WorldWideScience

Sample records for catalytic membrane reactors

  1. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  2. Reverse flow catalytic membrane reactors for energy efficient syngas production

    OpenAIRE

    Smit, Joris

    2006-01-01

    To improve the recuperative heat exchange, a Reverse Flow Catalytic Membrane Reactor (RFCMR) with porous membranes is proposed in this thesis, in which very efficient heat exchange between the feed and product streams is achieved by using the reverse flow concept (i.e. periodic alternation of the flow direction of the gas through a fixed catalyst bed).

  3. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  4. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  5. On the study of catalytic membrane reactor for water detritiation: Membrane characterization

    International Nuclear Information System (INIS)

    Highlights: ► Catalytic palladium based membrane reactor is studied for ITER tritium waste management. ► Concentration polarization effect was highlighted by two-dimensional mass transfer model. ► Mass transfer resistance due to concentration polarization is reduced by the increase of fluid velocity. ► Concentration polarization phenomenon is enhanced by the decrease of non-permeable species content in the feed stream. -- Abstract: Tritium waste recycling is a real economic and ecological issue. Generally under the non-valuable Q2O form (Q = H, D or T), waste can be converted into fuel Q2 for a fusion machine (e.g. JET, ITER) by isotope exchange reaction Q2O + H2 = H2O + Q2. Such a reaction is carried out over Ni-based catalyst bed packed in a thin wall hydrogen permselective membrane tube. This catalytic membrane reactor can achieve higher conversion ratios than conventional fixed bed reactors by selective removal of reaction product Q2 by the membrane according to Le Chatelier's Law. This paper presents some preliminary permeation tests performed on a catalytic membrane reactor. Permeabilities of pure hydrogen and deuterium as well as those of binary mixtures of hydrogen, deuterium and nitrogen have been estimated by measuring permeation fluxes at temperatures ranging from 573 to 673 K, and pressure differences up to 1.5 bar. Pure component global fluxes were linked to permeation coefficient by means of Sieverts’ law. The thin membrane (150 μm), made of Pd–Ag alloy (23 wt.%Ag), showed good permeability and infinite selectivity toward protium and deuterium. Lower permeability values were obtained with mixtures containing non permeable gases highlighting the existence of gas phase resistance. The sensitivity of this concentration polarization phenomenon to the composition and the flow rate of the inlet was evaluated and fitted by a two-dimensional model

  6. Membranas Inorgânicas e reatores catalíticos Inorganic membranes and catalytic reactors

    OpenAIRE

    Maria do Carmo Rangel

    1997-01-01

    Membrane reactors are reviewed with emphasis in their applications in catalysis field. The basic principles of these systems are presented as well as a historical development. The several kinds of catalytic membranes and their preparations are discussed including the problems, needs and challenges to be solved in order to use these reactors in commercial processes. Some applications of inorganic membrane reactors are also shown. It was concluded that these systems have a great potential for i...

  7. Simulation Study of a Dense Polymeric Catalytic Membrane Reactor with Plug-flow Pattern

    OpenAIRE

    José M. Sousa; Adélio Mendes

    2003-01-01

    A theoretical study on a tubular membrane reactor, assuming isothermal operation, plugflow pattern and using a dense polymeric catalytic membrane, is performed. The reactor conversion for an A#8644;B equilibrium gas-phase reaction is analyzed, considering the influence of the reactants and products diffusion and sorption coefficients, the influence of the total pressure gradient and the influence of the ratio between the membrane thickness and its internal radius as well as the influence of t...

  8. Catalytic Transformation of Greenhouse Gases in a Membrane Reactor

    OpenAIRE

    Prabhu, Anil K

    2003-01-01

    Supported Ni and Rh catalysts were developed for the reforming of two greenhouse gases, methane and carbon dioxide to syngas (a mixture of hydrogen and carbon monoxide). This is an endothermic, equilibrium limited reaction. To overcome the thermodynamic limitations, a commercially available porous membrane (Vycor glass) was used in a combined reactor-separator configuration. This was to selectively remove one or more of the products from the reaction chamber, and consequently shift the equ...

  9. Studies on Hydrogen Selective Silica Membranes and the Catalytic Reforming of CH4 with CO2 in a Membrane Reactor

    OpenAIRE

    Lee, Doohwan

    2003-01-01

    In this work the synthesis, characterization, and gas transport properties of hydrogen selective silica membranes were studied along with the catalytic reforming of CH4 with CO2 (CH4 + CO z 2 CO + 2 H2) in a hydrogen separation membrane reactor. The silica membranes were prepared by chemical vapor deposition (CVD) of a thin SiO2 layer on porous supports (Vycor glass and alumina) using thermal decomposition of tetraethylorthosilicate (TEOS) in an inert atmosphere. These membranes displayed h...

  10. Computer-aided modeling framework – a generic modeling template for catalytic membrane fixed bed reactors

    DEFF Research Database (Denmark)

    Fedorova, Marina; Sin, Gürkan; Gani, Rafiqul

    2013-01-01

    This work focuses on development of computer-aided modeling framework. The framework is a knowledge-based system that is built on a generic modeling language and structured based on workflows for different general modeling tasks. The overall objective of this work is to support the model develope...... catalytic membrane fixed bed models is developed. The application of the modeling template is highlighted with a case study related to the modeling of a catalytic membrane reactor coupling dehydrogenation of ethylbenzene with hydrogenation of nitrobenzene....

  11. A study of the isobutane dehydrogenation in a porous membrane catalytic reactor: design, use and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Casanave, D.

    1996-01-26

    The aim of this study was to set up and model a catalytic fixed-bed membrane reactor for the isobutane dehydrogenation. The catalyst, developed at Catalysis Research Institute (IRC), was a silicalite-supported Pt-based catalyst. Their catalytic performances (activity, selectivity, stability) where found better adapted to the membrane reactor, when compared with commercial Pt or Cr based catalysts. The kinetic study of the reaction has been performed in a differential reactor and led to the determination of a kinetic law, suitable when the catalyst is used near thermodynamic equilibrium. The mass transfer mechanisms were determined in meso-porous and microporous membranes through both permeability and gas mixtures (iC{sub 4}/H{sub 2}/N{sub 2}) separation measurements. For the meso-porous {gamma}-alumina, the mass transfer is ensured by a Knudsen diffusion mechanism which can compete with surface diffusion for condensable gas like isobutane. The resulting permselectivity H{sub 2}/iC4 of this membrane is low ({approx} 4). For the microporous zeolite membrane, molecular sieving occurs due to steric hindrance, leading to higher permselectivity {approx}14. Catalyst/membrane associations were compared in terms of isobutane dehydrogenation performances, for both types of membranes (meso-porous and microporous) and for two different reactor configurations (co-current and counter-current sweep gas flow). The best experimental results were obtained with the zeolite membrane, when sweeping the outer compartment in a co-current flow. The equilibrium displacement observed with the {gamma}-alumina membrane was lower and mainly due to a dilution effect of the reaction mixture by the sweep gas. A mathematical model was developed, which correctly describes all the experimental results obtained with the zeolite membrane, when the co-current mode is used. (Abstract Truncated)

  12. Developing of Catalytic Membrane Reactor for Separation and Oxidation of Volatile Organic Compounds

    Czech Academy of Sciences Publication Activity Database

    Gaálová, Jana; Izák, Pavel

    Bratislava : Slovak Society of Chemical Engineering, 2013 - (Markoš, J.), s. 92 ISBN 978-80-89475-09-4. [International Conference of Slovak Society of Chemical Engineering /40./. Tatranské Matliare (SK), 27.05.2013-31.05.2013] R&D Projects: GA ČR GAP106/10/1194 Institutional support: RVO:67985858 Keywords : catalytic membrane reactor * ceria * zirconia Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  13. Developing of Catalytic Membrane Reactor for Separation and Oxidation of Volatile Organic Compounds

    Czech Academy of Sciences Publication Activity Database

    Gaálová, Jana; Izák, Pavel

    Bratislava: Slovak Society of Chemical Engineering, 2013 - (Markoš, J.), s. 92 ISBN 978-80-89475-09-4. [International Conference of Slovak Society of Chemical Engineering /40./. Tatranské Matliare (SK), 27.05.2013-31.05.2013] R&D Projects: GA ČR GAP106/10/1194 Institutional support: RVO:67985858 Keywords : catalytic membrane reactor * ceria * zirconia Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  14. Catalytic membrane reactors for tritium recovery from tritiated water in the ITER fuel cycle

    International Nuclear Information System (INIS)

    Palladium and palladium-silver permeators have been obtained by coating porous ceramic tubes with a thin metal layer. Three coating techniques have been studied and characterized: chemical electroless deposition (PdAg film thickness of 10 μm), ion sputtering (about 1 μm) and rolling of thin metal sheets (50 μm). The Pd-ceramic membranes have been used for manufacturing catalytic membrane reactors (CMR) for hydrogen and its isotopes recovering and purifying. These composite membranes and the CMR have been studied and developed for a closed-loop process with reference to the design requirements of the international thermonuclear experimental reactor (ITER) blanket tritium recovery system in the enhanced performance phase of operation. The membranes and CMR have been tested in a pilot plant equipped with temperature, pressure and flow-rate on-line measuring and controlling devices. The conversion value for the water gas shift reaction in the CMR has been measured close to 100% (always above the equilibrium one, 80% at 350 deg. C): the effect of the membrane is very clear since the reaction is moved towards the products because of the continuous hydrogen separation. The rolled thin film membranes have separated the hydrogen from other gases with a complete selectivity and exhibited a slightly larger mass transfer resistance with respect to the electroless membranes. Preliminary tests on the sputtered membranes have also been carried out with a promising performance. Considerations on the use of different palladium alloy in order to improve the performances of the membranes in terms of permeation flux and mechanical strength, such as palladium/yttrium, are also reported

  15. Elaboration by tape-casting and co-sintering of multilayer catalytic membrane reactor- performances

    International Nuclear Information System (INIS)

    This research deals with the increasing interest of the conversion of natural gas into liquid fuels (diesel, kerosene) using the Gas To Liquid (GTL) process. Within this context, Catalytic Membrane-based Reactors (CMR) would allow an improvement of the process efficiency and a reduction of investment and production costs with respect to the present technologies. They allow performing the separation of oxygen from air, and the conversion of natural gas into synthesis gas within a single step. After having highlighted the economical and technological advantages of using a ceramic membrane for the production of syngas (H2 + CO2), the author describes the protocols of synthesis of powders selected for the dense membrane and the porous support, and their physical characteristics. The obtained powders are then adapted to the tape-casting forming process. Graded-composition multilayer structures and microstructure are then elaborated by co-sintering. Performances in terms of membrane oxygen flows are presented. Mechanisms limiting the oxygen flow are discussed in order to propose ways of improving membrane performances. The limits of the studied system are defined in terms of elastic properties, and optimization ways are proposed for the dense membrane material composition in terms of mechanical properties and performance in oxygen semi-permeation

  16. Phenomenological modeling and study of a catalytic membrane reactor for water detritiation

    International Nuclear Information System (INIS)

    Tritium is produced in light and heavy water reactor fuel by ternary fission or neutron activation. This by-product is used as fuel in fusion fuel reactors such as JET in Culham or ITER in Cadarache (France). The growing interest of this research area will make the tritium fluxes increase; it is then worth addressing the question of its future whether it will be used or flushed out from liquid and gaseous effluents or waste. This thesis studies the recovery of tritium as fuel for fusion machines by means of packed bed membrane reactor (PBMR). Such a reactor combines catalytic conversion of tritiated water thanks to isotope exchange with hydrogen according to the reversible reaction Q2O+H2↔H2O+Q2 (Q=H,D or T) and selective permeation of Q2 through Pd-based membrane. In fact, palladium has the ability to bond with hydrogen isotopes, creating a selective permeation barrier. In the PBMR, thanks to the reaction products withdrawal, these permeation fluxes drive the heavy water conversion rate, to higher values than those reached in conventional fixed bed reactors (Le Chatelier's law). In order to study PBMRs, the CEA has built a test bench, using deuterium instead of tritium, allowing the analysis of their conversion and separation performances at the laboratory scale. An in-house method has been developed to determine simultaneously hydrogen and water isotopologues content by mass spectrometer analysis. It was experimentally shown that the activity of Ni-based catalyst used in this study was sufficient to allow the isotope exchange reactions to reach their thermodynamic equilibrium in a very short time. In addition, hydrogen permeation flux was shown to follow a Richardson's law. Sensitivity studies performed on the PBMR's main operating parameters revealed that its global performance (i.e. de-deuteration factor) increases with the temperature, the transmembrane pressure difference, the sweep gas flow rate and the residence time in the catalyst

  17. Effect of hydrogen combustion reaction on the dehydrogenation of ethane in a fixed-bed catalytic membrane reactor

    Institute of Scientific and Technical Information of China (English)

    Masoud Hasany; Mohammad Malakootikhah; Vahid Rahmanian; Soheila Yaghmaei

    2015-01-01

    A two-dimensional non-isothermal mathematical model has been developed for the ethane dehydrogenation reaction in a fixed-bed catalytic membrane reactor. Since ethane dehydrogenation is an equilibrium reaction, removal of produced hydrogen by the membrane shifts the thermodynamic equilibrium to ethylene production. For further displacement of the dehydrogenation reaction, oxidative dehydrogenation method has been used. Since ethane dehydrogenation is an endothermic reaction, the energy produced by the oxidative dehydrogena-tion method is consumed by the dehydrogenation reaction. The results show that the oxidative dehydrogenation method generated a substantial improvement in the reactor performance in terms of high conversions and significant energy saving. It was also established that the sweep gas velocity in the shell side of the reactor is one of the most important factors in the effectiveness of the reactor.

  18. Pilot-plant study on membrane reactors for catalytic oxidation of hydrocarbons

    OpenAIRE

    Klose, F.; Wolff, T; Hamel, C., Huschek, D., Milewsky, N. & de Valk, H.A.G. / In M. Crul, J. Schneider & F. Lelie (Eds.),; Tota, A.; Ahchieva, D.; Heinrich, S; Seidel-Morgenstern, A.

    2007-01-01

    Membrane reactors are often reported to be promising for enhancement of productivity in selective oxidation of hydrocarbons. Herein, the membrane is used as oxidant distributor (e.g. [1-3]). This is meaningful because the order of deep oxidation with respect to oxygen is often higher than that of the desired formation of olefins/oxygenates [4,5]. This means that oxygen availability influences both, alkane conversion and selectivity to olefins/oxygenates and this in opposite manner. Beside cha...

  19. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor.

    Science.gov (United States)

    Morejudo, S H; Zanón, R; Escolástico, S; Yuste-Tirados, I; Malerød-Fjeld, H; Vestre, P K; Coors, W G; Martínez, A; Norby, T; Serra, J M; Kjølseth, C

    2016-08-01

    Nonoxidative methane dehydroaromatization (MDA: 6CH4 ↔ C6H6 + 9H2) using shape-selective Mo/zeolite catalysts is a key technology for exploitation of stranded natural gas reserves by direct conversion into transportable liquids. However, this reaction faces two major issues: The one-pass conversion is limited by thermodynamics, and the catalyst deactivates quickly through kinetically favored formation of coke. We show that integration of an electrochemical BaZrO3-based membrane exhibiting both proton and oxide ion conductivity into an MDA reactor gives rise to high aromatic yields and improved catalyst stability. These effects originate from the simultaneous extraction of hydrogen and distributed injection of oxide ions along the reactor length. Further, we demonstrate that the electrochemical co-ionic membrane reactor enables high carbon efficiencies (up to 80%) that improve the technoeconomic process viability. PMID:27493179

  20. Pretreated Landfill Gas Conversion Process via a Catalytic Membrane Reactor for Renewable Combined Fuel Cell-Power Generation

    Directory of Open Access Journals (Sweden)

    Zoe Ziaka

    2013-01-01

    Full Text Available A new landfill gas-based reforming catalytic processing system for the conversion of gaseous hydrocarbons, such as incoming methane to hydrogen and carbon oxide mixtures, is described and analyzed. The exit synthesis gas (syn-gas is fed to power effectively high-temperature fuel cells such as SOFC types for combined efficient electricity generation. The current research work is also referred on the description and design aspects of permreactors (permeable reformers carrying the same type of landfill gas-reforming reactions. Membrane reactors is a new technology that can be applied efficiently in such systems. Membrane reactors seem to perform better than the nonmembrane traditional reactors. The aim of this research includes turnkey system and process development for the landfill-based power generation and fuel cell industries. Also, a discussion of the efficient utilization of landfill and waste type resources for combined green-type/renewable power generation with increased processing capacity and efficiency via fuel cell systems is taking place. Moreover, pollution reduction is an additional design consideration in the current catalytic processors fuel cell cycles.

  1. Environmentally benign synthesis of amides and ureas via catalytic dehydrogenation coupling of volatile alcohols and amines in a Pd-Ag membrane reactor

    KAUST Repository

    Chen, Tao

    2016-05-31

    In this study, we report the direct synthesis of amides and ureas via the catalytic dehydrogenation of volatile alcohols and amines using the Milstein catalyst in a Pd-Ag/ceramic membrane reactor. A series of amides and ureas, which could not be synthesized in an open system by catalytic dehydrogenation coupling, were obtained in moderate to high yields via catalytic dehydrogenation of volatile alcohols and amines. This process could be monitored by the hydrogen produced. Compared to the traditional method of condensation, this catalytic system avoids the stoichiometric pre-activation or in situ activation of reagents, and is a much cleaner process with high atom economy. This methodology, only possible by employing the Pd-Ag/ceramic membrane reactor, not only provides a new environmentally benign synthetic approach of amides and ureas, but is also a potential method for hydrogen storage.

  2. Hydrogen production by steam reforming of bio-alcohols. The use of conventional and membrane-assisted catalytic reactors

    Energy Technology Data Exchange (ETDEWEB)

    Seelam, P. K.

    2013-11-01

    The energy consumption around the globe is on the rise due to the exponential population growth and urbanization. There is a need for alternative and non-conventional energy sources, which are CO{sub 2}-neutral, and a need to produce less or no environmental pollutants and to have high energy efficiency. One of the alternative approaches is hydrogen economy with the fuel cell (FC) technology which is forecasted to lead to a sustainable society. Hydrogen (H{sub 2}) is recognized as a potential fuel and clean energy carrier being at the same time a carbon-free element. Moreover, H{sub 2} is utilized in many processes in chemical, food, metallurgical, and pharmaceutical industry and it is also a valuable chemical in many reactions (e.g. refineries). Non-renewable resources have been the major feedstock for H{sub 2} production for many years. At present, {approx}50% of H{sub 2} is produced via catalytic steam reforming of natural gas followed by various down-stream purification steps to produce {approx}99.99% H{sub 2}, the process being highly energy intensive. Henceforth, bio-fuels like biomass derived alcohols (e.g. bio-ethanol and bio-glycerol), can be viable raw materials for the H{sub 2} production. In a membrane based reactor, the reaction and selective separation of H{sub 2} occur simultaneously in one unit, thus improving the overall reactor efficiency. The main motivation of this work is to produce H{sub 2} more efficiently and in an environmentally friendly way from bio-alcohols with a high H{sub 2} selectivity, purity and yield. In this thesis, the work was divided into two research areas, the first being the catalytic studies using metal decorated carbon nanotube (CNT) based catalysts in steam reforming of ethanol (SRE) at low temperatures (<450 deg C). The second part was the study of steam reforming (SR) and the water-gas-shift (WGS) reactions in a membrane reactor (MR) using dense and composite Pd-based membranes to produce high purity H{sub 2}. CNTs

  3. Experimental, kinetic and numerical modeling of hydrogen production by catalytic reforming of crude ethanol over a commercial catalyst in packed bed tubular reactor and packed bed membrane reactor

    International Nuclear Information System (INIS)

    The demand for hydrogen energy has increased tremendously in recent years essentially because of the increase in the word energy consumption as well as recent developments in fuel cell technologies. The energy information administration has projected that world energy consumption will increase by 59% over the next two decades, from 1999 to 2020, in which the largest share is still dominated by fossil fuels (oil, natural gas and coal). Carbon dioxide (CO2) emissions resulting from the combustion of these fossil fuels currently are estimated to account for three-fourth of human-caused CO2 emissions worldwide. Greenhouse gas emission, including CO2, should be limited, as recommended at the Kyoto Conference, Japan, in December 1997. In this regard, hydrogen (H2) has a significant future potential as an alternative fuel that can solve the problems of CO2 emissions as well as the emissions of other air contaminants. One of the techniques to produce hydrogen is by reforming of hydrocarbons or biomass. Crude ethanol (a form of biomass, which essentially is fermentation broth) is easy to produce, is free of sulphur, has low toxicity, and is also safe to handle, transport and store. In addition, crude ethanol consists of oxygenated hydrocarbons, such as ethanol, lactic acid, glycerol, and maltose. These oxygenated hydrocarbons can be reformed completely to H2 and CO2, the latter of which could be separated from H2 by membrane technology. This provides for CO2 capture for eventual storage or destruction. In the case of using crude ethanol, this will result in negative CO2, emissions. In this paper, we conducted experimental work on production of hydrogen by the catalytic reforming of crude ethanol over a commercial promoted Ni-based catalyst in a packed bed tubular reactor as well as a packed bed membrane reactor. As well, a rigorous numerical model was developed to simulate this process in both the catalytic packed bed tubular reactor and packed bed membrane reactor. The

  4. Catalytic partial oxidation of coke oven gas to syngas in an oxygen permeation membrane reactor combined with NiO/MgO catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhibin; Ding, Weizhong; Zhang, Yunyan; Lu, Xionggang; Zhang, Yuwen; Shen, Peijun [Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University, No. 275 Mail box, 149 Yanchang Road, Shanghai 200072 (China)

    2010-06-15

    A high oxygen permeability and sufficient chemical and mechanical stability mixed ion and electron conductivity membrane to withstand the hash strong oxidation and reduction working conditions is significant for the membrane reactor to commercial-scale plant. In this paper, a disk-shaped Ba{sub 1.0}Co{sub 0.7}Fe{sub 0.2}Nb{sub 0.1}O{sub 3-{delta}} membrane was applied to a membrane reactor for the partial oxidation of methane in coke oven gas (COG) to syngas. The reaction was carried out using NiO/MgO solid solution catalyst by feeding COG. The reforming process was performed successfully; 95% CH{sub 4} conversion, 80% H{sub 2} selectivity, 106% CO selectivity and 16.3 ml cm{sup -2} min{sup -1} oxygen permeation flux were achieved at 1148 K. The reaction has been steadily carried out for more than 100 h. The NiO/MgO catalyst used in the membrane reactor exhibited good catalytic activity and resistance to coking in the COG atmosphere. Characterization of the membrane surface by SEM and XRD after long life test showed that both the surface exposed to the air side and reaction side still preserved the Perovskite structure which is implied that the practical application of this membrane as membrane reactor for partial oxidation of COG is promising. (author)

  5. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  6. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  7. Catalytic reforming of methane to syngas in an oxygen-permeative membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Urano, Takeshi; Kubo, Keiko; Saito, Tomoyuki; Hitomi, Atsushi, E-mail: turano@jp.tdk.com [Materials and Process Development Center, TDK Corporation 570-2, Matsugashita, Minamihatori, Narita, Chiba 286-8588 (Japan)

    2011-05-15

    For fuel cell applications, partial oxidative reforming of methane to syngas, hydrogen and carbon monoxide, was performed via a dense oxygen-permeative ceramic membrane composed by both ionic and electronic conductive materials. The modification of Ni-based catalyst by noble metals was investigated to increase oxygen permeation flux and decrease carbon deposition during reforming reaction. The role of each component in catalyst was also discussed.

  8. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Vivek V Ranade

    2014-03-01

    Catalytic reactions are ubiquitous in chemical and allied industries. A homogeneous or heterogeneous catalyst which provides an alternative route of reaction with lower activation energy and better control on selectivity can make substantial impact on process viability and economics. Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is discussed. Some examples where performance enhancement was realized by catalyst design, appropriate choice of reactor, better injection and dispersion strategies and recent advances in process intensification/ multifunctional reactors are discussed to illustrate the approach.

  9. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.

    2012-06-24

    Membrane reactors are generally applied in high temperature reactions (>400 °C). In the field of fine chemical synthesis, however, much milder conditions are generally applicable and polymeric membranes were applied without their damage. The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane is to be used in. In this chapter a review of up to date literature about polymers and configuration catalyst/ membranes used in some recent polymeric membrane reactors is given. The new emerging concept of polymeric microcapsules as catalytic microreactors has been proposed. © 2012 Bentham Science Publishers. All rights reserved.

  10. Transport in a Microfluidic Catalytic Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, H G; Chung, J; Grigoropoulos, C P; Greif, R; Havstad, M; Morse, J D

    2003-04-30

    A study of the heat and mass transfer, flow, and thermodynamics of the reacting flow in a catalytic microreactor is presented. Methanol reforming is utilized in the fuel processing system driving a micro-scale proton exchange membrane fuel cell. Understanding the flow and thermal transport phenomena as well as the reaction mechanisms is essential for improving the efficiency of the reforming process as well as the quality of the processed fuel. Numerical studies have been carried out to characterize the transport in a silicon microfabricated reactor system. On the basis of these results, optimized conditions for fuel processing are determined.

  11. Nanostructured Catalytic Reactors for Air Purification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II project proposes the development of lightweight compact nanostructured catalytic reactors for air purification from toxic gaseous organic...

  12. Nanostructured Catalytic Reactors for Air Purification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project proposes the development of lightweight compact nanostructured catalytic reactors for air purification from toxic gaseous organic...

  13. Heterogeneous Photooxidation of Phenol by Catalytic Membranes

    Institute of Scientific and Technical Information of China (English)

    Enrica Fontananova; Enrico Drioli; Laura Donato; Marcella Bonchio; Mauro Carraro; Gianfranco Scorrano

    2006-01-01

    In this work the heterogenization in polymeric membranes of decatungstate, a photocatalyst for oxidation reactions,was reported. Solid state characterization techniques confirmed that the catalyst structure was preserved within the polymeric membranes. The catalytic membranes were successfully applied in the aerobic photo-oxidation of phenol, one of the main organic pollutants in wastewater, providing stable and recyclable photocatalytic systems. The dependence of the phenol degradation rate by the catalyst loading and transmembrane pressure was shown. By comparison with homogeneous reaction,the catalyst heterogenized in membrane appears to be more efficient concerning the rate of phenol photodegradation and mineralization.

  14. Innovative hybrid biological reactors using membranes

    International Nuclear Information System (INIS)

    In this paper we present two lines of research on hybrid reactors including the use of membranes, although with different functions: RBPM, biofilm reactors and membranes filtration RBSOM, supported biofilm reactors and oxygen membranes. (Author) 14 refs.

  15. A STUDY ON MEMBRANE PROCESS WITH γ-ALUMINA MEMBRANE REACTOR FOR ETHYLBENZENE DEHYDROGENATION TO STYRENE

    Institute of Scientific and Technical Information of China (English)

    Chen Qingling; Xu Zhongqiang

    2001-01-01

    The membrane reaction of ethylbenzene(EB) dehydrogenation to styrene(ST) has been studied by using K2O/Fe2O3 industrial catalyst and γ-alumina ceramic membrane developed by our institute. In comparison with the packed bed reactor (that is, plug flow reactor, abbr. PFR) in industrial practice, the yield of styrene was increased by 5%~10% in the membrane reactor. Furthermore, mathematical modeling of membrane reaction has been studied to display the principle of optimal match between the catalytic activity and the membrane permeability.

  16. Composition Modulation of Catalytic Reactors

    Czech Academy of Sciences Publication Activity Database

    Gogová, Zuzana; Hanika, Jiří

    Bratislava: Slovak University of Technology, 2009 - (Markoš, J.), s. 84 ISBN 978-80-227-3072-3. [International Conference of Slovak Society of Chemical Engineering /36./. Tatranské Matliare (SK), 25.05.2009-29.05.2009] R&D Projects: GA ČR GD203/08/H032 Institutional research plan: CEZ:AV0Z40720504 Keywords : gas- lift reactor * stirred tank reactor * design Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  17. 3. International conference on catalysis in membrane reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    The 3. International Conference on Catalysis in Membrane Reactors, Copenhagen, Denmark, is a continuation of the previous conferences held in Villeurbanne 1994 and Moscow 1996 and will deal with the rapid developments taking place within membranes with emphasis on membrane catalysis. The approx. 80 contributions in form of plenary lectures and posters discuss hydrogen production, methane reforming into syngas, selectivity and specificity of various membranes etc. The conference is organised by the Danish Catalytic Society under the Danish Society for Chemical Engineering. (EG)

  18. Reduction of nitrate from groundwater: powder catalysts and catalytic membrane

    Institute of Scientific and Technical Information of China (English)

    CHEN Ying-xu; ZHANG Yan; LIU Hong-yuan

    2003-01-01

    The reduction of nitrate contaminant in groundwater has gained renewed and intensive attention due to the environmental problems and health risks. Catalytic denetrification presents one of the most promising approaches for the removal of nitrate from water. Catalytic nitrate reduction from water by powder catalysts and catalytic membrane in a batch reactor was studied. And the effects of the initial concentration, the amounts of catalyst, and the flux H2 on the nitrate reduction were also discussed. The results demonstrated that nitrate reduction activity and the selectivity to nitrogen gas were mainly controlled by diffusion limitations and the mass transfer of the reactants. The selectivity can improved while retaining a high catalytic activity under controlled diffusion condition or the intensification of the mass transfer, and a good reaction condition. The total nitrogen removal efficiency reached above 80%. Moreover, catalytic membrane can create a high effective gas/liquid/solid interface, and show a good selectivity to nitrogen in comparative with the powder catalyst, the selectivity to nitrogen was improved from 73.4% to 89.4%.

  19. 催化膜和催化膜反应器:整合的高效和环保催化过程%Catalytic Membranes and Catalytic Membrane Reactors: An Integrated Approach to Catalytic Process with a High Efficiency and a Low Environmental Impact

    Institute of Scientific and Technical Information of China (English)

    Enrico DRIOLI; Enrica FONTANANOVA; Marcella BONCHIO; Mauro CARRARO; Martino GARDAN; Gianfranco SCORRANO

    2008-01-01

    The design of new heterogeneous photooxygenation systems able to employ visible light, oxygen, mild temperatures, and solvent with a low environmental impact has been investigated. In particular, the heterogenization of decatungstate (W10O4-32), a polyoxometalate with photocatalytic activity in oxidation reactions, has been carried out in polymeric membranes of polyvinylidenefluoride. The polymeric catalytic membranes prepared by phase inversion technique have been successfully applied in the aerobic mineralization of phenol in water, which was used as an example of organic pollutant. In order to evaluate the effect of the polymeric environment on the overall catalyst behavior, we have also heterogenized the decatungstate (opportunely functionalized) in perfluorinated membrane made of Hyflon. The photocatalytic composite membranes are characterized by different and tuneable properties depending on the nature of the polymeric micro-environment, in which the catalyst is confined. Moreover, the selective separation function of the membrane results in enhanced performance in comparison with homogeneous reactions.

  20. OXIDATIVE COUPLING OF METHANE USING INORGANIC MEMBRANE REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Y.H. Ma; Dr. W.R. Moser; Dr. A.G. Dixon; Dr. A.M. Ramachandra; Dr. Y. Lu; C. Binkerd

    1998-04-01

    The objective of this research is to study the oxidative coupling of methane in catalytic inorganic membrane reactors. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and higher yields than in conventional non-porous, co-feed, fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for the formation of CO{sub x} products. Such gas phase reactions are a cause of decreased selectivity in the oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Membrane reactor technology also offers the potential for modifying the membranes both to improve catalytic properties as well as to regulate the rate of the permeation/diffusion of reactants through the membrane to minimize by-product generation. Other benefits also exist with membrane reactors, such as the mitigation of thermal hot-spots for highly exothermic reactions such as the oxidative coupling of methane. The application of catalytically active inorganic membranes has potential for drastically increasing the yield of reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity.

  1. Oxidative coupling of methane using inorganic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.H.; Moser, W.R.; Dixon, A.G. [Worcester Polytechnic Institute, MA (United States)] [and others

    1995-12-31

    The goal of this research is to improve the oxidative coupling of methane in a catalytic inorganic membrane reactor. A specific target is to achieve conversion of methane to C{sub 2} hydrocarbons at very high selectivity and relatively higher yields than in fixed bed reactors by controlling the oxygen supply through the membrane. A membrane reactor has the advantage of precisely controlling the rate of delivery of oxygen to the catalyst. This facility permits balancing the rate of oxidation and reduction of the catalyst. In addition, membrane reactors minimize the concentration of gas phase oxygen thus reducing non selective gas phase reactions, which are believed to be a main route for formation of CO{sub x} products. Such gas phase reactions are a cause for decreased selectivity in oxidative coupling of methane in conventional flow reactors. Membrane reactors could also produce higher product yields by providing better distribution of the reactant gases over the catalyst than the conventional plug flow reactors. Modeling work which aimed at predicting the observed experimental trends in porous membrane reactors was also undertaken in this research program.

  2. Scaling behavior of optimally structured catalytic microfluidic reactors

    DEFF Research Database (Denmark)

    Okkels, Fridolin; Bruus, Henrik

    2007-01-01

    In this study of catalytic microfluidic reactors we show that, when optimally structured, these reactors share underlying scaling properties. The scaling is predicted theoretically and verified numerically. Furthermore, we show how to increase the reaction rate significantly by distributing the...

  3. High temperature ceramic membrane reactors for coal liquid upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-01-01

    In this project we intend to study a novel process concept, i.e, the use of ceramic membranes reactors in upgrading of coal derived liquids. Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. They have, furthermore, the inherent capability for combining reaction and separation in a single step. Thus they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, as those typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sol-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  4. Microchannel Reactor System for Catalytic Hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Adeniyi Lawal; Woo Lee; Ron Besser; Donald Kientzler; Luke Achenie

    2010-12-22

    We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstrated on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.

  5. Study and Analysis on Naphtha Catalytic Reforming Reactor Simulation

    Institute of Scientific and Technical Information of China (English)

    Liang Ke min; Song Yongji; Pan Shiwei

    2004-01-01

    A naphtha catalytic reforming unit with four reactors connected in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to describe the naphtha catalytic reforming reaction characteristics based on idealizing the complex naphtha mixture to represent the paraffin, naphthene, and aromatic groups with individual compounds. The simulation results based on above models agree very well with actual operating data of process unit.

  6. Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes

    KAUST Repository

    Hong, Jongsup

    2013-10-01

    The catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.

  7. High temperature ceramic membrane reactors for coal liquid upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  8. Reactor process using metal oxide ceramic membranes

    Science.gov (United States)

    Anderson, M.A.

    1994-05-03

    A reaction vessel for use in photoelectrochemical reactions includes as its reactive surface a metal oxide porous ceramic membrane of a catalytic metal such as titanium. The reaction vessel includes a light source and a counter electrode. A provision for applying an electrical bias between the membrane and the counter electrode permits the Fermi levels of potential reaction to be favored so that certain reactions may be favored in the vessel. The electrical biasing is also useful for the cleaning of the catalytic membrane. Also disclosed is a method regenerating a porous metal oxide ceramic membrane used in a photoelectrochemical catalytic process by periodically removing the reactants and regenerating the membrane using a variety of chemical, thermal, and electrical techniques. 2 figures.

  9. Zeolite membranes and palladium membrane reactor for tritium extraction from the breeder blankets of ITER and DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Demange, D., E-mail: david.demange@kit.edu; Borisevich, O.; Gramlich, N.; Wagner, R.; Welte, S.

    2013-10-15

    Highlights: • We present a new concept to recover tritium from the helium in breeder blankets. • Zeolite membranes are fully tritium compatible and can pre-concentrate tritiated molecules. • PERMCAT catalytic membrane reactor recovers tritium to be reused in the fuel cycle. -- Abstract: While the tritium technology for the inner DT fuel cycle of fusion reactors shall be demonstrated in ITER, the tritium management in the breeder blanket remains very challenging. Most of the process options rely on ad(b)sorption/desorption cycles, using dedicated packed beds to handle separately the molecular and oxide forms of tritium. This approach seems satisfactory for ITER, but seems difficult to scale up to DEMO. The alternative use of a catalytic membrane reactor in combination with inorganic membranes would simplify and improve the overall tritium management. Zeolite membranes should enable in a single step the pre-concentration of all tritiated species. This tritium enriched stream could be afterwards processed using PERMCAT (catalytic Pd-based membrane reactor) to finally recover the tritium in its pure molecular form. This paper discusses at the conceptual level such approach. The latest experimental results on zeolite membrane and multi-tube PERMCAT reactor are presented. Next R and D activities for technical scale demonstrations and refined simulation tools are proposed to finally estimate the sizes of the components to be operated in ITER and DEMO.

  10. Studies on Nitrogen Oxides Removal Using Plasma Assisted Catalytic Reactor

    Institute of Scientific and Technical Information of China (English)

    V. Ravi; Young Sun Mok; B. S. Rajanikanth; Ho-Chul Kang

    2003-01-01

    An electric discharge plasma reactor combined with a catalytic reactor was studied for removing nitrogen oxides. To understand the combined process thoroughly, discharge plasma and catalytic process were separately studied first, and then the two processes were combined for the study. The plasma reactor was able to oxidize NO to NO2 well although the oxidation rate decreased with temperature. The plasma reactor alone did not reduce the NOx (NO+NO2)level effectively, but the increase in the ratio of NO2 to NO as a result of plasma discharge led to the enhancement of NOx removal efficiency even at lower temperatures over the catalyst surface (V2O5-WOa/TiO2). At a gas temperature of 100℃, the NOx removal efficiency obtained using the combined plasma catalytic process was 88% for an energy input of 36 eV/molecule or 30 J/1.

  11. A bimodal catalytic membrane having a hydrogen-permselective silica layer on a bimodal catalytic support: Preparation and application to the steam reforming of methane

    OpenAIRE

    Tsuru, Toshinori; Shintani, Hiroaki; Yoshioka, Tomohisa; Asaeda, Masashi

    2006-01-01

    The steam reforming of methane for hydrogen production was experimentally investigated using catalytic membrane reactors, consisting of a microporous silica top layer, for the selective permeation of hydrogen, and an α-alumina support layer, for catalytic reaction of the steam reforming of methane. An α-alumina support layer with a bimodal structure, which was proposed for the enhanced dispersion of Ni catalysts, was prepared by impregnating γ-Al2O3 inside α-Al2O3 microfiltration membranes (1...

  12. Hydrogen Production by Catalytic Partial Oxidation of Coke Oven Gas in BaCo0.7Fe0.3-xZrxO3-δ Ceramic Membrane Reactors

    Directory of Open Access Journals (Sweden)

    Yao Weilin

    2016-01-01

    Full Text Available The BaCo0.7Fe0.3-xZrxO3-δ (BCFZ, x = 0.04–0.12 mixed ionic–electronic conducting (MIEC membranes were synthesized with a sol–gel method and evaluated as potential membrane reactor materials for the partial oxidation of coke oven gas (COG. The effect of zirconium content on the phase structure, microstructure and performance of the BCFZ membrane under He or COG atmosphere were systemically investigated. The BaCo0.7Fe0.24Zr0.06O3-δ membrane exhibited the best oxygen permeability and good operation stability, which could be a potential candidate of the membrane materials for hydrogen production through the partial oxidation of COG.

  13. A hybrid process combining homogeneous catalytic ozonation and membrane distillation for wastewater treatment.

    Science.gov (United States)

    Zhang, Yong; Zhao, Peng; Li, Jie; Hou, Deyin; Wang, Jun; Liu, Huijuan

    2016-10-01

    A novel catalytic ozonation membrane reactor (COMR) coupling homogeneous catalytic ozonation and direct contact membrane distillation (DCMD) was developed for refractory saline organic pollutant treatment from wastewater. An ozonation process took place in the reactor to degrade organic pollutants, whilst the DCMD process was used to recover ionic catalysts and produce clean water. It was found that 98.6% total organic carbon (TOC) and almost 100% salt were removed and almost 100% metal ion catalyst was recovered. TOC in the permeate water was less than 16 mg/L after 5 h operation, which was considered satisfactory as the TOC in the potassium hydrogen phthalate (KHP) feed water was as high as 1000 mg/L. Meanwhile, the membrane distillation flux in the COMR process was 49.8% higher than that in DCMD process alone after 60 h operation. Further, scanning electron microscope images showed less amount and smaller size of contaminants on the membrane surface, which indicated the mitigation of membrane fouling. The tensile strength and FT-IR spectra tests did not reveal obvious changes for the polyvinylidene fluoride membrane after 60 h operation, which indicated the good durability. This novel COMR hybrid process exhibited promising application prospects for saline organic wastewater treatment. PMID:27372262

  14. Catalytic Hollow-Fiber Membranes Prepared Using Layer-by-Layer Adsorption of Polyelectrolytes and Metal Nanoparticles

    OpenAIRE

    Ouyang, Lu; Dotzauer, David M.; Hogg, Seth R.; Macanas, Jorge; Lahitte, Jean-Francois; Bruening, Merlin L.

    2010-01-01

    Immobilization of metal nanoparticles in hollow fiber membranes via alternating adsorption of polyelectrolytes and negatively charged Au nanoparticles yields catalytic reactors with high surface areas. SEM images show that this technique deposits a high density of unaggregated metal nanoparticles both on the surfaces and in the pores of the hollow fibers. Catalytic reduction of 4-nitrophenol with NaBH4, which can be easily monitored by UV-Vis spectrophotometry, demonstrates that the nanopar...

  15. Thin film porous membranes for catalytic sensors

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, R.C.; Boyle, T.J.; Gardner, T.J. [and others

    1997-06-01

    This paper reports on new and surprising experimental data for catalytic film gas sensing resistors coated with nanoporous sol-gel films to impart selectivity and durability to the sensor structure. This work is the result of attempts to build selectivity and reactivity to the surface of a sensor by modifying it with a series of sol-gel layers. The initial sol-gel SiO{sub 2} layer applied to the sensor surprisingly showed enhanced O{sub 2} interaction with H{sub 2} and reduced susceptibility to poisons such as H{sub 2}S.

  16. Flame assisted synthesis of catalytic ceramic membranes

    DEFF Research Database (Denmark)

    Johansen, Johnny; Mosleh, Majid; Johannessen, Tue;

    2004-01-01

    Membranes consisting of one or more metal oxides can be synthesized by flame pyrolysis. The general principle behind flame pyrolysis is the decomposition and oxidation of evaporated organo-metallic precursors in a flame, thereby forming metal oxide monomers. Because of the extreme supersaturation...

  17. Staged membrane oxidation reactor system

    Science.gov (United States)

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2012-09-11

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  18. High Flux Metallic Membranes for Hydrogen Recovery and Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Buxbaum, Robert

    2010-06-30

    We made and tested over 250 new alloys for use as lower cost, higher flux hydrogen extraction membrane materials. Most of these were intermetallic, or contained significant intermetallic content, particularly based on B2 alloy compositions with at least one refractory component; B2 intermetallics resemble BCC alloys, in structure, but the atoms have relatively fixed positions, with one atom at the corners of the cube, the other at the centers. The target materals we were looking for would contain little or no expensive elements, no strongly toxic or radioactive elements, would have high flux to hydrogen, while being fabricable, brazable, and relatively immune to hydrogen embrittlement and corrosion in operation. The best combination of properties of the membrane materials we developed was, in my opinion, a Pd-coated membrane consisting of V -9 atomic % Pd. This material was relatively cheap, had 5 times the flux of Pd under the same pressure differential, was reasonably easy to fabricate and braze, and not bad in terms of embrittlement. Based on all these factors we project, about 1/3 the cost of Pd, on an area basis for a membrane designed to last 20 years, or 1/15 the cost on a flux basis. Alternatives to this membrane replaced significant fractions of the Pd with Ni and or Co. The cost for these membranes was lower, but so was the flux. We produced successful brazed products from the membrane materials, and made them into flat sheets. We tested, unsuccessfully, several means of fabricating thematerials into tubes, and eventually built a membrane reactor using a new, flat-plate design: a disc and doughnut arrangement, a design that seems well- suited to clean hydrogen production from coal. The membranes and reactor were tested successfully at Western Research. A larger equipment company (Chart Industries) produced similar results using a different flat-plate reactor design. Cost projections of the membrane are shown to be attractive.

  19. Methane coupling by membrane reactor. Quarterly technical progress report, September 25, 1995--December 24, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-15

    The performance of the third type of catalytic membrane reactor configuration, with catalyst deposited in the membrane and no catalyst or inert materials in the tube side, was evaluated. The C{sub 2} selectivity obtained was about 10% due to the gas phase reaction in the empty tube side of the reactor. The membrane reactor with an oxygen-permeable dense membrane has been built. The use of a dense membrane will eliminate the loss of hydrocarbon from the tube side to the shell side, as observed in the Vycor glass membrane reactor. Also, air can be used as the oxygen source without contaminating the product. La/MgO was synthesized and will be used as the catalyst for the dense membrane reactor. This catalyst was reported in the literature to show significant improvement of C{sub 2} selectivity and yield for oxidative coupling of methane in a packed-bed reactor by using the operation mode of staged-feed of oxygen. A reactor mode for methane oxidative coupling in reactors with both distributed oxygen feed and C{sub 2} product removal was developed based on the general model of cross-flow reactors reported in the last quarterly report. A distributed oxygen feed could give rise to much higher C{sub 2} yield than the co-feed reactor as long as the space time is long enough. In the case of a two-membrane reactor, where oxygen is supplied by one membrane and products are removed through the other membrane, a high separation factor of C{sub 2} product to methane for the product-removal membrane is critical to achieve high C{sub 2} yield.

  20. Alcohols and bio-alcohols steam and autothermal reforming in a membrane reactor

    OpenAIRE

    Llorca Piqué, Jordi; Hedayati, Ali

    2014-01-01

    Considerable work has been reported concerning catalytic steam reforming, partial oxidation and oxidative steam reforming (autothermal reforming) aimed at hydrogen generation from alcohol-water mixtures. They include methanol, ethanol, glycerol, and the exploitiation of renewable bio-alcohols. The use of catalytic membrane reactors, with simultaneous generation and separation of hydrogen, appears as an attractive approach to optimize downstream separation and to substantially simplify on-site...

  1. Membrane supported biofilm reactors, a litterature review

    OpenAIRE

    Hem, L.; Catsivilas, F.

    1996-01-01

    Membrane supported biofilm reactor is a new technology for biological degredation of pollutants. The utilisation of mebranes as a support for biofilm growth may occure in treatment of several types of wastewater, as removing of nitrogen from municipal wastewater or removing of spesific pollutants from industrial wastewaters. The advantages of such a technology are a better aeration control process than most other biofilm reactors, and the possibility of bubble-free aeration in the removal of ...

  2. Chemically-Modified Cellulose Paper as a Microstructured Catalytic Reactor

    Directory of Open Access Journals (Sweden)

    Hirotaka Koga

    2015-01-01

    Full Text Available We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry.

  3. Novel monolithic electrochemically promoted catalytic reactor for environmentally important reactions

    Energy Technology Data Exchange (ETDEWEB)

    Balomenou, S.; Tsiplakides, D.; Katsaounis, A.; Vayenas, C.G. [Department of Chemical Engineering, University of Patras, Caratheodory 1 St., GR-26504 Patras (Greece); Thiemann-Handler, S.; Cramer, B. [Robert Bosch GmbH Stuttgart, FV/FLC, PF 10 60 50, 70 049 Stuttgart (Germany); Foti, G.; Comninellis, Ch. [Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland)

    2004-09-28

    A novel dismantlable monolithic-type electrochemically promoted catalytic reactor and 'smart' sensor-catalytic reactor unit has been constructed and tested for hydrocarbon oxidation and NO reduction by C{sub 2}H{sub 4} in presence of O{sub 2}. In this novel reactor, thin (=20-40nm) porous catalyst films made of two different materials are sputter-deposited on opposing surfaces of thin (0.25mm) parallel solid electrolyte plates supported in the grooves of a ceramic monolithic holder and serve as sensor or electropromoted catalyst elements. Using Rh/YSZ/Pt-type catalyst elements, the 22-plate reactor operated with apparent Faradaic efficiency exceeding 25 achieving near complete fuel and NO conversion at 300C in presence of up to 1.1% O{sub 2} in the feed at gas flow rates exceeding 1.3l/min. The metal catalyst dispersion was of the order of at least 15%. The novel reactor design requires only two external electrical connections and permits easy practical utilization of the electrochemical promotion of catalysis.

  4. NO2 Catalytic Decomposition - from Laboratory Experiment to Industry Reactor

    Czech Academy of Sciences Publication Activity Database

    Obalová, L.; Jirátová, Květa; Kovanda, F.

    Kraków : Wydawnictwo Uniwersitetu Jagiellonskiego, 2011, s. 97. ISBN 978-83-233-3249-7. [International Symposium on Nitrogen Oxides Emission Abatement NOEA 2011. Zakopane (PL), 04.09.2011-07.09.2011] R&D Projects: GA TA ČR TA01020336 Institutional research plan: CEZ:AV0Z40720504 Keywords : catalytic decomposition of CO2 * reactor * kinetic data Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  5. Catalytic hydrogenation reactors for the fine chemicals industries. Their design and operation.

    OpenAIRE

    Westerterp, K.R.; Molga, E.J.; Gelder, van, M.

    1997-01-01

    The design and operation of reactors for catalytic, hydrogenation in the fine chemical industries are discussed. The requirements for a good multiproduct catalytic hydrogenation unit as well as the choice of the reactor type are considered. Packed bed bubble column reactors operated without hydrogen recycle are recommended as the best choice to obtain a flexible reactor with good selectivities. The results of an experimental study of the catalytic hydrogenation of 2,4-dinitrotoluene in a mini...

  6. Electrochemical Membrane Reactors for Sustainable Chlorine Recycling

    Directory of Open Access Journals (Sweden)

    Ulrich Kunz

    2012-07-01

    Full Text Available Polymer electrolyte membranes have found broad application in a number of processes, being fuel cells, due to energy concerns, the main focus of the scientific community worldwide. Relatively little attention has been paid to the use of these materials in electrochemical production and separation processes. In this review, we put emphasis upon the application of Nafion membranes in electrochemical membrane reactors for chlorine recycling. The performance of such electrochemical reactors can be influenced by a number of factors including the properties of the membrane, which play an important role in reactor optimization. This review discusses the role of Nafion as a membrane, as well as its importance in the catalyst layer for the formation of the so-called three-phase boundary. The influence of an equilibrated medium on the Nafion proton conductivity and Cl crossover, as well as the influence of the catalyst ink dispersion medium on the Nafion/catalyst self-assembly and its importance for the formation of an ionic conducting network in the catalyst layer are summarized.

  7. Membrane reactors for continuous coenzyme regeneration

    Science.gov (United States)

    Wandrey, C.; Wichmann, R.

    1982-12-01

    The importance of continuous coenzyme regeneration is discussed with respect to chemical reaction engineering. The benefit of coenzymes covalently bound to water soluble polymers is especially stressed. The performance of membrane reactors for coenzyme regeneration is discussed in comparison with other reactor concepts. The coenzyme dependent production of L-amino acids from the corresponding alpha-keto acids is used to illustrate how precise turnover numbers as a function of enzyme/coenzyme ratio, initial substrate concentration, and conversion are obtained. Thus, it becomes possible to develop a concept for optimal operating points with respect to enzyme, coenzyme, and substrate costs per unit weight of product.

  8. Catalysts with Cerium in a Membrane Reactor for the Removal of Formaldehyde Pollutant from Water Effluents

    Directory of Open Access Journals (Sweden)

    Mirella Gutiérrez-Arzaluz

    2016-05-01

    Full Text Available We report the synthesis of cerium oxide, cobalt oxide, mixed cerium, and cobalt oxides and a Ce–Co/Al2O3 membrane, which are employed as catalysts for the catalytic wet oxidation (CWO reaction process and the removal of formaldehyde from industrial effluents. Formaldehyde is present in numerous waste streams from the chemical industry in a concentration low enough to make its recovery not economically justified but high enough to create an environmental hazard. Common biological degradation methods do not work for formaldehyde, a highly toxic but refractory, low biodegradability substance. The CWO reaction is a recent, promising alternative that also permits much lower temperature and pressure conditions than other oxidation processes, resulting in economic benefits. The CWO reaction employing Ce- and Co-containing catalysts was carried out inside a slurry batch reactor and a membrane reactor. Experimental results are reported. Next, a mixed Ce–Co oxide film was supported on an γ-alumina membrane used in a catalytic membrane reactor to compare formaldehyde removal between both types of systems. Catalytic materials with cerium and with a relatively large amount of cerium favored the transformation of formaldehyde. Cerium was present as cerianite in the catalytic materials, as indicated by X-ray diffraction patterns.

  9. Catalysts with Cerium in a Membrane Reactor for the Removal of Formaldehyde Pollutant from Water Effluents.

    Science.gov (United States)

    Gutiérrez-Arzaluz, Mirella; Noreña-Franco, Luis; Ángel-Cuevas, Saúl; Mugica-Álvarez, Violeta; Torres-Rodríguez, Miguel

    2016-01-01

    We report the synthesis of cerium oxide, cobalt oxide, mixed cerium, and cobalt oxides and a Ce-Co/Al₂O₃ membrane, which are employed as catalysts for the catalytic wet oxidation (CWO) reaction process and the removal of formaldehyde from industrial effluents. Formaldehyde is present in numerous waste streams from the chemical industry in a concentration low enough to make its recovery not economically justified but high enough to create an environmental hazard. Common biological degradation methods do not work for formaldehyde, a highly toxic but refractory, low biodegradability substance. The CWO reaction is a recent, promising alternative that also permits much lower temperature and pressure conditions than other oxidation processes, resulting in economic benefits. The CWO reaction employing Ce- and Co-containing catalysts was carried out inside a slurry batch reactor and a membrane reactor. Experimental results are reported. Next, a mixed Ce-Co oxide film was supported on an γ-alumina membrane used in a catalytic membrane reactor to compare formaldehyde removal between both types of systems. Catalytic materials with cerium and with a relatively large amount of cerium favored the transformation of formaldehyde. Cerium was present as cerianite in the catalytic materials, as indicated by X-ray diffraction patterns. PMID:27231888

  10. Catalytic reactor for promoting a chemical reaction on a fluid passing therethrough

    Science.gov (United States)

    Roychoudhury, Subir (Inventor); Pfefferle, William C. (Inventor)

    2001-01-01

    A catalytic reactor with an auxiliary heating structure for raising the temperature of a fluid passing therethrough whereby the catalytic reaction is promoted. The invention is a apparatus employing multiple electrical heating elements electrically isolated from one another by insulators that are an integral part of the flow path. The invention provides step heating of a fluid as the fluid passes through the reactor.

  11. Experimental studies on catalytic hydrogen recombiners for light water reactors

    International Nuclear Information System (INIS)

    In the course of core melt accidents in nuclear power plants a large amount of hydrogen can be produced and form an explosive or even detonative gas mixture with aerial oxygen in the reactor building. In the containment atmosphere of pressurized water reactors hydrogen combines a phlogistically with the oxygen present to form water vapor even at room temperature. In the past, experimental work conducted at various facilities has contributed little or nothing to an understanding of the operating principles of catalytic recombiners. Hence, the purpose of the present study was to conduct detailed investigations on a section of a recombiner essentially in order to deepen the understanding of reaction kinetics and heat transport processes. The results of the experiments presented in this dissertation form a large data base of measurements which provides an insight into the processes taking place in recombiners. The reaction-kinetic interpretation of the measured data confirms and deepens the diffusion theory - proposed in an earlier study. Thus it is now possible to validate detailed numeric models representing the processes in recombiners. Consequently the present study serves to broaden and corroborate competence in this significant area of reactor technology. In addition, the empirical knowledge thus gained may be used for a critical reassessment of previous numeric model calculations. (orig.)

  12. CFD SIMULATION OF FLUID CATALYTIC CRACKING IN DOWNER REACTORS

    Institute of Scientific and Technical Information of China (English)

    Fei; Liu; Fei; Wei; Yu; Zheng; Yong; Jin

    2006-01-01

    A mathematical model has been developed for the simulation of gas-particle flow and fluid catalytic cracking in downer reactors. The model takes into account both cracking reaction and flow behavior through a four-lump reaction kinetics coupled with two-phase turbulent flow. The prediction results show that the relatively large change of gas velocity affects directly the axial distribution of solids velocity and void fraction, which significantly interact with the chemical reaction. Furthermore, model simulations are carried out to determine the effects of such parameters on product yields, as bed diameter, reaction temperature and the ratio of catalyst to oil, which are helpful for optimizing the yields of desired products. The model equations are coded and solved on CFX4.4.

  13. Upgrading of Gasification Gases by means of a Catalytic Membrane Reactor: WGS Catalysts and Inorganic Palladium Membranes HENRECA Project (ENE2004-07758-CO2-01). Final Report; Estudios de Enriquecimiento en H{sub 2} de Gases de Gasificacion mediante el Uso Reactor Catalitico de Membranas: Catalizadores WGS y Membranas Inorganicas de Paladio. Informe Final Proyecto HENRECA (ENE2004-07758-C02-01)

    Energy Technology Data Exchange (ETDEWEB)

    Maranon Bujan, M.; Sanchez Hervas, J. M.; Barreiro Carou, M. del

    2008-07-01

    The combination of a CO catalytic converter with a highly hydrogen selective membrane out stands as a very promising technology for the upgrading of biomass gasification gases. The advantages of this combined system over the traditional two stages WGS technology has been investigated within the HENRECA project, financed under the Spanish PN 2004-2007 of the Ministry of Science and Technology. This project started in September 2004 and had a duration of three years. The Division of Combustion and Gasification of CIEMAT participates in this project in three main activities: the study of the catalytic activity of WGS catalysts synthesised by the other partner of the project (University Rey Juan Carlos), the design of the reaction-separation system and the design and construction of a bench-scale pilot plant where the performance of the membranes prepared by URJC and the catalytic membrane system were investigated. This report describes the activities carried out within the project and the main results obtained. (Author) 14 ref.

  14. Catalytic poly(vinyl alcohol) functionalized membranes obtained by gamma irradiation

    Science.gov (United States)

    Casimiro, M. H.; Silva, A. G.; Pinto, J. V.; Ramos, A. M.; Vital, J.; Ferreira, L. M.

    2012-09-01

    Polymeric catalytic membranes bearing sulfonic acid functions have been prepared by mutual gamma irradiation at a 60Co source, of poly(vinyl alcohol) (PVA) membranes and methanesulfonic acid. The effect of various synthesis conditions on membranes' physical-chemical properties and catalytic activity in the esterification reaction between acetic acid and isoamyl alcohol to obtain isoamyl acetate (banana flavor), was evaluated. The membranes were characterized by ATR-FTIR, TPP, AFM and SEM. Water contact angle determinations were also performed. The obtained results showed that within the range of conditions studied the increase in sulfonic acid groups' content is accompanied by an enhancement in the membranes catalytic activity, while the increase in absorbed dose leads to a decrease in catalytic activity.

  15. Highly Selective H2 Separation Zeolite Membranes for Coal Gasification Membrane Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mei Hong; Richard D. Noble; John L. Falconer

    2006-09-24

    Zeolite membranes are thermally, chemically, and mechanically stable. They also have tunable molecular sieving and catalytic ability. These unique properties make zeolite membrane an excellent candidate for use in catalytic membrane reactor applications related to coal conversion and gasification, which need high temperature and high pressure range separation in chemically challenging environment where existing technologies are inefficient or unable to operate. Small pore, good quality, and thin zeolite membranes are needed for highly selective H{sub 2} separation from other light gases (CO{sub 2}, CH{sub 4}, CO). However, zeolite membranes have not been successful for H{sub 2} separation from light gases because the zeolite pores are either too big or the membranes have a large number of defects. The objective of this study is to develop zeolite membranes that are more suitable for H{sub 2} separation. In an effort to tune the size of zeolite pores and/or to decrease the number of defects, medium-pore zeolite B-ZSM-5 (MFI) membranes were synthesized and silylated. Silylation on B-ZSM-5 crystals reduced MFI-zeolite pore volume, but had little effect on CO{sub 2} and CH{sub 4} adsorption. Silylation on B-ZSM-5 membranes increased H{sub 2} selectivity both in single component and in mixtures with CO{sub 2}CO{sub 2}, CH{sub 4}, or N2. Single gas and binary mixtures of H{sub 2}/CO{sub 2} and H{sub 2}/CH{sub 4} were separated through silylated B-ZSM-5 membranes at feed pressures up to 1.7 MPa and temperatures up to 773 K. For one BZSM-5 membrane after silylation, the H2/CO{sub 2} separation selectivity at 473 K increased from 1.4 to 37, whereas the H{sub 2}/CH{sub 4} separation selectivity increased from 1.6 to 33. Hydrogen permeance through a silylated B-ZSM-5 membrane was activated, but the CO{sub 2} and CH4 permeances decreased slightly with temperature in both single gas and in mixtures. Therefore, the H{sub 2} permeance and H{sub 2}/CO{sub 2} and H{sup 2} /CH{sub 4

  16. Catalytic probe measurements in a large scale CCP reactor

    Science.gov (United States)

    Lazovic, Sasa; Spasic, Kosta; Puac, Nevena; Malovic, Gordana; Cvelbar, Uros; Mozetic, Miran; Petrovic, Zoran

    2011-10-01

    A large scale cylindrical asymmetric CCP reactor is suitable for efficient treatment of materials like polymers, textile and plant seeds. Plasma is homogeneous and stable from transitions to streamers. For many biomedical and textile treatment effects, role of extremely reactive atomic oxygen species is very important. For instance, the formation of new oxygen-containing groups on the fiber surface is suggested to be due to the presence of extremely reactive atomic oxygen species in discharge during the air plasma processing and/or post-plasma chemical reactions when the activated fiber surface reacts with environmental species. Measurements were performed using nickel catalytic probe placed side-on to the powered electrode. Concentrations of neutral oxygen atoms were measured for a range of powers given by the RF generator, at several different distances from the powered electrode, in air at two different pressures. Oxygen atom concentrations coming to the surface of the samples can be controlled by adjusting the pressure, distance from the powered electrode and RF power. A large scale cylindrical asymmetric CCP reactor is suitable for efficient treatment of materials like polymers, textile and plant seeds. Plasma is homogeneous and stable from transitions to streamers. For many biomedical and textile treatment effects, role of extremely reactive atomic oxygen species is very important. For instance, the formation of new oxygen-containing groups on the fiber surface is suggested to be due to the presence of extremely reactive atomic oxygen species in discharge during the air plasma processing and/or post-plasma chemical reactions when the activated fiber surface reacts with environmental species. Measurements were performed using nickel catalytic probe placed side-on to the powered electrode. Concentrations of neutral oxygen atoms were measured for a range of powers given by the RF generator, at several different distances from the powered electrode, in air at two

  17. Simultaneous hydrogen and methanol enhancement through a recuperative two-zone thermally coupled membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, M. [Shiraz University, Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz (Iran, Islamic Republic of); Rahimpour, M.R. [Shiraz University, Department of Chemical Engineering, School of Chemical and Petroleum Engineering, Shiraz (Iran, Islamic Republic of); Shiraz University, Gas Center of Excellence, Shiraz (Iran, Islamic Republic of)

    2012-12-15

    In this work, a novel configuration with two zones instead of one single integrated catalytic bed in thermally coupled membrane reactor (TCMR) is developed for enhancement of simultaneous methanol, benzene and hydrogen production. In the first zone, the synthesis gas is partly converted to methanol in a conventional water-cooled reactor. In the second zone, the reaction heat is used to drive the endothermic dehydrogenation of cyclohexane reaction in second tube side. Selective permeation of hydrogen through the Pd-Ag membrane is achieved by co-current flow of sweep gas through the permeation side. The length of first zone is chosen equal 35 cm which the optimization procedure obtained this value. The proposed model has been used to compare the performance of a two-zone thermally coupled membrane reactor (TZTCMR) with conventional reactor (CR) and TCMR at identical process conditions. The simulation results represent 13.14 % enhancement in the production of pure hydrogen in comparison with TCMR. Moreover, 2.96 and 4.54 % enhancement of the methanol productivity relative to TCMR and CR were seen, respectively, owing to utilizing higher temperature at the first parts of reactor for higher reaction rate and then reducing temperature gradually at the end parts of reactor for increasing thermodynamics equilibrium conversion in TZTCMR. (orig.)

  18. Hydrogen Production from Ammonia Using a Plasma Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Shinji Kambara

    2016-06-01

    Full Text Available In this study, an efficient method for using pulsed plasma to produce hydrogen from ammonia was developed. An original pulsed plasma reactor with a hydrogen separation membrane was developed for efficient hydrogen production, and its hydrogen production performance was investigated. Hydrogen production in the plasma was affected by the applied voltage and flow rate of ammonia gas. The maximum hydrogen production flow rate of a typical plasma reactor was 8.7 L/h, whereas that of the plasma membrane reactor was 21.0 L/h. We found that ammonia recombination reactions in the plasma controlled hydrogen production in the plasma reactor. In the plasma membrane reactor, a significant increase in hydrogen production was obtained because ammonia recombination reactions were inhibited by the permeation of hydrogen radicals generated in the plasma through a palladium alloy membrane. The energy efficiency was 4.42 mol-H2/kWh depending on the discharge power.

  19. Novel, Regenerable Microlith Catalytic Reactor for CO2 Reduction via Bosch Process Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision Combustion, Inc. (PCI) proposes to develop an extremely compact, lightweight and regenerable MicrolithREG catalytic CO2 reduction reactor, capable of...

  20. Challege and Opportunities of Membrane Bioelctrochemical Reactors for Wastewater Treatment

    OpenAIRE

    Li, Jian

    2016-01-01

    Microbial fuel cells (MFCs) are potentially advantageous as an energy-efficient approach for wastewater treatment. Integrating membrane filtration with MFCs could be a viable option for advanced wastewater treatment with a low energy input. Such an integration is termed as membrane bioelectrochemical reactors (MBERs). Comparing to the conventional membrane bioreactors or anaerobic membrane bioreactors, MBER could be a competitive technology, due to the its advantages on energy consumption and...

  1. High temperature ceramic membrane reactors for coal liquid upgrading. Quarter report No. 9, September 21, 1991--December 20, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-07-01

    In this project we intend to study a novel process concept, i.e, the use of ceramic membranes reactors in upgrading of coal derived liquids. Membrane reactors have been used in a number of catalytic reaction processes in order to overcome the limitations on conversion imposed by thermodynamic equilibrium. They have, furthermore, the inherent capability for combining reaction and separation in a single step. Thus they offer promise for improving and optimizing yield, selectivity and performance of processes involving complex liquids, as those typically found in coal liquid upgrading. Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sol-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  2. Highly Selective H2 Separation Zeolite Membranes for Coal Gasification Membrane Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mei Hong; Richard Noble; John Falconer

    2007-09-24

    Zeolite membranes are thermally, chemically, and mechanically stable. They also have tunable molecular sieving and catalytic ability. These unique properties make zeolite membrane an excellent candidate for use in catalytic membrane reactor applications related to coal conversion and gasification, which need high temperature and high pressure range separation in chemically challenging environment where existing technologies are inefficient or unable to operate. Small pore, good quality, and thin zeolite membranes are needed for highly selective H2 separation from other light gases (CO2, CH4, CO). However, current zeolite membranes have either too big zeolite pores or a large number of defects and have not been successful for H2 separation from light gases. The objective of this study is to develop zeolite membranes that are more suitable for H2 separation. In an effort to tune the size of zeolite pores and/or to decrease the number of defects, medium-pore zeolite B-ZSM-5 (MFI) membranes were synthesized and silylated. Silylation on B-ZSM-5 crystals reduced MFI-zeolite pore volume, but had little effect on CO2 and CH4 adsorption. Silylation on B-ZSM-5 membranes increased H2 selectivity both in single component and in mixtures with CO2, CH4, or N2. Single gas and binary mixtures of H2/CO2 and H2/CH4 were permeated through silylated B-ZSM-5 membranes at feed pressures up to 1.7 MPa and temperatures up to 773 K. For one B-ZSM-5 membrane after silylation, the H2/CO2 separation selectivity at 473 K increased from 1.4 to 37, whereas the H2/CH4 separation selectivity increased from 1.6 to 33. Hydrogen permeance through a silylated BZSM-5 membrane was activated with activation energy of {approx}10 kJ/mol, but the CO2 and CH4 permeances decreased slightly with temperature in both single gas and in mixtures. Therefore, the H2 permeance and H2/CO2 and H2/CH4 separation selectivities increased with temperature. At 673 K, the H2 permeance was 1.0x10-7 mol{center_dot}m-2{center

  3. SEPARATION OF HYDROGEN AND CARBON DIOXIDE USING A NOVEL MEMBRANE REACTOR IN ADVANCED FOSSIL ENERGY CONVERSION PROCESS; F

    International Nuclear Information System (INIS)

    Inorganic membrane reactors offer the possibility of combining reaction and separation in a single operation at high temperatures to overcome the equilibrium limitations experienced in conventional reactor configurations. Such attractive features can be advantageously utilized in a number of potential commercial opportunities, which include dehydrogenation, hydrogenation, oxidative dehydrogenation, oxidation and catalytic decomposition reactions. However, to be cost effective, significant technological advances and improvements will be required to solve several key issues which include: (a) permselective thin solid film, (b) thermal, chemical and mechanical stability of the film at high temperatures, and (c) reactor engineering and module development in relation to the development of effective seals at high temperature and high pressure. In this project, we are working on the development and application of palladium and palladium-silver alloy thin-film composite membranes in membrane reactor-separator configuration for simultaneous production and separation of hydrogen and carbon dioxide at high temperature. From our research on Pd-composite membrane, we have demonstrated that the new membrane has significantly higher hydrogen flux with very high perm-selectivity than any of the membranes commercially available. The steam reforming of methane by equilibrium shift in Pd-composite membrane reactor is being studied to demonstrate the potential application this new development. To have better understanding of the membrane reactor, during this reporting period, we developed a two-dimensional pseudo-homogeneous reactor model for steam reforming of methane by equilibrium shift in a tubular membrane reactor. In numerical solution of the reactor model equations, numerical difficulties were encountered and we seeking alternative solution techniques to overcome the problem

  4. Membrane separation technologies: their application to the fusion reactor fuel cycle

    International Nuclear Information System (INIS)

    The future fusion reactor fuel will be a mixture of deuterium and tritium. Deuterium is produced using traditional separation technology. Tritium, on the contrary, must be produced by means of a nuclear reaction between neutrons and lithium atoms within the reactor breeder which could be a lithiated ceramic material or a liquid metal containing lithium. The tritium produced in the breeder needs a proper extraction process to reach the required purity level. A conceptual modified version of the tritium recovery plant for a solid ceramic breeder, working with two membranes reaction/separation units, is studied in this work. The first considered membrane unit is a catalytic ceramic membrane reactor to remove, via oxidation, the hydrogen isotopes from the purge gas (He); the second is a Pd/Ag membrane permeator to separate the hydrogen isotopes from the water shift reactor gaseous products. The modelling and the mass balances have been obtained either on the basis of data in the literature or on experimental results. (orig.)

  5. The Stirred Tank Reactor Polymer Electrolyte Membrane Fuel Cell

    OpenAIRE

    Benziger, Jay; Chia, E.; Karnas, E.; Moxley, J.; Teuscher, C.; Kevrekidis, I. G.

    2003-01-01

    The design and operation of a differential Polymer Electrolyte Membrane (PEM) fuel cell is described. The fuel cell design is based on coupled Stirred Tank Reactors (STR); the gas phase in each reactor compartment was well mixed. The characteristic times for reactant flow, gas phase diffusion and reaction were chosen so that the gas compositions at both the anode and cathode are uniform. The STR PEM fuel cell is one-dimensional; the only spatial gradients are transverse to the membrane. The S...

  6. LIPASE IMMOBILIZED MEMBRANE REACTOR APPLIED TO BABASSU OIL HYDROLYSIS

    Directory of Open Access Journals (Sweden)

    Merçon F.

    1997-01-01

    Full Text Available This work deals with enzymatic hydrolysis of babassu oil by immobilized lipase in membrane reactors of two types: a flat plate nylon membrane and a hollow fiber polyetherimide membrane on which surface commercial lipases were immobilized by adsorption. Experiments conducted in the hollow fiber reactor showed that during the immobilization step enzyme adsorption followed a sigmoid model, with a maximum adsorption equilibrium time of 30 minutes. Concerning the hydrodynamics of the liquid phases, the results indicate that main diffusional limitations occurred in the organic phase. The amount of protein immobilized and the maximum productivity were, respectively, 1.97 g/m2 and 44 m molH+/m2.s for the hollow fiber and 1.2 g/m2 and 56 m molH+/m2.s for the flat and plate membrane. Both reactors were able to perform the hydrolysis reaction, while maintaining absolute separation of the two phases by the membrane

  7. High-temperature membrane reactors : potential and problems

    NARCIS (Netherlands)

    Saracco, G.; Neomagus, H.W.J.P.; Versteeg, G.F.; Swaaij, W.P.M. van

    1999-01-01

    The most recent literature in the field of membrane reactors is reviewed, four years after an analogous effort of ours, describing shortly the potentials of these reactors, which now seem to be well established, and focusing mostly on problems towards practical exploitation. Since then, progress has

  8. Fouling-induced enzyme immobilization for membrane reactors

    DEFF Research Database (Denmark)

    Luo, Jianquan; Meyer, Anne S.; Jonsson, Gunnar Eigil;

    2013-01-01

    A simple enzyme immobilization method accomplished by promoting membrane fouling formation is proposed. The immobilization method is based on adsorption and entrapment of the enzymes in/on the membrane. To evaluate the concept, two membrane orientations, skin layer facing feed (normal mode) and...... the reverse mode allowed for higher enzyme loading and stability, and irreversible fouling (i.e. pore blocking) developed more readily in the support structure than in the skin layer. Compared with an enzymatic membrane reactor (EMR) with free enzymes, the novel EMR with enzymes immobilized in...... membrane support improved the enzyme reusability (especially for ADH), and reduced the product inhibition (especially for GDH). © 2013 Elsevier Ltd....

  9. Thermodynamic control approach and modeling of three phase catalytic continuous and discontinuous reactors

    OpenAIRE

    Bahroun, Sami

    2010-01-01

    The goal of this thesis is the modeling and thermodynamic based control of three-phase catalytic reactor working in continuous or discontinuous modes. These types of reactors are highly nonlinear, multivariable and exothermal processes. We use the concepts of irreversible thermodynamics for the synthesis of stabilizing control laws for these two types of chemical reactors. Indeed, the strict concavity of the entropy function has allowed us to define a storage function used as a candidate Lyap...

  10. Alkylation of Benzene with Propylene in a Flow-Through Membrane Reactor and Fixed-Bed Reactor: Preliminary Results

    Directory of Open Access Journals (Sweden)

    Sibele Pergher

    2012-05-01

    Full Text Available Benzene alkylation with propylene was studied in the gas phase using a catalytic membrane reactor and a fixed-bed reactor in the temperature range of 200–300 °C and with a weight hourly space velocity (WHSV of 51 h−1. β-zeolite was prepared by hydrothermal synthesis using silica, aluminum metal and TEAOH as precursors. The membrane’s XRD patterns showed good crystallinity for the β-zeolite film, while scanning electron microscopy SEM results indicated that its random polycrystalline film was approximately 1 μm thick. The powders’ specific area was determined to be 400 m2×g−1 by N2 adsorption/desorption, and the TPD results indicated an overall acidity of 3.4 mmol NH3×g−1. Relative to the powdered catalyst, the catalytic membrane showed good activity and product selectivity for cumene.

  11. Design of Pd-based membrane reactor for gas detritiation

    International Nuclear Information System (INIS)

    The development of a Pd-based membrane reactor to be applied in processes for tritium removal from various gaseous streams of tokamak systems has been carried out. In particular, the membrane reactor has been designed for decontaminating soft housekeeping wastes of JET. This membrane reactor consists of Pd-Ag permeator tube fixed in a finger-like mode into a stainless steel shell. The feed stream (gases to be detritiated) is fed inside the membrane lumen where the isotopic exchange takes place on to a catalyst bed while pure hydrogen (protium) is sent in countercurrent mode in the shell side. The feed stream consists of 200 Ncm3 min-1 of helium with 10% of tritiated water (tritium content 1.11 x 108 Bq h-1). The membrane reactor design has been based on a simplified calculation model which takes into consideration the very low tritium content of the gas to be processed and the complete oxidation of the tritiated species in the feed stream. The model considers a tubular Pd-Ag membrane divided into finite elements where the mass balances are performed according to both the thermodynamic equilibrium reactions and permeation rates through the membrane of the hydrogen isotopes. The reactor model has permitted to verify that a Pd-Ag commercial tube of diameter 10 mm, length 500 mm and wall thickness 0.150 mm is capable to attain a decontamination factor larger than 10. A new mechanical design of the Pd membrane reactor has been also developed: especially, harmful mechanical stresses of the long permeator tube consequent to the hydrogenation and thermal cycling has been avoided. Furthermore, an innovative effective heating system of the membrane has been also applied.

  12. Catalytic hollow fiber membranes prepared using layer-by-layer adsorption of polyelectrolytes and metal nanoparticles

    OpenAIRE

    OUYANG, LU; Dotzauer, David M.; Hogg, Seth R.; Macanas, Jorge; Lahitte, Jean-Francois; Bruening, Merlin L.

    2010-01-01

    Immobilization of metalnanoparticles in hollowfibermembranes via alternating adsorption of polyelectrolytes and negatively charged Au nanoparticles yields catalytic reactors with high surface areas. SEM images show that this technique deposits a high density of unaggregated metalnanoparticles both on the surfaces and in the pores of the hollowfibers. Catalytic reduction of 4-nitrophenol with NaBH4, which can be easily monitored by UV–vis spectrophotometry, demonstrates that the nanoparticles ...

  13. Recovery of hydrogen from impurities using a palladium membrane reactor

    International Nuclear Information System (INIS)

    One of the important steps in processing the exhaust from a fusion reactor is recovering tritium which is incorporated into molecules such as water and methane. One device which may prove to be very effective for this purpose is a palladium membrane reactor. This is a reactor which incorporates a Pd/Ag membrane in the reactor geometry. Reactions such as water gas shift, steam reforming and methane cracking can be carried out over the reactor catalyst, and the product hydrogen can be simultaneously removed from the reacting mixture. Because product is removed, greater than usual conversions can be obtained. In addition ultrapure hydrogen is produced, eliminating the need for an additional processing step. A palladium membrane reactor has been built and tested with three different catalysts. Initial results with a Ni-based catalyst show that it is very effective at promoting all three reactions listed above. Under the proper conditions, hydrogen recoveries approaching 100% have been observed. This study serves to experimentally validate the palladium membrane reactor as potentially important tool for fusion fuel processing

  14. Preliminary design of fusion reactor fuel cleanup system by palladium alloy membrane method

    International Nuclear Information System (INIS)

    A design of palladium diffuser and Fuel Cleanup System (FCU) for D-T fusion reactor is proposed. Feasibility of palladium alloy membrane method is discussed based on the early studies by the authors. Operating conditions of the palladium diffuser are determined experimentally. Dimensions of the diffuser are estimated from computer simulation. FCU system is designed under the feed conditions of Tritium Systems Test Assembly (TSTA) at Los Alamos Scientific Laboratory. The system is composed of Pd-diffusers, catalytic oxidizer, freezer and zink beds, and has some advantages in system layout and operation. This design can readily be extended to other conditions of plasma exhaust gases. (author)

  15. The Stirred Tank Reactor Polymer Electrolyte Membrane Fuel Cell

    CERN Document Server

    Benziger, J; Karnas, E; Moxley, J; Teuscher, C; Kevrekidis, Yu G; Benziger, Jay

    2003-01-01

    The design and operation of a differential Polymer Electrolyte Membrane (PEM) fuel cell is described. The fuel cell design is based on coupled Stirred Tank Reactors (STR); the gas phase in each reactor compartment was well mixed. The characteristic times for reactant flow, gas phase diffusion and reaction were chosen so that the gas compositions at both the anode and cathode are uniform. The STR PEM fuel cell is one-dimensional; the only spatial gradients are transverse to the membrane. The STR PEM fuel cell was employed to examine fuel cell start- up, and its dynamic responses to changes in load, temperature and reactant flow rates. Multiple time scales in systems response are found to correspond to water absorption by the membrane, water transport through the membrane and stress-related mechanical changes of the membrane.

  16. Mn oxide coated catalytic membranes for a hybrid ozonation-membrane filtration: comparison of Ti, Fe and Mn oxide coated membranes for water quality.

    Science.gov (United States)

    Byun, S; Davies, S H; Alpatova, A L; Corneal, L M; Baumann, M J; Tarabara, V V; Masten, S J

    2011-01-01

    In this study the performance of catalytic membranes in a hybrid ozonation-ceramic membrane filtration system was investigated. The catalytic membranes were produced by coating commercial ceramic ultrafiltration membranes with manganese or iron oxide nanoparticles using a layer-by-layer self-assembly technique. A commercial membrane with a titanium oxide filtration layer was also evaluated. The performance of the coated and uncoated membranes was evaluated using water from a borderline eutrophic lake. The permeate flux and removal of the organic matter was found to depend on the type of the metal oxide present on the membrane surface. The performance of the manganese oxide coated membrane was superior to that of the other membranes tested, showing the fastest recovery in permeate flux when ozone was applied and the greatest reduction in the total organic carbon (TOC) in the permeate. The removal of trihalomethanes (THMs) and haloacetic acids (HAAs) precursors using the membrane coated 20 times with manganese oxide nanoparticles was significantly better than that for the membranes coated with 30 or 40 times with manganese oxide nanoparticles or 40 times with iron oxide nanoparticles. PMID:20822791

  17. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 7, March 21, 1991--June 20, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-06-19

    Ceramic membranes are a new class of materials, which have shown promise in a variety of industrial applications. Their mechanical and chemical stability coupled with a wide range of operating temperatures and pressures make them suitable for environments found in coal liquid upgrading. In this project we will evaluate the performance of Sel-Gel alumina membranes in coal liquid upgrading processes under realistic temperature and pressure conditions and investigate the feasibility of using such membranes in a membrane reactor based coal liquid upgrading process. In addition, the development of novel ceramic membranes with enhanced catalytic activity for coal-liquid upgrading applications, such as carbon-coated alumina membranes, will be also investigated.

  18. Modeling of adsorber/desorber/catalytic reactor system for ethylene oxide removal

    OpenAIRE

    ZELJKO B. GRBAVCIC; BOSKO V. GRBIC; ZORANA LJ. ARSENIJEVIC

    2004-01-01

    The removal of ethylene oxide (EtO) in a combined system adsorber/desorber/catalytic reactor has been investigated. The combined system was a modified draft tube spouted bed reactor loaded with Pt/Al2O3 catalyst. The annular region was divided into two sectons, the hot section contained about 7 % of catalyst and it behaved as a desorber and catalytic incinerator, while the cold section, with the rest of the catalyst, behaved as a sorber. The catalyst particles were circulated between the two ...

  19. Investigation of a Submerged Membrane Reactor for Continuous Biomass Hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Malmali, Mohammadmahdi [Univ. of Arkansas, Fayetteville, AR (United States); Stickel, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wickramasinghe, S. Ranil [Univ. of Arkansas, Fayetteville, AR (United States)

    2015-07-10

    Enzymatic hydrolysis of cellulose is one of the most costly steps in the bioconversion of lignocellulosic biomass. Use of a submerged membrane reactor has been investigated for continuous enzymatic hydrolysis of cellulose thus allowing for greater use of the enzyme compared to a batch process. Moreover, the submerged 0.65 μm polyethersulfone microfiltration membrane avoids the need to pump a cellulose slurry through an external loop. Permeate containing glucose is withdrawn at pressures slightly below atmospheric pressure. The membrane rejects cellulose particles and cellulase enzyme bound to cellulose. Our proof-of-concept experiments have been conducted using a modified, commercially available membrane filtration cell under low fluxes around 75 L/(m2 h). The operating flux is determined by the rate of glucose production. Maximizing the rate of glucose production involves optimizing mixing, reactor holding time, and the time the feed is held in the reactor prior to commencement of membrane filtration and continuous operation. When we maximize glucose production rates it will require that we operate it at low glucose concentration in order to minimize the adverse effects of product inhibition. Consequently practical submerged membrane systems will require a combined sugar concentration step in order to concentrate the product sugar stream prior to fermentation.

  20. High temperature ceramic membrane reactors for coal liquid upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-01-01

    In this project we will study a novel process concept, i.e., the use of ceramic membrane reactors in upgrading of coal model compounds and coal derived liquids. In general terms, the USC research team is responsible for constructing and operating the membrane reactor apparatus and for testing various inorganic membranes for the upgrading of coal derived asphaltenes and coal model compounds. The USC effort will involve the principal investigator of this project and two graduate research assistants. The ALCOA team is responsible for the preparation of the inorganic membranes, for construction and testing of the ceramic membrane modules, and for measurement of their transport properties. The ALCOA research effort will involve Dr. Paul K. T. Liu, who is the project manager of the ALCOA research team, an engineer and a technician. UNOCAL's contribution will be limited to overall technical assistance in catalyst preparation and the operation of the laboratory upgrading membrane reactor and for analytical back-up and expertise in oil analysis and materials characterization. UNOCAL is a no-cost contractor but will be involved in all aspects of the project, as deemed appropriate.

  1. Preparation and characterization of VOx/TiO2 catalytic coatings on stainless steel plates for structured catalytic reactors.

    OpenAIRE

    Giornelli, Thierry; Löfberg, Axel; Bordes-Richard, Elisabeth

    2006-01-01

    1 The parameters to be controlled to coat metallic walls by VOx/TiO2 catalysts which are used in the mild oxidation of hydrocarbons and NOx abatement are studied. Stainless steel (316 L) was chosen because of its large application in industrial catalytic reactors. TiO2 films on stainless steel were obtained by dip-coating in two steps. Superficially oxidized plates were first dipped in Ti-alkoxide sol-gel to be coated by a very thin layer of TiO2. On this anchoring layer was then deposited a ...

  2. N2O Catalytic Decomposition – from Laboratory Experiment to Industry Reactor

    Czech Academy of Sciences Publication Activity Database

    Obalová, L.; Jirátová, Květa; Karásková, K.; Chromčáková, Ž.

    2012-01-01

    Roč. 191, č. 1 (2012), s. 116-120. ISSN 0920-5861 R&D Projects: GA TA ČR TA01020336 Institutional support: RVO:67985858 Keywords : N2O * catalytic decomposition * fixed bed reactor Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.980, year: 2012

  3. Membrane reactor technology for ultrapure hydrogen production

    OpenAIRE

    Patil, Charudatta Subhash

    2005-01-01

    The suitability of polymer electrolyte membrane fuel cells (PEMFC) for stationary and vehicular applications because of its low operating temperatures, compactness, higher power density, cleaner exhausts and higher efficiencies compared to conventional internal combustion engines and gas turbines adds to the already soaring demand for hydrogen production for refinery and petrochemical applications.

  4. Block copolymer hollow fiber membranes with catalytic activity and pH-response

    KAUST Repository

    Hilke, Roland

    2013-08-14

    We fabricated block copolymer hollow fiber membranes with self-assembled, shell-side, uniform pore structures. The fibers in these membranes combined pores able to respond to pH and acting as chemical gates that opened above pH 4, and catalytic activity, achieved by the incorporation of gold nanoparticles. We used a dry/wet spinning process to produce the asymmetric hollow fibers and determined the conditions under which the hollow fibers were optimized to create the desired pore morphology and the necessary mechanical stability. To induce ordered micelle assembly in the doped solution, we identified an ideal solvent mixture as confirmed by small-angle X-ray scattering. We then reduced p-nitrophenol with a gold-loaded fiber to confirm the catalytic performance of the membranes. © 2013 American Chemical Society.

  5. Selective catalytic reduction of NO in a reverse-flow reactor: Modelling and experimental validation

    International Nuclear Information System (INIS)

    Highlights: • Reverse-flow reactors easily overcome feed concentration disturbances. • Central feeding improves ammonia adsorption in reverse-flow reactors. • Dynamic heterogeneous model validated with bench-scale experiments. • Optimum reverse-flow reactor design improves efficiency and reduces reactor size. - Abstract: The abatement of nitrogen oxides produced in combustion processes and in the chemical industry requires efficient and reliable technologies capable of fulfilling strict environmental regulations. Selective catalytic reduction (SCR) with ammonia in fixed-bed (monolithic) reactors has stood out among other techniques in the last decades. In this work, the use of reverse-flow reactors, operated under the forced un-steady state generated by the periodic reversal of the flow direction, is studied for improving the SCR performance. This reactor can take advantage of ammonia adsorption in the catalyst to enhance concentration profiles in the reactor, increasing reaction rate, efficiency and reducing the emission of un-reacted ammonia. The process has been studied experimentally in a bench-scale device using a commercial monolithic catalyst. The optimum operating conditions, best ammonia feed configuration (side or central) and capacity of the reactor to deal with feed concentration disturbances is analysed. The experiments have also been used for validating a mathematical model of the reactor based on mass conservation equations, and the model has been used to design a full-size reverse-flow reactor able of operating at industrial conditions

  6. One Step Biomass Gas Reforming-Shift Separation Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Michael J. [Gas Technology Institute; Souleimanova, Razima [Gas Technology Institute

    2012-12-28

    GTI developed a plan where efforts were concentrated in 4 major areas: membrane material development, membrane module development, membrane process development, and membrane gasifier scale-up. GTI assembled a team of researchers to work in each area. Task 1.1 Ceramic Membrane Synthesis and Testing was conducted by Arizona State University (ASU), Task 1.2 Metallic Membrane Synthesis and Testing was conducted by the U.S. National Energy Technology Laboratory (NETL), Task 1.3 was conducted by SCHOTT, and GTI was to test all membranes that showed potential. The initial focus of the project was concentrated on membrane material development. Metallic and glass-based membranes were identified as hydrogen selective membranes under the conditions of the biomass gasification, temperatures above 700C and pressures up to 30 atmospheres. Membranes were synthesized by arc-rolling for metallic type membranes and incorporating Pd into a glass matrix for glass membranes. Testing for hydrogen permeability properties were completed and the effects of hydrogen sulfide and carbon monoxide were investigated for perspective membranes. The initial candidate membrane of Pd80Cu20 chosen in 2008 was selected for preliminary reactor design and cost estimates. Although the H2A analysis results indicated a $1.96 cost per gge H2 based on a 5A (micron) thick PdCu membrane, there was not long-term operation at the required flux to satisfy the go/no go decision. Since the future PSA case yielded a $2.00/gge H2, DOE decided that there was insufficient savings compared with the already proven PSA technology to further pursue the membrane reactor design. All ceramic membranes synthesized by ASU during the project showed low hydrogen flux as compared with metallic membranes. The best ceramic membrane showed hydrogen permeation flux of 0.03 SCFH/ft2 at the required process conditions while the metallic membrane, Pd80Cu20 showed a flux of 47.2 SCFH/ft2 (3 orders of magnitude difference). Results from

  7. Catalytic Decomposition of Toluene Using Various Dielectric Barrier Discharge Reactors

    Institute of Scientific and Technical Information of China (English)

    YE Daiqi; HUANG Haibao; CHEN Weili; ZENG Ronghui

    2008-01-01

    Decomposition of toluene was experimentally investigated with various dielectric barrier discharge (DBD) reactors, such as wire-cylinder, wire-plate and plate-to-plate, combined with multi-metal oxides catalyst (Mn-Ni-Co-Cu-Ox/Al2O3) loaded on the cordierite honeycomb and nickel foam, respectively. The effects of some factors including the residence time, reactor configuration and catalyst, upon the toluene destruction were studied. Results revealed that the use of in-plasma catalysis was more helpful to enhancing the DRE (destruction and removal efficiency) and reducing the O3 formation than that of either post-plasma catalysis or plasma alone. It was demonstrated that the wire-plate reactor was favorable for the oxidation reaction of toluene and the nickel foam-supported catalysts exhibited good activity.

  8. Managing the process of catalytic reforming by the optimal distribution of temperature at the reactor block inlets

    OpenAIRE

    Левчук, Игорь Леонидович

    2015-01-01

    In this paper it is investigated an influence of the temperature of the reaction mixture at the inlets of a catalytic reforming reactor block on increment of aromatic hydrocarbons at outlets of separate reactors. It is found that for each reactor of a catalytic reforming exists some optimal temperature of the initial mixture from the standpoint of the increment of aromatics, which does not exceed a noticeable increase of flavoring materials, however, increases the rate of deactivation of the ...

  9. Inactive commissioning of a micro channel catalytic reactor for highly tritiated water production in the CAPER facility of TLK

    International Nuclear Information System (INIS)

    Highlights: ► In a DT fusion machine several events will generate highly tritiated water (HTW). ► PERMCAT appears a promising process to recover tritium from HTW. ► In order to perform R and D activity on HTW processing with PERMCAT, such water has to be produced on purpose. ► A tritium compatible micro-channel catalytic reactor (μCCR) has been designed and manufactured to produce up to 10 mL min−1 of HTW with very high specific tritium activity. ► The paper presents the inactive commissioning of the μCCR required before the integration in CAPER facility. ► The combination of the μCCR with the O2 sensor represents a reliable system able to produce HTW in a safe way and without radioactive waste. - Abstract: In future DT fusion machines, several events will generate highly tritiated water (HTW). Among potential techniques for HTW processing, isotopic swamping in a catalytic membrane reactor (PERMCAT) appears promising. The experimental demonstration of PERMCAT for HTW processing has started in the CAPER facility at the Tritium Laboratory of Karlsruhe (TLK). Without any HTW source, such water has to be produced on purpose. Catalytic HT oxidation would ensure clean operation but could be critical for operation due to possible occurrence of explosive mixture. A tritium compatible micro-channel catalytic reactor (μCCR) has been designed and manufactured to produce up to 10 mL min−1 of HTW with very high specific tritium activity (stoichiometric DTO: 5.2 × 1016 Bq kg−1). Prior to its integration in CAPER for tritium operation, this reactor has been commissioned at different feed flow rates, gas composition (air or Helium), and temperature. The results demonstrate the good performances of the μCCR in producing water. The combination of the μCCR with the O2 sensor represents a reliable system able to produce HTW in a safe way and without radioactive waste. Accordingly, the CAPER facility can be upgrade in order to continue the R and D activity on

  10. United membrane biological reactor in the treatment of wastewater

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ji-ti; YAN Bin; DU Cui-hong; DONG Xiao-li

    2003-01-01

    The united membrane biological reactor(UMBR) was studied for the treatment of some simulate and municipal wastewater . The removal efficiency for COD and turbidity are greater than 80% and 99% respectively. Effluent COD is less than 100 mg/L while turbidity less than 5. The removal of LAS in bath wastewater is greater than 70%. In treatment of dinning-hall wastewater, removal of fatty oil is greater than 90%, and its concentration in effluent is less than 5 mg/L. The match of biological reactor and the membrane separation component were calculated. The stable performance of wastewater treatment can be maintained by the optimization of operation conditions and the cleanout of membranes.

  11. Periodic Operation of Three-Phase Catalytic Reactors

    Czech Academy of Sciences Publication Activity Database

    Silveston, P.T.; Hanika, Jiří

    2005-01-01

    Roč. 82, č. 6 (2005), s. 1105-1142. ISSN 0008-4034 Institutional research plan: CEZ:AV0Z4072921 Keywords : three-phase reactors * trickle bed * periodic operation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 0.574, year: 2005

  12. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    International Nuclear Information System (INIS)

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: ► Novel reactor using membranes for ozone distributor, reaction contactor and water separator. ► Designed to achieve an order of magnitude enhancement over traditional reactor. ► Al2O3 and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. ► High surface area coating prevents polarization and improves membrane separation and life.

  13. Modeling and data analysis of a palladium membrane reactor for tritiated impurities cleanup

    International Nuclear Information System (INIS)

    A Palladium Membrane Reactor (PMR) is under consideration for the tritium plant for the International Thermonuclear Experimental Reactor (ITER). The ITER reactor exhaust will contain tritiated impurities such as water and methane. Tritium will need to be recovered from these impurities for environmental and economic reasons. For this purpose a promising device, PMR, has been proposed. The PMR is a combined permeator and catalytic reactor. Shift catalysts are used to foster reactions such as water-gas shift, H2O + CO → H2 + CO2, and methane steam reforming, CH4 + H2O → 3H2 + CO. Due to thermodynamic limitations these reactions only proceed to partial completion. Thus, a Pd/Ag membrane, which is exclusively permeable to hydrogen isotopes, is incorporated into the reactor. By maintaining a vacuum on the permeate, product hydrogen isotopes are removed, enabling the reactions to proceed to completion. A model has been developed to study the complex interactions in a PMR so that the optimal design can be determined. The model accounts for the coupled effects of transport-limited permeation of hydrogen isotopes and chemical reactions. The permeation model is an extension of previous models that include the effects of temperature, wall thickness, reaction-side pressure, and permeate-side pressure. Reaction rates for methane steam reforming and the water-gas shift reaction are incorporated into the model along with the respective reverse reactions. The model is compared to PMR data and used to investigate the concentration and pressure profiles in the reactor. Due to the interactions of permeation and reaction complex profiles can be produced in a PMR. For example, the water concentration often increases after the inlet to the PMR to a maximum value, and then decreases to the low values expected with a PMR. Detailed information like this is required for the design and optimization of PMRs for the ITER tritium plant

  14. Homogeneous Catalytic Hydrogenations and Photocatalytic Reactions in Microstructured Reactor Systems

    Czech Academy of Sciences Publication Activity Database

    Pavlorková, Jana; Křišťál, Jiří; Drhová, Magdalena; Hejda, S.; Klusoň, Petr

    Prague: Czech Society of Industrial Chemistry, 2014 - (Kalenda, P.; Lubojacký, J.), s. 231-232 ISBN 978-80-86238-64-7. [mezinárodní chemicko-technologická konference /2./. Mikulov (CZ), 07.04.2014-09.04.2014] Institutional support: RVO:67985858 Keywords : microstructured reactor * hydrogenation * photochemical oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://www.icct.cz

  15. Design of Gas-Lift Reactor for Catalytic Oxidation

    Czech Academy of Sciences Publication Activity Database

    Gogová, Zuzana; Hanika, Jiří

    Praha: Process Engineering Publisher, 2008, s. 248. ISBN 978-80-02-02048-6. [18th International Congress of Chemical and Process Engineering CHISA 2008. Praha (CZ), 24.08.2008-28.08.2008] R&D Projects: GA ČR GD203/08/H032 Institutional research plan: CEZ:AV0Z40720504 Keywords : gas- lift reactor * model * glucose Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  16. Lagrangian Approach to Study Catalytic Fluidized Bed Reactors

    Science.gov (United States)

    Madi, Hossein; Hossein Madi Team; Marcelo Kaufman Rechulski Collaboration; Christian Ludwig Collaboration; Tilman Schildhauer Collaboration

    2013-03-01

    Lagrangian approach of fluidized bed reactors is a method, which simulates the movement of catalyst particles (caused by the fluidization) by changing the gas composition around them. Application of such an investigation is in the analysis of the state of catalysts and surface reactions under quasi-operando conditions. The hydrodynamics of catalyst particles within a fluidized bed reactor was studied to improve a Lagrangian approach. A fluidized bed methanation employed in the production of Synthetic Natural Gas from wood was chosen as the case study. The Lagrangian perspective was modified and improved to include different particle circulation patterns, which were investigated through this study. Experiments were designed to evaluate the concepts of the model. The results indicate that the setup is able to perform the designed experiments and a good agreement between the simulation and the experimental results were observed. It has been shown that fluidized bed reactors, as opposed to fixed beds, can be used to avoid the deactivation of the methanation catalyst due to carbon deposits. Carbon deposition on the catalysts tested with the Lagrangian approach was investigated by temperature programmed oxidation (TPO) analysis of ex-situ catalyst samples. This investigation was done to identify the effects of particles velocity and their circulation patterns on the amount and type of deposited carbon on the catalyst surface. Ecole Polytechnique Federale de Lausanne(EPFL), Paul Scherrer Institute (PSI)

  17. Advanced Water-Gas Shift Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sean Emerson; Thomas Vanderspurt; Susanne Opalka; Rakesh Radhakrishnan; Rhonda Willigan

    2009-01-07

    The overall objectives for this project were: (1) to identify a suitable PdCu tri-metallic alloy membrane with high stability and commercially relevant hydrogen permeation in the presence of trace amounts of carbon monoxide and sulfur; and (2) to identify and synthesize a water gas shift catalyst with a high operating life that is sulfur and chlorine tolerant at low concentrations of these impurities. This work successfully achieved the first project objective to identify a suitable PdCu tri-metallic alloy membrane composition, Pd{sub 0.47}Cu{sub 0.52}G5{sub 0.01}, that was selected based on atomistic and thermodynamic modeling alone. The second objective was partially successful in that catalysts were identified and evaluated that can withstand sulfur in high concentrations and at high pressures, but a long operating life was not achieved at the end of the project. From the limited durability testing it appears that the best catalyst, Pt-Re/Ce{sub 0.333}Zr{sub 0.333}E4{sub 0.333}O{sub 2}, is unable to maintain a long operating life at space velocities of 200,000 h{sup -1}. The reasons for the low durability do not appear to be related to the high concentrations of H{sub 2}S, but rather due to the high operating pressure and the influence the pressure has on the WGS reaction at this space velocity.

  18. Supported Pd-Au Membrane Reactor for Hydrogen Production: Membrane Preparation, Characterization and Testing.

    Science.gov (United States)

    Iulianelli, Adolfo; Alavi, Marjan; Bagnato, Giuseppe; Liguori, Simona; Wilcox, Jennifer; Rahimpour, Mohammad Reza; Eslamlouyan, Reza; Anzelmo, Bryce; Basile, Angelo

    2016-01-01

    A supported Pd-Au (Au 7wt%) membrane was produced by electroless plating deposition. Permeation tests were performed with pure gas (H₂, H₂, N₂, CO₂, CH₄) for long time operation. After around 400 h under testing, the composite Pd-Au membrane achieved steady state condition, with an H₂/N₂ ideal selectivity of around 500 at 420 °C and 50 kPa as transmembrane pressure, remaining stable up to 1100 h under operation. Afterwards, the membrane was allocated in a membrane reactor module for methane steam reforming reaction tests. As a preliminary application, at 420 °C, 300 kPa of reaction pressure, space velocity of 4100 h(-1), 40% methane conversion and 35% hydrogen recovery were reached using a commercial Ni/Al₂O₃ catalyst. Unfortunately, a severe coke deposition affected irreversibly the composite membrane, determining the loss of the hydrogen permeation characteristics of the supported Pd-Au membrane. PMID:27171067

  19. Methane-benzene binary mixture destruction in a reverse flow catalytic reactor

    International Nuclear Information System (INIS)

    A reverse flow reactor (RFR) is a packed catalytic bed reactor in which feed flow direction is periodically reversed. When an exothermic catalytic combustion is conducted in a RFR, a hot zone is trapped in the center while both ends of the reactor act as regenerative heat exchanger. This enables an auto thermal operation at high temperatures even for feeds having a low adiabatic temperature rise. These features make RFR highly competitive for VOCs combustion. An experimental study of binary mixture purification in bench scale reverse flow reactor, with an inner diameter of 60 mm, has been carried out. Methane and benzene are chosen due to their different properties. The ignition temperature of methane is higher than any other hydrocarbons and benzene is widely used as solvent in industry. With periodic reversal feed, auto thermal catalytic combustion of very lean binary mixture can be achieved. When peak temperature in the hot zone reaches about 550 degree Celsius, both methane and benzene are well removed and little NOx or no other secondary pollutants are detected. The influence of several operation parameters, such as gas velocity, cycle period and methane-to-benzene ratio are discussed. A mathematical model has been developed and solved using a FORTRAN code, good correspondence being observed between both approaches. This provides a solution if VOC concentration in the contaminated air is too low to maintain an auto thermal operation, while natural gas (which is mainly methane) can be added as auxiliary fuel. (author)

  20. Decoloring Methyl Orange under Sunlight by a Photocatalytic Membrane Reactor Based on ZnO Nanoparticles and Polypropylene Macroporous Membrane

    OpenAIRE

    Bing Hu; Jin Zhou; Xiu-Min Wu

    2013-01-01

    Decoloring methyl orange (MeOr) under sunlight was conducted in a photocatalytic membrane reactor (PMR). Zinc oxide nanoparticles (ZnO NPs) were suspended in the solution or immobilized on the membrane. The membrane was modified by grafting 2-hydroxyethyl methacrylate (HEMA) to enhance the adsorption of ZnO NPs on the hydrophobic membrane surface and improve the membrane permeability. The results show that the water fluxes through the modified membranes are higher than that through the unmodi...

  1. Effect of Catalytic Cylinders on Autothermal Reforming of Methane for Hydrogen Production in a Microchamber Reactor

    Directory of Open Access Journals (Sweden)

    Yunfei Yan

    2014-01-01

    Full Text Available A new multicylinder microchamber reactor is designed on autothermal reforming of methane for hydrogen production, and its performance and thermal behavior, that is, based on the reaction mechanism, is numerically investigated by varying the cylinder radius, cylinder spacing, and cylinder layout. The results show that larger cylinder radius can promote reforming reaction; the mass fraction of methane decreased from 26% to 21% with cylinder radius from 0.25 mm to 0.75 mm; compact cylinder spacing corresponds to more catalytic surface and the time to steady state is decreased from 40 s to 20 s; alteration of staggered and aligned cylinder layout at constant inlet flow rates does not result in significant difference in reactor performance and it can be neglected. The results provide an indication and optimize performance of reactor; it achieves higher conversion compared with other reforming reactors.

  2. Metal nanoparticles in catalytic polymer membranes and ion-exchange systems for advanced purification of water from molecular oxygen

    International Nuclear Information System (INIS)

    Methods of synthesis of metal nanoparticles and metal/polymer nanocomposites including ion-exchange materials are considered. The effect of the composition and size of nanoparticles on their catalytic activity is analyzed. Attention is focused on the composites used in catalytic processes, namely, catalytic membranes and ion-exchange systems. The problems associated with the removal of dissolved oxygen from water by means of such composites are discussed. The bibliography includes 225 references.

  3. Catalytic non-thermal plasma reactor for the decomposition of a mixture of volatile organic compounds

    Indian Academy of Sciences (India)

    B Rama Raju; E Linga Reddy; J Karuppiah; P Manoj Kumar Reddy; Ch Subrahmanyam

    2013-05-01

    The decomposition of mixture of selected volatile organic compounds (VOCs) has been studied in a catalytic non-thermal plasma dielectric barrier discharge reactor. The VOCs mixture consisting n-hexane, cyclo-hexane and -xylene was chosen for the present study. The decomposition characteristics of mixture of VOCs by the DBD reactor with inner electrode modified with metal oxides of Mn and Co was studied. The results indicated that the order of the removal efficiency of VOCs followed as -xylene > cyclo-hexane > -hexane. Among the catalytic study, MnOx/SMF (manganese oxide on sintered metal fibres electrode) shows better performance, probably due to the formation of active oxygen species by in situ decomposition of ozone on the catalyst surface. Water vapour further enhanced the performance due to the in situ formation of OH radicals.

  4. Recent advances in AFB biomass gasification pilot plant with catalytic reactors in a downstream slip flow

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M.P.; Gil, J.; Martin, J.A.; Frances, E.; Olivares, A.; Caballero, M.A.; Perez, P. [Saragossa Univ. (Spain). Dept. of Chemistry and Environment; Corella, J. [Madrid Univ. (Spain)

    1996-12-31

    A new 3rd generation pilot plant is being used for hot catalytic raw gas cleaning. It is based on a 15 cm. i.d. fluidized bed with biomass throughputs of 400-650 kg/h.m{sup 2}. Gasification is performed using mixtures of steam and oxygen. The produced gas is passed in a slip flow by two reactors in series containing a calcined dolomite and a commercial reforming catalyst. Tars are periodically sampled and analysed after the three reactors. Tar conversions of 99.99 % and a 300 % increase of the hydrogen content in the gas are obtained. (author) (2 refs.)

  5. Development of Novel Water-Gas Shift Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ho, W. S. Winston

    2004-12-29

    This report summarizes the objectives, technical barrier, approach, and accomplishments for the development of a novel water-gas-shift (WGS) membrane reactor for hydrogen enhancement and CO reduction. We have synthesized novel CO{sub 2}-selective membranes with high CO{sub 2} permeabilities and high CO{sub 2}/H{sub 2} and CO{sub 2}/CO selectivities by incorporating amino groups in polymer networks. We have also developed a one-dimensional non-isothermal model for the countercurrent WGS membrane reactor. The modeling results have shown that H{sub 2} enhancement (>99.6% H{sub 2} for the steam reforming of methane and >54% H{sub 2} for the autothermal reforming of gasoline with air on a dry basis) via CO{sub 2} removal and CO reduction to 10 ppm or lower are achievable for synthesis gases. With this model, we have elucidated the effects of system parameters, including CO{sub 2}/H{sub 2} selectivity, CO{sub 2} permeability, sweep/feed flow rate ratio, feed temperature, sweep temperature, feed pressure, catalyst activity, and feed CO concentration, on the membrane reactor performance. Based on the modeling study using the membrane data obtained, we showed the feasibility of achieving H{sub 2} enhancement via CO{sub 2} removal, CO reduction to {le} 10 ppm, and high H{sub 2} recovery. Using the membrane synthesized, we have obtained <10 ppm CO in the H{sub 2} product in WGS membrane reactor experiments. From the experiments, we verified the model developed. In addition, we removed CO{sub 2} from a syngas containing 17% CO{sub 2} to about 30 ppm. The CO{sub 2} removal data agreed well with the model developed. The syngas with about 0.1% CO{sub 2} and 1% CO was processed to convert the carbon oxides to methane via methanation to obtain <5 ppm CO in the H{sub 2} product.

  6. Oscillatory three-phase flow reactor for studies of bi-phasic catalytic reactions.

    Science.gov (United States)

    Abolhasani, Milad; Bruno, Nicholas C; Jensen, Klavs F

    2015-05-28

    A multi-phase flow strategy, based on oscillatory motion of a bi-phasic slug within a fluorinated ethylene propylene (FEP) tubular reactor, under inert atmosphere, is designed and developed to address mixing and mass transfer limitations associated with continuous slug flow chemistry platforms for studies of bi-phasic catalytic reactions. The technique is exemplified with C-C and C-N Pd catalyzed coupling reactions. PMID:25876959

  7. Oscillatory three-phase flow reactor for studies of bi-phasic catalytic reactions

    OpenAIRE

    Abolhasani, Milad; Bruno, Nicholas C.; Jensen, Klavs F.

    2015-01-01

    A multi-phase flow strategy, based on oscillatory motion of a bi-phasic slug within a fluorinated ethylene propylene (FEP) tubular reactor, under inert atmosphere, is designed and developed to address mixing and mass transfer limitations associated with continuous slug flow chemistry platforms for studies of bi-phasic catalytic reactions. The technique is exemplified with C–C and C–N Pd catalyzed coupling reactions.

  8. MATHEMATICAL MODELLING OF METHANE STEAM REFORMING IN A MEMBRANE REACTOR: AN ISOTHERMIC MODEL

    OpenAIRE

    ASSAF E.M.; JESUS C.D.F.; J.M. ASSAF

    1998-01-01

    A mathematical modelling of one-dimensional, stationary and isothermic membrane reactor for methane steam reforming was developed to compare the maximum yield for methane conversion in this reactor with that in a conventional fixed-bed reactor. Fick's first law was used to describe the mechanism of hydrogen permeation. The variables studied include: reaction temperature, hydrogen feed flow rate and membrane thickness. The results show that the membrane reactor presents a higher methane conver...

  9. MATHEMATICAL MODELLING OF METHANE STEAM REFORMING IN A MEMBRANE REACTOR : AN ISOTHERMIC MODEL

    OpenAIRE

    ASSAF E.M.; JESUS C.D.F.; J.M. ASSAF

    1998-01-01

    A mathematical modelling of one-dimensional, stationary and isothermic membrane reactor for methane steam reforming was developed to compare the maximum yield for methane conversion in this reactor with that in a conventional fixed-bed reactor. Fick's first law was used to describe the mechanism of hydrogen permeation. The variables studied include: reaction temperature, hydrogen feed flow rate and membrane thickness. The results show that the membrane reactor presents a higher methane conver...

  10. Study of a H2 separating membrane reactor for methane steam reforming at conditions relevant for power processes with CO2 capture

    International Nuclear Information System (INIS)

    We present a one dimensional, steady state model for a catalytic membrane reactor used for methane steam reforming. We have solved the model for conditions that could be relevant for integration of the reactor in a power process with CO2 capture. The model behaved as expected when several important system parameters were varied. The results show that the operating conditions for the membrane reactor will have a great impact on the design of the power process. It is therefore crucial to understand the behavior of the membrane reactor if one wants to integrate it in a power process with CO2 capture. The best choice of operating conditions must be found through consideration of the whole power process

  11. Sludge Bulking Property of Membrane Bio-reactor in Albumen Wqastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    Albumen wastewater was treated by Membrane Bio-reactor. Sludge bulking property of Membrane Bio-Reactor was investigated in this study through contrast research. When the sludge bulking appeared, the removal efficiency of COD in Membrane Bio-reactor increased slightly under the function of filamentous bacteria. However, the negative effects of the higher net water-head differential pressures,the higher block rate of membrane pore and the great quantity of filamentous bacteria at the externalsurface pres...

  12. Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis II. Quantification of inhibition and suitability of membrane reactors

    DEFF Research Database (Denmark)

    Andric, Pavle; Meyer, Anne S.; Jensen, Peter Arendt;

    2010-01-01

    ideal reactor types, i.e. batch, continuous stirred, and plug-flow, is illustrated quantitatively by modeling different extents of cellulose conversion at different reaction conditions. The main operational challenges of membrane reactors for lignocellulose conversion are highlighted. Key membrane...... of the available literature data for glucose removal by membranes and for cellulose enzyme stability in membrane reactors are given. The treatise clearly shows that membrane reactors allowing continuous, complete, glucose removal during enzymatic cellulose hydrolysis, can provide for both higher cellulose...... hydrolysis rates and higher enzyme usage efficiency (kg(product/)kg(enzyme)). Current membrane reactor designs are however not feasible for large scale operations. The report emphasizes that the industrial realization of cellulosic ethanol requires more focus on the operational feasibility within...

  13. High catalytic efficiency of palladium nanoparticles immobilized in a polymer membrane containing poly(ionic liquid) in Suzuki–Miyaura cross-coupling reaction

    OpenAIRE

    Gu, Yingying; Favier, Isabelle; Pradel, Christian; Gin, Douglas L.; Lahitte, Jean-Francois; Noble, Richard D.; Gómez, Montserrat; Remigy, Jean-Christophe

    2015-01-01

    The elaboration of a polymeric catalytic membrane containing palladium nanoparticles is presented. The membrane was prepared using a photo-grafting process with imidazolium-based ionic liquid monomers as modifying agent and microPES® as support membrane. Ionic liquid serves as a stabilizer and immobilizer for the catalytic species, i.e. palladium nanoparticles. The Suzuki–Miyaura cross-coupling reaction was carried out on the catalytic membrane in flow-through configuration. Complete conversi...

  14. Zeolite Membranes in Catalysis—From Separate Units to Particle Coatings

    Directory of Open Access Journals (Sweden)

    Radostina Dragomirova

    2015-12-01

    Full Text Available Literature on zeolite membranes in catalytic reactions is reviewed and categorized according to membrane location. From this perspective, the classification is as follows: (i membranes spatially decoupled from the reaction zone; (ii packed bed membrane reactors; (iii catalytic membrane reactors and (iv zeolite capsuled catalyst particles. Each of the resulting four chapters is subdivided by the kind of reactions performed. Over the whole sum of references, the advantage of zeolite membranes in catalytic reactions in terms of conversion, selectivity or yield is evident. Furthermore, zeolite membrane preparation, separation principles as well as basic considerations on membrane reactors are discussed.

  15. 微结构的纳米设计膜反应器中的催化%Catalysis in Micro-structured Membrane Reactors with Nano-designed Membranes

    Institute of Scientific and Technical Information of China (English)

    Juergen CARO

    2008-01-01

    For thermodynamically and kinetically controlled catalytic reactions, the influence of a membrane is discussed. For reactions operating near to the thermodynamic equilibrium, the conversion can be increased if one/all of the products is/are selectively removed in an extractor type membrane reactor. Examples are esterifications, dehydrogenations, and water dissociation using water, hydrogen, and oxygen selective membranes, respectively. For kinetically controlled reactions, i.e. reactions with a very negative free enthalpy, mainly the selectivity can be increased via the control of the partial pressure of the educts by dosing effects using distributor/contactor membrane reactors. Examples are partial oxidations and hydrogenations. In detail, the application of an oxygen transporting perovskite hollow fiber membrane with a nano-designed grain boundary structure in the hydrogen production by thermal water splitting and in the partial oxidation of hydrocarbons as case studies for thermodynamically and kinetically controlled reactions is discussed.

  16. Accelerated aging of catalytically airblown asphalt membranes under simulated uranium mill tailings impoundment conditions

    International Nuclear Information System (INIS)

    This paper evaluates the performance of asphalt membranes by examining the chemical and permeability changes experienced by the asphalt during aging tests. The aging process was accelerated by exposing the asphalt to elevated temperatures, high oxygen concentrations, and increased strengths of aqueous oxidizing agents. The synergistic effects of the variables are evaluated by using a fractional factorial experimental design. The installation costs for a catalytically airblown asphalt liner are roughly half that of the typical polymeric materials, and also less than the rubberized asphalt membrane. The results of the initial accelerated aging tests of the asphalt membranes indicate that this material will provide stable, long-term leachate isolation in a mill tailings environment

  17. Thermodynamic Investigation of Hydrogen Production by Methane Steam Reforming using Integrated Hydrogen-permselective Membrane Reactor with CO2 absorption

    International Nuclear Information System (INIS)

    The role of hydrogen as an energy carrier became more important to the future energy system. Methane steam reforming (MSR) is one of the most important chemical processes in hydrogen production. To improve the conversion of methane to hydrogen, a hydrogen-permselective membrane reactor with a carbon dioxide absorbent was proposed and investigated. The conversion at 893 K in the integrated reactor with CaO as absorbent was almost equal to that at above 1000 K in the conventional reactor. Exergy analyses indicated that the a large portion of exergy loss for hydrogen production was chemical exergy loss in the case without methane recycle, while thermal exergy loss in the case with recycle use. The exergy loss of this process using the hydrogen-permselective membrane reactor with the CaO-absorbent was estimated about 70% of that by the conventional catalytic reactor. Efficiencies of the integrated reactor process, based on the energy and exergy losses were compared with those of other hydrogen production processes. (authors)

  18. Development of a two separate phase submerged biocatalytic membrane reactor for the production of fatty acids and glycerol from residual vegetable oil streams

    International Nuclear Information System (INIS)

    Enzymatic membrane bioreactors (MBR) have been studied for very different applications since many years. Submerged MBR has also been successfully used for treatment of wastewater. In the existing submerged configuration, the membrane works as the separation unit operation while the bioconversion is carried out by microorganisms suspended in the tank reactor. In the present work, a novel approach that combines the concept of biocatalytic membranes and submerged modules is proposed for the treatment of biomass. Lipase enzyme from Candida rugosa has been immobilized in polyethersulphone hollow fiber (PES HF) membrane in order to develop a two separate phase biocatalytic submerged membrane reactor in which the membrane works as both catalytic and separation unit. Furthermore, the submerged biocatalytic membrane reactor is intended for production of valuable components from waste biomass, and different physical, chemical and fluid dynamics has been optimized. Response surface methodology (RSM) has been used to model the operating parameters and Box-Behnken method has been applied to maximize the fatty acids production and optimization. At TMP 80 ± 2 kPa, pH 7.40 ± 0.1, temperature 35 ± 0.5 °C with an axial velocity of 0.07 ± 0.01 ms−1 and organic stirring 89.01 rad s−1 the system showed the global examined value within the experimental scope. The proof of principle using fried cooked oils has been performed in later period. -- Highlights: Catalytic activity of enzyme in submerged condition has been studied. ► Optimization of submerged biocatalytic membrane reactor for production of value added components. ► Waste valorization by membrane reactor in order to minimization of waste. ► Three different waste oil (as waste biomass) has been studied in respect to product generation and different results obtained.

  19. In situ immobilization of palladium nanoparticles in microfluidic reactors and assessment of their catalytic activity

    International Nuclear Information System (INIS)

    We report on the synthesis and characterization of catalytic palladium nanoparticles (Pd NPs) and their immobilization in microfluidic reactors fabricated from polydimethylsiloxane (PDMS). The Pd NPs were stabilized with D-biotin or 3-aminopropyltrimethoxysilane (APTMS) to promote immobilization inside the microfluidic reactors. The NPs were homogeneous with narrow size distributions between 2 and 4 nm, and were characterized by transmission electron microscopy (TEM), selected-area electron diffraction (SAED), and x-ray diffraction (XRD). Biotinylated Pd NPs were immobilized on APTMS-modified PDMS and glass surfaces through the formation of covalent amide bonds between activated biotin and surface amino groups. By contrast, APTMS-stabilized Pd NPs were immobilized directly onto PDMS and glass surfaces rich in hydroxyl groups. Fourier transform infrared spectroscopy (FT-IR) and x-ray photoelectron spectroscopy (XPS) results showed successful attachment of both types of Pd NPs on glass and PDMS surfaces. Both types of Pd NPs were then immobilized in situ in sealed PDMS microfluidic reactors after similar surface modification. The effectiveness of immobilization in the microfluidic reactors was evaluated by hydrogenation of 6-bromo-1-hexene at room temperature and one atmosphere of hydrogen pressure. An average first-run conversion of 85% and selectivity of 100% were achieved in approximately 18 min of reaction time. Control experiments showed that no hydrogenation occurred in the absence of the nanocatalysts. This system has the potential to provide a reliable tool for efficient and high throughput evaluation of catalytic NPs, along with assessment of intrinsic kinetics.

  20. In situ immobilization of palladium nanoparticles in microfluidic reactors and assessment of their catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Lin Rui; Fielitz, Thomas R; Ofoli, Robert Y [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States); Freemantle, Ruel G; Kelly, Nicholas M; Obare, Sherine O, E-mail: sherine.obare@wmich.edu, E-mail: ofoli@egr.msu.edu [Department of Chemistry, Western Michigan University, Kalamazoo, MI 49008 (United States)

    2010-08-13

    We report on the synthesis and characterization of catalytic palladium nanoparticles (Pd NPs) and their immobilization in microfluidic reactors fabricated from polydimethylsiloxane (PDMS). The Pd NPs were stabilized with D-biotin or 3-aminopropyltrimethoxysilane (APTMS) to promote immobilization inside the microfluidic reactors. The NPs were homogeneous with narrow size distributions between 2 and 4 nm, and were characterized by transmission electron microscopy (TEM), selected-area electron diffraction (SAED), and x-ray diffraction (XRD). Biotinylated Pd NPs were immobilized on APTMS-modified PDMS and glass surfaces through the formation of covalent amide bonds between activated biotin and surface amino groups. By contrast, APTMS-stabilized Pd NPs were immobilized directly onto PDMS and glass surfaces rich in hydroxyl groups. Fourier transform infrared spectroscopy (FT-IR) and x-ray photoelectron spectroscopy (XPS) results showed successful attachment of both types of Pd NPs on glass and PDMS surfaces. Both types of Pd NPs were then immobilized in situ in sealed PDMS microfluidic reactors after similar surface modification. The effectiveness of immobilization in the microfluidic reactors was evaluated by hydrogenation of 6-bromo-1-hexene at room temperature and one atmosphere of hydrogen pressure. An average first-run conversion of 85% and selectivity of 100% were achieved in approximately 18 min of reaction time. Control experiments showed that no hydrogenation occurred in the absence of the nanocatalysts. This system has the potential to provide a reliable tool for efficient and high throughput evaluation of catalytic NPs, along with assessment of intrinsic kinetics.

  1. The membrane biofilm reactor: the natural partnership of membranes and biofilm.

    Science.gov (United States)

    Rittmann, B E

    2006-01-01

    Many exciting new technologies for water-quality control combine microbiological processes with adsorption, advanced oxidation, a membrane or an electrode to improve performance, address emerging contaminants or capture renewable energy. An excellent example is the H2-based membrane biofilm reactor (MBfR), which delivers H2 gas to a biofilm that naturally accumulates on the outer surface of a bubbleless membrane. Autotrophic bacteria in the biofilm oxidise the H2 and use the electrons to reduce NO3-, CIO4- and other oxidised contaminants. This natural partnership of membranes and biofilm makes it possible to gain many cost, performance and simplicity advantages from using H2 as the electron donor for microbially catalysed reductions. The MBfR has been demonstrated for denitrification in drinking water; reduction of perchlorate in groundwater; reduction of selenate, chromate, trichloroethene and other emerging contaminants; advanced N removal in wastewater treatment and autotrophic total-N removal. PMID:16605035

  2. Low concentration volatile organic pollutants removal in combined adsorber-desorber-catalytic reactor system

    Directory of Open Access Journals (Sweden)

    Arsenijević Zorana

    2008-01-01

    Full Text Available The removal of volatile organic compounds (VOCs from numerous emission sources is of crucial importance due to more rigorous demands on air quality. Different technologies can be used to treat the VOCs from effluent gases: absorption, physical adsorption, open flame combustion, thermal and catalytic incineration. Their appropriateness for the specific process depends on several factors such as efficiency, energy consumption, secondary pollution, capital investments etc. The distinctive features of the catalytic combustion are high efficiency and selectivity toward be­nign products, low energy consumption and absence of secondary polluti­on. The supported noble catalysts are widely used for catalytic incineration due to their low ignition temperatures and high thermal and chemical stability. In our combined system adsorption and desorption are applied in the spouted bed with draft tube (SBDT unit. The annular zone, loaded with sorbent, was divided in adsorption and desorption section. Draft tube enabled sorbent recirculation between sections. Combustion of desorbed gases to CO2 and water vapor are realized in additive catalytic reactor. This integrated device provided low concentrations VOCs removal with reduced energy consumption. Experiments were conducted on a pilot unit of 220 m3/h nominal capacity. The sorbent was activated carbon, type K81/B - Trayal Corporation, Krusevac. A sphere shaped commercial Pt/Al2O3 catalyst with "egg-shell" macro-distribution was used for the investigation of xylene deep oxidation. Within this paper the investigations of removal of xylene vapors, a typical pollutant in production of liquid pesticides, in combined adsorber/desorber/catalytic reactor system is presented.

  3. Performance and economics of a Pd-based planar WGS membrane reactor for coal gasification

    International Nuclear Information System (INIS)

    Conceptual 300 tonne per day (tpd) H2-from-coal plants have been the subject of several major costing exercises in the past decade. Incorporating conventional high- and low-temperature water-gas-shift (WGS) reactors, amine-based CO2 removal and PSA-based H2 purification systems, these studies provide a benchmark against which alternative H2-from-coal technologies can be compared. The catalytic membrane reactor (CMR), combining a WGS catalyst and hydrogen-selective metal membrane, can potentially replace the multiple shift and separation stages of a plant based on conventional technology. CMR-based shift and separation offers several major advantages over the conventional approach, including greater-than-equilibrium WGS conversion, the containment of the CO2 at high-pressure and a reduction in the number of unit processes. To determine capital costs of a WGS CMR-based H2-from-coal plant, a prototype planar CMR was constructed and tested with varying catalyst bed depth, residence time and membrane type (commercially-sourced 50 μm Pd or 40 μm Pd-25Ag wt%). Experiments to measure CO conversion, and H2 flux and yield were conducted at 400 C with a feed pressure of 20 bar H2O:C ratio of 3 and a H2 product pressure of 1 bar. Under the optimum conditions examined (with a 40 μm-thick Pd-25Ag membrane and 2 would be required to provide a throughput of 300 tpd with 85% H2 yield. The capital cost of the CMR component of the plant would be around $US 180 million (based on current metal prices), of which 73% can be attributed to the cost of the Pd-Ag alloy membranes. Incorporation of a membrane that meets the 2015 US DOE cost and flux targets would offer cost parity, with a plant cost of $US 44 million and a total membrane area of ∝13,000 m2. Meeting these performance and cost targets would likely require a shift to very thin Pd-alloy membranes or highly-permeable Group IV, V body-centred-cubic alloys. (author)

  4. Dynamic\tmodelling of catalytic three-phase reactors for hydrogenation and oxidation processes

    Directory of Open Access Journals (Sweden)

    Salmi T.

    2000-01-01

    Full Text Available The dynamic modelling principles for typical catalytic three-phase reactors, batch autoclaves and fixed (trickle beds were described. The models consist of balance equations for the catalyst particles as well as for the bulk phases of gas and liquid. Rate equations, transport models and mass balances were coupled to generalized heterogeneous models which were solved with respect to time and space with algorithms suitable for stiff differential equations. The aspects of numerical solution strategies were discussed and the procedure was illustrated with three case studies: hydrogenation of aromatics, hydrogenation of aldehydes and oxidation of ferrosulphate. The case studies revealed the importance of mass transfer resistance inside the catalyst pallets as well as the dynamics of the different phases being present in the reactor. Reliable three-phase reactor simulation and scale-up should be based on dynamic heterogeneous models.

  5. Hybrid membrane with TiO2 based bio-catalytic nanoparticle suspension system for the degradation of bisphenol-A.

    Science.gov (United States)

    Hou, Jingwei; Dong, Guangxi; Luu, Belinda; Sengpiel, Robert G; Ye, Yun; Wessling, Matthias; Chen, Vicki

    2014-10-01

    The removal of micropollutant in wastewater treatment has become a key environmental challenge for many industrialized countries. One approach is to use enzymes such as laccase for the degradation of micropollutants such as bisphenol-A. In this work, laccase was covalently immobilized on APTES modified TiO2 nanoparticles, and the effects of particle modification on the bio-catalytic performance were examined and optimized. These bio-catalytic particles were then suspended in a hybrid membrane reactor for BPA removal with good BPA degradation efficiency observed. Substantial improvement in laccase stability was achieved in the hybrid system compared with free laccase under simulated harsh industrial wastewater treatment conditions (such as a wide range of pH and presence of inhibitors). Kinetic study provided insight of the effect of immobilization on the bio-degradation reaction. PMID:25084046

  6. Experimental and Numerical Evaluation of the By-Pass Flow in a Catalytic Plate Reactor for Hydrogen Production

    DEFF Research Database (Denmark)

    Sigurdsson, Haftor Örn; Kær, Søren Knudsen

    2011-01-01

    Numerical and experimental study is performed to evaluate the reactant by-pass flow in a catalytic plate reactor with a coated wire mesh catalyst for steam reforming of methane for hydrogen generation. By-pass of unconverted methane is evaluated under different wire mesh catalyst width to reactor...

  7. Pd-Ag Membrane Coupled to a Two-Zone Fluidized Bed Reactor (TZFBR for Propane Dehydrogenation on a Pt-Sn/MgAl2O4 Catalyst

    Directory of Open Access Journals (Sweden)

    Miguel Menéndez

    2013-05-01

    Full Text Available Several reactor configurations have been tested for catalytic propane dehydrogenation employing Pt-Sn/MgAl2O4 as a catalyst. Pd-Ag alloy membranes coupled to the multifunctional Two-Zone Fluidized Bed Reactor (TZFBR provide an improvement in propane conversion by hydrogen removal from the reaction bed through the inorganic membrane in addition to in situ catalyst regeneration. Twofold process intensification is thereby achieved when compared to the use of traditional fluidized bed reactors (FBR, where coke formation and thermodynamic equilibrium represent important process limitations. Experiments were carried out at 500–575 °C and with catalyst mass to molar flow of fed propane ratios between 15.1 and 35.2 g min mmol−1, employing three different reactor configurations: FBR, TZFBR and TZFBR + Membrane (TZFBR + MB. The results in the FBR showed catalyst deactivation, which was faster at high temperatures. In contrast, by employing the TZFBR with the optimum regenerative agent flow (diluted oxygen, the process activity was sustained throughout the time on stream. The TZFBR + MB showed promising results in catalytic propane dehydrogenation, displacing the reaction towards higher propylene production and giving the best results among the different reactor configurations studied. Furthermore, the results obtained in this study were better than those reported on conventional reactors.

  8. Modeling of catalytic ozonation process in a three-phase reactor.

    Science.gov (United States)

    Erol, Funda; Ozbelge, Tülay A; Ozbelge, H Onder

    2009-02-15

    In this research, the main objective was to determine the flow characteristics of a three-phase reactor in order to use this knowledge in the modeling of catalytic ozonation of aqueous dye solutions. Therefore, the stimulus-response method was used in the tracer experiments; thus, the degree of liquid mixing in the reactor was estimated by means of residence time distribution, Peclet number and axial dispersion coefficient in the presence and the absence of the catalyst. Experimental data were obtained by performing the catalytic ozonation of aqueous Acid Red-151(AR-151) and Remazol Brilliant Blue-R (RBBR) dye solutions, in the presence of perfluorinated-octyl-alumina (PFOA) catalyst particles at different operating conditions. The chemical oxygen demand (COD), the dye and ozone concentrations in the liquid phase were measured at the steady state along the height of the column reactor and at the exit. According to the results, it was observed that the gas-liquid reactor without the catalyst particles showed a hydrodynamic behavior equivalent to two or three completely stirred tank reactors (CSTRs) in-series for the conventional ozonation process. The presence of catalyst particles caused the flow behavior of the three phase reactor to approach to one CSTR or two CSTRs in-series depending on the gas and liquid flow rates so that the modeling of the catalytic ozonation process was done satisfactorily on that basis. The modeling results showed satisfactory agreement with the experimental ones in the prediction of outlet dye and dissolved ozone concentrations from the reactor, especially at relatively high gas velocities (QG=150 and 200 L h(-1)) for AR-151, where the dissolved ozone concentration was not limited. However, the discrepancy was about 15% between the theory and experiment at the lower gas flow rates due to the limited ozone concentrations with respect to the dye concentrations at the high inlet dye concentration of AR-151 (CD,i=100 mg L(-1)). For RBBR, the

  9. Development of a hydrogen permselective membrane reactor using a silica membrane for the IS process

    International Nuclear Information System (INIS)

    The IS (Iodine-Sulfur) process is one of the thermochemical water splitting methods using iodine and sulfur as recycling agents. HI decomposition procedure to obtain hydrogen is one of the key operations in the process, because equilibrium conversion of HI is low (22% at 723 K). A silica membrane prepared by chemical vapor deposition was applied to the decomposition reaction of HI vapor for improvement of one pass conversion of HI. Hydrogen was successfully removed from the decomposition reactor between 723 K and 873 K. HI one-pass conversion was 76.4% at 873 K by removing hydrogen from the system by using the silica membrane. Total thermal efficiency can be improved by 1% for this HI conversion by calculating heat/mass balance of the process. This system was confirmed as permeation limitation reactor by the simple two-dimensional simulation. (author)

  10. Fast Pyrolysis Oil Stabilization: An Integrated Catalytic and Membrane Approach for Improved Bio-oils. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Huber, George W.; Upadhye, Aniruddha A.; Ford, David M.; Bhatia, Surita R.; Badger, Phillip C.

    2012-10-19

    with model AFBO excluding guaiacol were also conducted. NF membranes showed retention factors of glucose greater than 80% and of acetic acid less than 15% when operated at transmembrane pressures near 60 bar. Task 3.0 Acid Removal by Catalytic Processing It was found that the TAN reduction in bio-oil was very difficult using low temperature hydrogenation in flow and batch reactors. Acetic acid is very resilient to hydrogenation and we could only achieve about 16% conversion for acetic acid. Although it was observed that acetic acid was not responsible for instability of aqueous fraction of bio-oil during ageing studies (described in task 5). The bimetallic catalyst PtRe/ceria-zirconia was found to be best catalyst because its ability to convert the acid functionality with low conversion to gas phase carbon. Hydrogenation of the whole bio-oil was carried out at 125°C, 1450 psi over Ru/C catalyst in a flow reactor. Again, negligible acetic acid conversion was obtained in low temperature hydrogenation. Hydrogenation experiments with whole bio-oil were difficult to perform because of difficulty to pumping the high viscosity oil and reactor clogging. Task 4.0 Acid Removal using Ion Exchange Resins DOWEX M43 resin was used to carry out the neutralization of bio-oil using a packed bed column. The pH of the bio-oil increased from 2.43 to 3.7. The GC analysis of the samples showed that acetic acid was removed from the bio-oil during the neutralization and recovered in the methanol washing. But it was concluded that process would not be economical at large scale as it is extremely difficult to regenerate the resin once the bio-oil is passed over it. Task 5.0 Characterization of Upgraded Bio-oils We investigated the viscosity, microstructure, and chemical composition of bio-oils prepared by a fast pyrolysis approach, upon aging these fuels at 90ºC for periods of several days. Our results suggest that the viscosity increase is not correlated with the acids or char present in the

  11. Progress on Porous Ceramic Membrane Reactors for Heterogeneous Catalysis over Ultrafine and Nano-sized Catalysts

    Institute of Scientific and Technical Information of China (English)

    JIANG Hong; MENG Lie; CHEN Rizhi; JIN Wanqin; XING Weihong; XU Nanping

    2013-01-01

    Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes,but their large-scale applications remain challenging because of difficulties associated with their efficient separation from the reaction slurry.A porous ceramic membrane reactor has emerged as a promising method to solve the problem concerning catalysts separation in situ from the reaction mixture and make the production process continuous in heterogeneous catalysis.This article presents a review of the present progress on porous ceramic membrane reactors for heterogeneous catalysis,which covers classification of configurations of porous ceramic membrane reactor,major considerations and some important industrial applications.A special emphasis is paid to major considerations in term of application-oriented ceramic membrane design,optimization of ceramic membrane reactor performance and membrane fouling mechanism.Finally,brief concluding remarks on porous ceramic membrane reactors are given and possible future research interests are also outlined.

  12. Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish

    Energy Technology Data Exchange (ETDEWEB)

    Muir, J.F.; Hogan, R.E. Jr.; Skocypec, R.D. (Sandia National Labs., Albuquerque, NM (USA)); Buck, R. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Stuttgart (Germany, F.R.). Inst. fuer Technische Thermodynamik)

    1990-01-01

    The concept of solar driven chemical reactions in a commercial-scale volumetric receiver/reactor on a parabolic concentrator was successfully demonstrated in the CAtalytically Enhanced Solar Absorption Receiver (CAESAR) test. Solar reforming of methane (CH{sub 4}) with carbon dioxide (CO{sub 2}) was achieved in a 64-cm diameter direct absorption reactor on a parabolic dish capable of 150 kW solar power. The reactor was a catalytic volumetric absorber consisting of a multi-layered, porous alumina foam disk coated with rhodium (Rh) catalyst. The system was operated during both steady-state and solar transient (cloud passage) conditions. The total solar power absorbed reached values up to 97 kW and the maximum methane conversion was 70%. Receiver thermal efficiencies ranged up to 85% and chemical efficiencies peaked at 54%. The absorber performed satisfactorily in promoting the reforming reaction during the tests without carbon formation. However, problems of cracking and degradation of the porous matrix, nonuniform dispersion of the Rh through the absorber, and catalyst deactivation due to sintering and possible encapsulation, must be resolved to achieve long-term operation and eventual commercialization. 17 refs., 11 figs., 1 tab.

  13. Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors

    Directory of Open Access Journals (Sweden)

    Rahat Javaid

    2013-06-01

    Full Text Available The inner surface of a metallic tube (i.d. 0.5 mm was coated with a palladium (Pd-based thin metallic layer by flow electroless plating. Simultaneous plating of Pd and silver (Ag from their electroless-plating solution produced a mixed distributed bimetallic layer. Preferential acid leaching of Ag from the Pd–Ag layer produced a porous Pd surface. Hydrogenation of p-nitrophenol was examined in the presence of formic acid simply by passing the reaction solution through the catalytic tubular reactors. p-Aminophenol was the sole product of hydrogenation. No side reaction occurred. Reaction conversion with respect to p-nitrophenol was dependent on the catalyst layer type, the temperature, pH, amount of formic acid, and the residence time. A porous and oxidized Pd (PdO surface gave the best reaction conversion among the catalytic reactors examined. p-Nitrophenol was converted quantitatively to p-aminophenol within 15 s of residence time in the porous PdO reactor at 40 °C. Evolution of carbon dioxide (CO2 was observed during the reaction, although hydrogen (H2 was not found in the gas phase. Dehydrogenation of formic acid did not occur to any practical degree in the absence of p-nitrophenol. Consequently, the nitro group was reduced via hydrogen transfer from formic acid to p-nitrophenol and not by hydrogen generated by dehydrogenation of formic acid.

  14. Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors.

    Science.gov (United States)

    Javaid, Rahat; Kawasaki, Shin-Ichiro; Suzuki, Akira; Suzuki, Toshishige M

    2013-01-01

    The inner surface of a metallic tube (i.d. 0.5 mm) was coated with a palladium (Pd)-based thin metallic layer by flow electroless plating. Simultaneous plating of Pd and silver (Ag) from their electroless-plating solution produced a mixed distributed bimetallic layer. Preferential acid leaching of Ag from the Pd-Ag layer produced a porous Pd surface. Hydrogenation of p-nitrophenol was examined in the presence of formic acid simply by passing the reaction solution through the catalytic tubular reactors. p-Aminophenol was the sole product of hydrogenation. No side reaction occurred. Reaction conversion with respect to p-nitrophenol was dependent on the catalyst layer type, the temperature, pH, amount of formic acid, and the residence time. A porous and oxidized Pd (PdO) surface gave the best reaction conversion among the catalytic reactors examined. p-Nitrophenol was converted quantitatively to p-aminophenol within 15 s of residence time in the porous PdO reactor at 40 °C. Evolution of carbon dioxide (CO2) was observed during the reaction, although hydrogen (H2) was not found in the gas phase. Dehydrogenation of formic acid did not occur to any practical degree in the absence of p-nitrophenol. Consequently, the nitro group was reduced via hydrogen transfer from formic acid to p-nitrophenol and not by hydrogen generated by dehydrogenation of formic acid. PMID:23843908

  15. Modeling of adsorber/desorber/catalytic reactor system for ethylene oxide removal

    Directory of Open Access Journals (Sweden)

    ZELJKO B. GRBAVCIC

    2004-12-01

    Full Text Available The removal of ethylene oxide (EtO in a combined system adsorber/desorber/catalytic reactor has been investigated. The combined system was a modified draft tube spouted bed reactor loaded with Pt/Al2O3 catalyst. The annular region was divided into two sectons, the “hot” section contained about 7 % of catalyst and it behaved as a desorber and catalytic incinerator, while the “cold” section, with the rest of the catalyst, behaved as a sorber. The catalyst particles were circulated between the two sections by use of a draft tube riser. The Computational Fluid Dynamics (CFD program package FLUENT was used for simulations of the operation of the combined system. In addition, a one-dimensional numerical model for the operation of the packed bed reactor was compared with the corresponding FLUENT calculations. The results of the FLUENT simulations are in very good agreement with the experimental observations, as well as with the results of the one-dimensional numerical simulations.

  16. Improvement of Membrane Performances to Enhance the Yield of Vanillin in a Pervaporation Reactor

    OpenAIRE

    Giovanni Camera-Roda; Antonio Cardillo; Vittorio Loddo; Leonardo Palmisano; Francesco Parrino

    2014-01-01

    In membrane reactors, the interaction of reaction and membrane separation can be exploited to achieve a “process intensification”, a key objective of sustainable development. In the present work, the properties that the membrane must have to obtain this result in a pervaporation reactor are analyzed and discussed. Then, the methods to enhance these properties are investigated for the photocatalytic synthesis of vanillin, which represents a case where the recovery from the reactor of vanillin ...

  17. Comparison of packed bed and fluidized bed membrane reactors for methane reforming

    OpenAIRE

    Gallucci, Fausto; Sint Annaland, van, Martin; Kuipers, J.A.M.

    2009-01-01

    In this work the performance of different membrane reactor concepts, both fluidized bed and packed bed membrane reactors, have been compared for the reforming of methane for the production of ultra-pure hydrogen. Using detailed theoretical models, the required membrane area to reach a given conversion and the prevailing temperature profiles have been compared. The extent of mass and heat transfer limitations in the different reactors have been evaluated, and strategies to decrease (or avoid) ...

  18. Supported Pd-Au Membrane Reactor for Hydrogen Production: Membrane Preparation, Characterization and Testing

    Directory of Open Access Journals (Sweden)

    Adolfo Iulianelli

    2016-05-01

    Full Text Available A supported Pd-Au (Au 7wt% membrane was produced by electroless plating deposition. Permeation tests were performed with pure gas (H2, H2, N2, CO2, CH4 for long time operation. After around 400 h under testing, the composite Pd-Au membrane achieved steady state condition, with an H2/N2 ideal selectivity of around 500 at 420 °C and 50 kPa as transmembrane pressure, remaining stable up to 1100 h under operation. Afterwards, the membrane was allocated in a membrane reactor module for methane steam reforming reaction tests. As a preliminary application, at 420 °C, 300 kPa of reaction pressure, space velocity of 4100 h−1, 40% methane conversion and 35% hydrogen recovery were reached using a commercial Ni/Al2O3 catalyst. Unfortunately, a severe coke deposition affected irreversibly the composite membrane, determining the loss of the hydrogen permeation characteristics of the supported Pd-Au membrane.

  19. Determination of optimum rotational speed of heterogeneous catalytic reactor using computational fluid dynamic

    Directory of Open Access Journals (Sweden)

    Rungrote Kokoo

    2008-09-01

    Full Text Available Solid suspension in a stirrer tank reactor is relevant in many chemical process industries. For a heterogeneous catalyticreactor, the degree of solid suspension is a crucial parameter in the design and scaling-up processes. The suspension of solid catalysts at a minimum impeller speed can reduce the operating cost of processes. To ensure optimum conditions for suspension, a 3D simulation technique by Computational Fluid Dynamic (CFD was used to study flow characteristics in a heterogeneous catalytic reactor. A case study of a 200 milliliter cylindrical reactor was modeled together with equipped parts, i.e. a sampling port, 2 baffles, one thermocouple and a mechanical stirrer. The results show that the total velocity increases from the impeller’s center to the impeller’s tip and decreases from the impeller’s tip to the side wall of the reactor. The vertical velocity at the bottom of the impellers directs flow upward while the velocity at the top directs flow downward. These simulations provide a good preview of solid suspension without doing experiments. It is recommended that the vertical velocity at thebottom of the reactor is in the range between minimum fluidization velocity and terminal velocity to ensure solid suspension inthe system.

  20. Performance of an oxygen-permeable membrane reactor for partial oxidation of methane in coke oven gas to syngas

    Energy Technology Data Exchange (ETDEWEB)

    Yuwen Zhang; Jiao Liu; Weizhong Ding; Xionggang Lu [Shanghai University, Shanghai (China). Shanghai Key Laboratory of Modern Metallurgy & Materials Processing

    2011-01-15

    Perovskite-type oxygen-permeable membrane reactors of BaCo{sub 0.7}Fe{sub 0.2}Nb{sub 0.1}O{sub 3-delta} packed with Ni-based catalyst had high oxygen permeability and could be used for syngas production by partial oxidation of methane in coke oven gas (COG). The BCFNO membrane itself had a poor catalytic activity to partial oxidation of CH{sub 4} in COG. After the catalyst was packed on the membrane surface, 92% of methane conversion, 90% of H{sub 2} selectivity, 104% of CO selectivity and as high as 15 ml/cm{sup 2}/min of oxygen permeation flux were obtained at 1148 K. During continuously operating for 550 h at 1148 K, no degradation of performance of the BCFNO membrane reactor was observed under the condition of hydrogen-rich COG. The possible reaction pathways were proposed to be an oxidation-reforming process. The oxidation of H{sub 2} in COG with the surface oxygen on the permeation side improves the oxygen flux through the membrane, and H{sub 2}O reacts with CH{sub 4} by reforming reactions to form H{sub 2} and CO. 29 refs., 7 figs., 1 tab.

  1. Catalytic reactor

    NARCIS (Netherlands)

    Sie, S.T.; Cybulski, A.; Moulijn, J.A.

    2000-01-01

    PCT No. PCT/NL93/00231 Sec. 371 Date Jul. 21, 1995 Sec. 102(e) Date Jul. 21, 1995 PCT Filed Nov. 4, 1993 PCT Pub. No. WO94/09901 PCT Pub. Date May 11, 1994There is described a catalyst element (1) consisting of an integral whole having channels (2) extending therethrough. These channels (2) have, in

  2. Catalytic hydrocracking of primary maceral concentrate extracts prepared in a flowing solvent reactor

    Energy Technology Data Exchange (ETDEWEB)

    Begon, V.; Suelves, I.; Li, W.; Lazaro, M.-J.; Herod, A.A.; Kandiyoti, R. [Imperial College, London (United Kingdom). Dept. of Chemical Engineering and Chemical Technology

    2002-01-01

    Differences between the behaviour of coal macerals during liquefaction and catalytic hydrocracking were investigated. The liquefaction experiments were carried out in tetralin, using a flowing solvent reactor. The extracts were catalytically hydrocracked in a micro-bomb reactor, using a commercial catalyst. Conversions of the vitrinite and the liptinite concentrates during liquefaction were high ({approximately} 89%), while inertinite samples yielded a little over 20% extract. For inertinite, the emerging picture was consistent with high cross-link density. Liptinite was extracted less completely at lower temperatures and more slowly at high temperatures compared to corresponding vitrinites and vitrinitic coals. Long chain aliphatics released from the liptinite concentrate between 340 and 390{sup o}C appeared likely to have originated in lower molecular mass material occluded in the sample matrix and dissolving in tetralin prior to the onset of massive covalent bond scission. SEC chromatograms showed material of larger MMs in liptinite and vitrinite extracts than in the inertinite extract. The molecular mass distributions broadened with increasing extraction temperature. Catalytic hydrocracking experiments were carried out in a micro-bomb reactor for 10 and 120 min at 440{sup o}C, under 190 bar of hydrogen. In hydrocracking, the liptinite was the slowest extract to react at short reaction times ({approximately} 10 min). However, at longer reaction times, its products showed the smallest MM-distribution. Smaller differences were observed between the chromatograms of the 10 and 120 min hydrocracked products of the inertinite extract. Differences between spectra of the three extracts would strongly suggest the presence of larger (and apparently irreducible) polycyclic aromatic ring systems, in the hydrocracked products of the inertinite extract. 52 refs., 14 figs., 2 tabs.

  3. MATHEMATICAL MODELLING OF METHANE STEAM REFORMING IN A MEMBRANE REACTOR: AN ISOTHERMIC MODEL

    Directory of Open Access Journals (Sweden)

    E.M. ASSAF

    1998-06-01

    Full Text Available A mathematical modelling of one-dimensional, stationary and isothermic membrane reactor for methane steam reforming was developed to compare the maximum yield for methane conversion in this reactor with that in a conventional fixed-bed reactor. Fick's first law was used to describe the mechanism of hydrogen permeation. The variables studied include: reaction temperature, hydrogen feed flow rate and membrane thickness. The results show that the membrane reactor presents a higher methane conversion yield than the conventional fixed-bed reactor.

  4. Water Gas Shift Reaction with A Single Stage Low Temperature Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ciora, Richard J [Media and Process Technology Inc., Pittsburgh, PA (United States); Liu, Paul KT [Media and Process Technology Inc., Pittsburgh, PA (United States)

    2013-12-31

    Palladium membrane and Palladium membrane reactor were developed under this project for hydrogen separation and purification for fuel cell applications. A full-scale membrane reactor was designed, constructed and evaluated for the reformate produced from a commercial scale methanol reformer. In addition, the Pd membrane and module developed from this project was successfully evaluated in the field for hydrogen purification for commercial fuel cell applications.

  5. Towards application of palladium membrane reactors in large scale production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Delft, Y.C.; Saric, M.; Overbeek, J.P.; De Groot, A.; Dijkstra, J.W.; Jansen, D. [ECN Hydrogen and Clean Fossil Fuels, Petten (Netherlands)

    2009-12-15

    Palladium membrane reactors have been identified as a promising option for hydrogen production in future power production systems and industrial chemical production processes. Dense tubular Pd alloy membranes with a high hydrogen permeance have been made on ceramic supports with electroless plating on a 1m{sup 2} scale. Application of a Pd membrane and a commercial catalyst in membrane reactor experiments have shown that it is possible to shift the methane conversion beyond chemical equilibrium by means of hydrogen withdrawal. A computer model of the palladium membrane reformer was developed and has been successfully used to evaluate the impact of main operating and design parameters on the reactor performance.

  6. Comparative catalytic activity of PET track-etched membranes with embedded silver and gold nanotubes

    Science.gov (United States)

    Mashentseva, Anastassiya; Borgekov, Daryn; Kislitsin, Sergey; Zdorovets, Maxim; Migunova, Anastassiya

    2015-12-01

    Irradiated by heavy ions nanoporous polyethylene terephthalate track-etched membranes (PET TeMs) after +15Kr84 ions bombardment (1.75 MeV/nucl with the ion fluency of 1 × 109 cm-2) and sequential etching was applied in this research as a template for development of composites with catalytically enriched properties. A highly ordered silver and gold nanotubes arrays were embedded in 100 nm pores of PET TeMs via electroless deposition technique at 4 °C during 1 h. All "as-prepared" composites were examined for catalytic activity using reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride as a common reaction to test metallic nanostructures catalysts. The effect of temperature on the catalytic activity was investigated in range of 292-313 K and activation energy were calculated. Kapp of Ag/PET composites linearly increase with an increase of the temperature thus normal Arrhenius behavior have been seen and the activation energy was calculated to be 42.13 kJ/mol. Au/PET composites exhibit not only more powerful catalytic activity but also non-linear dependence of rate constant from temperature. Kapp increased with increasing temperature throughout the 292-308 K temperature range; the reaction had an activation energy 65.32 kJ/mol. In range 311-313 K rate constant dramatically decreased and the apparent activation energy at this temperature rang was -91.44 kJ/mol due some structural changes, i.e. agglomeration of Au nanoparticles on the surface of composite.

  7. Membrane steam reforming of natural gas for hydrogen production by utilization of medium temperature nuclear reactor

    International Nuclear Information System (INIS)

    The assessment of steam reforming process with membrane reactor for hydrogen production by utilizing of medium temperature nuclear reactor has been carried out. Difference with the conventional process of natural gas steam reforming that operates at high temperature (800-1000°C), the process with membrane reactor operates at lower temperature (~500°C). This condition is possible because the use of perm-selective membrane that separate product simultaneously in reactor, drive the optimum conversion at the lower temperature. Besides that, membrane reactor also acts the role of separation unit, so the plant will be more compact. From the point of nuclear heat utilization, the low temperature of process opens the chance of medium temperature nuclear reactor utilization as heat source. Couple the medium temperature nuclear reactor with the process give the advantage from the point of saving fossil fuel that give direct implication of decreasing green house gas emission. (author)

  8. Food industrial wastewater reuse by membrane bio-reactor

    Directory of Open Access Journals (Sweden)

    Patthanant Natpinit

    2007-11-01

    Full Text Available The objective of this investigation was to study the possibility and performance of treating food industrial wastewater by Membrane BioReactor (MBR. In addition, the effluent of MBR was treated by Reverse Osmosis system (RO to reuse in boiler or cooling tower. The membranes of hollow fiber type were filled in the aerobic tank with aerobe bacteria. The total area of membrane 6 units was 630 m2 so the flux of the operation was 0.25 m/d or 150 m3/d. The spiral wound RO was operated at 100 m3/d of influent and received 72 m3/d of permeate. The sludge volume (MLSS of MBR was maintained at 8,000-10,000 mg/l. The average COD and SS of MBR influent were 600 mg/l and 300 mg/l respectively. After treating by MBR, COD and SS of effluent were maintained at less than 100 mg/l and less than 10 mg/l respectively. In the same way, COD and SS of RO permeate were less than 10 mg/l and less than 5 mg/l respectively.

  9. Carbon dioxide (hydrogen sulfide) membrane separations and WGS membrane reactor modeling for fuel cells

    Science.gov (United States)

    Huang, Jin

    Acid-gas removal is of great importance in many environmental or energy-related processes. Compared to current commercial technologies, membrane-based CO2 and H2S capture has the advantages of low energy consumption, low weight and space requirement, simplicity of installation/operation, and high process flexibility. However, the large-scale application of the membrane separation technology is limited by the relatively low transport properties. In this study, CO2 (H2S)-selective polymeric membranes with high permeability and high selectivity have been studied based on the facilitated transport mechanism. The membrane showed facilitated effect for both CO2 and H2S. A CO2 permeability of above 2000 Barrers, a CO2/H2 selectivity of greater than 40, and a CO2/N2 selectivity of greater than 200 at 100--150°C were observed. As a result of higher reaction rate and smaller diffusing compound, the H2S permeability and H2S/H2 selectivity were about three times higher than those properties for CO2. The novel CO2-selective membrane has been applied to capture CO 2 from flue gas and natural gas. In the CO2 capture experiments from a gas mixture with N2 and H2, a permeate CO 2 dry concentration of greater than 98% was obtained by using steam as the sweep gas. In CO2/CH4 separation, decent CO 2 transport properties were obtained with a feed pressure up to 500 psia. With the thin-film composite membrane structure, significant increase on the CO2 flux was achieved with the decrease of the selective layer thickness. With the continuous removal of CO2, CO2-selective water-gas-shift (WGS) membrane reactor is a promising approach to enhance CO conversion and increase the purity of H2 at process pressure under relatively low temperature. The simultaneous reaction and transport process in the countercurrent WGS membrane reactor was simulated by using a one-dimensional non-isothermal model. The modeling results show that a CO concentration of less than 10 ppm and a H2 recovery of greater

  10. Membrane pumping technology for helium and hydrogen isotope separation in the fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pistunovich, V.I. [Kurchatov Inst., Moscow (Russian Federation). NFI RRC; Pigarov, A.Yu. [Kurchatov Inst., Moscow (Russian Federation). NFI RRC; Busnyuk, A.O. [Bonch-Bruyevich University, St. Petersburg (Russian Federation); Livshits, A.I. [Bonch-Bruyevich University, St. Petersburg (Russian Federation); Notkin, M.E. [Bonch-Bruyevich University, St. Petersburg (Russian Federation); Samartsev, A.A. [Bonch-Bruyevich University, St. Petersburg (Russian Federation); Borisenko, K.L. [Efremov Institute, St. Petersburg (Russian Federation); Darmogray, V.V. [Efremov Institute, St. Petersburg (Russian Federation); Ershov, B.D. [Efremov Institute, St. Petersburg (Russian Federation); Filippova, L.V. [Efremov Institute, St. Petersburg (Russian Federation); Mudugin, B.G. [Efremov Institute, St. Petersburg (Russian Federation); Odintsov, V.N. [Efremov Institute, St. Petersburg (Russian Federation); Saksagansky, G.L. [Efremov Institute, St. Petersburg (Russian Federation); Serebrennikov, D.V. [Efremov Institute, St. Petersburg (Russian Federation)

    1995-03-01

    A gas pumping system for ITER, improved by implementation of superpermeable membranes for selective hydrogen isotope exhaust, is considered. A study of the pumping capability of a niobium membrane for a hydrogen-helium mixture has been performed.Monte Carlo simulations of gas behaviour for the experimental facility and fusion reactor have been done.The scheme of the ITER pumping system with the membranes and membrane pumping technology was considered. The conceptual study the membrane pump for the ITER was done. This work gives good prospects for the membrane pumping use in ITER to reduce the total inventory of tritium necessary for reactor operation. (orig.).

  11. Improved catalytic performance of Ni catalysts for steam methane reforming in a micro-channel reactor

    Institute of Scientific and Technical Information of China (English)

    Bozhao Chu; Nian Zhang; Xuli Zhai; Xin Chen; Yi Cheng

    2014-01-01

    Milliseconds process to produce hydrogen by steam methane reforming (SMR) reaction, based on Ni catalyst rather than noble catalyst such as Pd, Rh or Ru, in micro-channel reactors has been paid more and more attentions in recent years. This work aimed to further improve the catalytic performance of nickel-based catalyst by the introduction of additives, i.e., MgO and FeO, prepared by impregnation method on the micro-channels made of metal-ceramic complex substrate. The prepared catalysts were tested in the same micro-channel reactor by switching the catalyst plates. The results showed that among the tested catalysts Ni-Mg catalyst had the highest activity, especially under harsh conditions, i.e., at high space velocity and/or low reaction temperature. Moreover, the catalyst activity and selectivity were stable during the 12 h on stream test even when the ratio of steam to carbon (S/C) was as low as 1.0. The addition of MgO promoted the active Ni species to have a good dispersion on the substrate, leading to a better catalytic performance for SMR reaction.

  12. Methane Conversion to C2 Hydrocarbons in Solid State Oxide Electrolyte Membrane Reactor

    Institute of Scientific and Technical Information of China (English)

    LI Jun; ZHAO Ling; ZHU Zhong-nan; XI Dan-li

    2005-01-01

    Provskite-type catalysts, Ln0.6 Sr0.4 FexCo1-x O3 (Ln = Nd,Pr, Gd, Sm, La, 0<x<1) and Ln0.8Na0.2CoO3(Ln= La,Gd, Sm) were synthesized, their catalytic properties in the oxidative coupling of methane (OCM) were examined in a fixed-bed reactor. The former group presented higher activity in the OCM, but the main product was carbon dioxide. While the later group showed lower activity but much higher selectivity to C2 hydrocarbons compared with the former. Electrochemical measurements were conducted in a solid oxide membrane reactor with La0.8 Na0.2CoO3 as catalyst. The results showed that methane was oxidized to carbon dioxide and ethane by two parallel reactions. Ethane was oxidized to ethene and carbon dioxide. A fraction of ethene was oxidized deeply to carbon dioxide. The total selectivity to C2 hydrocarbons exceeded 70%. Based on the experimental results, a kinetic model was suggested to describe the reaction results.

  13. Electrocatalytic oxidation of n-propanol to produce propionic acid using an electrocatalytic membrane reactor.

    Science.gov (United States)

    Li, Jiao; Li, Jianxin; Wang, Hong; Cheng, Bowen; He, Benqiao; Yan, Feng; Yang, Yang; Guo, Wenshan; Ngo, Huu Hao

    2013-05-18

    An electrocatalytic membrane reactor assembled using a nano-MnO2 loading microporous Ti membrane as an anode and a tubular stainless steel as a cathode was used to oxidize n-propanol to produce propionic acid. The high efficiency and selectivity obtained is related to the synergistic effect between the reaction and separation in the reactor. PMID:23572114

  14. Noncatalytic hydrogenation of decene-1 with hydrogen accumulated in a hybrid carbon nanostructure in nanosized membrane reactors

    Science.gov (United States)

    Soldatov, A. P.

    2014-08-01

    Studies on the creation of nanosized membrane reactors (NMRs) of a new generation with accumulated hydrogen and a regulated volume of reaction zone were continued at the next stage. Hydrogenation was performed in the pores of ceramic membranes with hydrogen preliminarily adsorbed in mono- and multilayered orientated carbon nanotubes with graphene walls (OCNTGs)—a new hybrid carbon nanostructure formed on the inner pore surface. Quantitative determination of hydrogen adsorption in OCNTGs was performed using TRUMEM ultrafiltration membranes with D av = 50 and 90 nm and showed that hydrogen adsorption was up to ˜1.5% of the mass of OCNTG. The instrumentation and procedure for noncatalytic hydrogenation of decene-1 at 250-350°C using hydrogen accumulated and stored in OCNTG were developed. The conversion of decene-1 into decane was ˜0.2-1.8% at hydrogenation temperatures of 250 and 350°C, respectively. The rate constants and activation energy of hydrogenation were determined. The latter was found to be 94.5 kJ/mol, which is much smaller than the values typical for noncatalytic hydrogenations and very close to the values characteristic for catalytic reactions. The quantitative distribution of the reacting compounds in each pore regarded as a nanosized membrane reactor was determined. The activity of hydrogen adsorbed in a 2D carbon nanostructure was evaluated. Possible mechanisms of noncatalytic hydrogenation were discussed.

  15. Nuclear power plant laundry drain treatment using membrane bio reactor

    International Nuclear Information System (INIS)

    In nuclear power plant, the radioactive effluent generated by washing the clothes worn in controlled area and the hand and shower water used at the controlled area are treated in laundry drain treatment system. Although various systems which treat such liquid waste preexist, the traditional treatment system has disadvantages such as high running cost and a large amount of secondary waste generation. To solve these matters, we have considered application of an activated sludge system, membrane bio reactor, which has been practically used in general industry. For nuclear power plant, the activated sludge system has been developed, tested in its adaptability and the adequacy has been proved. Some preexisting treatment systems have been replaced with this activated sludge system for the first time in a domestic nuclear power plant, and the renewal system is now in operation. The result is reported. (author)

  16. EVALUATING HYDROGEN PRODUCTION IN BIOGAS REFORMING IN A MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    F. S. A. Silva

    2015-03-01

    Full Text Available Abstract Syngas and hydrogen production by methane reforming of a biogas (CH4/CO2 = 2.85 using carbon dioxide was evaluated in a fixed bed reactor with a Pd-Ag membrane in the presence of a nickel catalyst (Ni 3.31% weight/γ-Al2O3 at 773 K, 823 K, and 873 K and 1.01×105 Pa. Operation with hydrogen permeation at 873 K increased the methane conversion to approximately 83% and doubled the hydrogen yield relative to operation without hydrogen permeation. A mathematical model was formulated to predict the evolution of the effluent concentrations. Predictions based on the model showed similar evolutions for yields of hydrogen and carbon monoxide at temperatures below 823 K for operations with and without the hydrogen permeation. The hydrogen yield reached approximately 21% at 823 K and 47% at 873 K under hydrogen permeation conditions.

  17. Les réacteurs à membranes : possibilités d'application dans l'industrie pétrolière et pétrochimique Membrane Reactors: Possibilities of Application in the Petroleum and Petrochemical Industry

    Directory of Open Access Journals (Sweden)

    Guy C.

    2006-11-01

    Full Text Available Cet article fait le point sur l'état de la recherche dans le domaine des réacteurs chimiques avec séparation par membrane intégrée et de leur applications dans le domaine du raffinage et de la pétrochimie. Trois applications potentiellement intéressantes sont identifiées et, pour chacune, les avantages de l'utilisation d'un réacteur à membrane sont discutés. Ce sont : la déshydrogénation du propane en propylène, la déshydrogénation d'un naphtène cyclohexanique et le vaporéformage du gaz naturel. Pour ces réactions, les membranes à base de palladium apparaissent les plus performantes compte tenu de leur tenue en température, de leur sélectivité et de leur perméabilité à l'hydrogène. Quelques éléments relatifs à leur développement sont présentés en conclusion. Recently, the use of membrane in reaction engineering has been more and more advocated. The selective separation of the products from the reaction mixture allows to achieve higher conversion or better selectivity or to operate under less severe conditions or with smaller units. This paper presents an update on the recent advances in the field of chemical membrane reactors and on their applications in refining and petrochemistry. Previous work. Most of the possible applications of membrane reactors in petroleum and petrochemical industry concern gaseous catalytic reactions. For this reason, gas permeation membranes are the primary component of membrane reactors. Gas permeation membranes present different types of physical structure : dense, microporous or asymmetric which is a combination of the two. Separating properties of dense membranes are function of the solubility and diffusivity of each gaseous component in the membrane material. For microporous membranes, they follow four mechanisms : Knudsen diffusion, surface diffusion, capillary condensation or molecular sieving. Although organic polymers are the common constituent of gas permeation membrane, their

  18. CFD Simulation of an Anaerobic Membrane BioReactor (AnMBR) to Treat Industrial Wastewater

    OpenAIRE

    Laura C. Zuluaga; Luz N. Naranjo; Jan Svojitka; Thomas Wintgens; Manuel Rodriguez; Nicolas Ratkovich

    2015-01-01

    A Computational Fluid Dynamics (CFD) simulation has been developed for an Anaerobic Membrane BioReactor (AnMBR) to treat industrial wastewater. As the process consists of a side-stream MBR, two separate simulations were created: (i) reactor and (ii) membrane. Different cases were conducted for each one, so the surrounding temperature and the total suspended solids (TSS) concentration were checked. For the reactor, the most important aspects to consider were the dead zones and the mixing, wher...

  19. Green Fabrication of Ag Coated Polyacrylonitrile Nanofibrous Composite Membrane with High Catalytic Efficiency.

    Science.gov (United States)

    Shen, Lingdi; Yu, Lina; Wang, Min; Wang, Xuefen; Zhu, Meifang; Hsiao, Benjamin S

    2015-07-01

    Ag-coated polyacrylonitrile (PAN) nanofibers have been prepared by a novel, facile and green way that combined electrospinning technique and poly(dopamine)-assisted electroless plating method. Poly(dopamine) (PDOP) was formed by oxidation polymerization of dopamine on the surface of PAN nanofibers to promote the electroless plating of silver. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy and energy dispersive X-ray spectroscopy (EDS) were used to characterize the morphology and structure of Ag/PDOP/PAN nanofibrous composite mem- brane and Ultraviolet-visible (UV-vis) Spectroscopy was used to investigate its catalytic performance. The results indicated that silver clusters composed of face-centred cubic crystal Ag with average crystallite size of about 18 nm were well distributed on the surface of dopamine-modified electrospun PAN nanofibers (PDOP/PAN). The prepared silver coated PDOP/PAN (Ag/PDOP/PAN) nanofibrous composite membrane exhibited an outstanding catalytic performance, and showed good reusabil- ity for completely degradating methylene blue (MB) dyes and reducing o-nitroaniline very quickly, respectively. PMID:26373068

  20. Zeolite Membrane Reactor for Water Gas Shift Reaction for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y.S. [Arizona State Univ., Mesa, AZ (United States)

    2013-01-29

    Gasification of biomass or heavy feedstock to produce hydrogen fuel gas using current technology is costly and energy-intensive. The technology includes water gas shift reaction in two or more reactor stages with inter-cooling to maximize conversion for a given catalyst volume. This project is focused on developing a membrane reactor for efficient conversion of water gas shift reaction to produce a hydrogen stream as a fuel and a carbon dioxide stream suitable for sequestration. The project was focused on synthesizing stable, hydrogen perm-selective MFI zeolite membranes for high temperature hydrogen separation; fabricating tubular MFI zeolite membrane reactor and stable water gas shift catalyst for membrane reactor applications, and identifying experimental conditions for water gas shift reaction in the zeolite membrane reactor that will produce a high purity hydrogen stream. The project has improved understanding of zeolite membrane synthesis, high temperature gas diffusion and separation mechanisms for zeolite membranes, synthesis and properties of sulfur resistant catalysts, fabrication and structure optimization of membrane supports, and fundamentals of coupling reaction with separation in zeolite membrane reactor for water gas shift reaction. Through the fundamental study, the research teams have developed MFI zeolite membranes with good perm-selectivity for hydrogen over carbon dioxide, carbon monoxide and water vapor, and high stability for operation in syngas mixture containing 500 part per million hydrogen sulfide at high temperatures around 500°C. The research teams also developed a sulfur resistant catalyst for water gas shift reaction. Modeling and experimental studies on the zeolite membrane reactor for water gas shift reaction have demonstrated the effective use of the zeolite membrane reactor for production of high purity hydrogen stream.

  1. Optimizing the performance of a membrane bio-electrochemical reactor using an anion exchange membrane for wastewater treatment

    OpenAIRE

    Jian LI; He, Zhen

    2015-01-01

    A membrane bioelectrochemical reactor (MBER) is a system integrating ultrafiltration membranes into microbial fuel cells (MFCs) for energy-efficient wastewater treatment. To improve nitrogen removal, an MBER based on an anion exchange membrane (AEM), the MBER-A, was investigated for treating synthetic solution or actual wastewater during a 200-day operation. The MBER-A significantly improved the removal of total nitrogen to 56.9% with the synthetic solution, compared with 7.6% achieved in the...

  2. Decoloring Methyl Orange under Sunlight by a Photocatalytic Membrane Reactor Based on ZnO Nanoparticles and Polypropylene Macroporous Membrane

    Directory of Open Access Journals (Sweden)

    Bing Hu

    2013-01-01

    Full Text Available Decoloring methyl orange (MeOr under sunlight was conducted in a photocatalytic membrane reactor (PMR. Zinc oxide nanoparticles (ZnO NPs were suspended in the solution or immobilized on the membrane. The membrane was modified by grafting 2-hydroxyethyl methacrylate (HEMA to enhance the adsorption of ZnO NPs on the hydrophobic membrane surface and improve the membrane permeability. The results show that the water fluxes through the modified membranes are higher than that through the unmodified membrane. After introducing ZnO NPs to the membrane, the water fluxes still rise with the immobilization degree of ZnO NPs. For the PMR with ZnO NPs in suspension, the photocatalytic decoloration percent (PDP was over 98.2% after 40 min under sunlight. For the PMR with ZnO NPs immobilized on the membrane, the max of PDP was 74.3% after 6 h under sunlight, and maintained at 72% after repeated uses for five times. These results demonstrate that photocatalytic membrane reactor (PMR based on ZnO NPs and polypropylene macroporous membrane(PPMM could be applied in decoloring dyes.

  3. Integrated Water Gas Shift Membrane Reactors Utilizing Novel, Non Precious Metal Mixed Matrix Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, John

    2013-09-30

    Nanoparticles of zeolitic imidazolate frameworks and other related hybrid materials were prepared by modifying published synthesis procedures by introducing bases, changing stoichiometric ratios, or adjusting reaction conditions. These materials were stable at temperatures >300 °C and were compatible with the polymer matrices used to prepare mixed- matrix membranes (MMMs). MMMs tested at 300 °C exhibited a >30 fold increase in permeability, compared to those measured at 35 °C, while maintaining H{sub 2}/CO{sub 2} selectivity. Measurements at high pressure (up to 30 atm) and high temperature (up to 300 °C) resulted in an increase in gas flux across the membrane with retention of selectivity. No variations in permeability were observed at high pressures at either 35 or 300 °C. CO{sub 2}-induced plasticization was not observed for Matrimid®, VTEC, and PBI polymers or their MMMs at 30 atm and 300 °C. Membrane surface modification by cross-linking with ethanol diamine resulted in an increase in H{sub 2}/CO{sub 2} selectivity at 35 °C. Spectrometric analysis showed that the cross-linking was effective to temperatures <150 °C. At higher temperatures, the cross-linked membranes exhibit a H{sub 2}/CO{sub 2} selectivity similar to the uncross-linked polymer. Performance of the polybenzimidazole (PBI) hollow fibers prepared at Santa Fe Science and Technology (SFST, Inc.) showed increased flux o to a flat PBI membrane. A water-gas shift reactor has been built and currently being optimized for testing under DOE conditions.

  4. Catalytic hydrotreating of middle distillates blends in a fixed-bed pilot reactor

    Energy Technology Data Exchange (ETDEWEB)

    Marroquin-Sanchez, G.; Ancheyta-Juarez, J. [Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 DF Mexico (Mexico)

    2001-02-01

    An experimental study was conducted in a fixed-bed pilot reactor in order to evaluate the effect of catalytic hydrotreating on diesel quality by using feedstocks prepared with different amounts of straight run gas oil, kerosene and jet fuel streams. Experiments were carried out at constant reaction pressure and hydrogen-to-oil ratio of 5.3MPa and 356.2mlml{sup -1}, respectively. The effect of reaction temperature and liquid hourly space velocity were studied in the range of 613-633K and 1.5-2.0h{sup -1}, over a commercial Ni-Mo/{gamma}-Al{sub 2}O{sub 3} catalyst. The experimental information showed that diesel specifications could be reached through single stage hydrotreating of these blends at moderate hydrotreating operating conditions.

  5. Catalytic stepwise nitrate hydrogenation in batch-recycle fixed-bed reactors

    International Nuclear Information System (INIS)

    Pd (1.0 wt.%)-Cu (0.3 wt.%) bimetallic and Pd (1.0 wt.%) monometallic catalysts were synthesized by means of incipient-wetness impregnation technique and deposited on alumina spheres (dp = 1.7 mm). The prepared catalysts were tested at T = 298 K and p(H2) = 1.0 bar in the integrated process of catalytic liquid-phase hydrogenation of aqueous nitrate solutions, in which the denitration step was carried out consecutively in separate, single-flow fixed-bed reactor units operating in a batch-recycle mode. In the first reactor packed with a Pd-Cu bimetallic catalyst, nitrate ions were transformed to nitrites at pH 12.5 with a selectivity as high as 93%; the rest was found in the form of ammonium ions. Liquid-phase nitrite hydrogenation to nitrogen in the second reactor unit packed with a Pd monometallic catalyst was conducted at low pH values of 3.7 and 4.5, respectively. Although these values are well below the pHpzc of examined catalyst (6.1), which assured that the nitrite reduction was carried out over a positively charged catalyst surface, up to 15% (23% in the presence of 5.0 g/l NaCl in the solution) of initial nitrite content was converted to undesired ammonium ions. Since a negligible amount of these species (below 0.5 mg/l) was produced at identical operating conditions over a powdered Pd/γ-Al2O3 catalyst, it is believed that the enhanced production of ammonium ions observed in the second fixed-bed reactor is due to the build-up of pH gradients in liquid-filled pores of spherical catalyst particles. Both Pd-Cu bimetallic and Pd monometallic catalysts were chemically resistant in the investigated range of pH values

  6. Catalytic pyrolysis of miscanthus × giganteus in a spouted bed reactor.

    Science.gov (United States)

    Du, Shoucheng; Sun, Yijia; Gamliel, David P; Valla, Julia A; Bollas, George M

    2014-10-01

    A conical spouted bed reactor was designed and tested for fast catalytic pyrolysis of miscanthus × giganteus over Zeolite Socony Mobil-5 (ZSM-5) catalyst, in the temperature range of 400-600 °C and catalyst to biomass ratios 1:1-5:1. The effect of operating conditions on the lumped product distribution, bio-oil selectivity and gas composition was investigated. In particular, it was shown that higher temperature favors the production of gas and bio-oil aromatics and results in lower solid and liquid yields. Higher catalyst to biomass ratios increased the gas yield, at the expense of liquid and solid products, while enhancing aromatic selectivity. The separate catalytic effects of ZSM-5 catalyst and its Al2O3 support were studied. The support contributes to increased coke/char formation, due to the uncontrolled spatial distribution and activity of its alumina sites. The presence of ZSM-5 zeolite in the catalyst enhanced the production of aromatics due to its proper pore size distribution and activity. PMID:25058293

  7. Modeling of Fischer-Tropsch Synthesis in a Slurry Reactor with Water Permeable Membrane

    Institute of Scientific and Technical Information of China (English)

    Fabiano A. N. Fernandes

    2007-01-01

    Fischer-Tropsch synthesis is an important chemical process for the production of liquid fuels and olefins. In recent years, the abundant availability of natural gas and the increasing demand of olefins, diesel, and waxes have led to a high interest to further develop this process. A mathematical model of a slurry membrane reactor used for syngas polymerization was developed to simulate and compare the maximum yields and operating conditions in the reactor with that in a conventional slurry reactor.The carbon polymerization was studied from a modeling point of view in a slurry reactor with a water permeable membrane and a conventional slurry reactor. Simulation results show that different parameters affect syngas conversion and carbon product distribution, such as the hydrogen to carbon monoxide ratio,and the membrane parameters such as membrane permeance.

  8. CFD Simulation of an Anaerobic Membrane BioReactor (AnMBR to Treat Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Laura C. Zuluaga

    2015-06-01

    Full Text Available A Computational Fluid Dynamics (CFD simulation has been developed for an Anaerobic Membrane BioReactor (AnMBR to treat industrial wastewater. As the process consists of a side-stream MBR, two separate simulations were created: (i reactor and (ii membrane. Different cases were conducted for each one, so the surrounding temperature and the total suspended solids (TSS concentration were checked. For the reactor, the most important aspects to consider were the dead zones and the mixing, whereas for the ceramic membrane, it was the shear stress over the membrane surface. Results show that the reactor's mixing process was adequate and that the membrane presented higher shear stress in the 'triangular' channel.

  9. Optimization of a membrane reactor for hydrogen production with genetic algorithms

    International Nuclear Information System (INIS)

    Full text: Hydrogen is produced via steam reforming of hydrocarbons such as natural gas or methane by using conventional systems. Unfortunately, these systems need at least four different stages, consisting of three reactors and a purification system. Moreover, the steam reforming reaction is an endothermic thermodynamically limited system, meaning that high temperature energy supply is needed for complete conversion. Among different technologies related to production, separation and purification of H2, membrane technologies seem to really play a fundamental role. The specific thermodynamic limits are overcome using the so-called membrane reactors, systems in which both reaction and separation occur simultaneously. The hydrogen is driven across the membrane by the pressure difference, depending on the temperature, pressure and reactor length the methane can be completely converted and consequently very pure hydrogen is produced. A membrane reactor has two components which can be optimized namely, the membrane and the reactor dimensions. This paper presents a study on optimization of membrane reactor for enhancing the overall production. A mathematical heterogeneous model of the reactor was used for optimization of reactor performance. Genetic algorithms were used as powerful methods for optimization of complex problems. (authors)

  10. Pre-Combustion Carbon Dioxide Capture by a New Dual Phase Ceramic-Carbonate Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry

    2014-09-30

    This report documents synthesis, characterization and carbon dioxide permeation and separation properties of a new group of ceramic-carbonate dual-phase membranes and results of a laboratory study on their application for water gas shift reaction with carbon dioxide separation. A series of ceramic-carbonate dual phase membranes with various oxygen ionic or mixed ionic and electronic conducting metal oxide materials in disk, tube, symmetric, and asymmetric geometric configurations was developed. These membranes, with the thickness of 10 μm to 1.5 mm, show CO2 permeance in the range of 0.5-5×10-7 mol·m-2·s-1·Pa-1 in 500-900oC and measured CO2/N2 selectivity of up to 3000. CO2 permeation mechanism and factors that affect CO2 permeation through the dual-phase membranes have been identified. A reliable CO2 permeation model was developed. A robust method was established for the optimization of the microstructures of ceramic-carbonate membranes. The ceramic-carbonate membranes exhibit high stability for high temperature CO2 separations and water gas shift reaction. Water gas shift reaction in the dual-phase membrane reactors was studied by both modeling and experiments. It is found that high temperature syngas water gas shift reaction in tubular ceramic-carbonate dual phase membrane reactor is feasible even without catalyst. The membrane reactor exhibits good CO2 permeation flux, high thermal and chemical stability and high thermal shock resistance. Reaction and separation conditions in the membrane reactor to produce hydrogen of 93% purity and CO2 stream of >95% purity, with 90% CO2 capture have been identified. Integration of the ceramic-carbonate dual-phase membrane reactor with IGCC process for carbon dioxide capture was analyzed. A methodology was developed to identify optimum operation conditions for a membrane tube of given dimensions that would treat coal syngas with targeted performance. The calculation results show that the dual-phase membrane reactor could

  11. Poly-thiosemicarbazide/gold nanoparticles catalytic membrane: In-situ growth of well-dispersed, uniform and stable gold nanoparticles in a polymeric membrane

    KAUST Repository

    De La Parra, Luis Francisco

    2014-11-01

    This work presents a method that achieves the highest loading, published so far, of non-agglomerated and well-distributed gold nanoparticles (AuNPs) inside a polymeric membrane. The method uses poly-thiosemicarbazide (PTSC) as the starting material for fabricating the membranes. This polymer contains one chelate site per monomeric unit, resulting in a high content of adsorption sites. This helps to achieve such high loading without agglomeration, along with the strong interaction of the chelate sites with the metal ions and the fact that they are distributed homogeneously along the membrane structure. The simple and scalable three-step procedure developed in this work resulted in a PTSC membrane containing 33.5 wt.% Au/PTSC in the form of 2.9 nm AuNPs. The membrane demonstrated catalytic activity for the reduction of 4-Nitrophenol (4-NP) to 4-Aminophenol (4-AP). © 2013 Elsevier B.V.

  12. Experimental and Modeling Studies of the Methane Steam Reforming Reaction at High Pressure in a Ceramic Membrane Reactor

    OpenAIRE

    Hacarlioglu, Pelin

    2007-01-01

    This dissertation describes the preparation of a novel inorganic membrane for hydrogen permeation and its application in a membrane reactor for the study of the methane steam reforming reaction. The investigations include both experimental studies of the membrane permeation mechanism and theoretical modeling of mass transfer through the membrane and simulation of the membrane reactor with 1-D and 2-D models. A hydrothermally stable and hydrogen selective membrane composed of silica and a...

  13. Hydrogen production in a zigzag and straight catalytic wall coated micro channel reactor by CFD modeling

    Energy Technology Data Exchange (ETDEWEB)

    Fazeli, Ali; Behnam, Mohsen [Gas Research Division, Research Institute of Petroleum Industry (RIPI), P.O. Box 14665-137, Tehran (Iran)

    2010-09-15

    Hydrogen production from steam reforming of methanol for fuel cell application was modeled in a wall coated micro channel reactor by CFD approach. Heat of steam reforming (SR) was supplied from catalytic total oxidation (TOX) of methanol on Cu/ZnO/Al{sub 2}O{sub 3} catalyst and Heat conducts from TOX to SR zone through Steel divider wall between two channels. Heat integration was compared in zigzag and straight geometry of microreactor by CFD modeling. The model is two dimensional, steady state and containing five zones: TOX fluid, TOX catalyst layer, steel wall of the channel, SR catalyst layer and SR fluid. Set of partial differential equations (PDEs) including x and y momentum balance, continuity, partial mass balances and energy balance was solved by finite volume method. Stiff reaction rates were considered for methanol total oxidation (TOX), methanol steam reforming (SR), water gas shift (WGS) and methanol decomposition (MD) reactions. The results show that zigzag geometry is better than straight one because heat and mass transfer in zigzag reactor are more than straight. Conversion of methanol in zigzag geometry is greater than straight one. In the outlet of zigzag micro channels, carbon monoxide selectivity is less and hydrogen mole fraction is more than straight one. (author)

  14. Recent palladium membrane reactor development at the tritium systems test assembly

    International Nuclear Information System (INIS)

    The palladium membrane reactor (PMR) is proving to be a simple and effective means for recovering hydrogen isotopes from fusion fuel impurities such as methane and water. This device directly combines two techniques which have long been utilized for hydrogen processing, namely catalytic shift reactions and palladium/silver permeators. A proof-of-principle (PMR) has been constructed and tested at the Tritium Systems Test Assembly of Los Alamos National Laboratory. The first tests with this device showed that is was effective for the proposed purpose. Initial work concluded that a nickel catalyst was an appropriate choice for use in a PMR. More detailed testing of the PMR with such a catalyst was performed and reported in other works. It was shown that a nickel catalyst-packed PMR did, indeed, recover hydrogen from water and methane with efficiencies approaching 100% in a single processing pass. These experiments were conducted over an extended period of time and no failure or need for regeneration was encountered. These positive results have prompted further PMR development. Topics addressed include alternate PMR geometries and initial testing of the PMR with tritium. These are the subjects of this paper

  15. Enzymatic hydrolysis of corn stalk in a hollow fiber ultrafiltration membrane reactor

    International Nuclear Information System (INIS)

    A hollow fiber ultrafiltration (UF) membrane reactor was set up to investigate the enzymatic hydrolysis of steam-exploded corn stalk. It was found that the hydrolysis rate, as well as the reducing sugar (RS) yield, could be markedly enhanced in the UF membrane reactor due to the continuous removal of inhibitory products. Compared with traditional batch hydrolysis, the hydrolysis rate and RS yield could increase 200% and 206%, respectively

  16. Phospholipase C-catalyzed sphingomyelin hydrolysis in a membrane reactor for ceramide production

    DEFF Research Database (Denmark)

    Zhang, Long; Liang, Shanshan; Hellgren, Lars; Jonsson, Gunnar Eigil; Xu, Xuebing

    2008-01-01

    A membrane reactor for the production of ceramide through sphingomyelin hydrolysis with phospholipase C from Clostridium perfringens was studied for the first time. Ceramide has raised a large interest as an active component in both pharmaceutical and cosmetic industry. The enzymatic hydrolysis o...... study demonstrated the improved enzyme reusability, the fast immobilization process, the straightforward up-scaling and the combination of the hydrolysis with the product separation in the membrane reactor developed....

  17. Preparation of homochiral cyanohydrins using an enzyme-membrane-reactor

    OpenAIRE

    Bauer, Bernd Uwe

    1996-01-01

    Nowadays, the technical application of synthetic membranes is limited to separation problems, where the membrane simply acts as a high grade filter material. However, mass transfer in biological systems demonstrates that a membrane effectively is able to separate also on a molecular scale. In living cells, this is accomplished through self assembling systems of lipids and proteins. Specific permeation of substrates and bioproducts is done by functional biological membranes. Some aspects of no...

  18. Biotemplating of Luffa cylindrica sponges to self-supporting hierarchical zeolite macrostructures for bio-inspired structured catalytic reactors

    International Nuclear Information System (INIS)

    Biomorphic self-supporting MFI-type zeolite frameworks with hierarchical porosity and complex architecture were prepared using a 2-step (in-situ seeding and secondary crystal growth) hydrothermal synthesis in the presence of a biological template (Luffa sponge), employed as a macroscale sacrificial structure builder. The bio-inspired zeolitic replica inherited the complex spongy morphology and the intricate open-porous architecture of the biotemplate. Moreover, it exhibited reasonable mechanical stability in order to study the applicability of the biomorphic catalyst in a technical catalytic process. A bio-inspired catalytic reactor utilising the self-supporting ZSM-5 scaffold in monolithic configuration was developed in order to test the catalytic performance of the material

  19. Biotemplating of Luffa cylindrica sponges to self-supporting hierarchical zeolite macrostructures for bio-inspired structured catalytic reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zampieri, Alessandro [Institute of Chemical Reaction Engineering, University of Erlangen-Nuremberg, Egerlandstr. 3, 91058 Erlangen (Germany); Mabande, Godwin T.P. [Institute of Chemical Reaction Engineering, University of Erlangen-Nuremberg, Egerlandstr. 3, 91058 Erlangen (Germany); Selvam, Thangaraj [Institute of Chemical Reaction Engineering, University of Erlangen-Nuremberg, Egerlandstr. 3, 91058 Erlangen (Germany); Schwieger, Wilhelm [Institute of Chemical Reaction Engineering, University of Erlangen-Nuremberg, Egerlandstr. 3, 91058 Erlangen (Germany)]. E-mail: Wilhelm.Schwieger@rzmail.uni-erlangen.de; Rudolph, Alexander [Institute of Chemical Reaction Engineering, University of Erlangen-Nuremberg, Egerlandstr. 3, 91058 Erlangen (Germany); Hermann, Ralph [Institute of Chemical Reaction Engineering, University of Erlangen-Nuremberg, Egerlandstr. 3, 91058 Erlangen (Germany); Sieber, Heino [Department of Materials Science III, Glass and Ceramics, University of Erlangen-Nuremberg, Erlangen, Martenstr. 5, 91058 Erlangen (Germany); Greil, Peter [Department of Materials Science III, Glass and Ceramics, University of Erlangen-Nuremberg, Erlangen, Martenstr. 5, 91058 Erlangen (Germany)

    2006-01-15

    Biomorphic self-supporting MFI-type zeolite frameworks with hierarchical porosity and complex architecture were prepared using a 2-step (in-situ seeding and secondary crystal growth) hydrothermal synthesis in the presence of a biological template (Luffa sponge), employed as a macroscale sacrificial structure builder. The bio-inspired zeolitic replica inherited the complex spongy morphology and the intricate open-porous architecture of the biotemplate. Moreover, it exhibited reasonable mechanical stability in order to study the applicability of the biomorphic catalyst in a technical catalytic process. A bio-inspired catalytic reactor utilising the self-supporting ZSM-5 scaffold in monolithic configuration was developed in order to test the catalytic performance of the material.

  20. Non-catalytic alcoholysis process for production of biodiesel fuel by using bubble column reactor

    Science.gov (United States)

    Hagiwara, S.; Nabetani, H.; Nakajima, M.

    2015-04-01

    -edible lipids by use of the SMV reactor has not been examined yet. Therefore, this study aims to investigate the productivity of biodiesel produced from waste vegetable oils using the SMV reactor. Biodiesel fuel is a replacement for diesel as a fuel produced from biomass resources. It is generally produced as a FAME derived from vegetable oil by using alkaline catalyzed alcoholysis process. This alkaline method requires deacidification process prior to the reaction process and the alkaline catalyst removal process after the reaction. Those process increases the total cost of biodiesel fuel production. In order to solve the problems in the conventional alkaline catalyzed alcoholysis process, the authors proposed a non-catalytic alcoholysis process called the Superheated Methanol Vapor (SMV) method with bubble column reactor. So, this study aims to investigate the productivity of biodiesel produced from vegetable oils and other lipids using the SMV method with bubble column reactor.

  1. Current hurdles to the success of high-temperature membrane reactors

    NARCIS (Netherlands)

    Saracco, G.; Versteeg, G.F.; Swaaij, W.P.M. van

    1994-01-01

    High-temperature catalytic processes performed using inorganic membranes have been in recent years a fast growing area of research, which seems to have not yet reached its peak. Chemical engineers, catalysts and materials scientists have addressed this topic from different viewpoints in a common eff

  2. ENHANCEMENT OF EQUILIBRIUMSHIFT IN DEHYDROGENATION REACTIONS USING A NOVEL MEMBRANE REACTOR; FINAL

    International Nuclear Information System (INIS)

    With the advances in new inorganic materials and processing techniques, there has been renewed interest in exploiting the benefits of membranes in many industrial applications. Inorganic and composite membranes are being considered as potential candidates for use in membrane-reactor configuration for effectively increasing reaction rate, selectivity and yield of equilibrium limited reactions. To investigate the usefulness of a palladium-ceramic composite membrane in a membrane reactor-separator configuration, we investigated the dehydrogenation of cyclohexane by equilibrium shift. A two-dimensional pseudo-homogeneous reactor model was developed to study the dehydrogenation of cyclohexane by equilibrium shift in a tubular membrane reactor. Radial diffusion was considered to account for the concentration gradient in the radial direction due to permeation through the membrane. For a dehydrogenation reaction, the feed stream to the reaction side contained cyclohexane and argon, while the separation side used argon as the sweep gas. Equilibrium conversion for dehydrogenation of cyclohexane is 18.7%. The present study showed that 100% conversion could be achieved by equilibrium shift using Pd-ceramic membrane reactor. For a feed containing cyclohexane and argon of 1.64 x 10(sup -6) and 1.0 x 10(sup -3) mol/s, over 98% conversion could be readily achieved. The dehydrogenation of cyclohexane was also experimentally investigated in a palladium-ceramic membrane reactor. The Pd-ceramic membrane was fabricated by electroless deposition of palladium on ceramic substrate. The performance of Pd-ceramic membrane was compared with a commercially available hydrogen-selective ceramic membrane. From limited experimental data it was observed that by appropriate choice of feed flow rate and sweep gas rate, the conversion of cyclohexane to benzene and hydrogen can increased to 56% at atmospheric pressure and 200 C in a Pd-ceramic membrane reactor. In the commercial ceramic membrane

  3. Anaerobic membrane bio-reactors for severe industrial effluents and urban spill waters: The AMBROSIUS project

    OpenAIRE

    van Lier, J B; Ozgun, H.; Ersahin, M.E.; Dereli, R.K.

    2013-01-01

    With growing application experiences from aerobic membrane bioreactors, combination of membrane and anaerobic processes become more and more attractive and feasible. In anaerobic membrane bioreactors (AnMBRs), biomass and particulate organic matter are physically retained inside the reactor, providing optimal conditions for organic matter degradation. AnMBRs offer high quality effluents free of solids and complete retention of biomass, regardless its settling and/or granulation properties. Th...

  4. Experimental study on catalytic steam gasification of municipal solid waste for bioenergy production in a combined fixed bed reactor

    International Nuclear Information System (INIS)

    The catalytic steam gasification of municipal solid waste (MSW) for hydrogen-rich fuel gas production was experimentally investigated in a combined fixed bed reactor using the newly developed tri-metallic catalyst. The results indicated that the supported tri-metallic catalyst had a high activity of cracking tar and hydrocarbons, upgrading the gas quality, as well as yielding a high hydrogen production in catalytic steam gasification of municipal solid waste. A series of experiments have been performed to explore the effects of catalyst presence, catalyst to MSW mass ratio (C/M), catalytic temperature, steam to MSW ratio (S/M) and MSW particle size on the composition and yield of gasification gases. The experiments demonstrated that temperature was the most important factor in this process; higher temperature contributed to more hydrogen production and gas yield. Varying catalyst to MSW mass ratio (C/M) demonstrated complex effects on gas yield and composition of MSW gasification and an optimal value of 0.5 was found in the present study. Comparing with MSW catalytic gasification, the introduction of steam improved gas quality and yield, the optimal value of S/M was found to be 1.33 under the present operating condition. It was also shown that a smaller particle size was more favorable for gas quality and yield. -- Highlights: ► The catalytic steam gasification of MSW was experimentally investigated in a fixed bed reactor. ► The effects of operating conditions on gas yield and composition of MSW gasification were explored. ► The NiLaFe/γ-Al2O3 catalyst had a high activity of cracking tar and upgrading the gas quality. ► The optimal operating parameters for catalytic steam gasification of MSW were found in this paper.

  5. Comparison of dry reforming of methane in low temperature hybrid plasma-catalytic corona with thermal catalytic reactor over Ni/γ-Al2O3

    Institute of Scientific and Technical Information of China (English)

    Amin Aziznia; Hamid Reza Bozorgzadeh; Naser Seyed-Matin; Morteza Baghalha; Ali Mohamadalizadeh

    2012-01-01

    In the current study,the hybrid effect of a corona discharge and γ-alumina supported Ni catalysts in CO2 reforming of methane is investigated.The study includes both purely catalytic operation in the temperature range of 923-1023 K,and hybrid catalytic-plasma operation of DC corona discharge reactor at room temperature and ambient pressure.The effect of feed flow rate,discharge power and Ni/γ-Al2O3 catalysts are studied.When CH4/CO2 ratio in the feed is 1/2,the syngas of low H2/CO ratio at about 0.56 is obtained,which is a potential feedstock for synthesis of liquid hydrocarbons.Although Ni catalyst is only active above 573 K,presence of Ni catalysts in the cold corona plasma reactor (T≤523 K) shows promising increase in the conversions of methane and carbon dioxide.When Ni catalysts are used in the plasma reaction,H2/CO ratios in the products are slightly modified,selectivity to CO increases whereas fewer by-products such as hydrocarbons and oxygenates are formed.

  6. Development of the Monolith Froth Reactor for Catalytic Wet Oxidation of CELSS Model Wastes

    Science.gov (United States)

    Abraham, Martin; Fisher, John W.

    1995-01-01

    The aqueous phase oxidation of acetic acid, used as a model compound for the treatment of CELSS (Controlled Ecological Life Support System) waste, was carried out in the monolith froth reactor which utilizes two-phase flow in the monolith channels. The catalytic oxidation of acetic acid was carried out over a Pt/Al2O3 catalyst, prepared at The University of Tulsa, at temperatures and pressures below the critical point of water. The effect of externally controllable parameters (temperature, liquid flow rate, distributor plate orifice size, pitch, and catalyst distance from the distributor plate) on the rate of acetic acid oxidation was investigated. Results indicate reaction rate increased with increasing temperature and exhibited a maximum with respect to liquid flow rate. The apparent activation energy calculated from reaction rate data was 99.7 kJ/mol. This value is similar to values reported for the oxidation of acetic acid in other systems and is comparable to intrinsic values calculated for oxidation reactions. The kinetic data were modeled using simple power law kinetics. The effect of "froth" feed system characteristics was also investigated. Results indicate that the reaction rate exhibits a maximum with respect to distributor plate orifice size, pitch, and catalyst distance from the distributor plate. Fundamental results obtained were used to extrapolate where the complete removal of acetic acid would be obtained and for the design and operation of a full scale CELSS treatment system.

  7. The ISS Water Processor Catalytic Reactor as a Post Processor for Advanced Water Reclamation Systems

    Science.gov (United States)

    Nalette, Tim; Snowdon, Doug; Pickering, Karen D.; Callahan, Michael

    2007-01-01

    Advanced water processors being developed for NASA s Exploration Initiative rely on phase change technologies and/or biological processes as the primary means of water reclamation. As a result of the phase change, volatile compounds will also be transported into the distillate product stream. The catalytic reactor assembly used in the International Space Station (ISS) water processor assembly, referred to as Volatile Removal Assembly (VRA), has demonstrated high efficiency oxidation of many of these volatile contaminants, such as low molecular weight alcohols and acetic acid, and is considered a viable post treatment system for all advanced water processors. To support this investigation, two ersatz solutions were defined to be used for further evaluation of the VRA. The first solution was developed as part of an internal research and development project at Hamilton Sundstrand (HS) and is based primarily on ISS experience related to the development of the VRA. The second ersatz solution was defined by NASA in support of a study contract to Hamilton Sundstrand to evaluate the VRA as a potential post processor for the Cascade Distillation system being developed by Honeywell. This second ersatz solution contains several low molecular weight alcohols, organic acids, and several inorganic species. A range of residence times, oxygen concentrations and operating temperatures have been studied with both ersatz solutions to provide addition performance capability of the VRA catalyst.

  8. In Situ and ex Situ Catalytic Pyrolysis of Pine in a Bench-Scale Fluidized Bed Reactor System

    Energy Technology Data Exchange (ETDEWEB)

    Iisa, Kristiina; French, Richard J.; Orton, Kellene A.; Yung, Matthew M.; Johnson, David K.; ten Dam, Jeroen; Watson, Michael J.; Nimlos, Mark R.

    2016-03-17

    In situ and ex situ catalytic pyrolysis were compared in a system with two 2-in. bubbling fluidized bed reactors. Pine was pyrolyzed in the system with a catalyst, HZSM-5 with a silica-to-alumina ratio of 30, placed either in the first (pyrolysis) reactor or the second (upgrading) reactor. Both the pyrolysis and upgrading temperatures were 500 degrees C, and the weight hourly space velocity was 1.1 h-1. Five catalytic cycles were completed in each experiment. The catalytic cycles were continued until oxygenates in the vapors became dominant. The catalyst was then oxidized, after which a new catalytic cycle was begun. The in situ configuration gave slightly higher oil yield but also higher oxygen content than the ex situ configuration, which indicates that the catalyst deactivated faster in the in situ configuration than the ex situ configuration. Analysis of the spent catalysts confirmed higher accumulation of metals in the in situ experiment. In all experiments, the organic oil mass yields varied between 14 and 17% and the carbon efficiencies between 20 and 25%. The organic oxygen concentrations in the oils were 16-18%, which represented a 45% reduction compared to corresponding noncatalytic pyrolysis oils prepared in the same fluidized bed reactor system. GC/MS analysis showed the oils to contain one- to four-ring aromatic hydrocarbons and a variety of oxygenates (phenols, furans, benzofurans, methoxyphenols, naphthalenols, indenols). High fractions of oxygen were rejected as water, CO, and CO2, which indicates the importance of dehydration, decarbonylation, and decarboxylation reactions. Light gases were the major sources of carbon losses, followed by char and coke.

  9. The catalytic hydrogenation of 2,4-dinitrotoluene in a continuous stirred three-phase slurry reactor with an evaporting solvent

    OpenAIRE

    Westerterp, K.R.; Janssen, H.J.; Kwast, van der, J.

    1992-01-01

    An experimental study of the catalytic hydorgenation of 2,4-dinitrotoluene (DNT) in a mini-installation with a continuously operated stirred three-phase slurry reactor and an evaporating solvent is discussed. Some characteristic properties of the reactor system and the influence of the operating parameters on the performance of the reactor are illustrated. The experimental results are compared with the predictions based on a mathematical model of the reactor system. The results indicated that...

  10. Bipolar membranes in forward bias region for fuel cell reactors

    International Nuclear Information System (INIS)

    Three bipolar membranes, two home-made composed of commercial cation (DuPont) and anion (FuMA-Tech) exchange membranes (called Nafion/FT-FAA and Nafion/FT-FAS) and a commercial one, BP-1 from FuMA-Tech, were investigated in order to characterize their suitability to use in a H2/O2 fuel cell intended to produce hydrogen peroxide on the cathode instead of water. The Nafion/FT-FAA and Nafion/FT-FAS membranes were prepared using a hot-pressing method. The optimal hot-pressing conditions were determined by measuring the ionic conductivity of the membranes. The latter was observed to depend on the relative humidity of the bipolar membrane. Of the studied bipolar membranes, Nafion/FT-FAA showed the best performance. The transport number of protons measured in a concentration cell was observed to depend on the direction of the proton diffusion flux through these membranes so that transport numbers of ca. unity were obtained when the cation exchange side faced the solution with higher proton concentration. In the opposite case, when the higher concentration faced anion exchange side, the transport number of proton was clearly lower, indicating the usefulness of the bipolar membranes for hydrogen peroxide production in the fuel cell

  11. Filtration behavior of casein glycomacropeptide (CGMP) in an enzymatic membrane reactor: fouling control by membrane selection and threshold flux operation

    DEFF Research Database (Denmark)

    Luo, Jianquan; Morthensen, Sofie Thage; Meyer, Anne S.;

    2014-01-01

    . In this study, the filtration performance and fouling behavior during ultrafiltration (UF) of CGMP for the enzymatic production of 3′-sialyllactose were investigated. A 5kDa regenerated cellulose membrane with high anti-fouling performance, could retain CGMP well, permeate 3′-sialyllactose, and was found......Sialylated human milk oligosaccharides (HMOs) can be produced by enzymatic trans-sialidation using casein glycomacropeptide (CGMP) as the substrate. By performing the reaction in an enzymatic membrane reactor (EMR), simultaneous separation of the HMOs from CGMP and enzyme reuse can be achieved...... to be the most suitable membrane for this application. Low pH increased CGMP retention but produced more fouling. Higher agitation and lower CGMP concentration induced larger permeate flux and higher CGMP retention. Adsorption fouling and pore blocking by CGMP in/on membranes could be controlled by selecting...

  12. Improvement of membrane performances to enhance the yield of vanillin in a pervaporation reactor.

    Science.gov (United States)

    Camera-Roda, Giovanni; Cardillo, Antonio; Loddo, Vittorio; Palmisano, Leonardo; Parrino, Francesco

    2014-01-01

    In membrane reactors, the interaction of reaction and membrane separation can be exploited to achieve a "process intensification", a key objective of sustainable development. In the present work, the properties that the membrane must have to obtain this result in a pervaporation reactor are analyzed and discussed. Then, the methods to enhance these properties are investigated for the photocatalytic synthesis of vanillin, which represents a case where the recovery from the reactor of vanillin by means of pervaporation while it is produced allows a substantial improvement of the yield, since its further oxidation is thus prevented. To this end, the phenomena that control the permeation of both vanillin and the reactant (ferulic acid) are analyzed, since they ultimately affect the performances of the membrane reactor. The results show that diffusion of the aromatic compounds takes place in the presence of low concentration gradients, so that the process is controlled by other phenomena, in particular by the equilibrium with the vapor at the membrane-permeate interface. On this basis, it is demonstrated that the performances are enhanced by increasing the membrane thickness and/or the temperature, whereas the pH begins to limit the process only at values higher than 6.5. PMID:24957123

  13. Improvement of Membrane Performances to Enhance the Yield of Vanillin in a Pervaporation Reactor

    Directory of Open Access Journals (Sweden)

    Giovanni Camera-Roda

    2014-02-01

    Full Text Available In membrane reactors, the interaction of reaction and membrane separation can be exploited to achieve a “process intensification”, a key objective of sustainable development. In the present work, the properties that the membrane must have to obtain this result in a pervaporation reactor are analyzed and discussed. Then, the methods to enhance these properties are investigated for the photocatalytic synthesis of vanillin, which represents a case where the recovery from the reactor of vanillin by means of pervaporation while it is produced allows a substantial improvement of the yield, since its further oxidation is thus prevented. To this end, the phenomena that control the permeation of both vanillin and the reactant (ferulic acid are analyzed, since they ultimately affect the performances of the membrane reactor. The results show that diffusion of the aromatic compounds takes place in the presence of low concentration gradients, so that the process is controlled by other phenomena, in particular by the equilibrium with the vapor at the membrane-permeate interface. On this basis, it is demonstrated that the performances are enhanced by increasing the membrane thickness and/or the temperature, whereas the pH begins to limit the process only at values higher than 6.5.

  14. Pyrolysis of aseptic packages (tetrapak) in a laboratory screw type reactor and secondary thermal/catalytic tar decomposition

    International Nuclear Information System (INIS)

    Highlights: ► Pyrolysis of aseptic packages was carried out in a laboratory flow reactor. ► Distribution of tetrapak into the product yields was obtained. ► Composition of the pyrolysis products was estimated. ► Secondary thermal and catalytic decomposition of tars was studied. ► Two types of catalysts (dolomite and red clay marked AFRC) were used. - Abstract: Pyrolysis of aseptic packages (tetrapak cartons) in a laboratory apparatus using a flow screw type reactor and a secondary catalytic reactor for tar cracking was studied. The pyrolysis experiments were realized at temperatures ranging from 650 °C to 850 °C aimed at maximizing of the amount of the gas product and reducing its tar content. Distribution of tetrapak into the product yields at different conditions was obtained. The presence of H2, CO, CH4, CO2 and light hydrocarbons, HCx, in the gas product was observed. The Aluminum foil was easily separated from the solid product. The rest part of char was characterized by proximate and elemental analysis and calorimetric measurements. The total organic carbon in the tar product was estimated by elemental analysis of tars. Two types of catalysts (dolomite and red clay marked AFRC) were used for catalytic thermal tar decomposition. Three series of experiments (without catalyst in a secondary cracking reactor, with dolomite and with AFRC) at temperatures of 650, 700, 750, 800 and 850 °C were carried out. Both types of catalysts have significantly affected the content of tars and other components in pyrolytic gases. The effect of catalyst on the tetrapack distribution into the product yield on the composition of gas and on the total organic carbon in the tar product is presented in this work

  15. Pyrolysis of aseptic packages (tetrapak) in a laboratory screw type reactor and secondary thermal/catalytic tar decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Haydary, J., E-mail: juma.haydary@stuba.sk [Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava (Slovakia); Susa, D.; Dudáš, J. [Institute of Chemical and Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava (Slovakia)

    2013-05-15

    Highlights: ► Pyrolysis of aseptic packages was carried out in a laboratory flow reactor. ► Distribution of tetrapak into the product yields was obtained. ► Composition of the pyrolysis products was estimated. ► Secondary thermal and catalytic decomposition of tars was studied. ► Two types of catalysts (dolomite and red clay marked AFRC) were used. - Abstract: Pyrolysis of aseptic packages (tetrapak cartons) in a laboratory apparatus using a flow screw type reactor and a secondary catalytic reactor for tar cracking was studied. The pyrolysis experiments were realized at temperatures ranging from 650 °C to 850 °C aimed at maximizing of the amount of the gas product and reducing its tar content. Distribution of tetrapak into the product yields at different conditions was obtained. The presence of H{sub 2}, CO, CH{sub 4}, CO{sub 2} and light hydrocarbons, HCx, in the gas product was observed. The Aluminum foil was easily separated from the solid product. The rest part of char was characterized by proximate and elemental analysis and calorimetric measurements. The total organic carbon in the tar product was estimated by elemental analysis of tars. Two types of catalysts (dolomite and red clay marked AFRC) were used for catalytic thermal tar decomposition. Three series of experiments (without catalyst in a secondary cracking reactor, with dolomite and with AFRC) at temperatures of 650, 700, 750, 800 and 850 °C were carried out. Both types of catalysts have significantly affected the content of tars and other components in pyrolytic gases. The effect of catalyst on the tetrapack distribution into the product yield on the composition of gas and on the total organic carbon in the tar product is presented in this work.

  16. Microbial community stratification in Membrane-Aerated Biofilm Reactors for Completely Autotrophic Nitrogen Removal

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Ruscalleda, Maël; Terada, Akihiko;

    bacterial granules or biofilms. In this sense, completely autotrophic nitrogen removal from high ammonium strength wastewater was achieved in a Membrane-Aereated Biofilm Reactor (MABR) in a single step. Here, a biofilm containing nitrifiers (Aerobic Ammonium and Nitrite Oxidizing Bacteria, AOB and NOB......Due to the necessity of a source of nitrite, most of the processes involving Anaerobic Ammonium Oxidation (Anammox) are based on a separated two-step process with a previous partial-nitritation reactor. However, these two processes can occur simultaneously in the same reactor by taking advantage of......, respectively) and Anaerobic Ammonium Oxidizing Bacteria (AnAOB) is grown on bubbleless aeration membranes to remove ammonium. Since oxygen permeates through the membrane-biofilm interface while ammonium diffuses into the biofilm from the biofilm-liquid interface, oxygen gradients can be established across the...

  17. Numerical study of the behavior of methane-hydrogen/air pre-mixed flame in a micro reactor equipped with catalytic segmented bluff body

    International Nuclear Information System (INIS)

    In this work, combustion characteristics of premixed methane-hydrogen/air in a micro reactor equipped with a catalytic bluff body is investigated numerically. In this regard, the detailed chemistry schemes for gas phase (homogeneous) and the catalyst surface (heterogeneous) are used. The applied catalytic bluff body is coated with a thin layer of platinum (Pt) on its surface. Also, the lean reactive mixture is entered to the reactor with equivalence ratio 0.9. The results of this study showed that the use of catalytic bluff body in the center of a micro reactor can significantly increase the flame stability, especially at high velocities. Moreover, it is found that a catalytic bluff body with several cavities on its surface and also high thermal conductivity improves the flame stability more than a catalytic bluff body without cavities and low thermal conductivity. Finally, it is maintained that the most advantage of using the catalytic bluff body is its easy manufacturing process as compared to the catalytic wall. This matter seems to be more prevalent when we want to create several cavities with various sizes on the bluff-body. - Highlights: • Presence of a bluff body in a micro reactor can move the flame towards the upstream. • Catalytic bluff body can significantly increase flame stability at high velocities. • Creating non-catalytic cavities on the bluff body promotes homogeneous reactions. • Segmented catalytic bluff body improves the flame stability more than a simple one. • Creating the segments on a bluff body is easier compared to a wall

  18. Prospects and problems of dense oxygen permeable membranes

    DEFF Research Database (Denmark)

    Hendriksen, P.V.; Larsen, P.H.; Mogensen, Mogens Bjerg;

    2000-01-01

    The prospects of using mixed ionic/electronic conducting ceramics for syngas production in a catalytic membrane reactor are analysed. Problems relating to limited thermodynamic stability and poor dimensional stability of candidate materials are addressed, The consequences for these problems...

  19. Partial oxidation of methane to syngas in a mixed-conducting oxygen permeable membrane reactor

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Mixed-conducting oxygen permeable membranes represent a class of novel ceramic membranes, which exhibit mixed oxygen ionic and electronic conductivities. At high temperatures, oxygen can permeate through the membrane from the high to low oxygen pressure side under an oxygen concentration gradient. Theoretically, the permselectivity of oxygen is 100%. Recently, a novel mixed-conducting membrane--Ba0.5Sr0.5Co0.8Fe0.2O3-δ has been developed, which shows extremely high oxygen permeability and promising stability. Furthermore, the reactor made with such membranes was successfully applied to the partial oxidation of methane to syngas reaction using air as the oxygen source, which realized the coupling of the separation of oxygen from air and the partial oxidation of membrane reaction in one process. At 850℃, methane conversion >88%, CO selectivity >97% and oxygen permeation rate of about 7.8 mL/(cm2.min) were obtained.

  20. Oxidative Dehydrogenation of Butane to Butadiene and Butene Using a Novel Inert Membrane Reactor

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The oxidative dehydrogenation of butane to butadiene and butene was studied using a conventional fixed-bed ractor (FBR), inert membrane reactor (IMR) and mixed inert membrane reactor (MIMR). When IMR and MIMR were employed, a ceramic membrane modified by partially coating with glaze was used to distribute oxygen to a fixed-bed of 24-V-Mg-O catalyst. The oxygen partial pressure in the catalyst bed could be decreased. The effect of feeding modes and operation conditions were investigated. The selectivity of C4 dehydrogenation products (butene and butadiene) was found to be higher in IMR than in FBR. The feeding mode with 20% of air mixing with butane in MIMR was found to be more efficient than the feeding mode with all air permeating through ceramic membrane. The MIMR gave the most smooth temperature profile along the bed.

  1. Experimental evaluation of methane dry reforming process on a membrane reactor to hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Fabiano S.A.; Benachour, Mohand; Abreu, Cesar A.M. [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. of Chemical Engineering], Email: f.aruda@yahoo.com.br

    2010-07-01

    In a fixed bed membrane reactor evaluations of methane-carbon dioxide reforming over a Ni/{gamma}- Al{sub 2}O{sub 3} catalyst were performed at 773 K, 823 K and 873 K. A to convert natural gas into syngas a fixed-bed reactor associate with a selective membrane was employed, where the operating procedures allowed to shift the chemical equilibrium of the reaction in the direction of the products of the process. Operations under hydrogen permeation, at 873 K, promoted the increase of methane conversion, circa 83%, and doubled the yield of hydrogen production, when compared with operations where no hydrogen permeation occurred. (author)

  2. THE INFLUENCE OF MIEX® RESIN FOR WATER TREATMENT EFFICIENCYIN A HYBRID MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    Mariola Rajca

    2014-10-01

    Full Text Available The paper presents the results of studies related to the effectiveness of removal of natural organic matter (NOM from water using hybrid membrane reactor in which ion exchange and ultrafiltration processes were performed. MIEX® resin by Orica Watercare and immersed ultrafiltration polyvinylidene fluoride capillary module ZeeWeed 1 (ZW 1 by GE Power&Water operated at negative pressure were used. The application of multifunctional reactor had a positive effect on the removal of contaminants and enabled the production of high quality water. Additionally, in refer to single stage ultrafiltration it minimalized the occurrence of membrane fouling.

  3. Numerical study of methanol–steam reforming and methanol–air catalytic combustion in annulus reactors for hydrogen production

    International Nuclear Information System (INIS)

    Highlights: ► Performance of mini-scale integrated annulus reactors for hydrogen production. ► Flow rates fed to combustor and reformer control the reactor performance. ► Optimum performance is found from balance of flow rates to combustor and reformer. ► Better performance can be found when shell side is designed as combustor. -- Abstract: This study presents the numerical simulation on the performance of mini-scale reactors for hydrogen production coupled with liquid methanol/water vaporizer, methanol/steam reformer, and methanol/air catalytic combustor. These reactors are designed similar to tube-and-shell heat exchangers. The combustor for heat supply is arranged as the tube or shell side. Based on the obtained results, the methanol/air flow rate through the combustor (in terms of gas hourly space velocity of combustor, GHSV-C) and the methanol/water feed rate to the reformer (in terms of gas hourly space velocity of reformer, GHSV-R) control the reactor performance. With higher GHSV-C and lower GHSV-R, higher methanol conversion can be achieved because of higher reaction temperature. However, hydrogen yield is reduced and the carbon monoxide concentration is increased due to the reversed water gas shift reaction. Optimum reactor performance is found using the balance between GHSV-C and GHSV-R. Because of more effective heat transfer characteristics in the vaporizer, it is found that the reactor with combustor arranged as the shell side has better performance compared with the reactor design having the combustor as the tube side under the same operating conditions.

  4. Cellular graphene aerogel combines ultralow weight and high mechanical strength: A highly efficient reactor for catalytic hydrogenation

    Science.gov (United States)

    Zhang, Bingxing; Zhang, Jianling; Sang, Xinxin; Liu, Chengcheng; Luo, Tian; Peng, Li; Han, Buxing; Tan, Xiuniang; Ma, Xue; Wang, Dong; Zhao, Ning

    2016-05-01

    The construction of three-dimensional graphene aerogels (GAs) is of great importance owing to their outstanding properties for various applications. Up to now, the combination of ultralow weight and super mechanical strength for GA remains a great challenge. Here we demonstrate the fabrication of cellular GAs by a facile, easily controlled and versatile route, i.e. the chemical reduction of graphene oxide assemblies at oil-water interface under a mild condition (70 °C). The GA is ultralight (with density resilient because the walls of the cell closely pack in a highly ordered manner to maximize mechanical strength. The GA has been utilized as an appealing reactor for catalytic hydrogenation, which exhibited great advantages such as large oil absorption capability, exceptional catalytic activity, ease of product separation and high stability.

  5. Cellular graphene aerogel combines ultralow weight and high mechanical strength: A highly efficient reactor for catalytic hydrogenation

    Science.gov (United States)

    Zhang, Bingxing; Zhang, Jianling; Sang, Xinxin; Liu, Chengcheng; Luo, Tian; Peng, Li; Han, Buxing; Tan, Xiuniang; Ma, Xue; Wang, Dong; Zhao, Ning

    2016-01-01

    The construction of three-dimensional graphene aerogels (GAs) is of great importance owing to their outstanding properties for various applications. Up to now, the combination of ultralow weight and super mechanical strength for GA remains a great challenge. Here we demonstrate the fabrication of cellular GAs by a facile, easily controlled and versatile route, i.e. the chemical reduction of graphene oxide assemblies at oil-water interface under a mild condition (70 °C). The GA is ultralight (with density <3 mg cm−3) yet mechanically resilient because the walls of the cell closely pack in a highly ordered manner to maximize mechanical strength. The GA has been utilized as an appealing reactor for catalytic hydrogenation, which exhibited great advantages such as large oil absorption capability, exceptional catalytic activity, ease of product separation and high stability. PMID:27174450

  6. Cellular graphene aerogel combines ultralow weight and high mechanical strength: A highly efficient reactor for catalytic hydrogenation.

    Science.gov (United States)

    Zhang, Bingxing; Zhang, Jianling; Sang, Xinxin; Liu, Chengcheng; Luo, Tian; Peng, Li; Han, Buxing; Tan, Xiuniang; Ma, Xue; Wang, Dong; Zhao, Ning

    2016-01-01

    The construction of three-dimensional graphene aerogels (GAs) is of great importance owing to their outstanding properties for various applications. Up to now, the combination of ultralow weight and super mechanical strength for GA remains a great challenge. Here we demonstrate the fabrication of cellular GAs by a facile, easily controlled and versatile route, i.e. the chemical reduction of graphene oxide assemblies at oil-water interface under a mild condition (70 °C). The GA is ultralight (with density <3 mg cm(-3)) yet mechanically resilient because the walls of the cell closely pack in a highly ordered manner to maximize mechanical strength. The GA has been utilized as an appealing reactor for catalytic hydrogenation, which exhibited great advantages such as large oil absorption capability, exceptional catalytic activity, ease of product separation and high stability. PMID:27174450

  7. Pyrolysis of aseptic packages (tetrapak) in a laboratory screw type reactor and secondary thermal/catalytic tar decomposition.

    Science.gov (United States)

    Haydary, J; Susa, D; Dudáš, J

    2013-05-01

    Pyrolysis of aseptic packages (tetrapak cartons) in a laboratory apparatus using a flow screw type reactor and a secondary catalytic reactor for tar cracking was studied. The pyrolysis experiments were realized at temperatures ranging from 650 °C to 850 °C aimed at maximizing of the amount of the gas product and reducing its tar content. Distribution of tetrapak into the product yields at different conditions was obtained. The presence of H2, CO, CH4, CO2 and light hydrocarbons, HCx, in the gas product was observed. The Aluminum foil was easily separated from the solid product. The rest part of char was characterized by proximate and elemental analysis and calorimetric measurements. The total organic carbon in the tar product was estimated by elemental analysis of tars. Two types of catalysts (dolomite and red clay marked AFRC) were used for catalytic thermal tar decomposition. Three series of experiments (without catalyst in a secondary cracking reactor, with dolomite and with AFRC) at temperatures of 650, 700, 750, 800 and 850 °C were carried out. Both types of catalysts have significantly affected the content of tars and other components in pyrolytic gases. The effect of catalyst on the tetrapack distribution into the product yield on the composition of gas and on the total organic carbon in the tar product is presented in this work. PMID:23428565

  8. Comparison of two nanofiltration membrane reactors for a model reaction of olefin metathesis achieved in toluene

    OpenAIRE

    Rabiller-Baudry, Murielle; Nasser, Ghassan; Renouard, Thierry; Delaunay, David; Camus, Martin

    2013-01-01

    The recent commercialisation of nanofiltration membranes resistant toward organic solvents is a real opportunity for fine chemistry. This study deals with different ways of integration of organic solvent nanofiltration for a specific type of reactions known as olefin metathesis and shows the use of two nanofiltration membrane reactors both running in cross-flow filtration mode (0.1 m s- 1). They are used either in semi-continuous or continuous mode. A model ring closing metathesis reaction is...

  9. A Miniature Membrane Reactor for Evaluation of Process Design Options on the Enzymatic Degradation of Pectin

    OpenAIRE

    Zainal Alam, Muhd Nazrul Hisham; Pinelo, Manuel; Arnous, Anis; Jonsson, Gunnar Eigil; Meyer, Anne S.; Gernaey, Krist

    2011-01-01

    The objective of this paper is to assess if a membrane microbioreactor system could potentially be used to diagnose consequences of different process design and reactor operation options relevant for larger-scale enzymatic degradation of pectin reactions. The membrane microbioreactor prototype was fabricated from poly(methylmethacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) with a working volume of ∼190 μL. The prototype also contained the necessary sensors and actuators, i.e., pressure t...

  10. Catalysts with Cerium in a Membrane Reactor for the Removal of Formaldehyde Pollutant from Water Effluents

    OpenAIRE

    Mirella Gutiérrez-Arzaluz; Luis Noreña-Franco; Saúl Ángel-Cuevas; Violeta Mugica-Álvarez; Miguel Torres-Rodríguez

    2016-01-01

    We report the synthesis of cerium oxide, cobalt oxide, mixed cerium, and cobalt oxides and a Ce–Co/Al2O3 membrane, which are employed as catalysts for the catalytic wet oxidation (CWO) reaction process and the removal of formaldehyde from industrial effluents. Formaldehyde is present in numerous waste streams from the chemical industry in a concentration low enough to make its recovery not economically justified but high enough to create an environmental hazard. Common biological degradation ...

  11. Potentialities of a Membrane Reactor with Laccase Grafted Membranes for the Enzymatic Degradation of Phenolic Compounds in Water

    Directory of Open Access Journals (Sweden)

    Vorleak Chea

    2014-10-01

    Full Text Available This paper describes the degradation of phenolic compounds by laccases from Trametes versicolor in an enzymatic membrane reactor (EMR. The enzymatic membranes were prepared by grafting laccase on a gelatine layer previously deposited onto α-alumina tubular membranes. The 2,6-dimethoxyphenol (DMP was selected  from among the three different phenolic compounds tested (guaiacol, 4-chlorophenol and DMP to study the performance of the EMR in dead end configuration. At the lowest feed substrate concentration tested (100 mg·L−1, consumption increased with flux (up to 7.9 × 103 mg·h−1·m−2 at 128 L·h−1·m−2, whereas at the highest substrate concentration (500 mg·L−1, it was shown that the reaction was limited by the oxygen content.

  12. Production of Carbon Nanotubes over Pre-reduced LaCoO3 by Using Fluidized-bed Catalytic Reactor

    Institute of Scientific and Technical Information of China (English)

    刘宝春; 唐水花; 梁奇; 高利珍; 张伯兰; 瞿美臻; 于作龙

    2001-01-01

    A technique has been developed to grow carbon nanotubes by flowing acetylene over pre-reduced LaCoO3 catalyst in a fluidized- bed catalytic reactor. Carbon nanotubes were characterized by means of SEM and TEM. The pre-reduced LaCoO3catalyst was found to be effective in producing carbon nanotubes with even diameter. The effects of reduction temperature of LaCoO3 on the growth of carbon nanotubes were investigated. This process can easily be scaled up.

  13. Membrane support of accelerated fuel capsules for inertial fusion energy reactors

    International Nuclear Information System (INIS)

    The use of a thin membrane to suspend an (inertial fusion energy) fuel capsule in a holder for injection into a reactor chamber is investigated. Capsule displacement and membrane deformation angle are calculated for an axisymmetric geometry for a range of membrane strain and capsule size. This information is used to calculate maximum target accelerations. Membranes must be thin (perhaps of order one micron) to minimize their effect on capsule implosion symmetry. For example, a 5 μm thick cryogenic mylar membrane is calculated to allow 1,000 m/s2 acceleration of a 3 mm radius, 100 mg capsule. Vibration analysis (for a single membrane support) shows that if membrane vibration is not deliberately minimized, allowed acceleration may be reduced by a factor of four. A two membrane alternative geometry would allow several times greater acceleration. Therefore, alternative membrane geometry's should be used to provide greater target acceleration potential and reduce capsule displacement within the holder (for a given membrane thickness)

  14. Methane-steam reforming by molten salt - membrane reactor using concentrated solar thermal energy

    International Nuclear Information System (INIS)

    By utilization of concentrated solar thermal energy for steam reforming of natural gas, which is an endothermic reaction, the chemical energy of natural gas can be up-graded. The chemical system for steam reforming of natural gas with concentrated solar thermal energy was studied to produce hydrogen by using the thermal storage with molten salt and the membrane reactor. The original steam reforming module with hydrogen permeable palladium membrane was developed and fabricated. Steam reforming of methane proceeded with the original module with palladium membrane below the decomposition temperature of molten salt (around 870 K). (authors)

  15. Novel Catalytic Reactor for CO2 Reduction via Sabatier Process Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision Combustion, Inc. (PCI) proposes to develop a novel, efficient, and lightweight catalytic Sabatier CO2 methanation unit, capable of converting a mixture of...

  16. CFD (computational fluid dynamics) analysis of a novel reactor design using ion transport membranes for oxy-fuel combustion

    International Nuclear Information System (INIS)

    Conventional two-channel ITM (ion transport membrane) reactors applied to oxy-combustion, face the potential drawback of high thermal gradients and high local temperatures, which can result in membrane damage. In such reactors, air flows on the feed side and fuel are introduced on the permeate side, where it reacts with the permeated oxygen. In this work, we propose to use a three-channel configuration in which a porous plate is used to separate the permeate stream from the fuel stream, allowing the fuel to diffuse gradually into the permeate side. The gradual combustion of the fuel results in a slow temperature rise and a more spatially uniform temperature distribution along the membrane. We model this three-channel reactor using computational fluid dynamics and compare its performance to a conventional two-channel reactor. It is shown that, indeed, in case of a two-channel reactor, a high temperature zone is concentrated near the inlet, whereas the three-channel reactor produces a milder temperature gradient along the reactor length. The more-uniform heat flux associated with the latter results in a moderate temperature distribution and reduction in the wall shear stress along the channels and the associated pressure drop. The more uniform temperature distribution should be less damaging to the membrane. The reaction zone associated with the gradual fuel diffusion into the sweep side improves the membrane performance by maintaining a more uniform oxygen flux. - Highlights: • A novel concept of 3-channel reactor using ITM (ion transport membrane) is presented. • Comparison of present 3-channel reactor with the conventional 2-channel reactor. • A more spatially uniform temperature is obtained using the 3-channel reactor. • 3-channel reactor produces a milder temperature gradient along the reactor length. • The reaction zone in 3-channel reactor improves the membrane performance

  17. Start-up strategies of membrane-aerated biofilm reactor (MABR) for completely autotrophic nitrogen removal

    DEFF Research Database (Denmark)

    Sun, Sheng-Peng; Pellicer i Nàcher, Carles; Terada, Akihiko;

    2009-01-01

    downside of this process stems from a long start-up period due to the slow growth rate of AnAOB. Therefore, two different start-up strategies, i.e., continuous inoculation of AnAOB and sequential batch inoculation of AOB and AnAOB, were tested in two laboratory scale membrane-aerated biofilm reactor (MABRs...

  18. Fluidized Bed Membrane Reactors for Ultra Pure H₂ Production-A Step forward towards Commercialization.

    Science.gov (United States)

    Helmi, Arash; Fernandez, Ekain; Melendez, Jon; Pacheco Tanaka, David Alfredo; Gallucci, Fausto; van Sint Annaland, Martin

    2016-01-01

    In this research the performance of a fluidized bed membrane reactor for high temperature water gas shift and its long term stability was investigated to provide a proof-of-concept of the new system at lab scale. A demonstration unit with a capacity of 1 Nm³/h of ultra-pure H₂ was designed, built and operated over 900 h of continuous work. Firstly, the performance of the membranes were investigated at different inlet gas compositions and at different temperatures and H₂ partial pressure differences. The membranes showed very high H₂ fluxes (3.89 × 10(-6) mol·m(-2)·Pa(-1)·s(-1) at 400 °C and 1 atm pressure difference) with a H₂/N₂ ideal perm-selectivity (up to 21,000 when integrating five membranes in the module) beyond the DOE 2015 targets. Monitoring the performance of the membranes and the reactor confirmed a very stable performance of the unit for continuous high temperature water gas shift under bubbling fluidization conditions. Several experiments were carried out at different temperatures, pressures and various inlet compositions to determine the optimum operating window for the reactor. The obtained results showed high hydrogen recovery factors, and very low CO concentrations at the permeate side (in average <10 ppm), so that the produced hydrogen can be directly fed to a low temperature PEM fuel cell. PMID:27007361

  19. Autothermal reforming of ethanol in a Pd-Ag/Ni composite membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wen-Hsiung [Department of Beauty Science, Chienkuo Technology University, Changhua 500 (China); Liu, Ying-Chi; Chang, Hsin-Fu [Department of Chemical Engineering, Feng Chia University, Taichung 407 (China)

    2010-12-15

    The main objective of this project is to study the hydrogen production reaction from oxidative steam reforming of bio-ethanol in the pertinent characteristics of a palladium-silver alloy membrane reactor. The enhancements of hydrogen permeation and of H{sub 2}/N{sub 2} permselectivity were studied in a Ni-Pd-Ag ternary alloy membrane, which was fabricated by successive electroless plating of palladium and silver on stainless steel (PSS) supports modified with nickel electroplating. XRD, SEM, and EDS were used to characterize the surface morphology of the membranes. Ethanol-water mixture (n{sub water}/n{sub ethanol} = 1 or 3) and oxygen (n{sub oxygen}/n{sub ethanol} = 0.2 or 0.7) were fed concurrently into the membrane reactor packed with Zn-Cu commercial catalyst (MDC-3). The reaction temperatures were set at temperatures of 593-723 K and pressures of 3-10 atm. The amount of oxygen added in the feed has a significant effect on the steam reforming reaction of ethanol. At high pressures, autothermal reaction of ethanol with no need for external heating to the composite membrane reactor to produce high purity hydrogen was easily processed. (author)

  20. Development of an Internally Circulating Fluidized Bed Membrane Reactor for Hydrogen Production from Natural Gas

    Institute of Scientific and Technical Information of China (English)

    XIE Dong-lai; GRACE John R; LIM C Jim

    2006-01-01

    An innovative Internally Circulating Fluidized Bed Membrane Reactor (ICFBMR) was designed and operated for ultra-pure hydrogen production from natural gas. The reactor includes internal catalyst solids circulation for conveying heat between a reforming zone and an oxidation zone. In the reforming zone, catalyst particles are transported upwards by reactant gas where steam reforming reactions are taking place and hydrogen is permeating through the membrane surfaces. Air is injected into the oxidation zone to generate heat which is carried by catalyst particles to the reforming zone supporting the endothermic steam reforming reaction. The technology development process is introduced: cold model test,pilot plant and industrial demonstration unit. The process flow diagram and key components of each unit are described.The ICFBMR process has the potential to provide improved performance relative to conventional SMR fixed-bed tubular reactors.

  1. Resting Study of Tracer Experiment on Catalytic Wet Oxidation Reactor under Micro-gravity and Earth Gravity Conditions

    Institute of Scientific and Technical Information of China (English)

    YANG Ji; JIA Jin-ping

    2005-01-01

    The International Space Station(ISS) employs catalytic wet oxidation carried out in a Volatile Reactor Assembly (VRA) for water recycling. Previous earth gravity experiments show that the VRA is very effective at removing polar,low molecular weight organics. To compare the reactor performance under micro-gravity and Earth gravity conditions,a tracer study was performed on a space shuttle in 1999 by using 0. 2% potassium carbonate as the chemical tracer.In this paper, the experimental data were analyzed and it is indicated that the reactor can be considered as a plug flow one under both micro-gravity and earth gravity experimental conditions. It has also been proved that dispersion is not important in the VRA reactor under the experimental conditions. Tracer retardation was observed in the experiments and it is most likely caused by catalyst adsorption. It is concluded that the following reasons may also have influence on the retardation of mean residence time: (1) the liquid can be held by appurtenances, which will retard the mean residence time; (2) the pores can hold the tracer, which can also retard the mean residence time.

  2. Novel Composite Hydrogen-Permeable Membranes for Nonthermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Morris Argyle; John Ackerman; Suresh Muknahallipatna; Jerry Hamann; Stanislaw Legowski; Gui-Bing Zhao; Sanil John; Ji-Jun Zhang; Linna Wang

    2007-09-30

    The goal of this experimental project was to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a nonthermal plasma and to recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), but it was not achieved at the moderate pressure conditions used in this study. However, H{sub 2}S was successfully decomposed at energy efficiencies higher than any other reports for the high H{sub 2}S concentration and moderate pressures (corresponding to high reactor throughputs) used in this study.

  3. Steam reforming of methane in a bench-scale membrane reactor at realistic working conditions

    Energy Technology Data Exchange (ETDEWEB)

    Saric, M.; Van Delft, Y.C.; Sumbharaju, R.; Meyer, D.F.; De Groot, A.

    2012-10-15

    In this study, a bench-scale Pd membrane reactor was used to carry out the methane steam reforming reaction under realistic operating conditions: 580C, 28 bar(a) and GHSV (Gas hourly space velocity) values up to 950 h{sup -1}. The continuous withdrawal of the H2 product resulted in a maximum CH4 conversion of 98% and a H2 production rate of 0.13 N m{sup 3} h{sup -1}. A continuous methane conversion of 86% and a hydrogen flux of 0.1 mol m{sup -2} s{sup -1} were achieved in the membrane reactor under these challenging conditions for almost 1100 h, demonstrating the great potential of membrane reformers for H2 production.

  4. Degradation of Reactive Black 5 dye using anaerobic/aerobic membrane bioreactor (MBR) and photochemical membrane reactor

    International Nuclear Information System (INIS)

    Three different types of advance treatment methods were evaluated for the degradation of Reactive Black 5 (RB5). The performance of two stage anaerobic SBR-aerobic MBR, anaerobic MBR with immobilized and suspended biocells and an integrated membrane photocatalytic reactor (MPR) using slurry UV/TiO2 system were investigated. The results suggest that, nearly 99.9% color removal and 80-95% organic COD and TOC removal can be achieved using different reactor systems. Considering the Taiwan EPA effluent standard discharge criteria for COD/TOC, the degree of treatment achieved by combining the anaerobic-aerobic system was found to be acceptable. Anew, Bacilluscereus, high color removal bacterium was isolated from Anaerobic SBR. Furthermore, when this immobilized into PVA-calcium alginate pellets, and suspended in the anaerobic MBR was able to achieve high removal efficiencies, similar to the suspended biocells system. However, the immobilized cell Anaerobic MBR was found to be more advantageous, due to lower fouling rates in the membrane unit. Results from slurry type MPR system showed that this system was capable of mineralizing RB5 dyes with faster degradation rate as compared to other systems. The reactor was also able to separate the catalyst effectively and perform efficiently without much loss of catalyst activity.

  5. Loop reactor staged with structured fibrous catalytic layers for liquid-phase hydrogenations

    OpenAIRE

    Kiwi-Minsker, L.; Joannet, E.; Renken, A.

    2004-01-01

    A novel concept of a recycle loop reactor is developed with structured filamentous catalysts integrated as trays in a staged bubble column. The reactor can be operated in batch or continuous mode. Woven fabrics of activated carbon fibers (ACF) were used as support for the Pd catalyst. The loop reactor was tested in the 2-butyne-1,4-diol hydrogenation showing selectivity up to 97% towards 2-butene-1,4-diol at conversions up to 80%. The reactor behavior was described quant. assuming an ideally ...

  6. Simultaneous Removal of NOx and Mercury in Low Temperature Selective Catalytic and Adsorptive Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Neville G. Pinto; Panagiotis G. Smirniotis

    2006-03-31

    The results of a 18-month investigation to advance the development of a novel Low Temperature Selective Catalytic and Adsorptive Reactor (LTSCAR), for the simultaneous removal of NO{sub x} and mercury (elemental and oxidized) from flue gases in a single unit operation located downstream of the particulate collectors, are reported. In the proposed LTSCAR, NO{sub x} removal is in a traditional SCR mode but at low temperature, and, uniquely, using carbon monoxide as a reductant. The concomitant capture of mercury in the unit is achieved through the incorporation of a novel chelating adsorbent. As conceptualized, the LTSCAR will be located downstream of the particulate collectors (flue gas temperature 140-160 C) and will be similar in structure to a conventional SCR. That is, it will have 3-4 beds that are loaded with catalyst and adsorbent allowing staged replacement of catalyst and adsorbent as required. Various Mn/TiO{sub 2} SCR catalysts were synthesized and evaluated for their ability to reduce NO at low temperature using CO as the reductant. It has been shown that with a suitably tailored catalyst more than 65% NO conversion with 100% N{sub 2} selectivity can be achieved, even at a high space velocity (SV) of 50,000 h-1 and in the presence of 2 v% H{sub 2}O. Three adsorbents for oxidized mercury were developed in this project with thermal stability in the required range. Based on detailed evaluations of their characteristics, the mercaptopropyltrimethoxysilane (MPTS) adsorbent was found to be most promising for the capture of oxidized mercury. This adsorbent has been shown to be thermally stable to 200 C. Fixed-bed evaluations in the targeted temperature range demonstrated effective removal of oxidized mercury from simulated flue gas at very high capacity ({approx}>58 mg Hg/g adsorbent). Extension of the capability of the adsorbent to elemental mercury capture was pursued with two independent approaches: incorporation of a novel nano-layer on the surface of the

  7. A distributed dynamic model of a monolith hydrogen membrane reactor

    International Nuclear Information System (INIS)

    Highlights: ► We model a rigorous distributed dynamic model for a HMR unit. ► The model includes enough complexity for steady-state and dynamic analysis. ► Simulations show that the model is non-linear within the normal operating range. ► The model is useful for studying and handling disturbances such as inlet changes and membrane leakage. - Abstract: This paper describes a distributed mechanistic dynamic model of a hydrogen membrane reformer unit (HMR) used for methane steam reforming. The model is based on a square channel monolith structure concept, where air flows adjacent to a mix of natural gas and water distributed in a chess pattern of channels. Combustion of hydrogen gives energy to the endothermic steam reforming reactions. The model is used for both steady state and dynamic analyses. It therefore needs to be computationally attractive, but still include enough complexity to study the important steady state and dynamic features of the process. Steady-state analysis of the model gives optimum for the steam to carbon and steam to oxygen ratios, where the conversion of methane is 92% and the hydrogen used as energy for the endothermic reactions is 28% at the nominal optimum. The dynamic analysis shows that non-linear control schemes may be necessary for satisfactory control performance

  8. Catalytic Pyrolysis of Oak via Pyroprobe and Bench Scale, Packed Bed Pyrolysis Reactors

    Science.gov (United States)

    The pyrolytic conversion of oak sawdust at 500°C in flowing He over eight proprietary catalysts is described and compared to the control bed material, quartz sand. The reactions were conducted and compared in two reactors, an analytical, ug-scale pyroprobe reactor and a bench, g-scale packed bed re...

  9. Integration of Nine Steps into One Membrane Reactor To Produce Synthesis Gases for Ammonia and Liquid Fuel.

    Science.gov (United States)

    Li, Wenping; Zhu, Xuefeng; Chen, Shuguang; Yang, Weishen

    2016-07-18

    The synthesis of ammonia and liquid fuel are two important chemical processes in which most of the energy is consumed in the production of H2 /N2 and H2 /CO synthesis gases from natural gas (methane). Here, we report a membrane reactor with a mixed ionic-electronic conducting membrane, in which the nine steps for the production of the two types of synthesis gases are shortened to one step by using water, air, and methane as feeds. In the membrane reactor, there is no direct CO2 emission and no CO or H2 S present in the ammonia synthesis gas. The energy consumption for the production of the two synthesis gases can be reduced by 63 % by using this membrane reactor. This promising membrane reactor process has been successfully demonstrated by experiment. PMID:27264787

  10. Testing of a 7-tube palladium membrane reactor for potential use in TEP

    International Nuclear Information System (INIS)

    A Palladium Membrane Reactor (PMR) consists of a palladium/silver membrane permeator filled with catalyst (catalyst may be inside or outside the membrane tubes). The PMR is designed to recover tritium from the methane, water, and other impurities present in fusion reactor effluent. A key feature of a PMR is that the total hydrogen isotope content of a stream is significantly reduced as (1) methane-steam reforming and/or water-gas shift reactions proceed on the catalyst bed and (2) hydrogen isotopes are removed via permeation through the membrane. With a PMR design matched to processing requirements, nearly complete hydrogen isotope removals can be achieved. A 3-tube PMR study was recently completed. From the results presented in this study, it was possible to conclude that a PMR is appropriate for TEP, perforated metal tube protectors function well, platinum on aluminum (PtA) catalyst performs the best, conditioning with air is probably required to properly condition the Pd/Ag tubes, and that CO/CO2 ratios maybe an indicator of coking. The 3-tube PMR had a permeator membrane area of 0.0247 m2 and a catalyst volume to membrane area ratio of 4.63 cc/cm2 (with the catalyst on the outside of the membrane tubes and the catalyst only covering the membrane tube length). A PMR for TEP will require a larger membrane area (perhaps 0.35 m2). With this in mind, an intermediate sized PMR was constructed. This PMR has 7 permeator tubes and a total membrane area of 0.0851 m2. The catalyst volume to membrane area ratio for the 7-tube PMR was 5.18 cc/cm2. The total membrane area of the 7-tube PMR (0.0851 m2) is 3.45 times larger than total membrane area of the 3-tube PMR (0.0247 m2). The following objectives were identified for the 7-tube PMR tests: (1) Refine test measurements, especially humidity and flow; (2) Refine maintenance procedures for Pd/Ag tube conditioning; (3) Evaluate baseline PMR operating conditions; (4) Determine PMR scaling method; (5) Evaluate PMR with realistic

  11. Cell-Culture Reactor Having a Porous Organic Polymer Membrane

    Science.gov (United States)

    Koontz, Steven L. (Inventor)

    2000-01-01

    A method for making a biocompatible polymer article using a uniform atomic oxygen treatment is disclosed. The substrate may be subsequently optionally grated with a compatibilizing compound. Compatibilizing compounds may include proteins, phosphory1choline groups, platelet adhesion preventing polymers, albumin adhesion promoters, and the like. The compatibilized substrate may also have a living cell layer adhered thereto. The atomic oxygen is preferably produced by a flowing afterglow microwave discharge, wherein the substrate resides in a sidearm out of the plasma. Also, methods for culturing cells for various purposes using the various membranes are disclosed as well. Also disclosed are porous organic polymers having a distributed pore chemistry (DPC) comprising hydrophilic and hydrophobic regions, and a method for making the DPC by exposing the polymer to atomic oxygen wherein the rate of hydrophilization is greater than the rate of mass loss.

  12. Microlith catalytic reactors for reforming iso-octane-based fuels into hydrogen

    Science.gov (United States)

    Roychoudhury, Subir; Castaldi, Marco; Lyubovsky, Maxim; LaPierre, Rene; Ahmed, Shabbir

    Recent advances in the development of short contact time (SCT) reactor design approaches allow reformers capable of overcoming current barriers of cost, size, weight, complexity and efficiency associated with conventional reactor design approaches. PCI has developed an SCT based approach using a patented substrate (trademarked Microlith ®) and proprietary coating technology [1]. The high heat and mass transport properties of the substrate have been shown to significantly reduce reactor size while improving performance. Resistance to coking, especially at low H 2O:C ratios, has also been observed with these reactors. This paper summarizes the results of auto thermal reforming (ATR) of an iso-octane-based liquid fuel. In addition Microlith-based water gas shift (WGS) and preferential CO oxidation (PROX) reactors were also examined for fuel processing applications. Surprisingly, selectivity advantages for these kinetically controlled reactions were observed [2]. Examples described here include low methanation selectivity in WGS applications and large operating windows for PROX at very high space velocities. A complete reformer system with Microlith ATR, WGS and PROX reactors has been identified. Sensitivity of system size with regard to steam:carbon ratios, and the resulting implications for reactor/heat exchanger sizes were documented and a compact system identified.

  13. Design of an ion transport membrane reactor for application in fire tube boilers

    International Nuclear Information System (INIS)

    A design of an ITM (ion transport membranes) reactor is introduced in a two-pass fire tube boiler furnace to produce steam for power generation toward the ZEPP (zero emission power plant) applications. Oxygen separation, combustion and heat exchange occur in the first pass containing the multiple-units ITM reactor. In the second pass, heat exchange between the combustion gases and the surrounding water at 485 K (Psat = 20 bar) occurs mainly by convection. The emphasis is to extract sufficient oxygen for combustion while maintaining the reactor size as compact as possible. Based on a required power in the range of 5–8 MWe, the fuel and gases flow rates were calculated. Accordingly, the channel width was determined to maximize oxygen permeation flux and keep the viscous pressure drop within a safe range for fixed reactor length of 1.8 m. Three-dimensional simulations were conducted for both counter and co-current flow configurations. Counter-current flow configuration proved its suitability in fire tube boilers for steam generation over the co-current flow configuration. The resultant reactor consists of 12,500 ITM units with a height of 5 m, membrane surface area of 2700 m2 and a total volume of 45.45 m3. - Highlights: • A novel two-path fire tube boiler design is presented utilizing ITMs (ion transport membranes). • A new multi-unit ITM reactor design for boiler furnace substitution is presented. • Flow rates have been optimized for maximum oxygen flux and power generation. • Counter-current flow configuration is much more efficient than co-current flow. • Total number of ITM units was calculated to produce power of 5:8 MWe

  14. Experimental studies on catalytic hydrogen recombiners for light water reactors; Experimentelle Untersuchungen zu katalytischen Wasserstoffkombinatoren fuer Leichtwasserreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Drinovac, P.

    2006-06-19

    In the course of core melt accidents in nuclear power plants a large amount of hydrogen can be produced and form an explosive or even detonative gas mixture with aerial oxygen in the reactor building. In the containment atmosphere of pressurized water reactors hydrogen combines a phlogistically with the oxygen present to form water vapor even at room temperature. In the past, experimental work conducted at various facilities has contributed little or nothing to an understanding of the operating principles of catalytic recombiners. Hence, the purpose of the present study was to conduct detailed investigations on a section of a recombiner essentially in order to deepen the understanding of reaction kinetics and heat transport processes. The results of the experiments presented in this dissertation form a large data base of measurements which provides an insight into the processes taking place in recombiners. The reaction-kinetic interpretation of the measured data confirms and deepens the diffusion theory - proposed in an earlier study. Thus it is now possible to validate detailed numeric models representing the processes in recombiners. Consequently the present study serves to broaden and corroborate competence in this significant area of reactor technology. In addition, the empirical knowledge thus gained may be used for a critical reassessment of previous numeric model calculations. (orig.)

  15. Catalytic Partial Oxidation of Methane with Air to Syngas in a Pilot-Plant-Scale Spouted Bed Reactor

    Institute of Scientific and Technical Information of China (English)

    魏伟胜; 徐建; 方大伟; 鲍晓军

    2003-01-01

    On the basis of hydrodynamic and scaling-up studies, a pilot-plant-scale thermal spouted bed reactor (50 mm in ID and 1500 mm in height) was designed and fabricated by scaling-down cold simulators. It was tested for making syngas via catalytic partial oxidation (CPO) of methane by air. The effects of various operating conditions such as operating pressure and temperature, feed composition, and gas flowrate etc. on the CPO process were investigated. CH4 conversion of 92.20% and selectivity of 92.3% and 83.30/0 to CO and H2, respectively, were achieved at the pressure of 2.1 MPa. It was found that when the spouted bed reactor was operated within the stable spouting flow regime, the temperature profiles along the bed axis were much more uniform than those operated within the fixed-bed regime. The CH4 conversion and syngas selectivity were found to be close to thermodynamic equilibrium limits. The results of the present investigation showed that spouted bed could be considered as a potential type of chemical reactor for the CPO process of methane.

  16. Production of ultrapure hydrogen in a Pd-Ag membrane reactor using Ru/La{sub 2}O{sub 3} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Faroldi, B.; Carrara, C.; Lombardo, E.A.; Cornaglia, L.M. [Instituto de Investigaciones en Catalisis y Petroquimica (FIQ, UNL-CONICET), Santiago del Estero, 2829-3000 Santa Fe (Argentina)

    2007-03-01

    Ru catalysts supported on lanthanum oxide with different loadings were prepared by wet impregnation. These solids were characterized by laser Raman spectroscopy (LSR), XPS, XRD and TPR. The catalytic activity toward hydrogen production through the dry reforming of methane was determined in a fixed-bed reactor and a membrane reactor. The reaction rate expressed per gram of Ru decreased when the metal loading increased. In the Pd-Ag membrane reactor, when the sweep gas flow rate (SG) increased, the conversions overcame the equilibrium values and the difference between CH{sub 4} and CO{sub 2} conversions decreased. Both Ru(0.6) and Ru(1.2) catalysts were able to restore the equilibrium for the dry reforming reaction up to values of SG = 30 ml min{sup -1}; Ru(0.6) was the most effective catalyst. By employing a CO{sub 2}/CH{sub 4} 1 and a SG of 0.05 mmol s{sup -1}, both a high H{sub 2} permeation flux of 5.68 x 10{sup -7} mol s{sup -1} m{sup -2} and a hydrogen recovery of 80% were obtained. Both the TPR and the Raman spectroscopy data indicated the presence of Ru(III) strongly interacting with La. Significantly, this observation was further confirmed by the appearance of Ru(III) on the surface. When the Ru content increased, the higher Ru 3d binding energy component was proposed as arising from Ru(IV). Concerning the Ru(1.2) solid, the presence of Ru(IV) was detected by means of TPR experiments, in agreement with the high proportion of Ru(IV) on the surface. Therefore, a fraction of Ru loading was present in this solid as species with weaker metal-support interaction leading to the slight deactivation of this catalyst in the membrane reactor. (author)

  17. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of catalytic ultrasound oxidation and membrane bioreactor.

    Science.gov (United States)

    Jia, Shengyong; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Hou, Baolin

    2015-01-01

    Laboratorial scale experiments were conducted to investigate a novel system integrating catalytic ultrasound oxidation (CUO) with membrane bioreactor (CUO-MBR) on advanced treatment of biologically pretreated coal gasification wastewater. Results indicated that CUO with catalyst of FeOx/SBAC (sewage sludge based activated carbon (SBAC) which loaded Fe oxides) represented high efficiencies in eliminating TOC as well as improving the biodegradability. The integrated CUO-MBR system with low energy intensity and high frequency was more effective in eliminating COD, BOD5, TOC and reducing transmembrane pressure than either conventional MBR or ultrasound oxidation integrated MBR. The enhanced hydroxyl radical oxidation, facilitation of substrate diffusion and improvement of cell enzyme secretion were the mechanisms for CUO-MBR performance. Therefore, the integrated CUO-MBR was the promising technology for advanced treatment in engineering applications. PMID:25936898

  18. Thermo-catalytic pyrolysis of waste polyethylene bottles in a packed bed reactor with different bed materials and catalysts

    International Nuclear Information System (INIS)

    Highlights: • Thermo-catalytic pyrolysis of waste polyethylene bottles was investigated. • The highest yield of liquid (82%) was obtained over a cement powder bed. • Acidic catalysts narrowed the carbon chain length of the paraffins to C10–C28. • Combination of cement bed with HBeta catalyst gave the highest yield of liquid. • Significant yield of aromatics was obtained mainly naphthalene and D-limonene. - Abstract: Plastic waste is an increasing economic and environmental problem as such there is a great need to process this waste and reduce its environmental impact. In this work, the pyrolysis of high density polyethylene (HDPE) waste products was investigated using both thermal and catalytic cracking techniques. The experimental work was carried out using packed bed reactor operating under an inert atmosphere at 450 °C. Different reactor bed materials, including sand, cement and white clay were used to enhance the thermal cracking of HDPE. In addition, the catalytic effect of sodium hydroxide, HUSY and HBeta zeolite catalysts on the degradation of HDPE waste was also investigated. The reactor beds were found to significantly alter the yield as well as the product composition. Products such as paraffins (⩽C44), olefins (⩽C22), aromatics (⩽C14) and alcohols (C16 and C17) were obtained at varying rates. The highest yield of liquid (82%) was obtained over a cement powder bed with a paraffin yield of 58%. The yield of paraffins and olefins followed separate paths, for paraffins it was found to increase in the order or Cement > White clay > Silica Sand, whereas for the olefins it was in the reverse order Silica Sand > White clay > Cement. The results obtained in this work exhibited a higher P/O ratio than expected, where the amount of generated paraffins was greater than 60% in most cases. Less olefin was generated as a consequence. This indicates that the product generated is more suited to be used as a fuel rather than as a chemical feedstock. The

  19. Novel Catalytic Reactor for CO2 Reduction via Sabatier Process Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel short contact time Microlith Sabatier reactor system for CO2 reduction offers a significant advance in support of manned spaceflight. Compared to current...

  20. Evaluation of a catalytic fixed bed reactor for sulphur trioxide decomposition / Barend Frederik Stander

    OpenAIRE

    Stander, Barend Frederik

    2014-01-01

    The world energy supply and demand, together with limited available resources have resulted in the need to develop alternative energy sources to ensure sustainable and expanding economies. Hydrogen is being considered a viable option with particular application to fuel cells. The Hybrid Sulphur cycle has been identified as a process to produce clean hydrogen (carbon free process) and can have economic benefits when coupled to nuclear reactors (High Temperature Gas Reactor) or solar heaters fo...

  1. Start-up of membrane bioreactor and hybrid moving bed biofilm reactor-membrane bioreactor: kinetic study.

    Science.gov (United States)

    Leyva-Díaz, J C; Poyatos, J M

    2015-01-01

    A hybrid moving bed biofilm reactor-membrane bioreactor (hybrid MBBR-MBR) system was studied as an alternative solution to conventional activated sludge processes and membrane bioreactors. This paper shows the results obtained from three laboratory-scale wastewater treatment plants working in parallel in the start-up and steady states. The first wastewater treatment plant was a MBR, the second one was a hybrid MBBR-MBR system containing carriers both in anoxic and aerobic zones of the bioreactor (hybrid MBBR-MBRa), and the last one was a hybrid MBBR-MBR system which contained carriers only in the aerobic zone (hybrid MBBR-MBRb). The reactors operated with a hydraulic retention time of 30.40 h. A kinetic study for characterizing heterotrophic biomass was carried out and organic matter and nutrients removals were evaluated. The heterotrophic biomass of the hybrid MBBR-MBRb showed the best kinetic performance in the steady state, with yield coefficient for heterotrophic biomass=0.30246 mg volatile suspended solids per mg chemical oxygen demand, maximum specific growth rate for heterotrophic biomass=0.00308 h(-1) and half-saturation coefficient for organic matter=3.54908 mg O2 L(-1). The removal of organic matter was supported by the kinetic study of heterotrophic biomass. PMID:26606088

  2. Apparatus and process to eliminate diffusional limitations in a membrane biological reactor by pressure cycling

    Science.gov (United States)

    Efthymiou, George S.; Shuler, Michael L.

    1989-08-29

    An improved multilayer continuous biological membrane reactor and a process to eliminate diffusional limitations in membrane reactors in achieved by causing a convective flux of nutrient to move into and out of an immobilized biocatalyst cell layer. In a pressure cycled mode, by increasing and decreasing the pressure in the respective layers, the differential pressure between the gaseous layer and the nutrient layer is alternately changed from positive to negative. The intermittent change in pressure differential accelerates the transfer of nutrient from the nutrient layers to the biocatalyst cell layer, the transfer of product from the cell layer to the nutrient layer and the transfer of byproduct gas from the cell layer to the gaseous layer. Such intermittent cycling substantially eliminates mass transfer gradients in diffusion inhibited systems and greatly increases product yield and throughput in both inhibited and noninhibited systems.

  3. Synergetic mechanism of methanol–steam reforming reaction in a catalytic reactor with electric discharges

    International Nuclear Information System (INIS)

    Highlights: • Methanol–steam reforming was performed on Cu catalysts under an electric discharge. • Discharge had a synergetic effect on the catalytic reaction for methanol conversion. • Discharge lowered the temperature for catalyst activation or light off. • Discharge controlled the yield and selectivity of species in a reforming process. • Adsorption triggered by a discharge was a possible mechanism for a synergetic effect. - Abstract: Methanol–steam reforming was performed on Cu/ZnO/Al2O3 catalysts under an electric discharge. The discharge occurred between the electrodes where the catalysts were packed. The electric discharge was characterized by the discharge voltage and electric power to generate the discharge. The existence of a discharge had a synergetic effect on the catalytic reaction for methanol conversion. The electric discharge provided modified reaction paths resulting in a lower temperature for catalyst activation or light off. The discharge partially controlled the yield and selectivity of species in a reforming process. The aspect of control was examined in view of the reaction kinetics. The possible mechanisms for the synergetic effect between the catalytic reaction and electric discharge on methanol–steam reforming were addressed. A discrete reaction path, particularly adsorption triggered by an electric discharge, was suggested to be the most likely mechanism for the synergetic effect. These results are expected to provide a guide for understanding the plasma–catalyst hybrid reaction

  4. Catalytic wet-air oxidation of lignin in a three-phase reactor with aromatic aldehyde production

    Directory of Open Access Journals (Sweden)

    Sales F.G.

    2004-01-01

    Full Text Available In the present work a process of catalytic wet air oxidation of lignin obtained from sugar-cane bagasse is developed with the objective of producing vanillin, syringaldehyde and p-hydroxybenzaldehyde in a continuous regime. Palladium supported on g-alumina was used as the catalyst. The reactions in the lignin degradation and aldehyde production were described by a kinetic model as a system of complex parallel and series reactions, in which pseudo-first-order steps are found. For the purpose of producing aromatic aldehydes in continuous regime, a three-phase fluidized reactor was built, and it was operated using atmospheric air as the oxidizer. The best yield in aromatic aldehydes was of 12%. The experimental results were compatible with those values obtained by the pseudo-heterogeneous axial dispersion model (PHADM applied to the liquid phase.

  5. SACCHARIFICATION OF NATIVE CASSAVA STARCH AT HIGH DRY SOLIDS IN AN ENZYMATIC MEMBRANE REACTOR

    OpenAIRE

    I Nyoman Widiasa; I Gede Wenten

    2012-01-01

    This study is aimed to develop a novel process scheme for hydrolysis of native cassava starch at high dry solids using an enzymatic membrane reactor (EMR). Firstly, liquefied cassava starch having solids content up to 50% by weight was prepared by three stage liquefactions in a conventional equipment using a commercially available heat stable a-amylase (Termamyl 120L). The liquefied cassava starch was further saccharified in an EMR using glucoamylase (AMG E). By using the developed process sc...

  6. PREPARATION OF PVA/CHITOSAN LIPASE MEMBRANE REACTOR AND ITS APPLICATION TO SYNTHESIS OF MONOGLYCERIDE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    IntroductionLipase can catalyze the hydrolysis, esterification,acidolysis, alcoholysis and sa on, which are used insynthesis of some high value products such asenantionically pure comPOunds and navorsll]. Theheterogeneous reaction systems such as aqueous -- oilbiphase were often used. To increase the interface ofreaction, some suthetantS or lipase-surfactantcomplex were added or a microemulsion system wasusedl2-3I. Recently, membrane reactor is introduced,which separates the aqueous and olganic phases byimm...

  7. Application of Forward Osmosis Membrane in a Sequential Batch Reactor for Water Reuse

    KAUST Repository

    Li, Qingyu

    2011-07-01

    Forward osmosis (FO) is a novel membrane process that potentially can be used as an energy-saving alternative to conventional membrane processes. The objective of this study is to investigate the performance of a FO membrane to draw water from wastewater using seawater as draw solution. A study on a novel osmotic sequential batch reactor (OsSBR) was explored. In this system, a plate and frame FO cell including two flat-sheet FO membranes was submerged in a bioreactor treating the wastewater. We found it feasible to treat the wastewater by the OsSBR process. The DOC removal rate was 98.55%. Total nitrogen removal was 62.4% with nitrate, nitrite and ammonium removals of 58.4%, 96.2% and 88.4% respectively. Phosphate removal was almost 100%. In this OsSBR system, the 15-hour average flux for a virgin membrane with air scouring is 3.103 LMH. After operation of 3 months, the average flux of a fouled membrane is 2.390 LMH with air scouring (23% flux decline). Air scouring can help to remove the loose foulants on the active layer, thus helping to maintain the flux. Cleaning of the FO membrane fouled in the active layer was probably not effective under the conditions of immersing the membrane in the bioreactor. LC-OCD results show that the FO membrane has a very good performance in rejecting biopolymers, humics and building blocks, but a limited ability in rejecting low molecular weight neutrals.

  8. Modelling of non-catalytic reactions in a gas-solid trickle flow reactor: dry, regenerative flue gas desulphurization using a silica-supported copper oxide sorbent

    OpenAIRE

    Kiel, J.H.A.; De Prins, W.; Swaaij, van, W.P.M.

    1992-01-01

    A one-dimensional, two-phase dispersed plug flow model has been developed to describe the steady-state performance of a relatively new type of reactor, the gas-solid trickle flow reactor (GSTFR). In this reactor, an upward-flowing gas phase is contacted with as downward-flowing dilute solids phase over an inert packing. The model is derived from the separate mass heat balances for both the gas and (porous) solids phases for the case of a non-catalytic gas-solid reaction, which is first-order ...

  9. Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors

    OpenAIRE

    Javaid, Rahat; Kawasaki, Shin-ichiro; Suzuki, Akira; Suzuki, Toshishige M

    2013-01-01

    The inner surface of a metallic tube (i.d. 0.5 mm) was coated with a palladium (Pd)-based thin metallic layer by flow electroless plating. Simultaneous plating of Pd and silver (Ag) from their electroless-plating solution produced a mixed distributed bimetallic layer. Preferential acid leaching of Ag from the Pd–Ag layer produced a porous Pd surface. Hydrogenation of p-nitrophenol was examined in the presence of formic acid simply by passing the reaction solution through the catalytic tubular...

  10. Optimal Design of a Multifunctional Reactor for Catalytic Oxidation of Glucose with Fast Catalyst Deactivation

    Czech Academy of Sciences Publication Activity Database

    Gogová, Zuzana; Hanika, Jiří; Markoš, J.

    Vukovar: Intech, 2010 - (Brito, A.), s. 209-232 ISBN 978-953-7619-68-8 Institutional research plan: CEZ:AV0Z40720504 Keywords : multifunctional reactor * bubbles * GLR productivity Subject RIV: CI - Industrial Chemistry, Chemical Engineering http://sciyo.com/books

  11. Catalytic activity of Ni3S2 and effects of reactor wall in hydrogen production from water with hydrogen sulphide as a reducer under hydrothermal conditions

    International Nuclear Information System (INIS)

    Catalytic activity of Ni3S2 and the effects of reactor wall in the hydrogen production from water were investigated under hydrothermal conditions using hydrogen sulphide (H2S) as a reductant. It was found that Ni3S2 catalysed the hydrogen production from water and may act as a semi-conductor catalyst. In the case of addition of Ni3S2, the time required to achieve the maximum hydrogen yield significantly decreased and the maximum hydrogen yield increased. These results suggest that the Ni3S2 formed as a corrosion product of the reactor wall when using the Hastelloy C-276 lined reactor should play a catalytic role in the hydrogen production. These results could facilitate studies for the synthesis of highly active catalysts for the production of hydrogen under mild conditions

  12. Mathematical Modelling of Catalytic Fixed-Bed Reactor for Carbon Dioxide Reforming of Methane over Rh/Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    Nor Aishah Saidina Amin

    2010-10-01

    Full Text Available A one-dimensional mathematical model was developed to simulate the performance of catalytic fixed bed reactor for carbon dioxide reforming of methane over Rh/Al2O3 catalyst at atmospheric pressure. The reactions involved in the system are carbon dioxide reforming of methane (CORM and reverse water gas shift reaction (RWGS. The profiles of CH4 and CO2 conversions, CO and H2 yields, molar flow rate and mole raction of all species as well as reactor temperature along the axial bed of catalyst were simulated. In addition, the effects of different reactor temperature on the reactor performance were also studied. The models can also be applied to analyze the performances of lab-scale micro reactor as well as pilot-plant scale reactor with certain modifications and model verification with experimental data. © 2008 BCREC UNDIP. All rights reserved.[Received: 20 August 2008; Accepted: 25 September 2008][How to Cite: N.A.S. Amin, I. Istadi, N.P. Yee. (2008. Mathematical Modelling of Catalytic Fixed-Bed Reactor for Carbon Dioxide Reforming of Methane over Rh/Al2O3 Catalyst. Bulletin of Chemical Reaction Engineering and Catalysis, 3 (1-3: 21-29.  doi:10.9767/bcrec.3.1-3.7120.21-29][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.3.1-3.7120.21-29 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/7120

  13. Grafting of VO x/TiO2 catalyst on anodized aluminum plates for structured catalytic reactors

    International Nuclear Information System (INIS)

    Structured reactors are promising to carry out exothermic reactions because the heat transfer is better controlled than in usual packed-bed reactors. However the coating by oxide powders which must exhibit catalytic activity/selectivity while being mechanically stable is not so straightforward. We have studied the parameters to be controlled to coat aluminum walls by V2O5/TiO2 catalysts which are used in the mild oxidation of hydrocarbons and NO x abatement. The dip-coating technique using metallic alcoholates has been chosen for the grafting of TiO2 on Al2O3/Al, which is controlled by X-ray Photoelectron Spectroscopy (XPS). A monolayer of TiO2 is first grafted, and then a porous film of TiO2-anatase is deposited by sol-gel. Finally, VO x species are grafted on titania and their loading again determined by XPS. Techniques such as Laser Raman Spectroscopy, Scanning Electron Microscopy are used to characterize the samples after each step, and the porous texture is determined. The layers are mechanically and thermally stable. The dispersion and nature of VO x species on TiO2/Al2O3/Al are similar to what is found in literature for TiO2 powders, showing thereby that the shaping of anatase support on plates has not modified the chemical properties of VO x/TiO2-anatase system

  14. Micro-channel catalytic reactor integration in CAPER and research/development on highly tritiated water handling and processing

    International Nuclear Information System (INIS)

    The CAPER facility of the Tritium Laboratory Karlsruhe has demonstrated the technology for the tokamak exhaust processing. CAPER has been significantly upgraded to pursue research/development programs towards highly tritiated water (HTW) handling and processing. The preliminary tests using a metal oxide reactor producing HTW afterward de-tritiated with PERMCAT were successful. In a later stage, a micro-channel catalytic reactor was installed in view of long term research program on HTW. The integration of this new system in CAPER was carried out along with a careful safety analysis due to high risk associated with such experiments. First experiments using the μ-CCR were performed trouble free, and HTW up to 360 kCi/kg was produced at a rate of 0.5 g/h. Such HTW was collected into a platinum zeolite bed (2 g of HTW for 20 g of Pt-zeolite), and in-situ detritiation was performed via isotopic exchange with deuterium. These first experimental results with tritium confirmed the potential for the capture and exchange method to be used for HTW in ITER. (authors)

  15. An assessment of oxygen transfer efficiency in a gas permeable hollow fibre membrane biological reactor.

    Science.gov (United States)

    Soreanu, G; Lishman, L; Dunlop, S; Behmann, H; Seto, P

    2010-01-01

    The clean water oxygen transfer efficiency (OTE) of a full scale non-porous hollow fibre gas permeable (GP) membrane (surface area of 500 m(2)) was evaluated at inlet air pressures of 1.2, 1.4, and 1.8 atm using two established testing methods. To form a basis of comparison with traditional aeration technologies, additional testing was done with conventional aerators (fine bubble and coarse bubble diffusers) replacing the GP membrane. OTE can be established based on the re-aeration of deoxygenated water or by monitoring the catalytic oxidation of a sodium sulphite (Na(2)SO(3)) solution. In this study, OTE values determined by sulphite oxidation (SOTE(S)) were consistently higher than those established during re-aeration (SOTE(R)) suggesting that the chemical reaction was enhancing the mass transfer. The chemical reaction was sufficiently fast in the case of the GP membrane, that the gas phase limited the mass transfer. The GP membrane operating at 1.2 atm had a SOTE(S) of 70.6% and a SOTER of 52.2%. SOTE(R) for the coarse bubble and fine bubble diffusers were 3.8% and 23.6%, respectively. This is comparable to the manufacturer's values, corrected for depth of 3.4% and 18.3%, respectively. Particularly, the derived OTE values were used to evaluate differences in energy consumption for a conventional treatment plant achieving carbon removal and nitrification. This analysis highlights the potential energy efficiency of GP membranes, which could be considered for the design of the membrane modules. PMID:20220238

  16. Porous Au-Ag Alloy Particles Inlaid AgCl Membranes As Versatile Plasmonic Catalytic Interfaces with Simultaneous, in Situ SERS Monitoring.

    Science.gov (United States)

    Cao, Qi; Yuan, Kaiping; Liu, Qinghe; Liang, Chongyun; Wang, Xiang; Cheng, Yi-Feng; Li, Qingqing; Wang, Min; Che, Renchao

    2015-08-26

    We present a novel porous Au-Ag alloy particles inlaid AgCl membrane as plasmonic catalytic interfaces with real-time, in situ surface-enhanced Raman spectroscopy (SERS) monitoring. The Au-Ag alloy particles inlaid AgCl membranes were obtained via a facile two-step, air-exposed, and room-temperature immersion reaction with appropriate annealing process. Owing to the designed integration of semiconductor component AgCl and noble metal Au-Ag particles, both the catalytic reduction and visible-light-driven photocatalytic activities toward organic contaminants were attained. Specifically, the efficiencies of about 94% of 4-nitrophenol (4-NP, 5 × 10(-5) M) reduction after 8 min of reaction, and degradation of rhodamine 6G (R6G, 10(-5) M) after 12 min of visible light irradiation were demonstrated. Moreover, efficiencies of above 85% of conversion of 4-NP to 4-aminophenol (4-AP) and 90% of R6G degradation were achieved as well after 6 cycles of reactions, by which robust recyclability was confirmed. Further, with distinct SERS signals generated simultaneously from the surfaces of Au-Ag particles under laser excitation, in situ SERS monitoring of the process of catalytic reactions with superior sensitivity and linearity has been realized. Overall, the capability of the Au-Ag particles inlaid AgCl membranes to provide SERS monitored catalytic and visible-light-driven photocatalytic conversion of organic pollutants, along with their mild and cost-effective fabrication method, would make sense for in-depth understanding of the mechanisms of (photo)catalytic reactions, and also future development of potable, multifunctional and integrated catalytic and sensing devices. PMID:26263301

  17. Effect of Catalytic Cylinders on Autothermal Reforming of Methane for Hydrogen Production in a Microchamber Reactor

    OpenAIRE

    Yunfei Yan; Hongliang Guo; Li Zhang; Junchen Zhu; Zhongqing Yang; Qiang Tang; Xin Ji

    2014-01-01

    A new multicylinder microchamber reactor is designed on autothermal reforming of methane for hydrogen production, and its performance and thermal behavior, that is, based on the reaction mechanism, is numerically investigated by varying the cylinder radius, cylinder spacing, and cylinder layout. The results show that larger cylinder radius can promote reforming reaction; the mass fraction of methane decreased from 26% to 21% with cylinder radius from 0.25 mm to 0.75 mm; compact cylinder spaci...

  18. Determination of optimum rotational speed of heterogeneous catalytic reactor using computational fluid dynamic

    OpenAIRE

    Rungrote Kokoo; Phavanee Narataruksa; Karn Pana-Suppamassadu; Sabaithip Tungkamani

    2008-01-01

    Solid suspension in a stirrer tank reactor is relevant in many chemical process industries. For a heterogeneous catalyticreactor, the degree of solid suspension is a crucial parameter in the design and scaling-up processes. The suspension of solid catalysts at a minimum impeller speed can reduce the operating cost of processes. To ensure optimum conditions for suspension, a 3D simulation technique by Computational Fluid Dynamic (CFD) was used to study flow characteristics in a heterogeneous c...

  19. 杂多化合物膜的制备及催化作用%PREPARATION OF HETEROPOLY COMPOUND MEMBRANE AND ITS CATALYTIC PROPERTY

    Institute of Scientific and Technical Information of China (English)

    张渊明; 宋瑞琦; 毛萱; 杨骏; 钟邦克

    1999-01-01

    @@ Heteropoly compounds (HPC), a kind of polyoxometallates, with their strong acidity and oxidative ability, are good homogeneous and heterogeneous catalysts in both acid-catalyzed and selective oxidation reactions, and have been widely used in petroleum and fine chemical industries. Owing to the diversity in their composition and structure, the catalytic properties of HPC can be altered in a wide range. Among them, the heteropolyanions with Keggin structure have been studied by far the most,especially on their applications in heterogeneous catalysis. However, since they are thermally unstable at high temperatures, their utilization in this field has been restricted. In the last ten years, inorganic membranes have been proved to be beneficial to heterogeneous catalytic processes for their high selectivity and good heat-conductivity. And the sol-gel method, one of the most common approaches to prepare inorganic membranes, is becoming mature. Here a sol-gel method to prepare a porous HPC membrane is reported. The catalytic performance of the membrane was tested through a model reaction, the selective oxidation of t-BuOH.

  20. Electrochemical membrane reactor: In situ separation and recovery of chromic acid and metal ions

    International Nuclear Information System (INIS)

    An electrochemical membrane reactor with three compartments (anolyte, catholyte and central compartment) based on in-house-prepared cation- and anion-exchange membrane was developed to achieve in situ separation and recovery of chromic acid and metal ions. The physicochemical and electrochemical properties of the ion-exchange membrane under standard operating conditions reveal its suitability for the proposed reactor. Experiments using synthetic solutions of chromate and dichromate of different concentrations were carried out to study the feasibility of the process. Electrochemical reactions occurring at the cathode and anode under operating conditions are proposed. It was observed that metal ion migrated through the cation-exchange membrane from central compartment to catholyte and OH- formation at the cathode leads to the formation of metal hydroxide. Simultaneously, chromate ion migrated through the anion-exchange membrane from central compartment to the anolyte and formed chromic acid by combining H+ produced their by oxidative water splitting. Thus a continuous decay in the concentration of chromate and metal ion was observed in the central compartment, which was recovered separately in the anolyte and catholyte, respectively, from their mixed solution. This process was completely optimized in terms of operating conditions such as initial concentration of chromate and metal ions in the central compartment, the applied cell voltage, chromate and metal ion flux, recovery percentage, energy consumption, and current efficiency. It was concluded that chromic acid and metal ions can be recovered efficiently from their mixed solution leaving behind the uncharged organics and can be reused as their corresponding acid and base apart from the purifying water for further applications

  1. Simultaneous removal of COD and nitrogen using a novel carbon-membrane aerated biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A membrane aerated biofilm reactor is a promising technology for wastewater treatment. In this study, a carbon-membrane aerated biofilm reactor (CMABR) has been developed, to remove carbon organics and nitrogen simultaneously from one reactor. The results showed that CMABR has a high chemical oxygen demand (COD) and nitrogen removal efficiency, as it is operated with a hydraulic retention time (HRT) of 20 h, and it also showed a perfect performance, even if the HRT was shortened to 12 h. In this period, the removal efficiencies of COD, ammonia nitrogen (NH4+-N), and total nitrogen (TN) reached 86%, 94%, and 84%, respectively. However,the removal efficiencies of NH4+-N and TN declined rapidly as the HRT was shortened to 8 h. This is because of the excessive growth of biomass on the nonwoven fiber and very high organic loading rate. The fluorescence in situ hybridization (FISH) analysis indicated that the ammonia oxidizing bacteria (AOB) were mainly distributed in the inner layer of the biofilm. The coexistence of AOB and eubacteria in one biofilm can enhance the simultaneous removal of COD and nitrogen.

  2. Mathematical model analysis on the enhancement of aeration efficiency using ladder-type flat membrane module forms in the Submerged Membrane Bio-reactor(SMBR)

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The cross-flow shearing action produced from the inferior aeration in the Submerged Membrane Bio-reactor(SMBR) is an effective way to further improve anti-fouling effects of membrane modules.Based on the widely-applied vertical structure of flat membrane modules,improvements are made that ladder-type flat membrane structure is designed with a certain inclined angle θ so that the cross-flow velocity of bubble near the membrane surface can be held,and the intensity and times of elastic colli-sion between bubbles and membrane surface can be increased.This can improve scouring action of membrane surface on aeration and reduce energy consumption of strong aeration in SMBR.By de-ducing and improving the mathematics model of collision between bubble and vertical flat put forward by Vries,the relatively suitable incline angle θ under certain aeration place and in certain size rang of bubble can be obtained with the computer iterative calculation technology.Finally,for many groups of ladder-type flat membrane in parallel placement in the practical application of SMBR,some sugges-tions are offered:the interval distance of membrane modules is 8―15 mm,and aeration should be op-erated at 5―7 mm among membrane modules,and the optimal design angle of trapeziform membrane is 1.7°―2.5°.

  3. A novel ion transport membrane reactor for fundamental investigations of oxygen permeation and oxy-combustion under reactive flow conditions

    KAUST Repository

    Kirchen, Patrick

    2013-01-01

    Ion transport membrane (ITM) reactors present an attractive technology for combined air separation and fuel conversion in applications such as syngas production, oxidative coupling or oxy-combustion, with the promise of lower capital and operating costs, as well higher product selectivities than traditional technologies. The oxygen permeation rate through a given ITM is defined by the membrane temperature and oxygen chemical potential difference across it. Both of these parameters can be strongly influenced by thermochemical reactions occurring in the vicinity of the membrane, though in the literature they are often characterized in terms of the well mixed product stream at the reactor exit. This work presents the development of a novel ITM reactor for the fundamental investigation of the coupling between fuel conversion and oxygen permeation under well defined fluid dynamic and thermodynamic conditions, including provisions for spatially resolved, in-situ investigations. A planar, finite gap stagnation flow reactor with optical and probe access to the reaction zone is used to facilitate in-situ measurements and cross-validation with detailed numerical simulations. Using this novel reactor, baseline measurements are presented to elucidate the impact of the sweep gas fuel (CH4) fraction on the oxygen permeation and fuel conversion. In addition, the difference between well-mixed gas compositions measured at the reactor outlet and those measured in the vicinity of the membrane surface are discussed, demonstrating the unique utility of the reactor. © 2012 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  4. Enzymatic cleaning of biofouled thin-film composite reverse osmosis (RO) membrane operated in a biofilm membrane reactor.

    Science.gov (United States)

    Khan, Mohiuddin; Danielsen, Steffen; Johansen, Katja; Lorenz, Lindsey; Nelson, Sara; Camper, Anne

    2014-02-01

    Application of environmentally friendly enzymes to remove thin-film composite (TFC) reverse osmosis (RO) membrane biofoulants without changing the physico-chemical properties of the RO surface is a challenging and new concept. Eight enzymes from Novozyme A/S were tested using a commercially available biofouling-resistant TFC polyamide RO membrane (BW30, FilmTech Corporation, Dow Chemical Co.) without filtration in a rotating disk reactor system operated for 58 days. At the end of the operation, the accumulated biofoulants on the TFC RO surfaces were treated with the three best enzymes, Subtilisin protease and lipase; dextranase; and polygalacturonase (PG) based enzymes, at neutral pH (~7) and doses of 50, 100, and 150 ppm. Contact times were 18 and 36 h. Live/dead staining, epifluorescence microscopy measurements, and 5 μm thick cryo-sections of enzyme and physically treated biofouled membranes revealed that Subtilisin protease- and lipase-based enzymes at 100 ppm and 18 h contact time were optimal for removing most of the cells and proteins from the RO surface. Culturable cells inside the biofilm declined by more than five logs even at the lower dose (50 ppm) and shorter incubation period (18 h). Subtilisin protease- and lipase-based enzyme cleaning at 100 ppm and for 18 h contact time restored the hydrophobicity of the TFC RO surface to its virgin condition while physical cleaning alone resulted in a 50° increase in hydrophobicity. Moreover, at this optimum working condition, the Subtilisin protease- and lipase-based enzyme treatment of biofouled RO surface also restored the surface roughness measured with atomic force microscopy and the mass percentage of the chemical compositions on the TFC surface estimated with X-ray photoelectron spectroscopy to its virgin condition. This novel study will encourage the further development and application of enzymes to remove biofoulants on the RO surface without changing its surface properties. PMID:24329165

  5. Techno-economic prospects of small-scale membrane reactors in a future hydrogen-fuelled transportation sector

    International Nuclear Information System (INIS)

    The membrane reactor is a novel technology for the production of hydrogen from natural gas. It promises economic small-scale hydrogen production, e.g. at refuelling stations and has the potential of inexpensive CO2 separation. Four configurations of the membrane reactor have been modelled with Aspenplus to determine its thermodynamic and economic prospects. Overall energy efficiency is 84%HHV without H2 compression (78% with compression up to 482bar). The modelling results also indicate that by using a sweep gas, the membrane reactor can produce a reformer exit stream consisting mainly of CO2 and H2O (>90%mol) suited for CO2 sequestration after water removal with an efficiency loss of only 1%pt. Reforming with a 2MW membrane reactor (250 unit production volume) costs 14$/GJH2 including compression, which is more expensive than conventional steam reforming+compression (12$/GJ). It does, however, promise a cheap method of CO2 separation, 14$/t CO2 captured, due to the high purity of the exit stream. The well-to-wheel chain of the membrane reactor has been compared to centralised steam reforming to assess the trade-off between production scale and the construction of a hydrogen and a CO2 distribution infrastructure. If the scale of centralised hydrogen production is below 40MW, the trade-off could be favourable for the membrane reactor with small-scale CO2 capture (18$/GJ including H2 storage, dispensing and CO2 sequestration for 40MW SMR versus 19$/GJ for MR). The membrane reactor might become competitive with conventional steam reforming provided that thin membranes can be combined with high stability and a cheap manufacturing method for the membrane tubes. Thin membranes, industrial utility prices and larger production volumes (i.e. technological learning) might reduce the levelised hydrogen cost of the membrane reactor at the refuelling station to less than 14$/GJ including CO2 sequestration cost, below that of large-scale H2 production with CO2 sequestration (

  6. Drought-Stimulated Activity of Plasma Membrane Nicotinamide Adenine Dinucleotide Phosphate Oxidase and Its Catalytic Properties in Rice

    Institute of Scientific and Technical Information of China (English)

    Zhuang-Qin Duan; Lei Bai; Zhi-Guang Zhao; Guo-Ping Zhang; Fang-Min Cheng; Li-Xi Jiang; Kun-Ming Chen

    2009-01-01

    The activity of plasma membrane (PM) nicoUnamide adenine dinucleotide phosphate (NADPH) oxidase and Its catalytic properties in rice was investigated under drought stress conditions. Drought stress led to decreased leaf relative water content (RWC) and, as a result of drought-induced oxidative stress, the activities of antioxidant enzymes increased significantly. More interestingly, the intensity of applied water stress was correlated with increased production of H_2O_2and O_2~- and elevated activity of PM NADPH oxidase, a key enzyme of reactive oxygen species generation in plants.Histochemlcal analyses also revealed increased H_2O_2 and O_2~- production in drought-stressed leaves. Application of dlphenylene iodonium (DPI), an Inhibitor of PM NADPH oxidasa, did not alleviate drought-induced production of H_2O_2 and O_2~-. Catalysis experiments indicated that the dce PM NADPH oxidass was partially fiavin-dependent. The pH and temperature optima for this enzyme were 9.8 and 40 ℃, respectively. In addition, drought stress enhanced the activity under alkaline pH and high temperature conditions. These results suggest that a complex regulatory mechanism, associated with the NADPH oxidase-H_2O_2 system, is involved in the response of rice to drought stress.

  7. Application of a membrane reactor system to the Bunsen reaction of the thermochemical water splitting IS process

    International Nuclear Information System (INIS)

    The thermochemical water splitting IS process is one of hydrogen production methods from water using I2 and SO2 as recycling agents. The maximum required temperature of the IS process is the same as the peak temperature of the High Temperature Gas-Cooled Reactor. The Bunsen reaction (SO2+I2+2H2O=2HI+H2SO4) in the IS process produces 2 kinds of acid as intermediate products. An excess amount of I2 is added to the 2 kinds of acids in the Bunsen reactor to separate these acids by using a liquid-liquid separator. The excess amount of I2 should be separated at the further treatments, and should be recycled in the process. Application of a membrane reactor system to the Bunsen reactor is one of the solutions for the reduction of an amount of recycling I2 by omitting a liquid-liquid separator. H2SO4 is obtained at an anode side, and HI is obtained at a cathode side separately in the membrane reactor. H2SO4 and HI were successfully concentrated by the application of the membrane reactor at room temperature. The experimental data show that an amount of recycling I2 among the Bunsen reactor can be reduced ca. 98% compared with the case for a traditional liquid-liquid separator. The effects of the reduction of recycling I2 were evaluated by the relative cost analysis calculated based on the Heat/Mass balance of the total process. Total apparatus cost can be reduced by 20% by the application of this type of membrane reactor system. Total production cost for hydrogen was also evaluated using the sample procedure. 23% of the production cost can be cut off by the application of this system due to the reduction of the apparatus cost and the running cost. The application of this type of membrane reactor system is suitable for the IS process. (author)

  8. Degradation of estrogens by laccase from Myceliophthora thermophila in fed-batch and enzymatic membrane reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lloret, L. [Dept. of Chemical Engineering, School of Engineering, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Eibes, G., E-mail: gemma.eibes@usc.es [Dept. of Chemical Engineering, School of Engineering, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Feijoo, G.; Moreira, M.T.; Lema, J.M. [Dept. of Chemical Engineering, School of Engineering, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer Estrogen removal was optimized in fed-batch bioreactors by evaluating the effect of the main process parameters. Black-Right-Pointing-Pointer An enzyme membrane bioreactor (EMR) was proposed for the continuous degradation of estrogens. Black-Right-Pointing-Pointer Estrone was degraded up to 95% and estradiol was not detected in the effluent of the EMR under steady state conditions. Black-Right-Pointing-Pointer The residual estrogenic activity of the effluent was largely reduced up to 97%. - Abstract: Several studies reported that natural and synthetic estrogens are the major contributors to the estrogenic activity associated with the effluents of wastewater treatment plants. The ability of the enzyme laccase to degrade these compounds in batch experiments has been demonstrated in previous studies. Nevertheless, information is scarce regarding in vitro degradation of estrogens in continuous enzymatic bioreactors. The present work constitutes an important step forward for the implementation of an enzymatic reactor for the continuous removal of estrone (E1) and estradiol (E2) by free laccase from Myceliophthora thermophila. In a first step, the effect of the main process parameters (pH, enzyme level, gas composition (air or oxygen) and estrogen feeding rate) were evaluated in fed-batch bioreactors. E1 and E2 were oxidized by 94.1 and 95.5%, respectively, under the best conditions evaluated. Thereafter, an enzymatic membrane reactor (EMR) was developed to perform the continuous degradation of the estrogens. The configuration consisted of a stirred tank reactor coupled with an ultrafiltration membrane, which allowed the recovery of enzyme while both estrogens and degradation products could pass through it. The highest removal rates at steady state conditions were up to 95% for E1 and nearly complete degradation for E2. Furthermore, the residual estrogenic activity of the effluent was largely reduced up to 97%.

  9. Degradation of estrogens by laccase from Myceliophthora thermophila in fed-batch and enzymatic membrane reactors

    International Nuclear Information System (INIS)

    Highlights: ► Estrogen removal was optimized in fed-batch bioreactors by evaluating the effect of the main process parameters. ► An enzyme membrane bioreactor (EMR) was proposed for the continuous degradation of estrogens. ► Estrone was degraded up to 95% and estradiol was not detected in the effluent of the EMR under steady state conditions. ► The residual estrogenic activity of the effluent was largely reduced up to 97%. - Abstract: Several studies reported that natural and synthetic estrogens are the major contributors to the estrogenic activity associated with the effluents of wastewater treatment plants. The ability of the enzyme laccase to degrade these compounds in batch experiments has been demonstrated in previous studies. Nevertheless, information is scarce regarding in vitro degradation of estrogens in continuous enzymatic bioreactors. The present work constitutes an important step forward for the implementation of an enzymatic reactor for the continuous removal of estrone (E1) and estradiol (E2) by free laccase from Myceliophthora thermophila. In a first step, the effect of the main process parameters (pH, enzyme level, gas composition (air or oxygen) and estrogen feeding rate) were evaluated in fed-batch bioreactors. E1 and E2 were oxidized by 94.1 and 95.5%, respectively, under the best conditions evaluated. Thereafter, an enzymatic membrane reactor (EMR) was developed to perform the continuous degradation of the estrogens. The configuration consisted of a stirred tank reactor coupled with an ultrafiltration membrane, which allowed the recovery of enzyme while both estrogens and degradation products could pass through it. The highest removal rates at steady state conditions were up to 95% for E1 and nearly complete degradation for E2. Furthermore, the residual estrogenic activity of the effluent was largely reduced up to 97%.

  10. Enhanced catalytic properties from platinum nanodots covered carbon nanotubes for proton-exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhe; Chua, Daniel H.C. [Department of Materials Science and Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574 (Singapore); Poh, Chee Kok; Tian, Zhiqun; Lin, Jianyi [Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Lee, Kian Keat [NUS Nanoscience and Nanotechnology Initiative (NUSNNI), 2 Science Drive 3, Singapore 117542 (Singapore)

    2010-01-01

    An efficient fabrication method for carbon nanotube (CNT)-based electrode with a nanosized Pt catalyst is developed for high efficiency proton-exchange membrane fuel cells (PEMFC). The integrated Pt/CNT layer is prepared by in situ growth of a CNT layer on carbon paper and subsequent direct sputter-deposition of the Pt catalyst. Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrate that this Pt/CNT layer consists of a highly porous CNT layer covered by well-dispersed Pt nanodots with a narrow size distribution. Compared with conventional gas-diffusion layer assisted electrodes, the CNT-based electrode with a Pt/CNT layer acting as a combined gas-diffusion layer and catalyst layer shows pronounced improvement in polarization tests. A high maximum power density of 595 mW cm{sup -2} is observed for a low Pt loading of 0.04 mg cm{sup -2} at the cathode. (author)

  11. Oxygen Transfer Model for a Flow-Through Hollow-Fiber Membrane Biofilm Reactor

    DEFF Research Database (Denmark)

    Gilmore, K. R.; Little, J. C.; Smets, Barth F.;

    2009-01-01

    the biofilm present, oxygen transfer efficiencies between 30 and 55% were calculated from the measured data including the outlet gas oxygen concentration, ammonia consumption stoichiometry, and oxidized nitrogen production stoichiometry, all of which were in reasonable agreement. The mechanistic model......A mechanistic oxygen transfer model was developed and applied to a flow-through hollow-fiber membrane-aerated biofilm reactor. Model results are compared to conventional clean water test results as well as performance data obtained when an actively nitrifying biofilm was present on the fibers. With...... overpredicted the oxygen transfer by a factor of 1.3 relative to the result calculated from the outlet gas oxygen concentration, which was considered the most accurate of the measured benchmarks. A mass transfer coefficient derived from the clean water testing with oxygen sensors at the membrane...

  12. Membrane reactor for water detritiation: a parametric study on operating parameters

    International Nuclear Information System (INIS)

    This paper presents the results of a parametric study done on a single stage finger-type packed-bed membrane reactor (PBMR) used for heavy water vapor de-deuteration. Parametric studies have been done on 3 operating parameters which are: the membrane temperature, the total feed flow rate and the feed composition through D2O content variations. Thanks to mass spectrometer analysis of streams leaving the PBMR, speciation of deuterated species was achieved. Measurement of the amounts of each molecular component allowed the calculation of reaction quotient at the packed-bed outlet. While temperature variation mainly influences permeation efficiency, feed flow rate perturbation reveals dependence of conversion and permeation properties to contact time between catalyst and reacting mixture. The study shows that isotopic exchange reactions occurring on the catalyst particles surface are not thermodynamically balanced. Moreover, the variation of the heavy water content in the feed exhibits competition between permeation and conversion kinetics

  13. Membrane reactor for water detritiation: a parametric study on operating parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mascarade, J.; Liger, K.; Troulay, M.; Perrais, C. [CEA, DEN, DTN/STPA/LIPC, Centre de Cadarache, Saint-Paul-lez-Durance (France); Joulia, X.; Meyer, X.M. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, Toulouse (France); CNRS, Laboratoire de Genie Chimique, Toulouse (France)

    2015-03-15

    This paper presents the results of a parametric study done on a single stage finger-type packed-bed membrane reactor (PBMR) used for heavy water vapor de-deuteration. Parametric studies have been done on 3 operating parameters which are: the membrane temperature, the total feed flow rate and the feed composition through D{sub 2}O content variations. Thanks to mass spectrometer analysis of streams leaving the PBMR, speciation of deuterated species was achieved. Measurement of the amounts of each molecular component allowed the calculation of reaction quotient at the packed-bed outlet. While temperature variation mainly influences permeation efficiency, feed flow rate perturbation reveals dependence of conversion and permeation properties to contact time between catalyst and reacting mixture. The study shows that isotopic exchange reactions occurring on the catalyst particles surface are not thermodynamically balanced. Moreover, the variation of the heavy water content in the feed exhibits competition between permeation and conversion kinetics.

  14. Numerical simulation of ion transport membrane reactors: Oxygen permeation and transport and fuel conversion

    KAUST Repository

    Hong, Jongsup

    2012-07-01

    Ion transport membrane (ITM) based reactors have been suggested as a novel technology for several applications including fuel reforming and oxy-fuel combustion, which integrates air separation and fuel conversion while reducing complexity and the associated energy penalty. To utilize this technology more effectively, it is necessary to develop a better understanding of the fundamental processes of oxygen transport and fuel conversion in the immediate vicinity of the membrane. In this paper, a numerical model that spatially resolves the gas flow, transport and reactions is presented. The model incorporates detailed gas phase chemistry and transport. The model is used to express the oxygen permeation flux in terms of the oxygen concentrations at the membrane surface given data on the bulk concentration, which is necessary for cases when mass transfer limitations on the permeate side are important and for reactive flow modeling. The simulation results show the dependence of oxygen transport and fuel conversion on the geometry and flow parameters including the membrane temperature, feed and sweep gas flow, oxygen concentration in the feed and fuel concentration in the sweep gas. © 2012 Elsevier B.V.

  15. Mathematical model analysis on the enhancement of aeration efficiency using ladder-type flat membrane module forms in the Submerged Membrane Bio-reactor (SMBR)

    Institute of Scientific and Technical Information of China (English)

    LI Bo; YE MaoSheng; YANG FengLin; MA Hui

    2009-01-01

    The cross-flow shearing action produced from the inferior aeration in the Submerged Membrane Bio-reactor (SMBR) Is an effective way to further improve anti-fouling effects of membrane modules.Based on the widely-applied vertical structure of flat membrane modules, improvements are made that ladder-type flat membrane structure is designed with a certain inclined angle θ so that the cross-flow velocity of bubble near the membrane surface can be held, and the intensity and times of elastic colli-sion between bubbles and membrane surface can be increased. This can improve scouring action ofmembrane surface on aeration and reduce energy consumption of strong aeration in SMBR. By de-ducing and improving the mathematics model of collision between bubble and vertical flat put forward by Vries, the relatively suitable Incline angle θ under certain aeration place and in certain size rang ofbubble can be obtained with the computer iterative calculation technology. Finally, for many groups of ladder-type flat membrane in parallel placement in the practical application of SMBR, some sugges-tions are offered: the interval distance of membrane modules is 8--15 mm, and aeration should be op-erated at 5--7 mm among membrane modules, and the optimal design angle of trapeziform membrane is 1.7°--2.5°.

  16. Yield optimization in a cycled trickle-bed reactor: ethanol catalytic oxidation as a case study

    Energy Technology Data Exchange (ETDEWEB)

    Ayude, A.; Haure, P. [INTEMA, CONICET, Mar del Plata (Argentina); Cassanello, M. [Universidad de Buenos Aires, PINMATE, Departamento de Industrias, FCEyN, Buenos Aires (Argentina); Martinez, O. [Departamento de Ingenieria Quimica, FI-UNLP-CINDECA, La Plata (Argentina)

    2012-05-15

    The effect of slow ON-OFF liquid flow modulation on the yield of consecutive reactions is investigated for oxidation of aqueous ethanol solutions using a 0.5 % Pd/Al{sub 2}O{sub 3} commercial catalyst in a laboratory trickle-bed reactor. Experiments with modulated liquid flow rate (MLFR) were performed under the same hydrodynamic conditions (degree of wetting, liquid holdup) as experiments with constant liquid flow rate (CLFR). Thus, the impact of the duration of wet and dry cycles as well as the period can be independently investigated. Depending on cycling conditions, acetaldehyde or acetic acid production is favored with MLFR compared to CLFR. Results suggest both the opportunity and challenge of finding a way to tune the cycling parameters for producing the most appropriate product. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. The ReactorAFM: Non-contact atomic force microscope operating under high-pressure and high-temperature catalytic conditions

    Science.gov (United States)

    Roobol, S. B.; Cañas-Ventura, M. E.; Bergman, M.; van Spronsen, M. A.; Onderwaater, W. G.; van der Tuijn, P. C.; Koehler, R.; Ofitserov, A.; van Baarle, G. J. C.; Frenken, J. W. M.

    2015-03-01

    An Atomic Force Microscope (AFM) has been integrated in a miniature high-pressure flow reactor for in-situ observations of heterogeneous catalytic reactions under conditions similar to those of industrial processes. The AFM can image model catalysts such as those consisting of metal nanoparticles on flat oxide supports in a gas atmosphere up to 6 bar and at a temperature up to 600 K, while the catalytic activity can be measured using mass spectrometry. The high-pressure reactor is placed inside an Ultrahigh Vacuum (UHV) system to supplement it with standard UHV sample preparation and characterization techniques. To demonstrate that this instrument successfully bridges both the pressure gap and the materials gap, images have been recorded of supported palladium nanoparticles catalyzing the oxidation of carbon monoxide under high-pressure, high-temperature conditions.

  18. The ReactorAFM: Non-contact atomic force microscope operating under high-pressure and high-temperature catalytic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Roobol, S. B.; Cañas-Ventura, M. E.; Bergman, M.; Spronsen, M. A. van; Onderwaater, W. G.; Tuijn, P. C. van der; Koehler, R.; Frenken, J. W. M., E-mail: frenken@arcnl.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. Box 9504, RA Leiden 2300 (Netherlands); Ofitserov, A.; Baarle, G. J. C. van [Leiden Probe Microscopy B.V., J.H. Oortweg 21, 2333 CH Leiden (Netherlands)

    2015-03-15

    An Atomic Force Microscope (AFM) has been integrated in a miniature high-pressure flow reactor for in-situ observations of heterogeneous catalytic reactions under conditions similar to those of industrial processes. The AFM can image model catalysts such as those consisting of metal nanoparticles on flat oxide supports in a gas atmosphere up to 6 bar and at a temperature up to 600 K, while the catalytic activity can be measured using mass spectrometry. The high-pressure reactor is placed inside an Ultrahigh Vacuum (UHV) system to supplement it with standard UHV sample preparation and characterization techniques. To demonstrate that this instrument successfully bridges both the pressure gap and the materials gap, images have been recorded of supported palladium nanoparticles catalyzing the oxidation of carbon monoxide under high-pressure, high-temperature conditions.

  19. Mathematical Modelling of Catalytic Fixed-Bed Reactor for Carbon Dioxide Reforming of Methane over Rh/Al2O3 Catalyst

    OpenAIRE

    Nor Aishah Saidina Amin; Istadi Istadi; New Pei Yee

    2010-01-01

    A one-dimensional mathematical model was developed to simulate the performance of catalytic fixed bed reactor for carbon dioxide reforming of methane over Rh/Al2O3 catalyst at atmospheric pressure. The reactions involved in the system are carbon dioxide reforming of methane (CORM) and reverse water gas shift reaction (RWGS). The profiles of CH4 and CO2 conversions, CO and H2 yields, molar flow rate and mole raction of all species as well as reactor temperature along the axial bed...

  20. Mathematical Modelling of Catalytic Fixed-Bed Reactor for Carbon Dioxide Reforming of Methane over Rh/Al2O3 Catalyst

    Directory of Open Access Journals (Sweden)

    New Pei Yee

    2008-04-01

    Full Text Available A one-dimensional mathematical model was developed to simulate the performance of catalytic fixed bedreactor for carbon dioxide reforming of methane over Rh/Al2O3 catalyst at atmospheric pressure. The reactionsinvolved in the system are carbon dioxide reforming of methane (CORM and reverse water gas shiftreaction (RWGS. The profiles of CH4 and CO2 conversions, CO and H2 yields, molar flow rate and molefraction of all species as well as reactor temperature along the axial bed of catalyst were simulated. In addition,the effects of different reactor temperature on the reactor performance were also studied. The modelscan also be applied to analyze the performances of lab-scale micro reactor as well as pilot-plant scale reactorwith certain modifications and model verification with experimental data. © 2008 BCREC UNDIP. All rights reserved.[Received: 20 August 2008; Accepted: 25 September 2008][How to Cite: N.A.S. Amin, I. Istadi, N.P. Yee. (2008. Mathematical Modelling of Catalytic Fixed-Bed Reactor for Carbon Dioxide Reforming of Methane over Rh/Al2O3 Catalyst. Bulletin of Chemical Reaction Engineering and Catalysis, 3 (1-3: 21-29. doi:10.9767/bcrec.3.1-3.19.21-29

  1. Evaluation of toxicity reduction, mineralization, and treatability of phenolic wastewater treated with combined system of catalytic ozonation process / biological reactor (SBR)

    OpenAIRE

    Y Dadban Shahamat; M. Farzadkia; S Nasseri; A.H Mahvi; Gholami, M.; A Esrafily

    2016-01-01

    Background and Objectives: Phenol is one of the industrial pollutants in wastewaters, which due to its toxicity for biological systems various pretreatment processes have been used for its detoxification. In this study, the combination of catalytic ozonation process (COP) and sequencing batch reactor (SBR) were used for detoxification of these types of wastewaters. Materials and Methodology: In this study, the effect of COP on phenol degradation, COD removal, and detoxification of wastewa...

  2. Polymer electrolyte membrane fuel cell grade hydrogen production by methanol steam reforming: A comparative multiple reactor modeling study

    Science.gov (United States)

    Katiyar, Nisha; Kumar, Shashi; Kumar, Surendra

    2013-12-01

    Analysis of a fuel processor based on methanol steam reforming has been carried out to produce fuel cell grade H2. Six reactor configurations namely FBR1 (fixed bed reactor), MR1 (H2 selective membrane reactor with one reaction tube), MR2 (H2 selective membrane reactor with two reaction tubes), FBR2 (FBR1 + preferential CO oxidation (PROX) reactor), MR3 (MR1 + PROX), and MR4 (MR2 + PROX) are evaluated by simulation to identify the suitable processing scheme. The yield of H2 is significantly affected by H2 selective membrane, residence time, temperature, and pressure conditions at complete methanol conversion. The enhancement in residence time in MR2 by using two identical reaction tubes provides H2 yield of 2.96 with 91.25 mol% recovery at steam/methanol ratio of 1.5, pressure of 2 bar and 560 K temperature. The exit retentate gases from MR2 are further treated in PROX reactor of MR4 to reduce CO concentration to 4.1 ppm to ensure the safe discharge to the environment. The risk of carbon deposition on reforming catalyst is highly reduced in MR4, and MR4 reactor configuration generates 7.4 NL min-1 of CO free H2 from 0.12 mol min-1 of methanol which can provide 470 W PEMFC feedstock requirement. Hence, process scheme in MR4 provides a compact and innovative fuel cell grade H2 generating unit.

  3. A novel water perm-selective membrane dual-type reactor concept for Fischer-Tropsch synthesis of GTL (gas to liquid) technology

    International Nuclear Information System (INIS)

    The present study proposes a novel configuration of Fischer-Tropsch synthesis (FTS) reactors in which a fixed-bed water perm-selective membrane reactor is followed by a fluidized-bed hydrogen perm-selective membrane reactor. This novel concept which has been named fixed-bed membrane reactor followed by fluidized-bed membrane reactor (FMFMDR) produces gasoline from synthesis gas. The walls of the tubes of a fixed-bed reactor (water-cooled reactor) of FMFMDR configuration are coated by a high water perm-selective membrane layer. In this new configuration, two membrane reactors instead of one membrane reactor are developed for FTS reactions. In other words, two different membrane layers are used. In order to investigate the performance of FMFMDR, a one-dimensional heterogeneous model is taken into consideration. The simulation results of three schemes named fluidized-bed membrane dual-type reactor (FMDR), FMFMDR and conventional fixed-bed reactor (CR) are presented. They have been compared in terms of temperature, gasoline and CO2 yields, H2 and CO conversions and the water permeation rate through the membrane layer. Results show that the gasoline yield in FMFMDR is higher than the one in FMDR. The FMFMDR configuration not only decreases the undesired product such as CO2 but also produces more gasoline. -- Research highlights: → The application of H-SOD membrane layer in FTS reactors. → Approximate 7.5% and 37% increase in the gasoline yield in terms of [g/g feed x 100] in comparison with FMDR and CR, respectively. → A remarkable decrease in CO2 emission to the environment. → A good configuration mainly due to reduction in catalysts sintering as a result of in situ water removal.

  4. Double-side active TiO2-modified nanofiltration membranes in continuous flow photocatalytic reactors for effective water purification

    International Nuclear Information System (INIS)

    Highlights: ► A novel CVD reactor for the developments of double side active TiO2 membranes. ► Double side active TiO2 membranes efficiently photodegrade organic pollutants. ► A photocatalytic membrane purification device for continuous flow water treatment. - Abstract: A chemical vapour deposition (CVD) based innovative approach was applied with the purpose to develop composite TiO2 photocatalytic nanofiltration (NF) membranes. The method involved pyrolytic decomposition of titanium tetraisopropoxide (TTIP) vapor and formation of TiO2 nanoparticles through homogeneous gas phase reactions and aggregation of the produced intermediate species. The grown nanoparticles diffused and deposited on the surface of γ-alumina NF membrane tubes. The CVD reactor allowed for online monitoring of the carrier gas permeability during the treatment, providing a first insight on the pore efficiency and thickness of the formed photocatalytic layers. In addition, the thin TiO2 deposits were developed on both membrane sides without sacrificing the high yield rates. Important innovation was also introduced in what concerns the photocatalytic performance evaluation. The membrane efficiency to photo degrade typical water pollutants, was evaluated in a continuous flow water purification device, applying UV irradiation on both membrane sides. The developed composite NF membranes were highly efficient in the decomposition of methyl orange exhibiting low adsorption-fouling tendency and high water permeability.

  5. Separation of xylo-oligosaccharides from enzymatic hydrolytes using membrane reactor

    Institute of Scientific and Technical Information of China (English)

    杨富国; 方正; 徐勇; 姚春才; 余世袁; 朱琼霞

    2003-01-01

    The time course of xylo-oligosaccharides concentration and xylo-oligosaccharides yield in the separation of xylo-oligosaccharides from enzymatic hydrolytes was studied using a membrane reactor with constant permeate flux of 4 L @ m-2 @ h-1. The results show that xylanases retain 90% of its activity in the reactor. The concentration of xylo-oligosaccharides achieves the maximum, about 5.48 g/L in 30 min. The difference of xylo-oligosaccharides in the retentate and permeate stream is low, <0.62 g/L, therefore it can permeate through membrane. Under the operating conditions that xylan concentration is 30.0 g/L, pH 5.0, operating pressure 16 kPa, temperature 48 ℃,feed velocity 400 mL/min, reaction volume 400 mL, enzyme dosage 10%(volume fraction), dilution rate 1 h -1, and enzymatic hydrolysis time 195 min, the yield of xylo-oligosaccharides reaches 31.69 %.

  6. Treatment of sewage sludge in a thermophilic membrane reactor (TMR) with alternate aeration cycles.

    Science.gov (United States)

    Collivignarelli, Maria Cristina; Castagnola, Federico; Sordi, Marco; Bertanza, Giorgio

    2015-10-01

    The management of sewage sludge is becoming a more and more important issue, both at national and international level, in particular due to the uncertain recovery/disposal future options. Therefore, it is clear that the development of new technologies that can mitigate the problem at the source by reducing sludge production is necessary, such as the European Directive 2008/98/EC prescribes. This work shows the results obtained with a thermophilic membrane reactor, for processing a biological sludge derived from a wastewater treatment plant (WWTP) that treats urban and industrial wastewater. Sewage sludge was treated in a thermophilic membrane reactor (TMR), at pilot-scale (1 m(3) volume), with alternate aeration cycles. The experimentation was divided into two phases: a "startup phase" during which, starting with a psychrophilic/mesophilic biomass, thermophilic conditions were progressively reached, while feeding a highly biodegradable substrate; the obtained thermophilic biomass was then used, in the "regime phase", to digest biological sludge which was fed to the plant. Good removal yields were observed: 64% and 57% for volatile solids (VS) and total COD (CODtot), respectively, with an average hydraulic retention time (HRT) equal to 20 d, an organic loading rate (OLR) of about 1.4-1.8 kg COD m(-3) d(-1) and aeration/non aeration cycles alternated every 4 h. PMID:26233586

  7. The recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor

    International Nuclear Information System (INIS)

    This paper reports the optimization of the process parameters for recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor. The experiments were carried out in an ammoniacal ammonium chloride system. The influence of composition of electrolytes, pH, stirring rate, current density and temperature, on cathodic current efficiency, specific power consumption and anodic dissolution of Zn were investigated. The results indicate that the cathode current efficiency increases and the hydrogen evolution decreased with increasing the cathode current density. The partial current for electrodeposition of Zn has liner relationship with ω1/2 (ω: rotation rate). The highest current efficiency for dissolving zinc was obtained when NH4Cl concentration was 53.46 g L-1 and the anodic dissolution of zinc was determined by mass transfer rate at stirring rate 0-300 r min-1. Increase in temperature benefits to improve CE and dissolution of Zn, and reduce cell voltage. Initial pH of electrolytes plays an important role in the deposition and anodic dissolution of Zn. The results of single factor experiment show that about 50% energy consumption was saved for electrodeposition of Zn in the anion-exchange membrane electrolysis reactor.

  8. A stable, novel catalyst improves hydrogen production in a membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Irusta, S.; Munera, J.; Carrara, C.; Lombardo, E.A.; Cornaglia, L.M. [Instituto de Investigaciones en Catalisis y Petroquimica FIQ, UNL-CONICET, Santiago del Estero 2829, 3000 Santa Fe (Argentina)

    2005-06-22

    The dry reforming of methane as a source of H{sub 2} was performed using a well-known catalyst, Rh/La{sub 2}O{sub 3}, together with a novel one, Rh/La{sub 2}O{sub 3}-SiO{sub 2}, in a hydrogen-permeable membrane reactor. The catalysts were characterized by XRD, TPR, FTIR, H{sub 2} and CO chemisorption. In all lanthanum-based catalysts, the activity remained constant after 100h on stream at 823K. The basis of their high stability could be traced back to the strong metal-support interaction (TPR) in Rh/La{sub 2}O{sub 3} catalysts. The La{sub 2}O{sub 3}-SiO{sub 2} solids are also stable even though a weaker rhodium-lanthanum interaction (TPR) can be observed. The incorporation of the promoter (La{sub 2}O{sub 3}) to the silica support induces a parallel increase in the metal dispersion (CO adsorption). The effect of the operation variables upon the performance of the membrane reactor was also studied. The novel Rh (0.6%)/La{sub 2}O{sub 3} (27%)-SiO{sub 2} catalyst proved to be the best formulation. Operating the membrane reactor at 823K, both methane and CO{sub 2} conversions were 40% higher than the equilibrium values, producing 0.5mol H{sub 2}/mol CH{sub 4}. This catalyst, tested at W/F three times lower than Rh (0.6%)/La{sub 2}O{sub 3}, showed a similar performance. Both the increase of the sweep gas flow rate and the decrease of the permeation area significantly affected methane conversion and H{sub 2} production. The presence of tiny amounts of graphite only detectable through LRS did not endanger membrane stability. The better performance of Rh (0.6%)/La{sub 2}O{sub 3} (27%)-SiO{sub 2} is related to the high dispersion.

  9. Micro-scale H2–CO2 Dynamics in a Hydrogenotrophic Methanogenic Membrane Reactor

    Science.gov (United States)

    Garcia-Robledo, Emilio; Ottosen, Lars D. M.; Voigt, Niels V.; Kofoed, M. W.; Revsbech, Niels P.

    2016-01-01

    Biogas production is a key factor in a sustainable energy supply. It is possible to get biogas with very high methane content if the biogas reactors are supplied with exogenous hydrogen, and one of the technologies for supplying hydrogen is through gas permeable membranes. In this study the activity and stratification of hydrogen consumption above such a membrane was investigated by use of microsensors for hydrogen and pH. A hydrogenotrophic methanogenic community that was able to consume the hydrogen flux within 0.5 mm of the membrane with specific rates of up to 30 m3 H2 m-3 day-1 developed within 3 days in fresh manure and was already established at time zero when analyzing slurry from a biogas plant. The hydrogen consumption was dependent on a simultaneous carbon dioxide supply and was inhibited when carbon dioxide depletion elevated the pH to 9.2. The activity was only partially restored when the carbon dioxide supply was resumed. Bioreactors supplied with hydrogen gas should thus be carefully monitored and either have the hydrogen supply disrupted or be supplemented with carbon dioxide when the pH rises to values about 9. PMID:27582736

  10. Micro-scale H2-CO2 Dynamics in a Hydrogenotrophic Methanogenic Membrane Reactor.

    Science.gov (United States)

    Garcia-Robledo, Emilio; Ottosen, Lars D M; Voigt, Niels V; Kofoed, M W; Revsbech, Niels P

    2016-01-01

    Biogas production is a key factor in a sustainable energy supply. It is possible to get biogas with very high methane content if the biogas reactors are supplied with exogenous hydrogen, and one of the technologies for supplying hydrogen is through gas permeable membranes. In this study the activity and stratification of hydrogen consumption above such a membrane was investigated by use of microsensors for hydrogen and pH. A hydrogenotrophic methanogenic community that was able to consume the hydrogen flux within 0.5 mm of the membrane with specific rates of up to 30 m(3) H2 m(-3) day(-1) developed within 3 days in fresh manure and was already established at time zero when analyzing slurry from a biogas plant. The hydrogen consumption was dependent on a simultaneous carbon dioxide supply and was inhibited when carbon dioxide depletion elevated the pH to 9.2. The activity was only partially restored when the carbon dioxide supply was resumed. Bioreactors supplied with hydrogen gas should thus be carefully monitored and either have the hydrogen supply disrupted or be supplemented with carbon dioxide when the pH rises to values about 9. PMID:27582736

  11. Pyrosequencing reveals microbial community profile in anaerobic bio-entrapped membrane reactor for pharmaceutical wastewater treatment.

    Science.gov (United States)

    Ng, Kok Kwang; Shi, Xueqing; Ong, Say Leong; Ng, How Yong

    2016-01-01

    In this study, pharmaceutical wastewater with high salinity and total chemical oxygen demand (TCOD) was treated by an anaerobic membrane bioreactor (AnMBR) and an anaerobic bio-entrapped membrane reactor (AnBEMR). The microbial populations and communities were analyzed using the 454 pyrosequencing method. The hydraulic retention time (HRT), membrane flux and mean cell residence time (MCRT) were controlled at 30.6h, 6L/m(2)h and 100d, respectively. The results showed that the AnBEMR achieved higher TCOD removal efficiency and greater biogas production compared to the AnMBR. Through DNA pyrosequencing analysis, both the anaerobic MBRs showed similar dominant groups of bacteria and archaea. However, phylum Elusimicrobia of bacteria was only detected in the AnBEMR; the higher abundance of dominant archaeal genus Methanimicrococcus found in the AnBEMR could play an important role in degradation of the major organic pollutant (i.e., trimethylamine) present in the pharmaceutical wastewater. PMID:26577579

  12. Sewage-sludge-derived carbonaceous materials for catalytic wet hydrogen peroxide oxidation of m-cresol in batch and continuous reactors.

    Science.gov (United States)

    Yu, Yang; Wei, Huangzhao; Yu, Li; Wang, Wei; Zhao, Ying; Gu, Bin; Sun, Chenglin

    2016-01-01

    In this study, four sewage-sludge-derived carbonaceous materials (SWs) were evaluated for their catalytic wet hydrogen peroxide oxidation (CWPO) performance of m-cresol in batch reactor and continuous reactor, respectively. The SWs were produced by carbonization (SW); carbonization with the addition of CaO (CaO-SW); HNO3 pretreatment (HNO3-SW) and steam activation (Activated-SW). The properties of SW catalysts were assessed by thermogravimetric analysis, Brunauer-Emmett-Teller, Fourier Transform Infrared Spectroscopy, X-ray Fluorescence, Scanning electron microscopy, energy dispersive X-ray analysis and zeta potential. The results showed that SW treated by HNO3 (HNO3-SW) had a high conversion of m-cresol in batch reactor and continuous reactor, respectively. Under the conditions of batch reaction (Cm-cresol = 100 mg L(-1), CH2O2 = 15.7 mmol L(-1), initial pH=7.0, 0.5 g L(-1) catalyst, 80°C, 180 min adsorption and 210 min oxidation), the conversion of m-cresol reached 100% and total organic carbon removal was 67.1%. It had a high catalytic activity and stability on the treatment of m-cresol in CWPO for more than 1100 h. Furthermore, a possible reaction mechanism for the oxidation of m-cresol to 2-methyl-p-benzoquinone by CWPO was proposed. PMID:26109374

  13. System design study of a membrane reforming hydrogen production plant using a small sized sodium cooled reactor

    International Nuclear Information System (INIS)

    In this study, a membrane reforming hydrogen production plant using a small sized sodium cooled reactor was designed as one of promising concepts. In the membrane reformer, methane and steam are reformed into carbon dioxide and hydrogen with sodium heat at a temperature 500 deg-C. In the equilibrium condition, steam reforming proceeds with catalyst at a temperature more than 800 deg-C. Using membrane reformers, the steam reforming temperature can be decreased from 800 to 500 deg-C because the hydrogen separation membrane removes hydrogen selectively from catalyst area and the partial pressure of hydrogen is kept much lower than equilibrium condition. In this study, a hydrogen and electric co-production plant has been designed. The reactor thermal output is 375 MW and 25% of the thermal output is used for hydrogen production (70000 Nm3/h). The hydrogen production cost is estimated to 21 yen/Nm3 but it is still higher than the economical goal (17 yen/Nm3). The major reason of the high cost comes from the large size of hydrogen separation reformers because of the limit of hydrogen separation efficiency of palladium membrane. A new highly efficient hydrogen separation membrane is needed to reduce the cost of hydrogen production using membrane reformers. There is possibility of multi-tube failure in the membrane reformers. In future study, a design of measures against tube failure and elemental experiments of reaction between sodium and reforming gas will be needed. (authors)

  14. Performance analysis of a pilot-scale membrane aerated biofilm reactor for the treatment of landfill leachate

    OpenAIRE

    Syron, Eoin; Semmens, Michael J.; CASEY, Eoin

    2015-01-01

    A 60 L membrane aerated biofilm reactor (MABR) was successfully employed to treat landfill leachate, which contained very high concentrations of refractory chemical oxygen demand (COD) and ammonium. Air or pure oxygen was supplied to the bioreactor through polydimethyl siloxane hollow fibre membranes. Over a year of operation with an average hydraulic retention time of about 5 days, and influent ammonium concentrations ranging from 500 to 2500 mg/L, the MABR achieved 80–99% nitrification. Sim...

  15. Simulation of a compact multichannel membrane reactor for the production of pure hydrogen via steam methane reforming

    Energy Technology Data Exchange (ETDEWEB)

    Vigneault, A.; Grace, J.R. [University of British Columbia, Department of Chemical and Biological Engineering, Vancouver, BC (Canada); Elnashaie, S.S.E.H. [Chemical and Environmental Engineering Department, University Putra Malaysia (UPM), Serdang (Malaysia)

    2012-08-15

    A steady-state 2D model is developed for a multichannel membrane reactor (MCMR) to produce pure hydrogen. The model includes one reforming channel coupled with a PdAg membrane to produce H{sub 2} and one combustion channel to generate the heat needed for the reforming. Both isothermal and non-isothermal simulations are applied in designing a laboratory-scale proof-of-concept reactor. Isothermal sensitivity analysis indicates parameter adjustments practically available to improve reactor performance. In non-isothermal simulations, catalyst layer thickness and kinetic pre-exponential factor are varied along the reactor length. Predictions indicate that the reforming methane conversion increased from 74 % to 91 %, while avoiding hot spots. Compared with other membrane reactors, the MCMR has the potential for one to two orders of magnitude higher H{sub 2} production per reactor volume and per mass of catalyst. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. High temperature ceramic membrane reactors for coal liquid upgrading. Quarterly report No. 10, December 21, 1991--March 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.

    1992-07-01

    In this project we will study a novel process concept, i.e., the use of ceramic membrane reactors in upgrading of coal model compounds and coal derived liquids. In general terms, the USC research team is responsible for constructing and operating the membrane reactor apparatus and for testing various inorganic membranes for the upgrading of coal derived asphaltenes and coal model compounds. The USC effort will involve the principal investigator of this project and two graduate research assistants. The ALCOA team is responsible for the preparation of the inorganic membranes, for construction and testing of the ceramic membrane modules, and for measurement of their transport properties. The ALCOA research effort will involve Dr. Paul K. T. Liu, who is the project manager of the ALCOA research team, an engineer and a technician. UNOCAL`s contribution will be limited to overall technical assistance in catalyst preparation and the operation of the laboratory upgrading membrane reactor and for analytical back-up and expertise in oil analysis and materials characterization. UNOCAL is a no-cost contractor but will be involved in all aspects of the project, as deemed appropriate.

  17. Domestic wastewater treatment by a submerged MBR (membrane bio-reactor) with enhanced air sparging.

    Science.gov (United States)

    Chang, I S; Judd, S J

    2003-01-01

    The air sparging technique has been recognised as an effective way to control membrane fouling. However, its application to a submerged MBR (Membrane Bio-Reactor) has not yet been reported. This paper deals with the performances of air sparging on a submerged MBR for wastewater treatment. Two kinds of air sparging techniques were used respectively. First, air is injected into the membrane tube channels so that mixed liquor can circulate in the bioreactor (air-lift mode). Second, a periodic air-jet into the membrane tube is introduced (air-jet mode). Their applicability was evaluated with a series of lab-scale experiments using domestic wastewater. The flux increased from 23 to 33 l m(-2) h(-1) (43% enhancement) when air was injected for the air-lift module. But further increase of flux was not observed as the gas flow increased. The Rc/(Rc+Rf), ratio of cake resistance (Rc) to sum of Rc and Rf (internal fouling resistance), was 23%, indicating that the Rc is not the predominant resistance unlike other MBR studies. It showed that the cake layer was removed sufficiently due to the air injection. Thus, an increase of airflow could not affect the flux performance. The air-jet module suffered from a clogging problem with accumulated sludge inside the lumen. Because the air-jet module has characteristics of dead end filtration, a periodic air-jet was not enough to blast all the accumulated sludge out. But flux was greater than in the air-lift module if the clogging was prevented by an appropriate cleaning regime such as periodical backwashing. PMID:12926682

  18. In-situ catalytic upgrading of biomass pyrolysis vapor: Co-feeding with methanol in a multi-zone fixed bed reactor

    International Nuclear Information System (INIS)

    Highlights: • Aromatics yield improved with increasing H/Ceff ratio of the feed. • HZSM-5 catalyst was an effective catalyst for in-situ bio-oil upgrading. • Biomass/methanol co-feeding attenuated the coke formation. • Methanol co-feeding enhanced the bio-oil quality. - Abstract: The in-situ catalytic upgrading of the biomass pyrolysis vapor and its mixture with methanol were conducted in a fixed bed multi-zone reactor. The steps were comprised; thermally converting the biomass in the pyrolysis reactor, passing its vapor in contact with the HZSM-5 zeolite catalyst in the presence of methanol vapor, and transformation of the resulting upgraded pyrolysis vapor into the liquid product. The biomass pyrolysis and catalytic pyrolysis vapor upgrading were performed at 500 °C. The highly valuable chemicals production was a function of the hydrogen to carbon effective ratio (H/Ceff) of the feed. This ratio was regulated by changing the relative amount of biomass and methanol. More aromatic hydrocarbons (50.02 wt.%) and less coke deposition on the catalyst (1.3 wt.%) were yielded from the biomass, when methanol was co-fed to the catalytic pyrolysis process (H/Ceff = 1.35). In this contribution, the deposited coke on the catalyst was profoundly investigated. The coke, with high contents of oxo-aromatics and aromatic compounds, was generated by polymerization of biomass lignin derived components activated by catalyst acid sites

  19. Syngas Production Using an Oxygen-Permeating Membrane Reactor with Cofeed of Methane and Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    CH4-CO2-O2 reforming to syngas in a novel Ba0.5Sr0.5Co0.8Fe0.2O3-d oxygen-permeable membrane reactor using LiLaNiO/g -Al2O3 as catalyst was successfully reported. Excellent reaction performance was achieved with around 92% methane conversion efficiency, 95% CO2 conversion rate, and nearly 8.5mL/min.cm2 oxygen permeation flux. In contrast to the oxygen permeation model with the presence of large concentration of CO2 (under such condition the oxygen permeation flux deteriorates with time), the oxygen permeation flux is really stable under the CH4-CO2-O2 reforming condition.

  20. Recent palladium membrane reactor development at the tritium systems test assembly

    International Nuclear Information System (INIS)

    The palladium membrane reactor (PMR) is being investigated as a means for recovering hydrogen isotopes (including tritium) from compounds such as water and methane. Previous work with protiated water and methane showed that this device can be used to obtain high hydrogen recovery efficiencies using a single processing pass and with essentially no waste production. With these successful proof-of-principle results completed, recent work has focused on PMR development. This included studies of various geometries and testing with tritium. The results, which are reported here, have led to a better understanding of the PMR and will lead to the ultimate goal of building a production PMR and putting it into practical tritium processing service. 3 refs., 5 figs., 1 tab

  1. Treatment of Spacecraft Wastewater Using a Hollow Fiber Membrane Biofilm Redox Control Reactor

    Science.gov (United States)

    Smith, Daniel P.

    2003-01-01

    The purpose of this project was to develop and evaluate design concepts for biological treatment reactors for the purification of spacecraft wastewater prior to reverse osmosis treatment. The motivating factor is that wastewater recovery represents the greatest single potential reduction in the resupply requirements for crewed space missions. Spacecraft wastewater composition was estimated from the characteristics of the three major component streams: urine/flush water, hygiene water, and atmospheric condensate. The key characteristics of composite spacecraft wastewater are a theoretical oxygen demand of 4519 mg/L, of which 65% is nitrogenous oxygen demand, in a volume of 11.5 liter/crew-day. The organic carbon to nitrogen ratio of composite wastewater is 0.86. Urine represents 93% of nitrogen and 49% of the organic carbon in the composite wastestream. Various bioreaction scenarios were evaluated to project stoichiometric oxygen demands and the ability of wastewater carbon to support denitrification. Ammonia nitrification to the nitrite oxidation state reduced the oxygen requirement and enabled wastewater carbon to provide nearly complete denitrification. A conceptual bioreactor design was established using hollow fiber membranes for bubbleless oxygen transfer in a gravity-free environment, in close spatial juxtaposition to a second interspaced hollow fiber array for supplying molecular hydrogen. Highly versatile redox control and an enhanced ability to engineer syntrophic associations are stated advantages. A prototype reactor was constructed using a microporous hollow fiber membrane module for aeration. Maintaining inlet gas pressure within 0.25 psi of the external water pressure resulted in bubble free operation with no water ingress into hollow fiber lumens. Recommendations include the design and operational testing of hollow fiber bioreactors using: 1) Partial nitrification/nitrite predenitrification; 2) Limited aeration for simultaneous nitrification

  2. A green approach to ethyl acetate: Quantitative conversion of ethanol through direct dehydrogenation in a Pd-Ag membrane reactor

    KAUST Repository

    Zeng, Gaofeng

    2012-11-07

    Pincers do the trick: The conversion of ethanol to ethyl acetate and hydrogen was achieved using a pincer-Ru catalyst in a Pd-Ag membrane reactor. Near quantitative conversions and yields could be achieved without the need for acid or base promoters or hydrogen acceptors (see scheme). © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Sulfide-oxidizing bacteria establishment in an innovative microaerobic reactor with an internal silicone membrane for sulfur recovery from wastewater.

    Science.gov (United States)

    Valdés, F; Camiloti, P R; Rodriguez, R P; Delforno, T P; Carrillo-Reyes, J; Zaiat, M; Jeison, D

    2016-06-01

    A novel bioreactor, employing a silicone membrane for microaeration, was studied for partial sulfide oxidation to elemental sulfur. The objective of this study was to assess the feasibility of using an internal silicone membrane reactor (ISMR) to treat dissolved sulfide and to characterize its microbial community. The ISMR is an effective system to eliminate sulfide produced in anaerobic reactors. Sulfide removal efficiencies reached 96 % in a combined anaerobic/microaerobic reactor and significant sulfate production did not occur. The oxygen transfer was strongly influenced by air pressure and flow. Pyrosequencing analysis indicated various sulfide-oxidizing bacteria (SOB) affiliated to the species Acidithiobacillus thiooxidans, Sulfuricurvum kujiense and Pseudomonas stutzeri attached to the membrane and also indicated similarity between the biomass deposited on the membrane wall and the biomass drawn from the material support, supported the establishment of SOB in an anaerobic sludge under microaerobic conditions. Furthermore, these results showed that the reactor configuration can develop SOB under microaerobic conditions and can improve and reestablish the sulfide conversion to elemental sulfur. PMID:27003697

  4. Laboratory-Scale Membrane Reactor for the Generation of Anhydrous Diazomethane.

    Science.gov (United States)

    Dallinger, Doris; Pinho, Vagner D; Gutmann, Bernhard; Kappe, C Oliver

    2016-07-15

    A configurationally simple and robust semibatch apparatus for the in situ on-demand generation of anhydrous solutions of diazomethane (CH2N2) avoiding distillation methods is presented. Diazomethane is produced by base-mediated decomposition of commercially available Diazald within a semipermeable Teflon AF-2400 tubing and subsequently selectively separated from the tubing into a solvent- and substrate-filled flask (tube-in-flask reactor). Reactions with CH2N2 can therefore be performed directly in the flask without dangerous and labor-intensive purification operations or exposure of the operator to CH2N2. The reactor has been employed for the methylation of carboxylic acids, the synthesis of α-chloro ketones and pyrazoles, and palladium-catalyzed cyclopropanation reactions on laboratory scale. The implementation of in-line FTIR technology allowed monitoring of the CH2N2 generation and its consumption. In addition, larger scales (1.8 g diazomethane per hour) could be obtained via parallelization (numbering up) by simply wrapping several membrane tubings into the flask. PMID:27359257

  5. SACCHARIFICATION OF NATIVE CASSAVA STARCH AT HIGH DRY SOLIDS IN AN ENZYMATIC MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    I Nyoman Widiasa

    2012-02-01

    Full Text Available This study is aimed to develop a novel process scheme for hydrolysis of native cassava starch at high dry solids using an enzymatic membrane reactor (EMR. Firstly, liquefied cassava starch having solids content up to 50% by weight was prepared by three stage liquefactions in a conventional equipment using a commercially available heat stable a-amylase (Termamyl 120L. The liquefied cassava starch was further saccharified in an EMR using glucoamylase (AMG E. By using the developed process scheme, a highly clear hydrolysate with dextrose equivalent (DE approximately 97 could be produced, provided the increase of solution viscosity during the liquefaction was precisely controlled. The excessive space time could result in reduction in conversion degree of starch. Moreover, a residence time distribution study confirmed that the EMR could be modelled as a simple continuous stirred tank reactor (CSTR. Using Lineweaver-Burk analysis, the apparent Michaelis-Menten constant (Km and glucose production rate constant (k2 were 552 (g/l and 4.04 (min-1, respectively. Application of simple CSTR model with those kinetic parameters was quietly appropriate to predict the reactor’s performance at low space time.

  6. Electrochemical membrane reactor: Synthesis of quaternary ammonium hydroxide from its halide by in situ ion substitution

    International Nuclear Information System (INIS)

    Electrochemical membrane reactors (EMRs) with two compartments (EMR-2: anion-exchange membrane (AEM) separated catholyte and anolyte) and three compartments (EMR-3: three compartments separated by two AEMs to avoid contact between the product and the electrodes) were developed for the synthesis of tetrabutylammonium hydroxide (TBAOH) from tetrabutylammonium bromide (TBABr) by in situ ion substitution. In house prepared AEM with good physicochemical, electrochemical properties and excellent stabilities was used. Schematic diagrams are presented for the possible synthesis of TBAOH from TBABr by in situ ion substitution in EMR-2 and EMR-3. Synthesis of TBAOH using EMR-2 and EMR-3 was achieved under different experimental conditions and process parameters (rate of synthesis, current efficiency (CE) and energy consumption) were estimated. In EMR-2, relatively slow synthesis of TBAOH with low recovery was explained due to Hofmann elimination of TBAOH in contact with the electrode. While in EMR-3, relatively faster rate of TBAOH synthesis with its high recovery and current efficiency indicated practical application of the developed process for the efficient synthesis of TBAOH without the use of any additives or reagents

  7. Catalytic Intermediate Pyrolysis of Napier Grass in a Fixed Bed Reactor with ZSM-5, HZSM-5 and Zinc-Exchanged Zeolite-A as the Catalyst

    OpenAIRE

    Isah Yakub Mohammed; Feroz Kabir Kazi; Suzana Yusup; Peter Adeniyi Alaba; Yahaya Muhammad Sani; Yousif Abdalla Abakr

    2016-01-01

    The environmental impact from the use of fossil fuel cum depletion of the known fossil oil reserves has led to increasing interest in liquid biofuels made from renewable biomass. This study presents the first experimental report on the catalytic pyrolysis of Napier grass, an underutilized biomass source, using ZSM-5, 0.3HZSM-5 and zinc exchanged zeolite-A catalyst. Pyrolysis was conducted in fixed bed reactor at 600 °C, 30 °C/min and 7 L/min nitrogen flow rate. The effect of catalyst-biomass ...

  8. Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Quarterly report, 1 January--31 March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Iglesia, E.; Heinemann, H.; Perry, D.L. [Lawrence Berkeley Lab., CA (United States). Center for Advanced Materials

    1994-03-01

    This report describes work in progress on three tasks: (1) Catalytic steam gasification of coals and cokes; (2) Oxidative coupling of methane; and (3) Synthesis and characterization of catalysts. Since Task 1 is complete, a final report has been written. This report describes membrane reactors, cyclic methane conversion reactors, theoretical descriptions of reaction-separation schemes, and time-space relationships in cyclic and membrane reactors, all subtasks of Task 2. Initial studies under Task 3 are briefly described.

  9. Catalytic cracking process

    Science.gov (United States)

    Lokhandwala, Kaaeid A.; Baker, Richard W.

    2001-01-01

    Processes and apparatus for providing improved catalytic cracking, specifically improved recovery of olefins, LPG or hydrogen from catalytic crackers. The improvement is achieved by passing part of the wet gas stream across membranes selective in favor of light hydrocarbons over hydrogen.

  10. Bioreduction of Chromate in a Methane-Based Membrane Biofilm Reactor.

    Science.gov (United States)

    Lai, Chun-Yu; Zhong, Liang; Zhang, Yin; Chen, Jia-Xian; Wen, Li-Lian; Shi, Ling-Dong; Sun, Yan-Ping; Ma, Fang; Rittmann, Bruce E; Zhou, Chen; Tang, Youneng; Zheng, Ping; Zhao, He-Ping

    2016-06-01

    For the first time, we demonstrate chromate (Cr(VI)) bioreduction using methane (CH4) as the sole electron donor in a membrane biofilm reactor (MBfR). The experiments were divided into five stages lasting a total of 90 days, and each stage achieved a steady state for at least 15 days. Due to continued acclimation of the microbial community, the Cr(VI)-reducing capacity of the biofilm kept increasing. Cr(VI) removal at the end of the 90-day test reached 95% at an influent Cr(VI) concentration of 3 mg Cr/L and a surface loading of 0.37g of Cr m(-2) day(-1). Meiothermus (Deinococci), a potential Cr(VI)-reducing bacterium, was negligible in the inoculum but dominated the MBfR biofilm after Cr(VI) was added to the reactor, while Methylosinus, a type II methanotrophs, represented 11%-21% of the total bacterial DNA in the biofilm. Synergy within a microbial consortia likely was responsible for Cr(VI) reduction based on CH4 oxidation. In the synergy, methanotrophs fermented CH4 to produce metabolic intermediates that were used by the Cr(VI)-reducing bacteria as electron donors. Solid Cr(III) was the main product, accounting for more than 88% of the reduced Cr in most cases. Transmission electron microscope (TEM) and energy dispersive X-ray (EDS) analysis showed that Cr(III) accumulated inside and outside of some bacterial cells, implying that different Cr(VI)-reducing mechanisms were involved. PMID:27161770

  11. Reator de membrana enzimático e fluidos supercríticos: associação de processos Enzymatic membrane reactor and supercritical fluids: process association

    OpenAIRE

    Juliana Maria Leite Nóbrega de Moura; Ana Paula Badan Ribeiro; Renato Grimaldi; Lireny Aparecida Guaraldo Gonçalves

    2007-01-01

    The aim of this work is to present the new applications of membrane technology in fat and oil processing, with emphasis on development and applications of the enzymatic membrane reactor and its association with extraction and purification technology by supercritical fluids (SCF). Combining the extraction by SCFs and the separation by membranes allows the integration of extractions reactions with selective separation by membranes through filtration of the supercritical mixture (SCF + extracted...

  12. Reducing-Agent-Free Instant Synthesis of Carbon-Supported Pd Catalysts in a Green Leidenfrost Droplet Reactor and Catalytic Activity in Formic Acid Dehydrogenation

    Science.gov (United States)

    Lee, Dong-Wook; Jin, Min-Ho; Lee, Young-Joo; Park, Ju-Hyoung; Lee, Chun-Boo; Park, Jong-Soo

    2016-05-01

    The development of green synthesis methods for supported noble metal catalysts remains important challenges to improve their sustainability. Here we first synthesized carbon-supported Pd catalysts in a green Leidenfrost droplet reactor without reducing agents, high-temperature calcination and reduction procedures. When the aqueous solution containing Pd nitrate precursor, carbon support, and water is dripped on a hot plate, vapor layer is formed between a solution droplet and hot surface, which allow the solution droplet to be levitated on the hot surface (Leidenfrost phenomena). Subsequently, Pd nanoparticles can be prepared without reducing agents in a weakly basic droplet reactor created by the Leidenfrost phenomena, and then the as-prepared Pd nanoparticles are loaded on carbon supports during boiling down the droplet on hot surface. Compared to conventional incipient wetness and chemical synthetic methods, the Leidenfrost droplet reactor does not need energy-consuming, time-consuming, and environmentally unfriendly procedures, which leads to much shorter synthesis time, lower carbon dioxide emission, and more ecofriendly process in comparison with conventional synthesis methods. Moreover, the catalysts synthesized in the Leidenfrost droplet reactor provided much better catalytic activity for room-temperature formic acid decomposition than those prepared by the incipient wetness method.

  13. Membrane binding of Escherichia coli RNase E catalytic domain stabilizes protein structure and increases RNA substrate affinity.

    Science.gov (United States)

    Murashko, Oleg N; Kaberdin, Vladimir R; Lin-Chao, Sue

    2012-05-01

    RNase E plays an essential role in RNA processing and decay and tethers to the cytoplasmic membrane in Escherichia coli; however, the function of this membrane-protein interaction has remained unclear. Here, we establish a mechanistic role for the RNase E-membrane interaction. The reconstituted highly conserved N-terminal fragment of RNase E (NRne, residues 1-499) binds specifically to anionic phospholipids through electrostatic interactions. The membrane-binding specificity of NRne was confirmed using circular dichroism difference spectroscopy; the dissociation constant (K(d)) for NRne binding to anionic liposomes was 298 nM. E. coli RNase G and RNase E/G homologs from phylogenetically distant Aquifex aeolicus, Haemophilus influenzae Rd, and Synechocystis sp. were found to be membrane-binding proteins. Electrostatic potentials of NRne and its homologs were found to be conserved, highly positive, and spread over a large surface area encompassing four putative membrane-binding regions identified in the "large" domain (amino acids 1-400, consisting of the RNase H, S1, 5'-sensor, and DNase I subdomains) of E. coli NRne. In vitro cleavage assay using liposome-free and liposome-bound NRne and RNA substrates BR13 and GGG-RNAI showed that NRne membrane binding altered its enzymatic activity. Circular dichroism spectroscopy showed no obvious thermotropic structural changes in membrane-bound NRne between 10 and 60 °C, and membrane-bound NRne retained its normal cleavage activity after cooling. Thus, NRne membrane binding induced changes in secondary protein structure and enzymatic activation by stabilizing the protein-folding state and increasing its binding affinity for its substrate. Our results demonstrate that RNase E-membrane interaction enhances the rate of RNA processing and decay. PMID:22509045

  14. Development of steam-methane reforming (SMR) membrane reactor for hydrogen production in ICIT - Rm. Valcea, Romania

    International Nuclear Information System (INIS)

    The hydrogen economy has enormous societal and technical appeal as a potential solution to the fundamental energy concerns of abundant supply and minimal environmental impact. Generation of pure hydrogen represents a critical technology component for power generation by PEM fuel cells in a variety of mobile and stationary power applications. Hydrogen is conventionally produced by steam reforming of hydrocarbon fuels followed by a water gas shift reaction and hydrogen separation and purification. One of the newest fields of research and technical applications is to combine the reformer reactor and the hydrogen purification steps into a single membrane reactor. (authors)

  15. The sugar model: catalytic flow reactor dynamics of pyruvaldehyde synthesis from triose catalyzed by poly-l-lysine contained in a dialyzer

    Science.gov (United States)

    Weber, A. L.

    2001-01-01

    The formation of pyruvaldehyde from triose sugars was catalyzed by poly-l-lysine contained in a small dialyzer with a 100 molecular weight cut off (100 MWCO) suspended in a much larger triose substrate reservoir at pH 5.5 and 40 degrees C. The polylysine confined in the dialyzer functioned as a catalytic flow reactor that constantly brought in triose from the substrate reservoir by diffusion to offset the drop in triose concentration within the reactor caused by its conversion to pyruvaldehyde. The catalytic polylysine solution (400 mM, 0.35 mL) within the dialyzer generated pyruvaldehyde with a synthetic intensity (rate/volume) that was 3400 times greater than that of the triose substrate solution (12 mM, 120 mL) outside the dialyzer. Under the given conditions the final yield of pyruvaldehyde was greater than twice the weight of the polylysine catalyst. During the reaction the polylysine catalyst was poisoned presumably by reaction of its amino groups with aldehyde reactants and products. Similar results were obtained using a dialyzer with a 500 MWCO. The dialyzer method of catalyst containment was selected because it provides a simple and easily manipulated experimental system for studying the dynamics and evolutionary development of confined autocatalytic processes related to the origin of life under anaerobic conditions.

  16. Polyethersulfone hollow fiber modified with poly(styrenesulfonate) and Pd nanoparticles for catalytic reaction

    Science.gov (United States)

    Emin, C.; Gu, Y.; Remigy, J.-C.; Lahitte, J.-F.

    2015-07-01

    The aim of this work is the synthesis of polymer-stabilized Pd nanoparticles (PdNP) inside a functionalized polymeric porous membrane in order to develop hybrid catalytic membrane reactors and to test them in model metal-catalyzed organic reactions. For this goal, a polymeric membrane support (Polyethersulfone hollow fiber-shaped) was firstly functionalized with an ionogenic polymer (i.e. poly(styrenesulfonate) capable to retain PdNP precursors using an UV photo-grafting method. PdNP were then generated inside the polymeric matrix by chemical reduction of precursor salts (intermatrix synthesis). The catalytic performance of the PdNP catalytic membranes was evaluated using reduction of nitrophenol by sodium borohydride (NaBH4) in water.

  17. Low absorption vitreous carbon reactors for operando XAS: a case study on Cu/Zeolites for selective catalytic reduction of NO(x) by NH3.

    Science.gov (United States)

    Kispersky, Vincent F; Kropf, A Jeremy; Ribeiro, Fabio H; Miller, Jeffrey T

    2012-02-21

    We describe the use of vitreous carbon as an improved reactor material for an operando X-ray absorption spectroscopy (XAS) plug-flow reactor. These tubes significantly broaden the operating range for operando experiments. Using selective catalytic reduction (SCR) of NO(x) by NH(3) on Cu/Zeolites (SSZ-13, SAPO-34 and ZSM-5) as an example reaction, we illustrate the high-quality XAS data achievable with these reactors. The operando experiments showed that in Standard SCR conditions of 300 ppm NO, 300 ppm NH(3), 5% O(2), 5% H(2)O, 5% CO(2) and balance He at 200 °C, the Cu was a mixture of Cu(I) and Cu(II) oxidation states. XANES and EXAFS fitting found the percent of Cu(I) to be 15%, 45% and 65% for SSZ-13, SAPO-34 and ZSM-5, respectively. For Standard SCR, the catalytic rates per mole of Cu for Cu/SSZ-13 and Cu/SAPO-34 were about one third of the rate per mole of Cu on Cu/ZSM-5. Based on the apparent lack of correlation of rate with the presence of Cu(I), we propose that the reaction occurs via a redox cycle of Cu(I) and Cu(II). Cu(I) was not found in in situ SCR experiments on Cu/Zeolites under the same conditions, demonstrating a possible pitfall of in situ measurements. A Cu/SiO(2) catalyst, reduced in H(2) at 300 °C, was also used to demonstrate the reactor's operando capabilities using a bending magnet beamline. Analysis of the EXAFS data showed the Cu/SiO(2) catalyst to be in a partially reduced Cu metal-Cu(I) state. In addition to improvements in data quality, the reactors are superior in temperature, stability, strength and ease of use compared to previously proposed borosilicate glass, polyimide tubing, beryllium and capillary reactors. The solid carbon tubes are non-porous, machinable, can be operated at high pressure (tested at 25 bar), are inert, have high material purity and high X-ray transmittance. PMID:22158950

  18. Low Absorption Vitreous Carbon Reactors for Operando XAS: A Case Study on Cu/Zeolites for Selective Catalytic Reduction of NOx by NH3

    Energy Technology Data Exchange (ETDEWEB)

    Kispersky, Vincent F.; Kropf, Jeremy; Ribeiro, Fabio H; Miller, Jeffrey T

    2012-01-01

    We describe the use of vitreous carbon as an improved reactor material for an operando X-ray absorption spectroscopy (XAS) plug-flow reactor. These tubes significantly broaden the operating range for operando experiments. Using selective catalytic reduction (SCR) of NOx by NH₃ on Cu/Zeolites (SSZ-13, SAPO-34 and ZSM-5) as an example reaction, we illustrate the high-quality XAS data achievable with these reactors. The operando experiments showed that in Standard SCR conditions of 300 ppm NO, 300 ppm NH₃, 5% O₂, 5% H₂O, 5% CO₂ and balance He at 200 °C, the Cu was a mixture of Cu(I) and Cu(II) oxidation states. XANES and EXAFS fitting found the percent of Cu(I) to be 15%, 45% and 65% for SSZ-13, SAPO-34 and ZSM-5, respectively. For Standard SCR, the catalytic rates per mole of Cu for Cu/SSZ-13 and Cu/SAPO-34 were about one third of the rate per mole of Cu on Cu/ZSM-5. Based on the apparent lack of correlation of rate with the presence of Cu(I), we propose that the reaction occurs via a redox cycle of Cu(I) and Cu(II). Cu(I) was not found in in situSCR experiments on Cu/Zeolites under the same conditions, demonstrating a possible pitfall of in situ measurements. A Cu/SiO₂ catalyst, reduced in H₂ at 300 °C, was also used to demonstrate the reactor's operando capabilities using a bending magnet beamline. Analysis of the EXAFS data showed the Cu/SiO₂ catalyst to be in a partially reduced Cu metal–Cu(I) state. In addition to improvements in data quality, the reactors are superior in temperature, stability, strength and ease of use compared to previously proposed borosilicate glass, polyimide tubing, beryllium and capillary reactors. The solid carbon tubes are non-porous, machinable, can be operated at high pressure (tested at 25 bar), are inert, have high material purity and high X-ray transmittance.

  19. Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Dan; Guo, Yu-Qi; Cheng, Hao-Yi; Liang, Bin; Kong, Fan-Ying [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 202 Haihe Road, Harbin 150090 (China); Lee, Hyung-Sool [Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West Waterloo, Ontario, Canada N2L 3G1 (Canada); Wang, Ai-Jie, E-mail: waj0578@hit.edu.cn [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 202 Haihe Road, Harbin 150090 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer A membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor was developed. Black-Right-Pointing-Pointer Alizarin Yellow R as the mode of azo dyes was efficiently converted to p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA). Black-Right-Pointing-Pointer PPD and 5-ASA were further oxidized in a bio-contact oxidation reactor. Black-Right-Pointing-Pointer The mechanism of UBER for azo dye removal was discussed. - Abstract: Azo dyes that consist of a large quantity of dye wastewater are toxic and persistent to biodegradation, while they should be removed before being discharged to water body. In this study, Alizarin Yellow R (AYR) as a model azo dye was decolorized in a combined bio-system of membrane-free, continuous up-flow bio-catalyzed electrolysis reactor (UBER) and subsequent aerobic bio-contact oxidation reactor (ABOR). With the supply of external power source 0.5 V in the UBER, AYR decolorization efficiency increased up to 94.8 {+-} 1.5%. Products formation efficiencies of p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA) were above 90% and 60%, respectively. Electron recovery efficiency based on AYR removal in cathode zone was nearly 100% at HRTs longer than 6 h. Relatively high concentration of AYR accumulated at higher AYR loading rates (>780 g m{sup -3} d{sup -1}) likely inhibited acetate oxidation of anode-respiring bacteria on the anode, which decreased current density in the UBER; optimal AYR loading rate for the UBER was 680 g m{sup -3} d{sup -1} (HRT 2.5 h). The subsequent ABOR further improved effluent quality. Overall the Chroma decreased from 320 times to 80 times in the combined bio-system to meet the textile wastewater discharge standard II in China.

  20. Azo dye removal in a membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor

    International Nuclear Information System (INIS)

    Highlights: ► A membrane-free up-flow biocatalyzed electrolysis reactor coupled with an aerobic bio-contact oxidation reactor was developed. ► Alizarin Yellow R as the mode of azo dyes was efficiently converted to p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA). ► PPD and 5-ASA were further oxidized in a bio-contact oxidation reactor. ► The mechanism of UBER for azo dye removal was discussed. - Abstract: Azo dyes that consist of a large quantity of dye wastewater are toxic and persistent to biodegradation, while they should be removed before being discharged to water body. In this study, Alizarin Yellow R (AYR) as a model azo dye was decolorized in a combined bio-system of membrane-free, continuous up-flow bio-catalyzed electrolysis reactor (UBER) and subsequent aerobic bio-contact oxidation reactor (ABOR). With the supply of external power source 0.5 V in the UBER, AYR decolorization efficiency increased up to 94.8 ± 1.5%. Products formation efficiencies of p-phenylenediamine (PPD) and 5-aminosalicylic acid (5-ASA) were above 90% and 60%, respectively. Electron recovery efficiency based on AYR removal in cathode zone was nearly 100% at HRTs longer than 6 h. Relatively high concentration of AYR accumulated at higher AYR loading rates (>780 g m−3 d−1) likely inhibited acetate oxidation of anode-respiring bacteria on the anode, which decreased current density in the UBER; optimal AYR loading rate for the UBER was 680 g m−3 d−1 (HRT 2.5 h). The subsequent ABOR further improved effluent quality. Overall the Chroma decreased from 320 times to 80 times in the combined bio-system to meet the textile wastewater discharge standard II in China.

  1. Membrane biofilm reactors for nitrogen removal: state-of-the-art and research needs.

    Science.gov (United States)

    Hwang, Jong Hyuk; Cicek, Nazim; Oleszkiewicz, Jan A

    2009-01-01

    Historical developments up-to-date and operational challenges of membrane biofilm reactor (MBfR) were reviewed. A database of international, peer-reviewed journal articles regarding MBfR research from 1984 to 2008 was established and analyzed with a total of 107 papers. MBfR studies began to evolve in the early 1980s, since then the number of published papers increased steadily. After 2000, geographic locations where the research was conducted widened beyond North America and Europe to Asia. Research studies were divided into 4 categories and reviewed according to their main research focuses. In spite of the short history of MBfRs, studies have shown promising potential, possibly extending their application beyond nitrogen removal and organics removal. The MBfR research branched out to new fields including autotrophic denitrification. There are some important aspects of MBfRs that pose significant challenges to the application of this technology on a commercial scale in the near-future. The main challenge revolves around biofilm thickness and activity control. Further laboratory and demonstration scale studies on some of the proposed strategies for biofilm control are needed. Ultimately, more field studies with real wastewater should be performed to evaluate the resilience of the process in the face of flow and strength fluctuations, establishing optimum operational strategies. PMID:19934494

  2. A Miniature Membrane Reactor for Evaluation of Process Design Options on the Enzymatic Degradation of Pectin

    DEFF Research Database (Denmark)

    Zainal Alam, Muhd Nazrul Hisham; Pinelo, Manuel; Arnous, Anis;

    2011-01-01

    fabricated from poly(methylmethacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) with a working volume of ∼190 μL. The prototype also contained the necessary sensors and actuators, i.e., pressure transducer, mixing via magnetic stirrer bar and a temperature controller. The functionality of the prototype was...... demonstrated by performing a continuous enzymatic degradation of pectin experiment for a range of reactor conditions: different membrane molecular weight cutoff (MWCO) values, enzyme-to-substrate ratios (E/S), and substrate feeding rates (F) were assessed. Based on the experimental data, it was found that the...... concentration of 0.82 mM in the permeate) and the apparent reaction rate increased by ∼50% (i.e., from 0.11 μmol/h to 0.17 μmol/h). Clearly, this signifies that the substrate feeding rate is a critical variable that influences the conversion rate and the process yield. The data also showed that the process...

  3. Autohydrogenotrophic denitrification of drinking water using a polyvinyl chloride hollow fiber membrane biofilm reactor

    International Nuclear Information System (INIS)

    A hollow fiber membrane biofilm reactor (MBfR) using polyvinyl chloride (PVC) hollow fiber was evaluated in removing nitrate form contaminated drinking water. During a 279-day operation period, the denitrification rate increased gradually with the increase of influent nitrate loading. The denitrification rate reached a maximum value of 414.72 g N/m3 d (1.50 g N/m2 d) at an influent NO3--N concentration of 10 mg/L and a hydraulic residence time of 37.5 min, and the influent nitrate was completely reduced. At the same time, the effluent quality analysis showed the headspace hydrogen content (3.0%) was lower enough to preclude having an explosive air. Under the condition of the influent nitrate surface loading of 1.04 g N/m2d, over 90% removal efficiencies of the total nitrogen and nitrate were achieved at the hydrogen pressure above 0.04 MPa. The results of denaturing gel gradient electrophoresis (DGGE), 16S rDNA gene sequence analysis, and hierarchical cluster analysis showed that the microbial community structures in MBfR were of low diversity, simple and stable at mature stages; and the beta-Proteobacteria, including Rhodocyclus, Hydrogenophaga, and beta-Proteobacteria HTCC379, probably play an important role in autohydrogenotrophic denitrification.

  4. Directly catalytic upgrading bio-oil vapor produced by prairie cordgrass pyrolysis over Ni/HZSM-5 using a two stage reactor

    Directory of Open Access Journals (Sweden)

    Shouyun Cheng

    2015-06-01

    Full Text Available Catalytic cracking is one of the most promising processes for thermochemical conversion of biomass to advanced biofuels in recent years. However, current effectiveness of catalysts and conversion efficiency still remain challenges. An investigation of directly catalytic upgrading bio-oil vapors produced in prairie cordgrass (PCG pyrolysis over Ni/HZSM-5 and HZSM-5 in a two stage packed-bed reactor was carried out. The Ni/HZSM-5 catalyst was synthesized using an impregnation method. Fresh and used catalysts were characterized by BET and XRD. The effects of catalysts on pyrolysis products yields and quality were examined. Both catalysts improved bio-oil product distribution compared to non-catalytic treatment. When PCG pyrolysis vapor was treated with absence of catalyst, the produced bio-oils contained higher alcohols (10.97% and furans (10.14%. In contrast, the bio-oils contained the second highest hydrocarbons (34.97%)and the highest phenols (46.97% when PCG pyrolysis vapor was treated with Ni/HZSM-5. Bio-oils containing less ketones and aldehydes were produced by both Ni/HZSM-5 and HZSM-5, but no ketones were found in Ni/HZSM-5 treatment compared to HZSM-5 (2.94%. The pyrolysis gas compositions were also affected by the presenting of HZSM-5 or Ni/HZSM-5 during the catalytic upgrading process. However, higher heating values and elemental compositions (C, H and N of bio-chars produced in all treatments had no significant difference.

  5. Membrane bio-reactor - Research, pilot installation and measurement campaign; Membranbioreaktor (MBR) - Forschung, Pilotanlage und Messkampagne - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Hersener, J.-L. [Ingenieurbuero Hersener, Wiesendangen (Switzerland); Meier, U. [Meritec GmbH, Guntershausen (Switzerland)

    2007-07-01

    This report for the Swiss Federal Office of Energy (SFOE), takes a look at a project involving a fermenter installation in Eastern Switzerland. Research work is noted, the pilot installation is described and the results of a measurement campaign are presented and commented on. The plant is able to handle about 20,000-25,000 tonnes of slurry and organic waste. The plant is built as a membrane bio-reactor and allows the separation of the digested biomass into fractions of solid and liquid fertilisers and useful water. Furthermore, a part of the separated and digested liquid is returned to the fermenter in order to improve the digestion process. For the production of electricity a 1.1 MW generator is installed. The adaptations made during the measurement period are noted and commented on. According to the authors, the results - although difficult to interpret - show that the concept of a membrane bio-reactor can work successfully.

  6. Treatment of High-Strength Nitrogen Wasetewater With a Hollow-Fiber Membrane-Aerated Biofilm Reactor: A Comprehensive Evaluation

    OpenAIRE

    Gilmore, Kevin R

    2008-01-01

    Protecting the quality and quantity of our water resources requires advanced treatment technologies capable of removing nutrients from wastewater. This research work investigated the capability of one such technology, a hollow-fiber membrane-aerated biofilm reactor (HFMBR), to achieve completely autotrophic nitrogen removal from a wastewater with high nitrogen content. Because the extent of oxygenation is a key parameter for controlling the metabolic processes that occur in a wastewate...

  7. Membraner

    DEFF Research Database (Denmark)

    Bach, Finn

    2009-01-01

    Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner......Notatet giver en kort introduktion til den statiske virkemåde af membraner og membrankonstruktioner...

  8. The application of membrane Bio-Reactor for East Java Domestic waste water treatment

    OpenAIRE

    Aisyah E. Palupi; Ali Altway; Arief Widjaja

    2008-01-01

    Membrane bioreactors for wastewater treatment research have been carried out. In this system, membrane replaces the function of the sedimentation tank. Until recent time, fouling was still the main problem for membrane processes. This research has investigated the effect of MLSS concentration and back flushing on external membrane bioreactor performances such as COD and BOD reduction, and the back flushing effect for domestic wastewater treatment. Polyacrylonitril hollow fiber membrane with p...

  9. Polymer nanocomposite membranes with hierarchically structured catalysts for high throughput dehalogenation

    Science.gov (United States)

    Crock, Christopher A.

    Halogenated organics are categorized as primary pollutants by the Environmental Protection Agency. Trichloroethylene (TCE), which had broad industrial use in the past, shows persistence in the environment because of its chemical stability. The large scale use and poor control of TCE resulted in its prolonged release into the environment before the carcinogenic risk associated with TCE was fully understood. TCE pollution stemmed from industrial effluents and improper disposal of solvent waste. Membrane reactors are promising technology for treating TCE polluted groundwater because of the high throughput, relatively low cost of membrane fabrication and facile retrofitting of existing membrane based water treatment facilities with catalytic membrane reactors. Compared to catalytic fluidized or fixed bed reactors, catalytic membrane reactors feature minimal diffusional limitation. Additionally, embedding catalyst within the membrane avoids the need for catalyst recovery and can prevent aggregation of catalytic nanoparticles. In this work, Pd/xGnP, Pd-Au/xGnP, and commercial Pd/Al2O3 nanoparticles were employed in batch and flow-through membrane reactors to catalyze the dehalogenation of TCE in the presence of dissolved H2. Bimetallic Pd-Au/xGnP catalysts were shown to be more active than monometallic Pd/xGnP or commercial Pd/Al 2O3 catalysts. In addition to synthesizing nanocomposite membranes for high-throughput TCE dehalogenation, the membrane based dehalogenation process was designed to minimize the detrimental impact of common catalyst poisons (S2-, HS-, and H2S -) by concurrent oxidation of sulfide species to gypsum in the presence of Ca2+ and removal of gypsum through membrane filtration. The engineered membrane dehalogenation process demonstrated that bimetallic Pd-Au/xGnP catalysts resisted deactivation by residual sulfide species after oxidation, and showed complete removal of gypsum during membrane filtration.

  10. Double-side active TiO2-modified nanofiltration membranes in continuous flow photocatalytic reactors for effective water purification.

    Science.gov (United States)

    Romanos, G Em; Athanasekou, C P; Katsaros, F K; Kanellopoulos, N K; Dionysiou, D D; Likodimos, V; Falaras, P

    2012-04-15

    A chemical vapour deposition (CVD) based innovative approach was applied with the purpose to develop composite TiO(2) photocatalytic nanofiltration (NF) membranes. The method involved pyrolytic decomposition of titanium tetraisopropoxide (TTIP) vapor and formation of TiO(2) nanoparticles through homogeneous gas phase reactions and aggregation of the produced intermediate species. The grown nanoparticles diffused and deposited on the surface of γ-alumina NF membrane tubes. The CVD reactor allowed for online monitoring of the carrier gas permeability during the treatment, providing a first insight on the pore efficiency and thickness of the formed photocatalytic layers. In addition, the thin TiO(2) deposits were developed on both membrane sides without sacrificing the high yield rates. Important innovation was also introduced in what concerns the photocatalytic performance evaluation. The membrane efficiency to photo degrade typical water pollutants, was evaluated in a continuous flow water purification device, applying UV irradiation on both membrane sides. The developed composite NF membranes were highly efficient in the decomposition of methyl orange exhibiting low adsorption-fouling tendency and high water permeability. PMID:21999989

  11. Model biogas steam reforming in a thin Pd-supported membrane reactor to generate clean hydrogen for fuel cells

    Science.gov (United States)

    Iulianelli, A.; Liguori, S.; Huang, Y.; Basile, A.

    2015-01-01

    Steam reforming of a model biogas mixture is studied for generating clean hydrogen by using an inorganic membrane reactor, in which a composite Pd/Al2O3 membrane separates part of the produced hydrogen through its selective permeation. The characteristics of H2 perm-selectivity of the fresh membrane is expressed in terms of H2/N2 ideal selectivity, in this case equal to 4300. Concerning biogas steam reforming reaction, at 380 °C, 2.0 bar H2O:CH4 = 3:1, GHSV = 9000 h-1 the permeate purity of the recovered hydrogen is around 96%, although the conversion (15%) and hydrogen recovery (>20%) are relatively low; on the contrary, at 450 °C, 3.5 bar H2O:CH4 = 4:1, GHSV = 11000 h-1 the conversion is increased up to more than 30% and the recovery of hydrogen to about 70%. This novel work constitutes a reference study for new developments on biogas steam reforming reaction in membrane reactors.

  12. Catalytic and Noncatalytic Conversion of Methane to Olefins and Synthesis Gas in an AC Parallel Plate Discharge Reactor

    OpenAIRE

    Mohammad Ali Khodagholi; Mohammad Irani

    2013-01-01

    Direct conversion of methane to ethylene, acetylene, and synthesis gas at ambient pressure and temperature in a parallel plate discharge reactor was investigated. The experiments were carried out using a quartz reactor of outer diameter of 9 millimeter and a driving force of ac current of 50 Hz. The input power to the reactor to establish a stable gas discharge varied from 9.6 to maximum 15.3 watts (w). The effects of ZSM5, Fe–ZSM5, and Ni–ZSM5 catalysts combined with corona discharge for co...

  13. Metal Catalysts Supported on Nanofibrous Polymeric Membranes for Environmental Applications

    Czech Academy of Sciences Publication Activity Database

    Soukup, Karel; Topka, Pavel; Petráš, D.; Šolcová, Olga

    - : -, 2013, s. 111. ISBN N. [International Conference on Catalysis in Membrane Reactors /11./. Porto (PT), 07.07.2013-11.07.2013] R&D Projects: GA ČR GPP106/11/P459; GA ČR(CZ) GAP204/11/1206 Institutional support: RVO:67985858 Keywords : nanofibrous catalyst support * electrospinning * catalytic oxidation Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  14. [Analysis of Microbial Community in the Membrane Bio-Reactor (MBR) Rural Sewage Treatment System].

    Science.gov (United States)

    Kong, Xiao; Cui, Bing-jian; Jin, De-cai; Wu, Shang-hua; Yang, Bo; Deng, Ye; Zhuang, Guo-qiang; Zhuang, Xu-liang

    2015-09-01

    Uncontrolled release and arbitrary irrigation reuse of rural wastewater may lead to water pollution, and the microbial pathogens could threaten the safety of freshwater resources and public health. To understand the microbial community structure of rural wastewater and provide the theory for microbial risk assessment of wastewater irrigation, microbial community diversities in the Membrane Bio-Reactor (MBR) process for rural wastewater treatment was studied by terminal restriction fragment length polymorphism (T-RFLP) and 16S rDNA gene clone library. Meanwhile, changes of Arcobacter spp. and total bacteria before and after treatment were detected through real-time quantitative PCR. The clone library results showed that there were 73 positive clones included Proteobacteria (91. 80%), Firmicutes (2. 70%), Bacteroidetes (1. 40%), and uncultured bacteria (4. 10%) in the untreated wastewater. The typical pathogenic genus Arcobacter belonging to e-Proteobacteria was the dominant component of the library, accounting for 68. 5% of all clones. The main groups and their abundance in different treatments were significantly distinct. The highest values of species abundance (S), Shannon-Wiener (H) and Evenness (E) were observed in the adjusting tank, which were 43. 0, 3. 56 and 0. 95, respectively. The real-time quantitative PCR results showed that the copy number of Arcobacter spp. was (1. 09 ± 0. 064 0) x 10(11) copies.L-1 in the untreated sewage, which was consistent with the result of 16S rDNA gene clone library. Compared to untreated wastewater, bacterial copy number in the treated effluent decreased 100 to 1 000 times, respectively, suggesting that MBR treatment system could remove the microbial quantity in such scale. In the recycled water, the physicochemical parameters and indicator bacteria met the water quality standard of farmland irrigation. However, further research is needed to estimate the potential health risks caused by residual pathogenic microorganisms in

  15. The Influence of Slight Protuberances in a Micro-Tube Reactor on Methane/Moist Air Catalytic Combustion

    OpenAIRE

    Ruirui Wang; Jingyu Ran; Xuesen Du; Juntian Niu; Wenjie Qi

    2016-01-01

    The combustion characteristics of methane/moist air in micro-tube reactors with different numbers and shapes of inner wall protuberances are investigated in this paper. The micro-reactor with one rectangular protuberance (six different sizes) was studied firstly, and it is shown that reactions near the protuberance are mainly controlled by diffusion, which has little effect on the outlet temperature and methane conversion rate. The formation of cavities and recirculation zones in the vicinity...

  16. Catalytic and Noncatalytic Conversion of Methane to Olefins and Synthesis Gas in an AC Parallel Plate Discharge Reactor

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Khodagholi

    2013-01-01

    Full Text Available Direct conversion of methane to ethylene, acetylene, and synthesis gas at ambient pressure and temperature in a parallel plate discharge reactor was investigated. The experiments were carried out using a quartz reactor of outer diameter of 9 millimeter and a driving force of ac current of 50 Hz. The input power to the reactor to establish a stable gas discharge varied from 9.6 to maximum 15.3 watts (w. The effects of ZSM5, Fe–ZSM5, and Ni–ZSM5 catalysts combined with corona discharge for conversion of methane to more valued products have been addressed. It was found that in presence or absence of a catalyst in gas discharge reactor, the rate of methane and oxygen conversion increased upon higher input power supplied to the reactor. The effect of Fe–ZSM5 catalyst combined with gas discharge plasma yields C2 hydrocarbons up to 21.9%, which is the highest productions of C2 hydrocarbons in this work. The effect of combined Ni–ZSM5 and gas discharge plasma was mainly production of synthesis gas. The advantage of introducing ZSM5 to the plasma zone was increase in synthesis gas and acetylene production. The highest energy efficiency was 0.22 mmol/kJ, which belongs to lower rate of energy injection to the reactor.

  17. Numerical investigation of oxygen permeation and methane oxy-combustion in a stagnation flow ion transport membrane reactor

    International Nuclear Information System (INIS)

    In this work, a two-step oxy-combustion reaction kinetics model for methane-oxygen combustion is used to predict the oxy-combustion characteristics in the permeate side of the membrane. More accurate permeation rate characteristics inside this simple symmetric design ITM reactor is also expected using this model. New oxygen permeation model is introduced in this work for an LSCF-1991 ion transport membrane. The simulation of the oxygen permeation process across the membrane has been performed through series of visual C++ user defined function compiled and incorporated to FLUENT. The analysis of the permeation process has been conducted for separation only process (no reactions) using an inert gas (argon) as a sweep gas and a comparison has been done with cases of using CH4 plus CO2 as sweep gases. The effect of reactivity using the same sweep gases (CH4 plus CO2) is investigated by comparing the same cases with and without reactions in the permeate side. It was found that there are important parameters affecting the operation of ITM reactors like the inlet gases temperature, percentage of CH4 in the sweep gases mixture and the reactor geometry. Also, there are less important parameters like, feed and sweep volume flow rates, oxygen partial pressure in the feed side. - Highlights: • More accurate two-step methane oxy-combustion reaction kinetics model is introduced. • A new coefficients oxygen permeation equation model is introduced. • A detailed 2D study is presented to understand the performance of ITM reactors. • Using of CH4+CO2 as sweep gases is better than using argon for separation only process. • Chemical reactions have a great effect on enhancing the oxygen permeation flux

  18. Catalytic pyrolysis of black-liquor lignin by co-feeding with different plastics in a fluidized bed reactor.

    Science.gov (United States)

    Zhang, Huiyan; Xiao, Rui; Nie, Jianlong; Jin, Baosheng; Shao, Shanshan; Xiao, Guomin

    2015-09-01

    Catalytic co-pyrolysis of black-liquor lignin and waste plastics (polyethylene, PE; polypropylene PP; polystyrene, PS) was conducted in a fluidized bed. The effects of temperature, plastic to lignin ratio, catalyst and plastic types on product distributions were studied. Both aromatic and olefin yields increased with increasing PE proportion. Petrochemical yield of co-pyrolysis of PE and lignin was LOSA-1 > spent FCC > Gamma-Al2O3 > sand. The petrochemical yield with LOSA-1 is 43.9% which is more than two times of that without catalyst. The feedstock for co-pyrolysis with lignin is polystyrene > polyethylene > polypropylene. Catalytic co-pyrolysis of black-liquor lignin with PS produced the maximum aromatic yield (55.3%), while co-pyrolysis with PE produced the maximum olefin yield (13%). PMID:26011693

  19. Theoretical considerations about a membrane process for helium purification in multichannel monoliths for high temperature nuclear reactors

    International Nuclear Information System (INIS)

    Highlights: ► Modeling and simulation of helium purification in HTR. ► Membrane separation process for helium purification. ► Microporous silica membrane on multichannel monolith support. ► Effect of thick porous support on gas separation process. ► New cascade configuration of membrane modules for optimized purification. - Abstract: In this work we present the modeling and simulation of a new membrane process for helium purification in high temperature nuclear reactors. We considered the application of multichannel porous monolith supports from Pall-Exekia, with thin, microporous layers of silica/alumina. These membranes present helium permeance values in the range of 10−10 kmol m−2 s−1 Pa−1 at 300 °C for transmembrane pressures of 1–60 bar. The Dusty Gas Model was used in order to highlight the effect of the porous support on the separation. An original new cascade configuration has been designed to reach the desired range of helium purity. Simulations showed many advantages of this configuration over those previously reported in the bibliography because there are no recycles and no intermediate compression units.

  20. Qualitative Aspects of the Solutions of a Mathematical Model for the Dynamic Analysis of the Reversible Chemical Reaction SO2(g)+1/2O2(g)<=>SO3(g) in a Catalytic Reactor

    CERN Document Server

    Wilfredo, Angulo

    2014-01-01

    We present some qualitative aspects concerning the solution to the mathematical model describing the dynamical behavior of the reversible chemical reaction SO2(g)+1/2O2(g)SO3(g) carried out in a catalytic reactor used in the process of sulfuric acid production.

  1. Fundamental studies of the mechanism of catalytic reactions with catalysts effective in the gasification of carbon solids and the oxidative coupling of methane. Quarterly report, January 1, 1995--March 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Iglesia, E.; Perry, D.L.; Heinemann, H.

    1995-03-01

    The synthesis of ethane and ethylene from methane and oxygen will be carried out in novel hydrogen transport inorganic membranes and in cyclic reactors in order to prevent undesirable secondary reactions of C{sub 2} molecules to CO and CO{sub 2}. Neither inorganic membrane reactors nor cyclic tubular reactors are presently used in commercial processes. Their application to catalytic reactions represents a novel application of engineering and solid-state chemistry concepts to catalytic reactions. Our approach combines high temperature membrane and cyclic experimental reactors, synthesis and characterization of thin membrane films and of high surface area catalysts, and detailed models of complex gas phase and surface reactions involved in oxidative coupling. We anticipate that this approach will lead to novel reactors for carrying our kinetic-controlled sequential reactions, such as the oxidative coupling of methane. Careful spectrographic and wet chemical analyses of fresh and silent catalysts have shown considerable differences which have permitted conclusions as to the source of deactivation. Our activities in the first quarter FYI 995 have focused on the synthesis, structural characterization, and catalytic evaluation of membrane films, disks, and reactors. We have also continued to exploit reaction-transport models to predict the performance of membrane, cyclic, and recycle reactors in the oxidative coupling of methane.

  2. Electro-membrane reactor for separation and in situ ion substitution of glutamic acid from its sodium salt

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Mahendra; Tripathi, Bijay P. [Electro-Membrane Processes Division, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research (CSIR), G. B. Marg, Bhavnagar 364002, Gujarat (India); Shahi, Vinod K. [Electro-Membrane Processes Division, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research (CSIR), G. B. Marg, Bhavnagar 364002, Gujarat (India)], E-mail: vkshahi@csmcri.org

    2009-08-30

    An electro-membrane reactor with four compartments (EMR-4) (anolyte, catholyte and comp. 1 and 2) based on in-house-prepared cation- and anion-exchange membrane (CEM and AEM, respectively) was developed to achieve separation and recovery of glutamic acid (GAH) from its sodium salt by in situ ion substitution and acidification. The physicochemical and electrochemical properties of CEM and AEM were characterized and its suitability was assessed in operating environment. The separation of GA{sup -} from the mixture of nonionic organic compounds and further ion substitution was achieved by EMR-4. But the higher energy consumption (5.75 kWh/kg of GAH produced), low current efficiency (50.5%) and recovery of GAH (57.2%) in this process were main obstacles for the industrial exploration of the process. Latter, electro-membrane reactor with three compartments (EMR-3) (anolyte, catholyte and central compartment) was developed based on CEMs for only in situ ion substitution of GANa to achieve GAH, in which GA{sup -} was not allowed for electro-migration from its feed compartment. CE and recovery of GAH were close to 73% and 96% that indicate the suitability of the EMR-3 process for industrial application over the EMR-4. It was concluded that EMR-3 was efficient as compared to EMR-4 for separation and recovery of GAH from fermentation broth by in situ ion substitution in eco-friendly manner.

  3. Electro-membrane reactor for separation and in situ ion substitution of glutamic acid from its sodium salt

    International Nuclear Information System (INIS)

    An electro-membrane reactor with four compartments (EMR-4) (anolyte, catholyte and comp. 1 and 2) based on in-house-prepared cation- and anion-exchange membrane (CEM and AEM, respectively) was developed to achieve separation and recovery of glutamic acid (GAH) from its sodium salt by in situ ion substitution and acidification. The physicochemical and electrochemical properties of CEM and AEM were characterized and its suitability was assessed in operating environment. The separation of GA- from the mixture of nonionic organic compounds and further ion substitution was achieved by EMR-4. But the higher energy consumption (5.75 kWh/kg of GAH produced), low current efficiency (50.5%) and recovery of GAH (57.2%) in this process were main obstacles for the industrial exploration of the process. Latter, electro-membrane reactor with three compartments (EMR-3) (anolyte, catholyte and central compartment) was developed based on CEMs for only in situ ion substitution of GANa to achieve GAH, in which GA- was not allowed for electro-migration from its feed compartment. CE and recovery of GAH were close to 73% and 96% that indicate the suitability of the EMR-3 process for industrial application over the EMR-4. It was concluded that EMR-3 was efficient as compared to EMR-4 for separation and recovery of GAH from fermentation broth by in situ ion substitution in eco-friendly manner.

  4. Composite polymer/oxide hollow fiber contactors: versatile and scalable flow reactors for heterogeneous catalytic reactions in organic synthesis.

    Science.gov (United States)

    Moschetta, Eric G; Negretti, Solymar; Chepiga, Kathryn M; Brunelli, Nicholas A; Labreche, Ying; Feng, Yan; Rezaei, Fateme; Lively, Ryan P; Koros, William J; Davies, Huw M L; Jones, Christopher W

    2015-05-26

    Flexible composite polymer/oxide hollow fibers are used as flow reactors for heterogeneously catalyzed reactions in organic synthesis. The fiber synthesis allows for a variety of supported catalysts to be embedded in the walls of the fibers, thus leading to a diverse set of reactions that can be catalyzed in flow. Additionally, the fiber synthesis is scalable (e.g. several reactor beds containing many fibers in a module may be used) and thus they could potentially be used for the large-scale production of organic compounds. Incorporating heterogeneous catalysts in the walls of the fibers presents an alternative to a traditional packed-bed reactor and avoids large pressure drops, which is a crucial challenge when employing microreactors. PMID:25865826

  5. Glucose transporter 4 can be inserted in the membrane without exposing its catalytic site for photolabeling from the medium

    Institute of Scientific and Technical Information of China (English)

    Manabu; ISHIKI; Philip; J; BILAN

    2007-01-01

    Insulin stimulates the production of PI(3,4,5)P3 in muscle cells, and this is required to stimulate GLUT4 fusion with the plasma membrane. Introduction of exogenous PI(3,4,5)P3 to muscle cells recapitulates insulin’s effects on GLUT4 fusion with the plasma membrane, but not glucose uptake. This study aims to explore the mechanism behind this difference. In L6-GLUT4myc muscle cells, the availability of the GLUT4 intracellular C-terminus and extracellular myc epitopes for immunoreactivity on plasma membrane lawns was detected with the corresponding antibody. The availability of the active site of GLUT4 from extracellular medium was assessed by affinity photolabeling with the cell impermeant compound Bio-LC-ATB-BMPA. 100nmol/L insulin and 10μmol/L PI(3,4,5)P3 caused myc signal gain on the plasma membrane lawns by 1.64-fold and 1.58-fold over basal, respectively. Insulin, but not PI(3,4,5)P3, increased photolabeling of GLUT4 and immunolabeling with C-terminus antibody by 2.47-fold and 2.04-fold over basal, respectively. Upon insulin stimulation, the C-terminus signal gain was greater than myc signal gain (2.04-fold vs. 1.64-fold over basal, respectively) in plasma membrane lawns. These results indicate that (i) PI(3,4,5)P3 does not make the active site of GLUT4 available from the extracellular surface despite causing GLUT4 fusion with the plasma membrane; (ii) the availability of the active site of GLUT4 from the extracellular medium and availability of the C-terminus from the cytosolic site are correlated; (iii) in addition to stimulating GLUT4 translocation, insulin stimulation displaces a protein which masks the GLUT4 C-terminus. We propose that a protein which masks the C-terminus also prevents the active site from being available for photolabelling and possibly glucose uptake after treatment with PI(3,4,5)P3.

  6. Glucose transporter 4 can be inserted in the membrane without exposing its catalytic site for photolabeling from the medium

    Institute of Scientific and Technical Information of China (English)

    NIU WenYan; Manabu ISHIKI; Philip J BILAN; YAO Zhi

    2007-01-01

    Insulin stimulates the production of PI(3,4,5)P3 in muscle cells, and this is required to stimulate GLUT4fusion with the plasma membrane. Introduction of exogenous PI(3,4,5)P3 to muscle cells recapitulates insulin's effects on GLUT4 fusion with the plasma membrane, but not glucose uptake. This study aims to explore the mechanism behind this difference. In L6-GLUT4myc muscle cells, the availability of the GLUT4 intracellular C-terminus and extracellular myc epitopes for immunoreactivity on plasma membrane lawns was detected with the corresponding antibody. The availability of the active site of GLUT4from extracellular medium was assessed by affinity photolabeling with the cell impermeant compound Bio-LC-ATB-BMPA. 100 nmol/L insulin and 10 μmol/L PI(3,4,5)P3 caused myc signal gain on the plasma membrane lawns by 1.64-fold and 1.58-fold over basal, respectively. Insulin, but not PI(3,4,5)P3, increased photolabeling of GLUT4 and immunolabeling with C-terminus antibody by 2.47-fold and 2.04-fold over basal, respectively. Upon insulin stimulation, the C-terminus signal gain was greater than myc signal gain (2.04-fold vs. 1.64-fold over basal, respectively) in plasma membrane lawns. These results indicate that (i) PI(3,4,5)P3 does not make the active site of GLUT4 available from the extracellular surface despite causing GLUT4 fusion with the plasma membrane; (ii) the availability of the active site of GLUT4 from the extracellular medium and availability of the C-terminus from the cytosolic site are correlated; (iii) in addition to stimulating GLUT4 translocation, insulin stimulation displaces a protein which masks the GLUT4 C-terminus. We propose that a protein which masks the C-terminus also prevents the active site from being available for photolabeliing and possibly glucose uptake after treatment with PI(3,4,5)P3.

  7. Catalytic distillation process

    Science.gov (United States)

    Smith, Jr., Lawrence A.

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  8. Amperometric NOx-sensor for Combustion Exhaust Gas Control. Studies on transport properties and catalytic activity of oxygen permeable ceramic membranes

    International Nuclear Information System (INIS)

    The aim of the research described in this thesis is the development of a mixed conducting oxide layer, which can be used as an oxygen permselective membrane in an amperometric NOx sensor. The sensor will be used in exhaust gas systems. The exhaust gas-producing engine will run in the lean mix mode. The preparation of this sensor is carried out using screen-printing technology, in which the different layers of the sensor are applied successively. Hereafter, a co-firing step is applied in which all layers are sintered together. This co-firing step imposes several demands on the selection of materials. The design specifications of the sensor further include requirements concerning the operating temperature, measurement range and overall stability. The operating temperature of the sensor varies between 700 and 850C, enabling measurement of NOx concentrations between 50 and 1200 ppm with a measurement accuracy of 10 ppm. Concerning the stability of the sensor, it must withstand the exhaust gas atmosphere containing, amongst others, smoke, acids, abrasive particles and sulphur. Because of the chosen lean-mix engine concept, in which the fuel/air mixture switches continuously between lean (excess oxygen) and fat (excess fuel) mixtures, the sensor must withstand alternately oxidising and reducing atmospheres. Besides, it should be resistant to thermal shock and show no cross-sensitivity of NOx with other exhaust gas constituents like oxygen and hydrocarbons. The response time should be short, typically less than 500 ms. Because of the application in combustion engines of cars, the operational lifetime should be longer than 10 years. Demands on the mixed conducting oxide layer include the following ones. The layer should show minimal catalytic activity towards NOx-reduction. The oxygen permeability must be larger than 6.22 10-8 mol/cm2s at a layer thickness between 3-50 μm. Since the mixed conducting oxide layer is coated on the YSZ electrolyte embodiment, the two

  9. Catalytic wet-air oxidation of lignin in a three-phase reactor with aromatic aldehyde production

    OpenAIRE

    Sales F.G.; Abreu C.A.M.; Pereira J. A. F. R.

    2004-01-01

    In the present work a process of catalytic wet air oxidation of lignin obtained from sugar-cane bagasse is developed with the objective of producing vanillin, syringaldehyde and p-hydroxybenzaldehyde in a continuous regime. Palladium supported on g-alumina was used as the catalyst. The reactions in the lignin degradation and aldehyde production were described by a kinetic model as a system of complex parallel and series reactions, in which pseudo-first-order steps are found. For the purpose o...

  10. Simple and rapid hydrogenation of p-nitrophenol with aqueous formic acid in catalytic flow reactors

    OpenAIRE

    Rahat Javaid; Shin-ichiro Kawasaki; Akira Suzuki; Suzuki, Toshishige M

    2013-01-01

    The inner surface of a metallic tube (i.d. 0.5 mm) was coated with a palladium (Pd)-based thin metallic layer by flow electroless plating. Simultaneous plating of Pd and silver (Ag) from their electroless-plating solution produced a mixed distributed bimetallic layer. Preferential acid leaching of Ag from the Pd–Ag layer produced a porous Pd surface. Hydrogenation of p-nitrophenol was examined in the presence of formic acid simply by passing the reaction solution through the catalytic tubular...

  11. Research on degradation product and reaction kinetics of membrane electro-bioreactor (MEBR) with catalytic electrodes for high concentration phenol wastewater treatment.

    Science.gov (United States)

    Wang, Tao; Zhao, Huanping; Wang, Hui; Liu, Botan; Li, Chunqing

    2016-07-01

    The membrane electro-bioreactor (MEBR) is a novel technology, it treats wastewater by combining membrane filtration, electrokinetic phenomena, and biological processes in one reactor. This paper aims to deal with hard biodegradation and high concentration phenol wastewater. Investigating the influence factors such as initial concentration, voltage, pH value, temperature and mixed liquor suspended solids (MLSS) toward phenol degradation process in electrocatalytic process and membrane bioreactor (MBR), and then apply the optimum conditions in the MEBR system. Results of continuous flow experiments demonstrated that MEBR increased the quality of the treated wastewater than conventional MBR. The above technics followed the zero-order reaction kinetics. The removal efficiency of MEBR was about 11.1% higher for phenol than the sum of the two individual processes. With the help of gas chromatography/mass spectrometry (GC-MS), this qualitative analysis looks at the degradation products of phenol generated in MEBR, through which 2,6-di-tert-butyl-p-benzoquinone was confirmed as the main degradation product. PMID:27108366

  12. Nitrogen removal by granular nitritation-anammox in an upflow membrane-aerated biofilm reactor.

    Science.gov (United States)

    Li, Xiaojin; Sun, Shan; Badgley, Brian D; Sung, Shihwu; Zhang, Husen; He, Zhen

    2016-05-01

    The nitritation-anammox process has been a promising nitrogen removal technology towards sustainable wastewater treatment, but its application in treating domestic wastewater with relatively low ammonium concentrations (mainstream) remains a great challenge. In this study, an innovative lab-scale upflow membrane-aerated biofilm reactor (UMABR) was employed to treat a synthetic wastewater containing 70 mg N L(-1) ammonium. With a DO level at 0.6 ± 0.1 mg O2 L(-1) and HRT of 32 h, the effluent ammonium concentration was 4.8 ± 2.0 mg N L(-1). Increasing the nitrogen loading rate from 52.4 to 104.8 g N m(-3) d(-1) with stepwise decreasing HRT from 32 to 16 h resulted in an average TN removal efficiency of 81% without nitrite accumulation. The average observed NO3(-)-N (residue)/NH4(+)-N (consumed) ratio of 8% was below the "theoretical ratio" of 13% and further reduction of nitrate residue needs to be addressed. Fluorescence in situ hybridization (FISH) and high-throughput sequencing analyses showed the coexistence of anammox bacteria and ammonium-oxidizing bacteria (AOB) in both biofilm and granular samples. Anammox bacteria accounted for up to 63.3% of the microbial community of the granules, with Candidatus Jettenia being the distinctly dominant anammox genus. In contrast, the biofilm contained abundant Nitrosomonadaceae (AOB, 33.1%). In addition, the brown-yellow granules exhibited a more balanced community structure with anammox bacteria and AOB accounting for 33.7% and 18.2%, respectively, which may contribute to the long-term operation of single-stage nitritation-anammox process. These results demonstrate that the nitritation-anammox UMABR could potentially be used for nitrogen removal from mainstream in some specific regions with relatively warm temperature. PMID:26921710

  13. Removal of multiple electron acceptors by pilot-scale, two-stage membrane biofilm reactors.

    Science.gov (United States)

    Zhao, He-Ping; Ontiveros-Valencia, Aura; Tang, Youneng; Kim, Bi-O; Vanginkel, Steven; Friese, David; Overstreet, Ryan; Smith, Jennifer; Evans, Patrick; Krajmalnik-Brown, Rosa; Rittmann, Bruce

    2014-05-01

    We studied the performance of a pilot-scale membrane biofilm reactor (MBfR) treating groundwater containing four electron acceptors: nitrate (NO3(-)), perchlorate (ClO4(-)), sulfate (SO4(2-)), and oxygen (O2). The treatment goal was to remove ClO4(-) from ∼200 μg/L to less than 6 μg/L. The pilot system was operated as two MBfRs in series, and the positions of the lead and lag MBfRs were switched regularly. The lead MBfR removed at least 99% of the O2 and 63-88% of NO3(-), depending on loading conditions. The lag MBfR was where most of the ClO4(-) reduction occurred, and the effluent ClO4(-) concentration was driven to as low as 4 μg/L, with most concentrations ≤10 μg/L. However, SO4(2-) reduction occurred in the lag MBfR when its NO3(-) + O2 flux was smaller than ∼0.18 g H2/m(2)-d, and this was accompanied by a lower ClO4(-) flux. We were able to suppress SO4(2-) reduction by lowering the H2 pressure and increasing the NO3(-) + O2 flux. We also monitored the microbial community using the quantitative polymerase chain reaction targeting characteristic reductase genes. Due to regular position switching, the lead and lag MBfRs had similar microbial communities. Denitrifying bacteria dominated the biofilm when the NO3(-) + O2 fluxes were highest, but sulfate-reducing bacteria became more important when SO4(2-) reduction was enhanced in the lag MBfR due to low NO3(-) + O2 flux. The practical two-stage strategy to achieve complete ClO4(-) and NO3(-) reduction while suppressing SO4(2-) reduction involved controlling the NO3(-) + O2 surface loading between 0.18 and 0.34 g H2/m(2)-d and using a low H2 pressure in the lag MBfR. PMID:24565802

  14. Biodiesel fuels from palm oil via the non-catalytic transesterification in a bubble column reactor at atmospheric pressure: A kinetic study

    Energy Technology Data Exchange (ETDEWEB)

    Joelianingsih [National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305 8642 (Japan); Department of Chemical Engineering, Institut Teknologi Indonesia, Jl. Raya Puspiptek Serpong, Tangerang 15320 (Indonesia); Department of Global Agricultural Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113 8657 (Japan); Graduate School, Agricultural Engineering Science, Bogor Agricultural University, Darmaga Campus, P.O. Box 220, Bogor 16002 (Indonesia); Maeda, Hitoshi [National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305 8642 (Japan); Department of Global Agricultural Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113 8657 (Japan); Hagiwara, Shoji; Nabetani, Hiroshi [National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305 8642 (Japan); Sagara, Yasuyuki [Department of Global Agricultural Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113 8657 (Japan); Soerawidjaya, Tatang H. [Department of Chemical Engineering, Institut Teknologi Bandung, LABTEK X, Jl. Ganesha No. 10 Bandung 40132 (Indonesia); Tambunan, Armansyah H.; Abdullah, Kamaruddin [Graduate School, Agricultural Engineering Science, Bogor Agricultural University, Darmaga Campus, P.O. Box 220, Bogor 16002 (Indonesia)

    2008-07-15

    Biodiesel has become more attractive recently because of its environmental benefits and the fact that it is made from renewable resources. Transesterification of vegetable oils with short-chain alcohol has long been a preferred method for producing biodiesel fuel. A new reactor was developed to produce fatty acid methyl esters (FAME) by blowing bubbles of superheated methanol vapor continuously into vegetable oil without using any catalysts. A kinetic study on the non-catalytic transesterification of palm oil was made in a reactor without stirring at atmospheric pressure. The effects of reaction temperatures (523, 543, and 563 K) on the rate constant, conversion, yield of methyl esters (ME) and composition of the reaction product under semi-batch mode operation are investigated. The activation energy and the frequency factor values of the transesterification reaction obtained in this experiment are 31 kJ/mol and 4.2, respectively. The optimum reaction temperature which gives the highest ME content (95.17% w/w) in the reaction product is 523 K, while the rate constant of the total system increased with reaction temperature. (author)

  15. Bioreduction of para-chloronitrobenzene in drinking water using a continuous stirred hydrogen-based hollow fiber membrane biofilm reactor

    International Nuclear Information System (INIS)

    Highlights: → We designed a novel hollow fiber membrane biofilm reactor for p-CNB removal. → Biotransformation pathway of p-CNB in the reactor was investigated in this study. → Nitrate and sulfate competed more strongly for hydrogen than p-CNB. → This reactor achieved high removal efficiency and hydrogen utilization efficiency. - Abstract: para-Chloronitrobenzene (p-CNB) is particularly harmful and persistent in the environment and is one of the priority pollutants. A feasible degradation pathway for p-CNB is bioreduction under anaerobic conditions. Bioreduction of p-CNB using a hydrogen-based hollow fiber membrane biofilm reactor (HFMBfR) was investigated in the present study. The experiment results revealed that p-CNB was firstly reduced to para-chloraniline (p-CAN) as an intermediate and then reduced to aniline that involves nitro reduction and reductive dechlorination with H2 as the electron donor. The HFMBfR had reduced p-CNB to a major extent with a maximum removal percentage of 99.3% at an influent p-CNB concentration of 2 mg/L and a hydraulic residence time of 4.8 h, which corresponded to a p-CNB flux of 0.058 g/m2 d. The H2 availability, p-CNB loading, and the presence of competing electron acceptors affected the p-CNB reduction. Flux analysis indicated that the reduction of p-CNB and p-CAN could consume fewer electrons than that of nitrate and sulfate. The HFMBfR had high average hydrogen utilization efficiencies at different steady states in this experiment, with a maximum efficiency at 98.2%.

  16. Nuclear track-etched pore membrane production using neutrons from the Thai research reactor TRR-1/M1

    Directory of Open Access Journals (Sweden)

    Thawat Chittrakarn

    2002-11-01

    Full Text Available This work presents the results of the nuclear pore membrane production using the neutrons from the Thai research reactor TRR-1/M1 for pore piercing process on the polycarbonate thin film. With our experimental design, the fast neutron provides better results in pore piercing comparing with thermal neutron bombardment. This can be explained by most of the latent tracks produced by thermal neutron bombardment not penetrating through the thin film. Chemical etching process using NaOH solution with appropriate time, concentration and temperature is employed to enlarge the latent tracks in the bombarded film. Fast neutron bombardment with 5, 10 and 20 minutes bombarding time successfully produces the nuclear track membrane. Pore size and pore density of the produced membranes examined by SEM are 0.24 – 1.01 μm and 4.7 – 245 × 106 pore/cm2, respectively. Bubble point tests show the maximum pore diameter of the produced membrane ranged between 1.18 – 3.25 μm.

  17. Evaluation of micropollutant removal and fouling reduction in a hybrid moving bed biofilm reactor-membrane bioreactor system.

    Science.gov (United States)

    Luo, Yunlong; Jiang, Qi; Ngo, Huu H; Nghiem, Long D; Hai, Faisal I; Price, William E; Wang, Jie; Guo, Wenshan

    2015-09-01

    A hybrid moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) system and a conventional membrane bioreactor (CMBR) were compared in terms of micropollutant removal efficiency and membrane fouling propensity. The results show that the hybrid MBBR-MBR system could effectively remove most of the selected micropollutants. By contrast, the CMBR system showed lower removals of ketoprofen, carbamazepine, primidone, bisphenol A and estriol by 16.2%, 30.1%, 31.9%, 34.5%, and 39.9%, respectively. Mass balance calculations suggest that biological degradation was the primary removal mechanism in the MBBR-MBR system. During operation, the MBBR-MBR system exhibited significantly slower fouling development as compared to the CMBR system, which could be ascribed to the wide disparity in the soluble microbial products (SMP) levels between MBBR-MBR (4.02-6.32 mg/L) and CMBR (21.78 and 33.04 mg/L). It is evident that adding an MBBR process prior to MBR treatment can not only enhance micropollutant elimination but also mitigate membrane fouling. PMID:26031758

  18. Crystal structure of the outer membrane protease OmpT from Escherichia coli suggests a novel catalytic site

    OpenAIRE

    Vandeputte-Rutten, Lucy; Kramer, R. Arjen; Kroon, Jan; Dekker, Niek; Egmond, Maarten R.; Gros, Piet

    2001-01-01

    OmpT from Escherichia coli belongs to a family of highly homologous outer membrane proteases, known as omptins, which are implicated in the virulence of several pathogenic Gram-negative bacteria. Here we present the crystal structure of OmpT, which shows a 10-stranded antiparallel β-barrel that protrudes far from the lipid bilayer into the extracellular space. We identified a putative binding site for lipopolysaccharide, a molecule that is essential for OmpT activity. The proteolytic site is ...

  19. Porous polyoxadiazole membranes for harsh environment

    KAUST Repository

    Maab, Husnul

    2013-10-01

    A series of polyoxadiazoles with exceptionally high stability at temperatures as high as 370°C and in oxidative medium has been synthesized by polycondensation and manufactured into porous membranes by phase inversion. The membranes were characterized by thermal analysis (TGA), chemical stability was measured by immersion test, oxidative stability by Fenton\\'s test, pore diameter by porosimetry and the morphology by FESEM. The polymers are soluble only in sulfuric acid and are stable in organic solvents like NMP, THF and isopropanol. The membranes selectivity was confirmed by separation of polystyrene standards with different molecular weights. Most membranes were characterized as having a cut-off of 60,000. g/mol. Being stable under harsh environments, the membranes have incomparable characteristics with perspectives of application in chemical and pharmaceutical industry, catalytic reactors, in combination with oxidative processes and other applications so far envisioned only for ceramic membranes. © 2013.

  20. Reator de membrana enzimático e fluidos supercríticos: associação de processos Enzymatic membrane reactor and supercritical fluids: process association

    Directory of Open Access Journals (Sweden)

    Juliana Maria Leite Nóbrega de Moura

    2007-08-01

    Full Text Available The aim of this work is to present the new applications of membrane technology in fat and oil processing, with emphasis on development and applications of the enzymatic membrane reactor and its association with extraction and purification technology by supercritical fluids (SCF. Combining the extraction by SCFs and the separation by membranes allows the integration of extractions reactions with selective separation by membranes through filtration of the supercritical mixture (SCF + extracted solutes. This association provides important energy savings regarding the SCF recompression costs.

  1. Study of the catalytic reduction or uranyl nitrate by hydrogen. Sizing of a three-phase reactor

    International Nuclear Information System (INIS)

    As solutions generated by nuclear fuel processing plants contain a mixing of uranium VI (uranyl nitrate) and of plutonium IV, and as uranous nitrate can be used to reduce plutonium to its valence III, this last reduction reaction raises many problems, and the first objective of this research thesis is to better understand and control the various phenomena involved in this reaction. Thus, a first part addresses the reaction chemistry and kinetics. It is based on tests performed in a closed reactor, and aims at clarifying problems of re-oxidation and at devising a kinetic model. A specific attention is paid to matter transfers between the different gaseous, liquid and solid phases. In the second part, the author reports the study of the hydrodynamic behaviour of an airlift-type reactor. Such an apparatus displays indeed interesting benefits to implement the reaction. It notably allows temperature to be well controlled, and the catalyst to be easier handled. Based on these kinetic and hydrodynamic studies, the third part proposes a reactor model, and reports the calculation of its performance by simulation

  2. Comparative study between chemostat and batch reactors to quantify membrane permeability changes on bacteria exposed to silver nanoparticles.

    Science.gov (United States)

    Anaya, Nelson M; Faghihzadeh, Fatemeh; Ganji, Nasim; Bothun, Geoff; Oyanedel-Craver, Vinka

    2016-09-15

    Continuous and batch reactors were used to assess the effect of the exposure of casein-coated silver nanoparticles (AgNPs) on Escherichia coli (E. coli). Additionally, E. coli membrane extracts, membrane permeability and Langmuir film balance assays were used to determine integrity and changes in lipid composition in response to AgNPs exposure. Results showed that batch conditions were not appropriate for the tests due to the production of exopolymeric substances (EPS) during the growth phase. After 5h of contact between AgNPs and the used growth media containing EPS, the nanoparticles increased in size from 86nm to 282nm reducing the stability and thus limiting cell-nanoparticle interactions. AgNPs reduced E. coli growth by 20% at 1mg/L, in terms of Optical Density 670 (OD670), while no effect was detected at 15mg/L. At 50mg/L of AgNPs was not possible to perform the test due to aggregation and sedimentation of the nanoparticles. Membrane extract assays showed that at 1mg/L AgNPs had a greater change in area (-4.4cm(2)) on bacteria compared to 15mg/L (-4.0cm(2)). This area increment suggested that membrane disruption caused by AgNPs had a stabilizing/rigidifying effect where the cells responded by shifting their lipid composition to more unsaturated lipids to counteract membrane rigidification. In chemostats, the constant inflow of fresh media and aeration resulted in less AgNPs aggregation, thus increased the AgNPs-bacteria interactions, in comparison to batch conditions. AgNPs at 1mg/L, 15mg/L, and 50mg/L inhibited the growth (OD670 reduction) by 0%, 11% and 16.3%, respectively. Membrane extracts exposed to 1mg/L, 15mg/L, and 50mg/L of AgNPs required greater changes in area by -0.5cm(2), 2.7cm(2) and 3.6cm(2), respectively, indicating that the bacterial membranes were disrupted and bacteria responded by synthesizing lipids that stabilize or strengthen membranes. This study showed that the chemostat is more appropriate for the testing of nanotoxicological effects

  3. Double-side active TiO{sub 2}-modified nanofiltration membranes in continuous flow photocatalytic reactors for effective water purification

    Energy Technology Data Exchange (ETDEWEB)

    Romanos, G.Em., E-mail: groman@chem.demokritos.gr [Institute of Physical Chemistry, NCSR Demokritos, 153 10 Agia Paraskevi Attikis, Athens (Greece); Athanasekou, C.P.; Katsaros, F.K.; Kanellopoulos, N.K. [Institute of Physical Chemistry, NCSR Demokritos, 153 10 Agia Paraskevi Attikis, Athens (Greece); Dionysiou, D.D. [Department of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221-0071 (United States); Likodimos, V.; Falaras, P. [Institute of Physical Chemistry, NCSR Demokritos, 153 10 Agia Paraskevi Attikis, Athens (Greece)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer A novel CVD reactor for the developments of double side active TiO{sub 2} membranes. Black-Right-Pointing-Pointer Double side active TiO{sub 2} membranes efficiently photodegrade organic pollutants. Black-Right-Pointing-Pointer A photocatalytic membrane purification device for continuous flow water treatment. - Abstract: A chemical vapour deposition (CVD) based innovative approach was applied with the purpose to develop composite TiO{sub 2} photocatalytic nanofiltration (NF) membranes. The method involved pyrolytic decomposition of titanium tetraisopropoxide (TTIP) vapor and formation of TiO{sub 2} nanoparticles through homogeneous gas phase reactions and aggregation of the produced intermediate species. The grown nanoparticles diffused and deposited on the surface of {gamma}-alumina NF membrane tubes. The CVD reactor allowed for online monitoring of the carrier gas permeability during the treatment, providing a first insight on the pore efficiency and thickness of the formed photocatalytic layers. In addition, the thin TiO{sub 2} deposits were developed on both membrane sides without sacrificing the high yield rates. Important innovation was also introduced in what concerns the photocatalytic performance evaluation. The membrane efficiency to photo degrade typical water pollutants, was evaluated in a continuous flow water purification device, applying UV irradiation on both membrane sides. The developed composite NF membranes were highly efficient in the decomposition of methyl orange exhibiting low adsorption-fouling tendency and high water permeability.

  4. Catalytic phosphonation of high performance polymers and POSS. Novel components for polymer blend and nanocomposite fuel cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Bock, T.R.

    2006-10-15

    Aim of this thesis was the preparation and evaluation of phosphonated high performance (HP) polyelectrolytes and polyhedral oligomeric silsesquioxanes (POSS) for polyelectrolyte membrane fuel cell (PEMFC) application. Brominated derivatives of the commercial high performance (HP) polymers poly(ethersulfone) (PES), poly(etheretherketone) (PEEK), poly(phenylsulfone) (PPSu), poly(sulfone) (PSU) and of octaphenyl-POSS of own production were phosphonated by Ni-catalysed Arbuzov reaction. Phosphonated PSU was cast into pure and blend films with sulfonated PEEK (s-PEEK) to investigate H+-conductivity, water uptake and film morphology. Blend films' properties were referenced to films containing unmodified blend partners. Solution-compounding of phosphonated octaphenyl-POSS and s-PEEK was used to produce novel nanocomposite films. An in-situ zirconisation method was assessed as convenient strategy for novel ionically crosslinked membranes of enhanced swelling resistance. Dibromo isocyanuric acid (DBI) and N-bromo succinimide (NBS) as brominating agents allowed polymer analogous preparation of the novel brominated PES and PEEK with precise reaction control. A random distribution of functional groups, i.e. polyelectrolytes' microstructural homogeneity was revealed as decisive factor concerning solubility of phosphonated PSU. Brominated phT8 was prepared with Br2 by a high temperature approach in tetrachloroethane (TCE). Brominated polymers were phosphonated by Ni-catalysis in non-coordinating high temperature solvents, such as diphenylether, benzophenone and diphenylsulfone without notable solvent influence. The lack of solvent - catalyst complexes and high reaction temperatures of 180-200 C led to halogen-free phosphonates with unprecedented high functionalities. Polymer analogous application of P(OSiMe3)3 offered a novel direct access to easily cleavable disilyl ester derivatives. These were obtained from PEEK and PSU in near quantitative yields at NiCl2-loads as

  5. Characteristics of hydrogenotrophic denitrification in a combined system of gas-permeable membrane and a biofilm reactor

    International Nuclear Information System (INIS)

    A double Monod form was employed to describe two-step hydrogenotrophic denitrification, and the saturation constants of nitrate, nitrite and hydrogen were determined by batch tests. A combined system of gas-permeable membrane and a biofilm reactor (GPM-BR) was employed to remove nitrate from drinking water. The gas-permeable membrane was tested to exclusively deliver hydrogen to an independent attached growth system. The denitrification performance of the GPM-BR was investigated with different nitrate loadings of 96.78, 163.16 and 342.58 mg N/(L d). The nitrate removal rate (NRR) of the reactor could achieve 471.36 mg N/(L d) with sufficient dissolved hydrogen (DH) in the batch tests. While in the continuous experiments, NRR ranged from 96.72 to 301.44 mg N/(L d) under different nitrate loadings. Although low nitrate loading of 96.78 mg N/(L d) led to better nitrate removal, the denitrification capacity of GPM-BR would be limited and sulfate reduction occurred.

  6. Actual Application of a H2-Based Polyvinyl Chloride Hollow Fiber Membrane Biofilm Reactor to Remove Nitrate from Groundwater

    Directory of Open Access Journals (Sweden)

    Yanhao Zhang

    2015-01-01

    Full Text Available To evaluate the actual performance of the H2-based polyvinyl chloride hollow fiber membrane biofilm reactor (HF-MBfR, we used HF-MBfR to remove nitrate from the nitrate contaminated groundwater with the dissolved oxygen (~6.2 mg/L in Zhangqiu city (Jinan, China. The reactor was operated over 135 days with the actual nitrate contaminated groundwater. The result showed that maximum of nitrate denitrification rate achieved was over 133.8 g NO3--N/m3d (1.18 g NO3--N/m2d and the total nitrogen removal was more than 95.0% at the conditions of influent nitrate 50 mg/L, hydrogen pressure 0.05 MPa, and dissolved oxygen (DO 6.2 mg/L, with the nitrate in effluent under the value limits of drinking water. The fluxes analysis showed that the electron-equivalent fluxes of nitrate, sulfate, and oxygen account for about 81.2%, 15.2%, and 3.6%, respectively, which indicated that nitrate reduction could consume more electrons than that of sulfate reduction and dissolved oxygen reduction. The nitrate reduction was not significantly influenced by sulfate reduction and the dissolved oxygen reduction. Based on the actual groundwater quality on site, the Langelier Saturation Index (LSI was 0.4, and the membrane could be at the risk of surface scaling.

  7. 140 g H{sub 2}/kg biomass d.a.f. by a CO-shift reactor downstream from a FB biomass gasifier and a catalytic steam reformer

    Energy Technology Data Exchange (ETDEWEB)

    Corella, Jose; Molina, Gregorio; Toledo, Jose M. [Department of Chemical Engineering, University ' ' Complutense' ' of Madrid, 28040 Madrid (Spain); Aznar, Maria P.; Caballero, Miguel A. [Chemical and Environmental Engineering Department, CPS, 3 Maria de Luna st., University of Saragossa, 50018 Saragossa (Spain)

    2008-04-15

    The effect of adding a CO-shift reactor downstream from a fluidized bed biomass gasifier and a steam reforming catalytic reactor is studied in this paper. The upstream gasifier was of small pilot plant scale, 10 kg biomass/h. Therefore, the downstream catalytic reactors, steam reformer and CO-shift, operated under a real gasification gas. The gasifying agent used was H{sub 2}O-O{sub 2} mixtures. The CO-shift catalytic reactor used had one high (HT) and one low temperature (LT) adiabatic beds. Two commercial catalysts were used throughout the process. CO-conversions (eliminations) were higher than 90% and a H{sub 2}-content as high as 73 vol%, dry basis, were obtained by the CO-shift system. This H{sub 2} content is equivalent to a yield of 140gH{sub 2}/kg biomass d.a.f. The CO conversion and the increase (up to 14 vol%) of the H{sub 2} content, correlate well with the molar steam/CO ratio in the gasification gas at the inlet of the HT bed. (author)

  8. In-situ drift spectroscopy in a continuous recycle reactor: a versatile tool for catalytic process research

    OpenAIRE

    Highfield, J. G.; Prairie, M.; Renken, A.

    1991-01-01

    Diffuse Reflectance IR Fourier-Transform (DRIFT) spectroscopy is an increasingly popular technique in catalysis research as it permits in situ observation of the reactor bed in powd. or granular form. However, DRIFTS in its conventional form suffers from temp.-gradient problems. One soln. is to couple the DRIFTS cell with a continuous recycle flow system. The value of such an arrangement is illustrated via studies of the kinetics and mechanism of CO2 methanation over Ru/TiO2 under transient a...

  9. Autothermal reforming of methane for producing high-purity hydrogen in a Pd/Ag membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hsin-Fu; Pai, Wen-Ju; Chen, Ying-Ju [Department of Chemical Engineering, Feng Chia University, Taichung 407 (China); Lin, Wen-Hsiung [Department of Beauty Science, Chienkuo Technology University, Changhua 500 (China)

    2010-12-15

    Autothermal reforming of methane includes steam reforming and partial oxidizing methane. Theoretically, the required endothermic heat of steam reforming of methane could be provided by adding oxygen to partially oxidize the methane. Therefore, combining the steam reforming of methane with partial oxidation may help in achieving a heat balance that can obtain better heat efficacy. Membrane reactors offer the possibility of overcoming the equilibrium conversion through selectively removing one of the products from the reaction zone. For instance, only can hydrogen products permeate through a palladium membrane, which shifts the equilibrium toward conversions that are higher than the thermodynamic equilibrium. In this study, autothermal reforming of methane was carried out in a traditional reactor and a Pd/Ag membrane reactor, which were packed with an appropriate amount of commercial Ni/MgO/Al{sub 2}O{sub 3} catalyst. A power analyzer was employed to measure the power consumption and to check the autothermicity. The average dense Pd/Ag membrane thickness is 24.3 {mu}m, which was coated on a porous stainless steel tube via the electroless palladium/silver plating procedure. The experimental operating conditions had temperatures that were between 350 C and 470 C, pressures that were between 3 atm and 7 atm, and O{sub 2}/CH{sub 4} = 0-0.5. The effects of the operating conditions on methane conversion, permeance of hydrogen, H{sub 2}/CO, selectivities of CO{sub x}, amount of power supply, and the carbon deposition of the catalyst after the reaction is thoroughly discussed in this paper. The experimental results indicate that an optimum methane conversion of 95%, with a hydrogen production rate of 0.093 mol/m{sup 2}. S, can be obtained from the autothermal reforming of methane at H{sub 2}O/CH{sub 4} = 1.3 and O{sub 2}/CH{sub 4} near 0.4, at which the reaction does not consume power, and the catalysts are not subject to any carbon deposition. (author)

  10. PHOTOCATALYSIS–MEMBRANE SEPARATION COUPLING REACTOR: REMOVAL OF ORGANIC POLLUTANTS FROM WATER

    Directory of Open Access Journals (Sweden)

    Noureddine Elbaraka

    2012-03-01

    Full Text Available This work reports the photodegradation process of methylene blue in a membrane photoreactor by using TiO2 as the photocatalyst and phosphate microfiltration membrane as separation barrier recovery and recycle the photocalysts particles. The rejection rate of the TiO2 photocatalyst particles reaches 99.9% and the degradation rate of methylene blue is 75% in 1 hour of filtration.

  11. The ReactorSTM: Atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions

    International Nuclear Information System (INIS)

    To enable atomic-scale observations of model catalysts under conditions approaching those used by the chemical industry, we have developed a second generation, high-pressure, high-temperature scanning tunneling microscope (STM): the ReactorSTM. It consists of a compact STM scanner, of which the tip extends into a 0.5 ml reactor flow-cell, that is housed in a ultra-high vacuum (UHV) system. The STM can be operated from UHV to 6 bars and from room temperature up to 600 K. A gas mixing and analysis system optimized for fast response times allows us to directly correlate the surface structure observed by STM with reactivity measurements from a mass spectrometer. The in situ STM experiments can be combined with ex situ UHV sample preparation and analysis techniques, including ion bombardment, thin film deposition, low-energy electron diffraction and x-ray photoelectron spectroscopy. The performance of the instrument is demonstrated by atomically resolved images of Au(111) and atom-row resolution on Pt(110), both under high-pressure and high-temperature conditions

  12. The ReactorSTM: Atomically resolved scanning tunneling microscopy under high-pressure, high-temperature catalytic reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Herbschleb, C. T.; Tuijn, P. C. van der; Roobol, S. B.; Navarro, V.; Bakker, J. W.; Liu, Q.; Stoltz, D.; Cañas-Ventura, M. E.; Verdoes, G.; Spronsen, M. A. van; Bergman, M.; Crama, L.; Taminiau, I.; Frenken, J. W. M., E-mail: frenken@physics.leidenuniv.nl [Huygens-Kamerlingh Onnes Laboratory, Leiden University, P.O. box 9504, 2300 RA Leiden (Netherlands); Ofitserov, A.; Baarle, G. J. C. van [Leiden Probe Microscopy B.V., J.H. Oortweg 21, 2333 CH Leiden (Netherlands)

    2014-08-15

    To enable atomic-scale observations of model catalysts under conditions approaching those used by the chemical industry, we have developed a second generation, high-pressure, high-temperature scanning tunneling microscope (STM): the ReactorSTM. It consists of a compact STM scanner, of which the tip extends into a 0.5 ml reactor flow-cell, that is housed in a ultra-high vacuum (UHV) system. The STM can be operated from UHV to 6 bars and from room temperature up to 600 K. A gas mixing and analysis system optimized for fast response times allows us to directly correlate the surface structure observed by STM with reactivity measurements from a mass spectrometer. The in situ STM experiments can be combined with ex situ UHV sample preparation and analysis techniques, including ion bombardment, thin film deposition, low-energy electron diffraction and x-ray photoelectron spectroscopy. The performance of the instrument is demonstrated by atomically resolved images of Au(111) and atom-row resolution on Pt(110), both under high-pressure and high-temperature conditions.

  13. Assessing microbial competition in a hydrogen-based membrane biofilm reactor (MBfR) using multidimensional modeling.

    Science.gov (United States)

    Martin, Kelly J; Picioreanu, Cristian; Nerenberg, Robert

    2015-09-01

    The membrane biofilm reactor (MBfR) is a novel technology that safely delivers hydrogen to the base of a denitrifying biofilm via gas-supplying membranes. While hydrogen is an effective electron donor for denitrifying bacteria (DNB), it also supports sulfate-reducing bacteria (SRB) and methanogens (MET), which consume hydrogen and create undesirable by-products. SRB and MET are only competitive for hydrogen when local nitrate concentrations are low, therefore SRB and MET primarily grow near the base of the biofilm. In an MBfR, hydrogen concentrations are greatest at the base of the biofilm, making SRB and MET more likely to proliferate in an MBfR system than a conventional biofilm reactor. Modeling results showed that because of this, control of the hydrogen concentration via the intramembrane pressure was a key tool for limiting SRB and MET development. Another means is biofilm management, which supported both sloughing and erosive detachment. For the conditions simulated, maintaining thinner biofilms promoted higher denitrification fluxes and limited the presence of SRB and MET. The 2-d modeling showed that periodic biofilm sloughing helped control slow-growing SRB and MET. Moreover, the rough (non-flat) membrane assembly in the 2-d model provided a special niche for SRB and MET that was not represented in the 1-d model. This study compared 1-d and 2-d biofilm model applicability for simulating competition in counter-diffusional biofilms. Although more computationally expensive, the 2-d model captured important mechanisms unseen in the 1-d model. PMID:25854894

  14. The application of membrane Bio-Reactor for East Java Domestic waste water treatment

    Directory of Open Access Journals (Sweden)

    Aisyah E. Palupi

    2008-01-01

    Full Text Available Membrane bioreactors for wastewater treatment research have been carried out. In this system, membrane replaces the function of the sedimentation tank. Until recent time, fouling was still the main problem for membrane processes. This research has investigated the effect of MLSS concentration and back flushing on external membrane bioreactor performances such as COD and BOD reduction, and the back flushing effect for domestic wastewater treatment. Polyacrylonitril hollow fiber membrane with pore diameter 0.1-0.01 m, surface area 0.075 m2 was used in this research. This process was at HRT 5 hour, no sludge disposal, intermittent operation, and permeate exiting from membrane shell side. Optimum condition was obtained at a transmembrane pressure (TMP of 1.45 bar. Back flushing was conducted for 10 minute at 3.0 bar pressure. Effective back flushing was shown after operation at MLSS of 7500 and 10000 mg/l. The result of this research shows that COD and BOD in the domestic wastewater decreased almost 98%. MLSS and MLVSS degradations were 98.6% and 98%, respectively.

  15. Computation and comparison of Pd-based membrane reactor performances for water gas shift reaction and isotope swamping in view of highly tritiated water decontamination

    International Nuclear Information System (INIS)

    Highlights: • A dedicated detritiation process for highly tritiated water (HTW) has to be identified. • Water gas shift and isotopic swamping via Pd–Ag membrane reactor are possible processes. • A parametric analysis through two simulation codes is performed. • A comparison in terms of the decontamination factor is provided. -- Abstract: In a D–T fusion machine, due to the possible reaction between tritium and oxygen, some potential sources of highly tritiated water (HTW) can be identified. Therefore, a dedicated detritiation process has to be assessed either for economic and safety reasons. In this view, the use of a Pd-based membrane reactor performing isotopic exchange reactions can be considered since hydrogen isotopes exclusively permeate the Pd–Ag membrane and their exchange over the catalyst realizes the water detritiation. In this activity, the treatment of highly tritiated water, generated by an ITER-like machine (i.e. 2 kg of stoichiometric HTO containing up to 300 g of tritium), via a Pd-membrane reactor is studied in terms of decontamination capability. Especially, a parametric analysis of two processes (water gas shift and isotopic swamping) performed in a Pd-based membrane reactor is carried out by using two mathematical models previously developed and experimentally verified. Particularly, the effect of the reactor temperature, the membrane thickness, the reaction pressure and the protium sweep flow-rate is investigated. Moreover, a comparison in terms of the decontamination factor and the number of reactors necessary to detritiate the HTW are provided. Generally, the results reveal a higher decontamination capability of the WGS reaction respect with the IS (maximum DF values of about 120 and 1.6 in the case of WGS and IS, respectively). However some drawbacks, mainly related with the formation of tritiated species, can occur by performing the WGS

  16. Impact of heterotrophically stressed algae for biofuel production via hydrothermal liquefaction and catalytic hydrotreating in continuous-flow reactors

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, Karl O.; Zhu, Yunhua; Schmidt, Andrew J.; Billing, Justin M.; Hart, Todd R.; Jones, Susanne B.; Maupin, Gary; Hallen, Richard; Ahrens, Toby; Anderson, Daniel

    2016-03-01

    Two algal feedstocks were prepared for direct comparison of their properties when converted to liquid hydrocarbon fuel. The first feedstock was prepared by growing an algal strain phototrophically using a bio-film based approach. The second feedstock employed the same algal strain but was stressed heterotrophically to significantly increase the lipid concentration. The algal feedstocks were converted to liquid hydrocarbon fuels. First, the whole algae (i.e. not defatted or lipid extracted) were converted to an intermediate biocrude using continuous hydrothermal liquefaction (HTL) at 350°C and 3000 psig. The biocrudes were subsequently upgraded via catalytic hydrotreating (HT) at 400°C and 1500 psig to remove oxygen and nitrogen as well as increase the hydrogen-to-carbon ratio. The yield and composition of the products from HTL and HT processing of the feedstocks are compared. A techno-economic analysis of the process for converting each feedstock to liquid fuels was also conducted. The capital and operating costs associated with converting the feedstocks to finished transportation fuels are reported. A fuel minimum selling price is presented as a function of the cost of the algal feedstock delivered to the HTL conversion plant.

  17. The Potential For Efficient Biological Pre-Treatment Of Exploration Based Waste Streams For Potable Water Production Using A Membrane Reactor Capable Of Simultaneous Nitrification-Denitrification

    Science.gov (United States)

    Jackson, William; Morse, Audra; Landes, Nick

    Long term space habitation and exploration require high efficiency water recycling systems. Waste streams from space habitation contain high concentrations of both organic nitrogen and ammonium and high ratios of N to organic C compared to terrestrial wastewater. As with terrestrial systems wastewater must be highly treated to remove organic carbon, nitrogen compounds, salts, and trace constituents. In general, either some type of reverse osmosis or distillation step is required as the final treatment prior to disinfection. However, the high waste strength of the waste can seriously impact the efficiency of these post-processors. Biological pre-treatment is one process capable of significant reductions in organic carbon and nitrogen. Biological systems are self sustaining and require minimal inputs of energy or consumables. Research in our lab has been conducted to evaluate a number of micro-gravity compatible biological reactor systems. Both nitrification-denitrification coupled systems, in which oxygen consumption is reduced by using nitrate as an electron acceptor, and single reactor systems for organic removal and nitrification have been extensively investigated. Reactor types include tubular pulsed flow reactors, packed bed reactors, and membrane reactors. Recently a single vessel membrane reactor capable of simultaneous nitrification-denitrification (sNDN) has been developed and evaluated for its ability to potentially replace other proposed systems. Results to be presented include a review of past system performance and limitations with comparison to the performance of the new sNDN reactor system. Conversion efficiency, stability, and volumetric reaction rates will be discussed.

  18. Efficiency-optimized CO2 separation in IGCC power plants by water-gas shift membrane reactors

    International Nuclear Information System (INIS)

    The conversion of solid fuels such as coal and biomass into syngas in the integrated gasification combined cycle (IGCC) process is carried out at elevated pressure. Since, from a thermodynamic point of view, this is a crucial prerequisite for an efficient CO2 separation step, IGCC has great potential for incorporating CO2 separation with a low energy consumption. However, studies predict efficiency penalties in the range of 6-11 %-points depending on the respective gasification process utilized, thus revealing that the thermodynamic potential is not fully exploited. In this thesis, a specially adapted IGCC power plant concept for the optimized implementation of gas separation membranes was developed and investigated in order to evaluate the extent to which the auxiliary boundary conditions can be advantageously designed. To create a standard of comparison, a reference IGCC power plant as well as a Selexol-based CO2 scrubbing process were designed and simulated, resulting in an overall efficiency reduction from 48.0 % to 38.4 %. This corresponds to an increase of 25 % in coal consumption. The analysis of the simulation results revealed that, besides the auxiliary demand of Selexol scrubbing and CO2 compression subsequent to the low pressure regeneration of the solvent, the main contributor to the loss is the water-gas shift reaction. To reduce this high efficiency penalty, an integration concept was developed to optimize the use of the gas permeation membrane, with parameters better adapted to its special characteristics and mode of operation. The design process resulted in the use of an H2-selective membrane, which was combined with the water-gas shift reaction to create the water-gas shift membrane reactor (WGS-MR), and which was swept with recirculated flue gas at elevated pressure in countercurrent 4-End mode. In addition, the ''membrane steam recuperator'' was introduced as a new process unit and integrated to enhance the steam utilization within the entire

  19. Evaluation of toxicity reduction, mineralization, and treatability of phenolic wastewater treated with combined system of catalytic ozonation process / biological reactor (SBR

    Directory of Open Access Journals (Sweden)

    Y Dadban Shahamat

    2016-01-01

    Full Text Available Background and Objectives: Phenol is one of the industrial pollutants in wastewaters, which due to its toxicity for biological systems various pretreatment processes have been used for its detoxification. In this study, the combination of catalytic ozonation process (COP and sequencing batch reactor (SBR were used for detoxification of these types of wastewaters. Materials and Methodology: In this study, the effect of COP on phenol degradation, COD removal, and detoxification of wastewater was investigated. To determine the acute toxicity of effluents and identification of intermediate compounds produced in COP, bioassay using Daphnia Magna and GC / MS were used, respectively. Then, phenol and COD removal of pretreated wastewater was investigated in SBR. Results: It was found that under optimal conditions in COP (time = 60 min, the concentrations of phenol and COD reduced from 500 and 1162 to 7.5 and 351 mg/L respectively and pretreated effluent toxicity (TU = 36, after rising in the initial stage of reaction, effectively reduced at the end of process (TU=2.3. the integration of this process with SBR could decreased the COD and phenol concentration less than the detectable range by HPLC.  Conclusion: Results showed that COP has a high effect on biodegradability, detoxification, and mineralization of phenol and combination of COP with SBR process can effectively treat wastewaters containing phenol.

  20. Catalytic Intermediate Pyrolysis of Napier Grass in a Fixed Bed Reactor with ZSM-5, HZSM-5 and Zinc-Exchanged Zeolite-A as the Catalyst

    Directory of Open Access Journals (Sweden)

    Isah Yakub Mohammed

    2016-03-01

    Full Text Available The environmental impact from the use of fossil fuel cum depletion of the known fossil oil reserves has led to increasing interest in liquid biofuels made from renewable biomass. This study presents the first experimental report on the catalytic pyrolysis of Napier grass, an underutilized biomass source, using ZSM-5, 0.3HZSM-5 and zinc exchanged zeolite-A catalyst. Pyrolysis was conducted in fixed bed reactor at 600 °C, 30 °C/min and 7 L/min nitrogen flow rate. The effect of catalyst-biomass ratio was evaluated with respect to pyrolysis oil yield and composition. Increasing the catalyst loading from 0.5 to 1.0 wt % showed no significant decrease in the bio-oil yield, particularly, the organic phase and thereafter decreased at catalyst loadings of 2.0 and 3.0 wt %. Standard analytical methods were used to establish the composition of the pyrolysis oil, which was made up of various aliphatic hydrocarbons, aromatics and other valuable chemicals and varied greatly with the surface acidity and pore characteristics of the individual catalysts. This study has demonstrated that pyrolysis oil with high fuel quality and value added chemicals can be produced from pyrolysis of Napier grass over acidic zeolite based catalysts.

  1. Integrated Removal of NOx with Carbon Monoxide as Reductant, and Capture of Mercury in a Low Temperature Selective Catalytic and Adsorptive Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Neville Pinto; Panagiotis Smirniotis; Stephen Thiel

    2010-08-31

    Coal will likely continue to be a dominant component of power generation in the foreseeable future. This project addresses the issue of environmental compliance for two important pollutants: NO{sub x} and mercury. Integration of emission control units is in principle possible through a Low Temperature Selective Catalytic and Adsorptive Reactor (LTSCAR) in which NO{sub x} removal is achieved in a traditional SCR mode but at low temperature, and, uniquely, using carbon monoxide as a reductant. The capture of mercury is integrated into the same process unit. Such an arrangement would reduce mercury removal costs significantly, and provide improved control for the ultimate disposal of mercury. The work completed in this project demonstrates that the use of CO as a reductant in LTSCR is technically feasible using supported manganese oxide catalysts, that the simultaneous warm-gas capture of elemental and oxidized mercury is technically feasible using both nanostructured chelating adsorbents and ceria-titania-based materials, and that integrated removal of mercury and NO{sub x} is technically feasible using ceria-titania-based materials.

  2. Catalytic Synthesis of Substrate-Free, Aligned and Tailored High Aspect Ratio Multiwall Carbon Nanotubes in an Ultrasonic Atomization Head CVD Reactor

    Directory of Open Access Journals (Sweden)

    Fahad Ali Rabbani

    2016-01-01

    Full Text Available Chemical vapor deposition (CVD method has proven its benchmark, over other methods, for the production of different types of carbon nanotubes (CNT on commercial and lab scale. In this study, an injection vertical CVD reactor fitted with an ultrasonic atomization head was used in a pilot-plant scale (height 274 cm, radius 25 cm for semicontinuous production of multiwall carbon nanotubes (MWCNTs. p-Xylene was used as a hydrocarbon precursor in which ferrocene was dissolved and provided the cracking catalyst. Atomization of the feed solution resulted in full and even dispersion of the catalytic solution. This dispersion led to the production of high aspect ratio MWCNTs (ranging from 8,000 to 12,000 at 850°C. Different experimental parameters affecting the quality and quantity of the produced CNTs were investigated. These included temperature, reaction time, and flow rate of the reaction and carrier gases. Different properties of the produced CNTs were characterized using SEM and TEM, while TGA was used to evaluate their purity. Specific surface area of selected samples was calculated by BET.

  3. Development of packed bed membrane reactor for the oxidative dehydrogenation of propane

    NARCIS (Netherlands)

    Kotanjac, Zeljko

    2009-01-01

    In this research, a reactor concept for the oxidative dehydrogenation of propane was studied. First a literature survey was performed, to investigate which are the best catalyst systems and best operating conditions that result in the largest propylene yield. In the kinetic study of ODHP over a Ga2O

  4. Optimization of the biological process using flat membrane bioreactors. Maximum treatment performance with minimum reactor volume; Optimizacion del proceso biologico con BRM de membrana plana. Maximo rendimiento de depuracion con minimo volumen de reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lluch Vallmithana, S.; Lopez Gavin, A.

    2006-07-01

    In a conventional activated sludge process, the membranes are inside the biological reactor where they drain the water through suction or a water column. This system can be operated with heavy loads and sludge of 12-14 g/l or more, and is not affected by problems of bulking or foaming. This makes it suitable for treating difficult industrial waste waters, providing treated water that is free of bacteria and viruses. Micro filtration membranes are flat without any rubbing between them. The membranes require infrequent chemical cleaning and do not need back washing. As no final sedimented is needed, the waste water treatment plant occupies less space. (Author)

  5. INTEGRATION OF FILTRATION AND ADVANCED OXIDATION: DEVELOPMENT OF A MEMBRANE LIQUID-PHASE PLASMA REACTOR

    Science.gov (United States)

    A tiered approach will be undertaken to achieve the overall project goal of demonstrating the integrated membrane/plasma process as an innovative, affordable, sustainable and effective treatment technology for small treatment systems. The team will first use a regimented ap...

  6. Essential factors of an integrated moving bed biofilm reactor-membrane bioreactor: Adhesion characteristics and microbial community of the biofilm.

    Science.gov (United States)

    Tang, Bing; Yu, Chunfei; Bin, Liying; Zhao, Yiliang; Feng, Xianfeng; Huang, Shaosong; Fu, Fenglian; Ding, Jiewei; Chen, Cuiqun; Li, Ping; Chen, Qianyu

    2016-07-01

    This work aims at revealing the adhesion characteristics and microbial community of the biofilm in an integrated moving bed biofilm reactor-membrane bioreactor, and further evaluating their variations over time. With multiple methods, the adhesion characteristics and microbial community of the biofilm on the carriers were comprehensively illuminated, which showed their dynamic variation along with the operational time. Results indicated that: (1) the roughness of biofilm on the carriers increased very quickly to a maximum value at the start-up stage, then, decreased to become a flat curve, which indicated a layer of smooth biofilm formed on the surface; (2) the tightly-bound protein and polysaccharide was the most important factor influencing the stability of biofilm; (3) the development of biofilm could be divided into three stages, and Gammaproteobacteria were the most dominant microbial species in class level at the last stage, which occupied the largest ratio (51.48%) among all microbes. PMID:27038266

  7. Determination of cyclodextrins in serum by reversed-phase chromatography with pulsed amperometric detection and a membrane reactor.

    Science.gov (United States)

    Haginaka, J; Nishimura, Y; Yasuda, H

    1993-10-01

    A high-performance liquid chromatographic method has been developed for the determination of cyclodextrins (CDs) in serum. The method involves solid-phase extraction of CDs, separation on a C18 reversed-phase column using a mixture of water, tetrahydrofuran and methanol as an eluent, eluent pH modification with a cation-exchange membrane reactor surrounded by 1.5 M sodium hydroxide solutions, and pulsed amperometric detection (PAD) with a gold working electrode. The solid-phase extraction on a C18 bonded-silica column was effective for removing the PAD sensitive components in serum. The calibration graphs constructed by internal standard method were linear over the range 6.25-200 pmol of CDs in serum. The detection limits for CDs were about 5 pmol at a signal-to-noise ratio of 3. PMID:8305583

  8. Sequential Aeration of Membrane-Aerated Biofilm Reactors for High-Rate Autotrophic Nitrogen Removal: Experimental Demonstration

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Sun, Sheng-Peng; Lackner, Susanne;

    2010-01-01

    One-stage autotrophic nitrogen (N) removal, requiring the simultaneous activity of aerobic and anaerobic ammonium oxidizing bacteria (AOB and AnAOB), can be obtained in spatially redox-stratified biofilms. However, previous experience with Membrane-Aerated Biofilm Reactors (MABRs) has revealed a...... difficulty in reducing the abundance and activity of nitrite oxidizing bacteria (NOB), which drastically lowers process efficiency. Here we show how sequential aeration is an effective strategy to attain autotrophic N removal in MABRs: Two separate MABRs, which displayed limited or no N removal under......S rRNA gene confirmed that sequential aeration, even at elevated average O2 loads, stimulated the abundance of AnAOB and AOB and prevented the increase in NOB. Nitrous oxide (N2O) emissions were 100-fold lower compared to other anaerobic ammonium oxidation (Anammox)-nitritation systems. Hence, by...

  9. Evaluation of a Membrane Biological Reactor for Reclaiming Water, Alkalinity, Salts, Phosphorus, and Protein Contained in a High-Strength Aquacultural Wastewater

    Science.gov (United States)

    The capacity of a membrane biological reactor to provide nitrification, denitrification, and enhanced biological phosphorus removal of a high-strength aquaculture backwash flow (control condition), or the same flow amended with 100 mg/L of NO3-N and 3 mg/L of dissolved P (test condition), was assess...

  10. Modeling of a SrCe0.95Yb0.05O3-α Hollow Fibre Membrane Reactor for Methane Coupling

    Institute of Scientific and Technical Information of China (English)

    谭小耀; 杨乃涛; K.Li

    2003-01-01

    Proton-hole mixed conductor, SrCe0.95Yb0.05O3-α(SCYb), has the potential to be used as a membrane for dehydrogenation reactions such as methane coupling due to its high C2-selectivity and its simplicity for fabricating reactor systems. In addition, the mixed conducting membrane in the hollow fibre geometry is capable of providing high surface area per unit volume. In this study, mechanism of methane coupling reaction on the SCYb membrane was proposed and the kinetic parameters were obtained by regression of experimental data. A mathematical model describing the methane coupling in the SCYb hollow fibre membrane reactor was also developed.With this mathematical model, various operating conditions such as the operation mode, operation pressure and feed concentrations affecting performance of the reactor were investigated. The simulation results show that the cocurrent flow in the reactor exhibits higher conversion of methane and higher yield of ethylene compared to the countercurrent flow. In order to achieve the highest C2 yield, especially of ethylene, pure methane should be used as feed and the operating pressure be 300 kPa. Air can be used as the source of oxygen for the reaction and it soptimum feed velocity is twice of the methane feed velocity. The air pressure in the lumen side should be kept the same as or slightly lower than the vressure of shell side.

  11. Model-based evaluation of the role of Anammox on nitric oxide and nitrous oxide productions in membrane aerated biofilm reactor

    DEFF Research Database (Denmark)

    Ni, Bing-Jie; Smets, Barth F.; Yuan, Zhiguo;

    2013-01-01

    A multispecies one-dimensional biofilm model considering nitric oxide (NO) and nitrous oxide (N2O) productions for membrane aerated biofilm reactor (MABR) that remove nitrogen autotrophically through aerobic ammonia oxidation followed by Anammox is used to study the role of Anammox activity on th...

  12. Electrocatalytic hydrogenation of acetophenone using a Polymer Electrolyte Membrane Electrochemical Reactor

    OpenAIRE

    Sáez Fernández, Alfonso; García García, Vicente; Solla-Gullón, José; Aldaz Riera, Antonio; Montiel Leguey, Vicente

    2013-01-01

    The use of a solid polymeric electrolyte, spe, is not commonly found in organic electrosynthesis despite its inherent advantages such as the possible elimination of the electrolyte entailing simpler purification processes, a smaller sized reactor and lower energetic costs. In order to test if it were possible to use a spe in industrial organic electrosynthesis, we studied the synthesis of 1-phenylethanol through the electrochemical hydrogenation of acetophenone using Pd/C 30 wt% with differen...

  13. Process Performance and Bacterial Community Structure Under Increasing Influent Disturbances in a Membrane-Aerated Biofilm Reactor.

    Science.gov (United States)

    Tian, Hailong; Yan, Yingchun; Chen, Yuewen; Wu, Xiaolei; Li, Baoan

    2016-02-01

    The membrane-aerated biofilm reactor (MABR) is a promising municipal wastewater treatment process. In this study, two cross-flow MABRs were constructed to explore the carbon and nitrogen removal performance and bacterial succession, along with changes of influent loading shock comprising flow velocity, COD, and NH4-N concentrations. Redundancy analysis revealed that the function of high flow velocity was mainly embodied in facilitating contaminants diffusion and biosorption rather than the success of overall bacterial populations (p > 0.05). In contrast, the influent NH4-N concentration contributed most to the variance of reactor efficiency and community structure (p < 0.05). Pyrosequencing results showed that Anaerolineae, and Beta- and Alphaproteobacteria were the dominant groups in biofilms for COD and NH4-N removal. Among the identified genera, Nitrosomonas and Nitrospira were the main nitrifiers, and Hyphomicrobium, Hydrogenophaga, and Rhodobacter were the key denitrifiers. Meanwhile, principal component analysis indicated that bacterial shift in MABR was probably the combination of stochastic and deterministic processes. PMID:26528534

  14. Hollow fiber membrane based H-2 diffusion for efficient in situ biogas upgrading in an anaerobic reactor

    DEFF Research Database (Denmark)

    Luo, Gang; Angelidaki, Irini

    2013-01-01

    Bubbleless gas transfer through a hollow fiber membrane (HFM) module was used to supply H2 to an anaerobic reactor for in situ biogas upgrading, and it creates a novel system that could achieve a CH4 content higher than 90 % in the biogas. The increase of CH4 content and pH, and the decrease...... of bicarbonate concentration were related with the increase of the H2 flow rate. The CH4 content increased from 78.4 % to 90.2 % with the increase of the H2 flow rate from 930 to 1,440 ml/(l  day), while the pH in the reactor remained below 8.0. An even higher CH4 content (96.1 %) was achieved when the H2 flow...... rate was increased to 1,760 ml/(l  day); however, the pH increased to around 8.3 due to bicarbonate consumption which hampered the anaerobic process. The biofilm formed on the HFM was found not to be beneficial for the process since it increased the resistance of H2 diffusion to the liquid. The study...

  15. Reactor building 3D-model for evaluating the pressures on concrete regularization and foundation waterproofing membrane

    International Nuclear Information System (INIS)

    Angra dos Reis site in Brazil has already 2 operating PWR NPPs. Unit 3, with identical design to Unit 2, also a 1350 MW PWR, is expected to have its construction started in 2009. This new plant shall be founded directly on sound rock. The first step is to prepare this rock surface with a concrete regularization and a foundation waterproofing membrane. This study presents a 3D model approach of the corresponding reactor building to verify the maximum pressure acting on this surface. The 3D model permits to show a more realistic pressure distribution at every foundation specific detail. A static analysis is performed using ANSYS Mechanical Release 11.1. Dead weight, permanent and live loads, Safe Shutdown Earthquake (SSE) combined with Burst Pressure Wave (BPW) from the Feedwater Tank (SSB=SSE+BPW) and differences of temperature are taken into account. Considering all foundation nodes , the pressure distribution on the waterproofing membrane for each load case is obtained for vertical and horizontal directions, which corresponds to compression and tangential reaction loads. The maximum values occur in distinct positions for each load case. The maximum results are obtained according to DIN 25449 (2008) load combination criteria. The results are compared to a simplified analysis performed before, showing a good agreement in global values. (author)

  16. The effects of mediator and granular activated carbon addition on degradation of trace organic contaminants by an enzymatic membrane reactor.

    Science.gov (United States)

    Nguyen, Luong N; Hai, Faisal I; Price, William E; Leusch, Frederic D L; Roddick, Felicity; Ngo, Hao H; Guo, Wenshan; Magram, Saleh F; Nghiem, Long D

    2014-09-01

    The removal of four recalcitrant trace organic contaminants (TrOCs), namely carbamazepine, diclofenac, sulfamethoxazole and atrazine by laccase in an enzymatic membrane reactor (EMR) was studied. Laccases are not effective for degrading non-phenolic compounds; nevertheless, 22-55% removal of these four TrOCs was achieved by the laccase EMR. Addition of the redox-mediator syringaldehyde (SA) to the EMR resulted in a notable dose-dependent improvement (15-45%) of TrOC removal affected by inherent TrOC properties and loading rates. However, SA addition resulted in a concomitant increase in the toxicity of the treated effluent. A further 14-25% improvement in aqueous phase removal of the TrOCs was consistently observed following a one-off dosing of 3g/L granular activated carbon (GAC). Mass balance analysis reveals that this improvement was not due solely to adsorption but also enhanced biodegradation. GAC addition also reduced membrane fouling and the SA-induced toxicity of the effluent. PMID:24980029

  17. Determining the optimal transmembrane gas pressure for nitrification in membrane-aerated biofilm reactors based on oxygen profile analysis.

    Science.gov (United States)

    Wang, Rongchang; Xiao, Fan; Wang, Yanan; Lewandowski, Zbigniew

    2016-09-01

    The goal of this study was to investigate the effect of transmembrane gas pressure (P g) on the specific ammonium removal rate in a membrane-aerated biofilm reactor (MABR). Our experimental results show that the specific ammonium removal rate increased from 4.98 to 9.26 gN m(-2) day(-1) when P g increased from 2 to 20 kPa in an MABR with a biofilm thickness of approximately 600 μm. However, this improvement was not linear; there was a threshold of P g separating the stronger and weaker effects of P g. The ammonium removal rate was improved less significantly when P g was over the threshold, indicating that there is an optimal threshold of P g for maximizing ammonium removal in an MABR. The change in oxygen penetration depth (d p) is less sensitive to P g in the ammonia-oxidizing active layer than in the inactive layer in membrane-aerated biofilm. The location of the P g threshold is at the same point as the thickness of the active layer on the curve of d p versus P g; thus, the active layer thickness and the optimal P g can be determined on the basis of the changes in the slope of d p to P g. PMID:27170321

  18. High efficiency removal of 2-chlorophenol from drinking water by a hydrogen-based polyvinyl chloride membrane biofilm reactor

    Energy Technology Data Exchange (ETDEWEB)

    Xia Siqing [State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment of Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Zhang Zhiqiang, E-mail: zhiqiang@tongji.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment of Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Zhong Fohua [State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment of Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Zhang Jiao [School of Civil Engineering and Transportation, Shanghai Technical College of Urban Management, Shanghai 200432 (China)

    2011-02-28

    A continuously stirred hydrogen-based membrane biofilm reactor (MBfR) with polyvinyl chloride (PVC) hollow fiber membrane was investigated for removing 2-chlorophenol (2-CP) from contaminated drinking water. The bioreactor startup was achieved by acclimating the microorganisms from a denitrifying and sulfate-reducing MBfR to the drinking water contaminated by 2-CP. The effects of some major factors, including 2-CP loading, H{sub 2} pressure, nitrate loading, and sulfate loading, on the removal of 2-CP by the MBfR were systematically investigated. Although the effluent 2-CP concentration increased with its increasing influent loading, the removing efficiency of 2-CP by the MBfR could be up to 94.7% under a high influent loading (25.71 mg/L d). The removing efficiency of 2-CP by the MBfR could be improved by higher H{sub 2} pressure, and lower influent nitrate concentration and sulfate concentration. A high H{sub 2} pressure can assure enough available H{sub 2} as the electron donor for 2-CP degradation. The competition in the electron donor made nitrate and sulfate inhibit the degradation of 2-CP in the MBfR. The electron flux analyses indicated that the degradation of 2-CP only accounted for a small part of electron flux, and the autohydrogenotrophic bacteria in the MBfR were highly efficient for the 2-CP removal.

  19. High efficiency removal of 2-chlorophenol from drinking water by a hydrogen-based polyvinyl chloride membrane biofilm reactor

    International Nuclear Information System (INIS)

    A continuously stirred hydrogen-based membrane biofilm reactor (MBfR) with polyvinyl chloride (PVC) hollow fiber membrane was investigated for removing 2-chlorophenol (2-CP) from contaminated drinking water. The bioreactor startup was achieved by acclimating the microorganisms from a denitrifying and sulfate-reducing MBfR to the drinking water contaminated by 2-CP. The effects of some major factors, including 2-CP loading, H2 pressure, nitrate loading, and sulfate loading, on the removal of 2-CP by the MBfR were systematically investigated. Although the effluent 2-CP concentration increased with its increasing influent loading, the removing efficiency of 2-CP by the MBfR could be up to 94.7% under a high influent loading (25.71 mg/L d). The removing efficiency of 2-CP by the MBfR could be improved by higher H2 pressure, and lower influent nitrate concentration and sulfate concentration. A high H2 pressure can assure enough available H2 as the electron donor for 2-CP degradation. The competition in the electron donor made nitrate and sulfate inhibit the degradation of 2-CP in the MBfR. The electron flux analyses indicated that the degradation of 2-CP only accounted for a small part of electron flux, and the autohydrogenotrophic bacteria in the MBfR were highly efficient for the 2-CP removal.

  20. Membrane biofouling in a wastewater nitrification reactor: microbial succession from autotrophic colonization to heterotrophic domination

    KAUST Repository

    Lu, Huijie

    2015-10-22

    Membrane biofouling is a complex process that involves bacterial adhesion, extracellular polymeric substances (EPS) excretion and utilization, and species interactions. To obtain a better understanding of the microbial ecology of biofouling process, this study conducted rigorous, time-course analyses on the structure, EPS and microbial composition of the fouling layer developed on ultrafiltration membranes in a nitrification bioreactor. During a 14-day fouling event, three phases were determined according to the flux decline and microbial succession patterns. In Phase I (0-2 days), small sludge flocs in the bulk liquid were selectively attached on membrane surfaces, leading to the formation of similar EPS and microbial community composition as the early biofilms. Dominant populations in small flocs, e.g., Nitrosomonas, Nitrobacter, and Acinetobacter spp., were also the major initial colonizers on membranes. In Phase II (2-4 d), fouling layer structure, EPS composition, and bacterial community went through significant changes. Initial colonizers were replaced by fast-growing and metabolically versatile heterotrophs (e.g., unclassified Sphingobacteria). The declining EPS polysaccharide to protein (PS:PN) ratios could be correlated well with the increase in microbial community diversity. In Phase III (5-14 d), heterotrophs comprised over 90% of the community, whereas biofilm structure and EPS composition remained relatively stable. In all phases, AOB and NOB were constantly found within the top 40% of the fouling layer, with the maximum concentrations around 15% from the top. The overall microbial succession pattern from autotrophic colonization to heterotrophic domination implied that MBR biofouling could be alleviated by forming larger bacterial flocs in bioreactor suspension (reducing autotrophic colonization), and by designing more specific cleaning procedures targeting dominant heterotrophs during typical filtration cycles.

  1. Aqueous organic phases separation by membrane reactors in bio desulfurization reactions

    International Nuclear Information System (INIS)

    This work presents o membrane bioreactor prototype used to separate emulsion phases formed in the bio desulfurization reaction. Hydrophobic membranes used for the construction of the prototype allow the separation of the organic/watery phases. The separation unit resembles o tube and carcass heat exchanger. by feeding the emulsion through the housing and due to the pressure gradient pushed on the membrane, the organic phase pass through and allow to obtain on organic phase free of cells and water. Several organic phase/watery phase ratios and many cellular concentrations were evaluated. Results indicate that is possible to separate the phases by manipulating the fluid pressure within the bioreactor. This is possible even for cellular concentrations of the order of 7 g/l. the system can also be used as a reaction unit. The biological conversion was evaluated by verifying the presence of 2-HBP one of the metabolites of the path 45 in the bio desulfurization reaction. This bioreactor configuration has not been explored before for the bio desulfurization process and therefore it represents an innovation in this research area

  2. Preparation of 6-APA by Enzymatic Bioconversion in an Emulsion Liquid Membrane Reactor

    Institute of Scientific and Technical Information of China (English)

    陆强; 胡鸣; 熊丹柳; 邓修

    2001-01-01

    Production of 6-aminopenicillanic acid (6-APA) by hydrolysis using penicillin acylase (PA) was studied as a model of an enzymatic emulsion liquid membrane (ELM) process. The loss of PA activity was examined for various membrane compositions (organic solvent, surfactant, carrier). The effects of some experimental variables on the stability of emulsion were investigated. It was found that the choice of organic solvent greatly affected tilestability of the emulsion. Increasing the concentration of the carrier in the membrane phase increases the transfer rate of substrate and products but also has a destabilizing effect on the emulsion. The recovery of 6-APA obtained by a di-carrier system (N263-N1923) was much higher than those when either of the di-carriers was used separately.The whole process was controlled both by the enzymatic reaction rate and by the transfer rate of the substrate and the products, however, the ratio of them could be changed by varying the composition of the system. For an optimum condition, it was obtained that the recovery ratio of 6-APA was over 80% and the conversion of benzyl penicillin (PG) was up to 90% in the external phase after 30 minutes. Meanwhile, the breakage percentage of the emulsion was less than 2%.

  3. Functionalization of a Membrane Sublayer Using Reverse Filtration of Enzymes and Dopamine Coating

    DEFF Research Database (Denmark)

    Luo, Jianquan; Meyer, Anne S.; Mateiu, Ramona Valentina;

    2014-01-01

    High permeability, high enzyme loading, and strong antifouling ability are the desired features for a biocatalytic membrane to be used in an enzymatic membrane reactor (EMR). To achieve these goals, the membrane sublayer was enriched with laccase by reverse filtration in this case, and the...... resulting enzyme-loaded sublayer was covered with a dopamine coating. After membrane reversal, the virgin membrane skin layer was facing the feed and the enzymes were entrapped by a polydopamine network in the membrane sublayer. Thus, the membrane sublayer was functionalized as a catalytically active layer....... The effects of the original membrane properties (i.e., materials, pore size, and structure), enzyme type (i.e., laccase and alcohol dehydrogenase), and coating conditions (i.e., time and pH) on the resulting biocatalytic membrane permeability, enzyme loading, and activity were investigated. Using a RC...

  4. PREPARATION OF PVA/CHITOSAN LIPASE MEMBRANE AND ITS APPLICATION IN SYNTHESIS OF MONOGLYCERIDE%聚乙烯醇-壳聚糖复合酶膜的制备及在单甘油酯合成中的应用

    Institute of Scientific and Technical Information of China (English)

    谭天伟; 张华; 王芳

    2000-01-01

    PVA/Chitosan(CS) composite membrane was used for enzyme processing of fats and oils. The concentration of lipase and cross-linking agent which influence the immobilization of lipase in membrane were determined. Epichlorohydrin is used as the cross-linking agent. The immobilized lipase is 0.66 u*cm-2 and the recovery of immobilized lipase is 24%. The membrane reactor was tested to synthesis monoglyceride(MG), which could be used many times without loss conversion yield of MG. The PVA/CS lipase membrane reactor is a new reactor for lipase catalytic biphase systems.

  5. A pore-flow-through membrane reactor for selective hydrogenation reactions

    OpenAIRE

    Schmidt, Andrea

    2007-01-01

    Ein Membranreaktor im Porendurchflussmodus (PFT-Reaktor) wurde für selektive Hydrierungen mit dem Ziel entwickelt, Ausbeute, Selektivität und Raum-Zeit-Ausbeute gegenüber konventionellen Festbett- und Slurry-Reaktoren, die momentan den Stand der Technik repräsentieren, zu erhöhen. Stofftransportlimitierungen durch Porendiffusion, die häufig in porösen Katalysatorpellets auftreten, können vermieden werden, wenn das Reaktionsgemisch konvektiv durch die Poren einer Membran strömt. Dadurch können...

  6. Experimental study of lactose hydrolysis and separation in cstr-uf membrane reactor

    Directory of Open Access Journals (Sweden)

    M. Namvar-Mahboub

    2012-09-01

    Full Text Available In this study, the effect of processing conditions on the performance of continuous stirred tank -ultrafiltration (CSTR-UF in dead - end mode was investigated. An UF membrane with a molecular weight cutoff of 3 kDa made of regenerated cellulose material was used to separate enzyme from products. The effect of operating pressure ranging between 2 and 5 bar and time on the performance of the CSTR-UF system was studied. The experiments were performed with a 0.139 molar aqueous solution of lactose as feed. According to the experimental data, the lactose concentration in the permeate decreased with time due to concentration polarization and hydrolysis. It was found that the rejection factor of lactose increases from 33 to 77% with time from 5 to 85 min. Permeation flux of the membrane was evaluated in terms of pure water flux (PWF and lactose aqueous solution. Results showed that a high operating pressure led to a high permeation flux for both mentioned cases. Also, adding lactose and enzyme to pure water caused a reduction of the permeation flux due to concentration polarization.

  7. Sequential batch membrane bio-reactor for wastewater treatment: The effect of increased salinity.

    Science.gov (United States)

    Mannina, Giorgio; Capodici, Marco; Cosenza, Alida; Di Trapani, Daniele; Viviani, Gaspare

    2016-06-01

    In this work, a sequential batch membrane bioreactor pilot plant is investigated to analyze the effect of a gradual increase in salinity on carbon and nutrient removal, membrane fouling and biomass kinetic parameters. The salinity was increased by 2gNaClL(-1) per week up to 10gNaClL(-1). The total COD removal efficiency was quite high (93%) throughout the experiment. A gradual biomass acclimation to the salinity level was observed during the experiment, highlighting the good recovery capabilities of the system. Nitrification was also influenced by the increase in salinity, with a slight decrease in nitrification efficiency (the lowest value was obtained at 10gNaClL(-1) due to lower nitrifier activity). Irreversible cake deposition was the predominant fouling mechanism observed during the experiment. Respirometric tests exhibited a stress effect due to salinity, with a reduction in the respiration rates observed (from 8.85mgO2L(-1)h(-1) to 4mgO2L(-1)h(-1)). PMID:26970923

  8. Exergy analysis of a hydrogen fired combined cycle with natural gas reforming and membrane assisted shift reactors for CO2 capture

    International Nuclear Information System (INIS)

    Highlights: ► Exergy analysis of NGCC with CCS. ► WGS-MR: exergetically efficient technology for CCS, less than 2% total exergy losses. ► 10% of total exergy dissipation in the ATR. ► Optimization of ATR operation and CO2 stream treatment. - Abstract: Hydrogen production from fossil fuels together with carbon capture has been suggested as a means of providing a carbon free power. The paper presents a comparative exergetic analysis performed on the hydrogen production from natural gas with several combinations of reactor systems: (a) oxy or air fired autothermal reforming with subsequent water gas shift reactor and (b) membrane reactor assisted with shift catalysts. The influence of reactor temperature and pressure as well as operating parameter steam-to-carbon ratio, is also studied exergetically. The results indicate optimal power plant configurations with CO2 capture, or hydrogen delivery for industrial applications.

  9. Photocatalytic Membrane Reactor for the Removal of C.I. Disperse Red 73

    Directory of Open Access Journals (Sweden)

    Valentina Buscio

    2015-06-01

    Full Text Available After the dyeing process, part of the dyes used to color textile materials are not fixed into the substrate and are discharged into wastewater as residual dyes. In this study, a heterogeneous photocatalytic process combined with microfiltration has been investigated for the removal of C.I. Disperse Red 73 from synthetic textile effluents. The titanium dioxide (TiO2 Aeroxide P25 was selected as photocatalyst. The photocatalytic treatment achieved between 60% and 90% of dye degradation and up to 98% chemical oxygen demand (COD removal. The influence of different parameters on photocatalytic degradation was studied: pH, initial photocatalyst loading, and dye concentration. The best conditions for dye degradation were pH 4, an initial dye concentration of 50 mg·L−1, and a TiO2 loading of 2 g·L−1. The photocatalytic membrane treatment provided a high quality permeate, which can be reused.

  10. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Franck, Stephanie; Gülay, Arda;

    2014-01-01

    (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r...... reduction of the NOB Nitrospira and Nitrobacter and a 10-fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria (AOB) in biofilm areas close to the membrane surface......-strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal....

  11. Zeolite membrane cascade for tritium extraction and recovery systems

    International Nuclear Information System (INIS)

    Membrane separation by zeolite membranes has been proposed as a pre-concentration stage for the tritium extraction from the purge helium of the breeding blanket combined with a final recovery by the catalytic membrane reactor PERMCAT. This fully continuous operation improves the tritium management in fusion machines, minimizing the tritium inventory. For the first time, the permeation measurements for H2 - He mixtures through a MFI-alumina hollow fibre membrane has been measured for different compositions (0.1 - 20% H2) and temperatures. Such a highly permeable membrane, although it shows a limited selectivity, appears attractive for tritium recovery in the blanket. This will imply its operation in a membrane cascade, for which simulation work is ongoing. Mathematically the process is modeled using mass balance equations that can be transformed into the matrix form and solved iteratively assuming a permeate concentration on the first step of iteration, until the separation requirements are fulfilled

  12. Zeolite membrane cascade for tritium extraction and recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Borisevich, O.; Demange, D.; Lefebvre, X. [Karlsruhe Institute of Technology - KIT, Institute for Technical Physics, Tritium Laboratory Karlsruhe, Eggenstein-Leopoldshafen (Germany); Kind, M. [Karlsruhe Institute of Technology - KIT, Institute of Thermal Process Ingineering, Eggenstein-Leopoldshafen (Germany)

    2015-03-15

    Membrane separation by zeolite membranes has been proposed as a pre-concentration stage for the tritium extraction from the purge helium of the breeding blanket combined with a final recovery by the catalytic membrane reactor PERMCAT. This fully continuous operation improves the tritium management in fusion machines, minimizing the tritium inventory. For the first time, the permeation measurements for H{sub 2} - He mixtures through a MFI-alumina hollow fibre membrane has been measured for different compositions (0.1 - 20% H{sub 2}) and temperatures. Such a highly permeable membrane, although it shows a limited selectivity, appears attractive for tritium recovery in the blanket. This will imply its operation in a membrane cascade, for which simulation work is ongoing. Mathematically the process is modeled using mass balance equations that can be transformed into the matrix form and solved iteratively assuming a permeate concentration on the first step of iteration, until the separation requirements are fulfilled.

  13. 催化裂化提升管反应器中颗粒聚团裂化反应的数值模拟%Numerical Predication of Cracking Reaction of Particle Clusters in Fluid Catalytic Cracking Riser Reactors

    Institute of Scientific and Technical Information of China (English)

    王淑彦; 陆慧林; 高金森; 徐春明; 孙丹

    2008-01-01

    Behavior of catalytic cracking reactions of particle cluster in fluid catalytic cracking(FCC)riser reac-tors was numerically analyzed using a four-lump mathematical model.Effects of the cluster porosity.inlet gas ve-locity and temperature,and coke deposition on cracking reactions of the cluster were investigated. Distributions of temperature,gases,and gasoline from both catalyst particle cluster and an isolated catalyst particle are presented.The reaction rates from vacuum gas oil(VGO)to gasoline,gas and coke of individual particle in the cluster arehigher than those of the isolated particle,but it reverses for the reaction rates from gasoline to gas and coke.Less gasoline is produccd bv particle clustering.Simulated results show that the produced mass fluxes of gas and gasolineincrease with the operating temperature and molar concentration of VGO,and decrease due to the formation of coke.

  14. Reactors

    International Nuclear Information System (INIS)

    Purpose: To provide a spray cooling structure wherein the steam phase in a bwr reactor vessel can sufficiently be cooled and the upper cap and flanges in the vessel can be cooled rapidly which kept from direct contaction with cold water. Constitution: An apertured shielding is provided in parallel spaced apart from the inner wall surface at the upper portion of a reactor vessel equipped with a spray nozzle, and the lower end of the shielding and the inner wall of the vessel are closed to each other so as to store the cooling water. Upon spray cooling, cooling water jetting out from the nozzle cools the vapor phase in the vessel and then hits against the shielding. Then the cooling water mostly falls as it is, while partially enters through the apertures to the back of the shielding plate, abuts against stoppers and falls down. The stoppers are formed in an inverted L shape so that the spray water may not in direct contaction with the inner wall of the vessel. (Horiuchi, T.)

  15. Preliminary evaluation of biosolids characteristics for anaerobic membrane reactors treating municipal wastewaters.

    Science.gov (United States)

    Dong, Qirong; Dagnew, Martha; Cumin, Jeff; Parker, Wayne

    2015-01-01

    This study assessed the characteristics of biosolids of a pilot-scale anaerobic membrane bioreactor (AnMBR) treating municipal wastewater. The production of total solids (TS) and volatile solids (VS) was comparable to that reported for the extended aeration system at solids residence time (SRT) longer than 40 days. The yields of TS and VS were reduced as SRT increased from 40 to 100 days and increased with the addition of 26 mg/L of FeCl3. The AnMBR destroyed 60-82% of the VS loading in feed wastewater and hence it was concluded the biosolids met the requirements for vector attraction reduction for land application. The concentrations of volatile suspended solids and total suspended solids in the sludge were less than those reported after anaerobic digestion of conventional primary and secondary sludge mixtures, and hence dewatering of the waste stream may be required for some applications. The nutrient content in terms of total Kjeldahl nitrogen and total phosphorus was similar to that of anaerobically digested municipal sludges. The dewaterability of the biosolids was poorer than that reported for sludges from aerobic treatment and anaerobically digested sludges. Dewaterability was improved by addition of FeCl3 and reduced SRT. The biosolids met standards for land application with regards to the concentration of heavy metals but would need further treatment to meet Class B pathogen indicator criteria. PMID:26465317

  16. Optimization on structural parameters of diesel SCR catalytic reactor%柴油机SCR催化器载体结构参数优化

    Institute of Scientific and Technical Information of China (English)

    龚金科; 张福杰; 鄂加强; 刘恒语; 杜佳; 陈韬; 江俊豪

    2012-01-01

    提出一种柴油机选择催化还原(SCR)催化器载体结构参数优化的设计方法,根据车用柴油机排量,将SCR催化器载体分为4类,选取载体体积、长度、目数、壁厚和涂层厚5个结构参数为设计变量,以高NO。转化率及低压力损失为优化目标,利用拉丁超立方实验设计选择样本点进行数值模拟,在构建的Kriging近似模型基础上,对载体结构参数采用改进的非支配排序遗传算法NSGA—II(non—dominatedsortinggeneticalgorithm—II)进行优化设计。结果表明:Kriging近似模型的拟合精度较高,结合NSGA—II算法对SCR催化器载体结构参数进行优化是可行的、有效的,不同排量下的优化结果均能够较好地满足设计要求。%The optimal design method of structural parameters for diesel urea-SCR was proposed. Accord- ing to the differences of diesel engine displacement, the urea-selective catalytic reactor can be divided into four subclasses. Taking high conversion ratio of NO and small pressure loss as the optimization goal, with monolith volume, length,cell per square inch,wall thickness and washcoat thickness as design variables, Latin Hypercube method was used to carry out sampling of parameters. The obtained samples were analyzed with numerical simula- tion. On this basis, the optimization was solved by NSGA-Ⅱ (non-dominated sorting genetic algorithm-Ⅱ ) , using Kriging model as the approximate model. The results show that the Kriging model has high fitting accuracy,dem- onstrate the efficiency and applicability of the optimal design method. The optimization results of different diesel engine displacement show that the method can obtain structural parameters which meet design requirements.

  17. Removal of steroid estrogens from municipal wastewater in a pilot scale expanded granular sludge blanket reactor and anaerobic membrane bioreactor.

    Science.gov (United States)

    Ito, Ayumi; Mensah, Lawson; Cartmell, Elise; Lester, John N

    2016-01-01

    Anaerobic treatment of municipal wastewater offers the prospect of a new paradigm by reducing aeration costs and minimizing sludge production. It has been successfully applied in warm climates, but does not always achieve the desired outcomes in temperate climates at the biochemical oxygen demand (BOD) values of municipal crude wastewater. Recently the concept of 'fortification' has been proposed to increase organic strength and has been demonstrated at the laboratory and pilot scale treating municipal wastewater at temperatures of 10-17°C. The process treats a proportion of the flow anaerobically by combining it with primary sludge from the residual flow and then polishing it to a high effluent standard aerobically. Energy consumption is reduced as is sludge production. However, no new treatment process is viable if it only addresses the problems of traditional pollutants (suspended solids - SS, BOD, nitrogen - N and phosphorus - P); it must also treat hazardous substances. This study compared three potential municipal anaerobic treatment regimes, crude wastewater in an expanded granular sludge blanket (EGSB) reactor, fortified crude wastewater in an EGSB and crude wastewater in an anaerobic membrane bioreactor. The benefits of fortification were demonstrated for the removal of SS, BOD, N and P. These three systems were further challenged with the removal of steroid estrogens at environmental concentrations from natural indigenous sources. All three systems removed these compounds to a significant degree, confirming that estrogen removal is not restricted to highly aerobic autotrophs, or aerobic heterotrophs, but is also a faculty of anaerobic bacteria. PMID:26212345

  18. Application of acidogenic fixed-bed reactor prior to anaerobic membrane bioreactor for sustainable slaughterhouse wastewater treatment

    International Nuclear Information System (INIS)

    High rate anaerobic treatment systems such as anaerobic membrane bioreactors (AMBR) are less popular for slaughterhouse wastewater due to the presence of high fat oil and suspended matters in the effluent. This affects the performance and efficiency of the treatment system. In this work, AMBR has been tried for slaughterhouse wastewater treatment. After the start up period, the reactor was operated with an average organic loading rate (OLR) of 4.37 kg TCOD m-3 d-1 with gradual increase to an average of 13.27 kg TCOD m-3 d-1. At stable conditions, the treatment efficiency was high with an average COD and BOD5 reduction of 93.7 and 93.96%, respectively. However, a reduction in the AMBR performance was shown with the increase of the OLR to 16.32 kg TCOD m-3 d-1. The removal efficiencies of SCOD and BOD5 were drastically decreased to below 53.6 and 73.3%, respectively. The decrease of the AMBR performance was due to the accumulation of VFAs. Thus, a new integrated system composed of a FBR for the acidogenesis step followed by the AMBR for methanogenesis step was developed. At high ORL, the integrated system improved the performance of the anaerobic digestion and it successfully overcame the VFA accumulation problem in the AMBR. The anaerobic treatment led to a total removal of all tested pathogens. Thus, the microbiological quality of treated wastewater fits largely with WHO guidelines

  19. Laccase-syringaldehyde-mediated degradation of trace organic contaminants in an enzymatic membrane reactor: Removal efficiency and effluent toxicity.

    Science.gov (United States)

    Nguyen, Luong N; van de Merwe, Jason P; Hai, Faisal I; Leusch, Frederic D L; Kang, Jinguo; Price, William E; Roddick, Felicity; Magram, Saleh F; Nghiem, Long D

    2016-01-01

    Redox-mediators such as syringaldehyde (SA) can improve laccase-catalyzed degradation of trace organic contaminants (TrOCs) but may increase effluent toxicity. The degradation performance of 14 phenolic and 17 non-phenolic TrOCs by a continuous flow enzymatic membrane reactor (EMR) at different TrOC and SA loadings was assessed. A specific emphasis was placed on the investigation of the toxicity of the enzyme (laccase), SA, TrOCs and the treated effluent. Batch tests demonstrated significant individual and interactive toxicity of the laccase and SA preparations. Reduced removal of resistant TrOCs by the EMR was observed for dosages over 50μg/L. SA addition at a concentration of 10μM significantly improved TrOC removal, but no removal improvement was observed at the elevated SA concentrations of 50 and 100μM. The treated effluent showed significant toxicity at SA concentrations beyond 10μM, providing further evidence that higher dosage of SA must be avoided. PMID:26519700

  20. Advanced Treatment of Wastewater from UASB Reactor by Microfiltration Membrane Associated With Disinfection by Ultraviolet Radiation

    Directory of Open Access Journals (Sweden)

    André Aguiar Battistelli

    2016-03-01

    Full Text Available The low efficiency of UASB bioreactors, regarding the removal of nutrient, organic matter and pathogens, makes it necessary to carry out a post treatment, in order to improve the quality of the effluent. Accordingly, this research has examined the use of microfiltration associated to the disinfection by the ultraviolet radiation, as an option to this post treatment. For so, were collected samples of UASB reactors’ effluent, in order to carry out some tests on a pilot microfiltration system, using in one of the samples pre-coagulation with vegetable tannin. After, all the microfiltrated samples were inserted in a UV reactor, applying different radiation doses, ranging from 43.8 to 194.9 mWs.cm-2, to simulate the disinfection. The system used showed good results in terms of turbidity removal, apparent color, true color, phosphorus, nitrogen, total solids, total suspended solids and COD, reaching in the best operating condition, the following values: 1.90 uT, 15 uC, 10 uC, 0.94 mg/L, 17.64 mg/L, 123 mg/L, 0 mg/L and 10 mg/L, respectively, which represent the following removal percentages: 91.3%, 93.6%, 82.0%, 55.1%, 26.3%, 35% and 86.1%. The inactivation obtained for E. coli, total coliforms, colifagos and Clostridium perfrigens was satisfactory, achieving a higher inactivation than the detection limit of the method used, when submitted to the highests tested radiation doses. The average permeate flux ranged from 55.2 to 133.6 L.m-2.h-1.

  1. Synthesis of Biologically Active Dipeptide in a Multiphase Enzyme Membrane Reactor%多相酶膜反应器合成生物活性二肽

    Institute of Scientific and Technical Information of China (English)

    姜忠义; 贾琦鹏; 刘家祺; 陈洪钫

    2001-01-01

    A multiphase enzyme membrane reactor using aqueous-organicbiphase instead of water phase alone as the reaction medium was employed to investigate the lipase-catalyzed synthesis of bioactive dipeptides. The medium effect on dipeptide yield was first studied. When N-acetyl-L-phenylalanine ethyl ester(APEE) was used as a carboxyl component, the reactivity order of amino acid amides was found to be L-Leu-NH2>L-Val-NH2>L-Ala-NH2>L-Gly-NH2. The didpetide, N-Ac-L-Phe-L-Leu-NH2, could be synthesized in the multiphase enzyme membrane reactor in a high yield and purity due to the simultaneous separation and reaction.

  2. A new degassing membrane coupled upflow anaerobic sludge blanket (UASB) reactor to achieve in-situ biogas upgrading and recovery of dissolved CH4 from the anaerobic effluent

    DEFF Research Database (Denmark)

    Luo, Gang; Wang, Wen; Angelidaki, Irini

    2014-01-01

    into a degassing unit (DU). The results from batch experiments showed that mixing intensity, transmembrane pressure, pH and inorganic carbon concentration affected the CO2 desorption rate in the DU. Then, the DU was directly connected to an upflow anaerobic sludge blanket (UASB) reactor. The results showed the CH4...... in the effluent was reduced by directly pumping the reactor effluent through the DU. In this way, the dissolved CH4 concentration in the effluent decreased from higher than 0.94mM to around 0.13mM, and thus efficient recovery of CH4 from the anaerobic effluent was achieved. In the whole operational period......A new technology for in-situ biogas upgrading and recovery of CH4 from the effluent of biogas reactors was proposed and demonstrated in this study. A vacuum degassing membrane module was used to desorb CO2 from the liquid phase of a biogas reactor. The degassing membrane was submerged...

  3. Sulfamethoxazole in poultry wastewater: Identification, treatability and degradation pathway determination in a membrane-photocatalytic slurry reactor.

    Science.gov (United States)

    Asha, Raju C; Kumar, Mathava

    2015-01-01

    The presence of sulfamethoxazole (SMX) in a real-time poultry wastewater was identified via HPLC analysis. Subsequently, SMX removal from the poultry wastewater was investigated using a continuous-mode membrane-photocatalytic slurry reactor (MPSR). The real-time poultry wastewater was found to have an SMX concentration of 0-2.3 mg L(-1). A granular activated carbon supported TiO2 (GAC-TiO2) was synthesized, characterized and used in MPSR experiments. The optimal MPSR condition, i.e., HRT ∼ 125 min and catalyst dosage 529.3 mg L(-1), for complete SMX removal was found out using unconstrained optimization technique. Under the optimized condition, the effect of SMX concentration on MPSR performance was investigated by synthetic addition of SMX (i.e., 1, 25, 50, 75 and 100 mg L(-1)) into the wastewater. Interestingly, complete removals of total volatile solids (TVS), biochemical oxygen demand (BOD) and SMX were observed under all SMX concentrations investigated. However, a decline in SMX removal rate and proportionate increase in transmembrane-pressure (TMP) were observed when the SMX concentration was increased to higher levels. In the MPSR, the SMX mineralization was through one of the following degradation pathways: (i) fragmentation of the isoxazole ring and (ii) the elimination of methyl and amide moieties followed by the formation of phenyl sulfinate ion. These results show that the continuous-mode MPSR has great potential in the removal for SMX contaminated real-time poultry wastewater and similar organic micropollutants from wastewater. PMID:26121016

  4. Evolution of the microbial community of the biofilm in a methane-based membrane biofilm reactor reducing multiple electron acceptors.

    Science.gov (United States)

    Chen, Ran; Luo, Yi-Hao; Chen, Jia-Xian; Zhang, Yin; Wen, Li-Lian; Shi, Ling-Dong; Tang, Youneng; Rittmann, Bruce E; Zheng, Ping; Zhao, He-Ping

    2016-05-01

    Previous work documented complete perchlorate reduction in a membrane biofilm reactor (MBfR) using methane as the sole electron donor and carbon source. This work explores how the biofilm's microbial community evolved as the biofilm stage-wise reduced different combinations of perchlorate, nitrate, and nitrite. The initial inoculum, carrying out anaerobic methane oxidation coupled to denitrification (ANMO-D), was dominated by uncultured Anaerolineaceae and Ferruginibacter sp. The microbial community significantly changed after it was inoculated into the CH4-based MBfR and fed with a medium containing perchlorate and nitrite. Archaea were lost within the first 40 days, and the uncultured Anaerolineaceae and Ferruginibacter sp. also had significant losses. Replacing them were anoxic methanotrophs, especially Methylocystis, which accounted for more than 25 % of total bacteria. Once the methanotrophs became important, methanol-oxidizing denitrifying bacteria, namely, Methloversatilis and Methylophilus, became important in the biofilm, probably by utilizing organic matter generated by the metabolism of methanotrophs. When methane consumption was equal to the maximum-possible electron-donor supply, Methylomonas, also an anoxic methanotroph, accounted for >10 % of total bacteria and remained a major part of the community until the end of the experiments. We propose that aerobic methane oxidation coupled to denitrification and perchlorate reduction (AMO-D and AMO-PR) directly oxidized methane and reduced NO3 (-) to NO2 (-) or N2O under anoxic condition, producing organic matter for methanol-assimilating denitrification and perchlorate reduction (MA-D and MA-PR) to reduce NO3 (-). Simultaneously, bacteria capable of anaerobic methane oxidation coupled to denitrification and perchlorate reduction (ANMO-D and ANMO-PR) used methane as the electron donor to respire NO3 (-) or ClO4 (-) directly. Graphical Abstract ᅟ. PMID:26841777

  5. Experimental validation of upgraded designs for PERMCAT reactors considering the mechanical behaviour of a Pd/Ag membrane under H2 atmosphere

    International Nuclear Information System (INIS)

    The PERMCAT process has been chosen in ITER to be the final clean-up stage of the 3-step Tritium Exhaust Processing system. One of the main critical aspects of such a technology is the mechanical stress of the Pd/Ag membrane due to hydrogen uptake during operation. This hydrogen effect is negligible when the component is operated at the nominal temperature of 400 oC. However in case of hydrogen permeation at lower temperatures it can yield to significant expansion of the lattice parameter, inducing a noticeable macroscopic elongation of the membrane. A dedicated experimental device has been built to study in more details the technical consequences of such off-normal operational conditions. The apparatus comprises a finger-type Pd/Ag membrane (fixed only at one end) enclosed in a quartz tube allowing in-situ observations during operation with hydrogen. By varying the operational conditions (temperature and hydrogen pressure at the feed and permeate sides) some critical aspects are pointed out: membrane elongations of more than 2 % are measured for a temperature of 50 oC and some bending of the membrane takes place once the temperature is below 150 oC. Accordingly the first generation of PERMCAT reactors comprises finger-type membranes fixed only at one end. This can ensure reliability of the component in case of nominal operational conditions. However the design is not considered sufficiently robust for reactor applications. Thus new mechanical designs are proposed so as to improve the robustness of the unit and ensure its integrity even under off-normal operation conditions. Two different upgraded components have been produced using either an additional stainless steel edge welded bellows or a special and dedicated convoluted (corrugated) Pd/Ag membrane. The experimental validation of these new concepts is carried out with gas processing tests using water vapour as the '' contaminated '' species and deuterium as the swamping gas. Results of experiments on the both

  6. Analysis of Microbial Communities in Biofilms from CSTR-Type Hollow Fiber Membrane Biofilm Reactors for Autotrophic Nitrification and Hydrogenotrophic Denitrification.

    Science.gov (United States)

    Shin, Jung-Hun; Kim, Byung-Chun; Choi, Okkyoung; Kim, Hyunook; Sang, Byoung-In

    2015-10-28

    Two hollow fiber membrane biofilm reactors (HF-MBfRs) were operated for autotrophic nitrification and hydrogenotrophic denitrification for over 300 days. Oxygen and hydrogen were supplied through the hollow fiber membrane for nitrification and denitrification, respectively. During the period, the nitrogen was removed with the efficiency of 82-97% for ammonium and 87-97% for nitrate and with the nitrogen removal load of 0.09-0.26 kg NH4(+)-N/m(3)/d and 0.10-0.21 kg NO3(-)-N/m(3)/d, depending on hydraulic retention time variation by the two HF-MBfRs for autotrophic nitrification and hydrogenotrophic denitrification, respectively. Biofilms were collected from diverse topological positions in the reactors, each at different nitrogen loading rates, and the microbial communities were analyzed with partial 16S rRNA gene sequences in denaturing gradient gel electrophoresis (DGGE). Detected DGGE band sequences in the reactors were correlated with nitrification or denitrification. The profile of the DGGE bands depended on the NH4(+) or NO3(-) loading rate, but it was hard to find a major strain affecting the nitrogen removal efficiency. Nitrospira-related phylum was detected in all biofilm samples from the nitrification reactors. Paracoccus sp. and Aquaspirillum sp., which are an autohydrogenotrophic bacterium and an oligotrophic denitrifier, respectively, were observed in the denitrification reactors. The distribution of microbial communities was relatively stable at different nitrogen loading rates, and DGGE analysis based on 16S rRNA (341f /534r) could successfully detect nitrate-oxidizing and hydrogen-oxidizing bacteria but not ammonium-oxidizing bacteria in the HF-MBfRs. PMID:26095385

  7. Analysis of the Microbial Community in an Acidic Hollow-Fiber Membrane Biofilm Reactor (Hf-MBfR Used for the Biological Conversion of Carbon Dioxide to Methane.

    Directory of Open Access Journals (Sweden)

    Hyun Chul Shin

    Full Text Available Hydrogenotrophic methanogens can use gaseous substrates, such as H2 and CO2, in CH4 production. H2 gas is used to reduce CO2. We have successfully operated a hollow-fiber membrane biofilm reactor (Hf-MBfR for stable and continuous CH4 production from CO2 and H2. CO2 and H2 were diffused into the culture medium through the membrane without bubble formation in the Hf-MBfR, which was operated at pH 4.5-5.5 over 70 days. Focusing on the presence of hydrogenotrophic methanogens, we analyzed the structure of the microbial community in the reactor. Denaturing gradient gel electrophoresis (DGGE was conducted with bacterial and archaeal 16S rDNA primers. Real-time qPCR was used to track changes in the community composition of methanogens over the course of operation. Finally, the microbial community and its diversity at the time of maximum CH4 production were analyzed by pyrosequencing methods. Genus Methanobacterium, related to hydrogenotrophic methanogens, dominated the microbial community, but acetate consumption by bacteria, such as unclassified Clostridium sp., restricted the development of acetoclastic methanogens in the acidic CH4 production process. The results show that acidic operation of a CH4 production reactor without any pH adjustment inhibited acetogenic growth and enriched the hydrogenotrophic methanogens, decreasing the growth of acetoclastic methanogens.

  8. Catalytic Partial Oxidation of Methane with Air to Syngas in a Pilot-Plant-Scale Spouted Bed Reactor%甲烷空气部分氧化制合成气喷动床反应器的研究

    Institute of Scientific and Technical Information of China (English)

    魏伟胜; 徐建; 方大伟; 鲍晓军

    2003-01-01

    On the basis of hydrodynamic and scaling-up studies, a pilot-plant-scale thermal spouted bed reactor (50 mm in ID and 1500 mm in height) was designed and fabricated by scaling-down cold simulators. It was tested for making syngas via catalytic partial oxidation (CPO) of methane by air. The effects of various operating conditions such as operating pressure and temperature, feed composition, and gas fiowrate etc. on the CPO process were investigated. CH4 conversion of 92.2% and selectivity of 92.3% and 83.3% to CO and H2, respectively, were achieved at the pressure of 2.1 MPa. It was found that when the spouted bed reactor was operated within the stable spouting flow regime, the temperature profiles along the bed axis were much more uniform than those operated within the fixed-bed regime. The CH4 conversion and syngas selectivity were found to be close to thermodynamic equilibrium limits. The results of the present investigation showed that spouted bed could be considered as a potential type of chemical reactor for the CPO process of methane.

  9. Investigation of in situ and ex situ catalytic pyrolysis of miscanthus × giganteus using a PyGC-MS microsystem and comparison with a bench-scale spouted-bed reactor.

    Science.gov (United States)

    Gamliel, David P; Du, Shoucheng; Bollas, George M; Valla, Julia A

    2015-09-01

    The objective of the present work is to explore the particularities of a micro-scale experimental apparatus with regards to the study of catalytic fast pyrolysis (CFP) of biomass. In situ and ex situ CFP of miscanthus × giganteus were performed with ZSM-5 catalyst. Higher permanent gas yields and higher selectivity to aromatics in the bio-oil were observed from ex situ CFP, but higher bio-oil yields were recorded during in situ CFP. Solid yields were comparable across both configurations. The results from in situ and ex situ PyGC were also compared with the product yields and selectivities obtained using a bench-scale, spouted-bed reactor. The bio-oil composition and overall product distribution for the PyGC ex situ configuration more closely resembled that of the spouted-bed reactor. The coke/char from in situ CFP in the PyGC was very similar in nature to that obtained from the spouted-bed reactor. PMID:25997007

  10. Non-catalytic production of fatty acid ethyl esters from soybean oil with supercritical ethanol in a two-step process using a microtube reactor

    International Nuclear Information System (INIS)

    This work reports the production of fatty acid ethyl esters (FAEE) from the transesterification of soybean oil in supercritical ethanol in a continuous catalyst-free process using different reactor configurations. Experiments were performed in a microtube reactor with experimental simulation of two reactors operated in series and a reactor with recycle, both configurations at a constant temperature of 573 K, pressure of 20 MPa and oil to ethanol mass ratio of 1:1. Results show that the configurations studied with intermediate separation of glycerol afford higher conversions of vegetable oil to its fatty acid ethyl ester derivatives when compared to the one-step reaction, with relatively low decomposition of fatty acids (<3.0 wt%).

  11. Carbamazepine degradation using a N-doped TiO2 coated photocatalytic membrane reactor: Influence of physical parameters.

    Science.gov (United States)

    Horovitz, Inna; Avisar, Dror; Baker, Mark A; Grilli, Rossana; Lozzi, Luca; Di Camillo, Daniela; Mamane, Hadas

    2016-06-01

    Commercial α-Al2O3 photocatalytic membranes with a pore size of 200 and 800-nm were coated with N-doped TiO2 photocatalytic film using a sol-gel technique for concurrent bottom-up filtration and photocatalytic oxidation. X-ray diffraction confirmed that the deposited N-doped TiO2 films are in the form of anatase with 78-84% coverage of the membrane surface. The concentration of N found by X-ray photoelectron spectroscopy was in the range of 0.3-0.9 atomic percentage. Membrane permeability after coating decreased by 50% and 12% for the 200- and 800-nm membrane substrates, respectively. The impact of operational parameters on the photocatalytic activity (PCA) of the N-doped TiO2-coated membranes was examined in a laboratory flow cell based on degradation of the model micropollutant carbamazepine, using a solar simulator as the light source. The significant gap in degradation rate between flow through the membrane and flow on the surface of the membrane was attributed both to the hydraulic effect and in-pore PCA. N-doped TiO2-coated membranes showed enhanced activity for UV wavelengths, in addition to activity under visible light. Experiments of PCA under varying flow rates concluded that the process is in the mass-transfer control regime. Carbamazepine removal rate increased with temperature, despite the decrease in dissolved oxygen concentration. PMID:26900981

  12. The acidic domain of the endothelial membrane protein GPIHBP1 stabilizes lipoprotein lipase activity by preventing unfolding of its catalytic domain

    DEFF Research Database (Denmark)

    Mysling, Simon; Kristensen, Kristian Kølby; Larsson, Mikael; Beigneux, Anne P; Gårdsvoll, Henrik; Loren, Fong G; Bensadouen, André; Jørgensen, Thomas Jd; Young, Stephen G; Ploug, Michael

    2016-01-01

    GPIHBP1 is a glycolipid-anchored membrane protein of capillary endothelial cells that binds lipoprotein lipase (LPL) within the interstitial space and shuttles it to the capillary lumen. The LPL•GPIHBP1 complex is responsible for margination of triglyceride-rich lipoproteins along capillaries and...

  13. Study for increasing the stabilization time of a catalytic dye to facilitate the fabrication of membrane electrode assemblies; Estudio para incrementar el tiempo de estabilizacion de una tinta catalitica para facilitar la fabricacion de ensambles membrana-electrodo

    Energy Technology Data Exchange (ETDEWEB)

    Flores Hernandez, J. Roberto [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)] e-mail: jrflores@iie.org.mx; Martinez Vado, F. Isaias [Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Mexico D.F. (Mexico); Cano Castillo, Ulises, Albarran Sanchez, Lorena [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2009-09-15

    An infrastructure project has been underway for hydrogen technology and fuel cells at the Electrical Research Institute (IIE, Spanish acronym). Part of this project is an activity for the fabrication of membrane electrode assemblies (MEA). Currently, a fabrication process is well-established for the MEA using the spray technique. In addition, a catalytic dye base composition has been developed for use in the fabrication of high-quality MEA with a good degree of reproducibility. Nevertheless, the instability of the dye over time prevents continuous fabrication of MEA. This document presents the results obtained, to-date, of research conducted at the IIE aimed at increasing the stability of the catalytic dye by adding a surfactant with different concentrations and increasing the concentration of the Nafion® solution. It was found that the effect of adding the surfactant to the catalytic dye results in a qualitative decrease in the agglomerate sizes, while also decreasing the porosity of the dye once it has dried. In addition, it was found that increasing the amount of Nafion® in the catalytic die increases the porosity. [Spanish] En el Instituto de Investigaciones Electricas (IIE) se ha venido trabajando en un proyecto de infraestructura sobre la tecnologia de hidrogeno y celdas de combustible. Dentro de este proyecto se tiene una actividad orientada a la fabricacion de Ensambles Membrana-Electrodo (MEA's). Actualmente se tiene un proceso de fabricacion bien establecido para la elaboracion de MEA's utilizando la tecnica de rociado, asimismo, se tiene una composicion base de tinta catalitica con la cual se fabrican MEA's de buena calidad y con buen grado de reproducibilidad. Sin embargo, la inestabilidad de la tinta con respecto al tiempo impide tener una fabricacion continua de los MEA's. En este documento se presentan los resultados obtenidos hasta ahora de una investigacion que se realiza en el IIE orientada a incrementar la estabilidad de la

  14. The energy-saving anaerobic baffled reactor membrane bioreactor (EABR-MBR) system for recycling wastewater from a high-rise building.

    Science.gov (United States)

    Ratanatamskul, Chavalit; Charoenphol, Chakraphan

    2015-01-01

    A novel energy-saving anaerobic baffled reactor-membrane bioreactor (EABR-MBR) system has been developed as a compact biological treatment system for reuse of water from a high-rise building. The anaerobic baffled reactor (ABR) compartment had five baffles and served as the anaerobic degradation zone, followed by the aerobic MBR compartment. The total operating hydraulic retention time (HRT) of the EABR-MBR system was 3 hours (2 hours for ABR compartment and very short HRT of 1 hour for aerobic MBR compartment). The wastewater came from the Charoen Wisawakam building. The results showed that treated effluent quality was quite good and highly promising for water reuse purposes. The average flux of the membrane was kept at 30 l/(m2h). The EABR-MBR system could remove chemical oxygen demand, total nitrogen and total phosphorus from building wastewater by more than 90%. Moreover, it was found that phosphorus concentration was rising in the ABR compartment due to the phosphorus release phenomenon, and then the concentration decreased rapidly in the aerobic MBR compartment due to the phosphorus uptake phenomenon. This implies that phosphorus-accumulating organisms inside the EABR-MBR system are responsible for biological phosphorus removal. The research suggests that the EABR-MBR system can be a promising system for water reuse and reclamation for high-rise building application in the near future. PMID:26067504

  15. Anaerobic membrane bioreactors: Are membranes really necessary?

    NARCIS (Netherlands)

    Davila, M.; Kassab, G.; Klapwijk, A.; Lier, van J.B.

    2008-01-01

    Membranes themselves represent a significant cost for the full scale application of anaerobic membrane bioreactors (AnMBR). The possibility of operating an AnMBR with a self-forming dynamic membrane generated by the substances present in the reactor liquor would translate into an important saving. A

  16. Operando UV-Vis spectroscopy of a catalytic solid in a pilos-scale reactor: deactivation of a CrOx/Al2O3 propane dehydrogenation catalyst

    OpenAIRE

    Sattler, J.J.H.B.; Gonzalez-Jimenez, I.D.; Mens, A.J.M.; Arias, M.J.; Visser, T.; Weckhuysen, B. M.

    2013-01-01

    A novel operando UV-Vis spectroscopic set-up has been constructed and tested for the investigation of catalyst bodies loaded in a pilot-scale reactor under relevant reaction conditions. Spatiotemporal insight into the formation and burning of coke deposits on an industrial CrOx/Al2O3 catalyst during propane dehydrogenation has been obtained.

  17. Association with the Plasma Membrane Is Sufficient for Potentiating Catalytic Activity of Regulators of G Protein Signaling (RGS) Proteins of the R7 Subfamily.

    Science.gov (United States)

    Muntean, Brian S; Martemyanov, Kirill A

    2016-03-25

    Regulators of G protein Signaling (RGS) promote deactivation of heterotrimeric G proteins thus controlling the magnitude and kinetics of responses mediated by G protein-coupled receptors (GPCR). In the nervous system, RGS7 and RGS9-2 play essential role in vision, reward processing, and movement control. Both RGS7 and RGS9-2 belong to the R7 subfamily of RGS proteins that form macromolecular complexes with R7-binding protein (R7BP). R7BP targets RGS proteins to the plasma membrane and augments their GTPase-accelerating protein (GAP) activity, ultimately accelerating deactivation of G protein signaling. However, it remains unclear if R7BP serves exclusively as a membrane anchoring subunit or further modulates RGS proteins to increase their GAP activity. To directly answer this question, we utilized a rapidly reversible chemically induced protein dimerization system that enabled us to control RGS localization independent from R7BP in living cells. To monitor kinetics of Gα deactivation, we coupled this strategy with measuring changes in the GAP activity by bioluminescence resonance energy transfer-based assay in a cellular system containing μ-opioid receptor. This approach was used to correlate changes in RGS localization and activity in the presence or absence of R7BP. Strikingly, we observed that RGS activity is augmented by membrane recruitment, in an orientation independent manner with no additional contributions provided by R7BP. These findings argue that the association of R7 RGS proteins with the membrane environment provides a major direct contribution to modulation of their GAP activity. PMID:26811338

  18. 甲烷氧化制合成气两段反应新工艺%A Novel Process of Two-Stage Reactor for Catalytic Oxidation of Methane to Syngas

    Institute of Scientific and Technical Information of China (English)

    沈师孔; 潘智勇; 董朝阳; 江启滢; 余长春

    2000-01-01

    @@ Interest in conversion of natural gas to liquid hydrocarbons (GTL) by Fischer-Tropsch synthesis has grown significantly over the last decade. Most research and development work has focused on syngas production step, which accounts for more than 50% of the total investment. Reducing the cost of syngas production would have great beneficial effects on GTL process. Catalytic partial oxidation of methane (CPOM) to syngas is a slightly exothermic, highly selective, and energy efficient process. It gives syngas with n(H2)/n(CO)=2, directly suitable for F-T synthesis. However, CPOM process has not yet been used commercially. The major engineering problems are the high temperature gradient and the risk of explosion with premixed CH4-O2 mixture, which is within the ignition and explosion limit. In fluidized-bed reactors, the heat transfer is much better, which ensures a more uniform temperature and safer operation. A technology for syngas production by contacting CH4 with limited amount of steam and O2 in a fluidized-bed reactor has been developed[1].

  19. Design, construction and implementation of a packed reactor system to study the production of hydrogen by the catalytic reaction of reforming of oxygenated hydrocarbons

    International Nuclear Information System (INIS)

    The Laboratorio de Quimica Inorganica of the Universidad de Costa Rica has evaluated the performance of several types of catalysts and supports in steam reforming reactions, using different conditions for synthesis of the same. The construction of a reaction system at laboratory scale is described to improve the conditions of the reforming process compared to previous projects. Catalysts synthesized and characterized are used but providing better disposal through a packed bed reactor. The system has had the necessary instrumentation for proper measurement of the temperature at the entrance and inside the reactor, proper feeding of reactants, flow measurement and sampling and measurement system. The conceptual design of the reactions system presented has taken into account the income of reactants through a peristaltic pump, preheating or vaporization of reagents, income and measurement of carrier gas sampling, take of sampling, flow measurement product, reactor packed and cooler product. The order of each stage is defined and positioning in the entire system. The design of a preheater and a tubular reactor is detailed, taking into account the dimensions and construction materials of each of the pieces. The design is presented in a series of diagrams and then the result of the construction is illustrated by photographs, all work done also has been described. The implementation of the system has described by the coupling of all parties and the respective tests. A basic experimental plan is presented to evaluate the performance of the reaction system, using glycerin as a reactant, demonstrating ability to react and take effective data. Four experiments are performed: vacuum reactor, packed reactor with two types of filling and reactor with an exposed surface cobalt oxide (II) reduced, the gases produced in the reaction are analyzed by gas chromatography. The results are discussed and analyzed, focusing on the overall selectivity of hydrogen relative to methane, and the

  20. Reducing-Agent-Free Instant Synthesis of Carbon-Supported Pd Catalysts in a Green Leidenfrost Droplet Reactor and Catalytic Activity in Formic Acid Dehydrogenation

    OpenAIRE

    Dong-Wook Lee; Min-Ho Jin; Young-Joo Lee; Ju-Hyoung Park; Chun-Boo Lee; Jong-Soo Park

    2016-01-01

    The development of green synthesis methods for supported noble metal catalysts remains important challenges to improve their sustainability. Here we first synthesized carbon-supported Pd catalysts in a green Leidenfrost droplet reactor without reducing agents, high-temperature calcination and reduction procedures. When the aqueous solution containing Pd nitrate precursor, carbon support, and water is dripped on a hot plate, vapor layer is formed between a solution droplet and hot surface, whi...

  1. Anaerobic membrane bioreactors: Are membranes really necessary?

    OpenAIRE

    Davila, M.; Kassab, G.; Klapwijk, A.; Van, Lier, G

    2008-01-01

    Membranes themselves represent a significant cost for the full scale application of anaerobic membrane bioreactors (AnMBR). The possibility of operating an AnMBR with a self-forming dynamic membrane generated by the substances present in the reactor liquor would translate into an important saving. A self-forming dynamic membrane only requires a support material over which a cake layer is formed, which determines the rejection properties of the system. The present research studies the applicat...

  2. Engineering Development of Ceramic Membrane Reactor System for Converting Natural Gas to Hydrogen and Synthesis Gas for Liquid Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Air Products and Chemicals

    2008-09-30

    An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology to prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.

  3. On the use of supported ceria membranes for oxyfuel process/syngas production

    DEFF Research Database (Denmark)

    Lobera, M.P.; Serra, J.M.; Foghmoes, Søren Preben Vagn;

    2011-01-01

    Ceramic oxygen transport membranes (OTMs) enable selective oxygen separation from air at high temperatures. Among several potential applications for OTMs, the use in (1) oxygen production for oxyfuel power plants and (2) the integration in high-temperature catalytic membrane reactors for alkane...... upgrading through selective oxidative reactions are of special interest. Nevertheless, these applications involve the direct contact of the membrane surface with carbon-rich atmospheres. Most state-of-the-art permeable membranes are based on perovskites, which are prone to carbonation under operation in CO2...... with an oxygen reduction catalyst. Oxygen separation was studied using air as feed and argon/CO2 or argon/CH4 mixtures as sweep gas in the temperature range 750–1000 °C. The supported membrane exhibited a maximum oxygen flux of ca. 5 ml min−1 cm−2 at 1000 °C when diluted methane was used as sweep gas...

  4. Multifaceted effects of HZSM-5 (Proton-exchanged Zeolite Socony Mobil-5) on catalytic cracking of pinewood pyrolysis vapor in a two-stage fixed bed reactor.

    Science.gov (United States)

    Wang, Yimeng; Wang, Jie

    2016-08-01

    The pinewood was pyrolyzed in the first reactor at a heating rate of 10°Cmin(-1) from room temperature to 700°C, and the vapor was allowed to be cracked through the second reactor in a temperature range of 450-750°C without and with HZSM-5. Attempts were made to determine a wide spectrum of gaseous and liquid products, as well as the mass and element partitions to gas, water, bio-oil, coke and char. HZSM-5 showed a preferential deoxygenation effect via the facilitated decarbonylation and decarboxylation with the inhibited dehydration at 550-600°C. This catalyst also displayed a high selectivity for the formations of aromatic hydrocarbons and olefins by the promoted hydrogen transfer to these products at 550-600°C. The bio-oil produced with HZSM-5 at 500-600°C had the yields of 14.5-16.8%, the high heat values of 39.1-42.4MJkg(-1), and the energy recoveries of 33-35% (all dry biomass basis). PMID:27209452

  5. Method and apparatus for monitoring a hydrocarbon-selective catalytic reduction device

    Energy Technology Data Exchange (ETDEWEB)

    Schmieg, Steven J; Viola, Michael B; Cheng, Shi-Wai S; Mulawa, Patricia A; Hilden, David L; Sloane, Thompson M; Lee, Jong H

    2014-05-06

    A method for monitoring a hydrocarbon-selective catalytic reactor device of an exhaust aftertreatment system of an internal combustion engine operating lean of stoichiometry includes injecting a reductant into an exhaust gas feedstream upstream of the hydrocarbon-selective catalytic reactor device at a predetermined mass flowrate of the reductant, and determining a space velocity associated with a predetermined forward portion of the hydrocarbon-selective catalytic reactor device. When the space velocity exceeds a predetermined threshold space velocity, a temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is determined, and a threshold temperature as a function of the space velocity and the mass flowrate of the reductant is determined. If the temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is below the threshold temperature, operation of the engine is controlled to regenerate the hydrocarbon-selective catalytic reactor device.

  6. Model-Based Feasibility Assessment of Membrane Biofilm Reactor to Achieve Simultaneous Ammonium, Dissolved Methane, and Sulfide Removal from Anaerobic Digestion Liquor.

    Science.gov (United States)

    Chen, Xueming; Liu, Yiwen; Peng, Lai; Yuan, Zhiguo; Ni, Bing-Jie

    2016-01-01

    In this study, the membrane biofilm reactor (MBfR) is proposed to achieve simultaneous removal of ammonium, dissolved methane, and sulfide from main-stream and side-stream anaerobic digestion liquors. To avoid dissolved methane stripping, oxygen is introduced through gas-permeable membranes, which also from the substratum for the growth of a biofilm likely comprising ammonium oxidizing bacteria (AOB), anaerobic ammonium oxidation (Anammox) bacteria, denitrifying anaerobic methane oxidation (DAMO) microorganisms, aerobic methane oxidizing bacteria (MOB), and sulfur oxidizing bacteria (SOB). A mathematical model is developed and applied to assess the feasibility of such a system and the associated microbial community structure under different operational conditions. The simulation studies demonstrate the feasibility of achieving high-level (>97.0%), simultaneous removal of ammonium, dissolved methane, and sulfide in the MBfRs from both main-stream and side-stream anaerobic digestion liquors through adjusting the influent surface loading (or hydraulic retention time (HRT)) and the oxygen surface loading. The optimal HRT was found to be inversely proportional to the corresponding oxygen surface loading. Under the optimal operational conditions, AOB, DAMO bacteria, MOB, and SOB dominate the biofilm of the main-stream MBfR, while AOB, Anammox bacteria, DAMO bacteria, and SOB coexist in the side-stream MBfR to remove ammonium, dissolved methane, and sulfide simultaneously. PMID:27112502

  7. Two-step nitrification in a pure moving bed biofilm reactor-membrane bioreactor for wastewater treatment: nitrifying and denitrifying microbial populations and kinetic modeling.

    Science.gov (United States)

    Leyva-Díaz, J C; González-Martínez, A; Muñío, M M; Poyatos, J M

    2015-12-01

    The moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) is a novel solution to conventional activated sludge processes and membrane bioreactors. In this study, a pure MBBR-MBR was studied. The pure MBBR-MBR mainly had attached biomass. The bioreactor operated with a hydraulic retention time (HRT) of 9.5 h. The kinetic parameters for heterotrophic and autotrophic biomasses, mainly nitrite-oxidizing bacteria (NOB), were evaluated. The analysis of the bacterial community structure of the ammonium-oxidizing bacteria (AOB), NOB, and denitrifying bacteria (DeNB) from the pure MBBR-MBR was carried out by means of pyrosequencing to detect and quantify the contribution of the nitrifying and denitrifying bacteria in the total bacterial community. The relative abundance of AOB, NOB, and DeNB were 5, 1, and 3%, respectively, in the mixed liquor suspended solids (MLSS), and these percentages were 18, 5, and 2%, respectively, in the biofilm density (BD) attached to carriers. The pure MBBR-MBR had a high efficiency of total nitrogen (TN) removal of 71.81±16.04%, which could reside in the different bacterial assemblages in the fixed biofilm on the carriers. In this regard, the kinetic parameters for autotrophic biomass had values of YA=2.3465 mg O2 mg N(-1), μm, A=0.7169 h(-1), and KNH=2.0748 mg NL(-1). PMID:26264139

  8. Preparation of whey protein hydrolysates using a single- and two-stage enzymatic membrane reactor and their immunological and antioxidant properties: characterization by multivariate data analysis.

    Science.gov (United States)

    Cheison, Seronei Chelulei; Wang, Zhang; Xu, Shi-Ying

    2007-05-16

    An initial 5% (w/v), followed thereafter with replacement aliquots of 3% (w/v), whey protein isolate (WPI) (ca. 86.98% Kjeldahl N x 6.38), was hydrolyzed using Protease N Amano G (IUB 3.4.24.28, Bacillus subtilis) in an enzymatic membrane reactor (EMR) fitted with either a 10 or 3 kDa nominal molecular weight cutoff (NMWCO) tangential flow filter (TFF) membrane. The hydrolysates were desalted by adsorption onto a styrene-based macroporous adsorption resin (MAR) and washed with deionized water to remove the alkali, and the peptides were desorbed with 25, 50, and 95% (v/v) ethyl alcohol. The desalted hydrolysates were analyzed for antibody binding, free radical scavenging, and molecular mass analysis as well as total and free amino acids (FAA). For the first time a quantity called IC50, the concentration of peptides causing 50% inhibition of the available antibody, is introduced to quantify inhibition enzyme-linked immunosorbent assay (ELISA) properties. Principal component analysis (PCA) was used for data reduction. The hydrolysate molecular mass provided the most prominent influence (PC1 = 57.35%), followed by inhibition ELISA (PC2 = 18.90%) and the antioxidant properties (PC3 = 10.43%). Ash was significantly reduced in the desalted fractions; the protein adsorption recoveries were high, whereas desorption with alcohol was prominently influenced by the hydrophobic/ hydrophilic amino acid balance. After hydrolysis, some hydrolysates showed increased ELISA reactivity compared with the native WPI. PMID:17432869

  9. Model-Based Feasibility Assessment of Membrane Biofilm Reactor to Achieve Simultaneous Ammonium, Dissolved Methane, and Sulfide Removal from Anaerobic Digestion Liquor

    Science.gov (United States)

    Chen, Xueming; Liu, Yiwen; Peng, Lai; Yuan, Zhiguo; Ni, Bing-Jie

    2016-04-01

    In this study, the membrane biofilm reactor (MBfR) is proposed to achieve simultaneous removal of ammonium, dissolved methane, and sulfide from main-stream and side-stream anaerobic digestion liquors. To avoid dissolved methane stripping, oxygen is introduced through gas-permeable membranes, which also from the substratum for the growth of a biofilm likely comprising ammonium oxidizing bacteria (AOB), anaerobic ammonium oxidation (Anammox) bacteria, denitrifying anaerobic methane oxidation (DAMO) microorganisms, aerobic methane oxidizing bacteria (MOB), and sulfur oxidizing bacteria (SOB). A mathematical model is developed and applied to assess the feasibility of such a system and the associated microbial community structure under different operational conditions. The simulation studies demonstrate the feasibility of achieving high-level (>97.0%), simultaneous removal of ammonium, dissolved methane, and sulfide in the MBfRs from both main-stream and side-stream anaerobic digestion liquors through adjusting the influent surface loading (or hydraulic retention time (HRT)) and the oxygen surface loading. The optimal HRT was found to be inversely proportional to the corresponding oxygen surface loading. Under the optimal operational conditions, AOB, DAMO bacteria, MOB, and SOB dominate the biofilm of the main-stream MBfR, while AOB, Anammox bacteria, DAMO bacteria, and SOB coexist in the side-stream MBfR to remove ammonium, dissolved methane, and sulfide simultaneously.

  10. Model-Based Feasibility Assessment of Membrane Biofilm Reactor to Achieve Simultaneous Ammonium, Dissolved Methane, and Sulfide Removal from Anaerobic Digestion Liquor

    Science.gov (United States)

    Chen, Xueming; Liu, Yiwen; Peng, Lai; Yuan, Zhiguo; Ni, Bing-Jie

    2016-01-01

    In this study, the membrane biofilm reactor (MBfR) is proposed to achieve simultaneous removal of ammonium, dissolved methane, and sulfide from main-stream and side-stream anaerobic digestion liquors. To avoid dissolved methane stripping, oxygen is introduced through gas-permeable membranes, which also from the substratum for the growth of a biofilm likely comprising ammonium oxidizing bacteria (AOB), anaerobic ammonium oxidation (Anammox) bacteria, denitrifying anaerobic methane oxidation (DAMO) microorganisms, aerobic methane oxidizing bacteria (MOB), and sulfur oxidizing bacteria (SOB). A mathematical model is developed and applied to assess the feasibility of such a system and the associated microbial community structure under different operational conditions. The simulation studies demonstrate the feasibility of achieving high-level (>97.0%), simultaneous removal of ammonium, dissolved methane, and sulfide in the MBfRs from both main-stream and side-stream anaerobic digestion liquors through adjusting the influent surface loading (or hydraulic retention time (HRT)) and the oxygen surface loading. The optimal HRT was found to be inversely proportional to the corresponding oxygen surface loading. Under the optimal operational conditions, AOB, DAMO bacteria, MOB, and SOB dominate the biofilm of the main-stream MBfR, while AOB, Anammox bacteria, DAMO bacteria, and SOB coexist in the side-stream MBfR to remove ammonium, dissolved methane, and sulfide simultaneously. PMID:27112502

  11. Raman studies of Rh and Pt on La{sub 2}O{sub 3} catalysts used in a membrane reactor for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Cornaglia, L.M.; Munera, J.; Irusta, S.; Lombardo, E.A. [Instituto de Investigaciones en Catalisis y Petroquimica, (FIQ, UNL-CONICET), Santiago del Estero 2829-3000 Santa Fe (Argentina)

    2004-05-28

    Rh and Pt catalysts supported on lanthanum oxide were prepared by wet impregnation. The solids were used in a Pd-Ag membrane reactor to produce hydrogen through the carbon dioxide reforming of methane. The effect of the sweep gas flow rate and W/F upon the conversions of CO{sub 2} and CH{sub 4}, as well as on the production of H{sub 2} was studied. The best performing catalyst was Rh (0.6%). It yielded a methane conversion 38% higher than the thermodynamic value and the highest H{sub 2} permeate flux across the membrane. Lanthanum phases on the support and the catalysts were characterized by Laser Raman spectroscopy, FTIR, and XRD. The support and the calcined fresh catalysts exhibited a mixture of phases which were influenced by the metal type. Furthermore, platinum seemed to favor the formation of Ia-La{sub 2}O{sub 2}CO{sub 3} after a short treatment in flowing CO{sub 2}. However, the only remaining crystalline phase after 100h on stream was II-La{sub 2}O{sub 2}CO{sub 3}. A small amount of graphitic carbon was detected using Laser Raman spectroscopy, despite the fact that no carbon deposition was observed through TGA measurements. The graphite crystallization order seemed to be dependent upon the contact time of the reactants.

  12. Chitosan:poly (vinyl) alcohol composite alkaline membrane incorporating organic ionomers and layered silicate materials into a PEM electrochemical reactor

    OpenAIRE

    García Cruz, Leticia; Casado-Coterillo, Clara; Iniesta Valcárcel, Jesús; Montiel Leguey, Vicente; Irabien, Ángel

    2015-01-01

    Mixed matrix membranes (MMM) are prepared from equivalent blends of poly (vinyl alcohol) (PVA) and chitosan (CS) polymers doped with organic ionomers 4VP and AS4, or inorganic layered titanosilicate AM-4 and stannosilicate UZAR-S3, by solution casting to improve the mechanical and thermal properties, hydroxide conductivity and alcohol barrier effect to reduce the crossover. The structural properties, thermal stability, hydrolytic stability, transport and ionic properties of the prepared compo...

  13. Evaluation of the Parameters and Conditions of Process in the Ethylbenzene Dehydrogenation with Application of Permselective Membranes to Enhance Styrene Yield

    Science.gov (United States)

    Araújo, Paulo Jardel P.; Leite, Manuela Souza; Kakuta Ravagnani, Teresa M.

    2016-01-01

    Styrene is an important monomer in the manufacture of thermoplastic. Most of it is produced by the catalytic dehydrogenation of ethylbenzene. In this process that depends on reversible reactions, the yield is usually limited by the establishment of thermodynamic equilibrium in the reactor. The styrene yield can be increased by using a hybrid process, with reaction and separation simultaneously. It is proposed using permselective composite membrane to remove hydrogen and thus suppress the reverse and secondary reactions. This paper describes the simulation of a dehydrogenation process carried out in a tubular fixed-bed reactor wrapped in a permselective composite membrane. A mathematical model was developed, incorporating the various mass transport mechanisms found in each of the membrane layers and in the catalytic fixed bed. The effects of the reactor feed conditions (temperature, steam-to-oil ratio, and the weight hourly space velocity), the fixed-bed geometry (length, diameter, and volume), and the membrane geometry (thickness of the layers) on the styrene yield were analyzed. These variables were used to determine experimental conditions that favour the production of styrene. The simulation showed that an increase of 40.98% in the styrene yield, compared to a conventional fixed-bed process, could be obtained by wrapping the reactor in a permselective composite membrane. PMID:27069982

  14. Combined catalytic partial oxidation and CO2 reforming of methane over ZrO2-modified Ni/SiO2 catalysts using fluidized-bed reactor

    International Nuclear Information System (INIS)

    Nickel on zirconium-modified silica was prepared and tested as a catalyst for reforming methane with CO2 and O2 in a fluidized-bed reactor. A conversion of CH4 near thermodynamic equilibrium and low H2/CO ratio (12/CO2-temperature reaction (H2-TPR), CO2-temperature desorption (CO2-TPD) and transmission election microscope (TEM) techniques. Ni sintering was a major reason for the deactivation of pure Ni/SiO2 catalysts, while Ni dispersed highly on a zirconium-promoted Ni/SiO2 catalyst. The different kinds of surface Ni species formed on ZrO2-promoted catalysts might be responsible for its high activity and good resistance to Ni sintering

  15. Prospects and problems of dense oxygen permeable membranes

    DEFF Research Database (Denmark)

    Hendriksen, P.V.; Larsen, P.H.; Mogensen, Mogens Bjerg; Poulsen, F.W.; Wiik, K.

    The prospects of using mixed ionic/electronic conducting ceramics for syngas production in a catalytic membrane reactor are analysed. Problems relating to limited thermodynamic stability and poor dimensional stability of candidate materials are addressed, The consequences for these problems, of...... flux improving measures like minimization of membrane thickness and minimization of the losses due to oxygen exchange over the membrane surfaces, are discussed. The analysis is conducted on two candidate materials: La0.6Sr0.4Co0.2Fe0.8O3-delta and SrFeCo0.5Ox. Finally. experimental investigations of...... the dimensional stability of the latter material under reducing conditions are reported. (C) 2000 Elsevier Science B.V. All rights reserved....

  16. Catalytic reaction in confined flow channel

    Energy Technology Data Exchange (ETDEWEB)

    Van Hassel, Bart A.

    2016-03-29

    A chemical reactor comprises a flow channel, a source, and a destination. The flow channel is configured to house at least one catalytic reaction converting at least a portion of a first nanofluid entering the channel into a second nanofluid exiting the channel. The flow channel includes at least one turbulating flow channel element disposed axially along at least a portion of the flow channel. A plurality of catalytic nanoparticles is dispersed in the first nanofluid and configured to catalytically react the at least one first chemical reactant into the at least one second chemical reaction product in the flow channel.

  17. Potential Applications of Zeolite Membranes in Reaction Coupling Separation Processes

    Directory of Open Access Journals (Sweden)

    Tunde V. Ojumu

    2012-10-01

    Full Text Available Future production of chemicals (e.g., fine and specialty chemicals in industry is faced with the challenge of limited material and energy resources. However, process intensification might play a significant role in alleviating this problem. A vision of process intensification through multifunctional reactors has stimulated research on membrane-based reactive separation processes, in which membrane separation and catalytic reaction occur simultaneously in one unit. These processes are rather attractive applications because they are potentially compact, less capital intensive, and have lower processing costs than traditional processes. Therefore this review discusses the progress and potential applications that have occurred in the field of zeolite membrane reactors during the last few years. The aim of this article is to update researchers in the field of process intensification and also provoke their thoughts on further research efforts to explore and exploit the potential applications of zeolite membrane reactors in industry. Further evaluation of this technology for industrial acceptability is essential in this regard. Therefore, studies such as techno-economical feasibility, optimization and scale-up are of the utmost importance.

  18. Characterization and catalytic performance of CeO2-Co/SiO2 catalyst for Fischer-Tropsch synthesis using nitrogen-diluted synthesis gas over a laboratory scale fixed-bed reactor

    Institute of Scientific and Technical Information of China (English)

    Xiaoping Dai; Changchun Yu

    2008-01-01

    The surface species of CO hydrogenation on CeO2-Co/SiO2 catalyst were investigated using the techniques of temperature programmed reaction and transient response method. The results indicated that the formation of H2O and CO2 was the competitive reaction for the surface oxygen species, CH4 was produced via the hydrogenation of carbon species step by step, and C2 products were formed by the polymerization of surface-active carbon species (-CH2-). Hydrogen assisted the dissociation of CO. The hydrogenation of surface carbon species was the rate-limiting step in the hydrogenation of CO over CeO2-Co/SiO2 catalyst. The investigation of total pressure, gas hourly space velocity (GHSV), and product distribution using nitrogen-rich synthesis gas as feedstock over a laboratory scale fixed-bed reactor indicated that total pressure and GHSV had a significant effect on the catalytic performance of CeO2-Co/SiO2 catalyst. The removal of heat and control of the reaction temperature were extremely critical steps, which required lower GHSV and appropriate CO conversion to avoid the deactivation of the catalyst. The feedstock of nitrogen-rich synthesis gas was favorable to increase the conversion of CO, but there was a shift of product distribution toward the light hydrocarbon. The nitrogen-rich synthesis gas was feasible for F-T synthesis for the utilization of remote natural gas.

  19. Hydrolysis/Vertical Loop Reactor/Catalytic Oxidation Process for Treatment of Pharmaceutical Wastewater%水解/VLR立环池/催化氧化工艺处理制药废水

    Institute of Scientific and Technical Information of China (English)

    杨祝平; 郭淑琴

    2012-01-01

    The process and design ideas of the pharmaceutical wastewater treatment plant of a pharmaceutical company limited, the main design parameters and equipment settings are introduced. The project uses the hydrolysis/vertical loop reactor/catalytic oxidation/high performance filtration process. The practical operation shows that the combined process has excellent treatment effect of pharmaceutical wastewater, and the treated effluent quality meets Quality Standards far Wastewater Discharge into Municipal Sewers (CJ 3082 -1999).%介绍了某药业股份有限公司制药废水处理工艺流程及设计思路、主要单体设计参数及设备配置等,该工程采用水解/VLR立环生化反应/催化氧化/高效过滤处理工艺.实际运行表明该工艺对于制药废水具有良好的去除效果,出水达到《污水排入城市下水道水质标准》( CJ3082-1999).

  20. Hydrodynamics of a Monolithic Stirrer Reactor

    OpenAIRE

    Kritzinger, H.P.

    2011-01-01

    The Monolithic Stirrer Reactor (MSR) is a novel concept for heterogeneously catalyzed reactors and is presented as an alternative device to slurry reactors. It uses a modified stirrer on which structured catalyst supports (monoliths) are fixed to form permeable blades. The monoliths consist of small square parallel channels on which a layer of catalytic material can be applied. The stirrer now has both a catalytic and a mixing function. The main advantage of this reactor type is the ease of t...

  1. Oscillatory Behavior during the Catalytic Partial Oxidation of Methane: Following Dynamic Structural Changes of Palladium Using the QEXAFS Technique

    DEFF Research Database (Denmark)

    Stoetzel, Jan; Frahm, Ronald; Kimmerle, Bertram;

    2012-01-01

    Pd/Al2O3 catalysts oscillate between ignition and extinction of the catalytic partial oxidation of methane when they are exposed to a 2:1 reaction mixture of methane and oxygen. The oscillations of the catalytic performance and the structure of Pd/Al2O3 catalysts in a fixed-bed reactor were...... combination of total oxidation and reforming in the catalytic capillary reactor was observed. This change in catalytic performance was directly linked to changes in the oxidation state of the Pd/Al2O3 catalysts at different positions along the catalytic reactor. During the ignition of the catalytic partial...

  2. Numerical Simulation of Fixed-Bed Catalytic Reforming Reactors: Hydrodynamics / Chemical Kinetics Coupling Simulation numérique des réacteurs de reformage catalytique en lit fixe : couplage hydrodynamique-cinétique chimique

    Directory of Open Access Journals (Sweden)

    Ferschneider G.

    2006-11-01

    Full Text Available Fixed bed reactors with a single fluid phase are widely used in the refining or petrochemical industries for reaction processes catalysed by a solid phase. The design criteria for industrial reactors are relatively well known. However, they rely on a one-dimensional writing and on the separate resolution of the equation of conservation of mass and energy, and of momentum. Thus, with complex geometries, the influence of hydrodynamics on the effectiveness of the catalyst bed cannot be taken into account. The calculation method proposed is based on the multi-dimensional writing and the simultaneous resolution of the local conservation equations. The example discussed concerns fixed-bed catalytic reactors. These reactors are distinguished by their annular geometry and the radial circulation of the feedstock. The flow is assumed to be axisymmetric. The reaction process is reflected by a simplified kinetic mechanism involving ten chemical species. Calculation of the hydrodynamic (mean velocities, pressure, thermal and mass fields (concentration of each species serves to identify the influence of internal components in two industrial reactor geometries. The map of the quantity of coke formed and deposited on the catalyst, calculated by the model, reveals potential areas of poor operation. Les réacteurs à lit fixe avec une seule phase fluide sont largement utilisés dans l'industrie du raffinage et de la pétrochimie, pour mettre en oeuvre un processus réactionnel catalysé par une phase solide. Les règles de conception des réacteurs industriels sont relativement bien connues. Cependant, elles reposent sur l'écriture monodimensionnelle et la résolution séparée, d'une part, des équations de conservation de la masse et de l'énergie et d'autre part, de la quantité de mouvement. Ainsi dans le cas de géométries complexes, l'influence de l'hydrodynamique sur l'efficacité du lit catalytique ne peut être prise en compte. La méthode de calcul

  3. 低浓度甲烷流向变换催化燃烧%Catalytic Combustion of Lean Methane in a Reverse-flow Reactor

    Institute of Scientific and Technical Information of China (English)

    梁文俊; 刘欢; 李坚; 王洪明; 李玉泽; 何洪

    2014-01-01

    The washcoat deposited on a ceramic honeycomb was prepared with modified γ-Al2 O3 and pseudo boehmite. The effect of gel solid content on the gel viscosity and coating ability was investigated. The monolithic catalysts were made with noble metal being active component, cordierite and modified γ-Al2 O3 being the first and second carriers. The effects of Pd content and deoxidation on the monolith catalyst performance, the effects of the cyclic period, and preheated temperature on the operation performance of reactor were investigated. Result show that the quantity supported Pd of coating layer being 1. 5% and the coating of solid content being 20% was the best. The methane conversion attained 85% when the catalyst preheat temperature was 450 ℃, space velocity was 15 000 h - 1 , and reversing cycle was 10 min.%以水铝石和改性过的γ-Al2 O3为原料制备了铝溶胶涂层,考察了不同涂层固含量对催化剂比表面积的影响.以贵金属 Pd 作为催化剂活性成分,研究了催化剂在不同 Pd 含量和还原条件下催化活性的变化规律,并考查了催化剂预热温度、系统换向周期对反应系统床层温度的影响.结果表明:涂层固含量20%、Pd 负载量占涂覆层质量分数1.5%为催化剂最佳制备条件;当催化剂预热温度为450℃、空速为15000 h -1、换向周期为10 min、甲烷体积分数为0.2%时,甲烷转化率最高可达85%.

  4. [Studies on photo-electron-chemical catalytic degradation of the malachite green].

    Science.gov (United States)

    Li, Ming-yu; Diao, Zeng-hui; Song, Lin; Wang, Xin-le; Zhang, Yuan-ming

    2010-07-01

    A novel two-compartment photo-electro-chemical catalytic reactor was designed. The TiO2/Ti thin film electrode thermally formed was used as photo-anode, and graphite as cathode and a saturated calomel electrode (SCE) as the reference electrode in the reactor. The anode compartment and cathode compartment were connected with the ionic exchange membrane in this reactor. Effects of initial pH, initial concentration of malachite green and connective modes between the anode compartment and cathode compartment on the decolorization efficiency of malachite green were investigated. The degradation dynamics of malachite green was studied. Based on the change of UV-visible light spectrum, the degradation process of malachite green was discussed. The experimental results showed that, during the time of 120 min, the decolouring ratio of the malachite green was 97.7% when initial concentration of malachite green is 30 mg x L(-1) and initial pH is 3.0. The catalytic degradation of malachite green was a pseudo-first order reaction. In the degradation process of malachite green the azo bond cleavage and the conjugated system of malachite green were attacked by hydroxyl radical. Simultaneity, the aromatic ring was oxidized. Finally, malachite green was degraded into other small molecular compounds. PMID:20825023

  5. Packed-bed catalytic cracking of oak derived pyrolytic vapors

    Science.gov (United States)

    Catalytic upgrading of pyrolysis vapors derived from oak was carried out using a fixed-bed catalytic column at 425 deg C. The vapors were drawn by splitting a fraction from the full stream of vapors produced at 500 deg C in a 5 kg/hr bench-scale fast pyrolysis reactor system downstream the cyclone s...

  6. Role of Periodic Input Composition and Sweeping Gas for Improvement of Hydrogen Production in a Palladium Membrane Reactor by Partial Oxidation of Methane

    Institute of Scientific and Technical Information of China (English)

    Lemnouer Chibane; Brahim Djellouli

    2012-01-01

    The partial oxidation of methane under periodic operation over Ni/y/-Al2O3 catalyst was investigated in a Pd-membrane reactor. The effects of key parameters such as the inlet composition and the sweeping, gas on methane conversion and the hydrogen recovery are numerically estalallshed with two penodtc input ttmctlons. In order to analyze the effect of the inputs modulation, the reaction was performed under low steam to methane ratio at a mod-erate temperature and pressure. It was obtained that to achieve process intensification is to operate the process in a periodic way. The main results show that the periodic input functions can improve the performance of the process compared to the optimal steady state operation. Moreover, there is an optimum amplitude of manipulated inputs leads to a maximum of hydrogen recovery. It is noteworthy that the comparison between the predicted performancevia the sinusoidal and the'square ways show that the better'average performance was obtainedwith the square way.

  7. Biotransformation of a highly chlorinated PCB mixture in an activated sludge collected from a Membrane Biological Reactor (MBR) subjected to anaerobic digestion

    International Nuclear Information System (INIS)

    The role of anaerobic digestion (AD) on the decontamination and biomethanization of a PCB-spiked sludge obtained from a Membrane Biological Reactor (MBR) pilot plant was investigated throughout a 10-month batch experiment. The study was carried out under mesophilic (35 deg. C) and thermophilic (55 deg. C) conditions and was monitored by means of an integrated chemical, microbiological and molecular biology strategy. Remarkable PCB depletions (higher than 50% of the overall spiked PCBs) and dechlorinations were achieved under methanogenic conditions. The process was not affected by yeast extract addition. Both acetoclastic and hydrogenotrophic methanogens, together with some fermentative eubacteria, were found to persist in all PCB biodegrading microcosms. This finding, together with those obtained from parallel microcosms where specific populations were selectively inhibited, suggested that native methanogens played a key role in the biodegradation and dechlorination of the spiked PCBs. Taken together, the results of this study indicate that AD is a feasible option for the decontamination and the efficient disposal (with the production of a CH4-rich biogas) of contaminated MBR sludge, which can be then employed as a fertilizer for agricultural purposes.

  8. Comparative study of emerging micropollutants removal by aerobic activated sludge of large laboratory-scale membrane bioreactors and sequencing batch reactors under low-temperature conditions.

    Science.gov (United States)

    Kruglova, Antonina; Kråkström, Matilda; Riska, Mats; Mikola, Anna; Rantanen, Pirjo; Vahala, Riku; Kronberg, Leif

    2016-08-01

    Four emerging micropollutants ibuprofen, diclofenac, estrone (E1) and 17α-ethinylestradiol (EE2) were studied in large laboratory-scale wastewater treatment plants (WWTPs) with high nitrifying activity. Activated sludge (AS) with sludge retention times (SRTs) of 12days and 14days in sequencing batch reactors (SBRs) and 30days, 60days and 90days in membrane bioreactors (MBRs) were examined at 8°C and 12°C. Concentrations of pharmaceuticals and their main metabolites were analysed in liquid phase and solid phase of AS by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A remarkable amount of contaminants were detected in solids of AS, meaning the accumulation of micropollutants in bacterial cells. The biodegradation rate constants (Kbiol) were affected by SRT and temperature. MBR with a 90-day SRT showed the best results of removal. Conventional SBR process was inefficient at 8°C showing Kbiol values lower than 0.5lgSS(-1)d(-1) for studied micropollutants. PMID:27128192

  9. Studies of Catalytic Model Systems

    DEFF Research Database (Denmark)

    Holse, Christian

    the Cu/ZnO nanoparticles is highly relevant to industrial methanol synthesis for which the direct interaction of Cu and ZnO nanocrystals synergistically boost the catalytic activity. The dynamical behavior of the nanoparticles under reducing and oxidizing environments were studied by means of ex situ...... observed by XPS as the nanoparticles are reduced. The Cu/ZnO nanoparticles are tested on a  µ-reactor platform and prove to be active towards methanol synthesis, making it an excellent model system for further investigations into activity depended morphology changes....

  10. Catalytic Combustion of Ethyl Acetate

    OpenAIRE

    ÖZÇELİK, Tuğba GÜRMEN; ATALAY, Süheyda; ALPAY, Erden

    2007-01-01

    The catalytic combustion of ethyl acetate over prepared metal oxide catalysts was investigated. CeO, Co2O3, Mn2O3, Cr2O3, and CeO-Co2O3 catalysts were prepared on monolith supports and they were tested. Before conducting the catalyst experiments, we searched for the homogeneous gas phase combustion reaction of ethyl acetate. According to the homogeneous phase experimental results, 45% of ethyl acetate was converted at the maximum reactor temperature tested (350 °C). All the prepare...

  11. 酶膜耦合反应器中反冲过程的神经网络模拟%The Neural Network Model for Backflushing in Enzymatic Membrane Reactor

    Institute of Scientific and Technical Information of China (English)

    何志敏; 董春华; 齐崴

    2005-01-01

    In the enzymatic membrane reactor for separating casein hydrolysate, backflushing technology has been used to decrease the fouling of the membrane. Predication of the backflushing efficiency poses a complex non-linear problem as the system integrates enzymatic hydrolysis, membrane separation and periodic backflushing together.In this paper an alternative artificial neural network approach is developed to predict the backflushing efficiency as a function of duration and interval. A contour plot of backflushing performance is presented to model these effects, and the backflushing conditions have been optimized as duration of 10s and interval of 10min using this neural network. Also, simple neural networks are established to predict the time evolution of flux before and after backflushing. The results predicted by the models are in good agreement with the experimental data, and the average deviations for all the cases are well within ±5%. The neural network approach is found to be capable of modeling the backflushing with confidence.

  12. Preparation of Monodispersed O/W Emulsion by Ceramic External Membrane Emulsification System--Preliminary Study on Integrated Ceramic Membrane Emulsification Reactor%陶瓷膜乳化系统制备单分散乳状液的研究--集成式膜乳化反应器的前期研究

    Institute of Scientific and Technical Information of China (English)

    景文珩; 吴俊; 邢卫红; 徐南平

    2004-01-01

    A new reactor with integrated conventional slurry stirred reactor and ceramic external membrane emulsification system, was introduced in this paper. Toluene and toluene containing surfactant was separately used as dispersed phase for preparation of emulsions. Two kinds of emulsions were prepared and compared. The volume average sizes of prepared emulsions were 3.53μm and 3.6μm respectively. The results showed that the droplet sizes of two kinds of emulsions were similar, but the monodispersed emulsion was only obtained with addition of surfactant into the dispersed phase.

  13. Catalytic production of biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Theilgaard Madsen, A.

    2011-07-01

    The focus of this thesis is the catalytic production of diesel from biomass, especially emphasising catalytic conversion of waste vegetable oils and fats. In chapter 1 an introduction to biofuels and a review on different catalytic methods for diesel production from biomass is given. Two of these methods have been used industrially for a number of years already, namely the transesterification (and esterification) of oils and fats with methanol to form fatty acid methyl esters (FAME), and the hydrodeoxygenation (HDO) of fats and oils to form straight-chain alkanes. Other possible routes to diesel include upgrading and deoxygenation of pyrolysis oils or aqueous sludge wastes, condensations and reductions of sugars in aqueous phase (aqueous-phase reforming, APR) for monofunctional hydrocarbons, and gasification of any type of biomass followed by Fischer-Tropsch-synthesis for alkane biofuels. These methods have not yet been industrialised, but may be more promising due to the larger abundance of their potential feedstocks, especially waste feedstocks. Chapter 2 deals with formation of FAME from waste fats and oils. A range of acidic catalysts were tested in a model fat mixture of methanol, lauric acid and trioctanoin. Sulphonic acid-functionalised ionic liquids showed extremely fast convertion of lauric acid to methyl laurate, and trioctanoate was converted to methyl octanoate within 24 h. A catalyst based on a sulphonated carbon-matrix made by pyrolysing (or carbonising) carbohydrates, so-called sulphonated pyrolysed sucrose (SPS), was optimised further. No systematic dependency on pyrolysis and sulphonation conditions could be obtained, however, with respect to esterification activity, but high activity was obtained in the model fat mixture. SPS impregnated on opel-cell Al{sub 2}O{sub 3} and microporous SiO{sub 2} (ISPS) was much less active in the esterification than the original SPS powder due to low loading and thereby low number of strongly acidic sites on the

  14. Fluidized bed reactor for catalytic olefin polymerization

    OpenAIRE

    Meier, Gerhardus Bernardus

    2000-01-01

    Due to the continuous improvement of catalysts and processes, polyolefins have become one of the most important plastics in the world. Polyolefins can be produced at low costs with a variety of end-use properties. Nowadays, the most important propylene polymerization processes are executed in the liquid or the gas phase or a combination of both. In contrast to propylene polymerizations in slurry phase, only a few studies have been published concerning gas or liquid phase polymerization. Espec...

  15. Challenges and Development Opportunities for Catalytic Technologies in Petrochemical Industry in the 21st Century

    Institute of Scientific and Technical Information of China (English)

    CHEN Qing-ling

    2004-01-01

    The propellent drive and development opportunities for future catalytic technologies in petrochemical industry in the 21st century are reviewed in this paper. It focuses on the following five aspects:(1) The environmentally-friendly catalytic technologies, such as new technologies for the production of organic chemicals changing the raw material and synthetic process, the chemicals production replacing phosgene and hydrogen cyanide toxicant, and the conversion and utilization of organic wastes etc.(2) Utilization and development of cheaper light alkanes, for example, the chemical use of natural gas and the development technologies of methane chain, the production of acetic acid, ethylene and vinyl chloride from selective oxidation of ethane, as well as the manufacture of acrolein and acrylonitrile from the oxidation and ammoxidation of propane.(3) The new propylene-plus technologies of the low value higher olefins, such as catalytic cracking of C4,C5 olefins and metathesis of C4 olefin.(4) The technologies of high selective oxidation, e.g. production of propylene oxide with TS-1 molecular sieve, oxidation process by lattice oxygen and direct oxidation of benzene to phenol etc.(5) Development and application of novel catalytic materials, especially, mesopore molecular sieve materials for a larger molecule reaction, zeolite catalyst with MWW structure for alkylation of benzene and propylene, ionic liquid, and membrane reactor catalyst etc.Meanwhile,the challenging research subjects for future industrial catalysis and the several viewpoints for development strategy of new catalytic technologies are proposed. These viewpoints are as follows:(1) Catalysis discipline must be integrated with many other disciplines and should be multidisciplinary and transdisciplinary.(2) New preparation methods of catalytic materials must be originally developed.(3) The instrumentation having better time resolution and spatial resolution and applying under reaction conditions must be

  16. A review of investigations on wastewater treatment with MSOBR (membrane supported and oxygenated biofilm reactors); Una revision de las investigaciones sobre el tratamiento de aguas residuales con RBSOM (reactores de biopelicula que emplean membranas con material soporte y medio de oxigenacion)

    Energy Technology Data Exchange (ETDEWEB)

    Esteban Garcia, A. L.; Tejero Monzon, I.

    2007-07-01

    MSOBR (membrane supported and oxygenated biofilm reactors) are biological reactors for wastewater treatment in which biofilm support and oxygenation functions are carried out by gas permeable membranes. In these conditions, with oxygen and substratum (carbonaceous, nitroge neous) diffusing into the biofilm from opposite sides, different environments are developed inside the biofilm, allowing simultaneous nitrification, denitrification and carbon removal. Other added advantages, such us the possibility of a high oxygen transfer efficiency or those derived from the absence of bubbles in aeration (minimizing foaming and VOC emissions), have lead numerous research groups to work in the development of different MSOBR systems, with promising results that make possible to consider their practical applicability in the near future. (Author) 69 refs.

  17. Laminar Entrained Flow Reactor (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-02-01

    The Laminar Entrained Flow Reactor (LEFR) is a modular, lab scale, single-user reactor for the study of catalytic fast pyrolysis (CFP). This system can be employed to study a variety of reactor conditions for both in situ and ex situ CFP.

  18. Investigations for designing catalytic recombiners

    International Nuclear Information System (INIS)

    In case of a severe accident in pressurised water reactors (PWR) a high amount of hydrogen up to about 20,000 m3 might be generated and released into the containments. The mixture consisting of hydrogen and oxygen may either burn or detonate, if ignited. In case of detonation the generated shock wave may endanger the components of the plant or the plant itself. Consequently, effective removal of hydrogen is required. The fact that hydrogen and oxygen react exo-thermally on catalytically acting surfaces already at low temperatures generating steam and heat is made use of in catalytic recombiners. They consist of substrates coated with catalyst (mainly platinum or palladium) which are arranged inside a casing. Being passively acting measures, recombiners do not need any additional energy supply. Experimental investigations on catalytic hydrogen recombination are conducted at FZJ (Forschungszentrum Juelich) using three test facilities. The results yield insight in the development potential of contemporary recombiner systems as well as of innovative systems. Detailed investigations on a recombiner section show strong temperature gradients over the surface of a catalytically coated sample. Dependent on the flow velocity, ignition temperature may be reached at the leading edge already at an inlet hydrogen concentration of about 5 vol.-%. The thermal strain of the substrate leads to considerable detachment of catalyst particles probably causing unintended ignition of the flammable mixture. Temperature peaks can be prevented effectively by leaving the first part of the plate uncoated. In order to avoid overheating of the catalyst elements of a recombiner even at high hydrogen concentrations a modular system of porous substrates is proposed. The metallic substrates are coated with platinum at low catalyst densities thus limiting the activity of the single specimen. A modular arrangement of these elements provides high recombination rates over a large hydrogen concentration

  19. SCR-catalytic converter technology using urea for industrial and thermal power plants. SCR-Katalysatortechnik mit Harnstoff fuer Industrie- und Heizkraftwerke

    Energy Technology Data Exchange (ETDEWEB)

    Hartenstein, A. (H und H Innotech GmbH (Switzerland)); Mayer, A. (H und H Innotech GmbH (Switzerland))

    1994-01-01

    The subjects are dealt with in 6 chapters: 1. Fuels, pollutants, prices 2. fields of application of catalytic converter systems 3. system description of the SCR catalytic converter plant using area 4. catalytic converter reactor and applications 5. efficiencies of catalytic converter plants 6. examples and profitability. (HW)

  20. Microfluidic electrochemical reactors

    Science.gov (United States)

    Nuzzo, Ralph G.; Mitrovski, Svetlana M.

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.