化的催化性能,并对残渣、重油和轻油液化产物进行了FT-IR、X射线粉末衍射( XRD)、热重分析( TG)、气质联用( GC-MS)表征。 FT-IR和13C NMR分析结果证实了合成产物与目标离子液体结构一致。液化实验结果表明该离子液体具有较好的催化液化性能,10 g杉木屑、60 g正辛醇在催化剂用量8.6 mmol、150℃、60 min条件下,木屑的液化率达66.5%。液化残渣表面的木质素衍生物含量高;轻油主要由纤维素和半纤维素的液化产物组成,重油主要由木质素的液化产物组成。

  14. Liquefaction severity map for Aksaray city center (Central Anatolia, Turkey

    Directory of Open Access Journals (Sweden)

    A. Yalcin

    2008-07-01

    Full Text Available Turkey having a long history of large earthquakes have been subjected to progressive adjacent earthquakes. Starting in 1939, the North Anatolian Fault Zone (NAFZ produced a sequence of major earthquakes, of which the Mw 7.4 earthquake that struck western Turkey on 17 August 1999. Following the Erzincan earthquake in 1992, the soil liquefaction has been crucial important in the agenda of Turkey. Soil liquefaction was also observed widely during the Marmara and the Düzce Earthquake in 1999 (Sönmez, 2003. Aksaray city center locates in the central part of Turkey and the Tuzgolu Fault Zone passes through near the city center. The fault zone has been generated to moderate magnitude earthquakes. The geology of the Aksaray province basin contains Quaternary alluvial deposits formed by gravel, sand, silt, and clay layers in different thickness. The Tuzgolu Fault Zone (TFZ came into being after the sedimetation of alluvial deposits. Thus, the fault is younger from lithological units and it is active. In addition, the ground water level is very shallow, within approximately 3 m from the surface. In this study, the liquefaction potential of the Aksaray province is investigated by recent procedure suggested by Sonmez and Gokceoglu (2005. For this purpose, the liquefaction susceptibility map of the Aksaray city center for liquefaction is presented. In the analysis, the input parameters such as the depth of the upper and lower boundaries of soil layer, SPT-N values, fine content, clay content and the liquid limit were used for all layers within 20 m from the surface. As a result, the category of very high susceptibility liquefaction class was not observed for the earthquake scenario of Ms=5.2, 4.9% of the study area has high liquefaction susceptibility. The percentage of the moderately, low, and very low liquefied areas are 28.2%, 30.2%, and 36.3%, respectively. The rank of non-liquefied susceptibility area is less than 1%.

  15. Catalytic conversion of biomass to fuels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Garten, R. L.; Ushiba, K. K.; Cooper, M.; Mahawili, I.

    1978-01-01

    This report presents an assessment and perspective concerning the application of catalytic technologies to the thermochemical conversion of biomass resources to fuels. The major objectives of the study are: to provide a systematic assessment of the role of catalysis in the direct thermochemical conversion of biomass into gaseous and liquid fuels; to establish the relationship between potential biomass conversion processes and catalytic processes currently under development in other areas, with particular emphasis on coal conversion processes; and to identify promising catalytic systems which could be utilized to reduce the overall costs of fuels production from biomass materials. The report is divided into five major parts which address the above objectives. In Part III the physical and chemical properties of biomass and coal are compared, and the implications for catalytic conversion processes are discussed. With respect to chemical properties, biomass is shown to have significant advantages over coal in catalytic conversion processes because of its uniformly high H/C ratio and low concentrations of potential catalyst poisons. The physical properties of biomass can vary widely, however, and preprocessing by grinding is difficult and costly. Conversion technologies that require little preprocessing and accept a wide range of feed geometries, densities, and particle sizes appear desirable. Part IV provides a comprehensive review of existing and emerging thermochemical conversion technologies for biomass and coal. The underlying science and technology for gasification and liquefaction processes are presented.

  16. Process Development for Hydrothermal Liquefaction of Algae Feedstocks in a Continuous-Flow Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Hart, Todd R.; Schmidt, Andrew J.; Neuenschwander, Gary G.; Rotness, Leslie J.; Olarte, Mariefel V.; Zacher, Alan H.; Albrecht, Karl O.; Hallen, Richard T.; Holladay, Johnathan E.

    2013-10-01

    Wet algae slurries can be converted into an upgradeable biocrude by hydrothermal liquefaction (HTL). High levels of carbon conversion to gravity-separable biocrude product were accomplished at relatively low temperature (350 °C) in a continuous-flow, pressurized (sub-critical liquid water) environment (20 MPa). As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent and biomass trace components were removed by processing steps so that they did not cause process difficulties. High conversions were obtained even with high slurry concentrations of up to 35 wt% of dry solids. Catalytic hydrotreating was effectively applied for hydrodeoxygenation, hydrodenitrogenation, and hydrodesulfurization of the biocrude to form liquid hydrocarbon fuel. Catalytic hydrothermal gasification was effectively applied for HTL byproduct water cleanup and fuel gas production from water soluble organics, allowing the water to be considered for recycle of nutrients to the algae growth ponds. As a result, high conversion of algae to liquid hydrocarbon and gas products was found with low levels of organic contamination in the byproduct water. All three process steps were accomplished in bench-scale, continuous-flow reactor systems such that design data for process scale-up was generated.

  17. MAGNETO-CHEMICAL CHARACTER STUDIES OF NOVEL Fe CATALYSTS FOR COAL LIQUEFACTION

    Energy Technology Data Exchange (ETDEWEB)

    Murty A. Akundi; Jian H. Zhang; A.N. Murty; S.V. Naidu

    2002-04-01

    The objectives of the present study are: (1) To synthesize iron catalysts: Fe/MoO{sub 3}, and Fe/Co/MoO{sub 3} employing two distinct techniques: Pyrolysis with organic precursors and Co-precipitation of metal nitrates; (2) To investigate the magnetic character of the catalysts before and after exposure to CO and CO+H{sub 2} by (a) Mossbauer study of Iron (b) Zerofield Nuclear Magnetic Resonance study of Cobalt, and (c) Magnetic character of the catalyst composite; (3) To study the IR active surface species of the catalyst while stimulating (CO--Metal, (CO+H{sub 2})--Metal) interactions, by FTIR Spectroscopy; and (4) To analyze the catalytic character (conversion efficiency and product distribution) in both direct and indirect liquefaction Process and (5) To examine the correlations between the magnetic and chemical characteristics. This report presents the results of our investigation on (a) the effect of metal loading (b) the effect of intermetallic ratio and (c) the effect of catalyst preparation procedure on (i) the magnetic character of the catalyst composite (ii) the IR active surface species of the catalyst and (iii) the catalytic yields for three different metal loadings: 5%, 15%, and 25% (nominal) for three distinct intermetallic ratios (Fe/Co = 0.3, 1.5, 3.0).

  18. THERMOGRAVIMETRIC STUDIES ON CONDENSED WOOD RESIDUES IN POLYHYDRIC ALCOHOLS LIQUEFACTION

    Directory of Open Access Journals (Sweden)

    Mehmet Hakki Alma

    2011-02-01

    Full Text Available To further clarify reasons for formation of condensed residues during the last stage of wood liquefaction in the medium of polyhydric alcohols and sulfuric acid catalyst, the weight loss behaviors and thermal reaction kinetics of condensed residues were studied by thermogravimetric analysis (TGA. Simultaneously, chemical methods were used to analyze the contents of lignin, cellulose, and holocellulose in the condensed residues. For all the unliquefied wood residues, the contents of cellulose decreased, and the residual ratios after TGA pyrolysis and the contents of lignin increased as a function of liquefaction time. Moreover, the highest weight loss rate went gradually to the higher temperature region after the liquefaction time and heating rate were extended. The values for apparent activation energy were lower at 150 minutes and 180 minutes and higher at 25 minutes. Liquefaction time had a smaller effect on the pyrolysis mechanism, as revealed by TGA. In conclusion, the thermal stabilities of condensed residues were higher than those of decomposed residues and wood. The condensation reaction occurred mainly during wood liquefaction, and condensed residues resulted possibly from mutual reaction among small molecules from decomposed lignin.

  19. Low severity coal liquefaction promoted by cyclic olefins. Quarterly report, January--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W.

    1993-07-01

    The combination of some of these methods could further improve low severity conversion. It seems logical that a combination of a proven pretreatment technique with a good dissolution catalyst or a good hydrogen donor would increase reactivity. The importance of surface chemistry with yield and nature of reactions shown in early research indicates the physical importance of pretreatment. Swelling of the coal with an organic solvent improves the contact. This good contact is also important to slowing retrogressive reactions. The best conversions come when the initial products of liquefaction are preserved. In addition to the physical importance of pretreatment, there is a chemical advantage. Shams saw not only the effect of minimization of organic oxygen coupling reactions, but with his process there also seemed to be a demineralization. The minerals removed the catalysts for retrogressive reactions. The chemistry of liquefaction is still not well understood. Stansberry`s attempt to determine whether catalysts liberate species or just further decomposition was largely inconclusive. There was improvement in conversion so the catalysts seemingly assisted in bond breakage. These good catalytic effects were also seen in the work involving coprocessing. The most compelling factor in each of these procedures, is the ability of the coal to receive the hydrogen that it needs to be liquefied. Bedell and Curtis (1991) found that cyclic olefins gave their hydrogen up much more readily than did hydroaromatics. The coal conversion was a significantly improved. The combination of retrogressive reaction suppression and good hydrogen donability should provide for good coal conversion. It was this reasoning that influenced the decision to investigate a combination of the HCl/methanol pretreatment and the usage of cyclic olefins as hydrogen donors. The increased reactivity of the pretreated coal should enhance the effect of the hydrogen donability of the cyclic olefins.

  20. Liquefaction under drained condition, from the lab to reality ?

    Science.gov (United States)

    Clément, Cécile; Aharonov, Einat; Stojanova, Menka; Toussaint, Renaud

    2015-04-01

    Liquefaction constitutes a significant natural hazard in relation to earthquakes and landslides. This effect can cause buildings to tilt or sink into the soil, mud-volcanoes, floatation of buried objects, long-runout landslides, etc. In this work we present a new understanding regarding the mechanism by which buildings sink and tilt during liquefaction caused by earthquakes. Conventional understanding of liquefaction explains most observed cases as occurring in an undrained, under-compacted, layer of sandy soil saturated with water [1]: According to that understanding, the under compacted sandy layer has the tendency to compact when a load is applied. In our case the load comes from ground shaking during an earthquake. When the soil compacts, the fluid pore pressure rises. Because in undrained conditions the fluid cannot flow out, the pore pressure builds up. The weight of buildings is in this case transferred from the grains of the soil to the pore water. The soil loses its rigidity and it flows like a liquid. From this model scientists made theoretical and empirical laws for geotechnical use and buildings construction. Despite the success of this conventional model in many cases, liquefied soils were also observed under drained conditions, and in previously compacted soils, which doesn't agree with the assumption of the model quoted above. One of the famous liquefaction events is the Kobe port destruction during the 1995 earthquake. A simple calculation of the Deborah number following Goren et al ([2][3]) shows that the undrained constraint was not met below the Kobe port during the 1995 earthquake. We propose another model, of liquefaction in drained granular media. According to our model the mere presence of water in granular media is enough to cause liquefaction during an earthquake, provided that the water reaches close to the surface. Our computations are based on the buoyancy force, and we take into account the static fluid pressure only. For small

  1. Case studies on direct liquefaction of low rank Wyoming coal

    Energy Technology Data Exchange (ETDEWEB)

    Adler, P.; Kramer, S.J.; Poddar, S.K. [Bechtel Corp., San Francisco, CA (United States)

    1995-12-31

    Previous Studies have developed process designs, costs, and economics for the direct liquefaction of Illinois No. 6 and Wyoming Black Thunder coals at mine-mouth plants. This investigation concerns two case studies related to the liquefaction of Wyoming Black Thunder coal. The first study showed that reducing the coal liquefaction reactor design pressure from 3300 to 1000 psig could reduce the crude oil equivalent price by 2.1 $/bbl provided equivalent performing catalysts can be developed. The second one showed that incentives may exist for locating a facility that liquifies Wyoming coal on the Gulf Coast because of lower construction costs and higher labor productivity. These incentives are dependent upon the relative values of the cost of shipping the coal to the Gulf Coast and the increased product revenues that may be obtained by distributing the liquid products among several nearby refineries.

  2. Effects of catalysts on liquefaction of Agaricus versicolor (L.)

    Science.gov (United States)

    Durak, Halil

    2016-04-01

    Supercritical liquefaction process is used for producing energy from biomass. The common reaction conditions for supercritical liquefaction process are the 240-380 °C temperature range and 5-20 Mpa pressure values range. Agaricus versicolor (L.) was liquefied by acetone in an autoclave (75 mL) under high pressure with (aluminium oxide and calcium hydroxide) and without catalyst at 290 °C for producing bio-oil. The products of liquefaction (bio-oil) were analysed and characterized using various methods including elemental analysis, Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry. GC-MS identified 27 different compounds in the bio-oils obtained at 290 °C.

  3. Risk evaluation of liquefaction on the site of Damien (Haiti)

    Science.gov (United States)

    Jean, B. J.; Boisson, D.; Thimus, J.; Schroeder, C.

    2013-12-01

    Under the proposed relocation of all faculties to the campus of Damien, owned by Université d'Etat d'Haïti (UEH), the Unité de Recherche en Géotechnique (URGéo) of the Faculté des Sciences (FDS) of UEH conducted several operations whose objective was to evaluate the risk of liquefaction on this site. This abstract presents a comprehensive and coherent manner the entire processus of assessing the risk of liquefaction. This evaluation was conducted mainly from seismic thechniques, laboratory tests and the response of a one-dimensional soil column. Then, we summarize the results of this evaluation on the various techniques through synthetic maps interpretations of MASW 1D and H/V and also measures on site response to seismic loading from the SPT test applied to evaluation of liquefaction potential.

  4. Cooperative research in coal liquefaction. Final report, May 1, 1990-- April 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1992-02-15

    The Consortium for Fossil Fuel Liquefaction Science (CFFLS) is currently engaged in a three year contract with the US Department of Energy investigating a range of research topics dealing with direct coal liquefaction. This report summarizes the results of this program in its second year, from May 1, 1990 to April 30, 1991. Accomplishments for this period are presented for the following tasks: Iron-based catalysts for coal liquefaction, exploratory research on coal conversion, novel coal liquefaction concepts, and novel catalysts for coal liquefaction.

  5. A modified criterion for wave-induced momentary liquefaction of sandy seabed

    Directory of Open Access Journals (Sweden)

    Wen-Gang Qi

    2015-01-01

    Full Text Available The assessment of the wave-induced soil liquefaction plays a key role in the geotechnical design for offshore foundations. The underlying shortcomings of the existing momentary liquefaction criteria are identified and clarified by mechanism analyses and the recent field observations. A modified criterion for the wave-induced momentary liquefaction of a sandy seabed is given to describe the vertical pore-pressure distributions. An improved approximation of the momentary liquefaction depth is further presented. Parametric study of the effects of the saturation degree of soils indicates that this modification is significant for the evaluation of wave-induced momentary liquefaction.

  6. Transport fuels from two-stage coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Benito, A.; Cebolla, V.; Fernandez, I.; Martinez, M.T.; Miranda, J.L.; Oelert, H.; Prado, J.G. (Instituto de Carboquimica CSIC, Zaragoza (Spain))

    1994-03-01

    Four Spanish lignites and their vitrinite concentrates were evaluated for coal liquefaction. Correlationships between the content of vitrinite and conversion in direct liquefaction were observed for the lignites but not for the vitrinite concentrates. The most reactive of the four coals was processed in two-stage liquefaction at a higher scale. First-stage coal liquefaction was carried out in a continuous unit at Clausthal University at a temperature of 400[degree]C at 20 MPa hydrogen pressure and with anthracene oil as a solvent. The coal conversion obtained was 75.41% being 3.79% gases, 2.58% primary condensate and 69.04% heavy liquids. A hydroprocessing unit was built at the Instituto de Carboquimica for the second-stage coal liquefaction. Whole and deasphalted liquids from the first-stage liquefaction were processed at 450[degree]C and 10 MPa hydrogen pressure, with two commercial catalysts: Harshaw HT-400E (Co-Mo/Al[sub 2]O[sub 3]) and HT-500E (Ni-Mo/Al[sub 2]O[sub 3]). The effects of liquid hourly space velocity (LHSV), temperature, gas/liquid ratio and catalyst on the heteroatom liquids, and levels of 5 ppm of nitrogen and 52 ppm of sulphur were reached at 450[degree]C, 10 MPa hydrogen pressure, 0.08 kg H[sub 2]/kg feedstock and with Harshaw HT-500E catalyst. The liquids obtained were hydroprocessed again at 420[degree]C, 10 MPa hydrogen pressure and 0.06 kg H[sub 2]/kg feedstock to hydrogenate the aromatic structures. In these conditions, the aromaticity was reduced considerably, and 39% of naphthas and 35% of kerosene fractions were obtained. 18 refs., 4 figs., 4 tabs.

  7. Optimization of design and operating parameters on the year round performance of a multi-stage evacuated solar desalination system using transient mathematical analysis

    Directory of Open Access Journals (Sweden)

    P. Vishwanath Kumar, Ajay Kumar Kaviti, Om Prakash1, K.S. Reddy

    2012-01-01

    Full Text Available The available fresh water resources on the earth are limited. About 79% of water available on the earth is salty, only one percent is fresh and the rest 20% is brackish. Desalination of brackish or saline water is a good method to obtain fresh water. Conventional desalination systems are energy intensive. Solar desalination is a cost effective method to obtain potable water because of freely available clean and green energy source. In this paper, a transient mathematical model was developed for the multi-stage evacuated solar desalination system to achieve the optimum system configuration for the maximum year round performance and distillate yield. The effect of various design and operating parameters on the thermal characteristics and performance of the system were analyzed. It was found that an optimum configuration of four stages with 100mm gap between them when supplied with a mass flow rate of 55kg/m2/day would result in best performance throughout the year. The maximum and minimum yields of 28.044 kg/m2/day and 13.335 kg/m2/day for fresh water at a distillate efficiency of 50.989% and 24.245% and overall thermal efficiency of 81.171% and 40.362% are found in the months of March and December respectively owing to the climatic conditions. The yield decreases to 18.614 kg/m2/day and 9.791 kg/m2/day for brine solution at a distillate efficiency of 33.844% and 17.802% and overall thermal efficiency of 53.876% and 29.635% for March and December respectively The maximum yield of 53.211 kg/m2/day is found in March at an operating pressure of 0.03 bar. The multi-stage evacuated solar desalination system is economically viable and can meet the needs of rural and urban communities to necessitate 10 to 30 kg per day of fresh water.

  8. Hydrothermal liquefaction of microalgae's for bio oil production

    DEFF Research Database (Denmark)

    Toor, Saqib; Reddy, Harvind; Deng, Shuguang;

    process water for algae cultivation. GC-MS, elemental analyzer, calorimeter and nutrient analysis were used to analyze bio-crude, lipid-extracted algae and water samples produced in the hydrothermal liquefaction process. The highest bio-oil yield of 46% was obtained on Nannochloropsis salina at 310 °C...... and 107 bar. For Spirulina platensis algae sample, the highest bio-oil yield is 38% at 350 °C and 195 bar. Preliminary data also indicate that a lipid-extracted algae solid residue sample obtained in the hydrothermal liquefaction process contains a high level of proteins...

  9. Liquefaction of solid carbonaceous material with catalyst recycle

    Science.gov (United States)

    Gupta, Avinash; Greene, Marvin I.

    1992-01-01

    In the two stage liquefaction of a carbonaceous solid such as coal wherein coal is liquefied in a first stage in the presence of a liquefaction solvent and the first stage effluent is hydrogenated in the presence of a supported hydrogenation catalyst in a second stage, catalyst which has been previously employed in the second stage and comminuted to a particle size distribution equivalent to 100% passing through U.S. 100 Mesh, is passed to the first stage to improve the overall operation.

  10. Liquefaction Microzonation of Babol City Using Artificial Neural Network

    DEFF Research Database (Denmark)

    Farrokhzad, F.; Choobbasti, A.J.; Barari, Amin

    2012-01-01

    that will be less susceptible to damage during earthquakes. The scope of present study is to prepare the liquefaction microzonation map for the Babol city based on Seed and Idriss (1983) method using artificial neural network. Artificial neural network (ANN) is one of the artificial intelligence (AI) approaches...... is proposed in this paper. To meet this objective, an effort is made to introduce a total of 30 boreholes data in an area of 7 km2 which includes the results of field tests into the neural network model and the prediction of artificial neural network is checked in some test boreholes, finally the liquefaction...

  11. Cooperative research in coal liquefaction. Technical progress report, May 1, 1993--April 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1994-10-01

    Accomplishments for the past year are presented for the following tasks: coliquefaction of coal with waste materials; catalysts for coal liquefaction to clean transportation fuels; fundamental research in coal liquefaction; and in situ analytical techniques for coal liquefaction and coal liquefaction catalysts some of the highlights are: very promising results have been obtained from the liquefaction of plastics, rubber tires, paper and other wastes, and the coliquefaction of wastes with coal; a number of water soluble coal liquefaction catalysts, iron, cobalt, nickel and molybdenum, have been comparatively tested; mossbauer spectroscopy, XAFS spectroscopy, TEM and XPS have been used to characterize a variety of catalysts and other samples from numerous consortium and DOE liquefaction projects and in situ ESR measurements of the free radical density have been conducted at temperatures from 100 to 600{degrees}C and H{sub 2} pressures up to 600 psi.

  12. iGC2: an architecture for micro gas chromatographs utilizing integrated bi-directional pumps and multi-stage preconcentrators

    International Nuclear Information System (INIS)

    This paper reports an integrated micro gas chromatography (µGC) architecture which utilizes a bi-directional micropump. Four integral components-–the bi-directional Knudsen pump (KP2), a two-stage preconcentrator-focuser (PCF2), a separation column, and a gas detector-–are integrated in a 4.3 cm3 stack, forming a serial flow path. All four components are fabricated using the same three-mask process. Compared to the conventional approach used with multi-stage preconcentrators, in which valves are used to reverse flow between the sampling phase and the separation phase, this µGC architecture reduces the overall complexity. In this architecture, the vapors being sampled are drawn through the detector and column before reaching the PCF2. The microsystem operation is experimentally validated by quantitative analyses of benzene, toluene, and xylene vapors ranging in concentration from 43–1167 mg m−3. (paper)

  13. Utility of reaction intermediate monitoring with photodissociation multi-stage (MSn) time-of-flight mass spectrometry for mechanistic and structural studies: Phosphopeptides

    Science.gov (United States)

    Moon, Jeong Hee; Shin, Young Sik; Kim, Myung Soo

    2009-12-01

    In tandem mass spectra of phosphopeptides, intact sequence ions are often missing or appear weakly. Instead, dephosphorylated sequence ions appear prominently. In this work, we used photodissociation (PD) multi-stage (MSn) time-of-flight mass spectrometry that can monitor reaction intermediates with lifetime as short as 100 ns to study the formation of dephosphorylated sequence ions such as yn-H3PO4. yn-H3PO4 was found to be formed mainly by H3PO4 loss from yn. For doubly phosphorylated peptides, yn seemed to lose H3PO4 stepwise and form yn-H3PO4 and yn-2H3PO4. Even when yn was absent in PD-MS2 spectrum, its m/z could be predicted from those of yn-H3PO4 and/or yn-2H3PO4. Complete sequence coverage was possible when the data from PD-MS2 and PD-MS3 were combined, demonstrating the utility of transient ion detection by PD-MS3 for structure analysis.

  14. Reprocessing and partitioning for recycle transmutation to perform geologic disposal by using counter-current, multi-stage, centrifugal extraction process

    International Nuclear Information System (INIS)

    P and T treatment of MA (Minor Actinides) and LLFP (Low level fission products) in HLW (High level wastes) has a role to avoid the unanticipated uncertainty, which might be accompanied by geologic disposal in a super-long period, caused by the change of geologic behavior and/or geologic environment. R and P (reprocessing and partitioning) process should be improved even now for multi-recycling of U and Pu, MA and LLFP for P and T treatment with low inventory. Six-group partitioning based on five criteria for partitioning was studied to make up the concept of zero-release GSC (glass solidified canister), in which MA and LLFP are eliminated by P and T treatment. Drastic number reduction of GSC is another significant role gained by P and T treatment, in order to save the total cost of current geologic disposal and compensate the cost required by P and T treatment. In order to examine the possibility of multi-cycled R and P system for transmutation of MA and LLFP, a compact, counter-current, multi-stage centrifugal extractor and a similar con-current semi-continuous centrifugal separator were studied to get the concept of sharp cut-off extractor and a semi-continuous precipitator, for treating MA, ST and SL (Stable and short-lived nuclides) and LLFP in HLW. (author)

  15. A Multi-stage Carcinogenesis Model to Investigate Caloric Restriction as a Potential Tool for Post-irradiation Mitigation of Cancer Risk

    Science.gov (United States)

    Tani, Shusuke; Blyth, Benjamin John; Shang, Yi; Morioka, Takamitsu; Kakinuma, Shizuko; Shimada, Yoshiya

    2016-01-01

    The risk of radiation-induced cancer adds to anxiety in low-dose exposed populations. Safe and effective lifestyle changes which can help mitigate excess cancer risk might provide exposed individuals the opportunity to pro-actively reduce their cancer risk, and improve mental health and well-being. Here, we applied a mathematical multi-stage carcinogenesis model to the mouse lifespan data using adult-onset caloric restriction following irradiation in early life. We re-evaluated autopsy records with a veterinary pathologist to determine which tumors were the probable causes of death in order to calculate age-specific mortality. The model revealed that in both irradiated and unirradiated mice, caloric restriction reduced the age-specific mortality of all solid tumors and hepatocellular carcinomas across most of the lifespan, with the mortality rate dependent more on age owing to an increase in the number of predicted rate-limiting steps. Conversely, irradiation did not significantly alter the number of steps, but did increase the overall transition rate between the steps. We show that the extent of the protective effect of caloric restriction is independent of the induction of cancer from radiation exposure, and discuss future avenues of research to explore the utility of caloric restriction as an example of a potential post-irradiation mitigation strategy. PMID:27390741

  16. Synthetic TLR4 agonists enhance functional antibodies and CD4+ T-cell responses against the Plasmodium falciparum GMZ2.6C multi-stage vaccine antigen.

    Science.gov (United States)

    Baldwin, Susan L; Roeffen, Will; Singh, Susheel K; Tiendrebeogo, Regis W; Christiansen, Michael; Beebe, Elyse; Carter, Darrick; Fox, Christopher B; Howard, Randall F; Reed, Steven G; Sauerwein, Robert; Theisen, Michael

    2016-04-27

    A subunit vaccine targeting both transmission and pathogenic asexual blood stages of Plasmodium falciparum, i.e., a multi-stage vaccine, could be a powerful tool to combat malaria. Here, we report production and characterization of the recombinant protein GMZ2.6C, which contains a fragment of the sexual-stage protein Pfs48/45-6C genetically fused to GMZ2, an asexual vaccine antigen in advanced clinical development. To select the most suitable vaccine formulation for downstream clinical studies, GMZ2.6C was tested with various immune modulators in different adjuvant formulations (stable emulsions, liposomes, and alum) in C57BL/6 mice. Some, but not all, formulations containing either the synthetic TLR4 agonist GLA or SLA elicited the highest parasite-specific antibody titers, the greatest IFN-γ responses in CD4+ TH1 cells, and the highest percentage of multifunctional CD4+ T cells expressing IFN-γ and TNF in response to GMZ2.6C. Both of these agonists have good safety records in humans. PMID:26994314

  17. Cu deficiency in multi-stage co-evaporated Cu(In,Ga)Se2 for solar cells applications: Microstructure and Ga in-depth alloying

    International Nuclear Information System (INIS)

    The objective of this work is to study the influence of the maximum Cu content during the deposition of Cu(In,Ga)Se2 (CIGSe) by multi-stage co-evaporation on the phases present in the final film, the film structure and the electrical properties of resulting solar cell devices. The variation of the composition is controlled by the Cu content in stage 2 of the deposition process. The different phases are identified by Raman spectroscopy. The in-depth Ga gradient distribution is investigated by in-depth resolved Raman scattering and secondary neutral mass spectroscopy. The morphology of the devices is studied by scanning electron microscopy. Efficiencies of 9.2% are obtained for ordered-vacancy-compound-based cells with a Cu/(In + Ga) ratio = 0.35, showing the system's flexibility. This work supports the current growth model: a small amount of Cu excess during the absorber process is required to obtain a quality microstructure and high performance devices.

  18. Loss of p19(Arf facilitates the angiogenic switch and tumor initiation in a multi-stage cancer model via p53-dependent and independent mechanisms.

    Directory of Open Access Journals (Sweden)

    Danielle B Ulanet

    Full Text Available The Arf tumor suppressor acts as a sensor of oncogenic signals, countering aberrant proliferation in large part via activation of the p53 transcriptional program, though a number of p53-independent functions have been described. Mounting evidence suggests that, in addition to promoting tumorigenesis via disruptions in the homeostatic balance between cell proliferation and apoptosis of overt cancer cells, genetic alterations leading to tumor suppressor loss of function or oncogene gain of function can also incite tumor development via effects on the tumor microenvironment. In a transgenic mouse model of multi-stage pancreatic neuroendocrine carcinogenesis (PNET driven by inhibition of the canonical p53 and Rb tumor suppressors with SV40 large T-antigen (Tag, stochastic progression to tumors is limited in part by a requirement for initiation of an angiogenic switch. Despite inhibition of p53 by Tag in this mouse PNET model, concomitant disruption of Arf via genetic knockout resulted in a significantly accelerated pathway to tumor formation that was surprisingly not driven by alterations in tumor cell proliferation or apoptosis, but rather via earlier activation of the angiogenic switch. In the setting of a constitutional p53 gene knockout, loss of Arf also accelerated tumor development, albeit to a lesser degree. These findings demonstrate that Arf loss of function can promote tumorigenesis via facilitating angiogenesis, at least in part, through p53-independent mechanisms.

  19. A multi-stage approach to maximizing geocoding success in a large population-based cohort study through automated and interactive processes

    Directory of Open Access Journals (Sweden)

    Jennifer S. Sonderman

    2012-05-01

    Full Text Available To enable spatial analyses within a large, prospective cohort study of nearly 86,000 adults enrolled in a 12-state area in the southeastern United States of America from 2002-2009, a multi-stage geocoding protocol was developed to efficiently maximize the proportion of participants assigned an address level geographic coordinate. Addresses were parsed, cleaned and standardized before applying a combination of automated and interactive geocoding tools. Our full protocol increased the non-Post Office (PO Box match rate from 74.5% to 97.6%. Overall, we geocoded 99.96% of participant addresses, with only 5.2% at the ZIP code centroid level (2.8% PO Box and 2.3% non-PO Box addresses. One key to reducing the need for interactive geocoding was the use of multiple base maps. Still, addresses in areas with population density 920 persons/km2 (odds ratio (OR = 5.24; 95% confidence interval (CI = 4.23, 6.49, as were addresses collected from participants during in-person interviews compared with mailed questionnaires (OR = 1.83; 95% CI = 1.59, 2.11. This study demonstrates that population density and address ascertainment method can influence automated geocoding results and that high success in address level geocoding is achievable for large-scale studies covering wide geographical areas.

  20. Multi-stage thermal-economical optimization of compact heat exchangers: A new evolutionary-based design approach for real-world problems

    International Nuclear Information System (INIS)

    The complicated task of design optimization of compact heat exchangers (CHEs) have been effectively performed by using evolutionary algorithms (EAs) in the recent years. However, mainly due to difficulties of handling extra variables, the design approach has been based on constant rates of heat duty in the available literature. In this paper, a new design strategy is presented where variable operating conditions, which better represent real-world problems, are considered. The proposed strategy is illustrated using a case study for design of a plate-fin heat exchanger though it can be employed for all types of heat exchangers without much change. Learning automata based particle swarm optimization (LAPSO), is employed for handling nine design variables while satisfying various equality and inequality constraints. For handling the constraints, a novel feasibility based ranking strategy (FBRS) is introduced. The numerical results indicate that the design based on variable heat duties yields in more cost savings and superior thermodynamics efficiency comparing to a conventional design approach. Furthermore, the proposed algorithm has shown a superior performance in finding the near-optimum solution for this task when it is compared to the most popular evolutionary algorithms in engineering applications, i.e. genetic algorithm (GA) and particle swarm optimization (PSO). - Highlights: • Multi-stage design of heat exchangers is presented. • Feasibility based ranking strategy is employed for constraint handling. • Learning abilities added to particle swarm optimization

  1. Novel nanodispersed coal liquefaction catalysts: Molecular design via microemulsion-based synthesis. Technical progress report, July--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Boakye, E.; Vittal, M.; Osseo-Asare, K. [and others

    1993-10-01

    The objective of this project is to pursue the development of highly dispersed and inexpensive catalysts for improved coal solubilization and upgrading of coal liquids. A novel study of the synthesis of liquefaction catalysts of manometer size is being carried out. It is based on the molecular design of inverse micelles (microemulsions). These surfactant-stabilized, metal-bearing microdrops offer unique opportunities for synthesizing very small particles by providing a cage-like effect that limits particle nucleation, growth and agglomeration. The emphasis is on molybdenum- and iron-based catalysts, but the techniques being developed should also be generally applicable. The size of these very small and monodispersed particles will be accurately determined both separately and after in situ and ex situ coal impregnation. The as-prepared nanoparticles as well as the catalyst-impregnated coal matrix are characterized using a battery of techniques, including dynamic light scattering, x-ray diffraction and transmission electron microscopy. Catalytic activity tests are conducted under standardized coal liquefaction conditions. The effects of particle size of these unsupported catalysts on the product yield and distribution during conversion of a bituminous and a subbituminous coal are being determined.

  2. The latest developments and outlook for hydrogen liquefaction technology

    International Nuclear Information System (INIS)

    Liquefied hydrogen is presently mainly used for space applications and the semiconductor industry. While clean energy applications, for e.g. the automotive sector, currently contribute to this demand with a small share only, their demand may see a significant boost in the next years with the need for large scale liquefaction plants exceeding the current plant sizes by far. Hydrogen liquefaction for small scale plants with a maximum capacity of 3 tons per day (tpd) is accomplished with a Brayton refrigeration cycle using helium as refrigerant. This technology is characterized by low investment costs but lower process efficiency and hence higher operating costs. For larger plants, a hydrogen Claude cycle is used, characterized by higher investment but lower operating costs. However, liquefaction plants meeting the potentially high demand in the clean energy sector will need further optimization with regard to energy efficiency and hence operating costs. The present paper gives an overview of the currently applied technologies, including their thermodynamic and technical background. Areas of improvement are identified to derive process concepts for future large scale hydrogen liquefaction plants meeting the needs of clean energy applications with optimized energy efficiency and hence minimized operating costs. Compared to studies in this field, this paper focuses on application of new technology and innovative concepts which are either readily available or will require short qualification procedures. They will hence allow implementation in plants in the close future

  3. Determination of Liquefaction Potential using Artificial Neural Networks

    DEFF Research Database (Denmark)

    Farrokhzad, F; Choobbasti, A.J; Barari, Amin

    The authors propose an alternative general regression model based on neural networks, which enables analysis of summary data obtained by liquefaction analysis according to usual methods. For that purpose, the data from some thirty boreholes made during field investigations in Babol, in the Iranian...

  4. Direct liquefaction of plastics and coprocessing of coal with plastics

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P.; Feng, Z.; Mahajan, V. [Univ. of Kentucky, Lexington, KY (United States)

    1995-12-31

    The objectives of this work were to optimize reaction conditions for the direct liquefaction of waste plastics and the coprocessing of coal with waste plastics. In previous work, the direct liquefaction of medium and high density polyethylene (PE), polypropylene (PPE), poly(ethylene terephthalate) (PET), and a mixed plastic waste, and the coliquefaction of these plastics with coals of three different ranks was studied. The results established that a solid acid catalyst (HZSM-5 zeolite) was highly active for the liquefaction of the plastics alone, typically giving oil yields of 80-95% and total conversions of 90-100% at temperatures of 430-450 {degrees}C. In the coliquefaction experiments, 50:50 mixtures of plastic and coal were used with a tetralin solvent (tetralin:solid = 3:2). Using approximately 1% of the HZSM-5 catalyst and a nanoscale iron catalyst, oil yields of 50-70% and total conversion of 80-90% were typical. In the current year, further investigations were conducted of the liquefaction of PE, PPE, and a commingled waste plastic obtained from the American Plastics Council (APC), and the coprocessing of PE, PPE and the APC plastic with Black Thunder subbituminous coal. Several different catalysts were used in these studies.

  5. Liquefaction of lignocellulose: Do basic and acidic additives help out?

    NARCIS (Netherlands)

    Kumar, S.; Lange, J.P.; Rossum, van G.; Kersten, S.R.A.

    2015-01-01

    Lignocellulosic feedstock can be converted to bio-oil by direct liquefaction in a phenolic solvent such as guaiacol. The bio-oil could then be further upgraded to transportation fuel using conventional oil refining process. The production of heavy components (molecular weight >1000 Da) was found to

  6. Finite Element Modelling of Seismic Liquefaction in Soils

    NARCIS (Netherlands)

    Galavi, V.; Petalas, A.; Brinkgreve, R.B.J.

    2013-01-01

    Numerical aspects of seismic liquefaction in soils as implemented in the finite element code, PLAXIS, is described in this paper. After description of finite element equations of dynamic problems, three practical dynamic boundary conditions, namely viscous boundary tractions, tied degrees of freedom

  7. Advanced liquefaction using coal swelling and catalyst dispersion techniques

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. (Auburn Univ., AL (United States)); Gutterman, C. (Foster Wheeler Development Corp., Livingston, NJ (United States)); Chander, S. (Pennsylvania State Univ., University Park, PA (United States))

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  8. Fine particle clay catalysts for coal liquefaction. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Olson, E.S.

    1995-08-01

    In an effort to develop new disposable catalysts for direct coal liquefaction, several types of clay-supported pyrrhotite catalysts were prepared and tested. These included iron-pillared montmorillonite, mixed iron/alumina-pillared montmorillonite, iron-impregnated montmorillonite, and iron oxometallate-impregnated montmorillonite.

  9. Selective liquefaction of wheat straw in phenol and its fractionation.

    Science.gov (United States)

    Chen, Hongzhang; Zhang, Yuzhen; Xie, Shuangping

    2012-05-01

    For the first time, a method of phenol-selective liquefaction is proposed for the fractionation and multilevel conversion of lignocellulose. Through phenol-selective liquefaction, lignin and hemicellulose are liquefied, with large amounts of cellulose retained in the unliquefied residues. Using a phenol/straw ratio of 3 and a sulfuric acid concentration of 3%, large amounts of hemicellulose (≥85%) and lignin (≥70%) can be liquefied at 100 °C in 30 min, with a high quantity of cellulose (≥80%) retained. Unliquefied residues from selective liquefaction have higher susceptibility for enzymatic attack. Enzymatic hydrolyzation of residues can be as high as 65% in 48 h with 40.7 FPU/g of dry materials, which can then be used to prepare sugar platform intermediates. The liquefied products of wheat straw are then resinified with formaldehyde in the presence of NaOH as a catalyst and synthesized into phenol formaldehyde-type resins reaching up to GB/T 14732-2006 standards. Phenol selective liquefaction, a new technology for the fractionation of lignocellulose, achieves effective fractionation and multilevel conversion of straw components. Hence, it is an important tool to achieve full utilization of biomass and high value-added conversion of lignocellulose. PMID:22544687

  10. Thermochemical liquefaction characteristics of microalgae in sub- and supercritical ethanol

    Energy Technology Data Exchange (ETDEWEB)

    You, Qiao; Chen, Liang [College of Environmental Science and Engineering, Hunan University, Changsha (China); Key Laboratory of Environment Biology and Pollution Control, Ministry of Education, Changsha (China)

    2011-01-15

    Thermochemical liquefaction characteristics of Spirulina, a kind of high-protein microalgae, were investigated with the sub- and supercritical ethanol as solvent in a 1000 mL autoclave. The influences of various liquefaction parameters on the yields of products (bio-oil and residue) from the liquefaction of Spirulina were studied, such as the reaction temperature (T), the S/L ratio (R{sub 1}, solid: Spirulina, liquid: ethanol), the solvent filling ratio (R{sub 2}) and the type and dosage of catalyst. Without catalyst, the bio-oil yields were in the range of 35.4 wt.% and 45.3 wt.% depending on the changes of T, R{sub 1} and R{sub 2}. And the bio-oil yields increased generally with increasing T and R{sub 2}, while the bio-oil yields reduced with increasing R{sub 1}. The FeS catalyst was certified to be an ideal catalyst for the liquefaction of Spirulina microalgae for its advantages on promoting bio-oil production and suppressing the formation of residue. The optimal dosage of catalyst (FeS) was ranging from 5-7 wt.%. The elemental analyses and FT-IR and GC-MS measurements for the bio-oils revealed that the liquid products have much higher heating values than the crude Spirulina sample and fatty acid ethyl ester compounds were dominant in the bio-oils, irrespective of whether catalyst was used. (author)

  11. Coal liquefaction. Quarterly report, July-September 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    The status of coal liquefaction pilot plants supported by US DOE is reviewed under the following headings: company involved, location, contract, funding, process name, process description, flowsheet, history and progress during the July-September 1979 quarter. Supporting projects such as test facilities, refining and upgrading coal liquids, catalyst development, and gasification of residues from coal gasification plants are discussed similarly. (LTN)

  12. The latest developments and outlook for hydrogen liquefaction technology

    Energy Technology Data Exchange (ETDEWEB)

    Ohlig, K.; Decker, L. [Linde Kryotechnik AG, Pfungen, CH-8422 (Switzerland)

    2014-01-29

    Liquefied hydrogen is presently mainly used for space applications and the semiconductor industry. While clean energy applications, for e.g. the automotive sector, currently contribute to this demand with a small share only, their demand may see a significant boost in the next years with the need for large scale liquefaction plants exceeding the current plant sizes by far. Hydrogen liquefaction for small scale plants with a maximum capacity of 3 tons per day (tpd) is accomplished with a Brayton refrigeration cycle using helium as refrigerant. This technology is characterized by low investment costs but lower process efficiency and hence higher operating costs. For larger plants, a hydrogen Claude cycle is used, characterized by higher investment but lower operating costs. However, liquefaction plants meeting the potentially high demand in the clean energy sector will need further optimization with regard to energy efficiency and hence operating costs. The present paper gives an overview of the currently applied technologies, including their thermodynamic and technical background. Areas of improvement are identified to derive process concepts for future large scale hydrogen liquefaction plants meeting the needs of clean energy applications with optimized energy efficiency and hence minimized operating costs. Compared to studies in this field, this paper focuses on application of new technology and innovative concepts which are either readily available or will require short qualification procedures. They will hence allow implementation in plants in the close future.

  13. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ji-Lu, E-mail: triace@163.com; Zhu, Ming-Qiang; Wu, Hai-tang

    2015-09-15

    Highlights: • Swine carcasses can be converted to bio-oil by alkaline hydrothermal liquefaction. • It seems that the use of the bio-oil for heat or CHP is technically suitable. • Some valuable chemicals were found in the bio-oils. • The bio-oil and the solid residue constituted an energy efficiency of 93.63% for the feedstock. • The solid residue can be used as a soil amendment, to sequester C and for preparing activated carbon. - Abstract: It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2 wt% bio-oil, having a high heating value of 32.35 MJ/kg and a viscosity of 305cp, and 22 wt% solid residue were realized at a liquefaction temperature of 250 °C, a reaction time of 60 min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels.

  14. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil

    International Nuclear Information System (INIS)

    Highlights: • Swine carcasses can be converted to bio-oil by alkaline hydrothermal liquefaction. • It seems that the use of the bio-oil for heat or CHP is technically suitable. • Some valuable chemicals were found in the bio-oils. • The bio-oil and the solid residue constituted an energy efficiency of 93.63% for the feedstock. • The solid residue can be used as a soil amendment, to sequester C and for preparing activated carbon. - Abstract: It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2 wt% bio-oil, having a high heating value of 32.35 MJ/kg and a viscosity of 305cp, and 22 wt% solid residue were realized at a liquefaction temperature of 250 °C, a reaction time of 60 min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels

  15. Liquefaction and strong motion during the 2010-2011 Canterbury earthquake sequence

    Science.gov (United States)

    Chamberlain, M.; Wang, C. Y.; Dreger, D. S.; Cox, S.

    2014-12-01

    Liquefaction is a major seismic hazard for engineered structures; thus improved ability to predict the potential for liquefaction in seismically active regions is badly needed. The 2010 Mw 7.1 Darfield event and its associated aftershock sequence caused numerous occurrences of liquefaction in the Canterbury region of New Zealand, providing an excellent opportunity to study the occurrence of liquefaction in coastal plains near an active mountain belt. In this study we utilize strong motion data from over 100 stations in the New Zealand region and examine a number of major liquefaction events associated with the Canterbury earthquake sequence. These data are used to construct empirical attenuation relationships of ground motion as functions of hypocentral distance. The attenuation relationships so derived for the Canterbury region are similar to those developed for Southern California. This similarity suggests some generality of ground motion attenuation in sedimentary basins, even between geographically disparate regions. These relationships are used to estimate the seismic energy density at each liquefaction site in the Canterbury region, which is compared with a global database of liquefaction occurrences. Some liquefaction sites in the Canterbury region experienced seismic energy densities near the lower threshold for liquefaction established for the global dataset, suggesting high sensitivity to liquefaction.

  16. Comparative design of two 60,000 m3/d desalination plants using the multi-stage flash and reverse osmosis processes

    International Nuclear Information System (INIS)

    A comparison is made of the designs of two 60,000 m3/d desalination plants that use the multi-stage flash (MSF) and reverse osmosis (RO) processes, respectively. The objective is to assess the fundamental differences between the MSF and RO technologies based on multi-parametric analysis and cross-comparison of the normalized technical characteristics of the two installations. Such assessment and analysis focused on the most important comparison criteria in order to help decision making engineers and planners with the implementation of desalination projects and with the choice of the desalination process most appropriate to specific site conditions. Normalization of the plant capacity at a range of 60,000 m3/d for the two processes, as well as site condition normalization (the Mostaganem site, located 100 km to the east of Oran, is the reference site for both desalination plants), allowed easier cross- comparison of the study output data and other operational parameters. The aspects covered by the comparative study included plant sizing in terms of the number of units to be installed, the specific electricity and gas consumption, the efficiency, the effectiveness, the availability and the load factor for each process. The MED process was not taken into consideration because, as yet, Algeria has no plans to introduce any large scale MED projects. The assessment included the cross-comparison of major criteria such as operation and maintenance, the influence of sea water quality on the desalination processes, the quality of the product water and the appropriate posttreatment, the need for and use of chemical products, the choice of corrosion resistant materials, the lifetime of structures and equipment and the appropriate pretreatment. Also discussed are water intake and drainage, energy efficiency and optimum coupling, the area for the installations, operation, maintenance and administration staff, the environmental impact and the construction time. (author)

  17. Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept.

    Science.gov (United States)

    Hughes, Stephen R; López-Núñez, Juan Carlos; Jones, Marjorie A; Moser, Bryan R; Cox, Elby J; Lindquist, Mitch; Galindo-Leva, Luz Angela; Riaño-Herrera, Néstor M; Rodriguez-Valencia, Nelson; Gast, Fernando; Cedeño, David L; Tasaki, Ken; Brown, Robert C; Darzins, Al; Brunner, Lane

    2014-10-01

    The environmental impact of agricultural waste from the processing of food and feed crops is an increasing concern worldwide. Concerted efforts are underway to develop sustainable practices for the disposal of residues from the processing of such crops as coffee, sugarcane, or corn. Coffee is crucial to the economies of many countries because its cultivation, processing, trading, and marketing provide employment for millions of people. In coffee-producing countries, improved technology for treatment of the significant amounts of coffee waste is critical to prevent ecological damage. This mini-review discusses a multi-stage biorefinery concept with the potential to convert waste produced at crop processing operations, such as coffee pulping stations, to valuable biofuels and bioproducts using biochemical and thermochemical conversion technologies. The initial bioconversion stage uses a mutant Kluyveromyces marxianus yeast strain to produce bioethanol from sugars. The resulting sugar-depleted solids (mostly protein) can be used in a second stage by the oleaginous yeast Yarrowia lipolytica to produce bio-based ammonia for fertilizer and are further degraded by Y. lipolytica proteases to peptides and free amino acids for animal feed. The lignocellulosic fraction can be ground and treated to release sugars for fermentation in a third stage by a recombinant cellulosic Saccharomyces cerevisiae, which can also be engineered to express valuable peptide products. The residual protein and lignin solids can be jet cooked and passed to a fourth-stage fermenter where Rhodotorula glutinis converts methane into isoprenoid intermediates. The residues can be combined and transferred into pyrocracking and hydroformylation reactions to convert ammonia, protein, isoprenes, lignins, and oils into renewable gas. Any remaining waste can be thermoconverted to biochar as a humus soil enhancer. The integration of multiple technologies for treatment of coffee waste has the potential to

  18. Multi-Stage Mass Spectrometry Analysis of Sugar-Conjugated β-Turn Structures to be Used as Probes in Autoimmune Diseases

    Science.gov (United States)

    Giangrande, Chiara; Auberger, Nicolas; Rentier, Cédric; Papini, Anna Maria; Mallet, Jean-Maurice; Lavielle, Solange; Vinh, Joëlle

    2016-04-01

    Synthetic sugar-modified peptides were identified as antigenic probes in the context of autoimmune diseases. The aim of this work is to provide a mechanistic study on the fragmentation of different glycosylated analogs of a synthetic antigenic probe able to detect antibodies in a subpopulation of multiple sclerosis patients. In particular the N-glucosylated type I' β-turn peptide structure called CSF114(Glc) was used as a model to find signature fragmentations exploring the potential of multi-stage mass spectrometry by MALDI-LTQ Orbitrap. Here we compare the fragmentation of the glucosylated form of the synthetic peptide CSF114(Glc), bearing a glucose moiety on an asparagine residue, with less or non- immunoreactive forms, bearing different sugar-modifications, such as CSF114(GlcNAc), modified with a residue of N-acetylglucosamine, and CSF114[Lys7(1-deoxyfructopyranosyl)], this last one modified with a 1-deoxyfructopyranosyl moiety on a lysine at position 7. The analysis was set up using a synthetic compound specifically deuterated on the C-1 to compare its fragmentation with the fragmentation of the undeuterated form, and thus ascertain with confidence the presence on an Asn(Glc) within a peptide sequence. At the end of the study, our analysis led to the identification of signature neutral losses inside the sugar moieties to characterize the different types of glycosylation/glycation. The interest of this study lies in the possibility of applyimg this approach to the discovery of biomarkers and in the diagnosis of autoimmune diseases.

  19. Evaluation of Liquefaction Susceptibility of Clean Sands after Blast Densification

    Science.gov (United States)

    Vega Posada, Carlos Alberto

    The effect of earthquakes on infrastructure facilities is an important topic of interest in geotechnical research. A key design issue for such facilities is whether or not liquefaction will occur during an earthquake. The consequences of this type of ground failure are usually severe, resulting in severe damage to a facility and in some cases the loss of human life. One approach to minimize the effect of liquefaction is to improve the ground condition by controlled blasting. The main limitations of the blast densification technique are that the design is mostly empirical and verification studies of densification have resulted in contradictory results in some case studies. In such cases, even though the ground surface settles almost immediately after blasting, common verification tests such as the cone penetration test (CPT), standard penetration test (SPT), and shear wave velocity test (Vs) suggest that the soil mass has not been improved at all. This raises concerns regarding the future performance of the soil and casts doubts on whether or not the improved deposit is still susceptible to liquefaction. In this work, a blast densification program was implemented at the Oakridge Landfill located in Dorchester County, SC, to gain information regarding the condition of a loose sand deposit during and after each blast event. In addition, an extensive laboratory testing program was conducted on reconstituted sand specimens to evaluate the mechanical behavior of saturated and gassy, medium dense sands during monotonic and cyclic loading. The results from the field and laboratory program indicate that gas released during blasting can remain trapped in the soil mass for several years, and this gas greatly affects the mechanical behavior of the sand. Gas greatly increases the liquefaction resistance of the soil. If the gas remains in the sand over the life of a project, then it will maintain this increased resistance to liquefaction, whether or not the penetration

  20. 进化计算在多阶段生产计划问题中的应用%The Application of Evolutionary Computation to Multi-stage Production Planning Problem

    Institute of Scientific and Technical Information of China (English)

    周根贵; 翁潇彬

    2001-01-01

    提出一种新的进化计算方法用以解决多阶段生产计划问题,数值计算表明该方法不仅对单目标的多阶段生产计划问题是有效的,而且,对多目标的多阶段生产计划问题也是有效的。%We propose a new evolutionary computation approach to deal with the multi-stage production planning problem. The numerical experiments show the effectiveness of the proposed method to the multi-stage production planning problems with both single objective and multiple objectives.

  1. Chemistry and morphology of coal liquefaction. Annual report, October 1, 1979-September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H.

    1980-09-01

    The present annual report summarizes quarterly reports and includes work performed during the last quarter of fiscal 1980. The first year of this project has just been completed and much of the time and effort has been concentrated on equipment building, assembling, testing, and on staffing. This, of course, has been more true in the areas of work with spectroscopic and high pressure equipment than in organic chemical reactions. More experimental results are therefore reported in the areas of hydrogen transfer mechanisms and catalysis and organo-metallic chemistry. A few of the significant results in these and other areas are the evidence for catalysis in hydrogen transfer from tetralin; a novel and possibly very important new synthesis of alkyl aromatics from benzene, carbon monoxide, and hydrogen; the study of coals in the transmission electron microscope identifying coal macerals, minerals and metals, and leading to the possibility of observing location of and catalytic influences on pyrolysis and hydrogenation at elevated temperatures; the finding that scales formed on deactivated cobalt-molybdena-alumina-hydrogenation catalysts contain not only metals from the liquid feedstocks, but also molybdenum sulfide which must derive from migration from the catalyst interior to and beyond the surface. Insights gained in mechanisms of pyrolysis, hydrogenation, hydrogen transfer, and indirect liquefaction of coal promise to lead to improving technology by defining problem areas and showing routes to by-pass problems.

  2. Chemistry and morphology of coal liquefaction. Quarterly report, January 1, 1984-March 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H.

    1984-04-01

    In task 1, selective synthesis of gasoline-range components from synthesis gas, rate expressions were developed for four different iron catalysts (promoted and unpromoted). Data for all four catalysts can be correlated by a semi-empirical expression. In task 2 catalyzed low temperature reactions of carbon and water, the catalytic activity for the production of hydrocarbons from graphite and water over KOH plus a co-catalyst was investigated for several first row transition metals. NiO showed the greatest activity. Several samples of /sup 13/CO, /sup 13/CO/sub 2/ and H/sub 2/O adsorbed on graphite and on catalyst-graphite systems after reaction with steam were prepared for NMR investigation. In task 3 chemistry of coal solubilization and liquefaction, rate studies of quinoline reduction to tetrahydroquinoline in the presence of the homogeneous catalysts (phi/sub 3/P)/sub 3/RhCl have provided definitive evidence that benzothiophene, indole, pyrrole, carbazole, thiophene, p-cresol and dibenzothiophene enhance the initial rate of hydrogenation of quinoline by a factor greater than 1.5. P-cresol was found to enhance the initial rate of hydrogenation of quinoline (1.6 to 2 fold) in a model coal liquid with polymer-supported (2% cross-linked) (phi/sub 3/P)/sub 3/ RhCl. 2 references, 6 figures.

  3. EDS coal liquefaction process development: Phase V. Final technical progress report, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-02-01

    All objectives in the EDS Cooperative Agreement for Phases III-B through V have been achieved for the RCLU pilot plants. EDS operations have been successfully demonstrated in both the once-through and bottoms recycle modes for coals of rank ranging from bituminous to lignitic. An extensive data base detailing the effects of process variable changes on yields, conversions and product qualities for each coal has been established. Continuous bottoms recycle operations demonstrated increased overall conversion and improved product slate flexibility over once-through operations. The hydrodynamics of the liquefaction reactor in RCLU were characterized through tests using radioactive tracers in the gas and slurry phases. RCLU was shown to have longer liquid residence times than ECLP. Support work during ECLP operations contributed to resolving differences between ECLP conversions and product yields and those of the small pilot plants. Solvent hydrogenation studies during Phases IIIB-V of the EDS program focused on long term activity maintenance of the Ni-MO-10 catalyst. Process variable studies for solvents from various coals (bituminous, subbituminous, and lignitic), catalyst screening evaluations, and support of ECLP solvent hydrogenation operations. Product quality studies indicate that highly cyclic EDS naphthas represent unique and outstanding catalytic reforming feedstocks. High volumes of high octane motor gasoline blendstock are produced while liberating a considerable quantity of high purity hydrogen.

  4. Post-liquefaction soil-structure interaction for buried structures: Sensitivity analysis studies

    International Nuclear Information System (INIS)

    The post liquefaction behavior of buried conduits is analyzed and sensitivity analysis is conducted to investigate the damage potential of the forces induced in the buried lifelines following seismically induced liquefaction of the surrounding soil. Various lifeline configurations and loading conditions are considered. The loading conditions considered are: buoyancy forces and permanent ground displacements parallel to the lifeline axis. Pertinent parameters for the soil-lifeline interaction following liquefaction are identified. (author)

  5. Evaluation of Liquefaction Return Period for Bangalore Based on Standard Penetration Test Data: Performance Based Approach

    OpenAIRE

    Vipin, K. S.; Sitharam, T. G.

    2009-01-01

    Problem statement: The conventional liquefaction evaluation is based on a deterministic approach. However in this method the uncertainty in the earthquake loading is not properly taken into account. However recent research in this field indicates that this uncertainty in the earthquake loading has to be considered in the liquefaction potential evaluation. Moreover the evaluation of liquefaction return period is not possible in the conventional deterministic methods. This study explained the m...

  6. Evaluation of Liquefaction Return Period for Bangalore Based on Standard Penetration Test Data: Performance Based Approach

    Directory of Open Access Journals (Sweden)

    K. S. Vipin

    2009-01-01

    Full Text Available Problem statement: The conventional liquefaction evaluation is based on a deterministic approach. However in this method the uncertainty in the earthquake loading is not properly taken into account. However recent research in this field indicates that this uncertainty in the earthquake loading has to be considered in the liquefaction potential evaluation. Moreover the evaluation of liquefaction return period is not possible in the conventional deterministic methods. This study explained the methods for evaluating the probability of liquefaction and the return period of liquefaction based on probabilistic approach. Approach: In this study the geotechnical data was collected from 450 bore holes in Bangalore, India, covering an area of 220 km2. The seismic hazard analysis for the study area is carried out using Probabilistic Seismic Hazard Analysis (PSHA and the peak acceleration at ground surface was evaluated for site class-D after considering local site effects. For assessment of site class, shear wave velocity profiles in the city had been obtained using Multichannel Analysis of Surface Waves (MASW survey. Based on this data the probabilistic liquefaction analysis was done to evaluate the probability of liquefaction in the study area. Based on the performance based approach the liquefaction return period for the study area was also evaluated. Results: The results showed the variation of liquefaction susceptibility for the study area. The corrected standard penetration values required to prevent the liquefaction for return periods of 475 and 2500 years were also presented here. Conclusion/Recommendations: The spatial variation of probability of liquefaction and the factor of safety against liquefaction evaluated using the two methods match well for the study area.

  7. Catalytic cracking process

    Science.gov (United States)

    Lokhandwala, Kaaeid A.; Baker, Richard W.

    2001-01-01

    Processes and apparatus for providing improved catalytic cracking, specifically improved recovery of olefins, LPG or hydrogen from catalytic crackers. The improvement is achieved by passing part of the wet gas stream across membranes selective in favor of light hydrocarbons over hydrogen.

  8. Catalytic distillation structure

    Science.gov (United States)

    Smith, Jr., Lawrence A.

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  9. Characteristics estimation of coal liquefaction residue; Sekitan ekika zansa seijo no suisan ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Itonaga, M.; Imada, K. [Nippon Steel Corp., Tokyo (Japan); Okada, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan)

    1996-10-28

    The paper studied a possibility of estimating characteristics of coal liquefaction residue from liquefaction conditions in the case of fixing coal kind in the NEDOL process coal liquefaction PSU. Wyoming coal was used for the study, and the already proposed simplified liquefaction reaction models were used. Among material balances explained by the models, those of asphaltene, preasphaltene, THF insoluble matters are concerned with residue composition. Ash content is separately calculated from ash balance. Reaction velocity constants of simplified liquefaction reaction models which influence the residue composition were obtained by the multiple regression method from experimental results in the past. The estimation expression of residue viscosity was introduced from residue ash/composition. When the residue composition is estimated by the model from liquefaction conditions, and the residue viscosity is obtained using it, the higher the liquefaction temperature is, the higher the residue viscosity is. The result obtained well agreed the measuring result. The simplified liquefaction model of a certain coal kind has been established, and characteristics of residue can be estimated even at liquefaction conditions which have never been experienced before if there is a certain amount of the accumulated data on residue composition/characteristics. 4 refs., 4 figs., 4 tabs.

  10. Liquefaction Susceptibility of Soils With Clay Particles from Earthquake-induced Landslides

    Institute of Scientific and Technical Information of China (English)

    CHEN Chuan-sheng; JIANG Xin; ZHANG Xu

    2007-01-01

    The main reason for earthquake-induced landslides is liquefaction of soil, a process considered to occur mostly in sandy soils. Liquefaction can occur in clayey soils has also been reported and proven in the recent literature, but liquefaction in clayey soils still remains unclear and there are many questions that need to be addressed. In order to address these questions, an depth study on the liquefaction potential of clayey soils was conducted on the basis of field investigation and a series of laboratory tests on the samples collected from the sliding surface of the landslides. The liquefaction potential of the soils was studied by means of undrained cyclic ring-shear tests. Research results show that the liquefaction potential of sandy soils is higher than that of clayey soils given the same void ratio;the soil resistance to liquefaction rises with an increase in plasticity for clayey soils; relation between plasticity index and the liquefaction potential of soil can be used in practical application to estimate the liquefaction potential of soil.

  11. Engineering of Ground for Liquefaction Mitigation Using Granular Columnar Inclusions: Recent Developments

    Directory of Open Access Journals (Sweden)

    A. M. Krishna

    2009-01-01

    Full Text Available Problem statement: Liquefaction was the most hazardous damage during an earthquake. Ground improvement techniques were employed to mitigate liquefaction hazards. Most common methods to improve engineering properties of soils are densification, reinforcement, grouting/mixing and drainage. Among various remedial measures available, installation of columnar granular inclusions is the most widely adopted method for liquefaction mitigation. Approach: Columnar granular inclusions function as drains and permit rapid dissipation of earthquake induced pore pressures by virtue of their high permeability. Results: One of the chief benefits of ground treatment with granular piles is the densification of in situ ground by which the in-situ properties of the ground get modified to mitigate liquefaction potential. Further, the very high deformation modulus and stiffness of the granular pile material provide reinforcement for the in situ soil and offer another mechanism to mitigate liquefaction. The study described briefly the phenomenon of liquefaction and the associated features. A short discussion on various ground improvement methods available for liquefaction mitigation was presented highlighting the importance of columnar inclusions. Construction methods of different granular columnar inclusions like sand compaction piles/ granular piles were discussed briefly. Recent developments in the research of columnar granular inclusions as liquefaction counter measures were presented in relation to physical, numerical and analytical model studies. Conclusion/Recommendations: Columnar granular inclusions were demonstrated to be very effective for liquefaction mitigation in different case studies and research investigations.

  12. Cryogenic hydrogen-induced air-liquefaction technologies

    Science.gov (United States)

    Escher, William J. D.

    1990-01-01

    Extensive use of a special advanced airbreathing propulsion archives data base, as well as direct contacts with individuals who were active in the field in previous years, a technical assessment of cryogenic hydrogen induced air liquefaction, as a prospective onboard aerospace vehicle process, was performed and documented in 1986. The resulting assessment report is summarized. Technical findings relating the status of air liquefaction technology are presented both as a singular technical area, and also as that of a cluster of collateral technical areas including: Compact lightweight cryogenic heat exchangers; Heat exchanger atmospheric constituents fouling alleviation; Para/ortho hydrogen shift conversion catalysts; Hydrogen turbine expanders, cryogenic air compressors and liquid air pumps; Hydrogen recycling using slush hydrogen as heat sinks; Liquid hydrogen/liquid air rocket type combustion devices; Air Collection and Enrichment System (ACES); and Technically related engine concepts.

  13. INVESTIGATION INTO NATURAL GAS LIQUEFACTION METHODS, LNG TRANSPORT AND STORAGE

    Directory of Open Access Journals (Sweden)

    Atakan AVCI

    1995-03-01

    Full Text Available Liquefied Natural Gas (LNG processes are very new in Turkey. The Government of Turkey, due to diversification of supply and balancing of seasonal load, decided to import LNG from Algeria. The first shipment in Marmara Ereğli import terminal has been carried out in the August the 3 rd, 1994. LNG after regasification will be injected into the main transmission pipeline. The share of LNG in the world natural gas trade was approixmately 22.1% in 1988. According to the forecast, LNG share will be rapidly spreading all over the world in near future. In this paper, treatment, liquefaction, transport, storage, regasification, distribution and utilisation of LNG are examined. Particular attention has given into liquefaction of natural gas.

  14. An advanced extruder-feeder biomass liquefaction reactor system

    Science.gov (United States)

    White, Don H.; Wolf, D.; Davenport, G.; Mathews, S.; Porter, M.; Zhao, Y.

    1987-11-01

    A unique method of pumping concentrated, viscous biomass slurries that are characteristic of biomass direct liquefaction systems was developed. A modified single-screw extruder was shown to be capable of pumping solid slurries as high as 60 weight percent wood flour in wood oil derived vacuum bottoms, as compared to only 10 to 20 weight percent wood flour in wood oil in conventional systems. During the period August, 1985 to April, 1987, a total of 18 experimental continuous biomass liquefaction runs were made using white birch feedstock. Good operability with feed rates up to 30 lb/hr covering a range of carbon monoxide, sodium carbonate catalyst, pressures from 800 to 3000 psi and temperatures from 350 C to 430 C was achieved. Crude wood oils containing 6 to 10 weight percent residual oxygen were obtained. Other wood oil characteristics are reported.

  15. An economic analysis of three hydrogen liquefaction systems

    International Nuclear Information System (INIS)

    Solar-hydrogen energy systems have received some attention in recent years as viable alternatives to the present fossil-fuel based energy systems. This paper presents an economic analysis of three hydrogen liquefaction systems with an associated cost comparison. The analysis takes into account the energy cost, operation and maintenance, and fixed charges on capital investment. Electrical requirements of the compressors or energy cost of a liquefier are predominantly functions of the liquefier efficiency and are less dependent on the production rate required. The analysis showed that the cost of liquefying hydrogen is lowest for an optimized large-scale type liquid hydrogen plant and is highest for a simple conceptual liquid hydrogen plant. The liquefaction cost was also shown to reach a value of $0.63/kg for the optimized large-scale type plant at a production rate of 30,000 kg/h when the cost of electricity is $0.04/(kW h). (author)

  16. Corrosion problems and their countermeasures in coal liquefaction plants

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, Takeo

    1988-06-05

    Problems in materials of coal liquefaction plants are described with emphasis placed on research results in U.S. The paper further describes the stress corrosion cracking (S.C.C.) of stainless steel and countermeasures against it taking an example from research carried out on the oil refinery plants, in similar environment. The operation of coal liquefaction plant is grouped to 6 processes: Coal preparation, slurry preheating, reaction column, gas separation column, pressure reduction, solids separation and distillation and each of the processes is investigated regarding sulfurization, erosion, erosion/corrosion, SCC (CI, polythionic acid), hydrogen erosion and organic acid corrosion. Examples of cases are given for SCC of stainless steel in each process and on-site tests are conducted with new materials. SCC occurred less frequently on the overlay welded portion, when it contained an adequate portion of delta-ferrite. (7 figs, 3 tabs, 54 refs)

  17. Bioreactors for high cell density and continuous multi-stage cultivations: options for process intensification in cell culture-based viral vaccine production.

    Science.gov (United States)

    Tapia, Felipe; Vázquez-Ramírez, Daniel; Genzel, Yvonne; Reichl, Udo

    2016-03-01

    With an increasing demand for efficacious, safe, and affordable vaccines for human and animal use, process intensification in cell culture-based viral vaccine production demands advanced process strategies to overcome the limitations of conventional batch cultivations. However, the use of fed-batch, perfusion, or continuous modes to drive processes at high cell density (HCD) and overextended operating times has so far been little explored in large-scale viral vaccine manufacturing. Also, possible reductions in cell-specific virus yields for HCD cultivations have been reported frequently. Taking into account that vaccine production is one of the most heavily regulated industries in the pharmaceutical sector with tough margins to meet, it is understandable that process intensification is being considered by both academia and industry as a next step toward more efficient viral vaccine production processes only recently. Compared to conventional batch processes, fed-batch and perfusion strategies could result in ten to a hundred times higher product yields. Both cultivation strategies can be implemented to achieve cell concentrations exceeding 10(7) cells/mL or even 10(8) cells/mL, while keeping low levels of metabolites that potentially inhibit cell growth and virus replication. The trend towards HCD processes is supported by development of GMP-compliant cultivation platforms, i.e., acoustic settlers, hollow fiber bioreactors, and hollow fiber-based perfusion systems including tangential flow filtration (TFF) or alternating tangential flow (ATF) technologies. In this review, these process modes are discussed in detail and compared with conventional batch processes based on productivity indicators such as space-time yield, cell concentration, and product titers. In addition, options for the production of viral vaccines in continuous multi-stage bioreactors such as two- and three-stage systems are addressed. While such systems have shown similar virus titers compared to

  18. Coupled numerical simulation of the multi-stage rocket stage separation%火箭级间热分离过程耦合数值模拟

    Institute of Scientific and Technical Information of China (English)

    高立华; 张兵; 权晓波; 符松

    2011-01-01

    为了研究某火箭一、二级级间热分离的级间流动机理和分离过程的安全性,采用Chimera/Overset方法并结合N-S方程和刚体动力学方程,以流动和刚体动力学耦合计算的方式对该多级火箭的一、二级级间热分离过程进行了数值模拟。模拟结果显示,轴对称工况分离过程的流动存在剧烈的震荡,而二级喷管有偏转工况分离过程的流动比较平稳,在这两种工况下火箭都能够安全分离。研究结果表明,二级喷管偏转可以增进分离过程的平稳性。计算结果可为级间分离段的设计提供参考。%Coupled CFD and rigid body dynamics simulation was made using Chimera/Overset method to study the dynamic and aerodynamic characteristics of the stage separation of a multi-stage rocket.An axisymmetric case without the second stage nozzle rotation and a three-dimensional case with the second stage nozzle rotation were used to investigate the flow mechanism and safety of the stage separation.Simulation results show that the flow fields in the axisymmetric case features significant oscillation while those of the three-dimensional case are relatively smooth,with the rocket being able to safely separate in both cases,and that the second stage nozzle rotation has an effect on improving the stage separation stability.The simulation results provide a reference for the interstage design.

  19. Catalytic hydrocracking of primary maceral concentrate extracts prepared in a flowing solvent reactor

    Energy Technology Data Exchange (ETDEWEB)

    Begon, V.; Suelves, I.; Li, W.; Lazaro, M.-J.; Herod, A.A.; Kandiyoti, R. [Imperial College, London (United Kingdom). Dept. of Chemical Engineering and Chemical Technology

    2002-01-01

    Differences between the behaviour of coal macerals during liquefaction and catalytic hydrocracking were investigated. The liquefaction experiments were carried out in tetralin, using a flowing solvent reactor. The extracts were catalytically hydrocracked in a micro-bomb reactor, using a commercial catalyst. Conversions of the vitrinite and the liptinite concentrates during liquefaction were high ({approximately} 89%), while inertinite samples yielded a little over 20% extract. For inertinite, the emerging picture was consistent with high cross-link density. Liptinite was extracted less completely at lower temperatures and more slowly at high temperatures compared to corresponding vitrinites and vitrinitic coals. Long chain aliphatics released from the liptinite concentrate between 340 and 390{sup o}C appeared likely to have originated in lower molecular mass material occluded in the sample matrix and dissolving in tetralin prior to the onset of massive covalent bond scission. SEC chromatograms showed material of larger MMs in liptinite and vitrinite extracts than in the inertinite extract. The molecular mass distributions broadened with increasing extraction temperature. Catalytic hydrocracking experiments were carried out in a micro-bomb reactor for 10 and 120 min at 440{sup o}C, under 190 bar of hydrogen. In hydrocracking, the liptinite was the slowest extract to react at short reaction times ({approximately} 10 min). However, at longer reaction times, its products showed the smallest MM-distribution. Smaller differences were observed between the chromatograms of the 10 and 120 min hydrocracked products of the inertinite extract. Differences between spectra of the three extracts would strongly suggest the presence of larger (and apparently irreducible) polycyclic aromatic ring systems, in the hydrocracked products of the inertinite extract. 52 refs., 14 figs., 2 tabs.

  20. Catalytic Hydrothermal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.

    2015-05-31

    The term “hydrothermal” used here refers to the processing of biomass in water slurries at elevated temperature and pressure to facilitate the chemical conversion of the organic structures in biomass into useful fuels. The process is meant to provide a means for treating wet biomass materials without drying and to access ionic reaction conditions by maintaining a liquid water processing medium. Typical hydrothermal processing conditions are 523-647K of temperature and operating pressures from 4-22 MPa of pressure. The temperature is sufficient to initiate pyrolytic mechanisms in the biopolymers while the pressure is sufficient to maintain a liquid water processing phase. Hydrothermal gasification is accomplished at the upper end of the process temperature range. It can be considered an extension of the hydrothermal liquefaction mechanisms that begin at the lowest hydrothermal conditions with subsequent decomposition of biopolymer fragments formed in liquefaction to smaller molecules and eventually to gas. Typically, hydrothermal gasification requires an active catalyst to accomplish reasonable rates of gas formation from biomass.

  1. Ground Improvement for Liquefaction Mitigation at Existing Highway Bridges

    OpenAIRE

    Cooke, Harry G.

    2000-01-01

    The feasibility of using ground improvement at existing highway bridges to mitigate the risk of earthquake-induced liquefaction damage has been studied. The factors and phenomena governing the performance of the improved ground were identified and clarified. Potential analytical methods for predicting the treated ground performance were investigated and tested. Key factors affecting improved ground performance are the type, size, and location of the treated ground. The improved groun...

  2. The influence of cementation on liquefaction resistance of sands

    OpenAIRE

    Iwabuchi, Jotaro

    1986-01-01

    Cohesionless sands are known to be susceptible to failure by liquefaction when they are saturated and subjected to earthquake shaking. Considerable study has been directed towards this subject over the past 20 years in recognition of the possibility of large-scale property damage or loss of life due to this type of failure. Recent evidence has shown that small degrees of cementation in a sand significantly reduce the likelihood of liquefication. However, the work to date has been ...

  3. Liquefaction of micro-algae with iron catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, T.; Nishihara, A.; Ueda, C.; Ohtsuki, M.; Ikenaga, N.; Suzuki, T. [Kansai University, Osaka (Japan). Department of Chemical Engineering

    1997-09-01

    Microalgae used for carbon dioxide fixation need to be used effectively before they degrade by microbiological process to yield CO{sub 2} once more. Liquefaction of Spirulina, a high-protein microalga, afforded {gt} 90 wt% of THF-soluble products and 60 wt% of hexane-soluble fractions, in the temperature range 300-425{degree}C under hydrogen in various organic solvents with highly dispersed catalysts. The oil yield increased from 52.3 to 66.9 wt% with Fe(CO){sub 5}-S catalyst at 350{degree}C for 60 min in tetralin under 5.0 MPa of hydrogen. Hydrogen activated by the dispersed catalyst contributed to an increase in oil yield. Liquefaction in water as solvent gave a higher oil yield of 78.3 wt% at 350{degree}C even under nitrogen. Liquefaction in toluene gave oil fractions of high carbon content and lower oxygen content, with a heating value of 32-33 MJ kg{sup -1}. On the contrary, oil fractions obtained in water had a lower carbon content and higher oxygen content, with a lower heating value of 26 MJ kg{sup -1}. The presence of moderate amount of water is considered to be effective for the production of oil of high heating value in high yield. FT-i.r. spectroscopy and gel permeation chromatograph showed that production of oil fractions proceeded via thermal decomposition of polypeptides and hydrolysis by water produced during liquefaction in organic solvents. 24 refs., 8 figs., 3 tabs.

  4. Liquefaction of sunflower husks for biochar production / Nontembiso Piyo

    OpenAIRE

    Piyo, Nontembiso

    2014-01-01

    Biochar, a carbon-rich and a potential solid biofuel, is produced during the liquefaction of biomass. Biochar can be combusted for heat and power, gasified, activated for adsorption applications, or applied to soils as a soil amendment and carbon sequestration agent. It is very important and advantageous to produce biochar under controlled conditions so that most of the carbon is converted. The main objective of the study was to investigate the effect of solvents, reaction temp...

  5. Mechanism of Liquefaction-Induced Large Settlements of Buildings

    OpenAIRE

    Zaheer Ahmed Almani; Kamran Ansari; Ashfaque Ahmed Memon

    2012-01-01

    In this paper, mechanism of liquefaction-related large settlements of the soil-structure system during the earthquake was studied using numerical modelling. The isolated shallow strip plane strain footing pad, supporting a typical simple frame structure, was founded on the ground at the shallow depth from the level ground surface. This system was modelled as plane-strain using the FLAC (Fast Lagrangian Analysis of continua) 2D dynamic modelling and analysis code. This case focuses...

  6. The current status of coal liquefaction technologies - Panorama 2008

    International Nuclear Information System (INIS)

    In 2008, a first coal liquefaction unit to produce motor fuel (20,000 BPSD) will come on-stream in Shenhua, China (in the Ercos region of Inner Mongolia). Other, more ambitious projects have been announced in China for between now and 2020. Since oil production is expected to peak in the medium term, this technology may develop regionally in the next 20 years to cover ever-increasing demand for motor fuel

  7. SLURRY PHASE IRON CATALYSTS FOR INDIRECT COAL LIQUEFACTION

    Energy Technology Data Exchange (ETDEWEB)

    Abhaya K. Datye

    1998-11-19

    This report describes research conducted to support the DOE program in indirect coal liquefaction. Specifically, they have studied the attrition behavior of iron Fischer-Tropsch catalysts, their interaction with the silica binder and the evolution of iron phases in a synthesis gas conversion process. The results provide significant insight into factors that should be considered in the design of catalysts for converting coal based syngas into liquid fuels.

  8. A Characterization and Evaluation of Coal Liquefaction Process Streams

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    An updated assessment of the physico-chemical analytical methodology applicable to coal-liquefaction product streams and a review of the literature dealing with the modeling of fossil-fuel resid conversion to product oils are presented in this document. In addition, a summary is provided for the University of Delaware program conducted under this contract to develop an empirical test to determine relative resid reactivity and to construct a computer model to describe resid structure and predict reactivity.

  9. Development of an extruder-feeder biomass direct liquefaction process

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.; Wolf, D. (Arizona Univ., Tucson, AZ (United States). Dept. of Chemical Engineering)

    1991-10-01

    As an abundant, renewable, domestic energy resource, biomass could help the United States reduce its dependence on imported oil. Biomass is the only renewable energy technology capable of addressing the national need for liquid transportation fuels. Thus, there is an incentive to develop economic conversion processes for converting biomass, including wood, into liquid fuels. Through research sponsored by the US DOE's Biomass Thermochemical Conversion Program, the University of Arizona has developed a unique biomass direct liquefaction system. The system features a modified single-screw extruder capable of pumping solid slurries containing as high as 60 wt% wood flour in wood oil derived vacuum bottoms at pressures up to 3000 psi. The extruder-feeder has been integrated with a unique reactor by the University to form a system which offers potential for improving high pressure biomass direct liquefaction technology. The extruder-feeder acts simultaneously as both a feed preheater and a pumping device for injecting wood slurries into a high pressure reactor in the biomass liquefaction process. An experimental facility was constructed and following shakedown operations, wood crude oil was produced by mid-1985. By July 1988, a total of 57 experimental continuous biomass liquefaction runs were made using White Birch wood feedstock. Good operability was achieved at slurry feed rates up to 30 lb/hr, reactor pressures from 800 to 3000 psi and temperatures from 350{degree}C to 430{degree}C under conditions covering a range of carbon monoxide feed rates and sodium carbonate catalyst addition. Crude wood oils containing as little as 6--10 wt% residual oxygen were produced. 38 refs., 82 figs., 26 tabs.

  10. Hydrothermal liquefaction of Nannochloropsis oceanica in different solvents.

    Science.gov (United States)

    Caporgno, M P; Pruvost, J; Legrand, J; Lepine, O; Tazerout, M; Bengoa, C

    2016-08-01

    Although the hydrothermal liquefaction is considered a promising technology for converting microalgae into liquid biofuels, there are still some disadvantages. This paper demonstrated that the bio-oil yield can be significantly improved by adding alcohols as co-solvents and carrying out the conversion at mild conditions (microalgae (∼75% moisture) and alcohol concentrations which avoid both drying the microalgae and decreasing the amount of microalgae loaded in the reactor. PMID:27155795

  11. Liquefaction Susceptibility in the Northern Provinces of Thailand

    Directory of Open Access Journals (Sweden)

    Supot Teachavorasinskun

    2009-01-01

    Full Text Available Problem statement: There are quite a few active faults recently found in the western and northern parts of Thailand, which could possibly induce earthquakes of magnitude (ML of 5.5-6.5. Although seismic design code has been enforced in the area since 1980, the fundamental knowledge on dynamic soil behavior has not been extensively attained. Approach: Collection of existing borehole information in the targeted areas to form a typical subsoil profile. This borehole information, together with analytical result obtained from logistic regression based on worldwide liquefaction database was used to conduct an effective stress analysis. Result: Literature reviews of the existing boreholes from the two largest provinces in the north, Chiang-Mai and Chiang-Rai, revealed that the areas were underlain by layers of loose to medium dense sand found at shallow depths. The corrected SPT N-value of those sand layers varies in the range of 5-20. A simple tool correlating the liquefaction probability, which correlated excess pore water pressure and peak ground acceleration, was proposed for the studied areas. Conclusion: The proposed correlation provided preliminary tool to evaluate risk of the shallow foundation from partial liquefaction in the two northern provinces of Thailand.

  12. Technology for advanced liquefaction processes: Coal/waste coprocessing studies

    Energy Technology Data Exchange (ETDEWEB)

    Cugini, A.V.; Rothenberger, K.S.; Ciocco, M.V. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    The efforts in this project are directed toward three areas: (1) novel catalyst (supported and unsupported) research and development, (2) study and optimization of major operating parameters (specifically pressure), and (3) coal/waste coprocessing. The novel catalyst research and development activity has involved testing supported catalysts, dispersed catalysts, and use of catalyst testing units to investigate the effects of operating parameters (the second area) with both supported and unsupported catalysts. Several supported catalysts were tested in a simulated first stage coal liquefaction application at 404{degrees}C during this performance period. A Ni-Mo hydrous titanate catalyst on an Amocat support prepared by Sandia National laboratories was tested. Other baseline experiments using AO-60 and Amocat, both Ni-Mo/Al{sub 2}O{sub 3} supported catalysts, were also made. These experiments were short duration (approximately 12 days) and monitored the initial activity of the catalysts. The results of these tests indicate that the Sandia catalyst performed as well as the commercially prepared catalysts. Future tests are planned with other Sandia preparations. The dispersed catalysts tested include sulfated iron oxide, Bayferrox iron oxide (iron oxide from Miles, Inc.), and Bailey iron oxide (micronized iron oxide from Bailey, Inc.). The effects of space velocity, temperature, and solvent-to-coal ratio on coal liquefaction activity with the dispersed catalysts were investigated. A comparison of the coal liquefaction activity of these catalysts relative to iron catalysts tested earlier, including FeOOH-impregnated coal, was made. These studies are discussed.

  13. Solvent recyclability in a multistep direct liquefaction process

    Energy Technology Data Exchange (ETDEWEB)

    Hetland, M.D.; Rindt, J.R. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-31

    Direct liquefaction research at the Energy & Environmental Research Center (EERC) has, for a number of years, concentrated on developing a direct liquefaction process specifically for low-rank coals (LRCs) through the use of hydrogen-donating solvents and solvents similar to coal-derived liquids, the water/gas shift reaction, and lower-severity reaction conditions. The underlying assumption of all of the research was that advantage could be taken of the reactivity and specific qualities of LRCs to produce a tetrahydrofuran (THF)-soluble material that might be easier to upgrade than the soluble residuum produced during direct liquefaction of high-rank coals. A multistep approach was taken to produce the THF-soluble material, consisting of (1) preconversion treatment to prepare the coal for solubilization, (2) solubilization of the coal in the solvent, and (3) polishing to complete solubilization of the remaining material. The product of these three steps can then be upgraded during a traditional hydrotreatment step. The results of the EERC`s research indicated that additional studies to develop this process more fully were justified. Two areas were targeted for further research: (1) determination of the recyclability of the solvent used during solubilization and (2) determination of the minimum severity required for hydrotreatment of the liquid product. The current project was funded to investigate these two areas.

  14. SURFACE-MODIFIED COALS FOR ENHANCED CATALYST DISPERSION AND LIQUEFACTION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Yaw D. Yeboah

    1999-09-01

    This is the final report of the Department of Energy Sponsored project DE-FGF22-95PC95229 entitled, surface modified coals for enhanced catalyst dispersion and liquefaction. The aims of the study were to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants and catalysts on the coal and to train and educate minority scientists in catalysts and separation science. Illinois No. 6 Coal (DEC-24) was selected for the study. The surfactants investigated included dodecyl dimethyl ethyl ammonium bromide (DDAB), a cationic surfactant, sodium dodecyl sulfate, an anionic surfactant, and Triton x-100, a neutral surfactant. Ammonium molybdate tetrahydrate was used as the molybdenum catalyst precursor. Zeta potential, BET, FTIR, AFM, UV-Vis and luminescence intensity measurements were undertaken to assess the surface properties and the liquefaction activities of the coal. The parent coal had a net negative surface charge over the pH range 2-12. However, in the presence of DDAB the negativity of the surface charge decreased. At higher concentrations of DDAB, a positive surface charge resulted. In contrast to the effect of DDAB, the zeta potential of the coal became more negative than the parent coal in the presence of SDS. Adsorption of Triton reduced the net negative charge density of the coal samples. The measured surface area of the coal surface was about 30 m{sup 2}/g compared to 77m{sup 2}/g after being washed with deionized water. Addition of the surfactants decreased the surface area of the samples. Adsorption of the molybdenum catalyst increased the surface area of the coal sample. The adsorption of molybdenum on the coal was significantly promoted by preadsorption of DDAB and SDS. Molybdenum adsorption showed that, over a wide range of concentrations and pH values, the DDAB treated coal adsorbed a higher amount of molybdenum than the samples treated with SDS. The infrared spectroscopy (FTIR) and the atomic force

  15. Geotechnical Trainspotting: Early Observations From the New Seattle Liquefaction Array

    Science.gov (United States)

    Bodin, P.; Yelin, T.; Weaver, C. S.; Steidl, J. H.; Steller, R. A.; Gomberg, J. S.

    2012-12-01

    The Seattle Liquefaction Array (SLA) is a geotechnical monitoring array established by the US Geological Survey earlier this year in industrialized Seattle, Washington. Funding for the array was provided by the Advanced National Seismic System, at the behest of the Pacific Northwest Seismic Network's regional advisory committee. The SLA aims to further the understanding of earthquake-induced liquefaction, particularly the processes associated with repeatedly liquefied soils and the liquefaction of deeply buried deposits. The SLA occupies a site at which shaking-induced liquefaction was observed during earthquakes in 1949, 1965, and 2001. The SLA site is seismically noisy but important as it is similar to sites that host many structures in Seattle. The site is comprised chiefly by loose-to-dense interbedded coastal and river outwash sands. Instrumentation at the site includes four 3-component accelerometers at the surface and at depths of 5.4, 44.9, and 56.4 meters, a surface barometer, and six piezometers at depths of 6.9, 22.9, 28.9, 43.1, 46.9, and 51.9 meters. Emplacement depths were selected to sample a variety of liquefaction susceptibilities. Continuous data from all sensors are sampled at 200 samples per second, and are available from the IRIS DMC archive, with a buffer of data stored on site in the event of telemetry failure. To date, only a handful of earthquakes have produced shaking strong enough at the SLA to be observed within the high levels of background noise. However, the noise itself provides data useful to constrain the low-strain seismic and pressure response of the site. Notably, the array is within a few meters of a set of busy railroad tracks. Passing and parked trains expose the site to a broad bandwidth of deformations, including seismic frequencies, albeit with a source at the surface. Many times each day the site experiences both high levels of shaking, and step changes in the pressure field of a variety of amplitudes that may last from

  16. Catalytic Synthesis Lactobionic Acid

    Directory of Open Access Journals (Sweden)

    V.G. Borodina

    2014-07-01

    Full Text Available Gold nanoparticles are obtained, characterized and deposited on the carrier. Conducted catalytic synthesis of lactobionic acid from lactose. Received lactobionic acid identify on the IR spectrum.

  17. Catalytic distillation process

    Science.gov (United States)

    Smith, Jr., Lawrence A.

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  18. Japan`s sunshine project. 17.. 1992 annual summary of coal liquefaction and gasification

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report describes the achievement of coal liquefaction and gasification technology development in the Sunshine Project for FY 1992. It presents the research and development of coal liquefaction which includes studies on reaction mechanism of coal liquefaction and catalysts for coal liquefaction, the research and development of coal gasification technologies which includes studies on gasification characteristics of various coals and improvement of coal gasification efficiency, the development of bituminous coal liquefaction which includes engineering, construction and operation of a bituminous coal liquefaction pilot plant and research by a process supporting unit (PSU), the development of brown coal liquefaction which includes research on brown coal liquefaction with a pilot plant and development of techniques for upgrading coal oil from brown coal, the development of common base technologies which includes development of slurry letdown valves and study on upgrading technology of coal-derived distillates, the development of coal-based hydrogen production technology with a pilot plant, the development of technology for entrained flow coal gasification, the assessment of coal hydrogasification, and the international co-operation. 4 refs., 125 figs., 39 tabs.

  19. 75 FR 62512 - Sabine Pass Liquefaction, LLC; Application for Long-Term Authorization To Export Liquefied...

    Science.gov (United States)

    2010-10-12

    ... Pass Liquefaction, LLC; Application for Long-Term Authorization To Export Liquefied Natural Gas AGENCY... September 7, 2010, by Sabine Pass Liquefaction, LLC (Sabine Pass), requesting long-term, multi-contract... the future develops, the capacity to import LNG and with which trade is not prohibited by U.S. law...

  20. Coal liquefaction. Quarterly report, January-March 1979. [US DOE supported

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    Progress in DOE-supported coal liquefaction pilot plant projects is reported: company, location, contract, funding, process description, history and progress in the current quarter. Related projects discussed are: coking and gasification of liquefaction plant residues, filtration of coal liquids and refining of coal liquids by hydrogenation. (LTN)

  1. Static Liquefaction on Very Loose Hostun RF Sand: Experiments and Modelling

    Czech Academy of Sciences Publication Activity Database

    Doanh, T.; Ibraim, E.; Dubujet, P.; Matiotti, R.; Herle, Ivo

    Rotterdam : Balkema, 1999 - (Lade, P.; Yamamuro, J.), s. 17-28 ISBN 90-5809-038-8. [Inter. Workshop on the Physics and Mechanics of Soil Liquefaction. Baltimore (US), 10.09.1998-11.09.1998] Keywords : static liquefaction * sand * laboratory experiments * constitutive models Subject RIV: JM - Building Engineering

  2. Catalytic Coanda combustion

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, J.D.; Smith, A.G.; Kopmels, M.

    1992-09-16

    A catalytic reaction is enhanced by the use of the Coanda effect to maximise contact between reactant and catalyst. A device utilising this principle comprises a Coanda surface which directs the flow of fuel from a slot to form a primary jet which entrains the surrounding ambient air and forms a combustible mixture for reaction on a catalytic surface. The Coanda surface may have an internal or external nozzle which may be axi-symmetric or two-dimensional. (author)

  3. Multi-stage barites in partially melted UHP eclogite: implications for fluid/melt activities during deep continental subduction in the Sulu orogenic belt

    Science.gov (United States)

    Wang, Songjie; Wang, Lu

    2015-04-01

    . Zr-in-rutile thermometry shows their formation temperature to be 586-664 oC at 1.5-2.5 GPa. Barite-bearing MS inclusions with Ba-bearing K-feldspar (type-II) connected by Kfs+Pl+Bt veinlets of in-situ phengite breakdown and thin barite veinlets along grain boundaries (type-III) are products of phengite breakdown and induced fluid flow during exhumation. These barites have witnessed the gradational separation process of melt/ fluid from miscibility on/above the second critical endpoint during UHP metamorphism, to immiscibility along the exhumation path of the subducted slab. Associated reactions from pyrite to hematite and goethite with the type-III barite ring surrounding the pyrite provide evidence for a local high oxygen fugacity environment during eclogite partial melting and subsequent melt/fluid crystallization processes. Moreover, large grain barite aggregations (type-IV) modified by amphibole+albite symplectite are most likely formed by release of molecular and hydroxyl water from anhydrous minerals of eclogite during high-grade amphibolite-facies retrogression. The growth of multi-stage barites in UHP eclogite further advances our understanding of fluid/melt transfer, crystallization processes along the subduction-exhumation path of the partially melted eclogite, broadening our knowledge of melt/fluid evolution within subduction-collision zones worldwide. REFERENCES Chen Y.X., et al., 2014, Lithos, 200, 1-21. Liu J.B., et al., 2000, Acta Petrologica Sinica 16(4), 482-484. Zeng L.S., et al., 2007, Chinese Science Bulletin, 52(21), 2995-3001. Gao X.Y., et al., 2012, Journal of Metamorphic Geology, 30(2), 193-212.

  4. Liquefaction analysis from seismic velocities and determination of lagoon limits Kumluca/Antalya example

    Science.gov (United States)

    Uyanık, Osman; Ekinci, Buket; Uyanık, N. Ayten

    2013-08-01

    This study analyzes liquefaction in the Kumluca/Antalya residential area and surroundings, using seismic velocities of soil deposits and the predominant period of the earthquake wave. The liquefaction analysis calculates shear-stress ratio, shear-resistance ratio and safety factor. Shear wave velocity used in liquefaction analysis was determined through surface waves. Moreover, the dynamic parameters of the ground were calculated through seismic velocities. Distributions of groundwater, shear wave velocity, adjusted shear wave velocity, predominant period of vibration, soil amplification and ground acceleration of the research area were mapped. In addition, the liquefied and non-liquefied areas as a result of liquefaction analysis in Kumluca were determined and presented as maps. Examining these maps, among all these maps, the limits of the lagoon sandbar and the old lake area were determined using only the liquefaction map.

  5. Catalytic ignition of light hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    K. L. Hohn; C.-C. Huang; C. Cao

    2009-01-01

    Catalytic ignition refers to phenomenon where sufficient energy is released from a catalytic reaction to maintain further reaction without additional extemai heating. This phenomenon is important in the development of catalytic combustion and catalytic partial oxidation processes, both of which have received extensive attention in recent years. In addition, catalytic ignition studies provide experimental data which can be used to test theoretical hydrocarbon oxidation models. For these reasons, catalytic ignition has been frequently studied. This review summarizes the experimental methods used to study catalytic ignition of light hydrocarbons and describes the experimental and theoretical results obtained related to catalytic ignition. The role of catalyst metal, fuel and fuel concentration, and catalyst state in catalytic ignition are examined, and some conclusions are drawn on the mechanism of catalytic ignition.

  6. Coal liquefaction policy in China: Explaining the policy reversal since 2006

    International Nuclear Information System (INIS)

    China has emerged as a leader in coal liquefaction. While the country's abundant coal resources and acute concerns about oil security help explain China's interest in liquefaction, the driving forces for this industry are complicated and policy has been inconsistent. Since 2006 Beijing has tried to slow down the development of liquefaction; even as China has become more dependent on imported oil, the central government has been wary about the large impact of liquefaction technologies on scarce resources such as water. However, local government officials in coal rich areas have strong incentives to pour investment into the technology, which helps explain the uneven development and policy. The future of coal liquefaction will depend on how these forces unfold along with major Beijing-led reforms in the Chinese coal industry, which is closing smaller mines and favoring the emergence of larger coal producing firms. Those reforms will have mixed effects on liquefaction. They temporarily contribute to higher prices for coal while over the longer term creating coal companies that have much greater financial and technical skills needed to deploy technologies such as coal liquefaction at a scale needed if this energy pathway is to be competitive with conventional sources of liquid fuel. - Highlights: ► We explain swings in Chinese policy on coal liquefaction, a possible substitute for imported oil. ► Since 2006 Beijing's support has waned due to fears about environmental impacts and cost of liquefaction. ► Local governments in some coal rich regions remain strongly supportive. ► Volatile oil prices and rising coal prices make this industry more risky than previously thought. ► Consolidation of the coal industry will have mixed effects on viability of liquefaction projects.

  7. 大型离心压缩机性能预测的混合建模方法研究%Hybrid modeling method for performance prediction of multi-stage centrifugal compressor

    Institute of Scientific and Technical Information of China (English)

    褚菲; 王福利; 王小刚

    2011-01-01

    提出了一种核函数非线性偏最小二乘(PLS)与机理模型相结合的多级离心压缩机性能预测混合建模方法,用以预测离心压缩机的输出压比.通过分析大型离心压缩机多级压缩过程的机理,利用能最守恒关系,在压缩机各级气流损失计算和等熵效率定义的基础上建立了多级离心压缩机性能预测机理模型;利用核函数非线性PLS对机理模型的误差进行了修正.实验结果验证了该方法相比于机理模型的有效性,将其应用于实际生产过程中,取得了满意的效果.%A hybrid modeling method is proposed to predict the pressure ratio of multi-stage centrifugal compressor, which combines kernel nonlinear partial least squares (PLS) and principle model. Through analyzing the mechanism of multi-stage compression process, calculating airflow loss and defining isentropic efficiency, a principle model for performance prediction of multi-stage centrifugal compressor is established, and kernel nonlinear PLS is also used to correct the error of the principle model. Experiment analysis verifies the validity that the effectiveness of the method is better than that of ordinary principle model. The proposed method was applied to practical industrial process and result demonstrates that the method achieves satisfactory estimation performance.

  8. SU-E-T-480: Radiobiological Dose Comparison of Single Fraction SRS, Multi-Fraction SRT and Multi-Stage SRS of Large Target Volumes Using the Linear-Quadratic Formula

    Energy Technology Data Exchange (ETDEWEB)

    Ding, C; Hrycushko, B; Jiang, S; Meyer, J; Timmerman, R [UT Southwestern Medical Center, Dallas, TX (United States)

    2014-06-01

    Purpose: To compare the radiobiological effect on large tumors and surrounding normal tissues from single fraction SRS, multi-fractionated SRT, and multi-staged SRS treatment. Methods: An anthropomorphic head phantom with a centrally located large volume target (18.2 cm{sup 3}) was scanned using a 16 slice large bore CT simulator. Scans were imported to the Multiplan treatment planning system where a total prescription dose of 20Gy was used for a single, three staged and three fractionated treatment. Cyber Knife treatment plans were inversely optimized for the target volume to achieve at least 95% coverage of the prescription dose. For the multistage plan, the target was segmented into three subtargets having similar volume and shape. Staged plans for individual subtargets were generated based on a planning technique where the beam MUs of the original plan on the total target volume are changed by weighting the MUs based on projected beam lengths within each subtarget. Dose matrices for each plan were export in DICOM format and used to calculate equivalent dose distributions in 2Gy fractions using an alpha beta ratio of 10 for the target and 3 for normal tissue. Results: Singe fraction SRS, multi-stage plan and multi-fractionated SRT plans had an average 2Gy dose equivalent to the target of 62.89Gy, 37.91Gy and 33.68Gy, respectively. The normal tissue within 12Gy physical dose region had an average 2Gy dose equivalent of 29.55Gy, 16.08Gy and 13.93Gy, respectively. Conclusion: The single fraction SRS plan had the largest predicted biological effect for the target and the surrounding normal tissue. The multi-stage treatment provided for a more potent biologically effect on target compared to the multi-fraction SRT treatments with less biological normal tissue than single-fraction SRS treatment.

  9. Synthetic TLR4 agonists enhance functional antibodies and CD4+ T-cell responses against the Plasmodium falciparum GMZ2.6C multi-stage vaccine antigen

    DEFF Research Database (Denmark)

    Baldwin, Susan L; Roeffen, Will; Singh, Susheel K;

    2016-01-01

    A subunit vaccine targeting both transmission and pathogenic asexual blood stages of Plasmodium falciparum, i.e., a multi-stage vaccine, could be a powerful tool to combat malaria. Here, we report production and characterization of the recombinant protein GMZ2.6C, which contains a fragment of the......, liposomes, and alum) in C57BL/6 mice. Some, but not all, formulations containing either the synthetic TLR4 agonist GLA or SLA elicited the highest parasite-specific antibody titers, the greatest IFN-γ responses in CD4+ TH1 cells, and the highest percentage of multifunctional CD4+ T cells expressing IFN...

  10. Performance Evaluation of the Multi-stage Tower-type Vertical-axis Wind Turbine%多层塔式H型立轴风机的性能分析

    Institute of Scientific and Technical Information of China (English)

    高振勋; 蒋崇文; 唐金龙; 王德宝

    2011-01-01

    The main ideal of the multi-stage tower type vertical-axis wind turbine is to utilize the superposition of multi group H-type vertical-axis wind turbines to generate power, and fully use the wind energy in different altitude, which is beneficial for the large-scale development of modern wind turbine. The performance compari sons between the multi-stage tower-type vertical-axis wind turbine and traditional wind turbine were performed on many aspects. It was pointed out that the multi-stage tower-type vertical-axis wind turbine can have many advantages, such as easy-machining blades, high power efficiency, avoidance of the yawing system, reasonable structure loading, and low manufacture/maintenance cost. However, some disadvantages exist, such as the aerodynamic drag brought in by the blade supporting structure, complicated tower construction, and incremental requirement for gearbox and shaft joint. Overall considering, the multi stage tower-type vertical-axis wind turbine has extensive prospect of market applications.%多层塔式立轴风机的核心思想是将多组H型立轴风机分层叠加组合发电,结构简单性能优异,非常适合大容量的风电机组,符合现代风机向大型化发展的方向。对多层塔式立轴风机与传统风机的多方面性能进行了对比,指出多层塔式立轴风机具有风能利用率高、叶片制造简单、无需偏航系统、结构载荷合理、制造维护成本低等诸多优点,但也存在一些缺点,如叶片支撑结构会引入气动阻力、塔架设计较复杂、需要多组齿轮箱及联轴器等。总体分析表明,多层塔式立轴风机的方案在技术上和经济上是可行的。

  11. Study on thermochemical liquefaction of biomass feedstocks; Biomass genryo no yuka hanno tokusei ni kansuru kisoteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-10

    Liquefaction is applied to various biomass wastes and unused biomass to study characteristics of the liquefaction in each case. The paper described the system of the conversion and use of biomass into energy, conducted the positioning of the liquefaction, and outlined a history of the liquefaction chemistry and the study. To obtain basic data of characteristics of the liquefaction of various biomass raw materials, the liquefaction was conducted changing operational factors for the purpose of clarifying the product distribution of oil and by-products and oil properties. A comprehensive consideration was made of the liquefaction based on basic data and literature reports on the liquefaction of various biomass. From the above-mentioned studies, it was concluded that the energy can be recovered in a form of oil by applying the liquefaction to various biomass materials. A series of the study clarified effects of various operational factors on characteristics of the liquefaction as well as effects of classification of biomass materials and composition of the materials on characteristics of the liquefaction. 141 refs., 78 figs., 56 tabs.

  12. Advanced Direct Liquefaction Concepts for PETC Generic Units - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-02-01

    Reported here are the results of Laboratory and Bench-Scale experiments and supporting technical and economic assessments conducted under DOE Contract No. DE-AC22-91PC9104O during the period October 1, 1996 to December 31, 1996. This contract is with the University of Kentucky Research Foundation which supports work with the University of Kentucky Center for Applied Energy Research, CONSOI+ Inc., LDP Associates, and Hydrocarbon Technologies, Inc. This work invoives the introduction into the basic two stage liquefaction process several novel concepts which include dispersed lower-cost catalysts, coal cleaning by oil agglomeration, and distillate hydrotreating and dewaxing.

  13. Rationale for continuing R&D in indirect coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Gray, D.; Tomlinson, G. [MITRE Corp., McLean, VA (United States)

    1995-12-31

    The objective of this analysis is to use the world energy demand/supply model developed at MITRE to examine future liquid fuels supply scenarios both for the world and for the United States. This analysis has determined the probable extent of future oil resource shortages and the likely time frame in which the shortages will occur. The role that coal liquefaction could play in helping to alleviate this liquid fuels shortfall is also examined. The importance of continuing R&D to improve process performance and reduce the costs of coal-derived transportation fuel is quantified in terms of reducing the time when coal liquids will become competitive with petroleum.

  14. Analysis of engineering cycles power, refrigerating and gas liquefaction plant

    CERN Document Server

    Haywood, R W

    1991-01-01

    Extensively revised, updated and expanded, the fourth edition of this popular text provides a rigorous analytical treatment of modern energy conversion plant. Notable for both its theoretical and practical treatment of conventional and nuclear power plant, and its studies of refrigerating and gas-liquefaction plant. This fourth edition now includes material on topics of increasing concern in the fields of energy 'saving' and reduction of environmental pollution. This increased coverage deals specifically with the following areas: CHP (cogeneration) plant, studies of both gas and coal burning p

  15. Cooperative research in coal liquefaction infratechnology and generic technology development: Final report, October 1, 1985 to December 31, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Sendlein, L.V.A.

    1987-06-29

    During the first year of its research program, the Consortium for Fossil Fuel Liquefaction Science has made significant progress in many areas of coal liquefaction and coal structure research. Research topics for which substantial progress has been made include integrated coal structure and liquefaction studies, investigation of differential liquefaction processes, development and application of sophisticated techniques for structural analysis, computer analysis of multivariate data, biodesulfurization of coal, catalysis studies, co-processing of coal and crude oil, coal dissolution and extraction processes, coal depolymerization, determination of the liquefaction characteristics of many US coals for use in a liquefaction database, and completion of a retrospective technology assessment for direct coal liquefaction. These and related topics are discussed in considerably more detail in the remainder of this report. Individual projects are processed separately for the data base.

  16. Documenting Liquefaction Failures Using Satellite Remote Sensing and Artificial Intelligence Algorithms

    Science.gov (United States)

    Oommen, T.; Baise, L. G.; Gens, R.; Prakash, A.; Gupta, R. P.

    2009-12-01

    Historically, earthquake induced liquefaction is known to have caused extensive damage around the world. Therefore, there is a compelling need to characterize and map liquefaction after a seismic event. Currently, after an earthquake event, field-based mapping of liquefaction is sporadic and limited due to inaccessibility, short life of the failures, difficulties in mapping large aerial extents, and lack of resources. We hypothesize that as liquefaction occurs in saturated granular soils due to an increase in pore pressure, the liquefaction related terrain changes should have an associated increase in soil moisture with respect to the surrounding non-liquefied regions. The increase in soil moisture affects the thermal emittance and, hence, change detection using pre- and post-event thermal infrared (TIR) imagery is suitable for identifying areas that have undergone post-earthquake liquefaction. Though change detection using TIR images gives the first indication of areas of liquefaction, the spatial resolution of TIR images is typically coarser than the resolution of corresponding visible, near-infrared (NIR), and shortwave infrared (SWIR) images. We hypothesize that liquefaction induced changes in the soil and associated surface effects cause textural and spectral changes in images acquired in the visible, NIR, and SWIR. Although these changes can be from various factors, a synergistic approach taking advantage of the thermal signature variation due to changing soil moisture condition, together with the spectral information from high resolution visible, NIR, and SWIR bands can help to narrow down the locations of post-event liquefaction for regional documentation. In this study, we analyze the applicability of combining various spectral bands from different satellites (Landsat, Terra-MISR, IRS-1C, and IRS-1D) for documenting liquefaction failures associated with the magnitude 7.6 earthquake that occurred in Bhuj, India, in 2001. We combine the various spectral

  17. Catalytic coherence transformations

    Science.gov (United States)

    Bu, Kaifeng; Singh, Uttam; Wu, Junde

    2016-04-01

    Catalytic coherence transformations allow the otherwise impossible state transformations using only incoherent operations with the aid of an auxiliary system with finite coherence that is not being consumed in any way. Here we find the necessary and sufficient conditions for the deterministic and stochastic catalytic coherence transformations between a pair of pure quantum states. In particular, we show that the simultaneous decrease of a family of Rényi entropies of the diagonal parts of the states under consideration is a necessary and sufficient condition for the deterministic catalytic coherence transformations. Similarly, for stochastic catalytic coherence transformations we find the necessary and sufficient conditions for achieving a higher optimal probability of conversion. We thus completely characterize the coherence transformations among pure quantum states under incoherent operations. We give numerous examples to elaborate our results. We also explore the possibility of the same system acting as a catalyst for itself and find that indeed self-catalysis is possible. Further, for the cases where no catalytic coherence transformation is possible we provide entanglement-assisted coherence transformations and find the necessary and sufficient conditions for such transformations.

  18. Direct liquefaction Proof-of-Concept facility. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Comolli, A.G.; Lee, L.K.; Pradhan, V.R.; Stalzer, R.H.; Harris, E.C.; Mountainland, D.M.; Karolkiewicz, W.F.; Pablacio, R.M.

    1995-08-01

    This report presents the results of work which included extensive modifications to HRI`s existing 3 ton per day Process Development Unit (PDU) and completion of the first PDU run. The 58-day Run 1 demonstrated scale-up of the Catalytic Two-Stage Liquefaction (CTSL Process) on Illinois No. 6 coal to produce distillate liquid products at a rate of up to 5 barrels per to of moisture-ash-free coal. The Kerr McGee Rose-SR unit from Wilsonville was redesigned and installed next to the US Filter installation to allow a comparison of the two solids removal systems. Also included was a new enclosed reactor tower, upgraded computer controls and a data acquisition system, an alternate power supply, a newly refurbished reactor, an in-line hydrotreater, interstage sampling system, coal handling unit, a new ebullating pump, load cells and improved controls and remodeled preheaters. Distillate liquid yields of 5 barrels/ton of moisture ash free coal were achieved. Coal slurry recycle rates were reduced from the 2--2.5 to 1 ratio demonstrated at Wilsonville to as low as 0.9 to 1. Coal feed rates were increased during the test by 50% while maintaining process performance at a marginally higher reactor severity. Sulfur in the coal was reduced from 4 wt% to ca. 0.02 wt% sulfur in the clean distillate fuel product. More than 3,500 gallons of distillate fuels were collected for evaluation and upgrading studies. The ROSE-SR Process was operated for the first time with a pentane solvent in a steady-state model. The energy rejection of the ash concentrate was consistently below prior data, being as low as 12%, allowing improved liquid yields and recovery.

  19. Examination of DMT-based methods for evaluating the liquefaction potential of soils

    Institute of Scientific and Technical Information of China (English)

    Gordon Tung-Chin KUNG; Der-Her LEE; Pai-Hsiang TSAI

    2011-01-01

    The flat dilatometer test(DMT)has the potential to be a useful tool in the evaluation ofliquefaction potential of soils.In practice,it is necessary to carefully examine existing DMT-based methods for evaluating liquefaction potential.We conducted the DMT and cone penetration test(CPT)in high liquefaction potential areas to examine the existing DMT-based methods for liquefaction potential evaluation.Specifically,the DMT and CPT were conducted side-by-side at each of six in-situ sites,and thus it is feasible to utilize those test results to validate the existing DMT-based methods.The DMT parameter,horizontal stress index(KD),is used as an indicator for estimating liquefaction resistance of soils in terms of cyclic resistance ratio(CRR).The analysis results revealed that the existing KD-based liquefaction evaluation methods would overestimate the CRR of soils,which leads to overestimation of the factor of safety against liquefaction.Also,the estimations of DMT-KD values by using the CPT-qc as well as the correlation between DMT-Ko and CPT-qc proposed by the previous studies would be significantly smaller than field measurements.The results reflected that further validation of the existing DMT-based methods for liquefaction evaluation is desirable.

  20. Liquefaction and Product Identification of Main Chemical Compositions of Wood in Phenol

    Institute of Scientific and Technical Information of China (English)

    Zhang Qiu-hui; Zhao Guang-jie; Jie Shu-jun

    2005-01-01

    To clarify liquefaction ratios and their construction variations of the main chemical compositions of wood in phenol using phosphoric acid as a catalyst, the chemical ingredients of wood such as holocellulose, cellulose and lignin, were measured and extracted according to GB methods. With Fourier transform infrared (FTIR), the product identification of reactant before and after liquefaction in phenol was investigated. The molecular weights and their distributions of the liquefaction results (acetone soluble parts) were studied by gel permeation chromatography (GPC). Results show that the molecular weights and their distributions of poplar and Chinese fir are almost the same. In poplar, the distribution of cellulose is the largest, and that of holocellulose the smallest after liquefaction. For Chinese fir, the distribution of holocellulose is the largest, and that of cellulose the smallest. After liquefaction of poplar cellulose, the change bands of FTIR spectrum observed below 1 600 cm-1, can be attributed to new substitute groups. The same is true for poplar lignin. For Chinese fir, the spectra of liquefaction results of all chemical compositions differ from that of wood meal. This reveals the more activity groups were produced because of the reactions between Chinese fir and phenol. The research shows that the liquefaction ratios of poplar decrease in the following order: holocellulose > lignin > cellulose, and those of Chinese fir in the order: lignin > cellulose > holocellulose.

  1. Coal liquefaction process streams characterization and evaluation. Volume 1, Base program activities

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1994-05-01

    This 4.5-year project consisted of routine analytical support to DOE`s direct liquefaction process development effort (the Base Program), and an extensive effort to develop, demonstrate, and apply new analytical methods for the characterization of liquefaction process streams (the Participants Program). The objective of the Base Program was to support the on-going DOE direct coal liquefaction process development program. Feed, process, and product samples were used to assess process operations, product quality, and the effects of process variables, and to direct future testing. The primary objective of the Participants Program was to identify and demonstrate analytical methods for use in support of liquefaction process development, and in so doing, provide a bridge between process design, and development, and operation and analytical chemistry. To achieve this objective, novel analytical methods were evaluated for application to direct coal liquefaction-derived materials. CONSOL teamed with 24 research groups in the program. Well-defined and characterized samples of coal liquefaction process-derived materials were provided to each group. CONSOL made an evaluation of each analytical technique. During the performance of this project, we obtained analyses on samples from numerous process development and research programs and we evaluated a variety of analytical techniques for their usefulness in supporting liquefaction process development. Because of the diverse nature of this program, we provide here an annotated bibliography of the technical reports, publications, and formal presentations that resulted from this program to serve as a comprehensive summary of contract activities.

  2. Liquefaction phenomena associated with the Emilia earthquake sequence of May–June 2012 (Northern Italy

    Directory of Open Access Journals (Sweden)

    Emergeo Working Group

    2013-04-01

    Full Text Available In this paper we present the geological effects induced by the 2012 Emilia seismic sequence in the Po Plain. Extensive liquefaction phenomena were observed over an area of ~ 1200 km2 following the 20 May, ML 5.9 and 29 May, ML 5.8 mainshocks; both occurred on about E–W trending, S dipping blind thrust faults. We collected the coseismic geological evidence through field and aerial surveys, reports from local people and Web-based survey. On the basis of their morphologic and structural characteristics, we grouped the 1362 effects surveyed into three main categories: liquefaction (485, fractures with liquefaction (768, and fractures (109. We show that the quite uneven distribution of liquefaction effects, which appear concentrated and aligned, is mostly controlled by the presence of paleo-riverbeds, out-flow channels and fans of the main rivers crossing the area; these terrains are characterised by the pervasive presence of sandy layers in the uppermost 5 m, a local feature that, along with the presence of a high water table, greatly favours liquefaction. We also find that the maximum distance of observed liquefaction from the earthquake epicentre is ~ 30 km, in agreement with the regional empirical relations available for the Italian Peninsula. Finally, we observe that the contour of the liquefaction observations has an elongated shape almost coinciding with the aftershock area, the InSAR deformation area, and the I ≥ 6 EMS area. This observation confirms the control of the earthquake source on the liquefaction distribution, and provides useful hints in the characterisation of the seismogenic source responsible for historical and pre-historical liquefactions.

  3. Further studies on developing technology for indirect liquefaction

    Science.gov (United States)

    Gray, D.; Neuworth, M. B.; Tomlinson, G.

    1982-03-01

    Our investigations have resulted in the conclusion that fluidized gasifiers, such as Westinghouse or entrained flow gasifiers such as Texaco and Shell-Koppers offer significant advantages over the BGC Lurgi gasifier when Illinois No. 6 coal is employed as the feedstock. Dry-ash Lurgi gasification has additional disadvantages which appear to make it unsuitable for applications with mildly caking coal such as Illinois No. 6. The results of our analyses of Illinois No. 6 coal do not alter our prior conclusions regarding the use of advanced gasification systems for indirect liquefaction. BGC/Lurgi, Westinghouse, Texaco and Shell-Koppers gasifiers offer significant advantages over dry-ash Lurgi and should be given detailed consideration for a US liquefaction facility. The final decision will probably be driven by the relative state of development at the time a decision is required, process license and guarantees which could be negotiated, the market value of an SNG co-product, and the specific characteristics of the coal feedstock to be used.

  4. Hydrothermal liquefaction of aquatic plants to bio-oils

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, D.; Zhang, L.; Zhang, S.; Fu, H.; Chen, J. [Fudan Univ., Shanghai (China). Dept. of Environmental Science and Engineering

    2010-07-01

    This study investigated the feasibility of producing bio-oils from aquatic plants by hydrothermal liquefaction using 2 typical aquatic plants as feedstocks, notably Enteromorpha prolifera and water hyacinth which are typical aquatic plants found in seawater and freshwater. Bio-oil production from these 2 feedstocks was studied in a batch reactor at controlled temperatures under an initial partial pressure of 2.0 MPa N2. The effects of temperature and reaction time on the liquefaction products yields were also studied. GC-MS and elemental analysis were carried out to analyze the composition of bio-oils. The bio-oil produced from Enteromorpha prolifera contained mainly fatty acids, esters and quite a few heterocyclic compounds. Phenols and their derivatives were found to be the main compounds in bio-oils produced from water hyacinth. An elemental analysis revealed that bio-oils produced from the 2 aquatic plants have higher energy density. It was concluded that the use of aquatic plants as feedstock for liquid fuel can contribute to environmental protection and sustainable energy development by reducing greenhouse gas emissions associated with the burning of fossil fuels. 9 refs., 3 tabs.

  5. Mechanism of Liquefaction-Induced Large Settlements of Buildings

    Directory of Open Access Journals (Sweden)

    Zaheer Ahmed Almani

    2012-10-01

    Full Text Available In this paper, mechanism of liquefaction-related large settlements of the soil-structure system during the earthquake was studied using numerical modelling. The isolated shallow strip plane strain footing pad, supporting a typical simple frame structure, was founded on the ground at the shallow depth from the level ground surface. This system was modelled as plane-strain using the FLAC (Fast Lagrangian Analysis of continua 2D dynamic modelling and analysis code. This case focuses on the basic mechanisms of liquefaction-induced large deformations of the structure during an earthquake and will provide a benchmark model case for comparison with the model case in which jet grouted columns are provided as ground reinforcement. The results showed that large settlements of shallow foundations in punching shear are triggered during cyclic excitation. These large settlements under the structure are driven by load of structure and earthquake excitation. Monotonic shear deformation, lateral shear deformations and volume change of soil are main phenomena under the structure when the pore pressure rises and soil is liquefied in cyclic loading.

  6. Subtask 3.9 - Direct Coal Liquefaction Process Development

    Energy Technology Data Exchange (ETDEWEB)

    Aulich, Ted; Sharma, Ramesh

    2012-07-01

    The Energy and Environmental Research Center (EERC), in partnership with the U.S. Department of Energy (DOE) and Accelergy Corporation, an advanced fuels developer with technologies exclusively licensed from ExxonMobil, undertook Subtask 3.9 to design, build, and preliminarily operate a bench-scale direct coal liquefaction (DCL) system capable of converting 45 pounds/hour of pulverized, dried coal to a liquid suitable for upgrading to fuels and/or chemicals. Fabrication and installation of the DCL system and an accompanying distillation system for off-line fractionation of raw coal liquids into 1) a naphtha middle distillate stream for upgrading and 2) a recycle stream was completed in May 2012. Shakedown of the system was initiated in July 2012. In addition to completing fabrication of the DCL system, the project also produced a 500-milliliter sample of jet fuel derived in part from direct liquefaction of Illinois No. 6 coal, and submitted the sample to the Air Force Research Laboratory (AFRL) at Wright Patterson Air Force Base, Dayton, Ohio, for evaluation. The sample was confirmed by AFRL to be in compliance with all U.S. Air Force-prescribed alternative aviation fuel initial screening criteria.

  7. Barrier-oxide layer engineering of TiO2 nanotube arrays to get single- and multi-stage Y-branched nanotubes: Effect of voltage ramping and electrolyte conductivity

    International Nuclear Information System (INIS)

    Highlights: • Single and multi-stage Y-branched TiO2 nanotube arrays fabricated successfully. • Effect of voltage ramping down process on the branching of nanotube revealed. • Unequal interfacial movement across barrier layer of nanotubes manifests branching. • By controlling thinning of barrier oxide layer different morphologies of TNAs fabricated. • Y-branched, stacked double layer, mixture of broken/branched and multi-branched TNAs formed. - Abstract: Single and multi-stage Y-branched TiO2 nanotube arrays (TNAs) have been fabricated by a voltage ramping down process using potentiostatic two-step anodization in 0.5 wt% hydrofluoric acid (HF)/glycerol (1:2 volume ratio) electrolyte. Initially, the voltage is kept at 40 V for 3 h and then it is ramped down to different voltages (e.g. 30 V, 34 V, 36 V, 38 V and 39 V) at a ramping rate of either −1.0 V s−1 or −0.5 V s−1 in one time and two-time aged electrolytes. The growth mechanism of Y-branching of TNAs is modeled and explained in terms of unequal interfacial movements of the two interfaces across the barrier oxide layer (BOL) under non-steady-state growth regime. The ‘pinched off’ area of the BOL at the nanotube propagation front can be controlled effectively with the relative ramping voltage levels and electrolyte's conductivity to obtain Y-branched TNAs

  8. The Dual Role of Oxygen Functions in Coal Pretreatment and Liquefaction: Crosslinking and Cleavage Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Michael Serio; Erik Kroo; Sylvie Charpenay; Peter Solomon

    1993-09-30

    The overall objective of this project was to elucidate and model the dual role of oxygen functions in thermal pretreatment and liquefaction of low rank coals through the application of analytical techniques and theoretical models. The project was an integrated study of model polymers representative of coal structures, raw coals of primarily low rank, and selectively modified coals in order to provide specific information relevant to the reactions of real coals. The investigations included liquefaction experiments in microautoclave reactors, along with extensive analysis of intermediate solid, liquid and gaseous products. Attempts were made to incorporate the results of experiments on the different systems into a liquefaction model.

  9. Effect of Recycle Solvent Hydrotreatment on Oil Yield of Direct Coal Liquefaction

    OpenAIRE

    Shansong Gao; Dexiang Zhang; Kejian Li

    2015-01-01

    Effects of the recycle solvent hydrotreatment on oil yield of direct coal liquefaction were carried out in the 0.18 t/day direct coal liquefaction bench support unit of National Engineering Laboratory for Direct Coal Liquefaction (China). Results showed that the hydrogen-donating ability of the hydrogenated recycle solvent improved and the hydrogen consumption of solvent hydrotreatment was increased by decreasing liquid hourly space velocity (LHSV) from 1.5 to 1.0 h −1 and increasing reacti...

  10. [Progress in the studies of semen delayed liquefaction from chronic prostatitis].

    Science.gov (United States)

    Zhang, Yi-fei; Liang, Chao-zhao

    2007-01-01

    Chronic prostatitis (CP) is a common disease among adult men. It can result in male infertility mainly by alternating the semen quality, volume, pH, component, viscosity and liquefaction. There seems to be a strong association between CP and semen delayed liquefaction. Researches on the mechanism of semen delayed liquefaction resulting from CP mainly focus on the proteolytic ferment, plasminogen activator, prostate acid phosphatase, tissue factor, lack of zinc, and pH. This article briefly reviews the progress in these aspects. PMID:17302037

  11. Catalytic methanol dissociation

    International Nuclear Information System (INIS)

    Results of the methanol dissociation study on copper/potassium catalyst with alumina support at various temperatures are presented. The following gaseous and liquid products at. The catalytic methanol dissociation is obtained: hydrogen, carbon monoxide, carbon dioxide, methane, and dimethyl ether. Formation rates of these products are discussed. Activation energies of corresponding reactions are calculated

  12. Catalytic Phosphination and Arsination

    Institute of Scientific and Technical Information of China (English)

    Kwong Fuk Yee; Chan Kin Shing

    2004-01-01

    The catalytic, user-friendly phosphination and arsination of aryl halides and triflates by triphenylphosphine and triphenylarsine using palladium catalysts have provided a facile synthesis of functionalized aryl phosphines and arsines in neutral media. Modification of the cynaoarisne yielded optically active N, As ligands which will be screened in various asymmetric catalysis.

  13. Monolithic catalytic igniters

    Science.gov (United States)

    La Ferla, R.; Tuffias, R. H.; Jang, Q.

    1993-01-01

    Catalytic igniters offer the potential for excellent reliability and simplicity for use with the diergolic bipropellant oxygen/hydrogen as well as with the monopropellant hydrazine. State-of-the-art catalyst beds - noble metal/granular pellet carriers - currently used in hydrazine engines are limited by carrier stability, which limits the hot-fire temperature, and by poor thermal response due to the large thermal mass. Moreover, questions remain with regard to longevity and reliability of these catalysts. In this work, Ultramet investigated the feasibility of fabricating monolithic catalyst beds that overcome the limitations of current catalytic igniters via a combination of chemical vapor deposition (CVD) iridium coatings and chemical vapor infiltration (CVI) refractory ceramic foams. It was found that under all flow conditions and O2:H2 mass ratios tested, a high surface area monolithic bed outperformed a Shell 405 bed. Additionally, it was found that monolithic catalytic igniters, specifically porous ceramic foams fabricated by CVD/CVI processing, can be fabricated whose catalytic performance is better than Shell 405 and with significantly lower flow restriction, from materials that can operate at 2000 C or higher.

  14. Liquefaction susceptibility assessment in fluvial plains using airborne lidar: the case of the 2012 Emilia earthquake sequence area (Italy)

    Science.gov (United States)

    Civico, R.; Brunori, C. A.; De Martini, P. M.; Pucci, S.; Cinti, F. R.; Pantosti, D.

    2015-11-01

    We report a case study from the Po River plain region (northern Italy), where significant liquefaction-related land and property damage occurred during the 2012 Emilia seismic sequence. We took advantage of a 1 m pixel lidar digital terrain model (DTM) and of the 2012 Emilia coseismic liquefaction data set to (a) perform a detailed geomorphological study of the Po River plain area and (b) quantitatively define the liquefaction susceptibility of the geomorphologic features that experienced different abundance of liquefaction. One main finding is that linear topographic highs of fluvial origin - together with crevasse splays, abandoned riverbeds and very young land reclamation areas - acted as a preferential location for the occurrence of liquefaction phenomena. Moreover, we quantitatively defined a hierarchy in terms of liquefaction susceptibility for an ideal fluvial environment. We observed that a very high liquefaction susceptibility is found in coincidence with fluvial landforms, a high-to-moderate liquefaction susceptibility within a buffer distance of 100 and 200 m from mapped fluvial landforms and a low liquefaction susceptibility outside fluvial landforms and relative buffer areas. Lidar data allowed a significant improvement in mapping with respect to conventionally available topographic data and/or aerial imagery. These results have significant implications for accurate hazard and risk assessment as well as for land-use planning. We propose a simple geomorphological approach for liquefaction susceptibility estimation. Our findings can be applied to areas beyond Emilia that are characterized by similar fluvial-dominated environments and prone to significant seismic hazard.

  15. Hydrothermal catalytic gasification of fermentation residues from a biogas plant

    International Nuclear Information System (INIS)

    Biogas plants, increasing in number, produce a stream of fermentation residue with high organic content, providing an energy source which is by now mostly unused. We tested this biomass as a potential feedstock for catalytic gasification in supercritical water (T ≥ 374 °C, p ≥ 22 MPa) for methane production using a batch reactor system. The coke formation tendency during the heat-up phase was evaluated as well as the cleavage of biomass-bound sulfur with respect to its removal from the process as a salt. We found that sulfur is not sufficiently released from the biomass during heating up to a temperature of 410 °C. Addition of alkali salts improved the liquefaction of fermentation residues with a low content of minerals, probably by buffering the pH. We found a deactivation of the carbon-supported ruthenium catalyst at low catalyst-to-biomass loadings, which we attribute to sulfur poisoning and fouling in accordance with the composition of the fermentation residue. A temperature of 400 °C was found to maximize the methane yield. A residence time dependent biomass to catalyst ratio of 0.45 g g−1 h−1 was found to result in nearly full conversion with the Ru/C catalyst. A Ru/ZrO2 catalyst, tested under similar conditions, was less active. -- Highlights: ► Fermentation residue of a biogas plant could be successfully liquefied with a low rate of coke formation. ► Liquefaction resulted in an incomplete removal of biomass-bound sulfur. ► Low catalyst loadings result in incomplete conversion, implicating catalyst deactivation. ► At 400 °C the observed conversion to methane was highest. ► A residence time dependent biomass to catalyst ratio of 0.45 g g−1 h−1 was determined to yield nearly complete conversion

  16. Liquefaction of sawdust in 1-octanol using acidic ionic liquids as catalyst.

    Science.gov (United States)

    Lu, Zexiang; Zheng, Huaiyu; Fan, Liwei; Liao, Yiqiang; Ding, Bingjing; Huang, Biao

    2013-08-01

    Acidic ionic liquids (AILs) as a novel catalyst in biomass liquefaction can accord with the demand of green chemistry and enhance the development of biomass thermal chemical conversion. A series of AILs containing HSO4- were synthesized by the imidazolium cation functionalization and applied to the Chinese fir sawdust liquefaction in 1-octanol in this paper. The experimental results showed that the liquefaction rate was gradually improved with the AILs acidity increasing, and reached 71.5% when 1-(4-sulfobutyl)-3-methylmidazolium hydrosulfate was used as catalyst with the 6:1 mass ratio of 1-octanol to sawdust at 423K after 60 min. Lignin, hemicellulose and cellulose were orderly desquamated, and then depolymerized and liquefied with the catalyst acidity increasing in the sawdust liquefaction process. The light oil was mainly composed of the octyl ether and the octyl ester compounds, suggesting that the solvent may play an important role in producing the high octane rating biofuel. PMID:23770997

  17. Liquefaction of Tangier soils by using physically based reliability analysis modelling

    Directory of Open Access Journals (Sweden)

    Dubujet P.

    2012-07-01

    Full Text Available Approaches that are widely used to characterize propensity of soils to liquefaction are mainly of empirical type. The potential of liquefaction is assessed by using correlation formulas that are based on field tests such as the standard and the cone penetration tests. These correlations depend however on the site where they were derived. In order to adapt them to other sites where seismic case histories are not available, further investigation is required. In this work, a rigorous one-dimensional modelling of the soil dynamics yielding liquefaction phenomenon is considered. Field tests consisting of core sampling and cone penetration testing were performed. They provided the necessary data for numerical simulations performed by using DeepSoil software package. Using reliability analysis, the probability of liquefaction was estimated and the obtained results were used to adapt Juang method to the particular case of sandy soils located in Tangier.

  18. Subtask 3.3 - Feasibility of Direct Coal Liquefaction in the Modern Economic Climate

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin Oster; Joshua Strege; Marc Kurz; Anthony Snyder; Melanie Jensen

    2009-06-15

    Coal liquefaction provides an alternative to petroleum for the production of liquid hydrocarbon-based fuels. There are two main processes to liquefy coal: direct coal liquefaction (DCL) and indirect coal liquefaction (ICL). Because ICL has been demonstrated to a greater extent than DCL, ICL may be viewed as the lower-risk option when it comes to building a coal liquefaction facility. However, a closer look, based on conversion efficiencies and economics, is necessary to determine the optimal technology. This report summarizes historical DCL efforts in the United States, describes the technical challenges facing DCL, overviews Shenhua's current DCL project in China, provides a DCL conceptual cost estimate based on a literature review, and compares the carbon dioxide emissions from a DCL facility to those from an ICL facility.

  19. Coal liquefaction: A research and development needs assessment: Final report, Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, H.D.; Burke, F.P.; Chao, K.C.; Davis, B.H.; Gorbaty, M.L.; Klier, K.; Kruse, C.W.; Larsen, J.W.; Lumpkin, R.E.; McIlwain, M.E.; Wender, I.; Stewart, N.

    1989-03-01

    Volume II of this report on an assessment of research needs for coal liquefaction contains reviews of the five liquefaction technologies---direct, indirect, pyrolysis, coprocessing, and bioconversion. These reviews are not meant to be encyclopedic; several outstanding reviews of liquefaction have appeared in recent years and the reader is referred to these whenever applicable. Instead, these chapters contain reviews of selected topics that serve to support the panel's recommendations or to illustrate recent accomplishments, work in progress, or areas of major research interest. At the beginning of each of these chapters is a brief introduction and a summary of the most important research recommendations brought out during the panel discussions and supported by the material presented in the review. A review of liquefaction developments outside the US is included. 594 refs., 100 figs., 60 tabs.

  20. Applied research and evaluation of process concepts for liquefaction and gasification of western coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, W. H.

    1980-09-01

    Fourteen sections, including five subsections, of the final report covering work done between June 1, 1975 to July 31, 1980 on research programs in coal gasification and liquefaction have been entered individually into EDB and ERA. (LTN)

  1. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, October 1--December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-03-01

    CONSOL R&D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  2. Effects of relative density and accumulated shear strain on post-liquefaction residual deformation

    OpenAIRE

    Kim, J.; M. Kazama; Kwon, Y.

    2013-01-01

    The damage caused by liquefaction, which occurs following an earthquake, is usually because of settlement and lateral spreading. Generally, the evaluation of liquefaction has been centered on settlement, that is, residual volumetric strain. However, in actual soil, residual shear and residual volumetric deformations occur simultaneously after an earthquake. Therefore, the simultaneous evaluation of the two phenomena and the clarification of their relationship are likely to e...

  3. Coal liquefaction process streams characterization and evaluation. Quarterly technical progress report, July 1--September 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Winschel, R.A.; Brandes, S.D.; Robbins, G.A.; Burke, F.P.

    1991-11-01

    Consol R&D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-field: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  4. Techno-economic optimisation of three gas liquefaction processes for small-scale applications

    DEFF Research Database (Denmark)

    Nguyen, Tuong-Van; Rothuizen, Erasmus Damgaard; Elmegaard, Brian; H. Bruun, Allan

    2016-01-01

    Natural gas liquefaction systems are based on refrigeration cycles, which can be subdivided into: the cascade, mixed refrigerant and expansion-based processes. They differ by their design configurations, components and working fluids, and thus have various operating conditions and equipment inven...... thermodynamic models leads to relative deviations of up to 1% for the power consumption and 20% for the network conductance. Particular caution should thus be exercised when extrapolating the results of process models to the design of actual gas liquefaction systems....

  5. Efficiency and economics of large scale hydrogen liquefaction. [for future generation aircraft requirements

    Science.gov (United States)

    Baker, C. R.

    1975-01-01

    Liquid hydrogen is being considered as a substitute for conventional hydrocarbon-based fuels for future generations of commercial jet aircraft. Its acceptance will depend, in part, upon the technology and cost of liquefaction. The process and economic requirements for providing a sufficient quantity of liquid hydrogen to service a major airport are described. The design is supported by thermodynamic studies which determine the effect of process arrangement and operating parameters on the process efficiency and work of liquefaction.

  6. A genetic algorithm approach for assessing soil liquefaction potential based on reliability method

    Indian Academy of Sciences (India)

    M H Bagheripour; I Shooshpasha; M Afzalirad

    2012-02-01

    Deterministic approaches are unable to account for the variations in soil’s strength properties, earthquake loads, as well as source of errors in evaluations of liquefaction potential in sandy soils which make them questionable against other reliability concepts. Furthermore, deterministic approaches are incapable of precisely relating the probability of liquefaction and the factor of safety (FS). Therefore, the use of probabilistic approaches and especially, reliability analysis is considered since a complementary solution is needed to reach better engineering decisions. In this study, Advanced First-Order Second-Moment (AFOSM) technique associated with genetic algorithm (GA) and its corresponding sophisticated optimization techniques have been used to calculate the reliability index and the probability of liquefaction. The use of GA provides a reliable mechanism suitable for computer programming and fast convergence. A new relation is developed here, by which the liquefaction potential can be directly calculated based on the estimated probability of liquefaction (), cyclic stress ratio (CSR) and normalized standard penetration test (SPT) blow counts while containing a mean error of less than 10% from the observational data. The validity of the proposed concept is examined through comparison of the results obtained by the new relation and those predicted by other investigators. A further advantage of the proposed relation is that it relates and FS and hence it provides possibility of decision making based on the liquefaction risk and the use of deterministic approaches. This could be beneficial to geotechnical engineers who use the common methods of FS for evaluation of liquefaction. As an application, the city of Babolsar which is located on the southern coasts of Caspian Sea is investigated for liquefaction potential. The investigation is based primarily on in situ tests in which the results of SPT are analysed.

  7. Numerical simulation of liquefaction behaviour of granular materials using Discrete Element Method

    Indian Academy of Sciences (India)

    T G Sitharam; S V Dinesh

    2003-09-01

    In this paper, numerical simulation of 3-dimensional assemblies of 1000 polydisperse sphere particles using Discrete Element Method (DEM) is used to study the liquefaction behaviour of granular materials. Numerical simulations of cyclic triaxial shear tests under undrained conditions are performed at different confining pressures under constant strain amplitude. Results obtained in these numerical simulations indicate that with increase in confining pressure there is an increase in liquefaction resistance.

  8. Assessment of Long-Term Research Needs for Coal-Liquefaction Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Penner, S.S.

    1980-03-01

    The Fossil Energy Research Working Group (FERWG), at the request of J.M. Deutch (Under Secretary of DOE), E. Frieman (Director, Office of Energy Research) and G. Fumich, Jr. (Assistant Secretary for Fossil Fuels), has studied and reviewed currently funded coal-liquefaction technologies. These studies were performed in order to provide an independent assessment of critical research areas that affect the long-term development of coal-liquefaction technologies. This report summarizes the findings and research recommendations of FERWG.

  9. Catalytic thermal barrier coatings

    Science.gov (United States)

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  10. Experimental Study of Subcritical Water Liquefaction of Biomass

    DEFF Research Database (Denmark)

    Zhu, Zhe; Toor, Saqib; Rosendahl, Lasse;

    2014-01-01

    (woody and non-woody) on the biomass conversion, bio-crude yield, and the qualities of products were studied. The results suggested that the addition of potassium carbonate as catalyst showed a positive effect on bio-crude yield, especially for wood, where it was enhanced to 47.48 wt%. Macroalgae showed...... found that the addition of K2CO3 lowered the solids quality in terms of the heating values, while it did not have apparent effect on the functional groups of solid residues. SEM analysis of the raw biomass and solid residues revealed that the char formation for wood, sawdust and macroalgae had initially......In this work, hydrothermal liquefaction (HTL) of wood industry residues (wood, bark, sawdust) and macroalgae for producing biofuels has been investigated under subcritical water conditions (at temperature of 300 C), with and without the presence of catalyst. The effects of catalyst and biomass type...

  11. Co-liquefaction of Enriched Coal Maceral Constituents and Sawdust

    Institute of Scientific and Technical Information of China (English)

    王炀; 李庭琛; 任铮伟; 颜涌捷

    2002-01-01

    Co-liquefaction of coal and sawdust was studied in the presence of hydrogen-donor solvent, tetralin. Coal samples were prepared through floatation of the Xinwen coal, followed by enrichment of maceral constituents. Sample I was rich in vitrinite and Sample II fusinite. Effects of reaction temperature, time and initial cold H2 pressure were studied on conversion, yield, especially oil yield, through comparison between these two samples. Because it is more difficult to be liquefied, Sample II, is greatly affected by changes in temperature and time. However, it is almost independent of change in initial cold H2 pressure, owing to the role of tetralin as hydrogen vehicle. Certain product(s) formed from thermolysis of sawdust can help hydrogenation of the intermediate (asphaltene and preasphaltene) in further forming oil products.

  12. Economics of hydrogen production and liquefaction updated to 1980

    Science.gov (United States)

    Baker, C. R.

    1979-01-01

    Revised costs for generating and liquefying hydrogen in mid-1980 are presented. Plant investments were treated as straight-forward escalations resulting from inflation. Operating costs, however, were derived in terms of the unit cost of coal, fuel gas and electrical energy to permit the determination of the influence of these parameters on the cost of liquid hydrogen. Inflationary influence was recognized by requiring a 15% discounted rate of return on investment for Discounted Cash Flow financing analysis, up from 12% previously. Utility financing was revised to require an 11% interest rate on debt. The scope of operation of the hydrogen plant was revised from previous studies to include only the hydrogen generation and liquefaction facilities. On-site fuel gas and power generation, originally a part of the plant complex, was eliminated. Fuel gas and power are now treated as purchased utilities. Costs for on-site generation of fuel gas however, are included.

  13. Low Severity Coal Liquefaction Promoted by Cyclic Olefins

    Energy Technology Data Exchange (ETDEWEB)

    Christine W. Curtis

    1998-04-09

    The development of the donor solvent technology for coal liquefaction has drawn a good deal of attention over the last three decades. The search for better hydrogen donors led investigators to a class of compounds known as cyclic olefins. Cyclic olefins are analogues of the conventional hydroaromatic donor species but do not contain aromatic rings. The cyclic olefins are highly reactive compounds which readily release their hydrogen at temperatures of 200 C or higher. Considerable effort has been o expended toward understanding the process of hydrogen donation. Most of this work was conducted in bomb reactors, with product analysis being carried out after the reaction was complete. Efforts directed towards fundamental studies of these reactions in situ are rare. The current work employs a high temperature and high pressure infrared cell to monitor in situ the concentrations of reactants and products during hydrogen release from hydrogen donor compounds.

  14. Corrosion and stress corrosion cracking in coal liquefaction processes

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, V. B.; Keiser, J. R.

    1980-01-01

    The liquefaction of coal to produce clean-burning synthetic fuels has been demonstrated at the pilot plant level. However, some significant materials problems must be solved before scale-up to commercial levels of production can be completed. Failures due to inadequate materials performance have been reported in many plant areas: in particular, stress corrosion cracking has been found in austenitic stainless steels in the reaction and separation areas and several corrosion has been observed in fractionation components. In order to screen candidate materials of construction, racks of U-bend specimens in welded and as-wrought conditions and unstressed surveillance coupons were exposed in pilot plant vessels and evaluated. Failed components were analyzed on-site and by subsequent laboratory work. Laboratory tests were also performed. From these studies alloys have been identified that are suitable for critical plant locations. 19 figures, 7 tables.

  15. Effect of microwave pretreatment on liquefaction of low-rank Mukah Balingian Malaysian coal

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Azlan Mohd Ishak; Khudzir Ismail; Mohd Fauzi Abdullah; Nur Nasulhah Kasim [University Technology MARA, Perlis (Malaysia). Fuel Combustion Research Laboratory

    2007-07-01

    The effect of microwave pretreatment on low-rank Malaysian coal towards coal conversion and oil+gas yield during direct liquefaction was investigated. The pretreatment on coal was carried out prior to liquefaction using a conventional variable power microwave oven at 150, 300 and 600 W for a period of 1 to 15 min. Liquefaction processes were carried out in a 1-liter high-pressure high-temperature batch-wise reactor with tetralin as a hydrogen-donor solvent, at temperature of 420{sup o}C and at 4 MPa nitrogen pressure. The DTG results of the pyrolysed microwave-treated samples via thermogravimetric analysis (TGA) showed the increased in coal reactivity in comparison to the untreated sample. The coal conversion and oil+gas yield obtained from the liquefaction of the pretreated coal under various pretreatment conditions showed an increase of up to 3 - 7 and 9 - 22 %, respectively. The significant increased of oil+gas yield at less severe liquefaction temperature on the microwave-irradiated samples might be due to the cracks and fissures formed as shown by Scanning Electron Microscope (SEM), and the weaken coal structure (C-C bonds) that probably occurred during the microwave pretreatment to facilitate the diffusion of solvent into the coal structure. Thus, this new and effective pretreatment on coal could be a promising approach in enhancing coal conversion and oil+gas yield that utilises a less severe temperature for coal liquefaction. 22 refs., 4 figs., 5 tabs.

  16. Japan`s New Sunshine Project. 20. 1995 annual summary of coal liquefaction and gasification

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The paper described a summary of the 1995 study on coal liquefaction and gasification under the New Sunshine Project. As for coal liquefaction, a study was made of liquefaction characteristics and catalysts of various coals. Also studied were liquefaction conditions for quality improvement of liquefaction products, an evaluation method of quality of coal liquid, and a utilization method of coal liquid. In order to prevent carbonization and realize effective liquefaction, a study was conducted for elucidation of the reaction mechanism of high pressure hydrogenation. In a 150t/d pilot plant using hydrogen transfer hydrogenation solvents, the NEDOL method was studied using various catalysts and kinds of coals. This is a step prior to data acquisition for engineering, actual construction of equipment and operation. A 1t/d process supporting unit is a unit to support it. The unit conducts studies on slurry letdown valves and synthetic iron sulfide catalysts, screening of Chinese coals, etc. As to coal gasification, the paper added to the basic research the combined cycle power generation using entrained flow coal gasification for improvement of thermal efficiency and environmental acceptability and the HYCOL method for hydrogen production. 68 refs., 40 figs.

  17. Coal liquefaction process streams characterization and evaluation. Volume 2, Participants program final summary evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, S.D.; Robbins, G.A.; Winschel, R.A.; Burke, F.P.

    1994-05-01

    This 4.5-year project consisted of routine analytical support to DOE`s direct liquefaction process development effort (the Base Program), and an extensive effort to develop, demonstate, and apply new analytical methods for the characterization of liquefaction process streams (the Participants Program). The objective of the Base Program was to support the on-going DOE direct coal liquefaction process development program. Feed, process, and product samples were used to assess process operations, product quality, and the effects of process variables, and to direct future testing. The primary objective of the Participants Program was to identify and demonstrate analytical methods for use in support of liquefaction process develpment, and in so doing, provide a bridge between process design, development, and operation and analytical chemistry. To achieve this direct coal liquefaction-derived materials. CONSOL made an evaluation of each analytical technique. During the performance of this project, we obtained analyses on samples from numerous process development and research programs and we evaluated a variety of analytical techniques for their usefulness in supporting liquefaction process development. Because of the diverse nature of this program, we provide here an annotated bibliography of the technical reports, publications, and formal presentations that resulted from this program to serve as a comprehensive summary of contract activities.

  18. A novel process for small-scale pipeline natural gas liquefaction

    International Nuclear Information System (INIS)

    Highlights: • A novel process was proposed to liquefy natural gas by utilizing the pressure exergy. • The process is zero energy consumption. • The maximum liquefaction rate of the process is 12.61%. • The maximum exergy utilization rate is 0.1961. • The economic analysis showed that the payback period of the process is quit short. - Abstract: A novel process for small-scale pipeline natural gas liquefaction is designed and presented. The novel process can utilize the pressure exergy of the pipeline to liquefy a part of natural gas without any energy consumption. The thermodynamic analysis including mass, energy balance and exergy analysis are adopted in this paper. The liquefaction rate and exergy utilization rate are chosen as the objective functions. Several key parameters are optimized to approach the maximum liquefaction rate and exergy utilization rate. The optimization results showed that the maximum liquefaction rate is 12.61% and the maximum exergy utilization rate is 0.1961. What is more, the economic performances of the process are also discussed and compared by using the maximum liquefaction rate and exergy utilization rate as indexes. In conclusion, the novel process is suitable for pressure exergy utilization due to its simplicity, zero energy consumption and short payback period

  19. Microbial liquefaction of peat for the production of synthetic fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gunasekaran, M.

    1988-01-01

    Objectives of this study were: to evaluate the potential of using various microorganisms to hydrolyse and liquify peat; to determine the optimal conditions for peat hydrolysis and liquefaction; to study the co-metabolizable substances; to separate the compounds present in liquified peat by alumina and silica acid chromatography and capillary gas chromatography; and to identify the compounds in liquified peat by capillary GC-Mass spectrometry. Organisms used in the study include: Coprinus comatus, Coriolus hirsutus, Ganoderma lucidum, Lentinus edodes, Lenzites trabea, Phanerochaete chrysosporium, Pleurotus ostreatus, P. sapidus, Polyporus adjustus, Neurospora sitophila, Rhizophus arrhizus, Bacillus subtilis, Acinetobacter sp. and Alcaligenes sp. The fungi were maintained and cultivated in potato dextrose agar at 30 C. The bacteria were maintained in nutrient agar at 30 C. We have also initiated work on coal solubilization in addition to the studies on peat liquefaction. A relatively new substratum or semi-solid base for culture media called Pluronic F-127, or Polyol (BASF, New Jersey). Objectives of this study were: (1) to study the growth patterns of Candida ML 13 on pluronic as substratum; (2) to determine the rate of microbial coal solubilization on pluronic F-127 amended in different growth media; (3) to separate the mycelial mat of Candida ML 13 from unsolubilized coal particles and solubilized coal products from pluronic F-127; (4) to determine the effects of pH on microbial coal solubilization in pluronic F-127 media; (5) the effect of concentration of pluronic F-127 in media on coal solubilization; and, (6) to study the role of extracellular factors secreted by Candida ML 13 on coal solubilization in pluronic F-127 media. Results are discussed. 4 refs.

  20. Impact of seismic hazard characterization on probability of liquefaction

    International Nuclear Information System (INIS)

    The objective of this paper is to assess the sensitivity of safety factor against the onset of liquefaction to the characteristics of the seismic hazard data defined for the site. The site considered is a deep soil site, approximately 1,000 feet thick, for which hazard, laboratory and field geophysical data are available. The uniform hazard spectra (UHS) defined at the rock outcrop at a given return period are used to define the characteristics of the ground motion input to the site. Using a Monte Carlo procedure, a large number of input ground motions (500 cases) are defined at the rock outcrop. For each soil column analysis, peak induced shear stresses are then calculated throughout the soil overburden using the concept of upward propagating shear waves through the one dimensional soil column. Shear modulus and hysteretic damping characteristics used in these calculations are consistent with the experimental data available for the site. Corresponding soil shear strengths are estimated from Standard Penetration Test (SPT) blow count data determined from the site field investigation program. The Seed empirical correlations are used to estimate the soil shear strength or capacity needed to define the onset of liquefaction. Since the SPT blow counts are found to be essentially independent of shear wave velocity measurements at the site' blow counts for strength estimates are randomly selected from the available data for each soil layer to estimate shear strength. The median values of safety factors and their variability are then found for easy layer by analyzing the computed safety factors from each of the convolution calculations

  1. Fabric Behavior of Sand in Post-liquefaction

    Directory of Open Access Journals (Sweden)

    Seyed Amirodin Sadrnejad

    2005-01-01

    Full Text Available An anisotropic plasticity model for post-liquefaction of the undrained behavior of sand is presented. The model incorporates the critical/steady state concept that postulates the existence of a state where sand continuously deforms at a certain constant effective stress depending two main parameters of both initial bulk parameters (void ratio or relative density and the stress level (mean stress. The local instability of saturated sand within post-liquefaction is highly dependent on the residual inherent/induced anisotropy, bedding plane effects and stress/strain path. Most of the models developed using stress/strain invariants are not capable of identifying the parameters depending on orientation such as fabric. This is mainly because stress/strain invariants are quantities similar to scalar quantities and not capable of carrying directional information with them. The constitutive equations of the model are derived within the context of non-linear elastic behavior of the whole medium and plastic sliding of interfaces of predefined multi-planes. The proposed multi-plane based model is capable of predicting the behavior of soils on the basis of plastic sliding mechanisms, elastic behavior of particles and possibilities to see the micro-fabric effects as natural anisotropy as well as induced anisotropy in plasticity. The model is capable of predicting the behavior of soil under different orientation of bedding plane, history of strain progression during the application of any stress/strain paths. The influences of rotation of the direction of principal stress and strain axes and induced anisotropy are included in a rational way without any additional hypotheses. The spatial strength distribution at a location as an approximation of probable mobilized sliding mechanism is proposed as an ellipsoid function built up on bedding plane.

  2. Research into materials for coal liquefaction equipment (II): corrosion resistance of 310-type stainless steels for high-temperature parts of coal liquefaction plant

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, N.; Yuki, H.; Sawaragi, Y.; Ogawa, K.; Shida, Y.; Kudoh, T.; Fujikawa, H.

    1985-01-01

    The development is reported of a 310-type stainless steel for use in the high-temperature parts of a coal liquefaction plant. Studies were made of the following items: 1) the stress- corrosion cracking susceptibility of a variety of materials in high-temperature H/sub 2/S-Cl/sup -/ and polythionic acids, 2) their corrosion resistance in liquefaction slurries, and 3) their weldability and high-temperature strength. The new 310-type steel which has been developed (low C content, N additions, grain size number of at least 5) gives good performance in respect of all these characteristics. 1 reference.

  3. 多级串联高压大功率矩阵变换器的研究%Research on Multi-stage Series-connection High-voltage High-power Matrix Converter

    Institute of Scientific and Technical Information of China (English)

    蒋婷; 江剑锋; 曹中圣; 杨喜军

    2012-01-01

    提出和采用载波移相调制原理,仿真分析一种降压变压器次级绕组功率平衡的多级串联高压变频器,即一个次级变压器承担对称的3个三相-单相矩阵变换器输出,输出相位相同的三相-单相矩阵变换器通过升压变压器次级串联,构成一相高压交流输出.整个电路由网侧工频降压变压器、单相矩阵变换器阵列、载侧高频升压变压器以及滤波电路构成.仿真结果表明,所提出的多级串联高压变频器具有可行性和低成本特征.%Based on carrier wave phase-shifted modulation, a multi-stage series-connection high voltage frequency converter with balanced output power of the step-down transformer's secondary windings was given,in which a winding burdens three symmetry three-phase to single-phase MC outputs and the same phase outputs of the MC are cascaded at the secondary side of the transformers,letting out one phase of high-voltage AC output. The circuit is consisted of a step-down industry frequency transformer at the network side,three-phase to single-phase MC arrays, a step-up high frequency transformer at the load side and filter components. The simulation result based on Matlab/Simulink shows that the proposed multi-stage series-connection high voltage frequency converter is feasible and low-cost.

  4. 基于Orness测度约束的多阶段灰色局势群决策模型%Multi-stage grey situation group decision-making model based on Orness

    Institute of Scientific and Technical Information of China (English)

    张娜; 方志耕; 朱建军

    2015-01-01

    研究多阶段灰色局势群决策模型。从决策专家各阶段的评价信息质量分析入手,给出了评价阶段质变和量变的定义;基于各阶段的评价信息和Orness测度,构建以相邻阶段信息偏差最小为目标的时间权重模型,分析了在保持最优局势不变的情况下Orness测度的取值范围,为决策专家Orness取值提供参考;研究基于群体差异最小的决策专家权重模型,提出一种多阶段灰色局势群决策评价信息集结方法。最后,通过一个具体的算例说明了该方法的有效性和可行性。%A multi-stage situation group decision-making model is studied. Based on the quality analysis on decision experts’ evaluation information, the qualitative change and quantitative change of evaluation stages are defined. Then a time weight model minimizing the information deviation for adjacent stages is built, and the value range of Orness measure with the unchanged optimal situation is analyzed, which provides a reference for decision experts to assign the value. A new method for information aggregation is proposed for multi-stage grey situation group decision-making. Finally, a specific example illustrates the effectiveness and feasibility of the proposed method.

  5. Co-liquefaction of micro algae with coal. 2; Bisai sorui to sekitan no kyoekika hanno. 2

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, C.; Matsui, T.; Otsuki, M.; Ikenaga, N.; Suzuki, T. [Kansai University, Osaka (Japan). Faculty of Engineering

    1996-10-28

    For the removal and recycle of CO2, a global warming gas, utilization of photosynthesis by micro algae is investigated. Formed micro algae are decomposed into CO2, H2O and CH4 again, which does not result in the permanent fixation. For the effective utilization of these micro algae, creation of petroleum alternate energy was tried through the co-liquefaction of micro algae with coal. Were investigated influences of the reaction temperature during the co-liquefaction and influences of catalysts, such as Fe(CO)5-S, Ru(CO)12, and Mo(CO)6-S, which are effective for the coal liquefaction. Micro algae, such as chlorella, spirulina, and littorale, and Yallourn brown coal were tested. It was found that co-liquefaction of micro algae with coal can be successfully proceeded under the same conditions as the liquefaction of coal. The oil yield obtained from the co-liquefaction in the presence of Fe(CO)5-S, an effective catalyst for coal liquefaction, agreed appropriately with the arithmetical mean value from separate liquefaction of coal and micro algae. It was suggested that pyrrhotite, an active species for coal liquefaction, was sufficiently formed by increasing the addition of sulfur. 2 refs., 7 figs., 1 tab.

  6. 78 FR 15715 - Excelerate Liquefaction Solutions I, LLC; Lavaca Bay Pipeline System, LLC; Notice of Intent To...

    Science.gov (United States)

    2013-03-12

    ... liquefaction, centrifugal refrigerant compressors, and associated infrastructure; Mooring structures and... (examples include construction right-of-way, contractor/pipe storage yards, compressor stations, and...

  7. A characterization and evaluation of coal liquefaction process streams. The kinetics of coal liquefaction distillation resid conversion

    Energy Technology Data Exchange (ETDEWEB)

    Klein, M.T.; Calkins, W.H.; Huang, H.; Wang, S.; Campbell, D.

    1998-03-01

    Under subcontract from CONSOL Inc., the University of Delaware studied the mechanism and kinetics of coal liquefaction resid conversion. The program at Delaware was conducted between August 15, 1994, and April 30, 1997. It consisted of two primary tasks. The first task was to develop an empirical test to measure the reactivity toward hydrocracking of coal-derived distillation resids. The second task was to formulate a computer model to represent the structure of the resids and a kinetic and mechanistic model of resid reactivity based on the structural representations. An introduction and Summary of the project authored by CONSOL and a report of the program findings authored by the University of Delaware researchers are presented here.

  8. Multisensor and Multispectral Approach in Documenting and Analyzing Liquefaction Hazard using Remote Sensing

    Science.gov (United States)

    Oommen, T.; Baise, L. G.; Gens, R.; Prakash, A.; Gupta, R. P.

    2008-12-01

    Seismic liquefaction is the loss of strength of soil due to shaking that leads to various ground failures such as lateral spreading, settlements, tilting, and sand boils. It is important to document these failures after earthquakes to advance our study of when and where liquefaction occurs. The current approach of mapping these failures by field investigation teams suffers due to the inaccessibility to some of the sites immediately after the event, short life of some of these failures, difficulties in mapping the aerial extent of the failure, incomplete coverage etc. After the 2001 Bhuj earthquake (India), researchers, using the Indian remote sensing satellite, illustrated that satellite remote sensing can provide a synoptic view of the terrain and offer unbiased estimates of liquefaction failures. However, a multisensor (data from different sensors onboard of the same or different satellites) and multispectral (data collected in different spectral regions) approach is needed to efficiently document liquefaction incidences and/or its potential of occurrence due to the possibility of a particular satellite being located inappropriately to image an area shortly after an earthquake. The use of SAR satellite imagery ensures the acquisition of data in all weather conditions at day and night as well as information complimentary to the optical data sets. In this study, we analyze the applicability of the various satellites (Landsat, RADARSAT, Terra-MISR, IRS-1C, IRS-1D) in mapping liquefaction failures after the 2001 Bhuj earthquake using Support Vector Data Description (SVDD). The SVDD is a kernel based nonparametric outlier detection algorithm inspired by the Support Vector Machines (SVMs), which is a new generation learning algorithm based on the statistical learning theory. We present the applicability of SVDD for unsupervised change-detection studies (i.e. to identify post-earthquake liquefaction failures). The liquefaction occurrences identified from the different

  9. Catalytic reforming process

    Energy Technology Data Exchange (ETDEWEB)

    Absil, R.P.; Huss, A. Jr.; McHale, W.D.; Partridge, R.D.

    1989-06-13

    This patent describes a catalytic reforming process which comprises contacting a naphtha range feed with a low acidity extrudate comprising an intermediate and/or a large pore acidic zeolite bound with a low acidity refractory oxide under reforming conditions to provide a reaction product of increased aromatic content, the extrudate having been prepared with at least an extrusion-facilitating amount of a low acidity refractory oxide in colloidal form and containing at least one metal species selected from the platinum group metals.

  10. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  11. Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery.

    Science.gov (United States)

    Chew, Thiam Leng; Bhatia, Subhash

    2008-11-01

    In Malaysia, there has been interest in the utilization of palm oil and oil palm biomass for the production of environmental friendly biofuels. A biorefinery based on palm oil and oil palm biomass for the production of biofuels has been proposed. The catalytic technology plays major role in the different processing stages in a biorefinery for the production of liquid as well as gaseous biofuels. There are number of challenges to find suitable catalytic technology to be used in a typical biorefinery. These challenges include (1) economic barriers, (2) catalysts that facilitate highly selective conversion of substrate to desired products and (3) the issues related to design, operation and control of catalytic reactor. Therefore, the catalytic technology is one of the critical factors that control the successful operation of biorefinery. There are number of catalytic processes in a biorefinery which convert the renewable feedstocks into the desired biofuels. These include biodiesel production from palm oil, catalytic cracking of palm oil for the production of biofuels, the production of hydrogen as well as syngas from biomass gasification, Fischer-Tropsch synthesis (FTS) for the conversion of syngas into liquid fuels and upgrading of liquid/gas fuels obtained from liquefaction/pyrolysis of biomass. The selection of catalysts for these processes is essential in determining the product distribution (olefins, paraffins and oxygenated products). The integration of catalytic technology with compatible separation processes is a key challenge for biorefinery operation from the economic point of view. This paper focuses on different types of catalysts and their role in the catalytic processes for the production of biofuels in a typical palm oil and oil palm biomass-based biorefinery. PMID:18434141

  12. Design of a Natural Gas Liquefaction System with Minimum Components

    International Nuclear Information System (INIS)

    In this work an economic method for liquefying natural gas by diminishing its temperature by means of the Joule-Thomson effect is presented.The pressures from and to which the gas must be expanded arose from a thermodynamic calculation optimizing the cost per unit mass of Liquefied Natural Gas LNG).It was determined that the gas should be expanded from 200 atm to 4 atm.This expansion ratio can be used in different scales.Large Scale: liquefaction of gas at well.It takes advantage of the fact that the gas inside the well is stored at high pressure.The gas is expanded in a valve / nozzle and then compressed to the pressure of the local pipeline system.The objective of this project is to export natural gas as LNG, which is transported by ships to the markets of consumption.Using this method of liquefaction, the LNG production levels are limited to a fraction of the production of the well, due to the injection of the un condensed gas into the local pipelines system.Medium Scale: A high pressure pipeline is the source of the gas.The expansion is performed and then the gas is again compressed to the pressure of a lower pressure pipeline into which the gas is injected.The pressure reductions of natural gas are performed nearby big cities.The aim of this project scale is the storage of fuel for gas thermal power plants during periods of low energy consumption for later burning when the resource is limited. Another possibility that offers this size of plant is the transportation of gas to regions where the resource is unavailable.This transportation would be carried out by means of cistern trucks, in the same way that conventional liquid fuels are transported.Small scale: the place of production would be a CNG refueling station. The source of gas is in this case a gas pipeline of urban distribution and the gas should be compressed with the compressor of the refueling station.Compressors have generally low loading factor and the periods of time when they are not producing

  13. Characterisation of Liquefaction Effects for Beyond-Design Basis Safety Assessment of Nuclear Power Plants

    Science.gov (United States)

    Bán, Zoltán; Győri, Erzsébet; János Katona, Tamás; Tóth, László

    2015-04-01

    Preparedness of nuclear power plants to beyond design base external effects became high importance after 11th of March 2011 Great Tohoku Earthquakes. In case of some nuclear power plants constructed at the soft soil sites, liquefaction should be considered as a beyond design basis hazard. The consequences of liquefaction have to be analysed with the aim of definition of post-event plant condition, identification of plant vulnerabilities and planning the necessary measures for accident management. In the paper, the methodology of the analysis of liquefaction effects for nuclear power plants is outlined. The case of Nuclear Power Plant at Paks, Hungary is used as an example for demonstration of practical importance of the presented results and considerations. Contrary to the design, conservatism of the methodology for the evaluation of beyond design basis liquefaction effects for an operating plant has to be limited to a reasonable level. Consequently, applicability of all existing methods has to be considered for the best estimation. The adequacy and conclusiveness of the results is mainly limited by the epistemic uncertainty of the methods used for liquefaction hazard definition and definition of engineering parameters characterizing the consequences of liquefaction. The methods have to comply with controversial requirements. They have to be consistent and widely accepted and used in the practice. They have to be based on the comprehensive database. They have to provide basis for the evaluation of dominating engineering parameters that control the post-liquefaction response of the plant structures. Experience of Kashiwazaki-Kariwa plant hit by Niigata-ken Chuetsu-oki earthquake of 16 July 2007 and analysis of site conditions and plant layout at Paks plant have shown that the differential settlement is found to be the dominating effect in case considered. They have to be based on the probabilistic seismic hazard assessment and allow the integration into logic

  14. Paleoseismic investigations in the Kopili Fault Zone of North East India: Evidences from liquefaction chronology

    Science.gov (United States)

    Kumar, Devender; Reddy, D. V.; Pandey, Anand K.

    2016-04-01

    We report the seismogenic liquefaction signatures observed in the Kopili Fault Zone of the Brahmaputra plains, NE India. This seismically active zone has previously been identified as the "Assam seismic gap" and thus necessitates understanding its past seismicity and implied seismic hazard. With this objective, paleo-seismic studies using seismogenic liquefaction features have been carried out in this region largely covered with the flood plain deposits of Kopili and Kalang rivers. The trenches excavated at two locations revealed extensive liquefaction features with more than 20 sub parallel sand dykes having major orientation in NE-SW direction. A total of 29 samples from marker horizons have been processed to constrain chronology of the liquefaction features using optically stimulated luminescence (OSL) and 14C (AMS) dating techniques. The age constraints in terms of respective lower and upper bound age brackets for individual dykes suggest three time intervals of their formations i.e. (i) 250 ± 25 yr. BP, (ii) between 400 to 770 yr. BP and (iii) 900 ± 50 yr. BP. These new ages of liquefaction features correspond to the occurrence timings of causative seismic events which are in addition to the known historical earthquakes and thus enhance our understanding of the paleoseismic history of this region during past ~ 1000 years.

  15. Rapid liquefaction of giant miscanthus feedstock in ethanol–water system for production of biofuels

    International Nuclear Information System (INIS)

    Highlights: • Rapid water/ethanol liquefaction system was proposed for giant miscanthus feedstock. • The optimum liquefaction conditions were 280 °C and 15 min at water/ethanol ratio 50%. • Application of ZnCl2 catalyst enhanced liquefaction process significantly. • 52% bio-oil yield and 1% residue were obtained after 5 min when ZnCl2 catalyst used. - Abstract: Energy issues nowadays are one of the critical priorities for the United States. There is a strong desire and tremendous efforts employed towards replacing fossil fuels with sustainable alternative sources of energy. In this study, hydrothermal liquefaction with ethanol and water as co-solvents was applied on giant miscanthus (Miscanthus giganteus) perennial biomass feedstock. Four temperatures and six ethanol ratios were chosen for the study. The optimum combination of temperature and water/ethanol ratio was 280 °C and 50%, respectively. The effect of time, biomass to solvent ratio and catalyst type was studied as well. The best liquefaction results without applying catalysts (53% oil yield and 8% solid residue) were obtained after 15 min. When zinc chloride was used as catalyst, more than 52% of oil yield with 1% solid residue was obtained after 5 min. The crude bio-oil chemical composition was identified by using gas chromatography/mass spectrometry (GC/MS)

  16. ENVIRONMENTAL AND ECONOMIC ASPECTS OF INDIRECT COAL LIQUEFACTION PROCESSES: A REPORT EMPHASIZING THE RELATIONSHIP BETWEEN PRODUCT MIX AND EFFICIENCY

    Science.gov (United States)

    This report covers environmental and economic aspects of three indirect liquefaction processes. Specifically, the following are addressed: U.S. coal resources; the Lurgi/Methanol, Lurgi/Methanol/Mobil M, and the Lurgi/Fischer-Tropsch indirect coal liquefaction processes; and envi...

  17. Stress corrosion studies in solvent refined coal liquefaction pilot plants

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, V.B.; Keiser, J.R.; Allen, M.D.; Lawrence, E.J.

    1980-12-01

    Coal liquefaction plants with 6000 ton/d capacity are currently being planned by DOE as a step toward commercial production of synthetic fossil fuels. These plants will demonstrate the large-scale viability of the Solvent Refined Coal (SRC) process, which has been used since 1974 in two operating pilot plants: a 50-ton/d unit at Fort Lewis, Washington, and a 6-ton/d plant in Wilsonville, Alabama. Experience in these plants has shown that austenitic stainless steels are susceptible to stress corrosion cracking associated with residual stresses from cold working or welding. The corrodents responsible for the cracking have not yet been positively identified but are suspected to include polythionic acids and chlorides. To screen candidate materials of construction for resistance to stress corrosion cracking, racks of stressed U-bend specimens in welded and as-wrought conditions have been exposed at the Wilsonville and Fort Lewis SRC pilot plants. These studies have identified alloys that are suitable for critical plant applications.

  18. Stress-corrosion cracking studies in coal-liquefaction systems

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, V.B.; Keiser, J.R.

    1981-01-01

    Coal liquefaction plants with 6000 ton/d capacity are currently being planned by DOE as a step toward commercial production of synthetic fossil fuels. These plants will demonstrate the large-scale viability of the Solvent Refined Coal (SRC) process, which has been used since 1974 in two operating pilot plants: a 50-ton/d unit at Fort Lewis, Washington, and a 6-ton/d plant in Wilsonville, Alabama. Experience in these plants has shown that austenitic stainless steels are susceptible to stress corrosion cracking associated with residual stresses from cold working or welding. The corrodants responsible for the cracking have not yet been positively identified but are suspected to include polythionic acids and chlorides. To screen candidate materials of construction for resistance to stress corrosion cracking, racks of stressed U-bend specimens in welded and as-wrought conditions have been exposed at the Wilsonville and Fort Lewis SRC pilot plants. These studies have identified alloys that are suitable for critical plant applications.

  19. Exergoeconomic evaluation of single mixed refrigerant natural gas liquefaction processes

    International Nuclear Information System (INIS)

    Highlights: • Exergoeconomic analysis is performed for single mixed refrigerant process. • Cost of exergy destruction and exergoeconomic factor are calculated. • Sensitivity of exergoeconomic factor is investigated. - Abstract: Exergy and exergoeconomic analysis is performed for single mixed refrigerant Linde and Air Products and Chemicals Inc, processes, which are among the most important and popular natural gas liquefaction processes. Cost of exergy destruction, exergoeconomic factor, exergy destruction and exergy efficiency are calculated. Results of exergy analysis demonstrates that exergy efficiency of Linde process is around 40.2%, and its total exergy destruction rate is 93,229 kW. The exergy efficiency and exergy destruction rate for Air Products and Chemicals Inc, process are 45.0% and 72,245 kW respectively. Results of exergoeconomic analysis suggests that maximum exergy destruction cost for Linde process is related to E-2 heat exchanger which is 34,072 $/h and for Air Products and Chemicals Inc, process maximum exergy destruction cost is related to E-2 heat exchanger with the value of 4125 kW. Sensitivity of cost of exergy destruction and exergoeconomic factor to operating variables of the processes are studied and analyzed

  20. Evolution of random catalytic networks

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, S.M. [Santa Fe Inst., NM (United States); Reidys, C.M. [Santa Fe Inst., NM (United States)]|[Los Alamos National Lab., NM (United States)

    1997-06-01

    In this paper the authors investigate the evolution of populations of sequences on a random catalytic network. Sequences are mapped into structures, between which are catalytic interactions that determine their instantaneous fitness. The catalytic network is constructed as a random directed graph. They prove that at certain parameter values, the probability of some relevant subgraphs of this graph, for example cycles without outgoing edges, is maximized. Populations evolving under point mutations realize a comparatively small induced subgraph of the complete catalytic network. They present results which show that populations reliably discover and persist on directed cycles in the catalytic graph, though these may be lost because of stochastic effects, and study the effect of population size on this behavior.