WorldWideScience

Sample records for catalytic key amino

  1. Key parameters controlling the performance of catalytic motors

    Science.gov (United States)

    Esplandiu, Maria J.; Afshar Farniya, Ali; Reguera, David

    2016-03-01

    The development of autonomous micro/nanomotors driven by self-generated chemical gradients is a topic of high interest given their potential impact in medicine and environmental remediation. Although impressive functionalities of these devices have been demonstrated, a detailed understanding of the propulsion mechanism is still lacking. In this work, we perform a comprehensive numerical analysis of the key parameters governing the actuation of bimetallic catalytic micropumps. We show that the fluid motion is driven by self-generated electro-osmosis where the electric field originates by a proton current rather than by a lateral charge asymmetry inside the double layer. Hence, the surface potential and the electric field are the key parameters for setting the pumping strength and directionality. The proton flux that generates the electric field stems from the proton gradient induced by the electrochemical reactions taken place at the pump. Surprisingly the electric field and consequently the fluid flow are mainly controlled by the ionic strength and not by the conductivity of the solution, as one could have expected. We have also analyzed the influence of the chemical fuel concentration, electrochemical reaction rates, and size of the metallic structures for an optimized pump performance. Our findings cast light on the complex chemomechanical actuation of catalytic motors and provide important clues for the search, design, and optimization of novel catalytic actuators.

  2. CATALYTIC HYDROGENATION OF ACRYLATE ASMMETRIC Dd(Ⅱ)—CHELATING RESINS CONTAINING AMINO ACID LIGANDS

    Institute of Scientific and Technical Information of China (English)

    Wangying; WangHongzuo; 等

    1995-01-01

    The catalytic hydrogenation of palladium chelating resins containing chiral amino acid ligands based on lower crosslinked poly(chloroethyl acrylate) and some effects on the rate of hydrogenation were studied.

  3. Recent advances in the catalytic asymmetric synthesis of β-amino acids

    NARCIS (Netherlands)

    Weiner, Barbara; Szymanski, Wiktor; Janssen, Dick B.; Minnaard, Adriaan J.; Feringa, Ben L.

    2010-01-01

    In this critical review, the progress in catalytic asymmetric synthesis of β-amino acids is discussed, covering the literature since 2002. The review treats transition metal catalysis, organocatalysis and biocatalysis and covers the most important synthetic methods, such as hydrogenation, the Mannic

  4. Amino acid profiles and digestible indispensable amino acid scores of proteins from the prioritized key foods in Bangladesh.

    Science.gov (United States)

    Shaheen, Nazma; Islam, Saiful; Munmun, Sarah; Mohiduzzaman, Md; Longvah, Thingnganing

    2016-12-15

    Concentrations of standard amino acids were determined in the composite samples (representing 30 agro-ecological zones of Bangladesh) of six prioritized key dietary protein sources: Oryza sativa (rice), Triticum aestivum (wheat flour), Lens culinaris (lentils), Pangusius pangusius (pangas), Labeo rohita (rohu) and Oreochromis mossambicus (tilapia). Digestible indispensable amino acid scores (DIAAS) was calculated using published data on amino acids' digestibility to evaluate the protein quality of these foods. Indispensable amino acid (IAA) contents (mg IAA/g protein), found to be highest in pangas (430) and lowest in wheat (336), of all these analyzed foods exceeded the FAO recommended daily allowance (277mg IAA/g protein) and contributed on average 40% to total amino acid contents. Untruncated DIAAS values ranged from 51% (lysine) in wheat to 106% (histidine) in pangas and distinguished pangas, rohu, and tilapia containing 'excellent quality' protein (DIAAS>100%) with potential to complement lower quality protein of cereals, fruits, and vegetables. PMID:27451158

  5. Synthesis and catalytic activity of metallo-organic complexes bearing 5-amino 2-ethylpyridine -2-carboximidate

    Indian Academy of Sciences (India)

    LUO MEI; XU JIA; ZHANG JING CHENG

    2016-06-01

    A series of copper, cobalt, nickel and manganese complexes were synthesized and characterized. Reaction of 5-amino-2-cyanopyridine with $ MCl_{2}$·x$H_{2}O$ (M: $Cu^{2+}$, $Co^{2+}$, $Ni^{2+}$, $Mn^{2+})$ in anhydrous ethanol resulted in the formation of four complexes $[NH_{2}EtPyCuCl_{2}(CH_{3}OH)].H_{2}O 1$, $[(NH_{2}EtPyHCl)_{3}Co]$$(Cl)_{3}.3H_{2}O 2$, $[(NH_{2}EtPy)_{2}$ 2$(H_{2}O)Ni]$ $(Cl_{2})$ 3, and $[(NH_{2}EtPy)_{2}$ 2$(H_{2}O)$ Mn]$(Cl_{2})$ 4 $[NH_{2} EtPy=5-amino-oethylpyridine-2-carboximidate], respectively. The structures of these compounds were determined by X-raydiffraction, NMR and IR spectroscopy, and elemental analysis. Each complex was then used as a catalyst in the Henry reaction, and its catalytic activity was determined by 1H NMR. Good catalytic effects were achieved (69–87%).

  6. Effects of hydrogen bonds in association with flavin and substrate in flavoenzyme d-amino acid oxidase. The catalytic and structural roles of Gly313 and Thr317.

    Science.gov (United States)

    Setoyama, Chiaki; Nishina, Yasuzo; Tamaoki, Haruhiko; Mizutani, Hisashi; Miyahara, Ikuko; Hirotsu, Ken; Shiga, Kiyoshi; Miura, Retsu

    2002-01-01

    According to the three-dimensional structure of a porcine kidney D-amino acid oxidase-substrate (D-leucine) complex model, the G313 backbone carbonyl recognizes the substrate amino group by hydrogen bonding and the side-chain hydroxyl of T317 forms a hydrogen bond with C(2)=O of the flavin moiety of FAD [Miura et al. (1997) J. Biochem. 122, 825-833]. We have designed and expressed the G313A and T317A mutants and compared their enzymatic and spectroscopic properties with those of the wild type. The G313A mutant shows decreased activities to various D-amino acids, but the pattern of substrate specificity is different from that of the wild type. The results imply that the hydrogen bond between the G313 backbone carbonyl and the substrate amino group plays important roles in substrate recognition and in defining the substrate specificity of D-amino acid oxidase. The T317A mutant shows a decreased affinity for FAD. The steady-state kinetic measurements indicate diminished activities of T317A to substrate D-amino acids. The transient kinetic parameters measured by stopped-flow spectroscopy revealed that T317 plays key roles in stabilizing the purple intermediate, a requisite intermediate in the oxidative half-reaction, and in enhancing the release of the product from the active site, thereby optimizing the overall catalytic process of D-amino acid oxidase. PMID:11754736

  7. Human liver phosphatase 2A: cDNA and amino acid sequence of two catalytic subunit isotypes

    Energy Technology Data Exchange (ETDEWEB)

    Arino, J.; Woon, Chee Wai; Brautigan, D.L.; Miller, T.B. Jr.; Johnson, G.L. (Univ. of Massachusetts Medical School, Worcester (USA))

    1988-06-01

    Two cDNA clones were isolated from a human liver library that encode two phosphatase 2A catalytic subunits. The two cDNAs differed in eight amino acids (97% identity) with three nonconservative substitutions. All of the amino acid substitutions were clustered in the amino-terminal domain of the protein. Amino acid sequence of one human liver clone (HL-14) was identical to the rabbit skeletal muscle phosphatase 2A cDNA (with 97% nucleotide identity). The second human liver clone (HL-1) is encoded by a separate gene, and RNA gel blot analysis indicates that both mRNAs are expressed similarly in several human clonal cell lines. Sequence comparison with phosphatase 1 and 2A indicates highly divergent amino acid sequences at the amino and carboxyl termini of the proteins and identifies six highly conserved regions between the two proteins that are predicted to be important for phosphatase enzymatic activity.

  8. High-effective approach from amino acid esters to chiral amino alcohols over Cu/ZnO/Al2O3 catalyst and its catalytic reaction mechanism

    Science.gov (United States)

    Zhang, Shuangshuang; Yu, Jun; Li, Huiying; Mao, Dongsen; Lu, Guanzhong

    2016-09-01

    Developing the high-efficient and green synthetic method for chiral amino alcohols is an intriguing target. We have developed the Mg2+-doped Cu/ZnO/Al2O3 catalyst for hydrogenation of L-phenylalanine methyl ester to chiral L-phenylalaninol without racemization. The effect of different L-phenylalanine esters on this title reaction was studied, verifying that Cu/ZnO/Al2O3 is an excellent catalyst for the hydrogenation of amino acid esters to chiral amino alcohols. DFT calculation was used to study the adsorption of substrate on the catalyst, and showed that the substrate adsorbs on the surface active sites mainly by amino group (-NH2) absorbed on Al2O3, and carbonyl (C=O) and alkoxy (RO-) group oxygen absorbed on the boundary of Cu and Al2O3. This catalytic hydrogenation undergoes the formation of a hemiacetal intermediate and the cleavage of the C–O bond (rate-determining step) by reacting with dissociated H to obtain amino aldehyde and methanol ad-species. The former is further hydrogenated to amino alcohols, and the latter desorbs from the catalyst surface.

  9. High-effective approach from amino acid esters to chiral amino alcohols over Cu/ZnO/Al2O3 catalyst and its catalytic reaction mechanism.

    Science.gov (United States)

    Zhang, Shuangshuang; Yu, Jun; Li, Huiying; Mao, Dongsen; Lu, Guanzhong

    2016-01-01

    Developing the high-efficient and green synthetic method for chiral amino alcohols is an intriguing target. We have developed the Mg(2+)-doped Cu/ZnO/Al2O3 catalyst for hydrogenation of L-phenylalanine methyl ester to chiral L-phenylalaninol without racemization. The effect of different L-phenylalanine esters on this title reaction was studied, verifying that Cu/ZnO/Al2O3 is an excellent catalyst for the hydrogenation of amino acid esters to chiral amino alcohols. DFT calculation was used to study the adsorption of substrate on the catalyst, and showed that the substrate adsorbs on the surface active sites mainly by amino group (-NH2) absorbed on Al2O3, and carbonyl (C=O) and alkoxy (RO-) group oxygen absorbed on the boundary of Cu and Al2O3. This catalytic hydrogenation undergoes the formation of a hemiacetal intermediate and the cleavage of the C-O bond (rate-determining step) by reacting with dissociated H to obtain amino aldehyde and methanol ad-species. The former is further hydrogenated to amino alcohols, and the latter desorbs from the catalyst surface. PMID:27619990

  10. High-effective approach from amino acid esters to chiral amino alcohols over Cu/ZnO/Al2O3 catalyst and its catalytic reaction mechanism

    Science.gov (United States)

    Zhang, Shuangshuang; Yu, Jun; Li, Huiying; Mao, Dongsen; Lu, Guanzhong

    2016-01-01

    Developing the high-efficient and green synthetic method for chiral amino alcohols is an intriguing target. We have developed the Mg2+-doped Cu/ZnO/Al2O3 catalyst for hydrogenation of L-phenylalanine methyl ester to chiral L-phenylalaninol without racemization. The effect of different L-phenylalanine esters on this title reaction was studied, verifying that Cu/ZnO/Al2O3 is an excellent catalyst for the hydrogenation of amino acid esters to chiral amino alcohols. DFT calculation was used to study the adsorption of substrate on the catalyst, and showed that the substrate adsorbs on the surface active sites mainly by amino group (-NH2) absorbed on Al2O3, and carbonyl (C=O) and alkoxy (RO-) group oxygen absorbed on the boundary of Cu and Al2O3. This catalytic hydrogenation undergoes the formation of a hemiacetal intermediate and the cleavage of the C–O bond (rate-determining step) by reacting with dissociated H to obtain amino aldehyde and methanol ad-species. The former is further hydrogenated to amino alcohols, and the latter desorbs from the catalyst surface. PMID:27619990

  11. Increased biomass yield of Lactococcus lactis by reduced overconsumption of amino acids and increased catalytic activities of enzymes.

    Directory of Open Access Journals (Sweden)

    Kaarel Adamberg

    Full Text Available Steady state cultivation and multidimensional data analysis (metabolic fluxes, absolute proteome, and transcriptome are used to identify parameters that control the increase in biomass yield of Lactococcus lactis from 0.10 to 0.12 C-mol C-mol(-1 with an increase in specific growth rate by 5 times from 0.1 to 0.5 h(-1. Reorganization of amino acid consumption was expressed by the inactivation of the arginine deiminase pathway at a specific growth rate of 0.35 h(-1 followed by reduced over-consumption of pyruvate directed amino acids (asparagine, serine, threonine, alanine and cysteine until almost all consumed amino acids were used only for protein synthesis at maximal specific growth rate. This balanced growth was characterized by a high glycolytic flux carrying up to 87% of the carbon flow and only amino acids that relate to nucleotide synthesis (glutamine, serine and asparagine were consumed in higher amounts than required for cellular protein synthesis. Changes in the proteome were minor (mainly increase in the translation apparatus. Instead, the apparent catalytic activities of enzymes and ribosomes increased by 3.5 times (0.1 vs 0.5 h(-1. The apparent catalytic activities of glycolytic enzymes and ribosomal proteins were seen to follow this regulation pattern while those of enzymes involved in nucleotide metabolism increased more than the specific growth rate (over 5.5 times. Nucleotide synthesis formed the most abundant biomonomer synthetic pathway in the cells with an expenditure of 6% from the total ATP required for biosynthesis. Due to the increase in apparent catalytic activity, ribosome translation was more efficient at higher growth rates as evidenced by a decrease of protein to mRNA ratios. All these effects resulted in a 30% decrease of calculated ATP spilling (0.1 vs 0.5 h(-1. Our results show that bioprocesses can be made more efficient (using a balanced metabolism by varying the growth conditions.

  12. Crystal Structure and Identification of Two Key Amino Acids Involved in AI-2 Production and Biofilm Formation in Streptococcus suis LuxS.

    Directory of Open Access Journals (Sweden)

    Yang Wang

    Full Text Available Streptococcus suis has emerged as an important zoonotic pathogen that causes meningitis, arthritis, septicemia and even sudden death in pigs and humans. Quorum sensing is the signaling network for cell-to-cell communication that bacterial cells can use to monitor their own population density through production and exchange of signal molecules. S-Ribosylhomocysteinase (LuxS is the key enzyme involved in the activated methyl cycle. Autoinducer 2 (AI-2 is the adduct of borate and a ribose derivative and is produced from S-adenosylhomocysteine (SAH. AI-2 can mediate interspecies communication and in some species facilitate the bacterial behavior regulation such as biofilm formation and virulence in both Gram-positive and Gram-negative bacteria. Here, we reported the overexpression, purification and crystallographic structure of LuxS from S. suis. Our results showed the catalytically active LuxS exists as a homodimer in solution. Inductively coupled plasma-mass spectrometry (ICP-MS revealed the presence of Zn2+ in LuxS. Although the core structure shares the similar topology with LuxS proteins from other bacterial species, structural analyses and comparative amino acid sequence alignments identified two key amino acid differences in S. suis LuxS, Phe80 and His87, which are located near the substrate binding site. The results of site-directed mutagenesis and enzymology studies confirmed that these two residues affect the catalytic activity of the enzyme. These in vitro results were corroborated in vivo by expression of the LuxS variants in a S. suis ΔluxS strain. The single and two amino acid of LuxS variant decreased AI-2 production and biofilm formation significantly compared to that of the parent strain. Our findings highlight the importance of key LuxS residues that influence the AI-2 production and biofilm formation in S.suis.

  13. THE ASYMMETRIC SYNTHESIS OF AMINO ACIDS UNDER POLYMER-SUPPORTED PHASE TRANSFER CATALYTIC CONDITION

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The optical α-amino acids were synthesized under room temperature by alkylation of N-(diphenyl methylene) glycine t-butyl ester under polymer-supported phase transfer conditions using polymer-supported cinchonine (or quinine) alkaloids as chiral phase transfer catalysts and dichloromethane as solvent, followed by hydrolysis of the above intermediates introduced to the final products-optical α-amino acids. This is a new method for the asymmetric synthesis of α-amino acids. The influences of catalyst,temperature, substrates, and organic solvents on the chemical yield and optical purities of products were studied.

  14. Probing the Active Site of MIO-dependent Aminomutases, Key Catalysts in the Biosynthesis of amino Acids Incorporated in Secondary Metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, H.; Bruner, S

    2010-01-01

    The tyrosine aminomutase SgTAM produces (S)-{beta}-tyrosine from L-tyrosine in the biosynthesis of the enediyne antitumor antibiotic C-1027. This conversion is promoted by the methylideneimidazole-5-one (MIO) prosthetic group. MIO was first identified in the homologous family of ammonia lyases, which deaminate aromatic amino acids to form {alpha},{beta}-unsaturated carboxylates. Studies of substrate specificity have been described for lyases but there have been limited reports in altering the substrate specificity of aminomutases. Furthermore, it remains unclear as to what structural properties are responsible for catalyzing the presumed readdition of the amino group into the {alpha},{beta}-unsaturated intermediates to form {beta}-amino acids. Attempts to elucidate specificity and mechanistic determinants of SgTAM have also proved to be difficult as it is recalcitrant to perturbations to the active site via mutagenesis. An X-ray cocrystal structure of the SgTAM mutant of the catalytic base with L-tyrosine verified important substrate binding residues as well as the enzymatic base. Further mutagenesis revealed that removal of these crucial interactions renders the enzyme inactive. Proposed structural determinants for mutase activity probed via mutagenesis, time-point assays and X-ray crystallography revealed a complicated role for these residues in maintaining key quaternary structure properties that aid in catalysis.

  15. Probing the active site of MIO-dependent aminomutases, key catalysts in the biosynthesis of beta-amino acids incorporated in secondary metabolites.

    Science.gov (United States)

    Cooke, Heather A; Bruner, Steven D

    2010-09-01

    The tyrosine aminomutase SgTAM produces (S)-ss-tyrosine from L-tyrosine in the biosynthesis of the enediyne antitumor antibiotic C-1027. This conversion is promoted by the methylideneimidazole-5-one (MIO) prosthetic group. MIO was first identified in the homologous family of ammonia lyases, which deaminate aromatic amino acids to form alpha,ss-unsaturated carboxylates. Studies of substrate specificity have been described for lyases but there have been limited reports in altering the substrate specificity of aminomutases. Furthermore, it remains unclear as to what structural properties are responsible for catalyzing the presumed readdition of the amino group into the alpha,ss-unsaturated intermediates to form ss-amino acids. Attempts to elucidate specificity and mechanistic determinants of SgTAM have also proved to be difficult as it is recalcitrant to perturbations to the active site via mutagenesis. An X-ray cocrystal structure of the SgTAM mutant of the catalytic base with L-tyrosine verified important substrate binding residues as well as the enzymatic base. Further mutagenesis revealed that removal of these crucial interactions renders the enzyme inactive. Proposed structural determinants for mutase activity probed via mutagenesis, time-point assays and X-ray crystallography revealed a complicated role for these residues in maintaining key quaternary structure properties that aid in catalysis. PMID:20577998

  16. Key parameters when developing carbonaceous materials for catalytic wet peroxide oxidation

    OpenAIRE

    Ribeiro, Rui; Silva, Adrián; Pastrana-Martínez, Luisa; Figueiredo, José; Faria, Joaquim; Gomes, Helder

    2014-01-01

    Catalytic wet peroxide oxidation (CWPO) is an advanced oxidation process, operated using simple equipment and mild operating conditians, in which highly oxidizing hydraxyl radicaIs (HO') are generated fram the catalytic decompasition af hydrogen peroxide (H,O,) [L 2). Sinee the report of Lüeking el ai. in 1998 [3], the develapment af suitab-Ie -carbonaceous materials (without any added metal phase) for CWPO has been intensively explored [4). lhe influenee of struetUfal and surr...

  17. Synthesis, characterization and catalytic activity of acid-base bifunctional materials through protection of amino groups

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yanqiu [College of Chemistry, Jilin University, Changchun 130023 (China); College of Chemistry, Mudanjiang Normal University, Mudanjiang 157012 (China); Liu, Heng; Yu, Xiaofang [College of Chemistry, Jilin University, Changchun 130023 (China); Guan, Jingqi, E-mail: guanjq@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130023 (China); Kan, Qiubin, E-mail: qkan@mail.jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130023 (China)

    2012-03-15

    Graphical abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. Highlights: Black-Right-Pointing-Pointer The acid-base bifunctional material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized through protection of amino groups. Black-Right-Pointing-Pointer The obtained bifunctional material was tested for aldol condensation. Black-Right-Pointing-Pointer The SO{sub 3}H-SBA-15-NH{sub 2} catalyst containing amine and sulfonic acid groups exhibited excellent acid-basic properties. -- Abstract: Acid-base bifunctional mesoporous material SO{sub 3}H-SBA-15-NH{sub 2} was successfully synthesized under low acidic medium through protection of amino groups. X-ray diffraction (XRD), N{sub 2} adsorption-desorption, transmission electron micrographs (TEM), back titration, {sup 13}C magic-angle spinning (MAS) NMR and {sup 29}Si magic-angle spinning (MAS) NMR were employed to characterize the synthesized materials. The obtained bifunctional material was tested for aldol condensation reaction between acetone and 4-nitrobenzaldehyde. Compared with monofunctional catalysts of SO{sub 3}H-SBA-15 and SBA-15-NH{sub 2}, the bifunctional sample of SO{sub 3}H-SBA-15-NH{sub 2} containing amine and sulfonic acid groups exhibited excellent acid-basic properties, which make it possess high activity for the aldol condensation.

  18. Isolation of key amino acid residues at the N-terminal end of the core region Streptococcus downei glucansucrase, GTF-I.

    Science.gov (United States)

    Monchois, V; Vignon, M; Russell, R R

    1999-11-01

    Related streptococcal and Leuconostoc mesenteroides glucansucrases are enzymes of medical and biotechnological interest. Molecular modelling has suggested that the catalytic domain contains a circularly permuted version of the (beta/alpha)8 barrel structure found in the amylase superfamily, and site-directed mutagenesis has identified critical amino acids in this region. In this study, sequential N-terminal truncations of Streptococcus downei GTF-I showed that key amino acids are also present in the first one-third of the core domain. Mutations were introduced at Trp-344, Glu-349 and His-355, residues that are conserved in all glucansucrases and lie within a region which is a target for inhibitory antibodies. W344L, E349L and H355V substitutions were assayed for their effect on mutan synthesis and also on oligosaccharide synthesis with various acceptors. It appeared that Trp-344 and His-355 are involved in the action mechanism of GTF-I; His-355 may also play a role in a binding subsite necessary for oligosaccharide and glucan elongation. PMID:10570812

  19. Key mediators of intracellular amino acids signaling to mTORC1 activation.

    Science.gov (United States)

    Duan, Yehui; Li, Fengna; Tan, Kunrong; Liu, Hongnan; Li, Yinghui; Liu, Yingying; Kong, Xiangfeng; Tang, Yulong; Wu, Guoyao; Yin, Yulong

    2015-05-01

    Mammalian target of rapamycin complex 1 (mTORC1) is activated by amino acids to promote cell growth via protein synthesis. Specifically, Ras-related guanosine triphosphatases (Rag GTPases) are activated by amino acids, and then translocate mTORC1 to the surface of late endosomes and lysosomes. Ras homolog enriched in brain (Rheb) resides on this surface and directly activates mTORC1. Apart from the presence of intracellular amino acids, Rag GTPases and Rheb, other mediators involved in intracellular amino acid signaling to mTORC1 activation include human vacuolar sorting protein-34 (hVps34) and mitogen-activating protein kinase kinase kinase kinase-3 (MAP4K3). Those molecular links between mTORC1 and its mediators form a complicate signaling network that controls cellular growth, proliferation, and metabolism. Moreover, it is speculated that amino acid signaling to mTORC1 may start from the lysosomal lumen. In this review, we discussed the function of these mediators in mTORC1 pathway and how these mediators are regulated by amino acids in details.

  20. Isolation and Characterization of Well-Defined Silica-Supported Azametallacyclopentane: A Key Intermediate in Catalytic Hydroaminoalkylation Reactions

    KAUST Repository

    Hamzaoui, Bilel

    2015-09-25

    Intermolecular catalytic hydroaminoalkylation of unactivated alkene occurs with silica-supported azazirconacyclopropane [[TRIPLE BOND]Si[BOND]O[BOND]Zr(HNMe2)(η2-NMeCH2)(NMe2)]. Mechanistic studies were conducted using surface organometallic chemistry (SOMC) concepts to identify the key surface intermediates. The azametallacyclopentene intermediate {[TRIPLE BOND]Si[BOND]O[BOND]Zr(HNMe2)[η2-NMeCH2CH(Me)CH2](NMe2)} was isolated after treating with 1-propylene and characterized by FT-IR spectroscopy, elemental analysis, 1H 13C HETCOR, DARR SS-NMR and DQ TQ SS-NMR. The regeneration of the catalyst was conducted by dimethylamine protonolysis to yield the pure amine.

  1. Identification of key amino acid residues modulating intracellular and in vitro microcin E492 amyloid formation

    Directory of Open Access Journals (Sweden)

    Paulina eAguilera

    2016-01-01

    Full Text Available Microcin E492 (MccE492 is a pore-forming bacteriocin produced and exported by Klebsiella pneumoniae RYC492. Besides its antibacterial activity, excreted MccE492 can form amyloid fibrils in vivo as well as in vitro. It has been proposed that bacterial amyloids can be functional playing a biological role, and in the particular case of MccE492 it would control the antibacterial activity. MccE492 amyloid fibril’s morphology and formation kinetics in vitro have been well characterized, however it is not known which amino acid residues determine its amyloidogenic propensity, nor if it forms intracellular amyloid inclusions as has been reported for other bacterial amyloids. In this work we found the conditions in which MccE492 forms intracellular amyloids in E. coli cells, that were visualized as round-shaped inclusion bodies recognized by two amyloidophillic probes, 2-4´-methylaminophenyl benzothiazole and thioflavin-S. We used this property to perform a flow cytometry-based assay to evaluate the aggregation propensity of MccE492 mutants, that were designed using an in silico prediction of putative aggregation hotspots. We established that the predicted amino acid residues 54-63, effectively act as a pro-amyloidogenic stretch. As in the case of other amyloidogenic proteins, this region presented two gatekeeper residues (P57 and P59, which disfavor both intracellular and in vitro MccE492 amyloid formation, preventing an uncontrolled aggregation. Mutants in each of these gatekeeper residues showed faster in vitro aggregation and bactericidal inactivation kinetics, and the two mutants were accumulated as dense amyloid inclusions in more than 80% of E. coli cells expressing these variants. In contrast, the MccE492 mutant lacking residues 54-63 showed a significantly lower intracellular aggregation propensity and slower in vitro polymerization kinetics. Electron microscopy analysis of the amyloids formed in vitro by these mutants revealed that, although

  2. Approach to vicinal t-Boc-amino dibromides via catalytic aminobromination of nitrostyrenes without using chromatography and recrystallization.

    Science.gov (United States)

    Sun, Hao; Han, Jianlin; Kattamuri, Padmanabha V; Pan, Yi; Li, Guigen

    2013-02-01

    A 1.0 mol % amount of K(3)PO(4)·3H(2)O was found to catalyze aminohalogenation reaction of nitrostyrenes with N,N-dibromo-tert-butylcarbamate (t-Boc-NBr(2)) in a dichloroethane system. Good to excellent yields and complete regioselectivity have been achieved by taking advantage of the GAP workup without using traditional purification techniques such as column chromatography and recrystallization. Anew mechanism is proposed involving radical and ionic catalytic cycles and an intramolecular migration.

  3. Aldehyde Selective Wacker Oxidations of Phthalimide Protected Allylic Amines : A New Catalytic Route to beta(3)-Amino Acids

    NARCIS (Netherlands)

    Weiner, Barbara; Baeza Garcia, Alejandro; Jerphagnon, Thomas; Feringa, Ben L.

    2009-01-01

    A new method for the synthesis of B-3-amino acids is presented. Phthalimide protected allylic amines are oxidized under Wacker conditions selectively to aldehydes using PdCl2 and CuCl or Pd(MeCN)(2)Cl(NO2) and CuCl2 as complementary catalyst systems. The aldehydes are produced in excellent yields an

  4. Transition metal complexes of 5-bromosalicylidene-4-amino-3-mercapto-1,2,4-triazine-5-one: Synthesis, characterization, catalytic and antibacterial studies

    Directory of Open Access Journals (Sweden)

    AYALOOR SUBRAMANIAN RAMASUBRAMANIAN

    2011-01-01

    Full Text Available Transition metal complexes of 5-bromosalicylidene-4-amino-3-mercapto-1,2,4-triazine-5-one with metal precursors, such as Cu(II, Ni(II, Co(II and Pd(II, were synthesized and characterized by physico–chemical and spectroscopic techniques. All the complexes are of the ML type. Based on analytical, spectral data and magnetic moments, the Co(II and Ni(II complexes were assigned octahedral geometries, while the Cu (II and Pd(II complexes square planar. A study on the catalytic oxidation of benzyl alcohol, cyclohexanol, cinnamyl alcohol, 2-propanol and 2-methyl-1-propanol was performed with N-methylmorpholine-N-oxide (NMO as co-oxidant. All the complexes and their parent organic moiety were screened for their biological activity on several pathogenic bacteria and were found to possess appreciable bactericidal properties.

  5. Identification of amino acids related to catalytic function of Sulfolobus solfataricus P1 carboxylesterase by site-directed mutagenesis and molecular modeling

    Science.gov (United States)

    Choi, Yun-Ho; Lee, Ye-Na; Park, Young-Jun; Yoon, Sung-Jin; Lee, Hee-Bong

    2016-01-01

    The archaeon Sulfolobus solfataricus P1 carboxylesterase is a thermostable enzyme with a molecular mass of 33.5 kDa belonging to the mammalian hormone-sensitive lipase (HSL) family. In our previous study, we purified the enzyme and suggested the expected amino acids related to its catalysis by chemical modification and a sequence homology search. For further validating these amino acids in this study, we modified them using site-directed mutagenesis and examined the activity of the mutant enzymes using spectrophotometric analysis and then estimated by homology modeling and fluorescence analysis. As a result, it was identified that Ser151, Asp244, and His274 consist of a catalytic triad, and Gly80, Gly81, and Ala152 compose an oxyanion hole of the enzyme. In addition, it was also determined that the cysteine residues are located near the active site or at the positions inducing any conformational changes of the enzyme by their replacement with serine residues. [BMB Reports 2016; 49(6): 349-354] PMID:27222124

  6. Amino acid residues involved in the catalytic mechanism of NAD-dependent glutamate dehydrogenase from Halobacterium salinarum.

    Science.gov (United States)

    Pérez-Pomares, F; Ferrer, J; Camacho, M; Pire, C; LLorca, F; Bonete, M J

    1999-02-01

    The pH dependence of kinetic parameters for a competitive inhibitor (glutarate) was determined in order to obtain information on the chemical mechanism for NAD-dependent glutamate dehydrogenase from Halobacterium salinarum. The maximum velocity is pH dependent, decreasing at low pHs giving a pK value of 7.19+/-0.13, while the V/K for l-glutamate at 30 degrees C decreases at low and high pHs, yielding pK values of 7.9+/-0.2 and 9.8+/-0.2, respectively. The glutarate pKis profile decreases at high pHs, yielding a pK of 9. 59+/-0.09 at 30 degrees C. The values of ionization heat calculated from the change in pK with temperature are: 1.19 x 10(4), 5.7 x 10(3), 7 x 10(3), 6.6 x 10(3) cal mol-1, for the residues involved. All these data suggest that the groups required for catalysis and/or binding are lysine, histidine and tyrosine. The enzyme shows a time-dependent loss in glutamate oxidation activity when incubated with diethyl pyrocarbonate (DEPC). Inactivation follows pseudo-first-order kinetics with a second-order rate constant of 53 M-1min-1. The pKa of the titratable group was pK1=6.6+/-0.6. Inactivation with ethyl acetimidate also shows pseudo-first-order kinetics as well as inactivation with TNM yielding second-order constants of 1.2 M-1min-1 and 2.8 M-1min-1, and pKas of 8.36 and 9.0, respectively. The proposed mechanism involves hydrogen binding of each of the two carboxylic groups to tyrosyl residues; histidine interacts with one of the N-hydrogens of the l-glutamate amino group. We also corroborate the presence of a conservative lysine that has a remarkable ability to coordinate a water molecule that would act as general base.

  7. Identification of key amino acid differences contributing to neonicotinoid sensitivity between two nAChR α subunits from Pardosa pseudoannulata.

    Science.gov (United States)

    Meng, Xiangkun; Zhang, Yixi; Guo, Beina; Sun, Huahua; Liu, Chuanjun; Liu, Zewen

    2015-01-01

    Chemical insecticides are still primary methods to control rice planthoppers in China, which not only cause environmental pollution, insecticide residue and insecticide resistance, but also have negative effects on natural enemies, such as Pardosa pseudoannulata (the pond wolf spider), an important predatory enemy of rice planthoppers. Neonicotinoids insecticides, such as imidacloprid and thiacloprid, are insect-selective nAChRs agonists that are used extensively in the areas of crop protection and animal health, but have hypotoxicity to P. pseudoannulata. In the present study, two nAChR α subunits, Ppα1 or Ppα8, were found to be successfully expressed with rβ2 in Xenopus oocytes, but with much different sensitivity to imidacloprid and thiacloprid on two recombinant receptors Ppα1/rβ2 and Ppα8/rβ2. Key amino acid differences were found in and between the important loops for ligand binding. In order to well understand the relationship between the amino acid differences and neonicotinoid sensitivities, different segments in Ppα8 or Ppα1 with key amino acid differences were introduced into the corresponding regions of Ppα1 or Ppα8 to construct chimeras and then co-expressed with rβ2 subunit in Xenopus oocytes. The results from chimeras of both Ppα8 and Ppα1 showed that segments Δ5, Δ6, and Δ7 contributed to neonicotinoid sensitivities directly between two receptors. Although the segment Δ4 including all loop B region had no direct influences on neonicotinoid sensitivities, it could more remarkably influence neonicotinoid sensitivities when co-introductions with Δ5, Δ6 or Δ7. So, key amino acid differences in these four segments were important to neonicotinoid sensitivities, but the difference in Δ4 was likely ignored because of its indirect effects.

  8. Berberine target key enzymes and amino acid inibitiors in AD treatment-----creation from berberine-based structure screening

    Directory of Open Access Journals (Sweden)

    Yau Lam

    2014-07-01

    Full Text Available The main components of berberine from coptis have a variety of pharmacological activity include the treatment of neurodegenerative diseases, Alzheimer’s disease (AD. The principle of berberine is inhibiting the lower activity of enzyme and amino acid to prevent (AD. Enzyme like acetylcholinesterase enzyme (AchE, butyrylcholinesterase enzyme (BchE and monoamine oxidase (MAO; Amino acid like beta-amyloid (Aβ. Unfortunately, the single chemical structures of berberine is no significance to regulation effect. As a part of our consideration, the review paper studies on chemically modified and synthesis from berberine-derivatives. Results show that the structures of (23, (10, (86, (52, and (61 have a potential effect for AchE, BuChE and Aβ-amyloid inhibitors for the first time. Especially in (23 and (52 also has better than two western medicine were compared.

  9. Content of sulfates and their stability – key factors determining the catalytic activity of sulfated zirconia catalysts

    Directory of Open Access Journals (Sweden)

    ALEKSANDRA ZARUBICA

    2007-07-01

    Full Text Available Two series of sulfated zirconia catalysts were synthesized from various precursors using mono- or multi-step sequence preparations under laboratory con­ditions. Their activities/selectivities in the isomerization reaction of n-hexane were correlated to their textural, structural and morphological properties. The slightly higher activity of a commercially sulfated Zr(OH4-based catalyst is in agreement with the differences in the content of SO42-- ions and their thermal stability, textural and structural properties, i.e., crystallite size and possible imperfection of the incor­poration of sulfate groups in the multi-step synthesis of the catalyst having a nitrate origin. The employment of H2 as the carrier gas resulted in no catalytic activity, regardless of the catalyst precursor, preparation method and calcination tempera­ture. When the isomerization reaction was performed under He, the relatively short life-times of all catalyst samples were caused by fast deactivation due to coking in the absence of H2.

  10. Protein homeostasis disorders of key enzymes of amino acids metabolism: mutation-induced protein kinetic destabilization and new therapeutic strategies.

    Science.gov (United States)

    Pey, Angel L

    2013-12-01

    Many inborn errors of amino acids metabolism are caused by single point mutations affecting the ability of proteins to fold properly (i.e., protein homeostasis), thus leading to enzyme loss-of-function. Mutations may affect protein homeostasis by altering intrinsic physical properties of the polypeptide (folding thermodynamics, and rates of folding/unfolding/misfolding) as well as the interaction of partially folded states with elements of the protein homeostasis network (such as molecular chaperones and proteolytic machineries). Understanding these mutational effects on protein homeostasis is required to develop new therapeutic strategies aimed to target specific features of the mutant polypeptide. Here, I review recent work in three different diseases of protein homeostasis associated to inborn errors of amino acids metabolism: phenylketonuria, inherited homocystinuria and primary hyperoxaluria type I. These three different genetic disorders involve proteins operating in different cell organelles and displaying different structural complexities. Mutations often decrease protein kinetic stability of the native state (i.e., its half-life for irreversible denaturation), which can be studied using simple kinetic models amenable to biophysical and biochemical characterization. Natural ligands and pharmacological chaperones are shown to stabilize mutant enzymes, thus supporting their therapeutic application to overcome protein kinetic destabilization. The role of molecular chaperones in protein folding and misfolding is also discussed as well as their potential pharmacological modulation as promising new therapeutic approaches. Since current available treatments for these diseases are either burdening or only successful in a fraction of patients, alternative treatments must be considered covering studies from protein structure and biophysics to studies in animal models and patients.

  11. Synthesis, characterization, and tyrosinase biomimetic catalytic activity of copper(II) complexes with schiff base ligands derived from α-diketones with 2-methyl-3-amino-(3 H)-quinazolin-4-one

    Science.gov (United States)

    Ramadan, Abd El-Motaleb M.; Ibrahim, Mohamed M.; Shaban, Shaban Y.

    2011-12-01

    A template condensation of α-diketones (biacetyl, benzile and 2,3-pentanedione) with 2-methyl-3-amino-(3 H)-quinazolin-4-one (AMQ) in the presence of CuX 2 (X = Cl -, Br -, NO3- or ClO4-) resulted in the formation of tetradentate Schiff base copper(II) complexes of the type [CuLX]X and [CuL]X 2. Structural characterization of the complex species was achieved by several physicochemical methods, namely elemental analysis, electronic spectra, IR, ESR, molar conductivity, thermal analysis (TAG & DTG), and magnetic moment measurements. The stereochemistry, the nature of the metal chelates, and the catalytic reactivity are markedly dependent upon the type of counter anions and the ligand substituent within the carbonyl moiety. A square planar monomeric structure is proposed for the perchlorate, nitrate, and bromide complexes, in which the counter anions are loosely bonded to copper(II) ion. For the chloride complexes, the molar conductivities and the spectral data indicated that they have square-pyramidal environments around copper(II) center. The reported copper(II) complexes exhibit promising tyrosinase catalytic activity towards the hydroxylation of phenol followed by the aerobic oxidation of the resulting catechol. A linear correlation almost exists between the catalytic reactivity and the Lewis-acidity of the central copper(II) ion created by the donating properties of the parent ligand. The steric considerations could be accounted to clarify the difference in the catalytic activity of these functional models.

  12. Fundamental studies and development of nickel-catalyzed trifluoromethylthiolation of aryl chlorides: active catalytic species and key roles of ligand and traceless MeCN additive revealed.

    Science.gov (United States)

    Yin, Guoyin; Kalvet, Indrek; Englert, Ulli; Schoenebeck, Franziska

    2015-04-01

    A catalytic protocol to convert aryl and heteroaryl chlorides to the corresponding trifluoromethyl sulfides is reported herein. It relies on a relatively inexpensive Ni(cod)2/dppf (cod = 1,5-cyclooctadiene; dppf = 1,1'-bis(diphenylphosphino)ferrocene) catalyst system and the readily accessible coupling reagent (Me4N)SCF3. Our computational and experimental mechanistic data are consistent with a Ni(0)/Ni(II) cycle and inconsistent with Ni(I) as the reactive species. The relevant intermediates were prepared, characterized by X-ray crystallography, and tested for their catalytic competence. This revealed that a monomeric tricoordinate Ni(I) complex is favored for dppf and Cl whose role was unambiguously assigned as being an off-cycle catalyst deactivation product. Only bidentate ligands with wide bite angles (e.g., dppf) are effective. These bulky ligands render the catalyst resting state as [(P-P)Ni(cod)]. The latter is more reactive than Ni(P-P)2, which was found to be the resting state for ligands with smaller bite angles and suffers from an initial high-energy dissociation of one ligand prior to oxidative addition, rendering the system unreactive. The key to effective catalysis is hence the presence of a labile auxiliary ligand in the catalyst resting state. For more challenging substrates, high conversions were achieved via the employment of MeCN as a traceless additive. Mechanistic data suggest that its beneficial role lies in decreasing the energetic span, therefore accelerating product formation. Finally, the methodology has been applied to synthetic targets of pharmaceutical relevance. PMID:25790253

  13. Lactococcal aminotransferases AraT and BcaT are key enzymes for the formation of aroma compounds from amino acids in cheese

    NARCIS (Netherlands)

    Rijnen, L.; Yvon, M.; Kranenburg, van R.; Courtin, P.; Verheul, A.; Chambellon, E.; Smit, G.

    2003-01-01

    Amino acid catabolism plays a major role in cheese aroma development. Previously, we showed that the lactococcal aminotransferases AraT and BcaT initiate the conversion of aromatic amino acids, branched-chain amino acids and methionine to aroma compounds. In this study, we evaluated the importance o

  14. Amino acids

    Science.gov (United States)

    ... amino acids are: histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan , and valine. Nonessential amino acids "Nonessential" means that our bodies produce an amino ...

  15. STUDY ON CATALYTIC CURING AGENT FOR CATHODIC ELECTRODEPOSITION PAINT OF AMINO-EPOXY RESIN%催干剂对氨基环氧树脂阴极电泳漆的影响

    Institute of Scientific and Technical Information of China (English)

    邓光辉; 石晓红; 蓝虹云; 雷福厚

    2001-01-01

    Cathodic electrodeposition paint (CEP) was synthesized with amino epoxy resin, and the properties of the paint film was investigated. The results showed that properties of the paint film varied with various catalytic curing agent under the condition of electrodeposition for 2 min at pH 6~7. By comparing properties of the paint film, the superior paint film was obtained from the cathodic electrodeposition coating materials by mixing cobalt and lead salts as catalytic curing agent under the condition of oven-curing for 20min at 160℃ to form completely cured film of high hardness with good resistances against water, acid, alkali and salt.%以氨基环氧树脂为基体树脂,Co2+、Pb2+盐为催干剂合成了阴极电泳漆,并对膜性能进行考察。结果表明,所合成的阴极电泳涂料在pH值为6~7、电泳时间2min的条件下。加入不同的催干剂,在不同的烘干温度下,得到性能不同的漆膜。经过漆膜综合性能试验,结果表明加入钴和铅复合催干剂,在160℃左右烘干20min,可得到完全固化、硬度较高、耐潮、耐盐、耐酸碱性较好的漆膜。

  16. 4-Amino-1,2,4-triazole: Playing a key role in the chemical deposition of Cu-In-Ga metal layers for photovoltaic applications

    International Nuclear Information System (INIS)

    Liquid film processing of Cu(In,Ga)Se2 absorber layers has the potential to lower the cell production costs significantly namely because of the absence of vacuum steps and high material utilization. In this work an ink system based on metal carboxylates in a mixture of a nitrogen-containing base and an alcohol is investigated. After the coating step on a suitable substrate followed by the drying of the alcohol, the metal ions are reduced to the respective metals with a simple heat treatment. However, depending on the conditions, the resulting metal layers are either highly porous or dewetting above 160 °C due to the high surface tension of the intermediate liquid indium. Adding 4-amino-1,2,4-triazole to the ink leads to a homogeneous metal layer, which is crucial for the formation of dense chalcopyrite layers. We propose a stabilization mechanism based on a temporary polymeric complex of Cu2+ and the additive 4-amino-1,2,4-triazole which is decomposing completely at selenization conditions. - Highlights: • Influence of 4-amino-1,2,4-triazole on the film formation has been investigated. • Two polymers identified forming an organic matrix during the layer processing • This matrix allows processing of dense and crack free metallic layers. • The polymers decompose completely under selenization conditions

  17. Immune escape mutants of Highly Pathogenic Avian Influenza H5N1 selected using polyclonal sera: identification of key amino acids in the HA protein.

    Directory of Open Access Journals (Sweden)

    Ioannis Sitaras

    Full Text Available Evolution of Avian Influenza (AI viruses--especially of the Highly Pathogenic Avian Influenza (HPAI H5N1 subtype--is a major issue for the poultry industry. HPAI H5N1 epidemics are associated with huge economic losses and are sometimes connected to human morbidity and mortality. Vaccination (either as a preventive measure or as a means to control outbreaks is an approach that splits the scientific community, due to the risk of it being a potential driving force in HPAI evolution through the selection of mutants able to escape vaccination-induced immunity. It is therefore essential to study how mutations are selected due to immune pressure. To this effect, we performed an in vitro selection of mutants from HPAI A/turkey/Turkey/1/05 (H5N1, using immune pressure from homologous polyclonal sera. After 42 rounds of selection, we identified 5 amino acid substitutions in the Haemagglutinin (HA protein, most of which were located in areas of antigenic importance and suspected to be prone to selection pressure. We report that most of the mutations took place early in the selection process. Finally, our antigenic cartography studies showed that the antigenic distance between the selected isolates and their parent strain increased with passage number.

  18. Versatile synthesis of amino acid functionalized nucleosides via a domino carboxamidation reaction

    Directory of Open Access Journals (Sweden)

    Vicky Gheerardijn

    2014-11-01

    Full Text Available Functionalized oligonucleotides have recently gained increased attention for incorporation in modified nucleic acid structures both for the design of aptamers with enhanced binding properties as well as the construction of catalytic DNA and RNA. As a shortcut alternative to the incorporation of multiple modified residues, each bearing one extra functional group, we present here a straightforward method for direct linking of functionalized amino acids to the nucleoside base, thus equipping the nucleoside with two extra functionalities at once. As a proof of principle, we have introduced three amino acids with functional groups frequently used as key-intermediates in DNA- and RNAzymes via an efficient and straightforward domino carboxamidation reaction.

  19. The Key Role of pH Value in the Synthesis of Titanate Nanotubes-Loaded Manganese Oxides as a Superior Catalyst for the Selective Catalytic Reduction of NO with NH3

    Directory of Open Access Journals (Sweden)

    Xiongbo Chen

    2013-01-01

    Full Text Available Titanate nanotubes (TNTs synthesized by hydrothermal method were increasingly used as the catalyst support for the selective catalytic reduction (SCR of NO with ammonia. This paper reports the critical process of postwashing to prepare satisfactory TNTs for the uses of SCR catalysts. Herein, alkaline TNTs (TNTs-AL, acidic TNTs (TNTs-AC, and neutral TNTs (TNTs-NE were synthesized by controlling washing pH value. When these TNTs were utilized as the catalyst supports for manganese oxides (Mn/TNTs-AL, Mn/TNTs-AC, and Mn/TNTs-NE, the key role of pH value was found. Titanate nanosheets, titanate nanorods and titanate nanotubes were dominated in Mn/TNTs-AL, Mn/TNTs-AC, and Mn/TNTs-NE, respectively. MnO2 crystal was observed when using TNTs-AC or TNTs-NE as the support. By contrast, Mn3O4 and NaNO3 were observed when using TNTs-AL as the support. Mn/TNTs-NE showed the best SCR activity, in line with the largest surface area, the best dispersion, and the most active redox property of manganese oxides. Mn/TNTs-AL showed negligible SCR activity, resulting from the minimum surface area, the Mn3O4-dominating crystal structure, and the bad dispersion of manganese oxides.

  20. α-Amino Acid-Isosteric α-Amino Tetrazoles

    NARCIS (Netherlands)

    Zhao, Ting; Kurpiewska, Katarzyna; Kalinowska-Tłuścik, Justyna; Herdtweck, Eberhardt; Dömling, Alexander

    2016-01-01

    The synthesis of all 20 common natural proteinogenic and 4 otherα-amino acid-isosteric α-amino tetrazoles has been accomplished, whereby the carboxyl group is replaced by the isosteric 5-tetrazolyl group. The short process involves the use of the key Ugi tetrazole reaction followed by deprotection c

  1. The molecular basis of color vision in colorful fish: Four Long Wave-Sensitive (LWS opsins in guppies (Poecilia reticulata are defined by amino acid substitutions at key functional sites

    Directory of Open Access Journals (Sweden)

    Ward Pam R

    2008-07-01

    Full Text Available Abstract Background Comparisons of functionally important changes at the molecular level in model systems have identified key adaptations driving isolation and speciation. In cichlids, for example, long wavelength-sensitive (LWS opsins appear to play a role in mate choice and male color variation within and among species. To test the hypothesis that the evolution of elaborate coloration in male guppies (Poecilia reticulata is also associated with opsin gene diversity, we sequenced long wavelength-sensitive (LWS opsin genes in six species of the family Poeciliidae. Results Sequences of four LWS opsin genes were amplified from the guppy genome and from mRNA isolated from adult guppy eyes. Variation in expression was quantified using qPCR. Three of the four genes encode opsins predicted to be most sensitive to different wavelengths of light because they vary at key amino acid positions. This family of LWS opsin genes was produced by a diversity of duplication events. One, an intronless gene, was produced prior to the divergence of families Fundulidae and Poeciliidae. Between-gene PCR and DNA sequencing show that two of the guppy LWS opsins are linked in an inverted orientation. This inverted tandem duplication event occurred near the base of the poeciliid tree in the common ancestor of Poecilia and Xiphophorus. The fourth sequence has been uncovered only in the genus Poecilia. In the guppies surveyed here, this sequence is a hybrid, with the 5' end most similar to one of the tandem duplicates and the 3' end identical to the other. Conclusion Enhanced wavelength discrimination, a possible consequence of opsin gene duplication and divergence, might have been an evolutionary prerequisite for color-based sexual selection and have led to the extraordinary coloration now observed in male guppies and in many other poeciliids.

  2. Understanding catalytic biomass conversion through data mining

    NARCIS (Netherlands)

    E.J. Ras; B. McKay; G. Rothenberg

    2010-01-01

    Catalytic conversion of biomass is a key challenge that we chemists face in the twenty-first century. Worldwide, research is conducted into obtaining bulk chemicals, polymers and fuels. Our project centres on glucose valorisation via furfural derivatives using catalytic hydrogenation. We present her

  3. Spectroscopic characterization of the key catalytic intermediate Ni-C in the O2-tolerant [NiFe] hydrogenase I from Aquifex aeolicus: evidence of a weakly bound hydride.

    Science.gov (United States)

    Pandelia, Maria-Eirini; Infossi, Pascale; Stein, Matthias; Giudici-Orticoni, Marie-Thérèse; Lubitz, Wolfgang

    2012-01-21

    Ni-C in the O(2)-tolerant hydrogenase I from Aquifex aeolicus binds a hydride weaker than that in O(2)-sensitive hydrogenases. This is in line with the enhanced light-sensitivity of Ni-C, greater lability of the hydride complex and increased catalytic redox potentials relevant to bio-H(2) oxidation. PMID:22143669

  4. Controlling enzyme inhibition using an expanded set of genetically encoded amino acids.

    Science.gov (United States)

    Zheng, Shun; Kwon, Inchan

    2013-09-01

    Enzyme inhibition plays an important role in drug development, metabolic pathway regulation, and biocatalysis with product inhibition. When an inhibitor has high structural similarities to the substrate of an enzyme, controlling inhibitor binding without affecting enzyme substrate binding is often challenging and requires fine-tuning of the active site. We hypothesize that an extended set of genetically encoded amino acids can be used to design an enzyme active site that reduces enzyme inhibitor binding without compromising substrate binding. As a model case, we chose murine dihydrofolate reductase (mDHFR), substrate dihydrofolate, and inhibitor methotrexate. Structural models of mDHFR variants containing non-natural amino acids complexed with each ligand were constructed to identify a key residue for inhibitor binding and non-natural amino acids to replace the key residue. Then, we discovered that replacing the key phenylalanine residue with two phenylalanine analogs (p-bromophenylalanine (pBrF) and L-2-naphthylalanine (2Nal)) enhances binding affinity toward the substrate dihydrofolate over the inhibitor by 4.0 and 5.8-fold, respectively. Such an enhanced selectivity is mainly due to a reduced inhibitor binding affinity by 2.1 and 4.3-fold, respectively. The catalytic efficiency of the mDHFR variant containing pBrF is comparable to that of wild-type mDHFR, whereas the mDHFR variant containing 2Nal exhibits a moderate decrease in the catalytic efficiency. The work described here clearly demonstrates the feasibility of selectively controlling enzyme inhibition using an expanded set of genetically encoded amino acids.

  5. tRNA acceptor-stem and anticodon bases embed separate features of amino acid chemistry.

    Science.gov (United States)

    Carter, Charles W; Wolfenden, Richard

    2016-01-01

    The universal genetic code is a translation table by which nucleic acid sequences can be interpreted as polypeptides with a wide range of biological functions. That information is used by aminoacyl-tRNA synthetases to translate the code. Moreover, amino acid properties dictate protein folding. We recently reported that digital correlation techniques could identify patterns in tRNA identity elements that govern recognition by synthetases. Our analysis, and the functionality of truncated synthetases that cannot recognize the tRNA anticodon, support the conclusion that the tRNA acceptor stem houses an independent code for the same 20 amino acids that likely functioned earlier in the emergence of genetics. The acceptor-stem code, related to amino acid size, is distinct from a code in the anticodon that is related to amino acid polarity. Details of the acceptor-stem code suggest that it was useful in preserving key properties of stereochemically-encoded peptides that had developed the capacity to interact catalytically with RNA. The quantitative embedding of the chemical properties of amino acids into tRNA bases has implications for the origins of molecular biology.

  6. α-Amino Acid-Isosteric α-Amino Tetrazoles.

    Science.gov (United States)

    Zhao, Ting; Kurpiewska, Katarzyna; Kalinowska-Tłuścik, Justyna; Herdtweck, Eberhardt; Dömling, Alexander

    2016-02-24

    The synthesis of all 20 common natural proteinogenic and 4 otherα-amino acid-isosteric α-amino tetrazoles has been accomplished, whereby the carboxyl group is replaced by the isosteric 5-tetrazolyl group. The short process involves the use of the key Ugi tetrazole reaction followed by deprotection chemistries. The tetrazole group is bioisosteric to the carboxylic acid and is widely used in medicinal chemistry and drug design. Surprisingly, several of the common α-amino acid-isosteric α-amino tetrazoles are unknown up to now. Therefore a rapid synthetic access to this compound class and non-natural derivatives is of high interest to advance the field. PMID:26817531

  7. GFP Reporter Screens for the Engineering of Amino Acid Degrading Enzymes from Libraries Expressed in Bacteria

    OpenAIRE

    Paley, Olga; Agnello, Giulia; Cantor, Jason; Yoo, Tae Hyun; Georgiou, George; Stone, Everett

    2013-01-01

    There is significant interest in engineering human amino acid degrading enzymes as non-immunogenic chemotherapeutic agents. We describe a high-throughput fluorescence activated cell sorting (FACS) assay for detecting the catalytic activity of amino acid degrading enzymes in bacteria, at the single cell level. This assay relies on coupling the synthesis of the GFP reporter to the catalytic activity of the desired amino acid degrading enzyme in an appropriate E. coli genetic background. The met...

  8. Plasma amino acids

    Science.gov (United States)

    Plasma amino acids is a screening test done on infants that looks at the amounts of amino ... Laboratory error High or low amounts of individual plasma amino acids must be considered with other information. ...

  9. Plasma amino acids

    Science.gov (United States)

    Amino acids blood test ... types of methods used to determine the individual amino acid levels in the blood. ... test is done to measure the level of amino acids in the blood. An increased level of a ...

  10. Crystal structures of Trypanosoma brucei oligopeptidase B broaden the paradigm of catalytic regulation in prolyl oligopeptidase family enzymes.

    Directory of Open Access Journals (Sweden)

    Peter Canning

    Full Text Available Oligopeptidase B cleaves after basic amino acids in peptides up to 30 residues. As a virulence factor in bacteria and trypanosomatid pathogens that is absent in higher eukaryotes, this is a promising drug target. Here we present ligand-free open state and inhibitor-bound closed state crystal structures of oligopeptidase B from Trypanosoma brucei, the causative agent of African sleeping sickness. These (and related structures show the importance of structural dynamics, governed by a fine enthalpic and entropic balance, in substrate size selectivity and catalysis. Peptides over 30 residues cannot fit the enzyme cavity, preventing the complete domain closure required for a key propeller Asp/Glu to fix the catalytic His and Arg in the catalytically competent conformation. This size exclusion mechanism protects larger peptides and proteins from degradation. Similar bacterial prolyl endopeptidase and archael acylaminoacyl peptidase structures demonstrate this mechanism is conserved among oligopeptidase family enzymes across all three domains of life.

  11. Recent progress in selective catalytic conversion of cellulose into key platform molecules%纤维素选择性催化转化为重要平台化合物的研究进展

    Institute of Scientific and Technical Information of China (English)

    邓理; 廖兵; 郭庆祥

    2013-01-01

    Cellulose is the most abundant plant biomass component, which is also an important candidate for replacing fossil resource with the aim of sustainable future. In the present article, authors reviewed the catalytic transformation of cellulose into platform compounds, including glucose, hydroxymethylfurfural, levulinic acid and polyols via ionic liquids, solid acids and noble metal catalysts. Moreover, the application and the further transformation of these compounds were also introduced, for instance, the oxidation and reduction of hydroxymethylfurfural, the conversion of levulinic acid into γ-valerolactone, hydrocarbon, 1,4-butandiol and methyl tetrahydrofuran, and the catalytic reforming of polyols into liquid fuels. The advances on the transformation of cellulose into platform compounds will shed a new light on the sustainable future in terms of the renewable resource.%纤维素是自然界中最丰富的植物生物质组分,拓宽纤维素的利用对于减少化石资源使用和可持续发展非常重要.本文综述了以纤维素为原料,通过化学催化转化得到平台化合物葡萄糖、羟甲基糠醛、乙酰丙酸、多元醇的方法,包括离子液体催化、固体酸催化和贵金属催化加氢等,以及上述平台化合物后续转化的途径.如羟甲基糠醛的氧化与还原,乙酰丙酸制备γ-戊内酯、烃、1,4-戊二醇和甲基四氢呋喃,以及多元醇催化重整制备液体燃料.提出纤维素催化制备平台化合物的研究成果将为可再生资源替代化石资源的可持续发展提供有力的理论支持和实践指导.

  12. Role of Key Residues at the Flavin Mononucleotide (FMN:Adenylyltransferase Catalytic Site of the Bifunctional Riboflavin Kinase/Flavin Adenine Dinucleotide (FAD  Synthetase from Corynebacterium ammoniagenes

    Directory of Open Access Journals (Sweden)

    Susana Frago

    2012-11-01

    Full Text Available In mammals and in yeast the conversion of Riboflavin (RF into flavin mononucleotide (FMN and flavin adenine dinucleotide (FAD is catalysed by the sequential action of two enzymes: an ATP:riboflavin kinase (RFK and an ATP:FMN adenylyltransferase (FMNAT. However, most prokaryotes depend on a single bifunctional enzyme, FAD synthetase (FADS, which folds into two modules: the C-terminal associated with RFK activity and the N-terminal associated with FMNAT activity. Sequence and structural analysis suggest that the 28-HxGH-31, 123-Gx(D/N-125 and 161-xxSSTxxR-168 motifs from FADS must be involved in ATP stabilisation for the adenylylation of FMN, as well as in FAD stabilisation for FAD phyrophosphorolysis. Mutants were produced at these motifs in the Corynebacterium ammoniagenes FADS (CaFADS. Their effects on the kinetic parameters of CaFADS activities (RFK, FMNAT and FAD pyrophosphorilase, and on substrates and product binding properties indicate that H28, H31, N125 and S164 contribute to the geometry of the catalytically competent complexes at the FMNAT-module of CaFADS.

  13. The crystal structure of a xyloglucan-specific endo-beta-1,4-glucanase from Geotrichum sp. M128 xyloglucanase reveals a key amino acid residue for substrate specificity.

    Science.gov (United States)

    Yaoi, Katsuro; Kondo, Hidemasa; Hiyoshi, Ayako; Noro, Natsuko; Sugimoto, Hiroshi; Tsuda, Sakae; Miyazaki, Kentaro

    2009-09-01

    Geotrichum sp. M128 possesses two xyloglucan-specific glycoside hydrolases belonging to family 74, xyloglucan-specific endo-beta-1,4-glucanase (XEG) and oligoxyloglucan reducing-end-specific cellobiohydrolase (OXG-RCBH). Despite their similar amino acid sequences (48% identity), their modes of action and substrate specificities are distinct. XEG catalyzes the hydrolysis of xyloglucan polysaccharides in endo mode, while OXG-RCBH acts on xyloglucan oligosaccharides at the reducing end in exo mode. Here, we determined the crystal structure of XEG at 2.5 A resolution, and compared it to a previously determined structure of OXG-RCBH. For the most part, the amino acid residues that interact with substrate are conserved between the two enzymes. However, there are notable differences at subsite positions -1 and +2. OXG-RCBH has a loop around the +2 site that blocks one end of the active site cleft, which accounts for its exo mode of action. In contrast, XEG lacks a corresponding loop at this site, thereby allowing binding to the middle of the main chain of the substrate. At the -1 site in OXG-RCBH, Asn488 interacts with the xylose side chain of the substrate, whereas the -1 site is occupied by Tyr457 in XEG. To confirm the contribution of this residue to substrate specificity, Tyr457 was substituted by Gly in XEG. The wild-type XEG cleaved the oligoxyloglucan at a specific site; the Y457G variant cleaved the same substrate, but at various sites. Together, the absence of a loop in the cleft and the presence of bulky Tyr457 determine the substrate specificity of XEG. PMID:19682300

  14. Structures of KdnB and KdnA from Shewanella oneidensis: Key Enzymes in the Formation of 8-Amino-3,8-Dideoxy-d-Manno-Octulosonic Acid.

    Science.gov (United States)

    Zachman-Brockmeyer, Trevor R; Thoden, James B; Holden, Hazel M

    2016-08-16

    8-Amino-3,8-dideoxy-d-manno-octulosonic acid (Kdo8N) is a unique amino sugar that has thus far only been observed on the lipopolysaccharides of marine bacteria belonging to the genus Shewanella. Although its biological function is still unclear, it is thought that the sugar is important for the integrity of the bacterial cell outer membrane. A three-gene cluster required for the biosynthesis of Kdo8N was first identified in Shewanella oneidensis. Here we describe the three-dimensional structures of two of the enzymes required for Kdo8N biosynthesis in S. oneidensis, namely, KdnB and KdnA. The structure of KdnB was solved to 1.85-Å resolution, and its overall three-dimensional architecture places it into the Group III alcohol dehydrogenase superfamily. A previous study suggested that KdnB did not require NAD(P) for activity. Strikingly, although the protein was crystallized in the absence of any cofactors, the electron density map clearly revealed the presence of a tightly bound NAD(H). In addition, a bound metal was observed, which was shown via X-ray fluorescence to be a zinc ion. Unlike other members of the Group III alcohol dehydrogenases, the dinucleotide cofactor in KdnB is tightly bound and cannot be removed without leading to protein precipitation. With respect to KdnA, it is a pyridoxal 5'-phosphate or (PLP)-dependent aminotransferase. For this analysis, the structure of KdnA, trapped in the presence of the external aldimine with PLP and glutamate, was determined to 2.15-Å resolution. The model of KdnA represents the first structure of a sugar aminotransferase that functions on an 8-oxo sugar. Taken together the results reported herein provide new molecular insight into the biosynthesis of Kdo8N.

  15. Catalytic and structural diversity of the fluazifop-inducible glutathione transferases from Phaseolus vulgaris.

    Science.gov (United States)

    Chronopoulou, Evangelia; Madesis, Panagiotis; Asimakopoulou, Basiliki; Platis, Dimitrios; Tsaftaris, Athanasios; Labrou, Nikolaos E

    2012-06-01

    Plant glutathione transferases (GSTs) comprise a large family of inducible enzymes that play important roles in stress tolerance and herbicide detoxification. Treatment of Phaseolus vulgaris leaves with the aryloxyphenoxypropionic herbicide fluazifop-p-butyl resulted in induction of GST activities. Three inducible GST isoenzymes were identified and separated by affinity chromatography. Their full-length cDNAs with complete open reading frame were isolated using RACE-RT and information from N-terminal amino acid sequences. Analysis of the cDNA clones showed that the deduced amino acid sequences share high homology with GSTs that belong to phi and tau classes. The three isoenzymes were expressed in E. coli and their substrate specificity was determined towards 20 different substrates. The results showed that the fluazifop-inducible glutathione transferases from P. vulgaris (PvGSTs) catalyze a broad range of reactions and exhibit quite varied substrate specificity. Molecular modeling and structural analysis was used to identify key structural characteristics and to provide insights into the substrate specificity and the catalytic mechanism of these enzymes. These results provide new insights into catalytic and structural diversity of GSTs and the detoxifying mechanism used by P. vulgaris.

  16. Theoretical Calculations of the Catalytic Triad in Short-Chain Alcohol Dehydrogenases/Reductases

    OpenAIRE

    Gani, Osman A B S M; Adekoya, Olayiwola A; Giurato, Laura; Spyrakis, Francesca; Cozzini, Pietro; Guccione, Salvatore; Winberg, Jan-Olof; Sylte, Ingebrigt

    2007-01-01

    Three highly conserved active site residues (Ser, Tyr, and Lys) of the family of short-chain alcohol dehydrogenases/reductases (SDRs) were demonstrated to be essential for catalytic activity and have been denoted the catalytic triad of SDRs. In this study computational methods were adopted to study the ionization properties of these amino acids in SDRs from Drosophila melanogaster and Drosophila lebanonensis. Three enzyme models, with different ionization scenarios of the catalytic triad that...

  17. Catalytic distillation structure

    Science.gov (United States)

    Smith, Jr., Lawrence A.

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  18. Catalytic combustor for hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mercea, J.; Grecu, E.; Fodor, T.; Kreibik, S.

    1982-01-01

    The performance of catalytic combustors for hydrogen using platinum-supported catalysts is described. Catalytic plates of different sizes were constructed using fibrous and ceramic supports. The temperature distribution as well as the reaction efficiency as a function of the fuel input rate was determined, and a comparison between the performances of different plates is discussed.

  19. 磷酸酶STEP的Q-loop中T541参与催化反应的机制%T541 in Q-loop of STEP plays a key role in the catalytical activity

    Institute of Scientific and Technical Information of China (English)

    谢迪东; 龚正; 李容; 李慧; 刘宏达; 孙金鹏; 庞琦

    2013-01-01

    Objective To explore the essential role of Threonine at position 541 and 330 (T541,T330)in the intrinsic phosphatase activity of striatal-enriched protein tyrosine phosphatase (STEP).Methods STEP wild type (STEP-WT) and its mutants STEP-T330D/T541A were sub-cloned into the PET15b vector.Expression and purification of STEP-WT and its mutants were performed by affinity column and liquid chromatography.The phosphatase activity was measured in vitro with 4-nitrophenyl phosphate (pNPP) as substrate.The inhibition by NaVO3 was measured to monitor the effects of mutants on protein folding.The pH-dependence and leaving-group pKa dependence of STEP catalysis were carded out to dissect the underlying molecular mechanism.Results STEP-WT and STEP-T330D displayed similar catalytic ability toward pNPP at pH 7.0.The kcat of STEP-T541 A decreased 3 folds compared to STEP-WT.STEP-WT and the two mutants had similar Ki for NaVO3.Examination of the kcat versus pH curve revealed that pK2app of STEP-T541A significantly increased and the (kcat) lim dropped by at least 10 folds.In consisitent with these observations,βlg (kcat) of STEP-T541A increased significantly.Conclusion T541 plays an important role in STEP catalysis,by participating the processes from product formation to phosphate release.Future drugs targeting to STEP for therapeutic usage could be developed through modulating T541 conformations.%目的 研究纹状体蛋白质酪氨酸磷酸酶(STEP) pY-loop结构上第330位的苏氨酸(T330)和Q-loop结构上第541位的苏氨酸(T541)参与催化反应的作用机制.方法 构建STEP野生型(STEP-WT)及其突变体(STEP-T330D/T541A)的表达质粒;表达并纯化STEP-WT及其突变体蛋白,体外检测这些蛋白对小分子底物4-硝基苯磷酸二钠(pNPP)的催化活力,分析NaVO3对STEP-WT及其突变体酶活性的抑制作用;检测STEP-WT及其突变体催化反应的pH依赖性和对解离基团pKa的依赖性.结果 体外催

  20. Visible-Light Photoredox-Catalyzed Giese Reaction: Decarboxylative Addition of Amino Acid Derived α-Amino Radicals to Electron-Deficient Olefins

    KAUST Repository

    Millet, Anthony

    2016-06-20

    A tin- and halide-free, visible-light photoredox-catalyzed Giese reaction was developed. Primary and secondary α-amino radicals were generated readily from amino acids in the presence of catalytic amounts of an iridium photocatalyst. The reactivity of the α-amino radicals has been evaluated for the functionalization of a variety of activated olefins. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  1. Engineering Metallic Nanoparticles for Enhancing and Probing Catalytic Reactions.

    Science.gov (United States)

    Collins, Gillian; Holmes, Justin D

    2016-07-01

    Recent developments in tailoring the structural and chemical properties of colloidal metal nanoparticles (NPs) have led to significant enhancements in catalyst performance. Controllable colloidal synthesis has also allowed tailor-made NPs to serve as mechanistic probes for catalytic processes. The innovative use of colloidal NPs to gain fundamental insights into catalytic function will be highlighted across a variety of catalytic and electrocatalytic applications. The engineering of future heterogenous catalysts is also moving beyond size, shape and composition considerations. Advancements in understanding structure-property relationships have enabled incorporation of complex features such as tuning surface strain to influence the behavior of catalytic NPs. Exploiting plasmonic properties and altering colloidal surface chemistry through functionalization are also emerging as important areas for rational design of catalytic NPs. This news article will highlight the key developments and challenges to the future design of catalytic NPs. PMID:26823380

  2. Catalytic distillation process

    Science.gov (United States)

    Smith, Jr., Lawrence A.

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  3. Catalytic Functions of Standards

    NARCIS (Netherlands)

    K. Blind (Knut)

    2009-01-01

    textabstractThe three different areas and the examples have illustrated several catalytic functions of standards for innovation. First, the standardisation process reduces the time to market of inventions, research results and innovative technologies. Second, standards themselves promote the diffusi

  4. Formation of Amino Acid Thioesters for Prebiotic Peptide Synthesis: Catalysis By Amino Acid Products

    Science.gov (United States)

    Weber, Arthur L.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    The origin of life can be described as a series of events in which a prebiotic chemical process came increasingly under the control of its catalytic products. In our search for this prebiotic process that yielded catalytic takeover products (such as polypeptides), we have been investigating a reaction system that generates peptide-forming amino acid thioesters from formaldehyde, glycolaldehyde, and ammonia in the presence of thiols. As shown below, this model process begins by aldol condensation of formaldehyde and glycolaldehyde to give trioses and releases. These sugars then undergo beta-dehydration yielding their respective alpha-ketoaldehydes. Addition of ammonia to the alpha-ketoaldehydes yields imines which can either: (a) rearrange in the presence of thesis to give amino acid thioesters or (be react with another molecule of aldehyde to give imidazoles. This 'one-pot' reaction system operates under mild aqueous conditions, and like modem amino acid biosynthesis, uses sugar intermediates which are converted to products by energy-yielding redox reactions. Recently, we discovered that amino acids, such as the alanine reaction product, catalyze the first and second steps of the process. In the presence of ammonia the process also generates other synthetically useful products, like the important biochemical -- pyruvic acid.

  5. Catalytic Synthesis Methods for Triazolopyrimidine Derivatives

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new method for catalyzed synthesis of triazolopyrimidine derivatives is reported. Aikylamine reaction with dialkyl cyanodithioiminocarbonate was catalyzed by quaternary ammonium salts at room temperature to yield 3-alkylamine-5-amino-1,2,4-triazole in good quality and high yields. After imidization and reaction with an α,β-unsaturated acid derivative, the reaction intermediate was hydrolyzed in the presence of a Lewis acid to obtain the target product. This novel catalytic method for triazolopyrimidine derivatives can be carried out under inexpen-sive and mild conditions, and is safe and environmentally friendly. IH NMR results for all intermediates are re-ported.

  6. Catalytic ignition of light hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    K. L. Hohn; C.-C. Huang; C. Cao

    2009-01-01

    Catalytic ignition refers to phenomenon where sufficient energy is released from a catalytic reaction to maintain further reaction without additional extemai heating. This phenomenon is important in the development of catalytic combustion and catalytic partial oxidation processes, both of which have received extensive attention in recent years. In addition, catalytic ignition studies provide experimental data which can be used to test theoretical hydrocarbon oxidation models. For these reasons, catalytic ignition has been frequently studied. This review summarizes the experimental methods used to study catalytic ignition of light hydrocarbons and describes the experimental and theoretical results obtained related to catalytic ignition. The role of catalyst metal, fuel and fuel concentration, and catalyst state in catalytic ignition are examined, and some conclusions are drawn on the mechanism of catalytic ignition.

  7. Extraterrestrial Amino Acids in the Almahata Sitta Meteorite

    Science.gov (United States)

    Glavin, Daniel P.; Aubrey, Andrew D.; Callahan, Michael P.; Dworkin, Jason P.; Elsila, Jamie E.; Parker, Eric T.; Bada, Jeffrey L.

    2010-01-01

    Amino acid analysis of a meteorite fragment of asteroid 2008 TC3 called Almahata Sitta was carried out using reverse-phase liquid chromatography coupled with UV fluorescence detection and time-of-flight mass spectrometry (LC-FD/ToF-MS) as part of a sample analysis consortium. LC-FD/ToF-MS analyses of hot-water extracts from the meteorite revealed a complex distribution of two- to seven-carbon aliphatic amino acids and one- to three-carbon amines with abundances ranging from 0.5 to 149 parts-per-billion (ppb). The enantiomeric ratios of the amino acids alanine, R-amino-n-butyric acid (beta-ABA), 2-amino-2-methylbutanoic acid (isovaline), and 2-aminopentanoic acid (norvaline) in the meteorite were racemic (D/L approximately 1), indicating that these amino acids are indigenous to the meteorite and not terrestrial contaminants. Several other non-protein amino acids were also identified in the meteorite above background levels including alpha-aminoisobutyric acid (alpha-AIB), 4-amino-2- methylbutanoic acid, 4-amino-3-methylbutanoic acid, and 3-, 4-, and 5-aminopentanoic acid. The total abundances of isovaline and alpha-AIB in Almahata Sitta are 1000 times lower than the abundances of these amino acids found in the CM carbonaceous chondrite Murchison. The extremely low abundances and unusual distribution of five carbon amino acids in Almahata Sitta compared to Cl, CM, and CR carbonaceous chondrites may reflect extensive thermal alteration of amino acids on the parent asteroid by partial melting during formation or subsequent impact shock heating. It is also possible that amino acids were synthesized by catalytic reactions on the parent body after asteroid 2008 TC3 cooled to lower temperatures.

  8. Structure of human aspartyl aminopeptidase complexed with substrate analogue: insight into catalytic mechanism, substrate specificity and M18 peptidase family

    Directory of Open Access Journals (Sweden)

    Chaikuad Apirat

    2012-06-01

    Full Text Available Abstract Backround Aspartyl aminopeptidase (DNPEP, with specificity towards an acidic amino acid at the N-terminus, is the only mammalian member among the poorly understood M18 peptidases. DNPEP has implicated roles in protein and peptide metabolism, as well as the renin-angiotensin system in blood pressure regulation. Despite previous enzyme and substrate characterization, structural details of DNPEP regarding ligand recognition and catalytic mechanism remain to be delineated. Results The crystal structure of human DNPEP complexed with zinc and a substrate analogue aspartate-β-hydroxamate reveals a dodecameric machinery built by domain-swapped dimers, in agreement with electron microscopy data. A structural comparison with bacterial homologues identifies unifying catalytic features among the poorly understood M18 enzymes. The bound ligands in the active site also reveal the coordination mode of the binuclear zinc centre and a substrate specificity pocket for acidic amino acids. Conclusions The DNPEP structure provides a molecular framework to understand its catalysis that is mediated by active site loop swapping, a mechanism likely adopted in other M18 and M42 metallopeptidases that form dodecameric complexes as a self-compartmentalization strategy. Small differences in the substrate binding pocket such as shape and positive charges, the latter conferred by a basic lysine residue, further provide the key to distinguishing substrate preference. Together, the structural knowledge will aid in the development of enzyme-/family-specific aminopeptidase inhibitors.

  9. Steady-state kinetics with nitric oxide reductase (NOR): new considerations on substrate inhibition profile and catalytic mechanism.

    Science.gov (United States)

    Duarte, Américo G; Cordas, Cristina M; Moura, José J G; Moura, Isabel

    2014-03-01

    Nitric oxide reductase (NOR) from denitrifying bacteria is an integral membrane protein that catalyses the two electron reduction of NO to N2O, as part of the denitrification process, being responsible for an exclusive reaction, the NN bond formation, the key step of this metabolic pathway. Additionally, this class of enzymes also presents residual oxidoreductase activity, reducing O2 to H2O in a four electron/proton reaction. In this work we report, for the first time, steady-state kinetics with the Pseudomonas nautica NOR, either in the presence of its physiological electron donor (cyt. c552) or immobilised on a graphite electrode surface, in the presence of its known substrates, namely NO or O2. The obtained results show that the enzyme has high affinity for its natural substrate, NO, and different kinetic profiles according to the electron donor used. The kinetic data, as shown by the pH dependence, is modelled by ionisable amino acid residues nearby the di-nuclear catalytic site. The catalytic mechanism is revised and a mononitrosyl-non-heme Fe complex (FeB(II)-NO) species is favoured as the first catalytic intermediate involved on the NO reduction. PMID:24412239

  10. Catalytic coherence transformations

    Science.gov (United States)

    Bu, Kaifeng; Singh, Uttam; Wu, Junde

    2016-04-01

    Catalytic coherence transformations allow the otherwise impossible state transformations using only incoherent operations with the aid of an auxiliary system with finite coherence that is not being consumed in any way. Here we find the necessary and sufficient conditions for the deterministic and stochastic catalytic coherence transformations between a pair of pure quantum states. In particular, we show that the simultaneous decrease of a family of Rényi entropies of the diagonal parts of the states under consideration is a necessary and sufficient condition for the deterministic catalytic coherence transformations. Similarly, for stochastic catalytic coherence transformations we find the necessary and sufficient conditions for achieving a higher optimal probability of conversion. We thus completely characterize the coherence transformations among pure quantum states under incoherent operations. We give numerous examples to elaborate our results. We also explore the possibility of the same system acting as a catalyst for itself and find that indeed self-catalysis is possible. Further, for the cases where no catalytic coherence transformation is possible we provide entanglement-assisted coherence transformations and find the necessary and sufficient conditions for such transformations.

  11. Amino Acid Crossword Puzzle

    Science.gov (United States)

    Sims, Paul A.

    2011-01-01

    Learning the 20 standard amino acids is an essential component of an introductory course in biochemistry. Later in the course, the students study metabolism and learn about various catabolic and anabolic pathways involving amino acids. Learning new material or concepts often is easier if one can connect the new material to what one already knows;…

  12. Amino Acid Intake in Preterm Infants.

    Science.gov (United States)

    Burattini, Ilaria; Bellagamba, Maria Paola; D''Ascenzo, Rita; Biagetti, Chiara; Carnielli, Virgilio Paolo

    2016-01-01

    A large proportion of extremely low-birth-weight infants requires parenteral nutrition for variable lengths of time. Amino acids are the key ingredients of parenteral nutrition. The goal of appropriate amino acid administration is to promote anabolism and normal cellular development in order to limit the incidence of postnatal growth restriction, which is associated with neurodevelopmental delays. The benefits of early amino acid commencement soon after birth are compelling, especially on nitrogen balance, while long-term outcome studies are lacking. Amino acid administration at 2.5 g/kg per day has been shown to be superior to lower intakes; however, the benefits of intakes above 2.5 g/kg per day remain controversial. PMID:27336474

  13. Catalytic hydrogen evolution by polyaminoacids using mercury electrode

    Directory of Open Access Journals (Sweden)

    Marko Živanovič

    2010-12-01

    Full Text Available It was shown that using constant current chronopotentiometricstripping (CPS peptides and proteins at nanomolar concentrations produce protein structure–sensitive peak H at mercury electrodes. This peak is due to the catalytic hydrogen evolution reaction (HER. Polyamino acids can be considered as an intermediate model system between peptides and macromolecular proteins. Here we used polyamino acids (poly(aa such as polylysine (polyLys and polyarginine (polyArg and cyclic voltammetry or CPS in combination with hanging mercury drop electrode to explore how different amino acid residues in proteins contribute to the catalyticHER.

  14. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, M.; Jones, S.

    2013-03-01

    This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks have been identified.

  15. Catalytic Conversion of Biofuels

    DEFF Research Database (Denmark)

    Jørgensen, Betina

    This thesis describes the catalytic conversion of bioethanol into higher value chemicals. The motivation has been the unavoidable coming depletion of the fossil resources. The thesis is focused on two ways of utilising ethanol; the steam reforming of ethanol to form hydrogen and the partial oxida...

  16. Catalytic Phosphination and Arsination

    Institute of Scientific and Technical Information of China (English)

    Kwong Fuk Yee; Chan Kin Shing

    2004-01-01

    The catalytic, user-friendly phosphination and arsination of aryl halides and triflates by triphenylphosphine and triphenylarsine using palladium catalysts have provided a facile synthesis of functionalized aryl phosphines and arsines in neutral media. Modification of the cynaoarisne yielded optically active N, As ligands which will be screened in various asymmetric catalysis.

  17. Catalytic efficiency of designed catalytic proteins.

    Science.gov (United States)

    Korendovych, Ivan V; DeGrado, William F

    2014-08-01

    The de novo design of catalysts that mimic the affinity and specificity of natural enzymes remains one of the Holy Grails of chemistry. Despite decades of concerted effort we are still unable to design catalysts as efficient as enzymes. Here we critically evaluate approaches to (re)design of novel catalytic function in proteins using two test cases: Kemp elimination and ester hydrolysis. We show that the degree of success thus far has been modest when the rate enhancements seen for the designed proteins are compared with the rate enhancements by small molecule catalysts in solvents with properties similar to the active site. Nevertheless, there are reasons for optimism: the design methods are ever improving and the resulting catalyst can be efficiently improved using directed evolution.

  18. Amino acid racemisation dating

    Energy Technology Data Exchange (ETDEWEB)

    Murray-Wallace, C.V. [University of Wollongong, Wollongong, NSW (Australia). School of Geosciences

    1999-11-01

    The potential of the time-dependent amino acid racemisation reaction as a method of age assessment was first reported by Hare and Abelson (1968). They noted that in specimens of the bivalve mollusc Mercenaria sp., greater concentrations of amino acids in the D-configuration with increasing fossil age. Hare and Abelson (1968) also reported negligible racemisation in a modern specimen of Mecanaria sp. On this basis they suggested that the extent of amino acid racemisation (epimerisation in the case of isoleucine) may be used to assess the age of materials within and beyond the range of radiocarbon dating. For the past thirty years amino acid racemisation has been extensively applied in Quaternary research as a method of relative and numeric dating, and a particularly large literature has emerged on the subject 12 refs.

  19. Amino Acid Metabolism Disorders

    Science.gov (United States)

    Metabolism is the process your body uses to make energy from the food you eat. Food is ... One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple syrup ...

  20. Evaluation of functional groups on amino acids in cyclic tetrapeptides in histone deacetylase inhibition.

    Science.gov (United States)

    Islam, Md Shahidul; Bhuiyan, Mohammed P I; Islam, Md Nurul; Nsiama, Tienabe Kipassa; Oishi, Naoto; Kato, Tamaki; Nishino, Norikazu; Ito, Akihiro; Yoshida, Minoru

    2012-06-01

    The naturally occurring cyclic tetrapeptide, chlamydocin, originally isolated from fungus Diheterospora chlamydosphoria, consists of α-aminoisobutyric acid, L-phenylalanine, D-proline and an unusual amino acid (S)-2-amino-8-((S)-oxiran-2-yl)-8-oxooctanoic acid (Aoe) and inhibits the histone deacetylases (HDACs), a class of regulatory enzymes. The epoxyketone moiety of Aoe is the key functional group for inhibition. The cyclic tetrapeptide scaffold is supposed to play important role for effective binding to the surface of enzymes. In place of the epoxyketone group, hydroxamic acid and sulfhydryl group have been applied to design inhibitor ligands to zinc atom in catalytic site of HDACs. In the research for more potent HDAC inhibitors, we replaced the epoxyketone moiety of Aoe with different functional groups and synthesized a series of chlamydocin analogs as HDAC inhibitors. Among the functional groups, methoxymethylketone moiety showed as potent inhibition as the hydroxamic acid. On the contrary, we confirmed that borate, trifruoromethylketone, and 2-aminoanilide are almost inactive in HDAC inhibition. PMID:21638021

  1. Catalytic thermal barrier coatings

    Science.gov (United States)

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  2. A catalytic cracking process

    Energy Technology Data Exchange (ETDEWEB)

    Degnan, T.F.; Helton, T.E.

    1995-07-20

    Heavy oils are subjected to catalytic cracking in the absence of added hydrogen using a catalyst containing a zeolite having the structure of ZSM-12 and a large-pore crystalline zeolite having a Constraint Index less than about 1. The process is able to effect a bulk conversion of the oil at the same time yielding a higher octane gasoline and increased light olefin content. (author)

  3. How amino acids and peptides shaped the RNA world.

    Science.gov (United States)

    van der Gulik, Peter T S; Speijer, Dave

    2015-01-01

    The "RNA world" hypothesis is seen as one of the main contenders for a viable theory on the origin of life. Relatively small RNAs have catalytic power, RNA is everywhere in present-day life, the ribosome is seen as a ribozyme, and rRNA and tRNA are crucial for modern protein synthesis. However, this view is incomplete at best. The modern protein-RNA ribosome most probably is not a distorted form of a "pure RNA ribosome" evolution started out with. Though the oldest center of the ribosome seems "RNA only", we cannot conclude from this that it ever functioned in an environment without amino acids and/or peptides. Very small RNAs (versatile and stable due to basepairing) and amino acids, as well as dipeptides, coevolved. Remember, it is the amino group of aminoacylated tRNA that attacks peptidyl-tRNA, destroying the bond between peptide and tRNA. This activity of the amino acid part of aminoacyl-tRNA illustrates the centrality of amino acids in life. With the rise of the "RNA world" view of early life, the pendulum seems to have swung too much towards the ribozymatic part of early biochemistry. The necessary presence and activity of amino acids and peptides is in need of highlighting. In this article, we try to bring the role of the peptide component of early life back into focus. We argue that an RNA world completely independent of amino acids never existed. PMID:25607813

  4. Catalytic residues Lys197 and Arg199 of Bacillus subtilis phosphoribosyl diphosphate synthase. Alanine-scanning mutagenesis of the flexible catalytic loop

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Bentsen, Ann-Kristin K; Harlow, Kenneth W

    2005-01-01

    Eleven of the codons specifying the amino acids of the flexible catalytic loop [KRRPRPNVAEVM(197-208)] of Bacillus subtilis phosphoribosyl diphosphate synthase have been changed individually to specify alanine. The resulting variant enzyme forms, as well as the wildtype enzyme, were produced in a...

  5. Oxidation of aromatic alcohols on zeolite-encapsulated copper amino acid complexes

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, S.; Teixeira Florencio, J.M. [Kaiserslautern Univ. (Germany). Dept. of Chemistry, Chemical Technology

    1998-12-31

    Copper complexes of the amino acids histidine, arginine and lysine have been introduced into the supercages of zeolite Y and, for the first time, into the large intracrystalline cavities of zeolites EMT and MCM-22. The resulting host/guest compounds are characterized by X-ray powder diffraction, UV/VIS-spectroscopy in the diffuse reflectance mode and by catalytic tests in the liquid-phase oxidation of aromatic alcohols (viz. benzyl alcohol, 2- and 3-methylbenzyl alcohol and 2,5-dimethylbenzyl alcohol) with tertiary-butylhydroperoxide as oxidant. It was observed that intracrystalline copper-amino acid complexes possess remarkable catalytic activity, yielding the corresponding aromatic aldehydes and acids. (orig.)

  6. Novel amino acids: synthesis of furoxan and sydnonimine containing amino acids and peptides as potential nitric oxide releasing motifs.

    Science.gov (United States)

    Nortcliffe, Andrew; Botting, Nigel P; O'Hagan, David

    2013-07-28

    The incorporation of furoxan and sydnonimine ring systems into amino acid side chains is demonstrated with the preparation of four novel amino acids which carry these nitric oxide-releasing motifs. N-((4-Nitrophenoxy)carbonyl)-3-phenylsydnonimine 9 and bis(phenylsulfonyl)furoxan 10 are the key intermediates for introducing the heterocycle side chains onto appropriate amine and alcohol functionalities respectively. Furoxan 5 and 7 both displayed NO release based on determination of nitrite production. Orthogonal amino acid protecting group strategies were deployed to demonstrate that the amino acids could be incorporated into peptide frameworks. By way of demonstration the amino acids were placed centrally into several tripeptide motifs. Griess test assays showed that these amino acids released NO in the presence of γ-glutathione (GST). PMID:23753002

  7. Amino acid uptake in rust fungi.

    Science.gov (United States)

    Struck, Christine

    2015-01-01

    The plant pathogenic rust fungi colonize leaf tissue and feed off their host plants without killing them. Certain economically important species of different genera such as Melampsora, Phakopsora, Puccinia, or Uromyces are extensively studied for resolving the mechanisms of the obligate biotrophy. As obligate parasites rust fungi only can complete their life cycle on living hosts where they grow through the leaf tissue by developing an extended network of intercellular hyphae from which intracellular haustoria are differentiated. Haustoria are involved in key functions of the obligate biotrophic lifestyle: suppressing host defense responses and acquiring nutrients. This review provides a survey of rust fungi nitrogen nutrition with special emphasis on amino acid uptake. A variety of sequences of amino acid transporter genes of rust fungi have been published; however, transport activity of only three in planta highly up-regulated amino acid permeases have been characterized. Functional and immunohistochemical investigations have shown the specificity and localization of these transporters. Sequence data of various genome projects allowed identification of numerous rust amino acid transporter genes. An in silico analysis reveals that these genes can be classified into different transporter families. In addition, genetic and molecular data of amino acid transporters have provided new insights in the corresponding metabolic pathways.

  8. Azetidinic amino acids

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Bunch, Lennart; Chopin, Nathalie;

    2005-01-01

    A set of ten azetidinic amino acids, that can be envisioned as C-4 alkyl substituted analogues of trans-2-carboxyazetidine-3-acetic acid (t-CAA) and/or conformationally constrained analogues of (R)- or (S)-glutamic acid (Glu) have been synthesized in a diastereo- and enantiomerically pure form fr...

  9. Some effects of indole on the interaction of amino acids with tryptophanase.

    Science.gov (United States)

    Kazarinoff, M N; Snell, E E

    1980-07-10

    Although indole is a potent inhibitor (KI = 0.01 mM) of pyruvate formation from substrates of tryptophanase (EC 4.1.99.1, from Escherichia coli), we could not detect binding of indole to free tryptophanase (KD greater than 1.0 mM). However, indole, skatole, and toluene increased the affinity of tryptophanase for certain inhibitory amino acids. Binding of amino acids with small side chains (e.g. Ala, Gly) was increased, but there was little or no effect on the binding of amino acids with bulky side chains (e.g. norvaline, ethionine). These effects were quantitated by using changes in the absorption spectra of the enzyme . amino acid complexes. Indole decreases the absorbance obtainable at 500 nm for amino acids with small hydrophobic side chains (L-Ala, Gly), increases this absorbance for amino acids with small polar side chains (beta-cyano-L-alanine), and does not change the spectra of tryptophanase complexes with amino acids with bulky side chains, i.e. amino acids whose binding affinities are unaffected by indole. These spectral differences are interpreted in terms of an effect of bound indole (or side chain binding) on the partitioning of the bound amino acid between catalytic forms of the enzyme. The data indicate that substrate-induced conformational changes occur at the enzyme active site that generate a high affinity indole-binding site during catalytic turnover of tryptophanase and are important in the catalytic functioning of the enzyme. These changes also explain reproducible differences in KI values observed previously for amino acids in different assay systems used for steady state kinetic inhibition studies. The optimal conditions for the growth of E. coli for tryptophanase production are outlined, together with a procedure for purification of holotryptophanase.

  10. Halogen Chemistry on Catalytic Surfaces.

    Science.gov (United States)

    Moser, Maximilian; Pérez-Ramírez, Javier

    2016-01-01

    Halogens are key building blocks for the manufacture of high-value products such as chemicals, plastics, and pharmaceuticals. The catalytic oxidation of HCl and HBr is an attractive route to recover chlorine and bromine in order to ensure the sustainability of the production processes. Very few materials withstand the high corrosiveness and the strong exothermicity of the reactions and among them RuO2 and CeO2-based catalysts have been successfully applied in HCl oxidation. The search for efficient systems for HBr oxidation was initiated by extrapolating the results of HCl oxidation based on the chemical similarity of these reactions. Interestingly, despite its inactivity in HCl oxidation, TiO2 was found to be an outstanding HBr oxidation catalyst, which highlighted that the latter reaction is more complex than previously assumed. Herein, we discuss the results of recent comparative studies of HCl and HBr oxidation on both rutile-type (RuO2, IrO2, and TiO2) and ceria-based catalysts using a combination of advanced experimental and theoretical methods to provide deeper molecular-level understanding of the reactions. This knowledge aids the design of the next-generation catalysts for halogen recycling. PMID:27131113

  11. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  12. Synthesis of protected (2S,4R)-2-amino-4-methyldecanoic acid, a proposed component of culicinins

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Tian Tian Sun; Duo Mei; Jun Fei Wang; Ying Xia Li

    2008-01-01

    The protected (2S,4R)-2-amino-4-methyldecanoic acid, a proposed component of culicinins has been synthesized over 10 steps and in total 28% yields using Wittig reaction and Schollkopf amino acid synthesis as key steps.

  13. Amino acid analysis.

    Science.gov (United States)

    Crabb, J W; West, K A; Dodson, W S; Hulmes, J D

    2001-05-01

    Amino acid analysis (AAA) is one of the best methods to quantify peptides and proteins. Two general approaches to quantitative AAA exist, namely, classical postcolumn derivatization following ion-exchange chromatography and precolumn derivatization followed by reversed-phase HPLC (RP-HPLC). Excellent instrumentation and several specific methodologies are available for both approaches, and both have advantages and disadvantages. This unit focuses on picomole-level AAA of peptides and proteins using the most popular precolumn-derivatization method, namely, phenylthiocarbamyl amino acid analysis (PTC-AAA). It is directed primarily toward those interested in establishing the technology with a modest budget. PTC derivatization and analysis conditions are described, and support and alternate protocols describe additional techniques necessary or useful for most any AAA method--e.g., sample preparation, hydrolysis, instrument calibration, data interpretation, and analysis of difficult or unusual residues such as cysteine, tryptophan, phosphoamino acids, and hydroxyproline. PMID:18429107

  14. D-amino acid-induced expression of D-amino acid oxidase in the yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Takahashi, Shouji; Okada, Hirotsune; Abe, Katsumasa; Kera, Yoshio

    2012-12-01

    We investigated D-amino acid oxidase (DAO) induction in the popular model yeast Schizosaccharomyces pombe. The product of the putative DAO gene of the yeast expressed in E. coli displayed oxidase activity to neutral and basic D-amino acids, but not to an L-amino acid or acidic D-amino acids, showing that the putative DAO gene encodes catalytically active DAO. DAO activity was weakly detected in yeast cells grown on a culture medium without D-amino acid, and was approximately doubled by adding D-alanine. The elimination of ammonium chloride from culture medium induced activity by up to eight-fold. L-Alanine also induced the activity, but only by about half of that induced by D-alanine. The induction by D-alanine reached a maximum level at 2 h cultivation; it remained roughly constant until cell growth reached a stationary phase. The best inducer was D-alanine, followed by D-proline and then D-serine. Not effective were N-carbamoyl-D,L-alanine (a better inducer of DAO than D-alanine in the yeast Trigonopsis variabilis), and both basic and acidic D-amino acids. These results showed that S. pombe DAO could be a suitable model for analyzing the regulation of DAO expression in eukaryotic organisms. PMID:22986818

  15. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01

    This technology pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  16. In-Situ Catalytic Fast Pyrolysis Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01

    This technology pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline-, diesel-, and jet-range hydrocarbon blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  17. Catalytic mechanisms by biological systems : Special issue introduction

    NARCIS (Netherlands)

    Fraaije, Marco W; Scrutton, Nigel S

    2013-01-01

    Research on enzyme mechanisms is advancing knowledge of the chemistry and biochemistry of catalytic mechanisms by biological systems. The structural-dynamical properties of enzymes are of key importance. Advanced methodological approaches and new insights into enzyme functioning, and new emerging ap

  18. Size Effect of Gold Sol/γ-Alumina on the Catalytic Activities of CO Oxidation

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-Hua; GAO Geng-Yu

    2006-01-01

    The relationship between particle size and catalytic activity of gold nanoparticle catalysts with γ-Al2O3 as support has been investigated. The catalysts were prepared via the gold sol with different particle sizes by micelle method, and their structures were characterized by HRTEM and XRD, respectively. Furthermore, the catalytic activities were tested by CO oxidation. Experimental results showed that the catalytic activity became much weaker when gold particles were increased from 3.2 to 6.6 nm. Additionally, the particle size was also a key factor to govern catalytic activity with regard to gold supported on TiO2 prepared by the methods of deposition-precipitation.

  19. HYDROGEN TRANSFER IN CATALYTIC CRACKING

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Hydrogen transfer is an important secondary reaction of catalytic cracking reactions, which affects product yield distribution and product quality. It is an exothermic reaction with low activation energy around 43.3 kJ/mol. Catalyst properties and operation parameters in catalytic cracking greatly influence the hydrogen transfer reaction. Satisfactory results are expected through careful selection of proper catalysts and operation conditions.

  20. Bifunctional catalytic electrode

    Science.gov (United States)

    Cisar, Alan (Inventor); Murphy, Oliver J. (Inventor); Clarke, Eric (Inventor)

    2005-01-01

    The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.

  1. Catalytic quantum error correction

    CERN Document Server

    Brun, T; Hsieh, M H; Brun, Todd; Devetak, Igor; Hsieh, Min-Hsiu

    2006-01-01

    We develop the theory of entanglement-assisted quantum error correcting (EAQEC) codes, a generalization of the stabilizer formalism to the setting in which the sender and receiver have access to pre-shared entanglement. Conventional stabilizer codes are equivalent to dual-containing symplectic codes. In contrast, EAQEC codes do not require the dual-containing condition, which greatly simplifies their construction. We show how any quaternary classical code can be made into a EAQEC code. In particular, efficient modern codes, like LDPC codes, which attain the Shannon capacity, can be made into EAQEC codes attaining the hashing bound. In a quantum computation setting, EAQEC codes give rise to catalytic quantum codes which maintain a region of inherited noiseless qubits. We also give an alternative construction of EAQEC codes by making classical entanglement assisted codes coherent.

  2. Catalytic activities of zeolite compounds for decomposing aqueous ozone.

    Science.gov (United States)

    Kusuda, Ai; Kitayama, Mikito; Ohta, Yoshio

    2013-12-01

    The advanced oxidation process (AOP), chemical oxidation using aqueous ozone in the presence of appropriate catalysts to generate highly reactive oxygen species, offers an attractive option for removing poorly biodegradable pollutants. Using the commercial zeolite powders with various Si/Al ratios and crystal structures, their catalytic activities for decomposing aqueous ozone were evaluated by continuously flowing ozone to water containing the zeolite powders. The hydrophilic zeolites (low Si/Al ratio) with alkali cations in the crystal structures were found to possess high catalytic activity for decomposing aqueous ozone. The hydrophobic zeolite compounds (high Si/Al ratio) were found to absorb ozone very well, but to have no catalytic activity for decomposing aqueous ozone. Their catalytic activities were also evaluated by using the fixed bed column method. When alkali cations were removed by acid rinsing or substituted by alkali-earth cations, the catalytic activities was significantly deteriorated. These results suggest that the metal cations on the crystal surface of the hydrophilic zeolite would play a key role for catalytic activity for decomposing aqueous ozone.

  3. Biosynthesis of the Aromatic Amino Acids.

    Science.gov (United States)

    Pittard, James; Yang, Ji

    2008-09-01

    This chapter describes in detail the genes and proteins of Escherichia coli involved in the biosynthesis and transport of the three aromatic amino acids tyrosine, phenylalanine, and tryptophan. It provides a historical perspective on the elaboration of the various reactions of the common pathway converting erythrose-4-phosphate and phosphoenolpyruvate to chorismate and those of the three terminal pathways converting chorismate to phenylalanine, tyrosine, and tryptophan. The regulation of key reactions by feedback inhibition, attenuation, repression, and activation are also discussed. Two regulatory proteins, TrpR (108 amino acids) and TyrR (513 amino acids), play a major role in transcriptional regulation. The TrpR protein functions only as a dimer which, in the presence of tryptophan, represses the expression of trp operon plus four other genes (the TrpR regulon). The TyrR protein, which can function both as a dimer and as a hexamer, regulates the expression of nine genes constituting the TyrR regulon. TyrR can bind each of the three aromatic amino acids and ATP and under their influence can act as a repressor or activator of gene expression. The various domains of this protein involved in binding the aromatic amino acids and ATP, recognizing DNA binding sites, interacting with the alpha subunit of RNA polymerase, and changing from a monomer to a dimer or a hexamer are all described. There is also an analysis of the various strategies which allow TyrR in conjunction with particular amino acids to differentially affect the expression of individual genes of the TyrR regulon. PMID:26443741

  4. Development of Catalytic Cooking Plates

    Energy Technology Data Exchange (ETDEWEB)

    Hjelm, Anna-Karin; Silversand, Fredrik [CATATOR AB, Lund (Sweden); Tena, Emmanuel; Berger, Marc [Gaz de France (France)

    2004-04-01

    Gas catalytic combustion for gas stoves or cooking plates (closed catalytic burner system with ceramic plates) is a very promising technique in terms of ease of cleaning, power modulation and emissions. Previous investigations show that wire mesh catalysts, prepared and supplied by Catator AB (CAT), seem to be very well suited for such applications. Beside significantly reducing the NOx-emissions, these catalysts offer important advantages such as good design flexibility, low pressure drop and high heat transfer capacity, where the latter leads to a quick thermal response. Prior to this project, Gaz de France (GdF) made a series of measurements with CAT's wire mesh catalysts in their gas cooking plates and compared the measured performance with similar results obtained with theirs cordierite monolith catalysts. Compared to the monolith catalyst, the wire mesh catalyst was found to enable very promising results with respect to both emission levels (<10 mg NO{sub x} /kWh, <5 mg CO/kWh) and life-time (>8000 h vs. 700 h at 200 kW/m{sup 2}). It was however established that the radiation and hence, the thermal efficiency of the cooking plate, was significantly less than is usually measured in combination with the monolith (15 % vs. 32 %). It was believed that the latter could be improved by developing new burner designs based on CAT's wire mesh concept. As a consequence, a collaboration project between GdF, CAT and the Swedish Gas Technology AB was created. This study reports on the design, the construction and the evaluation of new catalytic burners, based on CAT's wire mesh catalysts, used for the combustion of natural gas in gas cooking stoves. The evaluation of the burners was performed with respect to key factors such as thermal efficiency, emission quality and pressure drop, etc, by the use of theoretical simulations and experimental tests. Impacts of parameters such as the the wire mesh number, the wire mesh structure (planar or folded), the

  5. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik

    2003-09-01

    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  6. Expression of heteromeric amino acid transporters along the murine intestine.

    Science.gov (United States)

    Dave, Mital H; Schulz, Nicole; Zecevic, Marija; Wagner, Carsten A; Verrey, Francois

    2004-07-15

    Members of the new heterodimeric amino acid transporter family are composed of two subunits, a catalytic multitransmembrane spanning protein (light chain) and a type II glycoprotein (heavy chain). These transporters function as exchangers and thereby extend the transmembrane amino acid transport selectivity to specific amino acids. The heavy chain rBAT associates with the light chain b degrees (,+)AT to form a cystine and cationic amino acid transporter. The other heavy chain, 4F2hc, can interact with seven different light chains to form various transporters corresponding to systems L, y(+)L, asc or x(-)(c). The importance of some of these transporters in intestinal and renal (re)absorption of amino acids is highlighted by the fact that mutations in either the rBAT or b degrees (,+)AT subunit result in cystinuria whereas a defect in the y(+)-LAT1 light chain causes lysinuric protein intolerance. Here we investigated the localization of these transporters in intestine since both diseases are also characterized by altered intestinal amino acid absorption. Real time PCR showed organ-specific expression patterns for all transporter subunit mRNAs along the intestine and Western blotting confirmed these findings on the protein level. Immunohistochemistry demonstrated basolateral coexpression of 4F2hc, LAT2 and y(+)-LAT1 in stomach and small intestine, whereas rBAT and b degrees (,+)AT were found colocalizing on the apical side of small intestine epithelium. In stomach, 4F2hc and LAT2 were localized in H(+)/K(+)-ATPase-expressing parietal cells. The abundant expression of several members of the heterodimeric transporter family along the murine small intestine suggests their involvement in amino acids absorption. Furthermore, strong expression of rBAT, b degrees (,+)AT and y(+)-LAT1 in the small intestine explains the reduced intestinal absorption of some amino acid in patients with cystinuria or lysinuric protein intolerance.

  7. Regulation of intestinal protein metabolism by amino acids.

    Science.gov (United States)

    Bertrand, Julien; Goichon, Alexis; Déchelotte, Pierre; Coëffier, Moïse

    2013-09-01

    Gut homeostasis plays a major role in health and may be regulated by quantitative and qualitative food intake. In the intestinal mucosa, an intense renewal of proteins occurs, at approximately 50% per day in humans. In some pathophysiological conditions, protein turnover is altered and may contribute to intestinal or systemic diseases. Amino acids are key effectors of gut protein turnover, both as constituents of proteins and as regulatory molecules limiting intestinal injury and maintaining intestinal functions. Many studies have focused on two amino acids: glutamine, known as the preferential substrate of rapidly dividing cells, and arginine, another conditionally essential amino acid. The effects of glutamine and arginine on protein synthesis appear to be model and condition dependent, as are the involved signaling pathways. The regulation of gut protein degradation by amino acids has been minimally documented until now. This review will examine recent data, helping to better understand how amino acids regulate intestinal protein metabolism, and will explore perspectives for future studies.

  8. Unsteady catalytic processes and sorption-catalytic technologies

    International Nuclear Information System (INIS)

    Catalytic processes that occur under conditions of the targeted unsteady state of the catalyst are considered. The highest efficiency of catalytic processes was found to be ensured by a controlled combination of thermal non-stationarity and unsteady composition of the catalyst surface. The processes based on this principle are analysed, in particular, catalytic selective reduction of nitrogen oxides, deep oxidation of volatile organic impurities, production of sulfur by the Claus process and by hydrogen sulfide decomposition, oxidation of sulfur dioxide, methane steam reforming and anaerobic combustion, selective oxidation of hydrocarbons, etc.

  9. Unsteady catalytic processes and sorption-catalytic technologies

    Energy Technology Data Exchange (ETDEWEB)

    Zagoruiko, A N [G.K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2007-07-31

    Catalytic processes that occur under conditions of the targeted unsteady state of the catalyst are considered. The highest efficiency of catalytic processes was found to be ensured by a controlled combination of thermal non-stationarity and unsteady composition of the catalyst surface. The processes based on this principle are analysed, in particular, catalytic selective reduction of nitrogen oxides, deep oxidation of volatile organic impurities, production of sulfur by the Claus process and by hydrogen sulfide decomposition, oxidation of sulfur dioxide, methane steam reforming and anaerobic combustion, selective oxidation of hydrocarbons, etc.

  10. Zeolite-Encapsulated Copper(II) Amino Acid Complexes: Synthesis, Spectroscopy, and Catalysis

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Verberckmoes, A.A.; Fu, L.; Schoonheydt, R.A.

    2001-01-01

    The spectroscopic properties and catalytic behavior of Cu(AA)n m+ complexes (AA ) amino acid (glycine, lysine, histidine, alanine, serine, proline, tyrosine, phenylalanine, glutamine, glutamic acid, cysteine, tryptophan, leucine, and arginine)) in faujasite-type zeolites have been investigated. Succ

  11. Catalytic production of biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Theilgaard Madsen, A.

    2011-07-01

    The focus of this thesis is the catalytic production of diesel from biomass, especially emphasising catalytic conversion of waste vegetable oils and fats. In chapter 1 an introduction to biofuels and a review on different catalytic methods for diesel production from biomass is given. Two of these methods have been used industrially for a number of years already, namely the transesterification (and esterification) of oils and fats with methanol to form fatty acid methyl esters (FAME), and the hydrodeoxygenation (HDO) of fats and oils to form straight-chain alkanes. Other possible routes to diesel include upgrading and deoxygenation of pyrolysis oils or aqueous sludge wastes, condensations and reductions of sugars in aqueous phase (aqueous-phase reforming, APR) for monofunctional hydrocarbons, and gasification of any type of biomass followed by Fischer-Tropsch-synthesis for alkane biofuels. These methods have not yet been industrialised, but may be more promising due to the larger abundance of their potential feedstocks, especially waste feedstocks. Chapter 2 deals with formation of FAME from waste fats and oils. A range of acidic catalysts were tested in a model fat mixture of methanol, lauric acid and trioctanoin. Sulphonic acid-functionalised ionic liquids showed extremely fast convertion of lauric acid to methyl laurate, and trioctanoate was converted to methyl octanoate within 24 h. A catalyst based on a sulphonated carbon-matrix made by pyrolysing (or carbonising) carbohydrates, so-called sulphonated pyrolysed sucrose (SPS), was optimised further. No systematic dependency on pyrolysis and sulphonation conditions could be obtained, however, with respect to esterification activity, but high activity was obtained in the model fat mixture. SPS impregnated on opel-cell Al{sub 2}O{sub 3} and microporous SiO{sub 2} (ISPS) was much less active in the esterification than the original SPS powder due to low loading and thereby low number of strongly acidic sites on the

  12. Crystallography captures catalytic steps in human methionine adenosyltransferase enzymes.

    Science.gov (United States)

    Murray, Ben; Antonyuk, Svetlana V; Marina, Alberto; Lu, Shelly C; Mato, Jose M; Hasnain, S Samar; Rojas, Adriana L

    2016-02-23

    The principal methyl donor of the cell, S-adenosylmethionine (SAMe), is produced by the highly conserved family of methionine adenosyltranferases (MATs) via an ATP-driven process. These enzymes play an important role in the preservation of life, and their dysregulation has been tightly linked to liver and colon cancers. We present crystal structures of human MATα2 containing various bound ligands, providing a "structural movie" of the catalytic steps. High- to atomic-resolution structures reveal the structural elements of the enzyme involved in utilization of the substrates methionine and adenosine and in formation of the product SAMe. MAT enzymes are also able to produce S-adenosylethionine (SAE) from substrate ethionine. Ethionine, an S-ethyl analog of the amino acid methionine, is known to induce steatosis and pancreatitis. We show that SAE occupies the active site in a manner similar to SAMe, confirming that ethionine also uses the same catalytic site to form the product SAE.

  13. Catalytic cracking of lignites

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, M.; Nowak, S.; Naegler, T.; Zimmermann, J. [Hochschule Merseburg (Germany); Welscher, J.; Schwieger, W. [Erlangen-Nuernberg Univ. (Germany); Hahn, T. [Halle-Wittenberg Univ., Halle (Germany)

    2013-11-01

    A most important factor for the chemical industry is the availability of cheap raw materials. As the oil price of crude oil is rising alternative feedstocks like coal are coming into focus. This work, the catalytic cracking of lignite is part of the alliance ibi (innovative Braunkohlenintegration) to use lignite as a raw material to produce chemicals. With this new one step process without an input of external hydrogen, mostly propylene, butenes and aromatics and char are formed. The product yield depends on manifold process parameters. The use of acid catalysts (zeolites like MFI) shows the highest amount of the desired products. Hydrogen rich lignites with a molar H/C ratio of > 1 are to be favoured. Due to primary cracking and secondary reactions the ratio between catalyst and lignite, temperature and residence time are the most important parameter to control the product distribution. Experiments at 500 C in a discontinuous rotary kiln reactor show yields up to 32 wt-% of hydrocarbons per lignite (maf - moisture and ash free) and 43 wt-% char, which can be gasified. Particularly, the yields of propylene and butenes as main products can be enhanced four times to about 8 wt-% by the use of catalysts while the tar yield decreases. In order to develop this innovative process catalyst systems fixed on beads were developed for an easy separation and regeneration of the used catalyst from the formed char. (orig.)

  14. Catalytic Membrane Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, T.J.; Brinker, C.J.; Gardner, T.J.; Hughes, R.C.; Sault, A.G.

    1998-12-01

    The proposed "catalytic membrane sensor" (CMS) was developed to generate a device which would selectively identify a specific reagent in a complex mixture of gases. This was to be accomplished by modifying an existing Hz sensor with a series of thin films. Through selectively sieving the desired component from a complex mixture and identifying it by decomposing it into Hz (and other by-products), a Hz sensor could then be used to detect the presence of the select component. The proposed "sandwich-type" modifications involved the deposition of a catalyst layered between two size selective sol-gel layers on a Pd/Ni resistive Hz sensor. The role of the catalyst was to convert organic materials to Hz and organic by-products. The role of the membraneo was to impart both chemical specificity by molecukir sieving of the analyte and converted product streams, as well as controlling access to the underlying Pd/Ni sensor. Ultimately, an array of these CMS elements encompassing different catalysts and membranes were to be developed which would enable improved selectivity and specificity from a compiex mixture of organic gases via pattern recognition methodologies. We have successfully generated a CMS device by a series of spin-coat deposited methods; however, it was determined that the high temperature required to activate the catalyst, destroys the sensor.

  15. Catalytic gasification of biomass

    Science.gov (United States)

    Robertus, R. J.; Mudge, L. K.; Sealock, L. J., Jr.; Mitchell, D. H.; Weber, S. L.

    1981-12-01

    Methane and methanol synthesis gas can be produced by steam gasification of biomass in the presence of appropriate catalysts. This concept is to use catalysts in a fluidized bed reactor which is heated indirectly. The objective is to determine the technical and economic feasibility of the concept. Technically the concept has been demonstrated on a 50 lb per hr scale. Potential advantages over conventional processes include: no oxygen plant is needed, little tar is produced so gas and water treatment are simplified, and yields and efficiencies are greater than obtained by conventional gasification. Economic studies for a plant processing 2000 T/per day dry wood show that the cost of methanol from wood by catalytic gasification is competitive with the current price of methanol. Similar studies show the cost of methane from wood is competitive with projected future costs of synthetic natural gas. When the plant capacity is decreased to 200 T per day dry wood, neither product is very attractive in today's market.

  16. Immigration process in catalytic medium

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The longtime behavior of the immigration process associated with a catalytic super-Brownian motion is studied. A large number law is proved in dimension d≤3 and a central limit theorem is proved for dimension d=3.

  17. Immigration process in catalytic medium

    Institute of Scientific and Technical Information of China (English)

    洪文明; 王梓坤

    2000-01-01

    The longtime behavior of the immigration process associated with a catalytic super-Brown-ian motion is studied. A large number law is proved in dimension d≤3 and a central limit theorem is proved for dimension d = 3.

  18. Catalytic peptide hydrolysis by mineral surface: Implications for prebiotic chemistry

    Science.gov (United States)

    Marshall-Bowman, Karina; Ohara, Shohei; Sverjensky, Dimitri A.; Hazen, Robert M.; Cleaves, H. James

    2010-10-01

    The abiotic polymerization of amino acids may have been important for the origin of life, as peptides may have been components of the first self-replicating systems. Though amino acid concentrations in the primitive oceans may have been too dilute for significant oligomerization to occur, mineral surface adsorption may have provided a concentration mechanism. As unactivated amino acid polymerization is thermodynamically unfavorable and kinetically slow in aqueous solution, we studied mainly the reverse reaction of polymer degradation to measure the impact of mineral surface catalysis on peptide bonds. Aqueous glycine (G), diglycine (GG), diketopiperazine (DKP), and triglycine (GGG) were reacted with minerals (calcite, hematite, montmorillonite, pyrite, rutile, or amorphous silica) in the presence of 0.05 M, pH 8.1, KHCO 3 buffer and 0.1 M NaCl as background electrolyte in a thermostatted oven at 25, 50 or 70 °C. Below 70 °C, reaction kinetics were too sluggish to detect catalytic activity over amenable laboratory time-scales. Minerals were not found to have measurable effects on the degradation or elongation of G, GG or DKP at 70 °C in solution. At 70 °C pyrite was the most catalytic mineral with detectible effects on the degradation of GGG, although several others also displayed catalytic behavior. GGG degraded ˜1.5-4 times faster in the presence of pyrite than in control reactions, depending on the ratio of solution concentration to mineral surface area. The rate of pyrite catalysis of GGG hydrolysis was found to be saturable, suggesting the presence of discrete catalytic sites on the mineral surface. The mineral-catalyzed degradation of GGG appears to occur via a GGG → DKP + G mechanism, rather than via GGG → GG + G, as in solution-phase reactions. These results are compatible with many previous findings and suggest that minerals may have assisted in peptide synthesis in certain geological settings, specifically by speeding the approach to equilibrium

  19. Catalytic asymmetric synthesis of spirocyclic azlactones by a double Michael-addition approach.

    Science.gov (United States)

    Weber, Manuel; Frey, Wolfgang; Peters, René

    2013-06-17

    Spirocyclic azlactones are shown to be useful precursors of cyclic quaternary amino acids, such as the constrained cyclohexane analogues of phenylalanine. These compounds are of interest as building blocks for the synthesis of artificial peptide analogues with controlled folds in the peptide backbone. They were prepared in the present study by a step- and atom-economic catalytic asymmetric tandem approach, requiring two steps starting from N-benzoyl glycine and divinylketones. The key of this protocol is the enantioselective formation of the azlactone spirocycles, which involves a PdII-catalyzed double 1,4-addition of an in situ generated azlactone intermediate to the dienone (a formal [5+1] cycloaddition). As the catalyst, a planar chiral ferrocene bispalladacycle was used. Mechanistic studies suggest a monometallic reaction pathway. Although the diastereoselectivity was found to be moderate, the enantioselectivity is usually high for the formation of the azlactone spirocycles, which contain up to three contiguous stereocenters. Spectroscopic studies have shown that the spirocycles often prefer a twist over a chair conformation of the cyclohexanone moiety. PMID:23613333

  20. Studies of 3-amino-4-hydroxyl benzoic acid phosphate

    International Nuclear Information System (INIS)

    3-amino-4-hydroxyl benzoic acid phosphate was synthesized from 4-chloro benzoic acid through three steps, the whole process was cost-effective in which the materials in each step were reused. More importantly, phosphoric acid medium did no harm to Pd-C catalyst in the hydrogenation and the Pd-C catalyst could be recycled for ten times at least without decrease in catalytic activity. In addition, product could meet the requirement of polymerization reaction of producing poly(2,5-benzoxazole) without dehydrochlorogenation. In this process, good conversion, high overall yield (79.28%) and high purity (99.30% by HPLC) were achieved. (author)

  1. Selenium utilization in thioredoxin and catalytic advantage provided by selenocysteine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moon-Jung [Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu 705-717 (Korea, Republic of); Lee, Byung Cheon [Division of Genetics, Department of Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of); Hwang, Kwang Yeon [Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of); Gladyshev, Vadim N. [Division of Genetics, Department of Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Kim, Hwa-Young, E-mail: hykim@ynu.ac.kr [Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu 705-717 (Korea, Republic of)

    2015-06-12

    Thioredoxin (Trx) is a major thiol-disulfide reductase that plays a role in many biological processes, including DNA replication and redox signaling. Although selenocysteine (Sec)-containing Trxs have been identified in certain bacteria, their enzymatic properties have not been characterized. In this study, we expressed a selenoprotein Trx from Treponema denticola, an oral spirochete, in Escherichia coli and characterized this selenoenzyme and its natural cysteine (Cys) homologue using E. coli Trx1 as a positive control. {sup 75}Se metabolic labeling and mutation analyses showed that the SECIS (Sec insertion sequence) of T. denticola selenoprotein Trx is functional in the E. coli Sec insertion system with specific selenium incorporation into the Sec residue. The selenoprotein Trx exhibited approximately 10-fold higher catalytic activity than the Sec-to-Cys version and natural Cys homologue and E. coli Trx1, suggesting that Sec confers higher catalytic activity on this thiol-disulfide reductase. Kinetic analysis also showed that the selenoprotein Trx had a 30-fold higher K{sub m} than Cys-containing homologues, suggesting that this selenoenzyme is adapted to work efficiently with high concentrations of substrate. Collectively, the results of this study support the hypothesis that selenium utilization in oxidoreductase systems is primarily due to the catalytic advantage provided by the rare amino acid, Sec. - Highlights: • The first characterization of a selenoprotein Trx is presented. • The selenoenzyme Trx exhibits 10-fold higher catalytic activity than Cys homologues. • Se utilization in Trx is primarily due to the catalytic advantage provided by Sec residue.

  2. Amino acids in Arctic aerosols

    Directory of Open Access Journals (Sweden)

    E. Scalabrin

    2012-07-01

    Full Text Available Amino acids are significant components of atmospheric aerosols, affecting organic nitrogen input to marine ecosystems, atmospheric radiation balance, and the global water cycle. The wide range of amino acid reactivities suggest that amino acids may serve as markers of atmospheric transport and deposition of particles. Despite this potential, few measurements have been conducted in remote areas to assess amino acid concentrations and potential sources. Polar regions offer a unique opportunity to investigate atmospheric processes and to conduct source apportionment studies of such compounds. In order to better understand the importance of amino acid compounds in the global atmosphere, we determined free amino acids (FAAs in seventeen size-segregated aerosol samples collected in a polar station in the Svalbard Islands from 19 April until 14 September 2010. We used an HPLC coupled with a tandem mass spectrometer (ESI-MS/MS to analyze 20 amino acids to quantify compounds at fmol m−3 levels. Mean total FAA concentration was 1070 fmol m−3 where serine and glycine were the most abundant compounds in almost all samples and accounted for 45–60% of the total amino acid relative abundance. The other eighteen compounds had average concentrations between 0.3 and 98 fmol m−3. The higher amino acid concentrations were present in the ultrafine aerosol fraction (<0.49 μm and accounted for the majority of the total amino acid content. Local marine sources dominate the boreal summer amino acid concentrations, with the exception of the regional input from Icelandic volcanics.

  3. Method Development for Efficient Incorporation of Unnatural Amino Acids

    KAUST Repository

    Harris, Paul D.

    2014-04-01

    The synthesis of proteins bearing unnatural amino acids has the potential to enhance and elucidate many processes in biochemistry and molecular biology. There are two primary methods for site specific unnatural amino acid incorporation, both of which use the cell’s native protein translating machinery: in vitro chemical acylation of suppressor tRNAs and the use of orthogonal amino acyl tRNA synthetases. Total chemical synthesis is theoretically possible, but current methods severely limit the maximum size of the product protein. In vivo orthogonal synthetase methods suffer from the high cost of the unnatural amino acid. In this thesis I sought to address this limitation by increasing cell density, first in shake flasks and then in a bioreactor in order to increase the yield of protein per amount of unnatural amino acid used. In a parallel project, I used the in vitro chemical acylation system to incorporate several unnatural amino acids, key among them the fluorophore BODIPYFL, with the aim of producing site specifically fluorescently labeled protein for single molecule FRET studies. I demonstrated successful incorporation of these amino acids into the trial protein GFP, although incorporation was not demonstrated in the final target, FEN1. This also served to confirm the effectiveness of a new procedure developed for chemical acylation.

  4. Networks of high mutual information define the structural proximity of catalytic sites: implications for catalytic residue identification.

    Directory of Open Access Journals (Sweden)

    Cristina Marino Buslje

    Full Text Available Identification of catalytic residues (CR is essential for the characterization of enzyme function. CR are, in general, conserved and located in the functional site of a protein in order to attain their function. However, many non-catalytic residues are highly conserved and not all CR are conserved throughout a given protein family making identification of CR a challenging task. Here, we put forward the hypothesis that CR carry a particular signature defined by networks of close proximity residues with high mutual information (MI, and that this signature can be applied to distinguish functional from other non-functional conserved residues. Using a data set of 434 Pfam families included in the catalytic site atlas (CSA database, we tested this hypothesis and demonstrated that MI can complement amino acid conservation scores to detect CR. The Kullback-Leibler (KL conservation measurement was shown to significantly outperform both the Shannon entropy and maximal frequency measurements. Residues in the proximity of catalytic sites were shown to be rich in shared MI. A structural proximity MI average score (termed pMI was demonstrated to be a strong predictor for CR, thus confirming the proposed hypothesis. A structural proximity conservation average score (termed pC was also calculated and demonstrated to carry distinct information from pMI. A catalytic likeliness score (Cls, combining the KL, pC and pMI measures, was shown to lead to significantly improved prediction accuracy. At a specificity of 0.90, the Cls method was found to have a sensitivity of 0.816. In summary, we demonstrate that networks of residues with high MI provide a distinct signature on CR and propose that such a signature should be present in other classes of functional residues where the requirement to maintain a particular function places limitations on the diversification of the structural environment along the course of evolution.

  5. Microfluidics in amino acid analysis.

    Science.gov (United States)

    Pumera, Martin

    2007-07-01

    Microfluidic devices have been widely used to derivatize, separate, and detect amino acids employing many different strategies. Virtually zero-dead volume interconnections and fast mass transfer in small volume microchannels enable dramatic increases in on-chip derivatization reaction speed, while only minute amounts of sample and reagent are needed. Due to short channel path, fast subsecond separations can be carried out. With sophisticated miniaturized detectors, the whole analytical process can be integrated on one platform. This article reviews developments of lab-on-chip technology in amino acid analysis, it shows important design features such as sample preconcentration, precolumn and postcolumn amino acid derivatization, and unlabeled and labeled amino acid detection with focus on advanced designs. The review also describes important biomedical and space exploration applications of amino acid analysis on microfluidic devices. PMID:17542043

  6. Annotating Enzymes of Uncertain Function: The Deacylation of d-Amino Acids by Members of the Amidohydrolase Superfamily†

    OpenAIRE

    Cummings, Jennifer; Fedorov, Alexander A.; Xu, Chengfu; Brown, Shoshana; Fedorov, Elena; Patricia C Babbitt; Almo, Steven C.; Raushel, Frank M.

    2009-01-01

    The catalytic activities of three members of the amidohydrolase superfamily were discovered using amino acid substrate libraries. Bb3285 from Bordetella bronchiseptica, Gox1177 from Gluconobacter oxydans, and Sco4986 from Streptomyces coelicolor are currently annotated as d-aminoacylases or N-acetyl-d-glutamate deacetylases. These three enzymes are 22−34% identical to one another in amino acid sequence. Substrate libraries containing nearly all combinations of N-formyl-d-Xaa, N-acetyl-d-Xaa, ...

  7. Catalytic distillation water recovery subsystem

    Science.gov (United States)

    Budininkas, P.; Rasouli, F.

    1985-01-01

    An integrated engineering breadboard subsystem for the recovery of potable water from untreated urine based on the vapor phase catalytic ammonia removal was designed, fabricated and tested. Unlike other evaporative methods, this process catalytically oxidizes ammonia and volatile hydrocarbons vaporizing with water to innocuous products; therefore, no pretreatment of urine is required. Since the subsystem is fabricated from commercially available components, its volume, weight and power requirements are not optimized; however, it is suitable for zero-g operation. The testing program consists of parametric tests, one month of daily tests and a continuous test of 168 hours duration. The recovered water is clear, odorless, low in ammonia and organic carbon, and requires only an adjustment of its pH to meet potable water standards. The obtained data indicate that the vapor phase catalytic ammonia removal process, if further developed, would also be competitive with other water recovery systems in weight, volume and power requirements.

  8. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Vivek V Ranade

    2014-03-01

    Catalytic reactions are ubiquitous in chemical and allied industries. A homogeneous or heterogeneous catalyst which provides an alternative route of reaction with lower activation energy and better control on selectivity can make substantial impact on process viability and economics. Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is discussed. Some examples where performance enhancement was realized by catalyst design, appropriate choice of reactor, better injection and dispersion strategies and recent advances in process intensification/ multifunctional reactors are discussed to illustrate the approach.

  9. Catalytic activity of Au nanoparticles

    DEFF Research Database (Denmark)

    Larsen, Britt Hvolbæk; Janssens, Ton V.W.; Clausen, Bjerne;

    2007-01-01

    Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change with par......Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change...... with particle size. We find that the fraction of low-coordinated Au atoms scales approximately with the catalytic activity, suggesting that atoms on the corners and edges of Au nanoparticles are the active sites. This effect is explained using density functional calculations....

  10. Immobilized Cu (II)—Amino Acid Complexes as Prospective Highly Efficient Catalytic Materials: Synthesis, Structural Characterization and Catalytic Activities

    Science.gov (United States)

    Pálinkó, István; Ordasi, Adrien; Kiss, János T.; Labádi, Imre

    2008-11-01

    In this work the covalent anchoring of N-or C-protected Cu(II)—L-tyrosine complexes onto a swellable resin or surface-modified silica gel is described. Experimental conditions (solvents, the availability of ligands) of the synthesis were varied; the structures (by IR spectroscopy) and the superoxide dismutase activities of the anchored complexes were studied.

  11. Effective function annotation through catalytic residue conservation.

    Science.gov (United States)

    George, Richard A; Spriggs, Ruth V; Bartlett, Gail J; Gutteridge, Alex; MacArthur, Malcolm W; Porter, Craig T; Al-Lazikani, Bissan; Thornton, Janet M; Swindells, Mark B

    2005-08-30

    Because of the extreme impact of genome sequencing projects, protein sequences without accompanying experimental data now dominate public databases. Homology searches, by providing an opportunity to transfer functional information between related proteins, have become the de facto way to address this. Although a single, well annotated, close relationship will often facilitate sufficient annotation, this situation is not always the case, particularly if mutations are present in important functional residues. When only distant relationships are available, the transfer of function information is more tenuous, and the likelihood of encountering several well annotated proteins with different functions is increased. The consequence for a researcher is a range of candidate functions with little way of knowing which, if any, are correct. Here, we address the problem directly by introducing a computational approach to accurately identify and segregate related proteins into those with a functional similarity and those where function differs. This approach should find a wide range of applications, including the interpretation of genomics/proteomics data and the prioritization of targets for high-throughput structure determination. The method is generic, but here we concentrate on enzymes and apply high-quality catalytic site data. In addition to providing a series of comprehensive benchmarks to show the overall performance of our approach, we illustrate its utility with specific examples that include the correct identification of haptoglobin as a nonenzymatic relative of trypsin, discrimination of acid-d-amino acid ligases from a much larger ligase pool, and the successful annotation of BioH, a structural genomics target.

  12. Trends in catalytic NO decomposition over transition metal surfaces

    DEFF Research Database (Denmark)

    Falsig, Hanne; Bligaard, Thomas; Rass-Hansen, Jeppe;

    2007-01-01

    The formation of NOx from combustion of fossil and renewable fuels continues to be a dominant environmental issue. We take one step towards rationalizing trends in catalytic activity of transition metal catalysts for NO decomposition by combining microkinetic modelling with density functional...... theory calculations. We show specifically why the key problem in using transition metal surfaces to catalyze direct NO decomposition is their significant relative overbinding of atomic oxygen compared to atomic nitrogen....

  13. A thermodynamic basis for prebiotic amino acid synthesis and the nature of the first genetic code

    CERN Document Server

    Higgs, Paul G

    2009-01-01

    Of the twenty amino acids used in proteins, ten were formed in Miller's atmospheric discharge experiments. The two other major proposed sources of prebiotic amino acid synthesis include formation in hydrothermal vents and delivery to Earth via meteorites. We combine observational and experimental data of amino acid frequencies formed by these diverse mechanisms and show that, regardless of the source, these ten early amino acids can be ranked in order of decreasing abundance in prebiotic contexts. This order can be predicted by thermodynamics. The relative abundances of the early amino acids were most likely reflected in the composition of the first proteins at the time the genetic code originated. The remaining amino acids were incorporated into proteins after pathways for their biochemical synthesis evolved. This is consistent with theories of the evolution of the genetic code by stepwise addition of new amino acids. These are hints that key aspects of early biochemistry may be universal.

  14. OPERATING SPECIFICATIONS OF CATALYTIC CLEANING OF GAS FROM BIOMASS GASIFICATION

    Directory of Open Access Journals (Sweden)

    Martin Lisý

    2015-12-01

    Full Text Available The paper focuses on the theoretical description of the cleaning of syngas from biomass and waste gasification using catalytic methods, and on the verification of the theory through experiments. The main obstruction to using syngas from fluid gasification of organic matter is the presence of various high-boiling point hydrocarbons (i.e., tar in the gas. The elimination of tar from the gas is a key factor in subsequent use of the gas in other technologies for cogeneration of electrical energy and heat. The application of a natural or artificial catalyst for catalytic destruction of tar is one of the methods of secondary elimination of tar from syngas. In our experiments, we used a natural catalyst (dolomite or calcium magnesium carbonate from Horní Lánov with great mechanical and catalytic properties, suitable for our purposes. The advantages of natural catalysts in contrast to artificial catalysts include their availability, low purchase prices and higher resilience to the so-called catalyst poison. Natural calcium catalysts may also capture undesired compounds of sulphure and chlorine. Our paper presents a theoretical description and analysis of catalytic destruction of tar into combustible gas components, and of the impact of dolomite calcination on its efficiency. The efficiency of the technology is verified in laboratories. The facility used for verification was a 150 kW pilot gasification unit with a laboratory catalytic filter. The efficiency of tar elimination reached 99.5%, the tar concentration complied with limits for use of the gas in combustion engines, and the tar content reached approximately 35 mg/mn3. The results of the measurements conducted in laboratories helped us design a pilot technology for catalytic gas cleaning.

  15. Amino Acids from a Comet

    Science.gov (United States)

    Cook, Jamie Elisla

    2009-01-01

    NASA's Stardust spacecraft returned samples from comet 81P/Wild 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary- vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a coetary amino acid.

  16. Discovery of 3-{5-[(6-Amino-1H-pyrazolo[3,4-b]pyridine-3-yl)methoxy]-2-chlorophenoxy}-5-chlorobenzonitrile (MK-4965): A Potent, Orally Bioavailable HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitor with Improved Potency against Key Mutant Viruses

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Thomas J.; Sisko, John T.; Tynebor, Robert M.; Williams, Theresa M.; Felock, Peter J.; Flynn, Jessica A.; Lai, Ming-Tain; Liang, Yuexia; McGaughey, Georgia; Liu, Meiquing; Miller, Mike; Moyer, Gregory; Munshi, Vandna; Perlow-Poehnelt, Rebecca; Prasad, Sridhar; Reid, John C.; Sanchez, Rosa; Torrent, Maricel; Vacca, Joseph P.; Wan, Bang-Lin; Yan, Youwei (Merck)

    2009-07-10

    Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have been shown to be a key component of highly active antiretroviral therapy (HAART). The use of NNRTIs has become part of standard combination antiviral therapies producing clinical outcomes with efficacy comparable to other antiviral regimens. There is, however, a critical issue with the emergence of clinical resistance, and a need has arisen for novel NNRTIs with a broad spectrum of activity against key HIV-1 RT mutations. Using a combination of traditional medicinal chemistry/SAR analyses, crystallography, and molecular modeling, we have designed and synthesized a series of novel, highly potent NNRTIs that possess broad spectrum antiviral activity and good pharmacokinetic profiles. Further refinement of key compounds in this series to optimize physical properties and pharmacokinetics has resulted in the identification of 8e (MK-4965), which has high levels of potency against wild-type and key mutant viruses, excellent oral bioavailability and overall pharmacokinetics, and a clean ancillary profile.

  17. 40 CFR 721.10126 - Alkyl amino substituted triazine amino substituted benezenesulfonic acid reaction product with...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl amino substituted triazine amino... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato azo... substituted triazine amino substituted benezenesulfonic acid reaction product with naphthalenesulfonato...

  18. Group key management

    Energy Technology Data Exchange (ETDEWEB)

    Dunigan, T.; Cao, C.

    1997-08-01

    This report describes an architecture and implementation for doing group key management over a data communications network. The architecture describes a protocol for establishing a shared encryption key among an authenticated and authorized collection of network entities. Group access requires one or more authorization certificates. The implementation includes a simple public key and certificate infrastructure. Multicast is used for some of the key management messages. An application programming interface multiplexes key management and user application messages. An implementation using the new IP security protocols is postulated. The architecture is compared with other group key management proposals, and the performance and the limitations of the implementation are described.

  19. Catalytic properties of niobium compounds

    International Nuclear Information System (INIS)

    The catalytic activity and selectivity of niobium compounds including oxides, salts, organometallic compounds and others are outlined. The application of these compounds as catalysts to diversified reactions is reported. The nature and action of niobium catalysts are characteristic and sometimes anomalous, suggesting the necessity of basic research and the potential use as catalysts for important processes in the chemical industry. (Author)

  20. Simple, chemoselective, catalytic olefin isomerization.

    Science.gov (United States)

    Crossley, Steven W M; Barabé, Francis; Shenvi, Ryan A

    2014-12-01

    Catalytic amounts of Co(Sal(tBu,tBu))Cl and organosilane irreversibly isomerize terminal alkenes by one position. The same catalysts effect cycloisomerization of dienes and retrocycloisomerization of strained rings. Strong Lewis bases like amines and imidazoles, and labile functionalities like epoxides, are tolerated.

  1. A direct method for the synthesis of orthogonally protected furyl- and thienyl- amino acids.

    Science.gov (United States)

    Hudson, Alex S; Caron, Laurent; Colgin, Neil; Cobb, Steven L

    2015-04-01

    The synthesis of unnatural amino acids plays a key part in expanding the potential application of peptide-based drugs and in the total synthesis of peptide natural products. Herein, we report a direct method for the synthesis of orthogonally protected 5-membered heteroaromatic amino acids.

  2. Capillary electrophoresis of FITC labeled amino acids with laser-induced fluorescence detection

    Institute of Scientific and Technical Information of China (English)

    党福全; 陈义

    1999-01-01

    FITC labeled amino acids have been separated using a home-huilt capillary electrophoresis with a laserinduced fluorescence detection (CE-LIF) system. Seventeen peaks can now be generated from the twenty common amino acids. The key conditions lie in the optimization of pH, buffer electrolytes and buffer additives.

  3. Recombinant oxalate decarboxylase: enhancement of a hybrid catalytic cascade for the complete electro-oxidation of glycerol.

    Science.gov (United States)

    Abdellaoui, Sofiene; Hickey, David P; Stephens, Andrew R; Minteer, Shelley D

    2015-10-01

    The complete electro-oxidation of glycerol to CO2 is performed through an oxidation cascade using a hybrid catalytic system combining a recombinant enzyme, oxalate decarboxylase from Bacillus subtilis, and an organic oxidation catalyst, 4-amino-TEMPO. This system is capable of electrochemically oxidizing glycerol at a carbon electrode collecting all 14 electrons per molecule. PMID:26271633

  4. Crystal structure and catalytic mechanism of pyridoxal kinase from Pseudomonas aeruginosa.

    Science.gov (United States)

    Kim, Meong Il; Hong, Minsun

    2016-09-01

    Pyridoxal kinase is a ubiquitous enzyme essential for pyridoxal 5'-phosphate (PLP) homeostasis since PLP is required for the catalytic activity of a variety of PLP-dependent enzymes involved in amino acid, lipid, and sugar metabolism as well as neurotransmitter biosynthesis. Previously, two catalytic mechanisms were proposed with regard to Pdx kinases, in which either the aspartate or the cysteine residue is involved as a catalytic residue. Because the Pdx kinase of Pseudomonas aeruginosa (PaPdxK) contains both residues, the catalytic mechanism of PaPdxK remains elusive. To elucidate the substrate-recognition and catalytic mechanisms of PaPdxK, the crystal structure of PaPdxK was determined at a 2.0 Å resolution. The PaPdxK structure possesses a channel that can accommodate substrates and a metallic cofactor. Our structure-based biochemical and mutational analyses in combination with modeling studies suggest that PaPdxK catalysis is mediated by an acid-base mechanism through the catalytic acid Asp225 and a helical dipole moment. PMID:27425248

  5. Key Management Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides a secure environment to research and develop advanced electronic key management and networked key distribution technologies for the Navy and DoD....

  6. Public Key Cryptography.

    Science.gov (United States)

    Tapson, Frank

    1996-01-01

    Describes public key cryptography, also known as RSA, which is a system using two keys, one used to put a message into cipher and another used to decipher the message. Presents examples using small prime numbers. (MKR)

  7. 2-Amino-5-chloropyridinium nitrate

    Directory of Open Access Journals (Sweden)

    Donia Zaouali Zgolli

    2009-11-01

    Full Text Available The title structure, C5H6ClN2+·NO3−, is held together by extensive hydrogen bonding between the NO3− ions and 2-amino-5-chloropyridinium H atoms. The cation–anion N—H...O hydrogen bonds link the ions into a zigzag- chain which develops parallel to the b axis. The structure may be compared with that of the related 2-amino-5-cyanopyridinium nitrate.

  8. Pair interaction of catalytically active colloids: from assembly to escape

    Science.gov (United States)

    Sharifi-Mood, Nima; Mozaffari, Ali; Córdova-Figueroa, Ubaldo M.

    2016-07-01

    The dynamics and pair trajectory of two self-propelled colloids are reported. The autonomous motions of the colloids are due to a catalytic chemical reaction taking place asymmetrically on their surfaces that generates a concentration gradient of interactive solutes around the particles and actuate particle propulsion. We consider two spherical particles with symmetric catalytic caps extending over the local polar angles $\\theta^1_{cap}$ and $\\theta^2_{cap}$ from the centers of active sectors in an otherwise quiescent fluid. A combined analytical-numerical technique was developed to solve the coupled mass transfer equation and the hydrodynamics in the Stokes flow regime. The ensuing pair trajectory of the colloids is controlled by the reacting coverages $\\theta^j_{cap}$ and their initial relative orientation with respect to each other. Our analysis indicates two possible scenarios for pair trajectories of catalytic self-propelled particles: either the particles approach, come into contact and assemble or they interact and move away from each other (escape). For arbitrary motions of the colloids, it is found that the direction of particle rotations is the key factor in determining the escape or assembly scenario. Based on the analysis, a phase diagram is sketched for the pair trajectory of the catalytically active particles as a function of active coverages and their initial relative orientations. We believe this study has important implications in elucidation of collective behaviors of auotophoretically self-propelled colloids.

  9. Synthesis of 2-amino-4-chromene derivatives under microwave irradiation and their antimicrobial activity

    Indian Academy of Sciences (India)

    Nirav K Shah; Nimesh M Shah; Manish P Patel; Ranjan G Patel

    2013-05-01

    Libraries of 2-amino-4-chromenes, were efficiently synthesized via one-pot, three-component reactions of 5-chloro-3-methyl-1-aryl-4,5-dihydro-1-pyrazole-4-carbaldehyde (1a-c), 2-naphthols (2a-f) and malononitrile in the presence of catalytic amount of ammonium acetate under microwave irradiation. The protocol offers rapid synthesis of structurally diverse 2-amino-4-chromenes for biological screening. All the synthesized compounds were evaluated for their antimicrobial activity, and several compounds exhibited moderate to potent antimicrobial activity.

  10. Probing the Specificity Determinants of Amino Acid Recognition by Arginase

    Energy Technology Data Exchange (ETDEWEB)

    Shishova, E.; Di Costanzo, L; Emig, F; Ash, D; Christianson, D

    2009-01-01

    Arginase is a binuclear manganese metalloenzyme that serves as a therapeutic target for the treatment of asthma, erectile dysfunction, and atherosclerosis. In order to better understand the molecular basis of inhibitor affinity, we have employed site-directed mutagenesis, enzyme kinetics, and X-ray crystallography to probe the molecular recognition of the amino acid moiety (i.e., the ?-amino and ?-carboxylate groups) of substrate l-arginine and inhibitors in the active site of arginase I. Specifically, we focus on (1) a water-mediated hydrogen bond between the substrate ?-carboxylate and T135, (2) a direct hydrogen bond between the substrate ?-carboxylate and N130, and (3) a direct charged hydrogen bond between the substrate ?-amino group and D183. Amino acid substitutions for T135, N130, and D183 generally compromise substrate affinity as reflected by increased KM values but have less pronounced effects on catalytic function as reflected by minimal variations of kcat. As with substrate KM values, inhibitor Kd values increase for binding to enzyme mutants and suggest that the relative contribution of intermolecular interactions to amino acid affinity in the arginase active site is water-mediated hydrogen bond < direct hydrogen bond < direct charged hydrogen bond. Structural comparisons of arginase with the related binuclear manganese metalloenzymes agmatinase and proclavaminic acid amidinohydrolase suggest that the evolution of substrate recognition in the arginase fold occurs by mutation of residues contained in specificity loops flanking the mouth of the active site (especially loops 4 and 5), thereby allowing diverse guanidinium substrates to be accommodated for catalysis.

  11. Synthesis of chitosan supported palladium nanoparticles and its catalytic activity towards 2-nitrophenol reduction

    Science.gov (United States)

    Dhanavel, S.; Nivethaa, E. A. K.; Esther, G.; Narayanan, V.; Stephen, A.

    2016-05-01

    Chitosan supported Palladium nanoparticles were synthesized by a simple cost effective chemical reduction method using NaBH4. The prepared nanocomposite was characterized by X-Ray diffraction analysis, FESEM and Energy dispersive spectroscopy analysis of X-rays (EDAX). The catalytic performance of the nanocomposite was evaluated on the reduction of 2-Nitrophenol to the 2-Amino phenol with rate constant 1.08 × 10-3 S-1 by NaBH4 using Spectrophotometer.

  12. Glycine and Diglycine as Possible Catalytic Factors in the Prebiotic Evolution of Peptides

    Science.gov (United States)

    Plankensteiner, Kristof; Righi, Alessandro; Rode, Bernd M.

    2002-06-01

    Mutual catalytic effects within the Salt-Induced Peptide Formation (SIPF) Reaction might be one little puzzle piece in the complicated process of the formation of complex peptidic systems and their chemical evolution on the prebiotic earth. The catalytic effects of glycine and diglycine on the formation of dipeptides from mixed amino acid systems in the SIPF Reaction was investigated for systems with leucine, proline, valine and aspartic acid and showed to result in a significant increase of the yield of the majority of the produced dipeptides. The results of the experiments strongly confirm previous theories on the catalytic mechanism and show the ability of the SIPF Reaction to produce a very diverse set of peptide products with relevance to the formation of a biosphere.

  13. 3-Glucosylated 5-amino-1,2,4-oxadiazoles: synthesis and evaluation as glycogen phosphorylase inhibitors

    Directory of Open Access Journals (Sweden)

    Marion Donnier-Maréchal

    2015-04-01

    Full Text Available Glycogen phosporylase (GP is a promising target for the control of glycaemia. The design of inhibitors binding at the catalytic site has been accomplished through various families of glucose-based derivatives such as oxadiazoles. Further elaboration of the oxadiazole aromatic aglycon moiety is now reported with 3-glucosyl-5-amino-1,2,4-oxadiazoles synthesized by condensation of a C-glucosyl amidoxime with N,N’-dialkylcarbodiimides or Vilsmeier salts. The 5-amino group introduced on the oxadiazole scaffold was expected to provide better inhibition of GP through potential additional interactions with the enzyme’s catalytic site; however, no inhibition was observed at 625 µM.

  14. A steric tethering approach enables palladium-catalysed C-H activation of primary amino alcohols

    Science.gov (United States)

    Calleja, Jonas; Pla, Daniel; Gorman, Timothy W.; Domingo, Victoriano; Haffemayer, Benjamin; Gaunt, Matthew J.

    2015-12-01

    Aliphatic primary amines are a class of chemical feedstock essential to the synthesis of higher-order nitrogen-containing molecules, commonly found in biologically active compounds and pharmaceutical agents. New methods for the construction of complex amines remain a continuous challenge to synthetic chemists. Here, we outline a general palladium-catalysed strategy for the functionalization of aliphatic C-H bonds within amino alcohols, an important class of small molecule. Central to this strategy is the temporary conversion of catalytically incompatible primary amino alcohols into hindered secondary amines that are capable of undergoing a sterically promoted palladium-catalysed C-H activation. Furthermore, a hydrogen bond between amine and catalyst intensifies interactions around the palladium and orients the aliphatic amine substituents in an ideal geometry for C-H activation. This catalytic method directly transforms simple, easily accessible amines into highly substituted, functionally concentrated and structurally diverse products, and can streamline the synthesis of biologically important amine-containing molecules.

  15. Catalytic Fast Pyrolysis: A Review

    Directory of Open Access Journals (Sweden)

    Theodore Dickerson

    2013-01-01

    Full Text Available Catalytic pyrolysis is a promising thermochemical conversion route for lignocellulosic biomass that produces chemicals and fuels compatible with current, petrochemical infrastructure. Catalytic modifications to pyrolysis bio-oils are geared towards the elimination and substitution of oxygen and oxygen-containing functionalities in addition to increasing the hydrogen to carbon ratio of the final products. Recent progress has focused on both hydrodeoxygenation and hydrogenation of bio-oil using a variety of metal catalysts and the production of aromatics from bio-oil using cracking zeolites. Research is currently focused on developing multi-functional catalysts used in situ that benefit from the advantages of both hydrodeoxygenation and zeolite cracking. Development of robust, highly selective catalysts will help achieve the goal of producing drop-in fuels and petrochemical commodities from wood and other lignocellulosic biomass streams. The current paper will examine these developments by means of a review of existing literature.

  16. Intelligent card access keys

    International Nuclear Information System (INIS)

    A newly developed access control technology allows information about users to be stored on key-like EEPROM devices. The keys store encrypted information about the user and his or her authorized access activity. Specially developed key readers scan, decrypt, and process the key data, and make the decision whether entry should be granted or denied. The key readers can function as complete, stand-alone facility management systems, incorporating access control, security monitoring, and remote control. In this configuration, the key readers provide anti-passback protection and other special features without requiring any data lines between readers. The key readers also feature sophisticated algorithmic processing for performing complex operations such as two-man control or cross zoned security annunciation. Key readers can also be interconnected with an MCM-1000 Multiples Monitoring System to form a distributed processing local area network. In such a configuration, changes in key reader status can be uploaded to the MCM-1000, and programming changes and operator commands can be downloaded to the key readers

  17. Combined catalytic converter and afterburner

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T.T.-H.

    1994-11-30

    This patent describes the combined use of a catalytic converter and afterburner. An afterburner chamber and a catalyst matrix are disposed in series within a casing. A combustible premixed charge is ignited in the afterburner chamber before it enters the catalyst matrix. This invention overcomes the problem encountered in previous designs of some of the premixed charge passing unreacted through the device unless a very long afterburner chamber is used. (UK)

  18. Direct amidation of amino acid derivatives catalyzed by arylboronic acids : applications in dipeptide synthesis.

    OpenAIRE

    Liu, S.; Yang, Y.; Liu, X.; Ferdousi, F. K.; Batsanov, A.S.; Whiting, A

    2013-01-01

    The direct amidation of amino acid derivatives catalyzed by arylboronic acids has been examined. The reaction was generally slow relative to simple amine-carboxylic acid combinations though proceeded at 65–68 °C generally avoiding racemization. 3,4,5-Trifluorophenylboronic and o-nitrophenylboronic acids were found to be the best catalysts, though for slower dipeptide formations, high catalyst loadings were required and an interesting synergistic catalytic effect between two arylboronic acids ...

  19. Thermodynamics of catalytic nanoparticle morphology

    Science.gov (United States)

    Zwolak, Michael; Sharma, Renu; Lin, Pin Ann

    Metallic nanoparticles are an important class of industrial catalysts. The variability of their properties and the environment in which they act, from their chemical nature & surface modification to their dispersion and support, allows their performance to be optimized for many chemical processes useful in, e.g., energy applications and other areas. Their large surface area to volume ratio, as well as varying sizes and faceting, in particular, makes them an efficient source for catalytically active sites. These characteristics of nanoparticles - i.e., their morphology - can often display intriguing behavior as a catalytic process progresses. We develop a thermodynamic model of nanoparticle morphology, one that captures the competition of surface energy with other interactions, to predict structural changes during catalytic processes. Comparing the model to environmental transmission electron microscope images of nickel nanoparticles during carbon nanotube (and other product) growth demonstrates that nickel deformation in response to the nanotube growth is due to a favorable interaction with carbon. Moreover, this deformation is halted due to insufficient volume of the particles. We will discuss the factors that influence morphology and also how the model can be used to extract interaction strengths from experimental observations.

  20. The Homomorphic Key Agreement

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    There are various challenges that are faced in group communication, so it is necessary to ensure session key. Key agreement is the fundamental cryptographic primitive for establishing a secure communication. It is a process of computing a shared secret contributed by two or more entities such that no single node can predetermine the resulting value. An authenticated key agreement is attained by combining the key agreement protocol with digital signatures. After a brief introduction to existing key agreement in group communication, Making use of the additive-multiplicative homomorphism in the integer ring defined by Sander and Tschudin: A new protocols, called the homomorphism key agreement, was designed, which can be self-contributory, robust, scalable and applicable in group communication.

  1. Mega Key Authentication Mechanism

    OpenAIRE

    Kloss, Guy

    2016-01-01

    For secure communication it is not just sufficient to use strong cryptography with good and strong keys, but to actually have the assurance, that the keys in use for it are authentic and from the contact one is expecting to communicate with. Without that, it is possible to be subject to impersonation or man-in-the-middle (MitM) attacks. Mega meets this problem by providing a hierarchical authentication mechanism for contacts and their keys. To avoid any hassle when using multiple types of key...

  2. Direct catalytic cross-coupling of organolithium compounds

    Science.gov (United States)

    Giannerini, Massimo; Fañanás-Mastral, Martín; Feringa, Ben L.

    2013-08-01

    Catalytic carbon-carbon bond formation based on cross-coupling reactions plays a central role in the production of natural products, pharmaceuticals, agrochemicals and organic materials. Coupling reactions of a variety of organometallic reagents and organic halides have changed the face of modern synthetic chemistry. However, the high reactivity and poor selectivity of common organolithium reagents have largely prohibited their use as a viable partner in direct catalytic cross-coupling. Here we report that in the presence of a Pd-phosphine catalyst, a wide range of alkyl-, aryl- and heteroaryl-lithium reagents undergo selective cross-coupling with aryl- and alkenyl-bromides. The process proceeds quickly under mild conditions (room temperature) and avoids the notorious lithium halogen exchange and homocoupling. The preparation of key alkyl-, aryl- and heterobiaryl intermediates reported here highlights the potential of these cross-coupling reactions for medicinal chemistry and material science.

  3. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, Mary J.; Jones, Susanne B.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc.. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks have been identified.

  4. Catalytic applications in the production of biodiesel from vegetable oils.

    Science.gov (United States)

    Sivasamy, Arumugam; Cheah, Kien Yoo; Fornasiero, Paolo; Kemausuor, Francis; Zinoviev, Sergey; Miertus, Stanislav

    2009-01-01

    The predicted shortage of fossil fuels and related environmental concerns have recently attracted significant attention to scientific and technological issues concerning the conversion of biomass into fuels. First-generation biodiesel, obtained from vegetable oils and animal fats by transesterification, relies on commercial technology and rich scientific background, though continuous progress in this field offers opportunities for improvement. This review focuses on new catalytic systems for the transesterification of oils to the corresponding ethyl/methyl esters of fatty acids. It also addresses some innovative/emerging technologies for the production of biodiesel, such as the catalytic hydrocracking of vegetable oils to hydrocarbons. The special role of the catalyst as a key to efficient technology is outlined, together with the other important factors that affect the yield and quality of the product, including feedstock-related properties and various system conditions. PMID:19360707

  5. 3-Amino-8-hydroxy-4-imino-6-methyl-5-phenyl-4,5-dihydro-3H-chromeno [2,3-d ]pyrimidine: An Effecient Key Precursor for Novel Synthesis of Some Interesting Triazines and Triazepines as Potential Anti-Tumor Agents

    Directory of Open Access Journals (Sweden)

    Sobhi M. Gomha

    2012-09-01

    Full Text Available A number of interesting heterocycles were prepared through interaction of the intermediate 3-amino-8-hydroxy-4-imino-6-methyl-5-phenyl-4,5-dihydro-3H-chromeno-[2,3-d]pyrimidine (1 and reagents such as hydrazonyl halides 2 to furnish triazine derivatives 4a–l. Reaction of 1 with phenacyl bromide afforded compound 5. Moreover, the title compound 1 was subjected to condensation with active methylene compounds (ethyl acetoacetate and ethyl benzoylacetate to give triazipinones 8a,b. The condensation with aromatic aldehydes afforded either the triazole derivatives 10a–d or Schiff base 11. In addition, the behaviour of compound 1 towards activated unsaturated compounds namely dimethyl acetylene dicarboxylate and ethoxymethylenemalonitrile was studied and it was found to furnish the triazine 13 and triazepine derivative 15, respectively. Combination of title compound 1 with chlorinated active methylene compounds delivered the triazine derivatives 18a–c. Reaction of 1 with chloroacetonitrile furnished compound 20. The structures of the products were elucidated based on their microanalyses and spectroscopic data. Finally, the antitumor activity of the new compounds 4a and 8a against human breast cell MCF-7 line and liver carcinoma cell line HepG2 were recorded.

  6. Perspective on Catalytic Hydrodeoxygenation of Biomass Pyrolysis Oils: Essential Roles of Fe-based Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Yongchun; Hensley, Alyssa; McEwen, Jean-Sabin; Wang, Yong

    2016-06-27

    Catalytic fast pyrolysis is the most promising approach for biofuel production, due to its simple process and versatility to handle lignocellulosic biomass feedstocks with varying and complex compositions. Compared with in situ catalytic fast pyrolysis, ex situ catalytic pyrolysis has the flexibility of optimizing the pyrolysis step and catalytic process individually to improve the quality of pyrolysis oil (stability, oxygen content, acid number, etc.) and to maximize the carbon efficiency in the conversion of biomass to pyrolysis oil. Hydrodeoxygenation is one of the key catalytic functions in ex situ catalytic fast pyrolysis. Recently, Fe-based catalysts have been reported to exhibit superior catalytic properties in hydrodeoxygenation of model compounds in pyrolysis oil, which potentially makes the ex situ pyrolysis of biomass commercially viable due to the abundance and low cost of Fe. Here, we briefly summarize the recent progress on Fe-based catalysts for hydrodeoxygenation of biomass, and provide perspectives on how to further improve Fe-based catalysts (activity and stability) for their potential applications in the emerging area of biomass conversion.

  7. Financial Key Ratios

    Directory of Open Access Journals (Sweden)

    Tănase Alin-Eliodor

    2014-08-01

    Full Text Available This article focuses on computing techniques starting from trial balance data regarding financial key ratios. There are presented activity, liquidity, solvency and profitability financial key ratios. It is presented a computing methodology in three steps based on a trial balance.

  8. Evidence from Meteorites for Multiple Possible Amino Acid Alphabets for the Origins of Life

    Science.gov (United States)

    Burton, A. S.; Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.

    2015-01-01

    A key question for the origins of life is understanding which amino acids made up the first proteins synthesized during the origins of life. The canonical set of 20 - 22 amino acids used in proteins are all alpha-amino, alpha-hydrogen isomers that, nevertheless, show considerable variability in properties including size, hydrophobicity, and ionizability. Abiotic amino acid synthesis experiments such as Miller-Urey spark discharge reactions produce a set of up to 23 amino acids, depending on starting materials and reaction conditions, with significant abundances of both alpha- and non-alpha-amino acid isomers. These two sets of amino acids do not completely overlap; of the 23 spark discharge amino acids, only 11 are used in modern proteins. Furthermore, because our understanding of conditions on the early Earth are limited, it is unclear which set(s) of conditions employed in spark discharge or hydrothermal reactions are correct, leaving us with significant uncertainty about the amino acid alphabet available for the origins of life on Earth. Meteorites, the surviving remnants of asteroids and comets that fall to the Earth, offer the potential to study authentic samples of naturally-occurring abiotic chemistry, and thus can provide an alternative approach to constraining the amino acid library during the origins of life.

  9. Combinatorics of aliphatic amino acids.

    Science.gov (United States)

    Grützmann, Konrad; Böcker, Sebastian; Schuster, Stefan

    2011-01-01

    This study combines biology and mathematics, showing that a relatively simple question from molecular biology can lead to complicated mathematics. The question is how to calculate the number of theoretically possible aliphatic amino acids as a function of the number of carbon atoms in the side chain. The presented calculation is based on earlier results from theoretical chemistry concerning alkyl compounds. Mathematical properties of this number series are highlighted. We discuss which of the theoretically possible structures really occur in living organisms, such as leucine and isoleucine with a chain length of four. This is done both for a strict definition of aliphatic amino acids only involving carbon and hydrogen atoms in their side chain and for a less strict definition allowing sulphur, nitrogen and oxygen atoms. While the main focus is on proteinogenic amino acids, we also give several examples of non-proteinogenic aliphatic amino acids, playing a role, for instance, in signalling. The results are in agreement with a general phenomenon found in biology: Usually, only a small number of molecules are chosen as building blocks to assemble an inconceivable number of different macromolecules as proteins. Thus, natural biological complexity arises from the multifarious combination of building blocks.

  10. Computational Design of Multinuclear Metalloproteins Using Unnatural Amino Acids.

    Science.gov (United States)

    Hansen, William A; Mills, Jeremy H; Khare, Sagar D

    2016-01-01

    amino acid technology and tested experimentally for structure and catalytic activity.

  11. Kinetics of heterogeneous catalytic reactions

    CERN Document Server

    Boudart, Michel

    2014-01-01

    This book is a critical account of the principles of the kinetics of heterogeneous catalytic reactions in the light of recent developments in surface science and catalysis science. Originally published in 1984. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase acc

  12. Molecular catalytic coal liquid conversion

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.; Yang, Shiyong [Univ. of Chicago, IL (United States)

    1995-12-31

    This research, which is relevant to the development of new catalytic systems for the improvement of the quality of coal liquids by the addition of dihydrogen, is divided into two tasks. Task 1 centers on the activation of dihydrogen by molecular basic reagents such as hydroxide ion to convert it into a reactive adduct (OH{center_dot}H{sub 2}){sup {minus}} that can reduce organic molecules. Such species should be robust withstanding severe conditions and chemical poisons. Task 2 is focused on an entirely different approach that exploits molecular catalysts, derived from organometallic compounds that are capable of reducing monocyclic aromatic compounds under very mild conditions. Accomplishments and conclusions are discussed.

  13. Computational Introduction of Catalytic Activity into Proteins.

    Science.gov (United States)

    Bertolani, Steve J; Carlin, Dylan Alexander; Siegel, Justin B

    2016-01-01

    Recently, there have been several successful cases of introducing catalytic activity into proteins. One method that has been used successfully to achieve this is the theozyme placement and enzyme design algorithms implemented in Rosetta Molecular Modeling Suite. Here, we illustrate how to use this software to recapitulate the placement of catalytic residues and ligand into a protein using a theozyme, protein scaffold, and catalytic constraints as input. PMID:27094294

  14. Estimating the temperature of a catalytic converter

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T.T.-H.

    1994-11-02

    A method is described for estimating the temperature in a catalytic converter used in the exhaust system of an internal combustion engine. Pressure sensors monitor the flow resistance across the catalytic converter to provide an indication of the temperature inside. This feedback system allows heating devices to be switched off and thus avoid overheating, while maintaining the catalytic converter's efficiency by assuring that it does not operate below its light off temperature. (UK)

  15. Estimating the temperature of a catalytic converter

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T.T.-H.

    1994-11-02

    A method of estimating the temperature of a catalytic converter used in the exhaust system of an internal combustion engine is described. Heated exhaust gas oxygen (HEGO) sensors are placed upstream and downstream of the catalytic converter. The temperature of the catalytic converter shortly after start-up is measured by monitoring the resistance of the HEGO sensor's heating element. The downstream sensor is used for mixture control and to double check results of the upstream sensor. (UK)

  16. Some Aspects of the Catalytic Organic Synthesis

    Institute of Scientific and Technical Information of China (English)

    Anil; K.Saikia

    2007-01-01

    1 Results Catalytic reactions are gaining importance due to its low cost, operational simplicity, high efficiency and selectivity. It is also getting much attention in green synthesis. Many useful organic reactions, including the acylation of alcohols and aldehydes, carbon-carbon, carbon-nitrogen, carbon-sulfur bond forming and oxidation reactions are carried out by catalyst. We are exploring the catalytic acylation of alcohols and aldehydes in a simple and efficient manner. Catalytic activation of unr...

  17. Catalytic synthesis of key intermediates of β-receptor agonist -chiral α-halo secondary alcohols by CBS catalysts%CBS催化合成β-受体激动剂关键中间体——手性α-卤代仲醇

    Institute of Scientific and Technical Information of China (English)

    肖鸽; 卓广澜

    2011-01-01

    A series of chiral α-halo secondary alcohols, the key intermediates of D-receptor agonists, was obtained via asymmetric reduction of α-halo-acetophenone derivatives catalyzed by Corey-Bakshi-Shibata (CBS) catalyst (R/S)-α,ct-diphenyl-2-pyrrolidinemethanol and their yield and optical purity were better.%用CBS催化剂中的R/S-α,α-二苯基脯氨醇为催化剂不对称还原α-卤代苯乙酮衍生物,得到系列手性α-卤代仲醇--β-受体激动剂关键中间体,反应具有较好的收率,产物光学纯度高.

  18. Role of a Highly Conserved and Catalytically Important Glutamate-49 in the Enterococcus faecalis Acetolactate Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Miyoung; Lee, Sangchoon; Cho, Junehaeng; Ryu, Seong Eon; Yoon, Moonyoung [Hanyang Univ., Seoul (Korea, Republic of); Koo, Bonsung [Rural Development Administration, Suwon (Korea, Republic of)

    2013-02-15

    Acetolactate synthase (ALS) is a thiamine diphosphate (ThDP)-dependent enzyme that catalyzes the decarboxylation of pyruvate and then condenses the hydroxyethyl moiety with another molecule of pyruvate to give 2-acetolactate (AL). AL is a key metabolic intermediate in various metabolic pathways of microorganisms. In addition, AL can be converted to acetoin, an important physiological metabolite that is excreted by many microorganisms. There are two types of ALSs reported in the literature, anabolic aceto-hydroxyacid synthase (AHAS) and catabolic ALSs (cALS). The anabolic AHAS is primarily found in plants, fungi, and bacteria, is involved in the biosynthesis of branched-chain amino acids (BCAAs), and contains flavin adenine dinucleotide (FAD), whereas the cALS is found only in some bacteria and is involved in the butanediol fermentation pathway. Both of the enzymes are ThDP-dependent and require a divalent metal ion for catalytic activity. Despite the similarities of the reactions catalyzed, the cALS can be distinguished from anabolic AHAS by a low optimal pH of about 6.0, FAD-independent functionality, a genetic location within the butanediol operon, and lack of a regulatory subunit. It is noteworthy that the structural and functional features of AHAS have been extensively studied, in contrast to those of cALS, for which only limited information is available. To date, the only crystal structure of cALS reported is from Klebsiella pneumonia, which revealed that the overall structure of K. pneumonia ALS is similar to that of AHAS except for the FAD binding region found in AHAS.

  19. Critical Amino Acid Residues for Nicotine 5' -Hydroxylation in Human CYP2A Enzymes

    Institute of Scientific and Technical Information of China (English)

    Xiaoyang He Xiaoyang He; Xu Xu; Jian Shen; Li Sun; Anthony Y. H. Lu; Clifford Weisel; Junyan Hong

    2008-01-01

    Objective: We have continued previous work in which we demonstrated that #117 and #372 amino acids contrib-uted to the high activities of human CYP2A13 in catalyzing 4-methylnitrosamino-1-(3-pyridyl)-1-hutanone(NNK) and aflatoxin B1(AFB1) carcinogenic activation. The present study was designed to identify other potential amino acid residues that contribute to the different catalytic characteristics of two CYP2A enzymes, CYP2A6 and CYP2A13, in nicotine metabolism and provide insights of the substrate and related amino acid residues interactions. Methods: A series of reciprocally substituted mutants of CYP2A6IIe'300→Phe, CYP2A6Gly'301Ala, CYP2A6Ser'369→Gly, CYP2A13Phe'300→Ile, CYP2A13AIa'301→Gly and CYP2A13Gly'369→Ser were generated by site-directed mutagenesis/baculovirus-Sf9 insect cells expression. Comparative kinetic analysis of nicotine 5'hydroxylatin by wild type and mutant CYP2A proteins was performed. Results:All amino acid residue substitutions at 300, 301 and 369 caused significant kinetic property changes in nicotine metabolism. While CYP2A6Ile'300→Phe and CYP2A6Gly'301→Ala mutations had notable catalytic efficiency increases compared to that for the wild type CYP2A6, CYP2A13Phe'300→Ile and CYP2A13Ala'301→Gly replacement introduced remarkable catalytic efficiency decreases. In addition, all these catalytic efficiency alterations were caused by V,maxvariations rather than K,m changes. Substi-tution of #369 residue significantly affected both K,m and V,max values. CYP2A6Ser'369→Gly increase the catalytic efficiency via a significant Km decrease versus V,max enhancement, while the opposite effects were seen with CYP2A13Gly'369→Ser. Conclusion:#300, #301 and #369 residues in human CYP2A6/13 play important roles in nicotine 5' -oxidation. Switching #300 or #301 residues did not affect the CYP2A protein affinities toward nicotine, although these amino acids are located in the active center. Seta69 to Gly substitution indirectly affected

  20. Nanostructured Catalytic Reactors for Air Purification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project proposes the development of lightweight compact nanostructured catalytic reactors for air purification from toxic gaseous organic...

  1. Nanostructured Catalytic Reactors for Air Purification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II project proposes the development of lightweight compact nanostructured catalytic reactors for air purification from toxic gaseous organic...

  2. Synthesis of Functionalized Iron Oxide Nanoparticle with Amino Pyridine Moiety and Studies on Their Catalytic Behavior

    OpenAIRE

    Girija, D.; Naik, Halehatty S. Bhojya; Kumar, B. Vinay; Sudhamani, C. N.

    2011-01-01

    Aim: The main objective of this paper is to study the synthesis of functionalized iron oxide nanoparticle and its reactivity towards chromene synthesis Study design: Functionalized iron oxide nanoparticle study. Place and duration of study: Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta, between December 2009 and July 2010. Methodology: This paper describes synthesis of stable functionalized iron oxide nanoparticles ...

  3. Quinone-amino acid conjugates targeting Leishmania amino acid transporters.

    Science.gov (United States)

    Prati, Federica; Goldman-Pinkovich, Adele; Lizzi, Federica; Belluti, Federica; Koren, Roni; Zilberstein, Dan; Bolognesi, Maria Laura

    2014-01-01

    The aim of the present study was to investigate the feasibility of targeting Leishmania transporters via appropriately designed chemical probes. Leishmania donovani, the parasite that causes visceral leishmaniasis, is auxotrophic for arginine and lysine and has specific transporters (LdAAP3 and LdAAP7) to import these nutrients. Probes 1-15 were originated by conjugating cytotoxic quinone fragments (II and III) with amino acids (i.e. arginine and lysine) by means of an amide linkage. The toxicity of the synthesized conjugates against Leishmania extracellular (promastigotes) and intracellular (amastigotes) forms was investigated, as well their inhibition of the relevant amino acid transporters. We observed that some conjugates indeed displayed toxicity against the parasites; in particular, 7 was identified as the most potent derivative (at concentrations of 1 µg/mL and 2.5 µg/mL residual cell viability was reduced to 15% and 48% in promastigotes and amastigotes, respectively). Notably, 6, while retaining the cytotoxic activity of quinone II, displayed no toxicity against mammalian THP1 cells. Transport assays indicated that the novel conjugates inhibited transport activity of lysine, arginine and proline transporters. Furthermore, our analyses suggested that the toxic conjugates might be translocated by the transporters into the cells. The non-toxic probes that inhibited transport competed with the natural substrates for binding to the transporters without being translocated. Thus, it is likely that 6, by exploiting amino acid transporters, can selectively deliver its toxic effects to Leishmania cells. This work provides the first evidence that amino acid transporters of the human pathogen Leishmania might be modulated by small molecules, and warrants their further investigation from drug discovery and chemical biology perspectives. PMID:25254495

  4. Quinone-Amino Acid Conjugates Targeting Leishmania Amino Acid Transporters

    OpenAIRE

    Federica Prati; Adele Goldman-Pinkovich; Federica Lizzi; Federica Belluti; Roni Koren; Dan Zilberstein; Maria Laura Bolognesi

    2014-01-01

    The aim of the present study was to investigate the feasibility of targeting Leishmania transporters via appropriately designed chemical probes. Leishmania donovani, the parasite that causes visceral leishmaniasis, is auxotrophic for arginine and lysine and has specific transporters (LdAAP3 and LdAAP7) to import these nutrients. Probes 1-15 were originated by conjugating cytotoxic quinone fragments (II and III) with amino acids (i.e. arginine and lysine) by means of an amide linkage. The toxi...

  5. Quinone-amino acid conjugates targeting Leishmania amino acid transporters.

    Directory of Open Access Journals (Sweden)

    Federica Prati

    Full Text Available The aim of the present study was to investigate the feasibility of targeting Leishmania transporters via appropriately designed chemical probes. Leishmania donovani, the parasite that causes visceral leishmaniasis, is auxotrophic for arginine and lysine and has specific transporters (LdAAP3 and LdAAP7 to import these nutrients. Probes 1-15 were originated by conjugating cytotoxic quinone fragments (II and III with amino acids (i.e. arginine and lysine by means of an amide linkage. The toxicity of the synthesized conjugates against Leishmania extracellular (promastigotes and intracellular (amastigotes forms was investigated, as well their inhibition of the relevant amino acid transporters. We observed that some conjugates indeed displayed toxicity against the parasites; in particular, 7 was identified as the most potent derivative (at concentrations of 1 µg/mL and 2.5 µg/mL residual cell viability was reduced to 15% and 48% in promastigotes and amastigotes, respectively. Notably, 6, while retaining the cytotoxic activity of quinone II, displayed no toxicity against mammalian THP1 cells. Transport assays indicated that the novel conjugates inhibited transport activity of lysine, arginine and proline transporters. Furthermore, our analyses suggested that the toxic conjugates might be translocated by the transporters into the cells. The non-toxic probes that inhibited transport competed with the natural substrates for binding to the transporters without being translocated. Thus, it is likely that 6, by exploiting amino acid transporters, can selectively deliver its toxic effects to Leishmania cells. This work provides the first evidence that amino acid transporters of the human pathogen Leishmania might be modulated by small molecules, and warrants their further investigation from drug discovery and chemical biology perspectives.

  6. Key concepts in energy

    CERN Document Server

    Madureira, Nuno Luis

    2014-01-01

    Highlights how key energy concepts surfaced, tracing their evolution throughout history to encompasses four economic concepts and four technological-engineering concepts developed through their history to conclude with current economic and environmental sciences Considers the process of energy-substitutions through complementary usages, hybridization and technological mixes Combines a conceptual approach with key theoretical concepts from engineering, geological and economic sciences providing cross disciplinary overview of energy fundamentals in a short and focused reading

  7. Tackling Critical Catalytic Residues in Helicobacter pylori L-Asparaginase

    Directory of Open Access Journals (Sweden)

    Maristella Maggi

    2015-03-01

    Full Text Available Bacterial asparaginases (amidohydrolases, EC 3.5.1.1 are important enzymes in cancer therapy, especially for Acute Lymphoblastic Leukemia. They are tetrameric enzymes able to catalyze the deamination of L-ASN and, to a variable extent, of L-GLN, on which leukemia cells are dependent for survival. In contrast to other known L-asparaginases, Helicobacter pylori CCUG 17874 type II enzyme (HpASNase is cooperative and has a low affinity towards L-GLN. In this study, some critical amino acids forming the active site of HpASNase (T16, T95 and E289 have been tackled by rational engineering in the attempt to better define their role in catalysis and to achieve a deeper understanding of the peculiar cooperative behavior of this enzyme. Mutations T16E, T95D and T95H led to a complete loss of enzymatic activity. Mutation E289A dramatically reduced the catalytic activity of the enzyme, but increased its thermostability. Interestingly, E289 belongs to a loop that is very variable in L-asparaginases from the structure, sequence and length point of view, and which could be a main determinant of their different catalytic features.

  8. Catalytic reforming feed characterisation technique

    Energy Technology Data Exchange (ETDEWEB)

    Larraz Mora, R.; Arvelo Alvarez, R. [Univ. of La Laguna, Chemical Engineering Dept., La Laguna (Spain)

    2002-09-01

    The catalytic reforming of naphtha is one of the major refinery processes, designed to increase the octane number of naphtha or to produce aromatics. The naphtha used as catalytic reformer feedstock usually contains a mixture of paraffins, naphthenes, and aromatics in the carbon number range C{sub 6} to C{sub 10}. The detailed chemical composition of the feed is necessary to predict the aromatics and hydrogen production as well as the operation severity. The analysis of feed naphtha is usually reported in terms of its ASTM distillation curve and API or specific gravity. Since reforming reactions are described in terms of lumped chemical species (paraffins, naphthenes and aromatics), a feed characterisation technique should be useful in order to predict reforming operating conditions and detect feed quality changes. Unfortunately online analyzer applications as cromatography or recently introduced naphtha NMR [1] are scarce in most of refineries. This work proposes an algorithmic characterisation method focusing on its main steps description. The method could help on the subjects previously described, finally a calculation example is shown. (orig.)

  9. Catalytic conversion of light alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  10. Model catalytic oxidation studies using supported monometallic and heterobimetallic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Ekerdt, J.G.

    1992-02-03

    This research program is directed toward a more fundamental understanding of the effects of catalyst composition and structure on the catalytic properties of metal oxides. Metal oxide catalysts play an important role in many reactions bearing on the chemical aspects of energy processes. Metal oxides are the catalysts for water-gas shift reactions, methanol and higher alcohol synthesis, isosynthesis, selective catalytic reduction of nitric oxides, and oxidation of hydrocarbons. A key limitation to developing insight into how oxides function in catalytic reactions is in not having precise information of the surface composition under reaction conditions. To address this problem we have prepared oxide systems that can be used to study cation-cation effects and the role of bridging (-O-) and/or terminal (=O) surface oxygen anion ligands in a systematic fashion. Since many oxide catalyst systems involve mixtures of oxides, we selected a model system that would permit us to examine the role of each cation separately and in pairwise combinations. Organometallic molybdenum and tungsten complexes were proposed for use, to prepare model systems consisting of isolated monomeric cations, isolated monometallic dimers and isolated bimetallic dimers supported on silica and alumina. The monometallic and bimetallic dimers were to be used as models of more complex mixed- oxide catalysts. Our current program was to develop the systems and use them in model oxidation reactions.

  11. [Inherited amino acid transport disorders].

    Science.gov (United States)

    Igarashi, Y; Tada, K

    1992-07-01

    Disorders due to inherited amino acids transport defect are reviewed. The disorders were categorized into three types of transport defects, namely, brush-border membrane of epithelial cells of small intestine and kidney tubules (Hartnup disease, blue diaper syndrome, cystinuria, iminoglycinuria and lysine malabsorption syndrome), basolateral membrane (lysinuric protein intolerance) and membrane of intracellular organelles (cystinosis and hyperornitinemia-hyperammonemia-homocitrullinuria syndrome). Pathogenesis, clinical feature, laboratory findings, diagnosis, genetics and treatment of these disorders are described, briefly. There is not much data for the transport systems themselves, so that further investigation in molecular and gene levels for transport systems is necessary to clarify the characteristics of the transport and heterogeneity of phenotypes in inherited amino acids transport disorders. PMID:1404888

  12. Systematic computation of phase partition and solubilities in phase transfer catalytic processes

    DEFF Research Database (Denmark)

    Piccolo, Chiara; Piccone, Patrick M.; Shaw, Andrew;

    phase serves as a reservoir of reacting anions, whereas organic reactants are located in a second, organic phase. The key feature of this approach is the use of a catalytic amount of an organic soluble cation (often a quaternary ammonium cation) to induce solubilization of the reactive anion...

  13. Lock and key colloids.

    Science.gov (United States)

    Sacanna, S; Irvine, W T M; Chaikin, P M; Pine, D J

    2010-03-25

    New functional materials can in principle be created using colloids that self-assemble into a desired structure by means of a programmable recognition and binding scheme. This idea has been explored by attaching 'programmed' DNA strands to nanometre- and micrometre- sized particles and then using DNA hybridization to direct the placement of the particles in the final assembly. Here we demonstrate an alternative recognition mechanism for directing the assembly of composite structures, based on particles with complementary shapes. Our system, which uses Fischer's lock-and-key principle, employs colloidal spheres as keys and monodisperse colloidal particles with a spherical cavity as locks that bind spontaneously and reversibly via the depletion interaction. The lock-and-key binding is specific because it is controlled by how closely the size of a spherical colloidal key particle matches the radius of the spherical cavity of the lock particle. The strength of the binding can be further tuned by adjusting the solution composition or temperature. The composite assemblies have the unique feature of having flexible bonds, allowing us to produce flexible dimeric, trimeric and tetrameric colloidal molecules as well as more complex colloidal polymers. We expect that this lock-and-key recognition mechanism will find wider use as a means of programming and directing colloidal self-assembly. PMID:20336142

  14. Combination of amino acids reduces pigmentation in B16F0 melanoma cells.

    Science.gov (United States)

    Ishikawa, Masago; Kawase, Ichiro; Ishii, Fumio

    2007-04-01

    Amino acids, the building blocks of proteins, play significant roles in numerous physiological events in mammals. As the effects of amino acids on melanogenesis have yet to be demonstrated, the present study was conducted to identify whether amino acids, in particular alanine, glycine, isoleucine and leucine, influence melanogenesis in B16F0 melanoma cells. Glycine and L-isoleucine, but not D-isoleucine, reduced melanogenesis in a concentration-dependent manner without any morphological changes in B16F0 melanoma cells. L-Alanine and L-leucine, but not D-alanine and D-leucine, also reduced melanogenesis without any morphological changes in B16F0 melanoma cells. However these amino acids did not show a concentration-dependency. Combination of L-alanine and the other amino acids, particularly 4 amino acids combination, had an additive effect on the inhibition of melanogenesis compared with single treatment of L-alanine. None of the amino acids affected the activity of tyrosinase, a key enzyme in melanogenesis. These results suggest that L-alanine, glycine, L-isoleucine and L-leucine, but not the D-form amino acids, have a hypopigmenting effect in B16F0 melanoma cells, and that these effects are not due to the inhibition of tyrosinase activity. Combination of these 4 amino acids had the additive effect on hypopigmentation that was as similar as that of kojic acid. PMID:17409501

  15. Acoustics of automotive catalytic converter assemblies

    Science.gov (United States)

    Dickey, Nolan S.; Selamet, Ahmet; Parks, Steve J.; Tallio, Kevin V.; Miazgowicz, Keith D.; Radavich, Paul M.

    2003-10-01

    In an automotive exhaust system, the purpose of the catalytic converter is to reduce pollutant emissions. However, catalytic converters also affect the engine and exhaust system breathing characteristics; they increase backpressure, affect exhaust system acoustic characteristics, and contribute to exhaust manifold tuning. Thus, radiated sound models should include catalytic converters since they can affect both the source characteristics and the exhaust system acoustic behavior. A typical catalytic converter assembly employs a ceramic substrate to carry the catalytically active noble metals. The substrate has numerous parallel tubes and is mounted in a housing with swelling mat or wire mesh around its periphery. Seals at the ends of the substrate can be used to help force flow through the substrate and/or protect the mat material. Typically, catalytic converter studies only consider sound propagation in the small capillary tubes of the substrate. Investigations of the acoustic characteristics of entire catalytic converter assemblies (housing, substrate, seals, and mat) do not appear to be available. This work experimentally investigates the acoustic behavior of catalytic converter assemblies and the contributions of the separate components to sound attenuation. Experimental findings are interpreted with respect to available techniques for modeling sound propagation in ceramic substrates.

  16. Synthesis of Chiral Amino Cyclic Phosphoric Acids

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Chirai amino cyclic phosphoric acids, 5-amino-2-hydroxy-4- (4-nitrophenyl)-l, 3,2-dioxaphospho- rinane 2-oxide and 2-hydroxy-4- (4-methylsulfonylphenyl)-5-phthalimido-1,3,2-dioxaphos phorinane 2-oxide are synthesized in good over yields (64. 2% and 72. 8% respectively) from 2-amino-l-aryl-l,3-propanediols. The different reaction conditions are necessary in hydrolysis reactions of amino cyclic phosphonyl chlorides.

  17. Key World Energy Statistics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The IEA produced its first handy, pocket-sized summary of key energy data in 1997. This new edition responds to the enormously positive reaction to the book since then. Key World Energy Statistics produced by the IEA contains timely, clearly-presented data on supply, transformation and consumption of all major energy sources. The interested businessman, journalist or student will have at his or her fingertips the annual Canadian production of coal, the electricity consumption in Thailand, the price of diesel oil in Spain and thousands of other useful energy facts. It exists in different formats to suit our readers' requirements.

  18. Silver nanocluster catalytic microreactors for water purification

    Science.gov (United States)

    Da Silva, B.; Habibi, M.; Ognier, S.; Schelcher, G.; Mostafavi-Amjad, J.; Khalesifard, H. R. M.; Tatoulian, M.; Bonn, D.

    2016-07-01

    A new method for the elaboration of a novel type of catalytic microsystem with a high specific area catalyst is developed. A silver nanocluster catalytic microreactor was elaborated by doping a soda-lime glass with a silver salt. By applying a high power laser beam to the glass, silver nanoclusters are obtained at one of the surfaces which were characterized by BET measurements and AFM. A microfluidic chip was obtained by sealing the silver coated glass with a NOA 81 microchannel. The catalytic activity of the silver nanoclusters was then tested for the efficiency of water purification by using catalytic ozonation to oxidize an organic pollutant. The silver nanoclusters were found to be very stable in the microreactor and efficiently oxidized the pollutant, in spite of the very short residence times in the microchannel. This opens the way to study catalytic reactions in microchannels without the need of introducing the catalyst as a powder or manufacturing complex packed bed microreactors.

  19. Selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-31

    In the combustion of fossil fuels, the principal source of nitrogen oxides is nitrogen bound in the fuel structure. In gasification, a large part of fuel nitrogen forms NH{sub 3}, which may form nitrogen oxides during gas combustion. If NH{sub 3} and other nitrogen species could be removed from hot gas, the NO emission could be considerably reduced. However, relatively little attention has been paid to finding new means of removing nitrogen compounds from the hot gasification gas. The possibility of selectively oxidizing NH{sub 3} to N{sub 2} in the hot gasification has been studied at VTT Energy. The largest NH{sub 3} reductions have been achieved by catalytic oxidation on aluminium oxides. (author) (4 refs.)

  20. Reducing catalytic converter pressure loss

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This article examines why approximately 30--40% of total exhaust-system pressure loss occurs in the catalytic converter and what can be done to reduce pressure loss. High exhaust-system backpressure is of concern in the design of power trains for passenger cars and trucks because it penalizes fuel economy and limits peak power. Pressure losses occur due to fluid shear and turning during turbulent flow in the converter headers and in entry separation and developing laminar-flow boundary layers within the substrate flow passages. Some of the loss mechanisms are coupled. For example, losses in the inlet header are influenced by the presence of the flow resistance of a downstream substrate. Conversely, the flow maldistribution and pressure loss of the substrate(s) depend on the design of the inlet header.

  1. Non-catalytic recuperative reformer

    Energy Technology Data Exchange (ETDEWEB)

    Khinkis, Mark J.; Kozlov, Aleksandr P.; Kurek, Harry

    2015-12-22

    A non-catalytic recuperative reformer has a flue gas flow path for conducting hot flue gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is embedded in the flue gas flow path to permit heat transfer from the hot flue gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, extended surfaces of metal material such as stainless steel or metal alloy that are high in nickel content are included within at least a portion of the reforming mixture flow path.

  2. Catalytic Graphitization of Phenolic Resin

    Institute of Scientific and Technical Information of China (English)

    Mu Zhao; Huaihe Song

    2011-01-01

    The catalytic graphitization of thermal plastic phenolic-formaldehyde resin with the aid of ferric nitrate (FN) was studied in detail. The morphologies and structural features of the products including onion-like carbon nanoparticles and bamboo-shaped carbon nanotubes were investigated by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction and Raman spectroscopy measurements. It was found that with the changes of loading content of FN and residence time at 1000℃, the products exhibited various morphologies. The TEM images showed that bamboo-shaped carbon nanotube consisted of tens of bamboo sticks and onion-like carbon nanoparticle was made up of quasi-spherically concentrically closed carbon nanocages.

  3. Catalytic oxidation of CS2 over atmospheric particles and oxide catalysts

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The catalytic oxidization of CS2 over atmospheric particles and some oxide catalysts was explored through FT-IR, MS and a fixed-bed stainless steel reactor. The results show that at mospheric particles and some oxide catalysts exhibited considerable oxidizing activities for CS2 at ambient temperature. The reaction products are mainly COS and elemental sulfur, even CO2 on some catalysts. Among the catalysts, CaO has the strongest catalytic activity for oxidizing CS2. Fe2O3 is weaker than CaO. The catalytic activity for AI2O3 reduces considerably compared with the former two catalysts, and SiO2 the weakest. Atmospheric particle samples' catalytic activity is be tween Fe2O3's and AI2O3's. The atmospheric particle sample collected mainly consists of Ca(AI2Si2O8)· 4H2O, which is also the main component of cement. COS, the main product, is formed by the catalytic oxidization of CS2 with adsorbed “molecular” oxygen over the catalysts' surfaces. The concentration of adsorbed oxygen over catalysts' surfaces may be the key factor contributed to the oxidizing activity. It is indicated that CS2 could be catalytically oxidized over at mospheric particles, which induced that this reaction may be another important source of atmos pheric COS from CS2.

  4. Amino acid analyses of Apollo 14 samples.

    Science.gov (United States)

    Gehrke, C. W.; Zumwalt, R. W.; Kuo, K.; Aue, W. A.; Stalling, D. L.; Kvenvolden, K. A.; Ponnamperuma, C.

    1972-01-01

    Detection limits were between 300 pg and 1 ng for different amino acids, in an analysis by gas-liquid chromatography of water extracts from Apollo 14 lunar fines in which amino acids were converted to their N-trifluoro-acetyl-n-butyl esters. Initial analyses of water and HCl extracts of sample 14240 and 14298 samples showed no amino acids above background levels.

  5. Unnatural reactive amino acid genetic code additions

    Science.gov (United States)

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.

    2014-08-26

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  6. Unnatural reactive amino acid genetic code additions

    Energy Technology Data Exchange (ETDEWEB)

    Deiters, Alexander; Cropp, Ashton T; Chin, Jason W; Anderson, Christopher J; Schultz, Peter G

    2013-05-21

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  7. Amino acids as antioxidants for frying oil

    Science.gov (United States)

    Amino acids, proteins and hydrolysates of proteins have been known to protect edible oils from oxidation. While amino acids and related materials have high potential as antioxidants for frying oil, effectiveness of each amino acid and mechanisms of their activities are not well understood yet. Propo...

  8. Selective Oxidative Decarboxylation of Amino Acids to Produce Industrially Relevant Nitriles by Vanadium Chloroperoxidase

    NARCIS (Netherlands)

    But, A.; Notre, le J.E.L.; Scott, E.L.; Wever, R.; Sanders, J.P.M.

    2012-01-01

    Industrial nitriles from biomass: Vanadium-chloroperoxidase is successfully used to transform selectively glutamic acid into 3-cyanopropanoic acid, a key intermediate for the synthesis of bio-succinonitrile and bio-acrylonitrile, by using a catalytic amount of a halide salt. This clean oxidative dec

  9. Mutual Amino Acid Catalysis in Salt-Induced Peptide Formation Supports this Mechanism's Role in Prebiotic Peptide Evolution

    Science.gov (United States)

    Suwannachot, Yuttana; Rode, Bernd M.

    1999-10-01

    The presence of some amino acids and dipeptides under the conditions of the salt-induced peptide formation reaction (aqueous solution at 85 °C, Cu(II) and NaCl) has been found to catalyze the formation of homopeptides of other amino acids, which are otherwise produced only in traces or not at all by this reaction. The condensation of Val, Leu and Lys to form their homodipeptides can occur to a considerable extent due to catalytic effects of other amino acids and related compounds, among which glycine, histidine, diglycine and diketopiperazine exhibit the most remarkable activity. These findings also lead to a modification of the table of amino acid sequences preferentially formed by the salt-induced peptide formation (SIPF) reaction, previously used for a comparison with the sequence preferences in membrane proteins of primitive organisms

  10. Catalytic converter with thermoelectric generator

    Energy Technology Data Exchange (ETDEWEB)

    Parise, R.J.

    1998-07-01

    The unique design of an electrically heated catalyst (EHC) and the inclusion of an ECO valve in the exhaust of an internal combustion engine will meet the strict new emission requirements, especially at vehicle cold start, adopted by several states in this country as well as in Europe and Japan. The catalytic converter (CC) has been a most useful tool in pollution abatement for the automobile. But the emission requirements are becoming more stringent and, along with other improvements, the CC must be improved to meet these new standards. Coupled with the ECO valve, the EHC can meet these new emission limits. In an internal combustion engine vehicle (ICEV), approximately 80% of the energy consumed leaves the vehicle as waste heat: out the tail pipe, through the radiator, or convected/radiated off the engine. Included with the waste heat out the tail pipe are the products of combustion which must meet strict emission requirements. The design of a new CC is presented here. This is an automobile CC that has the capability of producing electrical power and reducing the quantity of emissions at vehicle cold start, the Thermoelectric Catalytic Power Generator. The CC utilizes the energy of the exothermic reactions that take place in the catalysis substrate to produce electrical energy with a thermoelectric generator. On vehicle cold start, the thermoelectric generator is used as a heat pump to heat the catalyst substrate to reduce the time to catalyst light-off. Thus an electrically heated catalyst (EHC) will be used to augment the abatement of tail pipe emissions. Included with the EHC in the exhaust stream of the automobile is the ECO valve. This valve restricts the flow of pollutants out the tail pipe of the vehicle for a specified amount of time until the EHC comes up to operating temperature. Then the ECO valve opens and allows the full exhaust, now treated by the EHC, to leave the vehicle.

  11. Cryptographic Key Management System

    Energy Technology Data Exchange (ETDEWEB)

    No, author

    2014-02-21

    This report summarizes the outcome of U.S. Department of Energy (DOE) contract DE-OE0000543, requesting the design of a Cryptographic Key Management System (CKMS) for the secure management of cryptographic keys for the energy sector infrastructure. Prime contractor Sypris Electronics, in collaboration with Oak Ridge National Laboratories (ORNL), Electric Power Research Institute (EPRI), Valicore Technologies, and Purdue University's Center for Education and Research in Information Assurance and Security (CERIAS) and Smart Meter Integration Laboratory (SMIL), has designed, developed and evaluated the CKMS solution. We provide an overview of the project in Section 3, review the core contributions of all contractors in Section 4, and discuss bene ts to the DOE in Section 5. In Section 6 we describe the technical construction of the CKMS solution, and review its key contributions in Section 6.9. Section 7 describes the evaluation and demonstration of the CKMS solution in different environments. We summarize the key project objectives in Section 8, list publications resulting from the project in Section 9, and conclude with a discussion on commercialization in Section 10 and future work in Section 11.

  12. Locks and Keys Service

    CERN Multimedia

    Claude Ducastel

    The GS-LS-SEM section is pleased to inform you that as from Monday 30 November 2009, the opening hours of the Locks and Keys service will be the following: 08h30 - 12h30 / 13h30 - 16:30, Mondays to Fridays. GS-SEM-LS 73333

  13. Turn key contracts

    International Nuclear Information System (INIS)

    The aim of this summary is to point out some specific areas which have to be covered in a turn-key contract and which are of primarily interest to the buyer of a nuclear plant. It will be assumed that the buyer is utility company in a developing country and a plant supplier a company in an industrial country. (orig./FW)

  14. Key performance indicators

    NARCIS (Netherlands)

    Zwetsloot, G.I.J.M.

    2014-01-01

    This paper addresses how organisations can use OSH performance indicators. This is an important way to mainstream OSH into business management. Key performance indicators (KPIs) should provide objective data on the OSH situation. It is often said that ‘what gets measured gets managed’. Without infor

  15. Revolutionary systems for catalytic combustion and diesel catalytic particulate traps.

    Energy Technology Data Exchange (ETDEWEB)

    Stuecker, John Nicholas; Witze, Peter O.; Ferrizz, Robert Matthew; Cesarano, Joseph, III; Miller, James Edward

    2004-12-01

    This report is a summary of an LDRD project completed for the development of materials and structures conducive to advancing the state of the art for catalyst supports and diesel particulate traps. An ancillary development for bio-medical bone scaffolding was also realized. Traditionally, a low-pressure drop catalyst support, such as a ceramic honeycomb monolith, is used for catalytic reactions that require high flow rates of gases at high-temperatures. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. ''Robocasting'' is a unique process developed at Sandia National Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low-pressure drops. These alternative 3-dimensional geometries may also provide a foundation for the development of self-regenerating supports capable of trapping and combusting soot particles from a diesel engine exhaust stream. This report describes the structures developed and characterizes the improved catalytic performance that can result. The results show that, relative to honeycomb monolith supports, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a trade-off between enhanced mass transfer and increased pressure drop, which can be optimized depending on the particular demands of a given application. Practical applications include the combustion of natural gas for power generation, production of syngas, and hydrogen reforming reactions. The robocast lattice structures also show practicality for diesel particulate trapping. Preliminary results for trapping efficiency are reported as well as the development of electrically resistive lattices that can regenerate the structure

  16. Current topics in the biotechnological production of essential amino acids, functional amino acids, and dipeptides.

    Science.gov (United States)

    Mitsuhashi, Satoshi

    2014-04-01

    Amino acids play important roles in both human and animal nutrition and in the maintenance of health. Here, amino acids are classified into three groups: first, essential amino acids, which are essential to nutrition; second, functional amino acids, recently found to be important in the promotion of physiological functions; and third, dipeptides, which are used to resolve problematic features of specific free amino acids, such as their instability or insolubility. This review focusses on recent researches concerning the microbial production of essential amino acids (lysine and methionine), functional amino acids (histidine and ornithine), and a dipeptide (L-alanyl-L-glutamine). PMID:24679256

  17. Highly selective hydrocarboxylation of styrene with oxalic acid or water using palladium ortho-amino arenethiolates with intramolecular co-ordinating nitrogen Lewis bases

    NARCIS (Netherlands)

    Koten, G. van; Kruis, D.; Ruiz, N.; Janssen, M.D.; Boersma, J.; Claver, C.

    1998-01-01

    Under mild conditions and in the presence of a catalytic amount of an S, N-chelated palladium ortho-amino arenethiolate complex, styrene reacts with carbon monoxide and oxalic acid or water to selectively give 2-phenylpropanoic acid in high yield.

  18. Autoantibodies against the catalytic domain of BRAF are not specific serum markers for rheumatoid arthritis.

    Directory of Open Access Journals (Sweden)

    Wenli Li

    Full Text Available BACKGROUND: Autoantibodies to the catalytic domain of v-raf murine sarcoma viral oncogene homologue B1 (BRAF have been recently identified as a new family of autoantibodies involved in rheumatoid arthritis (RA. The objective of this study was to determine antibody responses to the catalytic domain of BRAF in RA and other autoimmune diseases. The association between RA-related clinical indices and these antibodies was also assessed. METHODOLOGY/PRINCIPAL FINDINGS: The presence of autoantibodies to the catalytic domain of BRAF (anti-BRAF or to peptide P25 (amino acids 656-675 of the catalytic domain of BRAF; anti-P25 was determined in serum samples from patients with RA, primary Sjögren's syndrome (pSS, systemic lupus erythematosus (SLE, and healthy controls by using indirect enzyme-linked immunosorbent assays (ELISAs based on the recombinant catalytic domain of BRAF or a synthesized peptide, respectively. Associations of anti-BRAF or anti-P25 with disease variables of RA patients were also evaluated. Our results show that the BRAF-specific antibodies anti-BRAF and anti-P25 are equally present in RA, pSS, and SLE patients. However, the erythrocyte sedimentation rate (ESR used to detect inflammation was significantly different between patients with and without BRAF-specific antibodies. The anti-BRAF-positive patients were found to have prolonged disease, and active disease occurred more frequently in anti-P25-positive patients than in anti-P25-negative patients. A weak but significant correlation between anti-P25 levels and ESRs was observed (r = 0.319, p = 0.004. CONCLUSIONS/SIGNIFICANCE: The antibody response against the catalytic domain of BRAF is not specific for RA, but the higher titers of BRAF-specific antibodies may be associated with increased inflammation in RA.

  19. Amino acid properties conserved in molecular evolution.

    Directory of Open Access Journals (Sweden)

    Witold R Rudnicki

    Full Text Available That amino acid properties are responsible for the way protein molecules evolve is natural and is also reasonably well supported both by the structure of the genetic code and, to a large extent, by the experimental measures of the amino acid similarity. Nevertheless, there remains a significant gap between observed similarity matrices and their reconstructions from amino acid properties. Therefore, we introduce a simple theoretical model of amino acid similarity matrices, which allows splitting the matrix into two parts - one that depends only on mutabilities of amino acids and another that depends on pairwise similarities between them. Then the new synthetic amino acid properties are derived from the pairwise similarities and used to reconstruct similarity matrices covering a wide range of information entropies. Our model allows us to explain up to 94% of the variability in the BLOSUM family of the amino acids similarity matrices in terms of amino acid properties. The new properties derived from amino acid similarity matrices correlate highly with properties known to be important for molecular evolution such as hydrophobicity, size, shape and charge of amino acids. This result closes the gap in our understanding of the influence of amino acids on evolution at the molecular level. The methods were applied to the single family of similarity matrices used often in general sequence homology searches, but it is general and can be used also for more specific matrices. The new synthetic properties can be used in analyzes of protein sequences in various biological applications.

  20. 2-Amino-5-chloropyridinium trifluoroacetate

    Directory of Open Access Journals (Sweden)

    Madhukar Hemamalini

    2010-04-01

    Full Text Available The asymmetric unit of the title salt, C5H6ClN2+·C2F3O2−, contains two independent 2-amino-5-chloropyridinium cations and two independent trifluoroacetate anions. The F atoms of both anions are disordered over two sets of positions, with occupancy ratios of 0.672 (12:0.328 (12 and 0.587 (15:0.413 (15. In the crystal, the cations and anions are linked via N—H...O and C—H...O hydrogen bonds, forming a two-dimensional network parallel to (001.

  1. Pairwise amino acid secondary structural propensities

    Science.gov (United States)

    Chemmama, Ilan E.; Chapagain, Prem P.; Gerstman, Bernard S.

    2015-04-01

    We investigate the propensities for amino acids to form a specific secondary structure when they are paired with other amino acids. Our investigations use molecular dynamics (MD) computer simulations, and we compare the results to those from the Protein Data Bank (PDB). Proper comparison requires weighting of the MD results in a manner consistent with the relative frequency of appearance in the PDB of each possible pair of amino acids. We find that the propensity for an amino acid to assume a secondary structure varies dramatically depending on the amino acid that is before or after it in the primary sequence. This cooperative effect means that when selecting amino acids to facilitate the formation of a secondary structure in peptide engineering experiments, the adjacent amino acids must be considered. We also examine the preference for a secondary structure in bacterial proteins and compare the results to those of human proteins.

  2. Alkene Metathesis Catalysis: A Key for Transformations of Unsaturated Plant Oils and Renewable Derivatives

    Directory of Open Access Journals (Sweden)

    Dixneuf Pierre H.

    2016-03-01

    Full Text Available This account presents the importance of ruthenium-catalysed alkene cross-metathesis for the catalytic transformations of biomass derivatives into useful intermediates, especially those developed by the authors in the Rennes (France catalysis team in cooperation with chemical industry. The cross-metathesis of a variety of functional alkenes arising from plant oils, with acrylonitrile and fumaronitrile and followed by catalytic tandem hydrogenation, will be shown to afford linear amino acid derivatives, the precursors of polyamides. The exploration of cross-metathesis of bio-sourced unsaturated nitriles with acrylate with further catalytic hydrogenation has led to offer an excellent route to α,ω-amino acid derivatives. That of fatty aldehydes has led to bifunctional long chain aldehydes and saturated diols. Two ways of access to functional dienes by ruthenium-catalyzed ene-yne cross-metathesis of plant oil alkene derivatives with alkynes and by cross-metathesis of bio-sourced alkenes with allylic chloride followed by catalytic dehydrohalogenation, are reported. Ricinoleate derivatives offer a direct access to chiral dihydropyrans and tetrahydropyrans via ring closing metathesis. Cross-metathesis giving value to terpenes and eugenol for the straightforward synthesis of artificial terpenes and functional eugenol derivatives without C=C bond isomerization are described.

  3. Key Changes [Book Review

    OpenAIRE

    Kousser, J. Morgan

    1981-01-01

    The notion that electoral history may be divided into long periods of stability broken periodically by major shocks has been the central organizing motif of American political history for a generation. Drawing on the simple empirical observation that the balance of electoral support for the major American political parties across geographic units remained roughly the same for a sequence of contests, and then shifted rather suddenly into a new and lasting pattern, V. 0. Key, Jr., Lee Benson, W...

  4. Public-Key Cryptography

    OpenAIRE

    Lint, van, JH

    2003-01-01

    Part I: Theory Provable security is an important goal in the design of public-key cryptosystems. For most security properties, it is computational security that has to be considered: an attack scenario describes how adversaries interact with the cryptosystem, trying to attack it; the system can be called secure if adversaries with reasonably bounded computational means have negligible prospects of success. The lack of computational problems that are guaranteed to be hard in an appropriate sen...

  5. Catalytic reaction in confined flow channel

    Energy Technology Data Exchange (ETDEWEB)

    Van Hassel, Bart A.

    2016-03-29

    A chemical reactor comprises a flow channel, a source, and a destination. The flow channel is configured to house at least one catalytic reaction converting at least a portion of a first nanofluid entering the channel into a second nanofluid exiting the channel. The flow channel includes at least one turbulating flow channel element disposed axially along at least a portion of the flow channel. A plurality of catalytic nanoparticles is dispersed in the first nanofluid and configured to catalytically react the at least one first chemical reactant into the at least one second chemical reaction product in the flow channel.

  6. Excitatory amino acid receptor antagonists

    DEFF Research Database (Denmark)

    Johansen, T N; Frydenvang, Karla Andrea; Ebert, B;

    1997-01-01

    We have previously shown that (RS)-2-amino-2-(5-tert-butyl-3-hydroxyisoxazol-4-yl)acetic acid (ATAA) is an antagonist at N-methyl-D-aspartic acid (NMDA) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors. We have now resolved ATAA via diastereomeric salt formation......)-phenylethylamine salt of N-BOC-(R)-ATAA. Like ATAA, neither (R)- nor (S)-ATAA significantly affected (IC50 > 100 microM) the receptor binding of tritiated AMPA, kainic acid, or (RS)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid, the latter being a competitive NMDA antagonist. Electrophysiological experiments......, using the rat cortical wedge preparation, showed the NMDA antagonist effect as well as the AMPA antagonist effect of ATAA to reside exclusively in the (R)-enantiomer (Ki = 75 +/- 5 microM and 57 +/- 1 microM, respectively). Neither (R)- nor (S)-ATAA significantly reduced kainic acid-induced excitation...

  7. Heterodimeric l-amino acid oxidase enzymes from Egyptian Cerastes cerastes venom: Purification, biochemical characterization and partial amino acid sequencing

    Directory of Open Access Journals (Sweden)

    A.E. El Hakim

    2015-12-01

    Full Text Available Two l-amino acid oxidase enzyme isoforms, Cc-LAAOI and Cc-LAAOII were purified to apparent homogeneity from Cerastes cerastes venom in a sequential two-step chromatographic protocol including; gel filtration and anion exchange chromatography. The native molecular weights of the isoforms were 115 kDa as determined by gel filtration on calibrated Sephacryl S-200 column, while the monomeric molecular weights of the enzymes were, 60, 56 kDa and 60, 53 kDa for LAAOI and LAAOII, respectively. The tryptic peptides of the two isoforms share high sequence homology with other snake venom l-amino acid oxidases. The optimal pH and temperature values of Cc-LAAOI and Cc-LAAOII were 7.8, 50 °C and 7, 60 °C, respectively. The two isoenzymes were thermally stable up to 70 °C. The Km and Vmax values were 0.67 mM, 0.135 μmol/min for LAAOI and 0.82 mM, 0.087 μmol/min for LAAOII. Both isoenzymes displayed high catalytic preference to long-chain, hydrophobic and aromatic amino acids. The Mn2+ ion markedly increased the LAAO activity for both purified isoforms, while Na+, K+, Ca2+, Mg2+ and Ba2+ ions showed a non-significant increase in the enzymatic activity of both isoforms. Furthermore, Zn2+, Ni2+, Co2+, Cu2+ and AL3+ ions markedly inhibited the LAAOI and LAAOII activities. l-Cysteine and reduced glutathione completely inhibited the LAAO activity of both isoenzymes, whereas, β-mercaptoethanol, O-phenanthroline and PMSF completely inhibited the enzymatic activity of LAAOII. Furthermore, iodoacitic acid inhibited the enzymatic activity of LAAOII by 46% and had no effect on the LAAOI activity.

  8. Structural characterization of the catalytic site of a Nilaparvata lugens delta-class glutathione transferase.

    Science.gov (United States)

    Yamamoto, Kohji; Higashiura, Akifumi; Hossain, Md Tofazzal; Yamada, Naotaka; Shiotsuki, Takahiro; Nakagawa, Atsushi

    2015-01-15

    Glutathione transferases (GSTs) are a major class of detoxification enzymes that play a central role in the defense against environmental toxicants and oxidative stress. Here, we studied the crystal structure of a delta-class glutathione transferase from Nilaparvata lugens, nlGSTD, to gain insights into its catalytic mechanism. The structure of nlGSTD in complex with glutathione, determined at a resolution of 1.7Å, revealed that it exists as a dimer and its secondary and tertiary structures are similar to those of other delta-class GSTs. Analysis of a complex between nlGSTD and glutathione showed that the bound glutathione was localized to the glutathione-binding site. Site-directed mutagenesis of nlGSTD mutants indicated that amino acid residues Ser11, His52, Glu66, and Phe119 contribute to catalytic activity.

  9. Catalytic Peptide Dendrimers as Artificial Proteins: Functional Selection and Optimization from Combinatorial Libraries

    Institute of Scientific and Technical Information of China (English)

    Jean-Louis Reymond

    2005-01-01

    @@ 1Introduction In de novo protein design one attempts to create artificial proteins with defined structure and function from first principles, usually with the help of trial-and-error procedures that scan a large number of possible amino acid sequences. Our approach to de novo protein design is based on peptide dendrimers. Dendrimers are tree-like structures that adopt a globular or disk-shaped structure as a consequence of topology rather than folding. Our peptide dendrimers are obtained by alternating alpha-aminoacids with branching diaminoacids[1].Dendrimers containing combinations of histidine, serine and aspartate display enzyme-like catalytic properties for the hydrolysis of esters, including enantiomeric discrimination[1d]. The catalytic effect involves cooperative substrate binding and catalysis by a positive dendritic effect[1d].

  10. Highly Selective Synthesis of Catalytically Active Monodisperse Rhodium Nanocubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Grass, M.E.; Kuhn, J.N.; Tao, F.; Habas, S.E.; Huang, W.; Yang, P.; Somorjai, G.A.

    2009-02-21

    Synthesis of monodisperse and shape-controlled colloidal inorganic nanocrystals (NCs) is of increasing scientific interest and technological significance. Recently, shape control of Pt, Pd, Ag, Au, and Rh NCs has been obtained by tuning growth kinetics in various solution-phase approaches, including modified polyol methods, seeded growth by polyol reduction, thermolysis of organometallics, and micelle techniques. Control of reduction kinetics of the noble metal precursors and regulation of the relative growth rates of low-index planes (i.e. {l_brace}100{r_brace} and {l_brace}111{r_brace}) via selective adsorption of selected chemical species are two keys for achieving shape modification of noble metal NCs. One application for noble metal NCs of well-defined shape is in understanding how NC faceting (determines which crystallographic planes are exposed) affects catalytic performance. Rh NCs are used in many catalytic reactions, including hydrogenation, hydroformylation, hydrocarbonylation, and combustion reactions. Shape manipulation of Rh NCs may be important in understanding how faceting on the nanoscale affects catalytic properties, but such control is challenging and there are fewer reports on the shape control of Rh NCs compared to other noble metals. Xia and coworkers obtained Rh multipods exhibiting interesting surface plasmonic properties by a polyol approach. The Somorjai and Tilley groups synthesized crystalline Rh multipods, cubes, horns and cuboctahedra, via polyol seeded growth. Son and colleagues prepared catalytically active monodisperse oleylamine-capped tetrahedral Rh NCs for the hydrogenation of arenes via an organometallic route. More recently, the Somorjai group synthesized sizetunable monodisperse Rh NCs using a one-step polyol technique. In this Communication, we report the highly selective synthesis of catalytically active, monodisperse Rh nanocubes of < 10 nm by a seedless polyol method. In this approach, Br{sup -} ions from trimethyl

  11. Vacuum-insulated catalytic converter

    Energy Technology Data Exchange (ETDEWEB)

    Benson, David K. (Golden, CO)

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  12. Catalytic Chemistry on Oxide Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Asthagiri, Aravind; Dixon, David A.; Dohnalek, Zdenek; Kay, Bruce D.; Rodriquez, Jose A.; Rousseau, Roger J.; Stacchiola, Dario; Weaver, Jason F.

    2016-05-29

    Metal oxides represent one of the most important and widely employed materials in catalysis. Extreme variability of their chemistry provides a unique opportunity to tune their properties and to utilize them for the design of highly active and selective catalysts. For bulk oxides, this can be achieved by varying their stoichiometry, phase, exposed surface facets, defect, dopant densities and numerous other ways. Further, distinct properties from those of bulk oxides can be attained by restricting the oxide dimensionality and preparing them in the form of ultrathin films and nanoclusters as discussed throughout this book. In this chapter we focus on demonstrating such unique catalytic properties brought by the oxide nanoscaling. In the highlighted studies planar models are carefully designed to achieve minimal dispersion of structural motifs and to attain detailed mechanistic understanding of targeted chemical transformations. Detailed level of morphological and structural characterization necessary to achieve this goal is accomplished by employing both high-resolution imaging via scanning probe methods and ensemble-averaged surface sensitive spectroscopic methods. Three prototypical examples illustrating different properties of nanoscaled oxides in different classes of reactions are selected.

  13. Functional amino acids in nutrition and health.

    Science.gov (United States)

    Wu, Guoyao

    2013-09-01

    The recent years have witnessed growing interest in biochemistry, physiology and nutrition of amino acids (AA) in growth, health and disease of humans and other animals. This results from the discoveries of AA in cell signaling involving protein kinases, G protein-coupled receptors, and gaseous molecules (i.e., NO, CO and H2S). In addition, nutritional studies have shown that dietary supplementation with several AA (e.g., arginine, glutamine, glutamate, leucine, and proline) modulates gene expression, enhances growth of the small intestine and skeletal muscle, or reduces excessive body fat. These seminal findings led to the new concept of functional AA, which are defined as those AA that participate in and regulate key metabolic pathways to improve health, survival, growth, development, lactation, and reproduction of the organisms. Functional AA hold great promise in prevention and treatment of metabolic diseases (e.g., obesity, diabetes, and cardiovascular disorders), intrauterine growth restriction, infertility, intestinal and neurological dysfunction, and infectious disease (including viral infections).

  14. Identification of novel catalytic features of endo-β-1,4-glucanase produced by mulberry longicorn beetle Apriona germari

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Mulberry longicorn beetle, Apriona germari, has been reported to produce two endo-β-l,4-glucanases or AgEGases (accession Nos. Q6SS52 and Q5XQD1). AgEGase sequence contains catalytic motif (amino acid residues 37~48), which is the characteristic of family Glycohydrolase 45 and is identified as the substrate binding site. The application of bioinformatics approaches includes sequence analysis, structural modeling and inhibitor docking to relate the structure and function of AgEGases.We have dissected the sequence and structure of AgEGase catalytic motif and compared it with crystal structure of Humicola insolens endoglucanases Ⅴ. The results show an involvement of sulfur containing amino acid residues in the active site of the enzyme. Cys residues and position of disulfide bonds are highly conserved between the two structures of endoglucanases of A.germari. Surface calculation of AgEGase structure in the absence of Cys residues reveals greater accessibility of the catalytic site to the substrate involving Asp42, a highly conserved residue. For the inhibition study, tannin-based structure was docked into the catalytic site of AgEGase using ArgusLab 4.0 and it resulted in a stable complex formation. It is suggested that the inhibition could occur through formation of a stable transition state analog-enzyme complex with the tannin-based inhibitor, as observed with other insect cellulases in our laboratory.

  15. Synthesis of β-amino alcohol derivatives from phenols in presence of phase transfer catalyst and lipase biocatalyst

    Directory of Open Access Journals (Sweden)

    Vasant S. Borude

    2013-01-01

    Full Text Available A simple and environmentally friendly reaction has been developed for the first time for one-pot synthesis of β-amino alcohol derivatives from aromatic phenols, epichlorohydrin and amines by using phase transfer catalysts (PTC and Aspergillus Oryzae lipase biocatalyst. This method provides access to pharmaceutically relevant products in excellent yields with high regioselectivity. The remarkable catalytic activity and reusability of lipase was possible up to four consecutive cycles.

  16. [Asymmetric synthesis of aromatic L-amino acids catalyzed by transaminase].

    Science.gov (United States)

    Xia, Wenna; Sun, Yu; Min, Cong; Han, Wei; Wu, Sheng

    2012-11-01

    Aromatic L-Amino acids are important chiral building blocks for the synthesis of many drugs, pesticides, fine chemicals and food additives. Due to the high activity and steroselectivity, enzymatic synthesis of chiral building blocks has become the main research direction in asymmetric synthesis field. Guided by the phylogenetic analysis of transaminases from different sources, two representative aromatic transaminases TyrB and Aro8 in type I subfamily, from the prokaryote Escherichia coli and eukaryote Saccharomyces cerevisia, respectively, were applied for the comparative study of asymmetric transamination reaction process and catalytic efficiency of reversely converting keto acids to the corresponding aromatic L-amino acid. Both TyrB and Aro8 could efficiently synthesize the natural aromatic amino acids phenylalanine and tyrosine as well as non-natural amino acid phenylglycine. The chiral HPLC analysis showed the produced amino acids were L-configuration and the e.e value was 100%. L-alanine was the optimal amino donor, and the transaminase TyrB and Aro8 could not use D-amino acids as amino donor. The optimal molar ratio of amino donor (L-alanine) and amino acceptor (aromatic alpha-keto acids) was 4:1. Both of the substituted group on the aromatic ring and the length of fatty acid carbon chain part in the molecular structure of aromatic substrate alpha-keto acid have the significant impact on the enzyme-catalyzed transamination efficiency. In the experiments of preparative-scale transamination synthesis of L-phenylglycine, L-phenylalanine and L-tyrosine, the specific production rate catalyzed by TryB were 0.28 g/(g x h), 0.31 g/(g x h) and 0.60 g/(g x h) and the specific production rate catalyzed by Aro8 were 0.61 g/(g x h), 0.48 g/(g x h) and 0.59 g/(g x h). The results obtained here were useful for applying the transaminases to asymmetric synthesis of L-amino acids by reversing the reaction balance in industry.

  17. Catalytic models developed through social work

    DEFF Research Database (Denmark)

    Jensen, Mogens

    2015-01-01

    The article develops the concept of catalytic processes in relation to social work with adolescents in an attempt to both reach a more nuanced understanding of social work and at the same time to develop the concept of catalytic processes in psychology. The social work is pedagogical treatment...... of adolescents placed in out-of-home care and is characterised using three situated cases as empirical data. Afterwards the concept of catalytic processes is briefly presented and then applied in an analysis of pedagogical treatment in the three cases. The result is a different conceptualisation of the social...... work with new possibilities of development of the work, but also suggestions for development of the concept of catalytic processes....

  18. ABSTRACTS AND KEY WORDS

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Establishment of a Method for Content Determination of Polysaccharide in Membranous milkveteh root Applied in Fisheries Yu Xiao-qing et al. (1) Abstract Some chemical component in the traditional Chinese medicine Membranous milkvetch root can improve the ability of disease-prevention of animal and it can be applied in fisheries. In the paper, the method about content determination of polysaccharide in the root was established based on orthogonal experimental design Key words medicine; polysaccharide in Membranous milkvetch root; method of determination

  19. Identification key to Quivira milkweeds

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document is a key to milkweed identification at Quivira National Wildlife Refuge. It contains a dichotomous key as well as a picture key. Milkweeds found on...

  20. Effect of amino acids on the formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in creatinine/phenylalanine and creatinine/phenylalanine/4-oxo-2-nonenal reaction mixtures.

    Science.gov (United States)

    Zamora, Rosario; Alcón, Esmeralda; Hidalgo, Francisco J

    2013-12-15

    2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) formation in mixtures of creatinine, phenylalanine, amino acids and 4-oxo-2-nonenal was studied, to analyse the role of amino acids on the generation of this heterocyclic aromatic amine. When oxidised lipid was absent, cysteine, serine, aspartic acid, threonine, asparagine, tryptophan, tyrosine, proline, and methionine increased significantly (p phenylalanine into phenylacetaldehyde as a key step in the formation of PhIP. When oxidised lipid was present, amino acids competed with phenylalanine for the lipid, and amino acid degradation products were formed, among which alpha-keto acids seemed to play a role in these reactions. These results suggest that PhIP can be produced by several alternative reaction pathways from all major food components, including amino acids and lipids, in addition to carbohydrates.

  1. MOBILE COMPLEX FOR CATALYTIC THERMAL WASTE TREATMENT

    Directory of Open Access Journals (Sweden)

    Vedi V.E.

    2012-12-01

    Full Text Available The design and purpose of the basic units of the mobile waste processing complex “MPK” are described. Experimental data of catalytic purification of exhaust gases are presented. Experimental data on catalytic clearing of final gases of a designed mobile incinerator plant are shown. It is defined, that concentrating of parasitic bridging in waste gases of the complex are considerably smaller, rather than allowed by normative documents.

  2. MOBILE COMPLEX FOR CATALYTIC THERMAL WASTE TREATMENT

    OpenAIRE

    Vedi V.E.; Rovenskii A.I.

    2012-01-01

    The design and purpose of the basic units of the mobile waste processing complex “MPK” are described. Experimental data of catalytic purification of exhaust gases are presented. Experimental data on catalytic clearing of final gases of a designed mobile incinerator plant are shown. It is defined, that concentrating of parasitic bridging in waste gases of the complex are considerably smaller, rather than allowed by normative documents.

  3. Catalytic Radical Domino Reactions in Organic Synthesis

    Science.gov (United States)

    Sebren, Leanne J.; Devery, James J.; Stephenson, Corey R.J.

    2014-01-01

    Catalytic radical-based domino reactions represent important advances in synthetic organic chemistry. Their development benefits synthesis by providing atom- and step-economical methods to complex molecules. Intricate combinations of radical, cationic, anionic, oxidative/reductive, and transition metal mechanistic steps result in cyclizations, additions, fragmentations, ring-expansions, and rearrangements. This Perspective summarizes recent developments in the field of catalytic domino processes. PMID:24587964

  4. Catalytic ammonia oxidation to nitrogen (I) oxide

    OpenAIRE

    MASALITINA NATALIYA YUREVNA; SAVENKOV ANATOLIY SERGEEVICH

    2015-01-01

    The process of synthesis of nitrous oxide by low-temperature catalytical oxidation of NH has been investigated for organic synthesis. The investigation has been carried out by the stage separation approach with NH oxidation occurring in several reaction zones, which characterized by different catalytic conditions. The selectivity for N₂O was 92–92,5 % at the ammonia conversion of 98–99.5 % in the optimal temperature range.

  5. Temperature Modulation of a Catalytic Gas Sensor

    OpenAIRE

    Eike Brauns; Eva Morsbach; Sebastian Kunz; Marcus Baeumer; Walter Lang

    2014-01-01

    The use of catalytic gas sensors usually offers low selectivity, only based on their different sensitivities for various gases due to their different heats of reaction. Furthermore, the identification of the gas present is not possible, which leads to possible misinterpretation of the sensor signals. The use of micro-machined catalytic gas sensors offers great advantages regarding the response time, which allows advanced analysis of the sensor response. By using temperature modulation, additi...

  6. Preparation and Catalytic Oxidation Activity on 2-mercaptoethanol of a Novel Catalytic Cellulose Fibres

    Institute of Scientific and Technical Information of China (English)

    YAO Yu-yuan; LI Ying-jie; CHEN Wen-xing; Lü Wang-yang; Lü Su-fang; XU Min-hong; LIU Fan

    2007-01-01

    Cobalt tetra(N-carbonylacylic) aminophthalocyanine was supported on cellulose fibres by graft reaction to obtain a novel polymer catalyst, catalytic cellulose fibres (CCF),and the optimal supporting conditions were pH = 6, 80℃,t = 120 min. The catalytic oxidation activity of CCF towards oxidation of 2-mereaptoethanol (MEA) in aqueous solution was investigated. The experimental results demonstrated that CCF had good catalytic oxidation activity on MEA at room temperature, causing no secondary pollution and remaining efficient for the repetitive tests with no obvious decrease of catalytic activity.

  7. Low efficiency deasphalting and catalytic cracking

    International Nuclear Information System (INIS)

    This patent describes a process for converting an asphaltene and metals containing heavy hydrocarbon feed to lighter, more valuable products the metals comprising Ni and V. It comprises: demetallizing the feed by deasphalting the feed in a solvent deasphalting means operating at solvent deasphalting conditions including a solvent: feed volume ratio of about 1:1 to 4:1, using a solvent selected from the group of C4 to 400 degrees F. hydrocarbons and mixtures thereof; recovering from the solvent rich fraction a demetallized oil intermediate product, having a boiling range and containing at least 10 wt.% of the asphaltenes, and 5 to 30% of the Ni and V, and at least 10 wt.% of the solvent present in the solvent rich phase produced in the deasphalting means; catalytically cracking the demetallized oil intermediate product in a catalytic cracking means operating at catalytic cracking conditions to produce a catalytically cracked product vapor fraction having a lower boiling range than the boiling range of the demetallized oil intermediate product; and fractionating the catalytically cracked product in a fractionation means to produce catalytically cracked product fractions

  8. Structure of the catalytic domain of Plasmodium falciparum ARF GTPase-activating protein (ARFGAP)

    Energy Technology Data Exchange (ETDEWEB)

    Cook, William J.; Senkovich, Olga; Chattopadhyay, Debasish (UAB)

    2012-03-26

    The crystal structure of the catalytic domain of the ADP ribosylation factor GTPase-activating protein (ARFGAP) from Plasmodium falciparum has been determined and refined to 2.4 {angstrom} resolution. Multiwavelength anomalous diffraction (MAD) data were collected utilizing the Zn{sup 2+} ion bound at the zinc-finger domain and were used to solve the structure. The overall structure of the domain is similar to those of mammalian ARFGAPs. However, several amino-acid residues in the area where GAP interacts with ARF1 differ in P. falciparum ARFGAP. Moreover, a number of residues that form the dimer interface in the crystal structure are unique in P. falciparum ARFGAP.

  9. Structures of the human poly (ADP-ribose glycohydrolase catalytic domain confirm catalytic mechanism and explain inhibition by ADP-HPD derivatives.

    Directory of Open Access Journals (Sweden)

    Julie A Tucker

    Full Text Available Poly(ADP-ribose glycohydrolase (PARG is the only enzyme known to catalyse hydrolysis of the O-glycosidic linkages of ADP-ribose polymers, thereby reversing the effects of poly(ADP-ribose polymerases. PARG deficiency leads to cell death whilst PARG depletion causes sensitisation to certain DNA damaging agents, implicating PARG as a potential therapeutic target in several disease areas. Efforts to develop small molecule inhibitors of PARG activity have until recently been hampered by a lack of structural information on PARG. We have used a combination of bio-informatic and experimental approaches to engineer a crystallisable, catalytically active fragment of human PARG (hPARG. Here, we present high-resolution structures of the catalytic domain of hPARG in unliganded form and in complex with three inhibitors: ADP-ribose (ADPR, adenosine 5'-diphosphate (hydroxymethylpyrrolidinediol (ADP-HPD and 8-n-octyl-amino-ADP-HPD. Our structures confirm conservation of overall fold amongst mammalian PARG glycohydrolase domains, whilst revealing additional flexible regions in the catalytic site. These new structures rationalise a body of published mutational data and the reported structure-activity relationship for ADP-HPD based PARG inhibitors. In addition, we have developed and used biochemical, isothermal titration calorimetry and surface plasmon resonance assays to characterise the binding of inhibitors to our PARG protein, thus providing a starting point for the design of new inhibitors.

  10. Catalytic hydrogenation of carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Wayland, B.B.

    1992-12-01

    This project is focused on developing strategies to accomplish the reduction and hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. Our approaches to this issue are based on the recognition that rhodium macrocycles have unusually favorable thermodynamic values for producing a series of intermediate implicated in the catalytic hydrogenation of CO. Observations of metalloformyl complexes produced by reactions of H{sub 2} and CO, and reductive coupling of CO to form metallo {alpha}-diketone species have suggested a multiplicity of routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in constructing energy profiles for a variety of potential pathways, and these schemes are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Variation of the electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Emerging knowledge of the factors that contribute to M-H, M-C and M-O bond enthalpies is directing the search for ligand arrays that will expand the range of metal species that have favorable thermodynamic parameters to produce the primary intermediates for CO hydrogenation. Studies of rhodium complexes are being extended to non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics. Multifunctional catalyst systems designed to couple the ability of rhodium complexes to produce formyl and diketone intermediates with a second catalyst that hydrogenates these imtermediates are promising approaches to accomplish CO hydrogenation at mild conditions.

  11. ID-based Key-insulated Authenticated Key Agreement Protocol

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yuan; CHENG Xiao-ming; CHAI Zhen-chuan

    2007-01-01

    The basic idea behind an ID-based cryptosystem is that end user's public key can be determined by his identity information. Comparing with the traditional certificate-based cryptography, identity-based cryptography can eliminate much of the overhead associated with the deployment and management of certificate. However, exposure of private keys can be the most devastating attack on a public key based cryptosystem since such that all security guarantees are lost. In this paper, an ID-based authenticated key agreement protocol was presented. For solving the problem of key exposure of the basic scheme, the technique of key insulation was applied and a key insulated version is developed.

  12. Indigenous amino acids in primitive CR meteorites

    CERN Document Server

    Martins, Z; Orzechowska, G E; Fogel, M L; Ehrenfreund, P

    2008-01-01

    CR meteorites are among the most primitive meteorites. In this paper, we report the first measurements of amino acids in Antarctic CR meteorites, two of which show the highest amino acid concentrations ever found in a chondrite. EET92042, GRA95229 and GRO95577 were analyzed for their amino acid content using high performance liquid chromatography with UV fluorescence detection (HPLC-FD) and gas chromatographymass spectrometry (GC-MS). Our data show that EET92042 and GRA95229 are the most amino acid-rich chondrites ever analyzed, with total amino acid concentrations ranging from 180 parts-per-million (ppm) to 249 ppm. GRO95577, however, is depleted in amino acids. The most abundant amino acids present in the EET92042 and GRA95229 meteorites are the alpha-amino acids glycine, isovaline, alpha-aminoisobutyric acid (alpha-AIB), and alanine, with delta13C values ranging from +31.6per mil to +50.5per mil. The carbon isotope results together with racemic enantiomeric ratios determined for most amino acids strongly i...

  13. Amino acid composition of some Mexican foods.

    Science.gov (United States)

    Morales de León, Josefina; Camacho, M Elena; Bourges, Héctor

    2005-06-01

    Knowledge of the amino acid composition of foods is essential to calculate their chemical score, which is used to predict protein quality of foods and diets. Though amino acid composition of many foods is reasonably well established, better knowledge is needed on native foods consumed in different regions and countries. This paper presents the amino acid composition of different presentations of raw and processed foods produced and consumed in Mexico. The amino acid composition was determined using Beckman amino acid analyzers (models 116 and 6300). Tryptophan was determined using the Spies and Chambers method. Of the different foods analyzed, some comments are made on native or basic foods in Mexico: Spirulin, where lysine is the limiting amino acid, with a chemical score of 67%, is a good source of tryptophan (1.16g/16 gN); amaranth contains high levels of sulphur amino acids (4.09 to 5.34 g/16gN), with a protein content of 15 g/100g; and pulque, a Pre-Hispanic beverage that contains high levels of tryptophan (2.58 g/16 gN) and sulphur amino acids (2.72 g/16 gN). Finally, insects are good sources of sulphur amino acids and lysine.

  14. Plasma amino acid relationships during parenteral nutrition.

    Science.gov (United States)

    Wells, F E; Smits, B J

    1980-01-01

    The plasma amino acidfs of 17 patients were studied before and during total parenteral nutrition (TPN). The amino acid (AA) pattern changed similarly for all patients. The AA concentration changes relative to preinfusion (PAER) were the most informative index of change. Two groups of AA were defined, the "branched chain" group (five amino acids) and the "hepatic" group (four amino acids) based on the correlation of PAER values. Comparison of PAER values with the ratio of AA intake to requirement indicated that the requirements of the sick patients were more similar to those of children than those of healthy adults.

  15. Relationship between amino acid usage and amino acid evolution in primates.

    Science.gov (United States)

    Liu, Haoxuan; Xie, Zhengqing; Tan, Shengjun; Zhang, Xiaohui; Yang, Sihai

    2015-02-25

    Amino acid usage varies from species to species. A previous study has found a universal trend in amino acid gain and loss in many taxa and a one-way model of amino acid evolution in which the number of new amino acids increases as the number of old amino acids decreases was proposed. Later studies showed that this pattern of amino acid gain and loss is likely to be compatible with the neutral theory. The present work aimed to further study this problem by investigating the evolutionary patterns of amino acids in 8 primates (the nucleotide and protein alignments are available online http://gattaca.nju.edu.cn/pub_data.html). First, the number of amino acids gained and lost was calculated and the evolution trend of each amino acid was inferred. These values were found to be closely related to the usage of each amino acid. Then we analyzed the mutational trend of amino acid substitution in human using SNPs, this trend is highly correlated with fixation trend only with greater variance. Finally, the trends in the evolution of 20 amino acids were evaluated in human on different time scales, and the increasing rate of 5 significantly increasing amino acids was found to decrease as a function of time elapsed since divergence, and the dS/dN ratio also found to increase as a function of time elapsed since divergence. These results suggested that the observed amino acid substitution pattern is influenced by mutation and purifying selection. In conclusion, the present study shows that usage of amino acids is an important factor capable of influencing the observed pattern of amino acid evolution, and also presented evidences suggesting that the observed universal trend of amino acid gain and loss is compatible with neutral evolution. PMID:25527119

  16. ABSTRACTS AND KEY WORDS

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Determination of the Estrogen Alkylphenols and Bisphenol A in Marine Sediments by Gas Chromatography-Mass Spectrometry Deng Xu-xiu et al. (1) Abstract Octylphenol, nonylphenol and bisphenol A are recognized environmental endocrine disruptors. A quantitative method was established for the simultaneous determination of octylphenol, nonylphenol and bisphenol A in marine sediments by gas chromatography-mass spectrometry. The test sample was extracted by methanol with ultrasonic technique, purified with copper powder and carbon solid phase extraction column, and derived with heptafluorobutyric anhydride. Then the analytes were separated on HP-5ms column and determined by gas chromatography-mass. The recovery of the method was between 84.3% and 94.5%, and the LOQ of 4-N- octylphenol, nonylphenol and bisphenol A was 0.25 g/kg, 0.15 g/kg and 0.15 g/kg. Key words octylphenol; nonylphenol; bisphenol A; gas chromatography-mass spectrometry

  17. Paediatric pharmacokinetics: key considerations

    Science.gov (United States)

    Batchelor, Hannah Katharine; Marriott, John Francis

    2015-01-01

    A number of anatomical and physiological factors determine the pharmacokinetic profile of a drug. Differences in physiology in paediatric populations compared with adults can influence the concentration of drug within the plasma or tissue. Healthcare professionals need to be aware of anatomical and physiological changes that affect pharmacokinetic profiles of drugs to understand consequences of dose adjustments in infants and children. Pharmacokinetic clinical trials in children are complicated owing to the limitations on blood sample volumes and perception of pain in children resulting from blood sampling. There are alternative sampling techniques that can minimize the invasive nature of such trials. Population based models can also limit the sampling required from each individual by increasing the overall sample size to generate robust pharmacokinetic data. This review details key considerations in the design and development of paediatric pharmacokinetic clinical trials. PMID:25855821

  18. Key aspects congenital infection

    Directory of Open Access Journals (Sweden)

    Yu. V. Lobzin

    2014-01-01

    Full Text Available The key questions to solve the problem of congenital infection in the Russian Federation are: using in national practice over world accepted terminology adapted to the recommendations of the World Health Organization; representation of the modern concepts of an infectious process in the classification of congenital infections; scientific development and introducing in clinical practice the «standard case definitions», applied to different congenital infections; optimization of protocols and clinical guidelines for diagnosis, treatment and prevention of congenital infections; improvement a knowledge in the infectious disease for all  pecialists involved in the risk assessment of congenital infections, manage pregnancy and children. Based on our experience and analysis of publications, the authors suggest possible solutions.

  19. ABSTRACTS AND KEY WORDS

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Comparative Study on Adhesion Effect Among Different Materials of Sepia esculenta Wang Xue-mei et al. (1) Abstract PE Harness, mesh, sea cucumber seedling box attached, sorghum bar, tamarix (fresh, and old), artemisia annua (fresh, and old) and artificial egg-based subsidiary were used as spawning substrates of Sepia esculenta for comparative study on adhesion effect during artificial breeding. The results showed that the best was artificial egg-based subsidiary produced by the process of invention in this study. The second was old artemisia annua and tamarix. PE Harness, mesh, sea cucumber seedling box attached, sorghum bar were unsatisfactory for using as spawning substrates of Sepia esculenta. Key words Sepia esculenta; adhesion effect; different materials

  20. On the Structural Context and Identification of Enzyme Catalytic Residues

    OpenAIRE

    Yu-Tung Chien; Shao-Wei Huang

    2013-01-01

    Enzymes play important roles in most of the biological processes. Although only a small fraction of residues are directly involved in catalytic reactions, these catalytic residues are the most crucial parts in enzymes. The study of the fundamental and unique features of catalytic residues benefits the understanding of enzyme functions and catalytic mechanisms. In this work, we analyze the structural context of catalytic residues based on theoretical and experimental structure flexibility. The...

  1. Effects of Particle Size on the Gas Sensitivity and Catalytic Activity of In2O3

    Science.gov (United States)

    Zhang, Xiaoshui; Gu, Ruiqin; Zhao, Jinling; Jin, Guixin; Zhao, Mengke; Xue, Yongliang

    2015-10-01

    Nanosized In2O3 powders with different particle sizes were prepared by the microemulsion synthetic method. The effects of particle size on the gas-sensing and catalytic properties of the as-prepared In2O3 were investigated. Reductions in particle size to nanometer levels improved the sensitivity and catalytic activity of In2O3 to i-C4H10 and C2H5OH. The sensitivity of nanosized In2O3 (<42 nm) sensors to i-C4H10, H2 and C2H5OH was 2-4 times higher than that of chemically precipitated In2O3 (130 nm) sensor. A nearly linear relationship was observed between the catalytic activity and specific surface area of In2O3 for the oxidation of i-C4H10 and C2H5OH at 275 °C. The relationship between gas sensitivity and catalytic activity was further discussed. The results of this work reveal that catalytic activity plays a key role in enhancing the sensitivity of gas-sensing materials.

  2. The approach to the synthesis of novel amino- C-glycosides

    Institute of Scientific and Technical Information of China (English)

    Li Zhiwei; Li Xiaoliu; Duan Kefang; Chen Hua

    2006-01-01

    Stereoselective 1,3-dipolar cycloadditions of exo-glycals 1 to nitrones 2,5 and 8 were investigated under the catalysis of Lewis acid or in a refluxing benzene or toluene solution,and afforded the corresponding cycloadducts of ketosyl spiro-isoxazolidines.The reductive cleavage of the N-O bond in the isoxazolidine ring and debenzylation by the catalytic hydrogenation [Pd(OH)2/C] were approached using the glucose-type cycloadducts 6b and 6e to alkyl-C-glycoside derivatives 12,providing a new access to a novel alkyl-C-glycoside containing an amino group on the side alkyl chain.

  3. Key amino acid residues for the endo-processive activity of GH74 xyloglucanase.

    Science.gov (United States)

    Matsuzawa, Tomohiko; Saito, Yuji; Yaoi, Katsuro

    2014-05-01

    Unlike endo-dissociative-xyloglucanases, Paenibacillus XEG74 is an endo-processive xyloglucanase that contains four unique tryptophan residues in the negative subsites (W61 and W64) and the positive subsites (W318 and W319), as indicated by three-dimensional homology modelling. Selective replacement of the positive subsite residues with alanine mutations reduced the degree of processive activity and resulted in the more endo-dissociative-activity. The results showed that W318 and W319, which are found in the positive subsites, are essential for processive degradation and are responsible for maintaining binding interactions with xyloglucan polysaccharide through a stacking effect. PMID:24657616

  4. Amino acid decarboxylations produced by lipid-derived reactive carbonyls in amino acid mixtures.

    Science.gov (United States)

    Hidalgo, Francisco J; León, M Mercedes; Zamora, Rosario

    2016-10-15

    The formation of 2-phenylethylamine and phenylacetaldehyde in mixtures of phenylalanine, a lipid oxidation product, and a second amino acid was studied to determine the role of the second amino acid in the degradation of phenylalanine produced by lipid-derived reactive carbonyls. The presence of the second amino acid usually increased the formation of the amine and reduced the formation of the Strecker aldehyde. The reasons for this behaviour seem to be related to the α-amino group and the other functional groups (mainly amino or similar groups) present in the side-chain of the amino acid. These groups are suggested to modify the lipid-derived reactive carbonyl but not the reaction mechanism because the Ea of formation of both 2-phenylethylamine and phenylacetaldehyde remained unchanged in all studied systems. All these results suggest that the amine/aldehyde ratio obtained by amino acid degradation can be modified by adding free amino acids during food formulation. PMID:27173560

  5. Cooperative Effects Between Arginine and Glutamic Acid in the Amino Acid-Catalyzed Aldol Reaction.

    Science.gov (United States)

    Valero, Guillem; Moyano, Albert

    2016-08-01

    Catalysis of the aldol reaction between cyclohexanone and 4-nitrobenzaldehyde by mixtures of L-Arg and of L-Glu in wet dimethyl sulfoxide (DMSO) takes place with higher enantioselectivity (up to a 7-fold enhancement in the anti-aldol for the 1:1 mixture) than that observed when either L-Glu or L-Arg alone are used as the catalysts. These results can be explained by the formation of a catalytically active hydrogen-bonded complex between both amino acids, and demonstrate the possibility of positive cooperative effects in catalysis by two different α-amino acids. Chirality 28:599-605, 2016. © 2016 Wiley Periodicals, Inc. PMID:27362554

  6. Fluorescent fusion proteins of soluble guanylyl cyclase indicate proximity of the heme nitric oxide domain and catalytic domain.

    Directory of Open Access Journals (Sweden)

    Tobias Haase

    Full Text Available BACKGROUND: To examine the structural organisation of heterodimeric soluble guanylyl cyclase (sGC Förster resonance energy transfer (FRET was measured between fluorescent proteins fused to the amino- and carboxy-terminal ends of the sGC beta1 and alpha subunits. METHODOLOGY/PRINCIPAL FINDINGS: Cyan fluorescent protein (CFP was used as FRET donor and yellow fluorescent protein (YFP as FRET acceptor. After generation of recombinant baculovirus, fluorescent-tagged sGC subunits were co-expressed in Sf9 cells. Fluorescent variants of sGC were analyzed in vitro in cytosolic fractions by sensitized emission FRET. Co-expression of the amino-terminally tagged alpha subunits with the carboxy-terminally tagged beta1 subunit resulted in an enzyme complex that showed a FRET efficiency of 10% similar to fluorescent proteins separated by a helix of only 48 amino acids. Because these findings indicated that the amino-terminus of the alpha subunits is close to the carboxy-terminus of the beta1 subunit we constructed fusion proteins where both subunits are connected by a fluorescent protein. The resulting constructs were not only fluorescent, they also showed preserved enzyme activity and regulation by NO. CONCLUSIONS/SIGNIFICANCE: Based on the ability of an amino-terminal fragment of the beta1 subunit to inhibit activity of an heterodimer consisting only of the catalytic domains (alphacatbetacat, Winger and Marletta (Biochemistry 2005, 44:4083-90 have proposed a direct interaction of the amino-terminal region of beta1 with the catalytic domains. In support of such a concept of "trans" regulation of sGC activity by the H-NOX domains our results indicate that the domains within sGC are organized in a way that allows for direct interaction of the amino-terminal regulatory domains with the carboxy-terminal catalytic region. In addition, we constructed "fluorescent-conjoined" sGC's by fusion of the alpha amino-terminus to the beta1 carboxy-terminus leading to a

  7. Copper-Catalyzed Amino Lactonization and Amino Oxygenation of Alkenes Using O-Benzoylhydroxylamines.

    Science.gov (United States)

    Hemric, Brett N; Shen, Kun; Wang, Qiu

    2016-05-11

    A copper-catalyzed amino lactonization of unsaturated carboxylic acids has been achieved as well as the analogous intermolecular three-component amino oxygenation of olefins. The transformation features mild conditions and a remarkably broad substrate scope, offering a novel and efficient approach to construct a wide range of amino lactones as well as 1,2-amino alcohol derivatives. Mechanistic studies suggest that the reaction proceeds via a distinctive O-benzoylhydroxylamine-promoted electrophilic amination of alkenes. PMID:27114046

  8. Catalytic coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Weller, S W

    1981-01-01

    Monolith catalysts of MoO/sub 3/-CoO-Al/sub 2/O/sub 3/ were prepared and tested for coal liquefaction in a stirred autoclave. In general, the monolith catalysts were not as good as particulate catalysts prepared on Corning alumina supports. Measurement of O/sub 2/ chemisorption and BET surface area has been made on a series of Co/Mo/Al/sub 2/O/sub 3/ catalysts obtained from PETC. The catalysts were derived from Cyanamid 1442A and had been tested for coal liquefaction in batch autoclaves and continuous flow units. MoO/sub 3/-Al/sub 2/O/sub 3/ catalysts over the loading range 3.9 to 14.9 wt % MoO/sub 3/ have been studied with respect to BET surface (before and after reduction), O/sub 2/ chemisorption at -78/sup 0/C, redox behavior at 500/sup 0/C, and activity for cyclohexane dehydrogenation at 500/sup 0/C. In connection with the fate of tin catalysts during coal liquefaction, calculations have been made of the relative thermodynamic stability of SnCl/sub 2/, Sn, SnO/sub 2/, and SnS in the presence of H/sub 2/, HCl, H/sub 2/S and H/sub 2/O. Ferrous sulfate dispersed in methylnaphthalene has been shown to be reduced to ferrous sulfide under typical coal hydroliquefaction conditions (1 hour, 450/sup 0/C, 1000 psi initial p/sub H/sub 2//). This suggests that ferrous sulfide may be the common catalytic ingredient when either (a) ferrous sulfate impregnated on powdered coal, or (b) finely divided iron pyrite is used as the catalyst. Old research on impregnated ferrous sulfate, impregnated ferrous halides, and pyrite is consistent with this assumption. Eight Co/Mo/Al/sub 2/O/sub 3/ catalysts from commercial suppliers, along with SnCl/sub 2/, have been studied for the hydrotreating of 1-methylnaphthalene (1-MN) in a stirred autoclave at 450 and 500/sup 0/C.

  9. Mutations in the catalytic loop HRD motif alter the activity and function of Drosophila Src64.

    Directory of Open Access Journals (Sweden)

    Taylor C Strong

    Full Text Available The catalytic loop HRD motif is found in most protein kinases and these amino acids are predicted to perform functions in catalysis, transition to, and stabilization of the active conformation of the kinase domain. We have identified mutations in a Drosophila src gene, src64, that alter the three HRD amino acids. We have analyzed the mutants for both biochemical activity and biological function during development. Mutation of the aspartate to asparagine eliminates biological function in cytoskeletal processes and severely reduces fertility, supporting the amino acid's critical role in enzymatic activity. The arginine to cysteine mutation has little to no effect on kinase activity or cytoskeletal reorganization, suggesting that the HRD arginine may not be critical for coordinating phosphotyrosine in the active conformation. The histidine to leucine mutant retains some kinase activity and biological function, suggesting that this amino acid may have a biochemical function in the active kinase that is independent of its side chain hydrogen bonding interactions in the active site. We also describe the phenotypic effects of other mutations in the SH2 and tyrosine kinase domains of src64, and we compare them to the phenotypic effects of the src64 null allele.

  10. Ionotropic excitatory amino acid receptor ligands. Synthesis and pharmacology of a new amino acid AMPA antagonist

    DEFF Research Database (Denmark)

    Madsen, U; Sløk, F A; Stensbøl, T B;

    2000-01-01

    We have previously described the potent and selective (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor agonist, (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA), and the AMPA receptor antagonist (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4-isoxa...

  11. Catalytic production of aromatics and olefins from plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Haag, W.O.; Rodewald, P.G.; Weisz, P.B.

    1980-08-01

    Hydrocarbons and hydrocarbon-like plant materials offer the possibility of relatively simple and energy-efficient processing to liquid fuels or petrochemicals. The use of such highly reduced photosynthesis products as potential fuels has been advocated by Calvin and coworkers, and Buchanan and coworkers have evaluated several hundred plant species for the presence of hydrocarbons. The yield of extracted oils may exceed 10 wt % of the plant dry weight. Some field growth studies of the most promising of these plants are underway, e.g., by Calvin in California, by Native Plants, Inc., and by the Diamond Shamrock Co., in conjunction with the University of Arizona, mostly with Euphorbia and related genera. Exploratory studies were performed to determine if direct catalytic upgrading of the hydrocarbon-like plant constituents could be carried out. A preliminary report has been published recently. A variety of plant materials were shown to be upgraded to liquid premium fuels by relatively simple catalytic processing over Mobil's shape selective zeolite, ZSM-5. The present paper contains additional information on the conversion of a variety of plant materials with special emphasis on the production of petrochemicals, and discusses key mechanistic aspects of the reactions. Feedstocks were chosen to represent different types of plant materials: corn oil, castor oil and jojoba seed oil; plant extracts from Euphorbia lathyrus and Grindelia squarrosa; and hydrocarbons obtained by tapping of trees such as copaiba oil and natural rubber latex.

  12. Catalytic Cracking of Palm Oil Over Zeolite Catalysts: Statistical Approach

    Directory of Open Access Journals (Sweden)

    F. A. A. Twaiq and S. Bhatia

    2012-08-01

    Full Text Available The catalytic cracking of palm oil was conducted in a fixed bed micro-reactor over HZSM-5, zeolite ? and ultrastable Y (USY zeolite catalysts. The objective of the present investigation was to study the effect of cracking reaction variables such as temperature, weight hourly space velocity, catalyst pore size and type of palm oil feed of different molecular weight on the conversion, yield of hydrocarbons in gasoline boiling range and BTX aromatics in the organic liquid product.  Statistical Design of Experiment (DOE with 24 full factorial design was used in experimentation at the first stage.  The nonlinear model and Response Surface Methodology (RSM were utilized in the second stage of experimentation to obtain the optimum values of the variables for maximum yields of hydrocarbons in gasoline boiling range and aromatics.  The HZSM-5 showed the best performance amongst the three catalysts tested.  At 623 K and WHSV of 1 h-1, the highest experimental yields of gasoline and aromatics were 28.3 wt.% and 27 wt.%, respectively over the HZSM-5 catalyst.  For the same catalyst, the statistical model predicted that the optimum yield of gasoline was 28.1 wt.% at WHSV of 1.75 h-1 and 623 K.  The predicted optimum yield of gasoline was 25.5 wt.% at 623 K and WHSV of 1 h-1.KEY WORDS: Catalytic Cracking, Palm Oil, Zeolite, Design Of Experiment, Response Surface Methodology.

  13. Human Protein and Amino Acid Requirements.

    Science.gov (United States)

    Hoffer, L John

    2016-05-01

    Human protein and amino acid nutrition encompasses a wide, complex, frequently misunderstood, and often contentious area of clinical research and practice. This tutorial explains the basic biochemical and physiologic principles that underlie our current understanding of protein and amino acid nutrition. The following topics are discussed: (1) the identity, measurement, and essentiality of nutritional proteins; (2) the definition and determination of minimum requirements; (3) nutrition adaptation; (4) obligatory nitrogen excretion and the minimum protein requirement; (5) minimum versus optimum protein intakes; (6) metabolic responses to surfeit and deficient protein intakes; (7) body composition and protein requirements; (8) labile protein; (9) N balance; (10) the principles of protein and amino acid turnover, including an analysis of the controversial indicator amino acid oxidation technique; (11) general guidelines for evaluating protein turnover articles; (12) amino acid turnover versus clearance; (13) the protein content of hydrated amino acid solutions; (14) protein requirements in special situations, including protein-catabolic critical illness; (15) amino acid supplements and additives, including monosodium glutamate and glutamine; and (16) a perspective on the future of protein and amino acid nutrition research. In addition to providing practical information, this tutorial aims to demonstrate the importance of rigorous physiologic reasoning, stimulate intellectual curiosity, and encourage fresh ideas in this dynamic area of human nutrition. In general, references are provided only for topics that are not well covered in modern textbooks. PMID:26796095

  14. 6th Amino Acid Assessment Workshop

    Science.gov (United States)

    The focus of the 6th workshop is on lysine, arginine, and related amino acids. Functions, metabolic pathways, clinical uses, and upper tolerance intakes are emphasized in the articles that follow. Lysine is arguably the most deficient amino acid in the food supply of countries where poverty exists, ...

  15. Crystalline amino acids and nitrogen emission

    NARCIS (Netherlands)

    Verstegen, M.W.A.; Jongbloed, A.W.

    2003-01-01

    Reductions in dietary protein level and supplementation with certain crystalline amino acids is a well-established method of formulating diets to achieve a more ideal amino acid pattern and to reduce nitrogen excretion. Up to 35% reduction in nitrogen excretion may be achieved by supplementing pig d

  16. The Apollo Program and Amino Acids

    Science.gov (United States)

    Fox, Sidney W.

    1973-01-01

    Discusses the determination of hydrolyzable amino acid precursors and a group of six amino acids in the returned lunar samples of the Apollo programs. Indicates that molecular evolution is arrested at the precursor stage on the Moon because of lack of water. (CC)

  17. A novel liquid system of catalytic hydrogenation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    On the basis that endothermic aqueous-phase reforming of oxygenated hydrocarbons for H2 production and exothermic liquid phase hydrogenation of organic compounds are carried out under extremely close conditions of temperature and pressure over the same type of catalyst, a novel liquid system of catalytic hydrogenation has been proposed, in which hydrogen produced from aqueous-phase reforming of oxygenated hydrocarbons is in situ used for liquid phase hydrogenation of organic compounds. The usage of active hydrogen generated from aqueous-phase reforming of oxygenated hydrocarbons for liquid catalytic hydrogenation of organic compounds could lead to increasing the selectivity to H2 in the aqueous-phase reforming due to the prompt removal of hydrogen on the active centers of the catalyst. Meanwhile, this novel liquid system of catalytic hydrogenation might be a potential method to improve the selectivity to the desired product in liquid phase catalytic hydrogenation of organic compounds. On the other hand, for this novel liquid system of catalytic hydrogenation, some special facilities for H2 generation, storage and transportation in traditional liquid phase hydrogenation industry process are yet not needed. Thus, it would simplify the working process of liquid phase hydrogenation and increase the energy usage and hydrogen productivity.

  18. Research for amino acids in lunar samples.

    Science.gov (United States)

    Gehrke, C. W.; Zumwalt, R. W.; Kuo, K.; Rash, J. J.; Aue , W. A.; Stalling, D. L.; Kvenvolden, K. A.; Ponnamperuma, C.

    1972-01-01

    The study was primarily directed toward the examination of Apollo 14 lunar fines for indigenous amino acids or materials which could be converted to amino acids on hydrolysis with 6 N hydrochloric acid. Initial experiments were conducted to confirm the integrity of the derivatization reactions and reagents, and to optimize the gas-liquid chromatographic (GLC) instrumental and chromatographic system for the separation and flame ionization detection of the amino acid derivatives. In studies on the recovery of amino acids added to lunar fines, low recoveries were obtained when 10 ng of each amino acid were added to 50 mg of virgin fines, but the subsequent addition of 50 ng of each to the previously extracted sample resulted in much higher recoveries.

  19. Synthesis of β-Amino Acid Derivatives

    Institute of Scientific and Technical Information of China (English)

    Zhao Yonghua; Ma Zhihua; Jiang Nan; Wang Jianbo

    2004-01-01

    In recent years, β-amino acids and their derivatives have attracted considerable attention due to their occurrence in biologically active natural products, such as dolastatins,cyclohexylnorstatine and Taxol. β-Amino acids also find application in the synthesis of β-lactams,piperidines, indolizidines. Moreover, the peptides consisting of β-amino acids, the so-called β-peptides, have been extensively studied recently. Consequently, considerable efforts have been directed to the synthesis of β-amino acids and their derivatives1. In particular, stereoselective synthesis of β-amino acids has been a challenging project, and there are only limited methods available. In this presentation, we report our efforts in this area.

  20. Current Models of Mammalian Target of Rapamycin Complex 1 (mTORC1 Activation by Growth Factors and Amino Acids

    Directory of Open Access Journals (Sweden)

    Xu Zheng

    2014-11-01

    Full Text Available Mammalian target of rapamycin (mTOR, which is now referred to as mechanistic target of rapamycin, integrates many signals, including those from growth factors, energy status, stress, and amino acids, to regulate cell growth and proliferation, protein synthesis, protein degradation, and other physiological and biochemical processes. The mTOR-Rheb-TSC-TBC complex co-localizes to the lysosome and the phosphorylation of TSC-TBC effects the dissociation of the complex from the lysosome and activates Rheb. GTP-bound Rheb potentiates the catalytic activity of mTORC1. Under conditions with growth factors and amino acids, v-ATPase, Ragulator, Rag GTPase, Rheb, hVps34, PLD1, and PA have important but disparate effects on mTORC1 activation. In this review, we introduce five models of mTORC1 activation by growth factors and amino acids to provide a comprehensive theoretical foundation for future research.

  1. Genetics of Amino Acid Taste and Appetite.

    Science.gov (United States)

    Bachmanov, Alexander A; Bosak, Natalia P; Glendinning, John I; Inoue, Masashi; Li, Xia; Manita, Satoshi; McCaughey, Stuart A; Murata, Yuko; Reed, Danielle R; Tordoff, Michael G; Beauchamp, Gary K

    2016-07-01

    The consumption of amino acids by animals is controlled by both oral and postoral mechanisms. We used a genetic approach to investigate these mechanisms. Our studies have shown that inbred mouse strains differ in voluntary amino acid consumption, and these differences depend on sensory and nutritive properties of amino acids. Like humans, mice perceive some amino acids as having a sweet (sucrose-like) taste and others as having an umami (glutamate-like) taste. Mouse strain differences in the consumption of some sweet-tasting amino acids (d-phenylalanine, d-tryptophan, and l-proline) are associated with polymorphisms of a taste receptor, type 1, member 3 gene (Tas1r3), and involve differential peripheral taste responsiveness. Strain differences in the consumption of some other sweet-tasting amino acids (glycine, l-alanine, l-glutamine, and l-threonine) do not depend on Tas1r3 polymorphisms and so must be due to allelic variation in other, as yet unknown, genes involved in sweet taste. Strain differences in the consumption of l-glutamate may depend on postingestive rather than taste mechanisms. Thus, genes and physiologic mechanisms responsible for strain differences in the consumption of each amino acid depend on the nature of its taste and postingestive properties. Overall, mouse strain differences in amino acid taste and appetite have a complex genetic architecture. In addition to the Tas1r3 gene, these differences depend on other genes likely involved in determining the taste and postingestive effects of amino acids. The identification of these genes may lead to the discovery of novel mechanisms that regulate amino acid taste and appetite. PMID:27422518

  2. The Presence of Amorpha-4, 11-Diene Synthase, a Key Enzyme in Artemisinin Production in Ten Artemisia Species

    Directory of Open Access Journals (Sweden)

    GA. Garoosi

    2011-12-01

    Full Text Available Background and the purpose of the study: Artemisinin is one of the most effective medicine against malaria, which is produced naturally by Artemisia annua in low yield. It is produced in a metabolic pathway, in which several genes and gene products are involved. One of the key genes in this pathway is am1, which encodes amorpha-4, 11-diene synthase (ADS, a key enzyme in artemisinin biosynthesis pathway. The aim of this study was to determine the presence of this gene in ten Artemisia species in order to increase the yield of production of Artemisinin. Methods : The experiments were carried out using PCR. Specific primers were designed based on the published am1 gene sequence obtained from A. annua (NCBI, accession number AF327527. Results: The amplification of this gene by the specific primers was considered as a positive sign for the potentiality of artemisinin production. Since the entire am1 gene was not amplified in any of the 10 species used, four parts of the gene, essential in ADS enzyme function, corresponding to a pair site of Arg10-Pro12 in the first 100 amino acids, b aspartate rich motif (DDXXD, c active site final lid and d active site including farnesyl diphosphate (FDP ionization sites and catalytic site in the ADS enzyme, were investigated. Major conclusion: The sequence corresponding to ADS active site was amplified only in A. annua, A. aucheri and A. chamaemelifolia. The negative results obtained with other species could be due to some sequence alteration, such as point mutations or INDELs. We propose A. aucheri and A. chamaemelifolia as two potential candidate species for further characterization, breeding and transferring am1 gene for artemisinin overproduction.

  3. A threshold key escrow scheme based on public key cryptosystem

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In key escrow field it is important to solve the problem thatuser's secret key completely depends on the trusted escrow agency. In 1995, some methods of solving the problem were presented. But these methods are no better than that of directly using threshold cryptography. In this paper, we present a common pattern of threshold key escrow scheme based on public key cryptosystem, and a detailed design based on the improved RSA algorithm is given. The above problem is solved by this scheme.

  4. Catalytic DNA: Scope, Applications, and Biochemistry of Deoxyribozymes.

    Science.gov (United States)

    Silverman, Scott K

    2016-07-01

    The discovery of natural RNA enzymes (ribozymes) prompted the pursuit of artificial DNA enzymes (deoxyribozymes) by in vitro selection methods. A key motivation is the conceptual and practical advantages of DNA relative to proteins and RNA. Early studies focused on RNA-cleaving deoxyribozymes, and more recent experiments have expanded the breadth of catalytic DNA to many other reactions. Including modified nucleotides has the potential to widen the scope of DNA enzymes even further. Practical applications of deoxyribozymes include their use as sensors for metal ions and small molecules. Structural studies of deoxyribozymes are only now beginning; mechanistic experiments will surely follow. Following the first report 21 years ago, the field of deoxyribozymes has promise for both fundamental and applied advances in chemistry, biology, and other disciplines.

  5. Ex-Situ Catalytic Fast Pyrolysis Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline , diesel and jet range blendstocks . Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  6. In-Situ Catalytic Fast Pyrolysis Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline, diesel, and jet range blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

  7. Catalytic nanoarchitectonics for environmentally compatible energy generation

    Directory of Open Access Journals (Sweden)

    Hideki Abe

    2016-01-01

    Full Text Available Environmentally compatible energy management is one of the biggest challenges of the 21st century. Low-temperature conversion of chemical to electrical energy is of particular importance to minimize the impact to the environment while sustaining the consumptive economy. In this review, we shed light on one of the most versatile energy-conversion technologies: heterogeneous catalysts. We establish the integrity of structural tailoring in heterogeneous catalysts at different scales in the context of an emerging paradigm in materials science: catalytic nanoarchitectonics. Fundamental backgrounds of energy-conversion catalysis are first provided together with a perspective through state-of-the-art energy-conversion catalysis including catalytic exhaust remediation, fuel-cell electrocatalysis and photosynthesis of solar fuels. Finally, the future evolution of catalytic nanoarchitectonics is overviewed: possible combinations of heterogeneous catalysts, organic molecules and even enzymes to realize reaction-selective, highly efficient and long-life energy conversion technologies which will meet the challenge we face.

  8. ADAR proteins: structure and catalytic mechanism.

    Science.gov (United States)

    Goodman, Rena A; Macbeth, Mark R; Beal, Peter A

    2012-01-01

    Since the discovery of the adenosine deaminase (ADA) acting on RNA (ADAR) family of proteins in 1988 (Bass and Weintraub, Cell 55:1089-1098, 1988) (Wagner et al. Proc Natl Acad Sci U S A 86:2647-2651, 1989), we have learned much about their structure and catalytic mechanism. However, much about these enzymes is still unknown, particularly regarding the selective recognition and processing of specific adenosines within substrate RNAs. While a crystal structure of the catalytic domain of human ADAR2 has been solved, we still lack structural data for an ADAR catalytic domain bound to RNA, and we lack any structural data for other ADARs. However, by analyzing the structural data that is available along with similarities to other deaminases, mutagenesis and other biochemical experiments, we have been able to advance the understanding of how these fascinating enzymes function. PMID:21769729

  9. Catalytic Organic Transformations Mediated by Actinide Complexes

    Directory of Open Access Journals (Sweden)

    Isabell S. R. Karmel

    2015-10-01

    Full Text Available This review article presents the development of organoactinides and actinide coordination complexes as catalysts for homogeneous organic transformations. This chapter introduces the basic principles of actinide catalysis and deals with the historic development of actinide complexes in catalytic processes. The application of organoactinides in homogeneous catalysis is exemplified in the hydroelementation reactions, such as the hydroamination, hydrosilylation, hydroalkoxylation and hydrothiolation of alkynes. Additionally, the use of actinide coordination complexes for the catalytic polymerization of α-olefins and the ring opening polymerization of cyclic esters is presented. The last part of this review article highlights novel catalytic transformations mediated by actinide compounds and gives an outlook to the further potential of this field.

  10. Highly Dense Isolated Metal Atom Catalytic Sites

    DEFF Research Database (Denmark)

    Chen, Yaxin; Kasama, Takeshi; Huang, Zhiwei;

    2015-01-01

    -ray diffraction. A combination of electron microscopy images with X-ray absorption spectra demonstrated that the silver atoms were anchored on five-fold oxygen-terminated cavities on the surface of the support to form highly dense isolated metal active sites, leading to excellent reactivity in catalytic oxidation......Atomically dispersed noble-metal catalysts with highly dense active sites are promising materials with which to maximise metal efficiency and to enhance catalytic performance; however, their fabrication remains challenging because metal atoms are prone to sintering, especially at a high metal...... loading. A dynamic process of formation of isolated metal atom catalytic sites on the surface of the support, which was achieved starting from silver nanoparticles by using a thermal surface-mediated diffusion method, was observed directly by using in situ electron microscopy and in situ synchrotron X...

  11. Reactivity of organic compounds in catalytic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Minachev, Kh.M.; Bragin, O.V.

    1978-01-01

    A comprehensive review of 1976 Soviet research on catalysis delivered to the 1977 annual session of the USSR Academy of Science Council on Catalysis (Baku 6/16-20/77) covers hydrocarbon reactions, including hydrogenation and hydrogenolysis, dehydrogenation, olefin dimerization and disproportionation, and cyclization and dehydrocyclization (e.g., piperylene cyclization and ethylene cyclotrimerization); catalytic and physicochemical properties of zeolites, including cracking, dehydrogenation, and hydroisomerization catalytic syntheses and conversion of heterocyclic and functional hydrocarbon derivatives, including partial and total oxidation (e.g., of o-xylene to phthalic anhydride); syntheses of thiophenes from alkanes and hydrogen sulfide over certain dehydrogenation catalysts; catalytic syntheses involving carbon oxides ( e.g., the development of a new heterogeneous catalyst for hydroformylation of olefins), and of Co-MgO zeolitic catalysts for synthesis of aliphatic hydrocarbons from carbon dioxide and hydrogen, and fabrication of high-viscosity lubricating oils over bifunctional aluminosilicate catalysts.

  12. Catalytic microreactors for portable power generation

    Energy Technology Data Exchange (ETDEWEB)

    Karagiannidis, Symeon [Paul Scherer Institute, Villigen (Switzerland)

    2011-07-01

    ''Catalytic Microreactors for Portable Power Generation'' addresses a problem of high relevance and increased complexity in energy technology. This thesis outlines an investigation into catalytic and gas-phase combustion characteristics in channel-flow, platinum-coated microreactors. The emphasis of the study is on microreactor/microturbine concepts for portable power generation and the fuels of interest are methane and propane. The author carefully describes numerical and experimental techniques, providing a new insight into the complex interactions between chemical kinetics and molecular transport processes, as well as giving the first detailed report of hetero-/homogeneous chemical reaction mechanisms for catalytic propane combustion. The outcome of this work will be widely applied to the industrial design of micro- and mesoscale combustors. (orig.)

  13. Use catalytic combustion for LHV gases

    Energy Technology Data Exchange (ETDEWEB)

    Tucci, E.R.

    1982-03-01

    This paper shows how low heating value (LHV) waste gases can be combusted to recover energy even when the gases won't burn in a normal manner. Significant energy and economic savings can result by adopting this process. Catalytic combustion is a heterogeneous surface-catalyzed air oxidation of fuel, gaseous or liquid, to generate thermal energy in a flameless mode. The catalytic combustion process is quite complex since it involves numerous catalytic surface and gas-phase chemical reactions. During low temperature surface-catalyzed combustion, as in start-up, the combustion stage is under kinetically controlled conditions. The discussion covers the following topics - combustor substrates; combustor washcoating and catalyzing; combustor operational modes (turbine or tabular modes); applications in coal gasification and in-situ gasification; waste process gases. 16 refs.

  14. Xylan-Degrading Catalytic Flagellar Nanorods.

    Science.gov (United States)

    Klein, Ágnes; Szabó, Veronika; Kovács, Mátyás; Patkó, Dániel; Tóth, Balázs; Vonderviszt, Ferenc

    2015-09-01

    Flagellin, the main component of flagellar filaments, is a protein possessing polymerization ability. In this work, a novel fusion construct of xylanase A from B. subtilis and Salmonella flagellin was created which is applicable to build xylan-degrading catalytic nanorods of high stability. The FliC-XynA chimera when overexpressed in a flagellin deficient Salmonella host strain was secreted into the culture medium by the flagellum-specific export machinery allowing easy purification. Filamentous assemblies displaying high surface density of catalytic sites were produced by ammonium sulfate-induced polymerization. FliC-XynA nanorods were resistant to proteolytic degradation and preserved their enzymatic activity for a long period of time. Furnishing enzymes with self-assembling ability to build catalytic nanorods offers a promising alternative approach to enzyme immobilization onto nanostructured synthetic scaffolds. PMID:25966869

  15. Electro Catalytic Oxidation (ECO) Operation

    Energy Technology Data Exchange (ETDEWEB)

    Morgan Jones

    2011-03-31

    The power industry in the United States is faced with meeting many new regulations to reduce a number of air pollutants including sulfur dioxide, nitrogen oxides, fine particulate matter, and mercury. With over 1,000 power plants in the US, this is a daunting task. In some cases, traditional pollution control technologies such as wet scrubbers and SCRs are not feasible. Powerspan's Electro-Catalytic Oxidation, or ECO{reg_sign} process combines four pollution control devices into a single integrated system that can be installed after a power plant's particulate control device. Besides achieving major reductions in emissions of sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), fine particulate matter (PM2.5) and mercury (Hg), ECO produces a highly marketable fertilizer, which can help offset the operating costs of the process system. Powerspan has been operating a 50-MW ECO commercial demonstration unit (CDU) at FirstEnergy Corp.'s R.E. Burger Plant near Shadyside, Ohio, since February 2004. In addition to the CDU, a test loop has been constructed beside the CDU to demonstrate higher NOx removal rates and test various scrubber packing types and wet ESP configurations. Furthermore, Powerspan has developed the ECO{reg_sign}{sub 2} technology, a regenerative process that uses a proprietary solvent to capture CO{sub 2} from flue gas. The CO{sub 2} capture takes place after the capture of NOx, SO{sub 2}, mercury, and fine particulate matter. Once the CO{sub 2} is captured, the proprietary solution is regenerated to release CO{sub 2} in a form that is ready for geological storage or beneficial use. Pilot scale testing of ECO{sub 2} began in early 2009 at FirstEnergy's Burger Plant. The ECO{sub 2} pilot unit is designed to process a 1-MW flue gas stream and produce 20 tons of CO{sub 2} per day, achieving a 90% CO{sub 2} capture rate. The ECO{sub 2} pilot program provided the opportunity to confirm process design and cost estimates, and prepare for large

  16. Surface Modification of Catalytic Materials

    DEFF Research Database (Denmark)

    Nierhoff, Anders Ulrik Fregerslev

    aggregation techniques. With the use of two different filter mechanisms, the Quadrupole and the Lateral Time Of Flight, the nanoparticles were mass selected. This was done to correlate nanoparticle size with reactivity. Selected key findings can be summarized as: 1) CO induced surface changes of Pt based......This thesis is a summary of my work on the following systems: Pt alloys for Oxygen Reduction Reaction (ORR) and CO oxidation, Ru for methanation and finally CuZn for methanol synthesis. An important subject throughout the thesis is gas induced surfaces changes. This has been investigated on single...... crystals as well as nanoparticles on planar surfaces as a model system. The model system consisting of planar supports and mass selected nanoparticles has been investigated in a series of Ultra High Vacuum (UHV) compatible chambers. The nanoparticles were produced in a UHV setup by magnetron sputter gas...

  17. Reaction Current Phenomenon in Bifunctional Catalytic Metal-Semiconductor Nanostructures

    Science.gov (United States)

    Hashemian, Mohammad Amin

    Energy transfer processes accompany every elementary step of catalytic chemical processes on material surface including molecular adsorption and dissociation on atoms, interactions between intermediates, and desorption of reaction products from the catalyst surface. Therefore, detailed understanding of these processes on the molecular level is of great fundamental and practical interest in energy-related applications of nanomaterials. Two main mechanisms of energy transfer from adsorbed particles to a surface are known: (i) adiabatic via excitation of quantized lattice vibrations (phonons) and (ii) non-adiabatic via electronic excitations (electron/hole pairs). Electronic excitations play a key role in nanocatalysis, and it was recently shown that they can be efficiently detected and studied using Schottky-type catalytic nanostructures in the form of measureable electrical currents (chemicurrents) in an external electrical circuit. These nanostructures typically contain an electrically continuous nanocathode layers made of a catalytic metal deposited on a semiconductor substrate. The goal of this research is to study the direct observations of hot electron currents (chemicurrents) in catalytic Schottky structures, using a continuous mesh-like Pt nanofilm grown onto a mesoporous TiO2 substrate. Such devices showed qualitatively different and more diverse signal properties, compared to the earlier devices using smooth substrates, which could only be explained on the basis of bifunctionality. In particular, it was necessary to suggest that different stages of the reaction are occurring on both phases of the catalytic structure. Analysis of the signal behavior also led to discovery of a formerly unknown (very slow) mode of the oxyhydrogen reaction on the Pt/TiO2(por) system occurring at room temperature. This slow mode was producing surprisingly large stationary chemicurrents in the range 10--50 microA/cm2. Results of the chemicurrent measurements for the bifunctional

  18. Effect of substrate (ZnO morphology on enzyme immobilization and its catalytic activity

    Directory of Open Access Journals (Sweden)

    Huang Xuelei

    2011-01-01

    Full Text Available Abstract In this study, zinc oxide (ZnO nanocrystals with different morphologies were synthesized and used as substrates for enzyme immobilization. The effects of morphology of ZnO nanocrystals on enzyme immobilization and their catalytic activities were investigated. The ZnO nanocrystals were prepared through a hydrothermal procedure using tetramethylammonium hydroxide as a mineralizing agent. The control on the morphology of ZnO nanocrystals was achieved by varying the ratio of CH3OH to H2O, which were used as solvents in the hydrothermal reaction system. The surface of as-prepared ZnO nanoparticles was functionalized with amino groups using 3-aminopropyltriethoxysilane and tetraethyl orthosilicate, and the amino groups on the surface were identified and calculated by FT-IR and the Kaiser assay. Horseradish peroxidase was immobilized on as-modified ZnO nanostructures with glutaraldehyde as a crosslinker. The results showed that three-dimensional nanomultipod is more appropriate for the immobilization of enzyme used further in catalytic reaction.

  19. Effect of substrate (ZnO) morphology on enzyme immobilization and its catalytic activity

    Science.gov (United States)

    Zhang, Yan; Wu, Haixia; Huang, Xuelei; Zhang, Jingyan; Guo, Shouwu

    2011-07-01

    In this study, zinc oxide (ZnO) nanocrystals with different morphologies were synthesized and used as substrates for enzyme immobilization. The effects of morphology of ZnO nanocrystals on enzyme immobilization and their catalytic activities were investigated. The ZnO nanocrystals were prepared through a hydrothermal procedure using tetramethylammonium hydroxide as a mineralizing agent. The control on the morphology of ZnO nanocrystals was achieved by varying the ratio of CH3OH to H2O, which were used as solvents in the hydrothermal reaction system. The surface of as-prepared ZnO nanoparticles was functionalized with amino groups using 3-aminopropyltriethoxysilane and tetraethyl orthosilicate, and the amino groups on the surface were identified and calculated by FT-IR and the Kaiser assay. Horseradish peroxidase was immobilized on as-modified ZnO nanostructures with glutaraldehyde as a crosslinker. The results showed that three-dimensional nanomultipod is more appropriate for the immobilization of enzyme used further in catalytic reaction.

  20. Direct catalytic transformation of carbohydrates into 5-ethoxymethylfurfural with acid–base bifunctional hybrid nanospheres

    International Nuclear Information System (INIS)

    Graphical abstract: Catalytic conversion of carbohydrates into HMF and EMF in ethanol/DMSO with acid–base bifunctional hybrid nanospheres prepared from self-assembly of corresponding basic amino acids and HPA. - Highlights: • Acid–base bifunctional nanospheres were efficient for production of EMF from sugars. • Synthesis of EMF in a high yield of 76.6% was realized from fructose. • Fructose based biopolymers could also be converted into EMF with good yields. • Ethyl glucopyranoside was produced in good yields from glucose in ethanol. - Abstract: A series of acid–base bifunctional hybrid nanospheres prepared from the self-assembly of basic amino acids and phosphotungstic acid (HPA) with different molar ratios were employed as efficient and recyclable catalysts for synthesis of liquid biofuel 5-ethoxymethylfurfural (EMF) from various carbohydrates. A high EMF yield of 76.6%, 58.5%, 42.4%, and 36.5% could be achieved, when fructose, inulin, sorbose, and sucrose were used as starting materials, respectively. Although, the acid–base bifunctional nanocatalysts were inert for synthesis of EMF from glucose based carbohydrates, ethyl glucopyranoside in good yields could be obtained from glucose in ethanol. Moreover, the nanocatalyst functionalized with acid and basic sites was able to be reused several times with no significant loss in catalytic activity

  1. Mutational analysis of a ras catalytic domain

    DEFF Research Database (Denmark)

    Willumsen, B M; Papageorge, A G; Kung, H F;

    1986-01-01

    We used linker insertion-deletion mutagenesis to study the catalytic domain of the Harvey murine sarcoma virus v-rasH transforming protein, which is closely related to the cellular rasH protein. The mutants displayed a wide range of in vitro biological activity, from those that induced focal...... transformation of NIH 3T3 cells with approximately the same efficiency as the wild-type v-rasH gene to those that failed to induce any detectable morphologic changes. Correlation of transforming activity with the location of the mutations enabled us to identify three nonoverlapping segments within the catalytic...

  2. Thermal and catalytic pyrolysis of plastic waste

    Directory of Open Access Journals (Sweden)

    Débora Almeida

    2016-02-01

    Full Text Available Abstract The amount of plastic waste is growing every year and with that comes an environmental concern regarding this problem. Pyrolysis as a tertiary recycling process is presented as a solution. Pyrolysis can be thermal or catalytical and can be performed under different experimental conditions. These conditions affect the type and amount of product obtained. With the pyrolysis process, products can be obtained with high added value, such as fuel oils and feedstock for new products. Zeolites can be used as catalysts in catalytic pyrolysis and influence the final products obtained.

  3. A catalytic surface for amyloid fibril formation

    Energy Technology Data Exchange (ETDEWEB)

    Hammarstroem, P; Ali, M M; Mishra, R; Tengvall, P; Lundstroem, I [Department of Physics, Biology and Chemistry, Linkoeping University, SE-581 83 Linkoeping (Sweden); Svensson, S [Astra Zeneca R and D, SE-151 85 Soedertaelje (Sweden)], E-mail: ingemar@ifm.liu.se

    2008-03-15

    A hydrophobic surface incubated in a solution of protein molecules (insulin monomers) was made into a catalytic surface for amyloid fibril formation by repeatedly incubate, rinse and dry the surface. The present contribution describes how this unexpected transformation occurred and its relation to rapid fibrillation of insulin solutions in contact with the surface. A tentative model of the properties of the catalytic surface is given, corroborated by ellipsometric measurements of the thickness of the organic layer on the surface and by atomic force microscopy. The surfaces used were spontaneously oxidized silicon made hydrophobic through treatment in dichlorodimethylsilane.

  4. Catalytic gasification of oil-shales

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.; Avakyan, T. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation); Strizhakova, Yu. [Samara State Univ. (Russian Federation)

    2012-07-01

    Nowadays, the problem of complex usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. A one of possible solutions of the problem is their gasification with further processing of gaseous and liquid products. In this work we have investigated the process of thermal and catalytic gasification of Baltic and Kashpir oil-shales. We have shown that, as compared with non-catalytic process, using of nickel catalyst in the reaction increases the yield of gas, as well as hydrogen content in it, and decreases the amount of liquid products. (orig.)

  5. Heterogeneous Catalytic Ozonization of Sulfosalicylic Acid

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper describes the potential of heterogeneous catalytic ozonization of sulfo-salicylic acid (SSal). It was found that catalytic ozonization in the presence of Mn-Zr-O (a modified manganese dioxide supported on silica gel) had significantly enhanced the removal rate (72%) of total organic carbon (TOC) compared with that of ozonization alone (19%). The efficient removal rate of TOC was probably due to increasing the adsorption ability of catalyst and accelerating decomposition of ozone to produce more powerful oxidants than ozone.

  6. Amino acid derived 1,4-dialkyl substituted imidazolones

    DEFF Research Database (Denmark)

    Diness, Frederik; Meldal, Morten Peter

    2010-01-01

    A general method for synthesis of 1,4-substituted imidazolones from amino acids on solid support or in solution has been developed. Amino acid derived 3-Boc-(1,3)-oxazinane (Box) protected amino aldehyde building blocks were coupled through urea bonds to the amino terminal of dipeptides or amino ...

  7. The Self-catalytic Esterification Reaction of O-Phosphoryl Serine Derivative

    Institute of Scientific and Technical Information of China (English)

    Jin Tang DU; Yan Mei LI; Zhong Zhou CHEN; Shi Zhong LUO; Yu Fen ZHAO

    2005-01-01

    O-Phosphoryl serine derivative can perform self-catalytic esterification reaction in the mixture of CH3OH and CHCl3 at the room temperature. The phosphoryl group participation was the key step of the esterification. This type of reactions were proposed through an intermediate of mixed phosphoric-carboxylic anhydride that might provide a clue to the function of the phosphoryl group in the phosphorylated enzymes and in the prebiotic synthesis of protein.

  8. Cu and Pd complexes of N-heterocyclic carbenes : catalytic applications as single and dual systems

    OpenAIRE

    Lesieur, Mathieu

    2015-01-01

    Nowadays, the requirement to design highly valuable compounds is undoubtedly one of the major challenges in the field of organic and organometallic chemistry. The use of the versatile and efficient N-heterocyclic carbenes (NHCs) combined with transition metals represents a key feature in modern organometallic chemistry and homogeneous catalysis. In the course of this thesis, the straightforward design and synthesis of a library of Pd(0) bearing NHC ligands was achieved. Their catalytic per...

  9. State of the art on hydrogen passive auto-catalytic recombiner (european union Parsoar project)

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, F.; Bachellerie, E. [Technicatome, 13 - Aix en Provence (France); Auglaire, M. [Tractebel Energy Engineering, Brussels (Belgium); Boeck, B. de [Association Vincotte Nuclear, Brussels (Belgium); Braillard, O. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Eckardt, B. [Siemens AG, Offenbach am Main (Germany); Ferroni, F. [Electrowatt Engineering Limited, Zurich (Switzerland); Moffett, R. [Atomic Energy Canada Limited, Pinawa (Canada); Van Goethem, G. [European Commission, Brussels (Belgium)

    2001-07-01

    This paper presents an overview of the European Union PARSOAR project, which consists in carrying out a state of the art on hydrogen passive auto-catalytic recombiner (PAR) and a handbook guide for implementing these devices in nuclear power plants. This work is performed in the area ''Operational Safety of Existing Installations'' of the key action ''Nuclear Fission'' of the fifth Euratom Framework Programme (1998-2002). (author)

  10. State of the art on hydrogen passive auto-catalytic recombiner (european union Parsoar project)

    International Nuclear Information System (INIS)

    This paper presents an overview of the European Union PARSOAR project, which consists in carrying out a state of the art on hydrogen passive auto-catalytic recombiner (PAR) and a handbook guide for implementing these devices in nuclear power plants. This work is performed in the area ''Operational Safety of Existing Installations'' of the key action ''Nuclear Fission'' of the fifth Euratom Framework Programme (1998-2002). (author)

  11. Novel Feature for Catalytic Protein Residues Reflecting Interactions with Other Residues

    OpenAIRE

    Yizhou Li; Gongbing Li; Zhining Wen; Hui Yin; Mei Hu; Jiamin Xiao; Menglong Li

    2011-01-01

    Owing to their potential for systematic analysis, complex networks have been widely used in proteomics. Representing a protein structure as a topology network provides novel insight into understanding protein folding mechanisms, stability and function. Here, we develop a new feature to reveal correlations between residues using a protein structure network. In an original attempt to quantify the effects of several key residues on catalytic residues, a power function was used to model interacti...

  12. Amino acid analogs for tumor imaging

    Science.gov (United States)

    Goodman, M.M.; Shoup, T.

    1998-09-15

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is [{sup 18}F]-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an {alpha}-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of {alpha}-aminoisobutyric acid.

  13. Amino Acid Stability in the Early Oceans

    Science.gov (United States)

    Parker, E. T.; Brinton, K. L.; Burton, A. S.; Glavin, D. P.; Dworkin, J. P.; Bada, J. L.

    2015-01-01

    It is likely that a variety of amino acids existed in the early oceans of the Earth at the time of the origin and early evolution of life. "Primordial soup", hydrothermal vent, and meteorite based processes could have contributed to such an inventory. Several "protein" amino acids were likely present, however, based on prebiotic synthesis experiments and carbonaceous meteorite studies, non-protein amino acids, which are rare on Earth today, were likely the most abundant. An important uncertainty is the length of time these amino acids could have persisted before their destruction by abiotic and biotic processes. Prior to life, amino acid concentrations in the oceans were likely regulated by circulation through hydro-thermal vents. Today, the entire ocean circulates through vent systems every 10(exp 7) years. On the early Earth, this value was likely smaller due to higher heat flow and thus marine amino acid life-time would have been shorter. After life, amino acids in the oceans could have been assimilated by primitive organisms.

  14. Distribution of Amino Acids in Lunar Regolith

    Science.gov (United States)

    Elsila, J. E.; Callahan, M. P.; Glavin, D. P.; Dworkin, J. P.; Noble, S. K.; Gibson, E. K., Jr.

    2014-01-01

    One of the most eagerly studied questions upon initial return of lunar samples was whether significant amounts of organic compounds, including amino acids, were present. Analyses during the 1970s produced only tentative and inconclusive identifications of indigenous amino acids. Those analyses were hampered by analytical difficulties including relative insensitivity to certain compounds, the inability to separate chiral enantiomers, and the lack of compound-specific isotopic measurements, which made it impossible to determine whether the detected amino acids were indigenous to the lunar samples or the results of contamination. Numerous advances have been made in instrumentation and methodology for amino acid characterization in extraterrestrial samples in the intervening years, yet the origin of amino acids in lunar regolith samples has been revisited only once for a single lunar sample, (3) and remains unclear. Here, we present initial data from the analyses of amino acid abundances in 12 lunar regolith samples. We discuss these abundances in the context of four potential amino acid sources: (1) terrestrial biological contamination; (2) contamination from lunar module (LM) exhaust; (3) derivation from solar windimplanted precursors; and (4) exogenous delivery from meteorites.

  15. Amino acid analogs for tumor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Mark M. (Atlanta, GA); Shoup, Timothy (Decatur, GA)

    1998-09-15

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is ›.sup.18 F!-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an .alpha.-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of .alpha.-aminoisobutyric acid.

  16. Amino acid analogs for tumor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, Mark M. (Atlanta, GA); Shoup, Timothy (Decatur, GA)

    1998-10-06

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is ›.sup.18 F!-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an .alpha.-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of .alpha.-aminoisobutyric acid.

  17. Amino acid analogs for tumor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, M.M.; Shoup, T.

    1998-10-06

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is [{sup 18}F]-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an {alpha}-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of {alpha}-aminoisobutyric acid.

  18. Enantiomer-specific selection of amino acids.

    Science.gov (United States)

    Ren, Xueying; Tellez, Luis A; de Araujo, Ivan E

    2013-12-01

    Dietary intake of L-amino acids impacts on several physiological functions, including the control of gastrointestinal motility, pancreatic secretion, and appetite. However, the biological mechanisms regulating behavioral predilections for certain amino acid types remain poorly understood. We tested the hypothesis that, in mice, the potency with which a given glucogenic amino acid increases glucose utilization reflects its rewarding properties. We have found that: (1) during long-, but not short-, term preference tests, L-alanine and L-serine were preferred over their D-enantiomer counterparts, while no such effect was observed for L-threonine vs. D-threonine; (2) these behavioral patterns were closely associated with the ability of L-amino acids to promote increases in respiratory exchange ratios such that those, and only those, L-amino acids able to promote increases in respiratory exchange ratios were preferred over their D-isomers; (3) these behavioral preferences were independent of gustatory influences, since taste-deficient Trpm5 knockout mice displayed ingestive responses very similar to those of their wild-type counterparts. We conclude that the ability to promote increases in respiratory exchange ratios enhances the reward value of nutritionally relevant amino acids and suggest a mechanistic link between substrate utilization and amino acid preferences.

  19. Plasma Amino Acid Concentrations Predict Mortality in Patients with End-Stage Liver Disease

    Science.gov (United States)

    Kinny-Köster, Benedict; Bartels, Michael; Becker, Susen; Scholz, Markus; Thiery, Joachim

    2016-01-01

    Background The liver plays a key role in amino acid metabolism. In former studies, a ratio between branched-chain and aromatic amino acids (Fischer’s ratio) revealed associations with hepatic encephalopathy. Furthermore, low concentrations of branched-chain amino acids were linked to sarcopenia in literature. Encephalopathy and sarcopenia are known to dramatically worsen the prognosis. Aim of this study was to investigate a complex panel of plasma amino acids in the context of mortality in patients with end-stage liver disease. Methods 166 patients evaluated for orthotopic liver transplantation were included. 19 amino acids were measured from citrated plasma samples using mass spectrometry. We performed survival analysis for plasma amino acid constellations and examined the relationship to established mortality predictors. Results 33/166 (19.9%) patients died during follow-up. Lower values of valine (p<0.001), Fischer’s ratio (p<0.001) and valine to phenylalanine ratio (p<0.001) and higher values of phenylalanine (p<0.05) and tyrosine (p<0.05) were significantly associated with mortality. When divided in three groups, the tertiles discriminated cumulative survival for valine (p = 0.016), phenylalanine (p = 0.024) and in particular for valine to phenylalanine ratio (p = 0.003) and Fischer’s ratio (p = 0.005). Parameters were also significantly correlated with MELD and MELD-Na score. Conclusions Amino acids in plasma are valuable biomarkers to determine increased risk of mortality in patients with end-stage liver disease. In particular, valine concentrations and constellations composed of branched-chain and aromatic amino acids were strongly associated with prognosis. Due to their pathophysiological importance, the identified amino acids could be used to examine individual dietary recommendations to serve as potential therapeutic targets. PMID:27410482

  20. High performing and stable supported nano-alloys for the catalytic hydrogenation of levulinic acid to gamma-valerolactone

    NARCIS (Netherlands)

    Luo, Wenhao; Meenakshisundaram, Sankar; Beale, Andrew M.; He, Qian; Kiely, Christopher J.; Bruijnincx, Pieter C. A.; Weckhuysen, Bert M.

    2015-01-01

    The catalytic hydrogenation of levulinic acid, a key platform molecule in many biorefinery schemes, into gamma-valerolactone is considered as one of the pivotal reactions to convert lignocellulose-based biomass into renewable fuels and chemicals. Here we report on the development of highly active, s

  1. Amino Acid Degradation after Meteoritic Impact Simulation

    Science.gov (United States)

    Bertrand, M.; Westall, F.; vanderGaast, S.; Vilas, F.; Hoerz, F.; Barnes, G.; Chabin, A.; Brack, A.

    2008-01-01

    Amino acids are among the most important prebiotic molecules as it is from these precursors that the building blocks of life were formed [1]. Although organic molecules were among the components of the planetesimals making up the terrestrial planets, large amounts of primitive organic precursor molecules are believed to be exogenous in origin and to have been imported to the Earth via micrometeorites, carbonaceous meteorites and comets, especially during the early stages of the formation of the Solar System [1,2]. Our study concerns the hypothesis that prebiotic organic matter, present on Earth, was synthesized in the interstellar environment, and then imported to Earth by meteorites or micrometeorites. We are particularly concerned with the formation and fate of amino acids. We have already shown that amino acid synthesis is possible inside cometary grains under interstellar environment conditions [3]. We are now interested in the effects of space conditions and meteoritic impact on these amino acids [4-6]. Most of the extraterrestrial organic molecules known today have been identified in carbonaceous chondrite meteorites [7]. One of the components of these meteorites is a clay with a composition close to that of saponite, used in our experiments. Two American teams have studied the effects of impact on various amino acids [8,9]. [8] investigated amino acids in saturated solution in water with pressure ranges between 5.1 and 21 GPa and temperature ranges between 412 and 870 K. [9] studied amino acids in solid form associated with and without minerals (Murchison and Allende meteorite extracts) and pressure ranges between 3 and 30 GPa. In these two experiments, the amino acids survived up to 15 GPa. At higher pressure, the quantity of preserved amino acids decreases quickly. Some secondary products such as dipeptides and diketopiperazins were identified in the [8] experiment.

  2. Key Concepts in Informatics: Algorithm

    Science.gov (United States)

    Szlávi, Péter; Zsakó, László

    2014-01-01

    "The system of key concepts contains the most important key concepts related to the development tasks of knowledge areas and their vertical hierarchy as well as the links of basic key concepts of different knowledge areas." (Vass 2011) One of the most important of these concepts is the algorithm. In everyday life, when learning or…

  3. A substrate-driven allosteric switch that enhances PDI catalytic activity

    Science.gov (United States)

    Bekendam, Roelof H.; Bendapudi, Pavan K.; Lin, Lin; Nag, Partha P.; Pu, Jun; Kennedy, Daniel R.; Feldenzer, Alexandra; Chiu, Joyce; Cook, Kristina M.; Furie, Bruce; Huang, Mingdong; Hogg, Philip J.; Flaumenhaft, Robert

    2016-01-01

    Protein disulfide isomerase (PDI) is an oxidoreductase essential for folding proteins in the endoplasmic reticulum. The domain structure of PDI is a–b–b′–x–a′, wherein the thioredoxin-like a and a′ domains mediate disulfide bond shuffling and b and b′ domains are substrate binding. The b′ and a′ domains are connected via the x-linker, a 19-amino-acid flexible peptide. Here we identify a class of compounds, termed bepristats, that target the substrate-binding pocket of b′. Bepristats reversibly block substrate binding and inhibit platelet aggregation and thrombus formation in vivo. Ligation of the substrate-binding pocket by bepristats paradoxically enhances catalytic activity of a and a′ by displacing the x-linker, which acts as an allosteric switch to augment reductase activity in the catalytic domains. This substrate-driven allosteric switch is also activated by peptides and proteins and is present in other thiol isomerases. Our results demonstrate a mechanism whereby binding of a substrate to thiol isomerases enhances catalytic activity of remote domains. PMID:27573496

  4. Chaperones are necessary for the expression of catalytically active potato apyrases in prokaryotic cells.

    Science.gov (United States)

    Porowińska, Dorota; Czarnecka, Joanna; Komoszyński, Michał

    2014-07-01

    NTPDases (nucleoside triphosphate diphosphohydrolases) (also called in plants apyrases) hydrolyze nucleoside 5'-tri- and/or diphosphate bonds producing nucleosides di or monophosphate and inorganic phosphate. For years, studies have been carried out to use both plant and animal enzymes for medicine. Therefore, there is a need to develop an efficient method for the quick production of large amounts of homogeneous proteins with high catalytic activity. Expression of proteins in prokaryotic cells is the most common way for the protein production. The aim of our study was to develop a method of expression of potato apyrase (StAPY4, 5, and 6) genes in bacterial cells under conditions that allowed the production of catalytically active form of these enzymes. Apyrase 4 and 6 were overexpressed in BL21-CodonPlus (DE3) bacteria strain but they were accumulated in inclusion bodies, regardless of the culture conditions and induction method. Co-expression of potato apyrases with molecular chaperones allowed the expression of catalytically active apyrase 5. However, its high nucleotidase activity could be toxic for bacteria and is therefore synthesized in small amounts in cells. Our studies show that each protein requires other conditions for maturation and even small differences in amino acid sequence can essentially affect protein folding regardless of presence of chaperones.

  5. Partial catalytic oxidation of CH{sub 4} to synthesis gas for power generation - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mantzaras, I.; Schneider, A.

    2006-03-15

    The partial oxidation of methane to synthesis gas over rhodium catalysts has been investigated experimentally and numerically in the pressure range of 4 to 10 bar. The methane/oxidizer feed has been diluted with large amounts of H{sub 2}O and CO{sub 2} (up to 70% vol.) in order to simulate new power generation cycles with large exhaust gas recycle. Experiments were carried out in an optically accessible channel-flow reactor that facilitated laser-based in situ measurements, and also in a subscale gas-turbine catalytic reactor. Full-elliptic steady and transient two-dimensional numerical codes were used, which included elementary hetero-/homogeneous chemical reaction schemes. The following are the key conclusions: a) Heterogeneous (catalytic) and homogeneous (gas-phase) schemes have been validated for the partial catalytic oxidation of methane with large exhaust gas recycle. b) The impact of added H{sub 2}O and CO{sub 2} has been elucidated. The added H{sub 2}O increased the methane conversion and hydrogen selectivity, while it decreased the CO selectivity. The chemical impact of CO{sub 2} (dry reforming) was minimal. c) The numerical model reproduced the measured catalytic ignition times. It was further shown that the chemical impact of H{sub 2}O and CO{sub 2} on the catalytic ignition delay times was minimal. d) The noble metal dispersion increased with different support materials, in the order Rh/{alpha}-Al{sub 2}O{sub 3}, Rh/ZrO{sub 2}, and Rh/Ce-ZrO{sub 2}. An evident relationship was established between the noble metal dispersion and the catalytic behavior. (authors)

  6. The crystal structure of tryptophan hydroxylase with bound amino acid substrate

    DEFF Research Database (Denmark)

    Windahl, Michael Skovbo; Petersen, Charlotte Rode; Christensen, Hans Erik Mølager;

    2008-01-01

    acid hydroxylase with bound natural amino acid substrate. The iron coordination can be described as distorted trigonal bipyramidal coordination with His273, His278, and Glu318 (partially bidentate) and one imidazole as ligands. The tryptophan stacks against Pro269 with a distance of 3.9 Å between...... of the neurotransmitter and hormone serotonin (5-hydroxytryptamine). We have determined the 1.9 Å resolution crystal structure of the catalytic domain (Δ1−100/Δ415−445) of chicken TPH isoform 1 (TPH1) in complex with the tryptophan substrate and an iron-bound imidazole. This is the first structure of any aromatic amino......124−Asp139 and Ile367−Thr369 close around the active site. Similar structural changes are seen in the catalytic domain of phenylalanine hydroxylase (PAH) upon binding of substrate analogues norleucine and thienylalanine to the PAH·BH4 complex. In fact, the chicken TPH1·Trp·imidazole structure...

  7. The sugar model: catalysis by amines and amino acid products

    Science.gov (United States)

    Weber, A. L.

    2001-01-01

    Ammonia and amines (including amino acids) were shown to catalyze the formation of sugars from formaldehyde and glycolaldehyde, and the subsequent conversion of sugars to carbonylcontaining products under the conditions studied (pH 5.5 and 50 degrees C). Sterically unhindered primary amines were better catalysts than ammonia, secondary amines, and sterically hindered primary amines (i.e. alpha-aminoisobutyric acid). Reactions catalyzed by primary amines initially consumed formaldehyde and glycolaldehyde about 15-20 times faster than an uncatalyzed control reaction. The amine-catalyzed reactions yielded aldotriose (glyceraldehyde), ketotriose (dihydroxyacetone), aldotetroses (erythrose and threose), ketotetrose (erythrulose), pyruvaldehyde, acetaldehyde, glyoxal, pyruvate, glyoxylate, and several unindentified carbonyl products. The concentrations of the carbonyl products, except pyruvate and ketotetrose, initially increased and then declined during the reaction, indicating their ultimate conversion to other products (like larger sugars or pyruvate). The uncatalyzed control reaction yielded no pyruvate or glyoxylate, and only trace amounts of pyruvaldehyde, acetaldehyde and glyoxal. In the presence of 15 mM catalytic primary amine, such as alanine, the rates of triose and pyruvaldehyde of synthesis were about 15-times and 1200-times faster, respectively, than the uncatalyzed reaction. Since previous studies established that alanine is synthesized from glycolaldehyde and formaldehyde via pyruvaldehyde as its direct precursor, the demonstration that the alanine catalyzes the conversion of glycolaldehyde and formaldehyde to pyruvaldehyde indicates that this synthetic pathway is capable of autocatalysis. The relevance of this synthetic process, named the Sugar Model, to the origin of life is discussed.

  8. A unique dual activity amino acid hydroxylase in Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Gaskell

    Full Text Available The genome of the protozoan parasite Toxoplasma gondii was found to contain two genes encoding tyrosine hydroxylase; that produces L-DOPA. The encoded enzymes metabolize phenylalanine as well as tyrosine with substrate preference for tyrosine. Thus the enzymes catabolize phenylalanine to tyrosine and tyrosine to L-DOPA. The catalytic domain descriptive of this class of enzymes is conserved with the parasite enzyme and exhibits similar kinetic properties to metazoan tyrosine hydroxylases, but contains a unique N-terminal extension with a signal sequence motif. One of the genes, TgAaaH1, is constitutively expressed while the other gene, TgAaaH2, is induced during formation of the bradyzoites of the cyst stages of the life cycle. This is the first description of an aromatic amino acid hydroxylase in an apicomplexan parasite. Extensive searching of apicomplexan genome sequences revealed an ortholog in Neospora caninum but not in Eimeria, Cryptosporidium, Theileria, or Plasmodium. Possible role(s of these bi-functional enzymes during host infection are discussed.

  9. Anacardic acid inhibits the catalytic activity of matrix metalloproteinase-2 and matrix metalloproteinase-9.

    Science.gov (United States)

    Omanakuttan, Athira; Nambiar, Jyotsna; Harris, Rodney M; Bose, Chinchu; Pandurangan, Nanjan; Varghese, Rebu K; Kumar, Geetha B; Tainer, John A; Banerji, Asoke; Perry, J Jefferson P; Nair, Bipin G

    2012-10-01

    Cashew nut shell liquid (CNSL) has been used in traditional medicine for the treatment of a wide variety of pathophysiological conditions. To further define the mechanism of CNSL action, we investigated the effect of cashew nut shell extract (CNSE) on two matrix metalloproteinases, MMP-2/gelatinase A and MMP-9/gelatinase B, which are known to have critical roles in several disease states. We observed that the major constituent of CNSE, anacardic acid, markedly inhibited the gelatinase activity of 3T3-L1 cells. Our gelatin zymography studies on these two secreted gelatinases, present in the conditioned media from 3T3-L1 cells, established that anacardic acid directly inhibited the catalytic activities of both MMP-2 and MMP-9. Our docking studies suggested that anacardic acid binds into the MMP-2/9 active site, with the carboxylate group of anacardic acid chelating the catalytic zinc ion and forming a hydrogen bond to a key catalytic glutamate side chain and the C15 aliphatic group being accommodated within the relatively large S1' pocket of these gelatinases. In agreement with the docking results, our fluorescence-based studies on the recombinant MMP-2 catalytic core domain demonstrated that anacardic acid directly inhibits substrate peptide cleavage in a dose-dependent manner, with an IC₅₀ of 11.11 μM. In addition, our gelatinase zymography and fluorescence data confirmed that the cardol-cardanol mixture, salicylic acid, and aspirin, all of which lack key functional groups present in anacardic acid, are much weaker MMP-2/MMP-9 inhibitors. Our results provide the first evidence for inhibition of gelatinase catalytic activity by anacardic acid, providing a novel template for drug discovery and a molecular mechanism potentially involved in CNSL therapeutic action. PMID:22745359

  10. Molecular factors of catalytic selectivity.

    Science.gov (United States)

    Somorjai, Gabor A; Park, Jeong Y

    2008-01-01

    Selectivity--the production of one molecule out of many other thermodynamically feasible product molecules--is the key concept in developing clean processes that do not produce by-products (green chemistry). Small differences in the potential-energy barriers of single reaction steps control which reaction channel is more likely to yield the desired product molecule (selectivity), while the overall activation energy of the reaction controls the turnover rates (activity). Recent studies have demonstrated that tailoring parameters at the atomic or molecular level--such as the surface structures of active sites--gives turnover rates and reaction selectivities that depend on the nanoparticle size and shape. Here, we highlight seven molecular components that influence the selectivity of heterogeneous catalyst reactions on single-crystal model surfaces and colloid nanoparticles: surface structure, adsorbate-induced restructuring, adsorbate mobility, reaction intermediates, surface composition, charge transport, and oxidation states. We show the importance of the single factors by means of examples and describe in situ analyses that permit their roles in surface reactions to be investigated. PMID:19006127

  11. Effect of amino acids and amino acid derivatives on crystallization of hemoglobin and ribonuclease A

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Len, E-mail: len@ksc.kwansei.ac.jp; Kobayashi, Toyoaki [School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Shiraki, Kentaro [Institute of Applied Physics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 (Japan); Yamaguchi, Hiroshi [School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2008-05-01

    The effect of the addition of amino acids and amino acid derivatives on the crystallization of hemoglobin and ribonuclease A has been evaluated. The results showed that certain types of additives expand the concentration conditions in which crystals are formed. Determination of the appropriate conditions for protein crystallization remains a highly empirical process. Preventing protein aggregation is necessary for the formation of single crystals under aggregation-prone solution conditions. Because many amino acids and amino acid derivatives offer a unique combination of solubility and stabilizing properties, they open new avenues into the field of protein aggregation research. The use of amino acids and amino acid derivatives can potentially influence processes such as heat treatment and refolding reactions. The effect of the addition of several amino acids, such as lysine, and several amino acid derivatives, such as glycine ethyl ester and glycine amide, on the crystallization of equine hemoglobin and bovine pancreatic ribonuclease A has been examined. The addition of these amino acids and amino acid derivatives expanded the range of precipitant concentration in which crystals formed without aggregation. The addition of such additives appears to promote the crystallization of proteins.

  12. Simultaneous quantification of amino acids and Amadori products in foods through ion-pairing liquid chromatography–high-resolution mass spectrometry

    NARCIS (Netherlands)

    Troise, A.D.; Fiore, A.; Roviello, G.; Monti, S.M.; Fogliano, V.

    2015-01-01

    The formation of the Amadori products (APs) is the first key step of Maillard reaction. Only few papers have dealt with simultaneous quantitation of amino acids and corresponding APs (1-amino-1-deoxy-2-ketose). Chromatographic separation of APs is affected by several drawbacks mainly related to thei

  13. Novel Metal Nanomaterials and Their Catalytic Applications

    Directory of Open Access Journals (Sweden)

    Jiaqing Wang

    2015-09-01

    Full Text Available In the rapidly developing areas of nanotechnology, nano-scale materials as heterogeneous catalysts in the synthesis of organic molecules have gotten more and more attention. In this review, we will summarize the synthesis of several new types of noble metal nanostructures (FePt@Cu nanowires, Pt@Fe2O3 nanowires and bimetallic Pt@Ir nanocomplexes; Pt-Au heterostructures, Au-Pt bimetallic nanocomplexes and Pt/Pd bimetallic nanodendrites; Au nanowires, CuO@Ag nanowires and a series of Pd nanocatalysts and their new catalytic applications in our group, to establish heterogeneous catalytic system in “green” environments. Further study shows that these materials have a higher catalytic activity and selectivity than previously reported nanocrystal catalysts in organic reactions, or show a superior electro-catalytic activity for the oxidation of methanol. The whole process might have a great impact to resolve the energy crisis and the environmental crisis that were caused by traditional chemical engineering. Furthermore, we hope that this article will provide a reference point for the noble metal nanomaterials’ development that leads to new opportunities in nanocatalysis.

  14. Catalytic site interactions in yeast OMP synthase

    DEFF Research Database (Denmark)

    Hansen, Michael Riis; Barr, Eric W.; Jensen, Kaj Frank;

    2014-01-01

    45 (2006) 5330-5342]. This behavior was investigated in the yeast enzyme by mutations in the conserved catalytic loop and 5-phosphoribosyl-1-diphosphate (PRPP) binding motif. Although the reaction is mechanistically sequential, the wild-type (WT) enzyme shows parallel lines in double reciprocal...

  15. Lignin Valorization using Heterogenous Catalytic Oxidation

    DEFF Research Database (Denmark)

    Melián Rodríguez, Mayra; Shunmugavel, Saravanamurugan; Kegnæs, Søren;

    is complex so different model compounds are often used to study lignin valorization. These model compounds contain the linkages present in lignin, simplifying catalytic analysis and present analytical challenges related to the study of the complicated lignin polymer and the plethora of products that could...

  16. Performance characterization of a hydrogen catalytic heater.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01

    This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

  17. Electrochemical Promotion of Catalytic Reactions Using

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bjerrum, Niels; Cleemann, Lars Nilausen;

    2007-01-01

    This paper presents the results of a study on electrochemical promotion (EP) of catalytic reactions using Pt/C/polybenzimidazole(H3PO4)/Pt/C fuel cell performed by the Energy and Materials Science Group (Technical University of Denmark) during the last 6 years[1-4]. The development of our...

  18. Toward Facilitative Mentoring and Catalytic Interventions

    Science.gov (United States)

    Smith, Melissa K.; Lewis, Marilyn

    2015-01-01

    In TESOL teacher mentoring, giving advice can be conceptualized as a continuum, ranging from directive to facilitative feedback. The goal, over time, is to lead toward the facilitative end of the continuum and specifically to catalytic interventions that encourage self-reflection and autonomous learning. This study begins by examining research on…

  19. Catalytic treatment of diesel engines, NOx emissions

    International Nuclear Information System (INIS)

    Some aspects of the operation of diesel engines are revised together with the pollutant emissions they produce, as well as the available catalytic technologies for the treatment of diesel emissions. Furthermore the performance of a catalyst developed in the environmental catalysis group for NOx reduction using synthetic gas mixtures simulating the emissions from diesel engines is presented

  20. Catalytic Converters Maintain Air Quality in Mines

    Science.gov (United States)

    2014-01-01

    At Langley Research Center, engineers developed a tin-oxide based washcoat to prevent oxygen buildup in carbon dioxide lasers used to detect wind shears. Airflow Catalyst Systems Inc. of Rochester, New York, licensed the technology and then adapted the washcoat for use as a catalytic converter to treat the exhaust from diesel mining equipment.

  1. Rapid Deployment of Rich Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Richard S. Tuthill

    2004-06-10

    The overall objective of this research under the Turbines Program is the deployment of fuel flexible rich catalytic combustion technology into high-pressure ratio industrial gas turbines. The resulting combustion systems will provide fuel flexibility for gas turbines to burn coal derived synthesis gas or natural gas and achieve NO{sub x} emissions of 2 ppmvd or less (at 15 percent O{sub 2}), cost effectively. This advance will signify a major step towards environmentally friendly electric power generation and coal-based energy independence for the United States. Under Phase 1 of the Program, Pratt & Whitney (P&W) performed a system integration study of rich catalytic combustion in a small high-pressure ratio industrial gas turbine with a silo combustion system that is easily scalable to a larger multi-chamber gas turbine system. An implementation plan for this technology also was studied. The principal achievement of the Phase 1 effort was the sizing of the catalytic module in a manner which allowed a single reactor (rather than multiple reactors) to be used by the combustion system, a conclusion regarding the amount of air that should be allocated to the reaction zone to achieve low emissions, definition of a combustion staging strategy to achieve low emissions, and mechanical integration of a Ceramic Matrix Composite (CMC) combustor liner with the catalytic module.

  2. Catalytic dehydrogenations of ethylbenzene to styrene

    NARCIS (Netherlands)

    Nederlof, C.

    2012-01-01

    This research work on the catalytic dehydrogenation of ethylbenzene (EB) to styrene (ST) had a primary goal of developing improved catalysts for dehydrogenation processes both in CO2 as well as with O2 that can compete with the conventional dehydrogenation process in steam. In order to achieve this

  3. Shungite carbon catalytic effect on coal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Grigorieva, E.N.; Rozhkova, N.N. [Russian Academy of Sciences, Moscow (Russian Federation). Institute for High Temperature

    1999-07-01

    The catalytic ability of shungite carbon in reactions of coal organic matter models appeared to be due to its fullerene structure only. Transition metal sulphides present in shungite carbon are not active in the conditions of coal treatment. Shungite carbon was shown to exhibit an acceleration of thermolysis of coal and organic matter models, mainly dehydrogenation. 5 refs., 1 tabs.

  4. Toward a catalytic site in DNA

    DEFF Research Database (Denmark)

    Jakobsen, Ulla; Rohr, Katja; Vogel, Stefan

    2007-01-01

    A number of functionalized polyaza crown ether building blocks have been incorporated into DNA-conjugates as catalytic Cu(2+) binding sites. The effect of the DNA-conjugate catalyst on the stereochemical outcome of a Cu(2+)-catalyzed Diels-Alder reaction will be presented....

  5. Catalytic asymmetric synthesis of mycocerosic acid

    NARCIS (Netherlands)

    ter Horst, B.; Feringa, B.L.; J. Minnaard, A.

    2007-01-01

    The first catalytic asymmetric total synthesis of mycocerosic acid was achieved via the application of iterative enantioselective 1,4-addition reactions and allows for the efficient construction of 1,3-polymethyl arrays with full stereocontrol; further exemplified by the synthesis of tetramethyl-dec

  6. SELECTIVE CATALYTIC REDUCTION MERCURY FIELD SAMPLING PROJECT

    Science.gov (United States)

    A lack of data still exists as to the effect of selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas conditioning on the speciation and removal of mercury (Hg) at power plants. This project investigates the impact that SCR, SNCR, and flue gas...

  7. Limitations on quantum key repeaters.

    Science.gov (United States)

    Bäuml, Stefan; Christandl, Matthias; Horodecki, Karol; Winter, Andreas

    2015-04-23

    A major application of quantum communication is the distribution of entangled particles for use in quantum key distribution. Owing to noise in the communication line, quantum key distribution is, in practice, limited to a distance of a few hundred kilometres, and can only be extended to longer distances by use of a quantum repeater, a device that performs entanglement distillation and quantum teleportation. The existence of noisy entangled states that are undistillable but nevertheless useful for quantum key distribution raises the question of the feasibility of a quantum key repeater, which would work beyond the limits of entanglement distillation, hence possibly tolerating higher noise levels than existing protocols. Here we exhibit fundamental limits on such a device in the form of bounds on the rate at which it may extract secure key. As a consequence, we give examples of states suitable for quantum key distribution but unsuitable for the most general quantum key repeater protocol.

  8. Secure key storage and distribution

    Science.gov (United States)

    Agrawal, Punit

    2015-06-02

    This disclosure describes a distributed, fault-tolerant security system that enables the secure storage and distribution of private keys. In one implementation, the security system includes a plurality of computing resources that independently store private keys provided by publishers and encrypted using a single security system public key. To protect against malicious activity, the security system private key necessary to decrypt the publication private keys is not stored at any of the computing resources. Rather portions, or shares of the security system private key are stored at each of the computing resources within the security system and multiple security systems must communicate and share partial decryptions in order to decrypt the stored private key.

  9. Enantioselective Hydrolysis of Amino Acid Esters Promoted by Bis(β-cyclodextrin) Copper Complexes

    Science.gov (United States)

    Xue, Shan-Shan; Zhao, Meng; Ke, Zhuo-Feng; Cheng, Bei-Chen; Su, Hua; Cao, Qian; Cao, Zhen-Kun; Wang, Jun; Ji, Liang-Nian; Mao, Zong-Wan

    2016-02-01

    It is challenging to create artificial catalysts that approach enzymes with regard to catalytic efficiency and selectivity. The enantioselective catalysis ranks the privileged characteristic of enzymatic transformations. Here, we report two pyridine-linked bis(β-cyclodextrin) (bisCD) copper(II) complexes that enantioselectively hydrolyse chiral esters. Hydrolytic kinetic resolution of three pairs of amino acid ester enantiomers (S1–S3) at neutral pH indicated that the “back-to-back” bisCD complex CuL1 favoured higher catalytic efficiency and more pronounced enantioselectivity than the “face-to-face” complex CuL2. The best enantioselectivity was observed for N-Boc-phenylalanine 4-nitrophenyl ester (S2) enantiomers promoted by CuL1, which exhibited an enantiomer selectivity of 15.7. We observed preferential hydrolysis of L-S2 by CuL1, even in racemic S2, through chiral high-performance liquid chromatography (HPLC). We demonstrated that the enantioselective hydrolysis was related to the cooperative roles of the intramolecular flanking chiral CD cavities with the coordinated copper ion, according to the results of electrospray ionization mass spectrometry (ESI-MS), inhibition experiments, rotating-frame nuclear Overhauser effect spectroscopy (ROESY), and theoretical calculations. Although the catalytic parameters lag behind the level of enzymatic transformation, this study confirms the cooperative effect of the first and second coordination spheres of artificial catalysts in enantioselectivity and provides hints that may guide future explorations of enzyme mimics.

  10. Enantioselective Hydrolysis of Amino Acid Esters Promoted by Bis(β-cyclodextrin) Copper Complexes.

    Science.gov (United States)

    Xue, Shan-Shan; Zhao, Meng; Ke, Zhuo-Feng; Cheng, Bei-Chen; Su, Hua; Cao, Qian; Cao, Zhen-Kun; Wang, Jun; Ji, Liang-Nian; Mao, Zong-Wan

    2016-02-26

    It is challenging to create artificial catalysts that approach enzymes with regard to catalytic efficiency and selectivity. The enantioselective catalysis ranks the privileged characteristic of enzymatic transformations. Here, we report two pyridine-linked bis(β-cyclodextrin) (bisCD) copper(II) complexes that enantioselectively hydrolyse chiral esters. Hydrolytic kinetic resolution of three pairs of amino acid ester enantiomers (S1-S3) at neutral pH indicated that the "back-to-back" bisCD complex CuL(1) favoured higher catalytic efficiency and more pronounced enantioselectivity than the "face-to-face" complex CuL(2). The best enantioselectivity was observed for N-Boc-phenylalanine 4-nitrophenyl ester (S2) enantiomers promoted by CuL(1), which exhibited an enantiomer selectivity of 15.7. We observed preferential hydrolysis of L-S2 by CuL(1), even in racemic S2, through chiral high-performance liquid chromatography (HPLC). We demonstrated that the enantioselective hydrolysis was related to the cooperative roles of the intramolecular flanking chiral CD cavities with the coordinated copper ion, according to the results of electrospray ionization mass spectrometry (ESI-MS), inhibition experiments, rotating-frame nuclear Overhauser effect spectroscopy (ROESY), and theoretical calculations. Although the catalytic parameters lag behind the level of enzymatic transformation, this study confirms the cooperative effect of the first and second coordination spheres of artificial catalysts in enantioselectivity and provides hints that may guide future explorations of enzyme mimics.

  11. D-amino acids trigger biofilm disassembly.

    Science.gov (United States)

    Kolodkin-Gal, Ilana; Romero, Diego; Cao, Shugeng; Clardy, Jon; Kolter, Roberto; Losick, Richard

    2010-04-30

    Bacteria form communities known as biofilms, which disassemble over time. In our studies outlined here, we found that, before biofilm disassembly, Bacillus subtilis produced a factor that prevented biofilm formation and could break down existing biofilms. The factor was shown to be a mixture of D-leucine, D-methionine, D-tyrosine, and D-tryptophan that could act at nanomolar concentrations. D-amino acid treatment caused the release of amyloid fibers that linked cells in the biofilm together. Mutants able to form biofilms in the presence of D-amino acids contained alterations in a protein (YqxM) required for the formation and anchoring of the fibers to the cell. D-amino acids also prevented biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa. D-amino acids are produced by many bacteria and, thus, may be a widespread signal for biofilm disassembly. PMID:20431016

  12. AMINO ACIDS APPLICATION TO CREATE OF NANOSTRUCTURES

    Directory of Open Access Journals (Sweden)

    I. S. Chekman

    2014-12-01

    Full Text Available Review is devoted to the amino acids that could be used for nanostructures creation. The investigation of corresponding properties of amino acids is essential for their role definition in creation of nanomedicines. However, amino acid studying as components of nanostructures is insufficient. Study of nanoparticles for medicines creation was initiated by the development of nanotechnology. Amino acids in complexes with the nanoparticles of organic and inorganic nature play an important role for medicines targeting in pathological process. They could reduce toxicity of the nanomaterials used in nanomedicine and are used for creation of biosensors, lab-on-chip and therefore they are a promising material for synthesis of new nanodrugs and diagnostic tools.

  13. Fine-tuning of amino sugar homeostasis by EIIANtr in Salmonella Typhimurium

    Science.gov (United States)

    Yoo, Woongjae; Yoon, Hyunjin; Seok, Yeong-Jae; Lee, Chang-Ro; Lee, Hyung Ho; Ryu, Sangryeol

    2016-01-01

    The nitrogen-metabolic phosphotransferase system, PTSNtr, consists of the enzymes INtr, NPr and IIANtr that are encoded by ptsP, ptsO, and ptsN, respectively. Due to the proximity of ptsO and ptsN to rpoN, the PTSNtr system has been postulated to be closely related with nitrogen metabolism. To define the correlation between PTSNtr and nitrogen metabolism, we performed ligand fishing with EIIANtr as a bait and revealed that D-glucosamine-6-phosphate synthase (GlmS) directly interacted with EIIANtr. GlmS, which converts D-fructose-6-phosphate (Fru6P) into D-glucosamine-6-phosphate (GlcN6P), is a key enzyme producing amino sugars through glutamine hydrolysis. Amino sugar is an essential structural building block for bacterial peptidoglycan and LPS. We further verified that EIIANtr inhibited GlmS activity by direct interaction in a phosphorylation-state-dependent manner. EIIANtr was dephosphorylated in response to excessive nitrogen sources and was rapidly degraded by Lon protease upon amino sugar depletion. The regulation of GlmS activity by EIIANtr and the modulation of glmS translation by RapZ suggest that the genes comprising the rpoN operon play a key role in maintaining amino sugar homeostasis in response to nitrogen availability and the amino sugar concentration in the bacterial cytoplasm. PMID:27628932

  14. Fine-tuning of amino sugar homeostasis by EIIA(Ntr) in Salmonella Typhimurium.

    Science.gov (United States)

    Yoo, Woongjae; Yoon, Hyunjin; Seok, Yeong-Jae; Lee, Chang-Ro; Lee, Hyung Ho; Ryu, Sangryeol

    2016-01-01

    The nitrogen-metabolic phosphotransferase system, PTS(Ntr), consists of the enzymes I(Ntr), NPr and IIA(Ntr) that are encoded by ptsP, ptsO, and ptsN, respectively. Due to the proximity of ptsO and ptsN to rpoN, the PTS(Ntr) system has been postulated to be closely related with nitrogen metabolism. To define the correlation between PTS(Ntr) and nitrogen metabolism, we performed ligand fishing with EIIA(Ntr) as a bait and revealed that D-glucosamine-6-phosphate synthase (GlmS) directly interacted with EIIA(Ntr). GlmS, which converts D-fructose-6-phosphate (Fru6P) into D-glucosamine-6-phosphate (GlcN6P), is a key enzyme producing amino sugars through glutamine hydrolysis. Amino sugar is an essential structural building block for bacterial peptidoglycan and LPS. We further verified that EIIA(Ntr) inhibited GlmS activity by direct interaction in a phosphorylation-state-dependent manner. EIIA(Ntr) was dephosphorylated in response to excessive nitrogen sources and was rapidly degraded by Lon protease upon amino sugar depletion. The regulation of GlmS activity by EIIA(Ntr) and the modulation of glmS translation by RapZ suggest that the genes comprising the rpoN operon play a key role in maintaining amino sugar homeostasis in response to nitrogen availability and the amino sugar concentration in the bacterial cytoplasm. PMID:27628932

  15. 2-Amino-2,3-dimethylbutanamide

    Directory of Open Access Journals (Sweden)

    Yongbiao Yin

    2010-06-01

    Full Text Available The title compound, C6H14N2O, was synthesized by the reaction between 2-amino-2,3-dimethylbutanonitrile and oil of vitriol (sulfuric acid. A racemic mixture of L- and R-2-amino-2,3-dimethylbutanamide was characterized crystallographically. In the crystal structure, intermolecular N—H...O hydrogen bonds link the two enantiomers into a three-dimensional network.

  16. Neutron inelastic scattering from amino acids

    International Nuclear Information System (INIS)

    Neutron incoherent inelastic scattering technique is used for studying the extensive hydrogen bonding that connects the molecules together and gives the structure cohesion in three dimension in amino acids. Results on five amino acids namely, α-glycine, DL-alanine, L-valine, L-tyrosine and L-phenyl-alanine having different side groups are reported and compared with those from other methods. The main emphasis is on the torsional motions of NH3+ and CH3 groups. (K.B.)

  17. Genetically encoded fluorescent coumarin amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiangyun (San Diego, CA); Xie, Jianming (San Diego, CA); Schultz, Peter G. (La Jolla, CA)

    2012-06-05

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the coumarin unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine and related translation systems.

  18. Genetically encoded fluorescent coumarin amino acids

    Science.gov (United States)

    Wang, Jiangyun; Xie, Jianming; Schultz, Peter G.

    2010-10-05

    The invention relates to orthogonal pairs of tRNAs and aminoacyl-tRNA synthetases that can incorporate the coumarin unnatural amino acid L-(7-hydroxycoumarin-4-yl) ethylglycine into proteins produced in eubacterial host cells such as E. coli. The invention provides, for example but not limited to, novel orthogonal synthetases, methods for identifying and making the novel synthetases, methods for producing proteins containing the unnatural amino acid L-(7-hydroxycoumarin-4-yl)ethylglycine and related translation systems.

  19. Microbial production of natural poly amino acid

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Three kinds of poly amino acids, poly-γ-glutamic acid, poly(ε-L-lysine) and multi-L-arginyl-poly (L-aspartic acid) can be synthesized by enzymatic process independently from ribosomal protein biosynthesis pathways in microorganism. These biosynthesized polymers have attracted more and more attentions because of their unique properties and various applications. In this review, the current knowledge on the biosynthesis, biodegradations and applications of these three poly amino acids are summarized.

  20. Catalytic processes towards the production of biofuels in a palm oil and oil palm biomass-based biorefinery.

    Science.gov (United States)

    Chew, Thiam Leng; Bhatia, Subhash

    2008-11-01

    In Malaysia, there has been interest in the utilization of palm oil and oil palm biomass for the production of environmental friendly biofuels. A biorefinery based on palm oil and oil palm biomass for the production of biofuels has been proposed. The catalytic technology plays major role in the different processing stages in a biorefinery for the production of liquid as well as gaseous biofuels. There are number of challenges to find suitable catalytic technology to be used in a typical biorefinery. These challenges include (1) economic barriers, (2) catalysts that facilitate highly selective conversion of substrate to desired products and (3) the issues related to design, operation and control of catalytic reactor. Therefore, the catalytic technology is one of the critical factors that control the successful operation of biorefinery. There are number of catalytic processes in a biorefinery which convert the renewable feedstocks into the desired biofuels. These include biodiesel production from palm oil, catalytic cracking of palm oil for the production of biofuels, the production of hydrogen as well as syngas from biomass gasification, Fischer-Tropsch synthesis (FTS) for the conversion of syngas into liquid fuels and upgrading of liquid/gas fuels obtained from liquefaction/pyrolysis of biomass. The selection of catalysts for these processes is essential in determining the product distribution (olefins, paraffins and oxygenated products). The integration of catalytic technology with compatible separation processes is a key challenge for biorefinery operation from the economic point of view. This paper focuses on different types of catalysts and their role in the catalytic processes for the production of biofuels in a typical palm oil and oil palm biomass-based biorefinery. PMID:18434141

  1. The catalytic function of hormone-sensitive lipase is essential for fertility in male mice.

    Science.gov (United States)

    Wang, Shu Pei; Wu, Jiang Wei; Bourdages, Hugo; Lefebvre, Jean François; Casavant, Stéphanie; Leavitt, Blair R; Labuda, Damian; Trasler, Jacquetta; Smith, Charles E; Hermo, Louis; Mitchell, Grant A

    2014-08-01

    In male mice, deficiency of hormone sensitive lipase (HSL, Lipe gene, E.C.3.1.1.3) causes deficient spermatogenesis, azoospermia, and infertility. Postmeiotic germ cells express a specific HSL isoform that includes a 313 amino acid N-terminus encoded by a testis-specific exon (exon T1). The remainder of testicular HSL is identical to adipocyte HSL. The amino acid sequence of the testis-specific exon is poorly conserved, showing only a 46% amino acid identity with orthologous human and rat sequences, compared with 87% over the remainder of the HSL coding sequence, providing no evidence in favor of a vital functional role for the testis-specific N-terminus of HSL. However, exon T1 is important for Lipe transcription; in mouse testicular mRNA, we identified 3 major Lipe transcription start sites, finding numerous testicular transcription factor binding motifs upstream of the transcription start site. We directly explored two possible mechanisms for the infertility of HSL-deficient mice, using mice that expressed mutant HSL transgenes only in postmeiotic germ cells on a HSL-deficient background. One transgene expressed human HSL lacking enzyme activity but containing the testis-specific N-terminus (HSL-/-muttg mice). The other transgene expressed catalytically inactive HSL with the testis-specific N-terminal peptide (HSL-/-atg mice). HSL-/-muttg mice were infertile, with abnormal histology of the seminiferous epithelium and absence of spermatozoa in the epididymal lumen. In contrast, HSL-/-atg mice had normal fertility and normal testicular morphology. In conclusion, whereas the catalytic function of HSL is necessary for spermatogenesis in mice, the presence of the N-terminal testis-specific fragment is not essential.

  2. Amino Acid Patterns around Disulfide Bonds

    Directory of Open Access Journals (Sweden)

    Brett Drury

    2010-11-01

    Full Text Available Disulfide bonds provide an inexhaustible source of information on molecular evolution and biological specificity. In this work, we described the amino acid composition around disulfide bonds in a set of disulfide-rich proteins using appropriate descriptors, based on ANOVA (for all twenty natural amino acids or classes of amino acids clustered according to their chemical similarities and Scheffé (for the disulfide-rich proteins superfamilies statistics. We found that weakly hydrophilic and aromatic amino acids are quite abundant in the regions around disulfide bonds, contrary to aliphatic and hydrophobic amino acids. The density distributions (as a function of the distance to the center of the disulfide bonds for all defined entities presented an overall unimodal behavior: the densities are null at short distances, have maxima at intermediate distances and decrease for long distances. In the end, the amino acid environment around the disulfide bonds was found to be different for different superfamilies, allowing the clustering of proteins in a biologically relevant way, suggesting that this type of chemical information might be used as a tool to assess the relationship between very divergent sets of disulfide-rich proteins.

  3. Effects of Exogenous Amino Acids on the Contents of Amino Acids in Tobacco Leaves

    Institute of Scientific and Technical Information of China (English)

    WU Xue-ping; LIU Guo-shun; ZHU Kai; PENG Sa; GUO Qiao-yan

    2005-01-01

    The effect of three amino acids on the growth of flue-cured tobacco was studied with water culture. The results showed that the three amino acids improved the growth of flue-cured tobacco and increased the contents of chlorophyll a,chlorophyll b and carotenoid in tobacco. At the same time, the activities of NR (nitrate reductase), INV(invertase) and root growth activity were also significantly enhanced. The exogenous glutamic, aspartate and phenylalanine all increased the amino acid contents of tobacco leaves. Of these three amino acids, glutamic had the greatest effect, the next was aspartate,and phenylalanine had the least effect. These three amino acids all had significantly increased the accumulation of amino acids in the leaves of individual plants of tobacco; and the magnitude of accumulation indicated aspartate > glutamic >phenylalanine.

  4. Defining Multiple Characteristic Raman Bands of α-Amino Acids as Biomarkers for Planetary Missions Using a Statistical Method

    OpenAIRE

    Rolfe, S. M.; M. R. Patel; Gilmour, I; Olsson-Francis, K.; Ringrose, T.J.

    2016-01-01

    Biomarker molecules, such as amino acids, are key to discovering whether life exists elsewhere in the Solar System. Raman spectroscopy, a technique capable of detecting biomarkers, will be on board future planetary missions including the ExoMars rover. Generally, the position of the strongest band in the spectra of amino acids is reported as the identifying band. However, for an unknown sample, it is desirable to define multiple characteristic bands for molecules to avoid any ambiguous identi...

  5. Asymmetric Catalytic Reactions Catalyzed by Chiral Titanium Complexes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Chiral titanium complexes is very importance catalyst to asymmetric catalytic reactions. A series of catalytic systems based on titanium-chiral ligands complexes has been reported. This presentation will discuss some of our recent progress on asymmetric catalytic reactions catalyzed by chiral titanium complexes.

  6. Asymmetric Catalytic Reactions Catalyzed by Chiral Titanium Complexes

    Institute of Scientific and Technical Information of China (English)

    FENG; XiaoMing

    2001-01-01

    Chiral titanium complexes is very importance catalyst to asymmetric catalytic reactions. A series of catalytic systems based on titanium-chiral ligands complexes has been reported. This presentation will discuss some of our recent progress on asymmetric catalytic reactions catalyzed by chiral titanium complexes.  ……

  7. Amino Acid Compositions of 27 Food Fishes and Their Importance in Clinical Nutrition

    Directory of Open Access Journals (Sweden)

    Bimal Mohanty

    2014-01-01

    Full Text Available Proteins and amino acids are important biomolecules which regulate key metabolic pathways and serve as precursors for synthesis of biologically important substances; moreover, amino acids are building blocks of proteins. Fish is an important dietary source of quality animal proteins and amino acids and play important role in human nutrition. In the present investigation, crude protein content and amino acid compositions of important food fishes from different habitats have been studied. Crude protein content was determined by Kjeldahl method and amino acid composition was analyzed by high performance liquid chromatography and information on 27 food fishes was generated. The analysis showed that the cold water species are rich in lysine and aspartic acid, marine fishes in leucine, small indigenous fishes in histidine, and the carps and catfishes in glutamic acid and glycine. The enriched nutrition knowledge base would enhance the utility of fish as a source of quality animal proteins and amino acids and aid in their inclusion in dietary counseling and patient guidance for specific nutritional needs.

  8. Transgenic manipulation of a single polyamine in poplar cells affects the accumulation of all amino acids.

    Science.gov (United States)

    Mohapatra, Sridev; Minocha, Rakesh; Long, Stephanie; Minocha, Subhash C

    2010-04-01

    The polyamine metabolic pathway is intricately connected to metabolism of several amino acids. While ornithine and arginine are direct precursors of putrescine, they themselves are synthesized from glutamate in multiple steps involving several enzymes. Additionally, glutamate is an amino group donor for several other amino acids and acts as a substrate for biosynthesis of proline and gamma-aminobutyric acid, metabolites that play important roles in plant development and stress response. Suspension cultures of poplar (Populus nigra x maximowiczii), transformed with a constitutively expressing mouse ornithine decarboxylase gene, were used to study the effect of up-regulation of putrescine biosynthesis (and concomitantly its enhanced catabolism) on cellular contents of various protein and non-protein amino acids. It was observed that up-regulation of putrescine metabolism affected the steady state concentrations of most amino acids in the cells. While there was a decrease in the cellular contents of glutamine, glutamate, ornithine, arginine, histidine, serine, glycine, cysteine, phenylalanine, tryptophan, aspartate, lysine, leucine and methionine, an increase was seen in the contents of alanine, threonine, valine, isoleucine and gamma-aminobutyric acid. An overall increase in percent cellular nitrogen and carbon content was also observed in high putrescine metabolizing cells compared to control cells. It is concluded that genetic manipulation of putrescine biosynthesis affecting ornithine consumption caused a major change in the entire ornithine biosynthetic pathway and had pleiotropic effects on other amino acids and total cellular carbon and nitrogen, as well. We suggest that ornithine plays a key role in regulating this pathway.

  9. Amino acid microsequencing of internal tryptic peptides of heme-regulated eukaryotic initiation factor 2 alpha subunit kinase: homology to protein kinases.

    Science.gov (United States)

    Chen, J J; Pal, J K; Petryshyn, R; Kuo, I; Yang, J M; Throop, M S; Gehrke, L; London, I M

    1991-01-01

    We have purified the heme-regulated eukaryotic initiation factor 2 alpha subunit (eIF-2 alpha) kinase (HRI) from rabbit reticulocytes for amino acid microsequencing. This kinase is a single 92-kDa polypeptide and migrates in perfect alignment with 32P-labeled HRI on SDS/PAGE. Its functions of binding ATP and of autophosphorylation and eIF-2 alpha phosphorylation are inhibited by hemin. The amino acid sequences of three tryptic peptides of HRI have been obtained. A search of the data base of the National Biomedical Research Foundation reveals that these amino acid sequences are unique and that two of these three sequences show homology to protein kinases. HRI peptide P-52 contains Asp-Phe-Gly, which is the most highly conserved short stretch of amino acids in catalytic domain VII of protein kinases. HRI peptide P-74 contains the conserved amino acid residues Asp-(Met)-Tyr-Ser-(Val)-Gly-Val found in catalytic domain IX of protein kinases [Hanks, S. K., Quinn, A. M. & Hunter, T. (1988) Science 241, 42-52]. These findings are consistent with the autokinase and eIF-2 alpha kinase activities of HRI. Synthetic HRI peptide P-74 is a very potent inhibitor of eIF-2 alpha phosphorylation by HRI. Since little is known about the function of conserved domain IX, P-74 peptide may be useful in elucidating the role of this domain of protein kinases. Images PMID:1671169

  10. Synthesis, Characterization and Structure of Chiral Amino Acids and Their Corresponding Amino Alcohols with Camphoric Backbone

    Institute of Scientific and Technical Information of China (English)

    QIAN Hui-Fen; HUANG Wei; LI Hui-Hui; YAO Cheng

    2006-01-01

    Chiral amino acids and their corresponding amino alcohols bearing camphoric backbone were prepared from D-(+)-camphoric imide and characterized by infrared, elemental analysis, ESI-MS, and NMR measurements. Among them, one intermediate (lS,3R)-3-amino-2,2,3-trimethyl cyclopentane-1-carboxylic acid hydrochloride 3 was structurally elucidated by X-ray diffraction techniques. Versatile intermolecular hydrogen bonding interactions observed in its packing structure result in a two-dimensional framework.

  11. Recent progress report on DNA B-Z transition modulated by rare earth-amino acid complex and Alzheimer's disease amyloid beta

    Institute of Scientific and Technical Information of China (English)

    GENG

    2010-01-01

    Rare earth dements have unique physical, magnetic, luminescent and catalytic properties. They have been successfully used as medicine and probes in luminescent resonance energy transfer (LRET) for bioassays, as well as reagents for diagnosis in magnetic resonance imaging (MRI). In this progress report, we will focus on recent progress on how rare earth amino complexes bind to DNA and change DNA structure, especially on DNA B-Z transition induced by rare earth amino acid complex and its potential impact on Alzheimer's disease (AD).

  12. Solubilization and Iterative Saturation Mutagenesis of α1,3-fucosyltransferase from Helicobacter pylori to enhance its catalytic efficiency.

    Science.gov (United States)

    Choi, Yun Hee; Kim, Jong Hoon; Park, Bum Seok; Kim, Byung-Gee

    2016-08-01

    α1,3-Fucosyltransferase (α1,3-FucT) is essential for the biosynthesis of biologically active α1,3-fucosyloligosacchairdes (3-FOs) from human milk oligosaccharides (HMO), particularly 3-fucosyllactose (3-FL) trisaccharide. α1,3-FucT from Helicobacter pylori 26695 (FutA) accepts lactose and LacNAc as glycan acceptors and has a very low level of expression in Escherichia coli, and it shows a low catalytic activity for lactose in the large-scale synthesis of 3-FL. To overcome the poor solubility of FutA, codon optimization, and systematic truncation of the protein at the C-terminus with only one heptad repeat remaining (Δ52 FutA) were conducted to yield 150-200 mg/L of soluble protein of FutA and resulting in more than an 18-fold increase in the 3-FL yield. To improve the low level of enzyme catalytic activity for lactose, focused directed evolution was attempted using a semi-rational approach that combines structure-guided computational analysis and subsequent iterative saturation mutagenesis (ISM). In order to select the functional residues in active site/substrate binding site, docking simulation was used together with HotSpot Wizard to target evolutionarily variable amino acid positions. A128 site was selected from the key residue located in the active site, and A128N mutant displayed a 3.4-fold higher catalytic activity than wild-type Δ52 FutA. Considering that the A128N mutation is located in the deep cleft of the lactose binding site, the residues within the substrate binding sites, especially on the two α-helices for lactose and one α-helix for GDP-fucose, were subjected to structure-guided ISM. The selected residues from each helix were clustered, and ISM was performed for each cluster in parallel. In particular, the mutant with triple mutations (A128N/H129E/Y132I) located on the α5 helix exhibited a 9.6-fold improvement in specific activity when compared to wild-type Δ52 FutA. When such clustered mutations on two α-helices (α5 and α2/loop) were

  13. Rigid nonproteinogenic cyclic amino acids as ligands for glutamate receptors: trans-tris(homoglutamic) acids

    DEFF Research Database (Denmark)

    Meyer, Udo; Bisel, Philippe; Bräuner-Osborne, Hans;

    2005-01-01

    The second-generation asymmetric synthesis of the trans-tris(homoglutamic) acids reported herein proceeds via Strecker reaction of chiral ketimines, obtained from condensation of racemic 2-ethoxycarbonylmethylcyclopentanone and commercially available (S)- and (R)-1-phenylethylamine, respectively....... In the key stereodifferentiating step, the cyanide addition leads to mixtures of diastereomeric alpha-amino nitrile-esters, the composition of which is independent of the reaction temperature and the type of the solvent, respectively. Hydrolysis of the alpha-amino nitrile-esters with concentrated H(2)SO(4...

  14. Concise and Straightforward Asymmetric Synthesis of a Cyclic Natural Hydroxy-Amino Acid

    Directory of Open Access Journals (Sweden)

    Mario J. Simirgiotis

    2014-11-01

    Full Text Available An enantioselective total synthesis of the natural amino acid (2S,4R,5R-4,5-di-hydroxy-pipecolic acid starting from D-glucoheptono-1, 4-lactone is presented. The best sequence employed as a key step the intramolecular nucleophilic displacement by an amino function of a 6-O-p-toluene-sulphonyl derivative of a methyl D-arabino-hexonate and involved only 12 steps with an overall yield of 19%. The structures of the compounds synthesized were elucidated on the basis of comprehensive spectroscopic (NMR and MS and computational analysis.

  15. An Internet Key Exchange Protocol Based on Public Key Infrastructure

    Institute of Scientific and Technical Information of China (English)

    朱建明; 马建峰

    2004-01-01

    Internet key exchange (IKE) is an automated key exchange mechanism that is used to facilitate the transfer of IPSec security associations (SAs). Public key infrastructure (PKI) is considered as a key element for providing security to new distributed communication networks and services. In this paper, we concentrate on the properties of the protocol of Phase 1 IKE. After investigating IKE protocol and PKI technology, we combine IKE protocol and PKI and present an implementation scheme of the IKE based on PKI. Then, we give a logic analysis of the proposed protocol with the BAN-logic and discuss the security of the protocol. The result indicates that the protocol is correct and satisfies the security requirements of Internet key exchange.

  16. Nanostructured Samarium Doped Fluorapatites and Their Catalytic Activity towards Synthesis of 1,2,4-Triazoles.

    Science.gov (United States)

    Gangu, Kranthi Kumar; Maddila, Suresh; Maddila, Surya Narayana; Jonnalagadda, Sreekantha B

    2016-01-01

    An investigation was conducted into the influence of the amino acids as organic modifiers in the facile synthesis of metal incorporated fluorapatites (FAp) and their properties. The nanostructured Sm doped fluorapatites (Sm-FAp) were prepared by a co-precipitation method using four different amino acids, namely glutamic acid, aspartic acid, glycine and histidine. The materials were characterized by various techniques including X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), high resolution transmission electron microscopy (HR-TEM), N₂-adsorption/desorption isotherm, temperature programmed desorption (TPD) and fluorescence spectrophotometry. Under similar conditions, Sm-FAp prepared using different amino acids exhibited distinctly different morphological structures, surface area and pore properties. Their activity as catalysts was assessed and Sm-FAp/Glycine displayed excellent efficiency in the synthesis of 1,2,4-triazole catalyzing the reaction between 2-nitrobenzaldehyde and thiosemicarbazide with exceptional selectivity and 98% yield in a short time interval (10 min). The study provides an insight into the role of organic modifiers as controllers of nucleation, growth and aggregation which significantly influence the nature and activity of the catalytic sites on Sm-FAp. Sm-FAp could also have potential as photoactive material. PMID:27669208

  17. Nanostructured Samarium Doped Fluorapatites and Their Catalytic Activity towards Synthesis of 1,2,4-Triazoles

    Directory of Open Access Journals (Sweden)

    Kranthi Kumar Gangu

    2016-09-01

    Full Text Available An investigation was conducted into the influence of the amino acids as organic modifiers in the facile synthesis of metal incorporated fluorapatites (FAp and their properties. The nanostructured Sm doped fluorapatites (Sm-FAp were prepared by a co-precipitation method using four different amino acids, namely glutamic acid, aspartic acid, glycine and histidine. The materials were characterized by various techniques including X-ray diffraction (XRD, Fourier transform infra-red spectroscopy (FT-IR, field emission scanning electron microscopy (FE-SEM, energy-dispersive X-ray spectroscopy (EDX, high resolution transmission electron microscopy (HR-TEM, N2-adsorption/desorption isotherm, temperature programmed desorption (TPD and fluorescence spectrophotometry. Under similar conditions, Sm-FAp prepared using different amino acids exhibited distinctly different morphological structures, surface area and pore properties. Their activity as catalysts was assessed and Sm-FAp/Glycine displayed excellent efficiency in the synthesis of 1,2,4-triazole catalyzing the reaction between 2-nitrobenzaldehyde and thiosemicarbazide with exceptional selectivity and 98% yield in a short time interval (10 min. The study provides an insight into the role of organic modifiers as controllers of nucleation, growth and aggregation which significantly influence the nature and activity of the catalytic sites on Sm-FAp. Sm-FAp could also have potential as photoactive material.

  18. Reforming of methane in tubes with a catalytic active wall

    International Nuclear Information System (INIS)

    The heterogeneous steam reforming process in tubes with catalytic active inner surface is studied. The purpose of this ivestigation is to find a method of predicting the reaction rate of the catalytic conversion of methane by steam. The dependency of the reaction rate upon the temperature, pressure, gas composition, Reynolds number, geometrical sizes of tubes and catalytic behaviour of the catalytic active inner wall of these tubes has been examined. It was found that the reaction rate mainly depends on the temperature. The reaction rate is limited by the catalytic behaviour and the heat resisting properties of the materials used. (author)

  19. Phosphotungstic acid encapsulated in the mesocages of amine-functionalized metal-organic frameworks for catalytic oxidative desulfurization.

    Science.gov (United States)

    Wang, Xu-Sheng; Huang, Yuan-Biao; Lin, Zu-Jin; Cao, Rong

    2014-08-21

    Highly dispersed Keggin-type phosphotungstic acid (H3PW12O40, PTA) encapsulated in the mesocages of amine-functionalized metal-organic frameworks MIL-101(Cr)-NH2 has been prepared by an anion-exchange method. PTA anions (PW12O40(3-)) are stabilized in the mesocages via the electrostatic interaction with amino groups of the MIL-101(Cr)-NH2. The obtained catalyst (denoted PTA@MIL-101(Cr)-NH2) exhibits high catalytic activity in the extractive and catalytic oxidative desulfurization (ECODS) system under mild conditions. Moreover, it can be easily recovered and recycled several times without leaching and loss of activity. PMID:24967570

  20. Method and apparatus for a catalytic firebox reactor

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Lance L. (North Haven, CT); Etemad, Shahrokh (Trumbull, CT); Ulkarim, Hasan (Hamden, CT); Castaldi, Marco J. (Bridgeport, CT); Pfefferle, William C. (Madison, CT)

    2001-01-01

    A catalytic firebox reactor employing an exothermic catalytic reaction channel and multiple cooling conduits for creating a partially reacted fuel/oxidant mixture. An oxidation catalyst is deposited on the walls forming the boundary between the multiple cooling conduits and the exothermic catalytic reaction channel, on the side of the walls facing the exothermic catalytic reaction channel. This configuration allows the oxidation catalyst to be backside cooled by any fluid passing through the cooling conduits. The heat of reaction is added to both the fluid in the exothermic catalytic reaction channel and the fluid passing through the cooling conduits. After discharge of the fluids from the exothermic catalytic reaction channel, the fluids mix to create a single combined flow. A further innovation in the reactor incorporates geometric changes in the exothermic catalytic reaction channel to provide streamwise variation of the velocity of the fluids in the reactor.

  1. From Catalytic Reaction Networks to Protocells

    Science.gov (United States)

    Kaneko, Kunihiko

    2013-12-01

    In spite of recent advances, there still remains a large gape between a set of chemical reactions and a biological cell. Here we discuss several theoretical efforts to fill in the gap. The topics cover (i) slow relaxation to equilibrium due to glassy behavior in catalytic reaction networks (ii) consistency between molecule replication and cell growth, as well as energy metabolism (iii) control of a system by minority molecules in mutually catalytic system, which work as a carrier of genetic information, and leading to evolvability (iv) generation of a compartmentalized structure as a cluster of molecules centered around the minority molecule, and division of the cluster accompanied by the replication of minority molecule (v) sequential, logical process over several states from concurrent reaction dynamics, by taking advantage of discreteness in molecule number.

  2. Janus droplet as a catalytic micromotor

    CERN Document Server

    Shklyaev, Sergey

    2015-01-01

    Self-propulsion of a Janus droplet in a solution of surfactant, which reacts on a half of a drop surface, is studied theoretically. The droplet acts as a catalytic motor creating a concentration gradient, which generates its surface-tension-driven motion; the self-propulsion speed is rather high, $60\\; {\\rm \\mu m/s}$ and more. This catalytic motor has several advantages over other micromotors: simple manufacturing, easily attained neutral buoyancy. In contrast to a single-fluid droplet, which demonstrates a self-propulsion as a result of symmetry breaking instability, for Janus one no stability threshold exists; hence, the droplet radius can be scaled down to micrometers. The paper was finalized and submitted by Denis S. Goldobin after Sergey Sklyaev had sadly passed away on June 2, 2014.

  3. Amino acid survival in large cometary impacts

    Science.gov (United States)

    Pierazzo, E.; Chyba, C. F.

    1999-11-01

    A significant fraction of the Earth's prebiotic volatile inventory may have been delivered by asteroidal and cometary impacts during the period of heavy bombardment. The realization that comets are particularly rich in organic material seemed to strengthen this suggestion. Previous modeling studies, however, indicated that most organics would be entirely destroyed in large comet and asteroid impacts. The availability of new kinetic parameters for the thermal degradation of amino acids in the solid phase made it possible to readdress this question. We present the results of new high-resolution hydrocode simulations of asteroid and comet impact coupled with recent experimental data for amino acid pyrolysis in the solid phase. Differences due to impact velocity as well as projectile material have been investigated. Effects of angle of impacts were also addressed. The results suggest that some amino acids would survive the shock heating of large (kilometer-radius) cometary impacts. At the time of the origins of life on Earth, the steady-state oceanic concentration of certain amino acids (like aspartic and glutamic acid) delivered by comets could have equaled or substantially exceeded that due to Miller-Urey synthesis in a carbon dioxide-rich atmosphere. Furthermore, in the unlikely case of a grazing impact (impact angle around 5 degrees from the horizontal) an amount of some amino acids comparable to that due to the background steady-state production or delivery would be delivered to the early Earth.

  4. Genetic analysis of pathway regulation for enhancing branched-chain amino acid biosynthesis in plants

    KAUST Repository

    Chen, Hao

    2010-08-01

    The branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that play critical roles in animal growth and development. Animals cannot synthesize these amino acids and must obtain them from their diet. Plants are the ultimate source of these essential nutrients, and they synthesize BCAAs through a conserved pathway that is inhibited by its end products. This feedback inhibition has prevented scientists from engineering plants that accumulate high levels of BCAAs by simply over-expressing the respective biosynthetic genes. To identify components critical for this feedback regulation, we performed a genetic screen for Arabidopsis mutants that exhibit enhanced resistance to BCAAs. Multiple dominant allelic mutations in the VALINE-TOLERANT 1 (VAT1) gene were identified that conferred plant resistance to valine inhibition. Map-based cloning revealed that VAT1 encodes a regulatory subunit of acetohydroxy acid synthase (AHAS), the first committed enzyme in the BCAA biosynthesis pathway. The VAT1 gene is highly expressed in young, rapidly growing tissues. When reconstituted with the catalytic subunit in vitro, the vat1 mutant-containing AHAS holoenzyme exhibits increased resistance to valine. Importantly, transgenic plants expressing the mutated vat1 gene exhibit valine tolerance and accumulate higher levels of BCAAs. Our studies not only uncovered regulatory characteristics of plant AHAS, but also identified a method to enhance BCAA accumulation in crop plants that will significantly enhance the nutritional value of food and feed. © 2010 Blackwell Publishing Ltd.

  5. Catalytic extraction processing of contaminated scrap metal

    International Nuclear Information System (INIS)

    Molten Metal Technology was awarded a contract to demonstrate the applicability of the Catalytic Extraction Process, a proprietary process that could be applied to US DOE's inventory of low level mixed waste. This paper is a description of that technology, and included within this document are discussions of: (1) Program objectives, (2) Overall technology review, (3) Organic feed conversion to synthetic gas, (4) Metal, halogen, and transuranic recovery, (5) Demonstrations, (6) Design of the prototype facility, and (7) Results

  6. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders

    2003-04-01

    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  7. Ubiquitous "glassy" relaxation in catalytic reaction networks

    OpenAIRE

    Awazu, Akinori; Kaneko, Kunihiko

    2009-01-01

    Study of reversible catalytic reaction networks is important not only as an issue for chemical thermodynamics but also for protocells. From extensive numerical simulations and theoretical analysis, slow relaxation dynamics to sustain nonequlibrium states are commonly observed. These dynamics show two types of salient behaviors that are reminiscent of glassy behavior: slow relaxation along with the logarithmic time dependence of the correlation function and the emergence of plateaus in the rel...

  8. Thermal and catalytic pyrolysis of plastic waste

    OpenAIRE

    Débora Almeida; Maria de Fátima Marques

    2016-01-01

    Abstract The amount of plastic waste is growing every year and with that comes an environmental concern regarding this problem. Pyrolysis as a tertiary recycling process is presented as a solution. Pyrolysis can be thermal or catalytical and can be performed under different experimental conditions. These conditions affect the type and amount of product obtained. With the pyrolysis process, products can be obtained with high added value, such as fuel oils and feedstock for new products. Zeolit...

  9. Selective Catalytic Reduction of NO with Methane

    Institute of Scientific and Technical Information of China (English)

    Xiang Gao; Qi Yu; Limin Chen

    2003-01-01

    The removal of nitrogen oxides from exhaust gases has attracted great attention in recent years, and many approaches have been developed depending on the application. Methane, the main component of natural gas, has great potential as a NO reductant. In this paper, a number of catalysts previous reported for this catalytic reduction of NO have been reviewed, including a direct comparison of the relative activities and effective factors of the catalysts. Reaction mechanisms have also been explored preliminarily.

  10. Catalytic fast pyrolysis of lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Changjun; Wang, Huamin; Karim, Ayman M.; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  11. Materials for High-Temperature Catalytic Combustion

    OpenAIRE

    Ersson, Anders

    2003-01-01

    Catalytic combustion is an environmentally friendlytechnique to combust fuels in e.g. gas turbines. Introducing acatalyst into the combustion chamber of a gas turbine allowscombustion outside the normal flammability limits. Hence, theadiabatic flame temperature may be lowered below the thresholdtemperature for thermal NOXformation while maintaining a stable combustion.However, several challenges are connected to the application ofcatalytic combustion in gas turbines. The first part of thisthe...

  12. Control of a catalytic fluid cracker

    Energy Technology Data Exchange (ETDEWEB)

    Arbel, A.; Huang, Z.; Rinard, I.; Shinnar, R.

    1993-12-13

    Control offers an important tool for savings in refineries, mainly by integration of process models into on-line control. This paper is part of a research effort to better understand problems of partial control; control of a Fluid Catalytic Cracker (FCC) is used as example. Goal is to understand better the control problems of an FCC in context of model based control of a refinery, and to understand the general problem of designing partial control systems.

  13. Breaking chaotic shift key communication via adaptive key identification

    Institute of Scientific and Technical Information of China (English)

    Ren Hai-Peng; Han Chong-Zhao; Liu Ding

    2008-01-01

    This paper proposes an adaptive parameter identification method for breaking chaotic shift key communication from the transmitted signal in public channel. The sensitive dependence property of chaos on parameter mismatch is used for chaos adaptive synchronization and parameter identification. An index function about the synchronization error is defined and conjugate gradient method is used to minimize the index function and to search the transmitter's parameter(key). By using proposed method, secure key is recovered from transmitted signal generated by low dimensional chaos and hyper chaos switching communication. Multi-parameters can also be identified from the transmitted signal with noise.

  14. Amino acid "little Big Bang": Representing amino acid substitution matrices as dot products of Euclidian vectors

    Directory of Open Access Journals (Sweden)

    Zimmermann Karel

    2010-01-01

    Full Text Available Abstract Background Sequence comparisons make use of a one-letter representation for amino acids, the necessary quantitative information being supplied by the substitution matrices. This paper deals with the problem of finding a representation that provides a comprehensive description of amino acid intrinsic properties consistent with the substitution matrices. Results We present a Euclidian vector representation of the amino acids, obtained by the singular value decomposition of the substitution matrices. The substitution matrix entries correspond to the dot product of amino acid vectors. We apply this vector encoding to the study of the relative importance of various amino acid physicochemical properties upon the substitution matrices. We also characterize and compare the PAM and BLOSUM series substitution matrices. Conclusions This vector encoding introduces a Euclidian metric in the amino acid space, consistent with substitution matrices. Such a numerical description of the amino acid is useful when intrinsic properties of amino acids are necessary, for instance, building sequence profiles or finding consensus sequences, using machine learning algorithms such as Support Vector Machine and Neural Networks algorithms.

  15. Probing catalytic rate enhancement during intramembrane proteolysis.

    Science.gov (United States)

    Arutyunova, Elena; Smithers, Cameron C; Corradi, Valentina; Espiritu, Adam C; Young, Howard S; Tieleman, D Peter; Lemieux, M Joanne

    2016-09-01

    Rhomboids are ubiquitous intramembrane serine proteases involved in various signaling pathways. While the high-resolution structures of the Escherichia coli rhomboid GlpG with various inhibitors revealed an active site comprised of a serine-histidine dyad and an extensive oxyanion hole, the molecular details of rhomboid catalysis were unclear because substrates are unknown for most of the family members. Here we used the only known physiological pair of AarA rhomboid with its psTatA substrate to decipher the contribution of catalytically important residues to the reaction rate enhancement. An MD-refined homology model of AarA was used to identify residues important for catalysis. We demonstrated that the AarA active site geometry is strict and intolerant to alterations. We probed the roles of H83 and N87 oxyanion hole residues and determined that substitution of H83 either abolished AarA activity or reduced the transition state stabilization energy (ΔΔG‡) by 3.1 kcal/mol; substitution of N87 decreased ΔΔG‡ by 1.6-3.9 kcal/mol. Substitution M154, a residue conserved in most rhomboids that stabilizes the catalytic general base, to tyrosine, provided insight into the mechanism of nucleophile generation for the catalytic dyad. This study provides a quantitative evaluation of the role of several residues important for hydrolytic efficiency and oxyanion stabilization during intramembrane proteolysis. PMID:27071148

  16. Catalytic pyrolysis of olive mill wastewater sludge

    Science.gov (United States)

    Abdellaoui, Hamza

    From 2008 to 2013, an average of 2,821.4 kilotons/year of olive oil were produced around the world. The waste product of the olive mill industry consists of solid residue (pomace) and wastewater (OMW). Annually, around 30 million m3 of OMW are produced in the Mediterranean area, 700,000 m3 year?1 in Tunisia alone. OMW is an aqueous effluent characterized by an offensive smell and high organic matter content, including high molecular weight phenolic compounds and long-chain fatty acids. These compounds are highly toxic to micro-organisms and plants, which makes the OMW a serious threat to the environment if not managed properly. The OMW is disposed of in open air evaporation ponds. After evaporation of most of the water, OMWS is left in the bottom of the ponds. In this thesis, the effort has been made to evaluate the catalytic pyrolysis process as a technology to valorize the OMWS. The first section of this research showed that 41.12 wt. % of the OMWS is mostly lipids, which are a good source of energy. The second section proved that catalytic pyrolysis of the OMWS over red mud and HZSM-5 can produce green diesel, and 450 °C is the optimal reaction temperature to maximize the organic yields. The last section revealed that the HSF was behind the good fuel-like properties of the OMWS catalytic oils, whereas the SR hindered the bio-oil yields and quality.

  17. Catalytic applications of bio-inspired nanomaterials

    Science.gov (United States)

    Pacardo, Dennis Kien Balaong

    The biomimetic synthesis of Pd nanoparticles was presented using the Pd4 peptide, TSNAVHPTLRHL, isolated from combinatorial phage display library. Using this approach, nearly monodisperse and spherical Pd nanoparticles were generated with an average diameter of 1.9 +/- 0.4 nm. The peptide-based nanocatalyst were employed in the Stille coupling reaction under energy-efficient and environmentally friendly reaction conditions of aqueous solvent, room temperature and very low catalyst loading. To this end, the Pd nanocatalyst generated high turnover frequency (TOF) value and quantitative yields using ≥ 0.005 mol% Pd as well as catalytic activities with different aryl halides containing electron-withdrawing and electron-donating groups. The Pd4-capped Pd nanoparticles followed the atom-leaching mechanism and were found to be selective with respect to substrate identity. On the other hand, the naturally-occurring R5 peptide (SSKKSGSYSGSKGSKRRIL) was employed in the synthesis of biotemplated Pd nanomaterials which showed morphological changes as a function of Pd:peptide ratio. TOF analysis for hydrogenation of olefinic alcohols showed similar catalytic activity regardless of nanomorphology. Determination of catalytic properties of these bio-inspired nanomaterials are important as they serve as model system for alternative green catalyst with applications in industrially important transformations.

  18. Highly sensitive catalytic spectrophotometric determination of ruthenium

    Science.gov (United States)

    Naik, Radhey M.; Srivastava, Abhishek; Prasad, Surendra

    2008-01-01

    A new and highly sensitive catalytic kinetic method (CKM) for the determination of ruthenium(III) has been established based on its catalytic effect on the oxidation of L-phenylalanine ( L-Pheala) by KMnO 4 in highly alkaline medium. The reaction has been followed spectrophotometrically by measuring the decrease in the absorbance at 526 nm. The proposed CKM is based on the fixed time procedure under optimum reaction conditions. It relies on the linear relationship where the change in the absorbance (Δ At) versus added Ru(III) amounts in the range of 0.101-2.526 ng ml -1 is plotted. Under the optimum conditions, the sensitivity of the proposed method, i.e. the limit of detection corresponding to 5 min is 0.08 ng ml -1, and decreases with increased time of analysis. The method is featured with good accuracy and reproducibility for ruthenium(III) determination. The ruthenium(III) has also been determined in presence of several interfering and non-interfering cations, anions and polyaminocarboxylates. No foreign ions interfered in the determination ruthenium(III) up to 20-fold higher concentration of foreign ions. In addition to standard solutions analysis, this method was successfully applied for the quantitative determination of ruthenium(III) in drinking water samples. The method is highly sensitive, selective and very stable. A review of recently published catalytic spectrophotometric methods for the determination of ruthenium(III) has also been presented for comparison.

  19. Mechanism of action of peptidoglycan O-acetyltransferase B involves a Ser-His-Asp catalytic triad.

    Science.gov (United States)

    Moynihan, Patrick J; Clarke, Anthony J

    2014-10-01

    The O-acetylation of the essential cell wall polymer peptidoglycan is essential in many bacteria for their integrity and survival, and it is catalyzed by peptidoglycan O-acetlytransferase B (PatB). Using PatB from Neisseria gonorrhoeae as the model, we have shown previously that the enzyme has specificity for polymeric muropeptides that possess tri- and tetrapeptide stems and that rates of reaction increase with increasing degrees of polymerization. Here, we present the catalytic mechanism of action of PatB, the first to be described for an O-acetyltransferase of any bacterial exopolysaccharide. The influence of pH on PatB activity was investigated, and pKa values of 6.4-6.45 and 6.25-6.35 for the enzyme-substrate complex (kcat vs pH) and the free enzyme (kcat·KM(-1) vs pH), respectively, were determined for the respective cosubstrates. The enzyme is partially inactivated by sulfonyl fluorides but not by EDTA, suggesting the participation of a serine residue in its catalytic mechanism. Alignment of the known and hypothetical PatB amino acid sequences identified Ser133, Asp302, and His305 as three invariant amino acid residues that could potentially serve as a catalytic triad. Replacement of Asp302 with Ala resulted in an enzyme with less than 20% residual activity, whereas activity was barely detectable with (His305 → Ala)PatB and (Ser133 → Ala)PatB was totally inactive. The reaction intermediate of the transferase reaction involving acetyl- and propionyl-acyl donors was trapped on both the wild-type and (Asp302 → Ala) enzymes and LC-MS/MS analysis of tryptic peptides identified Ser133 as the catalytic nucleophile. A transacetylase mechanism is proposed based on the mechanism of action of serine esterases. PMID:25215566

  20. Solid-phase synthesis of 3-amino-2-pyrazolines

    DEFF Research Database (Denmark)

    Lyngsø, Lars O.; Nielsen, John

    1998-01-01

    The development of a solid-phase synthesis of 3-amino-2-pyrazolines is described. Conjugate addition of hydrazines to α,β-unsaturated nitriles followed by cyclization yields 3-amino-2-pyrazolines. Acylation or sulfonation of the free amino-group yields a 24 member library of 3-amino-2- pyrazolines....

  1. Solid-phase synthesis of 3-amino-2-pyrazolines

    DEFF Research Database (Denmark)

    Nielsen, John

    1998-01-01

    The development of a solid-phase synthesis of 3-amino-2-pyrazolines is described. Conjugate addition of hydrazines to alpha,beta-unsaturated nitriles followed by cyclization yields 3-amino-2-pyrazolines. Acylation or sulfonation of the free amino-group yields a 24 member library of 3-amino-2...

  2. Postprandial fate of amino acids: adaptation to molecular forms

    NARCIS (Netherlands)

    Nolles, J.A.

    2006-01-01

    During the postprandial phase dietary proteins are digested to peptides and amino acids and absorbed. Once absorbed the peptides are further hydrolyzed to amino acids and transported to the tissues. These amino acids are largely incorporated into body proteins. Not all amino acids are, however, inco

  3. Flow hydrodynamics near inlet key of Piano Key Weir (PKW)

    Indian Academy of Sciences (India)

    Harinarayan Tiwari; Nayan Sharma

    2015-10-01

    This paper presents fundamental outcomes from an experimental study on the hydrodynamic performance near inlet key of Piano Key Weir (PKW). Hydrodynamic performance was tested in a circulated open channel that comprised of PKW and sand bed (d50 = 0.25 mm). Instantaneous velocities were measured at 20 cross sections using Laser Doppler Velocimeter (LDV) with constant discharge and depth. Average velocity and turbulence intensities in both directions were investigated. Average longitudinal velocities are found very much consistent at every point and maximum around the midway of inlet key. In transverse direction, flow is bifurcating in two directions which are also confirmed by average transverse velocity estimation. Variation of turbulence intensity presents average 10 times higher transverse turbulence than longitudinal turbulence near inlet key of PKW.

  4. Cometary Amino Acids from the STARDUST Mission

    Science.gov (United States)

    Cook, Jamie Elsila

    2009-01-01

    NASA's Stardust spacecraft returned samples from comet 81 P/WiId 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a cometary amino acid.

  5. Hybrid gold single crystals incorporating amino acids

    CERN Document Server

    Chen, Linfeng; Weber, Eva; Fitch, Andy N; Pokroy, Boaz

    2016-01-01

    Composite hybrid gold crystals are of profound interest in various research areas ranging from materials science to biology. Their importance is due to their unique properties and potential implementation, for example in sensing or in bio-nanomedicine. Here we report on the formation of hybrid organic-metal composites via the incorporation of selected amino acids histidine, aspartic acid, serine, glutamine, alanine, cysteine, and selenocystine into the crystal lattice of single crystals of gold. We used electron microscopy, chemical analysis and high-resolution synchrotron powder X ray diffraction to examine these composites. Crystal shape, as well as atomic concentrations of occluded amino acids and their impact on the crystal structure of gold, were determined. Concentration of the incorporated amino acid was highest for cysteine, followed by serine and aspartic acid. Our results indicate that the incorporation process probably occurs through a complex interaction of their individual functional groups with ...

  6. Carbon-based catalysts:Opening new scenario to develop next-generation nano-engineered catalytic materials

    Institute of Scientific and Technical Information of China (English)

    Claudio Ampelli; Siglinda Perathoner; Gabriele Centi

    2014-01-01

    This essay analyses some of the recent development in nanocarbons (carbon materials having a defined and controlled nano-scale dimension and functional properties which strongly depend on their nano-scale features and architecture), with reference to their use as advanced catalytic materials. It is remarked how their features open new possibilities for catalysis and that they represent a new class of catalytic materials. Although carbon is used from long time in catalysis as support and electrocatalytic applications, nanocarbons offer unconventional ways for their utilization and to address some of the new challenges deriving from moving to a more sustainable future. This essay comments how nanocarbons are a key element to develop next-generation catalytic materials, but remarking that this goal requires overcoming some of the actual limits in current research. Some aspects are discussed to give a glimpse on new directions and needs for R&D to progress in this direction.

  7. Rational design of organophosphorus hydrolase with high catalytic efficiency for detoxifying a V-type nerve agent.

    Science.gov (United States)

    Jeong, Young-Su; Choi, Jung Min; Kyeong, Hyun-Ho; Choi, Jae-Youl; Kim, Eui-Joong; Kim, Hak-Sung

    2014-07-01

    V-type nerve agents, known as VX, are organophosphate (OP) compounds, and show extremely toxic effects on human and animals by causing cholinergic overstimulation of synapses. The bacterial organophosphorus hydrolase (OPH) has attracted much attention for detoxifying V-type agents through hydrolysis of the P-S bond. However, low catalytic efficiency of OPH has limited the practical use of the enzyme. Here we present rational design of OPH with high catalytic efficiency for a V-type nerve agent. Based on the model structure of the enzyme and substrate docking simulation, we predicted the key residues that appear to enhance the access of the substrate to the active site of the enzyme, and constructed numerous OPH mutants. Of them, double mutant, L271/Y309A, was shown to exhibit a 150-fold higher catalytic efficiency for VX than the wild-type.

  8. PENGARUH FERMENTASI TERHADAP KANDUNGAN PROTEIN DAN KOMPOSISI ASAM AMINO DALAM SINGKONG

    Directory of Open Access Journals (Sweden)

    Almasyhuri Almasyhuri

    2012-11-01

    Full Text Available Effects of Solid Fermentation on Protein Content and Amino Acid Composition of Cassava.This study was carried out to assess the protein and amino acid quantity of solid fermentation of cassava (Manihot esculenta using pure culture of the Rhizopus oligosporus and traditional inoculum (laru. The protein content of the fermented product was analyzed by Biuret method, and the animo acid composition by HPLC (high performance liquid chromatography method. The results showed that solid fermentation of cassava increased the protein content from 2.1% to 4.0% and 4.7%. The animo acid contents of the fermented product increased 2.5 folds of that of cassava. Higher increase was seen in substrates fermented with traditional inoculum. This is due to the addition of coconut oil and ammonium to the cassava substrate which improved the growth of mold.Key words: cassava (Manihot esculenta, food fermentation, protein content, amino acid composition

  9. A plausible simultaneous synthesis of amino acids and simple peptides on the primordial Earth.

    Science.gov (United States)

    Parker, Eric T; Zhou, Manshui; Burton, Aaron S; Glavin, Daniel P; Dworkin, Jason P; Krishnamurthy, Ramanarayanan; Fernández, Facundo M; Bada, Jeffrey L

    2014-07-28

    Following his seminal work in 1953, Stanley Miller conducted an experiment in 1958 to study the polymerization of amino acids under simulated early Earth conditions. In the experiment, Miller sparked a gas mixture of CH4, NH3, and H2O, while intermittently adding the plausible prebiotic condensing reagent cyanamide. For unknown reasons, an analysis of the samples was not reported. We analyzed the archived samples for amino acids, dipeptides, and diketopiperazines by liquid chromatography, ion mobility spectrometry, and mass spectrometry. A dozen amino acids, 10 glycine-containing dipeptides, and 3 glycine-containing diketopiperazines were detected. Miller's experiment was repeated and similar polymerization products were observed. Aqueous heating experiments indicate that Strecker synthesis intermediates play a key role in facilitating polymerization. These results highlight the potential importance of condensing reagents in generating diversity within the prebiotic chemical inventory.

  10. 2-Aminoimidazole Amino Acids as Inhibitors of the Binuclear Manganese Metalloenzyme Human Arginase I

    Energy Technology Data Exchange (ETDEWEB)

    Ilies, M.; Di Costanzo, L; North, M; Scott, J; Christianson, D

    2010-01-01

    Arginase, a key metalloenzyme of the urea cycle that converts L-arginine into L-ornithine and urea, is presently considered a pharmaceutical target for the management of diseases associated with aberrant L-arginine homeostasis, such as asthma, cardiovascular diseases, and erectile dysfunction. We now report the design, synthesis, and evaluation of a series of 2-aminoimidazole amino acid inhibitors in which the 2-aminoimidazole moiety serves as a guanidine mimetic. These compounds represent a new class of arginase inhibitors. The most potent inhibitor identified in this study, 2-(S)-amino-5-(2-aminoimidazol-1-yl)pentanoic acid (A1P, 10), binds to human arginase I with K{sub d} = 2 {micro}M and significantly attenuates airways hyperresponsiveness in a murine model of allergic airways inflammation. These findings suggest that 2-aminoimidazole amino acids represent new leads for the development of arginase inhibitors with promising pharmacological profiles.

  11. Economic aspects of amino acids production.

    Science.gov (United States)

    Mueller, Udo; Huebner, Susanna

    2003-01-01

    Amino acids represent basic elements of proteins, which as a main source of nutrition themselves serve as a major reserve for maintaining essential functions of humans as well as animals. Taking the recent state of scientific knowledge into account, the industrial sector of amino acids is a priori "suitable" to a specific kind of an ecologically sound way of production, which is based on biotechnology. The following article may point out characteristics of this particular industrial sector and illustrates the applicability of the latest economic methods, founded on development of the discipline of bionics in order to describe economic aspects of amino acids markets. The several biochemical and technological fields of application of amino acids lead to specific market structures in high developed and permanently evolving systems. The Harvard tradition of industrial economics explains how market structures mould the behaviour of the participants and influences market results beyond that. A global increase in intensity of competition confirms the notion that the supply-side is characterised by asymmetric information in contrast to Kantzenbachs concept of "narrow oligopoly" with symmetrical shared knowledge about market information. Departing from this point, certain strategies of companies in this market form shall be derived. The importance of Research and Development increases rapidly and leads to innovative manufacturing methods which replace more polluting manufacturing processes like acid hydrolysis. In addition to these modifications within the production processes the article deals furthermore with the pricing based on product life cycle concept and introduces specific applications of tools like activity based costing and target costing to the field of amino acid production. The authors come to the conclusion that based on a good transferability of latest findings in bionics and ecological compatibility competitors in amino acids manufacturing are well advised

  12. Economic aspects of amino acids production.

    Science.gov (United States)

    Mueller, Udo; Huebner, Susanna

    2003-01-01

    Amino acids represent basic elements of proteins, which as a main source of nutrition themselves serve as a major reserve for maintaining essential functions of humans as well as animals. Taking the recent state of scientific knowledge into account, the industrial sector of amino acids is a priori "suitable" to a specific kind of an ecologically sound way of production, which is based on biotechnology. The following article may point out characteristics of this particular industrial sector and illustrates the applicability of the latest economic methods, founded on development of the discipline of bionics in order to describe economic aspects of amino acids markets. The several biochemical and technological fields of application of amino acids lead to specific market structures in high developed and permanently evolving systems. The Harvard tradition of industrial economics explains how market structures mould the behaviour of the participants and influences market results beyond that. A global increase in intensity of competition confirms the notion that the supply-side is characterised by asymmetric information in contrast to Kantzenbachs concept of "narrow oligopoly" with symmetrical shared knowledge about market information. Departing from this point, certain strategies of companies in this market form shall be derived. The importance of Research and Development increases rapidly and leads to innovative manufacturing methods which replace more polluting manufacturing processes like acid hydrolysis. In addition to these modifications within the production processes the article deals furthermore with the pricing based on product life cycle concept and introduces specific applications of tools like activity based costing and target costing to the field of amino acid production. The authors come to the conclusion that based on a good transferability of latest findings in bionics and ecological compatibility competitors in amino acids manufacturing are well advised

  13. Stable Alkynyl Glycosyl Carbonates: Catalytic Anomeric Activation and Synthesis of a Tridecasaccharide Reminiscent of Mycobacterium tuberculosis Cell Wall Lipoarabinomannan.

    Science.gov (United States)

    Mishra, Bijoyananda; Neralkar, Mahesh; Hotha, Srinivas

    2016-06-27

    Oligosaccharide synthesis is still a challenging task despite the advent of modern glycosidation techniques. Herein, alkynyl glycosyl carbonates are shown to be stable glycosyl donors that can be activated catalytically by gold and silver salts at 25 °C in just 15 min to produce glycosides in excellent yields. Benzoyl glycosyl carbonate donors are solid compounds with a long shelf life. This operationally simple protocol was found to be highly efficient for the synthesis of nucleosides, amino acids, and phenolic and azido glycoconjugates. Repeated use of the carbonate glycosidation method enabled the highly convergent synthesis of tridecaarabinomannan in a rapid manner. PMID:26879797

  14. The Type II Pullulanase of Thermococcus hydrothermalis: Molecular Characterization of the Gene and Expression of the Catalytic Domain

    OpenAIRE

    Erra-Pujada, Marta; Debeire, Philippe; Duchiron, Francis; O’Donohue, Michael J.

    1999-01-01

    The gene encoding a hyperthermostable type II pullulanase produced by Thermococcus hydrothermalis (Th-Apu) has been isolated. Analysis of a total of 5.2 kb of genomic DNA has revealed the presence of three open reading frames, one of which (apuA) encodes the pullulanase. This enzyme is composed of 1,339 amino acid residues and exhibits a multidomain structure. In addition to a typical N-terminal signal peptide, Th-Apu possesses a catalytic domain, a domain bearing S-layer homology-like motifs...

  15. Removal of dissolved oxygen from water using a Pd-resin based catalytic reactor

    Institute of Scientific and Technical Information of China (English)

    Wenxin SHI; Chongwei CUI; Liye ZHAO; Shuili YU; Xia YUN

    2009-01-01

    The removal of dissolved oxygen (DO) from water was studied experimentally in a Pd-resin base catalyst reactor using purified hydrogen gas as a reducing agent. The effects of various operating conditions, such as hydrogen and water flow rates, height of the catalytic resin bed, temperature, pH value and nan time, on the removal of DO, had been studied extensively. The results shows that DO could be removed by the reactor from ppm to ppb levels at ambient temperature. Increases of temperature, H2gas rate and the height of the catalytic resin were helpful to improve the DO removal rate. The change of pH value fom 4 to 12 resulted in no effect on DO removal. Reaction time was the key factor to control the DO removal efficiency. Only when the reaction time was longer than 2.3 minutes under the experimental conditions, could a very low DO level be achieved.

  16. 2-Amino-5-bromopyridinium hydrogen succinate

    Directory of Open Access Journals (Sweden)

    Hoong-Kun Fun

    2010-03-01

    Full Text Available In the title compound, C5H6BrN2+·C4H5O4−, the pyridine N atom of the 2-amino-5-bromopyridine molecule is protonated. The protonated N atom and the amino group are linked via N—H...O hydrogen bonds to the carboxylate O atoms of the singly deprotonated succinate anion. The hydrogen succinate anions are linked via O—H...O hydrogen bonds. A weak intermolecular C—H...O hydrogen bond is also observed.

  17. Amino Alcohols from the Ascidian Pseudodistoma sp.

    Directory of Open Access Journals (Sweden)

    Tae Hyung Won

    2014-06-01

    Full Text Available Seven new amino alcohol compounds, pseudoaminols A–G (1–7, were isolated from the ascidian Pseudodistoma sp. collected off the coast of Chuja-do, Korea. Structures of these new compounds were determined by analysis of the spectroscopic data and from chemical conversion. The presence of an N-carboxymethyl group in two of the new compounds (6 and 7 is unprecedented among amino alcohols. Several of these compounds exhibited moderate antimicrobial activity and cytotoxicity, as well as weak inhibitory activity toward Na+/K+-ATPase.

  18. Metal induced amino acid adsorption on nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chia M., E-mail: abinitio@dragon.nchu.edu.t [Research Center for the Remediation of Soil and Ground Water Pollution, Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 402, Taiwan (China); Jalbout, Abraham F. [Departamento de Investigacion en Fisica, Universidad de Sonora, Hermosillo, Sonora C.P., 83000 Mexico (Mexico)

    2010-02-01

    In this work we detail the mechanism by which alkali metal encapsulation inside an armchair (9,9) single walled carbon nanotube (SWNT) can affect external amino acid interactions. Based on our analysis, several configurations revealed that the physical properties of the SWNT systems are modified by using an internally situated Li atom. Density-functional theory calculations reveal that the most favorable interactions of the SWNT system is with tryptophan, threonine and proline that can be directly correlated to the backbone geometry of the amino acid species.

  19. Single amino acid mutation alters thermostability of the alkaline protease from Bacillus pumilus: thermodynamics and temperature dependence.

    Science.gov (United States)

    Huang, Rong; Yang, Qingjun; Feng, Hong

    2015-02-01

    Dehairing alkaline protease (DHAP) from Bacillus pumilus BA06 has been demonstrated to have high catalytic efficiency and good thermostability, with potential application in leather processing. In order to get insights into its catalytic mechanism, two mutants with single amino acid substitution according to the homology modeling and multiple sequence alignment were characterized in thermodynamics of thermal denaturation and temperature dependence of substrate hydrolysis. The results showed that both mutants of V149I and R249E have a systematic increase in catalytic efficiency (kcat/Km) in a wide range of temperatures, mainly due to an increase of k1 (substrate diffusion) and k2 (acylation) for V149I and of k2 and k3 (deacylation) for R249E. In comparison with the wild-type DHAP, the thermostability is increased for V149I and decreased for R249E. Thermodynamic analysis indicated that the free energy (ΔGa°) of activation for thermal denaturation may govern the thermostability. The value of ΔGa° is increased for V149I and decreased for R249E. Based on these data and the structural modeling, it is suggested that substitution of Val149 with Ile may disturb the local flexibility in the substrate-binding pocket, leading to enhancement of binding affinity for the substrate. In contrast, substitution of Arg249 with Glu leads to interruption of interaction with the C-terminal of enzyme, thus resulting in less thermostability. This study indicates that amino acid residues in the active center or in the substrate-binding pocket may disturb the catalytic process and can be selected as the target for protein engineering in the bacterial alkaline proteases. PMID:25534779

  20. Development of new chiral ligand exchange capillary electrophoresis system with amino acid ionic liquids ligands and its application in studying the kinetics of L-amino acid oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Bingbing [Beijing National Laboratory for Molecular Sciences, Key Lab of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); College of Food Sciences and Engineering, Shandong Agricultural University, Tai’an, Shandong 271018 (China); Mu, Xiaoyu [Beijing National Laboratory for Molecular Sciences, Key Lab of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Qi, Li, E-mail: qili@iccas.ac.cn [Beijing National Laboratory for Molecular Sciences, Key Lab of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-04-01

    Highlights: • Novel amino acid ionic liquids with pyridinium as cations and L-lysine as anion were synthesized. • These synthesized AAILs have been explored as the ligands coordinated with Zn(II) in CLE-CE system. • The developed CLE-CE method could be used for the enantioseparation of Dns-D, L-amino acids. • The kinetic contents of L-amino acid oxidase were investigated with the proposed CLE-CE system. - Abstract: New kinds of amino acid ionic liquids (AAILs) with pyridinium as cations and L-lysine (L-Lys) as anion have been developed as the available chiral ligands coordinated with Zn(II) in chiral ligand-exchange capillary electrophoresis (CLE-CE). Four kinds of AAILs, including [1-ethylpyridinium][L-lysine], 1-butylpyridinium][L-lysine], [1-hexylpyridinium][L-lysine] and 1-[octylpyridinium][L-lysine], were successfully synthesized and characterized by nuclear magnetic resonance and mass spectrometry. Compared with other AAILs, the best chiral separation of Dns-D, L-amino acids could be achieved when [1-ethylpyridinium][L-lysine] was chosen as the chiral ligand. It has been found that after investigating the influence of key factors on the separation efficiency, such as pH of buffer solution, the ratio of Zn(II) to ligand and complex concentration, eight pairs of Dns-D, L-AAs enantiomers could be baseline separated and three pairs were partly separated under the optimum conditions. The proposed CLE-CE method also exhibited favorable quantitative analysis property of Dns-D, L-Met with good linearity (r{sup 2} = 0.998) and favorable repeatability (RSD ≤ 1.5%). Furthermore, the CLE-CE system was applied in investigating the kinetic contents of L-amino acid oxidase, which implied that the proposed system has the potential in studying the enzymatic reaction mechanism.

  1. Regulation of amino acid transporters in pluripotent cell populations in the embryo and in culture; novel roles for sodium-coupled neutral amino acid transporters.

    Science.gov (United States)

    Tan, Boon Siang Nicholas; Rathjen, Peter D; Harvey, Alexandra J; Gardner, David K; Rathjen, Joy

    2016-08-01

    The developmental outcomes of preimplantation mammalian embryos are regulated directly by the surrounding microenvironment, and inappropriate concentrations of amino acids, or the loss of amino acid-sensing mechanisms, can be detrimental and impact further development. A specific role for l-proline in the differentiation of embryonic stem (ES) cells, a cell population derived from the blastocyst, has been shown in culture. l-proline acts as a signalling molecule, exerting its effects through cell uptake and subsequent metabolism. Uptake in ES cells occurs predominantly through the sodium-coupled neutral amino acid transporter 2, Slc38a2 (SNAT2). Dynamic expression of amino acid transporters has been shown in the early mammalian embryo, reflecting functional roles for amino acids in embryogenesis. The expression of SNAT2 and family member Slc38a1 (SNAT1) was determined in mouse embryos from the 2-cell stage through to the early post-implantation pre-gastrulation embryo. Key changes in expression were validated in cell culture models of development. Both transporters showed temporal dynamic expression patterns and changes in intracellular localisation as differentiation progressed. Changes in transporter expression likely reflect different amino acid requirements during development. Findings include the differential expression of SNAT1 in the inner and outer cells of the compacted morula and nuclear localisation of SNAT2 in the trophectoderm and placental lineages. Furthermore, SNAT2 expression was up-regulated in the epiblast prior to primitive ectoderm formation, an expression pattern consistent with a role for the transporter in later developmental decisions within the pluripotent lineage. We propose that the differential expression of SNAT2 in the epiblast provides evidence for an l-proline-mediated mechanism contributing to the regulation of embryonic development. PMID:27373508

  2. Smartphones Could Make Keys Obsolete

    Institute of Scientific and Technical Information of China (English)

    Matt Richtel

    2011-01-01

    @@ Front pockets and purses are slowly being emptied of one of civilization's most basic and enduring tools: the key.It's being swallowed by the cellphone.New technology lets smartphones unlock hotel, office and house doors and open garages and even car doors. It's a not-too-distant cousin of the technology that allows key fobs to remotely unlock automobiles or key cards to be waved beside electronic pads at office entrances.What's new is that it is on the device more people are using as the Swiss Army knife of electronics, in equal parts phone, memo pad, stereo, map, GPS unit, and camera and game machine.

  3. Investigation on preparation of CuO-SnO2-CeO2/γ-Al2O3 catalysts for catalytic wet air oxidation process and their catalytic activity for degradation of phenol

    Institute of Scientific and Technical Information of China (English)

    SUN Xiao-jun; ZHANG Mi-lin; WAN Jia-feng; XIA Zhi; LIU Xiao-hui; LIU hui

    2008-01-01

    Catalytic Wet Air Oxidation process is an efficient measure for treatment of wastewater with great strength which is not biodegradable. Heterocatalysts now become the key investigation subject of catalytic wet air oxidation process due to their good stability and easy separation. In the paper, CuO-SnOE-CeO2/γ-Al2O3 catalysts are prepared by impregnation method, with SnO2 as a doping component, CuO as an active component, CeO2 as a structure stabilizer, γ-Al2O3 as a substrate. XPS test is carried out to investigate the effect of Sn on the chemical surrounding of Cu and O element on the catalyst surface and their catalytic activity. It is shown that the right do-ping of Sn can increase Cu+ content on the catalyst surface, as a result the quantity of adsorption oxygen is also increased. It is found that Cu + content on the catalyst surface is one of the primary factors that determin catalytic activity of catalyst through analyzing the catalytic wet air oxidation process of phenol.

  4. Postprandial fate of amino acids: adaptation to molecular forms

    OpenAIRE

    Nolles, J.A.

    2006-01-01

    During the postprandial phase dietary proteins are digested to peptides and amino acids and absorbed. Once absorbed the peptides are further hydrolyzed to amino acids and transported to the tissues. These amino acids are largely incorporated into body proteins. Not all amino acids are, however, incorporated into body proteins part of these amino acids are oxidized, and can, thus, no longer be utilized to support protein metabolism in the body. The objective of this thesis was to increase the ...

  5. Turning goals into results: the power of catalytic mechanisms.

    Science.gov (United States)

    Collins, J

    1999-01-01

    Most executives have a big, hairy, audacious goal. They write vision statements, formalize procedures, and develop complicated incentive programs--all in pursuit of that goal. In other words, with the best of intentions, they install layers of stultifying bureaucracy. But it doesn't have to be that way. In this article, Jim Collins introduces the catalytic mechanism, a simple yet powerful managerial tool that helps translate lofty aspirations into concrete reality. Catalytic mechanisms are the crucial link between objectives and performance; they are a galvanizing, nonbureaucratic means to turn one into the other. What's the difference between catalytic mechanisms and most traditional managerial controls? Catalytic mechanisms share five characteristics. First, they produce desired results in unpredictable ways. Second, they distribute power for the benefit of the overall system, often to the discomfort of those who traditionally hold power. Third, catalytic mechanisms have teeth. Fourth, they eject "viruses"--those people who don't share the company's core values. Finally, they produce an ongoing effect. Catalytic mechanisms are just as effective for reaching individual goals as they are for corporate ones. To illustrate how catalytic mechanisms work, the author draws on examples of individuals and organizations that have relied on such mechanisms to achieve their goals. The same catalytic mechanism that works in one organization, however, will not necessarily work in another. Catalytic mechanisms must be tailored to specific goals and situations. To help readers get started, the author offers some general principles that support the process of building catalytic mechanisms effectively. PMID:10539210

  6. SYNTHESIS AND ANTIMICROBIAL EVALUATION OF 3-AMINO-11-CYANO-4-IMINO- PYRAZOLO [4, 5-E]-4H-PYRIMIDO [2, 1-B] QUINOLINE AND THEIR SUBSTUITED DERIVATIVES SYNTHESIS und antimikrobielle EVALUATION von 3-Amino-11-Cyano-4-IMINO-pyrazol [4, 5-D]-4H-pyrimido [2, 1-b] chinolin UND IHR SUBSTUITED DERIVATE

    Directory of Open Access Journals (Sweden)

    Sambhaji P. Vartale, Nilesh K. Halikar and Yogesh D. Pawar

    2012-01-01

    Full Text Available 2-Amino-3-cyano quinoline (1 and bis (methylthio methylene malononitrile (2 were refluxed in N,N-dimethyl formamide (DMF in presence of catalytic amount of anhydrous potassium carbonate to afforded 3, 11-dicyano-4-imino-2-methylthio -4H-pyrimido [1, 2-a] quinoline (3. The latter were further reacted with different substituted hydrazino. Afforded to 3-amino-11- cyano-4-imino pyrazolo [4, 5-e]-4H-pyrimido [2, 1-b] quinoline and their 2-substuited derivatives (4a-j. All these newly synthesized compounds were characterized by elemental analysis and spectral data, and screened for their antimicrobial activities.

  7. A QM/MM study of the catalytic mechanism of nicotinamidase.

    Science.gov (United States)

    Sheng, Xiang; Liu, Yongjun

    2014-02-28

    Nicotinamidase (Pnc1) is a member of Zn-dependent amidohydrolases that hydrolyzes nicotinamide (NAM) to nicotinic acid (NA), which is a key step in the salvage pathway of NAD(+) biosynthesis. In this paper, the catalytic mechanism of Pnc1 has been investigated by using a combined quantum-mechanical/molecular-mechanical (QM/MM) approach based on the recently obtained crystal structure of Pnc1. The reaction pathway, the detail of each elementary step, the energetics of the whole catalytic cycle, and the roles of key residues and Zn-binding site are illuminated. Our calculation results indicate that the catalytic water molecule comes from the bulk solvent, which is then deprotonated by residue D8. D8 functions as a proton transfer station between C167 and NAM, while the activated C167 serves as the nucleophile. The residue K122 only plays a role in stabilizing intermediates and transition states. The oxyanion hole formed by the amide backbone nitrogen atoms of A163 and C167 has the function to stabilize the hydroxyl anion of nicotinamide. The Zn-binding site rather than a single Zn(2+) ion acts as a Lewis acid to influence the reaction. Two elementary steps, the activation of C167 in the deamination process and the decomposition of catalytic water in the hydrolysis process, correspond to the large energy barriers of 25.7 and 28.1 kcal mol(-1), respectively, meaning that both of them contribute a lot to the overall reaction barrier. Our results may provide useful information for the design of novel and efficient Pnc1 inhibitors and related biocatalytic applications. PMID:24413890

  8. Secret Key Generation From Mobility

    CERN Document Server

    Gungor, Onur; Koksal, C Emre

    2011-01-01

    We consider secret key generation from relative localization information of a pair of nodes in a mobile wireless network in the presence of a mobile eavesdropper. Our scheme consists of two phases: in the first phase, legitimate node pair exchanges beacon signals to establish localization information based on noisy observations of these beacons; in the second phase, nodes generate secret key bits via a public discussion. Our problem can be categorized under the source models of information theoretic secrecy, where the distance between the legitimate nodes acts as the observed common randomness. We characterize the achievable secret key bit rate in terms of the observation noise variance at the legitimate nodes and the eavesdropper. This work provides a framework that combines information theoretic secrecy and wireless localization, and proves that the localization information provides a significant additional resource for secret key generation in mobile wireless networks.

  9. Key Injury and Violence Data

    Science.gov (United States)

    ... Traumatic Brain Injury Violence Prevention Key Injury and Violence Data Recommend on Facebook Tweet Share Compartir Injuries ... of death among persons 1-44. Injury- and violence-related deaths are only part of the problem ...

  10. Key Statistics for Thyroid Cancer

    Science.gov (United States)

    ... cancer? Next Topic Thyroid cancer risk factors Key statistics for thyroid cancer How common is thyroid cancer? ... remains very low compared with most other cancers. Statistics on survival rates for thyroid cancer are discussed ...

  11. Identification of amino acid residues essential to the activity of lyase CpcT1 from Nostoc sp. PCC7120.

    Science.gov (United States)

    Zhang, Juan; Sun, Ya Fang; Zhao, Kai Hong; Zhou, Ming

    2012-12-10

    The phycocyanin lyase CpcT1 (encoded by gene all5339) and lyase CpcS1 (encoded by gene alr0617) are capable of catalyzing the phycocyanobilin (PCB) covalently bound to the different sites of phycocyanin's and phycoerythrocyanin's β subunits, respectively. Lyase CpcS1, whose catalytic mechanism had been researched clearly, participates in the covalent coupling of phycobilin and apoprotein in the form of chaperone, and its important amino acids have been confirmed. In order to identify the functional amino acid residues of CpcT1, chemical modification was conducted to arginine, histidine, tryptophan, lysine and amino acid carboxyl of CpcT1. The results indicated that the catalytic activity of the CpcT1 was changed. After the modification of arginine, tryptophan and histidine, site-directed mutations were performed to those highly conserved amino acids which were selected by means of homologous comparison. The mutated lyase, apoprotein and the enzymes that synthesize the phycobilins were recombined in Escherichia coli (E. coli) and in vitro, yielding chromoproteins, which were detected by fluorescence and UV absorption spectrometry. The spectra were compared with that of the chromoprotein catalyzed by wild type lyase CpcT1, achieving relative specific activities of the various mutants. Meanwhile, the mutants were expressed in E. coli, and then circular dichroism structure of near-UV region was determined. The results demonstrated that H33F, W175S, R97A, C137S and C116S influence the catalytic activity of CpcT1. Being different from wild CpcT1, a great deal of α helix was involved in the structure of circular dichroism of R97A and W13S. CpcT1 or its mutants and the enzymes that synthesize the phycobilins, were reconstituted in E. coli and detected by spectra to check the bounding of lyases and PCB. The results of spectra and SDS-PAGE confirm that CpcT1 and its mutants cannot bind phycobilin, differing from the catalytic mechanism of CpcS1. PMID:22982227

  12. Heterogeneous catalytic materials solid state chemistry, surface chemistry and catalytic behaviour

    CERN Document Server

    Busca, Guido

    2014-01-01

    Heterogeneous Catalytic Materials discusses experimental methods and the latest developments in three areas of research: heterogeneous catalysis; surface chemistry; and the chemistry of catalysts. Catalytic materials are those solids that allow the chemical reaction to occur efficiently and cost-effectively. This book provides you with all necessary information to synthesize, characterize, and relate the properties of a catalyst to its behavior, enabling you to select the appropriate catalyst for the process and reactor system. Oxides (used both as catalysts and as supports for cata

  13. Wiki keys on mobile devices

    OpenAIRE

    Weber, Gisela; Hagedorn, Gregor

    2010-01-01

    The development of increasingly powerful mobile devices like PDAs (Personal Digital Assistants) and Smartphones, with larger displays and greater resolution makes them increasingly suitable for identification tools available directly “in the field”. One of several approaches towards this aim in the KeyToNature project is based on wiki-stored documents. Important features of wiki-based keys, such as hidden text and media information as well as links to glossary entries are su...

  14. Finite-key security analysis for multilevel quantum key distribution

    Science.gov (United States)

    Brádler, Kamil; Mirhosseini, Mohammad; Fickler, Robert; Broadbent, Anne; Boyd, Robert

    2016-07-01

    We present a detailed security analysis of a d-dimensional quantum key distribution protocol based on two and three mutually unbiased bases (MUBs) both in an asymptotic and finite-key-length scenario. The finite secret key rates (in bits per detected photon) are calculated as a function of the length of the sifted key by (i) generalizing the uncertainly relation-based insight from BB84 to any d-level 2-MUB QKD protocol and (ii) by adopting recent advances in the second-order asymptotics for finite block length quantum coding (for both d-level 2- and 3-MUB QKD protocols). Since the finite and asymptotic secret key rates increase with d and the number of MUBs (together with the tolerable threshold) such QKD schemes could in principle offer an important advantage over BB84. We discuss the possibility of an experimental realization of the 3-MUB QKD protocol with the orbital angular momentum degrees of freedom of photons.

  15. Catalytic Deoxydehydration of Carbohydrates and Polyols to Chemicals and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, Kenneth M. [Univ. of Oklahoma, Norman, OK (United States)

    2016-01-15

    polyoxo-complexes and practical reductants with representative polyols to establish structure/reactivity relationships and reaction mechanisms; and b) carry out parallel computational studies of these reactions and their mechanisms- both analytical and predictive. Our prioritized action plan is: (1) to optimize the catalytic efficiency, assess the substrate scope/selectivity, and address key mechanistic aspects of Re-catalyzed, sulfite-driven DODH reactions; (2) use the findings from (1), together with computational predictions, to discover new, effective non-precious metal catalysts for sulfite-driven DODH reactions; and 3) to initiate exploratory studies of CO- and H2-driven DODH. Successful execution of this research project will: 1) provide practical chemical processes for the conversion of biomass into useful chemicals and fuels: 2) bring fundamental new understanding of chemical reactions involving metal-oxo catalysts; and 3) provide educational and technical training of future energy scientists.

  16. Biochemical and Mutational Characterization of N-Succinyl-Amino Acid Racemase from Geobacillus stearothermophilus CECT49.

    Science.gov (United States)

    Soriano-Maldonado, Pablo; Andújar-Sánchez, Montserrat; Clemente-Jiménez, Josefa María; Rodríguez-Vico, Felipe; Las Heras-Vázquez, Francisco Javier; Martínez-Rodríguez, Sergio

    2015-05-01

    N-Succinyl-amino acid racemase (NSAAR), long referred to as N-acyl- or N-acetyl-amino acid racemase, is an enolase superfamily member whose biotechnological potential was discovered decades ago, due to its use in the industrial dynamic kinetic resolution methodology first known as "Acylase Process". In previous works, an extended and enhanced substrate spectrum of the NSAAR from Geobacillus kaustophilus CECT4264 toward different N-substituted amino acids was reported. In this work, we describe the cloning, purification, and characterization of the NSAAR from Geobacillus stearothermophilus CECT49 (GstNSAAR). The enzyme has been extensively characterized, showing a higher preference toward N-formyl-amino acids than to N-acetyl-amino acids, thus confirming that the use of the former substrates is more appropriate for a biotechnological application of the enzyme. The enzyme showed an apparent thermal denaturation midpoint of 77.0 ± 0.1 °C and an apparent molecular mass of 184 ± 5 kDa, suggesting a tetrameric species. Optimal parameters for the enzyme activity were pH 8.0 and 55-65 °C, with Co(2+) as the most effective cofactor. Mutagenesis and binding experiments confirmed K166, D191, E216, D241, and K265 as key residues in the activity of GstNSAAR, but not indispensable for substrate binding.

  17. Amino Acids in Comets and Meteorites: Stability under Gamma Radiation and Preservation of Chirality

    CERN Document Server

    Iglesias-Groth, Susana; Ursini, Ornella; Manchado, Arturo

    2010-01-01

    Amino acids in solar system bodies may have played a key role in the chemistry that led to the origin of life on Earth. We present laboratory studies testing the stability of amino acids against gamma radiation photolysis. All the 20 chiral amino acids in the levo form used in the proteins of the current terrestrial biochemistry have been irradiated in the solid state with gamma radiation to a dose of 3.2 MGy which is the dose equivalent to that derived by radionuclide decay in comets and asteroids in 1.05x109 years. For each amino acid the radiolysis degree and the radioracemization degree was measured by differential scanning calorimetry (DSC) and by optical rotatory dispersion (ORD) spectroscopy. From these measurements a radiolysis rate constant kdsc and a radioracemization rate constant krac have been determined for each amino acid and extrapolated to a dose of 14 MGy which corresponds to the expected total dose delivered by the natural radionuclides decay to all the organic molecules present in comets a...

  18. Mutation-selection models of coding sequence evolution with site-heterogeneous amino acid fitness profiles.

    Science.gov (United States)

    Rodrigue, Nicolas; Philippe, Hervé; Lartillot, Nicolas

    2010-03-01

    Modeling the interplay between mutation and selection at the molecular level is key to evolutionary studies. To this end, codon-based evolutionary models have been proposed as pertinent means of studying long-range evolutionary patterns and are widely used. However, these approaches have not yet consolidated results from amino acid level phylogenetic studies showing that selection acting on proteins displays strong site-specific effects, which translate into heterogeneous amino acid propensities across the columns of alignments; related codon-level studies have instead focused on either modeling a single selective context for all codon columns, or a separate selective context for each codon column, with the former strategy deemed too simplistic and the latter deemed overparameterized. Here, we integrate recent developments in nonparametric statistical approaches to propose a probabilistic model that accounts for the heterogeneity of amino acid fitness profiles across the coding positions of a gene. We apply the model to a dozen real protein-coding gene alignments and find it to produce biologically plausible inferences, for instance, as pertaining to site-specific amino acid constraints, as well as distributions of scaled selection coefficients. In their account of mutational features as well as the heterogeneous regimes of selection at the amino acid level, the modeling approaches studied here can form a backdrop for several extensions, accounting for other selective features, for variable population size, or for subtleties of mutational features, all with parameterizations couched within population-genetic theory. PMID:20176949

  19. The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation.

    Science.gov (United States)

    Ravindran, Rajesh; Loebbermann, Jens; Nakaya, Helder I; Khan, Nooruddin; Ma, Hualing; Gama, Leonardo; Machiah, Deepa K; Lawson, Benton; Hakimpour, Paul; Wang, Yi-chong; Li, Shuzhao; Sharma, Prachi; Kaufman, Randal J; Martinez, Jennifer; Pulendran, Bali

    2016-03-24

    The integrated stress response (ISR) is a homeostatic mechanism by which eukaryotic cells sense and respond to stress-inducing signals, such as amino acid starvation. General controlled non-repressed (GCN2) kinase is a key orchestrator of the ISR, and modulates protein synthesis in response to amino acid starvation. Here we demonstrate in mice that GCN2 controls intestinal inflammation by suppressing inflammasome activation. Enhanced activation of ISR was observed in intestinal antigen presenting cells (APCs) and epithelial cells during amino acid starvation, or intestinal inflammation. Genetic deletion of Gcn2 (also known as Eif2ka4) in CD11c(+) APCs or intestinal epithelial cells resulted in enhanced intestinal inflammation and T helper 17 cell (TH17) responses, owing to enhanced inflammasome activation and interleukin (IL)-1β production. This was caused by reduced autophagy in Gcn2(-/-) intestinal APCs and epithelial cells, leading to increased reactive oxygen species (ROS), a potent activator of inflammasomes. Thus, conditional ablation of Atg5 or Atg7 in intestinal APCs resulted in enhanced ROS and TH17 responses. Furthermore, in vivo blockade of ROS and IL-1β resulted in inhibition of TH17 responses and reduced inflammation in Gcn2(-/-) mice. Importantly, acute amino acid starvation suppressed intestinal inflammation via a mechanism dependent on GCN2. These results reveal a mechanism that couples amino acid sensing with control of intestinal inflammation via GCN2.

  20. Large neutral amino acids in daily practice

    DEFF Research Database (Denmark)

    Ahring, Kirsten Kiær

    2010-01-01

    sampling to measure plasma amino acid (AA) concentrations. The aim of this analysis and treatment is that the patient receives 25-30% of the daily protein requirement from LNAA supplementation and the remaining 70-75% from natural, low-phenylalanine proteins (although some patients have difficulties...

  1. Dietary Supplements and Sports Performance: Amino Acids

    OpenAIRE

    Williams Melvin

    2005-01-01

    Abstract This is the third in a series of six articles to discuss the major classes of dietary supplements (vitamins; minerals; amino acids; herbs or botanicals; metabolites, constituents/extracts, or combinations). The major focus is on efficacy of such dietary supplements to enhance exercise or sport performance.

  2. Dietary Supplements and Sports Performance: Amino Acids

    Directory of Open Access Journals (Sweden)

    Williams Melvin

    2005-12-01

    Full Text Available Abstract This is the third in a series of six articles to discuss the major classes of dietary supplements (vitamins; minerals; amino acids; herbs or botanicals; metabolites, constituents/extracts, or combinations. The major focus is on efficacy of such dietary supplements to enhance exercise or sport performance.

  3. Estimate of Amino Acid Balance in Nutrition

    Institute of Scientific and Technical Information of China (English)

    SunWenzhi

    1995-01-01

    A new chemical index-imbalance degree(IBD),was proposed on the basis of cluster analysis in multivariate statistical analysis to estimate the extent of amino acid balance in protein.The range of IBD is between 0 and 1,successively corresponding to complete baance and entire imbalance for the amino acid profile of a sample.The amino acid increment model of IBD belongs to an asymmetrical maximum-type,and there is a high correlation between IBD and coefficient of variation(CV),The nutritional Value of individual feed can be ranked and clustered according to its IBD;and by calculating the IBD of amixed sample with two or more feedstuffs,it is possible theoretically to predict whether a synergetic phenomenon exists and when an optimal mutual complement can happen.If the conceptive frame of IBD extended,it can be used to study the balance of plement can happen.If the conceptive frame of IBD extended,it can be used to study the balance of nutrients besides amino acids,and is helpful to realize the automatic distinction and selection in diet formulating.

  4. Amino acid modifications on tRNA

    Institute of Scientific and Technical Information of China (English)

    Jing Yuan; Kelly Sheppard; Dieter S(o)ll

    2008-01-01

    The accurate formation of cognate aminoacyl-transfer RNAs (aa-tRNAs) is essential for the fidelity of translation.Most amino acids are esterified onto their cognate tRNA isoacceptors directly by aa.tRNA synthetases.However,in the case of four amino acids (Gin,Asn,Cys and Sec),aminoacyl-tRNAs are made through indirect pathways in many organisms across all three domains of life.The process begins with the charging ofnoncognate amino acids to tRNAs by a specialized synthetase in the case of Cys-tRNAcys formation or by synthetases with relaxed specificity,such as the non-discriminating glutamyl-tRNA,non-discriminating aspartyl-tRNA and seryl-tRNA synthetases.The resulting misacylated tRNAs are then converted to cognate pairs through transformation of the amino acids on the tRNA,which is catalyzed by a group of tRNA-dependent modifying enzymes,such as tRNA-dependent amidotransferases,Sep-tRNA:Cys-tRNA synthase,O-phosphoseryi-tRNA kinase and Sep-tRNA:Sec-tRNA synthase.The majority of these indirect pathways are widely spread in all domains of life and thought to be part of the evolutionary process.

  5. Extra carbohydrate binding module contributes to the processivity and catalytic activity of a non-modular hydrolase family 5 endoglucanase from Fomitiporia mediterranea MF3/22.

    Science.gov (United States)

    Pan, Ronghua; Hu, Yimei; Long, Liangkun; Wang, Jing; Ding, Shaojun

    2016-09-01

    FmEG from Fomitiporia mediterranea is a non-modular endoglucanase composed of a 24-amino acids extension and 13-amino acids linker-like peptide at the N-terminus and a 312-amino acids GH5 catalytic domain (CD) at the C-terminus. In this study, six FmEG derivatives with deletion of N-terminal fragments or fusion with an extra family 1 carbohydrate-binding module (CBM1) was constructed in order to evaluate the contribution of CBM1 to FmEG processivity and catalytic activity. FmEG showed a weak processivity and released cellobiose (G2) and cellotriose (G3) as main end products, and cellotriose (G4) as minor end product from filter paper (FP), but more amount of G4 was released from regenerated amorphous cellulose (RAC). All derivatives had similar activity on carboxymethylcellulose (CMC) with the same optimal pH (7.0) and temperature (50°C). However, fusing an extra CBM1 to FmEG△24 or FmEG△37 with flexible peptide significantly improved its processivity and catalytic activity to FP and RAC. Overall, 1.79- and 1.84-fold increases in the soluble/insoluble product ratio on FP, and 1.38- and 1.39-fold increases on RAC, compared to FmEG△24, were recorded for CBM1-FmEG△24 and CBM1-linker-FmEG△24, respectively. Meanwhile, they displayed 2.64- and 2.67-fold more activity on RAC, and 1.68- and 1.77-fold on FP, respectively. Similar improvement was also obtained for CBM1-linker-FmEG△37 as compared with FmEG△37. Interestingly, fusion of an extra CBM1 with FmEG also caused an alteration of cleavage pattern on insoluble celluloses. Our results suggest that such improvements in processivity and catalytic activity may arise from CBM1 binding affinity. The N-terminal 24- or 37-amino acids may serve as linker for sufficient spatial separation of the two domains required for processivity and catalytic activity. In addition, deletion of the N-terminal 24- or 37-amino acids led to significant reduction in thermostability but not the enzymatic activity. PMID:27444328

  6. Development of Self-Organized Polymeric Lewis Acid-Catalysts for the Zero-Emission Synthesis of 2-Amino Alcohols

    Institute of Scientific and Technical Information of China (English)

    J. Inanaga

    2005-01-01

    @@ 1Introduction β-Amino alcohols are versatile synthetic intermediates for a wide range of biologically active natural and unnatural products. They can also serve as good chiral ligands for some asymmetric metal complex catalysts.The nucleophilic ring-opening of epoxides with an amine is one of the most efficient routes to obtain such β-amino alcohols with 1,2-trans stereochemistry. Therefore, various homogeneous catalysts have been developed for this transformation. Meanwhile, the development of efficient heterogeneous catalysts that can be easily prepared, recovered, and reused without losing their activities has currently received much attention from a practical and environmental point of view, and not a few such reusable heterogeneous catalysts (e. g., supported on inorganic materials or insoluble polymers) have been developed[1]. In general, however, they tend to show lower catalytic activities and selectivities compared to the corresponding homogeneous one, and the preparation of them are often tedious.

  7. Detection of non-protein amino acids in the presence of protein amino acids. II.

    Science.gov (United States)

    Shapshak, P.; Okaji, M.

    1972-01-01

    Studies conducted with the JEOL 5AH amino acid analyzer are described. This instrument makes possible the programming of the chromatographic process. Data are presented showing the separations of seventeen non-protein amino acids in the presence of eighteen protein amino acids. It is pointed out that distinct separations could be obtained in the case of a number of chemically similar compounds, such as ornithine and lysine, N-amidino alanine and arginine, and iminodiacetic acid and S-carboxymethyl cysteine and aspartic acid.

  8. Identification of a new chromophoric substrate in the library of amino acid p-nitroanilides for continuous assay of VanX, a D,D-dipeptidase essential for vancomycin resistance.

    Science.gov (United States)

    Hsieh, Ming-Lung; Tseng, Min-Jen; Tseng, Ming-Chung; Chu, Yen-Ho

    2006-07-01

    As one of key bacterial proteins involved in vancomycin resistance, VanX is a D,D-dipeptidase that impedes bacterial cell wall biosynthesis by hydrolyzing the essential D-Ala-D-Ala dipeptide. Based on a report by Crowder and co-workers that L-alanine-p-nitroanilide (L-Ala-pNA) was a useful substrate for continuous assay of VanX, we constructed a library of 35 L- and D-amino acid p-nitroanilides to provide the needed diversity to discover new substrates that are more specific than L-Ala-pNA. We report here that, among all compounds tested, D-leucine-p-nitroanilide (D-Leu-pNA) was found to be the best substrate for VanX enzyme (KM=8.9+/-1.2 mM, kcat=0.0102+/-0.0016 s(-1), kcat/KM=0.0012 mM(-1)s(-1)). Although it is catalytically inefficient, this new VanX substrate needs essentially no sophisticated synthetic chemistry for preparation and therefore offers a convenient means for routine analysis of enzyme catalysis and the screening of potential inhibitors. Moreover, because it is the uncommon leucine in its D form in D-Leu-pNA, enzymatic activities due to other contaminated species in Escherichia coli used for VanX overproduction should be greatly reduced. PMID:16701071

  9. A Highly Stable D-Amino Acid Oxidase of the Thermophilic Bacterium Rubrobacter xylanophilus.

    Science.gov (United States)

    Takahashi, Shouji; Furukawara, Makoto; Omae, Keishi; Tadokoro, Namiho; Saito, Yayoi; Abe, Katsumasa; Kera, Yoshio

    2014-12-01

    d-Amino acid oxidase (DAO) is a biotechnologically attractive enzyme that can be used in a variety of applications, but its utility is limited by its relatively poor stability. A search of a bacterial genome database revealed a gene encoding a protein homologous to DAO in the thermophilic bacterium Rubrobacter xylanophilus (RxDAO). The recombinant protein expressed in Escherichia coli was a monomeric protein containing noncovalently bound flavin adenine dinucleotide as a cofactor. This protein exhibited oxidase activity against neutral and basic d-amino acids and was significantly inhibited by a DAO inhibitor, benzoate, but not by any of the tested d-aspartate oxidase (DDO) inhibitors, thus indicating that the protein is DAO. RxDAO exhibited higher activities and affinities toward branched-chain d-amino acids, with the highest specific activity toward d-valine and catalytic efficiency (kcat/Km) toward d-leucine. Substrate inhibition was observed in the case of d-tyrosine. The enzyme had an optimum pH range and temperature of pH 7.5 to 10 and 65°C, respectively, and was stable between pH 5.0 and pH 8.0, with a T50 (the temperature at which 50% of the initial enzymatic activity is lost) of 64°C. No loss of enzyme activity was observed after a 1-week incubation period at 30°C. This enzyme was markedly inactivated by phenylmethylsulfonyl fluoride but not by thiol-modifying reagents and diethyl pyrocarbonate, which are known to inhibit certain DAOs. These results demonstrated that RxDAO is a highly stable DAO and suggested that this enzyme may be valuable for practical applications, such as the determination and quantification of branched-chain d-amino acids, and as a scaffold to generate a novel DAO via protein engineering. PMID:25217016

  10. Catalytic bioscavengers in nerve agent poisoning: A promising approach?

    Science.gov (United States)

    Worek, Franz; Thiermann, Horst; Wille, Timo

    2016-02-26

    The repeated use of the nerve agent sarin against civilians in Syria in 2013 emphasizes the continuing threat by chemical warfare agents. Multiple studies demonstrated a limited efficacy of standard atropine-oxime treatment in nerve agent poisoning and called for the development of alternative and more effective treatment strategies. A novel approach is the use of stoichiometric or catalytic bioscavengers for detoxification of nerve agents in the systemic circulation prior to distribution into target tissues. Recent progress in the design of enzyme mutants with reversed stereo selectivity resulting in improved catalytic activity and their use in in vivo studies supports the concept of catalytic bioscavengers. Yet, further research is necessary to improve the catalytic activity, substrate spectrum and in vivo biological stability of enzyme mutants. The pros and cons of catalytic bioscavengers will be discussed in detail and future requirements for the development of catalytic bioscavengers will be proposed.

  11. [Isolation and catalytic properties of the soluble monomeric form of inorganic pyrophosphatase from baker's yeast].

    Science.gov (United States)

    Kasho, V N; Bakuleva, N P; Baĭkov, A A; Avaeva, S M

    1982-06-01

    Data from sedimentation analysis suggest that modification of about 40% of free amino groups of inorganic pyrophosphatase by maleic anhydride, pH 10.5, results in a loss of the enzyme ability to form dimers at neutral values of pH. The specific activity of monomeric pyrophosphatase is 50-80% of that of the dimeric form. The monomer has a pH optimum of about 7, requires metal ions for activation of both enzyme and substrate and is capable of exergonic synthesis of PPi in the active center. The enzyme binding to PPi is strongly stabilized by fluoride. The experimental data indicate that the individual subunit of inorganic pyrophosphatase possesses all the main catalytic properties of native dimeric molecule. PMID:6126223

  12. Synthesis of gold nanoparticles using renewable Punica granatum juice and study of its catalytic activity

    Science.gov (United States)

    Dash, Shib Shankar; Bag, Braja Gopal

    2014-01-01

    Punica granatum juice, a delicious multivitamin drink of great medicinal significance, is rich in different types of phytochemicals, such as terpenoids, alkaloids, sterols, polyphenols, sugars, fatty acids, aromatic compounds, amino acids, tocopherols, etc. We have demonstrated the use of the juice for the synthesis of gold nanoparticles (AuNPs) at room temperature under very mild conditions. The synthesis of the AuNPs was complete in few minutes and no extra stabilizing or capping agents were necessary. The size of the nanoparticles could be controlled by varying the concentration of the fruit extract. The AuNPs were characterized by surface plasmon resonance spectroscopy, high resolution transmission electron microscopy, fourier transform infrared spectroscopy and X-ray diffraction studies. Catalytic activity of the synthesized colloidal AuNPs has also been demonstrated.

  13. SambVca 2. A Web Tool for Analyzing Catalytic Pockets with Topographic Steric Maps

    KAUST Repository

    Falivene, Laura

    2016-06-27

    Developing more efficient catalysts remains one of the primary targets of organometallic chemists. To accelerate reaching this goal, effective molecular descriptors and visualization tools can represent a remarkable aid. Here, we present a Web application for analyzing the catalytic pocket of metal complexes using topographic steric maps as a general and unbiased descriptor that is suitable for every class of catalysts. To show the broad applicability of our approach, we first compared the steric map of a series of transition metal complexes presenting popular mono-, di-, and tetracoordinated ligands and three classic zirconocenes. This comparative analysis highlighted similarities and differences between totally unrelated ligands. Then, we focused on a recently developed Fe(II) catalyst that is active in the asymmetric transfer hydrogenation of ketones and imines. Finally, we expand the scope of these tools to rationalize the inversion of enantioselectivity in enzymatic catalysis, achieved by point mutation of three amino acids of mononuclear p-hydroxymandelate synthase.

  14. Fluid catalytic cracking of biomass pyrolysis vapors

    Energy Technology Data Exchange (ETDEWEB)

    Mante, Ofei Daku [Virginia Polytechnic Institute and State University, Biological Systems Engineering, Blacksburg, VA (United States); Agblevor, Foster A. [Utah State University, Biological Engineering, Logan, UT (United States); McClung, Ron [BASF Inc, Florham, NJ (United States)

    2011-12-15

    Catalytic cracking of pyrolysis oils/vapors offers the opportunity of producing bio-oils which can potentially be coprocessed with petroleum feedstocks in today's oil refinery to produce transportation fuel and chemicals. Catalyst properties and process conditions are critical in producing and maximizing desired product. In our studies, catalyst matrix (kaolin) and two commercial fluid catalytic cracking (FCC) catalysts, FCC-H and FCC-L, with different Y-zeolite contents were investigated. The catalytic cracking of hybrid poplar wood was conducted in a 50-mm bench-scale bubbling fluidized-bed pyrolysis reactor at 465 C with a weight hourly space velocity of 1.5 h{sup -1}. The results showed that the yields and quality of the bio-oils was a function of the Y-zeolite content of the catalyst. The char/coke yield was highest for the higher Y-zeolite catalyst. The organic liquid yields decreased inversely with increase in zeolite content of the catalyst whereas the water and gas yields increased. Analysis of the oils by both Fourier-transform infrared and {sup 13}C-nuclear magnetic resonance indicated that the catalyst with higher zeolite content (FCC-H) was efficient in the removal of compounds like levoglucosan, carboxylic acids and the conversion of methoxylated phenols to substituted phenols and benzenediols. The cracking of pyrolysis products by kaolin suggests that the activity of the FCC catalyst on biomass pyrolysis vapors can be attributed to both Y-zeolite and matrix. The FCC-H catalyst produced much more improved oil. The oil was low in oxygen (22.67 wt.%), high in energy (29.79 MJ/kg) and relatively stable over a 12-month storage period. (orig.)

  15. Catalytic Mechanism of Human Alpha-galactosidase

    Energy Technology Data Exchange (ETDEWEB)

    Guce, A.; Clark, N; Salgado, E; Ivanen, D; Kulinskaya, A; Brumer, H; Garman, S

    2010-01-01

    The enzyme {alpha}-galactosidase ({alpha}-GAL, also known as {alpha}-GAL A; E.C. 3.2.1.22) is responsible for the breakdown of {alpha}-galactosides in the lysosome. Defects in human {alpha}-GAL lead to the development of Fabry disease, a lysosomal storage disorder characterized by the buildup of {alpha}-galactosylated substrates in the tissues. {alpha}-GAL is an active target of clinical research: there are currently two treatment options for Fabry disease, recombinant enzyme replacement therapy (approved in the United States in 2003) and pharmacological chaperone therapy (currently in clinical trials). Previously, we have reported the structure of human {alpha}-GAL, which revealed the overall structure of the enzyme and established the locations of hundreds of mutations that lead to the development of Fabry disease. Here, we describe the catalytic mechanism of the enzyme derived from x-ray crystal structures of each of the four stages of the double displacement reaction mechanism. Use of a difluoro-{alpha}-galactopyranoside allowed trapping of a covalent intermediate. The ensemble of structures reveals distortion of the ligand into a {sup 1}S{sub 3} skew (or twist) boat conformation in the middle of the reaction cycle. The high resolution structures of each step in the catalytic cycle will allow for improved drug design efforts on {alpha}-GAL and other glycoside hydrolase family 27 enzymes by developing ligands that specifically target different states of the catalytic cycle. Additionally, the structures revealed a second ligand-binding site suitable for targeting by novel pharmacological chaperones.

  16. A method for controlling catalytic reforming

    Energy Technology Data Exchange (ETDEWEB)

    Karamyshev, M.S.; Denilov, N.A.; Kamyshnikov, A.I.; Kirilin, Yu.A.; Lozinskiy, V.N.; Melman, A.Z.; Ovchinnikova, T.F.; Shpunt, M.I.; Shuvalov, V.V.; Zayashnikov, Ye.N.

    1983-01-01

    In the method for controlling the process of catalytic reforming, which includes mixing the raw material components with the production of a raw material, reforming and isolation of the final products, through changing the relationship of the expenditures of the raw material components relative to the content of the target components in the raw material, in order to support and stabilize an assigned production of the final products, the relationship of the expenditures of the raw material components are changed with correction based on the flow rates of the final products. A block diagram of the installation which realizes the proposed method is cited.

  17. Transport in a Microfluidic Catalytic Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, H G; Chung, J; Grigoropoulos, C P; Greif, R; Havstad, M; Morse, J D

    2003-04-30

    A study of the heat and mass transfer, flow, and thermodynamics of the reacting flow in a catalytic microreactor is presented. Methanol reforming is utilized in the fuel processing system driving a micro-scale proton exchange membrane fuel cell. Understanding the flow and thermal transport phenomena as well as the reaction mechanisms is essential for improving the efficiency of the reforming process as well as the quality of the processed fuel. Numerical studies have been carried out to characterize the transport in a silicon microfabricated reactor system. On the basis of these results, optimized conditions for fuel processing are determined.

  18. Submicron Polyethylene Particles from Catalytic Emulsion Polymerization

    OpenAIRE

    Bauers, Florian Martin; Thomann, Ralf; Mecking, Stefan

    2003-01-01

    Particles of linear polyethylene (Mn = (2-3)X 10000 g mol-1; Mw/Mn = 2-4) obtained by catalytic emulsion polymerization of ethylene possess a nonspherical, lentil-like shape with an average aspect ratio of ca. 10 and diameters from 30 to > 300 nm, as determined by TEM and AFM. The particle structure results from a stacking of the lamellae along the one shorter axis of the lentils (i.e., their height, by contrast to the diameter). In addition to these multilamellae particles, remarkably, a con...

  19. Temperature control of a catalytic converter

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T.T.-H.

    1994-06-08

    In an ic engine having a catalytic convertor, the catalyst heater is controlled in dependence upon an estimate of the temperature of the catalyst so that there is no need for a sensor in the hostile environment of the exhaust. A valve indicative of the catalyst temperature is stored and modified in accordance with a model of the catalyst temperature. The model can be a mathematical mood carried out by a signal processor or an electrical model with the catalyst temperature being represented by the charge stored on a capacitor. (Author)

  20. Biomimetic, Catalytic Oxidation in Organic Synthesis

    Institute of Scientific and Technical Information of China (English)

    Shun-lchi Murahashi

    2005-01-01

    @@ 1Introduction Oxidation is one of the most fundamental reactions in organic synthesis. Owing to the current need to develop forward-looking technology that is environmentally acceptable with respect many aspects. The most attractive approaches are biomimetic oxidation reactions that are closely related to the metabolism of living things. The metabolisms are governed by a variety of enzymes such as cytochrome P-450 and flavoenzyme.Simulation of the function of these enzymes with simple transition metal complex catalyst or organic catalysts led to the discovery of biomimetic, catalytic oxidations with peroxides[1]. We extended such biomimetic methods to the oxidation with molecular oxygen under mild conditions.

  1. Catalytic Pyrolysis of Olive Mill Wastewater Sludge

    OpenAIRE

    Abdellaoui, Hamza

    2015-01-01

    Olive mill wastewater sludge (OMWS) is the solid residue that remains in the evaporation ponds after evaporation of the majority of water in the olive mill wastewater (OMW). OMWS is a major environmental pollutant in the olive oil producing regions. Approximately 41.16 wt. % of the OMWS was soluble in hexanes (HSF). The fatty acids in this fraction consist mainly of oleic and palmitic acid. Catalytic pyrolysis of the OMWS over red mud and HZSM-5 has been demonstrated to be an effective techno...

  2. Tritium stripping by a catalytic exchange stripper

    International Nuclear Information System (INIS)

    A catalytic exchange process for stripping elemental tritium from gas streams has been demonstrated. The process uses a catalyzed isotopic exchange reaction between tritium in the gas phase and protium or deuterium in the solid phase on alumina. The reaction is catalyzed by platinum deposited on the alumina. The process has been tested with both tritium and deuterium. Decontamination factors (ration of inlet and outlet tritium concentrations) as high as 1000 have been achieved, depending on inlet concentration. The test results and some demonstrated applications are presented

  3. Heterogeneous Photooxidation of Phenol by Catalytic Membranes

    Institute of Scientific and Technical Information of China (English)

    Enrica Fontananova; Enrico Drioli; Laura Donato; Marcella Bonchio; Mauro Carraro; Gianfranco Scorrano

    2006-01-01

    In this work the heterogenization in polymeric membranes of decatungstate, a photocatalyst for oxidation reactions,was reported. Solid state characterization techniques confirmed that the catalyst structure was preserved within the polymeric membranes. The catalytic membranes were successfully applied in the aerobic photo-oxidation of phenol, one of the main organic pollutants in wastewater, providing stable and recyclable photocatalytic systems. The dependence of the phenol degradation rate by the catalyst loading and transmembrane pressure was shown. By comparison with homogeneous reaction,the catalyst heterogenized in membrane appears to be more efficient concerning the rate of phenol photodegradation and mineralization.

  4. The catalytic residues of Tn3 resolvase

    OpenAIRE

    Olorunniji, F.J.; Stark, W M

    2009-01-01

    To characterize the residues that participate in the catalysis of DNA cleavage and rejoining by the site-specific recombinase Tn3 resolvase, we mutated conserved polar or charged residues in the catalytic domain of an activated resolvase variant. We analysed the effects of mutations at 14 residues on proficiency in binding to the recombination site ('site I'), formation of a synaptic complex between two site Is, DNA cleavage and recombination. Mutations of Y6, R8, S10, D36, R68 and R71 result...

  5. Study and Analysis on Naphtha Catalytic Reforming Reactor Simulation

    Institute of Scientific and Technical Information of China (English)

    Liang Ke min; Song Yongji; Pan Shiwei

    2004-01-01

    A naphtha catalytic reforming unit with four reactors connected in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to describe the naphtha catalytic reforming reaction characteristics based on idealizing the complex naphtha mixture to represent the paraffin, naphthene, and aromatic groups with individual compounds. The simulation results based on above models agree very well with actual operating data of process unit.

  6. A study on naphtha catalytic reforming reactor simulation and analysis

    Institute of Scientific and Technical Information of China (English)

    LIANG Ke-min; GUO Hai-yan; PAN Shi-wei

    2005-01-01

    A naphtha catalytic reforming unit with four reactors in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to describe the naphtha catalytic reforming reactions characteristics based on idealizing the complex naphtha mixture by representing the paraffin, naphthene, and aromatic groups by single compounds. The simulation results based above models agree very well with actual operation unit data.

  7. Interleukin-6 markedly decreases skeletal muscle protein turnover and increases nonmuscle amino acid utilization in healthy individuals

    DEFF Research Database (Denmark)

    van Hall, Gerrit; Steensberg, Adam; Fischer, Christian;

    2008-01-01

    CONTEXT: IL-6 is a key modulator of immune function and suggested to be involved in skeletal muscle wasting as seen in sepsis. OBJECTIVE: Our objective was to determine the role of IL-6 in human in vivo systemic and skeletal muscle amino acid metabolism and protein turnover. SUBJECTS AND METHODS...... synthesis was more suppressed than breakdown, causing a small increase in net muscle protein breakdown. Furthermore, rhIL-6 decreased arterial amino acid concentration with 20-40%, despite the increase net release from muscle. CONCLUSIONS: We demonstrated that IL-6 profoundly alters amino acid turnover....... A substantial decrease in plasma amino acids was observed with a concomitant 50% decrease in muscle protein turnover, however, modest increase in net muscle degradation. We hypothesize that the profound reduction in muscle protein turnover and modest increase in net degradation are primarily caused...

  8. Decoy State Quantum Key Distribution

    Science.gov (United States)

    Lo, Hoi-Kwong

    2005-10-01

    Quantum key distribution (QKD) allows two parties to communicate in absolute security based on the fundamental laws of physics. Up till now, it is widely believed that unconditionally secure QKD based on standard Bennett-Brassard (BB84) protocol is limited in both key generation rate and distance because of imperfect devices. Here, we solve these two problems directly by presenting new protocols that are feasible with only current technology. Surprisingly, our new protocols can make fiber-based QKD unconditionally secure at distances over 100km (for some experiments, such as GYS) and increase the key generation rate from O(η2) in prior art to O(η) where η is the overall transmittance. Our method is to develop the decoy state idea (first proposed by W.-Y. Hwang in "Quantum Key Distribution with High Loss: Toward Global Secure Communication", Phys. Rev. Lett. 91, 057901 (2003)) and consider simple extensions of the BB84 protocol. This part of work is published in "Decoy State Quantum Key Distribution", . We present a general theory of the decoy state protocol and propose a decoy method based on only one signal state and two decoy states. We perform optimization on the choice of intensities of the signal state and the two decoy states. Our result shows that a decoy state protocol with only two types of decoy states--a vacuum and a weak decoy state--asymptotically approaches the theoretical limit of the most general type of decoy state protocols (with an infinite number of decoy states). We also present a one-decoy-state protocol as a special case of Vacuum+Weak decoy method. Moreover, we provide estimations on the effects of statistical fluctuations and suggest that, even for long distance (larger than 100km) QKD, our two-decoy-state protocol can be implemented with only a few hours of experimental data. In conclusion, decoy state quantum key distribution is highly practical. This part of work is published in "Practical Decoy State for Quantum Key Distribution

  9. Non-thermal plasmas for non-catalytic and catalytic VOC abatement

    International Nuclear Information System (INIS)

    Highlights: → We review the current status of catalytic and non-catalytic VOC abatement based on a vast number of research papers. → The underlying mechanisms of plasma-catalysis for VOC abatement are discussed. → Critical process parameters that determine the influent are discussed and compared. - Abstract: This paper reviews recent achievements and the current status of non-thermal plasma (NTP) technology for the abatement of volatile organic compounds (VOCs). Many reactor configurations have been developed to generate a NTP at atmospheric pressure. Therefore in this review article, the principles of generating NTPs are outlined. Further on, this paper is divided in two equally important parts: plasma-alone and plasma-catalytic systems. Combination of NTP with heterogeneous catalysis has attracted increased attention in order to overcome the weaknesses of plasma-alone systems. An overview is given of the present understanding of the mechanisms involved in plasma-catalytic processes. In both parts (plasma-alone systems and plasma-catalysis), literature on the abatement of VOCs is reviewed in close detail. Special attention is given to the influence of critical process parameters on the removal process.

  10. Synthesis and activity of 2-oxoamides containing long chain beta-amino acids.

    Science.gov (United States)

    Constantinou-Kokotou, Violetta; Peristeraki, Anna; Kokotos, Christoforos G; Six, David A; Dennis, Edward A

    2005-07-01

    2-Oxoamides based on long chain beta-amino acids were synthesized. 1-Benzyl substituted long chain amines, needed for such synthesis, were synthesized starting from Boc-phenylalaninol. The oxidative conversion of a phenyl group to a carboxyl group was used as the key transformation synthetic step. The compounds synthesized were studied for their activity against GIVA PLA(2), and were proven to be weak inhibitors. PMID:15635664

  11. Syntheses of Macrocyclic Amides from L-Amino Acid Esters by RCM

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A series of succinate-derived macrocyclic amides( 1 ) was synthesized via ring-closing metathesis (RCM) as the key step. The substrate included 12 to 15 members. The metathesis precursors were obtained from the amide coupling of tert-butyl 3-carboxyhex-5-enoate(2) with numerous side-chain alkenylated amino acid esters of general type(3)derived from L-lysine and L-ornithine.

  12. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    Directory of Open Access Journals (Sweden)

    Marko Kreft

    2012-04-01

    Full Text Available Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation.

  13. Immobilization of tropizyme-P on amino-functionalized magnetic nanoparticles for fruit juice clarification

    OpenAIRE

    Mayur R Ladole; Abhijeet Bhimrao Muley; Indrasing D Patil; Mohammed Talib; Vishal R Parate

    2014-01-01

    Nowadays nanoparticles are widely used as a key tool for enzyme immobilization. Tropizyme-P, a pectolytic enzyme was successfully immobilized on amino functionalized magnetic nanoparticles (AMNPs) using glutaraldehyde as a cross-linking agent at 15 mM concentration and 4h cross-linking time. The average size of the synthesized AMNPs was found below 80 nm by particle size analyzer. The binding of tropizyme-P on nanoparticles was confirmed by FTIR spectroscopy. SEM analysis revealed that there ...

  14. Catalytic Friedel-Crafts reaction of aminocyclopropanes.

    Science.gov (United States)

    de Nanteuil, Florian; Loup, Joachim; Waser, Jérôme

    2013-07-19

    A Lewis acid catalyzed Friedel-Crafts reaction between donor-acceptor aminocyclopropanes and indoles and other electron-rich aromatic compounds is reported. Indole alkylation at the C3 position was generally obtained for a broad range of functional groups and substitution patterns. In the case of C3-substituted indoles, C2 alkylation was observed. The reaction gives a rapid access to gamma amino acid derivatives present in numerous bioactive molecules. PMID:23815365

  15. Catalytically favorable surface patterns in Pt-Au nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2013-01-01

    Motivated by recent experimental demonstrations of novel PtAu nanoparticles with highly enhanced catalytic properties, we present a systematic theoretical study that explores principal catalytic indicators as a function of the particle size and composition. We find that Pt electronic states in the vicinity of the Fermi level combined with a modified electron distribution in the nanoparticle due to Pt-to-Au charge transfer are the origin of the outstanding catalytic properties. From our model we deduce the catalytically favorable surface patterns that induce ensemble and ligand effects. © The Royal Society of Chemistry 2013.

  16. The Role of a Dipeptide Outer-Coordination Sphere on H2 -Production Catalysts: Influence on Catalytic Rates and Electron Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Reback, Matthew L.; Ginovska-Pangovska, Bojana; Ho, Ming-Hsun; Jain, Avijita; Squier, Thomas C.; Raugei, Simone; Roberts, John A.; Shaw, Wendy J.

    2013-02-04

    The outer-coordination sphere of enzymes acts to fine-tune the active site reactivity and control catalytic rates, suggesting that incorporation of analogous structural elements into molecular catalysts may be necessary to achieve rates comparable to those observed in enzyme systems at low overpotentials. In this work, we evaluate the effect of an amino acid and dipeptide outer-coordination sphere on [Ni(PPh2NPh-R2)2]2+ hydrogen production catalysts. A series of 12 new complexes containing non-natural amino acids or dipeptides were prepared to test the effects of positioning, size, polarity and aromaticity on catalytic activity. The non-natural amino acid was either 3-(meta- or para-aminophenyl)propionic acid terminated as an acid, an ester or an amide. Dipeptides consisted of one of the non-natural amino acids coupled to one of four amino acid esters: alanine, serine, phenylalanine or tyrosine. All of the catalysts are active for hydrogen production, with rates averaging ~1000 s-1, 40% faster than the unmodified catalyst. Structure and polarity of the aliphatic or aromatic side chains of the C-terminal peptide do not strongly influence rates. However, the presence of an amide bond increases rates, suggesting a role for the amide in assisting catalysis. Overpotentials were lower with substituents at the N-phenyl meta position. This is consistent with slower electron transfer in the less compact, para-substituted complexes, as shown in digital simulations of catalyst cyclic voltammograms and computational modeling of the complexes. Combining the current results with insights from previous results, we propose a mechanism for the role of the amino acid and dipeptide based outer-coordination sphere in molecular hydrogen production catalysts.

  17. KeyPathwayMinerWeb

    DEFF Research Database (Denmark)

    List, Markus; Alcaraz, Nicolas; Dissing-Hansen, Martin;

    2016-01-01

    We present KeyPathwayMinerWeb, the first online platform for de novo pathway enrichment analysis directly in the browser. Given a biological interaction network (e.g. protein-protein interactions) and a series of molecular profiles derived from one or multiple OMICS studies (gene expression......, for instance), KeyPathwayMiner extracts connected sub-networks containing a high number of active or differentially regulated genes (proteins, metabolites) in the molecular profiles. The web interface at (http://keypathwayminer.compbio.sdu.dk) implements all core functionalities of the KeyPathwayMiner tool set...... such as data integration, input of background knowledge, batch runs for parameter optimization and visualization of extracted pathways. In addition to an intuitive web interface, we also implemented a RESTful API that now enables other online developers to integrate network enrichment as a web service...

  18. Aminoácidos para frangos de corte Amino acids for broilers

    Directory of Open Access Journals (Sweden)

    Adhemar Rodrigues de Oliveira Neto

    2009-07-01

    Full Text Available A utilização de aminoácidos digestíveis e da proteína ideal auxiliou a reduzir as excreções de nitrogênio para o ambiente e o custo da ração formulada, sem afetar negativamente o desempenho dos frangos de corte. Entretanto, apesar de ser reconhecido como a melhor ferramenta atual para se formular rações, alguns fatores ainda devem ser elucidados para a melhor utilização do conceito de proteína ideal e para se alcançar o melhor desempenho das aves. Estes fatores são: o conhecimento das exigências dos aminoácidos não essenciais; a utilização do bom senso nas metodologias empregadas para se definir as exigências de aminoácidos; o conhecimento das exigências dos aminoácidos e a definição da proteína ideal para aves criadas em diferentes condições ambientais e sanitárias.Utilization of digestible amino acid and ideal protein concepts helped to reduce environmental nitrogen excretion and the feed formulation cost without to cause bad performance in broilers. Nevertheless, besides to be recognized that is the best tool at the moment, some factors still should be elucidate to obtain the best utilization of the ideal protein and to reach the best broiler performance. These factors are: knowing about non essential amino acids requirement; utilization good sense to use methodologies to reach amino acid requirement; knowing about amino acid requirement and ideal protein definition for broiler raised in environment and health different.

  19. Synthesis and catalytic application of palladium nanoparticles supported on kaolinite-based nanohybrid materials.

    Science.gov (United States)

    Ngnie, Gaelle; Dedzo, Gustave K; Detellier, Christian

    2016-05-31

    Palladium nanoparticles (PdNPs) were deposited on the surface of the modified clay mineral, kaolinite. To improve compatibility, abundance and control of the size of the nanoparticles, kaolinite was modified by the grafting of an amino alcohol (triethanolamine (TEA)) and an ionic liquid (1-(2-hydroxyethyl)-3-methylimidazolium (ImIL)). Characterization techniques (XRD, TGA, solid state (13)C NMR and FTIR spectroscopy) confirmed the effective grafting of these compounds on the internal surface of kaolinite. After the synthesis of PdNPs onto clay particles, TEM allowed the visualization of abundant PdNPs with sizes ranging from 4 to 6 nm, uniformly distributed onto the platelets of modified kaolinite. Unmodified clay showed low abundance and random distribution of the nanoparticles. The catalysts obtained were effective for the catalytic reduction of 4-nitrophenol (4-NP), the material with TEA being the most effective. These materials have exhibited excellent performance during the Heck and particularly the Suzuki-Miyaura coupling reactions, with reaction yields up to 100%. These catalysts showed a very slight loss in activity for three consecutive catalytic cycles (less than 10% decrease of the activity compared to the first cycle). This was an evidence that the prior grafting modification of kaolinite helps in significantly improving the quality of the synthesized NPs and also promotes their strong attachment onto the clay mineral surface. PMID:27160392

  20. Catalytic Role of Manganese Oxides in Prebiotic Nucleobases Synthesis from Formamide

    Science.gov (United States)

    Bhushan, Brij; Nayak, Arunima; Kamaluddin

    2016-06-01

    Origin of life processes might have begun with the formation of important biomonomers, such as amino acids and nucleotides, from simple molecules present in the prebiotic environment and their subsequent condensation to biopolymers. While studying the prebiotic synthesis of naturally occurring purine and pyrimidine derivatives from formamide, the manganese oxides demonstrated not only good binding for formamide but demonstrated novel catalytic activity. A novel one pot manganese oxide catalyzed synthesis of pyrimidine nucleobases like thymine is reported along with the formation of other nucleobases like purine, 9-(hydroxyacetyl) purine, cytosine, 4(3 H)-pyrimidinone and adenine in acceptable amounts. The work reported is significant in the sense that the synthesis of thymine has exhibited difficulties especially under one pot conditions and also such has been reported only under the catalytic activity of TiO2. The lower oxides of manganese were reported to show higher potential as catalysts and their existence were favored by the reducing atmospheric conditions prevalent on early Earth; thereby confirming the hypothesis that mineral having metals in reduced form might have been more active during the course of chemical evolution. Our results further confirm the role of formamide as a probable precursor for the formation of purine and pyrimidine bases during the course of chemical evolution and origin of life.

  1. Acid Separation, Catalytic Oxidation and Coagulation for ATC Waste Liquid Treatment

    Institute of Scientific and Technical Information of China (English)

    DING Xiaoling; JIA Chunning

    2005-01-01

    It is difficult to treat 2-amino-thiazoline-4-carboxylic acid (ATC) waste liquid effectively at present for its characteristics of high chemical oxygen demand (COD), high salinity and low biodegradability. In order to solve this problem, this paper presents several kinds of physical-chemical treatment unit techniques, including acid separation, catalytic oxidation and coagulation. First of all, acid separation was adopted to precipitate relevant organics at isoelectric point. When the temperature and pH value of acid separation were controlled at about 5 ℃ and 2.2 respectively, the COD removal rate could reach 27.6%. Secondly, oxidation was used to break chemical constitution of refractory organics. The optimal reaction parameters of catalytic oxidation should be 20 ℃, pH adjusted to 5.0 and [Fe2+] 300 mg/L. Then with 5% H 2O 2 added and after one-hour reaction, the COD removal rate could achieve about 52%. Finally, coagulation was adopted to remove a portion of refractory organics, and 15% polymeric molysite flocculant was the best for the coagulation, and the COD removal rate could reach about 15%. Therefore, the proposed feasible process of physical-chemical pretreatment for ATC waste liquid could have about 70% COD removed in total.

  2. Catalytic Role of Manganese Oxides in Prebiotic Nucleobases Synthesis from Formamide.

    Science.gov (United States)

    Bhushan, Brij; Nayak, Arunima; Kamaluddin

    2016-06-01

    Origin of life processes might have begun with the formation of important biomonomers, such as amino acids and nucleotides, from simple molecules present in the prebiotic environment and their subsequent condensation to biopolymers. While studying the prebiotic synthesis of naturally occurring purine and pyrimidine derivatives from formamide, the manganese oxides demonstrated not only good binding for formamide but demonstrated novel catalytic activity. A novel one pot manganese oxide catalyzed synthesis of pyrimidine nucleobases like thymine is reported along with the formation of other nucleobases like purine, 9-(hydroxyacetyl) purine, cytosine, 4(3 H)-pyrimidinone and adenine in acceptable amounts. The work reported is significant in the sense that the synthesis of thymine has exhibited difficulties especially under one pot conditions and also such has been reported only under the catalytic activity of TiO2. The lower oxides of manganese were reported to show higher potential as catalysts and their existence were favored by the reducing atmospheric conditions prevalent on early Earth; thereby confirming the hypothesis that mineral having metals in reduced form might have been more active during the course of chemical evolution. Our results further confirm the role of formamide as a probable precursor for the formation of purine and pyrimidine bases during the course of chemical evolution and origin of life. PMID:26758444

  3. Catalytic wet air oxidation of chlorophenols over supported ruthenium catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Li Ning [Institut de recherches sur la catalyse et l' environnement de Lyon (IRCELYON), UMR 5256, CNRS/Universite Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France); Descorme, Claude [Institut de recherches sur la catalyse et l' environnement de Lyon (IRCELYON), UMR 5256, CNRS/Universite Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France)]. E-mail: claude.descorme@catalyse.cnrs.fr; Besson, Michele [Institut de recherches sur la catalyse et l' environnement de Lyon (IRCELYON), UMR 5256, CNRS/Universite Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France)

    2007-07-31

    A series of noble metal (Pt, Pd, Ru) loaded zirconia catalysts were evaluated in the catalytic wet air oxidation (CWAO) of mono-chlorophenols (2-CP, 3-CP, 4-CP) under relatively mild reaction conditions. Among the investigated noble metals, Ru appeared to be the best to promote the CWAO of CPs as far as incipient-wetness impregnation was used to prepare all the catalysts. The position of the chlorine substitution on the aromatic ring was also shown to have a significant effect on the CP reactivity in the CWAO over 3 wt.% Ru/ZrO{sub 2}. 2-CP was relatively easier to degradate compared to 3-CP and 4-CP. One reason could be the higher adsorption of 2-CP on the catalyst surface. Further investigations suggested that 3 wt.% Ru/ZrO{sub 2} is a very efficient catalyst in the CWAO of 2-CP as far as high 2-CP conversion and TOC abatement could still be reached at even lower temperature (393 K) and lower total pressure (3 MPa). Additionally, the conversion of 2-CP was demonstrated to increase with the initial pH of the 2-CP solution. The dechlorination reaction is promoted at higher pH. In all cases, the adsorption of the reactants and the reaction intermediates was shown to play a major role. All parameters that would control the molecule speciation in solution or the catalyst surface properties would have a key effect.

  4. Catalytically active cobalt and copper complexes in polyelectrolyte multilayer films

    International Nuclear Information System (INIS)

    In this work an approach to obtain effective and easy reusable heterogeneous catalyst, LbL deposition of polyelectrolytes followed by covalently binding with cobalt (II) and copper (II) ions were described. Immobilization of metal complexes via covalent attachment to insoluble template is an attractive method to facilitate catalyst recovery, recycling. The reaction in the heterogeneous catalysis goes in the interface of catalyst and reaction solution and it is important to create a catalyst with large surface area. We have used polycations as polyethyleneimine (BPEI), quaternized poly(4- vynilpyridine) (QPVP) and polyanions as poly(acrylic acid) (PAA), poly(styrene sulphonate) sodium salt (PSS) and the electrostatic layer-by-layer assembly technique to make uniform thin film coating on SiO2 nanoparticles and glass slides with controllable thickness, roughness and mechanically durability. The stability of metals within multilayers in reaction condition were tested. We compared the amount of metal in PEMs of different polyelectrolytes. The stability constants of complex forming processes of the polymer-metal complexes in water and in alcohol were calculated by modified method of Bjerrum. Catalytic activity of immobilized catalysts was investigated for oxidation of toluene by molecular oxygen. Catalysts were separated from reaction mixture easily and had been used for this reaction five times without significant loss of activity. Key words: catalysis, layer-by-layer (LbL), polymer-metal complexes, oxidation, cobalt and copper immobilization

  5. Final Technical Report [Development of Catalytic Alkylation and Fluoroalkylation Methods

    Energy Technology Data Exchange (ETDEWEB)

    Vicic, David A.

    2014-05-01

    In the early stages of this DOE-funded research project, we sought to prepare and study a well-defined nickel-alkyl complex containing tridentate nitrogen donor ligands. We found that reaction of (TMEDA)NiMe2 (1) with terpyridine ligand cleanly led to the formation of (terpyridyl)NiMe (2), which we also determined to be an active alkylation catalyst. The thermal stability of 2 was unlike that seen for any of the active pybox ligands, and enabled a number of key studies on alkyl transfer reactions to be performed, providing new insights into the mechanism of nickel-mediated alkyl-alkyl cross-coupling reactions. In addition to the mechanistic studies, we showed that the terpyridyl nickel compounds can catalytically cross-couple alkyl iodides in yields up to 98% and bromides in yields up to 46 %. The yields for the bromides can be increased up to 67 % when the new palladium catalyst [(tpy’)Pd-Ph]I is used. The best route to the targeted [(tpy)NiBr] (1) was found to involve the comproportionation reaction of [(dme)NiBr{sub 2}] and [Ni(COD){sub 2}] in the presence of two equivalents of terpyridine. This reaction was driven to high yields of product formation (72 % isolated) by the precipitation of 1 from THF solvent.

  6. Grouted Connections with Shear Keys

    DEFF Research Database (Denmark)

    Pedersen, Ronnie; Jørgensen, M. B.; Damkilde, Lars;

    2012-01-01

    This paper presents a finite element model in the software package ABAQUS in which a reliable analysis of grouted pile-to-sleeve connections with shear keys is the particular purpose. The model is calibrated to experimental results and a consistent set of input parameters is estimated so that dif......This paper presents a finite element model in the software package ABAQUS in which a reliable analysis of grouted pile-to-sleeve connections with shear keys is the particular purpose. The model is calibrated to experimental results and a consistent set of input parameters is estimated so...

  7. Key World Energy Statistics 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    The IEA produced its first handy, pocket-sized summary of key energy data in 1997 and every year since then it has been more and more successful. Key World Energy Statistics contains timely, clearly-presented data on supply, transformation and consumption of all major energy sources. The interested businessman, journalist or student will have at his or her fingertips the annual Canadian production of coal, the electricity consumption in Thailand, the price of diesel oil in Spain and thousands of other useful energy facts.

  8. Key China Energy Statistics 2011

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fino-Chen, Cecilia [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-01-15

    The China Energy Group at Lawrence Berkeley National Laboratory (LBNL) was established in 1988. Over the years the Group has gained recognition as an authoritative source of China energy statistics through the publication of its China Energy Databook (CED). In 2008 the Group published the Seventh Edition of the CED (http://china.lbl.gov/research/chinaenergy-databook). This handbook summarizes key statistics from the CED and is expressly modeled on the International Energy Agency’s “Key World Energy Statistics” series of publications. The handbook contains timely, clearly-presented data on the supply, transformation, and consumption of all major energy sources.

  9. Key China Energy Statistics 2012

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fridley, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Hongyou [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fino-Chen, Cecilia [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-05-01

    The China Energy Group at Lawrence Berkeley National Laboratory (LBNL) was established in 1988. Over the years the Group has gained recognition as an authoritative source of China energy statistics through the publication of its China Energy Databook (CED). The Group has published seven editions to date of the CED (http://china.lbl.gov/research/chinaenergy-databook). This handbook summarizes key statistics from the CED and is expressly modeled on the International Energy Agency’s “Key World Energy Statistics” series of publications. The handbook contains timely, clearly-presented data on the supply, transformation, and consumption of all major energy sources.

  10. Key Revocation System for DNSSEC

    Directory of Open Access Journals (Sweden)

    Gilles Guette

    2008-06-01

    Full Text Available The Doma in Name System (DNS is a distributed tree-based database largely used to translate a human readable machine name into an IP address. The DNS security extensions (DNSSEC has been designed to protect the DNS protocol using public key cryptography and digital signatures. In this paper, we show how DNSSEC can be attacked using compromised keys and the consequences of such attacks. Then, we propose a new revocation scheme for DNSSEC based on two new resource records. There is currently no revocation system defined in the DNSSEC standard.

  11. The conserved Lysine69 residue plays a catalytic role in Mycobacterium tuberculosis shikimate dehydrogenase

    Directory of Open Access Journals (Sweden)

    Rodrigues Valnês

    2009-01-01

    Full Text Available Abstract Background The shikimate pathway is an attractive target for the development of antitubercular agents because it is essential in Mycobacterium tuberculosis, the causative agent of tuberculosis, but absent in humans. M. tuberculosis aroE-encoded shikimate dehydrogenase catalyzes the forth reaction in the shikimate pathway. Structural and functional studies indicate that Lysine69 may be involved in catalysis and/or substrate binding in M. tuberculosis shikimate dehydrogenase. Investigation of the kinetic properties of mutant enzymes can bring important insights about the role of amino acid residues for M. tuberculosis shikimate dehydrogenase. Findings We have performed site-directed mutagenesis, steady-state kinetics, equilibrium binding measurements and molecular modeling for both the wild-type M. tuberculosis shikimate dehydrogenase and the K69A mutant enzymes. The apparent steady-state kinetic parameters for the M. tuberculosis shikimate dehydrogenase were determined; the catalytic constant value for the wild-type enzyme (50 s-1 is 68-fold larger than that for the mutant K69A (0.73 s-1. There was a modest increase in the Michaelis-Menten constant for DHS (K69A = 76 μM; wild-type = 29 μM and NADPH (K69A = 30 μM; wild-type = 11 μM. The equilibrium dissociation constants for wild-type and K69A mutant enzymes are 32 (± 4 μM and 134 (± 21, respectively. Conclusion Our results show that the residue Lysine69 plays a catalytic role and is not involved in substrate binding for the M. tuberculosis shikimate dehydrogenase. These efforts on M. tuberculosis shikimate dehydrogenase catalytic mechanism determination should help the rational design of specific inhibitors, aiming at the development of antitubercular drugs.

  12. Aluminosilicate nanoparticles for catalytic hydrocarbon cracking.

    Science.gov (United States)

    Liu, Yu; Pinnavaia, Thomas J

    2003-03-01

    Aluminosilicate nanoparticles containing 9.0-20 nm mesopores were prepared through the use of protozeolitic nanoclusters as the inorganic precursor and starch as a porogen. The calcined, porogen-free composition containing 2 mol % aluminum exhibited the porosity, hydrothermal stability, and acidity needed for the cracking of very large hydrocarbons. In fact, the hydrothermal stability of the nanoparticles to pure steam at 800 degrees C, along with the cumene cracking activity, surpassed the analogous performance properties of ultrastable Y zeolite, the main catalyst component of commercial cracking catalysts. The remarkable hydrothermal stability and catalytic reactivity of the new nanoparticles are attributable to a unique combination of two factors, the presence of protozeolitic nanoclusters in the pore walls and the unprecedented pore wall thickness (7-15 nm). In addition, the excellent catalytic longevity of the nanoparticles is most likely facilitated by the small domain size of the nanoparticles that greatly improves access to the acid sites on the pore walls and minimizes the diffusion length of coke precursors out of the pores. PMID:12603109

  13. Catalytic converter for next generation turbine engines

    Energy Technology Data Exchange (ETDEWEB)

    Saruhan, B.; Schulz, U.; Leyens, C. [German Aerospace Center (DLR), Inst. of Materials Research, Cologne (Germany)

    2004-07-01

    EB-PVD thermal barrier coatings (TBCs) are used on advanced turbine blades to increase the engine efficiency and improve the blade performance. partially yttria stabilized zirconia (PYSZ) is the standard material for current TBC applications. Lower thermal stability of the PYSZ-based TBCs, however, seriously affects the performance at demanding service temperatures. For the new generation turbines where higher operating gas temperatures (> 1200 C) are to expect, the performance of turbine blades can be improved by replacing the state-art-of-material PYSZ with superior thermal barrier coatings which belong to different crystal structures such as magnetoplumbite. Magnetoplumbite structure through its interlocking grain morphology and unique crystal structure provides essentially a sintering resistant, low thermal conductive layer, but also imparts a catalytic layer to reduce the environmentally harmful substances produced during propulsion and increase the catalytic performance. The complex structures of these compounds make it difficult to realize by conventional methods and requires careful adjustment of process parameters. The morphology and crystallographic aspects of these coatings as well as the mechanisms controlling the improvement are highlighted. (orig.)

  14. Catalytic reactor for low-Btu fuels

    Science.gov (United States)

    Smith, Lance; Etemad, Shahrokh; Karim, Hasan; Pfefferle, William C.

    2009-04-21

    An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

  15. Electrochemical promotion of sulfur dioxide catalytic oxidation

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bandur, Viktor; Cappeln, Frederik Vilhelm;

    2000-01-01

    The effect of electrochemical polarization on the catalytic SO2 oxidation in the molten V2O5-K2S2O7 system has been studied using a gold working electrode in the temperature range 400-460 degrees C. A similar experiment has been performed with the industrial catalyst VK-58. The aim of the present...... investigation was to study a possible non-Faradaic electrochemical promotion of the liquid-phase catalytic reaction. It has been shown that there are two negative potential promotion areas with maximum effects at approximately -0.1 and -0.2 V, and one positive potential promotion area with the maximum effect...... caused by the negative charge on the electrode. The Faradaic part of the promoting effect under positive polarization has been explained as the electrochemical pushing of the V(V) V(IV) equilibrium in the direction of V(V) formation. It has also been shown that when using the industrial VK-58 catalyst...

  16. Computational and Physical Analysis of Catalytic Compounds

    Science.gov (United States)

    Wu, Richard; Sohn, Jung Jae; Kyung, Richard

    2015-03-01

    Nanoparticles exhibit unique physical and chemical properties depending on their geometrical properties. For this reason, synthesis of nanoparticles with controlled shape and size is important to use their unique properties. Catalyst supports are usually made of high-surface-area porous oxides or carbon nanomaterials. These support materials stabilize metal catalysts against sintering at high reaction temperatures. Many studies have demonstrated large enhancements of catalytic behavior due to the role of the oxide-metal interface. In this paper, the catalyzing ability of supported nano metal oxides, such as silicon oxide and titanium oxide compounds as catalysts have been analyzed using computational chemistry method. Computational programs such as Gamess and Chemcraft has been used in an effort to compute the efficiencies of catalytic compounds, and bonding energy changes during the optimization convergence. The result illustrates how the metal oxides stabilize and the steps that it takes. The graph of the energy computation step(N) versus energy(kcal/mol) curve shows that the energy of the titania converges faster at the 7th iteration calculation, whereas the silica converges at the 9th iteration calculation.

  17. Catalytic combustion in gas stoves - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Hjelm, Anna-Karin [CATATOR AB, Lund (Sweden)

    2003-06-01

    Several independent studies show that gas stoves to some degree contribute to the indoor emissions of NO{sub x} especially in situations were the ventilation flow is poor. The peak-NO{sub x} concentrations can reach several hundred ppb but the integral concentration seldom exceeds about 20 - 50 ppb, which corresponds to an indoor-outdoor ratio of about 1 - 2.5. Epidemiological studies indicate increasing problems with respiratory symptoms in sensitive people at concentrations as low as 15 ppb of NO{sub 2}. Consequently, the NO{sub x}-concentration in homes where gas stoves are used is high enough to cause health effects. However, in situations where the ventilation flow is high (utilisation of ventilation hoods) the NO{sub x}-emissions are not likely to cause any health problems. This study has been aimed at investigating the possibilities to reduce the NO{sub x} emissions from gas stoves by replacing the conventional flame combustion with catalytic combustion. The investigation is requested by Swedish Gas Center, and is a following-up work of an earlier conducted feasibility study presented in April-2002. The present investigation reports on the possibility to use cheap and simple retro-fit catalytic design suggestions for traditional gas stoves. Experiments have been conducted with both natural and town gas, and parameters such as emissions of NO{sub x}, CO and unburned fuel gas and thermal efficiency, etc, have been examined and are discussed. The results show that it is possible to reduce the NO{sub x} emissions up to 80% by a simple retro-fit installation, without decreasing the thermal efficiency of the cooking plate. The measured source strengths correspond to indoor NO{sub x} concentrations that are below or equal to the average outdoor concentration, implying that no additional detrimental health effects are probable. The drawback of the suggested installations is that the concentration of CO and in some cases also CH{sub 4} are increased in the flue gases

  18. Polarographic catalytic wave of hydrogen--Parallel catalytic hydrogen wave of bovine serum albumin in thepresence of oxidants

    Institute of Scientific and Technical Information of China (English)

    GUO; Wei(过玮); LIU; Limin(刘利民); LIN; Hong(林洪); SONG; Junfeng(宋俊峰)

    2002-01-01

    A polarographic catalytic hydrogen wave of bovine serum albumin (BSA) at about -1.80 V (vs. SCE) in NH4Cl-NH3@H2O buffer is further catalyzed by such oxidants as iodate, persulfate and hydrogen peroxide, producing a kinetic wave. Studies show that the kinetic wave is a parallel catalytic wave of hydrogen, which resulted from that hydrogen ion is electrochemically reduced and chemically regenerated through oxidation of its reduction product, atomic hydrogen, by oxidants mentioned above. It is a new type of poralographic catalytic wave of protein, which is suggested to be named as a parallel catalytic hydrogen wave.

  19. Intermolecular Vibrations of Hydrophobic Amino Acids

    Science.gov (United States)

    Williams, Michael Roy Casselman

    Hydrophobic amino acids interact with their chemical environment through a combination of electrostatic, hydrogen bonding, dipole, induced dipole, and dispersion forces. These interactions all have their own characteristic energy scale and distance dependence. The low-frequency (0.1-5 THz, 5-150 cm-1) vibrational modes of amino acids in the solid state are a direct indicator of the interactions between the molecules, which include interactions between an amino acid functional group and its surroundings. This information is central to understanding the dynamics and morphology of proteins. The alpha-carbon is a chiral center for all of the hydrophobic amino acids, meaning that they exist in two forms, traditionally referred to as L- and D-enantiomers. This nomenclature indicates which direction the molecule rotates plane-polarized visible light (levorotory and dextrorotory). Chiral a-amino acids in proteins are exclusively the L-variety In the solid state, the crystal lattice of the pure L-enantiomer is the mirror image of the D-enantiomer crystal lattice. These solids are energetically identical. Enantiomers also have identical spectroscopic properties except when the measurement is polarization sensitive. A mixture of equal amounts D- and L-amino acid enantiomers can crystallize into a racemic (DL-) structure that is different from that of the pure enantiomers. Whether a solution of both enantiomers will crystallize into a racemic form or spontaneously resolve into a mixture of separate D- and L-crystals largely depends on the interactions between molecules available in the various possible configurations. This is an active area of research. Low-frequency vibrations with intermolecular character are very sensitive to changes in lattice geometry, and consequently the vibrational spectra of racemic crystals are usually quite distinct from the spectra of the crystals of the corresponding pure enantiomers in the far-infrared (far-IR). THz time-domain spectroscopy (THz

  20. Key World Energy Statistics 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Key World Energy Statistics contains timely, clearly-presented data on supply, transformation and consumption of all major energy sources. The interested businessman, journalist or student will have at his or her fingertips the annual Canadian production of coal, the electricity consumption in Thailand, the price of diesel oil in Spain and thousands of other useful energy facts.