WorldWideScience

Sample records for catalytic independent induction

  1. Antibody proteases: induction of catalytic response.

    Science.gov (United States)

    Gabibov, A G; Friboulet, A; Thomas, D; Demin, A V; Ponomarenko, N A; Vorobiev, I I; Pillet, D; Paon, M; Alexandrova, E S; Telegin, G B; Reshetnyak, A V; Grigorieva, O V; Gnuchev, N V; Malishkin, K A; Genkin, D D

    2002-10-01

    Most of the data accumulated throughout the years on investigation of catalytic antibodies indicate that their production increases on the background of autoimmune abnormalities. The different approaches to induction of catalytic response toward recombinant gp120 HIV-1 surface protein in mice with various autoimmune pathologies are described. The peptidylphosphonate conjugate containing structural part of gp120 molecule is used for reactive immunization of NZB/NZW F1, MRL, and SJL mice. The specific modification of heavy and light chains of mouse autoantibodies with Val-Ala-Glu-Glu-Glu-Val-PO(OPh)2 reactive peptide was demonstrated. Increased proteolytic activity of polyclonal antibodies in SJL mice encouraged us to investigate the production of antigen-specific catalytic antibodies on the background of induced experimental autoimmune encephalomyelitis (EAE). The immunization of autoimmune-prone mice with the engineered fusions containing the fragments of gp120 and encephalitogenic epitope of myelin basic protein (MBP(89-104)) was made. The proteolytic activity of polyclonal antibodies isolated from the sera of autoimmune mice immunized by the described antigen was shown. Specific immune response of SJL mice to these antigens was characterized. Polyclonal antibodies purified from sera of the immunized animals revealed proteolytic activity. The antiidiotypic approach to raise the specific proteolytic antibody as an "internal image" of protease is described. The "second order" monoclonal antibodies toward subtilisin Carlsberg revealed pronounced proteolytic activity.

  2. Characterizing RecA-independent induction of Shiga toxin2-encoding phages by EDTA treatment.

    Directory of Open Access Journals (Sweden)

    Lejla Imamovic

    Full Text Available BACKGROUND: The bacteriophage life cycle has an important role in Shiga toxin (Stx expression. The induction of Shiga toxin-encoding phages (Stx phages increases toxin production as a result of replication of the phage genome, and phage lysis of the host cell also provides a means of Stx toxin to exit the cell. Previous studies suggested that prophage induction might also occur in the absence of SOS response, independently of RecA. METHODOLOGY/PRINCIPAL FINDINGS: The influence of EDTA on RecA-independent Stx2 phage induction was assessed, in laboratory lysogens and in EHEC strains carrying Stx2 phages in their genome, by Real-Time PCR. RecA-independent mechanisms described for phage λ induction (RcsA and DsrA were not involved in Stx2 phage induction. In addition, mutations in the pathway for the stress response of the bacterial envelope to EDTA did not contribute to Stx2 phage induction. The effect of EDTA on Stx phage induction is due to its chelating properties, which was also confirmed by the use of citrate, another chelating agent. Our results indicate that EDTA affects Stx2 phage induction by disruption of the bacterial outer membrane due to chelation of Mg(2+. In all the conditions evaluated, the pH value had a decisive role in Stx2 phage induction. CONCLUSIONS/SIGNIFICANCE: Chelating agents, such as EDTA and citrate, induce Stx phages, which raises concerns due to their frequent use in food and pharmaceutical products. This study contributes to our understanding of the phenomenon of induction and release of Stx phages as an important factor in the pathogenicity of Shiga toxin-producing Escherichia coli (STEC and in the emergence of new pathogenic strains.

  3. A novel tumor suppressor function of glycine N-methyltransferase is independent of its catalytic activity but requires nuclear localization.

    Directory of Open Access Journals (Sweden)

    Suchandra DebRoy

    Full Text Available Glycine N-methyltransferase (GNMT, an abundant cytosolic enzyme, catalyzes the transfer of a methyl group from S-adenosylmethionine (SAM to glycine generating S-adenosylhomocysteine and sarcosine (N-methylglycine. This reaction is regulated by 5-methyltetrahydrofolate, which inhibits the enzyme catalysis. In the present study, we observed that GNMT is strongly down regulated in human cancers and is undetectable in cancer cell lines while the transient expression of the protein in cancer cells induces apoptosis and results in the activation of ERK1/2 as an early pro-survival response. The antiproliferative effect of GNMT can be partially reversed by treatment with the pan-caspase inhibitor zVAD-fmk but not by supplementation with high folate or SAM. GNMT exerts the suppressor effect primarily in cells originated from malignant tumors: transformed cell line of non-cancer origin, HEK293, was insensitive to GNMT. Of note, high levels of GNMT, detected in regenerating liver and in NIH3T3 mouse fibroblasts, do not produce cytotoxic effects. Importantly, GNMT, a predominantly cytoplasmic protein, was translocated into nuclei upon transfection of cancer cells. The presence of GNMT in the nuclei was also observed in normal human tissues by immunohistochemical staining. We further demonstrated that the induction of apoptosis is associated with the GNMT nuclear localization but is independent of its catalytic activity or folate binding. GNMT targeted to nuclei, through the fusion with nuclear localization signal, still exerts strong antiproliferative effects while its restriction to cytoplasm, through the fusion with nuclear export signal, prevents these effects (in each case the protein was excluded from cytosol or nuclei, respectively. Overall, our study indicates that GNMT has a secondary function, as a regulator of cellular proliferation, which is independent of its catalytic role.

  4. Methodology to assay CYP2E1 mixed function oxidase catalytic activity and its induction

    Directory of Open Access Journals (Sweden)

    Arthur I. Cederbaum

    2014-01-01

    Full Text Available The cytochrome P450 mixed function oxidase enzymes are the major catalysts involved in drug metabolism. There are many forms of P450. CYP2E1 metabolizes many toxicologically important compounds including ethanol and is active in generating reactive oxygen species. Since several of the contributions in the common theme series “Role of CYP2E1 and Oxidative/Nitrosative Stress in the Hepatotoxic Actions of Alcohol” discuss CYP2E1, this methodology review describes assays on how CYP2E1 catalytic activity and its induction by ethanol and other inducers can be measured using substrate probes such as the oxidation of para-nitrophenol to para-nitrocatechol and the oxidation of ethanol to acetaldehyde. Approaches to validate that a particular reaction e.g. oxidation of a drug or toxin is catalyzed by CYP2E1 or that induction of that reaction is due to induction of CYP2E1 are important and specific examples using inhibitors of CYP2E1, anti-CYP2E1 IgG or CYP2E1 knockout and knockin mice will be discussed.

  5. Non-catalytic direct synthesis of graphene on Si (111) wafers by using inductively-coupled plasma chemical vapor deposition

    Science.gov (United States)

    Hwang, Sung Won; Shin, Hyunho; Lee, Bongsoo; Choi, Suk-Ho

    2016-08-01

    We employ inductively-coupled plasma chemical vapor deposition for non-catalytic growth of graphene on a Si (111) wafer or glass substrate, which is useful for practical device applications of graphene without transfer processes. At a RF power (P) of 500 W under C2H2 flow, defect-free 3 ˜ 5-layer graphene is grown on Si (111) wafers, but on glass substrate, the layer is thicker and defective, as characterized by Raman spectroscopy and electron microscopy. The graphene is produced on Si (111) for P down to 190 W whereas it is almost not formed on glass for P < 250 W, possibly resulting from the weak catalytic-reaction-like effect on glass. These results are discussed based on possible growth mechanisms.

  6. Thiazolidinediones inhibit TNFα induction of PAI-1 independent of PPARγ activation

    International Nuclear Information System (INIS)

    Liu, H.B.; Hu, Y.S.; Medcalf, R.L.; Simpson, R.W.; Dear, A.E.

    2005-01-01

    Increased plasminogen activator inhibitor type 1 (PAI-1) levels are observed in endothelial cells stimulated by tumour necrosis factor α (TNFα). Thiazolidinediones (TZDs) may inhibit elevated endothelial cell PAI-1 accounting, in part, for the putative atheroprotective effects of TZDs. In an endothelial cell line, Rosiglitazone (RG) and Pioglitazone (PG) inhibited induction of PAI-1 by TNFα. The specific peroxisome proliferator-activated receptor γ (PPARγ) inhibitor, SR-202, failed to modulate this effect. RG also inhibited the effect of TNFα on a reporter gene construct harbouring the proximal PAI-1 promoter and PAI-1 mRNA in cells co-transfected with a dominant-negative PPARγ construct. RG and PG attenuated TNFα-mediated induction of trans-acting factor(s) Nur77/Nurr1 and binding of nuclear proteins (NP) to the cis-acting element (NBRE). SR-202 failed to modulate these effects. The observations suggest TZDs inhibit TNFα-mediated PAI-1 induction independent of inducible PPARγ activation and this may involve in the modulation of Nur77/Nurr1 expression and NP binding to the PAI-1 NBRE

  7. Measurements of H-atom density by a catalytic probe

    International Nuclear Information System (INIS)

    Vesel, A.; Drenik, A.; Mozetic, M.

    2006-01-01

    One of the important plasma parameters in tokamaks is the density of neutral hydrogen atoms which can be measured by catalytic probes. The method is based on the catalytic recombination of H atoms on the metal surface. In order to prevent a substantial drain of atoms by the probe, it should be made as small as possible. But still this effect can not be neglected. Therefore a study of the influence of a catalytic probe on the H-atom density was performed. The source of neutral H-atoms was inductively coupled RF hydrogen plasma. The gas from the discharge vessel was leaked to an experimental chamber through a narrow tube with the diameter of 5 mm and the length of 6 cm. Charged particles created in the discharge vessel were recombined on the walls of the narrow tube, so that the gas entering the experimental chamber was a mixture of hydrogen atoms and molecules only. The density of H-atoms in the experimental chamber was measured with two nickel catalytic probes. One probe was at fixed position and the other one was made movable. A change in the probe signal of the fixed probe was measured versus the position of the movable probe. The measurements were performed at the pressures between 10 Pa and 200 Pa and at two different RF powers 200 W and 300 W. It was found that the density of neutral hydrogen atoms was reduced for about 20% due to the presence of the probe. This result was independent from the pressure in the experimental chamber. (author)

  8. Role of regulatory subunits and protein kinase inhibitor (PKI) in determining nuclear localization and activity of the catalytic subunit of protein kinase A.

    Science.gov (United States)

    Wiley, J C; Wailes, L A; Idzerda, R L; McKnight, G S

    1999-03-05

    Regulation of protein kinase A by subcellular localization may be critical to target catalytic subunits to specific substrates. We employed epitope-tagged catalytic subunit to correlate subcellular localization and gene-inducing activity in the presence of regulatory subunit or protein kinase inhibitor (PKI). Transiently expressed catalytic subunit distributed throughout the cell and induced gene expression. Co-expression of regulatory subunit or PKI blocked gene induction and prevented nuclear accumulation. A mutant PKI lacking the nuclear export signal blocked gene induction but not nuclear accumulation, demonstrating that nuclear export is not essential to inhibit gene induction. When the catalytic subunit was targeted to the nucleus with a nuclear localization signal, it was not sequestered in the cytoplasm by regulatory subunit, although its activity was completely inhibited. PKI redistributed the nuclear catalytic subunit to the cytoplasm and blocked gene induction, demonstrating that the nuclear export signal of PKI can override a strong nuclear localization signal. With increasing PKI, the export process appeared to saturate, resulting in the return of catalytic subunit to the nucleus. These results demonstrate that both the regulatory subunit and PKI are able to completely inhibit the gene-inducing activity of the catalytic subunit even when the catalytic subunit is forced to concentrate in the nuclear compartment.

  9. Independent, parallel pathways to CXCL10 induction in HCV-infected hepatocytes.

    Science.gov (United States)

    Brownell, Jessica; Wagoner, Jessica; Lovelace, Erica S; Thirstrup, Derek; Mohar, Isaac; Smith, Wesley; Giugliano, Silvia; Li, Kui; Crispe, I Nicholas; Rosen, Hugo R; Polyak, Stephen J

    2013-10-01

    The pro-inflammatory chemokine CXCL10 is induced by HCV infection in vitro and in vivo, and is associated with outcome of IFN (interferon)-based therapy. We studied how hepatocyte sensing of early HCV infection via TLR3 (Toll-like receptor 3) and RIG-I (retinoic acid inducible gene I) led to expression of CXCL10. CXCL10, type I IFN, and type III IFN mRNAs and proteins were measured in PHH (primary human hepatocytes) and hepatocyte lines harboring functional or non-functional TLR3 and RIG-I pathways following HCV infection or exposure to receptor-specific stimuli. HuH7 human hepatoma cells expressing both TLR3 and RIG-I produced maximal CXCL10 during early HCV infection. Neutralization of type I and type III IFNs had no impact on virus-induced CXCL10 expression in TLR3+/RIG-I+ HuH7 cells, but reduced CXCL10 expression in PHH. PHH cultures were positive for monocyte, macrophage, and dendritic cell mRNAs. Immunodepletion of non-parenchymal cells (NPCs) eliminated marker expression in PHH cultures, which then showed no IFN requirement for CXCL10 induction during HCV infection. Immunofluorescence studies also revealed a positive correlation between intracellular HCV Core and CXCL10 protein expression (r(2) = 0.88, p ≤ 0.001). While CXCL10 induction in hepatocytes during the initial phase of HCV infection is independent of hepatocyte-derived type I and type III IFNs, NPC-derived IFNs contribute to CXCL10 induction during HCV infection in PHH cultures. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  10. Direct catalytic hydrothermal liquefaction of spirulina to biofuels with hydrogen

    Science.gov (United States)

    Zeng, Qin; Liao, Hansheng; Zhou, Shiqin; Li, Qiuping; Wang, Lu; Yu, Zhihao; Jing, Li

    2018-01-01

    We report herein on acquiring biofuels from direct catalytic hydrothermal liquefaction of spirulina. The component of bio-oil from direct catalytic hydrothermal liquefaction was similar to that from two independent processes (including liquefaction and upgrading of biocrude). However, one step process has higher carbon recovery, due to the less loss of carbons. It was demonstrated that the yield and HHV of bio-oil from direct catalytic algae with hydrothermal condition is higher than that from two independent processes.

  11. Regulation of human gamma-glutamylcysteine synthetase: co-ordinate induction of the catalytic and regulatory subunits in HepG2 cells.

    Science.gov (United States)

    Galloway, D C; Blake, D G; Shepherd, A G; McLellan, L I

    1997-11-15

    We have shown that in HepG2 cells treatment with 75 microM t-butylhydroquinone (tBHQ) results in a 2.5-fold increase in glutathione concentration, as part of an adaptive response to chemical stress. In these cells the elevation in intracellular glutathione level was found to be accompanied by an increase of between 2-fold and 3-fold in the level of the 73 kDa catalytic subunit of gamma-glutamylcysteine synthetase (heavy subunit, GCSh) and the 31 kDa regulatory subunit (light subunit, GCSl). Levels of GCSh and GCSl mRNA were increased by up to 5-fold in HepG2 cells in response to tBHQ. To study the transcriptional regulation of GCSl, we subcloned 6.7 kb of the upstream region of the human GCSl gene (GLCLR) from a genomic clone isolated from a P1 lymphoblastoid cell line genomic library. HepG2 cells were transfected with GLCLR promoter reporter constructs and treated with tBHQ. This resulted in an induction of between 1.5-fold and 3.5-fold in reporter activity, indicating that transcriptional regulation of GLCLR is likely to contribute to the induction of GCSl by tBHQ in HepG2 cells. Sequence analysis of the promoter region demonstrated the presence of putative enhancer elements including AP-1 sites and an antioxidant-responsive element, which might be involved in the observed induction of the GLCLR promoter.

  12. The induction of rho'- mutants by UV or γ-rays is independent of the nuclear recombinational repair pethway in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Heude, M

    1988-01-01

    In order to discover whether the nuclear recombinational repair pathway also acts on lesions induced in mitochondrial DNA (mtDNA), the possible role of the RAD50, -51, -55 and -56 genes on the induction of rho - mutants by radiations was studied. Such induction appeared to be independent of this pathway. Nevertheless, an efficient induction of respiration-deficient mutants was observed in γ-irradiated rad52 diploids. We demonstrate that these mutants do not result from a lack of mtDNA repair, but from chromosome losses induced by γ-rays. Such an impairment of the respiratory ability of diploids by chromosome lossed was effectively observed in the aneuploid progeny of unirradiated RAD + cdc6 diploids incubated at the restrictive temperature. (author). 60 refs.; 3 figs.; 6 tabs

  13. Internalisation of uncross-linked rituximab is not essential for the induction of caspase-independent killing in Burkitt lymphoma cell lines.

    Science.gov (United States)

    Turzanski, Julie; Daniels, Ian; Haynes, Andrew P

    2008-08-01

    Characterising the mechanisms underpinning caspase-independent programmed cell death (CI-PCD) induction by uncross-linked rituximab in B-cells may positively impact upon the treatment of disease states in which the classical apoptotic pathway is disabled. The necessity of rituximab internalisation for CI-PCD induction was investigated by flow cytometry and confocal microscopy in human BL cell lines with (e.g. Mutu I) and without (Mutu III) susceptibility to rituximab-induced killing. Flow cytometry demonstrated small, significant and similar amounts of rituximab internalisation by Mutu I cells after 1, 2, 4 and 24 h (p internalisation (p = 0.02, n = 5 and p = 0.0002, n = 6, respectively) in Mutu I cells, but confocal microscopy showed no correlation between internalised rituximab and phosphatidylserine exposure. We conclude that rituximab internalisation is not essential for CI-PCD induction in BL cell lines.

  14. Catalytic pyrolysis of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Vail' eva, N A; Buyanov, R A

    1979-01-01

    Catalytic pyrolysis of petroleum fractions (undecane) was performed with the object of clarifying such questions as the mechanism of action of the catalyst, the concepts of activity and selectivity of the catalyst, the role of transport processes, the temperature ranges and limitations of the catalytic process, the effect of the catalyst on secondary processes, and others. Catalysts such as quartz, MgO, Al/sub 2/O/sub 3/, were used. Analysis of the experimental findings and the fact that the distribution of products is independent of the nature of the surface, demonstrate that the pyrolysis of hydrocarbons in the presence of catalysts is based on the heterogeneous-homogeneous radical-chain mechanism of action, and that the role of the catalysts reduces to increasing the concentration of free radicals. The concept of selectivity cannot be applied to catalysts here, since they do not affect the mechanism of the unfolding of the process of pyrolysis and their role consists solely in initiating the process. In catalytic pyrolysis the concepts of kinetic and diffusive domains of unfolding of the catalytic reaction do not apply, and only the outer surface of the catalyst is engaged, whereas the inner surface merely promotes deletorious secondary processes reducing the selectivity of the process and the activity of the catalyst. 6 references, 2 figures.

  15. Real life experimental determination of platinum group metals content in automotive catalytic converters

    Science.gov (United States)

    Yakoumis, I.; Moschovi, A. M.; Giannopoulou, I.; Panias, D.

    2018-03-01

    The real life experimental protocol for the preparation of spent automobile catalyst samples for elemental analysis is thoroughly described in the following study. Collection, sorting and dismantling, homogenization and sample preparation for X-Ray fluorescence spectroscopy and Atomic Adsorption Spectroscopy combined with Inductive coupled plasma mass spectrometry are discussed in detail for both ceramic and metallic spent catalysts. The concentrations of Platinum Group Metals (PGMs) in spent catalytic converters are presented based on typical consignments of recycled converters (more than 45,000 pieces) from the Greek Market. The conclusions clearly denoted commercial metallic catalytic foil contains higher PGMs loading than ceramic honeycombs. On the other hand, the total PGMs loading in spent ceramic catalytic converters has been found higher than the corresponding value for the metallic ones.

  16. PINGU: PredIction of eNzyme catalytic residues usinG seqUence information.

    Directory of Open Access Journals (Sweden)

    Priyadarshini P Pai

    Full Text Available Identification of catalytic residues can help unveil interesting attributes of enzyme function for various therapeutic and industrial applications. Based on their biochemical roles, the number of catalytic residues and sequence lengths of enzymes vary. This article describes a prediction approach (PINGU for such a scenario. It uses models trained using physicochemical properties and evolutionary information of 650 non-redundant enzymes (2136 catalytic residues in a support vector machines architecture. Independent testing on 200 non-redundant enzymes (683 catalytic residues in predefined prediction settings, i.e., with non-catalytic per catalytic residue ranging from 1 to 30, suggested that the prediction approach was highly sensitive and specific, i.e., 80% or above, over the incremental challenges. To learn more about the discriminatory power of PINGU in real scenarios, where the prediction challenge is variable and susceptible to high false positives, the best model from independent testing was used on 60 diverse enzymes. Results suggested that PINGU was able to identify most catalytic residues and non-catalytic residues properly with 80% or above accuracy, sensitivity and specificity. The effect of false positives on precision was addressed in this study by application of predicted ligand-binding residue information as a post-processing filter. An overall improvement of 20% in F-measure and 0.138 in Correlation Coefficient with 16% enhanced precision could be achieved. On account of its encouraging performance, PINGU is hoped to have eventual applications in boosting enzyme engineering and novel drug discovery.

  17. Synthesis, Characterization, and Catalytic Activity of Pd(II Salen-Functionalized Mesoporous Silica

    Directory of Open Access Journals (Sweden)

    Rotcharin Sawisai

    2017-01-01

    Full Text Available Salen ligand synthesized from 2-hydroxybenzaldehyde and 2-hydroxy-1-naphthaldehyde was used as a palladium chelating ligand for the immobilization of the catalytic site. Mesoporous silica supported palladium catalysts were prepared by immobilizing Pd(OAc2 onto a mesoporous silica gel through the coordination of the imine-functionalized mesoporous silica gel. The prepared catalysts were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, energy dispersive X-ray (EDX, inductivity couple plasma (ICP, nitrogen adsorption-desorption, and Fourier transform infrared (FT-IR spectroscopy. The solid catalysts showed higher activity for the hydroamination of C-(tetra-O-acetyl-β-D-galactopyranosylallene with aromatic amines compared with the corresponding homogenous catalyst. The heterogeneous catalytic system can be easily recovered by simple filtration and reused for up to five cycles with no significant loss of catalytic activity.

  18. Intracellular β-Glucosidases CEL1a and CEL1b Are Essential for Cellulase Induction on Lactose in Trichoderma reesei

    Science.gov (United States)

    Xu, Jintao; Zhao, Guolei; Kou, Yanbo; Zhang, Weixin; Zhou, Qingxin; Chen, Guanjun

    2014-01-01

    Lactose (1,4-O-β-d-galacto-pyranosyl-d-glucose) induces cellulolytic enzymes in Trichoderma reesei and is in fact one of the most important soluble carbon sources used to produce cellulases on an industrial level. The mechanism underlying the induction is, however, not fully understood. In this study, we investigated the cellular functions of the intracellular β-glucosidases CEL1a and CEL1b in the induction of cellulase genes by lactose in T. reesei. We demonstrated that while CEL1a and CEL1b were functionally equivalent in mediating the induction, the simultaneous absence of these intracellular β-glucosidases abolished cbh1 gene expression on lactose. d-Galactose restored the efficient cellulase gene induction in the Δcel1a strain independently of its reductive metabolism, but not in the Δcel1a Δcel1b strain. A further comparison of the transcriptional responses of the Δcel1a Δcel1b strain complemented with wild-type CEL1a or a catalytically inactive CEL1a version and the Δcel1a strain constitutively expressing CEL1a or the Kluyveromyces lactis β-galactosidase LAC4 showed that both the CEL1a protein and its glycoside hydrolytic activity were indispensable for cellulase induction by lactose. We also present evidence that intracellular β-glucosidase-mediated lactose induction is further conveyed to XYR1 to ensure the efficiently induced expression of cellulase genes. PMID:24879125

  19. Independent signalling cues underpin arbuscular mycorrhizal symbiosis and large lateral root induction in rice.

    Science.gov (United States)

    Chiu, Chai Hao; Choi, Jeongmin; Paszkowski, Uta

    2018-01-01

    Perception of arbuscular mycorrhizal fungi (AMF) triggers distinct plant signalling responses for parallel establishment of symbiosis and induction of lateral root formation. Rice receptor kinase CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1) and α/β-fold hydrolase DWARF14-LIKE (D14L) are involved in pre-symbiotic fungal perception. After 6 wk post-inoculation with Rhizophagus irregularis, root developmental responses, fungal colonization and transcriptional responses were monitored in two independent cerk1 null mutants; a deletion mutant lacking D14L, and with D14L complemented as well as their respective wild-type cultivars (cv Nipponbare and Nihonmasari). Here we show that although essential for symbiosis, D14L is dispensable for AMF-induced root architectural modulation, which conversely relies on CERK1. Our results demonstrate uncoupling of symbiosis and the symbiotic root developmental signalling during pre-symbiosis with CERK1 required for AMF-induced root architectural changes. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  20. Teaching Inductive Reasoning with Puzzles

    Science.gov (United States)

    Wanko, Jeffrey J.

    2017-01-01

    Working with language-independent logic structures can help students develop both inductive and deductive reasoning skills. The Japanese publisher Nikoli (with resources available both in print and online) produces a treasure trove of language-independent logic puzzles. The Nikoli print resources are mostly in Japanese, creating the extra…

  1. Induction melter apparatus

    Science.gov (United States)

    Roach, Jay A [Idaho Falls, ID; Richardson, John G [Idaho Falls, ID; Raivo, Brian D [Idaho Falls, ID; Soelberg, Nicholas R [Idaho Falls, ID

    2008-06-17

    Apparatus and methods of operation are provided for a cold-crucible-induction melter for vitrifying waste wherein a single induction power supply may be used to effect a selected thermal distribution by independently energizing at least two inductors. Also, a bottom drain assembly may be heated by an inductor and may include an electrically resistive heater. The bottom drain assembly may be cooled to solidify molten material passing therethrough to prevent discharge of molten material therefrom. Configurations are provided wherein the induction flux skin depth substantially corresponds with the central longitudinal axis of the crucible. Further, the drain tube may be positioned within the induction flux skin depth in relation to material within the crucible or may be substantially aligned with a direction of flow of molten material within the crucible. An improved head design including four shells forming thermal radiation shields and at least two gas-cooled plenums is also disclosed.

  2. Processing of mixed waste via quantum-catalytic extraction processing (Q-CEP trademark), a case study

    International Nuclear Information System (INIS)

    Evans, L.; Richards, T.; McGowan, B.

    1996-01-01

    Catalytic Extraction Processing (CEP) as developed by Molten Metal Technology (MMT), Inc. employs the use of a refractory-lined, steel-shell reactor vessel and an inductively-heated metal bath. When molten, the metal bath can process gaseous, liquid, and solid wastes and recycle their constituents into commercially valuable products. Quantum-Catalytic Extraction Processing, or Q-CEP, is the application of CEP technology to radioactive and mixed wastes. The Q-CEP technology can take wastes in various physical forms (gas, liquid, slurry, sludge, or grindable solid) and inject them into the molten metal bath of iron, nickel, or copper. The bath acts as both a catalyst and solvent and breaks the compounds of the waste feed into their original constituent elements. The flexibility and robustness of the Q-CEP process are attributed to the open-quote singular close-quote dissolved elemental intermediate through which reactions proceed. open-quotes Singular close-quote refers to the fact that the catalytic and salvation effects of the liquid metal ensure that the constituents of the feed are only found in the liquid metal as dissolved elements (e.g. dissolved carbon). As a result, Q-CEP feed conversion is independent of the complexity of the molecular structure of the feed molecule. Destruction and Removal Efficiencies (DREs) exceeding 99.9999% (six nines) are typical in CEP regardless of the complexity of feed materials. Q-CEP is not a combustion technology. Unlike incineration where wastes are volume reduced and residuals buried, Q-CEP allows for the formation of commercially valuable products. Chemical reactions are performed in a highly reducing environment which results in extremely low concentrations of free oxygen, preventing the formation of furans, dioxins, or other products of incomplete combustion

  3. Overview of Bearingless Induction Motors

    Directory of Open Access Journals (Sweden)

    Xiaodong Sun

    2014-01-01

    Full Text Available Bearingless induction motors combining functions of both torque generation and noncontact magnetic suspension together have attracted more and more attention in the past decades due to their definite advantages of compactness, simple structure, less maintenance, no wear particles, high rotational speed, and so forth. This paper overviews the key technologies of the bearingless induction motors, with emphasis on motor topologies, mathematical models, and control strategies. Particularly, in the control issues, the vector control, independent control, direct torque control, nonlinear decoupling control, sensorless control, and so forth are investigated. In addition, several possible development trends of the bearingless induction motors are also discussed.

  4. Catalytic gasification in fluidized bed, of orange waste. Comparison with non catalytic gasification

    International Nuclear Information System (INIS)

    Aguiar Trujillo, Leonardo; Marquez Montesinos, Francisco; Ramos Robaina, Boris A.; Guerra Reyes, Yanet; Arauzo Perez, Jesus; Gonzalo Callejo, Alberto; Sanchez Cebrian, Jose L

    2011-01-01

    The industry processing of the orange, generates high volumes of solid waste. This waste has been used as complement in the animal feeding, in biochemical processes; but their energy use has not been valued by means of the gasification process. They were carried out gasification studies with air in catalytic fluidized bed (using dolomite and olivine as catalysts in a secondary reactor, also varying the temperature of the secondary reactor and the catalyst mass), of the solid waste of orange and the results are compared with those obtained in the gasification with non catalytic air. In the processes we use a design of complete factorial experiment of 2k, valuing the influence of the independent variables and their interactions in the answers, using the software Design-Expert version 7 and a grade of significance of 95 %. The results demonstrate the qualities of the solid waste of orange in the energy use by means of the gasification process for the treatment of these residuals, obtaining a gas of low caloric value. The use of catalysts also diminishes the yield of tars obtained in the gasification process, being more active the dolomite that the olivine in this process. (author)

  5. Betel nut chewing history is an independent prognosticator for smoking patients with locally advanced stage IV head and neck squamous cell carcinoma receiving induction chemotherapy with docetaxel, cisplatin, and fluorouracil.

    Science.gov (United States)

    Su, Yan-Ye; Chien, Chih-Yen; Luo, Sheng-Dean; Huang, Tai-Lin; Lin, Wei-Che; Fang, Fu-Min; Chiu, Tai-Jan; Chen, Yen-Hao; Lai, Chi-Chih; Hsu, Cheng-Ming; Li, Shau-Hsuan

    2016-03-22

    Smoking and betel nut chewing are well-known risk factors for head and neck squamous cell carcinoma (HNSCC). Smoking is also a strong prognosticator for patients with locally advanced HNSCC receiving induction chemotherapy. Smoking with or without betel nut chewing is a common practice in Asia. However, little is known regarding whether betel nut chewing can serve as a prognostic factor for smoking patients with locally advanced HNSCC receiving induction chemotherapy. The aim of this study was to evaluate the prognostic impact of betel nut chewing in such patients receiving induction chemotherapy with docetaxel, cisplatin, and fluorouracil (TPF). From January 2010 to December 2012, we retrospectively analyzed 162 smoking patients with locally advanced HNSCC who received induction chemotherapy with TPF at our institution. Background characteristics, including a history of betel nut chewing, were analyzed as potential prognostic factors. Among the 162 smoking patients, 131 patients (81%) were betel nut chewers, while 31 (19%) were non-betel nut chewers. One hundred fifty-six (96%) were men, and 6 (4%) were women. The median age was 53 years. The overall response rates to induction chemotherapy were 57 and 77% in patients with and without betel nut chewing history, respectively (P = 0.038). The 2-year progression survival rates were 37 and 67% in patients with and without betel nut chewing history, respectively (P = 0.004). The 2-year overall survival rates were 47 and 71% in patients with and without betel nut chewing history, respectively (P = 0.017). Betel nut chewing history was independently associated with a poor response to induction chemotherapy, an inferior progression-free survival rate, and a poor overall survival rate. Our results indicate that betel nut chewing history is independently associated with poor prognosis in smoking patients with locally advanced HNSCC receiving induction chemotherapy with TPF. Further investigation is warranted to

  6. Large stability and high catalytic activities of sub-nm metal (0) clusters: implications into the nucleation and growth theory.

    Science.gov (United States)

    Piñeiro, Yolanda; Buceta, David; Calvo, Javier; Huseyinova, Shahana; Cuerva, Miguel; Pérez, Ángel; Domínguez, Blanca; López-Quintela, M Arturo

    2015-07-01

    Clusters are stable catalytic species, which are produced during the synthesis of nanoparticles (NPs). Their existence contradicts the thermodynamic principles used to explain the formation of NPs by the classical nucleation and growth theories (NGTs). Using chemical and electrochemical methods we will show that depending on the experimental conditions one can produce either Ag clusters or Ag NPs. Moreover, using already prepared Ag clusters one can observe the disappearance of the usual induction period observed for the kinetics of NP formation, indicating that clusters catalyze the formation of NPs. Taking these data together with some previous examples of cluster-catalyzed anisotropic growth, we derived a qualitative approach to include the catalytic activities of clusters into the formation of NPs, which is incorporated into the NGT. Some qualitative conclusions about the main experimental parameters, which affect the formation of clusters versus NPs, as well as the catalytic mechanism versus the non-catalytic one, are also described. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Protein structure based prediction of catalytic residues.

    Science.gov (United States)

    Fajardo, J Eduardo; Fiser, Andras

    2013-02-22

    Worldwide structural genomics projects continue to release new protein structures at an unprecedented pace, so far nearly 6000, but only about 60% of these proteins have any sort of functional annotation. We explored a range of features that can be used for the prediction of functional residues given a known three-dimensional structure. These features include various centrality measures of nodes in graphs of interacting residues: closeness, betweenness and page-rank centrality. We also analyzed the distance of functional amino acids to the general center of mass (GCM) of the structure, relative solvent accessibility (RSA), and the use of relative entropy as a measure of sequence conservation. From the selected features, neural networks were trained to identify catalytic residues. We found that using distance to the GCM together with amino acid type provide a good discriminant function, when combined independently with sequence conservation. Using an independent test set of 29 annotated protein structures, the method returned 411 of the initial 9262 residues as the most likely to be involved in function. The output 411 residues contain 70 of the annotated 111 catalytic residues. This represents an approximately 14-fold enrichment of catalytic residues on the entire input set (corresponding to a sensitivity of 63% and a precision of 17%), a performance competitive with that of other state-of-the-art methods. We found that several of the graph based measures utilize the same underlying feature of protein structures, which can be simply and more effectively captured with the distance to GCM definition. This also has the added the advantage of simplicity and easy implementation. Meanwhile sequence conservation remains by far the most influential feature in identifying functional residues. We also found that due the rapid changes in size and composition of sequence databases, conservation calculations must be recalibrated for specific reference databases.

  8. Human HepaRG Cells can be Cultured in Hanging-drop Plates for Cytochrome P450 Induction and Function Assays.

    Science.gov (United States)

    Murayama, Norie; Usui, Takashi; Slawny, Nicky; Chesné, Christophe; Yamazaki, Hiroshi

    2015-01-01

    Recent guidance/guidelines for industry recommend that cytochrome P450 induction can be assessed using human hepatocyte enzyme activity and/or mRNA levels to evaluate potential drug- drug interactions. To evaluate time-dependent cytochrome P450 induction precisely, induction of CYP1A2, CYP2B6, and CYP3A4 mRNA was confirmed (>2-fold) by the treatment with omeprazole, phenobarbital, and rifampicin, respectively, for 24 or 48 h on day 3 from the start of culture. After 24 h, the fold induction of CYP1A2 with 3.6 and 1.8x10(4) HepaRG cells per well was lower than that for 7.2x10(4) cells. CYP1A2 induction levels at 24 h were higher than those after 48 h. In contrast, higher CYP2B6 inductions were confirmed after 48 h exposure than after 24 h, independent of the number of cells per well. To help reduce the use of human cryopreserved hepatocytes, typical P450-dependent enzyme activities were investigated in human HepaRG cells cultured in commercial hanging-drop plates. Newly designed 96-well hanging-drop plates were capable of maintaining human CYP3A-dependent midazolam hydroxylation activities for up to 4 days using only 10% of the recommended initial 7.2x10(4) cells per well. Favorable HepaRG function using hanging-drop plates was confirmed by detecting 1'- hydroxymidazolam O-glucuronide on day 3, suggesting an improvement over traditional control plates in which this metabolite can be detected for 24-well plates. These results suggest that the catalytic function and/or induction of CYP1A2, CYP2B6, and CYP3A4 can be readily assessed with reduced numbers of starting HepaRG cells cultured in three-dimensional cultures in drops prepared with hanging-drop plates.

  9. Strategies for induction of catalytic antibodies toward HIV-1 glycoprotein gp120 in autoimmune prone mice.

    Science.gov (United States)

    Durova, Oxana M; Vorobiev, Ivan I; Smirnov, Ivan V; Reshetnyak, Andrew V; Telegin, Georgy B; Shamborant, Olga G; Orlova, Nadezda A; Genkin, Dmitry D; Bacon, Andrew; Ponomarenko, Natalia A; Friboulet, Alain; Gabibov, Alexander G

    2009-11-01

    Tremendous efforts to produce an efficient vaccine for HIV infection have been unsuccessful. The ability of HIV to utilize sophisticated mechanisms to escape killing by host immune system rises dramatic problems in the development of antiviral therapeutics. The HIV infection proceeds by interaction of coat viral glycoprotein gp120 trimer with CD4(+) receptor of the lymphocyte. Thus this surface antigen may be regarded as a favorable target for immunotherapy. In the present study, we have developed three different strategies to produce gp120-specific response in autoimmune prone mice (SJL strain) as potential tools for production "catalytic vaccine". Therefore (i) reactive immunization by peptidylphosphonate, structural part of the coat glycoprotein, (ii) immunization by engineered fused epitopes of gp120 and encephalogenic peptide, a part of myelin basic protein, and (iii) combined vaccination by DNA and corresponding gp120 fragments incorporated into liposomes were investigated. In the first two cases monoclonal antibodies and their recombinant fragments with amidolytic and gp120-specific proteolytic activities were characterized. In the last case, catalytic antibodies with virus neutralizing activity proved in cell line models were harvested.

  10. Induction of anchorage-independent growth in primary human cells exposed to protons or HZE ions separately or in dual exposures.

    Science.gov (United States)

    Sutherland, B M; Cuomo, N C; Bennett, P V

    2005-10-01

    Travelers on space missions will be exposed to a complex radiation environment that includes protons and heavy charged particles. Since protons are present at much higher levels than are heavy ions, the most likely scenario for cellular radiation exposure will be proton exposure followed by a hit by a heavy ion. Although the effects of individual ion species on human cells are being investigated extensively, little is known about the effects of exposure to both radiation types. One useful measure of mammalian cell damage is induction of the ability to grow in a semi-solid agar medium highly inhibitory to the growth of normal human cells, termed neoplastic transformation. Using primary human cells, we evaluated induction of soft-agar growth and survival of cells exposed to protons only or to heavy charged particles (600 MeV/nucleon silicon) only as well as of cells exposed to protons followed after a 4-day interval by silicon ions. Both ions alone efficiently transformed the human cells to anchorage-independent growth. Initial experiments indicate that the dose responses for neoplastic transformation of cells exposed to protons and then after 4 days to silicon ions appear similar to that of cells exposed to silicon ions alone.

  11. A COMPARATIVE ANALYSIS OF PROCESSES IN AN INDEPENDENT GENERATOR WITH A NONCONTACT CASCADE THREE-PHASE MODULATED EXCITER VIA A STAR-CONNECTED CIRCUIT UNDER ACTIVE-INDUCTIVE LOADING

    Directory of Open Access Journals (Sweden)

    K.M. Vasyliv

    2013-02-01

    Full Text Available By means of mathematical experiment, the author investigates electromagnetic and electromechanical processes in an independent electric power supply system based on an asynchronized generator with a three-phase modulated exciter. The processes are analyzed to specify the working capacity of the power supply system during its operation under active-inductive loading. Regularities of the electromagnetic and electromechanical processes behavior versus load intensity and the modulator scheme are identified.

  12. Inductance position sensor for pneumatic cylinder

    Science.gov (United States)

    Ripka, Pavel; Chirtsov, Andrey; Mirzaei, Mehran; Vyhnanek, Jan

    2018-04-01

    The position of the piston in pneumatic cylinder with aluminum wall can be measured by external inductance sensor without modifications of the aluminum piston and massive iron piston rod. For frequencies below 20 Hz the inductance is increasing with inserting rod due to the rod permeability. This mode has disadvantage of slow response to piston movement and also high temperature sensitivity. At the frequency of 45 Hz the inductance is position independent, as the permeability effect is compensated by the eddy current effect. At higher frequencies eddy current effects in the rod prevail, the inductance is decreasing with inserting rod. In this mode the sensitivity is smaller but the sensor response is fast and temperature stability is better. We show that FEM simulation of this sensor using measured material properties gives accurate results, which is important for the sensor optimization such as designing the winding geometry for the best linearity.

  13. Induction of gastrin expression in gastrointestinal cells by hypoxia or cobalt is independent of hypoxia-inducible factor (HIF).

    Science.gov (United States)

    Xiao, Lin; Kovac, Suzana; Chang, Mike; Shulkes, Arthur; Baldwin, Graham S; Patel, Oneel

    2012-07-01

    Gastrin and its precursors have been shown to promote mitogenesis and angiogenesis in gastrointestinal tumors. Hypoxia stimulates tumor growth, but its effect on gastrin gene regulation has not been examined in detail. Here we have investigated the effect of hypoxia on the transcription of the gastrin gene in human gastric cancer (AGS) cells. Gastrin mRNA was measured by real-time PCR, gastrin peptides were measured by RIA, and gastrin promoter activity was measured by dual-luciferase reporter assay. Exposure to a low oxygen concentration (1%) increased gastrin mRNA concentrations in wild-type AGS cells (AGS) and in AGS cells overexpressing the gastrin receptor (AGS-cholecystokinin receptor 2) by 2.1 ± 0.4- and 4.1 ± 0.3-fold (P factor hypoxia-inducible factor 1 (HIF-1) or knockdown of either the HIF-1α or HIF-1β subunit did not affect gastrin promoter inducibility under hypoxia indicated that the hypoxic activation of the gastrin gene is likely HIF independent. Mutational analysis of previously identified Sp1 regulatory elements in the gastrin promoter also failed to abrogate the induction of promoter activity by hypoxia. The observations that hypoxia up-regulates the gastrin gene in AGS cells by HIF-independent mechanisms, and that this effect is enhanced by the presence of gastrin receptors, provide potential targets for gastrointestinal cancer therapy.

  14. Intrinsic magnetic torque at low magnetic induction

    International Nuclear Information System (INIS)

    Doria, M.M.; Oliveira, I.G. de.

    1993-01-01

    Using anisotropic London theory the intrinsic magnetic torque for extreme type II uniaxial superconductors for any value of the magnetic induction is obtained. It is considered the vortex lines straight and take into account the contribution of the supercurrents flowing inside the vortex core within the London theory. It is shown that the interline and intra line free energies give opposite torque contributions, the first drives the magnetic induction parallel to the superconductor's axis of symmetry and the second orthogonal to it. At high magnetic induction torque expression obtained generalizes V. Kogan's formula since it has no free parameters other than the anisotropy γ = m 1 /m 3 and the Ginzburg-Landau parameter κ. At low magnetic induction it is proposed a way to observe vortex chains effects in the total torque based on the fact that London theory is linear and the energy to make a single vortex line in space is independent of the magnetic induction. (author)

  15. Steam reformer with catalytic combustor

    Science.gov (United States)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  16. Inductance position sensor for pneumatic cylinder

    Directory of Open Access Journals (Sweden)

    Pavel Ripka

    2018-04-01

    Full Text Available The position of the piston in pneumatic cylinder with aluminum wall can be measured by external inductance sensor without modifications of the aluminum piston and massive iron piston rod. For frequencies below 20 Hz the inductance is increasing with inserting rod due to the rod permeability. This mode has disadvantage of slow response to piston movement and also high temperature sensitivity. At the frequency of 45 Hz the inductance is position independent, as the permeability effect is compensated by the eddy current effect. At higher frequencies eddy current effects in the rod prevail, the inductance is decreasing with inserting rod. In this mode the sensitivity is smaller but the sensor response is fast and temperature stability is better. We show that FEM simulation of this sensor using measured material properties gives accurate results, which is important for the sensor optimization such as designing the winding geometry for the best linearity.

  17. Development of a catalytically assisted combustor for a gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, Yasushi; Fujii, Tomoharu; Sato, Mikio [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-01 (Japan); Kanazawa, Takaaki; Inoue, Hitoshi [Kansai Electric Power Company, Inc., 3-11-20 Nakoji, Amagasaki, Hyoho 661 (Japan)

    1999-01-01

    A catalytically assisted low NO{sub x} combustor has been developed which has the advantage of catalyst durability. This combustor is composed of a burner section and a premixed combustion section behind the burner section. The burner system consists of six catalytic combustor segments and six premixing nozzles, which are arranged alternately and in parallel. Fuel flow rate for the catalysts and the premixing nozzles are controlled independently. The catalytic combustion temperature is maintained under 1000C, additional premixed gas is injected from the premixing nozzles into the catalytic combustion gas, and lean premixed combustion at 1300C is carried out in the premixed combustion section. This system was designed to avoid catalytic deactivation at high temperature and thermal or mechanical shock fracture of the honeycomb monolith. In order to maintain the catalyst temperature under 1000C, the combustion characteristics of catalysts at high pressure were investigated using a bench scale reactor and an improved catalyst was selected for the combustor test. A combustor for a 20MW class multi-can type gas turbine was designed and tested under high pressure conditions using LNG fuel. Measurements of NO{sub x}, CO and unburned hydrocarbon were made and other measurements were made to evaluate combustor performance under various combustion temperatures and pressures. As a result of the tests, it was proved that NO{sub x} emission was lower than 10ppm converted at 16% O{sub 2}, combustion efficiency was almost 100% at 1300C of combustor outlet temperature and 13.5ata of combustor inlet pressure

  18. Redox-Regulated Pathway of Tyrosine Phosphorylation Underlies NF-κB Induction by an Atypical Pathway Independent of the 26S Proteasome

    Science.gov (United States)

    Cullen, Sarah; Ponnappan, Subramaniam; Ponnappan, Usha

    2015-01-01

    Alternative redox stimuli such as pervanadate or hypoxia/reoxygenation, induce transcription factor NF-κB by phospho-tyrosine-dependent and proteasome-independent mechanisms. While considerable attention has been paid to the absence of proteasomal regulation of tyrosine phosphorylated IκBα, there is a paucity of information regarding proteasomal regulation of signaling events distinct from tyrosine phosphorylation of IκBα. To delineate roles for the ubiquitin-proteasome pathway in the phospho-tyrosine dependent mechanism of NF-κB induction, we employed the proteasome inhibitor, Aclacinomycin, and the phosphotyrosine phosphatase inhibitor, pervanadate (PV). Results from these studies demonstrate that phospho-IκBα (Tyr-42) is not subject to proteasomal degradation in a murine stromal epithelial cell line, confirming results previously reported. Correspondingly, proteasome inhibition had no discernable effect on the key signaling intermediaries, Src and ERK1/2, involved in the phospho-tyrosine mechanisms regulating PV-mediated activation of NF-κB. Consistent with previous reports, a significant redox imbalance leading to the activation of tyrosine kinases, as occurs with pervanadate, is required for the induction of NF-κB. Strikingly, our studies demonstrate that proteasome inhibition can potentiate oxidative stress associated with PV-stimulation without impacting kinase activation, however, other cellular implications for this increase in intracellular oxidation remain to be fully delineated. PMID:25671697

  19. Non-Catalytic Functions of Pyk2 and Fyn Regulate Late Stage Adhesion in Human T Cells

    Science.gov (United States)

    Houtman, Jon C. D.

    2012-01-01

    T cell activation drives the protective immune response against pathogens, but is also critical for the development of pathological diseases in humans. Cytoskeletal changes are required for downstream functions in T cells, including proliferation, cytokine production, migration, spreading, and adhesion. Therefore, investigating the molecular mechanism of cytoskeletal changes is crucial for understanding the induction of T cell-driven immune responses and for developing therapies to treat immune disorders related to aberrant T cell activation. In this study, we used a plate-bound adhesion assay that incorporated near-infrared imaging technology to address how TCR signaling drives human T cell adhesion. Interestingly, we observed that T cells have weak adhesion early after TCR activation and that binding to the plate was significantly enhanced 30–60 minutes after receptor activation. This late stage of adhesion was mediated by actin polymerization but was surprisingly not dependent upon Src family kinase activity. By contrast, the non-catalytic functions of the kinases Fyn and Pyk2 were required for late stage human T cell adhesion. These data reveal a novel TCR-induced signaling pathway that controls cellular adhesion independent of the canonical TCR signaling cascade driven by tyrosine kinase activity. PMID:23300847

  20. Catalytic nanoporous membranes

    Science.gov (United States)

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  1. Nanostructured, mesoporous Au/TiO2 model catalysts – structure, stability and catalytic properties

    Directory of Open Access Journals (Sweden)

    Matthias Roos

    2011-09-01

    Full Text Available Aiming at model systems with close-to-realistic transport properties, we have prepared and studied planar Au/TiO2 thin-film model catalysts consisting of a thin mesoporous TiO2 film of 200–400 nm thickness with Au nanoparticles, with a mean particle size of ~2 nm diameter, homogeneously distributed therein. The systems were prepared by spin-coating of a mesoporous TiO2 film from solutions of ethanolic titanium tetraisopropoxide and Pluronic P123 on planar Si(100 substrates, calcination at 350 °C and subsequent Au loading by a deposition–precipitation procedure, followed by a final calcination step for catalyst activation. The structural and chemical properties of these model systems were characterized by X-ray diffraction (XRD, transmission electron microscopy (TEM, N2 adsorption, inductively coupled plasma ionization spectroscopy (ICP–OES and X-ray photoelectron spectroscopy (XPS. The catalytic properties were evaluated through the oxidation of CO as a test reaction, and reactivities were measured directly above the film with a scanning mass spectrometer. We can demonstrate that the thin-film model catalysts closely resemble dispersed Au/TiO2 supported catalysts in their characteristic structural and catalytic properties, and hence can be considered as suitable for catalytic model studies. The linear increase of the catalytic activity with film thickness indicates that transport limitations inside the Au/TiO2 film catalyst are negligible, i.e., below the detection limit.

  2. Induction linacs for heavy ion fusion research

    International Nuclear Information System (INIS)

    Fessenden, T.J.; Avery, R.T.; Brady, V.; Bisognano, J.; Celata, C.; Chupp, W.W.; Faltens, A.; Hartwig, E.C.; Judd, D.L.; Keefe, D.; Kim, C.H.; Laslett, L.J.; Lee, E.P.; Rosenblum, S.S.; Smith, L.; Warwick, A.

    1984-01-01

    The new features of employing an induction linac as a driver for inertial fusion involve (1) transport of high-current low-emittance heavy ion beams. (2) multiple independently-focussed beams threading the same accelerator structure, and (3) synthesis of voltage waveforms to accomplish beam current amplification. A research program is underway at LBL to develop accelerators that test all these features with the final goal of producing an ion beam capable of heating matter to proportional70 eV. This paper presents a discussion of some properties of induction linacs and how they may be used for HIF research. Physics designs of the High Temperature Experiment (HTE) and the Multiple Beam Experiment (MBE) accelerators are presented along with initial concepts of the MBE induction units. (orig.)

  3. Induction linacs for heavy ion fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Fessenden, T.J.

    1984-05-01

    The new features of employing an induction linac as a driver for inertial fusion involve (1) transport of high-current low-emittance heavy ion beams, (2) multiple independently-focussed beams threading the same accelerator structure, and (3) synthesis of voltage waveforms to accomplish beam current amplification. A research program is underway at LBL to develop accelerators that test all these features with the final goal of producing an ion beam capable of heating matter to approx. 70 eV. This paper presents a discussion of some properties of induction linacs and how they may be used for HIF research. Physics designs of the High Temperature Experiment (HTE) and the Multiple Beam Experiment (MBE) accelerators are presented along with initial concepts of the MBE induction units.

  4. Non-thermal plasmas for non-catalytic and catalytic VOC abatement

    International Nuclear Information System (INIS)

    Vandenbroucke, Arne M.; Morent, Rino; De Geyter, Nathalie; Leys, Christophe

    2011-01-01

    Highlights: → We review the current status of catalytic and non-catalytic VOC abatement based on a vast number of research papers. → The underlying mechanisms of plasma-catalysis for VOC abatement are discussed. → Critical process parameters that determine the influent are discussed and compared. - Abstract: This paper reviews recent achievements and the current status of non-thermal plasma (NTP) technology for the abatement of volatile organic compounds (VOCs). Many reactor configurations have been developed to generate a NTP at atmospheric pressure. Therefore in this review article, the principles of generating NTPs are outlined. Further on, this paper is divided in two equally important parts: plasma-alone and plasma-catalytic systems. Combination of NTP with heterogeneous catalysis has attracted increased attention in order to overcome the weaknesses of plasma-alone systems. An overview is given of the present understanding of the mechanisms involved in plasma-catalytic processes. In both parts (plasma-alone systems and plasma-catalysis), literature on the abatement of VOCs is reviewed in close detail. Special attention is given to the influence of critical process parameters on the removal process.

  5. Catalytic distillation process

    Science.gov (United States)

    Smith, L.A. Jr.

    1982-06-22

    A method is described for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C[sub 4] feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  6. UV induction of the LT-Toxin operon with respect to the genes lexA, recA, and umuD

    International Nuclear Information System (INIS)

    Tiganova, I.G.; Rusina, O.Yu.; Andreeva, I.V.; Brukhanskii, G.V.; Skavronskaya, A.G.

    1994-01-01

    UV induction of the elt operon (the LT-toxin operon in Escherichia coli) was demonstrated in experiments using fusion of elt::lac operons with the help of Mud1(Ap lac) phage. UV induction of the elt operon is lexA-dependent; thus, the possibility of SOS regulation of this process may be assumed. However, UV induction of the elt operon turned out to be recA-independent, which makes it impossible to consider this induction as a typical SOS response. UV induction of the elt operon is also observed in Salmonella typhimurium, which differs from E. coli in the product of umuD, which suggests that the UV induction of the elt operon is umuD independent

  7. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik

    2003-09-01

    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  8. Induction of Mrp3 and Mrp4 transporters during acetaminophen hepatotoxicity is dependent on Nrf2

    International Nuclear Information System (INIS)

    Aleksunes, Lauren M.; Slitt, Angela L.; Maher, Jonathan M.; Augustine, Lisa M.; Goedken, Michael J.; Chan, Jefferson Y.; Cherrington, Nathan J.; Klaassen, Curtis D.; Manautou, Jose E.

    2008-01-01

    The transcription factor NFE2-related factor 2 (Nrf2) mediates detoxification and antioxidant gene transcription following electrophile exposure and oxidative stress. Mice deficient in Nrf2 (Nrf2-null) are highly susceptible to acetaminophen (APAP) hepatotoxicity and exhibit lower basal and inducible expression of cytoprotective genes, including NADPH quinone oxidoreductase 1 (Nqo1) and glutamate cysteine ligase (catalytic subunit, or Gclc). Administration of toxic APAP doses to C57BL/6J mice generates electrophilic stress and subsequently increases levels of hepatic Nqo1, Gclc and the efflux multidrug resistance-associated protein transporters 1-4 (Mrp1-4). It was hypothesized that induction of hepatic Mrp1-4 expression following APAP is Nrf2 dependent. Plasma and livers from wild-type (WT) and Nrf2-null mice were collected 4, 24 and 48 h after APAP. As expected, hepatotoxicity was greater in Nrf2-null compared to WT mice. Gene and protein expression of Mrp1-4 and the Nrf2 targets, Nqo1 and Gclc, was measured. Induction of Nqo1 and Gclc mRNA and protein after APAP was dependent on Nrf2 expression. Similarly, APAP treatment increased hepatic Mrp3 and Mrp4 mRNA and protein in WT, but not Nrf2-null mice. Mrp1 was induced in both genotypes after APAP, suggesting that elevated expression of this transporter was independent of Nrf2. Mrp2 was not induced in either genotype at the mRNA or protein levels. These results show that Nrf2 mediates induction of Mrp3 and Mrp4 after APAP but does not affect Mrp1 or Mrp2. Thus coordinated regulation of detoxification enzymes and transporters by Nrf2 during APAP hepatotoxicity is a mechanism by which hepatocytes may limit intracellular accumulation of potentially toxic chemicals

  9. A Decoupled Control of 5-Legs PWM Inverter Feeding a two Induction Motors-based Electric Vehicle Powertrain

    Directory of Open Access Journals (Sweden)

    Bekheïra Tabbache

    2016-06-01

    Full Text Available This paper proposes a traction drive system for electric vehicles (EVs with two separate induction motor drive-based wheels. In this context, two three-phase induction motors are associated to five legs power inverter which one leg is shared by two phases of the motors. The independent control of the two induction motors allows replacing the mechanical differential speeds by an equivalent electrical module called electric differential (ED. In the proposed EV powertrain based on 5-leg inverter, the challenge is to achieve a decoupled control of the induction motors to ensure the EV stability while cornering or under slippery road condition. For this, the proposed independent control uses Indirect Field Oriented Control to ensure speed and rotor flux control of each induction motor , a Pulse Width Modulation to provide the command sequences to the 5-leg inverter and electric differential to generate the an appropriate reference when the two induction motors should be controlled at different speeds. For this, a numerical implementation of the independent controls on an embedded board (TMS 320F2812 to ensure a separate control of induction motor fed by the 5-leg inverter. Moreover, the proposed control takes into account the EV context such as the EV dynamic and uses European and American normalized driving cycles. EV-specific experimental tests on a digital signal processor TMS320LF2812 are carried-out to show the effectiveness of the proposed independent control for ED in terms of robustness and stability.

  10. Catalytic bioreactors and methods of using same

    Science.gov (United States)

    Worden, Robert Mark; Liu, Yangmu Chloe

    2017-07-25

    Various embodiments provide a bioreactor for producing a bioproduct comprising one or more catalytically active zones located in a housing and adapted to keep two incompatible gaseous reactants separated when in a gas phase, wherein each of the one or more catalytically active zones may comprise a catalytic component retainer and a catalytic component retained within and/or thereon. Each of the catalytically active zones may additionally or alternatively comprise a liquid medium located on either side of the catalytic component retainer. Catalytic component may include a microbial cell culture located within and/or on the catalytic component retainer, a suspended catalytic component suspended in the liquid medium, or a combination thereof. Methods of using various embodiments of the bioreactor to produce a bioproduct, such as isobutanol, are also provided.

  11. COAL CONVERSION WASTEWATER TREATMENT BY CATALYTIC OXIDATION IN SUPERCRITICAL WATER; FINAL

    International Nuclear Information System (INIS)

    Phillip E. Savage

    1999-01-01

    phenoxy radicals, which then react in the fluid phase by the same mechanism operative for non-catalytic SCWO of phenol. The rates of phenol disappearance and CO(sub 2) formation are sensitive to the phenol and O(sub 2) concentrations, but independent of the water density. Power-law rate expressions were developed to correlate the catalytic kinetics. The catalytic kinetics were also consistent with a Langmuir-Hinshelwood rate law derived from a dual-site mechanism comprising the following steps: reversible adsorption of phenol on one type of catalytic site, reversible dissociative adsorption of oxygen on a different type of site, and irreversible, rate-determining surface reaction between adsorbed phenol and adsorbed oxygen

  12. Ni-Pt nanoparticles growing on metal organic frameworks (MIL-96) with enhanced catalytic activity for hydrogen generation from hydrazine at room temperature.

    Science.gov (United States)

    Wen, Lan; Du, Xiaoqiong; Su, Jun; Luo, Wei; Cai, Ping; Cheng, Gongzhen

    2015-04-07

    Well-dispersed bimetallic Ni-Pt nanoparticles (NPs) with different compositions have been successfully grown on the MIL-96 by a simple liquid impregnation method using NaBH4 as the reducing agent. Powder X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectroscopy, N2 adsorption-desorption, and inductively coupled plasma-atomic emission spectroscopy measurements were employed to characterize the NiPt/MIL-96. Catalytic activity of NiPt/MIL-96 catalysts was tested in the hydrogen generation from the aqueous alkaline solution of hydrazine at room temperature. These catalysts are composition dependent on their catalytic activity, while Ni64Pt36/MIL-96 exhibits the highest catalytic activity among all the catalysts tested, with a turnover frequency value of 114.3 h(-1) and 100% hydrogen selectivity. This excellent catalytic performance might be due to the synergistic effect of the MIL-96 support and NiPt NPs, while NiPt NPs supported on other conventional supports, such as SiO2, carbon black, γ-Al2O3, poly(N-vinyl-2-pyrrolidone) (PVP), and the physical mixture of NiPt and MIL-96, all of them exhibit inferior catalytic activity compared to that of NiPt/MIL-96.

  13. Cross-talk between PKA-Cβ and p65 mediates synergistic induction of PDE4B by roflumilast and NTHi

    Science.gov (United States)

    Susuki-Miyata, Seiko; Miyata, Masanori; Lee, Byung-Cheol; Xu, Haidong; Kai, Hirofumi; Yan, Chen; Li, Jian-Dong

    2015-01-01

    Phosphodiesterase 4B (PDE4B) plays a key role in regulating inflammation. Roflumilast, a phosphodiesterase (PDE)4-selective inhibitor, has recently been approved for treating severe chronic obstructive pulmonary disease (COPD) patients with exacerbation. However, there is also clinical evidence suggesting the development of tachyphylaxis or tolerance on repeated dosing of roflumilast and the possible contribution of PDE4B up-regulation, which could be counterproductive for suppressing inflammation. Thus, understanding how PDE4B is up-regulated in the context of the complex pathogenesis and medications of COPD may help improve the efficacy and possibly ameliorate the tolerance of roflumilast. Here we show that roflumilast synergizes with nontypeable Haemophilus influenzae (NTHi), a major bacterial cause of COPD exacerbation, to up-regulate PDE4B2 expression in human airway epithelial cells in vitro and in vivo. Up-regulated PDE4B2 contributes to the induction of certain important chemokines in both enzymatic activity-dependent and activity-independent manners. We also found that protein kinase A catalytic subunit β (PKA-Cβ) and nuclear factor-κB (NF-κB) p65 subunit were required for the synergistic induction of PDE4B2. PKA-Cβ phosphorylates p65 in a cAMP-dependent manner. Moreover, Ser276 of p65 is critical for mediating the PKA-Cβ–induced p65 phosphorylation and the synergistic induction of PDE4B2. Collectively, our data unveil a previously unidentified mechanism underlying synergistic up-regulation of PDE4B2 via a cross-talk between PKA-Cβ and p65 and may help develop new therapeutic strategies to improve the efficacy of PDE4 inhibitor. PMID:25831493

  14. Catalytic process for tritium exchange reaction

    International Nuclear Information System (INIS)

    Hansoo Lee; Kang, H.S.; Paek, S.W.; Hongsuk Chung; Yang Geun Chung; Sook Kyung Lee

    2001-01-01

    The catalytic activities for a hydrogen isotope exchange were measured through the reaction of a vapor and gas mixture. The catalytic activity showed to be comparable with the published data. Since the gas velocity is relatively low, the deactivation was not found clearly during the 5-hour experiment. Hydrogen isotope transfer experiments were also conducted through the liquid phase catalytic exchange reaction column that consisted of a catalytic bed and a hydrophilic bed. The efficiencies of both the catalytic and hydrophilic beds were higher than 0.9, implying that the column performance was excellent. (author)

  15. Contributions to the theory of catalytic titrations-III Neutralization catalytic titrations.

    Science.gov (United States)

    Gaál, F F; Abramović, B F

    1985-07-01

    Neutralization catalytic titrations of weak monoprotic adds and bases with both volumetric and coulometric addition of the titrant (strong base/acid) have been simulated by taking into account the equilibrium concentration of the catalyst during the titration. The influence of several factors on the shape of the simulated catalytic titration curve has been investigated and is discussed.

  16. Catalytic distillation structure

    Science.gov (United States)

    Smith, L.A. Jr.

    1984-04-17

    Catalytic distillation structure is described for use in reaction distillation columns, and provides reaction sites and distillation structure consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and is present with the catalyst component in an amount such that the catalytic distillation structure consists of at least 10 volume % open space. 10 figs.

  17. Wireless Metal Detection and Surface Coverage Sensing for All-Surface Induction Heating

    Directory of Open Access Journals (Sweden)

    Veli Tayfun Kilic

    2016-03-01

    Full Text Available All-surface induction heating systems, typically comprising small-area coils, face a major challenge in detecting the presence of a metallic vessel and identifying its partial surface coverage over the coils to determine which of the coils to power up. The difficulty arises due to the fact that the user can heat vessels made of a wide variety of metals (and their alloys. To address this problem, we propose and demonstrate a new wireless detection methodology that allows for detecting the presence of metallic vessels together with uniquely sensing their surface coverages while also identifying their effective material type in all-surface induction heating systems. The proposed method is based on telemetrically measuring simultaneously inductance and resistance of the induction coil coupled with the vessel in the heating system. Here, variations in the inductance and resistance values for an all-surface heating coil loaded by vessels (made of stainless steel and aluminum at different positions were systematically investigated at different frequencies. Results show that, independent of the metal material type, unique identification of the surface coverage is possible at all freqeuncies. Additionally, using the magnitude and phase information extracted from the coupled coil impedance, unique identification of the vessel effective material is also achievable, this time independent of its surface coverage.

  18. Catalytic site identification—a web server to identify catalytic site structural matches throughout PDB

    Science.gov (United States)

    Kirshner, Daniel A.; Nilmeier, Jerome P.; Lightstone, Felice C.

    2013-01-01

    The catalytic site identification web server provides the innovative capability to find structural matches to a user-specified catalytic site among all Protein Data Bank proteins rapidly (in less than a minute). The server also can examine a user-specified protein structure or model to identify structural matches to a library of catalytic sites. Finally, the server provides a database of pre-calculated matches between all Protein Data Bank proteins and the library of catalytic sites. The database has been used to derive a set of hypothesized novel enzymatic function annotations. In all cases, matches and putative binding sites (protein structure and surfaces) can be visualized interactively online. The website can be accessed at http://catsid.llnl.gov. PMID:23680785

  19. Investigation of combustion and thermodynamic performance of a lean burn catalytic combustion gas turbine system

    International Nuclear Information System (INIS)

    Yin Juan; Weng Yiwu

    2011-01-01

    The goals of this research were to investigate the combustion and thermodynamic performance of a lean burn catalytic combustion gas turbine. The characteristics of lean burn catalytic combustion were investigated by utilising 1D heterogeneous plug flow model which was validated by experiments. The effects of operating parameters on catalytic combustion were numerically analysed. The system models were built in ASPEN Plus and three independent design variables, i.e. compressor pressure ratio (PR), regenerator effectiveness (RE) and turbine inlet temperature (TIT) were selected to analyse the thermodynamic performance of the thermal cycle. The main results show that: simulations from 1D heterogeneous plug flow model can capture the trend of catalytic combustion and describe the behavior of the catalytic monolith in detail. Inlet temperature is the most significant parameter that impacts operation of the catalytic combustor. When TIT and RE are constant, the increase of PR results in lowering the inlet temperature of the catalytic combustor, which results in decreasing methane conversion. The peak thermal efficiency and the optimal PR at a constant TIT increase with the increase of TIT; and at the constant PR, the thermal efficiency increases with the increase of TIT. However, with lower TIT conditions, the optimal PR and the peak efficiency at a constant TIT of the LBCCGT cycle are relative low to that of the conventional cycle. When TIT and PR are constant, the decrease of RE may result in lower methane conversion. The influences of RE on the methane conversion and the thermal efficiency are more significant at higher PRs. The higher thermal efficiency for the lower RE is achieved at lower PR.

  20. ATF4 induction through an atypical integrated stress response to ONC201 triggers p53-independent apoptosis in hematological malignancies.

    Science.gov (United States)

    Ishizawa, Jo; Kojima, Kensuke; Chachad, Dhruv; Ruvolo, Peter; Ruvolo, Vivian; Jacamo, Rodrigo O; Borthakur, Gautam; Mu, Hong; Zeng, Zhihong; Tabe, Yoko; Allen, Joshua E; Wang, Zhiqiang; Ma, Wencai; Lee, Hans C; Orlowski, Robert; Sarbassov, Dos D; Lorenzi, Philip L; Huang, Xuelin; Neelapu, Sattva S; McDonnell, Timothy; Miranda, Roberto N; Wang, Michael; Kantarjian, Hagop; Konopleva, Marina; Davis, R Eric; Andreeff, Michael

    2016-02-16

    The clinical challenge posed by p53 abnormalities in hematological malignancies requires therapeutic strategies other than standard genotoxic chemotherapies. ONC201 is a first-in-class small molecule that activates p53-independent apoptosis, has a benign safety profile, and is in early clinical trials. We found that ONC201 caused p53-independent apoptosis and cell cycle arrest in cell lines and in mantle cell lymphoma (MCL) and acute myeloid leukemia (AML) samples from patients; these included samples from patients with genetic abnormalities associated with poor prognosis or cells that had developed resistance to the nongenotoxic agents ibrutinib and bortezomib. Moreover, ONC201 caused apoptosis in stem and progenitor AML cells and abrogated the engraftment of leukemic stem cells in mice while sparing normal bone marrow cells. ONC201 caused changes in gene expression similar to those caused by the unfolded protein response (UPR) and integrated stress responses (ISRs), which increase the translation of the transcription factor ATF4 through an increase in the phosphorylation of the translation initiation factor eIF2α. However, unlike the UPR and ISR, the increase in ATF4 abundance in ONC201-treated hematopoietic cells promoted apoptosis and did not depend on increased phosphorylation of eIF2α. ONC201 also inhibited mammalian target of rapamycin complex 1 (mTORC1) signaling, likely through ATF4-mediated induction of the mTORC1 inhibitor DDIT4. Overexpression of BCL-2 protected against ONC201-induced apoptosis, and the combination of ONC201 and the BCL-2 antagonist ABT-199 synergistically increased apoptosis. Thus, our results suggest that by inducing an atypical ISR and p53-independent apoptosis, ONC201 has clinical potential in hematological malignancies. Copyright © 2016, American Association for the Advancement of Science.

  1. Speeded induction under uncertainty: the influence of multiple categories and feature conjunctions.

    Science.gov (United States)

    Newell, Ben R; Paton, Helen; Hayes, Brett K; Griffiths, Oren

    2010-12-01

    When people are uncertain about the category membership of an item (e.g., Is it a dog or a dingo?), research shows that they tend to rely only on the dominant or most likely category when making inductions (e.g., How likely is it to befriend me?). An exception has been reported using speeded induction judgments where participants appeared to use information from multiple categories to make inductions (Verde, Murphy, & Ross, 2005). In two speeded induction studies, we found that participants tended to rely on the frequency with which features co-occurred when making feature predictions, independently of category membership. This pattern held whether categories were considered implicitly (Experiment 1) or explicitly (Experiment 2) prior to feature induction. The results converge with other recent work suggesting that people often rely on feature conjunction information, rather than category boundaries, when making inductions under uncertainty.

  2. HD-PTP is a catalytically inactive tyrosine phosphatase due to a conserved divergence in its phosphatase domain.

    Directory of Open Access Journals (Sweden)

    Marie-Claude Gingras

    Full Text Available The HD-PTP protein has been described as a tumor suppressor candidate and based on its amino acid sequence, categorized as a classical non-transmembrane protein tyrosine phosphatase (PTP. To date, no HD-PTP phosphorylated substrate has been identified and controversial results concerning its catalytic activity have been recently reported.Here we report a rigorous enzymatic analysis demonstrating that the HD-PTP protein does not harbor tyrosine phosphatase or lipid phosphatase activity using the highly sensitive DiFMUP substrate and a panel of different phosphatidylinositol phosphates. We found that HD-PTP tyrosine phosphatase inactivity is caused by an evolutionary conserved amino acid divergence of a key residue located in the HD-PTP phosphatase domain since its back mutation is sufficient to restore the HD-PTP tyrosine phosphatase activity. Moreover, in agreement with a tumor suppressor activity, HD-PTP expression leads to colony growth reduction in human cancer cell lines, independently of its catalytic PTP activity status.In summary, we demonstrate that HD-PTP is a catalytically inactive protein tyrosine phosphatase. As such, we identify one residue involved in its inactivation and show that its colony growth reduction activity is independent of its PTP activity status in human cancer cell lines.

  3. Method of fabricating a catalytic structure

    Science.gov (United States)

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2009-09-22

    A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.

  4. Mapping Catalytically Relevant Edge Electronic States of MoS2

    Science.gov (United States)

    2018-01-01

    Molybdenum disulfide (MoS2) is a semiconducting transition metal dichalcogenide that is known to be a catalyst for both the hydrogen evolution reaction (HER) as well as for hydro-desulfurization (HDS) of sulfur-rich hydrocarbon fuels. Specifically, the edges of MoS2 nanostructures are known to be far more catalytically active as compared to unmodified basal planes. However, in the absence of the precise details of the geometric and electronic structure of the active catalytic sites, a rational means of modulating edge reactivity remain to be developed. Here we demonstrate using first-principles calculations, X-ray absorption spectroscopy, as well as scanning transmission X-ray microscopy (STXM) imaging that edge corrugations yield distinctive spectroscopic signatures corresponding to increased localization of hybrid Mo 4d states. Independent spectroscopic signatures of such edge states are identified at both the S L2,3 and S K-edges with distinctive spatial localization of such states observed in S L2,3-edge STXM imaging. The presence of such low-energy hybrid states at the edge of the conduction band is seen to correlate with substantially enhanced electrocatalytic activity in terms of a lower Tafel slope and higher exchange current density. These results elucidate the nature of the edge electronic structure and provide a clear framework for its rational manipulation to enhance catalytic activity. PMID:29721532

  5. Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion

    International Nuclear Information System (INIS)

    Pozan, Gulin Selda

    2012-01-01

    Highlights: ► α-Al 2 O 3 , obtained from Bohmite, as a support for enhancing of the activity. ► The support material for catalytic oxidation. ► The manganese state and oxygen species effect on the catalytic combustion reaction. - Abstract: The aim of this work was to study combustion of toluene (1000 ppm) over MnO 2 modified with different supports. α-Al 2 O 3 and γ-Al 2 O 3 obtained from Boehmite, γ-Al 2 O 3 (commercial), SiO 2 , TiO 2 and ZrO 2 were used as commercial support materials. In view of potential interest of this process, the influence of support material on the catalytic performance was discussed. The deposition of 9.5MnO 2 was performed by impregnation over support. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction and oxidation (TPR/TPO) and thermogravimetric analysis (TGA). The catalytic tests were carried out at atmospheric pressure in a fixed-bed flow reactor. 9.5MnO 2 /α-Al 2 O 3 (B) (synthesized from Boehmite) catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of 289 °C. Considering all the characterization and reaction data reported in this study, it was concluded that the manganese state and oxygen species played an important role in the catalytic activity.

  6. Knowledge, expectations, and inductive reasoning within conceptual hierarchies.

    Science.gov (United States)

    Coley, John D; Hayes, Brett; Lawson, Christopher; Moloney, Michelle

    2004-01-01

    Previous research (e.g. Cognition 64 (1997) 73) suggests that the privileged level for inductive inference in a folk biological conceptual hierarchy does not correspond to the "basic" level (i.e. the level at which concepts are both informative and distinct). To further explore inductive inference within conceptual hierarchies, we examine relations between knowledge of concepts at different hierarchical levels, expectations about conceptual coherence, and inductive inference. In Experiments 1 and 2, 5- and 8-year-olds and adults listed features of living kind (Experiments 1 and 2) and artifact (Experiment 2) concepts at different hierarchical levels (e.g. plant, tree, oak, desert oak), and also rated the strength of generalizations to the same concepts. For living kinds, the level that showed a relative advantage on these two tasks differed; the greatest increase in features listed tended to occur at the life-form level (e.g. tree), whereas the greatest increase in inductive strength tended to occur at the folk-generic level (e.g. oak). Knowledge and induction also showed different developmental trajectories. For artifact concepts, the levels at which the greatest gains in knowledge and induction occurred were more varied, and corresponded more closely across tasks. In Experiment 3, adults reported beliefs about within-category similarity for concepts at different levels of animal, plant and artifact hierarchies, and rated inductive strength as before. For living kind concepts, expectations about category coherence predicted patterns of inductions; knowledge did not. For artifact concepts, both knowledge and expectations predicted patterns of induction. Results suggest that beliefs about conceptual coherence play an important role in guiding inductive inference, that this role may be largely independent of specific knowledge of concepts, and that such beliefs are especially important in reasoning about living kinds.

  7. Effects of Preparation Method on the Structure and Catalytic Activity of Ag–Fe2O3 Catalysts Derived from MOFs

    Directory of Open Access Journals (Sweden)

    Xiaodong Zhang

    2017-12-01

    Full Text Available In this work, Ag–Fe2O3 catalysts were successfully prepared using several different methods. Our main intention was to investigate the effect of the preparation methods on the catalysts’ structure and their catalytic performance for CO oxidation. The catalysts were characterized by X-ray diffraction (XRD, N2 adsorption–desorption, transmission electron microscopy (TEM, X-ray photoelectron spectroscopy (XPS, H2-temperature program reduction (H2-TPR and inductively coupled plasma optical emission spectroscopy (ICP-OES. Ag–Fe catalysts prepared by impregnating Ag into MIL-100 (Fe presented the best catalytic activity, over which CO could be completely oxidized at 160 °C. Based on the characterization, it was found that more metallic Ag species and porosity existed on Ag–Fe catalysts, which could efficiently absorb atmospheric oxygen and, thus, enhance the CO oxidation.

  8. Heterogeneous catalytic materials solid state chemistry, surface chemistry and catalytic behaviour

    CERN Document Server

    Busca, Guido

    2014-01-01

    Heterogeneous Catalytic Materials discusses experimental methods and the latest developments in three areas of research: heterogeneous catalysis; surface chemistry; and the chemistry of catalysts. Catalytic materials are those solids that allow the chemical reaction to occur efficiently and cost-effectively. This book provides you with all necessary information to synthesize, characterize, and relate the properties of a catalyst to its behavior, enabling you to select the appropriate catalyst for the process and reactor system. Oxides (used both as catalysts and as supports for cata

  9. Morning versus evening induction of labour for improving outcomes.

    Science.gov (United States)

    Bakker, Jannet J H; van der Goes, Birgit Y; Pel, Maria; Mol, Ben Willem J; van der Post, Joris A M

    2013-02-28

    Induction of labour is a common intervention in obstetric practice. Traditionally, in most hospitals induction of labour with medication starts early in the morning, with the start of the working day for the day shift. In human and animal studies spontaneous onset of labour is proven to have a circadian rhythm with a preference for start of labour in the evening. Moreover, when spontaneous labour starts in the evening, the total duration of labour and delivery shortens and fewer obstetric interventions are needed. Based on these observations one might assume that starting induction of labour in the evening, in harmony with the circadian rhythm of natural birth, is more beneficial for both mother and child. To assess whether induction of labour starting in the evening, coinciding with the endogenous circadian rhythm, improves the outcome of labour compared with induction of labour starting in the early morning, organised to coincide with office hours. We contacted the Trials Search Co-ordinator to search the Cochrane Pregnancy and Childbirth Group's Trials Register (28 February 2012). In addition, we searched MEDLINE (1966 to 16 February 2012) and EMBASE (1980 to 16 February 2012). We included all published and unpublished randomised controlled trials. We excluded trials that employed quasi-random methods of treatment allocation. Two review authors independently assessed trials for inclusion and risk of bias. Two review authors independently extracted data. Data were checked for accuracy. Where necessary, we contacted study authors for additional information. The search resulted in 2693 articles that we screened on title and abstract for eligibility.Thirteen studies were selected for full text assessment. We included three randomised trials involving 1150 women. Two trials compared the administration of prostaglandins in the morning versus the evening in women with an unfavourable cervix, and one trial compared induction of labour in the morning versus the evening

  10. Predicting CYP2C19 Catalytic Parameters for Enantioselective Oxidations Using Artificial Neural Networks and a Chirality Code

    Science.gov (United States)

    Hartman, Jessica H.; Cothren, Steven D.; Park, Sun-Ha; Yun, Chul-Ho; Darsey, Jerry A.; Miller, Grover P.

    2013-01-01

    Cytochromes P450 (CYP for isoforms) play a central role in biological processes especially metabolism of chiral molecules; thus, development of computational methods to predict parameters for chiral reactions is important for advancing this field. In this study, we identified the most optimal artificial neural networks using conformation-independent chirality codes to predict CYP2C19 catalytic parameters for enantioselective reactions. Optimization of the neural networks required identifying the most suitable representation of structure among a diverse array of training substrates, normalizing distribution of the corresponding catalytic parameters (kcat, Km, and kcat/Km), and determining the best topology for networks to make predictions. Among different structural descriptors, the use of partial atomic charges according to the CHelpG scheme and inclusion of hydrogens yielded the most optimal artificial neural networks. Their training also required resolution of poorly distributed output catalytic parameters using a Box-Cox transformation. End point leave-one-out cross correlations of the best neural networks revealed that predictions for individual catalytic parameters (kcat and Km) were more consistent with experimental values than those for catalytic efficiency (kcat/Km). Lastly, neural networks predicted correctly enantioselectivity and comparable catalytic parameters measured in this study for previously uncharacterized CYP2C19 substrates, R- and S-propranolol. Taken together, these seminal computational studies for CYP2C19 are the first to predict all catalytic parameters for enantioselective reactions using artificial neural networks and thus provide a foundation for expanding the prediction of cytochrome P450 reactions to chiral drugs, pollutants, and other biologically active compounds. PMID:23673224

  11. Kinetic and catalytic performance of a BI-porous composite material in catalytic cracking and isomerisation reactions

    KAUST Repository

    Al-Khattaf, S.

    2012-01-10

    Catalytic behaviour of pure zeolite ZSM-5 and a bi-porous composite material (BCM) were investigated in transformation of m-xylene, while zeolite HY and the bi-porous composite were used in the cracking of 1,3,5-triisopropylbenzene (TIPB). The micro/mesoporous material was used to understand the effect of the presence of mesopores on these reactions. Various characterisation techniques, that is, XRD, SEM, TGA, FT-IR and nitrogen sorption measurements were applied for complete characterisation of the catalysts. Catalytic tests using CREC riser simulator showed that the micro/mesoporous composite catalyst exhibited higher catalytic activity as compared with the conventional microporous ZSM-5 and HY zeolite for transformation of m-xylene and for the catalytic cracking of TIPB, respectively. The outstanding catalytic reactivity of m-xylene and TIPB molecules were mainly attributed to the easier access of active sites provided by the mesopores. Apparent activation energies for the disappearance of m-xylene and TIPB over all catalysts were found to decrease in the order: EBCM>EZSM-5 and EBCM>EHY, respectively. © 2012 Canadian Society for Chemical Engineering.

  12. Catalytic biofilms on structured packing for the production of glycolic acid.

    Science.gov (United States)

    Li, Xuan Zhong; Hauer, Bernhard; Rosche, Bettina

    2013-02-01

    While structured packing modules are known to be efficient for surface wetting and gas-liquid exchange in abiotic surface catalysis, this model study explores structured packing as a growth surface for catalytic biofilms. Microbial biofilms have been proposed as self-immobilized and self-regenerating catalysts for the production of chemicals. A concern is that the complex and dynamic nature of biofilms may cause fluctuations in their catalytic performance over time or may affect process reproducibility. An aerated continuous trickle-bed biofilm reactor system was designed with a 3 L structured packing, liquid recycling and pH control. Pseudomonas diminuta established a biofilm on the stainless steel structured packing with a specific surface area of 500 m2 m-3 and catalyzed the oxidation of ethylene glycol to glycolic acid for over two months of continuous operation. A steady-state productivity of up to 1.6 gl-1h-1 was achieved at a dilution rate of 0.33 h-1. Process reproducibility between three independent runs was excellent, despite process interruptions and activity variations in cultures grown from biofilm effluent cells. The results demonstrate the robustness of a catalytic biofilm on structured packing, despite its dynamic nature. Implementation is recommended for whole-cell processes that require efficient gas-liquid exchange, catalyst retention for continuous operation, or improved catalyst stability.

  13. Catalytic modification of cellulose and hemicellulose - Sugarefine

    Energy Technology Data Exchange (ETDEWEB)

    Repo, T. [Helsinki Univ. (Finland),Laboratory of Inorganic Chemistry], email: timo.repo@helsinki.fi

    2012-07-01

    The main goal of the project is to develop catalytic methods for the modification of lignocellulose-based saccharides in the biorefineries. The products of these reactions could be used for example as biofuel components, raw materials for the chemical industry, solvents and precursors for biopolymers. The catalyst development aims at creating efficient, selective and green catalytic methods for profitable use in biorefineries. The project is divided in three work packages: In WP1 (Catalytic dehydration of cellulose) the aim is at developing non-toxic, efficient methods for the catalytic dehydration of cellulose the target molecule being here 5-hydroxymethylfurfural (5-HMF). 5-HMF is an interesting platform chemical for the production of fuel additives, solvents and polymers. In WP2 (Catalytic reduction), the objective of the catalytic reduction studies is to produce commercially interesting monofunctional chemicals, such as 1-butanol or 2-methyltetrahydrofuran (2-MeTHF). In WP3 (Catalytic oxidation), the research focuses on developing a green and efficient oxidation method for producing acids. Whereas acetic and formic acids are bulk chemicals, diacids such as glucaric and xylaric acids are valuable specialty chemicals for detergent, polymer and food production.

  14. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is ...

  15. The influence of copper in dealloyed binary platinum–copper electrocatalysts on methanol electroxidation catalytic activities

    Energy Technology Data Exchange (ETDEWEB)

    Poochai, Chatwarin [Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Veerasai, Waret, E-mail: waret.vee@mahidol.ac.th [Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Somsook, Ekasith [Department of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand); Dangtip, Somsak [Department of Physics, and NANOTEC COE at Mahidol University, Faculty of Science, Mahidol University, Bangkok 10400 (Thailand)

    2015-08-01

    In this study, we prepared and characterized carbon paper-supported dealloyed binary Pt–Cu core–shell electrocatalysts (denoted as Pt{sub x}Cu{sub (100−x)/}CP) by cyclic co-electrodeposition and selective copper dealloying in an acidic medium, and we investigated the effect of the copper content in the samples on the catalytic activities toward methanol electroxidation reaction (MOR). X-ray photo-emission spectroscopy (XPS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES) indicated that the structure of dealloyed binary Pt–Cu catalysts possessed a Pt-rich shell and a Cu rich core. X-ray absorption near edge spectroscopy (XANES) displayed that the oxidation states of Pt and Cu were zero and one, respectively, implying the formation of metallic Pt and Cu{sub 2}O, respectively. X-ray diffraction spectroscopy (XRD) confirmed that Cu was inserted into a face-centered cubic Pt structure forming Pt–Cu alloys. Scanning electron microscopy (SEM) and transmission electron microscope (TEM) displayed a cubic shape of Pt/CP and a spherical shape of Pt{sub x}Cu{sub (100−x)/}CP with several hundred nanometer sizes of agglomeration that depended on the Cu content. Cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy were performed to confirm that the sample of Pt{sub 70}Cu{sub 30}/CP exhibited the best catalytic activities in terms of the specific current, current density, catalytic poisoning tolerance, and stability. - Graphical abstract: Display Omitted - Highlights: • Binary electrocatalysts of Pt{sub x}Cu{sub (100−x)}/CP were prepared by cyclic co-electrodeposition and selective copper dealloying. • The structures of Pt{sub x}Cu{sub (100−x)}/CP were a Pt rich shell and a Cu rich core. • The Pt{sub 70}Cu{sub 30}/CP was the excellent catalytic activity towards methanol electrooxidation and CO{sub ads} tolerance.

  16. Induction of labour in postdates pregnant women

    International Nuclear Information System (INIS)

    Haq, A.N.; Ahsan, S.; Sher, Z.

    2012-01-01

    Objective: To differentiate the effect of gestation on the mode of delivery by analysing the difference in the mode of induction, length of labour and the difference in parity or Bishop score and their effect on the mode of delivery of postdates women. Study Design: A cross-sectional observational study. Place and Duration of Study: PAEC General Hospital, Islamabad, from July 2006 to July 2008. Methodology:Patients were induced at 41 weeks (Group B) and > 40 weeks (Group A) of gestation. Tab misoprostol and PGE2 tablets were administered according to amniotic fluid index (AFI) and parity . Study variables included duration of gestation, mode of induction, length of labour, difference in parity and Bishop score assessed before induction in each group. The outcome was assessed by applying Chi-square test by comparing mode of delivery with the study variables in both groups. Results: A total of 78 patients were inducted in the study. They were divided in group B (n = 39) induced 41 weeks and group A (n = 39) induced at 40 weeks. Eighty four percent (n = 35) patients in group B delivered vaginally as compared to 71% (n = 28) in the 40 weeks group (p < 0.0001). The higher number of vaginal deliveries in 41 weeks group was independent of association between the induction agent, parity and mode of delivery. Conclusion: The mean length of gestation was the single most important factor among the studied variables in predicting a vaginal delivery. (author)

  17. Long-pulse induction acceleration of heavy ions

    International Nuclear Information System (INIS)

    Faltens, A.; Firth, M.; Keefe, D.; Rosenblum, S.S.

    1983-03-01

    A long-pulse induction acceleration unit has been installed in the high-current Cs + beam line at LBL and has accelerated heavy ions. A maximum energy gain of 250 keV for 1.5 μs is possible. The unit comprises 12 independent modules which may be used to synthesize a variety of waveforms by varying the triggering times of the low-voltage trigger generators

  18. Long-pulse induction acceleration of heavy ions

    International Nuclear Information System (INIS)

    Faltons, A.; Firth, M.; Keefe, D.; Rosenblum, S.

    1983-01-01

    A long-pulse induction acceleration unit has been installed in the high-current Cs + beam line at LBL and has accelerated heavy ions. A maximum energy gain of 250 keV for 1.5 μs is possible. The unit comprises 12 independent modules which may be used to synthesize a variety of waveforms by varying the triggering times of the low voltage trigger generators

  19. Long-pulse induction acceleration of heavy-ions

    International Nuclear Information System (INIS)

    Faltens, A.; Firth, M.; Keefe, D.; Rosenblum, S.S.

    1983-01-01

    A long-pulse induction acceleration unit has been installed in the high-current Cs + beam line at LBL and has accelerated heavy ions. A maximum energy gain of 250 keV for 1.5 μs is possible. The unit comprises 12 independent modules which may be used to synthesize a variety of waveforms by varying the triggering times of the low voltage trigger generators

  20. Mechanism of fever induction in rabbits.

    Science.gov (United States)

    Siegert, R; Philipp-Dormston, W K; Radsak, K; Menzel, H

    1976-01-01

    Three exogenous pyrogens (Escherichia coli lipopolysaccharide, synthetic double-stranded ribonucleic acid. Newcastle disease virus) were compared with respect to their mechanisms of fever induction in rabbits. All inducers stimulated the production of an endogenous pyrogen demonstrated in the blood as well as prostaglandins of the E group, and of cyclic adenosine 3',5'-monophosphate in the cerebrospinal fluid. The concentrations of these compounds were elevated approximately twofold as compared to the controls. Independently of the mode of induction, the fever reaction could be prevented by pretreatment with 5 mg of cycloheximide per kg, although the three fever mediators were induced as in febrile animals. Consequently, at least one additional fever mediator that is sensitive to a 30 to 50% inhibition of protein synthesis by cycloheximide has to be postulated. The comparable reactions of the rabbits after administration of different pyrogens argues for a similar fever mechanism. In contrast to fever induction there was no stimulation of endogenous pyrogen, prostaglandins of the E group, and cyclic adenosine 3',5'-monophosphate in hyperthermia as a consequence of exposure of the animals to exogenous overheating. Furthermore, hyperthermia could not be prevented by cycloheximide. PMID:185148

  1. In situ synthesis and catalytic application of reduced graphene oxide supported cobalt nanowires

    Science.gov (United States)

    Xu, Zhiqiang; Long, Qin; Deng, Yi; Liao, Li

    2018-05-01

    Controlled synthesis of magnetic nanocomposite with outstanding catalytic performances is a promising strategy in catalyst industry. We proposed a novel concept for fabrication of reduced graphene oxide-supported cobalt nanowires (RGO/Co-NWs) nanocomposite as high-efficient magnetic catalyst. Unlike the majority of experiments necessitating harsh synthesis conditions such as high-pressure, high-temperature and expensive template, here the RGO/Co-NWs were successfully prepared in aqueous solution under mild conditions with the assistance of external magnetic field. The synthetic process was facile and external magnetic force was adopted to induce the unidirectional self-assembly of cobalt crystals on graphene oxide to form RGO/Co-NWs. The possible formation mechanism laid on the fact that the dipole magnetic moments of the nanoparticles were aligned along the magnetic induction lines with the external magnetic field direction resulting in the formation of nanowires elongating in the direction of the magnetization axis. Simultaneously, a series of controlled reactions were conducted to illuminate the effect of graphene oxide, external magnetic field and PVP on the morphology and size of RGO/Co-NWs in the present approach. More importantly, the nanocomposite exhibited a high catalytic performance towards ammonia borane. Hence the novel nanocomposite holds a great potential for technological applications such as catalyst industry.

  2. Chk2 regulates transcription-independent p53-mediated apoptosis in response to DNA damage

    International Nuclear Information System (INIS)

    Chen Chen; Shimizu, Shigeomi; Tsujimoto, Yoshihide; Motoyama, Noboru

    2005-01-01

    The tumor suppressor protein p53 plays a central role in the induction of apoptosis in response to genotoxic stress. The protein kinase Chk2 is an important regulator of p53 function in mammalian cells exposed to ionizing radiation (IR). Cells derived from Chk2-deficient mice are resistant to the induction of apoptosis by IR, and this resistance has been thought to be a result of the defective transcriptional activation of p53 target genes. It was recently shown, however, that p53 itself and histone H1.2 translocate to mitochondria and thereby induces apoptosis in a transcription-independent manner in response to IR. We have now examined whether Chk2 also regulates the transcription-independent induction of apoptosis by p53 and histone H1.2. The reduced ability of IR to induce p53 stabilization in Chk2-deficient thymocytes was associated with a marked impairment of p53 and histone H1 translocation to mitochondria. These results suggest that Chk2 regulates the transcription-independent mechanism of p53-mediated apoptosis by inducing stabilization of p53 in response to IR

  3. ANALYSIS OF PROCESSES IN AN INDEPENDENT GENERATOR WITH A NONCONTACT CASCADE THREE-PHASE MODULATED EXCITER VIA A STAR-CONNECTED CIRCUIT WITH A COMMON MODULATOR PHASE CONNECTION UNDER OPERATION TO AN INDUCTION MOTORS SITE

    Directory of Open Access Journals (Sweden)

    K.M. Vasyliv

    2013-04-01

    Full Text Available By means of a mathematical experiment, electromagnetic and electromechanical processes in an independent electric power supply system based on an asynchronized generator with a three-phase modulated exciter are investigated. The processes are analyzed to specify the working capacity of the power supply system during its operation to an induction motors site. Regularities of the electromagnetic and electromechanical processes behavior versus load intensity and the switch control system parameters are identified.

  4. Synthesis, spectroscopic characterization and catalytic oxidation ...

    Indian Academy of Sciences (India)

    were characterized by infrared, electronic, electron paramagnetic resonance ... The catalytic oxidation property of ruthenium(III) complexes were also ... cies at room temperature. ..... aldehyde part of Schiff base ligands, catalytic activ- ity of new ...

  5. Future IBM-BNL large-area superconducting inductive monopole detectors

    International Nuclear Information System (INIS)

    Bermon, S.; Chi, C.C.; Tsuei, C.C.; Chaudhari, P.; Ketchen, M.; Tesche, C.D.; Prodell, A.

    1986-01-01

    The observation of massive moving magnetic monopoles would have extremely important implications for grand unification theories and cosmological models for the creation of the universe. Among detection methods, the superconducting induction technique is unique in that it directly and unambiguously measures the sole property of the monopole of which the authors are certain--its magnetic charge--the detector response being independent of all other characteristics such as the monopole mass, its velocity, the presence of a companion electric charge, or the detailed nature of its interaction with matter. Described herein are plans for constructing an induction detector sufficiently large to reach the Parker bound in several years of operation

  6. Catalytic and recyclability properties of phytogenic copper oxide nanoparticles derived from Aglaia elaeagnoidea flower extract

    Directory of Open Access Journals (Sweden)

    G. Manjari

    2017-07-01

    Full Text Available The phytogenic synthesis method to highly active, recoverable and recyclable heterogeneous copper oxide nanocatalyst and encapsulated within biomaterial that acts as a nontoxic and renewable source of reducing and stabilizing agent. The biosynthesized CuO NPs were characterized using UV–Vis absorption spectroscopy, X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, energy dispersive X-ray spectroscopy (EDX, transmission electron microscopy (TEM and thermo gravimetric analysis-differential scanning calorimetry (TGA–DSC, techniques. The formation of CuO NPs with the size 20–45 nm range is shown in TEM image. Significantly, in aqueous phase CuO NPs have high catalytic activity for the reduction of Congo red (CR, methylene blue (MB and 4-nitrophenol (4-NP in the presence of the sodium borohydride (NaBH4 at room temperature. In addition, CuO NPs catalyst can be easily recovered by centrifugation and reused for 6 cycles with more than 90% conversion efficiency. CuO nanocatalyst, leaching after catalytic application was investigated by ICPAES (Inductively coupled plasma atomic emission spectroscopy. CuO NPs possess great prospects in reduction of pernicious dyes and nitro organic pollutants in water.

  7. Catalytic exhaust control

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H

    1973-09-01

    Recent achievements and problems in the development of exhaust control devices in the USA are reviewed. To meet the 1976 emission standards, catalytic systems for the oxidation of carbon monoxide and hydrocarbons and for the reduction of nitrogen oxides to nitrogen and water are needed. While oxidizing catalysts using platinum, palladium, copper, vanadium, and chromium appplied on alumina or ceramic materials are more or less effective in emission control, there are no catalytic devices for the reduction of nitrogen oxides with the required useful life of 25,000 to 50,000 miles as yet available. In the case of platinum catalysts on monolithic supports, the operating temperature of 650 to 750/sup 0/C as required for the oxidation process may cause inactivation of the catalysts and fusion of the support material. The oxidation of CO and hydrocarbons is inhibited by high concentrations of CO, nitric oxide, and hydrocarbons. The use of catalytic converters requires the use of lead-free or low-lead gasoline. The nitrogen oxides conversion efficiency is considerably influenced by the oxygen-to-CO ratio of the exhaust gas, which makes limitation of this ratio necessary.

  8. Catalytic Wittig and aza-Wittig reactions

    Directory of Open Access Journals (Sweden)

    Zhiqi Lao

    2016-11-01

    Full Text Available This review surveys the literature regarding the development of catalytic versions of the Wittig and aza-Wittig reactions. The first section summarizes how arsenic and tellurium-based catalytic Wittig-type reaction systems were developed first due to the relatively easy reduction of the oxides involved. This is followed by a presentation of the current state of the art regarding phosphine-catalyzed Wittig reactions. The second section covers the field of related catalytic aza-Wittig reactions that are catalyzed by both phosphine oxides and phosphines.

  9. Efficient catalytic combustion in integrated micropellistors

    International Nuclear Information System (INIS)

    Bársony, I; Ádám, M; Fürjes, P; Dücső, Cs; Lucklum, R; Hirschfelder, M; Kulinyi, S

    2009-01-01

    This paper analyses two of the key issues of the development of catalytic combustion-type sensors: the selection and production of active catalytic particles on the micropellistor surface as well as the realization of a reliable thermal conduction between heater element and catalytic surface, for the sensing of temperature increase produced by the combustion. The report also demonstrates that chemical sensor product development by a MEMS process is a continuous struggle for elimination of all uncertainties influencing reliability and sensitivity of the final product

  10. Adsorbent catalytic nanoparticles and methods of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Slowing, Igor Ivan; Kandel, Kapil

    2017-01-31

    The present invention provides an adsorbent catalytic nanoparticle including a mesoporous silica nanoparticle having at least one adsorbent functional group bound thereto. The adsorbent catalytic nanoparticle also includes at least one catalytic material. In various embodiments, the present invention provides methods of using and making the adsorbent catalytic nanoparticles. In some examples, the adsorbent catalytic nanoparticles can be used to selectively remove fatty acids from feedstocks for biodiesel, and to hydrotreat the separated fatty acids.

  11. Inductive reasoning.

    Science.gov (United States)

    Hayes, Brett K; Heit, Evan; Swendsen, Haruka

    2010-03-01

    Inductive reasoning entails using existing knowledge or observations to make predictions about novel cases. We review recent findings in research on category-based induction as well as theoretical models of these results, including similarity-based models, connectionist networks, an account based on relevance theory, Bayesian models, and other mathematical models. A number of touchstone empirical phenomena that involve taxonomic similarity are described. We also examine phenomena involving more complex background knowledge about premises and conclusions of inductive arguments and the properties referenced. Earlier models are shown to give a good account of similarity-based phenomena but not knowledge-based phenomena. Recent models that aim to account for both similarity-based and knowledge-based phenomena are reviewed and evaluated. Among the most important new directions in induction research are a focus on induction with uncertain premise categories, the modeling of the relationship between inductive and deductive reasoning, and examination of the neural substrates of induction. A common theme in both the well-established and emerging lines of induction research is the need to develop well-articulated and empirically testable formal models of induction. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  12. Catalytic cracking models developed for predictive control purposes

    Directory of Open Access Journals (Sweden)

    Dag Ljungqvist

    1993-04-01

    Full Text Available The paper deals with state-space modeling issues in the context of model-predictive control, with application to catalytic cracking. Emphasis is placed on model establishment, verification and online adjustment. Both the Fluid Catalytic Cracking (FCC and the Residual Catalytic Cracking (RCC units are discussed. Catalytic cracking units involve complex interactive processes which are difficult to operate and control in an economically optimal way. The strong nonlinearities of the FCC process mean that the control calculation should be based on a nonlinear model with the relevant constraints included. However, the model can be simple compared to the complexity of the catalytic cracking plant. Model validity is ensured by a robust online model adjustment strategy. Model-predictive control schemes based on linear convolution models have been successfully applied to the supervisory dynamic control of catalytic cracking units, and the control can be further improved by the SSPC scheme.

  13. Effect of inlet cone pipe angle in catalytic converter

    Science.gov (United States)

    Amira Zainal, Nurul; Farhain Azmi, Ezzatul; Arifin Samad, Mohd

    2018-03-01

    The catalytic converter shows significant consequence to improve the performance of the vehicle start from it launched into production. Nowadays, the geometric design of the catalytic converter has become critical to avoid the behavior of backpressure in the exhaust system. The backpressure essentially reduced the performance of vehicles and increased the fuel consumption gradually. Consequently, this study aims to design various models of catalytic converter and optimize the volume of fluid flow inside the catalytic converter by changing the inlet cone pipe angles. Three different geometry angles of the inlet cone pipe of the catalytic converter were assessed. The model is simulated in Solidworks software to determine the optimum geometric design of the catalytic converter. The result showed that by decreasing the divergence angle of inlet cone pipe will upsurge the performance of the catalytic converter.

  14. Catalytic burners in larger boiler appliances

    Energy Technology Data Exchange (ETDEWEB)

    Silversand, Fredrik; Persson, Mikael (Catator AB, Lund (Sweden))

    2009-02-15

    This project focuses on the scale up of a Catator's catalytic burner technology to enable retrofit installation in existing boilers and the design of new innovative combinations of catalytic burners and boilers. Different design approaches are discussed and evaluated in the report and suggestions are made concerning scale-up. Preliminary test data, extracted from a large boiler installation are discussed together with an accurate analysis of technical possibilities following an optimization of the boiler design to benefit from the advantages of catalytic combustion. The experimental work was conducted in close collaboration with ICI Caldaie (ICI), located in Verona, Italy. ICI is a leading European boiler manufacturer in the effect segment ranging from about 20 kWt to several MWt. The study shows that it is possibly to scale up the burner technology and to maintain low emissions. The boilers used in the study were designed around conventional combustion and were consequently not optimized for implementation of catalytic burners. From previous experiences it stands clear that the furnace volume can be dramatically decreased when applying catalytic combustion. In flame combustion, this volume is normally dimensioned to avoid flame impingement on cold surfaces and to facilitate completion of the gas-phase reactions. The emissions of nitrogen oxides can be reduced by decreasing the residence time in the furnace. Even with the over-dimensioned furnace used in this study, we easily reached emission values close to 35 mg/kWh. The emissions of carbon monoxide and unburned hydrocarbons were negligible (less than 5 ppmv). It is possible to decrease the emissions of nitrogen oxides further by designing the furnace/boiler around the catalytic burner, as suggested in the report. Simultaneously, the size of the boiler installation can be reduced greatly, which also will result in material savings, i.e. the production cost can be reduced. It is suggested to optimize the

  15. Antibody induction versus corticosteroid induction for liver transplant recipients

    DEFF Research Database (Denmark)

    Penninga, Luit; Wettergren, André; Wilson, Colin H

    2014-01-01

    BACKGROUND: Liver transplantation is an established treatment option for end-stage liver failure. To date, no consensus has been reached on the use of immunosuppressive T-cell specific antibody induction compared with corticosteroid induction of immunosuppression after liver transplantation....... OBJECTIVES: To assess the benefits and harms of T-cell specific antibody induction versus corticosteroid induction for prevention of acute rejection in liver transplant recipients. SEARCH METHODS: We searched The Cochrane Hepato-Biliary Group Controlled Trials Register, the Cochrane Central Register...... to identify additional trials. SELECTION CRITERIA: We included all randomised clinical trials assessing immunosuppression with T-cell specific antibody induction versus corticosteroid induction in liver transplant recipients. Our inclusion criteria stated that participants within each included trial should...

  16. Utx Is Required for Proper Induction of Ectoderm and Mesoderm during Differentiation of Embryonic Stem Cells

    DEFF Research Database (Denmark)

    Morales Torres, Cristina; Laugesen, Anne; Helin, Kristian

    2013-01-01

    to the establishment of ectoderm and mesoderm in vitro. Interestingly, this contribution is independent of the catalytic activity of Utx. Furthermore, we provide data showing that the Utx homologue, Uty, which is devoid of detectable demethylase activity, and Jmjd3 partly compensate for the loss of Utx. Taken together...

  17. Concentric catalytic combustor

    Science.gov (United States)

    Bruck, Gerald J [Oviedo, FL; Laster, Walter R [Oviedo, FL

    2009-03-24

    A catalytic combustor (28) includes a tubular pressure boundary element (90) having a longitudinal flow axis (e.g., 56) separating a first portion (94) of a first fluid flow (e.g., 24) from a second portion (95) of the first fluid flow. The pressure boundary element includes a wall (96) having a plurality of separate longitudinally oriented flow paths (98) annularly disposed within the wall and conducting respective portions (100, 101) of a second fluid flow (e.g., 26) therethrough. A catalytic material (32) is disposed on a surface (e.g., 102, 103) of the pressure boundary element exposed to at least one of the first and second portions of the first fluid flow.

  18. Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion.

    Science.gov (United States)

    Pozan, Gulin Selda

    2012-06-30

    The aim of this work was to study combustion of toluene (1000ppm) over MnO(2) modified with different supports. α-Al(2)O(3) and γ-Al(2)O(3) obtained from Boehmite, γ-Al(2)O(3) (commercial), SiO(2), TiO(2) and ZrO(2) were used as commercial support materials. In view of potential interest of this process, the influence of support material on the catalytic performance was discussed. The deposition of 9.5MnO(2) was performed by impregnation over support. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction and oxidation (TPR/TPO) and thermogravimetric analysis (TGA). The catalytic tests were carried out at atmospheric pressure in a fixed-bed flow reactor. 9.5MnO(2)/α-Al(2)O(3)(B) (synthesized from Boehmite) catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of 289°C. Considering all the characterization and reaction data reported in this study, it was concluded that the manganese state and oxygen species played an important role in the catalytic activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Induction linacs

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    The principle of linear induction acceleration is described, and examples are given of practical configurations for induction linacs. These examples include the Advanced Technology Accelerator, Long Pulse Induction Linac, Radial Line Accelerator (RADLAC), and Magnetically-Insulated Electron-Focussed Ion Linac. A related concept, the auto accelerator, is described in which the high-current electron-beam technology in the sub-10 MeV region is exploited to produce electron beams at energies perhaps as high as the 100 to 1000 MeV range. Induction linacs for ions are also discussed. The efficiency of induction linear acceleration is analyzed

  20. Catalytic models developed through social work

    DEFF Research Database (Denmark)

    Jensen, Mogens

    2015-01-01

    of adolescents placed in out-of-home care and is characterised using three situated cases as empirical data. Afterwards the concept of catalytic processes is briefly presented and then applied in an analysis of pedagogical treatment in the three cases. The result is a different conceptualisation of the social......The article develops the concept of catalytic processes in relation to social work with adolescents in an attempt to both reach a more nuanced understanding of social work and at the same time to develop the concept of catalytic processes in psychology. The social work is pedagogical treatment...

  1. Antibody induction versus placebo, no induction, or another type of antibody induction for liver transplant recipients

    DEFF Research Database (Denmark)

    Penninga, Luit; Wettergren, André; Wilson, Colin H

    2014-01-01

    . All 19 trials were with high risk of bias. Of the 19 trials, 16 trials were two-arm trials, and three trials were three-arm trials. Hence, we found 25 trial comparisons with antibody induction agents: interleukin-2 receptor antagonist (IL-2 RA) versus no induction (10 trials with 1454 participants....... Furthermore, serum creatinine was statistically significantly higher when T-cell specific antibody induction was compared with no induction (MD 3.77 μmol/L, 95% CI 0.33 to 7.21; low-quality evidence), as well as when polyclonal T-cell specific antibody induction was compared with no induction, but this small...... T-cell specific antibody induction, drug-related adverse events were less common among participants treated with interleukin-2 receptor antagonists (RR 0.23, 95% CI 0.09 to 0.63; low-quality evidence), but this was caused by the results from one trial, and trial sequential analysis could not exclude...

  2. Catalytically favorable surface patterns in Pt-Au nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2013-01-01

    Motivated by recent experimental demonstrations of novel PtAu nanoparticles with highly enhanced catalytic properties, we present a systematic theoretical study that explores principal catalytic indicators as a function of the particle size and composition. We find that Pt electronic states in the vicinity of the Fermi level combined with a modified electron distribution in the nanoparticle due to Pt-to-Au charge transfer are the origin of the outstanding catalytic properties. From our model we deduce the catalytically favorable surface patterns that induce ensemble and ligand effects. © The Royal Society of Chemistry 2013.

  3. Turning goals into results: the power of catalytic mechanisms.

    Science.gov (United States)

    Collins, J

    1999-01-01

    Most executives have a big, hairy, audacious goal. They write vision statements, formalize procedures, and develop complicated incentive programs--all in pursuit of that goal. In other words, with the best of intentions, they install layers of stultifying bureaucracy. But it doesn't have to be that way. In this article, Jim Collins introduces the catalytic mechanism, a simple yet powerful managerial tool that helps translate lofty aspirations into concrete reality. Catalytic mechanisms are the crucial link between objectives and performance; they are a galvanizing, nonbureaucratic means to turn one into the other. What's the difference between catalytic mechanisms and most traditional managerial controls? Catalytic mechanisms share five characteristics. First, they produce desired results in unpredictable ways. Second, they distribute power for the benefit of the overall system, often to the discomfort of those who traditionally hold power. Third, catalytic mechanisms have teeth. Fourth, they eject "viruses"--those people who don't share the company's core values. Finally, they produce an ongoing effect. Catalytic mechanisms are just as effective for reaching individual goals as they are for corporate ones. To illustrate how catalytic mechanisms work, the author draws on examples of individuals and organizations that have relied on such mechanisms to achieve their goals. The same catalytic mechanism that works in one organization, however, will not necessarily work in another. Catalytic mechanisms must be tailored to specific goals and situations. To help readers get started, the author offers some general principles that support the process of building catalytic mechanisms effectively.

  4. lac operon induction in Escherichia coli: Systematic comparison of IPTG and TMG induction and influence of the transacetylase LacA.

    Science.gov (United States)

    Marbach, Anja; Bettenbrock, Katja

    2012-01-01

    Most commonly used expression systems in bacteria are based on the Escherichia coli lac promoter. Furthermore, lac operon elements are used today in systems and synthetic biology. In the majority of the cases the gratuitous inducers IPTG or TMG are used. Here we report a systematic comparison of lac promoter induction by TMG and IPTG which focuses on the aspects inducer uptake, population heterogeneity and a potential influence of the transacetylase, LacA. We provide induction curves in E. coli LJ110 and in isogenic lacY and lacA mutant strains and we show that both inducers are substrates of the lactose permease at low inducer concentrations but can also enter cells independently of lactose permease if present at higher concentrations. Using a gfp reporter strain we compared TMG and IPTG induction at single cell level and showed that bimodal induction with IPTG occurred at approximately ten-fold lower concentrations than with TMG. Furthermore, we observed that lac operon induction is influenced by the transacetylase, LacA. By comparing two Plac-gfp reporter strains with and without a lacA deletion we could show that in the lacA(+) strain the fluorescence level decreased after few hours while the fluorescence further increased in the lacA(-) strain. The results indicate that through the activity of LacA the IPTG concentration can be reduced below an inducing threshold concentration-an influence that should be considered if low inducer amounts are used. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Atomically Precise Metal Nanoclusters for Catalytic Application

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Rongchao [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-11-18

    The central goal of this project is to explore the catalytic application of atomically precise gold nanoclusters. By solving the total structures of ligand-protected nanoclusters, we aim to correlate the catalytic properties of metal nanoclusters with their atomic/electronic structures. Such correlation unravel some fundamental aspects of nanocatalysis, such as the nature of particle size effect, origin of catalytic selectivity, particle-support interactions, the identification of catalytically active centers, etc. The well-defined nanocluster catalysts mediate the knowledge gap between single crystal model catalysts and real-world conventional nanocatalysts. These nanoclusters also hold great promise in catalyzing certain types of reactions with extraordinarily high selectivity. These aims are in line with the overall goals of the catalytic science and technology of DOE and advance the BES mission “to support fundamental research to understand, predict, and ultimately control matter and energy at the level of electrons, atoms, and molecules”. Our group has successfully prepared different sized, robust gold nanoclusters protected by thiolates, such as Au25(SR)18, Au28(SR)20, Au38(SR)24, Au99(SR)42, Au144(SR)60, etc. Some of these nanoclusters have been crystallographically characterized through X-ray crystallography. These ultrasmall nanoclusters (< 2 nm diameter) exhibit discrete electronic structures due to quantum size effect, as opposed to quasicontinuous band structure of conventional metal nanoparticles or bulk metals. The available atomic structures (metal core plus surface ligands) of nanoclusters serve as the basis for structure-property correlations. We have investigated the unique catalytic properties of nanoclusters (i.e. not observed in conventional nanogold catalysts) and revealed the structure-selectivity relationships. Highlights of our

  6. Accumulating the hydride state in the catalytic cycle of [FeFe]-hydrogenases

    Science.gov (United States)

    Winkler, Martin; Senger, Moritz; Duan, Jifu; Esselborn, Julian; Wittkamp, Florian; Hofmann, Eckhard; Apfel, Ulf-Peter; Stripp, Sven Timo; Happe, Thomas

    2017-07-01

    H2 turnover at the [FeFe]-hydrogenase cofactor (H-cluster) is assumed to follow a reversible heterolytic mechanism, first yielding a proton and a hydrido-species which again is double-oxidized to release another proton. Three of the four presumed catalytic intermediates (Hox, Hred/Hred and Hsred) were characterized, using various spectroscopic techniques. However, in catalytically active enzyme, the state containing the hydrido-species, which is eponymous for the proposed heterolytic mechanism, has yet only been speculated about. We use different strategies to trap and spectroscopically characterize this transient hydride state (Hhyd) for three wild-type [FeFe]-hydrogenases. Applying a novel set-up for real-time attenuated total-reflection Fourier-transform infrared spectroscopy, we monitor compositional changes in the state-specific infrared signatures of [FeFe]-hydrogenases, varying buffer pH and gas composition. We selectively enrich the equilibrium concentration of Hhyd, applying Le Chatelier's principle by simultaneously increasing substrate and product concentrations (H2/H+). Site-directed manipulation, targeting either the proton-transfer pathway or the adt ligand, significantly enhances Hhyd accumulation independent of pH.

  7. Microcontroller based Stator Winding Resistance Determination of Induction Motor Drive on Temperature Variations

    OpenAIRE

    Siraj Ahmed T; Sukhdeo Sao; K.S.R Anjaneyulu

    2014-01-01

    In this paper an experiment has been conducted to determine the online stator winding resistance of an induction motor, in industries as well as domestic purpose induction motors is largely utilized, as it has both applications of variable and constant torque operation nature. The major requirement of an electric drive system is its independent control of torque and speed; this is achieved in DC motor Drive but has more disadvantages. With the help of fast acting switching devices it is possi...

  8. Kinetic Parameters of Non-Isothermal Thermogravimetric Non-Catalytic and Catalytic Pyrolysis of Empty Fruit Bunch with Alumina by Kissinger and Ozawa Methods

    Science.gov (United States)

    Rahayu Mohamed, Alina; Li, Nurfahani; Sohaimi, Khairunissa Syairah Ahmad; Izzati Iberahim, Nur; Munirah Rohaizad, Nor; Hamzah, Rosniza

    2018-03-01

    The non-isothermal thermogravimetric non-catalytic and catalytic empty fruit bunch (EFB) pyrolysis with alumina were performed at different heating rates of 10, 15, 20, 25, 30 and 40 K/min under nitrogen atmosphere at a flow rate of 100 ml/min under dynamic conditions from 301 K to 1273 K. The activation energy were calculated based on Kissinger and Ozawa methods. Both reactions followed first order reactions. By Kissinger method, the activation energy and Ln A values for non-catalytic and catalytic EFB pyrolysis with alumina were 188.69 kJ mol-1 and 201.67 kJ/mol respectively. By Ozawa method, the activation energy values for non-catalytic and catalytic EFB pyrolysis with alumina were 189.13 kJ/mol and 201.44 kJ/mol respectively. The presence of catalyst increased the activation energy values for EFB pyrolysis as calculated by Kissinger and Ozawa methods.

  9. Postdates induction with an unfavorable cervix and risk of cesarean.

    Science.gov (United States)

    McCoy, Jennifer; Downes, Katheryne L; Srinivas, Sindhu K; Levine, Lisa D

    2018-03-21

    To determine the risk of cesarean delivery associated with postdates induction (≥41 weeks) compared to term induction (37-40w6d) among women with an unfavorable cervix, and to examine the risk factors associated with cesarean among women undergoing postdates induction. A planned secondary analysis of a large prospective cohort study on induction (n = 854) was performed. Women with a singleton gestation, intact membranes, and an unfavorable cervix (Bishop score of ≤6 and dilation ≤2 cm) who were undergoing a term (≥37 weeks) induction for any indication were included. Women with a prior cesarean were excluded. The primary outcome was cesarean delivery. Relative risk of cesarean was estimated using a modified Poisson's regression model. There was a significantly increased risk of cesarean for women undergoing postdates induction (n = 154) compared to women 37-40w6d (n = 700), (46.8 versus 26.0%, p cesarean remained after adjustment for race, parity, and pregnancy-related hypertension (aRR 1.70 [1.39-2.09], p cesarean among women ≥41 weeks included nulliparity (aRR 3.38 95%CI (2.42-4.74)), BMI ≥30 (aRR 1.72 95%CI (1.34-2.21)), and starting cervical dilation cesarean compared to women 37-40w6d, with nulliparity, obesity, and cervical dilation <1 cm being independent risk factors. These data can be used to augment patient counseling and support the ongoing discussion regarding the risk of post dates induction.

  10. How multiple causes combine: independence constraints on causal inference.

    Science.gov (United States)

    Liljeholm, Mimi

    2015-01-01

    According to the causal power view, two core constraints-that causes occur independently (i.e., no confounding) and influence their effects independently-serve as boundary conditions for causal induction. This study investigated how violations of these constraints modulate uncertainty about the existence and strength of a causal relationship. Participants were presented with pairs of candidate causes that were either confounded or not, and that either interacted or exerted their influences independently. Consistent with the causal power view, uncertainty about the existence and strength of causal relationships was greater when causes were confounded or interacted than when unconfounded and acting independently. An elemental Bayesian causal model captured differences in uncertainty due to confounding but not those due to an interaction. Implications of distinct sources of uncertainty for the selection of contingency information and causal generalization are discussed.

  11. Inductive Learning and Theory Testing: Applications in Finance

    OpenAIRE

    Zimmermann, Tom

    2015-01-01

    This thesis explores the opportunities for economic research that arise from importing empirical methods from the field of machine learning. Chapter 1 applies inductive learning to cross-sectional asset pricing. Researchers have documented over three hundred variables that can explain differences in cross-sectional stock returns. But which ones contain independent information? Chapter 1 develops a framework, deep conditional portfolio sorts, that can be used to answer this question and th...

  12. Bcr-Abl-independent mechanism of resistance to imatinib in K562 cells: Induction of cyclooxygenase-2 (COX-2) by histone deacetylases (HDACs).

    Science.gov (United States)

    Kalle, Arunasree M; Sachchidanand, Sachchidanand; Pallu, Reddanna

    2010-09-01

    Our previous studies have shown that overexpression of MDR1 and cyclooygenase-2 (COX-2) resulted in resistance development to imatinib in chronic myelogenous leukemia (CML) K562 (IR-K562) cells. In the present study, the regulatory mechanism of MDR1 induction by COX-2 was investigated. A gradual overexpression of MDR1 and COX-2 during the process of development was observed. Furthermore, down regulation of MDR1 upon COX-2 knockdown by siRNA showed a decrease in the PKC levels and activation of PKC by addition of PGE(2) to K562 cells, suggesting a role for PKC in the COX-2 mediated induction of MDR1. The present study demonstrates COX-2 induction by HDACs and MDR1 induction by COX-2 via PGE(2)-cAMP-PKC-mediated pathway. Copyright 2010 Elsevier Ltd. All rights reserved.

  13. Catalytic Stereoinversion of L-Alanine to Deuterated D-Alanine.

    Science.gov (United States)

    Moozeh, Kimia; So, Soon Mog; Chin, Jik

    2015-08-03

    A combination of an achiral pyridoxal analogue and a chiral base has been developed for catalytic deuteration of L-alanine with inversion of stereochemistry to give deuterated D-alanine under mild conditions (neutral pD and 25 °C) without the use of any protecting groups. This system can also be used for catalytic deuteration of D-alanine with retention of stereochemistry to give deuterated D-alanine. Thus a racemic mixture of alanine can be catalytically deuterated to give an enantiomeric excess of deuterated D-alanine. While catalytic deracemization of alanine is forbidden by the second law of thermodynamics, this system can be used for catalytic deracemization of alanine with deuteration. Such green and biomimetic approach to catalytic stereocontrol provides insights into efficient amino acid transformations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A Review on Catalytic Membranes Production and Applications

    Directory of Open Access Journals (Sweden)

    Heba Abdallah

    2017-05-01

    Full Text Available The development of the chemical industry regarding reducing the production cost and obtaining a high-quality product with low environmental impact became the essential requirements of the world in these days. The catalytic membrane is considered as one of the new alternative solutions of catalysts problems in the industries, where the reaction and separation can be amalgamated in one unit. The catalytic membrane has numerous advantages such as breaking the thermodynamic equilibrium limitation, increasing conversion rate, reducing the recycle and separation costs. But the limitation or most disadvantages of catalytic membranes related to the high capital costs for fabrication or the fact that manufacturing process is still under development. This review article summarizes the most recent advances and research activities related to preparation, characterization, and applications of catalytic membranes. In this article, various types of catalytic membranes are displayed with different applications and explained the positive impacts of using catalytic membranes in various reactions. Copyright © 2017 BCREC Group. All rights reserved. Received: 1st April 2016; Revised: 14th February 2017; Accepted: 22nd February 2017 How to Cite: Abdallah, H. (2017. A Review on Catalytic Membranes Production and Applications. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2: 136-156 (doi:10.9767/bcrec.12.2.462.136-156 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.462.136-156

  15. Reverse engineering of inductive fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Pina, J M; Neves, M Ventim; Rodrigues, A L [Centre of Technology and Systems Faculdade de Ciencias e Tecnologia, Nova University of Lisbon Monte de Caparica, 2829-516 Caparica (Portugal); Suarez, P; Alvarez, A, E-mail: jmmp@fct.unl.p [' Benito Mahedero' Group of Electrical Applications of Superconductors Escuela de IngenierIas Industrials, University of Extremadura Avenida de Elvas s/n, 06006 Badajoz (Spain)

    2010-06-01

    The inductive fault current limiter is less compact and harder to scale to high voltage networks than the resistive one. Nevertheless, its simple construction and mechanical robustness make it attractive in low voltage grids. Thus, it might be an enabling technology for the advent of microgrids, low voltage networks with dispersed generation, controllable loads and energy storage. A new methodology for reverse engineering of inductive fault current limiters based on the independent analysis of iron cores and HTS cylinders is presented in this paper. Their electromagnetic characteristics are used to predict the devices' hysteresis loops and consequently their dynamic behavior. Previous models based on the separate analysis of the limiters' components were already derived, e.g. in transformer like equivalent models. Nevertheless, the assumptions usually made may limit these models' application, as shown in the paper. The proposed methodology obviates these limitations. Results are validated through simulations.

  16. Reverse engineering of inductive fault current limiters

    International Nuclear Information System (INIS)

    Pina, J M; Neves, M Ventim; Rodrigues, A L; Suarez, P; Alvarez, A

    2010-01-01

    The inductive fault current limiter is less compact and harder to scale to high voltage networks than the resistive one. Nevertheless, its simple construction and mechanical robustness make it attractive in low voltage grids. Thus, it might be an enabling technology for the advent of microgrids, low voltage networks with dispersed generation, controllable loads and energy storage. A new methodology for reverse engineering of inductive fault current limiters based on the independent analysis of iron cores and HTS cylinders is presented in this paper. Their electromagnetic characteristics are used to predict the devices' hysteresis loops and consequently their dynamic behavior. Previous models based on the separate analysis of the limiters' components were already derived, e.g. in transformer like equivalent models. Nevertheless, the assumptions usually made may limit these models' application, as shown in the paper. The proposed methodology obviates these limitations. Results are validated through simulations.

  17. On the Structural Context and Identification of Enzyme Catalytic Residues

    Directory of Open Access Journals (Sweden)

    Yu-Tung Chien

    2013-01-01

    Full Text Available Enzymes play important roles in most of the biological processes. Although only a small fraction of residues are directly involved in catalytic reactions, these catalytic residues are the most crucial parts in enzymes. The study of the fundamental and unique features of catalytic residues benefits the understanding of enzyme functions and catalytic mechanisms. In this work, we analyze the structural context of catalytic residues based on theoretical and experimental structure flexibility. The results show that catalytic residues have distinct structural features and context. Their neighboring residues, whether sequence or structure neighbors within specific range, are usually structurally more rigid than those of noncatalytic residues. The structural context feature is combined with support vector machine to identify catalytic residues from enzyme structure. The prediction results are better or comparable to those of recent structure-based prediction methods.

  18. Field-controlled electron transfer and reaction kinetics of the biological catalytic system of microperoxidase-11 and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Yongki Choi

    2011-12-01

    Full Text Available Controlled reaction kinetics of the bio-catalytic system of microperoxidase-11 and hydrogen peroxide has been achieved using an electrostatic technique. The technique allowed independent control of 1 the thermodynamics of the system using electrochemical setup and 2 the quantum mechanical tunneling at the interface between microperoxidase-11 and the working electrode by applying a gating voltage to the electrode. The cathodic currents of electrodes immobilized with microperoxidase-11 showed a dependence on the gating voltage in the presence of hydrogen peroxide, indicating a controllable reduction reaction. The measured kinetic parameters of the bio-catalytic reduction showed nonlinear dependences on the gating voltage as the result of modified interfacial electron tunnel due to the field induced at the microperoxidase-11-electrode interface. Our results indicate that the kinetics of the reduction of hydrogen peroxide can be controlled by a gating voltage and illustrate the operation of a field-effect bio-catalytic transistor, whose current-generating mechanism is the conversion of hydrogen peroxide to water with the current being controlled by the gating voltage.

  19. Catalytic activity of Au nanoparticles

    DEFF Research Database (Denmark)

    Larsen, Britt Hvolbæk; Janssens, Ton V.W.; Clausen, Bjerne

    2007-01-01

    Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change with par......Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change...... with particle size. We find that the fraction of low-coordinated Au atoms scales approximately with the catalytic activity, suggesting that atoms on the corners and edges of Au nanoparticles are the active sites. This effect is explained using density functional calculations....

  20. Effect of different methods of pulse width modulation on power losses in an induction motor

    Science.gov (United States)

    Gulyaev, Alexander; Fokin, Dmitrii; Shuharev, Sergey; Ten, Evgenii

    2017-10-01

    We consider the calculation of modulation power losses in a system “induction motor-inverter” for various pulse width modulation (PWM) methods of the supply voltage. Presented values of modulation power losses are the result of modeling a system “DC link - two-level three-phase voltage inverter - induction motor - load”. In this study the power losses in a system “induction motor - inverter” are computed, as well as losses caused by higher harmonics of PWM supply voltage, followed by definition of active power consumed by the DC link for a specified value mechanical power on the induction motor shaft. Mechanical power was determined by the rotation speed and the torque on the motor shaft in various quasi-sinusoidal supply voltage PWM modes. These calculations reveal the best coefficient of performance (COP) in a system of a variable frequency drive (VFD) with independent voltage inverter controlled by induction motor PWM.

  1. Engineering Metallic Nanoparticles for Enhancing and Probing Catalytic Reactions.

    Science.gov (United States)

    Collins, Gillian; Holmes, Justin D

    2016-07-01

    Recent developments in tailoring the structural and chemical properties of colloidal metal nanoparticles (NPs) have led to significant enhancements in catalyst performance. Controllable colloidal synthesis has also allowed tailor-made NPs to serve as mechanistic probes for catalytic processes. The innovative use of colloidal NPs to gain fundamental insights into catalytic function will be highlighted across a variety of catalytic and electrocatalytic applications. The engineering of future heterogenous catalysts is also moving beyond size, shape and composition considerations. Advancements in understanding structure-property relationships have enabled incorporation of complex features such as tuning surface strain to influence the behavior of catalytic NPs. Exploiting plasmonic properties and altering colloidal surface chemistry through functionalization are also emerging as important areas for rational design of catalytic NPs. This news article will highlight the key developments and challenges to the future design of catalytic NPs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Review of induction linac studies

    International Nuclear Information System (INIS)

    Keefe, D.

    1984-01-01

    The three major experimental activities are as follows: (1) The Single-Beam Transport Experiment (SBTE): A quadrupole transport system consisting of 5 matching lenses and 41 identical F-D lens pairs to test the stability, or otherwise, of transport of a high-current Cs +1 beam over a long distance; (2) The Multiple-Beam Experiment (MBE): An arrangement of long-pulse induction accelerating units between which are placed multiple-beam focussing arrays to transport 16 independent beams threading the same accelerating structure. The experiment is designed to simulate on a small scale as many as possible of the features to be encountered in the HTE; and (3) The High Temperature Experiment

  3. Hydrocarbon conversion with an attenuated superactive multimetallic catalytic composite

    International Nuclear Information System (INIS)

    Antos, G.J.

    1981-01-01

    Hydrocarbons are converted by contacting them at hydrocarbon conversion conditions with a novel attenuated superactive multimetallic catalytic composite comprising a combination of a catalytically effective amount of a pyrolyzed rhenium carbonyl component with a porous carrier material containing a uniform dispersion of catalytically effective amounts of a platinum group component, which is maintained in the elemental metallic state during the incorporation and pyrolysis of the rhenium carbonyl component, and of an iron component. In a highly preferred embodiment, this novel catalytic composite also contains a catalytically effective amount of a halogen component. The platinum group component, pyrolyzed rhenium carbonyl component, iron component and optional halogen component are preferably present in the multimetallic catalytic composite in amounts, calculated on an elemental basis, corresponding to about 0.01 to about 2 wt. % platinum group metal, about 0.01 to about 5 wt. % rhenium, about 0.005 to about 4 wt. % iron and about 0.1 to about 5 wt. % halogen. A key feature associated with the preparation of the subject catalytic composite is reaction of a rhenium carbonyl complex with a porous carrier material containing a uniform dispersion of an iron component and of a platinum group component maintained in the elemental state, whereby the interaction of the rhenium moiety with the platinum group moiety is maximized due to the platinophilic (i.e., platinum-seeking) propensities of the carbon monoxide ligands associated with the rhenium reagent. A specific example of the type of hydrocarbon conversion process disclosed herein is a process for the catalytic reforming of a low octane gasoline fraction wherein the gasoline fraction and a hydrogen stream are contacted with the attenuated superactive multimetallic catalytic composite at reforming conditions

  4. Obstetricians' rising liability insurance premiums and inductions at late preterm gestations.

    Science.gov (United States)

    Murthy, Karna; Grobman, William A; Lee, Todd A; Holl, Jane L

    2009-04-01

    To estimate the association between professional liability insurance premiums for obstetricians and late preterm induction (LPI) rates. Data from the National Center for Health Statistics were used to identify all Illinois women pregnant with singletons at 34 weeks' gestation from 1991 to 2003. The independent association between LPI (induction between 34 and 37 weeks' gestation) rates and the previous year's obstetric malpractice insurance premiums was evaluated using linear regression. The mean annual LPI rate (5.4/1000 in 1991 to 15.2/1000 in 2003, P insurance premiums ($55,480 to $110,613, P insurance premium. Rising premiums are associated with increased frequency of LPI among women with singleton gestations.

  5. Mechanism of induction of nuclear anomalies by gamma-radiation in the colonic epithelium of the mouse

    International Nuclear Information System (INIS)

    Duncan, A.M.; Heddle, J.A.; Blakey, D.H.

    1985-01-01

    The induction of karyorrhexis and nuclear anomalies in colonic crypt cells has been correlated positively with the induction of colonic tumors by chemical treatment. These nuclear anomalies occur in the proliferative region of the crypt and exhibit a variety of morphological characteristics. Some nuclear anomalies resemble the micronuclei that arise from chromosomal fragments after mitosis. Here, we report that the nuclear anomalies observed within the first few hr of insult with gamma-radiation are independent of mitosis for their expression, as evidenced by failure of colchicine to inhibit their induction, and do not arise from chromosomal material lost during mitosis

  6. Catalytic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bindley, W T.R.

    1931-04-18

    An apparatus is described for the catalytic treatment of liquids, semi-liquids, and gases comprising a vessel into which the liquid, semi-liquid, or gas to be treated is introduced through a common inlet to a chamber within the vessel whence it passes to contact with a catalyst through radially arranged channels or passages to a common outlet chamber.

  7. Catalytic cleavage activities of 10–23 DNAzyme analogs functionalized with an amino group in its catalytic core

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2012-02-01

    Full Text Available Functionalization of the catalytic loop of 10–23 DNAzyme with an amino group was performed by incorporation of 7-(3-aminopropyl-8-aza-7-deaza-2′-deoxyadenosine in different single positions. Among the nine modified positions in the catalytic loop, A9 is the unique position with positive contribution by such modification. These results indicated that more efficient deoxyribozymes remain to be explored by introduction of exogenous functional groups in an appropriate position in the catalytic loop of 10–23 DNAzyme, such as the combination of 7-functional group substituted 8-aza-7-deaza-2′-deoxyadenosine analogs and A9 position.

  8. Induction machine handbook

    CERN Document Server

    Boldea, Ion

    2002-01-01

    Often called the workhorse of industry, the advent of power electronics and advances in digital control are transforming the induction motor into the racehorse of industrial motion control. Now, the classic texts on induction machines are nearly three decades old, while more recent books on electric motors lack the necessary depth and detail on induction machines.The Induction Machine Handbook fills industry's long-standing need for a comprehensive treatise embracing the many intricate facets of induction machine analysis and design. Moving gradually from simple to complex and from standard to

  9. Effectiveness of internet-based affect induction procedures: A systematic review and meta-analysis.

    Science.gov (United States)

    Ferrer, Rebecca A; Grenen, Emily G; Taber, Jennifer M

    2015-12-01

    Procedures used to induce affect in a laboratory are effective and well-validated. Given recent methodological and technological advances in Internet research, it is important to determine whether affect can be effectively induced using Internet methodology. We conducted a meta-analysis and systematic review of prior research that has used Internet-based affect induction procedures, and examined potential moderators of the effectiveness of affect induction procedures. Twenty-six studies were included in final analyses, with 89 independent effect sizes. Affect induction procedures effectively induced general positive affect, general negative affect, fear, disgust, anger, sadness, and guilt, but did not significantly induce happiness. Contamination of other nontarget affect did not appear to be a major concern. Video inductions resulted in greater effect sizes. Overall, results indicate that affect can be effectively induced in Internet studies, suggesting an important venue for the acceleration of affective science. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  10. Nerve-independent and ectopically additional induction of taste buds in organ culture of fetal tongues.

    Science.gov (United States)

    Honda, Kotaro; Tomooka, Yasuhiro

    2016-10-01

    An improved organ culture system allowed to observe morphogenesis of mouse lingual papillae and taste buds relatively for longer period, in which fetal tongues were analyzed for 6 d. Taste cells were defined as eosinophobic epithelial cells expressing CK8 and Sox2 within lingual epithelium. Addition of glycogen synthase kinase 3 beta inhibitor CHIR99021 induced many taste cells and buds in non-gustatory and gustatory stratified lingual epithelium. The present study clearly demonstrated induction of taste cells and buds ectopically and without innervation.

  11. The catalytic properties and stability of β-galactosidases from fungi

    Science.gov (United States)

    Pilipenko, O. S.; Atyaksheva, L. F.; Poltorak, O. M.; Chukhrai, E. S.

    2008-12-01

    The catalytic activity of β-galactosidases from fungi Penicillium canescens and Aspergillus oryzae is maximum in a weakly acidic medium and does not depend on the presence of magnesium cations in the reaction medium. The enzyme from Aspergillus oryzae fungi is more active, and that from Penicillium canescens is stabler. One of stability indications is the presence of an induction period in the kinetic curves of thermal inactivation. This period disappears at 54°C for the enzyme from Aspergillus oryzae and at 59°C for the enzyme from Penicillium canescens. The temperature dependences of the effective rate constants for the inactivation of the tetrameric enzyme from Penicillium canescens show that the main reason for enzyme inactivation is the dissociation of oligomeric forms below 66°C ( E act = 85 kJ/mol) and enzyme denaturation at higher temperatures ( E act = 480 kJ/mol). The dissociation stage is absent for monomeric β-galactosidase from Aspergillus oryzae fungi, and the activation energy of inactivation is 450 kJ/mol over the whole temperature range studied (53-60°C).

  12. Progress in catalytic naphtha reforming process: A review

    International Nuclear Information System (INIS)

    Rahimpour, Mohammad Reza; Jafari, Mitra; Iranshahi, Davood

    2013-01-01

    Catalytic naphtha reforming process is a vital process for refineries due to the production of high-octane components, which is intensely demanded in our modern life. The significance of this industrial process induced researchers to investigate different aspects of catalytic naphtha reforming process intensively. Some of the investigators try to improve this process by representing more effective catalysts, while others try to elucidate its kinetic and deactivation mechanisms and design more efficient reactor setups. The amount of these established papers is so much that may confuse some of the researchers who want to find collective information about catalytic naphtha reforming process. In the present paper, the published studies from 1949 until now are categorized into three main groups including finding suitable catalyst, revealing appropriate kinetic and deactivation model, and suggesting efficient reactor configuration and mode of operation. These studies are reviewed separately, and a suitable reference is provided for those who want to have access to generalized information about catalytic naphtha reforming process. Finally, various suggestions for revamping the catalytic naphtha reforming process have been proposed as a guideline for further investigations

  13. Catalytically favorable surface patterns in Pt-Au nanoclusters

    KAUST Repository

    Mokkath, Junais Habeeb; Schwingenschlö gl, Udo

    2013-01-01

    Motivated by recent experimental demonstrations of novel PtAu nanoparticles with highly enhanced catalytic properties, we present a systematic theoretical study that explores principal catalytic indicators as a function of the particle size

  14. Catalytic Aminohalogenation of Alkenes and Alkynes.

    Science.gov (United States)

    Chemler, Sherry R; Bovino, Michael T

    2013-06-07

    Catalytic aminohalogenation methods enable the regio- and stereoselective vicinal difunctionalization of alkynes, allenes and alkenes with amine and halogen moieties. A range of protocols and reaction mechanisms including organometallic, Lewis base, Lewis acid and Brønsted acid catalysis have been disclosed, enabling the regio- and stereoselective synthesis of halogen-functionalized acyclic amines and nitrogen heterocycles. Recent advances including aminofluorination and catalytic enantioselective aminohalogenation reactions are summarized in this review.

  15. Parametric study on catalytic tri-reforming of methane for syngas production

    International Nuclear Information System (INIS)

    Chein, Rei-Yu; Wang, Chien-Yu; Yu, Ching-Tsung

    2017-01-01

    A two-dimensional numerical model for syngas production from tri-reforming of methane (TRM) in adiabatic tubular fixed-bed reactors was established. From the results obtained, it was found that reactant must be preheated to certain temperatures for TRM activation. Although the delay factor accounting for the varying catalytic bed activities produced different temperature and species mole fraction profiles in the reactor upstream, the reactor performance was delay factor independent if the reactor outlet results were used because nearly identical temperature and species mole fraction variations were obtained at the reactor downstream. The numerical results also indicated that reverse water-gas shift reaction plays an important role for H 2 and CO yields. With higher O 2 in reactant, high temperature resulted, leading to lower H 2 /CO ratio. The absence of H 2 O in the reactant caused dry reforming of methane as the dominant reaction, resulting in H 2 /CO ratio close to unity. With the absence of CO 2 in the reactant, steam reforming of methane was the dominant reaction, resulting in H 2 /CO ratio close to 3. Using flue gas from combustion as TRM feedstock, it was found that H 2 /CO ratio was enhanced using lower CH 4 amount in reactant. High-temperature flue gas was suggested for TRM for the activation requirement. - Highlights: • Reactant must be preheated to certain temperature for tri-reforming of methane (TRM) activation. • A delay factor is used to account for varying catalytic activity. • TRM performance is delay factor independent when reactor outlet results are used. • Water-gas shift reaction plays an important role in H 2 yield, CO yield and H 2 /CO ratio in TRM. • Low CH 4 and high temperature are suggested when flue gas is used in TRM.

  16. Structured materials for catalytic and sensing applications

    Science.gov (United States)

    Hokenek, Selma

    been synthesized and characterized to establish the effects of nanoparticle size on catalytic activity in methanol decomposition. The physicochemical properties of the synthesized palladium-nickel nanoparticles will be discussed, as a function of the synthesis parameters. The optical characteristics of the Ag and Pd nanoparticles will be determined, with a view toward tuning the response of the nanoparticles for incorporation in sensors. Analysis of the monometallic palladium particles revealed a dependence of syngas production on nanoparticle size. The peak and steady state TOFs increased roughly linearly with the average nanoparticle diameter. The amount of coke deposited on the particle surfaces was found to be independent on the size of the nanoparticles. Shape control of the nickel-palladium nanoparticles with a high selectivity for (100) and (110) facets (≤ 80%) has been demonstrated. The resulting alloy nanoparticles were found to have homogeneous composition throughout their volume and maintain FCC crystal structure. Substitution of Ni atoms in the Pd lattice at a 1:3 molar ratio was found to induce lattice strains of ~1%. The Ag nanocubes synthesized exhibited behavior very similar to literature values, when taken on their own, exhibiting a pair of distinct absorbance peaks at 350 nm and 455 nm. In physical mixtures with the Pd nanoparticles synthesized, their behavior showed that the peak position of the Ag nanocubes' absorbance in UV-Vis could be tuned based on the relative proportions of the Ag and Pd nanoparticles present in the suspension analysed. The Ag polyhedra synthesized for comparison showed a broad doublet peak throughout the majority of the visible range before testing as a component in a physical mixture with the Pd nanoparticles. The addition of Pd nanoparticles to form a physical mixture resulted in some damping of the doublet peak observed as well as a corresponding shift in the baseline absorbance proportional to the amount of Pd added to

  17. Catalytic combustion in gas stoves - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Hjelm, Anna-Karin [CATATOR AB, Lund (Sweden)

    2003-06-01

    Several independent studies show that gas stoves to some degree contribute to the indoor emissions of NO{sub x} especially in situations were the ventilation flow is poor. The peak-NO{sub x} concentrations can reach several hundred ppb but the integral concentration seldom exceeds about 20 - 50 ppb, which corresponds to an indoor-outdoor ratio of about 1 - 2.5. Epidemiological studies indicate increasing problems with respiratory symptoms in sensitive people at concentrations as low as 15 ppb of NO{sub 2}. Consequently, the NO{sub x}-concentration in homes where gas stoves are used is high enough to cause health effects. However, in situations where the ventilation flow is high (utilisation of ventilation hoods) the NO{sub x}-emissions are not likely to cause any health problems. This study has been aimed at investigating the possibilities to reduce the NO{sub x} emissions from gas stoves by replacing the conventional flame combustion with catalytic combustion. The investigation is requested by Swedish Gas Center, and is a following-up work of an earlier conducted feasibility study presented in April-2002. The present investigation reports on the possibility to use cheap and simple retro-fit catalytic design suggestions for traditional gas stoves. Experiments have been conducted with both natural and town gas, and parameters such as emissions of NO{sub x}, CO and unburned fuel gas and thermal efficiency, etc, have been examined and are discussed. The results show that it is possible to reduce the NO{sub x} emissions up to 80% by a simple retro-fit installation, without decreasing the thermal efficiency of the cooking plate. The measured source strengths correspond to indoor NO{sub x} concentrations that are below or equal to the average outdoor concentration, implying that no additional detrimental health effects are probable. The drawback of the suggested installations is that the concentration of CO and in some cases also CH{sub 4} are increased in the flue gases

  18. Catalytic ozonation not relying on hydroxyl radical oxidation: A selective and competitive reaction process related to metal-carboxylate complexes

    KAUST Repository

    Zhang, Tao

    2014-01-01

    Catalytic ozonation following non-hydroxyl radical pathway is an important technique not only to degrade refractory carboxylic-containing organic compounds/matter but also to avoid catalyst deactivation caused by metal-carboxylate complexation. It is unknown whether this process is effective for all carboxylates or selective to special molecule structures. In this work, the selectivity was confirmed using O3/(CuO/CeO2) and six distinct ozone-resistant probe carboxylates (i.e., acetate, citrate, malonate, oxalate, pyruvate and succinate). Among these probe compounds, pyruvate, oxalate, and citrate were readily degraded following the rate order of oxalate>citrate>pyruvate, while the degradation of acetate, malonate, and succinate was not promoted. The selectivity was independent on carboxylate group number of the probe compounds and solution pH. Competitive degradation was observed for carboxylate mixtures following the preference order of citrate, oxalate, and finally pyruvate. The competitive degradation was ascribed to competitive adsorption on the catalyst surface. It was revealed that the catalytically degradable compounds formed bidentate chelating or bridging complexes with surface copper sites of the catalyst, i.e., the active sites. The catalytically undegradable carboxylates formed monodentate complexes with surface copper sites or just electrostatically adsorbed on the catalyst surface. The selectivity, relying on the structure of surface metal-carboxylate complex, should be considered in the design of catalytic ozonation process. © 2013 Elsevier B.V.

  19. Interplay of light transmission and catalytic exchange current in photoelectrochemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Fountaine, Katherine T., E-mail: kfountai@caltech.edu [Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Lewerenz, Hans J. [Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Atwater, Harry A. [Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States); Department of Applied Physics and Materials Science, California Institute of Technology, 1200 E. California Blvd., Pasadena, California 91125 (United States)

    2014-10-27

    We develop an analytic current-voltage expression for a variable junction photoelectrochemical (PEC) cell and use it to investigate and illustrate the influence of the optical and electrical properties of catalysts on the optoelectronic performance of PEC devices. Specifically, the model enables a simple, yet accurate accounting of nanostructured catalyst optical and electrical properties through incorporation of an optical transmission factor and active catalytic area factor. We demonstrate the utility of this model via the output power characteristics of an exemplary dual tandem solar cell with indium gallium phosphide and indium gallium arsenide absorbers with varying rhodium catalyst nanoparticle loading. The approach highlights the importance of considering interactions between independently optimized components for optimal PEC device design.

  20. Interplay of light transmission and catalytic exchange current in photoelectrochemical systems

    International Nuclear Information System (INIS)

    Fountaine, Katherine T.; Lewerenz, Hans J.; Atwater, Harry A.

    2014-01-01

    We develop an analytic current-voltage expression for a variable junction photoelectrochemical (PEC) cell and use it to investigate and illustrate the influence of the optical and electrical properties of catalysts on the optoelectronic performance of PEC devices. Specifically, the model enables a simple, yet accurate accounting of nanostructured catalyst optical and electrical properties through incorporation of an optical transmission factor and active catalytic area factor. We demonstrate the utility of this model via the output power characteristics of an exemplary dual tandem solar cell with indium gallium phosphide and indium gallium arsenide absorbers with varying rhodium catalyst nanoparticle loading. The approach highlights the importance of considering interactions between independently optimized components for optimal PEC device design.

  1. [Mood induction procedures: a critical review].

    Science.gov (United States)

    Gilet, A-L

    2008-06-01

    For a long period in the history of psychological research, emotion and cognition have been studied independently, as if one were irrelevant to the other. The renewed interest of researchers for the study of the relations between cognition and emotion has led to the development of a range of laboratory methods for inducing temporary mood states. This paper aims to review the main mood induction procedures allowing the induction of a negative mood as well as a positive mood, developed since the pioneer study of Schachter and Singer [Psychol Rev 69 (1962) 379-399] and to account for the usefulness and problems related to the use of such techniques. The first part of this paper deals with the detailed presentation of some of the most popular mood induction procedures according to their type: simple (use of only one mood induction technique) or combined (association of two or more techniques at once). The earliest of the modern techniques is the Velten Mood Induction Procedure [Behav Res Ther 6 (1968) 473-482], which involves reading aloud sixty self-referent statements progressing from relative neutral mood to negative mood or dysphoria. Some researchers have varied the procedure slightly by changing the number of the statements [Behav Res Ther 21 (1983) 233-239, Br J Clin Psychol 21 (1982) 111-117, J Pers Soc Psychol 35 (1977) 625-636]. Various other mood induction procedures have been developed including music induction [Cogn Emotion 11 (1997) 403-432, Br J Med Psychol 55 (1982) 127-138], film clip induction [J Pers Soc Psychol 20 (1971) 37-43, Cogn Emotion 7 (1993) 171-193, Rottenberg J, Ray RR, Gross JJ. Emotion elicitation using films. In: Coan JA, Allen JJB, editors. The handbook of emotion elicitation and assessment. New York: Oxford University Press, 2007], autobiographical recall [J Clin Psychol 36 (1980) 215-226, Jallais C. Effets des humeurs positives et négatives sur les structures de connaissances de type script. Thèse de doctorat non publi

  2. Novel Metal Nanomaterials and Their Catalytic Applications

    Directory of Open Access Journals (Sweden)

    Jiaqing Wang

    2015-09-01

    Full Text Available In the rapidly developing areas of nanotechnology, nano-scale materials as heterogeneous catalysts in the synthesis of organic molecules have gotten more and more attention. In this review, we will summarize the synthesis of several new types of noble metal nanostructures (FePt@Cu nanowires, Pt@Fe2O3 nanowires and bimetallic Pt@Ir nanocomplexes; Pt-Au heterostructures, Au-Pt bimetallic nanocomplexes and Pt/Pd bimetallic nanodendrites; Au nanowires, CuO@Ag nanowires and a series of Pd nanocatalysts and their new catalytic applications in our group, to establish heterogeneous catalytic system in “green” environments. Further study shows that these materials have a higher catalytic activity and selectivity than previously reported nanocrystal catalysts in organic reactions, or show a superior electro-catalytic activity for the oxidation of methanol. The whole process might have a great impact to resolve the energy crisis and the environmental crisis that were caused by traditional chemical engineering. Furthermore, we hope that this article will provide a reference point for the noble metal nanomaterials’ development that leads to new opportunities in nanocatalysis.

  3. Hydrothermal synthesis, structure, heterogeneous catalytic activity and photoluminescent properties of a novel homoleptic Sm(III)-organic framework

    Energy Technology Data Exchange (ETDEWEB)

    Ay, Burak [Department of Chemistry, Arts and Science Faculty,Çukurova University, 01330 Adana (Turkey); Yildiz, Emel, E-mail: eeyildiz@cu.edu.tr [Department of Chemistry, Arts and Science Faculty,Çukurova University, 01330 Adana (Turkey); Felts, Ashley C.; Abboud, Khalil A. [Department of Chemistry, University of Florida, Gainesville, FL 32611 (United States)

    2016-12-15

    A novel metal-organic framework, (H{sub 2}pip){sub n}[Sm{sub 2}(pydc){sub 4}(H{sub 2}O){sub 2}]{sub n} (1) (H{sub 2}pydc=2,6-pyridinedicarboxylic acid, H{sub 2}pip=piperazine) has been synthesized under hydrothermal conditions and characterized by the elemental analysis, inductively coupled plasma (ICP) spectrometer, fourier transform infrared (FT-IR) spectra, thermogravimetric analysis (TGA), single crystal X-ray diffraction analysis and powder X-ray diffraction (PXRD). The structure of 1 was determined to be three-dimensional, linked along Sm-O-Sm chains. The asymmetric unit consisted of one singly anionic fragment consisting of Sm(III) coordinated to two H{sub 2}pydc ligands and one water, and one half of a protonated H{sub 2}pip, which sits on an inversion center. 1 exhibited luminescence emission bands at 534 nm at room temperature when excited at 440 nm. Its thermal behavior and catalytic performance were investigated and the selectivity was measured as 100% for the oxidation of thymol to thymoquinone. - Graphical abstract: A novel 3D lanthanide-organic framework has been synthesized under hydrothermal conditions. The thermal behavior and catalytic performance of 1 were investigated and its selectivity was measured as 100% for the oxidation of thymol to thymoquinone.

  4. Catalytic Organic Transformations Mediated by Actinide Complexes

    Directory of Open Access Journals (Sweden)

    Isabell S. R. Karmel

    2015-10-01

    Full Text Available This review article presents the development of organoactinides and actinide coordination complexes as catalysts for homogeneous organic transformations. This chapter introduces the basic principles of actinide catalysis and deals with the historic development of actinide complexes in catalytic processes. The application of organoactinides in homogeneous catalysis is exemplified in the hydroelementation reactions, such as the hydroamination, hydrosilylation, hydroalkoxylation and hydrothiolation of alkynes. Additionally, the use of actinide coordination complexes for the catalytic polymerization of α-olefins and the ring opening polymerization of cyclic esters is presented. The last part of this review article highlights novel catalytic transformations mediated by actinide compounds and gives an outlook to the further potential of this field.

  5. Modeling and simulation of heterogeneous catalytic processes

    CERN Document Server

    Dixon, Anthony

    2014-01-01

    Heterogeneous catalysis and mathematical modeling are essential components of the continuing search for better utilization of raw materials and energy, with reduced impact on the environment. Numerical modeling of chemical systems has progressed rapidly due to increases in computer power, and is used extensively for analysis, design and development of catalytic reactors and processes. This book presents reviews of the state-of-the-art in modeling of heterogeneous catalytic reactors and processes. Reviews by leading authorities in the respective areas Up-to-date reviews of latest techniques in modeling of catalytic processes Mix of US and European authors, as well as academic/industrial/research institute perspectives Connections between computation and experimental methods in some of the chapters.

  6. Catalytic gasification of oil-shales

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.; Avakyan, T. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation); Strizhakova, Yu. [Samara State Univ. (Russian Federation)

    2012-07-01

    Nowadays, the problem of complex usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. A one of possible solutions of the problem is their gasification with further processing of gaseous and liquid products. In this work we have investigated the process of thermal and catalytic gasification of Baltic and Kashpir oil-shales. We have shown that, as compared with non-catalytic process, using of nickel catalyst in the reaction increases the yield of gas, as well as hydrogen content in it, and decreases the amount of liquid products. (orig.)

  7. Research of Driving Circuit in Coaxial Induction Coilgun

    Directory of Open Access Journals (Sweden)

    Yadong Zhang

    2013-09-01

    Full Text Available Power supply is crucial equipment in coaxial induction coil launcher.Configuration of the driving circuit influences the efficiency of the coil launcher directly.This paper gives a detailed analysis of the properties of the driving circuit construction based on the capacitor source. Three topologies of the driving circuit are compared including oscillation circuit, crowbar circuit and half-wave circuit. It is proved that which circuit has the better efficiency depends on the detailed parameters of the experiment, especially the crowbar resistance. Crowbar resistor regulates not only efficiency of the system, but also temperature rise of the coil. Electromagnetic force (EMF applied on the armature will be another question which influences service condition of the driving circuits. Oscillation circuit and crowbar circuit should apply to the asynchronous induction coil launcher and synchronous induction coil launcher, respectively. Half-wave circuit is seldom used in the experiment. Although efficiency of the half-wave circuit is very high, the speed of the armature is low. A simple independent half-wave circuit is suggested in this paper. Generally speaking, the comprehensive property of crowbar circuit is the most practical in the three typical circuits. Conclusions of the paper could provide guidelines for practice.

  8. Remarkable promotion effect of trace sulfation on OMS-2 nanorod catalysts for the catalytic combustion of ethanol.

    Science.gov (United States)

    Zhang, Jie; Zhang, Changbin; He, Hong

    2015-09-01

    OMS-2 nanorod catalysts were synthesized by a hydrothermal redox reaction method using MnSO4 (OMS-2-SO4) and Mn(CH3COO)2 (OMS-2-AC) as precursors. SO4(2-)-doped OMS-2-AC catalysts with different SO4(2-) concentrations were prepared next by adding (NH4)2SO4 solution into OMS-2-AC samples to investigate the effect of the anion SO4(2-) on the OMS-2-AC catalyst. All catalysts were then tested for the catalytic oxidation of ethanol. The OMS-2-SO4 catalyst synthesized demonstrated much better activity than OMS-2-AC. The SO4(2-) doping greatly influenced the activity of the OMS-2-AC catalyst, with a dramatic promotion of activity for suitable concentration of SO4(2-) (SO4/catalyst=0.5% W/W). The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma optical emission spectroscopy (ICP-OES), NH3-TPD and H2-TPR techniques. The results showed that the presence of a suitable amount of SO4(2-) species in the OMS-2-AC catalyst could decrease the Mn-O bond strength and also enhance the lattice oxygen and acid site concentrations, which then effectively promoted the catalytic activity of OMS-2-AC toward ethanol oxidation. Thus it was confirmed that the better catalytic performance of OMS-2-SO4 compared to OMS-2-AC is due to the presence of some residual SO4(2-) species in OMS-2-SO4 samples. Copyright © 2015. Published by Elsevier B.V.

  9. Redundant mechanisms are involved in suppression of default cell fates during embryonic mesenchyme and notochord induction in ascidians.

    Science.gov (United States)

    Kodama, Hitoshi; Miyata, Yoshimasa; Kuwajima, Mami; Izuchi, Ryoichi; Kobayashi, Ayumi; Gyoja, Fuki; Onuma, Takeshi A; Kumano, Gaku; Nishida, Hiroki

    2016-08-01

    During embryonic induction, the responding cells invoke an induced developmental program, whereas in the absence of an inducing signal, they assume a default uninduced cell fate. Suppression of the default fate during the inductive event is crucial for choice of the binary cell fate. In contrast to the mechanisms that promote an induced cell fate, those that suppress the default fate have been overlooked. Upon induction, intracellular signal transduction results in activation of genes encoding key transcription factors for induced tissue differentiation. It is elusive whether an induced key transcription factor has dual functions involving suppression of the default fates and promotion of the induced fate, or whether suppression of the default fate is independently regulated by other factors that are also downstream of the signaling cascade. We show that during ascidian embryonic induction, default fates were suppressed by multifold redundant mechanisms. The key transcription factor, Twist-related.a, which is required for mesenchyme differentiation, and another independent transcription factor, Lhx3, which is dispensable for mesenchyme differentiation, sequentially and redundantly suppress the default muscle fate in induced mesenchyme cells. Similarly in notochord induction, Brachyury, which is required for notochord differentiation, and other factors, Lhx3 and Mnx, are likely to suppress the default nerve cord fate redundantly. Lhx3 commonly suppresses the default fates in two kinds of induction. Mis-activation of the autonomously executed default program in induced cells is detrimental to choice of the binary cell fate. Multifold redundant mechanisms would be required for suppression of the default fate to be secure. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Kinetic catalytic studies of scorpion's hemocyanin

    International Nuclear Information System (INIS)

    Queinnec, E.; Vuillaume, M.; Gardes-Albert, M.; Ferradini, C.; Ducancel, F.

    1991-01-01

    Hemocyanins are copper proteins which function as oxygen carriers in the haemolymph of Molluscs and Arthropods. They possess enzymatic properties: peroxidatic and catalatic activities, although they have neither iron nor porphyrin ring at the active site. The kinetics of the catalytic reaction is described. The reaction of superoxide anion with hemocyanin has been studied using pulse radiolysis at pH 9. The catalytic rate constant is 3.5 X 10 7 mol -1 .l.s -1 [fr

  11. Linear induction accelerators

    International Nuclear Information System (INIS)

    Briggs, R.J.

    1986-06-01

    The development of linear induction accelerators has been motivated by applications requiring high-pulsed currents of charged particles at voltages exceeding the capability of single-stage, diode-type accelerators and at currents too high for rf accelerators. In principle, one can accelerate charged particles to arbitrarily high voltages using a multi-stage induction machine, but the 50-MeV, 10-kA Advanced Test Accelerator (ATA) at LLNL is the highest voltage machine in existence at this time. The advent of magnetic pulse power systems makes sustained operation at high-repetition rates practical, and this capability for high-average power is very likely to open up many new applications of induction machines in the future. This paper surveys the US induction linac technology with primary emphasis on electron machines. A simplified description of how induction machines couple energy to the electron beam is given, to illustrate many of the general issues that bound the design space of induction linacs

  12. Labor Induction

    Science.gov (United States)

    f AQ FREQUENTLY ASKED QUESTIONS FAQ154 LABOR, DELIVERY, AND POSTPARTUM CARE Labor Induction • What is labor induction? • Why is labor induced? • What is the Bishop score? • What is “ripening ...

  13. PKA catalytic subunit compartmentation regulates contractile and hypertrophic responses to β-adrenergic signaling

    Science.gov (United States)

    Yang, Jason H.; Polanowska-Grabowska, Renata K.; Smith, Jeffrey S.; Shields, Charles W.; Saucerman, Jeffrey J.

    2014-01-01

    β-adrenergic signaling is spatiotemporally heterogeneous in the cardiac myocyte, conferring exquisite control to sympathetic stimulation. Such heterogeneity drives the formation of protein kinase A (PKA) signaling microdomains, which regulate Ca2+ handling and contractility. Here, we test the hypothesis that the nucleus independently comprises a PKA signaling microdomain regulating myocyte hypertrophy. Spatially-targeted FRET reporters for PKA activity identified slower PKA activation and lower isoproterenol sensitivity in the nucleus (t50 = 10.60±0.68 min; EC50 = 89.00 nmol/L) than in the cytosol (t50 = 3.71±0.25 min; EC50 = 1.22 nmol/L). These differences were not explained by cAMP or AKAP-based compartmentation. A computational model of cytosolic and nuclear PKA activity was developed and predicted that differences in nuclear PKA dynamics and magnitude are regulated by slow PKA catalytic subunit diffusion, while differences in isoproterenol sensitivity are regulated by nuclear expression of protein kinase inhibitor (PKI). These were validated by FRET and immunofluorescence. The model also predicted differential phosphorylation of PKA substrates regulating cell contractility and hypertrophy. Ca2+ and cell hypertrophy measurements validated these predictions and identified higher isoproterenol sensitivity for contractile enhancements (EC50 = 1.84 nmol/L) over cell hypertrophy (EC50 = 85.88 nmol/L). Over-expression of spatially targeted PKA catalytic subunit to the cytosol or nucleus enhanced contractile and hypertrophic responses, respectively. We conclude that restricted PKA catalytic subunit diffusion is an important PKA compartmentation mechanism and the nucleus comprises a novel PKA signaling microdomain, insulating hypertrophic from contractile β-adrenergic signaling responses. PMID:24225179

  14. Catalytic efficiency is a better predictor of arsenic toxicity to soil alkaline phosphatase.

    Science.gov (United States)

    Wang, Ziquan; Tian, Haixia; Lu, Guannan; Zhao, Yiming; Yang, Rui; Megharaj, Mallavarapu; He, Wenxiang

    2018-02-01

    Arsenic (As) is an inhibitor of phosphatase, however, in the complex soil system, the substrate concentration effect and the mechanism of As inhibition of soil alkaline phosphatase (ALP) and its kinetics has not been adequately studied. In this work, we investigated soil ALP activity in response to As pollution at different substrate concentrations in various types of soils and explored the inhibition mechanism using the enzyme kinetics. The results showed that As inhibition of soil ALP activity was substrate concentration-dependent. Increasing substrate concentration decreased inhibition rate, suggesting reduced toxicity. This dependency was due to the competitive inhibition mechanism of As to soil ALP. The kinetic parameters, maximum reaction velocity (V max ) and Michaelis constant (K m ) in unpolluted soils were 0.012-0.267mMh -1 and 1.34-3.79mM respectively. The competitive inhibition constant (K ic ) was 0.17-0.70mM, which was lower than K m , suggesting higher enzyme affinity for As than for substrate. The ecological doses, ED 10 and ED 50 (concentration of As that results in 10% and 50% inhibition on enzyme parameter) for inhibition of catalytic efficiency (V max /K m ) were lower than those for inhibition of enzyme activity at different substrate concentrations. This suggests that the integrated kinetic parameter, catalytic efficiency is substrate concentration independent and more sensitive to As than ALP activity. Thus, catalytic efficiency was proposed as a more reliable indicator than ALP activity for risk assessment of As pollution. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Inductive reasoning 2.0.

    Science.gov (United States)

    Hayes, Brett K; Heit, Evan

    2018-05-01

    Inductive reasoning entails using existing knowledge to make predictions about novel cases. The first part of this review summarizes key inductive phenomena and critically evaluates theories of induction. We highlight recent theoretical advances, with a special emphasis on the structured statistical approach, the importance of sampling assumptions in Bayesian models, and connectionist modeling. A number of new research directions in this field are identified including comparisons of inductive and deductive reasoning, the identification of common core processes in induction and memory tasks and induction involving category uncertainty. The implications of induction research for areas as diverse as complex decision-making and fear generalization are discussed. This article is categorized under: Psychology > Reasoning and Decision Making Psychology > Learning. © 2017 Wiley Periodicals, Inc.

  16. Tunable preparation of ruthenium nanoparticles with superior size-dependent catalytic hydrogenation properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuan; Luo, Yaodong; Yang, Xuan; Yang, Yaxin; Song, Qijun, E-mail: qsong@jiangnan.edu.cn

    2017-06-15

    Highlights: • A facile and efficient strategy is firstly developed for the synthesis of Ru NPs. • Ru NPs are stable and uniform with the controllable sizes from 2.6 to 51.5 nm. • Ru NPs exhibit size-dependent and superior catalytic hydrogenation activity. - Abstract: Ruthenium (Ru) featured with an unusual catalytic behavior is of great significance in several heterogeneous and electro-catalytic reactions. The preparation of tractable Ru nanocatalysts and the building of highly active catalytic system at ambient temperature remains a grand challenge. Herein, a facile strategy is developed for the controllable preparation of Ru nanoparticles (NPs) with the sizes ranging from 2.6 to 51.5 nm. Ru NPs show superior size-dependent catalytic performance with the best kinetic rate constant as high as −1.52 min{sup −1}, which could far surpass the other traditional noble metals. Ru NPs exert exceedingly efficient low-temperature catalytic activity and good recyclability in the catalytic reduction of nitroaromatic compounds (NACs) and azo dyes. The developed catalytic system provides a distinguishing insight for the artificial preparation of Ru NPs with desired sizes, and allows for the development of rational design rules for exploring catalysts with superior catalytic performances, potentially broadening the applications of metallic NP-enabled catalytic analysis.

  17. Orion EFT-1 Catalytic Tile Experiment Overview and Flight Measurements

    Science.gov (United States)

    Salazar, Giovanni; Amar, Adam; Hyatt, Andrew; Rezin, Marc D.

    2016-01-01

    This paper describes the design and results of a surface catalysis flight experiment flown on the Orion Multipurpose Crew Vehicle during Exploration Flight Test 1 (EFT1). Similar to previous Space Shuttle catalytic tile experiments, the present test consisted of a highly catalytic coating applied to an instrumented TPS tile. However, the present catalytic tile experiment contained significantly more instrumentation in order to better resolve the heating overshoot caused by the change in surface catalytic efficiency at the interface between two distinct materials. In addition to collecting data with unprecedented spatial resolution of the "overshoot" phenomenon, the experiment was also designed to prove if such a catalytic overshoot would be seen in turbulent flow in high enthalpy regimes. A detailed discussion of the results obtained during EFT1 is presented, as well as the challenges associated with data interpretation of this experiment. Results of material testing carried out in support of this flight experiment are also shown. Finally, an inverse heat conduction technique is employed to reconstruct the flight environments at locations upstream and along the catalytic coating. The data and analysis presented in this work will greatly contribute to our understanding of the catalytic "overshoot" phenomenon, and have a significant impact on the design of future spacecraft.

  18. Young-Age Gender Differences in Mathematics Mediated by Independent Control or Uncontrollability

    Science.gov (United States)

    Zirk-Sadowski, Jan; Lamptey, Charlotte; Devine, Amy; Haggard, Mark; Szucs, Dénes

    2014-01-01

    We studied whether the origins of math anxiety can be related to a biologically supported framework of stress induction: (un)controllability perception, here indicated by self-reported independent efforts in mathematics. Math anxiety was tested in 182 children (8- to 11-year-olds). "Latent factor modeling" was used to test hypotheses on…

  19. Networks of high mutual information define the structural proximity of catalytic sites: implications for catalytic residue identification.

    Directory of Open Access Journals (Sweden)

    Cristina Marino Buslje

    Full Text Available Identification of catalytic residues (CR is essential for the characterization of enzyme function. CR are, in general, conserved and located in the functional site of a protein in order to attain their function. However, many non-catalytic residues are highly conserved and not all CR are conserved throughout a given protein family making identification of CR a challenging task. Here, we put forward the hypothesis that CR carry a particular signature defined by networks of close proximity residues with high mutual information (MI, and that this signature can be applied to distinguish functional from other non-functional conserved residues. Using a data set of 434 Pfam families included in the catalytic site atlas (CSA database, we tested this hypothesis and demonstrated that MI can complement amino acid conservation scores to detect CR. The Kullback-Leibler (KL conservation measurement was shown to significantly outperform both the Shannon entropy and maximal frequency measurements. Residues in the proximity of catalytic sites were shown to be rich in shared MI. A structural proximity MI average score (termed pMI was demonstrated to be a strong predictor for CR, thus confirming the proposed hypothesis. A structural proximity conservation average score (termed pC was also calculated and demonstrated to carry distinct information from pMI. A catalytic likeliness score (Cls, combining the KL, pC and pMI measures, was shown to lead to significantly improved prediction accuracy. At a specificity of 0.90, the Cls method was found to have a sensitivity of 0.816. In summary, we demonstrate that networks of residues with high MI provide a distinct signature on CR and propose that such a signature should be present in other classes of functional residues where the requirement to maintain a particular function places limitations on the diversification of the structural environment along the course of evolution.

  20. Networks of high mutual information define the structural proximity of catalytic sites: implications for catalytic residue identification.

    Science.gov (United States)

    Marino Buslje, Cristina; Teppa, Elin; Di Doménico, Tomas; Delfino, José María; Nielsen, Morten

    2010-11-04

    Identification of catalytic residues (CR) is essential for the characterization of enzyme function. CR are, in general, conserved and located in the functional site of a protein in order to attain their function. However, many non-catalytic residues are highly conserved and not all CR are conserved throughout a given protein family making identification of CR a challenging task. Here, we put forward the hypothesis that CR carry a particular signature defined by networks of close proximity residues with high mutual information (MI), and that this signature can be applied to distinguish functional from other non-functional conserved residues. Using a data set of 434 Pfam families included in the catalytic site atlas (CSA) database, we tested this hypothesis and demonstrated that MI can complement amino acid conservation scores to detect CR. The Kullback-Leibler (KL) conservation measurement was shown to significantly outperform both the Shannon entropy and maximal frequency measurements. Residues in the proximity of catalytic sites were shown to be rich in shared MI. A structural proximity MI average score (termed pMI) was demonstrated to be a strong predictor for CR, thus confirming the proposed hypothesis. A structural proximity conservation average score (termed pC) was also calculated and demonstrated to carry distinct information from pMI. A catalytic likeliness score (Cls), combining the KL, pC and pMI measures, was shown to lead to significantly improved prediction accuracy. At a specificity of 0.90, the Cls method was found to have a sensitivity of 0.816. In summary, we demonstrate that networks of residues with high MI provide a distinct signature on CR and propose that such a signature should be present in other classes of functional residues where the requirement to maintain a particular function places limitations on the diversification of the structural environment along the course of evolution.

  1. Stochastic Approach to Determine CO2 Hydrate Induction Time in Clay Mineral Suspensions

    Science.gov (United States)

    Lee, K.; Lee, S.; Lee, W.

    2008-12-01

    A large number of induction time data for carbon dioxide hydrate formation were obtained from a batch reactor consisting of four independent reaction cells. Using resistance temperature detector(RTD)s and a digital microscope, we successfully monitored the whole process of hydrate formation (i.e., nucleation and crystal growth) and detected the induction time. The experiments were carried out in kaolinite and montmorillonite suspensions at temperatures between 274 and 277 K and pressures ranging from 3.0 to 4.0 MPa. Each set of data was analyzed beforehand whether to be treated by stochastic manner or not. Geochemical factors potentially influencing the hydrate induction time under different experimental conditions were investigated by stochastic analyses. We observed that clay mineral type, pressure, and temperature significantly affect the stochastic behavior of the induction times for CO2 hydrate formation in this study. The hydrate formation kinetics along with stochastic analyses can provide basic understanding for CO2 hydrate storage in deep-sea sediment and geologic formation, securing its stability under the environments.

  2. Heterogeneous catalytic degradation of polyacrylamide solution | Hu ...

    African Journals Online (AJOL)

    Modified with trace metal elements, the catalytic activity of Fe2O3/Al2O3 could be changed greatly. Among various trace metal elements, Fe2O3/Al2O3 catalysts modified with Co and Cu showed great increase on catalytic activity. International Journal of Engineering, Science and Technology, Vol. 2, No. 7, 2010, pp. 110- ...

  3. Role of NPR1 dependent and NPR1 independent genes in response to Salicylic acid

    Directory of Open Access Journals (Sweden)

    Neha Agarwal

    2017-10-01

    Full Text Available NPR1 (Nonexpressor of pathogenesis-related gene is a transcription coactivator and central regulator of systemic acquired resistance (SAR pathway. It controls wide range of pathogenesis related genes involved in various defense responses, acts by sensing SAR signal molecule, Salicylic acid (SA. Mutation in NPR1 results in increased susceptibility to pathogen infection and less expression of pathogenesis related genes. The present study aimed to identify the role of NPR1 in gene expression after the Salicylic acid induction. For this RNA-seq was performed in Arabidopsis thaliana Col-0 and npr1-1 in response to Salicylic acid. RNA-seq analysis revealed a total of 3811 differentially expressed gene in which 2109 genes are up-regulated and 1702 genes are down-regulated. We have divided these genes in 6 categories SA induced (SI, SA repressed (SR, NPR1 dependent SI (ND-SI, NPR1 dependent SR (ND-SR, NPR1 independent SI (NI-SI, NPR1 independent SR (NI-SR. Further, Gene ontology and MapMan pathway analysis of differentially expressed genes suggested variety of biological processes and metabolic pathways that are enriched during SAR defense pathway. These results contribute to shed light on importance of both NPR1-dependent (ND and NPR1-independent (NI gene acting downstream to Salicylic acid induction in SAR pathway. The present study aimed to identify the role of NPR1 in gene expression after the Salicylic acid induction.

  4. SHORT COMMUNICATION CATALYTIC KINETIC ...

    African Journals Online (AJOL)

    IV) catalyzes the discoloring reaction of DBS-arsenazo oxidized by potassium bromate, a new catalytic kinetic spectrophotometric method for the determination of trace titanium (IV) was developed. The linear range of the determination of ...

  5. Catalytic Kinetic Resolution of Biaryl Compounds.

    Science.gov (United States)

    Ma, Gaoyuan; Sibi, Mukund P

    2015-08-10

    Biaryl compounds with axial chirality are very common in synthetic chemistry, especially in catalysis. Axially chiral biaryls are important due to their biological activities and extensive applications in asymmetric catalysis. Thus the development of efficient enantioselective methods for their synthesis has attracted considerable attention. This Minireview discusses the progress made in catalytic kinetic resolution of biaryl compounds and chronicles significant advances made recently in catalytic kinetic resolution of biaryl scaffolds. © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. synthesis, characterization, electrical and catalytic studies of some

    African Journals Online (AJOL)

    B. S. Chandravanshi

    catalytic activity of the VO(IV) and Mn(III) complexes have been tested in the epoxidation reaction of styrene ... Vanadyl sulfate pentahydrate, chromium chloride hexahydrate, anhydrous ferric ..... The catalytic oxidation of styrene gives the products styrene oxide, benzaldehyde, benzoic acid, ... bond via a radical mechanism.

  7. Crystal structure of pira toxin-I: a calcium-independent, myotoxic phospholipase A2 - homologue from Bothrops pirajai venom

    International Nuclear Information System (INIS)

    Canduri, R.J.; Ward, R.J.; Azevedo Junior, G.W.F. de; Arni, R.K.; Soares, A.M.; Giglio, J.R.

    1997-01-01

    Full text. Phospho lipases A2 (PLA 2 ) are small enzymes that specifically hydrolysed the sn-2 ester bond of phospholipids, preferentially in lamellar or micellar aggregates at membrane surfaces. These enzymes are widely distributed in nature and have been extensively studied. Toxic proteins from venoms from Bothrops species include catalytically active PLA 2 s and calcium independent PLA 2L ys 49 homologues. The substitution of Asp49 by Lys greatly diminishes the ability of these PLA 2 to bind calcium, an ion that plays a critical role in the stabilization of the tetrahedral transition state intermediate in the catalytic mechanism. The Lys 49 PLA 2 homologues and therefore catalytically inactive yet maintain cytolytic and myotoxic activities and furthermore retain the ability to disrupt the integrity of both plasma membranes and model lipid bilayers by a poorly understood Ca 2+ independente mechanism. Lys49 PLA 2 homologues demonstrate a specific toxic activity against skeletal muscle, affecting only muscle fibers and leaving other tissue structure such as connective tissue, nerves and vessels essentially unharmed. In order to improve our understanding of the molecular basis of the myotoxic and Ca 2+ -independent membrane damaging activities, we have determined the crystal structure of Pr TX-I, a Lys49 variant from the venom of B. pirajai. The model presented has been determined at 2.8 angstrom resolution and refined to a crystallographic residual of 19.7% (R free =29.7%). (author)

  8. CATALYTIC KINETIC SPECTROPHOTOMETRIC DETERMINATION ...

    African Journals Online (AJOL)

    Preferred Customer

    acetylchlorophosphonazo(CPApA) by hydrogen peroxide in 0.10 M phosphoric acid. A novel catalytic kinetic-spectrophotometric method is proposed for the determination of copper based on this principle. Copper(II) can be determined spectrophotometrically ...

  9. Plasmodium falciparum-mediated induction of human CD25Foxp3 CD4 T cells is independent of direct TCR stimulation and requires IL-2, IL-10 and TGFbeta.

    Directory of Open Access Journals (Sweden)

    Anja Scholzen

    2009-08-01

    Full Text Available CD4(+CD25(+Foxp3(+ regulatory T cells (Tregs regulate disease-associated immunity and excessive inflammatory responses, and numbers of CD4(+CD25(+Foxp3(+ Tregs are increased during malaria infection. The mechanisms governing their generation, however, remain to be elucidated. In this study we investigated the role of commonly accepted factors for Foxp3 induction, TCR stimulation and cytokines such as IL-2, TGFbeta and IL-10, in the generation of human CD4(+CD25(+Foxp3(+ T cells by the malaria parasite Plasmodium falciparum. Using a co-culture system of malaria-infected red blood cells (iRBCs and peripheral blood mononuclear cells from healthy individuals, we found that two populations of Foxp3(hi and Foxp3(int CD4(+CD25(hi T cells with a typical Treg phenotype (CTLA-4(+, CD127(low, CD39(+, ICOS(+, TNFRII(+ were induced. Pro-inflammatory cytokine production was confined to the Foxp3(int subset (IFNgamma, IL-4 and IL-17 and inversely correlated with high relative levels of Foxp3(hi cells, consistent with Foxp3(hi CD4 T cell-mediated inhibition of parasite-induced effector cytokine T cell responses. Both Foxp3(hi and Foxp3(int cells were derived primarily from proliferating CD4(+CD25(- T cells with a further significant contribution from CD25(+Foxp3(+ natural Treg cells to the generation of the Foxp3(hi subset. Generation of Foxp3(hi, but not Foxp3(int, cells specifically required TGFbeta1 and IL-10. Add-back experiments showed that monocytes expressing increased levels of co-stimulatory molecules were sufficient for iRBC-mediated induction of Foxp3 in CD4 T cells. Foxp3 induction was driven by IL-2 from CD4 T cells stimulated in an MHC class II-dependent manner. However, transwell separation experiments showed that direct contact of monocytes with the cells that acquire Foxp3 expression was not required. This novel TCR-independent and therefore antigen-non specific mechanism for by-stander CD4(+CD25(hiFoxp3(+ cell induction is likely to reflect a

  10. Study of the dynamics of the MoO2-Mo2C system for catalytic partial oxidation reactions

    Science.gov (United States)

    Cuba Torres, Christian Martin

    On a global scale, the energy demand is largely supplied by the combustion of non-renewable fossil fuels. However, their rapid depletion coupled with environmental and sustainability concerns are the main drivers to seek for alternative energetic strategies. To this end, the sustainable generation of hydrogen from renewable resources such as biodiesel would represent an attractive alternative solution to fossil fuels. Furthermore, hydrogen's lower environmental impact and greater independence from foreign control make it a strong contender for solving this global problem. Among a wide variety of methods for hydrogen production, the catalytic partial oxidation offers numerous advantages for compact and mobile fuel processing systems. For this reaction, the present work explores the versatility of the Mo--O--C catalytic system under different synthesis methods and reforming conditions using methyl oleate as a surrogate biodiesel. MoO2 exhibits good catalytic activity and exhibits high coke-resistance even under reforming conditions where long-chain oxygenated compounds are prone to form coke. Moreover, the lattice oxygen present in MoO2 promotes the Mars-Van Krevelen mechanism. Also, it is introduced a novel beta-Mo2C synthesis by the in-situ formation method that does not utilize external H2 inputs. Herein, the MoO 2/Mo2C system maintains high catalytic activity for partial oxidation while the lattice oxygen serves as a carbon buffer for preventing coke formation. This unique feature allows for longer operation reforming times despite slightly lower catalytic activity compared to the catalysts prepared by the traditional temperature-programmed reaction method. Moreover, it is demonstrated by a pulse reaction technique that during the phase transformation of MoO2 to beta-Mo2C, the formation of Mo metal as an intermediate is not responsible for the sintering of the material wrongly assumed by the temperature-programmed method.

  11. Bimetallic Nanoparticles in Alternative Solvents for Catalytic Purposes

    Directory of Open Access Journals (Sweden)

    Trung Dang-Bao

    2017-07-01

    Full Text Available Bimetallic nanoparticles represent attractive catalytic systems thanks to the synergy between both partners at the atomic level, mainly induced by electronic effects which in turn are associated with the corresponding structures (alloy, core-shell, hetero-dimer. This type of engineered material can trigger changes in the kinetics of catalyzed processes by variations on the electrophilicity/nucleophilicity of the metal centers involved and also promote cooperative effects to foster organic transformations, including multi-component and multi-step processes. Solvents become a crucial factor in the conception of catalytic processes, not only due to their environmental impact, but also because they can preserve the bimetallic structure during the catalytic reaction and therefore increase the catalyst life-time. In this frame, the present review focuses on the recent works described in the literature concerning the synthesis of bimetallic nanoparticles in non-conventional solvents, i.e., other than common volatile compounds, for catalytic applications.

  12. Hydrogen cyanide formation in selective catalytic reduction of nitrogen oxides over Cu/ZSM-5

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, F; Koeppel, R; Baiker, A [Department of Chemical Engineering and Industrial Chemistry, Swiss Federal Institute of Technology, Zurich, (Switzerland)

    1994-01-06

    Hydrogen cyanide is formed over Cu/ZSM-5 during the selective catalytic reduction of NO[sub x] by either propylene or ethylene in the temperature range 450-600 K. Under the reaction conditions used (reactant feed: 973 ppm NO, 907 ppm propene or 1448 ppm ethylene, 2% oxygen, W/F=0.1 g s cm[sup -3]), the concentration of hydrogen cyanide reaches 20, respectively, 30 ppm, depending on whether ethylene or propene are used as hydrocarbons. In addition, significant N[sub 2]O formation is observed at temperatures lower than 700 K, independent of the hydrocarbon used

  13. Catalytic methanol dissociation

    International Nuclear Information System (INIS)

    Alcinikov, Y.; Fainberg, V.; Garbar, A.; Gutman, M.; Hetsroni, G.; Shindler, Y.; Tatrtakovsky, L.; Zvirin, Y.

    1998-01-01

    Results of the methanol dissociation study on copper/potassium catalyst with alumina support at various temperatures are presented. The following gaseous and liquid products at. The catalytic methanol dissociation is obtained: hydrogen, carbon monoxide, carbon dioxide, methane, and dimethyl ether. Formation rates of these products are discussed. Activation energies of corresponding reactions are calculated

  14. Reactions on catalytic probe surface during oxygen plasma treatment of polyether sulphone: Reakcije na površini katalitične sonde med plazemsko obdelavo polieter sulfona:

    OpenAIRE

    Mozetič, Miran

    1998-01-01

    Experiments on the behavior of a nickel catalytic probe during activation of the surface of polyether sulphone in oxygen plasma are described. The temperature of the probe mounted 30 cm apart from inductively coupled RF oxygen plasma was measured for the case of empty dischaarge vessel and the case a sample with the dimensions of 8 cm x 1.2 cm x 0.4 cm was mounted in the middle of the discharge coil. It was found that both the maximum temperature and the first time derivative of the probe was...

  15. Highly Dense Isolated Metal Atom Catalytic Sites

    DEFF Research Database (Denmark)

    Chen, Yaxin; Kasama, Takeshi; Huang, Zhiwei

    2015-01-01

    -ray diffraction. A combination of electron microscopy images with X-ray absorption spectra demonstrated that the silver atoms were anchored on five-fold oxygen-terminated cavities on the surface of the support to form highly dense isolated metal active sites, leading to excellent reactivity in catalytic oxidation......Atomically dispersed noble-metal catalysts with highly dense active sites are promising materials with which to maximise metal efficiency and to enhance catalytic performance; however, their fabrication remains challenging because metal atoms are prone to sintering, especially at a high metal...... loading. A dynamic process of formation of isolated metal atom catalytic sites on the surface of the support, which was achieved starting from silver nanoparticles by using a thermal surface-mediated diffusion method, was observed directly by using in situ electron microscopy and in situ synchrotron X...

  16. Including lateral interactions into microkinetic models of catalytic reactions

    DEFF Research Database (Denmark)

    Hellman, Anders; Honkala, Johanna Karoliina

    2007-01-01

    In many catalytic reactions lateral interactions between adsorbates are believed to have a strong influence on the reaction rates. We apply a microkinetic model to explore the effect of lateral interactions and how to efficiently take them into account in a simple catalytic reaction. Three differ...... different approximations are investigated: site, mean-field, and quasichemical approximations. The obtained results are compared to accurate Monte Carlo numbers. In the end, we apply the approximations to a real catalytic reaction, namely, ammonia synthesis....

  17. Teacher induction

    NARCIS (Netherlands)

    Beijaard, D.; Buitink, J.; Kessels, C.; Peterson, P.; Baker, E.; McGraw, B.

    2010-01-01

    Teacher induction programs are intended to support the professional development of beginning teachers and thereby contribute to the reduction of teacher attrition during the early teaching years. Teacher induction programs are often based upon a deficit model with a focus on the better organization

  18. Processing and structural characterization of porous reforming catalytic films

    International Nuclear Information System (INIS)

    Hou Xianghui; Williams, Jey; Choy, Kwang-Leong

    2006-01-01

    Nickel-based catalysts are often used to reform methanol into hydrogen. The preparation and installation of these catalysts are costly and laborious. As an alternative, directly applying catalytic films onto the separator components can improve the manufacturing efficiency. This paper reports the successful deposition of adherent porous NiO-Al 2 O 3 -based catalytic films with well-controlled stoichiometry, using a single-step Aerosol Assisted Chemical Vapour Deposition (AACVD) method. The microstructure, composition and crystalline phase of the as-deposited catalytic films are characterized using a combination of X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared (FTIR) Spectrometer. The results have demonstrated the capability of AACVD to produce porous NiO-Al 2 O 3 -based catalytic films

  19. Catalytic conversion of ethanol on H-Y zeolite

    Directory of Open Access Journals (Sweden)

    Čegar Nedeljko

    2005-01-01

    Full Text Available The catalytic activity of the H-form of synthetic zeolite NaY was examined in this study. The catalytic activity was determined according to the rate of ethanol conversion in a gas phase in the static system. In the conversion of ethanol on synthetic NaY zeolite at 585, 595, and 610 K, on which the reaction develops at an optimal rate, ethene and diethyl ether are evolved in approximately the same quantity. After transforming the NaY zeolite into the H-form, its catalytic activity was extremely increases so, the reaction develops at a significantly lower temperature with a very large increase in the reaction rate. The distribution of the products also changes, so that at lower temperatures diethyl ether is elvolved in most cases, and the development of ethene is favored at higher ones, and after a certain period of time there is almost complete conversion of ethanol into ethene. The increase in catalytic activity, as well as the change of selectivity of conversion of ethanol on the H-form of zeolite, is the result of removing Na+ cations in the NaY zeolite, so that more acidic catalyst is obtained which contains a number of acidic catalytically active centers, as well as a more powerful one compared to the original NaY zeolite.

  20. Catalytic characterization of bi-functional catalysts derived from Pd ...

    Indian Academy of Sciences (India)

    Unknown

    1995; Lyubovsky and Pfefferle 1999; Sales et al 1999;. Hill et al 2000). ... For a catalytic system, whose activity ... catalytic systems containing Pd, supported on various acid- ..... Further studies are needed to optimize a balance between.

  1. Catalytic membrane in reduction of aqueous nitrates: operational principles and catalytic performance

    NARCIS (Netherlands)

    Ilinitch, O.M.; Cuperus, F.P.; Nosova, L.V.; Gribov, E.N.

    2000-01-01

    The catalytic membrane with palladium-copper active component supported over the macroporous ceramic membrane, and a series of γ-Al 2O 3 supported Pd-Cu catalysts were prepared and investigated. In reduction of nitrate ions by hydrogen in water at ambient temperature, pronounced internal diffusion

  2. Hydrogen Production From catalytic reforming of greenhouse gases ...

    African Journals Online (AJOL)

    ADOWIE PERE

    a fixed bed stainless steel reactor. The 20wt%. ... catalytic activity for hydrogen production with the highest yield and selectivity of 32.5% and 17.6% respectively. © JASEM ... CO2 reforming of methane is however not fully developed ..... Design and preparation of .... catalytic nickel membrane for gas to liquid (GTL) process.

  3. Induction heating using induction coils in series-parallel circuits

    Science.gov (United States)

    Matsen, Marc Rollo; Geren, William Preston; Miller, Robert James; Negley, Mark Alan; Dykstra, William Chet

    2017-11-14

    A part is inductively heated by multiple, self-regulating induction coil circuits having susceptors, coupled together in parallel and in series with an AC power supply. Each of the circuits includes a tuning capacitor that tunes the circuit to resonate at the frequency of AC power supply.

  4. Enhanced propylene production in FCC by novel catalytic materials

    Energy Technology Data Exchange (ETDEWEB)

    Kelkar, C.P.; Harris, D.; Xu, M.; Fu, J. [BASF Catalyst LLC, Iselin, NJ (United States)

    2007-07-01

    Fluid catalytic cracking is expected to increasingly supply the additional incremental requirements for propylene. The most efficient route to increase propylene yield from an FCC unit is through the use of medium pore zeolites such as ZSM-5. ZSM-5 zeolite cracks near linear olefins in the gasoline range to LPG olefins such as propylene and butylenes. This paper will describe catalytic approaches to increase gasoline range olefins and the chemistry of ZSM-5 to crack those olefins. The paper will also describe novel catalytic materials designed to increase propylene. (orig.)

  5. A study on naphtha catalytic reforming reactor simulation and analysis.

    Science.gov (United States)

    Liang, Ke-min; Guo, Hai-yan; Pan, Shi-wei

    2005-06-01

    A naphtha catalytic reforming unit with four reactors in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to describe the naphtha catalytic reforming reactions characteristics based on idealizing the complex naphtha mixture by representing the paraffin, naphthene, and aromatic groups by single compounds. The simulation results based above models agree very well with actual operation unit data.

  6. A study on naphtha catalytic reforming reactor simulation and analysis

    OpenAIRE

    Liang, Ke-min; Guo, Hai-yan; Pan, Shi-wei

    2005-01-01

    A naphtha catalytic reforming unit with four reactors in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to describe the naphtha catalytic reforming reactions characteristics based on idealizing the complex naphtha mixture by representing the paraffin, naphthene, and aromatic groups by single compounds. The simulation results based above models agree very well with actual operation uni...

  7. Catalytic hydrogen recombination for nuclear containments

    International Nuclear Information System (INIS)

    Koroll, G.W.; Lau, D.W.P.; Dewit, W.A.; Graham, W.R.C.

    1994-01-01

    Catalytic recombiners appear to be a credible option for hydrogen mitigation in nuclear containments. The passive operation, versatility and ease of back fitting are appealing for existing stations and new designs. Recently, a generation of wet-proofed catalyst materials have been developed at AECL which are highly specific to H 2 -O 2 , are active at ambient temperatures and are being evaluated for containment applications. Two types of catalytic recombiners were evaluated for hydrogen removal in containments based on the AECL catalyst. The first is a catalytic combustor for application in existing air streams such as provided by fans or ventilation systems. The second is an autocatalytic recombiner which uses the enthalpy of reaction to produce natural convective flow over the catalyst elements. Intermediate-scale results obtained in 6 m 3 and 10 m 3 spherical and cylindrical vessels are given to demonstrate self-starting limits, operating limits, removal capacity, scaling parameters, flow resistance, mixing behaviour in the vicinity of an operating recombiner and sensitivity to poisoning, fouling and radiation. (author). 13 refs., 10 figs

  8. Electrochemical catalytic treatment of phenol wastewater

    International Nuclear Information System (INIS)

    Ma Hongzhu; Zhang Xinhai; Ma Qingliang; Wang Bo

    2009-01-01

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  9. Electrochemical catalytic treatment of phenol wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Ma Hongzhu, E-mail: hzmachem@snnu.edu.cn [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Zhang Xinhai [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China); Ma Qingliang [Department of Applied Physics, College of Sciences, Taiyuan University of Technology, 030024 Taiyuan (China); Wang Bo [Institute of Energy Chemistry, School of Chemistry and Materials Science, Shaanxi Normal University, Xi' an 710062 (China)

    2009-06-15

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  10. Application of forgetful analgesia induction in induction period in patients with obstructive jaundice

    Directory of Open Access Journals (Sweden)

    Wei DU

    2014-03-01

    Full Text Available Objective To observe the effect of forgetful analgesia induction and tracheal intubation on the hemodynamic changes in induction period in patients with obstructive jaundice, and explore a safe method for anesthesia induction and tracheal intubation. Methods Sixty patients with obstructive jaundice undergoing elective abdominal operation in General Hospital of PLA from February, 2013 to August, 2013 were involved in the present study. Participants included 36 male and 24 female patients, aging 19-65 years (mean 42±5 years, weighing 47-73 kg (mean 54±6 kg, with ASA Ⅰ-Ⅱ. These 60 patients were randomly divided into forgetful analgesia induction-tracheal intubation group (group A, n=30 and rapid induction-tracheal intubation group (group B, n=30. The heart rate (HR, mean arterial pressure (MAP, pulse oxygen saturation (SpO2 at the time point of before induction (T0, before intubation (T1, at the moment of intubation (T2 and 3 min after intubation (T3 were determined in both groups. Administration times of ephedrine hydrochloride and atropine was recorded in both groups. Results There was no significant difference in HR, MAP, SpO2 before and after induction in group A. In the patients of group B, the HR increased and MAP decreased after induction compared with those before induction (P<0.05, and the change of SpO2 was not significant. Ephedrine hydrochloride and atropine were administrated in both groups, and the cases and times of ephedrine hydrochloride administration were more in group B than in group A (P<0.05. Conclusion The forgetful analgesia induction-tracheal intubation could effectively control the stress response and reduce the fluctuation in hemodynamics during induction of anesthesia in patients with obstructive jaundice. DOI: 10.11855/j.issn.0577-7402.2014.02.15

  11. Sintering of Catalytic Nanoparticles: Particle Migration or Ostwald Ripening?

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; DeLaRiva, Andrew T.; Challa, Sivakumar R.

    2013-01-01

    deactivation, is an important mechanism for the loss of catalyst activity. This is especially true for high temperature catalytic processes, such as steam reforming, automotive exhaust treatment, or catalytic combustion. With dwindling supplies of precious metals and increasing demand, fundamental...

  12. Catalytic synthesis of ammonia using vibrationally excited nitrogen molecules

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Henriksen, Niels Engholm; Billing, Gert D.

    1992-01-01

    The dissociation of nitrogen is the rate-limiting step in the catalytic synthesis of ammonia. Theoretical calculations have shown that the dissociative sticking probability of molecular nitrogen on catalytic active metal surfaces is enhanced by orders of magnitude when the molecules...

  13. TET2 Regulates Mast Cell Differentiation and Proliferation through Catalytic and Non-catalytic Activities

    Directory of Open Access Journals (Sweden)

    Sara Montagner

    2016-05-01

    Full Text Available Summary: Dioxygenases of the TET family impact genome functions by converting 5-methylcytosine (5mC in DNA to 5-hydroxymethylcytosine (5hmC. Here, we identified TET2 as a crucial regulator of mast cell differentiation and proliferation. In the absence of TET2, mast cells showed disrupted gene expression and altered genome-wide 5hmC deposition, especially at enhancers and in the proximity of downregulated genes. Impaired differentiation of Tet2-ablated cells could be relieved or further exacerbated by modulating the activity of other TET family members, and mechanistically it could be linked to the dysregulated expression of C/EBP family transcription factors. Conversely, the marked increase in proliferation induced by the loss of TET2 could be rescued exclusively by re-expression of wild-type or catalytically inactive TET2. Our data indicate that, in the absence of TET2, mast cell differentiation is under the control of compensatory mechanisms mediated by other TET family members, while proliferation is strictly dependent on TET2 expression. : The impact of TET enzymes on gene expression and cell function is incompletely understood. Montagner et al. investigate the TET-mediated regulation of mast cell differentiation and function, uncover transcriptional pathways regulated by TET2, and identify both enzymatic activity-dependent and -independent functions of TET2. Keywords: differentiation, DNA hydroxymethylation, epigenetics, mast cells, proliferation, TET

  14. Catalytic Wastewater Treatment Using Pillared Clays

    Science.gov (United States)

    Perathoner, Siglinda; Centi, Gabriele

    After introduction on the use of solid catalysts in wastewater treatment technologies, particularly advanced oxidation processes (AOPs), this review discussed the use of pillared clay (PILC) materials in three applications: (i) wet air catalytic oxidation (WACO), (ii) wet hydrogen peroxide catalytic oxidation (WHPCO) on Cu-PILC and Fe-PILC, and (iii) behavior of Ti-PILC and Fe-PILC in the photocatalytic or photo-Fenton conversion of pollutants. Literature data are critically analyzed to evidence the main direction to further investigate, in particularly with reference to the possible practical application of these technologies to treat industrial, municipal, or agro-food production wastewater.

  15. PPARγ-independent induction of growth arrest and apoptosis in prostate and bladder carcinoma

    International Nuclear Information System (INIS)

    Chaffer, Christine L; Thomas, David M; Thompson, Erik W; Williams, Elizabeth D

    2006-01-01

    Although PPARγ antagonists have shown considerable pre-clinical efficacy, recent studies suggest PPARγ ligands induce PPARγ-independent effects. There is a need to better define such effects to permit rational utilization of these agents. We have studied the effects of a range of endogenous and synthetic PPARγ ligands on proliferation, growth arrest (FACS analysis) and apoptosis (caspase-3/7 activation and DNA fragmentation) in multiple prostate carcinoma cell lines (DU145, PC-3 and LNCaP) and in a series of cell lines modelling metastatic transitional cell carcinoma of the bladder (TSU-Pr1, TSU-Pr1-B1 and TSU-Pr1-B2). 15-deoxy-prostaglandin J 2 (15dPGJ2), troglitazone (TGZ) and to a lesser extent ciglitazone exhibited inhibitory effects on cell number; the selective PPARγ antagonist GW9662 did not reverse these effects. Rosiglitazone and pioglitazone had no effect on proliferation. In addition, TGZ induced G0/G1 growth arrest whilst 15dPGJ2 induced apoptosis. Troglitazone and 15dPGJ2 inhibit growth of prostate and bladder carcinoma cell lines through different mechanisms and the effects of both agents are PPARγ-independent

  16. Reactivity of organic compounds in catalytic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Minachev, Kh M; Bragin, O V

    1978-01-01

    A comprehensive review of 1976 Soviet research on catalysis delivered to the 1977 annual session of the USSR Academy of Science Council on Catalysis (Baku 6/16-20/77) covers hydrocarbon reactions, including hydrogenation and hydrogenolysis, dehydrogenation, olefin dimerization and disproportionation, and cyclization and dehydrocyclization (e.g., piperylene cyclization and ethylene cyclotrimerization); catalytic and physicochemical properties of zeolites, including cracking, dehydrogenation, and hydroisomerization catalytic syntheses and conversion of heterocyclic and functional hydrocarbon derivatives, including partial and total oxidation (e.g., of o-xylene to phthalic anhydride); syntheses of thiophenes from alkanes and hydrogen sulfide over certain dehydrogenation catalysts; catalytic syntheses involving carbon oxides ( e.g., the development of a new heterogeneous catalyst for hydroformylation of olefins), and of Co-MgO zeolitic catalysts for synthesis of aliphatic hydrocarbons from carbon dioxide and hydrogen, and fabrication of high-viscosity lubricating oils over bifunctional aluminosilicate catalysts.

  17. Component Development to Accelerate Commercial Implementation of Ultra-Low Emissions Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, Jon; Berry, Brian; Lundberg, Kare; Anson, Orris

    2003-03-31

    This final report describes a 2000-2003 program for the development of components and processes to enhance the commercialization of ultra-low emissions catalytic combustion in industrial gas turbines. The range of project tasks includes: development of more durable, lower-cost catalysts and catalytic combustor components; development and design of a catalytic pre-burner and a catalytic pilot burner for gas turbines, and on-site fuel conversion processing for utilization of liquid fuel.

  18. Remote Exosites of the Catalytic Domain of Matrix Metalloproteinase-12 Enhance Elastin Degradation┼

    Science.gov (United States)

    Fulcher, Yan G.; Van Doren, Steven R.

    2011-01-01

    How does matrix metalloproteinase-12 (MMP-12 or metalloelastase) degrade elastin with high specific activity? NMR suggested soluble elastin to cover surfaces of MMP-12 far from its active site. Two of these surfaces have been found, by mutagenesis guided by the BINDSIght approach, to affect degradation and affinity for elastin substrates but not a small peptide substrate. Main exosite 1 has been extended out to Asp124 that binds calcium. Novel exosite 2 comprises residues from the II–III loop and β-strand I near the back of the catalytic domain. The high exposure of these distal exosites may make them accessible to elastin made more flexible by partial hydrolysis. Importantly, combination of a lesion at each of exosites 1 and 2 and active site decreased catalytic competence towards soluble elastin by 13- to 18-fold to the level of MMP-3, homologue and poor elastase. Double mutant cycle analysis of conservative mutations of Met156 (exosite 2) and either Asp124 (exosite 1) or Ile180 (active site) had additive effects. Compared to polar substitutions observed in other MMPs, Met156 enhanced affinity and Ile180 kcat for soluble elastin. Both residues detracted from the higher folding stability with polar mutations. This resembles the trend in enzymes of an inverse relationship between folding stability and activity. Restoring Asp124 from combination mutants enhanced kcat for soluble elastin. In elastin degradation, exosites 1 and 2 contributed independently of each other and Ile180 at the active site, but with partial coupling to Ala182 near the active site. The concept of weak, separated interactions coalescing somewhat independently can be extended to this proteolytic digestion of a protein from fibrils. PMID:21967233

  19. Catalytic Conversion of Biofuels

    DEFF Research Database (Denmark)

    Jørgensen, Betina

    This thesis describes the catalytic conversion of bioethanol into higher value chemicals. The motivation has been the unavoidable coming depletion of the fossil resources. The thesis is focused on two ways of utilising ethanol; the steam reforming of ethanol to form hydrogen and the partial oxida...

  20. Investigation of hybrid plasma-catalytic removal of acetone over CuO/γ-Al2O3 catalysts using response surface method.

    Science.gov (United States)

    Zhu, Xinbo; Tu, Xin; Mei, Danhua; Zheng, Chenghang; Zhou, Jinsong; Gao, Xiang; Luo, Zhongyang; Ni, Mingjiang; Cen, Kefa

    2016-07-01

    In this work, plasma-catalytic removal of low concentrations of acetone over CuO/γ-Al2O3 catalysts was carried out in a cylindrical dielectric barrier discharge (DBD) reactor. The combination of plasma and the CuO/γ-Al2O3 catalysts significantly enhanced the removal efficiency of acetone compared to the plasma process using the pure γ-Al2O3 support, with the 5.0 wt% CuO/γ-Al2O3 catalyst exhibiting the best acetone removal efficiency of 67.9%. Catalyst characterization was carried out to understand the effect the catalyst properties had on the activity of the CuO/γ-Al2O3 catalysts in the plasma-catalytic reaction. The results indicated that the formation of surface oxygen species on the surface of the catalysts was crucial for the oxidation of acetone in the plasma-catalytic reaction. The effects that various operating parameters (discharge power, flow rate and initial concentration of acetone) and the interactions between these parameters had on the performance of the plasma-catalytic removal of acetone over the 5.0 wt% CuO/γ-Al2O3 catalyst were investigated using central composite design (CCD). The significance of the independent variables and their interactions were evaluated by means of the Analysis of Variance (ANOVA). The results showed that the gas flow rate was the most significant factor affecting the removal efficiency of acetone, whilst the initial concentration of acetone played the most important role in determining the energy efficiency of the plasma-catalytic process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Decreased catalytic activity and altered activation properties of PDE6C mutants associated with autosomal recessive achromatopsia

    DEFF Research Database (Denmark)

    Grau, Tanja; Artemyev, Nikolai O; Rosenberg, Thomas

    2011-01-01

    study on PDE6C mutations including the mutation spectrum, its prevalence in a large cohort of ACHM/cone dysfunction patients, the clinical phenotype and the functional characterization of mutant PDE6C proteins. Twelve affected patients from seven independent families segregating PDE6C mutations were......Mutations in the gene encoding the catalytic subunit of the cone photoreceptor phosphodiesterase (PDE6C) have been recently reported in patients with autosomal recessive inherited achromatopsia (ACHM) and early-onset cone photoreceptor dysfunction. Here we present the results of a comprehensive...... identified in our total patient cohort of 492 independent families. Eleven different PDE6C mutations were found including two nonsense mutations, three mutations affecting transcript splicing as shown by minigene assays, one 1 bp-insertion and five missense mutations. We also performed a detailed functional...

  2. A biochemical basis for induction of retina regeneration by antioxidants.

    Science.gov (United States)

    Echeverri-Ruiz, Nancy; Haynes, Tracy; Landers, Joseph; Woods, Justin; Gemma, Michael J; Hughes, Michael; Del Rio-Tsonis, Katia

    2018-01-15

    The use of antioxidants in tissue regeneration has been studied, but their mechanism of action is not well understood. Here, we analyze the role of the antioxidant N-acetylcysteine (NAC) in retina regeneration. Embryonic chicks are able to regenerate their retina after its complete removal from retinal stem/progenitor cells present in the ciliary margin (CM) of the eye only if a source of exogenous factors, such as FGF2, is present. This study shows that NAC modifies the redox status of the CM, initiates self-renewal of the stem/progenitor cells, and induces regeneration in the absence of FGF2. NAC works as an antioxidant by scavenging free radicals either independently or through the synthesis of glutathione (GSH), and/or by reducing oxidized proteins through a thiol disulfide exchange activity. We dissected the mechanism used by NAC to induce regeneration through the use of inhibitors of GSH synthesis and the use of other antioxidants with different biochemical structures and modes of action, and found that NAC induces regeneration through its thiol disulfide exchange activity. Thus, our results provide, for the first time, a biochemical basis for induction of retina regeneration. Furthermore, NAC induction was independent of FGF receptor signaling, but dependent on the MAPK (pErk1/2) pathway. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Induction of viral, 7-methyl-guanosine cap-independent translation and oncolysis by mitogen-activated protein kinase-interacting kinase-mediated effects on the serine/arginine-rich protein kinase.

    Science.gov (United States)

    Brown, Michael C; Bryant, Jeffrey D; Dobrikova, Elena Y; Shveygert, Mayya; Bradrick, Shelton S; Chandramohan, Vidyalakshmi; Bigner, Darell D; Gromeier, Matthias

    2014-11-01

    Protein synthesis, the most energy-consuming process in cells, responds to changing physiologic priorities, e.g., upon mitogen- or stress-induced adaptations signaled through the mitogen-activated protein kinases (MAPKs). The prevailing status of protein synthesis machinery is a viral pathogenesis factor, particularly for plus-strand RNA viruses, where immediate translation of incoming viral RNAs shapes host-virus interactions. In this study, we unraveled signaling pathways centered on the ERK1/2 and p38α MAPK-interacting kinases MNK1/2 and their role in controlling 7-methyl-guanosine (m(7)G) "cap"-independent translation at enterovirus type 1 internal ribosomal entry sites (IRESs). Activation of Raf-MEK-ERK1/2 signals induced viral IRES-mediated translation in a manner dependent on MNK1/2. This effect was not due to MNK's known functions as eukaryotic initiation factor (eIF) 4G binding partner or eIF4E(S209) kinase. Rather, MNK catalytic activity enabled viral IRES-mediated translation/host cell cytotoxicity through negative regulation of the Ser/Arg (SR)-rich protein kinase (SRPK). Our investigations suggest that SRPK activity is a major determinant of type 1 IRES competency, host cell cytotoxicity, and viral proliferation in infected cells. We are targeting unfettered enterovirus IRES activity in cancer with PVSRIPO, the type 1 live-attenuated poliovirus (PV) (Sabin) vaccine containing a human rhinovirus type 2 (HRV2) IRES. A phase I clinical trial of PVSRIPO with intratumoral inoculation in patients with recurrent glioblastoma (GBM) is showing early promise. Viral translation proficiency in infected GBM cells is a core requirement for the antineoplastic efficacy of PVSRIPO. Therefore, it is critically important to understand the mechanisms controlling viral cap-independent translation in infected host cells. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. Highly efficient catalytic systems based on Pd-coated microbeads

    Science.gov (United States)

    Lim, Jin Hyun; Cho, Ahyoung; Lee, Seung Hwan; Park, Bumkyo; Kang, Dong Woo; Koo, Chong Min; Yu, Taekyung; Park, Bum Jun

    2018-01-01

    The efficiency of two prototype catalysis systems using palladium (Pd)-coated microparticles was investigated with regard to the recovery and recyclability of the catalytic particles. One such system was the interface-adsorption method, in which polymer particles coated with Pd nanoparticles strongly and irreversibly attach to the oil-water interface. Due to the irreversible adsorption of the catalytic particles to the interface, particle loss was completely prevented while mixing the aqueous solution and while collecting the products. The other system was based on the magnetic field-associated particle recovery method. The use of polymeric microparticles containing Pd nanoparticles and magnetite nanoparticles accelerated the sedimentation of the particles in the aqueous phase by applying a strong magnetic field, consequently suppressing drainage of the particles from the reactor along the product stream. Upon multiple runs of the catalytic reactions, it was found that conversion does not change significantly, demonstrating the excellent recyclability and performance efficiency in the catalytic processes.

  5. Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels

    International Nuclear Information System (INIS)

    Babich, I.V.; Hulst, M. van der; Lefferts, L.; Moulijn, J.A.; O'Connor, P.; Seshan, K.

    2011-01-01

    The pyrolytic conversion of chlorella algae to liquid fuel precursor in presence of a catalyst (Na 2 CO 3 ) has been studied. Thermal decomposition studies of the algae samples were performed using TGA coupled with MS. Liquid oil samples were collected from pyrolysis experiments in a fixed-bed reactor and characterized for water content and heating value. The oil composition was analyzed by GC-MS. Pretreatment of chlorella with Na 2 CO 3 influences the primary conversion of chlorella by shifting the decomposition temperature to a lower value. In the presence of Na 2 CO 3 , gas yield increased and liquid yield decreased when compared with non-catalytic pyrolysis at the same temperatures. However, pyrolysis oil from catalytic runs carries higher heating value and lower acidity. Lower content of acids in the bio-oil, higher aromatics, combined with higher heating value show promise for production of high-quality bio-oil from algae via catalytic pyrolysis, resulting in energy recovery in bio-oil of 40%. -- Highlights: → The pyrolytic catalytic conversion of chlorella algae to liquid fuel precursor. → Na 2 CO 3 as a catalyst for the primary conversion of chlorella. → Pyrolysis oil from catalytic runs carries higher heating value and lower acidity. → High-quality bio-oil from algae via catalytic pyrolysis with energy recovery in bio-oil of 40%.

  6. Inductance loop and partial

    CERN Document Server

    Paul, Clayton R

    2010-01-01

    "Inductance is an unprecedented text, thoroughly discussing "loop" inductance as well as the increasingly important "partial" inductance. These concepts and their proper calculation are crucial in designing modern high-speed digital systems. World-renowned leader in electromagnetics Clayton Paul provides the knowledge and tools necessary to understand and calculate inductance." "With the present and increasing emphasis on high-speed digital systems and high-frequency analog systems, it is imperative that system designers develop an intimate understanding of the concepts and methods in this book. Inductance is a much-needed textbook designed for senior and graduate-level engineering students, as well as a hands-on guide for working engineers and professionals engaged in the design of high-speed digital and high-frequency analog systems."--Jacket.

  7. Surface spintronics enhanced photo-catalytic hydrogen evolution: Mechanisms, strategies, challenges and future

    Science.gov (United States)

    Zhang, Wenyan; Gao, Wei; Zhang, Xuqiang; Li, Zhen; Lu, Gongxuan

    2018-03-01

    Hydrogen is a green energy carrier with high enthalpy and zero environmental pollution emission characteristics. Photocatalytic hydrogen evolution (HER) is a sustainable and promising way to generate hydrogen. Despite of great achievements in photocatalytic HER research, its efficiency is still limited due to undesirable electron transfer loss, high HER over-potential and low stability of some photocatalysts, which lead to their unsatisfied performance in HER and anti-photocorrosion properties. In recent years, many spintronics works have shown their enhancing effects on photo-catalytic HER. For example, it was reported that spin polarized photo-electrons could result in higher photocurrents and HER turn-over frequency (up to 200%) in photocatalytic system. Two strategies have been developed for electron spin polarizing, which resort to heavy atom effect and magnetic induction respectively. Both theoretical and experimental studies show that controlling spin state of OHrad radicals in photocatalytic reaction can not only decrease OER over-potential (even to 0 eV) of water splitting, but improve stability and charge lifetime of photocatalysts. A convenient strategy have been developed for aligning spin state of OHrad by utilizing chiral molecules to spin filter photo-electrons. By chiral-induced spin filtering, electron polarization can approach to 74%, which is significantly larger than some traditional transition metal devices. Those achievements demonstrate bright future of spintronics in enhancing photocatalytic HER, nevertheless, there is little work systematically reviewing and analysis this topic. This review focuses on recent achievements of spintronics in photocatalytic HER study, and systematically summarizes the related mechanisms and important strategies proposed. Besides, the challenges and developing trends of spintronics enhanced photo-catalytic HER research are discussed, expecting to comprehend and explore such interdisciplinary research in

  8. PREvaIL, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework.

    Science.gov (United States)

    Song, Jiangning; Li, Fuyi; Takemoto, Kazuhiro; Haffari, Gholamreza; Akutsu, Tatsuya; Chou, Kuo-Chen; Webb, Geoffrey I

    2018-04-14

    Determining the catalytic residues in an enzyme is critical to our understanding the relationship between protein sequence, structure, function, and enhancing our ability to design novel enzymes and their inhibitors. Although many enzymes have been sequenced, and their primary and tertiary structures determined, experimental methods for enzyme functional characterization lag behind. Because experimental methods used for identifying catalytic residues are resource- and labor-intensive, computational approaches have considerable value and are highly desirable for their ability to complement experimental studies in identifying catalytic residues and helping to bridge the sequence-structure-function gap. In this study, we describe a new computational method called PREvaIL for predicting enzyme catalytic residues. This method was developed by leveraging a comprehensive set of informative features extracted from multiple levels, including sequence, structure, and residue-contact network, in a random forest machine-learning framework. Extensive benchmarking experiments on eight different datasets based on 10-fold cross-validation and independent tests, as well as side-by-side performance comparisons with seven modern sequence- and structure-based methods, showed that PREvaIL achieved competitive predictive performance, with an area under the receiver operating characteristic curve and area under the precision-recall curve ranging from 0.896 to 0.973 and from 0.294 to 0.523, respectively. We demonstrated that this method was able to capture useful signals arising from different levels, leveraging such differential but useful types of features and allowing us to significantly improve the performance of catalytic residue prediction. We believe that this new method can be utilized as a valuable tool for both understanding the complex sequence-structure-function relationships of proteins and facilitating the characterization of novel enzymes lacking functional annotations

  9. Multi-Stage Selective Catalytic Reduction of NOx in Lean-Burn Engine Exhaust

    National Research Council Canada - National Science Library

    Penetrante, B

    1997-01-01

    .... A plasma can also be used to oxidize NO to NO2. This paper compares the multi-stage catalytic scheme with the plasma-assisted catalytic scheme for reduction of NOx in lean-burn engine exhausts. The advantages of plasma oxidation over catalytic oxidation are presented.

  10. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst.

    Science.gov (United States)

    Cao, Xinrui; Fu, Qiang; Luo, Yi

    2014-05-14

    The single atom alloy of extended surfaces is known to provide remarkably enhanced catalytic performance toward heterogeneous hydrogenation. Here we demonstrate from first principles calculations that this approach can be extended to nanostructures, such as bimetallic nanoparticles. The catalytic properties of the single-Pd-doped Cu55 nanoparticles have been systemically examined for H2 dissociation as well as H atom adsorption and diffusion, following the concept of single atom alloy. It is found that doping a single Pd atom at the edge site of the Cu55 shell can considerably reduce the activation energy of H2 dissociation, while the single Pd atom doped at the top site or in the inner layers is much less effective. The H atom adsorption on Cu55 is slightly stronger than that on the Cu(111) surface; however, a larger nanoparticle that contains 147 atoms could effectively recover the weak binding of the H atoms. We have also investigated the H atom diffusion on the 55-atom nanoparticle and found that spillover of the produced H atoms could be a feasible process due to the low diffusion barriers. Our results have demonstrated that facile H2 dissociation and weak H atom adsorption could be combined at the nanoscale. Moreover, the effects of doping one more Pd atom on the H2 dissociation and H atom adsorption have also been investigated. We have found that both the doping Pd atoms in the most stable configuration could independently exhibit their catalytic activity, behaving as two single-atom-alloy catalysts.

  11. Green technology for conversion of renewable hydrocarbon based on plasma-catalytic approach

    Science.gov (United States)

    Fedirchyk, Igor; Nedybaliuk, Oleg; Chernyak, Valeriy; Demchina, Valentina

    2016-09-01

    The ability to convert renewable biomass into fuels and chemicals is one of the most important steps on our path to green technology and sustainable development. However, the complex composition of biomass poses a major problem for established conversion technologies. The high temperature of thermochemical biomass conversion often leads to the appearance of undesirable byproducts and waste. The catalytic conversion has reduced yield and feedstock range. Plasma-catalytic reforming technology opens a new path for biomass conversion by replacing feedstock-specific catalysts with free radicals generated in the plasma. We studied the plasma-catalytic conversion of several renewable hydrocarbons using the air plasma created by rotating gliding discharge. We found that plasma-catalytic hydrocarbon conversion can be conducted at significantly lower temperatures (500 K) than during the thermochemical ( 1000 K) and catalytic (800 K) conversion. By using gas chromatography, we determined conversion products and found that conversion efficiency of plasma-catalytic conversion reaches over 85%. We used obtained data to determine the energy yield of hydrogen in case of plasma-catalytic reforming of ethanol and compared it with other plasma-based hydrogen-generating systems.

  12. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, M.; Jones, S.

    2013-03-01

    This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks have been identified.

  13. Janus droplet as a catalytic micromotor

    Science.gov (United States)

    Shklyaev, Sergey

    2015-06-01

    Self-propulsion of a Janus droplet in a solution of surfactant, which reacts on a half of a drop surface, is studied theoretically. The droplet acts as a catalytic motor creating a concentration gradient, which generates its surface-tension-driven motion; the self-propulsion speed is rather high, 60 μ \\text{m/s} and more. This catalytic motor has several advantages over other micromotors: simple manufacturing, easily attained neutral buoyancy. In contrast to a single-fluid droplet, which demonstrates a self-propulsion as a result of symmetry breaking instability, for the Janus one no stability threshold exists; hence, the droplet radius can be scaled down to micrometers.

  14. Synthesis of Superparamagnetic Core-Shell Structure Supported Pd Nanocatalysts for Catalytic Nitrite Reduction with Enhanced Activity, No Detection of Undesirable Product of Ammonium, and Easy Magnetic Separation Capability.

    Science.gov (United States)

    Sun, Wuzhu; Yang, Weiyi; Xu, Zhengchao; Li, Qi; Shang, Jian Ku

    2016-01-27

    Superparamagnetic nanocatalysts could minimize both the external and internal mass transport limitations and neutralize OH(-) produced in the reaction more effectively to enhance the catalytic nitrite reduction efficiency with the depressed product selectivity to undesirable ammonium, while possess an easy magnetic separation capability. However, commonly used qusi-monodispersed superparamagnetic Fe3O4 nanosphere is not suitable as catalyst support for nitrite reduction because it could reduce the catalytic reaction efficiency and the product selectivity to N2, and the iron leakage could bring secondary contamination to the treated water. In this study, protective shells of SiO2, polymethylacrylic acid, and carbon were introduced to synthesize Fe3O4@SiO2/Pd, Fe3O4@PMAA/Pd, and Fe3O4@C/Pd catalysts for catalytic nitrite reduction. It was found that SiO2 shell could provide the complete protection to Fe3O4 nanosphere core among these shells. Because of its good dispersion, dense structure, and complete protection to Fe3O4, the Fe3O4@SiO2/Pd catalyst demonstrated the highest catalytic nitrite reduction activity without the detection of NH4(+) produced. Due to this unique structure, the activity of Fe3O4@SiO2/Pd catalysts for nitrite reduction was found to be independent of the Pd nanoparticle size or shape, and their product selectivity was independent of the Pd nanoparticle size, shape, and content. Furthermore, their superparamagnetic nature and high saturation magnetization allowed their easy magnetic separation from treated water, and they also demonstrated a good stability during the subsequent recycling experiment.

  15. THE INFLUENCE OF Pd IMPREGNATION INTO Al-MCM-41 ON THE CHARACTERS AND ACTIVITY FOR BIOGASOLINE PRODUCTION BY CATALYTIC HYDROCRACKING OF FAMEs FROM NYAMPLUNG SEED OIL (Calophyllum Inophyllum

    Directory of Open Access Journals (Sweden)

    Hendro Juwono

    2013-08-01

    Full Text Available Biogasoline have been synthesized through catalytic hydrocracking reaction against FAMEs compounds (fatty acid methyl esters obtained from the transesterification of Nyamplung seed oil. The performance of Al-MCM-41 and Pd/Al-MCM-41 as the catalytic hydrocracking was compared. In this research, the influence of Pd impregnation into Al-MCM-41 catalyst on the characters and catalytic activity has been evaluated. The characters determined were crystallinity by using X-Ray Diffractometer (XRD, Si/Al ratio by Inductively Coupled Plasma (ICP, the acidity by pyridine adsorption, the surface area and pore volume by surface area analyzer and the morphology by Scanning Electron Microscopy (SEM. Catalytic activity was examined for hydrocracking of free fatty acid methyl esters (FAMEs produced from the transesterification of Nyamplung seed oil, by Hydrogen flowing. The research result showed that impregnation of Pd into Al-MCM-41 has been successfully carried out, which did not destroy the structural morphology of the catalyst. It was also discovered that the Pd impregnation could increase Si/Al ratio and the acidity but it leads to decrease in the catalyst surface area and the volume. Furthermore, Pd impregnated Al-MCM-41 showed superior activity compared to Al-MCM-41 for FAMEs hydrocracking. The superiority was indicated by higher effectiveness and yields selectiveness, that were 100% hydrocarbon composed of C9-C18 that was dominated by C12 emerging the gasoline fraction, compared of that by the results used Al-MCM-41 catalyst that were 97% hydrocarbon consisted of C8-C20 with equal abundance.

  16. A taxonomy of inductive problems.

    Science.gov (United States)

    Kemp, Charles; Jern, Alan

    2014-02-01

    Inductive inferences about objects, features, categories, and relations have been studied for many years, but there are few attempts to chart the range of inductive problems that humans are able to solve. We present a taxonomy of inductive problems that helps to clarify the relationships between familiar inductive problems such as generalization, categorization, and identification, and that introduces new inductive problems for psychological investigation. Our taxonomy is founded on the idea that semantic knowledge is organized into systems of objects, features, categories, and relations, and we attempt to characterize all of the inductive problems that can arise when these systems are partially observed. Recent studies have begun to address some of the new problems in our taxonomy, and future work should aim to develop unified theories of inductive reasoning that explain how people solve all of the problems in the taxonomy.

  17. Hydrogen production via catalytic processing of renewable feedstocks

    International Nuclear Information System (INIS)

    Nazim Muradov; Franklyn Smith; Ali T-Raissi

    2006-01-01

    Landfill gas (LFG) and biogas can potentially become important feedstocks for renewable hydrogen production. The objectives of this work were: (1) to develop a catalytic process for direct reforming of CH 4 -CO 2 gaseous mixture mimicking LFG, (2) perform thermodynamic analysis of the reforming process using AspenPlus chemical process simulator, (3) determine operational conditions for auto-thermal (or thermo-neutral) reforming of a model CH 4 -CO 2 feedstock, and (4) fabricate and test a bench-scale hydrogen production unit. Experimental data obtained from catalytic reformation of the CH 4 -CO 2 and CH 4 -CO 2 -O 2 gaseous mixtures using Ni-catalyst were in a good agreement with the simulation results. It was demonstrated that catalytic reforming of LFG-mimicking gas produced hydrogen with the purity of 99.9 vol.%. (authors)

  18. Heterogeneous-catalytic redox reactions in nitrate - formate systems

    International Nuclear Information System (INIS)

    Ananiev, A.V.; Shilov, V.P.; Tananaev, I.G.; Brossard, Ph.; Broudic, J.Ch.

    2000-01-01

    It was found that an intensive destruction of various organic and mineral substances - usual components of aqueous waste solutions (oxalic acid, complexones, urea, hydrazine, ammonium nitrate, etc.) takes place under the conditions of catalytic denitration. Kinetics and mechanisms of urea and ammonium nitrate decomposition in the system HNO 3 - HCOOH - Pt/SiO 2 are comprehensively investigated. The behaviour of uranium, neptunium and plutonium under the conditions of catalytic denitration is studied. It is shown, that under the certain conditions the formic acid is an effective reducer of the uranium (VI), neptunium (VI, V) and plutonium (VI, IV) ions. Kinetics of heterogeneous-catalytic red-ox reactions of uranium (VI), neptunium (VI, V) and plutonium (VI, IV) with formic acid are investigated. The mechanisms of the appropriate reactions are evaluated. (authors)

  19. Half Bridge Inductive Heater

    Directory of Open Access Journals (Sweden)

    Zoltán GERMÁN-SALLÓ

    2015-12-01

    Full Text Available Induction heating performs contactless, efficient and fast heating of conductive materials, therefore became one of the preferred heating procedure in industrial, domestic and medical applications. During induction heating the high-frequency alternating currents that heat the material are induced by means of electromagnetic induction. The material to be heated is placed inside the time-varying magnetic field generated by applying a highfrequency alternating current to an induction coil. The alternating electromagnetic field induces eddy currents in the workpiece, resulting resistive losses, which then heat the material. This paper describes the design of a power electronic converter circuit for induction heating equipment and presents the obtained results. The realized circuit is a low power half bridge resonant inverter which uses power MOS transistors and adequate driver circuits.

  20. Catalytic flash pyrolysis of oil-impregnated-wood and jatropha cake using sodium based catalysts

    NARCIS (Netherlands)

    Ali Imran, A.; Bramer, Eduard A.; Seshan, Kulathuiyer; Brem, Gerrit

    2016-01-01

    Catalytic pyrolysis of wood with impregnated vegetable oil was investigated and compared with catalytic pyrolysis of jatropha cake making use of sodium based catalysts to produce a high quality bio-oil. The catalytic pyrolysis was carried out in two modes: in-situ catalytic pyrolysis and post

  1. Inductive Reasoning and Writing

    Science.gov (United States)

    Rooks, Clay; Boyd, Robert

    2003-01-01

    Induction, properly understood, is not merely a game, nor is it a gimmick, nor is it an artificial way of explaining an element of reasoning. Proper understanding of inductive reasoning--and the various types of reasoning that the authors term inductive--enables the student to evaluate critically other people's writing and enhances the composition…

  2. Catalytic copyrolysis of cork oak and bio-oil distillation residue

    Science.gov (United States)

    Lee, Yejin; Oh, Daejun; Kim, Young-Min; Jae, Jungho; Jung, Sang-Chul; Jeon, Jong-Ki; Kim, Sang Chai; Park, Young-Kwon

    2018-01-01

    The atmospheric distillation residue (ADR) of cork oak (CO) pyrolysis oil was used as the co-feeding material for the catalytic pyrolysis of CO over HZSM-5 catalysts to improve the formation of aromatic hydrocarbons. Although the non-catalytic copyrolysis of CO and ADR did not improve the formation of aromatic hydrocarbons, the catalytic copyrolysis of CO and ADR promoted the synergistic formation of aromatic hydrocarbons. HZSM-5(30), having a lower SiO2/Al2O3(30), showed better performance for the formation of aromatic hydrocarbons than HZSM-5(80) because of its higher acidity. The catalytic copyrolysis of CO and ADR also decreased the formation of coke. The largest quantity of aromatic hydrocarbons was obtained from the catalytic copyrolysis of CO and ADR over HZSM-5 (30) at 600 °C, whereas the lowest coke yield was achieved at 700 °C. When the catalyst to sample ratio was increased from 2:1 to 5:1, the synergistic formation of aromatic hydrocarbons was limited, resulting in a lower experimental yield of aromatic hydrocarbons than the theoretical yield. A lower coke yield was also achieved at a high catalyst to sample ratio (5:1).

  3. Thermal and catalytic pyrolysis of plastic waste

    Directory of Open Access Journals (Sweden)

    Débora Almeida

    2016-02-01

    Full Text Available Abstract The amount of plastic waste is growing every year and with that comes an environmental concern regarding this problem. Pyrolysis as a tertiary recycling process is presented as a solution. Pyrolysis can be thermal or catalytical and can be performed under different experimental conditions. These conditions affect the type and amount of product obtained. With the pyrolysis process, products can be obtained with high added value, such as fuel oils and feedstock for new products. Zeolites can be used as catalysts in catalytic pyrolysis and influence the final products obtained.

  4. Using electron beams to investigate catalytic materials

    International Nuclear Information System (INIS)

    Zhang, Bingsen; Su, Dang Sheng

    2014-01-01

    Transmission Electron microscopy (TEM) enables us, not only to reveal the morphology, but also to provide structural, chemical and electronic information about solid catalysts at the atomic level, providing a dramatic driving force for the development of heterogeneous catalysis. Almost all catalytic materials have been studied with TEM in order to obtain information about their structures, which can help us to establish the synthesis-structure-property relationships and to design catalysts with new structures and desired properties. Herein, several examples will be reviewed to illustrate the investigation of catalytic materials by using electron beams. (authors)

  5. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    126, No. 2, March 2014, pp. 341–351. c Indian Academy of Sciences. ... enhancement was realized by catalyst design, appropriate choice of reactor, better injection and .... Gas–liquid and liquid–solid transport processes in catalytic reactors.5.

  6. Are there two processes in reasoning? The dimensionality of inductive and deductive inferences.

    Science.gov (United States)

    Stephens, Rachel G; Dunn, John C; Hayes, Brett K

    2018-03-01

    Single-process accounts of reasoning propose that the same cognitive mechanisms underlie inductive and deductive inferences. In contrast, dual-process accounts propose that these inferences depend upon 2 qualitatively different mechanisms. To distinguish between these accounts, we derived a set of single-process and dual-process models based on an overarching signal detection framework. We then used signed difference analysis to test each model against data from an argument evaluation task, in which induction and deduction judgments are elicited for sets of valid and invalid arguments. Three data sets were analyzed: data from Singmann and Klauer (2011), a database of argument evaluation studies, and the results of an experiment designed to test model predictions. Of the large set of testable models, we found that almost all could be rejected, including all 2-dimensional models. The only testable model able to account for all 3 data sets was a model with 1 dimension of argument strength and independent decision criteria for induction and deduction judgments. We conclude that despite the popularity of dual-process accounts, current results from the argument evaluation task are best explained by a single-process account that incorporates separate decision thresholds for inductive and deductive inferences. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders

    2003-04-01

    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  8. The majority of inducible DNA repair genes in Mycobacterium tuberculosis are induced independently of RecA.

    Science.gov (United States)

    Rand, Lucinda; Hinds, Jason; Springer, Burkhard; Sander, Peter; Buxton, Roger S; Davis, Elaine O

    2003-11-01

    In many species of bacteria most inducible DNA repair genes are regulated by LexA homologues and are dependent on RecA for induction. We have shown previously by analysing the induction of recA that two mechanisms for the induction of gene expression following DNA damage exist in Mycobacterium tuberculosis. Whereas one of these depends on RecA and LexA in the classical way, the other mechanism is independent of both of these proteins and induction occurs in the absence of RecA. Here we investigate the generality of each of these mechanisms by analysing the global response to DNA damage in both wild-type M. tuberculosis and a recA deletion strain of M. tuberculosis using microarrays. This revealed that the majority of the genes that were induced remained inducible in the recA mutant stain. Of particular note most of the inducible genes with known or predicted functions in DNA repair did not depend on recA for induction. Amongst these are genes involved in nucleotide excision repair, base excision repair, damage reversal and recombination. Thus, it appears that this novel mechanism of gene regulation is important for DNA repair in M. tuberculosis.

  9. A comparative and combined study of EMIS and GPR detectors by the use of Independent Component Analysis

    DEFF Research Database (Denmark)

    Morgenstjerne, Axel; Karlsen, Brian; Larsen, Jan

    2005-01-01

    Independent Component Analysis (ICA) is applied to classify unexploded ordnance (UXO) on laboratory UXO test-field data, acquired by stand-off detection. The data are acquired by an Electromagnetic Induction Spectroscopy (EMIS) metal detector and a ground penetrating radar (GPR) detector. The metal...

  10. Catalytic enantioselective Reformatsky reaction with ketones

    NARCIS (Netherlands)

    Fernandez-Ibanez, M. Angeles; Macia, Beatriz; Minnaard, Adriaan J.; Feringa, Ben L.

    2008-01-01

    Chiral tertiary alcohols were obtained with good yields and enantioselectivities via a catalytic Reformatsky reaction with ketones, including the challenging diaryl ketones, using chiral BINOL derivatives.

  11. Catalytic dehydration of ethanol using transition metal oxide catalysts.

    Science.gov (United States)

    Zaki, T

    2005-04-15

    The aim of this work is to study catalytic ethanol dehydration using different prepared catalysts, which include Fe(2)O(3), Mn(2)O(3), and calcined physical mixtures of both ferric and manganese oxides with alumina and/or silica gel. The physicochemical properties of these catalysts were investigated via X-ray powder diffraction (XRD), acidity measurement, and nitrogen adsorption-desorption at -196 degrees C. The catalytic activities of such catalysts were tested through conversion of ethanol at 200-500 degrees C using a catalytic flow system operated under atmospheric pressure. The results obtained indicated that the dehydration reaction on the catalyst relies on surface acidity, whereas the ethylene production selectivity depends on the catalyst chemical constituents.

  12. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  13. Catalytic Reactor for Inerting of Aircraft Fuel Tanks

    Science.gov (United States)

    1974-06-01

    Aluminum Panels After Triphase Corrosion Test 79 35 Inerting System Flows in Various Flight Modes 82 36 High Flow Reactor Parametric Data 84 37 System...AD/A-000 939 CATALYTIC REACTOR FOR INERTING OF AIRCRAFT FUEL TANKS George H. McDonald, et al AiResearch Manufacturing Company Prepared for: Air Force...190th Street 2b. GROUP Torrance, California .. REPORT TITLE CATALYTIC REACTOR FOR INERTING OF AIRCRAFT FUEL TANKS . OESCRIP TIVE NOTEs (Thpe of refpoft

  14. Aerobic, catalytic oxidation of alcohols in ionic liquids

    Directory of Open Access Journals (Sweden)

    Souza Roberto F. de

    2006-01-01

    Full Text Available An efficient and simple catalytic system based on RuCl3 dissolved in ionic liquids has been developed for the oxidation of alcohols into aldehydes and ketones under mild conditions. A new fluorinated ionic liquid, 1-n-butyl-3-methylimidazolium pentadecafluorooctanoate, was synthesized and demonstrated better performance that the other ionic liquids employed. Moreover this catalytic system utilizes molecular oxygen as an oxidizing agent, producing water as the only by-product.

  15. Highly recyclable and ultra-rapid catalytic reduction of organic pollutants on Ag-Cu@ZnO bimetal nanocomposite synthesized via green technology

    Science.gov (United States)

    Gangarapu, Manjari; Sarangapany, Saran; Suja, Devipriya P.; Arava, Vijaya Bhaskara Rao

    2018-04-01

    In this study, synthesis of Ag-Cu alloy bimetal nanoparticles anchored on high surface and porous ZnO using a facile, greener and low-cost aqeous bark extract of Aglaia roxburghiana for highly active, ultra-rapid and stable catalyst is performed. The nanocomposite was scrupulously characterized using UV-Vis spectrophotometer, X-ray diffraction, Raman spectrophotometer, high-resolution transmission electron microscope, selected area (electron) diffraction, scanning electron microscope with energy dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. The catalytic activity of the green synthesized Ag-Cu bimetal nanocomposite was evaluated in the reduction of 4-nitrophenol (4-NP), methylene blue (MB) and rhodamine B (Rh B) dyes. The different types of dye exhibited very high and effective catalytic activity within few seconds. The theoretical investigations reveal that the unique synergistic effect of Ag-Cu nanoparticles and immobilization over ZnO assists in the reduction of 4-NP, MB and Rh B. Loading and leaching of metal nanoparticles were obtained using inductively coupled plasma atomic emission spectroscopy. Moreover, the stable and efficient recyclability of nanocomposite by centrifugation after completion of the reaction was demonstrated. The results lead to the design different possible bimetal on ZnO with boosting and an effective catalyst for the environmental applications.

  16. Catalytic applications of bio-inspired nanomaterials

    Science.gov (United States)

    Pacardo, Dennis Kien Balaong

    The biomimetic synthesis of Pd nanoparticles was presented using the Pd4 peptide, TSNAVHPTLRHL, isolated from combinatorial phage display library. Using this approach, nearly monodisperse and spherical Pd nanoparticles were generated with an average diameter of 1.9 +/- 0.4 nm. The peptide-based nanocatalyst were employed in the Stille coupling reaction under energy-efficient and environmentally friendly reaction conditions of aqueous solvent, room temperature and very low catalyst loading. To this end, the Pd nanocatalyst generated high turnover frequency (TOF) value and quantitative yields using ≥ 0.005 mol% Pd as well as catalytic activities with different aryl halides containing electron-withdrawing and electron-donating groups. The Pd4-capped Pd nanoparticles followed the atom-leaching mechanism and were found to be selective with respect to substrate identity. On the other hand, the naturally-occurring R5 peptide (SSKKSGSYSGSKGSKRRIL) was employed in the synthesis of biotemplated Pd nanomaterials which showed morphological changes as a function of Pd:peptide ratio. TOF analysis for hydrogenation of olefinic alcohols showed similar catalytic activity regardless of nanomorphology. Determination of catalytic properties of these bio-inspired nanomaterials are important as they serve as model system for alternative green catalyst with applications in industrially important transformations.

  17. Vapor-Driven Propulsion of Catalytic Micromotors

    Science.gov (United States)

    Dong, Renfeng; Li, Jinxing; Rozen, Isaac; Ezhilan, Barath; Xu, Tailin; Christianson, Caleb; Gao, Wei; Saintillan, David; Ren, Biye; Wang, Joseph

    2015-08-01

    Chemically-powered micromotors offer exciting opportunities in diverse fields, including therapeutic delivery, environmental remediation, and nanoscale manufacturing. However, these nanovehicles require direct addition of high concentration of chemical fuel to the motor solution for their propulsion. We report the efficient vapor-powered propulsion of catalytic micromotors without direct addition of fuel to the micromotor solution. Diffusion of hydrazine vapor from the surrounding atmosphere into the sample solution is instead used to trigger rapid movement of iridium-gold Janus microsphere motors. Such operation creates a new type of remotely-triggered and powered catalytic micro/nanomotors that are responsive to their surrounding environment. This new propulsion mechanism is accompanied by unique phenomena, such as the distinct off-on response to the presence of fuel in the surrounding atmosphere, and spatio-temporal dependence of the motor speed borne out of the concentration gradient evolution within the motor solution. The relationship between the motor speed and the variables affecting the fuel concentration distribution is examined using a theoretical model for hydrazine transport, which is in turn used to explain the observed phenomena. The vapor-powered catalytic micro/nanomotors offer new opportunities in gas sensing, threat detection, and environmental monitoring, and open the door for a new class of environmentally-triggered micromotors.

  18. Simulation on Toxic Gases in Vehicle Exhaust Equipped with Modified Catalytic Converter : A Review

    Directory of Open Access Journals (Sweden)

    Leman A.M.

    2016-01-01

    Full Text Available Air pollution and global warming is a major issue nowadays. One of the main contributors to be the emission of harmful gases produced by vehicle exhausts lines. The harmful gases like NOx, CO, unburned HC and particulate matter increases the global warming, so catalytic converter plays a vital role in reducing harmful gases. Catalytic converters are used on most vehicles on the road today. This research deals with the gas emission flow in the catalytic converter involving the heat transfer, velocity flow, back pressure and others chemical reaction in the modified catalytic converter by using FeCrAl as a substrate that is treated using the ultrasonic bath and electroplating techniques. The objective of this study is to obtain a quantitative description of the gas emission in the catalytic converter system of automobile exhaust gas using ANSYS Software. The description of the gas emission in the catalytic converter system of automobile exhaust gas using ANSYS Software was simulated in this research in order to provide better efficiency and ease the reusability of the catalytic converter by comparing experimental data with software analysing data. The result will be expected to demonstrate a good approximation of gas emission in the modified catalytic converter simulation data compared to experimental data in order to verify the effectiveness of modified catalytic converter. Therefore studies on simulation of flow through the modified catalytic converter are very important to increase the accuracy of the obtained emission result.

  19. Development of induction current acquisition device based on ARM

    Science.gov (United States)

    Ji, Yanju; Liu, Xiyang; Huang, Wanyu; Yao, Jiang; Yuan, Guiyang; Hui, Luan; Guan, Shanshan

    2018-03-01

    We design an induction current acquisition device based on ARM in order to realize high resolution and high sampling rate of acquisition for the induction current in wire-loop. Considering its characteristics of fast attenuation and small signal amplitude, we use the method of multi-path fusion for noise suppression. In the paper, the design is carried out from three aspects of analog circuit and device selection, independent power supply structure and the electromagnetic interference suppression of high frequency. DMA and ping-pong buffer, as a new data transmission technology, solves real time storage problem of massive data. The performance parameters of ARM acquisition device are tested. The comparison test of ARM acquisition device and cRIO acquisition device is performed at different time constants. The results show that it has 120dB dynamic range, 47kHz bandwidth, 96kHz sampling rate, 5μV the smallest resolution, and its average error value is not more than 4%, which proves the high accuracy and stability of the device.

  20. Telomere-independent functions of telomerase in nuclei, cytoplasm, and mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Chiodi, Ilaria; Mondello, Chiara, E-mail: mondello@igm.cnr.it [Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia (Italy)

    2012-09-28

    Telomerase canonical activity at telomeres prevents telomere shortening, allowing chromosome stability and cellular proliferation. To perform this task, the catalytic subunit (telomerase reverse transcriptase, TERT) of the enzyme works as a reverse transcriptase together with the telomerase RNA component (TERC), adding telomeric repeats to DNA molecule ends. Growing evidence indicates that, besides the telomeric-DNA synthesis activity, TERT has additional functions in tumor development and is involved in many different biological processes, among which cellular proliferation, gene expression regulation, and mitochondrial functionality. TERT has been shown to act independently of TERC in the Wnt-β-catenin signaling pathway, regulating the expression of Wnt target genes, which play a role in development and tumorigenesis. Moreover, TERT RNA-dependent RNA polymerase activity has been found, leading to the genesis of double-stranded RNAs that act as precursor of silencing RNAs. In mitochondria, a TERT TERC-independent reverse transcriptase activity has been described that could play a role in the protection of mitochondrial integrity. In this review, we will discuss some of the extra-telomeric functions of telomerase.

  1. Ionic Liquids: The Synergistic Catalytic Effect in the Synthesis of Cyclic Carbonates

    Directory of Open Access Journals (Sweden)

    Flora T.T. Ng

    2013-10-01

    Full Text Available This review presents the synergistic effect in the catalytic system of ionic liquids (ILs for the synthesis of cyclic carbonate from carbon dioxide and epoxide. The emphasis of this review is on three aspects: the catalytic system of metal-based ionic liquids, the catalytic system of hydrogen bond-promoted ionic liquids and supported ionic liquids. Metal and ionic liquids show a synergistic effect on the cycloaddition reactions of epoxides. The cations and anions of ionic liquids show a synergistic effect on the cycloaddition reactions. The functional groups in cations or supports combined with the anions have a synergistic effect on the cycloaddition reactions. Synergistic catalytic effects of ILs play an important role of promoting the cycloaddition reactions of epoxides. The design of catalytic system of ionic liquids will be possible if the synergistic effect on a molecular level is understood.

  2. Oscillatory behaviour of catalytic properties, structure and temperature during the catalytic partial oxidation of methane on Pd/Al2O3

    DEFF Research Database (Denmark)

    Kimmerle, B.; Baiker, A.; Grunwaldt, Jan-Dierk

    2010-01-01

    Pd/Al2O3 catalysts showed an oscillatory behaviour during the catalytic partial oxidation (CPO) of methane, which was investigated simultaneously by IR-thermography, X-ray absorption spectroscopy, and online mass-spectrometry to correlate the temperature, state of the catalyst and catalytic...... to self-reduction leading to extinction of the process. The latter was the key driver for the oscillations and thus gave additional insight into the mechanism of partial methane oxidation....

  3. Phosphorylation of the protein kinase A catalytic subunit is induced by cyclic AMP deficiency and physiological stresses in the fission yeast, Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    McInnis, Brittney; Mitchell, Jessica; Marcus, Stevan

    2010-01-01

    Research highlights: → cAMP deficiency induces phosphorylation of PKA catalytic subunit (Pka1) in S. pombe. → Pka1 phosphorylation is further induced by physiological stresses. → Pka1 phosphorylation is not induced in cells lacking the PKA regulatory subunit. → Results suggest that cAMP-independent Pka1 phosphorylation is stimulatory in nature. -- Abstract: In the fission yeast, Schizosaccharomyces pombe, cyclic AMP (cAMP)-dependent protein kinase (PKA) is not essential for viability under normal culturing conditions, making this organism attractive for investigating mechanisms of PKA regulation. Here we show that S. pombe cells carrying a deletion in the adenylate cyclase gene, cyr1, express markedly higher levels of the PKA catalytic subunit, Pka1, than wild type cells. Significantly, in cyr1Δ cells, but not wild type cells, a substantial proportion of Pka1 protein is hyperphosphorylated. Pka1 hyperphosphorylation is strongly induced in cyr1Δ cells, and to varying degrees in wild type cells, by both glucose starvation and stationary phase stresses, which are associated with reduced cAMP-dependent PKA activity, and by KCl stress, the cellular adaptation to which is dependent on PKA activity. Interestingly, hyperphosphorylation of Pka1 was not detected in either cyr1 + or cyr1Δ S. pombe strains carrying a deletion in the PKA regulatory subunit gene, cgs1, under any of the tested conditions. Our results demonstrate the existence of a cAMP-independent mechanism of PKA catalytic subunit phosphorylation, which we propose could serve as a mechanism for inducing or maintaining specific PKA functions under conditions in which its cAMP-dependent activity is downregulated.

  4. Intermittent induction of HIF-1α produces lasting effects on malignant progression independent of its continued expression.

    Directory of Open Access Journals (Sweden)

    Hyunsung Choi

    Full Text Available Dysregulation of hypoxia-inducible transcription factors HIF-1α and HIF-2α correlates with poor prognosis in human cancers; yet, divergent and sometimes opposing activities of these factors in cancer biology have been observed. Adding to this complexity is that HIF-1α apparently possesses tumor-suppressing activities, as indicated by the loss-of-function mutations or even homozygous deletion of HIF1A in certain human cancers. As a step towards understanding this complexity, we employed 8-week intermittent induction of a stable HIF-1α variant, HIF1α(PP, in various cancer cell lines and examined the effects on malignant progression in xenografts of immunocompromised mice in comparison to those of HIF2α(PP. Although 8-week treatment led to eventual loss of HIF1α(PP expression, treated osteosarcoma U-2 OS cells acquired tumorigenicity in the subcutaneous tissue. Furthermore, the prior treatment resulted in widespread invasion of malignant glioma U-87 MG cells in the mouse brain and sustained growth of U-118 MG glioma cells. The lasting effects of HIF-1α on malignant progression are specific because neither HIF2α(PP nor β-galactosidase yielded similar effects. By contrast, transient expression of HIF1α(PP in U-87 MG cells or constitutive expression of HIF1α(PP but not HIF2α(PP in a patient-derived glioma sphere culture inhibited tumor growth and spread. Our results indicate that intermittent induction of HIF-1α produces lasting effects on malignant progression even at its own expense.

  5. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    Science.gov (United States)

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  6. Surface composition of carburized tungsten trioxide and its catalytic activity

    International Nuclear Information System (INIS)

    Nakazawa, M.; Okamoto, H.

    1985-01-01

    The surface composition and electronic structure of carburized tungsten trioxide are investigated using x-ray photoelectron spectroscopy (XPS). The relationship between the surface composition and the catalytic activity for methanol electro-oxidation is clarified. The tungsten carbide concentration in the surface layer increases with the carburization time. The formation of tungsten carbide enhances the catalytic activity. On the other hand, the presence of free carbon or tungsten trioxide in the surface layer reduces the activity remarkably. It is also shown that, the higher the electronic density of states near the Fermi level, the higher the catalytic activity

  7. Poisoning of bubble propelled catalytic micromotors: the chemical environment matters.

    Science.gov (United States)

    Zhao, Guanjia; Sanchez, Samuel; Schmidt, Oliver G; Pumera, Martin

    2013-04-07

    Self-propelled catalytic microjets have attracted considerable attention in recent years and these devices have exhibited the ability to move in complex media. The mechanism of propulsion is via the Pt catalysed decomposition of H2O2 and it is understood that the Pt surface is highly susceptible to poisoning by sulphur-containing molecules. Here, we show that important extracellular thiols as well as basic organic molecules can significantly hamper the motion of catalytic microjet engines. This is due to two different mechanisms: (i) molecules such as dimethyl sulfoxide can quench the hydroxyl radicals produced at Pt surfaces and reduce the amount of oxygen gas generated and (ii) molecules containing -SH, -SSR, and -SCH3 moieties can poison the catalytically active platinum surface, inhibiting the motion of the jet engines. It is essential that the presence of such molecules in the environment be taken into consideration for future design and operation of catalytic microjet engines. We show this effect on catalytic micromotors prepared by both rolled-up and electrodeposition approaches, demonstrating that such poisoning is universal for Pt catalyzed micromotors. We believe that our findings will contribute significantly to this field to develop alternative systems or catalysts for self-propulsion when practical applications in the real environment are considered.

  8. Contribution of the C-terminal region within the catalytic core domain of HIV-1 integrase to yeast lethality, chromatin binding and viral replication

    Directory of Open Access Journals (Sweden)

    Belhumeur Pierre

    2008-11-01

    Full Text Available Abstract Background HIV-1 integrase (IN is a key viral enzymatic molecule required for the integration of the viral cDNA into the genome. Additionally, HIV-1 IN has been shown to play important roles in several other steps during the viral life cycle, including reverse transcription, nuclear import and chromatin targeting. Interestingly, previous studies have demonstrated that the expression of HIV-1 IN induces the lethal phenotype in some strains of Saccharomyces cerevisiae. In this study, we performed mutagenic analyses of the C-terminal region of the catalytic core domain of HIV-1 IN in order to delineate the critical amino acid(s and/or motif(s required for the induction of the lethal phenotype in the yeast strain HP16, and to further elucidate the molecular mechanism which causes this phenotype. Results Our study identified three HIV-1 IN mutants, V165A, A179P and KR186,7AA, located in the C-terminal region of the catalytic core domain of IN that do not induce the lethal phenotype in yeast. Chromatin binding assays in yeast and mammalian cells demonstrated that these IN mutants were impaired for the ability to bind chromatin. Additionally, we determined that while these IN mutants failed to interact with LEDGF/p75, they retained the ability to bind Integrase interactor 1. Furthermore, we observed that VSV-G-pseudotyped HIV-1 containing these IN mutants was unable to replicate in the C8166 T cell line and this defect was partially rescued by complementation with the catalytically inactive D64E IN mutant. Conclusion Overall, this study demonstrates that three mutations located in the C-terminal region of the catalytic core domain of HIV-1 IN inhibit the IN-induced lethal phenotype in yeast by inhibiting the binding of IN to the host chromatin. These results demonstrate that the C-terminal region of the catalytic core domain of HIV-1 IN is important for binding to host chromatin and is crucial for both viral replication and the promotion of

  9. Development of Independent-type Optical CT

    Science.gov (United States)

    Yamaguchi, Tatsushi; Shiozawa, Daigoro; Rokunohe, Toshiaki; Kida, Junzo; Zhang, Wei

    Optical current transformers (optical CTs) have features that they can be made much smaller and lighter than conventional electromagnetic induction transformers by their simple structure, and contribute to improvement of equipment reliability because of their excellent surge resistance performance. Authors consider optical CTs to be next generation transformers, and are conducting research and development of optical CTs aiming to apply to measuring and protection in electric power systems. Specifically we developed an independent-type optical CT by utilizing basic data of optical CTs accumulated for large current characteristics, temperature characteristics, vibration resistance characteristics, and so on. In performance verification, type tests complying with IEC standards, such as short-time current tests, insulation tests, accuracy tests, and so on, showed good results. This report describes basic principle and configuration of optical CTs. After that, as basic characteristics of optical CTs, conditions and results of verification tests for dielectric breakdown characteristics of sensor fibers, large current characteristics, temperature characteristics, and vibration resistance characteristics are described. Finally, development outline of the independent-type optical CT aiming to apply to all digital substation and its type tests results are described.

  10. Practicing induction:

    DEFF Research Database (Denmark)

    Sprogøe, Jonas; Rohde, Nicolas

    2009-01-01

    We claim that induction potentially triggers both individual and organizational learning and by drawing on practice-based theory we discuss how the interplay between individual and organization, what we call a generative dance, ignites both kinds of learning.......We claim that induction potentially triggers both individual and organizational learning and by drawing on practice-based theory we discuss how the interplay between individual and organization, what we call a generative dance, ignites both kinds of learning....

  11. Catalytic Fast Pyrolysis: A Review

    Directory of Open Access Journals (Sweden)

    Theodore Dickerson

    2013-01-01

    Full Text Available Catalytic pyrolysis is a promising thermochemical conversion route for lignocellulosic biomass that produces chemicals and fuels compatible with current, petrochemical infrastructure. Catalytic modifications to pyrolysis bio-oils are geared towards the elimination and substitution of oxygen and oxygen-containing functionalities in addition to increasing the hydrogen to carbon ratio of the final products. Recent progress has focused on both hydrodeoxygenation and hydrogenation of bio-oil using a variety of metal catalysts and the production of aromatics from bio-oil using cracking zeolites. Research is currently focused on developing multi-functional catalysts used in situ that benefit from the advantages of both hydrodeoxygenation and zeolite cracking. Development of robust, highly selective catalysts will help achieve the goal of producing drop-in fuels and petrochemical commodities from wood and other lignocellulosic biomass streams. The current paper will examine these developments by means of a review of existing literature.

  12. Chemically-modified cellulose paper as a microstructured catalytic reactor.

    Science.gov (United States)

    Koga, Hirotaka; Kitaoka, Takuya; Isogai, Akira

    2015-01-15

    We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry.

  13. Chemically-Modified Cellulose Paper as a Microstructured Catalytic Reactor

    Directory of Open Access Journals (Sweden)

    Hirotaka Koga

    2015-01-01

    Full Text Available We discuss the successful use of chemically-modified cellulose paper as a microstructured catalytic reactor for the production of useful chemicals. The chemical modification of cellulose paper was achieved using a silane-coupling technique. Amine-modified paper was directly used as a base catalyst for the Knoevenagel condensation reaction. Methacrylate-modified paper was used for the immobilization of lipase and then in nonaqueous transesterification processes. These catalytic paper materials offer high reaction efficiencies and have excellent practical properties. We suggest that the paper-specific interconnected microstructure with pulp fiber networks provides fast mixing of the reactants and efficient transport of the reactants to the catalytically-active sites. This concept is expected to be a promising route to green and sustainable chemistry.

  14. Mapping Between Semantic Graphs and Sentences in Grammar Induction System

    Directory of Open Access Journals (Sweden)

    Laszlo Kovacs

    2010-06-01

    Full Text Available The proposed transformation module performs mapping be-
    tween two di®erent knowledge representation forms used in grammar induction systems. The kernel knowledge representation form is a special predicate centered conceptual graph called ECG. The ECG provides a semantic-based, language independent description of the environment. The other base representation form is some kind of language. The sentences of the language should meet the corresponding grammatical rules. The pilot project demonstrates the functionality of a translator module using this transformation engine between the ECG graph and the Hungarian language.

  15. Oxyfuel combustion using a catalytic ceramic membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xiaoyao; Li, K. [Department of Chemical Engineering, Imperial College London, University of London, South Kensington, London SW7 2AZ (United Kingdom); Thursfield, A.; Metcalfe, I.S. [School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom)

    2008-02-29

    Membrane catalytic combustion (MCC) is an environmentally friendly technique for heat and power generation from methane. This work demonstrates the performances of a MCC perovskite hollow fibre membrane reactor for the catalytic combustion of methane. The ionic-electronic La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{alpha}} (LSCF6428) mixed conductor, in the form of an oxygen-permeable hollow fibre membrane, has been prepared successfully by means of a phase-inversion spinning/sintering technique. For this process polyethersulfone (PESf) was used as a binder, N-methyl-2-pyrrollidone (NMP) as solvent and polyvinylpyrrolidone (PVP, K16-18) as an additive. With the prepared LSCF6428 hollow fibre membranes packed with catalyst, hollow fibre membrane reactors (HFMRs) have been assembled to perform the catalytic combustion of methane. A simple mathematical model that combines the local oxygen permeation rate with approximate catalytic reaction kinetics has been developed and can be used to predict the performance of the HFMRs for methane combustion. The effects of operating temperature and methane and air feed flow rates on the performance of the HFMR have been investigated both experimentally and theoretically. Both the methane conversion and oxygen permeation rate can be improved by means of coating platinum on the air side of the hollow fibre membranes. (author)

  16. Helicobacter Catalase Devoid of Catalytic Activity Protects the Bacterium against Oxidative Stress.

    Science.gov (United States)

    Benoit, Stéphane L; Maier, Robert J

    2016-11-04

    Catalase, a conserved and abundant enzyme found in all domains of life, dissipates the oxidant hydrogen peroxide (H 2 O 2 ). The gastric pathogen Helicobacter pylori undergoes host-mediated oxidant stress exposure, and its catalase contains oxidizable methionine (Met) residues. We hypothesized catalase may play a large stress-combating role independent of its classical catalytic one, namely quenching harmful oxidants through its recyclable Met residues, resulting in oxidant protection to the bacterium. Two Helicobacter mutant strains ( katA H56A and katA Y339A ) containing catalase without enzyme activity but that retain all Met residues were created. These strains were much more resistant to oxidants than a catalase-deletion mutant strain. The quenching ability of the altered versions was shown, whereby oxidant-stressed (HOCl-exposed) Helicobacter retained viability even upon extracellular addition of the inactive versions of catalase, in contrast to cells receiving HOCl alone. The importance of the methionine-mediated quenching to the pathogen residing in the oxidant-rich gastric mucus was studied. In contrast to a catalase-null strain, both site-change mutants proficiently colonized the murine gastric mucosa, suggesting that the amino acid composition-dependent oxidant-quenching role of catalase is more important than the well described H 2 O 2 -dissipating catalytic role. Over 100 years after the discovery of catalase, these findings reveal a new non-enzymatic protective mechanism of action for the ubiquitous enzyme. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Catalytic destruction of tar in biomass derived producer gas

    International Nuclear Information System (INIS)

    Zhang Ruiqin; Brown, Robert C.; Suby, Andrew; Cummer, Keith

    2004-01-01

    The purpose of this study is to investigate catalytic destruction of tar formed during gasification of biomass, with the goal of improving the quality of the producer gas. This work focuses on nickel based catalysts treated with alkali in an effort to promote steam gasification of the coke that deposits on catalyst surfaces. A tar conversion system consisting of a guard bed and catalytic reactor was designed to treat the producer gas from an air blown, fluidized bed biomass gasifier. The guard bed used dolomite to crack the heavy tars. The catalytic reactor was used to evaluate three commercial steam reforming catalysts. These were the ICI46-1 catalyst from Imperial Chemical Industry and Z409 and RZ409 catalysts from Qilu Petrochemical Corp. in China. A 0.5-3 l/min slipstream from a 5 tpd biomass gasifier was used to test the tar conversion system. Gas and tar were sampled before and after the tar conversion system to evaluate the effectiveness of the system. Changes in gas composition as functions of catalytic bed temperature, space velocity and steam/TOC (total organic carbon) ratio are presented. Structural changes in the catalysts during the tests are also described

  18. Catalytic Activity Control via Crossover between Two Different Microstructures

    KAUST Repository

    Zhou, Yuheng

    2017-09-08

    Metal nanocatalysts hold great promise for a wide range of heterogeneous catalytic reactions, while the optimization strategy of catalytic activity is largely restricted by particle size or shape control. Here, we demonstrate that a reversible microstructural control through the crossover between multiply-twinned nanoparticle (MTP) and single crystal (SC) can be readily achieved by solvent post-treatment on gold nanoparticles (AuNPs). Polar solvents (e.g. water, methanol) direct the transformation from MTP to SC accompanied by the disappearance of twinning and stacking faults. A reverse transformation from SC to MTP is achieved in non-polar solvent (e.g. toluene) mixed with thiol ligands. The transformation between two different microstructures is directly observed by in-situ TEM and leads to a drastic modulation of catalytic activity towards the gas-phase selective oxidation of alcohols. There is a quasi-linear relationship between TOFs and MTP concentrations. Based on the combined experimental and theoretical investigations of alcohol chemisorption on these nanocatalysts, we propose that the exposure of {211}-like microfacets associated with twin boundaries and stack faults accounts for the strong chemisorption of alcohol molecules on MTP AuNPs and thus the exceptionally high catalytic activity.

  19. Economic implications of labor induction.

    Science.gov (United States)

    Garcia-Simon, Raquel; Montañes, Antonio; Clemente, Jesús; Del Pino, María D; Romero, Manuel A; Fabre, Ernesto; Oros, Daniel

    2016-04-01

    To assess health service costs associated with labor induction according to different clinical situations in a tertiary-level hospital. In a prospective study, individual patient cost data were assessed for women admitted for induction of labor at a tertiary hospital in Spain between November 1, 2012, and August 31, 2013. The costs of labor induction were estimated according to maternal and neonatal outcomes, method of delivery, cervical condition at admission, and obstetric indication. Direct costs including professional fees, epidural, maternal stay, consumables, and drugs were calculated. Overall, 412 women were included in the final cost analysis. The mean total cost of labor induction was €3589.87 (95% confidence interval [CI] 3475.13-3704.61). Cesarean delivery after labor induction (€4830.45, 95% CI 4623.13-5037.58) was significantly more expensive than spontaneous delivery (€3037.45, 95% CI 2966.91-3179.99) and instrumental vaginal delivery (€3344.31, 95%CI 3151.69-3536.93). The total cost for patients with a very unfavorable cervix (Bishop score Labor induction for hypertensive disorders of pregnancy was the most expensive obstetric indication for induction of labor (€4347.32, 95% CI 3890.45-4804.18). Following the induction of labor, a number of patient- and treatment-related factors influence costs associated with delivery. Copyright © 2015 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  20. Inductive line energy storage generator

    Energy Technology Data Exchange (ETDEWEB)

    Choi, P [Ecole Polytechnique, Palaiseau (France). Laboratoire de Physique des Milieux Ionises

    1997-12-31

    The inductive energy storage (IES) generator has long been considered to be the most efficient system for energy usage in large pulsed power system at the MA level. A number of parameters govern the efficiency of energy transfer between the storage capacitors and the load, and the level of current deliverable to the load. For high power system, the energy storage capacitors are arranged as a Marx generator. The primary constraints are the inductances in the various parts of the circuit, in particular, the upstream inductance between the Marx and the POS, and the downstream inductance between the POS and the load. This paper deals with the effect of replacing part of the upstream inductance with a transmission line and introduces the new concept of an inductive line for energy storage (ILES). Extensive parametric scans were carried out on circuit simulations to investigate the effect of this upstream transmission line. A model was developed to explain the operation of the ILES design based on the data obtained. Comparison with an existing IES generator shows that the ILES design offers a significant improvement in the maximum current and hence energy delivered to an inductive load. (author). 5 figs., 1 ref.

  1. Vector control of induction machines

    CERN Document Server

    Robyns, Benoit

    2012-01-01

    After a brief introduction to the main law of physics and fundamental concepts inherent in electromechanical conversion, ""Vector Control of Induction Machines"" introduces the standard mathematical models for induction machines - whichever rotor technology is used - as well as several squirrel-cage induction machine vector-control strategies. The use of causal ordering graphs allows systematization of the design stage, as well as standardization of the structure of control devices. ""Vector Control of Induction Machines"" suggests a unique approach aimed at reducing parameter sensitivity for

  2. Inductive Reasoning: A Training Approach

    Science.gov (United States)

    Klauer, Karl Josef; Phye, Gary D.

    2008-01-01

    Researchers have examined inductive reasoning to identify different cognitive processes when participants deal with inductive problems. This article presents a prescriptive theory of inductive reasoning that identifies cognitive processing using a procedural strategy for making comparisons. It is hypothesized that training in the use of the…

  3. Inductive Monitoring System (IMS)

    Data.gov (United States)

    National Aeronautics and Space Administration — IMS: Inductive Monitoring System The Inductive Monitoring System (IMS) is a tool that uses a data mining technique called clustering to extract models of normal...

  4. Effect of Catalytic Layer Thickness on Diameter of Vertically Aligned Individual Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Hyun Kyung Jung

    2014-01-01

    Full Text Available The effect of catalytic thin film thickness on the diameter control of individual carbon nanotubes grown by plasma enhanced chemical vapor deposition was investigated. Individual carbon nanotubes were grown on catalytic nanodot arrays, which were fabricated by e-beam lithography and e-beam evaporation. During e-beam evaporation of the nanodot pattern, more catalytic metal was deposited at the edge of the nanodots than the desired catalyst thickness. Because of this phenomenon, carbon atoms diffused faster near the center of the dots than at the edge of the dots. The carbon atoms, which were gathered at the interface between the catalytic nanodot and the diffusion barrier, accumulated near the center of the dot and lifted the catalyst off. From the experiments, an individual carbon nanotube with the same diameter as that of the catalytic nanodot was obtained from a 5 nm thick catalytic nanodot; however, an individual carbon nanotube with a smaller diameter (~40% reduction was obtained from a 50 nm thick nanodot. We found that the thicker the catalytic layer, the greater the reduction in diameter of the carbon nanotubes. The diameter-controlled carbon nanotubes could have applications in bio- and nanomaterial scanning and as a contrast medium for magnetic resonance imaging.

  5. Enhanced induction of apoptosis by combined treatment of human carcinoma cells with X rays and death receptor agonists

    International Nuclear Information System (INIS)

    Hamasu, Taku; Inanami, Osamu; Asanuma, Taketoshi; Kuwabara, Mikinori

    2005-01-01

    The death receptors Fas and DR5 are known to be expressed not only in immune cells but also in various tumor cells. The aim of the present study was to determine whether X irradiation enhanced induction of apoptosis in Tp53 wild type and Tp53-mutated tumor cell lines treated with agonists against these death receptors. We showed that 5 Gy of X irradiation significantly up-regulated the expression of death receptors Fas and DR5 on the plasma membrane in gastric cancer cell lines MKN45 and MKN28, lung cancer cell line A549, and prostate cancer cell line DU145, and that subsequent treatments with agonistic molecules for these death receptors, Fas antibody CHl1 and TRAIL, increased the formation of active fragment p20 of caspase 3 followed by the induction of apoptosis. This death-receptor-mediated apoptosis was independent of Tp53 status since MKN28 and DU145 were Tp53-mutated. The post-irradiation treatment of the cells with N-acetyl-L-cysteine (NAC) abolished the up-regulation of the expression of Fas and DR5 on the plasma membrane. NAC also attenuated the increase in the formation of p20 and the induction of apoptosis by agonistic molecules. These results suggested that the increase in the induction of apoptosis by combined treatment with X irradiation and CHl1 or TRAIL occurred through a change of the intracellular redox state independent of Tp53 status in human carcinoma cell lines. (author)

  6. I.C. Engine emission reduction by copper oxide catalytic converter

    Science.gov (United States)

    Venkatesan, S. P.; Shubham Uday, Desai; Karan Hemant, Borana; Rajarshi Kushwanth Goud, Kagita; Lakshmana Kumar, G.; Pavan Kumar, K.

    2017-05-01

    The toxic gases emitted from diesel engines are more than petrol engines. Predicting the use of diesel engines, even more in future, this system is developed and can be used to minimize the harmful gases. Toxic gases include NOX, CO, HC and Smoke which are harmful to the atmosphere as well as to the human beings. The main aim of this work is to fabricate system, where the level of intensity of toxic gases is controlled through chemical reaction to more agreeable level. This system acts itself as an exhaust system; hence there is no needs to fit separate the silencer. The whole assembly is fitted in the exhaust pipe from engine. In this work, catalytic converter with copper oxide as a catalyst, by replacing noble catalysts such as platinum, palladium and rhodium is fabricated and fitted in the engine exhaust. With and without catalytic converter, the experimentations are carried out at different loads such as 0%, 25%, 50%, 75%, and 100% of maximum rated load. From the experimental results it is found that the maximum reduction is 32%, 61% and 21% for HC, NOx and CO respectively at 100% of maximum rated load when compared to that of without catalytic converter. This catalytic converter system is cash effective and more economical than the existing catalytic converter.

  7. Catalytic antibodies in clinical and experimental pathology: human and mouse models.

    Science.gov (United States)

    Ponomarenko, Natalya A; Durova, Oxana M; Vorobiev, Ivan I; Aleksandrova, Elena S; Telegin, Georgy B; Chamborant, Olga G; Sidorik, Lyudmila L; Suchkov, Sergei V; Alekberova, Zemfira S; Gnuchev, Nikolay V; Gabibov, Alexander G

    2002-11-01

    Most of the data accumulated through studies on natural catalytic autoantibodies indicate that production scales up markedly in pathological abnormalities. We have previously described an increased level of DNA-hydrolyzing autoantibodies in the sera of patients with various autoimmune disorders [systemic lupus erythematosus (SLE), rheumatoid arthritis, scleroderma], HIV infection and lymphoproliferative diseases accompanied by autoimmune manifestations. In the present study, we show that an increased level of catalytic activity of autoantibodies can be observed in the sera of autoimmune mice, thus providing a fundamental insight into the medical relevance of abzymes. Polyclonal autoantibodies purified from sera of NZB/W, MRL-lpr/lpr and SJL/J mice show proteolytic and DNA-hydrolyzing activities, as opposed to those harvested from non-autoimmune BALB/c mice. The expressiveness of the catalytic activity was strongly dependent on the age of the animal. The highest levels of catalytic activity were found in the sera of mice aged between 8 and 12 months; the lowest level was typical of younger animals whose age ranged from 6 to 8 weeks. Specific inhibition assays of the catalytic activities were performed to throw light on the nature of the abzyme activity. Within a cohort of aging animals, a strong correlation between marked autoimmune abnormalities and levels of catalytic activities has been established. Nonimmunized SJL/J mice revealed specific immune responses to myelin basic protein (MBP), skeletal muscle myosin (skMyo) and cardiac myosin (Myo), and highly purified antibodies from their serum show specific proteolytic attack against the target antigens. This finding prompted us to undertake a more detailed study of specific antibody-mediated proteolysis in diseased humans. A targeted catalytic response was originally demonstrated against MBP and Myo in multiple sclerosis and myocarditis patients, respectively.

  8. BAX/BAK–Independent Mitoptosis during Cell Death Induced by Proteasome Inhibition?

    OpenAIRE

    Lomonosova, Elena; Ryerse, Jan; Chinnadurai, G.

    2009-01-01

    Proteasome inhibitors induce rapid death of cancer cells. We show that in epithelial cancer cells, such death is associated with dramatic and simultaneous up-regulation of several BH3-only proteins, including BIK, BIM, MCL-1S, NOXA, and PUMA, as well as p53. Elevated levels of these proteins seem to be the result of direct inhibition of their proteasomal degradation, induction of transcription, and active translation. Subsequent cell death is independent of BAX, and probably BAK, and proceeds...

  9. The roles of the catalytic and noncatalytic activities of Rpd3L and Rpd3S in the regulation of gene transcription in yeast.

    Directory of Open Access Journals (Sweden)

    Daniella Yeheskely-Hayon

    Full Text Available In budding yeasts, the histone deacetylase Rpd3 resides in two different complexes called Rpd3L (large and Rpd3S (small that exert opposing effects on the transcription of meiosis-specific genes. By introducing mutations that disrupt the integrity and function of either Rpd3L or Rpd3S, we show here that Rpd3 function is determined by its association with either of these complexes. Specifically, the catalytic activity of Rpd3S activates the transcription of the two major positive regulators of meiosis, IME1 and IME2, under all growth conditions and activates the transcription of NDT80 only during vegetative growth. In contrast, the effects of Rpd3L depends on nutrients; it represses or activates transcription in the presence or absence of a nitrogen source, respectively. Further, we show that transcriptional activation does not correlate with histone H4 deacetylation, suggesting an effect on a nonhistone protein. Comparison of rpd3-null and catalytic-site point mutants revealed an inhibitory activity that is independent of either the catalytic activity of Rpd3 or the integrity of Rpd3L and Rpd3S.

  10. The Roles of the Catalytic and Noncatalytic Activities of Rpd3L and Rpd3S in the Regulation of Gene Transcription in Yeast

    Science.gov (United States)

    Yeheskely-Hayon, Daniella; Kotler, Anat; Stark, Michal; Hashimshony, Tamar; Sagee, Shira; Kassir, Yona

    2013-01-01

    In budding yeasts, the histone deacetylase Rpd3 resides in two different complexes called Rpd3L (large) and Rpd3S (small) that exert opposing effects on the transcription of meiosis-specific genes. By introducing mutations that disrupt the integrity and function of either Rpd3L or Rpd3S, we show here that Rpd3 function is determined by its association with either of these complexes. Specifically, the catalytic activity of Rpd3S activates the transcription of the two major positive regulators of meiosis, IME1 and IME2, under all growth conditions and activates the transcription of NDT80 only during vegetative growth. In contrast, the effects of Rpd3L depends on nutrients; it represses or activates transcription in the presence or absence of a nitrogen source, respectively. Further, we show that transcriptional activation does not correlate with histone H4 deacetylation, suggesting an effect on a nonhistone protein. Comparison of rpd3-null and catalytic-site point mutants revealed an inhibitory activity that is independent of either the catalytic activity of Rpd3 or the integrity of Rpd3L and Rpd3S. PMID:24358376

  11. Catalytic flash pyrolysis of oil-impregnated-wood and jatropha cake using sodium based catalysts

    KAUST Repository

    Imran, Ali; Bramer, Eddy A.; Seshan, Kulathuiyer; Brem, Gerrit

    2015-01-01

    Catalytic pyrolysis of wood with impregnated vegetable oil was investigated and compared with catalytic pyrolysis of jatropha cake making use of sodium based catalysts to produce a high quality bio-oil. The catalytic pyrolysis was carried out in two

  12. Neoadjuvant conformal chemoradiation with induction chemotherapy for rectal adenocarcinoma. A prospective observational study.

    Science.gov (United States)

    Fekete, Zsolt; Muntean, Alina-Simona; Hica, Ştefan; Rancea, Alin; Resiga, Liliana; Csutak, Csaba; Todor, Nicolae; Nagy, Viorica Magdalena

    2014-06-01

    The purpose of this prospective observational study was to evaluate the rate and the prognostic factors for down-staging and complete response for rectal adenocarcinoma after induction chemotherapy and neoadjuvant chemoradiation followed by surgery, and to analyze the rate of sphincter-saving surgery. We included from March 2011 to October 2013 a number of 88 patients hospitalized with locally advanced rectal adenocarcinoma in the Prof. Dr. Ion Chiricuta Institute of Oncology, Cluj. The treatment schedule included 2-4 cycles of Oxaliplatin plus a fluoropyrimidine followed by concomitant chemoradiation with a dose of 50 Gy in 25 fractions combined with a fluoropyrimidine monotherapy. The rate of T down-staging was 49.4% (40/81 evaluable patients). Independent prognostic factors for T down-staging were: age >57 years (p5 cm (p35 days (p5 cm (p=0.03). Sixty-eight patients (79.1%) underwent radical surgery and among them 35 patients (51.5 %) had a sphincter saving procedure. Induction chemotherapy with neoadjuvant chemoradiation produced important down-staging in rectal adenocarcinoma. Independent prognostic factors for T down-staging were: age, cN0, distance from anal verge, initial CEA, the number of Oxaliplatin cycles and duration of radiotherapy; for complete response: cT2, initial tumor size and distance from the anal verge.

  13. Plasma-activated core-shell gold nanoparticle films with enhanced catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Llorca, Jordi, E-mail: jordi.llorca@upc.edu; Casanovas, Albert; Dominguez, Montserrat; Casanova, Ignasi [Universitat Politecnica de Catalunya, Institut de Tecniques Energetiques (Spain); Angurell, Inmaculada; Seco, Miquel; Rossell, Oriol [Universitat de Barcelona, Departament de Quimica Inorganica (Spain)

    2008-03-15

    Catalytically active gold nanoparticle films have been prepared from core-shell nanoparticles by plasma-activation and characterized by high-resolution transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Methane can be selectively oxidized into formic acid with an O{sub 2}-H{sub 2} mixture in a catalytic wall reactor functionalized with plasma-activated gold nanoparticle films containing well-defined Au particles of about 3.5 nm in diameter. No catalytic activity was recorded over gold nanoparticle films prepared by thermal decomposition of core-shell nanoparticles due to particle agglomeration.

  14. Plasma-activated core-shell gold nanoparticle films with enhanced catalytic properties

    International Nuclear Information System (INIS)

    Llorca, Jordi; Casanovas, Albert; Dominguez, Montserrat; Casanova, Ignasi; Angurell, Inmaculada; Seco, Miquel; Rossell, Oriol

    2008-01-01

    Catalytically active gold nanoparticle films have been prepared from core-shell nanoparticles by plasma-activation and characterized by high-resolution transmission electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. Methane can be selectively oxidized into formic acid with an O 2 -H 2 mixture in a catalytic wall reactor functionalized with plasma-activated gold nanoparticle films containing well-defined Au particles of about 3.5 nm in diameter. No catalytic activity was recorded over gold nanoparticle films prepared by thermal decomposition of core-shell nanoparticles due to particle agglomeration

  15. From biomass to advanced bio-fuel by catalytic pyrolysis/hydro-processing: hydrodeoxygenation of bio-oil derived from biomass catalytic pyrolysis.

    Science.gov (United States)

    Wang, Yuxin; He, Tao; Liu, Kaituo; Wu, Jinhu; Fang, Yunming

    2012-03-01

    Compared hydrodeoxygenation experimental studies of both model compounds and real bio-oil derived from biomass fast pyrolysis and catalytic pyrolysis was carried out over two different supported Pt catalysts. For the model compounds, the deoxygenation degree of dibenzofuran was higher than that of cresol and guaiacol over both Pt/Al(2)O(3) and the newly developed Pt supported on mesoporous zeolite (Pt/MZ-5) catalyst, and the deoxygenation degree of cresol over Pt/MZ-5 was higher than that over Pt/Al(2)O(3). The results indicated that hydrodeoxygenation become much easier upon oxygen reduction. Similar to model compounds study, the hydrodeoxygenation of the real bio-oil derived from catalytic pyrolysis was much easier than that from fast pyrolysis over both Pt catalysts, and the Pt/MZ-5 again shows much higher deoxygenation ability than Pt/Al(2)O(3). Clearly synergy between catalytic pyrolysis and bio-oil hydro-processing was found in this paper and this finding will lead an advanced biofuel production pathway in the future. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Deletion analysis of Streptococcus pneumoniae late competence genes distinguishes virulence determinants that are dependent or independent of competence induction.

    Science.gov (United States)

    Zhu, Luchang; Lin, Jingjun; Kuang, Zhizhou; Vidal, Jorge E; Lau, Gee W

    2015-07-01

    The competence regulon of Streptococcus pneumoniae (pneumococcus) is crucial for genetic transformation. During competence development, the alternative sigma factor ComX is activated, which in turn, initiates transcription of 80 'late' competence genes. Interestingly, only 16 late genes are essential for genetic transformation. We hypothesized that these late genes that are dispensable for competence are beneficial to pneumococcal fitness during infection. These late genes were systematically deleted, and the resulting mutants were examined for their fitness during mouse models of bacteremia and acute pneumonia. Among these, 14 late genes were important for fitness in mice. Significantly, deletion of some late genes attenuated pneumococcal fitness to the same level in both wild-type and ComX-null genetic backgrounds, suggesting that the constitutive baseline expression of these genes was important for bacterial fitness. In contrast, some mutants were attenuated only in the wild-type genetic background but not in the ComX-null background, suggesting that specific expression of these genes during competence state contributed to pneumococcal fitness. Increased virulence during competence state was partially caused by the induction of allolytic enzymes that enhanced pneumolysin release. These results distinguish the role of basal expression versus competence induction in virulence functions encoded by ComX-regulated late competence genes. © 2015 John Wiley & Sons Ltd.

  17. Effect of Inductive Coil Shape on Sensing Performance of Linear Displacement Sensor Using Thin Inductive Coil and Pattern Guide

    Directory of Open Access Journals (Sweden)

    Hiroyuki Wakiwaka

    2011-11-01

    Full Text Available This paper discusses the effect of inductive coil shape on the sensing performance of a linear displacement sensor. The linear displacement sensor consists of a thin type inductive coil with a thin pattern guide, thus being suitable for tiny space applications. The position can be detected by measuring the inductance of the inductive coil. At each position due to the change in inductive coil area facing the pattern guide the value of inductance is different. Therefore, the objective of this research is to study various inductive coil pattern shapes and to propose the pattern that can achieve good sensing performance. Various shapes of meander, triangular type meander, square and circle shape with different turn number of inductive coils are examined in this study. The inductance is measured with the sensor sensitivity and linearity as a performance evaluation parameter of the sensor. In conclusion, each inductive coil shape has its own advantages and disadvantages. For instance, the circle shape inductive coil produces high sensitivity with a low linearity response. Meanwhile, the square shape inductive coil has a medium sensitivity with higher linearity.

  18. OPERATING SPECIFICATIONS OF CATALYTIC CLEANING OF GAS FROM BIOMASS GASIFICATION

    Directory of Open Access Journals (Sweden)

    Martin Lisý

    2015-12-01

    Full Text Available The paper focuses on the theoretical description of the cleaning of syngas from biomass and waste gasification using catalytic methods, and on the verification of the theory through experiments. The main obstruction to using syngas from fluid gasification of organic matter is the presence of various high-boiling point hydrocarbons (i.e., tar in the gas. The elimination of tar from the gas is a key factor in subsequent use of the gas in other technologies for cogeneration of electrical energy and heat. The application of a natural or artificial catalyst for catalytic destruction of tar is one of the methods of secondary elimination of tar from syngas. In our experiments, we used a natural catalyst (dolomite or calcium magnesium carbonate from Horní Lánov with great mechanical and catalytic properties, suitable for our purposes. The advantages of natural catalysts in contrast to artificial catalysts include their availability, low purchase prices and higher resilience to the so-called catalyst poison. Natural calcium catalysts may also capture undesired compounds of sulphure and chlorine. Our paper presents a theoretical description and analysis of catalytic destruction of tar into combustible gas components, and of the impact of dolomite calcination on its efficiency. The efficiency of the technology is verified in laboratories. The facility used for verification was a 150 kW pilot gasification unit with a laboratory catalytic filter. The efficiency of tar elimination reached 99.5%, the tar concentration complied with limits for use of the gas in combustion engines, and the tar content reached approximately 35 mg/mn3. The results of the measurements conducted in laboratories helped us design a pilot technology for catalytic gas cleaning.

  19. Fuel Flexible, Low Emission Catalytic Combustor for Opportunity Fuel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Eteman, Shahrokh

    2013-06-30

    Limited fuel resources, increasing energy demand and stringent emission regulations are drivers to evaluate process off-gases or process waste streams as fuels for power generation. Often these process waste streams have low energy content and/or highly reactive components. Operability of low energy content fuels in gas turbines leads to issues such as unstable and incomplete combustion. On the other hand, fuels containing higher-order hydrocarbons lead to flashback and auto-ignition issues. Due to above reasons, these fuels cannot be used directly without modifications or efficiency penalties in gas turbine engines. To enable the use of these wide variety of fuels in gas turbine engines a rich catalytic lean burn (RCL®) combustion system was developed and tested in a subscale high pressure (10 atm.) rig. The RCL® injector provided stability and extended turndown to low Btu fuels due to catalytic pre-reaction. Previous work has shown promise with fuels such as blast furnace gas (BFG) with LHV of 85 Btu/ft3 successfully combusted. This program extends on this work by further modifying the combustor to achieve greater catalytic stability enhancement. Fuels containing low energy content such as weak natural gas with a Lower Heating Value (LHV) of 6.5 MJ/m3 (180 Btu/ft3 to natural gas fuels containing higher hydrocarbon (e.g ethane) with LHV of 37.6 MJ/m3 (1010 Btu/ft3) were demonstrated with improved combustion stability; an extended turndown (defined as the difference between catalytic and non-catalytic lean blow out) of greater than 250oF was achieved with CO and NOx emissions lower than 5 ppm corrected to 15% O2. In addition, for highly reactive fuels the catalytic region preferentially pre-reacted the higher order hydrocarbons with no events of flashback or auto-ignition allowing a stable and safe operation with low NOx and CO emissions.

  20. Is basiliximab induction, a novel risk factor for new onset diabetes after transplantation for living donor renal allograft recipients?

    Science.gov (United States)

    Prasad, Narayan; Gurjer, Desraj; Bhadauria, Dharmender; Gupta, Amit; Srivastava, Aneesh; Kaul, Anupama; Jaiswal, Akhilesh; Yadav, Brijesh; Yadav, Subhash; Sharma, Raj K

    2014-04-01

    It was found that, by affecting populations of T lymphocytes and regulatory T cells, basiliximab also indirectly affects pancreatic β-cell function and glucose homeostasis. In this prospective observational study, we included all renal transplant recipients from 1 July 2007 to 31 July 2011. The overall incidence of hyperglycaemia (transient hyperglycaemia, impaired fasting glucose (IFG), impaired glucose tolerance (IGT) and new onset diabetes after transplantation (NODAT)) was compared between patients with and without basiliximab induction. Of the 439 eligible study patients, 105 patients received basiliximab induction and 334 patients did not. Overall hyperglycaemia (transient hyperglycaemia, IFG, IGT and NODAT) was detected in 102/334 (30.5%) patients without induction and 44/105 (41.9%) patients with induction (P = 0.03). Of the 102 patients with hyperglycaemia in patients without basiliximab, 46 (45.1%) patients improved, while only 10 (22.7%) of the 44 patients with basiliximab improved (P = 0.016) at the end of 3 months. Finally, NODAT was observed in 56/334 (16.7%) patients without induction and 102/334 (30.5%) patients with induction. Relative risk of NODAT with basiliximab was 2.3 (95% CI 1.4-3.9) compared to that of patients without induction. Basiliximab and hepatitis C virus infection were independent risk factors for NODAT. Risk of NODAT remained high with basiliximab despite adjusting the acute rejections episodes. Basiliximab induction prevents acute rejection; however, it is associated with increased risk of NODAT. © 2014 Asian Pacific Society of Nephrology.

  1. Depressive Symptoms and Inductive Reasoning Performance: Findings from the ACTIVE Reasoning Training Intervention

    OpenAIRE

    Parisi, Jeanine M.; Franchetti, Mary Kathryn; Rebok, George W.; Spira, Adam P.; Carlson, Michelle C.; Willis, Sherry L.; Gross, Alden L.

    2014-01-01

    Within the context of the Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) study, we examined the longitudinal association of baseline depressive symptoms on inductive reasoning performance over a ten-year period between the reasoning training and control conditions (N = 1,375). At baseline, 322 participants (23%) reported elevated depressive symptoms, defined by a score ≥ 9 on the Center for Epidemiological Studies Depression scale (12-item). Differences in baseline dep...

  2. Mechanisms of catalytic activity in heavily coated hydrocracking catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Millan, M.; Adell, C.; Hinojosa, C.; Herod, A.A.; Kandiyoti, R. [University of London Imperial College Science Technology & Medicine, London (United Kingdom). Dept. of Chemical Engineering

    2008-01-15

    Catalyst deactivation by coke deposition has a direct impact on the economic viability of heavy hydrocarbon upgrading processes, such as coal liquefaction and oil residue hydroprocessing. Coke deposition is responsible for rapid loss of catalytic activity and it mostly takes place in the early stages of hydrocracking. The effect of carbonaceous deposition on the catalytic activity of a chromium pillared montmorillonite has been studied in the present work. Its catalytic activity in hydrocracking a coal extract was evaluated based on the boiling point distributions of feed and products obtained by thermogravimetric analysis (TGA), and their characterisation by size exclusion chromatography (SEC) and UV-Fluorescence spectroscopy (UV-F). A large deposition on the catalyst was observed after two successive 2-hour long runs in which the catalyst recovered from the first run was reused in the second. The pillared clay retained its activity even though it showed high carbon loading, a large drop in surface area and complete apparent pore blockage. Some observations may contribute to explain this persistent catalytic activity. First, there is evidence suggesting the dynamic nature of the carbonaceous deposits, which continuously exchange material with the liquid, allowing catalytic activity to continue. Secondly, Scanning Electron Microscopy (SEM) on the used Cr montmorillonite has shown preferential deposition on some regions of the catalyst, which leaves a fraction of the surface relatively exposed. Finally, evidence from SEM coupled to X-ray microanalysis also suggest that deposits are thinner in areas where the active phase of the catalyst is present in higher concentrations. Hydrogenation on the active sites would make the deposits more soluble in the liquid cleaning of surrounding area from deposits.

  3. Challenges of the movement of catalytic micromotors in blood.

    Science.gov (United States)

    Zhao, Guanjia; Viehrig, Marlitt; Pumera, Martin

    2013-05-21

    Catalytic microjet bubble-propelled engines have attracted a large amount of interest for their potential applications in biomedicine, environmental sciences and natural resources discovery. One of the current efforts in this field is focused on the search of biocompatible fuels. However, only a minimal amount of effort has been made to assess the challenges facing the movement of such devices in a real world environment, especially with regards to the components of blood and their interactions with the catalytic microjets. Herein, we will show the limitations on the movement of catalytic microengines prepared via the rolled-up, as well as the templated-electrochemical deposition method, in an artificial blood sample, due to the presence of two main components of animal blood: the cellular component (red blood cells in this study) and serum. We will show that the motion of catalytic microjets is only possible in highly diluted dispersions of the red blood cells and serum. This finding has a profound implication on the development of the whole field, where the components found in real environments have to be considered carefully, and issues arising from the presence of such components have to be resolved prior to deploying these devices in real world applications.

  4. Photolytic AND Catalytic Destruction of Organic Waste Water Pollutants

    Science.gov (United States)

    Torosyan, V. F.; Torosyan, E. S.; Kryuchkova, S. O.; Gromov, V. E.

    2017-01-01

    The system: water supply source - potable and industrial water - wastewater - sewage treatment - water supply source is necessary for water supply and efficient utilization of water resources. Up-to-date technologies of waste water biological treatment require for special microorganisms, which are technologically complex and expensive but unable to solve all the problems. Application of photolytic and catalytically-oxidizing destruction is quite promising. However, the most reagents are strong oxidizers in catalytic oxidation of organic substances and can initiate toxic substance generation. Methodic and scientific approaches to assess bread making industry influence on the environment have been developed in this paper in order to support forecasting and taking technological decisions concerning reduction of this influence. Destructive methods have been tested: ultra violet irradiation and catalytic oxidation for extraction of organic compounds from waste water by natural reagents.

  5. Catalytic Ammonia Decomposition Over Ruthenium Nanoparticles Supported on Nano-Titanates

    DEFF Research Database (Denmark)

    Klerke, Asbjørn; Klitgaard, Søren Kegnæs; Fehrmann, Rasmus

    2009-01-01

    Nanosized Na2Ti3O7, K2Ti6O13 and Cs2Ti6O13 materials were prepared and used as supports of ruthenium nanoparticles for catalytic ammonia decomposition. It is shown that these catalysts exhibit higher catalytic activity than ruthenium supported on TiO2 nanoparticles promoted with cesium. The diffe...

  6. Catalytical Properties of Free and Immobilized Aspergillus niger Tannase

    OpenAIRE

    Abril Flores-Maltos; Luis V. Rodríguez-Durán; Jacqueline Renovato; Juan C. Contreras; Raúl Rodríguez; Cristóbal N. Aguilar

    2011-01-01

    A fungal tannase was produced, recovered, and immobilized by entrapment in calcium alginate beads. Catalytical properties of the immobilized enzyme were compared with those of the free one. Tannase was produced intracellularly by the xerophilic fungus Aspergillus niger GH1 in a submerged fermentation system. Enzyme was recovered by cell disruption and the crude extract was partially purified. The catalytical properties of free and immobilized tannase were evaluated using tannic acid and methy...

  7. Chemistry and engineering of catalytic hydrodesulfurization

    NARCIS (Netherlands)

    Schuit, G.C.A.; Gates, B.C.

    1973-01-01

    A review with 74 refs. on catalytic hydrodesulfurization of pure compds. and petroleum feedstocks, with emphasis on reaction intermediates and structures of Al2O3-supported Ni-W and Co-Mo catalysts. [on SciFinder (R)

  8. Cooling systems for efficient operation of induction heating installations; Kuehlsysteme fuer den effizienten Betrieb von Induktionsschmelzanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Doetsch, Erwin; Schmidt, Juergen [ABP Induction Systems GmbH, Dortmund (Germany)

    2009-12-15

    Electrical and thermal losses in the system components of induction melting systems are mainly carried off by the cooling water. The design and maintenance of the corresponding cooling systems play a decisive role in the operating reliability of induction installations. Due to the differing requirements made on water quality, cooling of the furnace and the electrical components is generally accomplished by means of two independent cooling circuits, which are described below. The article also examines utilization of waste-heat, which has a particular significance for energy-efficiency, since more than a fourth of the furnace power, in the case of melting of ferrous materials, and more than half, in the case of non-ferrous materials, is lost. (orig.)

  9. Kinetic and catalytic performance of a BI-porous composite material in catalytic cracking and isomerisation reactions

    KAUST Repository

    Al-Khattaf, S.; Odedairo, T.; Balasamy, R. J.

    2012-01-01

    Catalytic behaviour of pure zeolite ZSM-5 and a bi-porous composite material (BCM) were investigated in transformation of m-xylene, while zeolite HY and the bi-porous composite were used in the cracking of 1,3,5-triisopropylbenzene (TIPB). The micro

  10. A Very Low-Speed Sensorless Induction Motor Drive with Online Stator Resistance identification scheme

    Directory of Open Access Journals (Sweden)

    M. Zaky

    2008-03-01

    Full Text Available Recently, speed sensorless control of induction motor drives received great attention to avoid the different problems associated with direct speed sensors. However, low speed operation with robustness against parameter variations remains an area of research for sensorless systems. Stator resistance is of greatest importance for good operation of speed sensorless systems in low speed region. In this paper, a sliding mode current observer for an induction motor is presented. An estimation algorithm based on this observer in conjunction with Popov's hyper-stability theory is proposed to calculate the speed and stator resistance independently. The proposed speed observer with parallel stator resistance identification is firstly verified by simulation. Experimental results are included as well to demonstrate the good performance of the proposed observer and estimation algorithms at low speed.

  11. Catalytic reforming methods

    Science.gov (United States)

    Tadd, Andrew R; Schwank, Johannes

    2013-05-14

    A catalytic reforming method is disclosed herein. The method includes sequentially supplying a plurality of feedstocks of variable compositions to a reformer. The method further includes adding a respective predetermined co-reactant to each of the plurality of feedstocks to obtain a substantially constant output from the reformer for the plurality of feedstocks. The respective predetermined co-reactant is based on a C/H/O atomic composition for a respective one of the plurality of feedstocks and a predetermined C/H/O atomic composition for the substantially constant output.

  12. Heterogeneous kinetic modeling of the catalytic conversion of cycloparaffins

    Science.gov (United States)

    Al-Sabawi, Mustafa N.

    The limited availability of high value light hydrocarbon feedstocks along with the rise in crude prices has resulted in the international recognition of the vast potential of Canada's oil sands. With the recent expansion of Canadian bitumen production come, however, many technical challenges, one of which is the significant presence of aromatics and cycloparaffins in bitumen-derived feedstocks. In addition to their negative environmental impact, aromatics limit fluid catalytic cracking (FCC) feedstock conversion, decrease the yield and quality of valuable products such as gasoline and middle distillates, increase levels of polyaromatic hydrocarbons prone to form coke on the catalyst, and ultimately compromise the FCC unit performance. Although cycloparaffins do not have such negative impacts, they are precursors of aromatics as they frequently undergo hydrogen transfer reactions. However, cycloparaffin cracking chemistry involves other competing reactions that are complex and need much investigation. This dissertation provides insights and understanding of the fundamentals of the catalytic cracking of cycloparaffins using carefully selected model compounds such as methylcyclohexane (MCH) and decalin. Thermal and catalytic cracking of these cycloparaffins on FCC-type catalysts are carried out using the CREC Riser Simulator under operating conditions similar to those of the industrial FCC units in terms of temperature, reaction time, reactant partial pressure and catalyst-to-hydrocarbon ratio. The crystallite size of the supported zeolites is varied between 0.4 and 0.9 microns, with both activity and selectivity being monitored. Catalytic conversions ranged between 4 to 16 wt% for MCH and between 8 to 27 wt% for decalin. Reaction pathways of cycloparaffins are determined, and these include ring-opening, protolytic cracking, isomerization, hydrogen transfer and transalkylation. The yields and selectivities of over 60 and 140 products, formed during MCH and decalin

  13. Helicobacter Catalase Devoid of Catalytic Activity Protects the Bacterium against Oxidative Stress*♦

    Science.gov (United States)

    Benoit, Stéphane L.; Maier, Robert J.

    2016-01-01

    Catalase, a conserved and abundant enzyme found in all domains of life, dissipates the oxidant hydrogen peroxide (H2O2). The gastric pathogen Helicobacter pylori undergoes host-mediated oxidant stress exposure, and its catalase contains oxidizable methionine (Met) residues. We hypothesized catalase may play a large stress-combating role independent of its classical catalytic one, namely quenching harmful oxidants through its recyclable Met residues, resulting in oxidant protection to the bacterium. Two Helicobacter mutant strains (katAH56A and katAY339A) containing catalase without enzyme activity but that retain all Met residues were created. These strains were much more resistant to oxidants than a catalase-deletion mutant strain. The quenching ability of the altered versions was shown, whereby oxidant-stressed (HOCl-exposed) Helicobacter retained viability even upon extracellular addition of the inactive versions of catalase, in contrast to cells receiving HOCl alone. The importance of the methionine-mediated quenching to the pathogen residing in the oxidant-rich gastric mucus was studied. In contrast to a catalase-null strain, both site-change mutants proficiently colonized the murine gastric mucosa, suggesting that the amino acid composition-dependent oxidant-quenching role of catalase is more important than the well described H2O2-dissipating catalytic role. Over 100 years after the discovery of catalase, these findings reveal a new non-enzymatic protective mechanism of action for the ubiquitous enzyme. PMID:27605666

  14. Urofollitropin and ovulation induction

    NARCIS (Netherlands)

    van Wely, Madelon; Yding Andersen, Claus; Bayram, Neriman; van der Veen, Fulco

    2005-01-01

    Anovulation is a common cause of female infertility. Treatment for women with anovulation is aimed at induction of ovulation. Ovulation induction with follicle-stimulating hormone (FSH) is indicated in women with WHO type II anovulation in whom treatment with clomifene citrate (clomifene) has

  15. Catalytic copyrolysis of particle board and polypropylene over Al-MCM-48

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hannah; Choi, Suek Ju [School of Environmental Engineering, University of Seoul, Seoul 02504 (Korea, Republic of); Kim, Ji Man [Department of Chemistry, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Jeon, Jong-Ki [Department of Chemical Engineering, Kongju National University, Cheonan 31080 (Korea, Republic of); Park, Sung Hoon; Jung, Sang-Chul [Department of Environmental Engineering, Sunchon National University, Suncheon 57922 (Korea, Republic of); Kim, Sang Chai [Department of Environmental Education, Mokpo National University, Muan 58554 (Korea, Republic of); Park, Young-Kwon, E-mail: catalica@uos.ac.kr [School of Environmental Engineering, University of Seoul, Seoul 02504 (Korea, Republic of)

    2016-10-15

    Highlights: • Al-MCM-48 was used for catalytic copyrolysis of particle board and polypropylene. • Catalytic produced mainly hydrocarbons. • The hydrocarbons produced were mainly in the diesel range. - Abstract: Particle board and polypropylene (PP) at a mixing ratio of 1:1 were copyrolyzed over two Al-MCM-48 catalysts with Si/Al ratios of 20 and 80. The catalyst characteristics were examined by measuring the Brunauer-Emmett-Teller surface area, temperature programmed desorption of ammonia, and X-ray diffraction. The main pyrolysis products of particle board were oxygenates, acids, and phenolics, whereas a large quantity of hydrocarbons within the diesel fuel range was produced from copyrolysis with polypropylene. The catalytic copyrolysis of particle board and PP over the Al-MCM-48 catalysts produced bio-oil with a much larger hydrocarbon content than that from the catalytic pyrolysis of particle board only. The hydrocarbons produced were mainly in the diesel range, highlighting the potential for the production of high-quality fuel.

  16. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  17. Formalization of hydrocarbon conversion scheme of catalytic cracking for mathematical model development

    Science.gov (United States)

    Nazarova, G.; Ivashkina, E.; Ivanchina, E.; Kiseleva, S.; Stebeneva, V.

    2015-11-01

    The issue of improving the energy and resource efficiency of advanced petroleum processing can be solved by the development of adequate mathematical model based on physical and chemical regularities of process reactions with a high predictive potential in the advanced petroleum refining. In this work, the development of formalized hydrocarbon conversion scheme of catalytic cracking was performed using thermodynamic parameters of reaction defined by the Density Functional Theory. The list of reaction was compiled according to the results of feedstock structural-group composition definition, which was done by the n-d-m-method, the Hazelvuda method, qualitative composition of feedstock defined by gas chromatography-mass spectrometry and individual composition of catalytic cracking gasoline fraction. Formalized hydrocarbon conversion scheme of catalytic cracking will become the basis for the development of the catalytic cracking kinetic model.

  18. A catalytic distillation process for light gas oil hydrodesulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Vargas-Villamil, F.D.; Marroquin, J.O.; Paz, C. de la; Rodriguez, E. [Prog. de Matematicas Aplicadas y Computacion, Prog. de Tratamiento de Crudo Maya, Instituto Mexicano del Petroleo, Mexico City, DF (Mexico)

    2004-07-01

    A light gas oil hydrodesulfurization process via catalytic distillation is developed and compared to a conventional process. By integrating the separation and reaction into a single unit, the catalytic distillation may produce a diesel with low concentration of sulfur compounds at a lower cost than the traditional reaction/separation process. The process proposed in this work is compared to an optimised conventional hydrodesulfurization unit which represents fairly well a plant that belongs to the National System of Refineries. During the optimisation of the conventional process, a compromise is established among the production of diesel and naphtha and the operating costs. The results show that the light gas oil hydrodesulfurization via catalytic distillation is as or more efficient than the conventional process. However, the removal of the sulfur compounds is carried out under less rigorous conditions. This design reduces the fix and operational costs. (author)

  19. Electro-catalytic degradation of sulfisoxazole by using graphene anode.

    Science.gov (United States)

    Wang, Yanyan; Liu, Shuan; Li, Ruiping; Huang, Yingping; Chen, Chuncheng

    2016-05-01

    Graphite and graphene electrodes were prepared by using pure graphite as precursor. The electrode materials were characterized by a scanning electron microscope (SEM), X-ray diffraction (XRD) and cyclic voltammetry (CV) measurements. The electro-catalytic activity for degradation of sulfisoxazole (SIZ) was investigated by using prepared graphene or graphite anode. The results showed that the degradation of SIZ was much more rapid on the graphene than that on the graphite electrode. Moreover, the graphene electrode exhibited good stability and recyclability. The analysis on the intermediate products and the measurement of active species during the SIZ degradation demonstrated that indirect oxidation is the dominant mechanism, involving the electro-catalytic generation of OH and O2(-) as the main active oxygen species. This study implies that graphene is a promising potential electrode material for long-term application to electro-catalytic degradation of organic pollutants. Copyright © 2015. Published by Elsevier B.V.

  20. Induction immunosuppressive therapies in renal transplantation.

    Science.gov (United States)

    Gabardi, Steven; Martin, Spencer T; Roberts, Keri L; Grafals, Monica

    2011-02-01

    Induction immunosuppressive therapies for patients undergoing renal transplantation are reviewed. The goal of induction therapy is to prevent acute rejection during the early posttransplantation period by providing a high degree of immunosuppression at the time of transplantation. Induction therapy is often considered essential to optimize outcomes, particularly in patients at high risk for poor short-term outcomes. All of the induction immunosuppressive agents currently used are biological agents and are either monoclonal (muromonab-CD3, daclizumab, basiliximab, alemtuzumab) or polyclonal (antithymocyte globulin [equine] or antithymocyte globulin [rabbit]) antibodies. Although antithymocyte globulin (rabbit) is not labeled for induction therapy, it is used for this purpose more than any other agent. Basiliximab is not considered as potent an immunosuppressive agent but has a much more favorable adverse-effect profile compared with antithymocyte globulin (rabbit) and is most commonly used in patients at low risk for acute rejection. Rituximab is being studied for use as induction therapy but to date has not demonstrated any significant benefits over placebo. While head-to-head data are available comparing most induction agents, the final decision on the most appropriate induction therapy for a transplant recipient is highly dependent on preexisting medical conditions, donor characteristics, and the maintenance immunosuppressive regimen to be used. No standard induction immunosuppressive regimen exists for patients undergoing renal transplantation. Antithymocyte globulin (rabbit) is the most commonly used agent, whereas basiliximab appears safer. The choice of regimen depends on the preferences of clinicians and institutions.

  1. A Philosophical Treatise of Universal Induction

    Directory of Open Access Journals (Sweden)

    Samuel Rathmanner

    2011-06-01

    Full Text Available Understanding inductive reasoning is a problem that has engaged mankind for thousands of years. This problem is relevant to a wide range of fields and is integral to the philosophy of science. It has been tackled by many great minds ranging from philosophers to scientists to mathematicians, and more recently computer scientists. In this article we argue the case for Solomonoff Induction, a formal inductive framework which combines algorithmic information theory with the Bayesian framework. Although it achieves excellent theoretical results and is based on solid philosophical foundations, the requisite technical knowledge necessary for understanding this framework has caused it to remain largely unknown and unappreciated in the wider scientific community. The main contribution of this article is to convey Solomonoff induction and its related concepts in a generally accessible form with the aim of bridging this current technical gap. In the process we examine the major historical contributions that have led to the formulation of Solomonoff Induction as well as criticisms of Solomonoff and induction in general. In particular we examine how Solomonoff induction addresses many issues that have plagued other inductive systems, such as the black ravens paradox and the confirmation problem, and compare this approach with other recent approaches.

  2. Review of induction LINACS

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.

    1981-10-01

    There has been a recent upsurge of activity in the field of induction linacs, with several new machines becoming operational and others in the design stages. The performance levels of electron machines have reached 10's of kiloamps of current and will soon reach 10's of MeV's of energy. Acceleration of ion current has been demonstrated, and the study of a 10 GeV heavy ion induction linac for ICF continues. The operating principles of induction linacs are reviewed with the emphasis on design choices which are important for increasing the maximum beam currents

  3. Properties of inductive reasoning.

    Science.gov (United States)

    Heit, E

    2000-12-01

    This paper reviews the main psychological phenomena of inductive reasoning, covering 25 years of experimental and model-based research, in particular addressing four questions. First, what makes a case or event generalizable to other cases? Second, what makes a set of cases generalizable? Third, what makes a property or predicate projectable? Fourth, how do psychological models of induction address these results? The key results in inductive reasoning are outlined, and several recent models, including a new Bayesian account, are evaluated with respect to these results. In addition, future directions for experimental and model-based work are proposed.

  4. Review of induction linacs

    International Nuclear Information System (INIS)

    Faltens, A.; Keefe, D.

    1982-01-01

    There has been a recent upsurge of activity in the field of induction linacs, with several new machines becoming operational and others in the design stages. The performance levels of electron machines have reached 10's of kiloamps of current and will soon reach 10's of MeV's of energy. Acceleration of several kiloamps of ion current has been demonstrated, and the study of a 10 GeV heavy ion induction linac for ICF continues. The operating principles of induction linacs are reviewed with the emphasis on design choices which are important for increasing the maximum beam currents

  5. Whole house particle removal and clean air delivery rates for in-duct and portable ventilation systems.

    Science.gov (United States)

    Macintosh, David L; Myatt, Theodore A; Ludwig, Jerry F; Baker, Brian J; Suh, Helen H; Spengler, John D

    2008-11-01

    A novel method for determining whole house particle removal and clean air delivery rates attributable to central and portable ventilation/air cleaning systems is described. The method is used to characterize total and air-cleaner-specific particle removal rates during operation of four in-duct air cleaners and two portable air-cleaning devices in a fully instrumented test home. Operation of in-duct and portable air cleaners typically increased particle removal rates over the baseline rates determined in the absence of operating a central fan or an indoor air cleaner. Removal rates of 0.3- to 0.5-microm particles ranged from 1.5 hr(-1) during operation of an in-duct, 5-in. pleated media filter to 7.2 hr(-1) for an in-duct electrostatic air cleaner in comparison to a baseline rate of 0 hr(-1) when the air handler was operating without a filter. Removal rates for total particulate matter less than 2.5 microm in aerodynamic diameter (PM2.5) mass concentrations were 0.5 hr(-1) under baseline conditions, 0.5 hr(-1) during operation of three portable ionic air cleaners, 1 hr(-1) for an in-duct 1-in. media filter, 2.4 hr(-1) for a single high-efficiency particle arrestance (HEPA) portable air cleaner, 4.6 hr(-1) for an in-duct 5-in. media filter, 4.7 hr(-1) during operation of five portable HEPA filters, 6.1 hr(-1) for a conventional in-duct electronic air cleaner, and 7.5 hr(-1) for a high efficiency in-duct electrostatic air cleaner. Corresponding whole house clean air delivery rates for PM2.5 attributable to the air cleaner independent of losses within the central ventilation system ranged from 2 m3/min for the conventional media filter to 32 m3/min for the high efficiency in-duct electrostatic device. Except for the portable ionic air cleaner, the devices considered here increased particle removal indoors over baseline deposition rates.

  6. Regulatory Lymphocytes Are Key Factors in MHC-Independent Resistance to EAE

    Science.gov (United States)

    Marín, Nieves; Mecha, Miriam; Espejo, Carmen; Mestre, Leyre; Eixarch, Herena; Montalban, Xavier; Álvarez-Cermeño, José C.; Guaza, Carmen; Villar, Luisa M.

    2014-01-01

    Background and Objectives. Resistant and susceptible mouse strains to experimental autoimmune encephalomyelitis (EAE), an inducible demyelinating experimental disease serving as animal model for multiple sclerosis, have been described. We aimed to explore MHC-independent mechanisms inducing resistance to EAE. Methods. For EAE induction, female C57BL/6 (susceptible strain) and CD1 (resistant outbred strain showing heterogeneous MHC antigens) mice were immunized with the 35–55 peptide of myelin oligodendrocyte glycoprotein (MOG35−55). We studied T cell proliferation, regulatory and effector cell subpopulations, intracellular and serum cytokine patterns, and titers of anti-MOG serum antibodies. Results. Upon immunization with MOG35−55, T lymphocytes from susceptible mice but not that of resistant strain were capable of proliferating when stimulated with MOG35−55. Accordingly, resistant mice experienced a rise in regulatory B cells (P = 0.001) and, to a lower extent, in regulatory T cells (P = 0.02) compared with C57BL/6 susceptible mice. As a consequence, MOG35−55-immunized C57BL/6 mice showed higher percentages of CD4+ T cells producing both IFN-gamma (P = 0.02) and IL-17 (P = 0.009) and higher serum levels of IL-17 (P = 0.04) than resistant mice. Conclusions. Expansion of regulatory B and T cells contributes to the induction of resistance to EAE by an MHC-independent mechanism. PMID:24868560

  7. Regulatory Lymphocytes Are Key Factors in MHC-Independent Resistance to EAE

    Directory of Open Access Journals (Sweden)

    Nieves Marín

    2014-01-01

    Full Text Available Background and Objectives. Resistant and susceptible mouse strains to experimental autoimmune encephalomyelitis (EAE, an inducible demyelinating experimental disease serving as animal model for multiple sclerosis, have been described. We aimed to explore MHC-independent mechanisms inducing resistance to EAE. Methods. For EAE induction, female C57BL/6 (susceptible strain and CD1 (resistant outbred strain showing heterogeneous MHC antigens mice were immunized with the 35–55 peptide of myelin oligodendrocyte glycoprotein (MOG35−55. We studied T cell proliferation, regulatory and effector cell subpopulations, intracellular and serum cytokine patterns, and titers of anti-MOG serum antibodies. Results. Upon immunization with MOG35−55, T lymphocytes from susceptible mice but not that of resistant strain were capable of proliferating when stimulated with MOG35−55. Accordingly, resistant mice experienced a rise in regulatory B cells (P=0.001 and, to a lower extent, in regulatory T cells (P=0.02 compared with C57BL/6 susceptible mice. As a consequence, MOG35−55-immunized C57BL/6 mice showed higher percentages of CD4+ T cells producing both IFN-gamma (P=0.02 and IL-17 (P=0.009 and higher serum levels of IL-17 (P=0.04 than resistant mice. Conclusions. Expansion of regulatory B and T cells contributes to the induction of resistance to EAE by an MHC-independent mechanism.

  8. Enhanced catalytic behavior of Ni alloys in steam methane reforming

    Science.gov (United States)

    Yoon, Yeongpil; Kim, Hanmi; Lee, Jaichan

    2017-08-01

    The dissociation process of methane on Ni and Ni alloys are investigated by density functional theory (DFT) in terms of catalytic efficiency and carbon deposition. Examining the dissociation to CH3, CH2, CH, C, and H is not sufficient to properly predict the catalytic efficiency and carbon deposition, and further investigation of the CO gas-evolving reaction is required to completely understand methane dissociation in steam. The location of alloying element in Ni alloy needed be addressed from the results of ab-inito molecular dynamics (MD). The reaction pathway of methane dissociation associated with CO gas evolution is traced by performing first-principles calculations of the adsorption and activation energies of each dissociation step. During the dissociation process, two alternative reaction steps producing adsorbed C and H or adsorbed CO are critically important in determining coking inhibition as well as H2 gas evolution (i.e., the catalytic efficiency). The theoretical calculations presented here suggest that alloying Ni with Ru is an effective way to reduce carbon deposition and enhance the catalytic efficiency of H2 fueling in solid oxide fuel cells (SOFCs).

  9. Simulation and calculation of three-reactor system of catalytic reforming

    International Nuclear Information System (INIS)

    Rikalovska, Tatjana; Markovska, Liljana; Meshko, Vera; Poposka, Filimena

    1999-01-01

    The process of catalytic reforming has been operated for quite a long time, one can not always find real data for the kinetics and thermodynamics of the reactions that take place during the catalytic reforming process in order to facilitate the designing of reactor system or its simulation in a wide:ran e of process parameters. Kinetic and thermodynamic data have been collected for the reactions that take place during the catalytic reforming process. The stress has been pointed on four major reactions: dehydrogenation of naphthenes (aromatization), dehydrocyclization of paraffins and hydrocracking of naphthenes and paraffins. On the base of such a kinetic model, the reforming process has been described with a system of differential equations. For the purpose of solving these equations computer programs for simulation of a three-reactor system for adiabatic operation of the reactors. The computer simulation of the mathematical model of this three-reactor system has been accomplished by use of the ISIM-dynamic simulator. The results obtained out of the simulation agree very good with the data of the real process of catalytic reforming in OKTA Crude Oil Refinery in Skopje, Macedonia. (Author)

  10. The catalytic cracking mechanism of lignite pyrolysis char on tar

    International Nuclear Information System (INIS)

    Lei, Z.; Huibin, H.; Xiangling, S.; Zhenhua, M.; Lei, Z.

    2017-01-01

    The influence of different pyrolysis conditions for tar catalytic cracking will be analyzed according to the lignite pyrolysis char as catalyst on pyrolytic tar in this paper. The pyrolysis char what is the by-product of the cracking of coal has an abundant of pore structure and it has good catalytic activity. On this basis, making the modified catalyst when the pyrolysis char is activation and loads Fe by impregnation method. The cracking mechanism of lignite pyrolytic tar is explored by applying gas chromatograph to analyze splitting products of tar. The experimental results showed that: (1) The effect of tar cracking as the pyrolysis temperature, the heating rate, the volatilization of pyrolysis char and particle size increasing is better and better. The effect of the catalytic and cracking of lignite pyrolysis char in tar is best when the heating rate, the pyrolysis temperature, the volatiles of pyrolysis char, particle size is in specific conditions.(2) The activation of pyrolysis char can improve the catalytic effect of pyrolysis char on the tar cracking. But it reduces the effect of the tar cracking when the pyrolysis char is activation loading Fe. (author)

  11. Catalytic ozonation of fenofibric acid over alumina-supported manganese oxide

    Energy Technology Data Exchange (ETDEWEB)

    Rosal, Roberto, E-mail: roberto.rosal@uah.es [Departamento de Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, E-28771 Alcala de Henares (Spain); Gonzalo, Maria S.; Rodriguez, Antonio; Garcia-Calvo, Eloy [Departamento de Quimica Analitica e Ingenieria Quimica, Universidad de Alcala, E-28771 Alcala de Henares (Spain)

    2010-11-15

    The catalytic ozonation of fenofibric acid was studied using activated alumina and alumina-supported manganese oxide in a semicontinuous reactor. The rate constants at 20 deg. C for the non-catalytic reaction of fenofibric acid with ozone and hydroxyl radicals were 3.43 {+-} 0.20 M{sup -1} s{sup -1} and (6.55 {+-} 0.33) x 10{sup 9} M{sup -1} s{sup -1}, respectively. The kinetic constant for the catalytic reaction between fenofibric acid and hydroxyl radicals did not differ significantly from that of homogeneous ozonation, either using Al{sub 2}O{sub 3} or MnO{sub x}/Al{sub 2}O{sub 3}. The results showed a considerable increase in the generation of hydroxyl radicals due to the use of catalysts even in the case of catalytic runs performed using a real wastewater matrix. Both catalysts promoted the decomposition of ozone in homogeneous phase, but the higher production of hydroxyl radicals corresponded to the catalyst with more activity in terms of ozone decomposition. We did not find evidence of the catalysts having any effect on rate constants, which suggests that the reaction may not involve the adsorption of organics on catalyst surface.

  12. Bubble Driven Quasioscillatory Translational Motion of Catalytic Micromotors

    Science.gov (United States)

    Manjare, Manoj; Yang, Bo; Zhao, Y.-P.

    2012-09-01

    A new quasioscillatory translational motion has been observed for big Janus catalytic micromotors with a fast CCD camera. Such motional behavior is found to coincide with both the bubble growth and burst processes resulting from the catalytic reaction, and the competition of the two processes generates a net forward motion. Detailed physical models have been proposed to describe the above processes. It is suggested that the bubble growth process imposes a growth force moving the micromotor forward, while the burst process induces an instantaneous local pressure depression pulling the micromotor backward. The theoretic predictions are consistent with the experimental data.

  13. Catalytic Oxidation of Allylic Alcohols to Methyl Esters

    DEFF Research Database (Denmark)

    Gallas-Hulin, Agata; Kotni, Rama Krishna; Nielsen, Martin

    2017-01-01

    Aerobic oxidation of allylic alcohols to methyl esters using gold nanoparticles supported on different metal oxide carriers has been performed successfully under mild conditions (room temperature, 0.1 MPa O2) without significant loss of catalytic activity. The effects of different reaction...... parameters are studied to find the suitable reaction conditions. All catalysts are characterised by XRD, XRF and TEM. Among these catalysts, Au/TiO2 showed the most efficient catalytic activity towards the selective oxidation of allylic alcohols to the corresponding esters. Moreover, the same Au/TiO2...... to synthesize methyl esters from allylic alcohols....

  14. Determination of organic bases in non-aqueous solvents by catalytic thermometric titration.

    Science.gov (United States)

    Vajgand, V J; Kiss, T A; Gaál, F F; Zsigrai, I J

    1968-07-01

    Catalytic thermometric titrations have been developed for bases (brucine, diethylaniline, potassium acetate and triethylamine) in acetic acid by continuous and discontinuous addition of the standard solution and automatic temperature recording. The determination of weak bases, e.g., antipyrine, unsuccessful in acetic acid by catalytic thermometric titration, has been achieved by using nitromethane or acetic anhydride as solvent. Catalytic thermometric titrations were also performed by coulometric generation of hydrogen ions for the determination of micro amounts of weak bases in a mixture of acetic anhyride and acetic acid.

  15. Petroleum Refineries (Catalytic Cracking, Catalytic Reforming and Sulfur Recovery Units): National Emission Standards for Hazardous Air Pollutants (NESHAP)

    Science.gov (United States)

    learn more about the NESHAP for catalytic cracking and reforming units, as well as sulfur recovery units in petroleum refineries by reading the rule history, rule summary, background information documents, and compliance information

  16. Retrospective Analysis of the Survival Benefit of Induction Chemotherapy in Stage IVa-b Nasopharyngeal Carcinoma.

    Science.gov (United States)

    Lan, Xiao-Wen; Zou, Xue-Bin; Xiao, Yao; Tang, Jie; OuYang, Pu-Yun; Su, Zhen; Xie, Fang-Yun

    2016-01-01

    The value of adding induction chemotherapy to chemoradiotherapy in locoregionally advanced nasopharyngeal carcinoma (LA-NPC) remains controversial, yet high-risk patients with LA-NPC have poor outcomes after chemoradiotherapy. We aimed to assess the survival benefits of induction chemotherapy in stage IVa-b NPC. A total of 602 patients with stage IVa-b NPC treated with intensity-modulated radiation therapy (IMRT) and concurrent chemotherapy with or without induction chemotherapy were retrospectively analyzed. Overall survival (OS), locoregional relapse-free survival (LRFS), distant metastasis-free survival (DMFS) and progression-free survival (PFS) were evaluated using the Kaplan-Meier method, log-rank test and Cox regression analysis. In univariate analysis, 5-year OS was 83.2% for induction chemotherapy plus concurrent chemotherapy and 74.8% for concurrent chemotherapy alone, corresponding to an absolute risk reduction of 8.4% (P = 0.022). Compared to concurrent chemotherapy alone, addition of induction chemotherapy improved 5-year DMFS (83.2% vs. 74.4%, P = 0.018) but not 5-year LRFS (83.7% vs. 83.0%, P = 0.848) or PFS (71.9% vs. 66.0%, P = 0.12). Age, T category, N category, chemotherapy strategy and clinical stage were associated with 5-year OS (P = 0.017, P = 0.031, P = 0.007, P = 0.022, P = 0.001, respectively). In multivariate analysis, induction chemotherapy plus concurrent chemotherapy was an independent favorable prognostic factor for OS (HR, 0.62; 95% CI, 0.43-0.90, P = 0.012) and DMFS (HR, 0.57; 95% CI, 0.38-0.83, P = 0.004). In subgroup analysis, induction chemotherapy significantly improved 5-year DMFS in stage IVa (86.8% vs. 77.3%, P = 0.008), but provided no significant benefit in stage IVb. In patients with stage IVa-b NPC treated with IMRT, addition of induction chemotherapy to concurrent chemotherapy significantly improved 5-year OS and 5-year DMFS. This study provides a basis for selection of high risk patients in future clinical therapeutic

  17. High frequency induction of mitotic recombination by ionizing radiation in Mlh1 null mouse cells

    International Nuclear Information System (INIS)

    Wang Qi; Ponomareva, Olga N.; Lasarev, Michael; Turker, Mitchell S.

    2006-01-01

    Mitotic recombination in somatic cells involves crossover events between homologous autosomal chromosomes. This process can convert a cell with a heterozygous deficiency to one with a homozygous deficiency if a mutant allele is present on one of the two homologous autosomes. Thus mitotic recombination often represents the second mutational step in tumor suppressor gene inactivation. In this study we examined the frequency and spectrum of ionizing radiation (IR)-induced autosomal mutations affecting Aprt expression in a mouse kidney cell line null for the Mlh1 mismatch repair (MMR) gene. The mutant frequency results demonstrated high frequency induction of mutations by IR exposure and the spectral analysis revealed that most of this response was due to the induction of mitotic recombinational events. High frequency induction of mitotic recombination was not observed in a DNA repair-proficient cell line or in a cell line with an MMR-independent mutator phenotype. These results demonstrate that IR exposure can initiate a process leading to mitotic recombinational events and that MMR function suppresses these events from occurring

  18. The contribution of inductive electric fields to particle energization in the inner magnetosphere

    Science.gov (United States)

    Ilie, R.; Toth, G.; Liemohn, M. W.; Chan, A. A.

    2017-12-01

    Assessing the relative contribution of potential versus inductive electric fields at the energization of the hot ion population in the inner magnetosphere is only possible by thorough examination of the time varying magnetic field and current systems using global modeling of the entire system. We present here a method to calculate the inductive and potential components of electric field in the entire magnetosphere region. This method is based on the Helmholtz vector decomposition of the motional electric field as calculated by the BATS-R-US model, and is subject to boundary conditions. This approach removes the need to trace independent field lines and lifts the assumption that the magnetic field lines can be treated as frozen in a stationary ionosphere. In order to quantify the relative contributions of potential and inductive electric fields at driving plasma sheet ions into the inner magnetosphere, we apply this method for the March 17th, 2013 geomagnetic storm. We present here the consequences of slow continuous changes in the geomagnetic field as well as the strong tail dipolarizations on the distortion of the near-Earth magnetic field and current systems. Our findings indicate that the inductive component of the electric field is comparable, and even higher at times than the potential component, suggesting that the electric field induced by the time varying magnetic field plays a crucial role in the overall particle energization in the inner magnetosphere.

  19. Induction generator-induction motor wind-powered pumping system

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, M.S.; Lyra, R.O.C.; Silva, S.R. [CPDEE - UFMG, Belo Horizonte (Brazil)

    1997-12-31

    The energy storage matter plays an important role in wind-electric conversion systems for isolated applications. Having that in mind, two different approaches can be basically considered: either the immediate conversion of the generated electric energy, as in a water pumping system or electric energy storage for later use, as in a battery charging system. Due to some features such as no need of an external reactive power source and, sometimes, a gearbox, permanent-magnet synchronous generators have been broadly used in low rated power isolated systems. Despite that, system performance can be affected when the generator is feeding an inductive load (e.g., an induction motor) under variable-speed-variable-frequency operational conditions. Since there is no effective flux control, motor overload may occur at high wind speeds. Thus, good system performance can be obtained through additional control devices which may increase system cost. Although being rugged and cheap, induction machines always work as a reactive power drain; therefore, they demand an external reactive power source. Considering that, reactive static compensators appear as an attractive alternative to the cost x performance problem. In addition to that, different control strategies can be used so that system performance can be improved.

  20. Renormalization of quantum electrodynamics in an arbitrarily strong time independent external field. [Perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Dosch, H G [Heidelberg Univ. (F.R. Germany). Inst. fuer Theoretische Physik; Mueller, V F [Trier-Kaiserslautern Univ., Kaiserslautern (F.R. Germany). Fachbereich Physik

    1975-01-01

    Extending the inductive renormalization procedure of Epstein and Glaser which is essentially based on locality, we show that quantum electrodynamics in an external time independent electromagnetic field has a renormalizable formal perturbation expansion. The interaction involving the quantized radiation field but not the action of the external field is treated by perturbation theory. It turns out that vacuum polarization is undetermined in the framework of such a theory.

  1. Effectiveness of gaseous and intravenous inductions on children′s anxiety and distress during extraction of teeth under general anesthesia

    Directory of Open Access Journals (Sweden)

    Giath Gazal

    2015-01-01

    Full Text Available Context: Anxiety and distress regarding dental treatment is a major issue for dental patients and can be exaggerated in pediatric dental patients. Aims: The aim was to investigate how different methods of induction for general anesthesia affect children′s distress for dental procedures such as extraction of teeth. Subjects and Methods: This was an observational clinical study conducted at Manchester University Dental Hospital. The induction of anesthesia in children was achieved with either intravenous (I.V. or a gaseous induction. The Modified Child Smiley Faces Scales were completed for children at various times intervals. Statistical Analysis Used: There were statistically significant differences between the mean distress scores for the I.V. and inhalation groups (P values from independent t-test: P < 0.001 was applied. Results: In gaseous induction group, the number of children who scored severe and very severe distress was greater than those who were in I.V. group. Gaseous induction was used for 23 children. Preoperatively, 56.5% children were in very severe distress, 17.4% in severe distress, 13% in moderate distress, 8.7% in mild distress and only one (4.3% showed no distress. For I.V. induction, 11.2% children were in very severe distress, 9% in severe distress, and 9.6% in moderate distress, 24.2% in mild distress and 46.1% showed no distress. Conclusions: Gaseous induction anesthesia for extractions of teeth does produce high levels of distress than I.V. induction in children for dental extractions. There was no significant difference between both induction methods in terms of distress levels at the time of recovery and 15 min postoperatively.

  2. Selenium utilization in thioredoxin and catalytic advantage provided by selenocysteine

    International Nuclear Information System (INIS)

    Kim, Moon-Jung; Lee, Byung Cheon; Hwang, Kwang Yeon; Gladyshev, Vadim N.; Kim, Hwa-Young

    2015-01-01

    Thioredoxin (Trx) is a major thiol-disulfide reductase that plays a role in many biological processes, including DNA replication and redox signaling. Although selenocysteine (Sec)-containing Trxs have been identified in certain bacteria, their enzymatic properties have not been characterized. In this study, we expressed a selenoprotein Trx from Treponema denticola, an oral spirochete, in Escherichia coli and characterized this selenoenzyme and its natural cysteine (Cys) homologue using E. coli Trx1 as a positive control. 75 Se metabolic labeling and mutation analyses showed that the SECIS (Sec insertion sequence) of T. denticola selenoprotein Trx is functional in the E. coli Sec insertion system with specific selenium incorporation into the Sec residue. The selenoprotein Trx exhibited approximately 10-fold higher catalytic activity than the Sec-to-Cys version and natural Cys homologue and E. coli Trx1, suggesting that Sec confers higher catalytic activity on this thiol-disulfide reductase. Kinetic analysis also showed that the selenoprotein Trx had a 30-fold higher K m than Cys-containing homologues, suggesting that this selenoenzyme is adapted to work efficiently with high concentrations of substrate. Collectively, the results of this study support the hypothesis that selenium utilization in oxidoreductase systems is primarily due to the catalytic advantage provided by the rare amino acid, Sec. - Highlights: • The first characterization of a selenoprotein Trx is presented. • The selenoenzyme Trx exhibits 10-fold higher catalytic activity than Cys homologues. • Se utilization in Trx is primarily due to the catalytic advantage provided by Sec residue

  3. Selenium utilization in thioredoxin and catalytic advantage provided by selenocysteine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moon-Jung [Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu 705-717 (Korea, Republic of); Lee, Byung Cheon [Division of Genetics, Department of Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of); Hwang, Kwang Yeon [Division of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of); Gladyshev, Vadim N. [Division of Genetics, Department of Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA 02115 (United States); Kim, Hwa-Young, E-mail: hykim@ynu.ac.kr [Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu 705-717 (Korea, Republic of)

    2015-06-12

    Thioredoxin (Trx) is a major thiol-disulfide reductase that plays a role in many biological processes, including DNA replication and redox signaling. Although selenocysteine (Sec)-containing Trxs have been identified in certain bacteria, their enzymatic properties have not been characterized. In this study, we expressed a selenoprotein Trx from Treponema denticola, an oral spirochete, in Escherichia coli and characterized this selenoenzyme and its natural cysteine (Cys) homologue using E. coli Trx1 as a positive control. {sup 75}Se metabolic labeling and mutation analyses showed that the SECIS (Sec insertion sequence) of T. denticola selenoprotein Trx is functional in the E. coli Sec insertion system with specific selenium incorporation into the Sec residue. The selenoprotein Trx exhibited approximately 10-fold higher catalytic activity than the Sec-to-Cys version and natural Cys homologue and E. coli Trx1, suggesting that Sec confers higher catalytic activity on this thiol-disulfide reductase. Kinetic analysis also showed that the selenoprotein Trx had a 30-fold higher K{sub m} than Cys-containing homologues, suggesting that this selenoenzyme is adapted to work efficiently with high concentrations of substrate. Collectively, the results of this study support the hypothesis that selenium utilization in oxidoreductase systems is primarily due to the catalytic advantage provided by the rare amino acid, Sec. - Highlights: • The first characterization of a selenoprotein Trx is presented. • The selenoenzyme Trx exhibits 10-fold higher catalytic activity than Cys homologues. • Se utilization in Trx is primarily due to the catalytic advantage provided by Sec residue.

  4. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jung Ik; Kim, Aram; Noh, Hui Bog; Lee, Hyun Ju; Shim, Yoon Bo; Park, Kang Hyun [Pusan National University, Busan (Korea, Republic of)

    2012-01-15

    The ruthenium(II) complex [Ru(bpy){sub 2}-(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus.

  5. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    International Nuclear Information System (INIS)

    Son, Jung Ik; Kim, Aram; Noh, Hui Bog; Lee, Hyun Ju; Shim, Yoon Bo; Park, Kang Hyun

    2012-01-01

    The ruthenium(II) complex [Ru(bpy) 2 -(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus

  6. Modulation of catalytic activity in multi-domain protein tyrosine phosphatases.

    Directory of Open Access Journals (Sweden)

    Lalima L Madan

    Full Text Available Signaling mechanisms involving protein tyrosine phosphatases govern several cellular and developmental processes. These enzymes are regulated by several mechanisms which include variation in the catalytic turnover rate based on redox stimuli, subcellular localization or protein-protein interactions. In the case of Receptor Protein Tyrosine Phosphatases (RPTPs containing two PTP domains, phosphatase activity is localized in their membrane-proximal (D1 domains, while the membrane-distal (D2 domain is believed to play a modulatory role. Here we report our analysis of the influence of the D2 domain on the catalytic activity and substrate specificity of the D1 domain using two Drosophila melanogaster RPTPs as a model system. Biochemical studies reveal contrasting roles for the D2 domain of Drosophila Leukocyte antigen Related (DLAR and Protein Tyrosine Phosphatase on Drosophila chromosome band 99A (PTP99A. While D2 lowers the catalytic activity of the D1 domain in DLAR, the D2 domain of PTP99A leads to an increase in the catalytic activity of its D1 domain. Substrate specificity, on the other hand, is cumulative, whereby the individual specificities of the D1 and D2 domains contribute to the substrate specificity of these two-domain enzymes. Molecular dynamics simulations on structural models of DLAR and PTP99A reveal a conformational rationale for the experimental observations. These studies reveal that concerted structural changes mediate inter-domain communication resulting in either inhibitory or activating effects of the membrane distal PTP domain on the catalytic activity of the membrane proximal PTP domain.

  7. Second-Order Biomimicry: In Situ Oxidative Self-Processing Converts Copper(I)/Diamine Precursor into a Highly Active Aerobic Oxidation Catalyst.

    Science.gov (United States)

    McCann, Scott D; Lumb, Jean-Philip; Arndtsen, Bruce A; Stahl, Shannon S

    2017-04-26

    A homogeneous Cu-based catalyst system consisting of [Cu(MeCN) 4 ]PF 6 , N , N '-di- tert -butylethylenediamine (DBED), and p -( N , N -dimethylamino)pyridine (DMAP) mediates efficient aerobic oxidation of alcohols. Mechanistic study of this reaction shows that the catalyst undergoes an in situ oxidative self-processing step, resulting in conversion of DBED into a nitroxyl that serves as an efficient cocatalyst for aerobic alcohol oxidation. Insights into this behavior are gained from kinetic studies, which reveal an induction period at the beginning of the reaction that correlates with the oxidative self-processing step, EPR spectroscopic analysis of the catalytic reaction mixture, which shows the buildup of the organic nitroxyl species during steady state turnover, and independent synthesis of oxygenated DBED derivatives, which are shown to serve as effective cocatalysts and eliminate the induction period in the reaction. The overall mechanism bears considerable resemblance to enzymatic reactivity. Most notable is the "oxygenase"-type self-processing step that mirrors generation of catalytic cofactors in enzymes via post-translational modification of amino acid side chains. This higher-order function within a synthetic catalyst system presents new opportunities for the discovery and development of biomimetic catalysts.

  8. Sample diversity and premise typicality in inductive reasoning: evidence for developmental change.

    Science.gov (United States)

    Rhodes, Marjorie; Brickman, Daniel; Gelman, Susan A

    2008-08-01

    Evaluating whether a limited sample of evidence provides a good basis for induction is a critical cognitive task. We hypothesized that whereas adults evaluate the inductive strength of samples containing multiple pieces of evidence by attending to the relations among the exemplars (e.g., sample diversity), six-year-olds would attend to the degree to which each individual exemplar in a sample independently appears informative (e.g., premise typicality). To test these hypotheses, participants were asked to select between diverse and non-diverse samples to help them learn about basic-level animal categories. Across various between-subject conditions (N=133), we varied the typicality present in the diverse and non-diverse samples. We found that adults reliably selected to examine diverse over non-diverse samples, regardless of exemplar typicality, six-year-olds preferred to examine samples containing typical exemplars, regardless of sample diversity, and nine-year-olds were somewhat in the midst of this developmental transition.

  9. Two-Phase Induction Motor Drives

    Directory of Open Access Journals (Sweden)

    Gholam Reza Arab Markadeh

    2010-10-01

    Full Text Available The lack of variable-speed drives for two (single induction motor is a reality. This article attempts mainly to investigate the reasons for this lack of variable – speed drives. This paper deals with literature survey of various existing converter topologies, which have been proposed for adjustable speed single phase induction motor drives. Various converter topologies have been compared in this paper. Among these converter topologies, the adjustable frequency PWM inverter is the best choice for single-phase induction motor drives. However, adjustable-frequency drives have not been widely used with single-phase Induction motors. The open-loop constant V/F control law cannot be used with the single-phase induction motor drives as it is used with three phase motors. The variation of the operating frequency at lower speed range with constant load torque causes variation in motor's slip. A constant V/F control is suitable only over the upper speed range.

  10. Effect of radioactive radiation on catalytic properties of solid materials

    Energy Technology Data Exchange (ETDEWEB)

    Sokol' skii, D V; Kuzembaev, K K; Kel' man, I V [AN Kazakhskoj SSR, Alma-Ata. Inst. Organicheskogo Kataliza i Ehlektrokhimii

    1977-05-01

    General survey is made of the problem of radiation modification of the action of solid catalysts with respect to the various types of heterogeneous catalytic reactions. Consideration is given to the key mechanisms responsible for radiation damage in the interaction of high-energy radiation with a solid body. The effect of ionizing radiation on the adsorption capacity and catalytic activity of solid bodies is discussed.

  11. CFOA-Based Lossless and Lossy Inductance Simulators

    Directory of Open Access Journals (Sweden)

    F. Kaçar

    2011-09-01

    Full Text Available Inductance simulator is a useful component in the circuit synthesis theory especially for analog signal processing applications such as filter, chaotic oscillator design, analog phase shifters and cancellation of parasitic element. In this study, new four inductance simulator topologies employing a single current feedback operational amplifier are presented. The presented topologies require few passive components. The first topology is intended for negative inductance simulation, the second topology is for lossy series inductance, the third one is for lossy parallel inductance and the fourth topology is for negative parallel (-R (-L (-C simulation. The performance of the proposed CFOA based inductance simulators is demonstrated on both a second-order low-pass filter and inductance cancellation circuit. PSPICE simulations are given to verify the theoretical analysis.

  12. A new approach to inertise the containments during catalytic removal of hydrogen

    International Nuclear Information System (INIS)

    Chakraborty, A.K.; Markandeya, S.G.

    1994-01-01

    Use of catalytic recombiners for the removal of hydrogen during a severe accident has been recommended by the German Reactor Safety Commission (RSK) due to numerous successful demonstrations of their performances. At the early stages of the accident, a huge quantity of hydrogen is expected to be released in some compartments requiring supplementary measures to ensure that the excess hydrogen concentration wouldn't pose a threat of deflagration /1/. In this presentation a new idea based on catalytic removal of hydrogen with simultaneous passive inertisation of the atmosphere is proposed for large dry containments particularly for those compartments where high H 2 -concentrations are expected. During the catalytic oxidation of hydrogen, the large exothermic heat of reaction causes strong heating of the catalytic plates as well as a continuous energy input in the containment. This can be limited if this large heat energy is efficiently used for heating some chemical compounds to release inert gases such as steam and/or CO 2 by dissociation at moderate temperatures. Such compounds can be arranged in the form of thin slabs in good thermal contact with the catalytic plates. Several such compounds have been identified which are capable of releasing steam and CO 2 equivalent to about 40 - 75% of their mass. Preliminary calculations have been carded out to demonstrate the effectiveness of the proposed concept for the case of two such selected chemicals placed adjacent to the catalytic plate type recombiners. The calculations performed show promising results. (author)

  13. Catalytic Decoupling of Quantum Information

    DEFF Research Database (Denmark)

    Majenz, Christian; Berta, Mario; Dupuis, Frédéric

    2017-01-01

    The decoupling technique is a fundamental tool in quantum information theory with applications ranging from quantum thermodynamics to quantum many body physics to the study of black hole radiation. In this work we introduce the notion of catalytic decoupling, that is, decoupling in the presence...... and quantum state merging, and leads to a resource theory of decoupling....

  14. Preparation of Agcore/Aushell bimetallic nanoparticles from physical mixtures of Au clusters and Ag ions under dark conditions and their catalytic activity for aerobic glucose oxidation

    International Nuclear Information System (INIS)

    Zhang, Haijun; Toshima, Naoki; Takasaki, Kanako; Okumura, Mitsutaka

    2014-01-01

    Graphical abstract: The synthesis, characterization and catalytic activities for glucose oxidation of AgAu bimetallic nanoparticles (BNPs) with size of less than 2 nm are reported. The catalytic activity of Ag 10 Au 90 BNPs was about two times higher than that of Au NPs, even the BNPs have a larger particle size than that of Au NPs. -- Highlights: • Ag core /Au shell BNPs with size of less than 2.0 nm were prepared. • No any reducing reagents and lights were used for the preparation of the BNPs. • The catalytic activity of the BNPs is about two times higher than that of Au NPs. -- Abstract: AgAu bimetallic nanoparticles (BNPs), one of the most extensively studied bimetallic systems in the literatures, could have various structures and compositions depending on their preparation conditions. In the present work, catalytically highly active PVP-protected Ag core /Au shell BNPs of about 2.5 nm in diameter were fabricated from physical mixtures of aqueous dispersions of Au nanoparticles and Ag + ions under dark conditions without using any reducing agents. The prepared Ag core /Au shell BNP colloidal catalysts, which possessed a high activity for aerobic glucose oxidation, were characterized by Ultraviolet–visible spectrophotometry (UV–Vis), Inductive coupled plasma emission spectrometer (ICP), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Energy disperse spectroscopy (EDS) in High-resolution scanning transmission electron microscopy (HR-STEM). The highest activity (11,360 mol-glucose h −1 mol-metal −1 ) was observed for the BNPs with the Ag/Au atomic ratio of 1/9, the TOF value of which is about two times higher than that of Au nanoparticles with the particle size of 1.3 nm. The enhanced catalytic activity of the prepared Ag core /Au shell BNPs compared to Au NPs can be ascribed to the presence of negatively charged Au atoms resulted from electron donations from neighboring Ag atoms and PVP due to electronic charge

  15. Telomerase Activation in Atherosclerosis and Induction of Telomerase Reverse Transcriptase Expression by Inflammatory Stimuli in Macrophages

    Science.gov (United States)

    Gizard, Florence; Heywood, Elizabeth B.; Findeisen, Hannes M.; Zhao, Yue; Jones, Karrie L.; Cudejko, Cèline; Post, Ginell R.; Staels, Bart; Bruemmer, Dennis

    2010-01-01

    Objective Telomerase serves as a critical regulator of tissue renewal. Although telomerase activity is inducible in response to various environmental cues, it remains unknown whether telomerase is activated during the inflammatory remodeling underlying atherosclerosis formation. To address this question, we investigated in the present study the regulation of telomerase in macrophages and during atherosclerosis development in LDL-receptor-deficient mice. Methods and Results We demonstrate that inflammatory stimuli activate telomerase in macrophages by inducing the expression of the catalytic subunit telomerase reverse transcriptase (TERT). Reporter and chromatin immunoprecipitation assays identified a previously unrecognized NF-κB response element in the TERT promoter, to which NF-κB is recruited during inflammation. Inhibition of NF-κB signaling completely abolished the induction of TERT expression, characterizing TERT as a bona fide NF-κB target gene. Furthermore, functional experiments revealed that TERT-deficiency results in a senescent cell phenotype. Finally, we demonstrate high levels of TERT expression in macrophages of human atherosclerotic lesions and establish that telomerase is activated during atherosclerosis development in LDL-receptor-deficient mice. Conclusion These results characterize TERT as a previously unrecognized NF-κB target gene in macrophages and demonstrate that telomerase is activated during atherosclerosis. This induction of TERT expression prevents macrophage senescence and may have important implications for the development of atherosclerosis. PMID:21106948

  16. Toward a catalytic site in DNA

    DEFF Research Database (Denmark)

    Jakobsen, Ulla; Rohr, Katja; Vogel, Stefan

    2007-01-01

    A number of functionalized polyaza crown ether building blocks have been incorporated into DNA-conjugates as catalytic Cu(2+) binding sites. The effect of the DNA-conjugate catalyst on the stereochemical outcome of a Cu(2+)-catalyzed Diels-Alder reaction will be presented....

  17. Induction sensor for measuring the accelerating voltage in an iron-free induction accelerator

    International Nuclear Information System (INIS)

    Bol'nykh, N.S.; Il'in, Yu.M.; Kostyushok, A.A.; Suvorov, V.A.

    1987-01-01

    An inductive sensor is described for measuring the amplitude and form of the accelerating-voltage pulse in the storage coils in a radial iron-free linear induction accelerator. The sensor does not respond to interference from external fields and does not require adjustment after calibration

  18. The induction on a continuous variable

    International Nuclear Information System (INIS)

    Zhang Jingzhong.

    1989-06-01

    Mathematical induction is a useful tool. But it could be used to prove only the proposition with form P(n) for the natural number n. Could the natural number n be replaced by a continuous variable x? Yes, and then we have the continuous induction. The continuous induction is very easy to grasp by the students who have learned mathematical induction. And it can be used to prove many basic propositions in the elementary calculus. (author)

  19. Investigation of polypyrrole/polyvinyl alcohol–titanium dioxide composite films for photo-catalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Shaoqiang; Zhang, Hongyang; Song, Yuanqing; Zhang, Jianling; Yang, Haigang; Jiang, Long, E-mail: jianglong@scu.edu.cn; Dan, Yi, E-mail: danyichenweiwei@163.com

    2015-07-01

    Graphical abstract: - Highlights: • The study provides an easy and convenient method to fabricate films, which will give guidance for the preparation of three-dimensional materials. • The PPy/PVA–TiO{sub 2} films can keep better photo-catalytic activities both under UV and visible light irradiation when compared with TiO{sub 2} film. • There exist electron transfers between PPy/PVA and TiO{sub 2}. - Abstract: Polypyrrole/polyvinyl alcohol–titanium dioxide (PPy/PVA–TiO{sub 2}) composite films used as photo-catalysts were fabricated by combining TiO{sub 2} sol with PPy/PVA solution in which PPy was synthesized by in situ polymerization of pyrrole (Py) in polyvinyl alcohol (PVA) matrix and loaded on glass. The prepared photo-catalysts were investigated by X-ray diffraction (XRD), ultraviolet–visible diffuse reflection spectroscopy (UV–vis DRS), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectra and photoluminescence (PL). The results indicate that the composites have same crystal structure as the TiO{sub 2} and extend the optic absorption from UV region to visible light region. By detecting the variation ratio, detected by ultraviolet–vis spectroscopy, of model pollutant rhodamine B (RhB) solution in the presence of the composite films under both UV and visible light irradiation, the photo-catalytic performance of the composite films was investigated. The results show that the PPy/PVA–TiO{sub 2} composite films show better photo-catalytic properties than TiO{sub 2} film both under UV and visible light irradiation, and the photo-catalytic degradation of RhB follows the first-order kinetics. The effects of the composition of composite films and the concentration of RhB on the photo-catalytic performance, as well as the possible photo-catalytic mechanism, were also discussed. By photo-catalytic recycle experiments, the structure stability of the PPy/PVA–TiO{sub 2} composite film was investigated and the results show that

  20. New Catalytic DNA Biosensors for Radionuclides and Metal ions

    International Nuclear Information System (INIS)

    Lu, Yi

    2003-01-01

    The goals of the project are to develop new catalytic DNA biosensors for simultaneous detection and quantification of bioavailable radionuclides and metal ions, and apply the sensors for on-site, real-time assessment of concentration, speciation and stability of the individual contaminants during and after bioremediation. A negative selection strategy was tested and validated. In vitro selection was shown to yield highly active and specific transition metal ion-dependent catalytic DNA/RNA. A fluorescence resonance energy transfer (FRET) study of in vitro selected DNA demonstrated that the trifluorophore labeled system is a simple and powerful tool in studying complex biomolecules structure and dynamics, and is capable of revealing new sophisticated structural changes. New fluorophore/quenchers in a single fluorosensor yielded improved signal to noise ratio in detection, identification and quantification of metal contaminants. Catalytic DNA fluorescent and colorimetric sensors were shown useful in sensing lead in lake water and in leaded paint. Project results were described in two papers and two patents, and won an international prize

  1. Correction: Towards the rationalization of catalytic activity values by means of local hyper-softness on the catalytic site: a criticism about the use of net electric charges.

    Science.gov (United States)

    Martínez-Araya, Jorge Ignacio; Grand, André; Glossman-Mitnik, Daniel

    2016-01-28

    Correction for 'Towards the rationalization of catalytic activity values by means of local hyper-softness on the catalytic site: a criticism about the use of net electric charges' by Jorge Ignacio Martínez-Araya et al., Phys. Chem. Chem. Phys., 2015, DOI: 10.1039/c5cp03822g.

  2. Sensitivity of human cells expressing low-fidelity or weak-catalytic-activity variants of DNA polymerase ζ to genotoxic stresses.

    Science.gov (United States)

    Suzuki, Tetsuya; Grúz, Petr; Honma, Masamitsu; Adachi, Noritaka; Nohmi, Takehiko

    2016-09-01

    Translesion DNA polymerases (TLS pols) play critical roles in defense mechanisms against genotoxic agents. The defects or mutations of TLS pols are predicted to result in hypersensitivity of cells to environmental mutagens. In this study, human cells expressing DNA polymerase ζ (Pol ζ) variants with low fidelity or weak catalytic activity have been established with Nalm-6-MSH+ cells and their sensitivity to mutagenicity and cytotoxicity of benzo[a]pyrene diol epoxide (BPDE) and ultraviolet-C light (UV-C) was examined. The low-fidelity mutants were engineered by knocking-in DNA sequences that direct changes of leucine 2618 to either phenylalanine (L2618F) or methionine (L2618M) of Pol ζ. The weak-catalytic-activity mutants were generated by knocking-in DNA sequences that direct changes of either tyrosine 2779 to phenylalanine (Y2779F) or aspartate 2781 to asparagine (D2781N). In addition, a +1 frameshift mutation, i.e., CCC to CCCC, was introduced in the coding region of the TK1 gene to measure the mutant frequencies. Doubling time and spontaneous TK mutant frequencies of the established cell lines were similar to those of the wild-type cells. The low-fidelity mutants displayed, however, higher sensitivity to the mutagenicity of BPDE and UV-C than the wild-type cells although their cytotoxic sensitivity was not changed. In contrast, the weak-catalytic-activity mutants were more sensitive to the cytotoxicity of BPDE and UV-C than the wild-type cells, and displayed much higher sensitivity to the clastogenicity of BPDE than the wild-type cells in an in vitro micronucleus assay. These results indicate that human Pol ζ is involved in TLS across DNA lesions induced by BPDE and UV-C and also that the TLS plays important roles in induction of mutations, clastogenicity and in cellular survival of the damaged human cells. Similarities and differences in in vivo roles of yeast and human Pol ζ in genome integrity are discussed. Copyright © 2016 Elsevier B.V. All rights

  3. Effect of inlet temperature on the performance of a catalytic reactor. [air pollution control

    Science.gov (United States)

    Anderson, D. N.

    1978-01-01

    A 12 cm diameter by 15 cm long catalytic reactor was tested with No. 2 diesel fuel in a combustion test rig at inlet temperatures of 700, 800, 900, and 1000 K. Other test conditions included pressures of 3 and 6 x 10 to the 5th power Pa, reference velocities of 10, 15, and 20 m/s, and adiabatic combustion temperatures in the range 1100 to 1400 K. The combustion efficiency was calculated from measurements of carbon monoxide and unburned hydrocarbon emissions. Nitrogen oxide emissions and reactor pressure drop were also measured. At a reference velocity of 10 m/s, the CO and unburned hydrocarbons emissions, and, therefore, the combustion efficiency, were independent of inlet temperature. At an inlet temperature of 1000 K, they were independent of reference velocity. Nitrogen oxides emissions resulted from conversion of the small amount (135 ppm) of fuel-bound nitrogen in the fuel. Up to 90 percent conversion was observed with no apparent effect of any of the test variables. For typical gas turbine operating conditions, all three pollutants were below levels which would permit the most stringent proposed automotive emissions standards to be met.

  4. Independent Evolution of Six Families of Halogenating Enzymes.

    Science.gov (United States)

    Xu, Gangming; Wang, Bin-Gui

    2016-01-01

    Halogenated natural products are widespread in the environment, and the halogen atoms are typically vital to their bioactivities. Thus far, six families of halogenating enzymes have been identified: cofactor-free haloperoxidases (HPO), vanadium-dependent haloperoxidases (V-HPO), heme iron-dependent haloperoxidases (HI-HPO), non-heme iron-dependent halogenases (NI-HG), flavin-dependent halogenases (F-HG), and S-adenosyl-L-methionine (SAM)-dependent halogenases (S-HG). However, these halogenating enzymes with similar biological functions but distinct structures might have evolved independently. Phylogenetic and structural analyses suggest that the HPO, V-HPO, HI-HPO, NI-HG, F-HG, and S-HG enzyme families may have evolutionary relationships to the α/β hydrolases, acid phosphatases, peroxidases, chemotaxis phosphatases, oxidoreductases, and SAM hydroxide adenosyltransferases, respectively. These halogenating enzymes have established sequence homology, structural conservation, and mechanistic features within each family. Understanding the distinct evolutionary history of these halogenating enzymes will provide further insights into the study of their catalytic mechanisms and halogenation specificity.

  5. Towards the rationalization of catalytic activity values by means of local hyper-softness on the catalytic site: a criticism about the use of net electric charges.

    Science.gov (United States)

    Ignacio Martínez-Araya, Jorge; Grand, André; Glossman-Mitnik, Daniel

    2015-11-28

    By means of the Spin-Polarized Conceptual Density Functional Theory (SP-CDFT), three 2,6-bis(imino)pyridine catalysts based on iron(II), used for polymerization of ethylene, were studied. The catalysts differed by the substituent group, bearing either -H, -NO2 or -OCH3. To date, catalytic activity, a purely experimental parameter measuring the mass of polyethylene produced per millimole of iron per time and pressure unit at a fixed temperature, has not been explained in terms of local hyper-softness. The latter is a purely theoretical parameter designed for quantifying electronic effects; it is measured using the metal atom responsible for the coordination process with the monomer (ethylene). Because steric effects are not relevant in these kinds of catalysts and only electronic effects drive the catalytic process, an interesting link is found between catalytic activity and the local hyper-softness condensed on the iron atom by means of four functionals (B3LYP, BP86, B97D, and VSXC). This work demonstrates that the use of local hyper-softness, predicted by the SP-CDFT, is a suitable parameter for explaining order relationships among catalytic activity values, thus quantifying the electronic influence of the substituent group inducing this difference; the use of only net electric charges does not lead to clear conclusions. This finding can aid in estimating catalytic activities leading to a more rational design of new catalysts via computational chemistry.

  6. De novo Transcriptome Assembly of Floral Buds of Pineapple and Identification of Differentially Expressed Genes in Response to Ethephon Induction

    Science.gov (United States)

    Liu, Chuan-He; Fan, Chao

    2016-01-01

    A remarkable characteristic of pineapple is its ability to undergo floral induction in response to external ethylene stimulation. However, little information is available regarding the molecular mechanism underlying this process. In this study, the differentially expressed genes (DEGs) in plants exposed to 1.80 mL·L−1 (T1) or 2.40 mL·L−1 ethephon (T2) compared with Ct plants (control, cleaning water) were identified using RNA-seq and gene expression profiling. Illumina sequencing generated 65,825,224 high-quality reads that were assembled into 129,594 unigenes with an average sequence length of 1173 bp. Of these unigenes, 24,775 were assigned to specific KEGG pathways, of which metabolic pathways and biosynthesis of secondary metabolites were the most highly represented. Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority were involved in metabolic and cellular processes, cell and cell part, catalytic activity and binding. Gene expression profiling analysis revealed 3788, 3062, and 758 DEGs in the comparisons of T1 with Ct, T2 with Ct, and T2 with T1, respectively. GO analysis indicated that these DEGs were predominantly annotated to metabolic and cellular processes, cell and cell part, catalytic activity, and binding. KEGG pathway analysis revealed the enrichment of several important pathways among the DEGs, including metabolic pathways, biosynthesis of secondary metabolites and plant hormone signal transduction. Thirteen DEGs were identified as candidate genes associated with the process of floral induction by ethephon, including three ERF-like genes, one ETR-like gene, one LTI-like gene, one FT-like gene, one VRN1-like gene, three FRI-like genes, one AP1-like gene, one CAL-like gene, and one AG-like gene. qPCR analysis indicated that the changes in the expression of these 13 candidate genes were consistent with the alterations in the corresponding RPKM values, confirming the accuracy and credibility of the RNA-seq and gene

  7. MEMS-based fuel cells with integrated catalytic fuel processor and method thereof

    Science.gov (United States)

    Jankowski, Alan F [Livermore, CA; Morse, Jeffrey D [Martinez, CA; Upadhye, Ravindra S [Pleasanton, CA; Havstad, Mark A [Davis, CA

    2011-08-09

    Described herein is a means to incorporate catalytic materials into the fuel flow field structures of MEMS-based fuel cells, which enable catalytic reforming of a hydrocarbon based fuel, such as methane, methanol, or butane. Methods of fabrication are also disclosed.

  8. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation.

    Science.gov (United States)

    Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H; Navrotsky, Alexandra

    2013-05-28

    Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn(3+)/Mn(4+) ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states.

  9. Low pressure EGR system having full range capability

    Science.gov (United States)

    Easley, Jr., William Lanier; Milam, David Michael; Roozenboom, Stephan Donald; Bond, Michael Steven; Kapic, Amir

    2009-09-22

    An exhaust treatment system for an engine is disclosed and may have an air induction circuit, an exhaust circuit, and an exhaust recirculation circuit. The air induction circuit may be configured to direct air into the engine. The exhaust circuit may be configured to direct exhaust from the engine and include a turbine driven by the exhaust, a particulate filter disposed in series with and downstream of the turbine, and a catalytic device disposed in series with and downstream of the particulate filter. The exhaust recirculation circuit may be configured to selectively redirect at least some of the exhaust from between the particulate filter and the catalytic device to the air induction circuit. The catalytic device is selected to create backpressure within the exhaust circuit sufficient to ensure that, under normal engine operating conditions above low idle, exhaust can flow into the air induction circuit without throttling of the air.

  10. MAP: an iterative experimental design methodology for the optimization of catalytic search space structure modeling.

    Science.gov (United States)

    Baumes, Laurent A

    2006-01-01

    One of the main problems in high-throughput research for materials is still the design of experiments. At early stages of discovery programs, purely exploratory methodologies coupled with fast screening tools should be employed. This should lead to opportunities to find unexpected catalytic results and identify the "groups" of catalyst outputs, providing well-defined boundaries for future optimizations. However, very few new papers deal with strategies that guide exploratory studies. Mostly, traditional designs, homogeneous covering, or simple random samplings are exploited. Typical catalytic output distributions exhibit unbalanced datasets for which an efficient learning is hardly carried out, and interesting but rare classes are usually unrecognized. Here is suggested a new iterative algorithm for the characterization of the search space structure, working independently of learning processes. It enhances recognition rates by transferring catalysts to be screened from "performance-stable" space zones to "unsteady" ones which necessitate more experiments to be well-modeled. The evaluation of new algorithm attempts through benchmarks is compulsory due to the lack of past proofs about their efficiency. The method is detailed and thoroughly tested with mathematical functions exhibiting different levels of complexity. The strategy is not only empirically evaluated, the effect or efficiency of sampling on future Machine Learning performances is also quantified. The minimum sample size required by the algorithm for being statistically discriminated from simple random sampling is investigated.

  11. Development of induction cells at CAEP

    International Nuclear Information System (INIS)

    Wang Huacen; Zhang Kaizhi; Cheng Nian'an; Zhang Wenwei; Lai Qinggui; Wen Long; Zhang Linwen; Deng Jianjun; Ding Bonan

    2002-01-01

    The effects to develop induction cells for induction linac and radiography at CAEP are introduced and reviewed in this paper. During the past two decades, several kinds of cells have been designed and tested, and some of them have been used for construction of induction linac, such as Dragon-1 and 12 MeV, and a Synthetic Test Stand (STS) for comprehensive linac technology study. The structure, test results and performance in the induction linac of these cells are given

  12. Involvement of TRPV3 and TRPM8 ion channel proteins in induction of mammalian cold-inducible proteins.

    Science.gov (United States)

    Fujita, Takanori; Liu, Yu; Higashitsuji, Hiroaki; Itoh, Katsuhiko; Shibasaki, Koji; Fujita, Jun; Nishiyama, Hiroyuki

    2018-01-01

    Cold-inducible RNA-binding protein (CIRP), RNA-binding motif protein 3 (RBM3) and serine and arginine rich splicing factor 5 (SRSF5) are RNA-binding proteins that are transcriptionally upregulated in response to moderately low temperatures and a variety of cellular stresses in mammalian cells. Induction of these cold-inducible proteins (CIPs) is dependent on transient receptor potential (TRP) V4 channel protein, but seems independent of its ion channel activity. We herein report that in addition to TRPV4, TRPV3 and TRPM8 are necessary for the induction of CIPs. We established cell lines from the lung of TRPV4-knockout (KO) mouse, and observed induction of CIPs in them by western blot analysis. A TRPV4 antagonist RN1734 suppressed the induction in wild-type mouse cells, but not in TRPV4-KO cells. A TRPV3 channel blocker S408271 and a TRPM8 channel blocker AMTB as well as siRNAs against TRPV3 and TRPM8 suppressed the CIP induction in mouse TRPV4-KO cells and human U-2 OS cells. A TRPV3 channel agonist 2-APB induced CIP expression, but camphor did not. Neither did a TRPM8 channel agonist WS-12. These results suggest that TRPV4, TRPV3 and TRPM8 proteins, but not their ion channel activities are necessary for the induction of CIPs at 32 °C. Identification of proteins that differentially interact with these TRP channels at 37 °C and 32 °C would help elucidate the underlying mechanisms of CIP induction by hypothermia. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Vaginismus as an independent risk factor for cesarean delivery.

    Science.gov (United States)

    Goldsmith, Tomer; Levy, Amalia; Sheiner, Eyal; Goldsmith, Tomer; Levy, Amalia; Sheiner, Eyal

    2009-10-01

    The present study was aimed to investigate pregnancy outcome of patients with vaginismus, and specifically the relationship between vaginismus and cesarean delivery. A population based study comparing all pregnancies in patients with and without vaginismus was conducted. Patients lacking prenatal care were excluded from the analysis. Deliveries occurred during the years 1988-2007. A multivariate logistic regression model, with backward elimination, was constructed to find independent risk factors associated with vaginismus. During the study period there were 192,954 deliveries, of which 118 occurred in patients with vaginismus. Patients with vaginismus tended to be younger (26.04+/-4.89 vs. 28.61+/-5.83; p vaginismus. Patients with vaginismus had higher rates of infertility treatments (5.9%vs. 2.7%, odds ratio [OR] 2.3; 95% confidence interval [CI] 1.1-4.9; p = 0.04) and labor induction (37.3%vs. 27.4%, OR 1.6; 95% CI 1.1-2.3; p = 0.02), vacuum extraction (9.3%vs. 2.8%, OR 3.6, 95% CI 1.9-6.7; p vaginismus remained as an independent risk factor for cesarean delivery (OR 7.1; 95% CI 4.5-11.1; p Vaginismus is an independent risk factor for cesarean delivery.

  14. Linear induction accelerator

    Science.gov (United States)

    Buttram, M.T.; Ginn, J.W.

    1988-06-21

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  15. Exploration of alternate catalytic mechanisms and optimization strategies for retroaldolase design.

    Science.gov (United States)

    Bjelic, Sinisa; Kipnis, Yakov; Wang, Ling; Pianowski, Zbigniew; Vorobiev, Sergey; Su, Min; Seetharaman, Jayaraman; Xiao, Rong; Kornhaber, Gregory; Hunt, John F; Tong, Liang; Hilvert, Donald; Baker, David

    2014-01-09

    Designed retroaldolases have utilized a nucleophilic lysine to promote carbon-carbon bond cleavage of β-hydroxy-ketones via a covalent Schiff base intermediate. Previous computational designs have incorporated a water molecule to facilitate formation and breakdown of the carbinolamine intermediate to give the Schiff base and to function as a general acid/base. Here we investigate an alternative active-site design in which the catalytic water molecule was replaced by the side chain of a glutamic acid. Five out of seven designs expressed solubly and exhibited catalytic efficiencies similar to previously designed retroaldolases for the conversion of 4-hydroxy-4-(6-methoxy-2-naphthyl)-2-butanone to 6-methoxy-2-naphthaldehyde and acetone. After one round of site-directed saturation mutagenesis, improved variants of the two best designs, RA114 and RA117, exhibited among the highest kcat (>10(-3)s(-1)) and kcat/KM (11-25M(-1)s(-1)) values observed for retroaldolase designs prior to comprehensive directed evolution. In both cases, the >10(5)-fold rate accelerations that were achieved are within 1-3 orders of magnitude of the rate enhancements reported for the best catalysts for related reactions, including catalytic antibodies (kcat/kuncat=10(6) to 10(8)) and an extensively evolved computational design (kcat/kuncat>10(7)). The catalytic sites, revealed by X-ray structures of optimized versions of the two active designs, are in close agreement with the design models except for the catalytic lysine in RA114. We further improved the variants by computational remodeling of the loops and yeast display selection for reactivity of the catalytic lysine with a diketone probe, obtaining an additional order of magnitude enhancement in activity with both approaches. © 2013.

  16. Studies of Catalytic Properties of Inorganic Rock Matrices in Redox Reactions

    Directory of Open Access Journals (Sweden)

    Nikolay M. Dobrynkin

    2017-09-01

    Full Text Available Intrinsic catalytic properties of mineral matrices of various kinds (basalts, clays, sandstones were studied, which are of interest for in-situ heavy oil upgrading (i.e., underground to create advanced technologies for enhanced oil recovery. The elemental, surface and phase composition and matrix particle morphology, surface and acidic properties were studied using elemental analysis, X-ray diffraction, adsorption and desorption of nitrogen and ammonia. The data on the catalytic activity of inorganic matrices in ammonium nitrate decomposition (reaction with a large gassing, oxidation of hydrocarbons and carbon monoxide, and hydrocracking of asphaltenes into maltenes (the conversion of heavy hydrocarbons into more valuable light hydrocarbons were discussed. In order to check their applicability for the asphaltenes hydrocracking catalytic systems development, basalt and clay matrices were used as supports for iron/basalt, nickel/basalt and iron/clay catalysts. The catalytic activity of the matrices in the reactions of the decomposition of ammonium nitrate, oxidation of hydrocarbons and carbon monoxide, and hydrocracking of asphaltens was observed for the first time.

  17. Investigation on CO catalytic oxidation reaction kinetics of faceted perovskite nanostructures loaded with Pt

    KAUST Repository

    Yin, S. M.

    2017-01-18

    Perovskite lead titanate nanostructures with specific {111}, {100} and {001} facets exposed, have been employed as supports to investigate the crystal facet effect on the growth and CO catalytic activity of Pt nanoparticles. The size, distribution and surface chemical states of Pt on the perovskite supports have been significantly modified, leading to a tailored conversion temperature and catalytic kinetics towards CO catalytic oxidation.

  18. Investigation on CO catalytic oxidation reaction kinetics of faceted perovskite nanostructures loaded with Pt

    KAUST Repository

    Yin, S. M.; Duanmu, J. J.; Zhu, Yihan; Yuan, Y. F.; Guo, S. Y.; Yang, J. L.; Ren, Z. H.; Han, G. R.

    2017-01-01

    Perovskite lead titanate nanostructures with specific {111}, {100} and {001} facets exposed, have been employed as supports to investigate the crystal facet effect on the growth and CO catalytic activity of Pt nanoparticles. The size, distribution and surface chemical states of Pt on the perovskite supports have been significantly modified, leading to a tailored conversion temperature and catalytic kinetics towards CO catalytic oxidation.

  19. Model of Transient Process Where Three-Phase Transducer Feeds Induction Motor Equivalent as a Variable Active-Inductive Load

    Directory of Open Access Journals (Sweden)

    Nenad Marković

    2016-01-01

    Full Text Available The paper presents a new approach in the analysis of a transient state in a system where the feeding source is a transducer-IGBT inverter and load is introduced through the induction motor with its R-L parameters. Induction motors with different parameters of powers and power factors are tested. MATLAB simulation of the three-phase inverter that feeds the induction machine has replaced the missing lab equipment with which mathematical model of this system was verified. According to the selected parameters of the inverter and induction machine and through the simulation in the MATLAB program, the results are obtained in the form of diagrams that verify the model of a transient state of the induction machine operation when it operates as a motor which is presented as a variable R-L load. The transient process of the system three-phase bridge inverter whose active-inductive load is the induction machine in the conditions of the change of the load parameters is analyzed. The model of the transient process in the system formed by the inverter in PWM (Pulse Width Modulation converter and induction machine is developed in the time domain and phase coordinates.

  20. Hydrogen production from palm kernel shell via integrated catalytic adsorption (ICA) steam gasification

    International Nuclear Information System (INIS)

    Khan, Zakir; Yusup, Suzana; Ahmad, Murni Melati; Chin, Bridgid Lai Fui

    2014-01-01

    Highlights: • The paper presents integrated catalytic adsorption (ICA) steam gasification for H 2 yield. • Effects of adsorbent to biomass, biomass particle size and fluidization velocity on H 2 yield are examined. • The present study produces higher H 2 yield as compared to that obtained in literatures. • The ICA provides enhancement of H 2 yield as compared to independent catalytic and CO 2 adsorption gasification systems. - Abstract: The present study investigates the integrated catalytic adsorption (ICA) steam gasification of palm kernel shell for hydrogen production in a pilot scale atmospheric fluidized bed gasifier. The biomass steam gasification is performed in the presence of an adsorbent and a catalyst in the system. The effect of adsorbent to biomass (A/B) ratio (0.5–1.5 wt/wt), fluidization velocity (0.15–0.26 m/s) and biomass particle size (0.355–2.0 mm) are studied at temperature of 675 °C, steam to biomass (S/B) ratio of 2.0 (wt/wt) and biomass to catalyst ratio of 0.1 (wt/wt). Hydrogen composition and yield, total gas yield, and lower product gas heating values (LHV gas ) increases with increasing A/B ratio, while particle size has no significant effect on hydrogen composition and yield, total gas and char yield, gasification and carbon conversion efficiency. However, gas heating values increased with increasing biomass particle size which is due to presence of high methane content in product gas. Meanwhile, medium fluidization velocity of 0.21 m/s favoured hydrogen composition and yield. The results showed that the maximum hydrogen composition and yield of 84.62 vol% and 91.11 g H 2 /kg biomass are observed at A/B ratio of 1.5, S/B ratio of 2.0, catalyst to biomass ratio of 0.1 and temperature of 675 °C. The product gas heating values are observed in the range of 10.92–17.02 MJ/N m 3 . Gasification and carbon conversion efficiency are observed in the range of 25.66–42.95% and 20.61–41.95%, respectively. These lower

  1. Liquid-phase chemical hydrogen storage: catalytic hydrogen generation under ambient conditions.

    Science.gov (United States)

    Jiang, Hai-Long; Singh, Sanjay Kumar; Yan, Jun-Min; Zhang, Xin-Bo; Xu, Qiang

    2010-05-25

    There is a demand for a sufficient and sustainable energy supply. Hence, the search for applicable hydrogen storage materials is extremely important owing to the diversified merits of hydrogen energy. Lithium and sodium borohydride, ammonia borane, hydrazine, and formic acid have been extensively investigated as promising hydrogen storage materials based on their relatively high hydrogen content. Significant advances, such as hydrogen generation temperatures and reaction kinetics, have been made in the catalytic hydrolysis of aqueous lithium and sodium borohydride and ammonia borane as well as in the catalytic decomposition of hydrous hydrazine and formic acid. In this Minireview we briefly survey the research progresses in catalytic hydrogen generation from these liquid-phase chemical hydrogen storage materials.

  2. Ion energy and angular distributions in inductively coupled Argon RF discharges

    International Nuclear Information System (INIS)

    Woodworth, J.R.; Riley, M.E.; Meister, D.C.

    1996-03-01

    We report measurements of the energies and angular distributions of positive ions in an inductively coupled argon plasma in a GEC reference cell. Use of two separate ion detectors allowed measurement of ion energies and fluxes as a function of position as well as ion angular distributions on the discharge centerline. The inductive drive on our system produced high plasma densities (up to 10 12 /cm 3 electron densities) and relatively stable plasma potentials. As a result, ion energy distributions typically consisted of a single feature well separated from zero energy. Mean ion energy was independent of rf power and varied inversely with pressure, decreasing from 29 eV to 12 eV as pressure increased form 2.4 m Torr to 50 mTorr. Half-widths of the ion angular distributions in these experiments varied from 5 degrees to 12.5 degrees, or equivalently, transverse temperatures varied form 0.2 to 0.5 eV with the distributions broadening as either pressure or RF power were increased

  3. Procedure for the preparation of catalysts for application in catalytic gas phase reactions

    International Nuclear Information System (INIS)

    1976-01-01

    The invention describes the preparation of catalysts to be used in catalytic reactions in the gaseous phase. The catalytic material is disposed at the surface of a ceramic or carbon substrate (av. particle size 0.1 μ - 0.5 cm, surface area smaller than 20 m 2 /g) by bombardment of the catalytic material (Pt, Rh, Pd, Ru, Os, Ir) with energetic ions (Ne, Ar, Kr, Xe) in the vicinity of the substrate in medium vacuum

  4. A kinetic study on non-catalytic reactions in hydroprocessing Boscan crude oil

    Energy Technology Data Exchange (ETDEWEB)

    A. Marafi; E. Kam; A. Stanislaus [Kuwait Institute for Scientific Research, Safat (Kuwait). Petroleum Refining Department, Petroleum Research and Studies Center

    2008-08-15

    Non-catalytic hydrothermal cracking reactions are known to associate with catalytic hydrocracking reactions. In a recent study on hydroprocessing of Boscan crude over a specific catalyst system containing three distinct catalysts, it was found that hydrodesulfurization (HDS) and hydrodemetallation (HDM) reactions continued even when the catalyst is severely deactivated. Since the reactor was packed with considerable amount of inert material besides the three catalysts, it will be advantage to determine if the inert materials can also facilitate hydroprocessing reactions. A series of kinetic experiments for the inert particles was undertaken under different space velocity and temperature conditions. The extent of catalytic and non-catalytic hydroprocessing reactions was assessed. Through statistical analysis, the initial reaction rate constant, reaction order and activation energy for various hydroprocessing reactions were then determined. The absolute average deviations (AAD) of the kinetics values obtained for inert materials are less than 10%. 25 refs., 7 figs., 4 tabs.

  5. Cyanide Containing Wastewater Treatment by Ozone Enhanced Catalytic Oxidation over Diatomite Catalysts

    Directory of Open Access Journals (Sweden)

    Lin Mingguo

    2018-01-01

    Full Text Available Cyanide containing wastewater that discharged from gold mining process creates environmental problems due to the toxicity of cyanide. As one of the promising advanced oxidation process, catalytic oxidation with ozone is considered to be effective on the purification of cyanide. Diatomite, a natural mineral, was used as catalyst in this study. The effect of O3 dosage, salinity, initial cyanide concentration and initial pH condition were investigated. It was observed that the removal rate of cyanide was much higher in the catalytic oxidation with ozone process than the one in zone alone process. Alkaline condition was especially favorable for cyanide in catalytic oxidation with ozone. The ozone and catalytic oxidation with ozone were simulated by pseudo-first-order kinetics model. The apparent first-order rate constant contribution of the diatomite catalyst was 0.0757 min-1, and the contribution percentage was 65.77%.

  6. Structural/surface characterization and catalytic evaluation of rare-earth (Y, Sm and La) doped ceria composite oxides for CH{sub 3}SH catalytic decomposition

    Energy Technology Data Exchange (ETDEWEB)

    He, Dedong; Chen, Dingkai; Hao, Husheng; Yu, Jie; Liu, Jiangping; Lu, Jichang; Liu, Feng [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500 (China); Wan, Gengping [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500 (China); Research Center for Analysis and Measurement, Hainan University, Haikou, 570228 (China); He, Sufang [Research Center for Analysis and Measurement, Kunming University of Science and Technology, Kunming, 650093 (China); Luo, Yongming, E-mail: environcatalysis222@yahoo.com [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500 (China)

    2016-12-30

    Highlights: • Ce{sub 0.75}RE{sub 0.25}O{sub 2-δ} (RE = Y, Sm and La) were synthesized by citrate complexation method. • Ce{sub 0.75}Y{sub 0.25}O{sub 2-δ} exhibited the best stability for the decomposition of CH{sub 3}SH. • Cation radius played a key role in determining structure and surface characteristics. • Catalytic behavior depended on synergistic role of oxygen vacancies and basic sites. • Ce{sub 2}S{sub 3} accumulation on the surface was responsible for the deactivation of catalyst. - Abstract: A series of rare earth (Y, Sm and La) doped ceria composite oxides and pure CeO{sub 2} were synthesized and evaluated by conducting CH{sub 3}SH catalytic decomposition test. Several characterization studies, including XRD, BET, Raman, H{sub 2}-TPR, XPS, FT-IR, CO{sub 2}-TPD and CH{sub 3}SH-TPD, were undertaken to correlate structural and surface properties of the obtained ceria-based catalysts with their catalytic performance for CH{sub 3}SH decomposition. More oxygen vacancies and increased basic sites exhibited in the rare earth doped ceria catalysts. Y doped ceria sample (Ce{sub 0.75}Y{sub 0.25}O{sub 2-δ}), with a moderate increase in basic sites, contained more oxygen vacancies. More structural defects and active sites could be provided, and a relatively small amount of sulfur would accumulate, which resulted in better catalytic performance. The developed catalyst presented good catalytic behavior with stability very similar to that of typical zeolite-based catalysts reported previously. However, La doped ceria catalyst (Ce{sub 0.75}La{sub 0.25}O{sub 2-δ}) with the highest alkalinity was not the most active one. More sulfur species would be adsorbed and a large amount of cerium sulfide species (Ce{sub 2}S{sub 3}) would accumulate, which caused deactivation of the catalysts. The combined effect of increased oxygen vacancies and alkalinity led to the catalytic stability of Ce{sub 0.75}Sm{sub 0.25}O{sub 2-δ} sample was comparable to that of pure Ce

  7. Catalytic combustion of gasified waste - Experimental part. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jaeraas, Sven; Kusar, Henrik [Royal Institute of Technology, Stockholm (Sweden). Chemical Engineering and Technology

    2003-08-01

    This final report covers the work that has been performed within the project P 10547-2, 'Catalytic combustion of gasified waste - system analysis ORWARE'. This project is part of the research programme 'Energy from Waste' financed by the Swedish National Energy Administration. The project has been carried out at the division of Industrial Ecology and at the division of Chemical Technology at Royal Inst. of Technology. The aim of the project has been to study the potentials for catalytic combustion of gasified waste. The supposed end user of the technique is a smaller community in Sweden with 15,000-20,000 inhabitants. The project contains of two sub projects: an experimental part carried out at Chemical Technology and a system analysis carried out at Industrial Ecology. This report covers the experimental part of the project carried out at Chemical Technology. The aim for the experimental part has been to develop and test catalysts with long life-time and a high performance, to reduce the thermal-NO{sub x} below 5 ppm and to significantly reduce NO{sub x} formed from fuel-bound nitrogen. Different experimental studies have been carried out within the project: a set-up of catalytic materials have been tested over a synthetic mixture of the gasified waste, the influence of sulfur present in the gas stream, NO{sub x} formation from fuel bound nitrogen, kinetic studies of CO and H{sub 2} with and without the presence of water and the effects of adding a co-metal to palladium catalysts Furthermore a novel annular reactor design has been used to carry out experiments for kinetic measurements. Real gasification tests of waste pellets directly coupled to catalytic combustion have successfully been performed. The results obtained from the experiments, both the catalytic combustion and from the gasification, have been possible to use in the system analysis. The aim of the system analysis of catalytic combustion of gasified waste takes into consideration

  8. Catalytic properties of niobium compounds

    International Nuclear Information System (INIS)

    Tanabe, K.; Iizuka, T.

    1983-04-01

    The catalytic activity and selectivity of niobium compounds including oxides, salts, organometallic compounds and others are outlined. The application of these compounds as catalysts to diversified reactions is reported. The nature and action of niobium catalysts are characteristic and sometimes anomalous, suggesting the necessity of basic research and the potential use as catalysts for important processes in the chemical industry. (Author) [pt

  9. Efficient fully controlled up-to-date equipment for catalytic treatment of waste gases

    International Nuclear Information System (INIS)

    Dvorak, Radek; Stulir, Roman; Cagas, Pavel

    2007-01-01

    This paper describes research and development of a new unit for catalytic destruction of waste gases polluted mainly by volatile organic compounds (VOC), halogenated organic compounds (HOC) or carbon monoxide. Novel equipment has considerable advantages compared with commonly used arrangement (combustion chamber (catalytic reactor)-pipeline-heat exchanger). It is very compact and light and has the combustion chamber, catalytic reactor and heat exchanger integrated into one unit. Maximum utilizing heat losses in the combustion chamber and catalytic reactor is achieved. During the development of this unit experience from tests of previously developed equipment used for thermal treatment of waste gases was used, as well as from experimental studies of catalytic disposal of various VOC carried out in the newly built experimental unit. During the development calculation methods were created allowing design modifications of this unit for real industrial applications. The newly developed unit can be used in various branches of industry such as paint shops, refining plants, sewage treatment plants, food processing industry, pharmaceutical industry, but also in companies processing and transporting crude-oil or natural gas, etc

  10. Microwave-induced carbon nanotubes catalytic degradation of organic pollutants in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing; Xue, Shuang; Song, Youtao; Shen, Manli [School of Environment Science, Liaoning University, Shenyang 110036 (China); Zhang, Zhaohong, E-mail: lnuhjhx@163.com [School of Environment Science, Liaoning University, Shenyang 110036 (China); Yuan, Tianxin; Tian, Fangyuan [School of Environment Science, Liaoning University, Shenyang 110036 (China); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2016-06-05

    Highlights: • Microwave-induced CNTs-based catalytic degradation technology is developed. • Microwave catalytic activities of CNTs with different diameters are compared. • Organic pollutants with different structure can be degraded in MW/CNTs system. • The 10–20 nm CNTs shows the higher catalytic activity under MW irradiation. - Abstract: In this study, a new catalytic degradation technology using microwave induced carbon nanotubes (MW/CNTs) was proposed and applied in the treatment of organic pollutants in aqueous solution. The catalytic activity of three CNTs of 10–20 nm, 20–40 nm, and 40–60 nm diameters were compared. The results showed that organic pollutants such as methyl orange (MO), methyl parathion (MP), sodium dodecyl benzene sulfonate (SDBS), bisphenol A (BPA), and methylene blue (MB) in aqueous solution could be degraded effectively and rapidly in MW/CNTs system. CNTs with diameter of 10–20 nm exhibited the highest catalytic activity of the three CNTs under MW irradiation. Further, complete degradation was obtained using 10–20 nm CNTs within 7.0 min irradiation when 25 mL MO solution (25 mg/L), 1.2 g/L catalyst dose, 450 W, 2450 MHz, and pH = 6.0 were applied. The rate constants (k) for the degradation of SDBS, MB, MP, MO and BPA using 10–20 nm CNTs/MW system were 0.726, 0.679, 0.463, 0.334 and 0.168 min{sup −1}, respectively. Therefore, this technology may have potential application for the treatment of targeted organic pollutants in wastewaters.

  11. Microwave-induced carbon nanotubes catalytic degradation of organic pollutants in aqueous solution

    International Nuclear Information System (INIS)

    Chen, Jing; Xue, Shuang; Song, Youtao; Shen, Manli; Zhang, Zhaohong; Yuan, Tianxin; Tian, Fangyuan; Dionysiou, Dionysios D.

    2016-01-01

    Highlights: • Microwave-induced CNTs-based catalytic degradation technology is developed. • Microwave catalytic activities of CNTs with different diameters are compared. • Organic pollutants with different structure can be degraded in MW/CNTs system. • The 10–20 nm CNTs shows the higher catalytic activity under MW irradiation. - Abstract: In this study, a new catalytic degradation technology using microwave induced carbon nanotubes (MW/CNTs) was proposed and applied in the treatment of organic pollutants in aqueous solution. The catalytic activity of three CNTs of 10–20 nm, 20–40 nm, and 40–60 nm diameters were compared. The results showed that organic pollutants such as methyl orange (MO), methyl parathion (MP), sodium dodecyl benzene sulfonate (SDBS), bisphenol A (BPA), and methylene blue (MB) in aqueous solution could be degraded effectively and rapidly in MW/CNTs system. CNTs with diameter of 10–20 nm exhibited the highest catalytic activity of the three CNTs under MW irradiation. Further, complete degradation was obtained using 10–20 nm CNTs within 7.0 min irradiation when 25 mL MO solution (25 mg/L), 1.2 g/L catalyst dose, 450 W, 2450 MHz, and pH = 6.0 were applied. The rate constants (k) for the degradation of SDBS, MB, MP, MO and BPA using 10–20 nm CNTs/MW system were 0.726, 0.679, 0.463, 0.334 and 0.168 min"−"1, respectively. Therefore, this technology may have potential application for the treatment of targeted organic pollutants in wastewaters.

  12. Dimension meditated optic and catalytic performance over vanadium pentoxides

    International Nuclear Information System (INIS)

    Su, Dezhi; Zhao, Yongjie; Zhang, Ruibo; Ning, Mingqiang; Zhao, Yuzhen; Zhou, Heping; Li, Jingbo; Jin, Haibo

    2016-01-01

    Highlights: • V_2O_5 with diverse dimensional morphologies were synthesized. • The optic properties of diverse dimensional V_2O_5 were investigated in detail. • The catalytic properties of diverse dimensional V_2O_5 on the thermal decomposition of ammonium perchlorate were analyzed. - Abstract: Morphologies and sizes of V_2O_5 had crucial effect on their optic and catalytic performance. Diverse dimensional V_2O_5 were successfully synthesized by the combination of a hydrothermal and post heat treatment method. The as-obtained samples were characterized by X-ray power diffraction, scanning electron microscopy, transmission electron microscopy and Raman spectra. Moreover, the optic properties of diverse dimensional V_2O_5 were examined by Fourier transform imaging spectrometer and UV–vis-spectrophotometer. It showed that the IR transmittance of nanowire (at 1019 cm"−"1 is 85%) and UV absorbance of microflowers (at 480 nm) were high. Furthermore, the catalytic properties of diverse dimensional V_2O_5 on the thermal decomposition of ammonium perchlorate were evaluated and compared by Thermo-Gravimetric Analysis and Differential Scanning Calorimetry. Moreover, the best catalytic performance was obtained with the morphology of nanowire. It showed the thermal decomposition temperatures of AP with nanowire, microflowers and microsphere were reduced to 373 °C, 382 °C and 376 °C (decreased by 52 °C, 43 °C and 49 °C).

  13. Dimension meditated optic and catalytic performance over vanadium pentoxides

    Energy Technology Data Exchange (ETDEWEB)

    Su, Dezhi [Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Zhao, Yongjie, E-mail: zhaoyjpeace@gmail.com [Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Zhang, Ruibo; Ning, Mingqiang [Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Zhao, Yuzhen; Zhou, Heping [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Li, Jingbo; Jin, Haibo [Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China)

    2016-12-15

    Highlights: • V{sub 2}O{sub 5} with diverse dimensional morphologies were synthesized. • The optic properties of diverse dimensional V{sub 2}O{sub 5} were investigated in detail. • The catalytic properties of diverse dimensional V{sub 2}O{sub 5} on the thermal decomposition of ammonium perchlorate were analyzed. - Abstract: Morphologies and sizes of V{sub 2}O{sub 5} had crucial effect on their optic and catalytic performance. Diverse dimensional V{sub 2}O{sub 5} were successfully synthesized by the combination of a hydrothermal and post heat treatment method. The as-obtained samples were characterized by X-ray power diffraction, scanning electron microscopy, transmission electron microscopy and Raman spectra. Moreover, the optic properties of diverse dimensional V{sub 2}O{sub 5} were examined by Fourier transform imaging spectrometer and UV–vis-spectrophotometer. It showed that the IR transmittance of nanowire (at 1019 cm{sup −1} is 85%) and UV absorbance of microflowers (at 480 nm) were high. Furthermore, the catalytic properties of diverse dimensional V{sub 2}O{sub 5} on the thermal decomposition of ammonium perchlorate were evaluated and compared by Thermo-Gravimetric Analysis and Differential Scanning Calorimetry. Moreover, the best catalytic performance was obtained with the morphology of nanowire. It showed the thermal decomposition temperatures of AP with nanowire, microflowers and microsphere were reduced to 373 °C, 382 °C and 376 °C (decreased by 52 °C, 43 °C and 49 °C).

  14. O2 -independent demethylation of trimethylamine N-oxide by Tdm of Methylocella silvestris.

    Science.gov (United States)

    Zhu, Yijun; Ksibe, Amira Z; Schäfer, Hendrik; Blindauer, Claudia A; Bugg, Timothy D H; Chen, Yin

    2016-11-01

    Bacterial trimethylamine N-oxide (TMAO) demethylase, Tdm, carries out an unusual oxygen-independent demethylation reaction, resulting in the formation of dimethylamine and formaldehyde. In this study, site-directed mutagenesis, homology modelling and metal analyses by inorganic mass spectrometry have been applied to gain insight into metal stoichiometry and underlying catalytic mechanism of Tdm of Methylocella silvestris BL2. Herein, we demonstrate that active Tdm has 1 molar equivalent of Zn 2+ and 1 molar equivalent of non-haem Fe 2+ . We further investigated Zn 2+ - and Fe 2+ -binding sites through homology modelling and site-directed mutagenesis and found that Zn 2+ is coordinated by a 3-sulfur-1-O motif. An aspartate residue (D198) likely bridges Fe 2+ and Zn 2+ centres, either directly or indirectly via H-bonding through a neighbouring H 2 O molecule. H276 contributes to Fe 2+ binding, mutation of which results in an inactive enzyme, and the loss of iron, but not zinc. Site-directed mutagenesis of Tdm also led to the identification of three hydrophobic aromatic residues likely involved in substrate coordination (F259, Y305, W321), potentially through a cation-π interaction. Furthermore, a crossover experiment using a substrate analogue gave direct evidence that a trimethylamine-alike intermediate was produced during the Tdm catalytic cycle, suggesting TMAO has a dual role of being both a substrate and an oxygen donor for formaldehyde formation. Together, our results provide novel insight into the role of Zn 2+ and Fe 2+ in the catalysis of TMAO demethylation by this unique oxygen-independent enzyme. © 2016 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  15. Catalytic flash pyrolysis of oil-impregnated-wood and jatropha cake using sodium based catalysts

    KAUST Repository

    Imran, Ali

    2015-11-24

    Catalytic pyrolysis of wood with impregnated vegetable oil was investigated and compared with catalytic pyrolysis of jatropha cake making use of sodium based catalysts to produce a high quality bio-oil. The catalytic pyrolysis was carried out in two modes: in-situ catalytic pyrolysis and post treatment of the pyrolysis vapors. The in-situ catalytic pyrolysis was carried out in an entrained flow reactor system using a premixed feedstock of Na2CO3 and biomass and post treatment of biomass pyrolysis vapor was conducted in a downstream fixed bed reactor of Na2CO3/γ-Al2O3. Results have shown that both Na2CO3 and Na2CO3/γ-Al2O3 can be used for the production of a high quality bio-oil from catalytic pyrolysis of oil-impregnated-wood and jatropha cake. The catalytic bio-oil had very low oxygen content, water content as low as 1wt.%, a neutral pH, and a high calorific value upto 41.8MJ/kg. The bio-oil consisted of high value chemical compounds mainly hydrocarbons and undesired compounds in the bio-oil were either completely removed or considerably reduced. Increasing the triglycerides content (vegetable oil) in the wood enhanced the formation of hydrocarbons in the bio-oil. Post treatment of the pyrolysis vapor over a fixed bed of Na2CO3/γ-Al2O3 produced superior quality bio-oil compared to in-situ catalytic pyrolysis with Na2CO3. This high quality bio-oil may be used as a precursor in a fractionating process for the production of alternative fuels. © 2015 Elsevier B.V.

  16. High-efficiency plasma catalytic removal of dilute benzene from air

    International Nuclear Information System (INIS)

    Fan, Hong-Yu; Shi, Chuan; Li, Xiao-Song; Zhao, De-Zhi; Xu, Yong; Zhu, Ai-Min

    2009-01-01

    Achieving complete oxidation, good humidity tolerance and low energy cost is the key issue that needs to be addressed in plasma catalytic volatile organic compounds removal from air. For this purpose, Ag/HZSM-5 catalyst-packed dielectric barrier discharge using a cycled system composed of a storage stage and a discharge stage was studied. For dilute benzene removal from simulated air, Ag/HZSM-5 catalysts exhibit not only preferential adsorption of benzene in humid air at the storage stage but also almost complete oxidation of adsorbed benzene at the discharge stage. Five 'storage-discharge' cycles were examined, which suggests that Ag/HZSM-5 catalysts are very stable during the cycled 'storage-discharge' (CSD) plasma catalytic process. High oxidation rate of absorbed benzene as well as low energy cost can be achieved at a moderate discharge power. In an example of the CSD plasma catalytic remedy of simulated air containing 4.7 ppm benzene with 50% RH and 600 ml min -1 flow rate, the energy cost was as low as 3.7 x 10 -3 kWh m -3 air. This extremely low energy cost to remove low-concentration pollutants from air undoubtedly makes the environmental applications of the plasma catalytic technique practical.

  17. Effect of inter-tissue inductive coupling on multi-frequency imaging of intracranial hemorrhage by magnetic induction tomography

    Science.gov (United States)

    Xiao, Zhili; Tan, Chao; Dong, Feng

    2017-08-01

    Magnetic induction tomography (MIT) is a promising technique for continuous monitoring of intracranial hemorrhage due to its contactless nature, low cost and capacity to penetrate the high-resistivity skull. The inter-tissue inductive coupling increases with frequency, which may lead to errors in multi-frequency imaging at high frequency. The effect of inter-tissue inductive coupling was investigated to improve the multi-frequency imaging of hemorrhage. An analytical model of inter-tissue inductive coupling based on the equivalent circuit was established. A set of new multi-frequency decomposition equations separating the phase shift of hemorrhage from other brain tissues was derived by employing the coupling information to improve the multi-frequency imaging of intracranial hemorrhage. The decomposition error and imaging error are both decreased after considering the inter-tissue inductive coupling information. The study reveals that the introduction of inter-tissue inductive coupling can reduce the errors of multi-frequency imaging, promoting the development of intracranial hemorrhage monitoring by multi-frequency MIT.

  18. Physical chemistry of catalytic reduction of nitroarenes using various nanocatalytic systems: past, present, and future

    International Nuclear Information System (INIS)

    Begum, Robina; Rehan, Rida; Farooqi, Zahoor H.; Butt, Zonarah; Ashraf, Sania

    2016-01-01

    The catalytic reduction of nitroarenes under various catalytic systems has been widely reported in the flood of publications during last twenty years. This reaction has become a benchmark for testing catalytic activity of inorganic nanoparticles stabilized in various systems. This tutorial review presents design and classification of inorganic nanocatalysts along with their stabilizing agents used for catalytic reduction of nitroarenes. The techniques used for characterization of catalysts have been highlighted in this review. The mechanism of catalytic reduction has been described in a tutorial way. Factors affecting the rate of reduction of nitroarenes in the presence of metal nanoparticles stabilized in polyelectrolyte brushes, polyionic liquids, micelles, dendrimers, and microgels have been discussed for further development in this area.Graphical abstract

  19. Physical chemistry of catalytic reduction of nitroarenes using various nanocatalytic systems: past, present, and future

    Energy Technology Data Exchange (ETDEWEB)

    Begum, Robina [University of the Punjab, Centre for Undergraduate Studies (Pakistan); Rehan, Rida; Farooqi, Zahoor H., E-mail: zhfarooqi@gmail.com; Butt, Zonarah; Ashraf, Sania [University of the Punjab, Institute of Chemistry (Pakistan)

    2016-08-15

    The catalytic reduction of nitroarenes under various catalytic systems has been widely reported in the flood of publications during last twenty years. This reaction has become a benchmark for testing catalytic activity of inorganic nanoparticles stabilized in various systems. This tutorial review presents design and classification of inorganic nanocatalysts along with their stabilizing agents used for catalytic reduction of nitroarenes. The techniques used for characterization of catalysts have been highlighted in this review. The mechanism of catalytic reduction has been described in a tutorial way. Factors affecting the rate of reduction of nitroarenes in the presence of metal nanoparticles stabilized in polyelectrolyte brushes, polyionic liquids, micelles, dendrimers, and microgels have been discussed for further development in this area.Graphical abstract.

  20. SP600125 Induces Src and Type I IGF Receptor Phosphorylation Independent of JNK

    Directory of Open Access Journals (Sweden)

    Qingbin Kong

    2014-09-01

    Full Text Available c-Jun N-terminal kinases (JNK are members of the mitogen-activated protein kinase (MAPK family that have important roles in signal transduction. The small molecule SP600125 is widely used in biochemical studies as a JNK inhibitor. However, recent studies indicate that SP600125 may also act independent of JNK. Here, we report that SP600125 can induce Src, type I insulin-like growth factor receptor (IGF-IR, Akt and Erk1/2 phosphorylation. Notably, these effects are independent of its inhibition of JNK. Inhibition of Src abrogates the stimulation of IGF-IR, Akt and Erk1/2 phosphorylation. IGF-IR knockdown blunts the induction of both Akt and Erk1/2 phosphorylation by SP600125. Moreover, combination of SP600125 and the Src inhibitor saracatinib synergistically inhibits cell proliferation. We conclude that SP600125 can activate Src-IGF-IR-Akt/Erk1/2 signaling pathways independent of JNK.

  1. Catalytic oxidation of soot over alkaline niobates

    International Nuclear Information System (INIS)

    Pecchi, G.; Cabrera, B.; Buljan, A.; Delgado, E.J.; Gordon, A.L.; Jimenez, R.

    2013-01-01

    Highlights: ► No previous reported studies about alkaline niobates as catalysts for soot oxidation. ► NaNbO 3 and KNbO 3 perovskite-type oxides show lower activation energy than other lanthanoid perovskite-type oxides. ► The alkaline niobate does not show deactivation by metal loss. - Abstract: The lack of studies in the current literature about the assessment of alkaline niobates as catalysts for soot oxidation has motivated this research. In this study, the synthesis, characterization and assessment of alkaline metal niobates as catalysts for soot combustion are reported. The solids MNbO 3 (M = Li, Na, K, Rb) are synthesized by a citrate method, calcined at 450 °C, 550 °C, 650 °C, 750 °C, and characterized by AAS, N 2 adsorption, XRD, O 2 -TPD, FTIR and SEM. All the alkaline niobates show catalytic activity for soot combustion, and the activity depends basically on the nature of the alkaline metal and the calcination temperature. The highest catalytic activity, expressed as the temperature at which combustion of carbon black occurs at the maximum rate, is shown by KNbO 3 calcined at 650 °C. At this calcination temperature, the catalytic activity follows an order dependent on the atomic number, namely: KNbO 3 > NaNbO 3 > LiNbO 3 . The RbNbO 3 solid do not follow this trend presumably due to the perovskite structure was not reached. The highest catalytic activity shown by of KNbO 3 , despite the lower apparent activation energy of NaNbO 3 , stress the importance of the metal nature and suggests the hypothesis that K + ions are the active sites for soot combustion. It must be pointed out that alkaline niobate subjected to consecutive soot combustion cycles does not show deactivation by metal loss, due to the stabilization of the alkaline metal inside the perovskite structure.

  2. Structured Statistical Models of Inductive Reasoning

    Science.gov (United States)

    Kemp, Charles; Tenenbaum, Joshua B.

    2009-01-01

    Everyday inductive inferences are often guided by rich background knowledge. Formal models of induction should aim to incorporate this knowledge and should explain how different kinds of knowledge lead to the distinctive patterns of reasoning found in different inductive contexts. This article presents a Bayesian framework that attempts to meet…

  3. Validation of the catalytic properties of Cu-Os/13X using single fixed bed reactor in selective catalytic reduction of NO

    International Nuclear Information System (INIS)

    Oh, Kwang Seok; Woo, Seong Ihl

    2007-01-01

    Catalytic decomposition of NO over Cu-Os/13X has been carried out in a tubular fixed bed reactor at atmospheric pressure and the results were compared with literature data performed by high-throughput screening (HTS). The activity and durability of Cu-Os/13X prepared by conventional ion-exchange method have been investigated in the presence of H 2 O and SO 2 . It was found that Cu-Os/13X prepared by ion-exchange shows a high activity in a wide temperature range in selective catalytic reduction (SCR) of NO with C 3 H 6 compared to Cu/13X, proving the existence of more NO adsorption site on Cu-Os/13X. However, Cu-Os/13X exhibited low activity in the presence of water, and was quite different from the result reported in literature. SO 2 resistance is also low and does not recover its original activity when the SO 2 was blocked in the feed gas stream. This result suggested that catalytic activity between combinatorial screening and conventional testing should be compared to confirm the validity of high-throughput screening

  4. Assessment and modeling of inductive and non-inductive scenarios for ITER

    International Nuclear Information System (INIS)

    Boucher, D.; Vayakis, G.; Moreau, D.

    1999-01-01

    This paper presents recent developments in modeling and simulations of ITER performances and scenarios. The first part presents an improved modeling of coupled divertor/main plasma operation including the simulation of the measurements involved in the control loop. The second part explores the fusion performances predicted under non-inductive operation with internal transport barrier. The final part covers a detailed scenario for non-inductive operation using a reverse shear configuration with lower hybrid and fast wave current drive. (author)

  5. New insight in the microscopic mechanism of the catalytic synthesis of ammonia

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Henriksen, Niels Engholm; Billing, Gert D.

    1995-01-01

    Theoretical quantum calculations and molecular beam experiments of the dissociative chemisorption of N-2 molecules on catalytic active metal surfaces have given new insight in the fundamental process of the ammonia synthesis. This new approach to the study of catalytic process supplements the con...

  6. Highly effective catalytic peroxymonosulfate activation on N-doped mesoporous carbon for o-phenylphenol degradation.

    Science.gov (United States)

    Hou, Jifei; Yang, Shasha; Wan, Haiqin; Fu, Heyun; Qu, Xiaolei; Xu, Zhaoyi; Zheng, Shourong

    2018-04-01

    As a broad-spectrum preservative, toxic o-phenylphenol (OPP) was frequently detected in aquatic environments. In this study, N-doped mesoporous carbon was prepared by a hard template method using different nitrogen precursors and carbonization temperatures (i.e., 700, 850 and 1000 °C), and was used to activate peroxymonosulfate (PMS) for OPP degradation. For comparison, mesoporous carbon (CMK-3) was also prepared. Characterization results showed that the N-doped mesoporous carbon samples prepared under different conditions were perfect replica of their template. In comparison with ethylenediamine (EDA) and dicyandiamide (DCDA) as the precursors, N-doped mesoporous carbon prepared using EDA and carbon tetrachloride as the precursors displayed a higher catalytic activity for OPP degradation. Increasing carbonization temperature of N-doped mesoporous carbon led to decreased N content and increased graphitic N content at the expense of pyridinic and pyrrolic N. Electron paramagnetic resonance (EPR) analysis showed that PMS activation on N-doped mesoporous carbon resulted in highly active species and singlet oxygen, and catalytic PMS activation for OPP degradation followed a combined radical and nonradical reaction mechanism. Increasing PMS concentration enhanced OPP degradation, while OPP degradation rate was independent on initial OPP concentration. Furthermore, the dependency of OPP degradation on PMS concentration followed the Langmuir-Hinshelwood model, reflecting that the activation of adsorbed PMS was the rate controlling step. Based on the analysis by time-of-flight mass spectrometry, the degradation pathway of OPP was proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Modern control strategies of doubly-fed induction generator based wind turbine system

    DEFF Research Database (Denmark)

    Zhou, Dao; Song, Yipeng; Blaabjerg, Frede

    2016-01-01

    A doubly-fed induction generator (DFIG) based configuration is still preferred by wind turbine manufactures due to the cost-effective power converter and independent control of the active power and reactive power. To cope with stricter grid codes (e.g. reactive power compensation, low voltage ride......, with the control targets of the smooth active and reactive power or the balances and sinusoidal current of the rotor-side converter and the grid-side converter. Finally, a bandwidth based repetitive controller is evaluated to improve the DFIG system's robustness against grid frequency deviation....

  8. Selective catalytic oxidation of hydrocarbons as a challenge to the chemical engineer

    Energy Technology Data Exchange (ETDEWEB)

    Emig, G [Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Inst. fuer Technische Chemie 1

    1977-11-01

    In the conversion of the most important chemical raw materials, natural oil and natural gas, to intermediate or end products, selective catalytic oxidation plays an increasing role. This method makes it possible in many cases to use more economical, single-step processes instead of the older multi-step processes. Using the typical example of propylene oxidation or ammonoxidation, the problems encountered by chemical engineers in the development of a heterogeneous-catalytic method of oxidation are demonstrated. The importance of systematic catalyst development is stressed. General aspects of the development of novel processes or the improvement of existing catalytic processes are discussed.

  9. Catalytic pyrolysis of Laminaria japonica over nanoporous catalysts using Py-GC/MS

    Directory of Open Access Journals (Sweden)

    Jeon Jong-Ki

    2011-01-01

    Full Text Available Abstract The catalytic pyrolysis of Laminaria japonica was carried out over a hierarchical meso-MFI zeolite (Meso-MFI and nanoporous Al-MCM-48 using pyrolysis gas chromatography/mass spectrometry (Py-GC/MS. The effect of the catalyst type on the product distribution and chemical composition of the bio-oil was examined using Py-GC/MS. The Meso-MFI exhibited a higher activity in deoxygenation and aromatization during the catalytic pyrolysis of L. japonica. Meanwhile, the catalytic activity of Al-MCM-48 was lower than that of Meso-MFI due to its weak acidity.

  10. Radiation induced bystander signals are independent of DNA damage and DNA repair capacity of the irradiated cells

    Energy Technology Data Exchange (ETDEWEB)

    Kashino, Genro [Gray Cancer Institute, P.O. Box 100, Mount Vernon Hospital, Northwood, Middlesex HA6 2JR (United Kingdom); Particle Radiation Oncology Research Center, Research Reactor Institute, Kyoto University, 2-1010 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Suzuki, Keiji [Division of Radiation Biology, Department of Radiology and Radiation Biology, Course of Life Sciences and Radiation Research, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521 (Japan); Matsuda, Naoki [Division of Radiation Biology and Protection, Center for Frontier Life Sciences, Nagasaki University, Nagasaki 852-8102 (Japan); Kodama, Seiji [Radiation Biology Laboratory, Radiation Research Center, Frontier Science Innovation Center, Organization for University-Industry-Government Cooperation, Osaka Prefecture University, 1-2 Gakuen-cho, Sakai, Osaka 599-8570 (Japan); Ono, Koji [Particle Radiation Oncology Research Center, Research Reactor Institute, Kyoto University, 2-1010 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Watanabe, Masami [Laboratory of Radiation Biology, Division of Radiation Life Science, Department of Radiation Life Science and Radiation Medical Science, Kyoto University Research Reactor Institute, 2-1010 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Prise, Kevin M [Gray Cancer Institute, P.O. Box 100, Mount Vernon Hospital, Northwood, Middlesex HA6 2JR (United Kingdom) and Centre for Cancer Research and Cell Biology, Queen' s University Belfast, Lisburn Road, Belfast BT9 7AB (United Kingdom)]. E-mail: prise@gci.ac.uk

    2007-06-01

    Evidence is accumulating that irradiated cells produce signals, which interact with non-exposed cells in the same population. Here, we analysed the mechanism for bystander signal arising in wild-type CHO cells and repair deficient varients, focussing on the relationship between DNA repair capacity and bystander signal arising in irradiated cells. In order to investigate the bystander effect, we carried out medium transfer experiments after X-irradiation where micronuclei were scored in non-targeted DSB repair deficient xrs5 cells. When conditioned medium from irradiated cells was transferred to unirradiated xrs5 cells, the level of induction was independent of whether the medium came from irradiated wild-type, ssb or dsb repair deficient cells. This result suggests that the activation of a bystander signal is independent of the DNA repair capacity of the irradiated cells. Also, pre-treatment of the irradiated cells with 0.5% DMSO, which suppresses micronuclei induction in CHO but not in xrs5 cells, suppressed bystander effects completely in both conditioned media, suggesting that DMSO is effective for suppression of bystander signal arising independently of DNA damage in irradiated cells. Overall the work presented here adds to the understanding that it is the repair phenotype of the cells receiving bystander signals, which determines overall response rather than that of the cell producing the bystander signal.

  11. Advanced Catalytic Converter in Gasoline Enginer Emission Control: A Review

    OpenAIRE

    Leman A.M.; Jajuli Afiqah; Feriyanto Dafit; Rahman Fakhrurrazi; Zakaria Supaat

    2017-01-01

    Exhaust emission from automobile source has become a major contributor to the air pollution and environmental problem. Catalytic converter is found to be one of the most effective tools to reduce the overwhelming exhaust pollutants in our environment. The development of sustainable catalytic converter still remains a critical issue due to the stringent exhaust emission regulations. Another issue such as price and availability of the precious metal were also forced the automotive industry to i...

  12. Application of Zeolitic Additives in the Fluid Catalytic Cracking (FCC

    Directory of Open Access Journals (Sweden)

    A. Nemati Kharat

    2013-06-01

    Full Text Available Current article describes application of zeolites in fluid catalytic cracking (FCC. The use of several zeolitic additives for the production light olefins and reduction of pollutants is described. Application of zeolites as fluid catalytic cracking (FCC catalysts and additives due to the presence of active acid sites in the zeolite framework  increase the formation of desired cracking products (i.e., olefin and branched products  in the FCC unit.

  13. Omeprazole induces heme oxygenase-1 in fetal human pulmonary microvascular endothelial cells via hydrogen peroxide-independent Nrf2 signaling pathway

    International Nuclear Information System (INIS)

    Patel, Ananddeep; Zhang, Shaojie; Shrestha, Amrit Kumar; Maturu, Paramahamsa; Moorthy, Bhagavatula; Shivanna, Binoy

    2016-01-01

    Omeprazole (OM) is an aryl hydrocarbon receptor (AhR) agonist and a proton pump inhibitor that is used to treat humans with gastric acid related disorders. Recently, we showed that OM induces NAD (P) H quinone oxidoreductase-1 (NQO1) via nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent mechanism. Heme oxygenase-1 (HO-1) is another cytoprotective and antioxidant enzyme that is regulated by Nrf2. Whether OM induces HO-1 in fetal human pulmonary microvascular endothelial cells (HPMEC) is unknown. Therefore, we tested the hypothesis that OM will induce HO-1 expression via Nrf2 in HPMEC. OM induced HO-1 mRNA and protein expression in a dose-dependent manner. siRNA-mediated knockdown of AhR failed to abrogate, whereas knockdown of Nrf2 abrogated HO-1 induction by OM. To identify the underlying molecular mechanisms, we determined the effects of OM on cellular hydrogen peroxide (H 2 O 2 ) levels since oxidative stress mediated by the latter is known to activate Nrf2. Interestingly, the concentration at which OM induced HO-1 also increased H 2 O 2 levels. Furthermore, H 2 O 2 independently augmented HO-1 expression. Although N-acetyl cysteine (NAC) significantly decreased H 2 O 2 levels in OM-treated cells, we observed that OM further increased HO-1 mRNA and protein expression in NAC-pretreated compared to vehicle-pretreated cells, suggesting that OM induces HO-1 via H 2 O 2 -independent mechanisms. In conclusion, we provide evidence that OM transcriptionally induces HO-1 via AhR - and H 2 O 2 - independent, but Nrf2 - dependent mechanisms. These results have important implications for human disorders where Nrf2 and HO-1 play a beneficial role. - Highlights: • Omeprazole induces HO-1 in human fetal lung cells. • AhR deficiency fails to abrogate omeprazole-mediated induction of HO-1. • Nrf2 knockdown abrogates omeprazole-mediated HO-1 induction in human lung cells. • Hydrogen peroxide depletion augments omeprazole-mediated induction of HO-1.

  14. Induction Based Training leads to Highly Significant Improvements of Objective and Subjective Suturing Ability in Junior Doctors

    Directory of Open Access Journals (Sweden)

    Kevin Garry

    2018-03-01

    Full Text Available Background: Simulation based training has shown to be of benefit in the education of medical students. However, the impact of induction based clinical simulation on surgical ability of qualified doctors remains unclear.The aim of this study was to establish if a 60 minute teaching session integrated into an Emergency Medicine speciality induction program produces statistically significant improvements in objective and subjective suturing abilities of junior doctors commencing an Emergency Medicine rotation.Methods: The objective suturing abilities of 16 Foundation Year Two doctors were analysed using a validated OSATs scale prior to a novel teaching intervention. The doctors then undertook an intensive hour long workshop receiving one to one feedback before undergoing repeat OSATs assessment.Subjective ability was measured using a 5 point likert scale and self-assessed competency reporting interrupted suturing before and after the intervention. Photographs of wound closure before and after the intervention were recorded for further blinded assessment of impact of intervention. A survey regarding continued ability was repeated at four months following the intervention. The study took place on 7/12/16 during the Belfast Health and Social Care Trust Emergency Medicine induction in the Royal Victoria Hospital Belfast. The hospital is a regional level 1 trauma centre that has annual departmental attendances in excess of 200,000.All new junior doctors commencing the Emergency Medicine rotation were invited to partake in the study. All 16 agreed. The group consisted of a mixture of undergraduate and postgraduate medicaldoctors who all had 16 months experience working in a variety of medical or surgical jobs previously.Results: Following the teaching intervention objective and subjective abilities in interrupted suturing showed statistically significant improvement (P>0.005. Self-reporting of competency of independently suturingwounds improved from 50

  15. Induction accelerator test module for HIF

    International Nuclear Information System (INIS)

    Faltens, A.

    1991-04-01

    An induction linac test module suitable for investigating the drive requirements and the longitudinal coupling impedance of a high-power ion induction linac has been constructed by the Heavy Ion Fusion (HIF) group at LBL. The induction linac heavy ion driver for inertial confinement fusion (ICF) as presently envisioned uses multiple parallel beams which are transported in separate focusing channels but accelerated together in the induction modules. The resulting induction modules consequently have large beam apertures-1--2 meters in diameter- and correspondingly large outside diameters. The module geometry is related to a low-frequency ''gap capacity'' and high-frequency structural resonances, which are affected by the magnetic core loading and the module pulser impedance. A description of the test module and preliminary results are presented. 3 figs

  16. Control of variable speed wind turbine with doubly-fed induction generator

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, A.D.; Soerensen, P. [Risoe National Lab., Wind Energy Dept., Roskilde (Denmark); Iov, F.; Blaabjerg, F. [Aalborg Univ., Inst. of Energy Technology, Aalborg (Denmark)

    2004-07-01

    draIn this paper, a Control method suitable for a variable speed grid connected pitch-controlled wind turbine with doubly-fed induction generator (DFIG) is developed. The targets of the Control system are: 1) to Control the power drawn from the wind turbine in order to track the wind turbine optimum operation point 2) to limit the power in case of high wind speeds and 3) to Control the reactive power interchanged between the wind turbine generator and the grid. The considered configuration of DFIG is an induction generator with a wound rotor connected to the grid through a back-to-back power converter and a stator directly connected to the grid. The paper presents the overall Control system of the variable speed DFIG wind turbine, with focus on the Control strategies and algorithms applied at each hierarchical Control level of the wind turbine. There are two Control levels: a DFIG Control level and wind turbine Control level. The DFIG Control level contains a fast Control of the power converter and of the doubly-fed induction generator and it has as goal to Control the active and reactive power of the wind turbine independently. The wind turbine Control level supervises with Control signals both the DFIG Control level and the hydraulic pitch Control system of the wind turbine. The present Control method is designed for normal continuous operations. The variable speed/variable pitch wind turbine with doubly-fed induction generator is implemented in the dynamic power system simulation tool DIgSILENT, which makes possible to investigate the dynamic performance of gid-connected wind turbines as a part of realistic electrical grid models. Several significant simulation results are performed With the overall Control-implemented algorithm applied on a variable speed, variable pitch wind turbine model. (au)

  17. Catalytic conversion of light alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  18. Induction of c-Jun by air particulate matter (PM₁₀) of Mexico city: Participation of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Salcido-Neyoy, Martha Estela; Sánchez-Pérez, Yesennia; Osornio-Vargas, Alvaro Román; Gonsebatt, María Eugenia; Meléndez-Zajgla, Jorge; Morales-Bárcenas, Rocío; Petrosyan, Pavel; Molina-Servin, Edith Danny; Vega, Elizabeth; Manzano-León, Natalia; García-Cuellar, Claudia M

    2015-08-01

    The carcinogenic potential of urban particulate matter (PM) has been partly attributed to polycyclic aromatic hydrocarbons (PAHs) content, which activates the aryl hydrocarbon receptor (AhR). Here we report the effect of PM with an aerodynamic size of 10 μm (PM10) on the induction of AhR pathway in A549 cells, evaluating its downstream targets CYP1B1, IL-6, IL-8 and c-Jun. Significant increases in CYP1B1 protein and enzyme activity; IL-6 and IL-8 secretion and c-Jun protein were found in response to PM10. The formation of PAH-DNA adducts was also detected. The involvement of AhR pathway was confirmed with Resveratrol as AhR antagonist, which reversed CYP1B1 and c-Jun induction. Nevertheless, in IL-6 and IL-8 secretion, the Resveratrol was ineffective, suggesting an effect independent of this pathway. Considering the role of c-Jun in oncogenesis, its induction by PM may be contributing to its carcinogenic potential through induction of AhR pathway by PAHs present in PM10. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. A catalytic approach to estimate the redox potential of heme-peroxidases

    International Nuclear Information System (INIS)

    Ayala, Marcela; Roman, Rosa; Vazquez-Duhalt, Rafael

    2007-01-01

    The redox potential of heme-peroxidases varies according to a combination of structural components within the active site and its vicinities. For each peroxidase, this redox potential imposes a thermodynamic threshold to the range of oxidizable substrates. However, the instability of enzymatic intermediates during the catalytic cycle precludes the use of direct voltammetry to measure the redox potential of most peroxidases. Here we describe a novel approach to estimate the redox potential of peroxidases, which directly depends on the catalytic performance of the activated enzyme. Selected p-substituted phenols are used as substrates for the estimations. The results obtained with this catalytic approach correlate well with the oxidative capacity predicted by the redox potential of the Fe(III)/Fe(II) couple

  20. Kinetic particularities of strained alicyclic compounds formation in catalytic methanol to hydrocarbon transformation process

    OpenAIRE

    Doluda V.; Brovko R.; Giniatullina N.; Sulman M.

    2017-01-01

    The catalytic transformation of methanol into hydrocarbons is a complex chemical process, accompanied by chain parallel chemical transformation reactions. The most valuable products of the methanol to hydrocarbons catalytic transformation reaction are the strained hydrocarbons — cyclopropane derivatives. These compounds can be used as a high-energy fuel, and also as a valuable chemical raw material. However, the yield of strained compounds in methanol to hydrocarbons catalytic transformation ...

  1. Hydrogen Recombination Rates of Plate-type Passive Auto-catalytic Recombiner

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongtae; Hong, Seong-Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Gun Hong [Kyungwon E-C Co., Seongnam (Korea, Republic of)

    2014-10-15

    The hydrogen mitigation system may include igniters, passive autocatalytic recombiner (PAR), and venting or dilution system. Recently PAR is commonly used as a main component of HMS in a NPP containment because of its passive nature. PARs are categorized by the shape and material of catalytic surface. Catalytic surface coated by platinum is mostly used for the hydrogen recombiners. The shapes of the catalytic surface can be grouped into plate type, honeycomb type and porous media type. Among them, the plate-type PAR is well tested by many experiments. PAR performance analysis can be approached by a multi-scale method which is composed of micro, meso and macro scales. The criterion of the scaling is the ratio of thickness of boundary layer developed on a catalytic surface to representative length of a computational domain. Mass diffusion in the boundary layer must be resolved in the micro scale analysis. In a lumped parameter (LP) analysis using a system code such as MAAP or MELCOR, the chamber of the PAR is much smaller than a computational node. The hydrogen depletion by a PAR is modeled as a source of mass and energy conservation equations. Te catalytic surface reaction of hydrogen must be modeled by a volume-averaged correlation. In this study, a micro scale analysis method is developed using libraries in OpenFOAM to evaluate a hydrogen depletion rate depending on parameters such as size and number of plates and plate arrangement. The analysis code is validated by simulating REKO-3 experiment. And hydrogen depletion analysis is conducted by changing the plate arrangement as a trial of the performance enhancement of a PAR. In this study, a numerical code for an analysis of a PAR performance in a micro scale has been developed by using OpenFOAM libraries. The physical and numerical models were validated by simulating the REKO-3 experiment. As a try to enhance the performance of the plate-type PAR, it was proposed to apply a staggered two-layer arrangement of the

  2. Hydrogen Recombination Rates of Plate-type Passive Auto-catalytic Recombiner

    International Nuclear Information System (INIS)

    Kim, Jongtae; Hong, Seong-Wan; Kim, Gun Hong

    2014-01-01

    The hydrogen mitigation system may include igniters, passive autocatalytic recombiner (PAR), and venting or dilution system. Recently PAR is commonly used as a main component of HMS in a NPP containment because of its passive nature. PARs are categorized by the shape and material of catalytic surface. Catalytic surface coated by platinum is mostly used for the hydrogen recombiners. The shapes of the catalytic surface can be grouped into plate type, honeycomb type and porous media type. Among them, the plate-type PAR is well tested by many experiments. PAR performance analysis can be approached by a multi-scale method which is composed of micro, meso and macro scales. The criterion of the scaling is the ratio of thickness of boundary layer developed on a catalytic surface to representative length of a computational domain. Mass diffusion in the boundary layer must be resolved in the micro scale analysis. In a lumped parameter (LP) analysis using a system code such as MAAP or MELCOR, the chamber of the PAR is much smaller than a computational node. The hydrogen depletion by a PAR is modeled as a source of mass and energy conservation equations. Te catalytic surface reaction of hydrogen must be modeled by a volume-averaged correlation. In this study, a micro scale analysis method is developed using libraries in OpenFOAM to evaluate a hydrogen depletion rate depending on parameters such as size and number of plates and plate arrangement. The analysis code is validated by simulating REKO-3 experiment. And hydrogen depletion analysis is conducted by changing the plate arrangement as a trial of the performance enhancement of a PAR. In this study, a numerical code for an analysis of a PAR performance in a micro scale has been developed by using OpenFOAM libraries. The physical and numerical models were validated by simulating the REKO-3 experiment. As a try to enhance the performance of the plate-type PAR, it was proposed to apply a staggered two-layer arrangement of the

  3. Inductive Loops for Sensing Position as Signature Signals

    International Nuclear Information System (INIS)

    Larbani, Sofiane; Malik, Noreha Abdul; Nordin, Anis Norashikin; Khan, Sheroz; Shobaki, Mohammad

    2013-01-01

    In this paper, an inductive sensing technique made of a special shaped inductive loop is proposed. The inductive loop has an inner turn fitted within an outer turn, making a total inductance value 100μH. This loop is made to be shown with balanced response using three capacitance values of 0.068μF each when a sinusoidal voltage source of 5V peak-to-peak is applied. The variation of the relative permeability of the inductance of the inductive loop (AL) results in a variation of the overall inductance value (L+AL), that causes the output signal to change in term of shape and amplitude for variation of total inductance sweep over a given period of time. As a result of change in inductance value (lμH) there is a correspondence increase of 300mV. Theoretical derivations have showed in close agreement with the simulation plots obtained using Multisim software

  4. Inductive Loops for Sensing Position as Signature Signals

    Science.gov (United States)

    Larbani, Sofiane; Malik, Noreha Abdul; Norashikin Nordin, Anis; Khan, Sheroz; Shobaki, Mohammad

    2013-12-01

    In this paper, an inductive sensing technique made of a special shaped inductive loop is proposed. The inductive loop has an inner turn fitted within an outer turn, making a total inductance value 100μH. This loop is made to be shown with balanced response using three capacitance values of 0.068μF each when a sinusoidal voltage source of 5V peak-to-peak is applied. The variation of the relative permeability of the inductance of the inductive loop (AL) results in a variation of the overall inductance value (L+AL), that causes the output signal to change in term of shape and amplitude for variation of total inductance sweep over a given period of time. As a result of change in inductance value (lμH) there is a correspondence increase of 300mV. Theoretical derivations have showed in close agreement with the simulation plots obtained using Multisim software.

  5. Are Independent Probes Truly Independent?

    Science.gov (United States)

    Camp, Gino; Pecher, Diane; Schmidt, Henk G.; Zeelenberg, Rene

    2009-01-01

    The independent cue technique has been developed to test traditional interference theories against inhibition theories of forgetting. In the present study, the authors tested the critical criterion for the independence of independent cues: Studied cues not presented during test (and unrelated to test cues) should not contribute to the retrieval…

  6. Metal organic frameworks for the catalytic detoxification of chemical warfare nerve agents

    Science.gov (United States)

    Hupp, Joseph T.; Farha, Omar K.; Katz, Michael J.; Mondloch, Joseph E.

    2017-04-18

    A method of using a metal organic framework (MOF) comprising a metal ion and an at least bidendate organic ligand to catalytically detoxify chemical warfare nerve agents including exposing the metal-organic-framework (MOF) to the chemical warfare nerve agent and catalytically decomposing the nerve agent with the MOF.

  7. Inductive Communication System Design Summary

    Science.gov (United States)

    1978-09-01

    The report documents the experience obtained during the design and development of the Inductive Communications System used in the Morgantown People Mover. The Inductive Communications System is used to provide wayside-to-vehicle and vehicle-to-waysid...

  8. Catalytic hydrolysis of ammonia borane via cobalt palladium nanoparticles.

    Science.gov (United States)

    Sun, Daohua; Mazumder, Vismadeb; Metin, Önder; Sun, Shouheng

    2011-08-23

    Monodisperse 8 nm CoPd nanoparticles (NPs) with controlled compositions were synthesized by the reduction of cobalt acetylacetonate and palladium bromide in the presence of oleylamine and trioctylphosphine. These NPs were active catalysts for hydrogen generation from the hydrolysis of ammonia borane (AB), and their activities were composition dependent. Among the 8 nm CoPd catalysts tested for the hydrolysis of AB, the Co(35)Pd(65) NPs exhibited the highest catalytic activity and durability. Their hydrolysis completion time and activation energy were 5.5 min and 27.5 kJ mol(-1), respectively, which were comparable to the best Pt-based catalyst reported. The catalytic performance of the CoPd/C could be further enhanced by a preannealing treatment at 300 °C under air for 15 h with the hydrolysis completion time reduced to 3.5 min. This high catalytic performance of Co(35)Pd(65) NP catalyst makes it an exciting alternative in pursuit of practical implementation of AB as a hydrogen storage material for fuel cell applications. © 2011 American Chemical Society

  9. Microwave Catalytic Oxidation of Hydrocarbons in Aqueous Solutions

    National Research Council Canada - National Science Library

    Cha, Chang

    2003-01-01

    .... A sufficient amount of experimental work has been completed evaluating the performance of the microwave catalytic oxidation process and determining the effect of different operating parameters...

  10. Possibilities Of Metals Extracton From Spent Metallic Automotive Catalytic Converters By Using Biometallurgical Method

    Directory of Open Access Journals (Sweden)

    Willner J.

    2015-09-01

    Full Text Available The main task of automotive catalytic converters is reducing the amount of harmful components of exhaust gases. Metallic catalytic converters are an alternative to standard ceramic catalytic converters. Metallic carriers are usually made from FeCrAl steel, which is covered by a layer of Precious Group Metals (PGMs acting as a catalyst. There are many methods used for recovery of platinum from ceramic carriers in the world, but the issue of platinum and other metals recovery from metallic carriers is poorly described. The article presents results of preliminary experiments of metals biooxidation (Fe, Cr and Al from spent catalytic converters with metallic carrier, using bacteria of the Acidithiobacillus genus.

  11. Catalytic behaviors of ruthenium dioxide films deposited on ferroelectrics substrates, by spin coating process

    International Nuclear Information System (INIS)

    Khachane, M.; Nowakowski, P.; Villain, S.; Gavarri, J.R.; Muller, Ch.; Elaatmani, M.; Outzourhite, A.; Luk'yanchuk, I.; Zegzouti, A.; Daoud, M.

    2007-01-01

    Catalytic ruthenium dioxide films were deposited by spin-coating process on ferroelectric films mainly constituted of SrBi 2 Ta 2 O 9 (SBT) and Ba 2 NaNb 5 O 15 (BNN) phases. After thermal treatment under air, these ferroelectric-catalytic systems were characterized by X-ray diffraction and scanning electron microscopy (SEM). SEM images showed that RuO 2 film morphology depended on substrate nature. A study of CH 4 conversion into CO 2 and H 2 O was carried out using these catalytic-ferroelectric multilayers: the conversion was analyzed from Fourier transform infrared (FTIR) spectroscopy, at various temperatures. Improved catalytic properties were observed for RuO 2 films deposited on BNN oxide layer

  12. Multi-stage selective catalytic reduction of NOx in lean burn engine exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    Many studies suggest that the conversion of NO to NO{sub 2} is an important intermediate step in the selective catalytic reduction (SCR) of NO{sub x} to N{sub 2}. Some effort has been devoted to separating the oxidative and reductive functions of the catalyst in a multi-stage system. This method works fine for systems that require hydrocarbon addition. The hydrocarbon has to be injected between the NO oxidation catalyst and the NO{sub 2} reduction catalyst; otherwise, the first-stage oxidation catalyst will also oxidize the hydrocarbon and decrease its effectiveness as a reductant. The multi-stage catalytic scheme is appropriate for diesel engine exhausts since they contain insufficient hydrocarbons for SCR, and the hydrocarbons can be added at the desired location. For lean-burn gasoline engine exhausts, the hydrocarbons already present in the exhausts will make it necessary to find an oxidation catalyst that can oxidize NO to NO{sub 2} but not oxidize the hydrocarbon. A plasma can also be used to oxidize NO to NO{sub 2}. Plasma oxidation has several advantages over catalytic oxidation. Plasma-assisted catalysis can work well for both diesel engine and lean-burn gasoline engine exhausts. This is because the plasma can oxidize NO in the presence of hydrocarbons without degrading the effectiveness of the hydrocarbon as a reductant for SCR. In the plasma, the hydrocarbon enhances the oxidation of NO, minimizes the electrical energy requirement, and prevents the oxidation of SO{sub 2}. This paper discusses the use of multi-stage systems for selective catalytic reduction of NO{sub x}. The multi-stage catalytic scheme is compared to the plasma-assisted catalytic scheme.

  13. Practical approaches to the ESI-MS analysis of catalytic reactions.

    Science.gov (United States)

    Yunker, Lars P E; Stoddard, Rhonda L; McIndoe, J Scott

    2014-01-01

    Electrospray ionization mass spectrometry (ESI-MS) is a soft ionization technique commonly coupled with liquid or gas chromatography for the identification of compounds in a one-time view of a mixture (for example, the resulting mixture generated by a synthesis). Over the past decade, Scott McIndoe and his research group at the University of Victoria have developed various methodologies to enhance the ability of ESI-MS to continuously monitor catalytic reactions as they proceed. The power, sensitivity and large dynamic range of ESI-MS have allowed for the refinement of several homogenous catalytic mechanisms and could potentially be applied to a wide range of reactions (catalytic or otherwise) for the determination of their mechanistic pathways. In this special feature article, some of the key challenges encountered and the adaptations employed to counter them are briefly reviewed. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Modeling and analysis with induction generators

    CERN Document Server

    Simões, M Godoy

    2014-01-01

    ForewordPrefaceAcknowledgmentsAuthorsPrinciples of Alternative Sources of Energy and Electric GenerationScope of This ChapterLegal DefinitionsPrinciples of Electrical ConversionBasic Definitions of Electrical PowerCharacteristics of Primary SourcesCharacteristics of Remote Industrial, Commercial, and Residential Sites and Rural EnergySelection of the Electric GeneratorInterfacing Primary Source, Generator, and LoadExample of a Simple Integrated Generating and Energy-Storing SystemSolved ProblemsSuggested ProblemsReferencesSteady-State Model of Induction GeneratorsScope of This ChapterInterconnection and Disconnection of the Electric Distribution NetworkRobustness of Induction GeneratorsClassical Steady-State Representation of the Asynchronous MachineGenerated PowerInduced TorqueRepresentation of Induction Generator LossesMeasurement of Induction Generator ParametersBlocked Rotor Test (s = 1)No-Load Test (s = 0)Features of Induction Machines Working as Generators Interconnected to the Distribution NetworkHigh-...

  15. Hypnosis for induction of labour.

    Science.gov (United States)

    Nishi, Daisuke; Shirakawa, Miyako N; Ota, Erika; Hanada, Nobutsugu; Mori, Rintaro

    2014-08-14

    Induction of labour using pharmacological and mechanical methods can increase complications. Complementary and alternative medicine methods including hypnosis may have the potential to provide a safe alternative option for the induction of labour. However, the effectiveness of hypnosis for inducing labour has not yet been fully evaluated. To assess the effect of hypnosis for induction of labour compared with no intervention or any other interventions. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 January 2014), handsearched relevant conference proceedings, contacted key personnel and organisations in the field for published and unpublished references. All published and unpublished randomised controlled trials (RCTs) and cluster-RCTs of acceptable quality comparing hypnosis with no intervention or any other interventions, in which the primary outcome is to assess whether labour was induced. Two review authors assessed the one trial report that was identified (but was subsequently excluded). No RCTs or cluster-RCTs were identified from the search strategy. There was no evidence available from RCTs to assess the effect of hypnosis for induction of labour. Evidence from RCTs is required to evaluate the effectiveness and safety of this intervention for labour induction. As hypnosis may delay standard care (in case standard care is withheld during hypnosis), its use in induction of labour should be considered on a case-by-case basis.Future RCTs are required to examine the effectiveness and safety of hypnotic relaxation for induction of labour among pregnant women who have anxiety above a certain level. The length and timing of the intervention, as well as the staff training required, should be taken into consideration. Moreover, the views and experiences of women and staff should also be included in future RCTs.

  16. Significant Improvement of Catalytic Efficiencies in Ionic Liquids

    International Nuclear Information System (INIS)

    Song, Choong Eui; Yoon, Mi Young; Choi, Doo Seong

    2005-01-01

    The use of ionic liquids as reaction media can confer many advantages upon catalytic reactions over reactions in organic solvents. In ionic liquids, catalysts having polar or ionic character can easily be immobilized without additional structural modification and thus the ionic solutions containing the catalyst can easily be separated from the reagents and reaction products, and then, be reused. More interestingly, switching from an organic solvent to an ionic liquid often results in a significant improvement in catalytic performance (e.g., rate acceleration, (enantio)selectivity improvement and an increase in catalyst stability). In this review, some recent interesting results which can nicely demonstrate these positive 'ionic liquid effect' on catalysis are discussed

  17. PARAMETRIC EVALUATION OF VOC CONVERSION VIA CATALYTIC INCINERATION

    Directory of Open Access Journals (Sweden)

    Kaskantzis Neto G.

    1997-01-01

    Full Text Available Abstract - A pilot-scale catalytic incineration system was used to investigate the effectiveness of catalytic incineration as a means of reducing volatile organic compound (VOC air pollutants. The objectives of the study were: 1 to investigate the effects of operating and design variables on the reduction efficiency of VOCs; and 2 to evaluate reduction efficiencies for specific compounds in different chemical classes. The study results verified that the following factors affect the catalyst performance: inlet temperature, space velocity, compound type, and compound inlet concentration. Tests showed that reduction efficiencies exceeding 98% were possible, given sufficiently high inlet gas temperatures for the following classes of compounds: alcohols, acetates, ketones, hydrocarbons, and aromatics

  18. Toward Facilitative Mentoring and Catalytic Interventions

    Science.gov (United States)

    Smith, Melissa K.; Lewis, Marilyn

    2015-01-01

    In TESOL teacher mentoring, giving advice can be conceptualized as a continuum, ranging from directive to facilitative feedback. The goal, over time, is to lead toward the facilitative end of the continuum and specifically to catalytic interventions that encourage self-reflection and autonomous learning. This study begins by examining research on…

  19. Comparison of 2D and 3D neural induction methods for the generation of neural progenitor cells from human induced pluripotent stem cells.

    Science.gov (United States)

    Chandrasekaran, Abinaya; Avci, Hasan X; Ochalek, Anna; Rösingh, Lone N; Molnár, Kinga; László, Lajos; Bellák, Tamás; Téglási, Annamária; Pesti, Krisztina; Mike, Arpad; Phanthong, Phetcharat; Bíró, Orsolya; Hall, Vanessa; Kitiyanant, Narisorn; Krause, Karl-Heinz; Kobolák, Julianna; Dinnyés, András

    2017-12-01

    Neural progenitor cells (NPCs) from human induced pluripotent stem cells (hiPSCs) are frequently induced using 3D culture methodologies however, it is unknown whether spheroid-based (3D) neural induction is actually superior to monolayer (2D) neural induction. Our aim was to compare the efficiency of 2D induction with 3D induction method in their ability to generate NPCs, and subsequently neurons and astrocytes. Neural differentiation was analysed at the protein level qualitatively by immunocytochemistry and quantitatively by flow cytometry for NPC (SOX1, PAX6, NESTIN), neuronal (MAP2, TUBB3), cortical layer (TBR1, CUX1) and glial markers (SOX9, GFAP, AQP4). Electron microscopy demonstrated that both methods resulted in morphologically similar neural rosettes. However, quantification of NPCs derived from 3D neural induction exhibited an increase in the number of PAX6/NESTIN double positive cells and the derived neurons exhibited longer neurites. In contrast, 2D neural induction resulted in more SOX1 positive cells. While 2D monolayer induction resulted in slightly less mature neurons, at an early stage of differentiation, the patch clamp analysis failed to reveal any significant differences between the electrophysiological properties between the two induction methods. In conclusion, 3D neural induction increases the yield of PAX6 + /NESTIN + cells and gives rise to neurons with longer neurites, which might be an advantage for the production of forebrain cortical neurons, highlighting the potential of 3D neural induction, independent of iPSCs' genetic background. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Catalytic Reforming of Oxygenates: State of the Art and Future Prospects.

    Science.gov (United States)

    Li, Di; Li, Xinyu; Gong, Jinlong

    2016-10-12

    This Review describes recent advances in the design, synthesis, reactivity, selectivity, structural, and electronic properties of the catalysts for reforming of a variety of oxygenates (e.g., from simple monoalcohols to higher polyols, then to sugars, phenols, and finally complicated mixtures like bio-oil). A comprehensive exploration of the structure-activity relationship in catalytic reforming of oxygenates is carried out, assisted by state-of-the-art characterization techniques and computational tools. Critical emphasis has been given on the mechanisms of these heterogeneous-catalyzed reactions and especially on the nature of the active catalytic sites and reaction pathways. Similarities and differences (reaction mechanisms, design and synthesis of catalysts, as well as catalytic systems) in the reforming process of these oxygenates will also be discussed. A critical overview is then provided regarding the challenges and opportunities for research in this area with a focus on the roles that systems of heterogeneous catalysis, reaction engineering, and materials science can play in the near future. This Review aims to present insights into the intrinsic mechanism involved in catalytic reforming and provides guidance to the development of novel catalysts and processes for the efficient utilization of oxygenates for energy and environmental purposes.

  1. Preparation of amino-functionalized regenerated cellulose membranes with high catalytic activity.

    Science.gov (United States)

    Wang, Wei; Bai, Qian; Liang, Tao; Bai, Huiyu; Liu, Xiaoya

    2017-09-01

    The modification of regenerated cellulose (RC) membranes was carried out by using silane coupling agents presenting primary and secondary amino-groups. The grafting of the amino groups onto the modified cellulose molecule was confirmed by X-ray photoelectron spectroscopies and 13 C nuclear magnetic resonance spectroscopic analyses. The crystallinity of the cellulose membranes (CM) decreased after chemical modification as indicated by the X-ray diffraction results. Moreover, a denser structure was observed at the surface and cross section of the modified membranes by SEM images. The contact angle measurements showed that the silane coupling treatment enhanced the hydrophobicity of the obtained materials. Then the catalytic properties of two types of modified membranes were studied in a batch process by evaluating their catalytic performance in a Knoevenagel condensation. The results indicated that the cellulose membrane grafted with many secondary amines exhibited a better catalytic activity compared to the one grafted only by primary amines. In addition, the compact structure of the modified membranes permitted their application in a pervaporation catalytic membrane reactor. Therefore, functional CM that prepared in this paper represented a promising material in the field of industrial catalysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Investigations for the implementation of catalytic recombiners in large dry containments in Germany

    International Nuclear Information System (INIS)

    Rohde, J.; Tiltmann, M.; Froehmel, T.

    1997-01-01

    During the past few years, several concepts of mitigation have been developed and tested to limit the hydrogen concentrations in the containment atmosphere during the course of a severe accident. Extensive efforts have been given, especially in Germany and Canada, to investigate the use of catalytic recombiners. Based on the outcome of these research efforts in Germany it was recommended by the Reactor Safety Commission (RSK) in June 1994 to implement a hydrogen mitigation system, based on catalytic recombiners in large dry containments of PWR plants. Investigations are carried out at GRS, sponsored by the German Ministry of Environment, Nature Conservation and Nuclear Safety (BMU), to develop basic requirements for the implementation of a catalytic recombiner system in large dry containments. Severe accidents scenarios were calculated with the system code MELCOR to determine the mass- and energy release rates from the primary system into the containment, necessary to prepare the input data for the containment code calculations. A detailed nodalisation of the containment system of a German PWR plant (Konvoi-type) was developed for the code RA-LOC MOD4 to investigate the effectiveness of a catalytic recombiner system which consists of 53 of such devices, being distributed in the complex room arrangement. The effectiveness of such a system is demonstrated by comparing a representative severe accident sequence without and with the catalytic recombination of hydrogen. The results showed, that only in some limited areas in the containment combustible gas mixtures were formed for a limited time span and that at the end of the first day after the onset of the accident the catalytic reaction is limited due to oxygen depletion. The work is still in progress while additional severe accident sequences have to be analyzed to develop some generic guidelines for the implementation of a catalytic recombiner system in large dry containments. (author)

  3. Longitudinal instability of an induction linac with acceleration

    International Nuclear Information System (INIS)

    Smith, L.; Lee, E.P.

    1993-05-01

    The question arises as to what effect acceleration, which so far has been ignored, has on the longitudinal instability of an induction linac. The answer is not much for the anticipated acceleration rate (1--2 MeV/m) and minimum e-folding distance for the instability (50--500 meters). However, total unstable growth is significantly reduced over distances which are long enough for appreciable acceleration to occur. The purpose of this note is to record a calculation of the instability, including a constant acceleration rate. Some interesting features emerge -- for example, the velocity of the head is a more convenient independent variable than axial position and, for an initial sinusoidal perturbation of velocity in time, the number of oscillations along the pulse is constant; as the pulse shortens in nine the frequency increases

  4. Catalytic pyrolysis of olive mill wastewater sludge

    Science.gov (United States)

    Abdellaoui, Hamza

    From 2008 to 2013, an average of 2,821.4 kilotons/year of olive oil were produced around the world. The waste product of the olive mill industry consists of solid residue (pomace) and wastewater (OMW). Annually, around 30 million m3 of OMW are produced in the Mediterranean area, 700,000 m3 year?1 in Tunisia alone. OMW is an aqueous effluent characterized by an offensive smell and high organic matter content, including high molecular weight phenolic compounds and long-chain fatty acids. These compounds are highly toxic to micro-organisms and plants, which makes the OMW a serious threat to the environment if not managed properly. The OMW is disposed of in open air evaporation ponds. After evaporation of most of the water, OMWS is left in the bottom of the ponds. In this thesis, the effort has been made to evaluate the catalytic pyrolysis process as a technology to valorize the OMWS. The first section of this research showed that 41.12 wt. % of the OMWS is mostly lipids, which are a good source of energy. The second section proved that catalytic pyrolysis of the OMWS over red mud and HZSM-5 can produce green diesel, and 450 °C is the optimal reaction temperature to maximize the organic yields. The last section revealed that the HSF was behind the good fuel-like properties of the OMWS catalytic oils, whereas the SR hindered the bio-oil yields and quality.

  5. Lamellar zirconium phosphates to host metals for catalytic purposes.

    Science.gov (United States)

    Ballesteros-Plata, Daniel; Infantes-Molina, Antonia; Rodríguez-Aguado, Elena; Braos-García, Pilar; Rodríguez-Castellón, Enrique

    2018-02-27

    In the present study a porous lamellar zirconium phosphate heterostructure (PPH) formed from zirconium(iv) phosphate expanded with silica galleries (P/Zr molar ratio equal to 2 and (Si + Zr)/P equal to 3) was prepared to host noble metals. Textural and structural characterization of PPH-noble metal materials was carried out in order to elucidate the location and dispersion of the metallic particles and the properties of the resulting material to be used in catalytic processes. In the present paper, their activity in the catalytic hydrodeoxygenation (HDO) reaction of dibenzofuran (DBF) was evaluated. X-ray diffraction (XRD), solid state nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) evidenced that the structure of the pillared zirconium phosphate material was not modified by the incorporation of Pt and Pd. Moreover, transmission electron microscopy (TEM) showed a different dispersion of the noble metal. The acidity of the resulting PPH-noble metal materials also changed, although in all cases the acidity was of weak nature, and the incorporation of noble metals affected Brønsted acid sites as observed from 31 P NMR spectra. In general, the textural, structural and acidic properties of the resulting materials suggest that PPH can be considered a good candidate to be used as a catalytic support. Thus, the catalytic results of the PPH-noble metal samples indicated that the Pd sample showed a stable behavior probably ascribed to a high dispersion of the active phase. However, the Pt sample suffered from fast deactivation. The selectivity to the reaction products was strongly dependent on the noble metal employed.

  6. Catalytic oligomerization of terminal alkynes promoted by organo-f-complexes

    International Nuclear Information System (INIS)

    Straub, T.; Haskel, A.; Eisen, M.S.

    1995-01-01

    Organoactinides of the type Cp* 2 AcMe 2 (Cp*=C 5 Me 5 ; Ac=Th, U) are active catalyst precursors for the oligomerization of terminal alkynes HC triple-bond CR (R=alkyl, aryl, SiMe 3 ). The regioselectivity and the extent of oligomerization strongly depend on the alkyne substituent R, whereas the catalytic reactivity is similar for 1 and 2. In the presence of one of these organoactinides, for example, HCCSiMe 3 regioselectively oligomerizes to the head-to-tail dimer 3 (5%) and the trimer 4 (95%). 1 and 2 react with the terminal alkynes, releasing methane, to the corresponding bisacetylide complexes which are active species and in the catalytic reactions. The bisacetylide complex (η 5 -C 5 Me 5 ) 2 U(CCPh) 2 was identified by proton NMR spectroscopy. Subsequent insertion of alkyne molecules in the actinide-carbon σ-bonds leads to the formation of actinide-alkenyl complexes. The turnover limiting step is the release of the organic oligomer from the actinide-organyl complex. A species of the latter has been spectroscopically characterized in the trimerization reaction of HCCSiMe 3 . In this poster, the catalytic reactivity of the actinide alkyls 1 and 2 with various mono-substituted alkynes as well as the spectroscopic characterization of the key organometallic intermediate complexes in the catalytic cycle and a detailed mechanistic discussion are given

  7. Short hydrogen bonds in the catalytic mechanism of serine proteases

    Directory of Open Access Journals (Sweden)

    VLADIMIR LESKOVAC

    2008-04-01

    Full Text Available The survey of crystallographic data from the Protein Data Bank for 37 structures of trypsin and other serine proteases at a resolution of 0.78–1.28 Å revealed the presence of hydrogen bonds in the active site of the enzymes, which are formed between the catalytic histidine and aspartate residues and are on average 2.7 Å long. This is the typical bond length for normal hydrogen bonds. The geometric properties of the hydrogen bonds in the active site indicate that the H atom is not centered between the heteroatoms of the catalytic histidine and aspartate residues in the active site. Taken together, these findings exclude the possibility that short “low-barrier” hydrogen bonds are formed in the ground state structure of the active sites examined in this work. Some time ago, it was suggested by Cleland that the “low-barrier hydrogen bond” hypothesis is operative in the catalytic mechanism of serine proteases, and requires the presence of short hydrogen bonds around 2.4 Å long in the active site, with the H atom centered between the catalytic heteroatoms. The conclusions drawn from this work do not exclude the validity of the “low-barrier hydrogen bond” hypothesis at all, but they merely do not support it in this particular case, with this particular class of enzymes.

  8. Advanced Catalytic Converter in Gasoline Enginer Emission Control: A Review

    Directory of Open Access Journals (Sweden)

    Leman A.M.

    2017-01-01

    Full Text Available Exhaust emission from automobile source has become a major contributor to the air pollution and environmental problem. Catalytic converter is found to be one of the most effective tools to reduce the overwhelming exhaust pollutants in our environment. The development of sustainable catalytic converter still remains a critical issue due to the stringent exhaust emission regulations. Another issue such as price and availability of the precious metal were also forced the automotive industry to investigate the alternatives for producing a better replacement for the material used in catalytic converter. This paper aims at reviewing the present development and improvement on the catalytic converter used on the reduction of exhaust emission in order to meet the regulations and market demand. The use of new catalyst such as to replace the noble metal material of Platinum (Pt, Palladium (Pd and Rhodium (Rh has been reviewed. Material such as zeolite, nickel oxide and metal oxide has been found to effectively reduce the emission than the commercial converter. The preparation method of the catalyst has also evolved through the years as it is to ensure a good characteristic of a good monolith catalyst. Ultrasonic treatment with combination of electroplating technique, citrate method and Plasma Electrolytic Oxidation (PEO has been found as the latest novel preparation method on producing an effective catalyst in reducing the exhaust emission.

  9. Utilization and mitigation of VAM/CMM emissions by a catalytic combustion gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K.; Yoshino, Y.; Kashihara, H. [Kawasaki Heavy Industries Ltd., Hyougo (Japan); Kajita, S.

    2013-07-01

    A system configured with a catalytic combustion gas turbine generator unit is introduced. The system has been developed using technologies produced by Kawasaki Heavy Industries, Ltd., such as small gas turbines, recuperators and catalytic combustors, and catalytic oxidation units which use exhaust heat from gas turbines. The system combusts (oxidizes) ventilation air methane (less than 1% concentration) and low concentration coal mine methane (30% concentration or less) discharged as waste from coal mines. Thus, it cannot only reduce the consumption of high- quality fuel for power generation, but also mitigate greenhouse gas emissions.

  10. Exploring the learnings derived from catalytic experiences in a leadership context

    OpenAIRE

    Daphna S. Horowitz; René van Eeden

    2015-01-01

    Orientation: Personal leadership comprises self-awareness, authenticity, inspiration and passion. The concept of personal leadership was explored together with its relationship with leadership-related learnings derived from a catalytic experience. Research purpose: The objective of the study was to explore the leadership-related learnings derived from a catalytic experience and any connection between these learnings, personal leadership and leadership in an organisational context. Mot...

  11. Upgrading of Intermediate Bio-Oil Produced by Catalytic Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Abdullah, Zia [Battelle Memorial Inst., Columbus, OH (United States); Chadwell, Brad [Battelle Memorial Inst., Columbus, OH (United States); Taha, Rachid [Battelle Memorial Inst., Columbus, OH (United States); Hindin, Barry [Battelle Memorial Inst., Columbus, OH (United States); Ralston, Kevin [Battelle Memorial Inst., Columbus, OH (United States)

    2015-06-30

    The objectives of this project were to (1) develop a process to upgrade catalytic pyrolysis bio-oil, (2) investigate new upgrading catalysts suited for upgrading catalytic pyrolysis bio-oil, (3) demonstrate upgrading system operation for more than 1,000 hours using a single catalyst charge, and (4) produce a final upgraded product that can be blended to 30 percent by weight with petroleum fuels or that is compatible with existing petroleum refining operations. This project has, to the best of our knowledge, for the first time enabled a commercially viable bio-oil hydrotreatment process to produce renewable blend stock for transportation fuels.

  12. Hydrophilic Pt nanoflowers: synthesis, crystallographic analysis and catalytic performance.

    Science.gov (United States)

    Mourdikoudis, Stefanos; Altantzis, Thomas; Liz-Marzán, Luis M; Bals, Sara; Pastoriza-Santos, Isabel; Pérez-Juste, Jorge

    2016-05-21

    Water-soluble Pt nanoflowers (NFs) were prepared by diethylene glycol-mediated reduction of Pt acetylacetonate (Pt(acac) 2 ) in the presence of polyethylenimine. Advanced electron microscopy analysis showed that the NFs consist of multiple branches with a truncated cubic morphology and different crystallographic orientations. We demonstrate that the nature of the solvent strongly influences the resulting morphology. The catalytic performance of the Pt NFs in 4-nitrophenol reduction was found to be superior to that of other nanoparticle-based catalysts. Additionally, the Pt NFs display good catalytic reusability with no loss of activity after five consecutive cycles.

  13. Induction of a protein-targeted catalytic response in autoimmune prone mice: antibody-mediated cleavage of HIV-1 glycoprotein GP120.

    Science.gov (United States)

    Ponomarenko, Natalia A; Vorobiev, Ivan I; Alexandrova, Elena S; Reshetnyak, Andrew V; Telegin, Georgy B; Khaidukov, Sergey V; Avalle, Bérangère; Karavanov, Alexander; Morse, Herbert C; Thomas, Daniel; Friboulet, Alain; Gabibov, Alexander G

    2006-01-10

    We have induced a polyclonal IgG that degrades the HIV-1 surface antigen, glycoprotein gp120, by taking advantage of the susceptibility of SJL mice to a peptide-induced autoimmune disorder, experimental autoimmune encephalomyelitis (EAE). Specific pathogen-free SJL mice were immunized with structural fragments of gp120, fused in-frame with encephalitogenic peptide MBP(85-101). It has resulted in a pronounced disease-associated immune response against antigens. A dramatic increase of gp120 degradation level by purified polyclonal IgG from immunized versus nonimmunized mice has been demonstrated by a newly developed fluorescence-based assay. This activity was inhibited by anti-mouse immunoglobulin antibodies as well as by Ser- and His-reactive covalent inhibitors. A dominant proteolysis site in recombinant gp120 incubated with purified polyclonal IgG from immunized mice was shown by SDS-PAGE. The SELDI-based mass spectrometry revealed that these antibodies exhibited significant specificity toward the Pro484-Leu485 peptide bond. The sequence surrounding this site is present in nearly half of the HIV-I variants. This novel strategy can be generalized for creating a catalytic vaccine against viral pathogens.

  14. Enhanced catalytic activity over MIL-100(Fe) loaded ceria catalysts for the selective catalytic reduction of NOx with NH₃ at low temperature.

    Science.gov (United States)

    Wang, Peng; Sun, Hong; Quan, Xie; Chen, Shuo

    2016-01-15

    The development of catalysts for selective catalytic reduction (SCR) reactions that are highly active at low temperatures and show good resistance to SO2 and H2O is still a challenge. In this study, we have designed and developed a high-performance SCR catalyst based on nano-sized ceria encapsulated inside the pores of MIL-100(Fe) that combines excellent catalytic power with a metal organic framework architecture synthesized by the impregnation method (IM). Transmission electron microscopy (TEM) revealed the encapsulation of ceria in the cavities of MIL-100(Fe). The prepared IM-CeO2/MIL-100(Fe) catalyst shows improved catalytic activity both at low temperatures and throughout a wide temperature window. The temperature window for 90% NOx conversion ranges from 196 to 300°C. X-ray photoelectron spectroscopy (XPS) and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) analysis indicated that the nano-sized ceria encapsulated inside MIL-100(Fe) promotes the production of chemisorbed oxygen on the catalyst surface, which greatly enhances the formation of the NO2 species responsible for fast SCR reactions. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. CATALYTIC SPECTROPHOTOMETRIC DETERMINATION OF Mn(II ...

    African Journals Online (AJOL)

    Preferred Customer

    method is based on the catalytic effect of Mn(II) with the oxidation of Celestine blue .... water samples were filtered through a 0.45 μm pore size membrane filter to remove suspended .... slope of the calibration graph as the optimization criterion. ..... In presence of Phen as stability enhancement agent in indicator system. ( ) +.

  16. Catalytic pleat filter bags for combined particulate separation and nitrogen oxides removal from flue gas streams

    International Nuclear Information System (INIS)

    Park, Young Ok; Choi, Ho Kyung

    2010-01-01

    The development of a high temperature catalytically active pleated filter bag with hybrid filter equipment for the combined removal of particles and nitrogen oxides from flue gas streams is presented. A special catalyst load in stainless steel mesh cartridge with a high temperature pleated filter bag followed by optimized catalytic activation was developed to reach the required nitrogen oxides levels and to maintain the higher collection efficiencies. The catalytic properties of the developed high temperature filter bags with hybrid filter equipment were studied and demonstrated in a pilot scale test rig and a demonstration plant using commercial scale of high temperature catalytic pleated filter bags. The performance of the catalytic pleated filter bags were tested under different operating conditions, such as filtration velocity and operating temperature. Moreover, the cleaning efficiency and residual pressure drop of the catalyst loaded cartridges in pleated filter bags were tested. As result of theses studies, the optimum operating conditions for the catalytic pleated filter bags are determined. (author)

  17. Principal component analysis in an experimental cold flow model of a fluid catalytic cracking unit by gammametry

    International Nuclear Information System (INIS)

    Araujo, Janeo Severino C. de; Dantas, Carlos Costa; Santos, Valdemir A. dos; Souza, Jose Edson G. de; Luna-Finkler, Christine L.

    2009-01-01

    The fluid dynamic behavior of riser of a cold flow model of a Fluid Catalytic Cracking Unit (FCCU) was investigated. The experimental data were obtained by the nuclear technique of gamma transmission. A gamma source was placed diametrically opposite to a detector in any straight section of the riser. The gas-solid flow through riser was monitored with a source of Americium-241 what allowed obtaining information of the axial solid concentration without flow disturbance and also identifying the dependence of this concentration profile with several independent variables. The MatLab R and Statistica R software were used. Statistica tool employed was the Principal Components Analysis (PCA), that consisted of the job of the data organization, through two-dimensional head offices to allow extract relevant information about the importance of the independent variables on axial solid concentration in a cold flow riser. The variables investigated were mass flow rate of solid, mass flow rate of gas, pressure in the riser base and the relative height in the riser. The first two components reached about 98 % of accumulated percentage of explained variance. (author)

  18. Relationship between the induction frequency and LTE in inductively coupled plasmas

    International Nuclear Information System (INIS)

    Mostaghimi, J.; Boulos, M.I.

    1990-01-01

    In this paper, the effect of the induction frequency on the local thermodynamic equilibrium (LTE) conditions in an inductively coupled plasma is investigated. Using generators with frequencies ranging from 5 to 56 MHz, a previous study investigated demonstrated the importance of this effect. Their measurements of the excitation temperatures of the iron atomic lines showed a sharp decrease in this temperature as a result of the increase in frequency. Another conclusion was that, all other parameters constant, increase in frequency will help the promotion of non-LTE effects

  19. Catalytic asymmetric synthesis of the alkaloid (+)-myrtine

    NARCIS (Netherlands)

    Pizzuti, Maria Gabriefla; Minnaard, Adriaan J.; Feringa, Ben L.

    2008-01-01

    A new protocol for the asymmetric synthesis of trans-2,6-disubstituted-4-piperidones has been developed using a catalytic enantioselective conjugate addition reaction in combination with a diastereoselective lithiation-substitution sequence; an efficient synthesis of (+)-myrtine has been achieved

  20. Synthesis of imine bond containing insoluble polymeric ligand and its transition metal complexes, structural characterization and catalytic activity on esterification reaction.

    Science.gov (United States)

    Gönül, İlyas; Ay, Burak; Karaca, Serkan; Saribiyik, Oguz Yunus; Yildiz, Emel; Serin, Selahattin

    2017-01-01

    In this study, synthesis of insoluble polymeric ligand (L) and its transition metal complexes [Cu(L)Cl 2 ]·2H 2 O (1) , [Co(L)Cl 2 (H 2 O) 2 ] (2) and [Ni(L)Cl 2 (H 2 O) 2 ] (3) , having the azomethine groups, were synthesized by the condensation reactions of the diamines and dialdehydes. The structural properties were characterized by the analytical and spectroscopic methods using by elemental analysis, Fourier Transform Infrared, Thermo Gravimetric Analysis, Powder X-ray Diffraction, magnetic susceptibility and Inductively Coupled Plasma. The solubilities of the synthesized polymeric materials were also investigated and found as insoluble some organic and inorganic solvents. Additionally, their catalytic performance was carried out for the esterification reaction of acetic acid and butyl acetate. The highest conversion rate is 75.75% by using catalyst 1 . The esterification of butanol gave butyl acetate with 100% selectivity.

  1. Beam control in the ETA-II linear induction accelerator

    International Nuclear Information System (INIS)

    Chen, Y.J.

    1992-01-01

    Corkscrew beam motion is caused by chromatic aberration and misalignment of a focusing system. We have taken some measures to control the corkscrew motion on the ETA-II induction accelerator. To minimize chromatic aberration, we have developed an energy compensation scheme which reduces energy sweep and differential phase advance within a beam pulse. To minimize the misalignment errors, we have developed a time-independent steering algorithm which minimizes the observed corkscrew amplitude averaged over the beam pulse. The steering algorithm can be used even if the monitor spacing is much greater than the system's cyclotron wavelength and the corkscrew motion caused by a given misaligned magnet is fully developed, i.e., the relative phase advance is greater than 2π. (Author) 5 figs., 11 refs

  2. Induction of Fas mediated caspase-8 independent apoptosis in immune cells by Armigeres subalbatus saliva.

    Directory of Open Access Journals (Sweden)

    Shanshan Liu

    Full Text Available BACKGROUND: It is widely recognized that the introduction of saliva of bloodsucking arthropods at the site of pathogen transmission might play a central role in vector-borne infections. However, how the interaction between salivary components and the host immune system takes place and which physiological processes this leads to has yet to be investigated. Armigeres subalbatus is one of the prominent types of mosquitoes involved in the transmission of parasitic and viral diseases in humans and animals. METHODOLOGY/PRINCIPAL FINDINGS: Using murine peritoneal macrophages and lymphocytes, and human peripheral mononuclear cells (PBMCs, this study shows that saliva of the female Ar. subalbatus induces apoptosis via interaction with the Fas receptor within a few hours but without activating caspase-8. The process further activates downstream p38 MAPK signaling, a cascade that leads to the induction of apoptosis in capase-3 dependent manner. We further illustrate that Ar. subalbatus saliva suppresses proinflammatory cytokines without changing IL-10 levels, which might happen as a result of apoptosis. CONCLUSIONS: Our study shows for the first time that saliva-induced apoptosis is the leading phenomenon exerted by Ar.subalbatus that impede immune cells leading to the suppression of their effecter mechanism.

  3. Involvement of the catalytic subunit of protein kinase A and of HA95 in pre-mRNA splicing

    International Nuclear Information System (INIS)

    Kvissel, Anne-Katrine; Orstavik, Sigurd; Eikvar, Sissel; Brede, Gaute; Jahnsen, Tore; Collas, Philippe; Akusjaervi, Goeran; Skalhegg, Bjorn Steen

    2007-01-01

    Protein kinase A (PKA) is a holoenzyme consisting of two catalytic (C) subunits bound to a regulatory (R) subunit dimer. Stimulation by cAMP dissociates the holoenzyme and causes translocation to the nucleus of a fraction of the C subunit. Apart from transcription regulation, little is known about the function of the C subunit in the nucleus. In the present report, we show that both Cα and Cβ are localized to spots in the mammalian nucleus. Double immunofluorescence analysis of splicing factor SC35 with the C subunit indicated that these spots are splicing factor compartments (SFCs). Using the E1A in vivo splicing assay, we found that catalytically active C subunits regulate alternative splicing and phosphorylate several members of the SR-protein family of splicing factors in vitro. Furthermore, nuclear C subunits co-localize with the C subunit-binding protein homologous to AKAP95, HA95. HA95 also regulates E1A alternative splicing in vivo, apparently through its N-terminal domain. Localization of the C subunit to SFCs and the E1A splicing pattern were unaffected by cAMP stimulation. Our findings demonstrate that the nuclear PKA C subunit co-locates with HA95 in SFCs and regulates pre-mRNA splicing, possibly through a cAMP-independent mechanism

  4. [Long term results of exclusive chemotherapy for glottic squamous cell carcinoma complete clinical responders after induction chemotherapy].

    Science.gov (United States)

    Vachin, F; Hans, S; Atlan, D; Brasnu, D; Menard, M; Laccourreye, O

    2004-06-01

    To evaluate the long-term results of exclusive chemotherapy for T1-T3N0M0 glottic squamous cell carcinoma complete clinical responders after induction chemotherapy. Between 1985 and 2000, 69 patients with glottic squamous cell carcinoma complete clinical responders after induction chemotherapy were managed with exclusive chemotherapy at our department. Chemotherapy associated platinum and fluorouracil. This retrospective analysis evaluated actuarial survival, treatment morbidity, oncologic events and laryngeal preservation. Various independent factors were tested for potential correlation with survival and local recurrence. The 5-year Kaplan-Meier actuarial survival, local control, lymph node control estimate were 83,6%, 64,8%, 98,6% respectively. Chemotherapy never resulted in death. The 10-year actuarial metachronous second primary tumors estimate was 32%. The overall laryngeal preservation rate was 98,6%. Altogether our data and the review of the literature suggest that in patients achieving a complete clinical response after and induction based chemotherapy regimen, the completion of an exclusive chemotherapy regimen appears to be a valid alternative to the conventional use of radiotherapy or chemo-radiation protocols.

  5. Catalytic oxidation of cyclohexane to cyclohexanone

    Indian Academy of Sciences (India)

    ... a precursor and characterized by chemical analysis using the ICP–AES method, XRD, TEM, FTIR and BET surface area determination. The oxidation reaction was carried out at 70°C under atmospheric pressure. The results showed the catalytic performance of Pt/Al2O3 as being very high in terms of turnover frequency.

  6. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M; Kromer, Brian R; Litwin, Michael M; Rosen, Lee J; Christie, Gervase Maxwell; Wilson, Jamie R; Kosowski, Lawrence W; Robinson, Charles

    2014-01-07

    A method and apparatus for producing heat used in a synthesis gas production is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the stream reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5.

  7. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  8. Quality Induction: The Effects of Comprehensive Induction on New Teacher Retention and Job Satisfaction

    Science.gov (United States)

    Hendricks-Harris, Mary Therese

    2012-01-01

    This investigation examined the effect of a comprehensive new teacher induction program on teacher retention and job satisfaction in one suburban school district. New teachers are retained at low rates, and districts are spending resources in an attempt to decrease this number. New teacher induction includes supports for new teachers in their…

  9. Catalytic biomass pyrolysis process

    Science.gov (United States)

    Dayton, David C.; Gupta, Raghubir P.; Turk, Brian S.; Kataria, Atish; Shen, Jian-Ping

    2018-04-17

    Described herein are processes for converting a biomass starting material (such as lignocellulosic materials) into a low oxygen containing, stable liquid intermediate that can be refined to make liquid hydrocarbon fuels. More specifically, the process can be a catalytic biomass pyrolysis process wherein an oxygen removing catalyst is employed in the reactor while the biomass is subjected to pyrolysis conditions. The stream exiting the pyrolysis reactor comprises bio-oil having a low oxygen content, and such stream may be subjected to further steps, such as separation and/or condensation to isolate the bio-oil.

  10. Thermal activation of catalytic microjets in blood samples using microfluidic chips.

    Science.gov (United States)

    Soler, Lluís; Martínez-Cisneros, Cynthia; Swiersy, Anka; Sánchez, Samuel; Schmidt, Oliver G

    2013-11-21

    We demonstrate that catalytic microjet engines can out-swim high complex media composed of red blood cells and serum. Despite the challenge presented by the high viscosity of the solution at room temperature, the catalytic microjets can be activated at physiological temperature and, consequently, self-propel in diluted solutions of blood samples. We prove that these microjets self-propel in 10× diluted blood samples using microfluidic chips.

  11. Thermal activation of catalytic microjets in blood samples using microfluidic chips†

    Science.gov (United States)

    Soler, Lluís; Martínez-Cisneros, Cynthia; Swiersy, Anka; Sánchez, Samuel; Schmidt, Oliver G.

    2014-01-01

    We demonstrate that catalytic microjet engines can out-swim high complex media composed of red blood cells and serum. Despite the challenge presented by the high viscosity of the solution at room temperature, the catalytic microjets can be activated at physiological temperature and, consequently, self-propel in diluted solutions of blood samples. We prove that these microjets self-propel in 10× diluted blood samples using microfluidic chips. PMID:24089195

  12. Artificial Inductance Concept to Compensate Nonlinear Inductance Effects in the Back EMF-Based Sensorless Control Method for PMSM

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Lei, Xiao; Blaabjerg, Frede

    2013-01-01

    The back EMF-based sensorless control method is very popular for permanent magnet synchronous machines (PMSMs) in the medium- to high-speed operation range due to its simple structure. In this speed range, the accuracy of the estimated position is mainly affected by the inductance, which varies...... at different loading conditions due to saturation effects. In this paper, a new concept of using a constant artificial inductance to replace the actual varying machine inductance for position estimation is introduced. This facilitates greatly the analysis of the influence of inductance variation...

  13. Plasma internal inductance dynamics in a tokamak

    International Nuclear Information System (INIS)

    Romero, J.A.

    2010-01-01

    A lumped parameter model for tokamak plasma current and inductance time evolution as a function of plasma resistance, non-inductive current drive sources and boundary voltage or poloidal field coil current drive is presented. The model includes a novel formulation leading to exact equations for internal inductance and plasma current dynamics. Having in mind its application in a tokamak inductive control system, the model is expressed in state space form, the preferred choice for the design of control systems using modern control systems theory. The choice of system states allows many interesting physical quantities such as plasma current, inductance, magnetic energy, and resistive and inductive fluxes be made available as output equations. The model is derived from energy conservation theorem, and flux balance theorems, together with a first order approximation for flux diffusion dynamics. The validity of this approximation has been checked using experimental data from JET showing an excellent agreement.

  14. Catalytic hydroprocessing of heavy oil feedstocks

    International Nuclear Information System (INIS)

    Okunev, A G; Parkhomchuk, E V; Lysikov, A I; Parunin, P D; Semeikina, V S; Parmon, V N

    2015-01-01

    A grave problem of modern oil refining industry is continuous deterioration of the produced oil quality, on the one hand, and increase in the demand for motor fuels, on the other hand. This necessitates processing of heavy oil feedstock with high contents of sulfur, nitrogen and metals and the atmospheric residue. This feedstock is converted to light oil products via hydrogenation processes catalyzed by transition metal compounds, first of all, cobalt- or nickel-promoted molybdenum and tungsten compounds. The processing involves desulfurization, denitrogenation and demetallization reactions as well as reactions converting heavy hydrocarbons to lighter fuel components. The review discusses the mechanisms of reactions involved in the heavy feedstock hydroprocessing, the presumed structure and state of the catalytically active components and methods for the formation of supports with the desired texture. Practically used and prospective approaches to catalytic upgrading of heavy oil feedstock as well as examples of industrial processing of bitumen and vacuum residues in the presence of catalysts are briefly discussed. The bibliography includes 140 references

  15. Catalytic hydroprocessing of heavy oil feedstocks

    Science.gov (United States)

    Okunev, A. G.; Parkhomchuk, E. V.; Lysikov, A. I.; Parunin, P. D.; Semeikina, V. S.; Parmon, V. N.

    2015-09-01

    A grave problem of modern oil refining industry is continuous deterioration of the produced oil quality, on the one hand, and increase in the demand for motor fuels, on the other hand. This necessitates processing of heavy oil feedstock with high contents of sulfur, nitrogen and metals and the atmospheric residue. This feedstock is converted to light oil products via hydrogenation processes catalyzed by transition metal compounds, first of all, cobalt- or nickel-promoted molybdenum and tungsten compounds. The processing involves desulfurization, denitrogenation and demetallization reactions as well as reactions converting heavy hydrocarbons to lighter fuel components. The review discusses the mechanisms of reactions involved in the heavy feedstock hydroprocessing, the presumed structure and state of the catalytically active components and methods for the formation of supports with the desired texture. Practically used and prospective approaches to catalytic upgrading of heavy oil feedstock as well as examples of industrial processing of bitumen and vacuum residues in the presence of catalysts are briefly discussed. The bibliography includes 140 references.

  16. Catalytic reactor for low-Btu fuels

    Science.gov (United States)

    Smith, Lance; Etemad, Shahrokh; Karim, Hasan; Pfefferle, William C.

    2009-04-21

    An improved catalytic reactor includes a housing having a plate positioned therein defining a first zone and a second zone, and a plurality of conduits fabricated from a heat conducting material and adapted for conducting a fluid therethrough. The conduits are positioned within the housing such that the conduit exterior surfaces and the housing interior surface within the second zone define a first flow path while the conduit interior surfaces define a second flow path through the second zone and not in fluid communication with the first flow path. The conduit exits define a second flow path exit, the conduit exits and the first flow path exit being proximately located and interspersed. The conduits define at least one expanded section that contacts adjacent conduits thereby spacing the conduits within the second zone and forming first flow path exit flow orifices having an aggregate exit area greater than a defined percent of the housing exit plane area. Lastly, at least a portion of the first flow path defines a catalytically active surface.

  17. Selective catalytic oxidation of hydrocarbons as a challenge to the chemical engineer

    Energy Technology Data Exchange (ETDEWEB)

    Emig, G [Erlangen-Nuernberg Univ., Erlangen (Germany, F.R.). Lehrstuhl fuer Technische Chemie 1

    1978-08-01

    Selective catalytic oxidation is beginning to play a more and more significant role in the process of converting the most important chemical raw materials, crude oil and natural gas, into intermediate and end products. In many cases, this technique makes it possible to replace old processes consisting of many steps by more economical single-step reactions. The typical example of oxidation or ammoxidation of propylene demonstrates the problems which must be solved by the chemical engineer during the development of a heterogeneous catalytic oxidation process. The particular importance of a systematic development of a catalyst is emphasized. General aspects relating to the design of new catalytic processes, or the improvement of existing ones are also discussed.

  18. A comparative evaluation on the emission characteristics of ceramic and metallic catalytic converter in internal combustion engine

    Science.gov (United States)

    Leman, A. M.; Jajuli, Afiqah; Rahman, Fakhrurrazi; Feriyanto, Dafit; Zakaria, Supaat

    2017-09-01

    Enforcement of a stricter regulation on exhaust emission by many countries has led to utilization of catalytic converter to reduce the harmful pollutant emission. Ceramic and metallic catalytic converters are the most common type of catalytic converter used. The purpose of this study is to evaluate the performance of the ceramic and metallic catalytic converter on its conversion efficiency using experimental measurement. Both catalysts were placed on a modified exhaust system equipped with a Mitshubishi 4G93 single cylinder petrol engine that was tested on an eddy current dynamometer under steady state conditions for several engine speeds. The experimental results show that the metallic catalytic converter reduced a higher percentage of CO up to 98.6% reduction emissions while ceramic catalytic converter had a better reduction efficiency of HC up to 85.4% and 87.2% reduction of NOx.

  19. Kinetic equation of heterogeneous catalytic isotope exchange

    Energy Technology Data Exchange (ETDEWEB)

    Trokhimets, A I [AN Belorusskoj SSR, Minsk. Inst. Fiziko-Organicheskoj Khimii

    1979-12-01

    A kinetic equation is derived for the bimolecular isotope exchange reaction between AXsub(n)sup(*) and BXsub(m)sup(o), all atoms of element X in each molecule being equivalent. The equation can be generalized for homogeneous and heterogeneous catalytic isotope exchange.

  20. Direct catalytic cross-coupling of organolithium compounds

    NARCIS (Netherlands)

    Giannerini, Massimo; Fananas Mastral, Martin; Feringa, Ben L.

    Catalytic carbon-carbon bond formation based on cross-coupling reactions plays a central role in the production of natural products, pharmaceuticals, agrochemicals and organic materials. Coupling reactions of a variety of organometallic reagents and organic halides have changed the face of modern

  1. New insights into the binding and catalytic mechanisms of Bacillus thuringiensis lactonase: insights into B. thuringiensis AiiA mechanism.

    Directory of Open Access Journals (Sweden)

    Marc N Charendoff

    Full Text Available The lactonase enzyme (AiiA produced by Bacillus thuringiensis serves to degrade autoinducer-1 (AI-1 signaling molecules in what is an evolved mechanism by which to compete with other bacteria. Bioassays have been previously performed to determine whether the AI-1 aliphatic tail lengths have any effect on AiiA's bioactivity, however, data to date are conflicting. Additionally, specific residue contributions to the catalytic activity of AiiA provide for some interesting questions. For example, it has been proposed that Y194 serves to provide an oxyanion hole to AI-1 which is curious given the fact the substrate spans two Zn(2+ ions. These ions might conceivably provide enough charge to promote both ligand stability and the carbonyl activation necessary to drive a nucleophilic attack. To investigate these questions, multiple molecular dynamics simulations were performed across a family of seven acylated homoserine lactones (AHL along with their associated intermediate and product states. Distance analyses and interaction energy analyses were performed to investigate current bioassay data. Our simulations are consistent with experimental studies showing that AiiA degrades AHLs in a tail length independent manner. However, the presence of the tail is required for activity. Also, the putative oxyanion hole function of Y194 toward the substrate is not observed in any of the reactant or product state simulation trajectories, but does seem to show efficacy in stabilizing the intermediate state. Last, we argue through ionization state analyses, that the proton shuttling necessary for catalytic activity might be mediated by both water and substrate-based intra-molecular proton transfer. Based on this argument, an alternate catalytic mechanism is proposed.

  2. Probabilistic inductive inference: a survey

    OpenAIRE

    Ambainis, Andris

    2001-01-01

    Inductive inference is a recursion-theoretic theory of learning, first developed by E. M. Gold (1967). This paper surveys developments in probabilistic inductive inference. We mainly focus on finite inference of recursive functions, since this simple paradigm has produced the most interesting (and most complex) results.

  3. Fundamental study of manganese dioxide for catalytic recombustion of exhaust gas of motor car

    Energy Technology Data Exchange (ETDEWEB)

    Shimoyamada, T

    1974-01-01

    The catalytic activities of five manganese dioxide preparations were tested in a pulse reactor to assess their carbon monoxide-oxidizing capability in relation to the catalytic afterburning of automobile exhaust gases. Catalysts prepared from manganese sulfate showed diminished catalytic activity as a result of sulfate poisoning. Higher oxidation activity was obtained with a catalyst prepared by precipitating the permanganate salt in acidic solution. Two forms of carbon monoxide adsorption were demonstrated, each with a characteristic activation energy and reaction temperature.

  4. The IKK complex contributes to the induction of autophagy.

    Science.gov (United States)

    Criollo, Alfredo; Senovilla, Laura; Authier, Hélène; Maiuri, Maria Chiara; Morselli, Eugenia; Vitale, Ilio; Kepp, Oliver; Tasdemir, Ezgi; Galluzzi, Lorenzo; Shen, Shensi; Tailler, Maximilien; Delahaye, Nicolas; Tesniere, Antoine; De Stefano, Daniela; Younes, Aména Ben; Harper, Francis; Pierron, Gérard; Lavandero, Sergio; Zitvogel, Laurence; Israel, Alain; Baud, Véronique; Kroemer, Guido

    2010-02-03

    In response to stress, cells start transcriptional and transcription-independent programs that can lead to adaptation or death. Here, we show that multiple inducers of autophagy, including nutrient depletion, trigger the activation of the IKK (IkappaB kinase) complex that is best known for its essential role in the activation of the transcription factor NF-kappaB by stress. Constitutively active IKK subunits stimulated autophagy and transduced multiple signals that operate in starvation-induced autophagy, including the phosphorylation of AMPK and JNK1. Genetic inhibition of the nuclear translocation of NF-kappaB or ablation of the p65/RelA NF-kappaB subunit failed to suppress IKK-induced autophagy, indicating that IKK can promote the autophagic pathway in an NF-kappaB-independent manner. In murine and human cells, knockout and/or knockdown of IKK subunits (but not that of p65) prevented the induction of autophagy in response to multiple stimuli. Moreover, the knockout of IKK-beta suppressed the activation of autophagy by food deprivation or rapamycin injections in vivo, in mice. Altogether, these results indicate that IKK has a cardinal role in the stimulation of autophagy by physiological and pharmacological stimuli.

  5. High aspect ratio catalytic reactor and catalyst inserts therefor

    Science.gov (United States)

    Lin, Jiefeng; Kelly, Sean M.

    2018-04-10

    The present invention relates to high efficient tubular catalytic steam reforming reactor configured from about 0.2 inch to about 2 inch inside diameter high temperature metal alloy tube or pipe and loaded with a plurality of rolled catalyst inserts comprising metallic monoliths. The catalyst insert substrate is formed from a single metal foil without a central supporting structure in the form of a spiral monolith. The single metal foil is treated to have 3-dimensional surface features that provide mechanical support and establish open gas channels between each of the rolled layers. This unique geometry accelerates gas mixing and heat transfer and provides a high catalytic active surface area. The small diameter, high aspect ratio tubular catalytic steam reforming reactors loaded with rolled catalyst inserts can be arranged in a multi-pass non-vertical parallel configuration thermally coupled with a heat source to carry out steam reforming of hydrocarbon-containing feeds. The rolled catalyst inserts are self-supported on the reactor wall and enable efficient heat transfer from the reactor wall to the reactor interior, and lower pressure drop than known particulate catalysts. The heat source can be oxygen transport membrane reactors.

  6. Catalytic Ethanol Dehydration over Different Acid-activated Montmorillonite Clays.

    Science.gov (United States)

    Krutpijit, Chadaporn; Jongsomjit, Bunjerd

    2016-01-01

    In the present study, the catalytic dehydration of ethanol to obtain ethylene over montmorillonite clays (MMT) with mineral acid activation including H2SO4 (SA-MMT), HCl (HA-MMT) and HNO3 (NA-MMT) was investigated at temperature range of 200 to 400°C. It revealed that HA-MMT exhibited the highest catalytic activity. Ethanol conversion and ethylene selectivity were found to increase with increased reaction temperature. At 400°C, the HA-MMT yielded 82% of ethanol conversion having 78% of ethylene yield. At lower temperature (i.e. 200 to 300°C), diethyl ether (DEE) was a major product. The highest activity obtained from HA-MMT can be attributed to an increase of weak acid sites and acid density by the activation of MMT with HCl. It can be also proven by various characterization techniques that in most case, the main structure of MMT did not alter by acid activation (excepted for NA-MMT). Upon the stability test for 72 h during the reaction, the MMT and HA-MMT showed only slight deactivation due to carbon deposition. Hence, the acid activation of MMT by HCl is promising to enhance the catalytic dehydration of ethanol.

  7. The Catalytic Activity of Modified Zeolite Lanthanum on the Catalytic Cracking of Al-Duara Atmospheric Distillation Residue

    Directory of Open Access Journals (Sweden)

    Karim Khalifa Esgair

    2016-03-01

    Full Text Available Atmospheric residue fluid catalytic cracking was selected as a probe reaction to test the catalytic performance of modified NaY zeolites and prepared NaY zeolites. Modified NaY zeolites have been synthesized by simple ion exchange methods. Three samples of modified zeolite Y have been obtained by replacing the sodium ions in the original sample with lanthanum and the weight percent added are 0.28, 0.53, and 1.02 respectively. The effects of addition of lanthanum to zeolite Y in different weight percent on the cracking catalysts were investigated using an experimental laboratory plant scale of fluidized bed reactor. The experiments have been performed with weight hourly space velocity (WHSV range of 6 to 24 h-1, and the range of temperature from 450 to 510 oC. The activity of the catalyst with 1.02 wt% lanthanum has been shown to be much greater than that of the sample parent NaY. Also it was observed that the addition of the lanthanum causes an increase in the thermal stability of the zeolite.

  8. Castor oil as a natural alternative to labor induction: A retrospective descriptive study.

    Science.gov (United States)

    DeMaria, Andrea L; Sundstrom, Beth; Moxley, Grace E; Banks, Kendall; Bishop, Ashlan; Rathbun, Lesley

    2018-04-01

    To describe birthing outcomes among women who consumed castor oil cocktail as part of a freestanding birth center labor induction protocol. De-identified data from birth logs and electronic medical records were entered into SPSS Statistics 22.0 for analysis for all women who received the castor oil cocktail (n=323) to induce labor between January 2008 and May 2015 at a birth center in the United States. Descriptive statistics were analyzed for trends in safety and birthing outcomes. Of the women who utilized the castor oil cocktail to stimulate labor, 293 (90.7%) birthed vaginally at the birth center or hospital. The incidence of maternal adverse effects (e.g., nausea, vomiting, extreme diarrhea) was less than 7%, and adverse effects of any kind were reported in less than 15% of births. An independent sample t-test revealed that parous women were more likely to birth vaginally at the birth center after using the castor oil cocktail than their nulliparous counterparts (poil cocktail to induce labor were able to give birth vaginally with little to no maternal or fetal complications. Findings indicate further research is needed to compare the safety and effectiveness of natural labor induction methodologies, including castor oil, to commonly used labor induction techniques in a prospective study or clinical trial. Copyright © 2017 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  9. Catalytic CO Oxidation over Au Nanoparticles Loaded Nanoporous Nickel Phosphate Composite

    Directory of Open Access Journals (Sweden)

    Xiaonan Leng

    2015-01-01

    Full Text Available Au/nickel phosphate-5 (Au/VSB-5 composite with the noble metal loading amount of 1.43 wt.% is prepared by using microporous VSB-5 nanocrystals as the support. Carbon monoxide (CO oxidation reaction is carried out over the sample with several catalytic cycles. Complete conversion of CO is achieved at 238°C over the catalyst at the first catalytic cycle. The catalytic activity improved greatly at the second cycle with the complete conversion fulfilled at 198°C and preserved for the other cycles. A series of experiments such as X-ray diffraction (XRD, high resolution transmission electron microscopy (HRTEM, ultraviolet-visible (UV-vis spectroscopy, and X-ray photoelectron spectroscopy (XPS are carried out to characterize the catalysts before and after the reaction to study the factors influencing this promotion at the second cycle.

  10. Sampling Assumptions in Inductive Generalization

    Science.gov (United States)

    Navarro, Daniel J.; Dry, Matthew J.; Lee, Michael D.

    2012-01-01

    Inductive generalization, where people go beyond the data provided, is a basic cognitive capability, and it underpins theoretical accounts of learning, categorization, and decision making. To complete the inductive leap needed for generalization, people must make a key "sampling" assumption about how the available data were generated.…

  11. From Inductive Reasoning to Proof

    Science.gov (United States)

    Yopp, David A.

    2009-01-01

    Mathematical proof is an expression of deductive reasoning (drawing conclusions from previous assertions). However, it is often inductive reasoning (conclusions drawn on the basis of examples) that helps learners form their deductive arguments, or proof. In addition, not all inductive arguments generate more formal arguments. This article draws a…

  12. Covariation in Natural Causal Induction.

    Science.gov (United States)

    Cheng, Patricia W.; Novick, Laura R.

    1991-01-01

    Biases and models usually offered by cognitive and social psychology and by philosophy to explain causal induction are evaluated with respect to focal sets (contextually determined sets of events over which covariation is computed). A probabilistic contrast model is proposed as underlying covariation computation in natural causal induction. (SLD)

  13. Dependence of crystal size on the catalytic performance of a porous coordination polymer.

    Science.gov (United States)

    Kiyonaga, Tomokazu; Higuchi, Masakazu; Kajiwara, Takashi; Takashima, Yohei; Duan, Jingui; Nagashima, Kazuro; Kitagawa, Susumu

    2015-02-14

    Submicrosized MOF-76(Yb) exhibits a higher catalytic performance for esterification than microsized MOF-76(Yb). Control of the crystal size of porous heterogeneous catalysts, such as PCP/MOFs, offers a promising approach to fabricating high-performance catalysts based on accessibility to the internal catalytic sites.

  14. Probing the structural basis of oxygen binding in a cofactor-independent dioxygenase.

    Science.gov (United States)

    Li, Kunhua; Fielding, Elisha N; Condurso, Heather L; Bruner, Steven D

    2017-07-01

    The enzyme DpgC is included in the small family of cofactor-independent dioxygenases. The chemistry of DpgC is uncommon as the protein binds and utilizes dioxygen without the aid of a metal or organic cofactor. Previous structural and biochemical studies identified the substrate-binding mode and the components of the active site that are important in the catalytic mechanism. In addition, the results delineated a putative binding pocket and migration pathway for the co-substrate dioxygen. Here, structural biology is utilized, along with site-directed mutagenesis, to probe the assigned dioxygen-binding pocket. The key residues implicated in dioxygen trafficking were studied to probe the process of binding, activation and chemistry. The results support the proposed chemistry and provide insight into the general mechanism of dioxygen binding and activation.

  15. Ethylene independent induction of lycopene biosynthesis in tomato fruits by jasmonates

    Science.gov (United States)

    Wei, Jia; Wang, Qiaomei

    2012-01-01

    One of the main characteristics of tomato (Solanum lycopersicum) fruit ripening is a massive accumulation of carotenoids (mainly lycopene), which may contribute to the nutrient quality of tomato fruit and its role in chemoprevention. Previous studies have shown that ethylene (ET) plays a central role in promoting fruit ripening. In this study, the role of jasmonic acid (JA) in controlling lycopene accumulation in tomato fruits was analysed by measuring fruit lycopene content and the expression levels of lycopene biosynthetic genes in JA-deficient mutants (spr2 and def1) and a 35S::prosystemin transgenic line (35S::prosys) with increased JA levels and constitutive JA signalling. The lycopene content was significantly decreased in the fruits of spr2 and def1, but was enhanced in 35S::prosys fruits. Simultaneously, the expression of lycopene biosynthetic genes followed a similar trend. Lycopene synthesis in methyl jasmonate (MeJA) vapour-treated fruits showed an inverted U-shaped dose response, which significantly enhanced the fruit lycopene content and restored lycopene accumulation in spr2 and def1 at a concentration of 0.5 µM. The results indicated that JA plays a positive role in lycopene biosynthesis. In addition, the role of ET in JA-induced lycopene accumulation was also examined. Ethylene production in tomato fruits was depressed in spr2 and def1 while it increased in 35S::prosys. However, the exogenous application of MeJA to Never ripe (Nr), the ET-insensitive mutant, significantly promoted lycopene accumulation, as well as the expression of lycopene biosynthetic genes. Based on these results, it is proposed that JA might function independently of ethylene to promote lycopene biosynthesis in tomato fruits. PMID:22945939

  16. Catalytic and physical properties of γ-irradiated catalase in dilute solution

    International Nuclear Information System (INIS)

    Gasyna, Z.; Bachman, S.

    1974-01-01

    The catalytic and physical properties of irradiated beef liver catalase have been studied. Modification of the enzyme by γ-rays brings about its reducibility by dithionite. The decrease of the catalytic activity is found to correspond to the decrease in the content of nonreducible catalase. Microaggregates of catalase molecules induced by irradiation have been fractionated. The results lead to the conclusion that aggregates are composed of active and modified catalase monomers. (author)

  17. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Quesada-Penate, I. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Julcour-Lebigue, C., E-mail: carine.julcour@ensiacet.fr [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France); Jauregui-Haza, U. J. [Instituto Superior de Tecnologias y Ciencias Aplicadas, Ave. Salvador Allende y Luaces, Habana (Cuba); Wilhelm, A. M.; Delmas, H. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, 4, Allee Emile Monso, F-31432 Toulouse (France); CNRS, Laboratoire de Genie Chimique, F-31432 Toulouse (France)

    2012-06-30

    Highlights: Black-Right-Pointing-Pointer Three activated carbons (AC) compared as adsorbents and oxidation catalysts. Black-Right-Pointing-Pointer Similar evolution for catalytic and adsorptive properties of AC over reuses. Black-Right-Pointing-Pointer Acidic and mesoporous AC to be preferred, despite lower initial efficiency. Black-Right-Pointing-Pointer Oxidative degradation of paracetamol improves biodegradability. Black-Right-Pointing-Pointer Convenient hybrid adsorption-regenerative oxidation process for continuous treatment. - Abstract: The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  18. Key parameters controlling the performance of catalytic motors

    Energy Technology Data Exchange (ETDEWEB)

    Esplandiu, Maria J.; Afshar Farniya, Ali [Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona (Spain); Reguera, David, E-mail: dreguera@ub.edu [Departament de Física Fonamental, Universitat de Barcelona, C/Martí i Franquès 1, 08028 Barcelona (Spain)

    2016-03-28

    The development of autonomous micro/nanomotors driven by self-generated chemical gradients is a topic of high interest given their potential impact in medicine and environmental remediation. Although impressive functionalities of these devices have been demonstrated, a detailed understanding of the propulsion mechanism is still lacking. In this work, we perform a comprehensive numerical analysis of the key parameters governing the actuation of bimetallic catalytic micropumps. We show that the fluid motion is driven by self-generated electro-osmosis where the electric field originates by a proton current rather than by a lateral charge asymmetry inside the double layer. Hence, the surface potential and the electric field are the key parameters for setting the pumping strength and directionality. The proton flux that generates the electric field stems from the proton gradient induced by the electrochemical reactions taken place at the pump. Surprisingly the electric field and consequently the fluid flow are mainly controlled by the ionic strength and not by the conductivity of the solution, as one could have expected. We have also analyzed the influence of the chemical fuel concentration, electrochemical reaction rates, and size of the metallic structures for an optimized pump performance. Our findings cast light on the complex chemomechanical actuation of catalytic motors and provide important clues for the search, design, and optimization of novel catalytic actuators.

  19. Complementary structure sensitive and insensitive catalytic relationships

    NARCIS (Netherlands)

    Santen, van R.A.

    2009-01-01

    The burgeoning field of nanoscience has stimulated an intense interest in properties that depend on particle size. For transition metal particles, one important property that depends on size is catalytic reactivity, in which bonds are broken or formed on the surface of the particles. Decreased

  20. Catalytic site interactions in yeast OMP synthase

    DEFF Research Database (Denmark)

    Hansen, Michael Riis; Barr, Eric W.; Jensen, Kaj Frank

    2014-01-01

    45 (2006) 5330-5342]. This behavior was investigated in the yeast enzyme by mutations in the conserved catalytic loop and 5-phosphoribosyl-1-diphosphate (PRPP) binding motif. Although the reaction is mechanistically sequential, the wild-type (WT) enzyme shows parallel lines in double reciprocal...

  1. 40 CFR Table 26 to Subpart Uuu of... - Initial Compliance With Inorganic HAP Emission Limits for Catalytic Reforming Units

    Science.gov (United States)

    2010-07-01

    ... Emission Limits for Catalytic Reforming Units 26 Table 26 to Subpart UUU of Part 63 Protection of... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery... HAP Emission Limits for Catalytic Reforming Units As stated in § 63.1567(b)(4), you shall meet each...

  2. Low and medium heating value coal gas catalytic combustor characterization

    Science.gov (United States)

    Schwab, J. A.

    1982-01-01

    Catalytic combustion with both low and medium heating value coal gases obtained from an operating gasifier was demonstrated. A practical operating range for efficient operation was determined, and also to identify potential problem areas were identified for consideration during stationary gas turbine engine design. The test rig consists of fuel injectors, a fuel-air premixing section, a catalytic reactor with thermocouple instrumentation and a single point, water cooled sample probe. The test rig included inlet and outlet transition pieces and was designed for installation into an existing test loop.

  3. Catalytic micromotor generating self-propelled regular motion through random fluctuation

    Science.gov (United States)

    Yamamoto, Daigo; Mukai, Atsushi; Okita, Naoaki; Yoshikawa, Kenichi; Shioi, Akihisa

    2013-07-01

    Most of the current studies on nano/microscale motors to generate regular motion have adapted the strategy to fabricate a composite with different materials. In this paper, we report that a simple object solely made of platinum generates regular motion driven by a catalytic chemical reaction with hydrogen peroxide. Depending on the morphological symmetry of the catalytic particles, a rich variety of random and regular motions are observed. The experimental trend is well reproduced by a simple theoretical model by taking into account of the anisotropic viscous effect on the self-propelled active Brownian fluctuation.

  4. Kinetic Studies of Catalytic Oxidation of Cyclohexene Using ...

    African Journals Online (AJOL)

    acer

    Kinetic Studies of Catalytic Oxidation of Cyclohexene Using Chromium VI Oxide in. Acetic Acid ... respect to the oxidant using pseudo-order approximation method. .... making the concentration of the cyclohexene in ..... on Titanium Silicate.

  5. VUV photo-oxidation of gaseous benzene combined with ozone-assisted catalytic oxidation: Effect on transition metal catalyst

    International Nuclear Information System (INIS)

    Huang, Haibao; Lu, Haoxian; Zhan, Yujie; Liu, Gaoyuan; Feng, Qiuyu; Huang, Huiling; Wu, Muyan; Ye, Xinguo

    2017-01-01

    Graphical abstract: Mn nanoparticles are highly dispersed on ZSM-5 and most efficient in benzene degradation in the VUV-OZCO process. - Highlights: • Vacuum UV irradiation is well combined with O_3 catalytic oxidation. • O_3 byproducts was used to enhance catalytic oxidation of VOCs. • Mn/ZSM-5 achieved the best catalytic activity for benzene degradation. - Abstract: Volatile organic compounds (VOCs) cause the major air pollution concern. In this study, a series of ZSM-5 supported transition metals were prepared by impregnation method. They were combined with vacuum UV (VUV) photo-oxidation in a continuous-flow packed-bed reactor and used for the degradation of benzene, a typical toxic VOCs. Compared with VUV photo-oxidation alone, the introduction of catalysts can greatly enhance benzene oxidation under the help of O_3, the by-products from VUV irradiation, via ozone-assisted catalytic oxidation (OZCO). The catalytic activity of transition metals towards benzene oxidation followed the order: Mn > Co > Cu > Ni > Fe. Mn achieved the best catalytic activity due to the strongest capability for O_3 catalytic decomposition and utilization. Benzene and O_3 removal efficiency reached as high as 97% and 100% after 360 min, respectively. O_3 was catalytically decomposed, generating highly reactive oxidants such as ·OH and ·O for benzene oxidation.

  6. VUV photo-oxidation of gaseous benzene combined with ozone-assisted catalytic oxidation: Effect on transition metal catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Haibao, E-mail: seabao8@gmail.com [School of Environmental Science and Engineering, Sun Yat-Sen University (China); Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-sen University) (China); Lu, Haoxian; Zhan, Yujie; Liu, Gaoyuan; Feng, Qiuyu; Huang, Huiling; Wu, Muyan; Ye, Xinguo [School of Environmental Science and Engineering, Sun Yat-Sen University (China)

    2017-01-01

    Graphical abstract: Mn nanoparticles are highly dispersed on ZSM-5 and most efficient in benzene degradation in the VUV-OZCO process. - Highlights: • Vacuum UV irradiation is well combined with O{sub 3} catalytic oxidation. • O{sub 3} byproducts was used to enhance catalytic oxidation of VOCs. • Mn/ZSM-5 achieved the best catalytic activity for benzene degradation. - Abstract: Volatile organic compounds (VOCs) cause the major air pollution concern. In this study, a series of ZSM-5 supported transition metals were prepared by impregnation method. They were combined with vacuum UV (VUV) photo-oxidation in a continuous-flow packed-bed reactor and used for the degradation of benzene, a typical toxic VOCs. Compared with VUV photo-oxidation alone, the introduction of catalysts can greatly enhance benzene oxidation under the help of O{sub 3}, the by-products from VUV irradiation, via ozone-assisted catalytic oxidation (OZCO). The catalytic activity of transition metals towards benzene oxidation followed the order: Mn > Co > Cu > Ni > Fe. Mn achieved the best catalytic activity due to the strongest capability for O{sub 3} catalytic decomposition and utilization. Benzene and O{sub 3} removal efficiency reached as high as 97% and 100% after 360 min, respectively. O{sub 3} was catalytically decomposed, generating highly reactive oxidants such as ·OH and ·O for benzene oxidation.

  7. Functional and toxicological consequences of metabolic bioactivation of methapyrilene via thiophene S-oxidation: Induction of cell defence, apoptosis and hepatic necrosis

    International Nuclear Information System (INIS)

    Mercer, Amy E.; Regan, Sophie L.; Hirst, Charlotte M.; Graham, Emma E.; Antoine, Daniel J.; Benson, Craig A.; Williams, Dominic P.; Foster, John; Kenna, J. Gerry; Park, B. Kevin

    2009-01-01

    Methapyrilene, [N,N-dimethyl-N'-pyridyl-N'(2-thienylmethyl)-1,2-ethanediamine] (MP) was withdrawn from, clinical use due to reported periportal hepatic necrosis and hepatocarcinogenicity in the rat, via S-oxidation of the thiophene group. In this study MP is used as a model hepatotoxin to further characterise the functional consequences of S-oxidation of the thiophene group in vivo, in rat models and in vitro, in freshly isolated rat hepatocyte suspensions. In vivo histological studies revealed the early depletion of glutathione (GSH), which was confined to the damaged periportal area, in contrast to an increase in GSH levels in the centrilobular region. Additionally, the induction of cell defence was demonstrated by an increase in the protein levels of heme-oxygenase 1 (HO-1) and glutamate cysteine ligase, catalytic subunit (GCLC) in vivo. Histological examination demonstrated that cytotoxicity progresses initially via apoptosis before an increase in necrosis over the 3-day administration. An apoptotic-like mechanism was observed in vitro via the measurement of cytochrome c release and caspase activation. Conclusion: This study provides evidence for a complex pathway of MP-induced hepatotoxicity which progresses through early adaptation, apoptosis, necrosis and inflammation, all underpinned by the zonal induction and depletion of GSH within the liver.

  8. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption – Catalytic wet air oxidation on activated carbons

    International Nuclear Information System (INIS)

    Quesada-Peñate, I.; Julcour-Lebigue, C.; Jáuregui-Haza, U.J.; Wilhelm, A.M.; Delmas, H.

    2012-01-01

    Highlights: ► Three activated carbons (AC) compared as adsorbents and oxidation catalysts. ► Similar evolution for catalytic and adsorptive properties of AC over reuses. ► Acidic and mesoporous AC to be preferred, despite lower initial efficiency. ► Oxidative degradation of paracetamol improves biodegradability. ► Convenient hybrid adsorption–regenerative oxidation process for continuous treatment. - Abstract: The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  9. Preparation of Ag{sub core}/Au{sub shell} bimetallic nanoparticles from physical mixtures of Au clusters and Ag ions under dark conditions and their catalytic activity for aerobic glucose oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haijun, E-mail: zhanghaijun@wust.edu.cn [College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081 (China); Toshima, Naoki; Takasaki, Kanako [Department of Applied Chemistry, Tokyo University of Science Yamaguchi, SanyoOnoda-shi, Yamaguchi 756-0884 (Japan); Okumura, Mitsutaka [Department of Chemistry, Graduate School of Science, Osaka University, Machikaneyama, Toyonaka, Osaka 560-0043 (Japan)

    2014-02-15

    Graphical abstract: The synthesis, characterization and catalytic activities for glucose oxidation of AgAu bimetallic nanoparticles (BNPs) with size of less than 2 nm are reported. The catalytic activity of Ag{sub 10}Au{sub 90} BNPs was about two times higher than that of Au NPs, even the BNPs have a larger particle size than that of Au NPs. -- Highlights: • Ag{sub core}/Au{sub shell} BNPs with size of less than 2.0 nm were prepared. • No any reducing reagents and lights were used for the preparation of the BNPs. • The catalytic activity of the BNPs is about two times higher than that of Au NPs. -- Abstract: AgAu bimetallic nanoparticles (BNPs), one of the most extensively studied bimetallic systems in the literatures, could have various structures and compositions depending on their preparation conditions. In the present work, catalytically highly active PVP-protected Ag{sub core}/Au{sub shell} BNPs of about 2.5 nm in diameter were fabricated from physical mixtures of aqueous dispersions of Au nanoparticles and Ag{sup +} ions under dark conditions without using any reducing agents. The prepared Ag{sub core}/Au{sub shell} BNP colloidal catalysts, which possessed a high activity for aerobic glucose oxidation, were characterized by Ultraviolet–visible spectrophotometry (UV–Vis), Inductive coupled plasma emission spectrometer (ICP), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Energy disperse spectroscopy (EDS) in High-resolution scanning transmission electron microscopy (HR-STEM). The highest activity (11,360 mol-glucose h{sup −1} mol-metal{sup −1}) was observed for the BNPs with the Ag/Au atomic ratio of 1/9, the TOF value of which is about two times higher than that of Au nanoparticles with the particle size of 1.3 nm. The enhanced catalytic activity of the prepared Ag{sub core}/Au{sub shell} BNPs compared to Au NPs can be ascribed to the presence of negatively charged Au atoms resulted from electron donations

  10. Induction Heating Process Design Using COMSOL Multiphysics Software

    Directory of Open Access Journals (Sweden)

    Andy Triwinarko

    2011-08-01

    Full Text Available Induction heating is clean environmental heating process due to a non-contact heating process. There is lots of the induction heating type that be used in the home appliance but it is still new technology in Indonesia. The main interesting area of the induction heating design is the efficiency of the usage of energy and choice of the plate material. COMSOL Multiphysics Software can be used to simulate and estimate the induction heating process. Therefore, the software can be used to design the induction heating process that will have a optimum efficiency. The properties of the induction heating design were also simulated and analyzed such as effect of inductors width, inductors distance, and conductive plate material. The result was shown that the good design of induction heating must have a short width and distance inductor and used silicon carbide as material plate with high frequency controller.

  11. 40 CFR Table 27 to Subpart Uuu of... - Continuous Compliance With Inorganic HAP Emission Limits for Catalytic Reforming Units

    Science.gov (United States)

    2010-07-01

    ... HAP Emission Limits for Catalytic Reforming Units 27 Table 27 to Subpart UUU of Part 63 Protection of... Pollutants for Petroleum Refineries: Catalytic Cracking Units, Catalytic Reforming Units, and Sulfur Recovery... Inorganic HAP Emission Limits for Catalytic Reforming Units As stated in § 63.1567(c)(1), you shall meet...

  12. Catalytic Conversion of Glucose into 5-Hydroxymethylfurfural by Hf(OTf4 Lewis Acid in Water

    Directory of Open Access Journals (Sweden)

    Junjie Li

    2015-12-01

    Full Text Available A series of Lewis acidic metal salts were used for glucose dehydration to 5-hydroymethylfurfural (HMF in water. Effect of valence state, ionic radii of Lewis acidic cation, and the type of anions on the catalytic performance have been studied systematically. The experimental results showed that the valence state played an important role in determining catalytic activity and selectivity. It was found that a higher glucose conversion rate and HMF selectivity could be obtained over high valent Lewis acid salts, where the ionic radii of these Lewis acidic metal salts are usually relatively small. Analysis on the effect of the anions of Lewis acid salts on the catalytic activity and the selectivity suggested that a higher glucose conversion and HMF selectivity could be readily obtained with Cl−. Furthermore, the recyclability of high valence state Lewis acid salt was also studied, however, inferior catalytic performance was observed. The deactivation mechanism was speculated to be the fact that high valence state Lewis acid salt was comparatively easier to undergo hydrolysis to yield complicated metal aqua ions with less catalytic activity. The Lewis acidic activity could be recovered by introducing a stoichiometric amount of hydrochloric acid (HCl to the catalytic before the reaction.

  13. Effect of Dopant Loading on the Structural and Catalytic Properties of Mn-Doped SrTiO3 Catalysts for Catalytic Soot Combustion

    Directory of Open Access Journals (Sweden)

    Santiago Iván Suárez-Vázquez

    2018-02-01

    Full Text Available Soot particles have been associated with respiratory diseases and cancer. To decrease these emissions, perovskite-mixed oxides have been proposed due to their thermal stability and redox surface properties. In this work, SrTiO3 doped with different amounts of Mn were synthesized by the hydrothermal method and tested for soot combustion. Results show that at low Mn content, structural distortion, and higher Oads/Olat ratio were observed which was attributed to the high content of Mn3+ in Ti sites. On the other hand, increasing the Mn content led to surface segregation of manganese oxide. All synthesized catalysts showed mesopores in the range of 32–47 nm. In the catalytic combustion of soot, the samples synthesized in this work lowered the combustion temperature by more than 100 °C compared with the uncatalyzed reaction. The sample doped with 1 wt % of Mn showed the best catalytic activity. The activation energy of these samples was also calculated, and the order of decreasing activation energy is as follows: uncatalyzed > Mn0 > Mn8 > Mn4 > Mn1. The best catalytic activity for Mn1 was attributed to its physicochemical properties and the mobility of the oxygen from the bulk to the surface at temperatures higher than 500 °C.

  14. Reversing flow catalytic converter for a natural gas/diesel dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Liu, E.; Checkel, M.D. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering; Hayes, R.E. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering; Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering; Zheng, M.; Mirosh, E. [Alternative Fuel Systems Inc., Calgary, AB (Canada)

    2001-07-01

    An experimental and modelling study was performed for a reverse flow catalytic converter attached to a natural gas/diesel dual fuel engine. The catalytic converter had a segmented ceramic monolith honeycomb substrate and a catalytic washcoat containing a predominantly palladium catalyst. A one-dimensional single channel model was used to simulate the operation of the converter. The kinetics of the CO and methane oxidation followed first-order behaviour. The activation energy for the oxidation of methane showed a change with temperature, dropping from a value of 129 to 35 kJ/mol at a temperature of 874 K. The reverse flow converter was able to achieve high reactor temperature under conditions of low inlet gas temperature, provided that the initial reactor temperature was sufficiently high. (author)

  15. The use of radioisotopic methods to characterize metal foil monolith catalytic converters

    International Nuclear Information System (INIS)

    Schneider, E.W.; Vaneman, G.L.

    1986-01-01

    Radioisotopic methods have been applied to nondestructive measurements on experimental automotive catalytic converters. These converters consist of thin corrugated metal foil which supports an alumina coating impregnated with noble metals. A radiogauging system, using gamma radiation from a gadolinium-153 source, was developed to determine the total quantity and distribution of alumina coating applied to the foil substrate. The radiogauging apparatus was also used to provide axial and radial profiles of lead deposited in the catalytic converter when leaded fuel was used. During dynamometer aging, iron-59 was used as a radiotracer in the alumina to monitor the coating attrition as a function of operating time. These studies demonstrate the capability of radiotracer and radiogauging techniques for rapid, nondestructive measurements on prototype catalytic converters during performance testing

  16. Catalytic recruitment in the inactivation of acetylcholinesterase by soman: temperature dependence of the solvent isotope effect

    International Nuclear Information System (INIS)

    Kovach, I.M.; Huber, J.H.A.; Schowen, R.L.

    1988-01-01

    3,3-Dimethyl-2-butyl methylphosphonofluoridate (soman) recruits at least 60-70% of the catalytic power of acetylcholinesterase during phosphonylation of the active-site serine, as compared with the acetylation by acetylcholine. The solvent isotope effect is 1.34 +/- 0.11 and is temperature independent within experimental error between 5 and 45 0 C. This observation is quite similar to what has been found for the reactions of aryl acetates and anilides. Average activation parameters for the same temperature range are ΔH* = 7.3 +/- 0.6 kcal/mol and ΔS* = -4 +/- 2 eu (H 2 O) and ΔH* = 7.1 +/- 0.4 kcal/mol and ΔS* = -6 +/- 1 eu (D 2 O). A rate-limiting process with 50% contribution of an induced-fit conformational change is supported by the data

  17. Automatic design of decision-tree induction algorithms

    CERN Document Server

    Barros, Rodrigo C; Freitas, Alex A

    2015-01-01

    Presents a detailed study of the major design components that constitute a top-down decision-tree induction algorithm, including aspects such as split criteria, stopping criteria, pruning, and the approaches for dealing with missing values. Whereas the strategy still employed nowadays is to use a 'generic' decision-tree induction algorithm regardless of the data, the authors argue on the benefits that a bias-fitting strategy could bring to decision-tree induction, in which the ultimate goal is the automatic generation of a decision-tree induction algorithm tailored to the application domain o

  18. Magnetic, catalytic, EPR and electrochemical studies on binuclear ...

    Indian Academy of Sciences (India)

    Magnetic, catalytic, EPR and electrochemical studies on binuclear copper(II) complexes ... to the oxidation of 3,5-di--butylcatechol to the corresponding quinone. ... EPR spectral studies in methanol solvent show welldefined four hyperfine ...

  19. What Can a Hypnotic Induction Do?

    Science.gov (United States)

    Woody, Erik; Sadler, Pamela

    2016-10-01

    In contrast to how recent definitions of hypnosis describe the induction, a work-sample perspective is advocated that characterizes the induction as an initial, stage-setting phase encompassing everything in a hypnotic session up to the first hypnotic suggestion of particular relevance to the therapeutic or research goals at hand. Four major ways are then discussed in which the induction could affect subsequent hypnotic responses: It may provide information about how subsequent behaviors are to be enacted; it may provide cues about the nature of the interpersonal interaction to be expected in hypnosis; it may provide meta-suggestions, defined as suggestive statements intended to enhance responses to subsequent hypnotic suggestions; and it may provide a clear transition to help allow new behaviors and experiences to emerge. Several ideas for future research are advanced, such as mapping hypnosis style onto the interpersonal circumplex, evaluating whether attentional-state changes measured at the end of the induction actually mediate subsequent hypnotic responsiveness, and systematically examining the impact of ritual-like aspects of inductions.

  20. Microwave catalytic NOx and SO{sub 2} removal using FeCu/zeolite as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Z.S. Wei; G.H. Zeng; Z.R. Xie; C.Y. Ma; X.H. Liu; J.L. Sun; L.H. Liu [Sun Yat-sen University, Guangzhou (China). School of Environmental Science and Engineering

    2011-04-15

    Non-thermal plasma technology is a promising process for flue gas treatment. Microwave catalytic NOx and SO{sub 2} removal simultaneously has been investigated using FeCu/zeolite as catalyst. The experimental results showed that a microwave reactor with FeCu/zeolite only could be used to microwave catalytic oxidative 91.7% NOx to nitrates and 79.6% SO{sub 2} to sulfate; the reaction efficiencies of microwave catalytic reduction of NOx and SO{sub 2} in a microwave reactor with FeCu/zeolite and ammonium bicarbonate (NH{sub 4}HCO{sub 3}) as a reducing agent could be up to 95.8% and 93.4% respectively. Microwave irradiation accentuates catalytic reduction of SO{sub 2} and NOx treatment, and microwave addition can increases SO{sub 2} removal efficiency from 14.5% to 18.7%, and NOx removal efficiency from 13.4% to 18.7%, separately. FeCu/zeolite catalyst was characterized by X-ray diffraction (XRD), X-ray photoelectron spectrum analysis (XPS), scanning electron microscopy (SEM) and the Brunauer Emmett Teller (BET) method. Microwave catalytic NOx and SO{sub 2} removal follows Langmuir-Hinshelwood (L-H) kinetics. 25 refs., 7 figs., 1 tab.