WorldWideScience

Sample records for catalytic hydrocarbon reactions

  1. Catalytic ignition of light hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    K. L. Hohn; C.-C. Huang; C. Cao

    2009-01-01

    Catalytic ignition refers to phenomenon where sufficient energy is released from a catalytic reaction to maintain further reaction without additional extemai heating. This phenomenon is important in the development of catalytic combustion and catalytic partial oxidation processes, both of which have received extensive attention in recent years. In addition, catalytic ignition studies provide experimental data which can be used to test theoretical hydrocarbon oxidation models. For these reasons, catalytic ignition has been frequently studied. This review summarizes the experimental methods used to study catalytic ignition of light hydrocarbons and describes the experimental and theoretical results obtained related to catalytic ignition. The role of catalyst metal, fuel and fuel concentration, and catalyst state in catalytic ignition are examined, and some conclusions are drawn on the mechanism of catalytic ignition.

  2. Catalytic hydrocarbon reactions over supported metal oxides. Final report, August 1, 1986--July 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Ekerdt, J.G.

    1995-10-20

    Oxide catalysis plays a central role in hydrocarbon processing and improvements in catalytic activity or selectivity are of great technological importance because these improvements will translate directly into more efficient utilization of hydrocarbon supplies and lower energy consumption in separation processes. An understanding of the relationships between surface structure and catalytic properties is needed to describe and improve oxide catalysts. The approach has been to prepare supported oxides that have a specific structure and oxidation state and then employ these structures in reaction studies. The current research program is focused on studying the fundamental relationships between structure and reactivity for two important reactions that are present in many oxide-catalyzed processes, partial oxidation and carbon-carbon bond formation. During the course of these studies the author has: (1) developed methods to form and stabilize various Mo and W oxide structures on silica; (2) studied C-H abstraction reactions over the fully oxidized cations; (3) studied C-C bond coupling by metathesis and reductive coupling of aldehydes and ketones over reduced cation structures; and (4) initiated a study of hydrogenation and hydrogenolysis over reduced cation structures.

  3. Catalytic hydrocarbon reactions over supported metal oxides. Progress report, April 1, 1994--January 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Ekerdt, J.G.

    1995-01-31

    Oxide catalysis plays a central role in hydrocarbon processing and improvements in catalytic activity or selectivity are of great technological importance because these improvements will translate directly into more efficient utilization of hydrocarbon supplies and lower energy consumption in separation processes. An understanding of the relationships between surface structure and catalytic properties is needed to describe and improve oxide catalysts. Our approach has been to prepare supported oxides that have a specific structure and oxidation state and then employ these structures in reaction studies. Our current research program is focused on studying the fundamental relationships between structure and reactivity for two important reactions that are present in many oxide-catalyzed processes, partial oxidation and carbon-carbon bond formation. Oxide catalysis can be a complex process with both metal cation and oxygen anions participating in the chemical reactions. From an energy perspective carbon-carbon bond formation is particularly relevant to CO hydrogenation in isosynthesis. Hydrogenolysis and hydrogenation form the basis for heteroatom removal in fuels processing. Understanding the catalysis of these processes (and others) requires isolating reaction steps in the overall cycle and determining how structure and composition influence the individual reaction steps. Specially designed oxides, such as we use, permit one to study some of the steps in oxidation, carbon-carbon coupling and heteroatom removal catalysis. During the course of our studies we have: (1) developed methods to form and stabilize various Mo and W oxide structures on silica; (2) studied C-H abstraction reactions over the fully oxidized cations; (3) studied C-C bond coupling by methathesis and reductive coupling of aldehydes and ketones over reduced cation structures; and (4) initiated a study of hydrogenation and hydrogenolysis over reduced cation structures.

  4. Session 6: Catalytic Dechlorination Reaction of Chlorinated Hydrocarbons with Water Using nano-structured Alumina

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Khaleel [United Arab Emirates Univ., Dept. of Chemistry, Al-Ain (United States)

    2004-07-01

    Herein, we report our recent results from a study on the catalytic dechlorination reactions of 1,2-dichloroethane (DCE) and carbon tetrachloride (CTC) with water using HSA-Al{sub 2}O{sub 3} as the catalyst. The obtained experimental results are explained. (O.M.)

  5. Catalytic conversion of alcohols to hydrocarbons with low benzene content

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2016-09-06

    A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.

  6. Catalytic conversion of alcohols to hydrocarbons with low benzene content

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2016-03-08

    A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.

  7. Catalytic reactions of C4 hydrocarbons on the fluid catalytic cracking catalyst%C4烃类在催化裂化催化剂上催化转化反应的研究

    Institute of Scientific and Technical Information of China (English)

    闫平祥; 孟祥海; 徐春明; 高金森

    2008-01-01

    The catalytic reactions of C4 hydrocarbons on a fluid catalytic cracking (FCC) catalyst were studied in a confined fluidized bed reactor. The effect of reaction temperature and space velocity on product yields and distribution was investigated. The results show that the FCC catalyst has the good performance of aromatization and cracking of C4 hydrocarbons and can be used to produce propylene and aromatics under the suitable reaction conditions. It is mainly the butylene in the C4 hydrocarbons that undergoes catalytic reactions over the FCC catalyst and butane is hard to convert. Low reaction temperature favors the production of aromatics, while high reaction temperature favors the production of propylene. Low space velocity is beneficial to promote the conversion of butylene and the production of both aromatics and propylene. According to the bimolecular mechanism and reaction results, the reaction network for the catalytic reactions of C4 hydrocarbons on the FCC catalyst is proposed. The analysis on the this reaction mechanism indicates that the main reason of resulting in the lower yields of ethylene and propylene could be the poor secondary cracking performances of C5 and C6 olefins formed in the catalytic conversion of C4 hydrocarbons on the FCC catalyst.%利用小型固定流化床实验装置,对C4烃类在催化裂化催化剂上催化转化反应规律进行了实验研究,考察了不同反应温度及空速对C4烃类催化转化反应的产物分布和组成的影响.实验结果表明,催化裂化催化剂对C4烃类具有一定芳构化和裂化性能,在适宜的反应条件下,可增产芳烃和丙烯;在C4烃类催化转化过程中,丁烯是主要的反应物,而丁烷几乎不反应;低反应温度有利于增产芳烃,高反应温度有利于增产丙烯.较低的空速对增产芳烃和丙烯都有利.根据双分子反应机理和反应结果 ,建立了C4烃类在催化裂化催化剂上催化转化过程的反应网络.对C4烃类催化转化

  8. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Vivek V Ranade

    2014-03-01

    Catalytic reactions are ubiquitous in chemical and allied industries. A homogeneous or heterogeneous catalyst which provides an alternative route of reaction with lower activation energy and better control on selectivity can make substantial impact on process viability and economics. Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is discussed. Some examples where performance enhancement was realized by catalyst design, appropriate choice of reactor, better injection and dispersion strategies and recent advances in process intensification/ multifunctional reactors are discussed to illustrate the approach.

  9. Aluminosilicate nanoparticles for catalytic hydrocarbon cracking.

    Science.gov (United States)

    Liu, Yu; Pinnavaia, Thomas J

    2003-03-01

    Aluminosilicate nanoparticles containing 9.0-20 nm mesopores were prepared through the use of protozeolitic nanoclusters as the inorganic precursor and starch as a porogen. The calcined, porogen-free composition containing 2 mol % aluminum exhibited the porosity, hydrothermal stability, and acidity needed for the cracking of very large hydrocarbons. In fact, the hydrothermal stability of the nanoparticles to pure steam at 800 degrees C, along with the cumene cracking activity, surpassed the analogous performance properties of ultrastable Y zeolite, the main catalyst component of commercial cracking catalysts. The remarkable hydrothermal stability and catalytic reactivity of the new nanoparticles are attributable to a unique combination of two factors, the presence of protozeolitic nanoclusters in the pore walls and the unprecedented pore wall thickness (7-15 nm). In addition, the excellent catalytic longevity of the nanoparticles is most likely facilitated by the small domain size of the nanoparticles that greatly improves access to the acid sites on the pore walls and minimizes the diffusion length of coke precursors out of the pores. PMID:12603109

  10. Kinetics of heterogeneous catalytic reactions

    CERN Document Server

    Boudart, Michel

    2014-01-01

    This book is a critical account of the principles of the kinetics of heterogeneous catalytic reactions in the light of recent developments in surface science and catalysis science. Originally published in 1984. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase acc

  11. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, M.; Jones, S.

    2013-03-01

    This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks have been identified.

  12. Dual-Bed Catalytic System for Direct Conversion of Methane to Liquid Hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    N.A.S.Amin; Sriraj Ammasi

    2006-01-01

    A dual-bed catalytic system is proposed for the direct conversion of methane to liquid hydrocarbons. In this system, methane is converted in the first stage to oxidative coupling of methane (OCM) products by selective catalytic oxidation with oxygen over La-supported MgO catalyst. The second bed, comprising of the HZSM-5 zeolite catalyst, is used for the oligomerization of OCM light hydrocarbon products to liquid hydrocarbons. The effects of temperature (650-800 ℃), methane to oxygen ratio (4-10), and SiO2/Al2O3 ratio of the HZSM-5 zeolite catalyst on the process are studied. At higher reaction temperatures, there is considerable dealumination of HZSM-5, and thus its catalytic performance is reduced. The acidity of HZSM-5 in the second bed is responsible for the oligomerization reaction that leads to the formation of liquid hydrocarbons. The activities of the oligomerization sites were unequivocally affected by the SiO2/Al2O3 ratio. The relation between the acidity and the activity of HZSM-5 is studied by means of TPD-NH3 techniques. The rise in oxygen concentration is not beneficial for the C5+ selectivity, where the combustion reaction of intermediate hydrocarbon products that leads to the formation of carbon oxide (CO+CO2) products is more dominant than the oligomerization reaction. The dual-bed catalytic system is highly potential for directly converting methane to liquid fuels.

  13. Catalytic reaction in confined flow channel

    Energy Technology Data Exchange (ETDEWEB)

    Van Hassel, Bart A.

    2016-03-29

    A chemical reactor comprises a flow channel, a source, and a destination. The flow channel is configured to house at least one catalytic reaction converting at least a portion of a first nanofluid entering the channel into a second nanofluid exiting the channel. The flow channel includes at least one turbulating flow channel element disposed axially along at least a portion of the flow channel. A plurality of catalytic nanoparticles is dispersed in the first nanofluid and configured to catalytically react the at least one first chemical reactant into the at least one second chemical reaction product in the flow channel.

  14. Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, Mary J.; Jones, Susanne B.

    2013-03-31

    In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc.. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks have been identified.

  15. A PROCESS FOR THE CATALYTIC OXIDATION OF HYDROCARBONS

    DEFF Research Database (Denmark)

    1999-01-01

    A process for producing an alcohol from a gaseous hydrocarbon, e.g. a lower alkane such as methane, via oxidative reaction of the hydrocarbon in a concentrated sulfuric acid medium in the presence of a catalyst employs an added catalyst comprising a substance selected from iodine, iodine compounds...

  16. Catalytic Radical Domino Reactions in Organic Synthesis

    Science.gov (United States)

    Sebren, Leanne J.; Devery, James J.; Stephenson, Corey R.J.

    2014-01-01

    Catalytic radical-based domino reactions represent important advances in synthetic organic chemistry. Their development benefits synthesis by providing atom- and step-economical methods to complex molecules. Intricate combinations of radical, cationic, anionic, oxidative/reductive, and transition metal mechanistic steps result in cyclizations, additions, fragmentations, ring-expansions, and rearrangements. This Perspective summarizes recent developments in the field of catalytic domino processes. PMID:24587964

  17. Design, construction and implementation of a packed reactor system to study the production of hydrogen by the catalytic reaction of reforming of oxygenated hydrocarbons

    International Nuclear Information System (INIS)

    The Laboratorio de Quimica Inorganica of the Universidad de Costa Rica has evaluated the performance of several types of catalysts and supports in steam reforming reactions, using different conditions for synthesis of the same. The construction of a reaction system at laboratory scale is described to improve the conditions of the reforming process compared to previous projects. Catalysts synthesized and characterized are used but providing better disposal through a packed bed reactor. The system has had the necessary instrumentation for proper measurement of the temperature at the entrance and inside the reactor, proper feeding of reactants, flow measurement and sampling and measurement system. The conceptual design of the reactions system presented has taken into account the income of reactants through a peristaltic pump, preheating or vaporization of reagents, income and measurement of carrier gas sampling, take of sampling, flow measurement product, reactor packed and cooler product. The order of each stage is defined and positioning in the entire system. The design of a preheater and a tubular reactor is detailed, taking into account the dimensions and construction materials of each of the pieces. The design is presented in a series of diagrams and then the result of the construction is illustrated by photographs, all work done also has been described. The implementation of the system has described by the coupling of all parties and the respective tests. A basic experimental plan is presented to evaluate the performance of the reaction system, using glycerin as a reactant, demonstrating ability to react and take effective data. Four experiments are performed: vacuum reactor, packed reactor with two types of filling and reactor with an exposed surface cobalt oxide (II) reduced, the gases produced in the reaction are analyzed by gas chromatography. The results are discussed and analyzed, focusing on the overall selectivity of hydrogen relative to methane, and the

  18. The deleterious effect of inorganic salts on hydrocarbon yields from catalytic pyrolysis of lignocellulosic biomass and its mitigation

    International Nuclear Information System (INIS)

    Highlights: • Alkali and alkali earth metals decreased hydrocarbon yields during catalytic pyrolysis of biomass. • The effect on reducing hydrocarbon yields followed the order: K+ > Na+ > Ca2+ > Mg2+. • Metals enhanced cracking and dehydration reactions increasing thermally-derived COx. • Both acid-infusion and acid-washing increased yields of aromatic hydrocarbons. - Abstract: The effect of alkali and alkali earth metals (AAEMs) on yields of hydrocarbons from catalytic pyrolysis of biomass was investigated. Experiments were performed in a tandem micro-reactor that segregates the biomass from the zeolite catalyst (ex-situ catalytic pyrolysis). It was found that even trace amounts of AAEMs added to cellulose as acetate salts dramatically reduced the yields of hydrocarbons. Both the concentration and types of AAEM salts impacted product distribution. The yield of aromatics and olefins decreased monotonically with increasing concentration of AAEMs. The effect of AAEMs on reducing hydrocarbon yields followed the order: K+ > Na+ > Ca2+ > Mg2+. Two pretreatments of biomass were investigated to alleviate the catalytic effects of AAEMs that naturally occurs in biomass: acid-washing and acid-infusion. It was found that pretreated biomass increased yields of hydrocarbons apparently by suppressing reactions that would otherwise convert carbohydrate to non-condensable gases and char

  19. Electrochemical Promotion of Catalytic Reactions Using

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bjerrum, Niels; Cleemann, Lars Nilausen;

    2007-01-01

    This paper presents the results of a study on electrochemical promotion (EP) of catalytic reactions using Pt/C/polybenzimidazole(H3PO4)/Pt/C fuel cell performed by the Energy and Materials Science Group (Technical University of Denmark) during the last 6 years[1-4]. The development of our...

  20. From Catalytic Reaction Networks to Protocells

    Science.gov (United States)

    Kaneko, Kunihiko

    2013-12-01

    In spite of recent advances, there still remains a large gape between a set of chemical reactions and a biological cell. Here we discuss several theoretical efforts to fill in the gap. The topics cover (i) slow relaxation to equilibrium due to glassy behavior in catalytic reaction networks (ii) consistency between molecule replication and cell growth, as well as energy metabolism (iii) control of a system by minority molecules in mutually catalytic system, which work as a carrier of genetic information, and leading to evolvability (iv) generation of a compartmentalized structure as a cluster of molecules centered around the minority molecule, and division of the cluster accompanied by the replication of minority molecule (v) sequential, logical process over several states from concurrent reaction dynamics, by taking advantage of discreteness in molecule number.

  1. Method and apparatus for monitoring a hydrocarbon-selective catalytic reduction device

    Energy Technology Data Exchange (ETDEWEB)

    Schmieg, Steven J; Viola, Michael B; Cheng, Shi-Wai S; Mulawa, Patricia A; Hilden, David L; Sloane, Thompson M; Lee, Jong H

    2014-05-06

    A method for monitoring a hydrocarbon-selective catalytic reactor device of an exhaust aftertreatment system of an internal combustion engine operating lean of stoichiometry includes injecting a reductant into an exhaust gas feedstream upstream of the hydrocarbon-selective catalytic reactor device at a predetermined mass flowrate of the reductant, and determining a space velocity associated with a predetermined forward portion of the hydrocarbon-selective catalytic reactor device. When the space velocity exceeds a predetermined threshold space velocity, a temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is determined, and a threshold temperature as a function of the space velocity and the mass flowrate of the reductant is determined. If the temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is below the threshold temperature, operation of the engine is controlled to regenerate the hydrocarbon-selective catalytic reactor device.

  2. Ubiquitous "glassy" relaxation in catalytic reaction networks

    OpenAIRE

    Awazu, Akinori; Kaneko, Kunihiko

    2009-01-01

    Study of reversible catalytic reaction networks is important not only as an issue for chemical thermodynamics but also for protocells. From extensive numerical simulations and theoretical analysis, slow relaxation dynamics to sustain nonequlibrium states are commonly observed. These dynamics show two types of salient behaviors that are reminiscent of glassy behavior: slow relaxation along with the logarithmic time dependence of the correlation function and the emergence of plateaus in the rel...

  3. Catalytic Hydrotreatment of Fast Pyrolysis Oil : Model Studies on Reaction Pathways for the Carbohydrate Fraction

    NARCIS (Netherlands)

    Wildschut, J.; Arentz, J.; Rasrendra, C. B.; Venderbosch, R. H.; Heeres, H. J.

    2009-01-01

    Fast pyrolysis oil can be upgraded by a catalytic hydrotreatment (250-400 degrees C, 100-200 bar) using heterogeneous catalysts such as Ru/C to hydrocarbon-like products that can serve as liquid transportation fuels. Insight into the complex reaction pathways of the various component fractions durin

  4. Ubiquitous ``glassy'' relaxation in catalytic reaction networks

    Science.gov (United States)

    Awazu, Akinori; Kaneko, Kunihiko

    2009-10-01

    Study of reversible catalytic reaction networks is important not only as an issue for chemical thermodynamics but also for protocells. From extensive numerical simulations and theoretical analysis, slow relaxation dynamics to sustain nonequlibrium states are commonly observed. These dynamics show two types of salient behaviors that are reminiscent of glassy behavior: slow relaxation along with the logarithmic time dependence of the correlation function and the emergence of plateaus in the relaxation-time course. The former behavior is explained by the eigenvalue distribution of a Jacobian matrix around the equilibrium state that depends on the distribution of kinetic coefficients of reactions. The latter behavior is associated with kinetic constraints rather than metastable states and is due to the absence of catalysts for chemicals in excess and the negative correlation between two chemical species. Examples are given and generality is discussed with relevance to bottleneck-type dynamics in biochemical reactions as well.

  5. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    Science.gov (United States)

    Rollins, Harry W.; Petkovic, Lucia M.; Ginosar, Daniel M.

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  6. Asymmetric Catalytic Reactions Catalyzed by Chiral Titanium Complexes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Chiral titanium complexes is very importance catalyst to asymmetric catalytic reactions. A series of catalytic systems based on titanium-chiral ligands complexes has been reported. This presentation will discuss some of our recent progress on asymmetric catalytic reactions catalyzed by chiral titanium complexes.

  7. Asymmetric Catalytic Reactions Catalyzed by Chiral Titanium Complexes

    Institute of Scientific and Technical Information of China (English)

    FENG; XiaoMing

    2001-01-01

    Chiral titanium complexes is very importance catalyst to asymmetric catalytic reactions. A series of catalytic systems based on titanium-chiral ligands complexes has been reported. This presentation will discuss some of our recent progress on asymmetric catalytic reactions catalyzed by chiral titanium complexes.  ……

  8. Including lateral interactions into microkinetic models of catalytic reactions

    DEFF Research Database (Denmark)

    Hellman, Anders; Honkala, Johanna Karoliina

    2007-01-01

    In many catalytic reactions lateral interactions between adsorbates are believed to have a strong influence on the reaction rates. We apply a microkinetic model to explore the effect of lateral interactions and how to efficiently take them into account in a simple catalytic reaction. Three...

  9. Catalytic Hydrogenation Reaction of Naringin-Chalcone. Study of the Electrochemical Reaction

    OpenAIRE

    B. A. López de Mishima; H. T. Mishima; A. N. Giannuzzo; M. A. Nazareno

    2000-01-01

    The electrocatalytic hydrogenation reaction of naringin derivated chalcone is studied. The reaction is carried out with different catalysts in order to compare with the classic catalytic hydrogenation.

  10. Problems in Catalytic Oxidation of Hydrocarbons and Detailed Simulation of Combustion Processes

    Science.gov (United States)

    Xin, Yuxuan

    This dissertation research consists of two parts, with Part I on the kinetics of catalytic oxidation of hydrocarbons and Part II on aspects on the detailed simulation of combustion processes. In Part I, the catalytic oxidation of C1--C3 hydrocarbons, namely methane, ethane, propane and ethylene, was investigated for lean hydrocarbon-air mixtures over an unsupported Pd-based catalyst, from 600 to 800 K and under atmospheric pressure. In Chapter 2, the experimental facility of wire microcalorimetry and simulation configuration were described in details. In Chapter 3 and 4, the oxidation rate of C1--C 3 hydrocarbons is demonstrated to be determined by the dissociative adsorption of hydrocarbons. A detailed surface kinetics model is proposed with deriving the rate coefficient of hydrocarbon dissociative adsorption from the wire microcalorimetry data. In Part II, four fundamental studies were conducted through detailed combustion simulations. In Chapter 5, self-accelerating hydrogen-air flames are studied via two-dimensional detailed numerical simulation (DNS). The increase in the global flame velocity is shown to be caused by the increase of flame surface area, and the fractal structure of the flame front is demonstrated by the box-counting method. In Chapter 6, skeletal reaction models for butane combustion are derived by using directed relation graph (DRG) and DRG-aided sensitivity analysis (DRGASA), and uncertainty minimization by polynomial chaos expansion (MUM-PCE) mothodes. The dependence of model uncertainty is subjected to the completeness of the model. In Chapter 7, a systematic strategy is proposed to reduce the cost of the multicomponent diffusion model by accurately accounting for the species whose diffusivity is important to the global responses of the combustion systems, and approximating those of less importance by the mixture-averaged model. The reduced model is validated in an n-heptane mechanism with 88 species. In Chapter 8, the influence of Soret

  11. Catalytic cracking of non-edible sunflower oil over ZSM-5 for hydrocarbon bio-jet fuel.

    Science.gov (United States)

    Zhao, Xianhui; Wei, Lin; Julson, James; Qiao, Qiquan; Dubey, Ashish; Anderson, Gary

    2015-03-25

    Non-edible sunflower oils that were extracted from sunflower residual wastes were catalytically cracked over a ZSM-5 catalyst in a fixed-bed reactor at three different reaction temperatures: 450°C, 500°C and 550°C. The catalyst was characterized using XRD, FT-IR, BET and SEM. Characterizations of the upgraded sunflower oils, hydrocarbon fuels, distillation residues and non-condensable gases were carried out. The effect of the reaction temperature on the yield and quality of liquid products was discussed. The results showed that the reaction temperature affected the hydrocarbon fuel yield but had a minor influence on its properties. The highest conversion efficiency from sunflower oils to hydrocarbon fuels was 30.1%, which was obtained at 550°C. The reaction temperature affected the component content of the non-condensable gases. The non-condensable gases generated at 550°C contained the highest content of light hydrocarbons (C1-C5), CO, CO2 and H2. Compared to raw sunflower oils, the properties of hydrocarbon fuels including the dynamic viscosity, pH, moisture content, density, oxygen content and heating value were improved.

  12. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  13. Effects of Coke Deposits on the Catalytic Performance of Large Zeolite H-ZSM-5 Crystals during Alcohol-to-Hydrocarbons Reactions as Investigated by a Combination of Optical Spectroscopy and Microscopy

    DEFF Research Database (Denmark)

    Nordvang, Emily Catherine; Borodina, Elena; Ruiz-Martínez, Javier;

    2015-01-01

    The catalytic activity of large zeolite H-ZSM-5 crystals in methanol (MTO) and ethanol-to-olefins (ETO) conversions was investigated and, using operando UV/Vis measurements, the catalytic activity and deactivation was correlated with the formation of coke. These findings were related to in situ...

  14. Catalytic conversion of alcohols having at least three carbon atoms to hydrocarbon blendstock

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Chaitanya K.; Davison, Brian H.

    2015-11-13

    A method for producing a hydrocarbon blendstock, the method comprising contacting at least one saturated acyclic alcohol having at least three and up to ten carbon atoms with a metal-loaded zeolite catalyst at a temperature of at least 100°C and up to 550°C, wherein the metal is a positively-charged metal ion, and the metal-loaded zeolite catalyst is catalytically active for converting the alcohol to the hydrocarbon blendstock, wherein the method directly produces a hydrocarbon blendstock having less than 1 vol % ethylene and at least 35 vol % of hydrocarbon compounds containing at least eight carbon atoms.

  15. Theoretical Studies of Elementary Hydrocarbon Species and Their Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Wesley D. [Univ. of Georgia, Athens, GA (United States). Dept. of Chemistry. Center for Computational Quantum Chemistry; Schaefer, III, Henry F. [Univ. of Georgia, Athens, GA (United States). Dept. of Chemistry. Center for Computational Quantum Chemistry

    2015-11-14

    This is the final report of the theoretical studies of elementary hydrocarbon species and their reactions. Part A has a bibliography of publications supported by DOE from 2010 to 2016 and Part B goes into recent research highlights.

  16. X-Ray Imaging of SAPO-34 Molecular Sieves at the Nanoscale : Influence of Steaming on the Methanol-to-Hydrocarbons Reaction

    NARCIS (Netherlands)

    Aramburo, Luis R.; Ruiz-Martinez, Javier; Sommer, Linn; Arstad, Bjornar; Buitrago-Sierra, Robison; Sepulveda-Escribano, Antonio; Zandbergen, Henny W.; Olsbye, Unni; de Groot, Frank M. F.; Weckhuysen, Bert M.

    2013-01-01

    The effect of a severe steaming treatment on the physicochemical properties and catalytic performance of H-SAPO-34 molecular sieves during the methanol-to-hydrocarbons (MTH) reaction has been investigated with a combination of scanning transmission X-ray microscopy (STXM), catalytic testing, and bul

  17. Molecular catalytic hydrogenation of aromatic hydrocarbons and hydrotreating of coal liquids.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shiyong; Stock, L.M.

    1996-05-01

    This report presents the results of research on the development of new catalytic pathways for the hydrogenation of multiring aromatic hydrocarbons and the hydrotreating of coal liquids at The University of Chicago under DOE Contract No. DE-AC22-91PC91056. The work, which is described in three parts, is primarily concerned with the research on the development of new catalytic systems for the hydrogenation of aromatic hydrocarbons and for the improvement of the quality of coal liquids by the addition of dihydrogen. Part A discusses the activation of dihydrogen by very basic molecular reagents to form adducts that can facilitate the reduction of multiring aromatic hydrocarbons. Part B examines the hydrotreating of coal liquids catalyzed by the same base-activated dihydrogen complexes. Part C concerns studies of molecular organometallic catalysts for the hydrogenation of monocyclic aromatic hydrocarbons under mild conditions.

  18. Effects of Coke Deposits on the Catalytic Performance of Large Zeolite H-ZSM-5 Crystals during Alcohol-to-Hydrocarbon Reactions as Investigated by a Combination of Optical Spectroscopy and Microscopy.

    Science.gov (United States)

    Nordvang, Emily C; Borodina, Elena; Ruiz-Martínez, Javier; Fehrmann, Rasmus; Weckhuysen, Bert M

    2015-11-23

    The catalytic activity of large zeolite H-ZSM-5 crystals in methanol (MTO) and ethanol-to-olefins (ETO) conversions was investigated and, using operando UV/Vis measurements, the catalytic activity and deactivation was correlated with the formation of coke. These findings were related to in situ single crystal UV/Vis and confocal fluorescence micro-spectroscopy, allowing the observation of the spatiotemporal formation of intermediates and coke species during the MTO and ETO conversions. It was observed that rapid deactivation at elevated temperatures was due to the fast formation of aromatics at the periphery of the H-ZSM-5 crystals, which are transformed into more poly-aromatic coke species at the external surface, preventing the diffusion of reactants and products into and out of the H-ZSM-5 crystal. Furthermore, we were able to correlate the operando UV/Vis spectroscopy results observed during catalytic testing with the single crystal in situ results. PMID:26463581

  19. Catalytic Hydrogenation Reaction of Naringin-Chalcone. Study of the Electrochemical Reaction

    Directory of Open Access Journals (Sweden)

    B. A. López de Mishima

    2000-03-01

    Full Text Available The electrocatalytic hydrogenation reaction of naringin derivated chalcone is studied. The reaction is carried out with different catalysts in order to compare with the classic catalytic hydrogenation.

  20. Mesoporous zeolite single crystals for catalytic hydrocarbon conversion

    DEFF Research Database (Denmark)

    Schmidt, I.; Christensen, C.H.; Hasselriis, Peter;

    2005-01-01

    Recently, mesoporous zeolite single crystals were discovered. They constitute a novel family of materials that features a combined micropore and mesopore architecture within each individual crystal. Here, we briefly summarize recent catalytic results from cracking and isomerization of alkalies, a...

  1. Catalytic Friedel-Crafts reaction of aminocyclopropanes.

    Science.gov (United States)

    de Nanteuil, Florian; Loup, Joachim; Waser, Jérôme

    2013-07-19

    A Lewis acid catalyzed Friedel-Crafts reaction between donor-acceptor aminocyclopropanes and indoles and other electron-rich aromatic compounds is reported. Indole alkylation at the C3 position was generally obtained for a broad range of functional groups and substitution patterns. In the case of C3-substituted indoles, C2 alkylation was observed. The reaction gives a rapid access to gamma amino acid derivatives present in numerous bioactive molecules. PMID:23815365

  2. Advances and perspectives in catalytic oxidation of hydrocarbons in liquid phase

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This review article summarizes recent advances in catalytic oxidation of hydrocarbons, especially presents two strategies for activation of C-H bonds or molecular oxygen. Based on our own research results, the applications of the two methods in the oxidation of cyclohexane, toluene and ethyl benzene, etc. are introduced, and the perspectives of the two methods are also discussed.

  3. Paramagnetic relaxation enhancement solid-state NMR studies of heterogeneous catalytic reaction over HY zeolite using natural abundance reactant.

    Science.gov (United States)

    Zhou, Lei; Li, Shenhui; Su, Yongchao; Li, Bojie; Deng, Feng

    2015-01-01

    Paramagnetic relaxation enhancement solid-state NMR (PRE ssNMR) technique was used to investigate catalytic reaction over zeolite HY. After introducing paramagnetic Cu(II) ions into the zeolite, the enhancement of longitudinal relaxation rates of nearby nuclei, i.e.(29)Si of the framework and (13)C of the absorbents, was measured. It was demonstrated that the PRE ssNMR technique facilitated the fast acquisition of NMR signals to monitor the heterogeneous catalytic reaction (such as acetone to hydrocarbon) using natural abundance reactants. PMID:25616847

  4. Identifying systematic DFT errors in catalytic reactions

    DEFF Research Database (Denmark)

    Christensen, Rune; Hansen, Heine Anton; Vegge, Tejs

    2015-01-01

    Using CO2 reduction reactions as examples, we present a widely applicable method for identifying the main source of errors in density functional theory (DFT) calculations. The method has broad applications for error correction in DFT calculations in general, as it relies on the dependence...

  5. [Lipases in catalytic reactions of organic chemistry].

    Science.gov (United States)

    Bezborodov, A M; Zagustina, N A

    2014-01-01

    Aspects of enzymatic catalysis in lipase-catalyzed reactions of organic synthesis are discussed in the review. The data on modern methods of protein engineering and enzyme modification allowing a broader range of used substrates are briefly summarized. The application of lipase in the preparation of pharmaceuticals and agrochemicals containing no inactive enantiomers and in the synthesis of secondary alcohol enantiomers and optically active amides is demonstrated. The subject of lipase involvement in the C-C bond formation in the Michael reaction is discussed. Data on the enzymatic synthesis of construction materials--polyesters, siloxanes, etc.--are presented. Examples demonstrating the application of lipase enzymatic catalysis in industry are given. PMID:25707112

  6. Kinetics of catalytic reactions-solutions manual

    CERN Document Server

    Vannice, M Albert

    2008-01-01

    Including countless exercises and worked examples, this advanced reference work and textbook will be extremely useful for the work of many industrial scientists. It teaches readers to design kinetic experiments involving heterogeneous catalysts, to characterize these catalysts, to acquire rate data, to find heat and mass transfer limitations in these data, to select reaction models, to derive rate expressions based on these models, and to assess the consistency of these rate equations.

  7. Valorization of Waste Lipids through Hydrothermal Catalytic Conversion to Liquid Hydrocarbon Fuels with in Situ Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongwook; Vardon, Derek R.; Murali, Dheeptha; Sharma, Brajendra K.; Strathmann, Timothy J.

    2016-03-07

    We demonstrate hydrothermal (300 degrees C, 10 MPa) catalytic conversion of real waste lipids (e.g., waste vegetable oil, sewer trap grease) to liquid hydrocarbon fuels without net need for external chemical inputs (e.g., H2 gas, methanol). A supported bimetallic catalyst (Pt-Re/C; 5 wt % of each metal) previously shown to catalyze both aqueous phase reforming of glycerol (a triacylglyceride lipid hydrolysis coproduct) to H2 gas and conversion of oleic and stearic acid, model unsaturated and saturated fatty acids, to linear alkanes was applied to process real waste lipid feedstocks in water. For reactions conducted with an initially inert headspace gas (N2), waste vegetable oil (WVO) was fully converted into linear hydrocarbons (C15-C17) and other hydrolyzed byproducts within 4.5 h, and H2 gas production was observed. Addition of H2 to the initial reactor headspace accelerated conversion, but net H2 production was still observed, in agreement with results obtained for aqueous mixtures containing model fatty acids and glycerol. Conversion to liquid hydrocarbons with net H2 production was also observed for a range of other waste lipid feedstocks (animal fat residuals, sewer trap grease, dry distiller's grain oil, coffee oil residual). These findings demonstrate potential for valorization of waste lipids through conversion to hydrocarbons that are more compatible with current petroleum-based liquid fuels than the biodiesel and biogas products of conventional waste lipid processing technologies.

  8. Single-species reactions on a random catalytic chain

    Energy Technology Data Exchange (ETDEWEB)

    Oshanin, G [Laboratoire de Physique Theorique des Liquides, Universite Paris 6, 4 Place Jussieu, 75252 Paris (France); Burlatsky, S F [United Technologies Research Center, United Technologies Corporation, 411 Silver Lane, 129-21 East Hartford, CT (United States)

    2002-11-29

    We present an exact solution for a catalytically activated annihilation A+A {yields} 0 reaction taking place on a one-dimensional chain in which some segments (placed at random, with mean concentration p) possess special, catalytic properties. An annihilation reaction takes place as soon as any two A particles land from the reservoir onto two vacant sites at the extremities of the catalytic segment, or when any A particle lands onto a vacant site on a catalytic segment while the site at the other extremity of this segment is already occupied by another A particle. We find that the disorder-average pressure P{sup (quen)} per site of such a chain is given by P{sup (quen)} P{sup (Lan)} + {beta}{sup -1}F, where P{sup (Lan)}={beta}{sup -1} ln(1+z) is the Langmuir adsorption pressure, (z being the activity and {beta}{sup -1} the temperature), while {beta}{sup -1}F is the reaction-induced contribution, which can be expressed, under appropriate change of notation, as the Lyapunov exponent for the product of 2x2 random matrices, obtained exactly by Derrida and Hilhorst (1983 J. Phys. A: Math. Gen. 16 2641). Explicit asymptotic formulae for the particle mean density and the compressibility are also presented. (letter to the editor)

  9. Catalytic deoxygenation of microalgae oil to green hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chen; Bruck, Thomas; Lercher, Johannes A.

    2013-05-14

    Microalgae are high potential raw biomass material for triglyceride feedstock, due to their high oil content and rapid growth rate, and because algae cultivation does not compete with edible food on arable land. This review addresses first the microalgae cultivation with an overview of the productivity and growth of microalgae, the recovery of lipids from the microalgae, and chemical compositions of microalgae biomass and microalgal oil. Second, three basic approaches are discussed to downstream processing for the production of green gasoline and diesel hydrocarbons from microalgae oil, including cracking with zeolite, hydrotreating with supported sulfided catalysts and hydrodeoxygenation with non-sulfide metal catalysts. For the triglyceride derived bio-fuels, only “drop-in” gasoline and diesel range components are discussed in this review.

  10. Solar production of catalytic filamentous carbon by thermal decomposition of hydrocarbons and carbon monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Kirillov, V.A.; Kuvshinov, G.G.; Mogilnykh, Yu.I. [Boreskov Institute of Catalysis, Novosibirsk (Russian Federation); Reller, A. [University of Hamburg (Germany); Steinfeld, A.; Weidenkaff, A.; Meier, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Concentrated solar radiation was used as the clean source of process heat for the production of Catalytic Filamentous Carbon (CFC) by thermal decomposition of gaseous hydrocarbons and by CO disproportionation in the presence of small metal catalyst particles. Depending on the catalyst, two different types of CFC, namely nano tubes and nano fibers, were obtained in solar experiments at the PSI solar furnace. (author) 2 figs., 1 tab., 7 refs.

  11. Catalytic conversion of carboxylic acids in bio-oil for liquid hydrocarbons production

    International Nuclear Information System (INIS)

    Bio-oil must be upgraded to be suitable for use as a high-grade transport fuel. Crude bio-oil has a high content of carboxylic acids which can cause corrosion, and the high oxygen content of these acids also reduces the oil’s heating value. In this paper, acetic acid and propanoic acid were chosen as the model carboxylic acids in bio-oil. Their behavior in the production of liquid hydrocarbons during a catalytic conversion process was investigated in a micro-fixed bed reactor. The liquid organic phase from this catalytic conversion process mainly consisted of liquid hydrocarbons and phenol derivatives. Under the condition of low Liquid Hourly Space Velocity (LHSV), the liquid organic phase from acetic acid cracking had a selectivity of 22% for liquid hydrocarbons and a selectivity of 65% for phenol derivatives. The composition of the organic products changed considerably with the LHSV increasing to 3 h−1. The selectivity for liquid hydrocarbons increased up to 52% while that for phenol derivatives decreased to 32%. Propanoic acid performed much better in producing liquid hydrocarbons than acetic acid. Its selectivity for liquid hydrocarbons was as high as 80% at LHSV = 3 h−1. A mechanism for this catalytic conversion process was proposed according to the analysis of the components in the liquid organic phases. The pathways of the main compounds formation in the liquid organic phases were proposed, and the reason why liquid hydrocarbons were more effectively produced when using propanoic acid rather than acetic acid was also successfully explained. In addition, BET and SEM characterization were used to analyze the catalyst coke deposition. -- Graphical abstract: Display Omitted Highlights: ► High content of carboxylic acids in bio-oil causes its corrosiveness. ► Acetic acid and propanoic acid are two dominant acids in bio-oil. ► Liquid hydrocarbons were produced by cracking of these two dominant acids. ► A mechanism model was proposed to explain the

  12. Stereodivergent catalytic doubly diastereoselective nitroaldol reactions using heterobimetallic complexes.

    Science.gov (United States)

    Sohtome, Yoshihiro; Kato, Yuko; Handa, Shinya; Aoyama, Naohiro; Nagawa, Keita; Matsunaga, Shigeki; Shibasaki, Masakatsu

    2008-06-01

    Stereodivergent construction of three contiguous stereocenters in catalytic doubly diastereoselective nitroaldol reactions of alpha-chiral aldehydes with nitroacetaldehyde dimethyl acetal using two types of heterobimetallic catalysts is described. A La-Li-BINOL (LLB) catalyst afforded anti,syn-nitroaldol products in >20:1-14:1 selectivity, and a Pd/La/Schiff base catalyst afforded complimentary syn,syn-nitroaldol products in 10:1-5:1 selectivity. PMID:18465868

  13. Synthesis of (+)-Discodermolide by Catalytic Stereoselective Borylation Reactions**

    OpenAIRE

    Yu, Zhiyong; Ely, Robert J.; Morken, James P.

    2014-01-01

    The marine natural product (+)-discodermolide was first isolated in 1990 and, to this day, remains a compelling synthesis target. Not only does the compound possess fascinating biological activity, but it also presents an opportunity to test current methods for chemical synthesis and provides a forum for the inspiration of new reaction development. In this manuscript, we present a synthesis of discodermolide that employs a previously undisclosed stereoselective catalytic diene hydroboration a...

  14. Novel monolithic electrochemically promoted catalytic reactor for environmentally important reactions

    Energy Technology Data Exchange (ETDEWEB)

    Balomenou, S.; Tsiplakides, D.; Katsaounis, A.; Vayenas, C.G. [Department of Chemical Engineering, University of Patras, Caratheodory 1 St., GR-26504 Patras (Greece); Thiemann-Handler, S.; Cramer, B. [Robert Bosch GmbH Stuttgart, FV/FLC, PF 10 60 50, 70 049 Stuttgart (Germany); Foti, G.; Comninellis, Ch. [Institute of Chemical Sciences and Engineering, Swiss Federal Institute of Technology, CH-1015 Lausanne (Switzerland)

    2004-09-28

    A novel dismantlable monolithic-type electrochemically promoted catalytic reactor and 'smart' sensor-catalytic reactor unit has been constructed and tested for hydrocarbon oxidation and NO reduction by C{sub 2}H{sub 4} in presence of O{sub 2}. In this novel reactor, thin (=20-40nm) porous catalyst films made of two different materials are sputter-deposited on opposing surfaces of thin (0.25mm) parallel solid electrolyte plates supported in the grooves of a ceramic monolithic holder and serve as sensor or electropromoted catalyst elements. Using Rh/YSZ/Pt-type catalyst elements, the 22-plate reactor operated with apparent Faradaic efficiency exceeding 25 achieving near complete fuel and NO conversion at 300C in presence of up to 1.1% O{sub 2} in the feed at gas flow rates exceeding 1.3l/min. The metal catalyst dispersion was of the order of at least 15%. The novel reactor design requires only two external electrical connections and permits easy practical utilization of the electrochemical promotion of catalysis.

  15. Synthesis and Catalytic Asymmetric Reaction of Chiral Pyridine Prolinol Derivatives

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao; ZHANG Yong-Xin; DU Da-Ming; HUA Wen-Ting

    2003-01-01

    @@ The enantioselective reduction of prochiral ketones with borane in the presence of a chiral ligand leading to enantiomerically pure secondary alcohols has received considerable attention in recent years. [1] Enantiomerically pure secondary alcohols are important intermediates for the synthesis of various other organic compounds such as halides, esters, ethers, ketones and amines. To the best of our knowledge, the use of pyridine prolinol derivatives in the reduction of ketones has not been reported so far. Thus, it should be of interest to investigate the catalytic a bility of such ligands. We have an ongoing project in the synthesis and application of chiral pyridine derivatives in chiral molecular recognition[2] and we want to evaluate the effect resulting from the introduction of a pyridinyl moiety onto the catalysts. We expect that the cooperation of pyridine unit and chiral prolinol unit in new ligands may result in unique properties for catalytic reaction.

  16. Preparation of Pt-Ru hydrophobic catalysts and catalytic activities for liquid phase catalytic exchange reaction

    International Nuclear Information System (INIS)

    Pt/C and Pt-Ru/C catalysts with different ratios of Pt to Ru were synthesized, using ethylene glycol as both the dispersant and reducing agent at 1-2 MPa by microwave-assisted method. The catalysts were characterized by XRD, TEM and XPS. The mean particle sizes of the Pt/C and Pt-Ru/C catalysts were 1.9-2.0 nm. Pt and Ru existed as Pt(0), Pt(II), Pt(IV), Ru(0) and Ru(IV) for Pt-Ru/C catalysts, respectively. The face-centered cubic structure of the active mental particles would be changed upon the addition of Ru gradually. Then polytetrafluoroethylene and carbon-supported Pt and Pt-Ru catalysts were supported on foamed nickel to obtain hydrophobic catalysts. The catalytic activity was increased for liquid phase catalytic exchange (LPCE) when uniform Pt based hydrophobic catalysts was mixed into appropriate Ru. Hydrogen isotope exchange reaction occurs between hydration layer(H2O)nH+(ads)(n≥2) and D atoms due to intact water molecules being on Pt surface for LPCE. Water molecules have a tendency to dissociate to OH(ads) and H(ads) on metal Ru surface, and there is the other reaction path for Pt-Ru binary catalysts, which is probably the main reason of the increase of the catalytic activity of the hydrophobic Pt-Ru catalyst. (authors)

  17. Recent developments in research on catalytic reaction networks

    Directory of Open Access Journals (Sweden)

    Roberto Serra

    2013-09-01

    Full Text Available Over the last years, analyses performed on a stochastic model of catalytic reaction networks have provided some indications about the reasons why wet-lab experiments hardly ever comply with the phase transition typically predicted by theoretical models with regard to the emergence of collectively self-replicating sets of molecule (also defined as autocatalytic sets, ACSs, a phenomenon that is often observed in nature and that is supposed to have played a major role in the emergence of the primitive forms of life. The model at issue has allowed to reveal that the emerging ACSs are characterized by a general dynamical fragility, which might explain the difficulty to observe them in lab experiments. In this work, the main results of the various analyses are reviewed, with particular regard to the factors able to affect the generic properties of catalytic reactions network, for what concerns, not only the probability of ACSs to be observed, but also the overall activity of the system, in terms of production of new species, reactions and matter.

  18. Monodisperse metal nanoparticle catalysts on silica mesoporous supports: synthesis, characterizations, and catalytic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, G.A.

    2009-09-14

    The design of high performance catalyst achieving near 100% product selectivity at maximum activity is one of the most important goals in the modern catalytic science research. To this end, the preparation of model catalysts whose catalytic performances can be predicted in a systematic and rational manner is of significant importance, which thereby allows understanding of the molecular ingredients affecting the catalytic performances. We have designed novel 3-dimensional (3D) high surface area model catalysts by the integration of colloidal metal nanoparticles and mesoporous silica supports. Monodisperse colloidal metal NPs with controllable size and shape were synthesized using dendrimers, polymers, or surfactants as the surface stabilizers. The size of Pt, and Rh nanoparticles can be varied from sub 1 nm to 15 nm, while the shape of Pt can be controlled to cube, cuboctahedron, and octahedron. The 3D model catalysts were generated by the incorporation of metal nanoparticles into the pores of mesoporous silica supports via two methods: capillary inclusion (CI) and nanoparticle encapsulation (NE). The former method relies on the sonication-induced inclusion of metal nanoparticles into the pores of mesoporous silica, whereas the latter is performed by the encapsulation of metal nanoparticles during the hydrothermal synthesis of mesoporous silica. The 3D model catalysts were comprehensively characterized by a variety of physical and chemical methods. These catalysts were found to show structure sensitivity in hydrocarbon conversion reactions. The Pt NPs supported on mesoporous SBA-15 silica (Pt/SBA-15) displayed significant particle size sensitivity in ethane hydrogenolysis over the size range of 1-7 nm. The Pt/SBA-15 catalysts also exhibited particle size dependent product selectivity in cyclohexene hydrogenation, crotonaldehyde hydrogenation, and pyrrole hydrogenation. The Rh loaded SBA-15 silica catalyst showed structure sensitivity in CO oxidation reaction. In

  19. Catalytic X-H insertion reactions based on carbenoids.

    Science.gov (United States)

    Gillingham, Dennis; Fei, Na

    2013-06-21

    Catalysed X-H insertion reactions into diazo compounds (where X is any heteroatom) are a powerful yet underutilized class of transformations. The following review will explore the historical development of X-H insertion and give an up-to-date account of the metal catalysts most often employed, including an assessment of their strengths and weaknesses. Despite decades of development, recent work on enantioselective variants, as well as applying catalytic X-H insertion towards problems in chemical biology indicate that this field has ample room for innovation. PMID:23407887

  20. Synthesis of (+)-discodermolide by catalytic stereoselective borylation reactions.

    Science.gov (United States)

    Yu, Zhiyong; Ely, Robert J; Morken, James P

    2014-09-01

    The marine natural product (+)-discodermolide was first isolated in 1990 and, to this day, remains a compelling synthesis target. Not only does the compound possess fascinating biological activity, but it also presents an opportunity to test current methods for chemical synthesis and provides an inspiration for new reaction development. A new synthesis of discodermolide employs a previously undisclosed stereoselective catalytic diene hydroboration and also establishes a strategy for the alkylation of chiral enolates. Furthermore, this synthesis of discodermolide provides the first examples of the asymmetric 1,4-diboration of dienes and borylative diene-aldehyde couplings in complex-molecule synthesis.

  1. Synthesis of (+)-Discodermolide by Catalytic Stereoselective Borylation Reactions**

    Science.gov (United States)

    Yu, Zhiyong; Ely, Robert J.

    2014-01-01

    The marine natural product (+)-discodermolide was first isolated in 1990 and, to this day, remains a compelling synthesis target. Not only does the compound possess fascinating biological activity, but it also presents an opportunity to test current methods for chemical synthesis and provides a forum for the inspiration of new reaction development. In this manuscript, we present a synthesis of discodermolide that employs a previously undisclosed stereoselective catalytic diene hydroboration and also establishes a strategy for chiral enolate alkylation. In addition, this synthesis of discodermolide provides the first examples of diene 1,4-diboration and borylative diene-aldehyde couplings in complex molecule synthesis. PMID:25045037

  2. Developing a Practical Chiral Toolbox for Asymmetric Catalytic Reactions

    Institute of Scientific and Technical Information of China (English)

    ZHANG; XuMu

    2001-01-01

    Chiral Quest's Toolbox Approach: During the last several decades, chemists have made major progress in discovering man-made catalysts to perform challenging asymmetric transformations. However, there is no universal chiral ligand or catalyst for solving problems in enantioselective transformations. The focus of Chiral Quest's research is to develop a useful chiral toolbox for strategically important asymmetric catalytic reactions by inventing a diverse set of novel chiral ligands and combining them with transition metals as effective enantioselective catalysts. The toolbox approach addresses significant problems in organic stereochemistry and has resulted in practical methods for the synthesis of chiral pharmaceuticals and agrochemicals  ……

  3. Developing a Practical Chiral Toolbox for Asymmetric Catalytic Reactions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Chiral Quest's Toolbox Approach: During the last several decades, chemists have made major progress in discovering man-made catalysts to perform challenging asymmetric transformations. However, there is no universal chiral ligand or catalyst for solving problems in enantioselective transformations. The focus of Chiral Quest's research is to develop a useful chiral toolbox for strategically important asymmetric catalytic reactions by inventing a diverse set of novel chiral ligands and combining them with transition metals as effective enantioselective catalysts. The toolbox approach addresses significant problems in organic stereochemistry and has resulted in practical methods for the synthesis of chiral pharmaceuticals and agrochemicals

  4. Surface Spectroscopy and Catalytic Properties of Model Platinum Catalysts Exposed to Hydrocarbons

    OpenAIRE

    Paal, Z.; Wootsch, A.; Schlögl, R.; Wild, U

    2003-01-01

    Hydrocarbonaceous deposits are normally present on Pt during hydrocarbon reactions. Carbon deposition is dehydrogenated during evacuation and appear as “graphitic”,“polymeric” and “deactivating” carbon. The latter may correspond to “disordered” carbon. C atoms on Pt can also be present. Activity and selectivities of “skeletal” reactions of hexane (isomerization, C5-cyclization, aromatization, fragmentation) are influenced by the amount and chemical state of carbon. This depends of t...

  5. Investigating the Influence of Mesoporosity in Zeolite Beta on its Catalytic Performance for the Conversion of Methanol to Hydrocarbons

    KAUST Repository

    Liu, Zhaohui

    2015-08-26

    Hierarchically porous zeolite Beta (Beta-MS) synthesized by a soft-templating method contains remarkable intra-crystalline mesoporosity, which reduces the diffusion length in zeolite channels down to several nanometers and alters the distribution of Al among distinct crystallographic sites. When used as a catalyst for the conversion of methanol to hydrocarbons (MTH) at 330 oC, Beta-MS exhibited a 2.7-fold larger conversion capacity, a 2.0-fold faster reaction rate, and a remarkably longer lifetime than conventional zeolite Beta (Beta-C). The superior catalytic performance of Beta-MS is attributed to its hierarchical structure, which offers full accessibility to all catalytic active sites. In contrast, Beta-C was easily deactivated because a layer of coke quickly deposited on the outer surfaces of the catalyst crystals, impeding access to interior active sites. This difference is clearly demonstrated by using electron microscopy combined with electron energy loss spectroscopy to probe the distribution of coke in the deactivated catalysts. At both low and high conversions, ranging from 20% to 100%, Beta-MS gave higher selectivity towards higher aliphatics (C4-C7) but lower ethene selectivity compared to Beta-C. Therefore, we conclude that a hierarchical structure decreases the residence time of methylbenzenes in zeolite micropores, disfavoring the propagation of the aromatic-based catalytic cycle. This conclusion is consistent with a recent report on ZSM-5 and is also strongly supported by our analysis of soluble coke species residing in the catalysts. Moreover, we identified an oxygen-containing compound, 4-methyl-benzaldehyde, in the coke, which has not been observed in the MTH reaction before.  

  6. Advances in the development of catalytic tethering directing groups for C-H functionalization reactions.

    Science.gov (United States)

    Sun, Huan; Guimond, Nicolas; Huang, Yong

    2016-09-28

    Transition metal-catalyzed C-H bond insertion is one of the most straightforward strategies to introduce functionalities within a hydrocarbon microenvironment. For the past two decades, selective activation and functionalization of certain inert C-H bonds have been made possible with the help of directing groups (DGs). Despite the enormous advances in the field, an overwhelming majority of systems require two extra steps from their simple precursors: installation and removal of the DGs. Recently, traceless and multitasking groups were invented as a partial solution to DG release. However, installation remains largely unsolved. Ideally, a transient, catalytic DG would circumvent this problem and increase the step- and atom-economy of C-H functionalization processes. In this review, we summarize the recent development of the transient tethering strategy for C-H activation reactions. PMID:27506568

  7. Catalytic Upgrading of Biomass-Derived Compounds via C-C Coupling Reactions. Computational and Experimental Studies of Acetaldehyde and Furan Reactions in HZSM-5

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cong [Argonne National Lab. (ANL), Argonne, IL (United States); Evans, Tabitha J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cheng, Lei [Argonne National Lab. (ANL), Argonne, IL (United States); Nimlos, Mark R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mukarakate, Calvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Robichaud, David J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Assary, Rajeev S. [Argonne National Lab. (ANL), Argonne, IL (United States); Curtiss, Larry A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-10-02

    These catalytic C–C coupling and deoxygenation reactions are essential for upgrading of biomass-derived oxygenates to fuel-range hydrocarbons. Detailed understanding of mechanistic and energetic aspects of these reactions is crucial to enabling and improving the catalytic upgrading of small oxygenates to useful chemicals and fuels. Using periodic density functional theory (DFT) calculations, we have investigated the reactions of furan and acetaldehyde in an HZSM-5 zeolite catalyst, a representative system associated with the catalytic upgrading of pyrolysis vapors. Comprehensive energy profiles were computed for self-reactions (i.e., acetaldehyde coupling and furan coupling) and cross-reactions (i.e., acetaldehyde + furan) of this representative mixture. Major products proposed from the computations are further confirmed using temperature controlled mass spectra measurements. Moreover, the computational results show that furan interacts with acetaldehyde in HZSM-5 via an alkylation mechanism, which is more favorable than the self-reactions, indicating that mixing furans with aldehydes could be a promising approach to maximize effective C–C coupling and dehydration while reducing the catalyst deactivation (e.g., coke formation) from aldehyde condensation.

  8. Reaction Current Phenomenon in Bifunctional Catalytic Metal-Semiconductor Nanostructures

    Science.gov (United States)

    Hashemian, Mohammad Amin

    Energy transfer processes accompany every elementary step of catalytic chemical processes on material surface including molecular adsorption and dissociation on atoms, interactions between intermediates, and desorption of reaction products from the catalyst surface. Therefore, detailed understanding of these processes on the molecular level is of great fundamental and practical interest in energy-related applications of nanomaterials. Two main mechanisms of energy transfer from adsorbed particles to a surface are known: (i) adiabatic via excitation of quantized lattice vibrations (phonons) and (ii) non-adiabatic via electronic excitations (electron/hole pairs). Electronic excitations play a key role in nanocatalysis, and it was recently shown that they can be efficiently detected and studied using Schottky-type catalytic nanostructures in the form of measureable electrical currents (chemicurrents) in an external electrical circuit. These nanostructures typically contain an electrically continuous nanocathode layers made of a catalytic metal deposited on a semiconductor substrate. The goal of this research is to study the direct observations of hot electron currents (chemicurrents) in catalytic Schottky structures, using a continuous mesh-like Pt nanofilm grown onto a mesoporous TiO2 substrate. Such devices showed qualitatively different and more diverse signal properties, compared to the earlier devices using smooth substrates, which could only be explained on the basis of bifunctionality. In particular, it was necessary to suggest that different stages of the reaction are occurring on both phases of the catalytic structure. Analysis of the signal behavior also led to discovery of a formerly unknown (very slow) mode of the oxyhydrogen reaction on the Pt/TiO2(por) system occurring at room temperature. This slow mode was producing surprisingly large stationary chemicurrents in the range 10--50 microA/cm2. Results of the chemicurrent measurements for the bifunctional

  9. Selective catalytic reduction of NOx by hydrocarbons over Fe/ZSM5 prepared by sublimation of FeCl3

    OpenAIRE

    Battiston, A.A.

    2003-01-01

    Selective Catalytic Reduction of NOx by Hydrocarbons over Fe/ZSM5 Prepared by Sublimation of FeCl3. Characterization and Catalysis Nitrogen oxides (NOx) are unwanted by-products of combustion. They are generated primarily from motor vehicles and stationary sources, like power stations and industrial heaters. New catalytic materials are constantly developed in order to improve the efficiency of the cleaning-up technologies for NOx. With this respect an important breakthrough has recently been ...

  10. Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels.

    Science.gov (United States)

    De, Sudipta; Saha, Basudeb; Luque, Rafael

    2015-02-01

    Lignocellulosic biomass provides an attractive source of renewable carbon that can be sustainably converted into chemicals and fuels. Hydrodeoxygenation (HDO) processes have recently received considerable attention to upgrade biomass-derived feedstocks into liquid transportation fuels. The selection and design of HDO catalysts plays an important role to determine the success of the process. This review has been aimed to emphasize recent developments on HDO catalysts in effective transformations of biomass-derived platform molecules into hydrocarbon fuels with reduced oxygen content and improved H/C ratios. Liquid hydrocarbon fuels can be obtained by combining oxygen removal processes (e.g. dehydration, hydrogenation, hydrogenolysis, decarbonylation etc.) as well as by increasing the molecular weight via C-C coupling reactions (e.g. aldol condensation, ketonization, oligomerization, hydroxyalkylation etc.). Fundamentals and mechanistic aspects of the use of HDO catalysts in deoxygenation reactions will also be discussed. PMID:25443804

  11. Chemical reaction and dust formation studies in laboratory hydrocarbon plasmas.

    Science.gov (United States)

    Hippler, Rainer; Majumdar, Abhijit; Thejaswini, H. C.

    Plasma chemical reaction studies with relevance to, e.g., Titan's atmosphere have been per-formed in various laboratory plasmas [1,2]. Chemical reactions in a dielectric barrier discharge at medium pressure of 250-300 mbar have been studied in CH4 /N2 and CH4 /Ar gas mixtures by means of mass spectrometry. The main reaction scheme is production of H2 by fragmenta-tion of CH4 , but also production of larger hydrocarbons like Cn Hm with n up to 10 including formation of different functional CN groups is observed. [1] A. Majumdar and R. Hippler, Development of dielectric barrier discharge plasma processing apparatus for mass spectrometry and thin film deposition, Rev. Sci. Instrum. 78, 075103 (2007) [2] H.T. Do, G. Thieme, M. Frühlich, H. Kersten, and R. Hippler, Ion Molecule and Dust Particle Formation in Ar/CH4 , Ar/C2 H2 and Ar/C3 H6 Radio-frequency Plasmas, Contrib. Plasma Phys. 45, No. 5-6, 378-384 (2005)

  12. Cyclodextrin-promoted Diels Alder reactions of a polycyclic aromatic hydrocarbon under mild reaction conditions

    Science.gov (United States)

    Chaudhuri, Sauradip; Phelan, Tyler; Levine, Mindy

    2015-01-01

    Reported herein is the effect of cyclodextrins on the rates of aqueous Diels Alder reactions of 9-anthracenemethanol with a variety of N-substituted maleimides. These reactions occurred under mild reaction conditions (aqueous solvent, 40 °C), and were most efficient for the reaction of N-cyclohexylmaleimide with a methyl-β-cyclodextrin additive (94% conversion in 24 hours). These results can be explained on the basis of a model wherein the cyclodextrins bind the hydrophobic substituents on the maleimides and activate the dienophile via electronic modulation of the maleimide double bond. The results reported herein represent a new mechanism for cyclodextrin-promoted Diels Alder reactions, and have significant potential applications in the development of other cyclodextrin-promoted organic transformations. Moreover, the ability to deplanarize polycyclic aromatic hydrocarbons (PAHs) under mild conditions, as demonstrated herein, has significant applications for PAH detoxification. PMID:26692588

  13. Selective catalytic reduction of NOx by hydrocarbons over Fe/ZSM5 prepared by sublimation of FeCl3

    NARCIS (Netherlands)

    Battiston, A.A.

    2003-01-01

    Selective Catalytic Reduction of NOx by Hydrocarbons over Fe/ZSM5 Prepared by Sublimation of FeCl3. Characterization and Catalysis Nitrogen oxides (NOx) are unwanted by-products of combustion. They are generated primarily from motor vehicles and stationary sources, like power stations and indust

  14. Zeolite deactivation during hydrocarbon reactions: characterisation of coke precursors and acidity, product distribution

    OpenAIRE

    Wang, B.

    2008-01-01

    The catalytic conversion of hydrocarbons over zeolites has been applied in large scale petroleum-refining processes. However, there is always formation and retention of heavy by-products, called coke, which causes catalyst deactivation. This deactivation is due to the poisoning of the acid sites and/or pore blockage. The formation of coke on hydrocarbon processing catalysts is of considerable technological and economic importance and a great deal of work has been carried out to this study. Th...

  15. Engineering Metallic Nanoparticles for Enhancing and Probing Catalytic Reactions.

    Science.gov (United States)

    Collins, Gillian; Holmes, Justin D

    2016-07-01

    Recent developments in tailoring the structural and chemical properties of colloidal metal nanoparticles (NPs) have led to significant enhancements in catalyst performance. Controllable colloidal synthesis has also allowed tailor-made NPs to serve as mechanistic probes for catalytic processes. The innovative use of colloidal NPs to gain fundamental insights into catalytic function will be highlighted across a variety of catalytic and electrocatalytic applications. The engineering of future heterogenous catalysts is also moving beyond size, shape and composition considerations. Advancements in understanding structure-property relationships have enabled incorporation of complex features such as tuning surface strain to influence the behavior of catalytic NPs. Exploiting plasmonic properties and altering colloidal surface chemistry through functionalization are also emerging as important areas for rational design of catalytic NPs. This news article will highlight the key developments and challenges to the future design of catalytic NPs. PMID:26823380

  16. Catalytic and Gas-Solid Reactions Involving HCN over Limestone

    DEFF Research Database (Denmark)

    Jensen, Anker; Johnsson, Jan Erik; Dam-Johansen, Kim

    1997-01-01

    In coal-fired combustion systems solid calcium species may be present as ash components or limestone added to the combustion chamber. In this study heterogeneous reactions involving HCN over seven different limestones were investigated in a laboratory fixed-bed quartz reactor at 873-1,173 K....... Calcined limestone is an effective catalyst for oxidation of HCN. Under conditions with complete conversion of HCN at O-2 concentrations above about 5,000 ppmv the selectivity for formation of NO and N2O is 50-70% and below 5%, respectively. Nitric oxide can be reduced by HCN to N-2 in the absence of O-2...... and to N-2 and N2O in the presence of O-2. At low O-2 concentrations or low temperatures. HCN may react with CaO, forming calcium cyanamide, CaCN2. The selectivities for formation of NO and N2O from oxidation of CaCN2 is 20-25% for both species. The catalytic activity of limestone for oxidation of HCN...

  17. Developing soft X-ray spectroscopy for in situ characterization of nanocatalysts in catalytic reactions

    International Nuclear Information System (INIS)

    Understanding the mechanisms of catalytic and reactions calls for in situ/operando spectroscopic characterization. Here we report the developments of in situ reaction cells at the Advanced Light Source for soft X-ray spectroscopic studies of nanoparticle catalysts during the catalytic reactions. The operation of these various cells and their capabilities are illustrated with examples from the studies of Co-based nanocatalysts

  18. Skeletal Isomerization and Inter-molecular Hydrogen Transfer Reactions in Catalytic Cracking

    Institute of Scientific and Technical Information of China (English)

    Gao Yongcan; Zhang Jiushun; Xie Chaogang; Long Jun

    2002-01-01

    Bimolecular hydrogen transfer and skeletal isomerization are the important secondary reac tions among catalytic cracking reactions, which affect product yield distribution and product quality.Catalyst properties and operating parameters have great impact on bimolecular hydrogen transfer and skeletal isomerization reactions. Bimolecular hydrogen transfer activity and skeletal isomerization activity of USY-containing catalysts are higher than that of ZSM-5-containing catalyst. Coke deposition on the active sites of catalyst may suppress bimolecular hydrogen transfer activity and skeletal isomerization activity of catalyst in different degrees. Short reaction time causes a decrease of hydrogen trans fer reaction, but an increase of skeletal isomerization reaction compared to cracking reaction in catalytic cracking process.

  19. An experimental and theoretical study of reaction steps relevant to the methanol-to-hydrocarbons reaction

    Energy Technology Data Exchange (ETDEWEB)

    Svelle, Stian

    2004-07-01

    The primary objective of the present work is to obtain new insight into the reaction mechanism of the zeolite catalyzed methanol-to-hydrocarbons (MTH) reaction. It was decided to use both experimental and computational techniques to reach this goal. An investigation of the n-butene + methanol system was therefore initiated. Over time, it became apparent that it was possible to determine the rate for the methylation of n-butene by methanol. The ethene and propene systems were therefore reexamined in order to collect kinetic information also for those cases. With the development of user-friendly quantum chemistry programs such as the Gaussian suite of programs, the possibility of applying quantum chemical methods to many types of problems has become readily available even for non-experts. When performing mechanistic studies, there is quite often a considerable synergy effect when combining experimental and computational approaches. The methylation reactions mentioned above turned out to be an issue well suited for quantum chemical investigations. The incentive for examining the halomethane reactivity was the clear analogy to the MTH reaction system. Alkene dimerization was also a reaction readily examined with quantum chemistry. As discussed in the introduction of this thesis, polymethylbenzenes, or their cationic counterparts, are suspected to be key intermediates in the MTH reaction. It was therefore decided to investigate the intrinsic reactivity of these species in the gas-phase by employing sophisticated mass spectrometric (MS) techniques in collaboration with the MS group at the Department of Chemistry, University of Oslo The data thus obtained will also be compared with results from an ongoing computational study on gas phase polymethylbenzenium reactivity. 6 papers presenting various studies are included. The titles are: 1) A Theoretical Investigation of the Methylation of Alkenes with Methanol over Acidic Zeolites. 2) A Theoretical Investigation of the

  20. Reactor for non-isothermic reactions and process for the preparation of hydrocarbons using such a reactor

    Energy Technology Data Exchange (ETDEWEB)

    Goudriaan, J.C.; Van der Burgt, M.J.

    1989-02-07

    The reactor according to the invention is particularly suitable for exothermic catalytic reactions, such as the synthesis of methanol, where apart from a gas phase a liquid phase is present during the reaction. More particularly, the reactor is very suitable for the synthesis of hydrocarbons from synthesis gas to form a substitute for petroleum hydrocarbons, wherein liquid is added to the gaseous feedstock for optimizing the process. In the reactor design, means are provided for circulating a heat transfer medium between the tube plates along the tubes. Inlet means above the tubes distribute liquid in the form of one or more sprays and gas over the plurality of tubes of adjacent rows are staggered, and the upper tube plate is provided with holes, having a lower part in which the tubes are closely fitted and having a substantially concentric upper part diverging in upward direction. The upper ends of adjacent holes have edges in common in such a manner that the upper end of the upper tube plate is formed by edges arranged in a hexagonal configuration. zte invention further relates to a process for the preparation of hydrocarbons using such reactor. 3 figs.

  1. Catalytic reactor for promoting a chemical reaction on a fluid passing therethrough

    Science.gov (United States)

    Roychoudhury, Subir (Inventor); Pfefferle, William C. (Inventor)

    2001-01-01

    A catalytic reactor with an auxiliary heating structure for raising the temperature of a fluid passing therethrough whereby the catalytic reaction is promoted. The invention is a apparatus employing multiple electrical heating elements electrically isolated from one another by insulators that are an integral part of the flow path. The invention provides step heating of a fluid as the fluid passes through the reactor.

  2. A general catalytic reaction sequence to access alkaloid-inspired indole polycycles.

    Science.gov (United States)

    Danda, Adithi; Kumar, Kamal; Waldmann, Herbert

    2015-05-01

    A catalytic two-step reaction sequence was developed to access a range of complex heterocyclic frameworks based on biorelevant indole/oxindole scaffolds. The reaction sequence includes catalytic Pictet-Spengler cyclization followed by Au(I) catalyzed intramolecular hydroamination of acetylenes. A related cascade polycyclization of a designed β-carboline embodying a 1,5-enyne group yields the analogues of the alkaloid harmicine. PMID:25846800

  3. Kinetic and catalytic performance of a BI-porous composite material in catalytic cracking and isomerisation reactions

    KAUST Repository

    Al-Khattaf, S.

    2012-01-10

    Catalytic behaviour of pure zeolite ZSM-5 and a bi-porous composite material (BCM) were investigated in transformation of m-xylene, while zeolite HY and the bi-porous composite were used in the cracking of 1,3,5-triisopropylbenzene (TIPB). The micro/mesoporous material was used to understand the effect of the presence of mesopores on these reactions. Various characterisation techniques, that is, XRD, SEM, TGA, FT-IR and nitrogen sorption measurements were applied for complete characterisation of the catalysts. Catalytic tests using CREC riser simulator showed that the micro/mesoporous composite catalyst exhibited higher catalytic activity as compared with the conventional microporous ZSM-5 and HY zeolite for transformation of m-xylene and for the catalytic cracking of TIPB, respectively. The outstanding catalytic reactivity of m-xylene and TIPB molecules were mainly attributed to the easier access of active sites provided by the mesopores. Apparent activation energies for the disappearance of m-xylene and TIPB over all catalysts were found to decrease in the order: EBCM>EZSM-5 and EBCM>EHY, respectively. © 2012 Canadian Society for Chemical Engineering.

  4. (Gold core) at (ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light

    KAUST Repository

    Wang, Jianfang

    2014-08-26

    Driving catalytic reactions with sunlight is an excellent example of sustainable chemistry. A prerequisite of solar-driven catalytic reactions is the development of photocatalysts with high solar-harvesting efficiencies and catalytic activities. Herein, we describe a general approach for uniformly coating ceria on monometallic and bimetallic nanocrystals through heterogeneous nucleation and growth. The method allows for control of the shape, size, and type of the metal core as well as the thickness of the ceria shell. The plasmon shifts of the Au@CeO2 nanostructures resulting from the switching between Ce(IV) and Ce(III) are observed. The selective oxidation of benzyl alcohol to benzaldehyde, one of the fundamental reactions for organic synthesis, performed under both broad-band and monochromatic light, demonstrates the visible-light-driven catalytic activity and reveals the synergistic effect on the enhanced catalysis of the Au@CeO2 nanostructures. © 2014 American Chemical Society.

  5. STUDIES ON THE CATALYTIC REACTION OF NITROGEN OXIDE ON METAL MODIFIED ACTIVATED CARBON FIBERS

    Institute of Scientific and Technical Information of China (English)

    FU Ruowen; DU Xiuying; LIN Yuansheng; XU Hao; HU Yiongjun

    2003-01-01

    The catalytic reaction of NO with CO and decomposition of NO over metal modified ACFs were investigated and compared with other carriers supported catalysts. It is demonstrated that Pd/ACF and Pd/Cu/ACF have high catalytic activity for the reaction of NO/CO, while Pt/ACF.Pt/Cu/ACF and Co/Cu/ACF have very Iow catalytic activity in similar circumstance. Pd-modified ACF possesses high catalytic decomposition of NO at 300 ℃. Pd/CB and Pd/GAC present good catalytic decomposition ability for NO only at low flowrate. Pd/G, Pd/ZMS and Pd/A however, do not show any catalytic activity for NO decomposition even at 400 ℃. Catalytic temperature, NO flowrate and loading of metal components affect the decomposition rate of NO. The coexistence of Cu with Pd on Cu/Pd/ACF leads to crystalline of palladium to more unperfected so as to that increase the catalytic activity.

  6. Catalytic conversion reactions in nanoporous systems with concentration-dependent selectivity: Statistical mechanical modeling

    Science.gov (United States)

    García, Andrés; Wang, Jing; Windus, Theresa L.; Sadow, Aaron D.; Evans, James W.

    2016-05-01

    Statistical mechanical modeling is developed to describe a catalytic conversion reaction A →Bc or Bt with concentration-dependent selectivity of the products, Bc or Bt, where reaction occurs inside catalytic particles traversed by narrow linear nanopores. The associated restricted diffusive transport, which in the extreme case is described by single-file diffusion, naturally induces strong concentration gradients. Furthermore, by comparing kinetic Monte Carlo simulation results with analytic treatments, selectivity is shown to be impacted by strong spatial correlations induced by restricted diffusivity in the presence of reaction and also by a subtle clustering of reactants, A .

  7. A consistent reaction scheme for the selective catalytic reduction of nitrogen oxides with ammonia

    DEFF Research Database (Denmark)

    Janssens, Ton V.W.; Falsig, Hanne; Lundegaard, Lars Fahl;

    2015-01-01

    For the first time, the standard and fast selective catalytic reduction of NO by NH3 are described in a complete catalytic cycle, that is able to produce the correct stoichiometry, while only allowing adsorption and desorption of stable molecules. The standard SCR reaction is a coupling of the ac......For the first time, the standard and fast selective catalytic reduction of NO by NH3 are described in a complete catalytic cycle, that is able to produce the correct stoichiometry, while only allowing adsorption and desorption of stable molecules. The standard SCR reaction is a coupling...... of the activation of NO by O2 with the fast SCR reaction, enabled by the release of NO2. According to the scheme, the SCR reaction can be divided in an oxidation of the catalyst by NO + O2 and a reduction by NO + NH3; these steps together constitute a complete catalytic cycle. Furthermore both NO and NH3...... spectroscopy (FTIR). A consequence of the reaction scheme is that all intermediates in fast SCR are also part of the standard SCR cycle. The calculated activation energy by density functional theory (DFT) indicates that the oxidation of an NO molecule by O2 to a bidentate nitrate ligand is rate determining...

  8. HZSM-5/MCM-41 composite molecular sieves for the catalytic cracking of endothermic hydrocarbon fuels: nano-ZSM-5 zeolites as the source

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Yu; Jiao, Qingze; Li, Hansheng, E-mail: hanshengli@bit.edu.cn; Wu, Qin; Zhao, Yun; Sun, Kening, E-mail: sunkn@bit.edu.cn [Beijing Institute of Technology, School of Chemical Engineering and the Environment (China)

    2014-12-15

    A series of HZSM-5/MCM-41 composite molecular sieves (HZM-Ns (x)) were prepared by employing nano-ZSM-5 zeolites with the SiO{sub 2}/Al{sub 2}O{sub 3} ratios (x) of 50, 100 and 150 as the source. These materials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, N{sub 2} adsorption–desorption measurement, and NH{sub 3} temperature-programmed desorption. The catalytic cracking of endothermic hydrocarbon fuels over the HZM-Ns with n-decane as model was evaluated at atmospheric pressure and 500 °C. The effect of the parent zeolite, mesopore and SiO{sub 2}/Al{sub 2}O{sub 3} ratio on the structure, acidity, and catalytic performance of HZM-Ns was investigated. The HZM-Ns exhibited a skeletal matrix with nano-sized HZSM-5 particles (200–300 nm) with a controllable acidity well dispersed in and microporous–mesoporous hierarchical pores. The mesoporous structure improved the diffusion of the reactants and products in the pores, and the HZSM-5 nanoparticles uniformly dispersed in the MCM-41 matrix supplied a proper acidity, shorter channels, and a higher specific surface area for reaction. These resulted in a high catalytic activity, a high selectivity to light olefins and a long lifetime for n-decane catalytic cracking. The HZM-N (150) exhibited the excellent conversion, a high selectivity to light olefins and a long lifetime due to low diffusion resistance, high specific surface area, and appropriate acid distribution and strength, with the increasing SiO{sub 2}/Al{sub 2}O{sub 3} ratio.

  9. Process of forming catalytic surfaces for wet oxidation reactions

    Science.gov (United States)

    Jagow, R. B. (Inventor)

    1977-01-01

    A wet oxidation process was developed for oxidizing waste materials, comprising dissolved ruthenium salt in a reactant feed stream containing the waste materials. The feed stream is introduced into a reactor, and the reactor contents are then raised to an elevated temperature to effect deposition of a catalytic surface of ruthenium black on the interior walls of the reactor. The feed stream is then maintained in the reactor for a period of time sufficient to effect at least partial oxidation of the waste materials.

  10. High-pressure catalytic reactions over single-crystal metal surfaces

    Science.gov (United States)

    Rodriguez, JoséA.; Wayne Goodman, D.

    1991-11-01

    Studies dealing with high-pressure catalytic reactions over single-crystal surfaces are reviewed. The coupling of an apparatus for the measurement of reaction kinetics at elevated pressures with an ultrahigh vacuum system for surface analysis allows detailed study of structure sensitivity, the effects of promoters and inhibitors on catalytic activity, and, in certain cases, identification of reaction intermediates by post-reaction surface analysis. Examples are provided which demonstrate the relevance of single-crystal studies for modeling the behaviour of high-surface-area supported catalysts. Studies of CO methanation and CO oxidation over single-crystal surfaces provide convincing evidence that these reactions are structure insensitive. For structure-sensitive reactions (ammonia synthesis, alkane hydrogenolysis, alkane isomerization, water-gas shift reaction, etc.) model single-crystal studies allow correlations to be established between surface structure and catalytic activity. The effects of both electronegative (S and P) and electropositive (alkali metals) impurities upon the catalytic activity of metal single crystals for ammonia synthesis, CO methanation, alkane hydrogenolysis, ethylene epoxidation and water-gas shift are discussed. The roles of "ensemble" and "ligand" effects in bimetallic catalysts are examined in light of data obtained using surfaces prepared by vapor-depositing one metal onto a crystal face of a dissimilar metal.

  11. Photocatalytic Water-Splitting Reaction from Catalytic and Kinetic Perspectives

    KAUST Repository

    Hisatomi, Takashi

    2014-10-16

    Abstract: Some particulate semiconductors loaded with nanoparticulate catalysts exhibit photocatalytic activity for the water-splitting reaction. The photocatalysis is distinct from the thermal catalysis because photocatalysis involves photophysical processes in particulate semiconductors. This review article presents a brief introduction to photocatalysis, followed by kinetic aspects of the photocatalytic water-splitting reaction.Graphical Abstract: [Figure not available: see fulltext.

  12. ZnCl2 Induced Catalytic Conversion of Softwood Lignin to Aromatics and Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongliang; Zhang, Libing; Deng, Tiansheng; Ruan, Hao; Hou, Xianglin; Cort, John R.; Yang, Bin

    2016-01-19

    Selective cleavage of C-O-C bonds in lignin without disrupting C-C linkages can result in releasing aromatic monomers and dimers that can be subsequently converted into chemicals and fuels. Results showed that both biomass-derived lignin and lignin model compounds were depolymerized in a highly concentrated ZnCl2 solution. Zn2+ ions in highly concentrated ZnCl2 solutions appeared to selectively coordinate with C-O-C bonds to cause key linkages of lignin much easier to cleave. In 63 wt.% ZnCl2 solution at 200 °C for 6 h, nearly half of the softwood technical lignin was converted to liquid products, of which the majority was alkylphenols. Results indicated that most β-O-4 and Cmethyl-OAr bonds of model compounds were cleaved undersame conditions, providing a foundation towards understanding lignin depolymerization in a concentrated ZnCl2 solution. The phenolic products were further converted into cyclic hydrocarbons via hydrodeoxygenation and coupling reactions by co-catalyst Ru/C.

  13. Mass transfer during catalytic reaction in electroosmotically driven flow in a channel microreactor

    Science.gov (United States)

    Sharma, Himanshu; Vasu, Nadapana; de, Sirshendu

    2011-05-01

    Analytical solution for concentration profile in a microreactor is obtained during heterogeneous catalytic reaction. Reaction occurs in rectangular microchannel with catalyst-coated walls. Flow is induced electroosmotically in the microchannel. A general solution is obtained for first order reaction using a power series solution. Profiles of conversion, cup-mixing concentration of reactant, etc. and variation of Sherwood number is analyzed as function of operating variables. Analytical solution is compared with numerical results.

  14. Design and Testing of a Labview- Controlled Catalytic Packed- Bed Reactor System For Production of Hydrocarbon Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Street, J.; Yu, F.; Warnock, J.; Wooten, J.; Columbus, E.; White, M. G.

    2012-05-01

    Gasified woody biomass (producer gas) was converted over a Mo/H+ZSM-5 catalyst to produce gasolinerange hydrocarbons. The effect of contaminants in the producer gas showed that key retardants in the system included ammonia and oxygen. The production of gasoline-range hydrocarbons derived from producer gas was studied and compared with gasoline-range hydrocarbon production from two control syngas mixes. Certain mole ratios of syngas mixes were introduced into the system to evaluate whether or not the heat created from the exothermic reaction could be properly controlled. Contaminant-free syngas was used to determine hydrocarbon production with similar mole values of the producer gas from the gasifier. Contaminant-free syngas was also used to test an ideal contaminant-free synthesis gas situation to mimic our particular downdraft gasifier. Producer gas was used in this study to determine the feasibility of using producer gas to create gasoline-range hydrocarbons on an industrial scale using a specific Mo/H+ZSM-5 catalyst. It was determined that after removing the ammonia, other contaminants poisoned the catalyst and retarded the hydrocarbon production process as well.

  15. Plasma-catalytic hybrid system using spouted bed with a gliding arc discharge: CH4 reforming as a model reaction

    Science.gov (United States)

    Lee, H.; Sekiguchi, H.

    2011-07-01

    A combination of a gliding arc discharge and a spouted catalytic bed was used to investigate a plasma-catalytic hybrid system using CH4 reforming as a model reaction. Alumina-supported catalysts that contained 0.5 wt% of Pt, Pd, Rh, and Ru (denoted as Pt/Al2O3, Pd/Al2O3, Rh/Al2O3 and Ru/Al2O3, respectively) were used. For comparison, active Al2O3 particles were also examined. The conversion of CH4 and the selectivity of the product were investigated by changing the feed flow rate and reaction time. The production of C2H2, H2 and soot was observed in the gliding arc discharge without a catalyst. Using Pt/Al2O3 and Pd/Al2O3with the gliding arc discharge, C2H4, C2H6 and C2H2 were produced. It is considered that C2H4 and C2H6 were formed by the hydrogenation of C2H2 on the active site of Pt/Al2O3 and Pd/Al2O3. A stronger resistance to deactivation was shown in the presence of Pd/Al2O3 than in the presence of Pt/Al2O3, whereas the selectivity of hydrocarbon using Rh/Al2O3 and Ru/Al2O3 showed a tendency similar to that in active Al2O3 and non-catalytic experiments. The proposed reactor has a potential to improve the selectivity of the plasma process.

  16. The catalytic reaction mechanism of drosophilid alcohol dehydrogenases

    Directory of Open Access Journals (Sweden)

    Imin Wushur

    2015-03-01

    Full Text Available The present review describes the current knowledge about the reaction mechanism of drosophilid alcohol dehydrogenases (DADH, a member of the short chain dehydrogenase/reductase (SDR superfamily. Included is the binding order of the substrates to the enzyme, rate limiting steps, stereochemistry of the reaction, active site topology, role of important amino acids and water molecules in the reaction and pH dependence of kinetic coefficients. We focus on the contribution from steady state kinetics where alternative substrates, dead end and product inhibitors, isotopes and mutated DADHs have been used as well as on the contributions from X-ray crystallography, NMR and theoretical calculations. Furthermore, we also raise some open questions in order to fully understand the reaction mechanism of this enzyme.

  17. Research of Hydrogen Preparation with Catalytic Steam-Carbon Reaction Driven by Photo-Thermochemistry Process

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhang

    2013-01-01

    Full Text Available An experiment of hydrogen preparation from steam-carbon reaction catalyzed by K2CO3 was carried out at 700°C, which was driven by the solar reaction system simulated with Xenon lamp. It can be found that the rate of reaction with catalyst is 10 times more than that without catalyst. However, for the catalytic reaction, there is no obvious change for the rate of hydrogen generation with catalyst content range from 10% to 20%. Besides, the conversion efficiency of solar energy to chemical energy is more than 13.1% over that by photovoltaic-electrolysis route. An analysis to the mechanism of catalytic steam-carbon reaction with K2CO3 is given, and an explanation to the nonbalanced [H2]/[CO + 2CO2] is presented, which is a phenomenon usually observed in experiment.

  18. Conversion of Methane to C2 Hydrocarbons via Cold Plasma Reaction

    Institute of Scientific and Technical Information of China (English)

    Baowei Wang; Genhui Xu

    2003-01-01

    Direct conversion of methane to C2 hydrocarbons via cold plasma reaction with catalysts has been studied at room temperature and atmospheric pressure. Methane can be converted into C2 hydrocarbons in different selectivity depending on the form of the reactor, power of plasma, flow rate of methane, ratio of N2/CH4 and nature of the catalysts. The selectivity to C2 hydrocarbons can reach as high as 98.64%, and the conversion of methane as high as 60% and the yield of C2 hydrocarbons as high as 50% are obtained. Coking can be minimized under the conditions of: proper selection of the catalysts,appropriate high flow rate of inlet methane and suitable ratio of N2 to CH4. The catalyst surface provides active sites for radical recombination.

  19. Catalytic hydrogen-chlorine exchange between chlorinated hydrocarbons under oxygen-free conditions

    NARCIS (Netherlands)

    van der Heijden, A.W.A.M.; Podkolzin, S.G.; Jones, M.E.; Bitter, J.H.; Weckhuysen, B.M.

    2008-01-01

    Chlorinated hydrocarbons (CHCs) remain important industrial chemical intermediates and solvents, especially for the exploration of the potential of La-based materials for the conversion of chlorinated waste compounds.[1] The production of industrially important CHCs frequently occurs with concurrent

  20. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbons: Dilute-Acid and Enzymatic Deconstruction of Biomass to Sugars and Catalytic Conversion of Sugars to Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.; Tao, L.; Scarlata, C.; Tan, E. C. D.; Ross, J.; Lukas, J.; Sexton, D.

    2015-03-01

    This report describes one potential conversion process to hydrocarbon products by way of catalytic conversion of lignocellulosic-derived hydrolysate. This model leverages expertise established over time in biomass deconstruction and process integration research at NREL, while adding in new technology areas for sugar purification and catalysis. The overarching process design converts biomass to die die diesel- and naphtha-range fuels using dilute-acid pretreatment, enzymatic saccharification, purifications, and catalytic conversion focused on deoxygenating and oligomerizing biomass hydrolysates.

  1. Side reactions in the selective catalytic reduction of NO with NH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Madia, G.; Koebel, M.; Elsener, M.; Wokaun, A.

    2002-03-01

    The main and the side reactions of the SCR reaction with ammonia over TiO{sub 2}-WO{sub 3}-V{sub 2}O{sub 5} catalysts have been investigated using synthetic gas mixtures matching the composition of diesel exhaust. At high temperatures the selective catalytic oxidation of ammonia (SCO) and the formation of nitrous oxide compete with the SCR reaction. Water strongly inhibits the SCO of ammonia and the formation of nitrous oxide thus increasing the selectivity of the SCR reaction. However, water also inhibits SCR activity, most pronounced at low temperatures. (author)

  2. Preliminary chemical analysis and biological testing of materials from the HRI catalytic two-stage liquefaction (CTSL) process. [Aliphatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.; Wilson, B.W.

    1985-01-01

    Coal-derived materials from experimental runs of Hydrocarbon Research Incorporated's (HRI) catalytic two-stage liquefaction (CTSL) process were chemically characterized and screened for microbial mutagenicity. This process differs from two-stage coal liquefaction processes in that catalyst is used in both stages. Samples from both the first and second stages were class-fractionated by alumina adsorption chromatography. The fractions were analyzed by capillary column gas chromatography; gas chromatography/mass spectrometry; direct probe, low voltage mass spectrometry; and proton nuclear magnetic resonance spectrometry. Mutagenicity assays were performed with the crude and class fractions in Salmonella typhimurium, TA98. Preliminary results of chemical analyses indicate that >80% CTSL materials from both process stages were aliphatic hydrocarbon and polynuclear aromatic hydrocarbon (PAH) compounds. Furthermore, the gross and specific chemical composition of process materials from the first stage were very similar to those of the second stage. In general, the unfractionated materials were only slightly active in the TA98 mutagenicity assay. Like other coal liquefaction materials investigated in this laboratory, the nitrogen-containing polycyclic aromatic compound (N-PAC) class fractions were responsible for the bulk of the mutagenic activity of the crudes. Finally, it was shown that this activity correlated with the presence of amino-PAH. 20 figures, 9 tables.

  3. Modular, Catalytic Enantioselective Construction of Quaternary Carbon Stereocenters by Sequential Cross-Coupling Reactions.

    Science.gov (United States)

    Potter, Bowman; Edelstein, Emma K; Morken, James P

    2016-07-01

    The catalytic Suzuki-Miyaura cross-coupling with chiral γ,γ-disubstituted allylboronates in the presence of RuPhos ligand occurs with high regioselectivity and enantiospecificity, furnishing nonracemic compounds with quaternary centers. Mechanistic experiments suggest that the reaction occurs by transmetalation with allyl migration, followed by rapid reductive elimination.

  4. Process Intensification. Continuous Two-Phase Catalytic Reactions in a Table-Top Centrifugal Contact Separator

    NARCIS (Netherlands)

    Kraai, Gerard N.; Schuur, Boelo; van Zwol, Floris; Haak, Robert M.; Minnaard, Adriaan J.; Feringa, Ben L.; Heeres, Hero J.; de Vries, Johannes G.; Prunier, ML

    2009-01-01

    Production of fine chemicals is mostly performed in batch reactors. Use of continuous processes has many advantages which may reduce the cost of production. We have developed the use of centrifugal contact separators (CCSs) for continuous two-phase catalytic reactions. This equipment has previously

  5. Catalytic reaction of cytokinin dehydrogenase : preference for quinones as electron acceptors

    NARCIS (Netherlands)

    Frébortová, Jitka; Fraaije, Marco W.; Galuszka, Petr; Šebela, Marek; Peč, Pavel; Hrbáč, Jan; Novák, Ondřej; Bilyeu, Kristin D.; English, James T.; Frébort, Ivo; Sebela, M.; Pec, P.; Hrbac, J.; Frebort, [No Value

    2004-01-01

    The catalytic reaction of cytokinin oxidase/dehydrogenase (EC 1.5.99.12) was studied in detail using the recombinant flavoenzyme from maize. Determination of the redox potential of the covalently linked flavin cofactor revealed a relatively high potential dictating the type of electron acceptor that

  6. In-situ scanning transmission X-ray microscopy of catalytic materials under reaction conditions

    NARCIS (Netherlands)

    de Smit, E.; Creemer, J.F.; Zandbergen, H.W.; Weckhuysen, B.M.; de Groot, F.M.F.

    2009-01-01

    In-situ Scanning X-ray Transmission Microscopy (STXM) allows the measurement of the soft X-ray absorption spectra with 10 to 30 nm spatial resolution under realistic reaction conditions. We show that STXM-XAS in combination with a micromachined nanoreactor can image a catalytic system under relevant

  7. Utilization of the Recycle Reactor in Determining Kinetics of Gas-Solid Catalytic Reactions.

    Science.gov (United States)

    Paspek, Stephen C.; And Others

    1980-01-01

    Describes a laboratory scale reactor that determines the kinetics of a gas-solid catalytic reaction. The external recycle reactor construction is detailed with accompanying diagrams. Experimental details, application of the reactor to CO oxidation kinetics, interphase gradients, and intraphase gradients are discussed. (CS)

  8. Learning the Fundamentals of Kinetics and Reaction Engineering with the Catalytic Oxidation of Methane

    Science.gov (United States)

    Cybulskis, Viktor J.; Smeltz, Andrew D.; Zvinevich, Yury; Gounder, Rajamani; Delgass, W. Nicholas; Ribeiro, Fabio H.

    2016-01-01

    Understanding catalytic chemistry, collecting and interpreting kinetic data, and operating chemical reactors are critical skills for chemical engineers. This laboratory experiment provides students with a hands-on supplement to a course in chemical kinetics and reaction engineering. The oxidation of methane with a palladium catalyst supported on…

  9. Nitrated Confined Imidodiphosphates Enable a Catalytic Asymmetric Oxa-Pictet-Spengler Reaction.

    Science.gov (United States)

    Das, Sayantani; Liu, Luping; Zheng, Yiying; Alachraf, M Wasim; Thiel, Walter; De, Chandra Kanta; List, Benjamin

    2016-08-01

    The development of a highly enantioselective catalytic oxa-Pictet-Spengler reaction has proven a great challenge for chemical synthesis. We now report the first example of such a process, which was realized by utilizing a nitrated confined imidodiphosphoric acid catalyst. Our approach provides substituted isochroman derivatives from both aliphatic and aromatic aldehydes with high yields and excellent enantioselectivities. DFT calculations provide insight into the reaction mechanism. PMID:27457383

  10. Study of catalytic effect of ammonium molybdate on the bisphthalonitrile resins curing reaction with aromatic amine

    Institute of Scientific and Technical Information of China (English)

    Wen Ting Li; Fang Zuo; Kun Jia; Xiao Bo Liu

    2009-01-01

    A kind of catalyst, ammonium molybdate was developed in this paper to promote the curing reaction of bisphthalonitrile resins with aromatic amine as curing agent, and the catalytic effect was studied by differential scanning calorimetry (DSC), rheometric measurements and thermogravimetric analysis (TGA). The results indicated that the catalyst could improve the curing rate and increase the curing degree, which could be regulated by the content of the catalyst used in the reaction.

  11. The Self-catalytic Esterification Reaction of O-Phosphoryl Serine Derivative

    Institute of Scientific and Technical Information of China (English)

    Jin Tang DU; Yan Mei LI; Zhong Zhou CHEN; Shi Zhong LUO; Yu Fen ZHAO

    2005-01-01

    O-Phosphoryl serine derivative can perform self-catalytic esterification reaction in the mixture of CH3OH and CHCl3 at the room temperature. The phosphoryl group participation was the key step of the esterification. This type of reactions were proposed through an intermediate of mixed phosphoric-carboxylic anhydride that might provide a clue to the function of the phosphoryl group in the phosphorylated enzymes and in the prebiotic synthesis of protein.

  12. Oscillatory three-phase flow reactor for studies of bi-phasic catalytic reactions

    OpenAIRE

    Abolhasani, Milad; Bruno, Nicholas C.; Jensen, Klavs F.

    2015-01-01

    A multi-phase flow strategy, based on oscillatory motion of a bi-phasic slug within a fluorinated ethylene propylene (FEP) tubular reactor, under inert atmosphere, is designed and developed to address mixing and mass transfer limitations associated with continuous slug flow chemistry platforms for studies of bi-phasic catalytic reactions. The technique is exemplified with C–C and C–N Pd catalyzed coupling reactions.

  13. In-situ scanning transmission X-ray microscopy of catalytic materials under reaction conditions

    OpenAIRE

    E. Smit; Creemer, J.F.; Zandbergen, H. W.; Weckhuysen, B. M.; Groot, F.M.F. de

    2009-01-01

    In-situ Scanning X-ray Transmission Microscopy (STXM) allows the measurement of the soft X-ray absorption spectra with 10 to 30 nm spatial resolution under realistic reaction conditions. We show that STXM-XAS in combination with a micromachined nanoreactor can image a catalytic system under relevant reaction conditions, and provide detailed information on the morphology and composition of the catalyst material. The nanometer resolution combined with powerful chemical speciation by XAS and the...

  14. Reaction Mechanism of Oxygen Atoms with Unsaturated Hydrocarbons by the Crossed-Molecular-Beams Method

    Science.gov (United States)

    Buss, R. J.; Baseman, R. J.; Guozhong, H.; Lee, Y. T.

    1982-04-01

    From a series of studies of the reaction of oxygen atoms with unsaturated hydrocarbons using the crossed molecular beam method, the dominant reaction mechanisms were found to be the simple substitution reactions with oxygen atoms replacing H, Cl, Br atom or alkyl groups. Complication due to secondary reaction was avoided by carrying out experiments under single collisions and observing primary products directly. Primary products were identified by measuring the angular and velocity distributions of products at all the mass numbers which could be detected by the mass spectrometer, and from comparison of these distributions, applying the requirement of energy and momentum conservation.

  15. Interactions Between Surface Reactions and Gas-phase Reactions in Catalytic Combustion and Their Influence on Ignition of HCCI Engine

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The catalytic combustion of methane in a microchannel whose surface was coated with platinum(Pt)catalyst was studied by numerical-simulation. The effects of gas-phase reactions on the whole catalytic combustion process were analyzed at a high inlet pressure. A sensitivity analysis of the detailed mechanisms of the surface reaction of methane on Pt revealed that the most sensitive reactions affecting the heterogeneous ignition are oxygen adsorption/desorption and methane adsorption, and the most sensitive reactions affecting the homogeneous ignition are OH and H2O adsorption/desorption. The combustion process of the homogeneous charge compression ignition(HCCI) engine whose piston face was coated with Pt catalyst was simulated. The effects of catalysis and the most sensitive reactions on the ignition timing and the concentration of the main intermediate species during the HCCI engine combustion are discussed. The results show that the ignition timing of the HCCI engine can be increased by catalysis, and the most sensitive reactions affecting the ignition timing of the HCCI engine are OH and H2O adsorption/desorption.

  16. Catalytic Activity of Iridium Dioxide With Different Morphologies for Oxygen Reduction Reaction

    Institute of Scientific and Technical Information of China (English)

    WANG Guangjin; HUANG Fei; XU Tian; YU Yi; CHENG Feng; ZHANG Yue; PAN Mu

    2015-01-01

    Iridium dioxide with different morphologies (nanorod and nanogranular) is successfully prepared by a modiifed sol-gel and Adams methods. The catalytic activity of both samples for oxygen reduction reaction is investigated in an alkaline solution. The electrochemical results show that the catalytic activity of the nanogranular IrO2 sample is superior to that of the nanorod sample due to its higher onset potential for oxygen reduction reaction and higher electrode current density in low potential region. The results of Koutecky-Levich analysis indicate that the oxygen reduction reaction catalyzed by both samples is a mixture transfer pathway. It is dominated by four electron transfer pathway for both samples in high overpotential area, while it is controlled by two electron transfer process for both samples in low overpotential area.

  17. Catalytic Systems Containing p-Toluenesulfonic Acid for the Coupling Reaction of Formaldehyde and Methyl Formate

    Institute of Scientific and Technical Information of China (English)

    Kebing Wang; Jie Yao; Yue Wang; Gongying Wang

    2007-01-01

    The coupling reaction of formaldehyde (FA) and methyl formate (MF) to form methyl glycolate (MG) and methyl methoxy acetate(MMAc),catalyzed by p-toluenesulfonic acid(p-TsOH) as well as assisted by different kinds of solvents or Ni-containing compounds.had been investigated.The results showed that when the reaction was carried out at 140℃ with a molar ratio of FA to MF of 0.65:1,molar fraction of p-TsOH to total feedstock of 11.0%,and reaction time of 3 h,the yield of MG and MMAc Was 31.1% and 17.1%.respectively.p-TsOH catalyzed the coupling reaction by means of the synergistic catalysis of protonic acidity and soft basicity.Adding extra solvents to the reaction system Was unfavorable for the reaction.The composite catalytic system consisting of p-TsOH and NiX2(X=Cl,Br,I)exhibited a high catalytic performance for the coupling reaction,and NiX2 acted as a promoter in the reaction,whose promotion for the catalysis increased in the following order:NiCl2<NiBr2<NiI2.The present system is less corrosive when compared with the previous system,in which strong inorganic liquid acids were used as catalysts.

  18. Principles of water oxidation and O2-based hydrocarbon transformation by multinuclear catalytic sites

    Energy Technology Data Exchange (ETDEWEB)

    Musaev, Djamaladdin G [Chemistry, Emory University; Hill, Craig L [Chemistry, Emory University; Morokuma, Keiji [Chemistry, Emory University

    2014-10-28

    centers in the active site form another part of considerable interest of our grant because species with such sites [including methane monooxygenase (MMO) and more] are some of the most effective oxygenase catalysts known. Our team conducted the following research on γ-M2-Keggin complexes: (a) investigated stability of the trimer [{Fe3(OH)3(H2O)2}3(γ-SiW10O36)3]15-, 4, in water, and developed the chemistry and catalysis of the di-iron centered POM, [γ(1,2)-SiW10{Fe(OH)}2O38]6-, 5, in organic solvents (Figure 2). We also study the thermodynamic and structural stability of γ-M2-Keggin in aqueous media for different M’s (d-electron metals). We have defined two structural classes of POMs with proximally bound d-electron metal centers. We refer to these structural isomers of the {γ-M2SiW10} family of POMs as “in-pocket” and “out-of pocket”. We have elucidated the factors controlling the structure and stability of the V, Fe, Ru, Tc, Mo and Rh derivatives of [(SiO4)M2(OH)2W10O32]4- using a range of computational tools. We have: (a) demonstrated that heteroatom X in these polyanions may function as an “internal switch” for defining the ground electronic states and, consequently, the reactivity of the γ-M2-Keggin POM complexes; (b) elucidated reactivity of divacant lacunary species and polyperoxotungstates (PPTs), {Xn+O4[WO(O2)2]4}n-, which could be degradation products of γ-M2-Keggin complexes in aqueous media; (c) elucidated the role of the POM ligand in stabilization of {Ru2} and {(Ru-oxo)2} fragments in the reactant and product of the reaction of {γ-[(Xn+O4)Ru2(OH)2W10O32]}(8-n)- (where X = Si4+, P5+ and S6+) with O2, and (d) the mechanisms of olefin epoxidation catalyzed by these di-d-transition metal substituted and divacant lacunary γ-M2-Keggin complexes. III. Complementing the efforts presented above was the development of less time-consuming but reasonably accurate computational methods allowing one to explore more deeply large catalytic systems. We

  19. Anaerobic Microbial Degradation of Hydrocarbons: From Enzymatic Reactions to the Environment.

    Science.gov (United States)

    Rabus, Ralf; Boll, Matthias; Heider, Johann; Meckenstock, Rainer U; Buckel, Wolfgang; Einsle, Oliver; Ermler, Ulrich; Golding, Bernard T; Gunsalus, Robert P; Kroneck, Peter M H; Krüger, Martin; Lueders, Tillmann; Martins, Berta M; Musat, Florin; Richnow, Hans H; Schink, Bernhard; Seifert, Jana; Szaleniec, Maciej; Treude, Tina; Ullmann, G Matthias; Vogt, Carsten; von Bergen, Martin; Wilkes, Heinz

    2016-01-01

    Hydrocarbons are abundant in anoxic environments and pose biochemical challenges to their anaerobic degradation by microorganisms. Within the framework of the Priority Program 1319, investigations funded by the Deutsche Forschungsgemeinschaft on the anaerobic microbial degradation of hydrocarbons ranged from isolation and enrichment of hitherto unknown hydrocarbon-degrading anaerobic microorganisms, discovery of novel reactions, detailed studies of enzyme mechanisms and structures to process-oriented in situ studies. Selected highlights from this program are collected in this synopsis, with more detailed information provided by theme-focused reviews of the special topic issue on 'Anaerobic biodegradation of hydrocarbons' [this issue, pp. 1-244]. The interdisciplinary character of the program, involving microbiologists, biochemists, organic chemists and environmental scientists, is best exemplified by the studies on alkyl-/arylalkylsuccinate synthases. Here, research topics ranged from in-depth mechanistic studies of archetypical toluene-activating benzylsuccinate synthase, substrate-specific phylogenetic clustering of alkyl-/arylalkylsuccinate synthases (toluene plus xylenes, p-cymene, p-cresol, 2-methylnaphthalene, n-alkanes), stereochemical and co-metabolic insights into n-alkane-activating (methylalkyl)succinate synthases to the discovery of bacterial groups previously unknown to possess alkyl-/arylalkylsuccinate synthases by means of functional gene markers and in situ field studies enabled by state-of-the-art stable isotope probing and fractionation approaches. Other topics are Mo-cofactor-dependent dehydrogenases performing O2-independent hydroxylation of hydrocarbons and alkyl side chains (ethylbenzene, p-cymene, cholesterol, n-hexadecane), degradation of p-alkylated benzoates and toluenes, glycyl radical-bearing 4-hydroxyphenylacetate decarboxylase, novel types of carboxylation reactions (for acetophenone, acetone, and potentially also benzene and

  20. Anaerobic Microbial Degradation of Hydrocarbons: From Enzymatic Reactions to the Environment.

    Science.gov (United States)

    Rabus, Ralf; Boll, Matthias; Heider, Johann; Meckenstock, Rainer U; Buckel, Wolfgang; Einsle, Oliver; Ermler, Ulrich; Golding, Bernard T; Gunsalus, Robert P; Kroneck, Peter M H; Krüger, Martin; Lueders, Tillmann; Martins, Berta M; Musat, Florin; Richnow, Hans H; Schink, Bernhard; Seifert, Jana; Szaleniec, Maciej; Treude, Tina; Ullmann, G Matthias; Vogt, Carsten; von Bergen, Martin; Wilkes, Heinz

    2016-01-01

    Hydrocarbons are abundant in anoxic environments and pose biochemical challenges to their anaerobic degradation by microorganisms. Within the framework of the Priority Program 1319, investigations funded by the Deutsche Forschungsgemeinschaft on the anaerobic microbial degradation of hydrocarbons ranged from isolation and enrichment of hitherto unknown hydrocarbon-degrading anaerobic microorganisms, discovery of novel reactions, detailed studies of enzyme mechanisms and structures to process-oriented in situ studies. Selected highlights from this program are collected in this synopsis, with more detailed information provided by theme-focused reviews of the special topic issue on 'Anaerobic biodegradation of hydrocarbons' [this issue, pp. 1-244]. The interdisciplinary character of the program, involving microbiologists, biochemists, organic chemists and environmental scientists, is best exemplified by the studies on alkyl-/arylalkylsuccinate synthases. Here, research topics ranged from in-depth mechanistic studies of archetypical toluene-activating benzylsuccinate synthase, substrate-specific phylogenetic clustering of alkyl-/arylalkylsuccinate synthases (toluene plus xylenes, p-cymene, p-cresol, 2-methylnaphthalene, n-alkanes), stereochemical and co-metabolic insights into n-alkane-activating (methylalkyl)succinate synthases to the discovery of bacterial groups previously unknown to possess alkyl-/arylalkylsuccinate synthases by means of functional gene markers and in situ field studies enabled by state-of-the-art stable isotope probing and fractionation approaches. Other topics are Mo-cofactor-dependent dehydrogenases performing O2-independent hydroxylation of hydrocarbons and alkyl side chains (ethylbenzene, p-cymene, cholesterol, n-hexadecane), degradation of p-alkylated benzoates and toluenes, glycyl radical-bearing 4-hydroxyphenylacetate decarboxylase, novel types of carboxylation reactions (for acetophenone, acetone, and potentially also benzene and

  1. Pilot-plant study on membrane reactors for catalytic oxidation of hydrocarbons

    OpenAIRE

    Klose, F.; Wolff, T; Hamel, C., Huschek, D., Milewsky, N. & de Valk, H.A.G. / In M. Crul, J. Schneider & F. Lelie (Eds.),; Tota, A.; Ahchieva, D.; Heinrich, S; Seidel-Morgenstern, A.

    2007-01-01

    Membrane reactors are often reported to be promising for enhancement of productivity in selective oxidation of hydrocarbons. Herein, the membrane is used as oxidant distributor (e.g. [1-3]). This is meaningful because the order of deep oxidation with respect to oxygen is often higher than that of the desired formation of olefins/oxygenates [4,5]. This means that oxygen availability influences both, alkane conversion and selectivity to olefins/oxygenates and this in opposite manner. Beside cha...

  2. Graphene-Semiconductor Catalytic Nanodiodes for Quantitative Detection of Hot Electrons Induced by a Chemical Reaction.

    Science.gov (United States)

    Lee, Hyosun; Nedrygailov, Ievgen I; Lee, Young Keun; Lee, Changhwan; Choi, Hongkyw; Choi, Jin Sik; Choi, Choon-Gi; Park, Jeong Young

    2016-03-01

    Direct detection of hot electrons generated by exothermic surface reactions on nanocatalysts is an effective strategy to obtain insight into electronic excitation during chemical reactions. For this purpose, we fabricated a novel catalytic nanodiode based on a Schottky junction between a single layer of graphene and an n-type TiO2 layer that enables the detection of hot electron flows produced by hydrogen oxidation on Pt nanoparticles. By making a comparative analysis of data obtained from measuring the hot electron current (chemicurrent) and turnover frequency, we demonstrate that graphene's unique electronic structure and extraordinary material properties, including its atomically thin nature and ballistic electron transport, allow improved conductivity at the interface between the catalytic Pt nanoparticles and the support. Thereby, graphene-based nanodiodes offer an effective and facile way to approach the study of chemical energy conversion mechanisms in composite catalysts with carbon-based supports. PMID:26910271

  3. Modeling the Catalysis of Anti-Cocaine Catalytic Antibody: Competing Reaction Pathways and Free Energy Barriers

    OpenAIRE

    Pan, Yongmei; Gao, Daquan; Zhan, Chang-Guo

    2008-01-01

    The competing reaction pathways and the corresponding free energy barriers for cocaine hydrolysis catalyzed by an anti-cocaine catalytic antibody, mAb 15A10, were studied by using a novel computational strategy based on the binding free energy calculations on the antibody binding with cocaine and transition states. The calculated binding free energies were used to evaluate the free energy barrier shift from the cocaine hydrolysis in water to the antibody-catalyzed cocaine hydrolysis for each ...

  4. Catalytic hydroconversion of tricaprylin and caprylic acid as model reaction for biofuel production from triglycerides

    Energy Technology Data Exchange (ETDEWEB)

    Boda, L.; Thernesz, A. [MOL Hungarian Oil and Gas Co. Plc., Szazhalombatta (Hungary); Onyestyak, G.; Solt, H.; Lonyi, F.; Valyon, J. [Hungarian Academy of Sciences, Budapest (Hungary). Inst. of Nanochemistry and Catalysis

    2010-07-01

    Palladium/activated carbon (Pd/C) and non-sulfided Ni,Mo/{gamma}-Al{sub 2}O{sub 3} catalysts were used. The hydroconversion was found to proceed in consecutive steps of tricaprylin (TC) hydrogenolysis (HYS) to caprylic acid (CA) and propane, and hydrodeoxygenation (HDO) of the acid intermediate to get hydrocarbon. Two HDO routes were distinguished: (i) over Pd/C the prevailing reaction route was the decarbonylation, whereas (ii) over molybdena-alumina catalysts the main reaction was the reduction of oxygen to get water. (orig.)

  5. Electro-catalytic activity of Ni–Co-based catalysts for oxygen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Hua [School of Urban Rail Transportation, Soochow University, Suzhou 215006 (China); Li, Zhihu [College of Physics, Optoelectronics and Energy, Soochow University, Moye Rd. 688, Suzhou 215006 (China); Xu, Yanhui, E-mail: xuyanhui@suda.edu.cn [College of Physics, Optoelectronics and Energy, Soochow University, Moye Rd. 688, Suzhou 215006 (China)

    2015-04-15

    Graphical abstract: The electro-catalytic activity of different electro-catalysts with a porous electrode structure was compared considering the real electrode area that was evaluated by cyclic measurement. - Highlights: • Ni–Co-based electro-catalysts for OER have been studied and compared. • The real electrode area is calculated and used for assessing the electro-catalysts. • Exchange current and reaction rate constant are estimated. • Ni is more useful for OER reaction than Co. - Abstract: In the present work, Ni–Co-based electrocatalysts (Ni/Co = 0:6, 1:5, 2:4, 3:3, 4:2, 5:1 and 6:0) have been studied for oxygen evolution reaction. The phase structure has been analyzed by X-ray diffraction technique. Based on the XRD and SEM results, it is believed that the synthesized products are poorly crystallized. To exclude the disturbance of electrode preparation technology on the evaluation of electro-catalytic activity, the real electrode surface area is calculated based on the cyclic voltammetry data, assumed that the specific surface capacitance is 60 μF cm{sup −2} for metal oxide electrode. The real electrode area data are used to calculate the current density. The reaction rate constant of OER at different electrodes is also estimated based on basic reaction kinetic equations. It is found that the exchange current is 0.05–0.47 mA cm{sup −2} (the real surface area), and the reaction rate constant has an order of magnitude of 10{sup −7}–10{sup −6} cm s{sup −1}. The influence of the electrode potential on OER rate has been also studied by electrochemical impedance spectroscopy (EIS) technique. Our investigation has shown that the nickel element has more contribution than the cobalt; the nickel oxide has the best electro-catalytic activity toward OER.

  6. Electro-catalytic activity of Ni–Co-based catalysts for oxygen evolution reaction

    International Nuclear Information System (INIS)

    Graphical abstract: The electro-catalytic activity of different electro-catalysts with a porous electrode structure was compared considering the real electrode area that was evaluated by cyclic measurement. - Highlights: • Ni–Co-based electro-catalysts for OER have been studied and compared. • The real electrode area is calculated and used for assessing the electro-catalysts. • Exchange current and reaction rate constant are estimated. • Ni is more useful for OER reaction than Co. - Abstract: In the present work, Ni–Co-based electrocatalysts (Ni/Co = 0:6, 1:5, 2:4, 3:3, 4:2, 5:1 and 6:0) have been studied for oxygen evolution reaction. The phase structure has been analyzed by X-ray diffraction technique. Based on the XRD and SEM results, it is believed that the synthesized products are poorly crystallized. To exclude the disturbance of electrode preparation technology on the evaluation of electro-catalytic activity, the real electrode surface area is calculated based on the cyclic voltammetry data, assumed that the specific surface capacitance is 60 μF cm−2 for metal oxide electrode. The real electrode area data are used to calculate the current density. The reaction rate constant of OER at different electrodes is also estimated based on basic reaction kinetic equations. It is found that the exchange current is 0.05–0.47 mA cm−2 (the real surface area), and the reaction rate constant has an order of magnitude of 10−7–10−6 cm s−1. The influence of the electrode potential on OER rate has been also studied by electrochemical impedance spectroscopy (EIS) technique. Our investigation has shown that the nickel element has more contribution than the cobalt; the nickel oxide has the best electro-catalytic activity toward OER

  7. Direct Formation of Oxocarbenium Ions under Weakly Acidic Conditions: Catalytic Enantioselective Oxa-Pictet-Spengler Reactions.

    Science.gov (United States)

    Zhao, Chenfei; Chen, Shawn B; Seidel, Daniel

    2016-07-27

    Two catalysts, an amine HCl salt and a bisthiourea, work in concert to enable the generation of oxocarbenium ions under mild conditions. The amine catalyst generates an iminium ion of sufficient electrophilicity to enable 1,2-attack by an alcohol. Catalyst turnover is achieved by amine elimination with concomitant formation of an oxocarbenium intermediate. The bisthiourea catalyst accelerates all of the steps of the reaction and controls the stereoselectivity via anion binding/ion pair formation. This new concept was applied to direct catalytic enantioselective oxa-Pictet-Spengler reactions of tryptophol with aldehydes. PMID:27396413

  8. Lacunary Keggin Polyoxotungstate as Reaction-controlled Phasetransfer Catalyst for Catalytic Epoxidation of Olefins

    Institute of Scientific and Technical Information of China (English)

    LI,Ming-Qiang(李明强); JIAN,Xi-Gao(蹇锡高); YANG,Yong-Qiang(杨永强)

    2004-01-01

    A new reaction-controlled phase-transfer catalyst system, lacunary Keggin polyoxotungstate [C7H7N(CH3)3]9PW9O34 has been synthesized and used for catalytic epoxidation of olefins with H2O2 as the oxidant.Infrared spectra were used to analyze the behavior of the phase transfer of catalyst. In this system, the catalyst not only can act as homogeneous catalyst but also as heterogeneous catalyst to be easily filtered and reused. The epoxidation reaction is clean and exhibits high conversion and selectivity as well as excellent catalyst stability.

  9. Effect of reaction time on the characteristics of catalytically grown boron nitride nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Norani Muti, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: pervaiz-pas@yahoo.com, E-mail: shuaib-penang@yahoo.com, E-mail: zainabh@petronas.com.my; Ahmad, Pervaiz, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: pervaiz-pas@yahoo.com, E-mail: shuaib-penang@yahoo.com, E-mail: zainabh@petronas.com.my; Saheed, Mohamed Shuaib Mohamed, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: pervaiz-pas@yahoo.com, E-mail: shuaib-penang@yahoo.com, E-mail: zainabh@petronas.com.my; Burhanudin, Zainal Arif, E-mail: noranimuti-mohamed@petronas.com.my, E-mail: pervaiz-pas@yahoo.com, E-mail: shuaib-penang@yahoo.com, E-mail: zainabh@petronas.com.my [Center of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Tronoh, Perak (Malaysia)

    2014-10-24

    The paper reports on the growth of boron nitride nanotube (BNNTs) on Si substrate by catalytic chemical vapor deposition technique and the effect of reaction time and temperature on the size and purity were investigated. Scanning electron microscopy image revealed the bamboo-like BNNTs of multiwalled type with interlayer spacing of 0.34 nm. EDX analysis described the presence of a small percentage of Mg in the sample, indicating the combination of base-tip growth model for the sample synthesized at 1200°C. The reaction time has an effect of extending the length of the BNNTs until the catalyst is oxidized or covered by growth precursor.

  10. Continuous-flow stereoselective organocatalyzed Diels-Alder reactions in a chiral catalytic "homemade" HPLC column.

    Science.gov (United States)

    Chiroli, Valerio; Benaglia, Maurizio; Cozzi, Franco; Puglisi, Alessandra; Annunziata, Rita; Celentano, Giuseppe

    2013-07-19

    Continuous-flow organocatalyzed Diels-Alder reactions have been performed with excellent enantioselectivity for the first time in a chiral "homemade" HPLC column, packed with silica on which a MacMillan catalyst has been supported by a straightforward immobilization procedure. The versatility of the system was also proven by running with the same column continuous-flow stereoselective reactions with three different substrates, showing that the catalytic reactor may efficiently work in continuo for more than 150 h; the regeneration of the HPLC column was also demonstrated, allowing to further extend the activity of the reactor to more than 300 operating hours. PMID:23808663

  11. In-situ Scanning Transmission X-ray Microscopy of catalytic materials under reaction conditions

    Science.gov (United States)

    de Smit, Emiel; Creemer, J. Fredrik; Zandbergen, Henny W.; Weckhuysen, Bert M.; de Groot, Frank M. F.

    2009-11-01

    In-situ Scanning X-ray Transmission Microscopy (STXM) allows the measurement of the soft X-ray absorption spectra with 10 to 30 nm spatial resolution under realistic reaction conditions. We show that STXM-XAS in combination with a micromachined nanoreactor can image a catalytic system under relevant reaction conditions, and provide detailed information on the morphology and composition of the catalyst material. The nanometer resolution combined with powerful chemical speciation by XAS and the ability to image materials under realistic conditions opens up new opportunities to study many chemical processes.

  12. In-situ Scanning Transmission X-ray Microscopy of catalytic materials under reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Smit, Emiel de; Weckhuysen, Bert M; Groot, Frank M F de [Inorganic Chemistry and Catalysis group, Debye Institute for Nanomaterials Science, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht (Netherlands); Creemer, J Fredrik [DIMES-ECTM, Delft University of Technology, 2600 GB Delft (Netherlands); Zandbergen, Henny W, E-mail: e.desmit@uu.n [Kavli Institute of NanoScience, National Centre for High Resolution Electron Microscopy, Delft University of Technology, 2600 GA Delft (Netherlands)

    2009-11-15

    In-situ Scanning X-ray Transmission Microscopy (STXM) allows the measurement of the soft X-ray absorption spectra with 10 to 30 nm spatial resolution under realistic reaction conditions. We show that STXM-XAS in combination with a micromachined nanoreactor can image a catalytic system under relevant reaction conditions, and provide detailed information on the morphology and composition of the catalyst material. The nanometer resolution combined with powerful chemical speciation by XAS and the ability to image materials under realistic conditions opens up new opportunities to study many chemical processes.

  13. Single-Site Palladium(II) Catalyst for Oxidative Heck Reaction: Catalytic Performance and Kinetic Investigations

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hui; Li, Mengyang; Zhang, Guanghui; Gallagher, James R.; Huang, Zhiliang; Sun, Yu; Luo, Zhong; Chen, Hongzhong; Miller, Jeffrey T.; Zou, Ruqiang; Lei, Aiwen; Zhao, Yanli

    2015-01-01

    ABSTRACT: The development of organometallic single-site catalysts (SSCs) has inspired the designs of new heterogeneous catalysts with high efficiency. Nevertheless, the application of SSCs in certain modern organic reactions, such as C-C bond formation reactions, has still been less investigated. In this study, a single-site Pd(II) catalyst was developed, where 2,2'-bipyridine-grafted periodic mesoporous organosilica (PMO) was employed as the support of a Pd(II) complex. The overall performance of the single-site Pd(II) catalyst in the oxidative Heck reaction was then investigated. The investigation results show that the catalyst displays over 99% selectivity for the product formation with high reaction yield. Kinetic profiles further confirm its high catalytic efficiency, showing that the rate constant is nearly 40 times higher than that for the free Pd(II) salt. X-ray absorption spectroscopy reveals that the catalyst has remarkable lifetime and recyclability.

  14. Catalytic Routes for the Conversion of Biomass Derivatives to Hydrocarbons and/or Platform Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Silks, III, Louis A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-07

    Unprotected carbohydrates were reacted in amine-catalyzed cascade reactions with various methyl ketones to give a direct access to C-glycosides by an operationally simple protocol. As the reaction mechanism,an aldol condensation followed by an intramolecular conjugate addition is assumed.

  15. FORMATION OF POLYCYCLIC AROMATIC HYDROCARBONS AND THEIR GROWTH TO SOOT -A REVIEW OF CHEMICAL REACTION PATHWAYS. (R824970)

    Science.gov (United States)

    The generation by combustion processes of airborne species of current health concern such as polycyclic aromatic hydrocarbons (PAH) and soot particles necessitates a detailed understanding of chemical reaction pathways responsible for their formation. The present review discus...

  16. Catalytic activity of pyrite for coal liquefaction reaction; Tennen pyrite no shokubai seino ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, K.; Kozu, M.; Okada, T.; Kobayashi, M. [Nippon Coal Oil Co. Ltd., Tokyo (Japan)

    1996-10-28

    Since natural pyrite is easy to obtain and cheap as coal liquefaction catalyst, it is to be used for the 150 t/d scale NEDOL process bituminous coal liquefaction pilot plant. NEDO and NCOL have investigated the improvement of catalytic activity of pulverized natural pyrite for enhancing performance and economy of the NEDOL process. In this study, coal liquefaction tests were conducted using natural pyrite catalyst pulverized by dry-type bowl mill under nitrogen atmosphere. Mechanism of catalytic reaction of the natural pyrite was discussed from relations between properties of the catalyst and liquefaction product. The natural pyrite provided an activity to transfer gaseous hydrogen into the liquefaction product. It was considered that pulverized pyrite promotes the hydrogenation reaction of asphaltene because pulverization increases its contact rate with reactant and the amount of active points on its surface. It was inferred that catalytic activity of pyrite is affected greatly by the chemical state of Fe and S on its surface. 3 refs., 4 figs., 1 tab.

  17. Electrochemical promotion of catalytic reactions with Pt/C (or Pt/Ru/C)//PBI catalysts

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bjerrum, Niels; Bandur, Viktor;

    2007-01-01

    The paper is an overview of the results of the investigation on electrochemical promotion of three catalytic reactions: methane oxidation with oxygen, NO reduction with hydrogen at 135 degrees C and Fischer-Tropsch synthesis (FTS) at 170 degrees C in the [CH4/O-2(or NO/H-2 or CO/H-2)/Ar//Pt(or Pt...... by the electrochemical pumping of H+ from the catalyst, i.e. at positive polarization. FTS demonstrated the highest methane production rate (11% of CO conversion) at zero fuel cell voltage.......The paper is an overview of the results of the investigation on electrochemical promotion of three catalytic reactions: methane oxidation with oxygen, NO reduction with hydrogen at 135 degrees C and Fischer-Tropsch synthesis (FTS) at 170 degrees C in the [CH4/O-2(or NO/H-2 or CO/H-2)/Ar//Pt(or Pt....../Ru)//PBI(H3PO4)/H-2, Ar] fuel cell. It has been shown that the partial methane oxidation to C2H2 and the C-2 selectivity were electrochemically promoted by the negative catalyst polarization. This was also the case in NO reduction with hydrogen for low NO and H-2 partial pressures. In both cases the catalytic...

  18. Hydrocarbon Liquid Production from Biomass via Hot-Vapor-Filtered Fast Pyrolysis and Catalytic Hydroprocessing of the Bio-oil

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Wang, Huamin; French, Richard; Deutch, Steve; Iisa, Kristiina

    2014-08-14

    Hot-vapor filtered bio-oils were produced from two different biomass feedstocks, oak and switchgrass, and the oils were evaluated in hydroprocessing tests for production of liquid hydrocarbon products. Hot-vapor filtering reduced bio-oil yields and increased gas yields. The yields of fuel carbon as bio-oil were reduced by ten percentage points by hot-vapor filtering for both feedstocks. The unfiltered bio-oils were evaluated alongside the filtered bio-oils using a fixed bed catalytic hydrotreating test. These tests showed good processing results using a two-stage catalytic hydroprocessing strategy. Equal-sized catalyst beds, a sulfided Ru on carbon catalyst bed operated at 220°C and a sulfided CoMo on alumina catalyst bed operated at 400°C were used with the entire reactor at 100 atm operating pressure. The products from the four tests were similar. The light oil phase product was fully hydrotreated so that nitrogen and sulfur were below the level of detection, while the residual oxygen ranged from 0.3 to 2.0%. The density of the products varied from 0.80 g/ml up to 0.86 g/ml over the period of the test with a correlated change of the hydrogen to carbon atomic ratio from 1.79 down to 1.57, suggesting some loss of catalyst activity through the test. These tests provided the data needed to assess the suite of liquid fuel products from the process and the activity of the catalyst in relationship to the existing catalyst lifetime barrier for the technology.

  19. Characterization of catalytic supports based in mixed oxides for control reactions of NO and N2O

    International Nuclear Information System (INIS)

    The catalytic supports Al2O3, La2O3 and Al2O3-La2O3 were prepared by the Precipitation and Coprecipitation techniques. The catalytic supports Al2O3, La2O3 and Al2O3-La2O3 were characterized by several techniques to determine: texture (Bet), crystallinity (XRD), chemical composition (Sem)(Ftir) and it was evaluated their total acidity by reaction with 2-propanol. The investigation will be continued with the cobalt addition and this will be evaluated for its catalytic activity in control reactions of N O and N2O. (Author)

  20. Catalytic Activity of Dual Metal Cyanide Complex in Multi-component Coupling Reactions

    Institute of Scientific and Technical Information of China (English)

    Anaswara RAVINDRAN; Rajendra SRIVASTAVA

    2011-01-01

    Several dual metal cyanide catalysts were prepared from potassium ferrocyanide,metal chloride (where metal =Zn2+,Mn2+,Ni2+,Co2+ and Fe2+),t-butanol (complexing agent) and PEG-4000 (co-complexing agent).The catalysts were characterized by elemental analysis (CHN and X-ray fluorescence),X-ray diffraction,N2 adsorption-desorption,scanning electron microscopy,Fourier-transform infiared spectroscopy,and UV-Visible spectroscopy.The dual metal cyanide catalysts were used in several acid catalyzed multi-component coupling reactions for the synthesis of pharmaceutically important organic derivatives.In all these reactions,the Fe-Fe containing dual metal cyanide catalyst was the best catalyst.The catalysts can be recycled without loss in catalytic activity.The advantage of this method is the use of mild,efficient and reusable catalysts for various reactions,which makes them candidates for commercial use.

  1. Reaction pathways for catalytic gas-phase oxidation of glycerol over mixed metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Suprun, W.; Glaeser, R.; Papp, H. [Leipzig Univ. (Germany). Inst. of Chemical Technology

    2011-07-01

    Glycerol as a main by-product from bio-diesel manufacture is a cheap raw material with large potential for chemical or biochemical transformations to value-added C3-chemicals. One possible way of glycerol utilization involves its catalytic oxidation to acrylic acid as an alternative to petrochemical routes. However, this catalytic conversion exhibits various problems such as harsh reaction conditions, severe catalyst coking and large amounts of undesired by-products. In this study, the reaction pathways for gas-phase conversion of glycerol over transition metal oxides (Mo, V und W) supported on TiO{sub 2} and SiO{sub 2} were investigated by two methods: (i) steady state experiments of glycerol oxidation and possible reactions intermediates, i.e., acrolein, 3-hydroxy propionaldehyde and acetaldehyde, and (ii) temperature-programmed surface reaction (TPSR) studies of glycerol conversion in the presence and in the absence of gas-phase oxygen. It is shown that the supported W-, V and Mo-oxides possess an ability to catalyze the oxidation of glycerol to acrylic acid. These investigations allowed us to gain a deeper insight into the reaction mechanism. Thus, based on the obtained results, three possible reactions pathways for the selective oxidation of glycerol to acrylic acid on the transition metal-containing catalysts are proposed. The major pathways in presence of molecular oxygen are a fast successive destructive oxidation of glycerol to CO{sub x} and the dehydration of glycerol to acrolein which is a rate-limiting step. (orig.)

  2. The Synthesis, Characterization and Catalytic Reaction Studies of Monodisperse Platinum Nanoparticles in Mesoporous Oxide Materials

    Energy Technology Data Exchange (ETDEWEB)

    Rioux, Robert M. [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    A catalyst design program was implemented in which Pt nanoparticles, either of monodisperse size and/or shape were synthesized, characterized and studied in a number of hydrocarbon conversion reactions. The novel preparation of these materials enables exquisite control over their physical and chemical properties that could be controlled (and therefore rationally tuned) during synthesis. The ability to synthesize rather than prepare catalysts followed by thorough characterization enable accurate structure-function relationships to be elucidated. This thesis emphasizes all three aspects of catalyst design: synthesis, characterization and reactivity studies. The precise control of metal nanoparticle size, surface structure and composition may enable the development of highly active and selective heterogeneous catalysts.

  3. Deuterium–tritium catalytic reaction in fast ignition: Optimum parameters approach

    Indian Academy of Sciences (India)

    B Khanbabaei; A Ghasemizad; S Khoshbinfar

    2014-09-01

    One of the main concerns about the currentworking on nuclear power reactors is the potential hazard of their radioactive waste. There is hope that this issue will be reduced in next generation nuclear fusion power reactors. Reactors will release nuclear energy through microexplosions that occur in a mixture of hydrogen isotopes of deuterium and tritium. However, there exist radiological hazards due to the accumulation of tritium in the blanket layer. A catalytic fusion reaction of DT mixture may stand between DD and an equimolar DT approach in which the fusion process continues with a small amount of tritium seed. In this paper, we investigate the possibility of DT reaction in the fast ignition (FI) scheme. The kinematic study of the main mechanism of the energy gain–loss term, which may disturb the ignition and burn process, was performed in FI and the optimum values of precompressed fuel and proton beam driver were derived. The recommended values of fuel parameters are: areal density $ρ R ≥ 5\\cdot$cm-2 and initial tritium fraction ≤ 0.025. For the proton beam, the corresponding optimum interval values are proton average energy $3≤ E_p ≤ 10$ MeV, pulse duration $5 ≤ t_p ≤ 15$ ps and power $5≤ W_p ≤ 12 × 10^{22}$ (keV$\\cdot$cm3$\\cdot$ps-1). It was proved that under the above conditions, a fast ignition DT reaction stays in the catalytic regime.

  4. Experimental Study on Hydrocarbon Formation Due to Reactions Between Carbonates and Water or Water—Bearing Minerals in Deep Earth

    Institute of Scientific and Technical Information of China (English)

    翁克难; 汪本善; 等

    1999-01-01

    In order to investigate the mechanism of formation of abiogenetic hydrocarbons at the depth of the Earth,experimental research on reactions between carbonates and water or waterbearing minerals was carried out at the pressure of about 1GPa and the temperature range of 800-1500℃.The reactions took place in an open and nonequilibrium state.Chromatographic analyses of the gas products indicate that in the experiments there were generated CH4-dominated hydrocarbons,along with some CO2 and CO.Accordingly,we think there is no essential distinction between free-state water and hydroxy in the minerals in the process of hydrocarbon formation.This study indicates that reactions between carbonates and water or water-bearing minerals should be an important factor leading to the formation of abiogenetic hydrocarbons at the Earth's depth.

  5. Development of redox-labeled electrochemical immunoassay for polycyclic aromatic hydrocarbons with controlled surface modification and catalytic voltammetric detection.

    Science.gov (United States)

    Wei, Ming-Yuan; Wen, Shou-Dong; Yang, Xi-Qiang; Guo, Liang-Hong

    2009-05-15

    A redox-labeled direct competitive electrochemical immunoassay for polycyclic aromatic hydrocarbons (PAHs) was developed. A ruthenium tris(bipyridine)-pyrenebutyric acid conjugate was synthesized as the redox-labeled tracer. Its recognition by an anti-PAH monoclonal antibody was confirmed by surface plasmon resonance. In the immunoassay, the antibody was immobilized on (3-glycidoxypropyl)-trimethoxysilane (GPTMS)-modified indium tin oxide (ITO) electrodes. The assay was quantified by measuring the electro-catalytic current of the redox label in an oxalate-containing electrolyte which served as a sacrificial electron donor to amplify the current signal. Formation of GPTMS film on ITO and subsequent antibody immobilization were characterized by X-ray photoelectron spectroscopy (XPS) and electrochemistry. Using a ruthenium tris(bipyridine)-conjugated IgG (IgG-Ru) as the surface-bound redox probe, the highest electrochemical signal was obtained on GPTMS electrodes with 1 h modification. Under the optimized conditions for ITO modification, antibody immobilization and tracer concentration, competition curves for benzo[a]pyrene and pyrenebutyric acid were obtained with a detection limit of 2.4 and 10 ng mL(-1), respectively. The redox-labeled electrochemical immunoassay with signal amplification mechanism offers a potential analytical method for the simultaneous detection of multiple environmental organic pollutants on antibody biochips. PMID:19321333

  6. Carboxylic acid derivatives via catalytic carboxylation of unsaturated hydrocarbons: whether the nature of a reductant may determine the mechanism of CO2 incorporation?

    OpenAIRE

    Kirillov, E.; Carpentier, J.-F.; Bunel, E

    2015-01-01

    International audience Application of CO2 as a renewable feedstock and C1 building block for prodn. of commodity and fine chems. is a highly challenging but obvious industry-relevant task. Of particular interest is the catalytic coupling of CO2 with inexpensive unsatd. hydrocarbons (olefins, dienes, styrenes, alkynes), providing direct access to carboxylic acids and their derivs. Although not brand new for the scientific community, it is still a complete challenge, as no truly effective ca...

  7. Synthesis of Novel Chiral Dibenzo [ a, c ] cycloheptadiene Bis(oxazoline) and Catalytic Asymmetric Reactions

    Institute of Scientific and Technical Information of China (English)

    FU Bin; DU Da-Ming; WANG Jian-Bo

    2003-01-01

    @@ Over the last decade, C2-symmetric chiral oxazoline metal complexes have been recognized as an effective classof chiral catalyst in a variety of transition metal catalyzed asymmetric reactions. [1] High catalytic activities and enantiomeric excesses have been obtained using C2-symmetric chiral ligands in conjunction with suitable transition metal ion, for example, the hydrosilylation of ketone, allylic alkylation, Michael addition, Diels-Alder cycloaddition, and cyclopropanation. Thus, the design and synthesis of new chiral oxazoline ligands have inspired many scientists to work with great efforts.

  8. Electrochemical Synthesis of Mo2C Catalytical Coatings for the Water-Gas Shift Reaction

    Science.gov (United States)

    Kuznetsov, Sergey A.; Dubrovskiy, Anton R.; Rebrov, Evgeny V.; Schouten, Jaap C.

    2007-11-01

    The electroreduction of CO32- ions on a molybdenum cathode in a NaCl-KCl-Li2CO3 melt was studied by cyclic voltammetry. The electrochemical synthesis of Mo2C on molybdenum substrates has been performed at 1123 K for 7 h with a cathodic current density of 5 mA cm-2. If molybdenum carbide is present as a thin (ca. 500 nm) film on a molybdenum substrate (Mo2C/Mo), its catalytic activity in the water gas-shift reaction is enhanced by at least an order of magnitude compared to that of the bulk Mo2C phase.

  9. A study on the photo catalytic decomposition reactions of organics dissolved in water (II)

    International Nuclear Information System (INIS)

    Experiments on aqueous TiO2 photo catalytic reaction of nitrogen containing organic compounds such as ethylamine, phenylhydrazine, pyridine, urea and EDTA were carried out. Based on the values calculated for the distribution of ionic species and atomic charge, the characteristics of their photo catalytic decomposition were estimated. It was shown that the decomposition characteristics was linearly proportional to nitrogen atomic charge value. On the other hand, the effects of aqueous pH, oxygen content and concentration on the TiO2 photo catalytic characteristics of EDTA, EDTA-Cu(II) and EDTA-Fe(III) were experimentally investigated. All EDTA systems were decomposed better in the pH range of 2.5-3.0 and with more dissolved oxygen. These results could be applied to construction of a process for removal of organic impurities dissolved in a source of system water, or for treatment of EDTA-containing liquid waste produced by a chemical cleaning in the domestic NPPs. (author)

  10. Reactivity scale for atmospheric hydrocarbons based on reaction with hydroxyl radical

    Energy Technology Data Exchange (ETDEWEB)

    Darnall, K.R.; Lloyd, A.C.; Winer, A.M.; Pitts, J.N. Jr.

    1976-07-01

    By use of relative and absolute rate constants for the reaction of the hydroxyl radical (OH) with a number of alkanes, alkenes, aromatics, and ketones, a reactivity scale is formulated based on the rate of removal of hydrocarbons and oxygenates by reaction with OH. In this five-class scale, each class spans an order of magnitude in reactivity relative to methane. Thus, assigned reactivities range from <10 for Class I (containing only methane) to >10/sup 4/ for Class V containing the most reactive compounds (e.g., d-limonene). This scale differs in several significant ways from those presently utilized by air pollution control agencies and various industrial laboratories. For example, in contrast to other scales based on secondary manifestations such as yields of ozone and eye irritation, it focuses directly on initial rates of photooxidation. The proposed scale also provides a clearer understanding of the importance of alkanes in the generation of ozone during periods of prolonged irradiation. The present scale can be readily extended to include additional organic compounds (e.g., natural and anthropogenic hydrocarbons, oxygenates, chlorinated solvents), once their rate of reaction with OH is known.

  11. EXPERIMENTAL EVIDENCE FOR THE FORMATION OF HIGHLY SUPERHYDROGENATED POLYCYCLIC AROMATIC HYDROCARBONS THROUGH H ATOM ADDITION AND THEIR CATALYTIC ROLE IN H2 FORMATION

    DEFF Research Database (Denmark)

    Thrower, John; Jørgensen, Bjarke; Friis, Emil Enderup;

    2012-01-01

    Mass spectrometry measurements show the formation of highly superhydrogenated derivatives of the polycyclic aromatic hydrocarbon molecule coronene through H atom addition reactions. The observed product mass distribution provides evidence also for abstraction reactions resulting in H2 formation......, in agreement with recent IR measurements. Complementary density functional theory calculations confirm the stability of the observed superhydrogenated species toward spontaneous H and H2 loss indicating that abstraction reactions may be the dominant route to H2 formation involving neutral polycyclic aromatic...... hydrocarbons (PAHs). The results indicate that highly superhydrogenated PAHs could well be formed and could act as efficient catalysts for H2 formation in the interstellar medium in low UV flux regions....

  12. Application of 3-Methyl-2-vinylindoles in Catalytic Asymmetric Povarov Reaction: Diastereo- and Enantioselective Synthesis of Indole-Derived Tetrahydroquinolines.

    Science.gov (United States)

    Dai, Wei; Jiang, Xiao-Li; Tao, Ji-Yu; Shi, Feng

    2016-01-01

    The first application of 3-methyl-2-vinylindoles in catalytic asymmetric Povarov reactions has been established via the three-component reactions of 3-methyl-2-vinylindoles, aldehydes, and anilines in the presence of chiral phosphoric acid, providing easy access to chiral indole-derived tetrahydroquinolines with three contiguous stereogenic centers at high yields (up to 99%) and with excellent diastereo- and enantioselectivities (all >95:5 dr, up to 96% ee). This mode of catalytic asymmetric three-component reaction offers a step-economic and atom-economic strategy for accessing enantioenriched indole-derived tetrahydroquinolines with structural diversity and complexity. PMID:26652222

  13. A New Reaction for Kinetic Spetrophotometric Determination of Trace Ruthenium--Catalytic Oxidation of Methyl Green by Bromate

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zhi-rong; XU Qiong; XIONG Yan; WEI Jia-wen

    2006-01-01

    A sensitive catalytic spectrophotometric method for the determination of ruthenium (Ⅲ) has been developed, based on its catalytic effect on the oxidation reaction of methyl green with potassium bromate in acid solution medium at 100 ℃. The above reaction is followed spectrophotometrically by measuring the decrease in the absorbance at 625 nm for the catalytic reaction of methyl green. The calibration curve for the recommended reaction-rate method was linear in the concentration range over 0.00-0.80 μg/L and the detection limit of the method for Ru (Ⅲ) is 0.006μg/L. Almost no foreign ions interfered in the determination at less than 25-fold concentration of Ru (Ⅲ). The method is highly sensitive, more selective and very stable, and has been successfully applied for the determination of trace ruthenium in some ores and metallurgy products.

  14. Catalytic performance of Metal‐Organic‐Frameworks vs. extra‐large pore zeolite UTL incondensation reactions

    Directory of Open Access Journals (Sweden)

    Mariya eShamzhy

    2013-08-01

    Full Text Available Catalytic behavior of isomorphously substituted B‐, Al‐, Ga‐, and Fe‐containing extra‐large pore UTLzeolites was investigated in Knoevenagel condensation involving aldehydes, Pechmann condensationof 1‐naphthol with ethylacetoacetate, and Prins reaction of β‐pinene with formaldehyde andcompared with large‐pore aluminosilicate zeolite BEA and representative Metal‐Organic‐FrameworksCu3(BTC2 and Fe(BTC. The yield of the target product over the investigated catalysts in Knoevenagelcondensation increases in the following sequence: (AlBEA < (AlUTL < (GaUTL < (FeUTL < Fe(BTC <(BUTL < Cu3(BTC2 being mainly related to the improving selectivity with decreasing strength ofactive sites of the individual catalysts. The catalytic performance of Fe(BTC, containing the highestconcentration of Lewis acid sites of the appropriate strength is superior over large‐pore zeolite(AlBEA and B‐, Al‐, Ga‐, Fe‐substituted extra‐large pore zeolites UTL in Prins reaction of β‐pinene withformaldehyde and Pechmann condensation of 1‐naphthol with ethylacetoacetate.

  15. DEVELOPMENT OF IMPROVED CATALYSTS FOR THE SELECTIVE CATALYTIC REDUCTION OF NITROGEN OXIDES WITH HYDROCARBONS

    Energy Technology Data Exchange (ETDEWEB)

    Ates Akyurtlu; Jale F. Akyurtlu

    2003-11-30

    Significant work has been done by the investigators on the cerium oxide-copper oxide based sorbent/catalysts for the combined removal of sulfur and nitrogen oxides from the flue gases of stationary sources. Evaluation of these sorbents as catalysts for the selective reduction of NO{sub x} gave promising results with methane. Since the replacement of ammonia by methane is commercially very attractive, in this project, the effect of promoters on the activity and selectivity of copper oxide/cerium oxide-based catalysts and the reaction mechanism for the SCR with methane was investigated. Unpromoted and promoted catalysts were investigated for their SCR activity with methane in a microreactor setup and also, by the temperature-programmed desorption (TPD) technique. The results from the SCR experiments indicated that manganese is a more effective promoter than the other metals (Rh, Li, K, Na, Zn, and Sn) for the supported copper oxide-ceria catalysts under study. The effectiveness of the promoter increased with the increase in Ce/Cu ratio. Among the catalysts tested, the Cu1Ce3 catalyst promoted with 1 weight % Mn was found to be the best catalyst for the SCR of NO with methane. This catalyst was subjected to long-term testing at the facilities of our industrial partner TDA Research. TDA report indicated that the performance of this catalyst did not deteriorate during 100 hours of operation and the activity and selectivity of the catalyst was not affected by the presence of SO{sub 2}. The conversions obtained by TDA were significantly lower than those obtained at Hampton University due to the transport limitations on the reaction rate in the TDA reactor, in which 1/8th inch pellets were used while the Hampton University reactor contained 250-425-{micro}m catalyst particles. The selected catalyst was also tested at the TDA facilities with high-sulfur heavy oil as the reducing agent. Depending on the heavy oil flow rate, up to 100% NO conversions were obtained. The

  16. SpaciMS: spatial and temporal operando resolution of reactions within catalytic monoliths

    Energy Technology Data Exchange (ETDEWEB)

    Sa, Jacinto [Queen' s University, Belfast; Fernandes, Daniel [University of Aveiro, Portugal; Aiouache, Farid [Queen' s University, Belfast; Goguet, Alexandre [Queen' s University, Belfast; Hardacdre, Christopher [Queen' s University, Belfast; Lundie, David [Hiden Analytical Ltd; Naeem, Wasif [Queen' s University, Belfast; Partridge Jr, William P [ORNL; Stere, Cristina [Queen' s University, Belfast

    2010-01-01

    Monolithic catalysts are widely used as structured catalysts, especially in the abatement of pollutants. Probing what happens inside these monoliths during operation is, therefore, vital for modelling and prediction of the catalyst behavior. SpaciMS is a spatially resolved capillary-inlet mass spectroscopy system allowing for the generation of spatially resolved maps of the reactions within monoliths. In this study SpaciMS results combined with 3D CFD modelling demonstrate that SpaciMS is a highly sensitive and minimally invasive technique that can provide reaction maps as well as catalytic temporal behavior. Herein we illustrate this by examining kinetic oscillations during a CO oxidation reaction over a Pt/Rh on alumina catalyst supported on a cordierite monolith. These oscillations were only observed within the monolith by SpaciMS between 30 and 90% CO conversion. Equivalent experiments performed in a plug-flow reactor using this catalyst in a crushed form over a similar range of reaction conditions did not display any oscillations demonstrating the importance of intra monolith analysis. This work demonstrates that the SpaciMS offers an accurate and comprehensive picture of structured catalysts under operation.

  17. In situ generation of electron acceptor for photoelectrochemical biosensing via hemin-mediated catalytic reaction.

    Science.gov (United States)

    Zang, Yang; Lei, Jianping; Zhang, Lei; Ju, Huangxian

    2014-12-16

    A novel photoelectrochemical sensing strategy is designed for DNA detection on the basis of in situ generation of an electron acceptor via the catalytic reaction of hemin toward H2O2. The photoelectrochemical platform was established by sequential assembly of near-infrared CdTe quantum dots, capture DNA, and a hemin-labeled DNA probe to form a triple-helix molecular beacon (THMB) structure on an indium tin oxide electrode. According to the highly catalytic capacity of hemin toward H2O2, a photoelectrochemical mechanism was then proposed, in which the electron acceptor of O2 was in situ-generated on the electrode surface, leading to the enhancement of the photocurrent response. The utilization of CdTe QDs can extend the absorption edge to the near-infrared band, resulting in an increase in the light-to-electricity efficiency. After introducing target DNA, the THMB structure is disassembled and releases hemin and, thus, quenches the photocurrent. Under optimized conditions, this biosensor shows high sensitivity with a linear range from 1 to 1000 pM and detection limit of 0.8 pM. Moreover, it exhibits good performance of excellent selectivity, high stability, and acceptable fabrication reproducibility. This present strategy opens an alternative avenue for photoelectrochemical signal transduction and expands the applications of hemin-based materials in photoelectrochemical biosensing and clinical diagnosis. PMID:25393151

  18. Palladium nanoparticle anchored polyphosphazene nanotubes: preparation and catalytic activity on aryl coupling reactions

    Indian Academy of Sciences (India)

    V Devi; A Ashok Kumar; S Sankar; K Dinakaran

    2015-06-01

    Highly accessible-supported palladium (Pd) nanoparticles anchored polyphosphazene (PPZ) nanotubes (NTs) having average diameter of 120 nm were synthesized rapidly at room temperature and homogeneously decorated with Pd nanoparticles. The resultant PPZ–Pd nanocomposites were morphologically and structurally characterized by means of transmission electron microscope equipped with energy-dispersive X-ray spectroscopy and X-ray diffraction analysis. Characterization results showed that the Pd nanoparticles with good dispersibility could be well anchored onto the surfaces of the PPZ NTs. The PPZ–Pd NTs show enhanced catalytic activity for the Suzuki coupling of aryl bromides with arylboronic acid. In addition, these PPZ–Pd NTs show excellent behaviour as reusable catalysts of the Suzuki and Heck coupling reactions.

  19. Direct Catalytic Asymmetric Mannich-Type Reaction of α- and β-Fluorinated Amides.

    Science.gov (United States)

    Brewitz, Lennart; Arteaga, Fernando Arteaga; Yin, Liang; Alagiri, Kaliyamoorthy; Kumagai, Naoya; Shibasaki, Masakatsu

    2015-12-23

    The last two decades have witnessed the emergence of direct enolization protocols providing atom-economical and operationally simple methods to use enolates for stereoselective C-C bond-forming reactions, eliminating the inherent drawback of the preformation of enolates using stoichiometric amounts of reagents. In its infancy, direct enolization relied heavily on the intrinsic acidity of the latent enolates, and the reaction scope was limited to readily enolizable ketones and aldehydes. Recent advances in this field enabled the exploitation of carboxylic acid derivatives for direct enolization, offering expeditious access to synthetically versatile chiral building blocks. Despite the growing demand for enantioenriched fluorine-containing small molecules, α- and β-fluorinated carbonyl compounds have been neglected in direct enolization chemistry because of the competing and dominating defluorination pathway. Herein we present a comprehensive study on direct and highly stereoselective Mannich-type reactions of α- and β-fluorine-functionalized 7-azaindoline amides that rely on a soft Lewis acid/hard Brønsted base cooperative catalytic system to guarantee an efficient enolization while suppressing undesired defluorination. This protocol contributes to provide a series of fluorinated analogs of enantioenriched β-amino acids for medicinal chemistry. PMID:26652911

  20. Dynamics of interfacial reactions between O(3 P) atoms and long-chain liquid hydrocarbons

    Science.gov (United States)

    Allan, Mhairi; Bagot, Paul A. J.; Köhler, Sven P. K.; Reed, Stewart K.; Westacott, Robin E.; Costen, Matthew L.; McKendrick, Kenneth G.

    2007-09-01

    Recent progress that has been made towards understanding the dynamics of collisions at the gas-liquid interface is summarized briefly. We describe in this context a promising new approach to the experimental study of gas-liquid interfacial reactions that we have introduced. This is based on laser-photolytic production of reactive gas-phase atoms above the liquid surface and laser-spectroscopic probing of the resulting nascent products. This technique is illustrated for reaction of O(3P) atoms at the surface of the long-chain liquid hydrocarbon squalane (2,6,10,15,19,23-hexamethyltetracosane). Laser-induced fluorescence detection of the nascent OH has revealed mechanistically diagnostic correlations between its internal and translational energy distributions. Vibrationally excited OH molecules are able to escape the surface. At least two contributions to the product rotational distributions are identified, confirming and extending previous hypotheses of the participation of both direct and trapping-desorption mechanisms. We speculate briefly on future experimental and theoretical developments that might be necessary to address the many currently unanswered mechanistic questions for this, and other, classes of gas-liquid interfacial reaction.

  1. Reactivity of organic compounds in catalytic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Minachev, Kh.M.; Bragin, O.V.

    1978-01-01

    A comprehensive review of 1976 Soviet research on catalysis delivered to the 1977 annual session of the USSR Academy of Science Council on Catalysis (Baku 6/16-20/77) covers hydrocarbon reactions, including hydrogenation and hydrogenolysis, dehydrogenation, olefin dimerization and disproportionation, and cyclization and dehydrocyclization (e.g., piperylene cyclization and ethylene cyclotrimerization); catalytic and physicochemical properties of zeolites, including cracking, dehydrogenation, and hydroisomerization catalytic syntheses and conversion of heterocyclic and functional hydrocarbon derivatives, including partial and total oxidation (e.g., of o-xylene to phthalic anhydride); syntheses of thiophenes from alkanes and hydrogen sulfide over certain dehydrogenation catalysts; catalytic syntheses involving carbon oxides ( e.g., the development of a new heterogeneous catalyst for hydroformylation of olefins), and of Co-MgO zeolitic catalysts for synthesis of aliphatic hydrocarbons from carbon dioxide and hydrogen, and fabrication of high-viscosity lubricating oils over bifunctional aluminosilicate catalysts.

  2. Synthesis of 7,7'-Disubstituted BINAP and Their Application in Asymmetric Catalytic Reaction

    Institute of Scientific and Technical Information of China (English)

    Yuan Wei-Cheng; Liu Hua; Mi Ai-Qiao; Gong Liu-Zhu; Jiang Yao-Zhong

    2004-01-01

    The design of new chiral ligands plays a very important role in the development of transition metal catalyzed asymmetric synthesis. Many chiral diphosphine ligands have been prepared and applied in asymmetric catalytic reactions with excellent enantioselectivities. Among the chiral diphosphine ligands reported, BINAP was found to have been the widest application in the transition metal catalyzed reaction. Recently we have developed a novel oxovanadium (Ⅳ)complex catalyst for the oxidative coupling of naphthol with high enantioselectivity.[1] And then a series of optically pure 7,7'-disubstituted BINOLs were successfully synthesized by using the catalyst,[2] on the basis of above, the 7,7'-disubstituted BINAP ligands ( 1-5 ) were easily prepared from the 7,7'-disubstituted BINOLs with high total yields (up to 64% of 5 steps from the BINOLs ).To demonstrate the efficiency of ligands 1-5, we applied their ruthenium complexes for asymmetric hydrogenation of simple ketones with high activity (S/C up to 5000 ), high converation (up to 100%) and moderate enantioselectivity (ee up to 88.3% ) under mild conditions. In addition, in the asymmetric 1,4-addition of arylboronic acids, these ligands also provide excellent enantioselectivity (ee up to 99%) and yield ( up to 99%).

  3. Renewable synthesis-gas-production. Do hydrocarbons in the reactant flow of the reverse water-gas shift reaction cause coke formation?

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, A.; Kern, C.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2013-11-01

    In a two-step synthetic fuel production process based on carbon dioxide and renewable hydrogen, the best possible selectivity towards liquid hydrocarbons (Hc) shall be implemented. The process consists of a combination of the Reverse Water-Gas Shift reaction and the Fischer-Tropsch synthesis. To achieve this goal, gaseous short-chained Hc from the FTS reactor are recycled in the RWGS unit. In this paper, challenges coming up with the implementation of a recycle loop are discussed. First of all, it has to be examined whether Hc are converted under conditions present in the RWGS reactor. The coking caused by the recycle of Hc is regarded, including thermal coking in the heating zone of the reactor and catalytic coking in the catalyst bed. Coking of course is unwanted, as it deactivates the catalyst. The scope of this work is to find out to which extent and under which conditions gaseous Hc can be recycled. Therefore, experiments were carried out in both, a quartz glass reactor using a commercial Ni-catalyst at ambient pressure and in a pressurized steel reactor (without catalyst) to examine coking during the thermal decomposition of Hc. The catalytic experiments at atmospheric pressure showed that a recycle of CH{sub 4} did not cause coking up to a ratio of CH{sub 4}/CO{sub 2} below one. For these conditions, long term stability was proved. The reaction rates of the CH{sub 4} conversion were below those of the RWGS reaction. However, replacing CH{sub 4} by C{sub 3}H{sub 8} leads to thermal and catalytic coking. Catalytic coking hits the maximum level at about 700 C and decreases for higher temperatures and, thus is not regarded as a problem for the RWGS reactor. In contrast to that, thermal coking raises with higher temperatures, but it can be supressed efficiently with additional injection of H{sub 2}O, which of course shifts the equilibrium towards the undesired reactant side. (orig.)

  4. Catalytic Studies Featuring Palladium(II Benzoylthiourea Derivative as Catalyst in Sonogashira Reaction

    Directory of Open Access Journals (Sweden)

    Wan M. Khairul

    2014-10-01

    Full Text Available A benzoylthiourea derivative (LTU and its metal complexation of palladium(II chloride (MLTU has been successfully synthesized and characterized via typical spectroscopic and analytical techniques namely IR, 1H and 13C Nuclear Magnetic Resonance, UV-Visible and Gas Chromatography Flame Ionization Detector (GC-FID. The Infrared spectrum for LTU shows four significant bands of interest namely ν(N-H, ν(C=O, ν(C-N and ν(C=S and the values were observed within the range. The 1H NMR spectrum for the compound shows expected protons for N-H at δH 10.95 ppm and δH 11.15 ppm while the 13C NMR spectrum shows resonances of carbonyl (C=O carbon and thiones (C=S at δC 168.26 ppm and δC 180.56 ppm, respectively. From UV-Vis spectrum, it shows the presence of n-pi* and pi→pi*electronic transitions which are expected to be attributed from the phenyl ring, carbonyl (C=O and thiones (C=S chromophores. Complexation of LTU with palladium(II chloride was done to afford MLTU which in turn, was tested as homogeneous catalyst in Sonogashira cross-coupling reaction. The reaction was monitored by GC-FID at 6 hours reaction period. The percentage conversion of 4-bromoacetophenone to the coupled product was 75.73% indicated that MLTU can act as an ideal potential catalyst in the Sonogashira reaction. © 2014 BCREC UNDIP. All rights reservedReceived: 14th May 2014; Revised: 30th August 2014; Accepted: 3rd September 2014 How to Cite: Khairul, W.M., Faisol, S.L.M., Jasman, S.M., Shamsuddin, M. (2014. Catalytic Studies Featuring Palladium(II Benzoylthiourea Derivative as Catalyst in Sonogashira Reaction. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (3: 241-248 (doi:10.9767/bcrec.9.3.6880.241-248Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.3.6880.241-248

  5. An FTIR study on the catalytic effect of water molecules on the reaction of CO successive hydrogenation at 3 K

    International Nuclear Information System (INIS)

    Graphical abstract: This work highlights a selective catalytic action of water molecules on the reaction of CO hydrogenation at 3 K. Research highlights: → [CO/H2O] and [H/H2] are coinjected at 3 K. → H2 molecules condense rapidly at 3 K and screen the reaction mostly at the 1st step. → The observed catalytic effects on CO hydrogenation increase with water concentration. - Abstract: The reaction of successive CO hydrogenation has been performed at 3 K by coinjecting CO molecules and H atoms. The concentration of CO has been progressively reduced and replaced by water molecules to create two different environments where CO and H2O are successively the dominant species in the binary (CO/H2O) mixture. The catalytic effect of water molecules on CO hydrogenation appears clearly since the early times of the experiment and evolves with the formation of the CO/H2/H2O mixed-matrix. The process of CO hydrogenation, initially frozen at the first step of the reaction, is brought to completion through water influence. Water molecules guide the reaction toward the formation of CH3OH and promote different reaction steps depending on water concentration. Water molecules increase the probability of reactive to encounter H atoms either physically, by introducing structural changes in the matrix, or chemically, by raising the number of chemical pathways.

  6. Dynamics of the gas-liquid interfacial reaction of O(3P) atoms with hydrocarbons

    Science.gov (United States)

    Kelso, Hailey; Köhler, Sven P. K.; Henderson, David A.; McKendrick, Kenneth G.

    2003-11-01

    We describe an experimental approach to the determination of the nascent internal state distribution of gas-phase products of a gas-liquid interfacial reaction. The system chosen for study is O(3P) atoms with the surface of liquid deuterated squalane, a partially branched long-chain saturated hydrocarbon, C30D62. The nascent OD products are detected by laser-induced fluorescence. Both OD (v'=0) and (v'=1) were observed in significant yield. The rotational distributions in both vibrational levels are essentially the same, and are characteristic of a Boltzmann distribution at a temperature close to that of the liquid surface. This contrasts with the distributions in the corresponding homogeneous gas-phase reactions. We propose a preliminary interpretation in terms of a dominant trapping-desorption mechanism, in which the OD molecules are retained at the surface sufficiently long to cause rotational equilibration but not complete vibrational relaxation. The significant yield of vibrationally excited OD also suggests that the surface is not composed entirely of -CD3 endgroups, but that secondary and/or tertiary units along the backbone are exposed.

  7. Comparison of automatically generated reaction mechanism for oxidation of simple hydrocarbons in IC engine

    Directory of Open Access Journals (Sweden)

    Muhammad Mansha

    2011-10-01

    Full Text Available In this work, a detailed kinetic reaction mechanism, consisting of 208 reactions and 79 species, has been developed todescribe the oxidation of simple hydrocarbon fuel (natural gas in IC engine. The performance of the proposed mechanismis tested using simulation, tool CHEMKIN 4.1.1, and experimental measurements. The simulation results of the proposedreaction scheme were compared with those of reference mechanisms (GRI v3.0 and Konnov 0.5 version as well as experimentaldata. Based upon simulation results, it can be concluded that the proposed mechanism shows good concordanceswith GR I3.0 mechanism especially in the prediction of temperature, pressure, and major product species (H2O, CO2 profilesat stoichiometric conditions (= 1.0. Although, there are some discrepancies among each predicted profile, the proposeddetailed mechanism is good to describe the oxidation of natural gas in IC engine. The experimental data also showed favorableresults for prediction of major product species (CO2, H2O & CO at various engine operating speeds in idle mode.

  8. Ultrafast Dynamics of Plasmon-Exciton Interaction of Ag Nanowire- Graphene Hybrids for Surface Catalytic Reactions.

    Science.gov (United States)

    Ding, Qianqian; Shi, Ying; Chen, Maodu; Li, Hui; Yang, Xianzhong; Qu, Yingqi; Liang, Wenjie; Sun, Mengtao

    2016-01-01

    Using the ultrafast pump-probe transient absorption spectroscopy, the femtosecond-resolved plasmon-exciton interaction of graphene-Ag nanowire hybrids is experimentally investigated, in the VIS-NIR region. The plasmonic lifetime of Ag nanowire is about 150 ± 7 femtosecond (fs). For a single layer of graphene, the fast dynamic process at 275 ± 77 fs is due to the excitation of graphene excitons, and the slow process at 1.4 ± 0.3 picosecond (ps) is due to the plasmonic hot electron interaction with phonons of graphene. For the graphene-Ag nanowire hybrids, the time scale of the plasmon-induced hot electron transferring to graphene is 534 ± 108 fs, and the metal plasmon enhanced graphene plasmon is about 3.2 ± 0.8 ps in the VIS region. The graphene-Ag nanowire hybrids can be used for plasmon-driven chemical reactions. This graphene-mediated surface-enhanced Raman scattering substrate significantly increases the probability and efficiency of surface catalytic reactions co-driven by graphene-Ag nanowire hybridization, in comparison with reactions individually driven by monolayer graphene or single Ag nanowire. This implies that the graphene-Ag nanowire hybrids can not only lead to a significant accumulation of high-density hot electrons, but also significantly increase the plasmon-to-electron conversion efficiency, due to strong plasmon-exciton coupling. PMID:27601199

  9. Classical Keggin Intercalated into Layered Double Hydroxides: Facile Preparation and Catalytic Efficiency in Knoevenagel Condensation Reactions.

    Science.gov (United States)

    Jia, Yueqing; Fang, Yanjun; Zhang, Yingkui; Miras, Haralampos N; Song, Yu-Fei

    2015-10-12

    The family of polyoxometalate (POM) intercalated layered double hydroxide (LDH) composite materials has shown great promise for the design of functional materials with numerous applications. It is known that intercalation of the classical Keggin polyoxometalate (POM) of [PW12 O40 ](3-) (PW12 ) into layered double hydroxides (LDHs) is very unlikely to take place by conventional ion exchange methods due to spatial and geometrical restrictions. In this paper, such an intercalated compound of Mg0.73 Al0.22 (OH)2 [PW12 O40 ]0.04 ⋅0.98 H2 O (Mg3 Al-PW12 ) has been successfully obtained by applying a spontaneous flocculation method. The Mg3 Al-PW12 has been fully characterized by using a wide range of methods (XRD, SEM, TEM, XPS, EDX, XPS, FT-IR, NMR, BET). XRD patterns of Mg3 Al-PW12 exhibit no impurity phase usually observed next to the (003) diffraction peak. Subsequent application of the Mg3 Al-PW12 as catalyst in Knoevenagel condensation reactions of various aldehydes and ketones with Z-CH2 -Z' type substrates (ethyl cyanoacetate and malononitrile) at 60 °C in mixed solvents (V2-propanol :Vwater =2:1) demonstrated highly efficient catalytic activity. The synergistic effect between the acidic and basic sites of the Mg3 Al-PW12 composite proved to be crucial for the efficiency of the condensation reactions. Additionally, the Mg3 Al-PW12 -catalyzed Knoevenagel condensation of benzaldehyde with ethyl cyanoacetate demonstrated the highest turnover number (TON) of 47 980 reported so far for this reaction. PMID:26337902

  10. EXPERIMENTAL EVIDENCE FOR THE FORMATION OF HIGHLY SUPERHYDROGENATED POLYCYCLIC AROMATIC HYDROCARBONS THROUGH H ATOM ADDITION AND THEIR CATALYTIC ROLE IN H{sub 2} FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Thrower, J. D.; Jorgensen, B.; Friis, E. E.; Baouche, S.; Luntz, A. C.; Andersen, M.; Hammer, B.; Hornekaer, L. [Department of Physics and Astronomy and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C (Denmark); Mennella, V., E-mail: thrower@phys.au.dk [Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Capodimonte, Via Moiariello 16, 80131 Napoli (Italy)

    2012-06-10

    Mass spectrometry measurements show the formation of highly superhydrogenated derivatives of the polycyclic aromatic hydrocarbon molecule coronene through H atom addition reactions. The observed product mass distribution provides evidence also for abstraction reactions resulting in H{sub 2} formation, in agreement with recent IR measurements. Complementary density functional theory calculations confirm the stability of the observed superhydrogenated species toward spontaneous H and H{sub 2} loss indicating that abstraction reactions may be the dominant route to H{sub 2} formation involving neutral polycyclic aromatic hydrocarbons (PAHs). The results indicate that highly superhydrogenated PAHs could well be formed and could act as efficient catalysts for H{sub 2} formation in the interstellar medium in low UV flux regions.

  11. Reações de Etanol com CO/H2 na Presença do Sistema Catalítico Ru(acac3/I- Ethanol, reactions with co/h2 in the presence of the ru(acac3/i- catalytic system

    Directory of Open Access Journals (Sweden)

    Elizeu Trabuco

    1997-06-01

    Full Text Available The hydrocarbonylation reaction of ethanol with a CO/H2 mixture assisted by Ru(acac3/iodide was investigated. Bronsted and Lewis acids and iodides salt were used as homogeneous promoters. The etherification reaction was the main reaction under typical acidic conditions of the catalytic system. When a hydrocarbon solvent (toluene was added to the initial reaction, the alcohol conversion and the carbonylation products were increased. The catalytic activity of the Bronsted acids (conv. EtOH = 71-92% was higher than that of the Lewis acids promoters (conv. EtOH = 65-85%. The salt present the lower catalytic activity among the promoters used. The long time reaction carried out with ethanol showed an increase of the product selectivity of the homologation and carbonylation reactions while the etherification reaction selectivity decreased. The recycled ether led to 60-65% ethanol conversion to C5 and C6 products. The main catalytic species are H+[Ru(CO3I3]-, [HRu3(CO11]- and [HRu(CO4]-. The first one is active in the carbonylation and homologation reactions of alcohols while the two others take part only in the homologation reaction.

  12. β-Alanine-DBU" A Highly Efficient Catalytic System forKnoevenageI-Doebner Reaction under Mild Conditionsβ-Alanine-DBU" A Highly Efficient Catalytic System forKnoevenageI-Doebner Reaction under Mild Conditions

    Institute of Scientific and Technical Information of China (English)

    祝令建; 雷宁; 缪震元; 盛春泉; 庄春林; 姚建忠; 张万年

    2012-01-01

    A mild and efficient Knoevenagel-Doebner reaction from malonic acid and a wide range of aldehydes was catalyzed by a catalytic system consisting offlalanine and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), affording the corresponding (E)-a,fl-unsaturated carboxylic acids in good to excellent yields and with high stereoselectivity. The advantage of the method is that the reaction could proceed smoothly at ambient temperature so that it can tolerate a variety of functional groups and avoid unnecessary side reactions.

  13. Catalytic activities enhanced by abundant structural defects and balanced N distribution of N-doped graphene in oxygen reduction reaction

    Science.gov (United States)

    Bai, Xiaogong; Shi, Yantao; Guo, Jiahao; Gao, Liguo; Wang, Kai; Du, Yi; Ma, Tingli

    2016-02-01

    N-doped graphene (NG) is a promising candidate for oxygen reduction reaction (ORR) in the cathode of fuel cells. However, the catalytic activity of NG is lower than that of commercial Pt/C in alkaline and acidic media. In this study, NG samples were obtained using urea as N source. The structural defects and N distribution in the samples were adjusted by regulating the pyrolysis temperature. The new NG type exhibited remarkable catalytic activities for ORR in both alkaline and acidic media.

  14. A reaction mechanism for gasoline surrogate fuels for large polycyclic aromatic hydrocarbons

    KAUST Repository

    Raj, Abhijeet

    2012-02-01

    This work aims to develop a reaction mechanism for gasoline surrogate fuels (n-heptane, iso-octane and toluene) with an emphasis on the formation of large polycyclic aromatic hydrocarbons (PAHs). Starting from an existing base mechanism for gasoline surrogate fuels with the largest chemical species being pyrene (C 16H 10), this new mechanism is generated by adding PAH sub-mechanisms to account for the formation and growth of PAHs up to coronene (C 24H 12). The density functional theory (DFT) and the transition state theory (TST) have been adopted to evaluate the rate constants for several PAH reactions. The mechanism is validated in the premixed laminar flames of n-heptane, iso-octane, benzene and ethylene. The characteristics of PAH formation in the counterflow diffusion flames of iso-octane/toluene and n-heptane/toluene mixtures have also been tested for both the soot formation and soot formation/oxidation flame conditions. The predictions of the concentrations of large PAHs in the premixed flames having available experimental data are significantly improved with the new mechanism as compared to the base mechanism. The major pathways for the formation of large PAHs are identified. The test of the counterflow diffusion flames successfully predicts the PAH behavior exhibiting a synergistic effect observed experimentally for the mixture fuels, irrespective of the type of flame (soot formation flame or soot formation/oxidation flame). The reactions that lead to this synergistic effect in PAH formation are identified through the rate-of-production analysis. © 2011 The Combustion Institute.

  15. NO-CO-O2 Reaction on a Metal Catalytic Surface using Eley-Rideal Mechanism

    Institute of Scientific and Technical Information of China (English)

    Waqar Ahmad

    2008-01-01

    Interactions among the reacting species NO, CO and O2 on metal catalytic surfaces are studied by means of Monte Carlo simulation using the Eley-Rideal (ER) mechanism. The study of this three-component system is important for understanding of the reaction kinetics by varying the relative ratios of the reactants. It is found that contrary to the conventional Langmuir-Hinshelwood (LH) thermal mechanism in which two irreversible phase transitions are obtained between active states and poisoned states, a single phase transition is observed when the ER mechanism is combined with the LH mechanism. The phase diagrams of the surface coverage and the steady state production of CO2, N2 and N2O are evaluated as a function of the partial pressures of the reactants in the gas phase. The continuous production of CO2 starts as soon as the CO pressure is switched on and the second order phase transition at the first critical point is eliminated, which is in agreement with the experimental findings.

  16. Novel plasma catalytic reaction for structural-controlled growth of graphene and graphene nanoribbon

    Science.gov (United States)

    Kato, Toshiaki

    2013-09-01

    An advanced plasma chemical vapor deposition (CVD) method has outstanding advantages for the structural-controlled growth and functionalization of carbon nanotubes (CNTs) and graphene. Graphene nanoribbons combine the unique electronic and spin properties of graphene with a transport gap. This makes them an attractive candidate material for the channels of next-generation transistors. However, the reliable site and alignment control of nanoribbons with high on/off current ratios remains a challenge. We have developed a new, simple, scalable method based on novel plasma catalytic reaction for directly fabricating narrow (23 nm) graphene nanoribbon devices with a clear transport gap (58.5 meV) and a high on/off ratio (10000). Indeed, graphene nanoribbons can be grown at any desired position on an insulating substrate without any post-growth treatment, and large-scale, two- and three dimensional integration of graphene nanoribbon devices should be realizable, thereby accelerating the practical evolution of graphene nanoribbon-based electrical applications.

  17. Accelerated Catalytic Fenton Reaction with Traces of Iron: An Fe-Pd-Multicatalysis Approach.

    Science.gov (United States)

    Georgi, Anett; Velasco Polo, Miriam; Crincoli, Klara; Mackenzie, Katrin; Kopinke, Frank-Dieter

    2016-06-01

    An accelerated catalytic Fenton (ACF) reaction was developed based upon a multicatalysis approach, facilitating efficient contaminant oxidation at trace levels of dissolved iron. Beside the Fe(II)/H2O2 catalyst/oxidant pair for production of OH-radicals, the ACF system contains Pd/H2 as catalyst/reductant pair for fast reduction of Fe(III) back to Fe(II) which accelerates the Fenton cycle and leads to faster contaminant degradation. By this means, the concentration of the dissolved iron catalyst can be reduced to trace levels (1 mg L(-1)) below common discharge limits, thus eliminating the need for iron sludge removal, which is one of the major drawbacks of conventional Fenton processes. ACF provides fast degradation of the model contaminant methyl tert-butyl ether (MTBE, C0 = 0.17 mM) with a half-life of 11 min with 1 mg L(-1) dissolved iron, 500 mg L(-1) H2O2, 5 mg L(-1) Pd (as suspended Pd/Al2O3 catalyst) and 0.1 MPa H2, pH 3. The effects of pH, H2 partial pressure and H2O2 concentration on MTBE degradation rates were studied. Results on kinetic deuterium isotope effect and quenching studies are in conformity with OH-radicals as main oxidant. The heterogeneous Pd/Al2O3 catalyst was reused within six cycles without significant loss in activity. PMID:27167833

  18. Tuning the catalytic activity of graphene nanosheets for oxygen reduction reaction via size and thickness reduction.

    Science.gov (United States)

    Benson, John; Xu, Qian; Wang, Peng; Shen, Yuting; Sun, Litao; Wang, Tanyuan; Li, Meixian; Papakonstantinou, Pagona

    2014-11-26

    Currently, the fundamental factors that control the oxygen reduction reaction (ORR) activity of graphene itself, in particular, the dependence of the ORR activity on the number of exposed edge sites remain elusive, mainly due to limited synthesis routes of achieving small size graphene. In this work, the synthesis of low oxygen content (graphene nanosheets with lateral dimensions smaller than a few hundred nanometers were achieved using a combination of ionic liquid assisted grinding of high purity graphite coupled with sequential centrifugation. We show for the first time that the graphene nanosheets possessing a plethora of edges exhibited considerably higher electron transfer numbers compared to the thicker graphene nanoplatelets. This enhanced ORR activity was accomplished by successfully exploiting the plethora of edges of the nanosized graphene as well as the efficient electron communication between the active edge sites and the electrode substrate. The graphene nanosheets were characterized by an onset potential of -0.13 V vs Ag/AgCl and a current density of -3.85 mA/cm2 at -1 V, which represent the best ORR performance ever achieved from an undoped carbon based catalyst. This work demonstrates how low oxygen content nanosized graphene synthesized by a simple route can considerably impact the ORR catalytic activity and hence it is of significance in designing and optimizing advanced metal-free ORR electrocatalysts.

  19. Modification of the performance of WO3-ZrO2 catalysts by metal addition in hydrocarbon reactions

    Directory of Open Access Journals (Sweden)

    Gerardo Carlos Torres

    2012-01-01

    Full Text Available A study of the different hydrocarbon reactions over Ni doped WO3-ZrO2 catalysts was performed. Ni was found as NiO at low Ni concentration while at high Ni concentrations a small fraction was present as a metal. For both cases, Ni strongly modified total acidity and concentration of strong acid sites. In the cyclohexane dehydrogenation reaction, Ni addition promotes both benzene and methyl cyclopentane production. The hydroconversion activity (n-butane and n-octane increases with the augment of total acidity produced by Ni. The selectivity to reaction products is modified according to the acid strength distribution changes produced by Ni addition.

  20. "Hydro-metathesis" of olefins: A catalytic reaction using a bifunctional single-site tantalum hydride catalyst supported on fibrous silica (KCC-1) nanospheres

    KAUST Repository

    Polshettiwar, Vivek

    2011-02-18

    Tantalizing hydrocarbons: Tantalum hydride supported on fibrous silica nanospheres (KCC-1) catalyzes, in the presence of hydrogen, the direct conversion of olefins into alkanes that have higher and lower numbers of carbon atoms (see scheme). This catalyst shows remarkable catalytic activity and stability, with excellent potential of regeneration. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Study of the dynamics of the MoO2-Mo2C system for catalytic partial oxidation reactions

    Science.gov (United States)

    Cuba Torres, Christian Martin

    On a global scale, the energy demand is largely supplied by the combustion of non-renewable fossil fuels. However, their rapid depletion coupled with environmental and sustainability concerns are the main drivers to seek for alternative energetic strategies. To this end, the sustainable generation of hydrogen from renewable resources such as biodiesel would represent an attractive alternative solution to fossil fuels. Furthermore, hydrogen's lower environmental impact and greater independence from foreign control make it a strong contender for solving this global problem. Among a wide variety of methods for hydrogen production, the catalytic partial oxidation offers numerous advantages for compact and mobile fuel processing systems. For this reaction, the present work explores the versatility of the Mo--O--C catalytic system under different synthesis methods and reforming conditions using methyl oleate as a surrogate biodiesel. MoO2 exhibits good catalytic activity and exhibits high coke-resistance even under reforming conditions where long-chain oxygenated compounds are prone to form coke. Moreover, the lattice oxygen present in MoO2 promotes the Mars-Van Krevelen mechanism. Also, it is introduced a novel beta-Mo2C synthesis by the in-situ formation method that does not utilize external H2 inputs. Herein, the MoO 2/Mo2C system maintains high catalytic activity for partial oxidation while the lattice oxygen serves as a carbon buffer for preventing coke formation. This unique feature allows for longer operation reforming times despite slightly lower catalytic activity compared to the catalysts prepared by the traditional temperature-programmed reaction method. Moreover, it is demonstrated by a pulse reaction technique that during the phase transformation of MoO2 to beta-Mo2C, the formation of Mo metal as an intermediate is not responsible for the sintering of the material wrongly assumed by the temperature-programmed method.

  2. Preparation of porous paper composites with ruthenium hydroxide and catalytic alcohol oxidation in a multiphase gas–liquid–solid reaction

    International Nuclear Information System (INIS)

    Highlights: • Flexible and porous paper-structured Ru(OH)x catalysts were prepared successfully. • Ru(OH)x catalysts were dispersed on the ceramic fiber networks of paper composites. • Catalytic oxidation of benzyl alcohol proceeded efficiently in three-phase reactions. • Paper catalysts exhibited much higher performance than conventional solid catalysts. - Abstract: In situ synthesis of ruthenium hydroxide catalysts on a microporous fiber-network structure of ceramic paper composites was achieved. The efficient catalytic oxidation of alcohol was investigated in a heterogeneous, multiphase gas–liquid–solid reaction. A simple papermaking technique and subsequent immersion in a ruthenium chloride solution allowed us to fabricate novel-concept microstructured catalysts. The paper-structured catalysts possess micropores ca. 30 μm in diameter with high porosity of ca. 90%. They exhibited much higher catalytic efficiency in the O2-mediated oxidation in toluene of benzyl alcohol to benzaldehyde in a fixed bed external loop reactor, as compared with conventional pellet- and bead-type solid catalysts. This excellent catalytic effect is possibly attributed to the porous paper composite microstructure like microreactors

  3. Preparation of porous paper composites with ruthenium hydroxide and catalytic alcohol oxidation in a multiphase gas–liquid–solid reaction

    Energy Technology Data Exchange (ETDEWEB)

    Homma, Taichi [Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, and Biotron Application Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Processing Development Research Laboratory, Kao Corporation, 2606 Akabane, Ichikai-machi, Haga-gun, Tochigi 321-3497 (Japan); Kitaoka, Takuya, E-mail: tkitaoka@agr.kyushu-u.ac.jp [Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, and Biotron Application Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2014-05-01

    Highlights: • Flexible and porous paper-structured Ru(OH){sub x} catalysts were prepared successfully. • Ru(OH){sub x} catalysts were dispersed on the ceramic fiber networks of paper composites. • Catalytic oxidation of benzyl alcohol proceeded efficiently in three-phase reactions. • Paper catalysts exhibited much higher performance than conventional solid catalysts. - Abstract: In situ synthesis of ruthenium hydroxide catalysts on a microporous fiber-network structure of ceramic paper composites was achieved. The efficient catalytic oxidation of alcohol was investigated in a heterogeneous, multiphase gas–liquid–solid reaction. A simple papermaking technique and subsequent immersion in a ruthenium chloride solution allowed us to fabricate novel-concept microstructured catalysts. The paper-structured catalysts possess micropores ca. 30 μm in diameter with high porosity of ca. 90%. They exhibited much higher catalytic efficiency in the O{sub 2}-mediated oxidation in toluene of benzyl alcohol to benzaldehyde in a fixed bed external loop reactor, as compared with conventional pellet- and bead-type solid catalysts. This excellent catalytic effect is possibly attributed to the porous paper composite microstructure like microreactors.

  4. Effect of hydrogen combustion reaction on the dehydrogenation of ethane in a fixed-bed catalytic membrane reactor

    Institute of Scientific and Technical Information of China (English)

    Masoud Hasany; Mohammad Malakootikhah; Vahid Rahmanian; Soheila Yaghmaei

    2015-01-01

    A two-dimensional non-isothermal mathematical model has been developed for the ethane dehydrogenation reaction in a fixed-bed catalytic membrane reactor. Since ethane dehydrogenation is an equilibrium reaction, removal of produced hydrogen by the membrane shifts the thermodynamic equilibrium to ethylene production. For further displacement of the dehydrogenation reaction, oxidative dehydrogenation method has been used. Since ethane dehydrogenation is an endothermic reaction, the energy produced by the oxidative dehydrogena-tion method is consumed by the dehydrogenation reaction. The results show that the oxidative dehydrogenation method generated a substantial improvement in the reactor performance in terms of high conversions and significant energy saving. It was also established that the sweep gas velocity in the shell side of the reactor is one of the most important factors in the effectiveness of the reactor.

  5. Catalytic synthesis of 2-methylpyrazine over Cr-promoted copper based catalyst via a cyclo-dehydrogenation reaction route

    Indian Academy of Sciences (India)

    Fangli Jing; Yuanyuan Zhang; Shizhong Luo; Wei Chu; Hui Zhang; Xinyu Shi

    2010-07-01

    The cyclo-dehydrogenation of ethylene diamine and propylene glycol to 2-methylpyrazine was performed under the atmospheric conditions at 380°C. The Cr-promoted Cu-Zn/Al2O3 catalysts were prepared by impregnation method and characterized by ICP-AES, N2 adsorption/desorption, XRD, XPS, N2O chemisorption, TPR and NH3-TPD techniques. The amorphous chromium species existing in Cu-Zn-Cr/Al2O3 catalyst enhanced the dispersion of active component Cu, promoted the reduction of catalyst. Furthermore, the catalytic performance was significantly improved. The acidity of the catalyst played an important role in increasing the 2-MP selectivity. To optimize the reaction parameters, influences of different chromium content, reaction temperature, liquid hourly space velocity (LHSV), reactants molar ratio and time on stream on the product pattern were studied. The results demonstrated that addition of chromium promoter revealed satisfying catalytic activity, stability and selectivity of 2-methylpyrazine.

  6. The effect of noble metals on catalytic methanation reaction over supported Mn/Ni oxide based catalysts

    OpenAIRE

    Wan Azelee Wan Abu Bakar; Rusmidah Ali; Nurul Shafeeqa Mohammad

    2015-01-01

    Carbon dioxide (CO2) in sour natural gas can be removed using green technology via catalytic methanation reaction by converting CO2 to methane (CH4) gas. Using waste to wealth concept, production of CH4 would increase as well as creating environmental friendly approach for the purification of natural gas. In this research, a series of alumina supported manganese–nickel oxide based catalysts doped with noble metals such as ruthenium and palladium were prepared by wetness impregnation method. T...

  7. Field-controlled electron transfer and reaction kinetics of the biological catalytic system of microperoxidase-11 and hydrogen peroxide

    OpenAIRE

    Yongki Choi; Siu-Tung Yau

    2011-01-01

    Controlled reaction kinetics of the bio-catalytic system of microperoxidase-11 and hydrogen peroxide has been achieved using an electrostatic technique. The technique allowed independent control of 1) the thermodynamics of the system using electrochemical setup and 2) the quantum mechanical tunneling at the interface between microperoxidase-11 and the working electrode by applying a gating voltage to the electrode. The cathodic currents of electrodes immobilized with microperoxidase-11 showed...

  8. Dynamics of the gas-liquid interfacial reaction of O(1D) with a liquid hydrocarbon.

    Science.gov (United States)

    Waring, Carla; King, Kerry L; Costen, Matthew L; McKendrick, Kenneth G

    2011-06-30

    The dynamics of the gas-liquid interfacial reaction of the first electronically excited state of the oxygen atom, O((1)D), with the surface of a liquid hydrocarbon, squalane (C(30)H(62); 2,6,10,15,19,23-hexamethyltetracosane) has been studied experimentally. Translationally hot O((1)D) atoms were generated by 193 nm photolysis of a low pressure (nominally 1 mTorr) of N(2)O a short distance (mean = 6 mm) above a continually refreshed liquid squalane surface. Nascent OH (X(2)Π, v' = 0) reaction products were detected by laser-induced fluorescence (LIF) on the OH A(2)Σ(+)-X(2)Π (1,0) band at the same distance above the surface. The speed distribution of the recoiling OH was characterized by measuring the appearance profiles as a function of photolysis-probe delay for selected rotational levels, N'. The rotational (and, partially, fine-structure) state distributions were also measured by recording LIF excitation spectra at selected photolysis-probe delays. The OH v' = 0 rotational distribution is bimodal and can be empirically decomposed into near thermal (~300 K) and much hotter (~6000 K) Boltzmann-temperature components. There is a strong positive correlation between rotational excitation and translation energy. However, the colder rotational component still represents a significant fraction (~30%) of the fastest products, which have substantially superthermal speeds. We estimate an approximate upper limit of 3% for the quantum yield of OH per O((1)D) atom that collides with the surface. By comparison with established mechanisms for the corresponding reactions in the gas phase, we conclude that the rotationally and translationally hot products are formed via a nonstatistical insertion mechanism. The rotationally cold but translationally hot component is most likely produced by direct abstraction. Secondary collisions at the liquid surface of products of either of the previous two mechanisms are most likely responsible for the rotationally and translationally cold

  9. Plasma-catalytic hybrid system using spouted bed with a gliding arc discharge: CH{sub 4} reforming as a model reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H; Sekiguchi, H, E-mail: lee.h.ac@m.titech.ac.jp [Department of Chemical Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2011-07-13

    A combination of a gliding arc discharge and a spouted catalytic bed was used to investigate a plasma-catalytic hybrid system using CH{sub 4} reforming as a model reaction. Alumina-supported catalysts that contained 0.5 wt% of Pt, Pd, Rh, and Ru (denoted as Pt/Al{sub 2}O{sub 3}, Pd/Al{sub 2}O{sub 3}, Rh/Al{sub 2}O{sub 3} and Ru/Al{sub 2}O{sub 3}, respectively) were used. For comparison, active Al{sub 2}O{sub 3} particles were also examined. The conversion of CH{sub 4} and the selectivity of the product were investigated by changing the feed flow rate and reaction time. The production of C{sub 2}H{sub 2}, H{sub 2} and soot was observed in the gliding arc discharge without a catalyst. Using Pt/Al{sub 2}O{sub 3} and Pd/Al{sub 2}O{sub 3}with the gliding arc discharge, C{sub 2}H{sub 4}, C{sub 2}H{sub 6} and C{sub 2}H{sub 2} were produced. It is considered that C{sub 2}H{sub 4} and C{sub 2}H{sub 6} were formed by the hydrogenation of C{sub 2}H{sub 2} on the active site of Pt/Al{sub 2}O{sub 3} and Pd/Al{sub 2}O{sub 3}. A stronger resistance to deactivation was shown in the presence of Pd/Al{sub 2}O{sub 3} than in the presence of Pt/Al{sub 2}O{sub 3}, whereas the selectivity of hydrocarbon using Rh/Al{sub 2}O{sub 3} and Ru/Al{sub 2}O{sub 3} showed a tendency similar to that in active Al{sub 2}O{sub 3} and non-catalytic experiments. The proposed reactor has a potential to improve the selectivity of the plasma process.

  10. An effective route to improve the catalytic performance of SAPO-34 in the methanol-to-olefin reaction

    Institute of Scientific and Technical Information of China (English)

    Guangyu Liu; Peng Tian; Qinhua Xia; Zhongmin Liu

    2012-01-01

    An effective route to improve the catalytic performance of SAPO-34 in the methanol-to-olefin reaction by simple oxalic acid treatment was investigated.The samples were characterized by XRD,SEM,N2 adsorption-desorption,XRF,TG,29Si MAS NMR and NH3-TPD techniques.The results indicated that the external surface acidity of SAPO-34 was finely tuned by oxalic acid treatment,and the selectivity to C2H4 on SAPO-34 and the catalyst lifetime in the methanol-to-olefin reaction were greatly improved.

  11. CFD modeling of reaction and mass transfer through a single pellet:Catalytic oxidative coupling of methane

    Institute of Scientific and Technical Information of China (English)

    Siavash Seyednej adian; Nakisa Yaghobi; Ramin Maghrebi; Leila Vafajoo

    2011-01-01

    In this study a mathematical model of a small scale single pellet for the oxidative coupling of methane (OCM) over titanite pervoskité isdeveloped.The method is based on a computational fluid dynamics (CFD) code which known as Fluent may be adopted to model the reactions that take place inside the porous catalyst pellet.The steady state single pellet model is coupled with a kinetic model and the intra-pellet concentration profiles of species are provided.Subsequent to achieving this goal,a nonlinear reaction network consisting of nine catalytic reactions and one gas phase reaction as an external program is successfully implemented to CFD-code as a reaction term in solving the equations.This study is based on the experimental design which is conducted in a differential reactor with a Sn/BaTiO3 catalyst (7-8 mesh) at atmospheric pressure,GHSV of 12000 h-1,ratio of methane to oxygen of 2,and three different temperatures of 1023,1048 and 1073 K.The modeling results such as selectivity and conversion at the pellet exit are in good agreement with the experimental data.Therefore,it is suggested that to achieve high yield in OCM process the modeling of the single pellet should be considered as the heart of catalytic fixed bed reactor.

  12. Ion-neutral reactions of C2H2N+ with hydrocarbons : relevant to Titan’s ionosphere

    OpenAIRE

    Fathi, Pantea

    2015-01-01

    To provide some insights on the formation of long-chain carbon-nitrogen bearing ions in Titan’s atmosphere, laboratory measurements of ion-neutral reactions were conducted and results are presented in the following licentiate thesis. The product ions of the C2H2N+ reaction with saturated and unsaturated neutral hydrocarbons have been studied using guided ion beam mass spectrometer (GIB-MS). The data have been used to infer the product ion signal intensity dependences on pressure and collision...

  13. Influence of the particle size of zeolite HZSM-5 on the catalytic performance in the ethene-to-propene reaction

    Energy Technology Data Exchange (ETDEWEB)

    Follmann, S.; Ernst, S. [Kaiserslautern Univ. (Germany). Dept. of Chemistry; Vetter, A.; Ripperger, S. [Kaiserslautern Univ. (Germany). Dept. of Mechanical and Process Engineering

    2013-11-01

    In this study, HZSM-5-type zeolites with comparable nSi/nAl-ratios but different crystallite sizes (6 {mu}m, 27 {mu}m, 40 {mu}m and 62 {mu}m) were synthesized and their physicochemical properties characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and nitrogen physisorption. Their catalytic properties were explored in the acid-catalyzed conversion of ethene to propene (and higher hydrocarbons). The results show that there is a significant influence of the crystallite size of the zeolite catalyst on the activity and time-on-steam stability. While the yields of short-chain olefins do not significantly differ for all materials investigated, the formation of aromatics is significantly suppressed over the catalyst with the largest crystallite size. (orig.)

  14. Polynuclear aromatic hydrocarbon degradation by heterogeneous reactions with N 2O 5 on atmospheric particles

    Science.gov (United States)

    Kamens, Richard M.; Guo, Jiazhen; Guo, Zhishi; McDow, Stephen R.

    The degradation of particulate polynuclear aromatic hydrocarbons (PAH) on atmospheric soot particles in the presence of gas phase dinitrogen pentoxide (N 2O 5) was explored. Dilute diesel and wood soot particles containing PAH were reacted with˜10ppm of N 2O 5 in a 200 ℓ continuous stirred tank reactor (CSTR). To provide a stable source of particles for reaction in the CSTR, diesel or wood soot particles were injected at night into a 25 m 3 Teflon outdoor chamber. The large chamber served as a reservoir for the feed aerosol, and the aerosol could then be introduced at a constant flow rate into the CSTR. PAH-N 2O 5 heterogeneous rate constants for wood soot at 15°C ranged from2 × 10 -18to5 × 10 -18 cm 3 molecules -1 s -1. For diesel soot the rate constants at 16°C were higher and ranged from5 × 10 -18to30 × 10 -18 cm 3 molecules -1 s -1. Comparisons with other studies suggest that sunlight is the most important factor which influences PAH decay. This is followed by ozone, NO 2, N 2O 5 and nitric acid. The rate constants of nitro-PAH formation from a parent PAH and N 2O 5 were of the order of1 × 10 -19-1 × 10 -18 molecules -1s -1. The uncertainty associated with all of these rate constants is± a factor of 3. Given, however, the small magnitude of the rate constants and the low levels of N 2O 5 present in the atmosphere, we concluded that PAH heterogeneous reactions with gas phase N 2O 5 degrade particle-bound PAH or to form nitro-PAH from PAH are not very important. (Direct application of the specific rate constants derived in this study to ambient atmospheres should not be undertaken unless the ambient particle size distributions and chemical composition of the particles are similar to the ones reported in this study.)

  15. A Unified Approach to Mechanical Compaction, Pressure Solution, Mineral Reactions and the Temperature Distribution in Hydrocarbon Basins

    CERN Document Server

    Yang, Xin-She

    2010-01-01

    In modelling sediment compaction and mineral reactions, the rheological behaviour of sediments is typically considered as poroelastic or purely viscous. In fact, compaction due to pressure solution and mechanical processes in porous media is far more complicated. A generalised model of viscoelastic compaction and the smectite to illite mineral reaction in hydrocarbon basins is presented. A one-step dehydration model of the mineral reaction is assumed. The obtained nonlinear governing equations are solved numerically and different combinations of physical parameters are used to simulate realistic situations in typical sedimentary basins. Comparison of numerical simulations with real data has shown very good agreement with respect to both the porosity profile and the mineral reaction.

  16. Effect of diluent and reaction parameter on selective oxidation of propane over MoVTeNb catalyst using nanoflow catalytic reactor

    Institute of Scientific and Technical Information of China (English)

    Restu Kartiko Widi; Sharifah Bee Abdul Hamid; Robert Schl(o)gl

    2008-01-01

    The selective oxidation of propane to acrylic acid over an MoVTeNb mixed oxide catalyst, dried and calcined before reaction has been studied using high-throughput instrumentation, which is called nanoflow catalytic reactor. The effects of catalyst dilution on the catalytic performance of the MoVTeNb mixed oxide catalyst in selective oxidation of propane to acrylic acid were also investigated. The effects of some reaction parameters, such as gas hourly space velocity (GHSV) and reaction temperature, for selective oxidation of propane to acrylic acid over diluted MoVTeNb catalyst have also been studied. The configuration of the nanoflow is shown to be suitable for screen catalytic performance, and its operating conditions were mimicked closely to conventional laboratory as well as to industrial conditions. The results obtained provided very good reproducibility and it showed that preparation methods as well as reaction parameters can play significant roles in catalytic performance of these catalysts.

  17. A novel method for oxidative desulfurization of liquid hydrocarbon fuels based on catalytic oxidation using molecular oxygen coupled with selective adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiaoliang; Song, Chunshan [Clean Fuels and Catalysis Program, The Energy Institute, Department of Energy and Geo-Environmental Engineering, The Pennsylvania State University, 209 Academic Projects Building, University Park, PA 16802 (United States); Zhou, Anning [Clean Fuels and Catalysis Program, The Energy Institute, Department of Energy and Geo-Environmental Engineering, The Pennsylvania State University, 209 Academic Projects Building, University Park, PA 16802 (United States); Department of Chemistry and Chemical Engineering, Xian University of Science and Technology, Xian 710054 (China)

    2007-05-30

    The present study explored a novel oxidative desulfurization (ODS) method of liquid hydrocarbon fuels, which combines a catalytic oxidation step of the sulfur compounds directly in the presence of molecular oxygen and an adsorption step of the oxidation-treated fuel over activated carbon. The ODS of a model jet fuel and a real jet fuel (JP-8) was conducted in a batch system at ambient conditions. It was found that the oxidation in the presence of molecular oxygen with Fe(III) salts was able to convert the thiophenic compounds in the fuel to the corresponding sulfone and/or sulfoxide compounds at 25 C. The oxidation reactivity of the sulfur compounds decreases in the order of 2-methylbenzothiophene > 5-methylbenzothiophene > benzothiophene >> dibenzothiophene. The alkyl benzothiophenes with more alkyl substituents have higher oxidation reactivity. In real JP-8 fuel, 2,3-dimethylbenzothiophene was found to be the most refractory sulfur compound to be oxidized. The catalytic oxidation of the sulfur compounds to form the corresponding sulfones and/or sulfoxides improved significantly the adsorptivity of the sulfur compounds on activated carbon, because the activated carbon has higher adsorptive affinity for the sulfones and sulfoxides than thiophenic compounds due to the higher polarity of the former. The remarkable advantages of the developed ODS method are that the ODS can be run in the presence of O{sub 2} at ambient condition without using peroxides and aqueous solvent and thus without involving the biphasic oil-aqueous-solution system. (author)

  18. Resonance scattering spectral detection of ultratrace IgG using immunonanogold-HAuCl4-NH2OH catalytic reaction

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Nanogold particles of 10 nm were used to label goat anti-human IgG (GIgG) to obtain nanogold-labeled GIgG (AuGIgG). In a citrate-HCl buffer solution of pH 2.27,AuGIgG showed a strong catalytic effect on the reaction between HAuCl4 and NH2OH to form big gold particles that exhibited a resonance scatter-ing (RS) peak at 796 nm. Under the chosen conditions,AuGIgG combined with IgG to form immuno-complex AuGIgG-IgG that can be removed by centrifuging at 16000 r/min. AuGIgG in the centrifuging solution also showed catalytic effect on the reaction. On those grounds,an immunonanogold catalytic RS assay for IgG was designed. With addition of IgG,the amount of AuGIgG in the centrifuging solution decreased; the RS intensity at 796 nm (I796 nm) decreased linearly. The decreased intensity ΔI796 nm was linear with respect to the IgG concentration in the range of 0.08-16.0 ng·mL-1 with a detection limit of 0.02 ng·mL-1. This assay was applied to analysis of IgG in sera with satisfactory sensitivity,selectivity and rapidity.

  19. Surface Acidity as Descriptor of Catalytic Activity for Oxygen Evolution Reaction in Li-O2 Battery.

    Science.gov (United States)

    Zhu, Jinzhen; Wang, Fan; Wang, Beizhou; Wang, Youwei; Liu, Jianjun; Zhang, Wenqing; Wen, Zhaoyin

    2015-10-28

    Unraveling the descriptor of catalytic activity, which is related to physical properties of catalysts, is a major objective of catalysis research. In the present study, the first-principles calculations based on interfacial model were performed to study the oxygen evolution reaction mechanism of Li2O2 supported on active surfaces of transition-metal compounds (TMC: oxides, carbides, and nitrides). Our studies indicate that the O2 evolution and Li(+) desorption energies show linear and volcano relationships with surface acidity of catalysts, respectively. Therefore, the charging voltage and desorption energies of Li(+) and O2 over TMC could correlate with their corresponding surface acidity. It is found that certain materials with an appropriate surface acidity can achieve the high catalytic activity in reducing charging voltage and activation barrier of rate-determinant step. According to this correlation, CoO should have as active catalysis as Co3O4 in reducing charging overpotential, which is further confirmed by our comparative experimental studies. Co3O4, Mo2C, TiC, and TiN are predicted to have a relatively high catalytic activity, which is consistent with the previous experiments. The present study enables the rational design of catalysts with greater activity for charging reactions of Li-O2 battery.

  20. Photo catalytic reduction of benzophenone on TiO{sub 2}: Effect of preparation method and reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Albiter E, E.; Valenzuela Z, M. A.; Alfaro H, S.; Flores V, S. O.; Rios B, O.; Gonzalez A, V. J.; Cordova R, I., E-mail: mavalenz@ipn.m [IPN, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Laboratorio de Catalisis y Materiales, Zacatenco, 07738 Mexico D. F. (Mexico)

    2010-07-01

    The photo catalytic reduction of benzophenone was studied focussing on improving the yield to benzhydrol. TiO{sub 2} was synthesized by means of a hydrothermal technique. TiO{sub 2} (Degussa TiO{sub 2}-P25) was used as a reference. Catalysts were characterized by X-ray diffraction and nitrogen physisorption. The photo catalytic reduction was carried out in a batch reactor at 25 C under nitrogen atmosphere, acetonitrile as solvent and isopropanol as electron donor. A 200 W Xe-Hg lamp ({lambda}= 360 nm) was employed as irradiation source. The chemical composition of the reaction system was determined by HPLC. Structural and textural properties of the synthesized TiO{sub 2} depended on the type of acid used during sol formation step. Using HCl, a higher specific surface area and narrower pore size distribution of TiO{sub 2} was obtained in comparison with acetic acid. As expected, the photochemical reduction of benzophenone yielded benzopinacol as main product, whereas, benzhydrol is only produced in presence of TiO{sub 2} (i.e. photo catalytic route). In general, the hydrothermally synthesized catalysts were less active and with a lower yield to benzhydrol. The optimal reaction conditions to highest values of benzhydrol yield (70-80%) were found at 2 g/L (catalyst loading) and 0.5 m M of initial concentration of benzophenone, using commercial TiO{sub 2}-P25. (Author)

  1. Enhancement in the Catalytic Activity of Pd/USY in the Heck Reaction Induced by H2 Bubbling

    Directory of Open Access Journals (Sweden)

    Miki Niwa

    2010-12-01

    Full Text Available Pd was loaded on ultra stable Y (USY zeolites prepared by steaming NH4-Y zeolite under different conditions. Heck reactions were carried out over the prepared Pd/USY. We found that H2 bubbling was effective in improving not only the catalytic activity of Pd/USY, but also that of other supported Pd catalysts and Pd(OAc2. Moreover, the catalytic activity of Pd/USY could be optimized by choosing appropriate steaming conditions for the preparation of the USY zeolites; Pd loaded on USY prepared at 873 K with 100% H2O gave the highest activity (TOF = 61,000 h−1, which was higher than that of Pd loaded on other kinds of supports. The prepared Pd/USY catalysts were applicable to the Heck reactions using various kinds of substrates including bromo- and chloro-substituted aromatic and heteroaromatic compounds. Characterization of the acid properties of the USY zeolites revealed that the strong acid site (OHstrong generated as a result of steaming had a profound effect on the catalytic activity of Pd.

  2. Field-controlled electron transfer and reaction kinetics of the biological catalytic system of microperoxidase-11 and hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Yongki Choi

    2011-12-01

    Full Text Available Controlled reaction kinetics of the bio-catalytic system of microperoxidase-11 and hydrogen peroxide has been achieved using an electrostatic technique. The technique allowed independent control of 1 the thermodynamics of the system using electrochemical setup and 2 the quantum mechanical tunneling at the interface between microperoxidase-11 and the working electrode by applying a gating voltage to the electrode. The cathodic currents of electrodes immobilized with microperoxidase-11 showed a dependence on the gating voltage in the presence of hydrogen peroxide, indicating a controllable reduction reaction. The measured kinetic parameters of the bio-catalytic reduction showed nonlinear dependences on the gating voltage as the result of modified interfacial electron tunnel due to the field induced at the microperoxidase-11-electrode interface. Our results indicate that the kinetics of the reduction of hydrogen peroxide can be controlled by a gating voltage and illustrate the operation of a field-effect bio-catalytic transistor, whose current-generating mechanism is the conversion of hydrogen peroxide to water with the current being controlled by the gating voltage.

  3. TiO2-sludge carbon enhanced catalytic oxidative reaction in environmental wastewaters applications.

    Science.gov (United States)

    Athalathil, Sunil; Erjavec, Boštjan; Kaplan, Renata; Stüber, Frank; Bengoa, Christophe; Font, Josep; Fortuny, Agusti; Pintar, Albin; Fabregat, Azael

    2015-12-30

    The enhanced oxidative potential of sludge carbon/TiO2 nano composites (SNCs), applied as heterogeneous catalysts in advanced oxidation processes (AOPs), was studied. Fabrification of efficient SNCs using different methods and successful evaluation of their catalytic oxidative activity is reported for the first time. Surface modification processes of hydrothermal deposition, chemical treatment and sol-gel solution resulted in improved catalytic activity and good surface chemistry of the SNCs. The solids obtained after chemical treatment and hydrothermal deposition processes exhibit excellent crystallinity and photocatalytic activity. The highest photocatalytic rate was obtained for the material prepared using hydrothermal deposition technique, compared to other nanocomposites. Further, improved removal of bisphenol A (BPA) from aqueous phase by means of catalytic ozonation and catalytic wet air oxidation processes is achieved over the solid synthesized using chemical treatment method. The present results demonstrate that the addition of TiO2 on the surface of sludge carbon (SC) increases catalytic oxidative activity of SNCs. The latter produced from harmful sludge materials can be therefore used as cost-effective and efficient sludge derived catalysts for the removal of hazardous pollutants. PMID:26223014

  4. Molecular studies of model surfaces of metals from single crystals to nanoparticles under catalytic reaction conditions. Evolution from prenatal and postmortem studies of catalysts.

    Science.gov (United States)

    Somorjai, Gabor A; Aliaga, Cesar

    2010-11-01

    Molecular level studies of metal crystal and nanoparticle surfaces under catalytic reaction conditions at ambient pressures during turnover were made possible by the use of instruments developed at the University of California at Berkeley. Sum frequency generation vibrational spectroscopy (SFGVS), owing to its surface specificity and sensitivity, is able to identify the vibrational features of adsorbed monolayers of molecules. We identified reaction intermediates, different from reactants and products, under reaction conditions and for multipath reactions on metal single crystals and nanoparticles of varying size and shape. The high-pressure scanning tunneling microscope (HP-STM) revealed the dynamics of a catalytically active metallic surface by detecting the mobility of the adsorbed species during catalytic turnover. It also demonstrated the reversible and adsorbate-driven surface restructuring of platinum when exposed to molecules such as CO and ethylene. Ambient pressure X-ray photoelectron spectroscopy (AP-XPS) detected the reversible changes of surface composition in rhodium-palladium, platinum-palladium, and other bimetallic nanoparticles as the reactant atmosphere changed from oxidizing to reducing. It was found that metal nanoparticles of less than 2 nm in size are present in higher oxidation states, which alters and enhances their catalytic activity. The catalytic nanodiode (CND) confirmed that a catalytic reaction-induced current flow exists at oxide-metal interfaces, which correlates well with the reaction turnover.

  5. A Study on the Kinetics of the Catalytic Reforming Reaction of CH4 with CO2: Determination of the Reaction Order

    Institute of Scientific and Technical Information of China (English)

    Chunyang Ji; Lihong Gong; Jiawei Zhang; Keying Shi

    2003-01-01

    The kinetics of the catalytic reforming reaction of methane with carbon dioxide to produce synthesis gas on a Ni/α-Al2O3 and a HSD-2 type commercial catalyst has been studied. The results indicate that the reaction orders are one and zero for methane and carbon dioxide, respectively, when the carbon dioxide partial pressure was about 12.5-30.0 kPa and the temperature was at 1123-1173 K. However,when the carbon dioxide partial pressure was changed to 30.0-45.0 kPa under the same temperature range of 1123 1173 K, the reaction orders of methane and carbon dioxide are one. Furthermore, average rate constants at different temperatures were determined.

  6. Chemical reactions at the graphitic step-edge: changes in product distribution of catalytic reactions as a tool to explore the environment within carbon nanoreactors

    Science.gov (United States)

    Lebedeva, Maria A.; Chamberlain, Thomas W.; Thomas, Alice; Thomas, Bradley E.; Stoppiello, Craig T.; Volkova, Evgeniya; Suyetin, Mikhail; Khlobystov, Andrei N.

    2016-06-01

    A series of explorative cross-coupling reactions have been developed to investigate the local nanoscale environment around catalytically active Pd(ii)complexes encapsulated within hollow graphitised nanofibers (GNF). Two new fullerene-containing and fullerene-free Pd(ii)Salen catalysts have been synthesised, and their activity and selectivity towards different substrates has been explored in nanoreactors. The catalysts not only show a significant increase in activity and stability upon heterogenisation at the graphitic step-edges inside the GNF channel, but also exhibit a change in selectivity affected by the confinement which alters the distribution of isomeric products of the reaction. Furthermore, the observed selectivity changes reveal unprecedented details regarding the location and orientation of the catalyst molecules inside the GNF nanoreactor, inaccessible by any spectroscopic or microscopic techniques, thus shedding light on the precise reaction environment inside the molecular catalyst-GNF nanoreactor.A series of explorative cross-coupling reactions have been developed to investigate the local nanoscale environment around catalytically active Pd(ii)complexes encapsulated within hollow graphitised nanofibers (GNF). Two new fullerene-containing and fullerene-free Pd(ii)Salen catalysts have been synthesised, and their activity and selectivity towards different substrates has been explored in nanoreactors. The catalysts not only show a significant increase in activity and stability upon heterogenisation at the graphitic step-edges inside the GNF channel, but also exhibit a change in selectivity affected by the confinement which alters the distribution of isomeric products of the reaction. Furthermore, the observed selectivity changes reveal unprecedented details regarding the location and orientation of the catalyst molecules inside the GNF nanoreactor, inaccessible by any spectroscopic or microscopic techniques, thus shedding light on the precise reaction

  7. Ab initio molecular dynamics simulations for the role of hydrogen in catalytic reactions of furfural on Pd(111)

    Science.gov (United States)

    Xue, Wenhua; Dang, Hongli; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu

    2014-03-01

    In the study of catalytic reactions of biomass, furfural conversion over metal catalysts with the presence of hydrogen has attracted wide attention. We report ab initio molecular dynamics simulations for furfural and hydrogen on the Pd(111) surface at finite temperatures. The simulations demonstrate that the presence of hydrogen is important in promoting furfural conversion. In particular, hydrogen molecules dissociate rapidly on the Pd(111) surface. As a result of such dissociation, atomic hydrogen participates in the reactions with furfural. The simulations also provide detailed information about the possible reactions of hydrogen with furfural. Supported by DOE (DE-SC0004600). This research used the supercomputer resources of the XSEDE, the NERSC Center, and the Tandy Supercomputing Center.

  8. Study and modelling of deactivation by coke in catalytic reforming of hydrocarbons on Pt-Sn/Al{sub 2}O{sub 3} catalyst; La microbalance inertielle: etude et modelisation cinetique de la desactivation par le coke en reformage catalytique des hydrocarbures sur catalyseur Pt-Sn/Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mathieu-Deghais, S.

    2004-07-01

    Catalytic reforming is the refining process that produces gasoline with a high octane number. During a reforming operation, undesired side reactions promote the formation of carbon deposits (coke) on the surface of the catalyst. As the reactions proceed, the coke accumulation leads to a progressive decrease of the catalyst activity and to a change in its selectivity. Getting this phenomenon under control is interesting to optimize the industrial plants. This work aims to improve the comprehension and the modeling of coke formation and its deactivating effect on reforming reactions, while working under conditions chosen within a range as close as possible to the industrial conditions of the regenerative process. The experimental study is carried out with a micro unit that is designed to observe simultaneously the coke formation and its influence on the catalyst activity. A vibrational microbalance reactor (TEOM - Tapered Element Oscillating Microbalance) is used to provide continuous monitoring of coke. On-line gas chromatography is used to observe the catalyst activity and selectivity as a function of the coke content. The coking experiments are performed on a fresh Pt-Sn/alumina catalyst, with mixtures of hydrocarbon molecules of 7 carbon atoms as hydrocarbon feeds. The coking tests permitted to highlight the operating parameters that may affect the amount of coke, and to identify the hydrocarbon molecules that behave as coke intermediate. A kinetic model for coke formation could be developed through the compilation of these results. The catalytic activity analysis permitted to point out the coke effect on both of the active phases of the catalyst, to construct a simplified reforming kinetic model that simulates the catalyst activity under the reforming conditions, and to quantify deactivation via deactivation functions. (author)

  9. Biogenic synthesis of palladium nanoparticles using Pulicaria glutinosa extract and their catalytic activity towards the Suzuki coupling reaction.

    Science.gov (United States)

    Khan, Mujeeb; Khan, Merajuddin; Kuniyil, Mufsir; Adil, Syed Farooq; Al-Warthan, Abdulrahman; Alkhathlan, Hamad Z; Tremel, Wolfgang; Tahir, Muhammad Nawaz; Siddiqui, Mohammed Rafiq H

    2014-06-28

    Green synthesis of nanomaterials finds the edge over chemical methods due to its environmental compatibility. Herein, we report a facile and eco-friendly method for the synthesis of palladium (Pd) nanoparticles (NPs) using an aqueous solution of Pulicaria glutinosa, a plant widely found in a large region of Saudi Arabia, as a bioreductant. The as-prepared Pd NPs were characterized using ultraviolet-visible (UV-vis) spectroscopy, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform-infrared spectroscopy (FT-IR). The hydroxyl groups of the plant extract (PE) molecules were found mainly responsible for the reduction and growth of Pd NPs. FT-IR analysis confirmed the dual role of the PE, both as a bioreductant as well as a capping ligand, which stabilizes the surface of Pd NPs. The crystalline nature of the Pd NPs was identified using XRD analysis which confirmed the formation of a face-centered cubic structure (JCPDS: 87-0641, space group: Fm3m (225)). Furthermore, the as-synthesized Pd NPs demonstrated excellent catalytic activity towards the Suzuki coupling reaction under aqueous and aerobic conditions. Kinetic studies of the catalytic reaction monitored using GC confirmed that the reaction completes in less than 5 minutes.

  10. Oligomer Formation Reactions of Criegee Intermediates in the Ozonolysis of Small Unsaturated Hydrocarbons

    Science.gov (United States)

    Sakamoto, Y.; Inomata, S.; Hirokawa, J.

    2013-12-01

    Secondary organic aerosol (SOA) constitutes a substantial fraction of atmospheric fine particulate matters and has an effect on visibility, climate and human health. One of the major oxidizing processes leading to SOA formation is an ozonolysis of unsaturated hydrocarbons (UHCs).[1] Despite of its importance, the contribution of the ozonolysis of UHCs to the SOA formation in the troposphere is not sufficiently understood due to a lack of information on reaction pathways to produce low volatile compounds. While many studies have previously been focused on SOA formation from the ozonolysis of large UHCs, SOA formation from the ozonolysis of UHCs with less than six carbon atoms have been rarely investigated because their products are expected to be too volatile to contribute to the SOA formation. Very recently, a few studies have reported the SOA formation from the ozonolysis of such small UHCs but chemical mechanisms are still unclear. [2-4] In order to understand SOA formation from the ozonolysis of the small UHCs, this study investigated gas- and particle-phase products in laboratory experiments with a Teflon bag using a negative ion chemical ionization mass spectrometry (NI-CIMS) with chloride ion transfer for chemical ionization. This technique is suitable for analysis of compounds such as carboxylic acids and hydroperoxides expected to be produced in the ozonolysis of UHCs with less fragmentation, high selectivity, and high sensitivity. In the particle-phase analysis, SOAs collected on a PTFE filter were heated, and thermally desorbed compounds were analyzed. In the gas-phase analysis, series of peaks with an interval of a mass-to-charge ratio equal to the molecular weight of a Criegee intermediate formed in their ozonolysis were observed. These peaks were attributed to oligomeric hydroperoxides composed of Criegee intermediates as a chain unit. These oligomeric hydroperoxides were also observed in the particle-phase analysis, indicating that the oligomeric

  11. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jung Ik; Kim, Aram; Noh, Hui Bog; Lee, Hyun Ju; Shim, Yoon Bo; Park, Kang Hyun [Pusan National University, Busan (Korea, Republic of)

    2012-01-15

    The ruthenium(II) complex [Ru(bpy){sub 2}-(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus.

  12. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    International Nuclear Information System (INIS)

    The ruthenium(II) complex [Ru(bpy)2-(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus

  13. Mechanism for the growth of polycyclic aromatic hydrocarbons from the reactions of naphthalene with cyclopentadienyl and indenyl.

    Science.gov (United States)

    Xu, Fei; Shi, Xiangli; Zhang, Qingzhu; Wang, Wenxing

    2016-11-01

    Polycyclic aromatic hydrocarbons (PAHs) are globally concerned atmospheric particle-bound pollutants due to their toxicities. A mechanistic understanding of their formation from other environmental sources is of crucial importance for successful prevention of PAH. In the present work, the formation and growth mechanism of PAHs from the reactions of naphthalene with the cyclopentadienyl and indenyl radicals was investigated by using the hybrid density functional theory (DFT) at the MPWB1K/6-311+G(3df,2p)//MPWB1K/6-31+G(d,p) level. The rate constants for the crucial elementary steps were deduced with the aid of the canonical variational transition-state (CVT) theory with the small curvature tunneling (SCT) contribution. The formation of PAHs was involved in six elementary processes including: the addition reaction, ring closure, intramolecular H-shift, C-C cleavage, intramolecular H-shift and unimolecular elimination of CH3 or H. The C-C cleavage steps were revealed as the rate determining steps due to the extremely high barrier. At high temperature conditions like the combustion and pyrolysis of many hydrocarbons, the main products are phenanthrene, 4-methyl-phenanthrene and 1-methyl-phenanthrene from the reactions of naphthalene and cyclopentadienyl, and benzo(a)anthracene, 12-methyl-phenanthrene and 7-methyl-phenanthrene from the reactions of naphthalene and indenyl radicals. The reaction of naphthalene with indenyl radical is slightly more difficult than the reaction of naphthalene with cyclopentadienyl radical because of the bigger HOMO-LUMO orbital energy difference of naphthalene with indenyl relative to that of naphthalene with cyclopentadienyl. PMID:27538266

  14. Monomeric Cu(Ⅱ) Complex Containing Chiral Phase-transfer Catalyst as Ligand and Its Asymmetrically Catalytic Reaction

    Institute of Scientific and Technical Information of China (English)

    QU Zhi-Rong; XIONG Ren-Gen

    2008-01-01

    The thermal treatment of CuCl2 with N-(4'-vinylbenzyl)cinchonidinitim chloride(L1)afforded a monomeric discrete homochiral copper(Ⅱ)complex N-4'-(vinylbenzyl)cinchonidinium trichlorocoprate(Ⅱ)(1).Their applications to the enantioselectively catalytic alkylation reaction of N-(diphenylmethylidene)glycine tert-butyl ester(3)show that the higher ee value observed in catalyst 1 than that in the corresponding free ligand L1 is probably due to the rigidity enhancement after the coordination of N atom of quinoline ring to the copper ion.

  15. Reactions of ethynyl radicals as a source of C 4 and C 5 hydrocarbons in Titan's atmosphere

    Science.gov (United States)

    Stahl, F.; Schleyer, P. v. R.; Schaefer, H. F., III; Kaiser, R. I.

    2002-06-01

    Crossed molecular beam experiments augmented by electronic structure computations of neutral-neutral reactions of the ethynyl radical (C 2H, X 2Σ+) with the unsaturated hydrocarbons acetylene (C 2H 2), methylacetylene (CH 3CCH), and allene (H 2CCCH 2) are reviewed briefly. All reactions are characterized by a C 2H versus H atom exchange and in the case of the C 2H/C 2H 2 system by an additional molecular hydrogen (H 2) elimination pathway. The attack of the ethynyl radical onto the π-electron density of the unsaturated hydrocarbons has no entrance barrier and initializes each reaction. Consecutive hydrogen atom migrations may precede the exit channels. Diacetylene (HCCCCH), the butadiynyl radical (HCCCC), methyldiacetylene (CH 3CCCCH), ethynylallene (H 2CCH(C 2H)), and penta-4-diyne (HCC(CH 2)C 2H) were identified as products of which only diacetylene has yet been observed in Titan's atmosphere. Our results, however, strongly suggest the presence of all these species on Titan, and the Cassini-Huygens mission is likely to detect these upon arrival in the Saturnian system in 2004.

  16. New Reactions to Obtain Aromatics and Hydrogen through Methane's Direct Catalytic Dehydroaromatization

    Institute of Scientific and Technical Information of China (English)

    XU Yide; XIE Maosong; BAO Xinhe; LIN Liwu; WANG Linsheng

    2007-01-01

    @@ Methane is the main component of natural gas and coal-bed gas. Structurally, its molecule is highly symmetric and hence, it becomes one of the most stable hydrocarbon compounds in nature. For a long time in the past, the research of methane transformation is a permanent "hot spot" and disciplinary frontier for chemists as it can be catalyzed directly into top-quality fuel and chemicals.

  17. Pressure Effects on Product Channels of Hydrocarbon Radical-Radical Reactions; Implications for Modelling of Planetary Atmospheres

    Science.gov (United States)

    Fahr, A.; Halpern, J.; N'doumi, M.

    2011-10-01

    Previously we had studied the kinetics and product channels of small unsaturated hydrocarbon radical (C2 and C3s) reactions relevant to planetary atmospheric modelling. Reactions of C2 radicals (such as vinyl, H2CCH and ethynyl C2H) and C3 radicals (such as propargyl, HCCCH2 and allyl, H2CCCH3) can affect the abundances of a large number of stable observable C3, C4, C5, C6 and larger molecules, including linear, aromatic and even poly aromatic molecules. We have experimentally determined pressuredependent product yields for self- and cross-radical reactions performed at 298 K and at selected pressures between ~4 Torr (0.5 kPa) and 760 Torr (101 kPa). Final products were determined by gas chromatograph with mass spectrometry/flame ionization detection (GC/MS/FID). In some cases complementary computational studies extended the pressure and temperature range of the observations and provided valuable information on complex reaction mechanisms. These studies provide a systematic framework so that important energetic and structural parameters for radical-radical reactions can be assessed. Here we report a compilation of our earlier results relevant to planetary atmospheres in addition to recent ones for allyl radical (H2CCCH3) reactions.

  18. Catalytic Reaction of Aryldiazoacetates with Indole and Its Derivatives: Profound Effect of N-1 Substitutent on the Reaction Pathways

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xue-Jing; LIU Sheng-Ping; YAN Ming

    2008-01-01

    The reaction of indole and its derivatives with aryldiazoacetates has been studied in the presence of copper and The electron-donating group favored the formation of the β-alkylation products, while the electron-withdrawing group favored the formation of the cyclopropane products. A reaction mechanism was proposed based on the experimental data and previous research results. The structure of aryl group in diazo compounds also affected the yield of the β-alkylation products or the cyclopropane products.

  19. Catalytic activity of MoS2 nanotubes in the hydrodesulphurization reaction of dibenzothiophene

    OpenAIRE

    F. Leonard-Deepak; R. Pérez-Hernández; Cruz-Reyes, J; Fuentes, S.; M.J. Yacaman

    2011-01-01

    In the need for developing better fuels and as a consequence better hydrodesulphurization catalysts (HDS), new generations of catalysts are necessary to reduce substantially the sulfur content in diesel and gasoline fuels. HDS are catalytic processes that involve Mo or W- based catalysts, often doped with other transition metals. We synthesized MoS 2 nanotubes by reacting MoO 3 with thiourea and used them as catalysts for the hydrodesulfurization of dibenzothiophene in a batch reactor. X-ray ...

  20. Synthesis of 1-alkyl triazolium triflate room temperature ionic liquids and their catalytic studies in multi-component Biginelli reaction

    Indian Academy of Sciences (India)

    Sankaranarayanan Nagarajan; Tanveer M Shaikh; Elango Kandasamy

    2015-09-01

    Synthesis of three Brønsted acid-based ionic liquids, namely, 1-ethyl-1,2,4-triazolium triflate (1a), 1-propyl-1,2,4-triazolium triflate (1b) and 1-butyl-1,2,4-triazolium triflate (1c), is described. These ionic liquids have been employed as catalysts for convenient and high-yielding one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones and 3,4-dihydropyrimidin-2(1H)-thiones, which are Biginelli reaction products. Advantages of the methodology are operational convenience, short reaction times, avoidance of chromatographic purification and non-production of toxic waste. Further, the catalysts are easily recovered and reused without any noticeable diminution in their catalytic activity.

  1. Resonance Scattering Spectral Determination of Trace Penicillin G Using Immunonanogold-HauCI4-NH2OH Catalytic Reaction

    Institute of Scientific and Technical Information of China (English)

    WEN, Guiqing; LI, Yan; LIANG, Aihui; JIANG, Zhiliang

    2009-01-01

    Both nanogold and immunonanogold exhibit catalytic effect on the slow reaction of HAuCl4-NH2OH to form gold particles which displayed a resonance scattering (RS) peak at 580 nm. Using hapten penicillin G (PG) as a model, the nanogold in size of 9 nm was used to label rabbit anti-penicillin G antisera (RAPG) to obtain an immu- nonanogold probe (AuRAPG) for PG. The PG was combined with AuRAPG to form the immunocomplex and big- ger nanogold clusters. After centrifugation, the excess AuRAPG in the supematant exhibited catalytic effect on the reaction of HAuCl4-NH2OH, and the RS intensity at 580 nm (I580 nm) was enhanced greatly. With the addition of PG, the I580 nm decreased accordingly. Under the optimal conditions, the decreased intensity ΔI580 nm was proportional to the PG concentration in the range of 0.15-225 ng/mL, with a detection limit of 0.05 ng/mL for PG.

  2. Evidence for the powerful catalytic ability of imidozirconocene complex from its epoxide ring cleavage reactions - A DFT mechanistic view

    Indian Academy of Sciences (India)

    Dhurairajan Senthilnathan; Rajadurai Vijay Solomon; Ponnambalam Venuvanalingam

    2012-01-01

    Imidozirconocene complex is known for its bifunctional reactivity and catalytic ability and this complex mediates ring cleavage of epoxides. Cyclooctene oxide (1) Norbornene oxide (2) and 2,5-dimethyl cyclohexene oxide (3) undergo ring cleavage in the presence of imidozirconocene complex. Epoxide 1 has accessible -hydrogens (type I) while epoxide 2 and 3 do not have them (type II). Normally type I epoxides undergo elimination while type II epoxides prefer insertion. All the insertion reactions lead to five-membered metallacycle formation and elimination results in thermodynamically stable allyl-alkoxy product. The insertion is a two-step process following either diradical or zwitterionic pathway, while elimination is a one-step concerted reaction. DFT (density functional theory) modelling of these reactions at B3LYP/LANL2DZ level show that epoxide 1 undergoes elimination in agreement with experiment. However, calculations indicate that epoxide (2) proceeds through diradical intermediate in contrast to experimental observations. Surprisingly, epoxide (3) that has both the positions blocked by methyl groups undergoes elimination rather than insertion. AIM and EDA analyses offer further insights on the reaction mechanism and bifunctional reactivity of imidozirconozene complex.

  3. The selective catalytic reduction (SCR) of NO with NH3 at vanadium oxide catalysts: Adsorption, diffusion, reaction

    International Nuclear Information System (INIS)

    The selective catalytic reduction (SCR) of NOx with NH3 over vanadium based metal-oxide (VOx) catalysts has been proven to be one of the most effective NOx reduction processes. Even though it is widely used in commercial applications details of the reaction mechanism are still under debate. Experiments show that adsorption, diffusion, and reactions with NO and (de)hydrogenation processes at the VOx surface contribute elementary steps. These processes are examined in theoretical studies employing density-functional theory together with gradient corrected functionals. The VOx substrate is modeled by clusters cut out from the ideal V2O5(010) surface where peripheral oxygen bonds are saturated by hydrogen. Apart from the perfect oxide surface also differently reduced surfaces are considered by introducing oxygen vacancies. NH3 is found to interact only weakly with the perfect V2O5(010) surface. In the presence of OH groups (Broensted acid sites) NH3 can form a surface NH4+ species. NH3 can also interact with the surface near oxygen vacancies, adsorbing at vanadium centers of lower coordination (Lewis acid sites). In contrast, NO interacts much more weakly with the surface. Further, simultaneous NO, NH3 adsorption and SCR reaction scenarios at Broensted and Lewis acid sites are examined. They result in different reaction paths and intermediates as will be discussed in detail.

  4. Reaction phenomena of catalytic partial oxidation of methane under the impact of carbon dioxide addition and heat recirculation

    International Nuclear Information System (INIS)

    The reaction phenomena of CPOM (catalytic partial oxidation of methane) in a Swiss-roll reactor are studied numerically where a rhodium-based catalyst bed is embedded at the center of the reactor. CO2 is added into the feed gas and excess enthalpy recovery is performed to evaluate their influences on CPOM performance. In the study, the mole ratio of O2 to CH4 (O2/CH4 ratio) is fixed at 0.5 and the mole ratio of CO2 to O2 (CO2/O2 ratio) is in the range of 0–2. The results reveal that CO2 addition into the influent has a slight effect on methane combustion, but significantly enhances dry reforming and suppresses steam reforming. The reaction extents of steam reforming and dry reforming in CPOM without heat recovery and CO2 addition are in a comparable state. Once CO2 is added into the feed gas, the dry reforming is enhanced, thereby dominating CH4 consumption. Compared to the reactor without excess enthalpy recovery, heat recirculation drastically increases the maximum reaction temperature and CH4 conversion in the catalyst bed; it also intensifies the H2 selectivity, H2 yield, CO2 conversion, and syngas production rate. The predictions indicate that the heat recirculation is able to improve the syngas formation up to 45%. - Highlights: • Catalytic partial oxidation of methane with CO2 addition and heat recovery is studied. • CO2 addition has a slight effect on methane combustion. • CO2 addition significantly enhances dry reforming and suppresses steam reforming. • Dry reforming dominates CH4 consumption when CO2 addition is large. • Heat recirculation can improve the syngas formation up to 45%

  5. Quantum chemical investigation of the reaction of O(32) with certain hydrocarbon radicals

    Indian Academy of Sciences (India)

    Ashutosh Gupta; R P Singh; V B Singh; Brijesh Kumar Mishra; N Sathyamurthy

    2007-09-01

    The reaction of ground-state atomic oxygen [O(32)] with methyl, ethyl, -propyl and isopropyl radicals has been studied using the density functional method and the complete basis set model. The energies of the reactants, products, reaction intermediates and various transition states as well as the reaction enthalpies have been computed. The possible product channels and the reaction pathways are identified in each case. In the case of methyl radical the minimum energy reaction pathway leads to the products CO + H2 + H. In the case of ethyl radical the most facile pathway leads to the products, methanal + CH3 radical. For propyl radical (- and iso-), the minimum energy reaction pathway would lead to the channel containing ethanal + methyl radical.

  6. Role of cobalt catalyst porosity in the reaction of hydrocarbon synthesis from CO and H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, O.L.; Tsapkina, V.; Davydov, E. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Inst. of Organic Chemistry; Lapidus, A.L. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Inst. of Organic Chemistry; United Research and Development Centre, Moscow (Russian Federation)

    2010-12-30

    Effect of surface properties on catalyst performance is challenging problem for Fischer-Tropsch synthesis. We have studied a number of cobalt-alumina and cobalt-silica-alumina catalysts prepared by wet impregnation technique. Average pore diameter of supports varied from 6 to 100 nm. All the catalysts were activated uniformly in hydrogen and tested in FT synthesis. Non-linear dependence of cobalt crystallite size on average pore diameter of support have been found. For large pore aluminas with pore diameter 40 nm and more, cobalt crystallite size in activated Co-alumina catalysts reaches 14 nm and almost independent on pore diameter. Catalytic tests demonstrate that large-pore, low surface area supports are preferable in terms of activity. Calculated turnover rates reach 2.6-3.7 x 10{sup -3} s{sup -1} at 190 C for these catalysts. On the contrary, catalysts based on narrow-pore silica-aluminas display smaller turnover rate of about 0.4-0.8 x 10{sup -3} s{sup -1}. Thus, specific activity of small cobalt crystallites, 6 nm or less, was found to be lower than that of large particles. Molar selectivity to C{sub 5+} hydrocarbons reaches maximal values of 88-90% for supports with 7-12 nm average pore diameter. These samples provide lowest CH{sub 4} selectivity, 5-7 mol.%. (orig.)

  7. Synthesis of α-Amidoketones from Vinyl Esters via a Catalytic/Thermal Cascade Reaction.

    Science.gov (United States)

    Holthusen, Katharina; Leitner, Walter; Franciò, Giancarlo

    2016-06-01

    A straightforward, modular, and atom-efficient method is reported for the synthesis of α-amidoketones from vinyl esters via a cascade reaction including hydroformylation, condensation with a primary amine, and a rearrangement step giving water as the only byproduct. The reaction sequence can be performed in one pot or as a three-step procedure. The synthetic applicability is demonstrated by the preparation of different α-amidoketones in moderate to good yields. PMID:27196947

  8. Automatic reduction of the hydrocarbon reaction mechanisms in fusion edge plasmas

    International Nuclear Information System (INIS)

    For predictions of the tritium inventory in future fusion devices like ITER, the amount of eroded carbon and the hydrogen concentrations in co-deposited hydrocarbon layers have to be predicted quantitatively. Predictions about the locations of co-deposited layers are also necessary in order to design deposition diagnostics and layer removal methods. This requires a detailed physical understanding of the erosion and carbon migration processes, and computer simulations. For accurate simulation the multi-species code EIRENE would require to include over 50 participating species. Because such a calculation is computationally prohibitive current codes are being reduced, typically in an ad hoc fashion. In this work the potential of the mathematically sound method of intrinsic low dimensional manifolds (ILDM) for computational speed-up of the hydrocarbon transport problem simulation is thoroughly investigated. It is basically the Monte Carlo implementation of EIRENE that makes this task so challenging. As the method can substantially ameliorate the results in comparison to the conventional reduction mechanisms a step towards ILDM-reduced kinetics is conceived and tested. (orig.)

  9. Simple relationships for estimating intraparticle transport effects for catalytically promoted endothermic reactions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.F.

    1998-06-16

    Relationships for estimating effectiveness factors for porous-solid-catalyzed fluid reactions can result from assuming approximations to temperature and concentration profiles. Approximations designed to simplify the outcome result in simple, explicit, analytic relationships for both isothermal and nonisothermal nth-order reaction systems. For isothermal systems, formulas developed predict effectiveness within 25% of the true isothermal effectiveness factors ({eta}`s) over the range 0.1 > {eta} > 0.99. For isothermal or endothermic reaction systems with {eta} > 0.65, errors are less than 10%. Even in the maximum-error region, estimates for endothermic systems are within a factor of two of those obtained by solution of the rigorous heat and mass transfer equations. For isothermal or endothermic systems with {eta} > 0.95, errors are less than 1%. Thus the formulas can also serve diagnostic uses that confirm presence or absence of significant internal heat or mass transport effects in porous reacting systems. Extension of the approach to non-nth-order reactions is possible; formulas are derived for simple isothermal and nonisothermal Langmuir-Hinshelwood reaction systems. Application of the work to exothermic reactions was not tested, but steeper gradients in such systems would tend to degrade accuracy of the relationships. The equations derived in this work are simpler and easier of application than any others proposed thus far.

  10. One-pot Solvent-free Catalytic Dimerization Reaction of Phenylacetylene to 1-Phenylnaphthalene

    Indian Academy of Sciences (India)

    Avat (Arman) Taherpour; Sepehr Taban; Ako Yari

    2015-09-01

    In this study, we report a smooth one-pot, solvent-free catalytic dimerization of phenylacetylene (1) to 1-phenylnaphthalene (2) by Cu/C at room temperature in good yield (∼100%). In the computational study, the structure of the 1-phenylnaphthalene was optimized by DFT-B3LYP/6-31G* method. The rotation barrier around C-C of the phenyl and naphthalene parts of the molecule and its UV-Visible spectrum were calculated. The modelling of the mechanism of production of 2 from 1 was performed with and without Cu/C catalyst. The data of EDS and SEM of the Cu/C catalyst surface are also reported.

  11. Improvement of hydrogen isotope exchange reactions on Li4SiO4 ceramic pebble by catalytic metals

    Institute of Scientific and Technical Information of China (English)

    Cheng Jian Xiao; Chun Mei Kang; Xiao Jun Chen; Xiao Ling Gao; Yang Ming Luo; Sheng Hu; Xiao Lin Wang

    2012-01-01

    Li4SiO4 ceramic pebble is considered as a candidate tritium breeding material of Chinese Helium Cooled Solid Breeder Test Blanket Module (CH HCSB TBM) for the International Thermonuclear Experimental Reactor (ITER).In this paper,Li4SiO4 ceramic pebbles deposited with catalytic metals,including Pt,Pd,Ru and Ir,were prepared by wet impregnation method.The metal particles on Li4SiO4 pebble exhibit a good promotion of hydrogen isotope exchange reactions in H2-DzO gas system,with conversion equilibrium temperature reduction of 200-300 ℃.The out-of-pile tritium release experiments were performed using 1.0 wt% Pt/Li4SiO4 and Li4SiO4 pebbles irradiated in a thermal neutron reactor.The thermal desorption spectroscopy shows that Pt was effective to increase the tritium release rate at lower temperatures,and the ratio of tritium molecule (HT) to tritiated water (HTO) of 1.0 wt% Pt/Li4SiO4 was much more than that of Li4SiO4,which released mainly as HTO.Thus,catalytic metals deposited on Li4SiO4 pebble may help to accelerate the recovery of bred tritium particularly in low temperature region,and increase the tritium molecule form released from the tritium breeding materials.

  12. Hexene catalytic cracking over 30% sapo-34 catalyst for propylene maximization: influence of reaction conditions and reaction pathway exploration

    Directory of Open Access Journals (Sweden)

    Z. Nawaz

    2009-12-01

    Full Text Available Higher olefins are produced as a by product in a number of refinery processes and are one of the potential raw materials to produce propylene. In the present study, FCC model feed compound was considered to explore the olefin cracking features and options to enhance propylene using 30% SAPO-34 zeolite as catalyst in a micro-reactor. The superior selectivity of propylene (73 wt% and higher total olefin selectivity was obtained over 30% SAPO-34 catalyst than over Y or ZSM-5 zeolite catalysts. The thermodynamical constraints were found to be relatively less serious in the case of 1-hexene conversion. Most of the 1-hexene follows a direct cracking pathway to give two propylene molecules, due to weak acid sites and better diffusion opportunities. The higher temperature and short residence time could also suppress the hydrogen transfer reactions. From OPE (olefins performance envelop the products were classified as primary, secondary, or both. Iso-hexene (2-methyl-2-pentene cracking was also analyzed in order to justify a shape selective effect of the SAPO-34 catalyst. A detailed integrated reaction network together with an associated mechanism was proposed and discussed in detail for their fundamental importance in understanding the olefin cracking processes over SAPO-34.

  13. Catalytic control of diesel engine particulate emission: studies on model reactions over a EURO Pt-1 (Pt/SiO2) catalyst

    OpenAIRE

    Xue, E.; Seshan, K.; Ommen, van, B.; Ross, J.R.H.

    1993-01-01

    The catalytic oxidation of nitric oxide to nitrogen dioxide in the presence of sulphur dioxide over a standard Pt/SiO2 catalyst (EuroPt-1) was studied. The gas-phase reactions between nitric oxide, sulphur dioxide and oxygen were found to be insignificant under the experimental conditions concerned. The Pt/SiO2 catalyst was observed to be very active in catalyzing the reactions both of NO + O2 to NO2 and of SO2 + O2 to SO3. In the presence of sulphur dioxide, the catalytic activity for nitric...

  14. Spectrophotometric reaction rate method for the determination of osmium by its catalytic effect on the oxidation of gallocyanine by bromate.

    Science.gov (United States)

    Ensafi, A A; Shamss-E-Sollari, E

    1994-10-01

    A simple kinetic spectrophotometric method was developed for the determination of osmium. The method is based on the catalytic effect of osmium as osmium tetroxide on the oxidation of gallocyanine by bromate at pH 7. The reaction is monitored spectrophotometrically by measuring the decreasing absorbance of gallocyanine at 620 nm by the fixed-time method. A detection limit of 0.01 ng/ml and linear calibration curve from 0.1 to 100 and from 100 to 1200 ng/ml Os(VIII) is reported. The relative standard deviation for 0.0100 microg/ml Os(VIII) is 0.8% (N = 10). The method is free from most interferences. Osmium in synthetic samples is determined by this method, with satisfactory results. PMID:18966116

  15. Insight into the Catalytic Mechanism of Bimetallic Platinum–Copper Core–Shell Nanostructures for Nonaqueous Oxygen Evolution Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Lu; Luo, Xiangyi; Kropf, A. Jeremy; Wen, Jianguo; Wang, Xiaoping; Lee, Sungsik; Myers, Deborah J.; Miller, Dean; Wu, Tianpin; Lu, Jun; Amine, Khalil

    2016-01-01

    The oxygen evolution reaction (OER) plays a critical role in multiple energy conversion and storage applications. However, its sluggish kinetics usually results in large voltage polarization and unnecessary energy loss. Therefore, designing efficient catalysts that could facilitate this process has become an emerging topic. Here, we present a unique Pt–Cu core–shell nanostructure for catalyzing the nonaqueous OER. The catalysts were systematically investigated with comprehensive spectroscopic techniques, and applied in nonaqueous Li–O2 electrochemical cells, which exhibited dramatically reduced charging overpotential (<0.2 V). The superior performance is explained by the robust Cu(I) surface sites stabilized by the Pt core in the nanostructure. The insights into the catalytic mechanism of the unique Pt–Cu core–shell nanostructure gained in this work are expected to serve as a guide for future design of other nanostructured bimetallic OER catalysts.

  16. Investigation of catalytic activity towards oxygen reduction reaction of Pt dispersed on boron doped graphene in acid medium.

    Science.gov (United States)

    Pullamsetty, Ashok; Sundara, Ramaprabhu

    2016-10-01

    Boron doped graphene was prepared by a facile method and platinum (Pt) decoration over boron doped graphene was done in various chemical reduction methods such as sodium borohydride (NaBH4), polyol and modified polyol. X-ray diffraction analysis indicates that the synthesized catalyst particles are present in a nanocrystalline structure and transmission and scanning electron microscopy were employed to investigate the morphology and particle distribution. The electrochemical properties were investigated with the help of the rotating disk electrode (RDE) technique and cyclic voltammetry. The results show that the oxygen reduction reaction (ORR) takes place by a four-electron process. The kinetics of the ORR was evaluated using K-L and Tafel plots. The electrocatalyst obtained in modified polyol reduction method has shown the better catalytic activity compared to other two electrocatalysts. PMID:27393888

  17. Synthesis, characterization, and catalytic activity in Suzuki coupling and catalase-like reactions of new chitosan supported Pd catalyst.

    Science.gov (United States)

    Baran, Talat; Inanan, Tülden; Menteş, Ayfer

    2016-07-10

    The aim of this study is to analyze the synthesis of a new chitosan supported Pd catalyst and examination of its catalytic activity in: Pd catalyst was synthesized using chitosan as a biomaterial and characterized with FTIR, TG/DTG, XRD, (1)H NMR, (13)C NMR, SEM-EDAX, ICP-OES, Uv-vis spectroscopies, and magnetic moment, along with molar conductivity analysis. Biomaterial supported Pd catalyst indicated high activity and long life time as well as excellent turnover number (TON) and turnover frequency (TOF) values in Suzuki reaction. Biomaterial supported Pd catalyst catalyzed H2O2 decomposition reaction with considerable high activity using comparatively small loading catalyst (10mg). Redox potential of biomaterial supported Pd catalyst was still high without negligible loss (13% decrease) after 10 cycles in reusability tests. As a consequence, eco-friendly biomaterial supported Pd catalyst has superior properties such as high thermal stability, long life time, easy removal from reaction mixture and durability to air, moisture and high temperature.

  18. Intramolecular hydroarylation of aryl propargyl ethers catalyzed by indium: the mechanism of the reaction and identifying the catalytic species.

    Science.gov (United States)

    Menkir, Mengistu Gemech; Lee, Shyi-Long

    2016-07-01

    The mechanism and regioselectivity of the intramolecular hydroarylation of phenyl propargyl ether catalyzed by indium in gas and solvent phases were investigated by means of the density functional theory method. The computed results revealed that the reaction proceeds through initial π-coordination of the propargyl moiety to the catalyst, which triggers the nucleophilic attack of the phenyl ring via an exo- or endo-dig pathway in a Friedel-Crafts type mechanism. Calculation results obtained employing InI2(+) as the possible catalyst show similar activation energies for the 5-exo-dig and 6-endo-dig pathways. In contrast, the neural catalyst InI3 shows a kinetic preference for 6-endo-dig versus 5-exo-dig cyclizations leading to the experimentally observed product, 2H-chromene. The calculation results suggest that InI3 could be the real catalytic species for this reaction as it shows regioselectivity in agreement with the experimental observation. Furthermore, the 6-endo-dig cyclization through deprotonation/protonation steps is kinetically more favored than the stepwise two consecutive [1,2]-H shift steps. The rate determining step of the whole catalytic cycle is the deprotonation step with an energy barrier of 18.9 kcal mol(-1) in toluene solvent. The effects of substituents on both the phenyl ring and the propargyl moiety on the selectivity and elementary steps of the hydroarylation process were investigated. A methoxy group, particularly at the meta-position, on the phenyl ring largely decreases the energy barrier of the first step for the 6-endo path, though it shows little effect on the activation energies of the second and third steps. Our calculation results are in good agreement with the experimental results. PMID:27298068

  19. The effect of noble metals on catalytic methanation reaction over supported Mn/Ni oxide based catalysts

    Directory of Open Access Journals (Sweden)

    Wan Azelee Wan Abu Bakar

    2015-09-01

    Full Text Available Carbon dioxide (CO2 in sour natural gas can be removed using green technology via catalytic methanation reaction by converting CO2 to methane (CH4 gas. Using waste to wealth concept, production of CH4 would increase as well as creating environmental friendly approach for the purification of natural gas. In this research, a series of alumina supported manganese–nickel oxide based catalysts doped with noble metals such as ruthenium and palladium were prepared by wetness impregnation method. The prepared catalysts were run catalytic screening process using in-house built micro reactor coupled with Fourier Transform Infra Red (FTIR spectroscopy to study the percentage CO2 conversion and CH4 formation analyzed by GC. Ru/Mn/Ni(5:35:60/Al2O3 calcined at 1000 °C was found to be the potential catalyst which gave 99.74% of CO2 conversion and 72.36% of CH4 formation at 400 °C reaction temperature. XRD diffractogram illustrated that the supported catalyst was in polycrystalline with some amorphous state at 1000 °C calcination temperature with the presence of NiO as active site. According to FESEM micrographs, both fresh and used catalysts displayed spherical shape with small particle sizes in agglomerated and aggregated mixture. Nitrogen Adsorption analysis revealed that both catalysts were in mesoporous structures with BET surface area in the range of 46–60 m2/g. All the impurities have been removed at 1000 °C calcination temperature as presented by FTIR, TGA–DTA and EDX data.

  20. Effect of size of copper nanoparticles on its catalytic behaviour in Ullman reaction

    Indian Academy of Sciences (India)

    Mohd Samim; N K Kaushik; Amarnath Maitra

    2007-10-01

    The condensation of iodobenzene to biphenyl is an industrially important reaction due to its significant role in organic synthesis as drug intermediates. The reaction takes place in the presence of copper powder as catalyst. We have shown in this paper that the size of the copper nanoparticles as well as its exposed surface area is responsible for the yield of chemical reaction. The uncapped copper powder showed a 43% conversion of iodobenzene to biphenyl in 5 h under our experimental conditions. Same amount of copper nanoparticles (size, ∼ 66 nm diameter) prepared by citrate capping showed 88% conversion of iodobenzene to biphenyl, which increased to about 95% when 8 nm diameter capped copper nanoparticles are used. Surprisingly, 5 nm size copper nanoparticles showed no change in the yield of about 95%.

  1. Coke Formation in a Zeolite Crystal During the Methanol-to-Hydrocarbons Reaction as Studied with Atom Probe Tomography.

    Science.gov (United States)

    Schmidt, Joel E; Poplawsky, Jonathan D; Mazumder, Baishakhi; Attila, Özgün; Fu, Donglong; de Winter, D A Matthijs; Meirer, Florian; Bare, Simon R; Weckhuysen, Bert M

    2016-09-01

    Understanding the formation of carbon deposits in zeolites is vital to developing new, superior materials for various applications, including oil and gas conversion processes. Herein, atom probe tomography (APT) has been used to spatially resolve the 3D compositional changes at the sub-nm length scale in a single zeolite ZSM-5 crystal, which has been partially deactivated by the methanol-to-hydrocarbons reaction using (13) C-labeled methanol. The results reveal the formation of coke in agglomerates that span length scales from tens of nanometers to atomic clusters with a median size of 30-60 (13) C atoms. These clusters correlate with local increases in Brønsted acid site density, demonstrating that the formation of the first deactivating coke precursor molecules occurs in nanoscopic regions enriched in aluminum. This nanoscale correlation underscores the importance of carefully engineering materials to suppress detrimental coke formation.

  2. Coke Formation in a Zeolite Crystal During the Methanol-to-Hydrocarbons Reaction as Studied with Atom Probe Tomography.

    Science.gov (United States)

    Schmidt, Joel E; Poplawsky, Jonathan D; Mazumder, Baishakhi; Attila, Özgün; Fu, Donglong; de Winter, D A Matthijs; Meirer, Florian; Bare, Simon R; Weckhuysen, Bert M

    2016-09-01

    Understanding the formation of carbon deposits in zeolites is vital to developing new, superior materials for various applications, including oil and gas conversion processes. Herein, atom probe tomography (APT) has been used to spatially resolve the 3D compositional changes at the sub-nm length scale in a single zeolite ZSM-5 crystal, which has been partially deactivated by the methanol-to-hydrocarbons reaction using (13) C-labeled methanol. The results reveal the formation of coke in agglomerates that span length scales from tens of nanometers to atomic clusters with a median size of 30-60 (13) C atoms. These clusters correlate with local increases in Brønsted acid site density, demonstrating that the formation of the first deactivating coke precursor molecules occurs in nanoscopic regions enriched in aluminum. This nanoscale correlation underscores the importance of carefully engineering materials to suppress detrimental coke formation. PMID:27485276

  3. Dynamics of interfacial reactions between O({sup 3} P) atoms and long-chain liquid hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Mhairi [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Bagot, Paul A J [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Koehler, Sven P K [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Reed, Stewart K [Department of Physics and Astronomy, University of Edinburgh, The King' s Buildings, Edinburgh EH9 3JZ (United Kingdom); Westacott, Robin E [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Costen, Matthew L [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); McKendrick, Kenneth G [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)

    2007-09-15

    Recent progress that has been made towards understanding the dynamics of collisions at the gas-liquid interface is summarized briefly. We describe in this context a promising new approach to the experimental study of gas-liquid interfacial reactions that we have introduced. This is based on laser-photolytic production of reactive gas-phase atoms above the liquid surface and laser-spectroscopic probing of the resulting nascent products. This technique is illustrated for reaction of O({sup 3}P) atoms at the surface of the long-chain liquid hydrocarbon squalane (2,6,10,15,19,23-hexamethyltetracosane). Laser-induced fluorescence detection of the nascent OH has revealed mechanistically diagnostic correlations between its internal and translational energy distributions. Vibrationally excited OH molecules are able to escape the surface. At least two contributions to the product rotational distributions are identified, confirming and extending previous hypotheses of the participation of both direct and trapping-desorption mechanisms. We speculate briefly on future experimental and theoretical developments that might be necessary to address the many currently unanswered mechanistic questions for this, and other, classes of gas-liquid interfacial reaction.

  4. Method of obtaining sulphur-labelled compounds by reaction of ''hot'' sulphur-35 atoms with cyclic hydrocarbons

    International Nuclear Information System (INIS)

    The authors discuss methods of obtaining sulphur-labelled compounds, such as aliphatic and cyclic mercaptans and sulphides, by direct synthesis employing recoil atoms from the reaction Cl35 (n, p) S35. Hot S35 atoms were obtained in the middle of the target substance by exposing mixtures of C Cl4 and a cyclic hydrocarbon (cyclopentane, cyelohexane) to neutrons in a reactor. A method is given for irradiating the mixtures and then separating the various sulphur-bearing compounds by specific chemical methods, rectification, and paper and gas-liquid chromatography. The purpose of the exchange is clarified. The relation of the yield of the separated sulphur-labelled products to the composition of the mixture and type of exposure was investigated, and an active-sulphur balance settled. New types of atomic sulphur reactions were established: the CH2-group is replaced and implanted on the C-C link. The cyclic molecule is destroyed in the interaction with the hot sulphur atoms. Hot sulphur atoms can initiate the formation of polymers containing sulphur. The yields of these reactions were established. Up to 98% of the active sulphur is linked in the form of organic sulphur compounds. It was shown that sulphur-labelled thiophene, tetrahydrothiopyrane, cyclopentyl-mercaptan, cyclohexylmercaptan, ethyl-propyl-butyl-mercaptans, dicyclopentyl-sulphide, polymeric mercaptans and sulphides could be synthesized by heat. I t is possible to regulate within broad limits the yield of various labelled compounds by changing the decelerating properties of the medium. (author)

  5. Two-phase (bio)catalytic reactions in a table-top centrifugal contact separator

    NARCIS (Netherlands)

    Kraai, Gerard N.; Zwol, Floris van; Schuur, Boelo; Heeres, Hero J.; Vries, Johannes G. de

    2008-01-01

    A new spin on catalysis: A table-top centrifugal contact separator allows for fast continuous two-phase reactions to be performed by intimately mixing two immiscible phases and then separating them. Such a device has been used to produce biodiesel from sunflower oil and MeOH/NaOMe. A lipase-catalyze

  6. A New Type of Traveling Interface Modulations in a Catalytic Surface Reaction

    OpenAIRE

    Rafti, M.; Uecker, H.; Lovis, F.; Krupennikova, V.; Imbihl, R.

    2011-01-01

    A new type of traveling interface modulations has been observed in the NH$_3$ + O$_2$ reaction on a Rh(110) surface. A model is set up which reproduces the effect, which is attributed to diffusional mixing of two spatially separated adsorbates causing an excitability which is strictly localized to the vicinity of the interface of the adsorbate domains.

  7. Investigation of Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics and Computational Fluid Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Francine [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Agblevor, Foster [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Klein, Michael [Univ. of Delaware, Newark, DE (United States); Sheikhi, Reza [Northeastern Univ., Boston, MA (United States)

    2015-09-30

    A collaborative effort involving experiments, kinetic modeling, and computational fluid dynamics (CFD) was used to understand co-gasification of coal-biomass mixtures. The overall goal of the work was to determine the key reactive properties for coal-biomass mixed fuels. Sub-bituminous coal was mixed with biomass feedstocks to determine the fluidization and gasification characteristics of hybrid poplar wood, switchgrass and corn stover. It was found that corn stover and poplar wood were the best feedstocks to use with coal. The novel approach of this project was the use of a red mud catalyst to improve gasification and lower gasification temperatures. An important results was the reduction of agglomeration of the biomass using the catalyst. An outcome of this work was the characterization of the chemical kinetics and reaction mechanisms of the co-gasification fuels, and the development of a set of models that can be integrated into other modeling environments. The multiphase flow code, MFIX, was used to simulate and predict the hydrodynamics and co-gasification, and results were validated with the experiments. The reaction kinetics modeling was used to develop a smaller set of reactions for tractable CFD calculations that represented the experiments. Finally, an efficient tool was developed, MCHARS, and coupled with MFIX to efficiently simulate the complex reaction kinetics.

  8. Investigation of Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics and Computational Fluid Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Francine [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Agblevor, Foster [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Klein, Michael [Univ. of Delaware, Newark, DE (United States); Sheikhi, Reza [Northeastern Univ., Boston, MA (United States)

    2015-12-31

    A collaborative effort involving experiments, kinetic modeling, and computational fluid dynamics (CFD) was used to understand co-gasification of coal-biomass mixtures. The overall goal of the work was to determine the key reactive properties for coal-biomass mixed fuels. Sub-bituminous coal was mixed with biomass feedstocks to determine the fluidization and gasification characteristics of hybrid poplar wood, switchgrass and corn stover. It was found that corn stover and poplar wood were the best feedstocks to use with coal. The novel approach of this project was the use of a red mud catalyst to improve gasification and lower gasification temperatures. An important results was the reduction of agglomeration of the biomass using the catalyst. An outcome of this work was the characterization of the chemical kinetics and reaction mechanisms of the co-gasification fuels, and the development of a set of models that can be integrated into other modeling environments. The multiphase flow code, MFIX, was used to simulate and predict the hydrodynamics and co-gasification, and results were validated with the experiments. The reaction kinetics modeling was used to develop a smaller set of reactions for tractable CFD calculations that represented the experiments. Finally, an efficient tool was developed, MCHARS, and coupled with MFIX to efficiently simulate the complex reaction kinetics.

  9. Catalytic and DRIFTS study of the WGS reaction on Pt-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Vignatti, Ch.; Avila, M.S.; Apesteguia, C.R.; Garetto, T.F. [Catalysis Science and Engineering Research Group (GICIC), Instituto de Investigaciones en Catalisis y Petroquimica - INCAPE - (UNL-CONICET), Santiago del Estero 2654, 3000 Santa Fe (Argentina)

    2010-07-15

    The water-gas shift (WGS) activity of Pt/SiO{sub 2}, Pt/CeO{sub 2} and Pt/TiO{sub 2} catalysts was studied by in-situ diffuse reflection infrared Fourier transform spectroscopy (DRIFTS). Samples contained a similar amount of Pt, between 0.34 and 0.50%, and were characterized by employing a variety of physical and spectroscopic techniques. The catalyst activities were evaluated through both CO conversion versus temperature and CO conversion versus time tests. The DRIFTS spectra were obtained on stream during the WGS reaction at increasing temperatures, from 303 to 573 K. Reduced ceria was the only active support and promoted the WGS reaction on surface bridging OH groups that react with CO to form formate intermediates. Pt/SiO{sub 2} was more active than CeO{sub 2} and catalyzed the WGS reaction through a monofunctional redox mechanism on metallic Pt sites. The CO conversion turnover rate was more than one order of magnitude greater on Pt/CeO{sub 2} than on Pt/SiO{sub 2} showing that the reaction proceeds faster via a bifunctional metal-support mechanism. Platinum on Pt/CeO{sub 2} increased the concentration of OH groups by increasing the ceria reduction extent and also provided a faster pathway for the formation of formate intermediates in comparison to CeO{sub 2} support. Pt/TiO{sub 2} catalysts were clearly more active than Pt/CeO{sub 2}. The WGS reaction on Pt/TiO{sub 2} was catalyzed via a bifunctional metal-support mechanism, probably involving the activation of CO and water on the metal and the support, respectively. The role of platinum on Pt/TiO{sub 2} was critical for promoting the reduction of Ti{sup 4+} ions to Ti{sup 3+} which creates oxygen vacancies in the support to efficiently activate water. (author)

  10. Kinetic Models Study of Hydrogenation of Aromatic Hydrocarbons in Vacuum Gas Oil and Basrah Crude Oil Reaction

    Directory of Open Access Journals (Sweden)

    Muzher M. Ibraheem

    2013-05-01

    Full Text Available             The aim of this research is to study the kinetic reaction models for catalytic hydrogenation of aromatic content for Basrah crude oil (BCO and vacuum gas oil (VGO derived from Kirkuk crude oil which has the boiling point rang of (611-833K.            This work is performed using a hydrodesulphurization (HDS pilot plant unit located in AL-Basil Company. A commercial (HDS catalyst cobalt-molybdenum (Co-Mo supported in alumina (γ-Al2O3 is used in this work. The feed is supplied by North Refinery Company in Baiji. The reaction temperatures range is (600-675 K over liquid hourly space velocity (LHSV range of (0.7-2hr-1 and hydrogen pressure is 3 MPa with H2/oil ratio of 300 of Basrah Crude oil (BCO, while the corresponding conditions for vacuum gas oil (VGO are (583-643 K, (1.5-3.75 hr-1, 3.5 MPa and 250  respectively .            The results showed that the reaction kinetics is of second order for both types of feed. Activation energies are found to be 30.396, 38.479 kJ/mole for Basrah Crude Oil (BCO and Vacuum Gas Oil (VGO respectively.

  11. Structural studies of the catalytic reaction pathway of a hyperthermophilic histidinol-phosphate aminotransferase

    OpenAIRE

    Fernandez, F.J. (Francisco J.); Vega, M C; Lehmann, F; Sandmeier, E; Gehring, H; Christen, P; Wilmanns, M.

    2004-01-01

    In histidine biosynthesis, histidinol-phosphate aminotransferase catalyzes the transfer of the amino group from glutamate to imidazole acetol-phosphate producing 2-oxoglutarate and histidinol phosphate. In some organisms such as the hyperthermophile Thermotoga maritima, specific tyrosine and aromatic amino acid transaminases have not been identified to date, suggesting an additional role for histidinol-phosphate aminotransferase in other transamination reactions generating aromatic amino acid...

  12. Reproduction of a Protocell by Replication of Minority Molecule in Catalytic Reaction Network

    OpenAIRE

    Kamimura, Atsushi; Kaneko, Kunihiko

    2010-01-01

    For understanding the origin of life, it is essential to explain the development of a compartmentalized structure, which undergoes growth and division, from a set of chemical reactions. In this study, a hypercycle with two chemicals that mutually catalyze each other is considered in order to show that the reproduction of a protocell with a growth-division process naturally occurs when the replication speed of one chemical is considerably slower than that of the other chemical. It is observed ...

  13. Compartmentalization and Cell Division through Molecular Discreteness and Crowding in a Catalytic Reaction Network

    OpenAIRE

    Atsushi Kamimura; Kunihiko Kaneko

    2014-01-01

    Explanation of the emergence of primitive cellular structures from a set of chemical reactions is necessary to unveil the origin of life and to experimentally synthesize protocells. By simulating a cellular automaton model with a two-species hypercycle, we demonstrate the reproduction of a localized cluster; that is, a protocell with a growth-division process emerges when the replication and degradation speeds of one species are respectively slower than those of the other species, because of ...

  14. CO-H2-O2 reaction on a catalytic surface: A computer simulation study

    International Nuclear Information System (INIS)

    The oxidation of carbon monoxide to form carbon dioxide and the oxidation of hydrogen to form water are the reactions of environmental and industrial importance. These two reactions have been studied independently by Monte Carlo computer simulation using Langmuir-Hinshelwood mechanism but no effort has been made to study the combined CO-H2-O2 reaction on these lines. Keeping in view the importance of this 3-component system, the surface coverages and production rates are studied as a function of CO partial pressure for different ratios of H2 and O2. The diffusion of reacting species on the surface as well as their desorption from the surface is also introduced to include temperature effects. The phase diagrams of the system are drawn to observe the behavior of these atoms/molecules on the surface and the production of CO2 and H2O are determined at different concentrations of H2. The results are compared with 2-component systems.

  15. Site-specific growth of Au-Pd alloy horns on Au nanorods: A platform for highly sensitive monitoring of catalytic reactions by surface enhancement raman spectroscopy

    KAUST Repository

    Huang, Jianfeng

    2013-06-12

    Surface-enhanced Raman scattering (SERS) is a highly sensitive probe for molecular detection. The aim of this study was to develop an efficient platform for investigating the kinetics of catalytic reactions with SERS. To achieve this, we synthesized a novel Au-Pd bimetallic nanostructure (HIF-AuNR@AuPd) through site-specific epitaxial growth of Au-Pd alloy horns as catalytic sites at the ends of Au nanorods. Using high-resolution electron microscopy and tomography, we successfully reconstructed the complex three-dimensional morphology of HIF-AuNR@AuPd and identified that the horns are bound with high-index {11l} (0.25 < l < 0.43) facets. With an electron beam probe, we visualized the distribution of surface plasmon over the HIF-AuNR@AuPd nanorods, finding that strong longitudinal surface plasmon resonance concentrated at the rod ends. This unique crystal morphology led to the coupling of high catalytic activity with a strong SERS effect at the rod ends, making HIF-AuNR@AuPd an excellent bifunctional platform for in situ monitoring of surface catalytic reactions. Using the hydrogenation of 4-nitrothiophenol as a model reaction, we demonstrated that its first-order reaction kinetics could be accurately determined from this platform. Moreover, we clearly identified the superior catalytic activity of the rod ends relative to that of the rod bodies, owing to the different SERS activities at the two positions. In comparison with other reported Au-Pd bimetallic nanostructures, HIF-AuNR@AuPd offered both higher catalytic activity and greater detection sensitivity. © 2013 American Chemical Society.

  16. Multiphasic Reaction Modeling for Polypropylene Production in a Pilot-Scale Catalytic Reactor

    Directory of Open Access Journals (Sweden)

    Mohammad Jakir Hossain Khan

    2016-06-01

    Full Text Available In this study, a novel multiphasic model for the calculation of the polypropylene production in a complicated hydrodynamic and the physiochemical environments has been formulated, confirmed and validated. This is a first research attempt that describes the development of the dual-phasic phenomena, the impact of the optimal process conditions on the production rate of polypropylene and the fluidized bed dynamic details which could be concurrently obtained after solving the model coupled with the CFD (computational fluid dynamics model, the basic mathematical model and the moment equations. Furthermore, we have established the quantitative relationship between the operational condition and the dynamic gas–solid behavior in actual reaction environments. Our results state that the proposed model could be applied for generalizing the production rate of the polymer from a chemical procedure to pilot-scale chemical reaction engineering. However, it was assumed that the solids present in the bubble phase and the reactant gas present in the emulsion phase improved the multiphasic model, thus taking into account that the polymerization took place mutually in the emulsion besides the bubble phase. It was observed that with respect to the experimental extent of the superficial gas velocity and the Ziegler-Natta feed rate, the ratio of the polymer produced as compared to the overall rate of production was approximately in the range of 9%–11%. This is a significant amount and it should not be ignored. We also carried out the simulation studies for comparing the data of the CFD-dependent dual-phasic model, the emulsion phase model, the dynamic bubble model and the experimental results. It was noted that the improved dual-phasic model and the CFD model were able to predict more constricted and safer windows at similar conditions as compared to the experimental results. Our work is unique, as the integrated developed model is able to offer clearer ideas

  17. A model of protocell based on the introduction of a semi-permeable membrane in a stochastic model of catalytic reaction networks

    Directory of Open Access Journals (Sweden)

    Marco Villani

    2013-09-01

    Full Text Available In this work we introduce some preliminary analyses on the role of a semi-permeable membrane in the dynamics of a stochastic model of catalytic reaction sets (CRSs of molecules. The results of the simulations performed on ensembles of randomly generated reaction schemes highlight remarkable differences between this very simple protocell description model and the classical case of the continuous stirred-tank reactor (CSTR. In particular, in the CSTR case, distinct simulations with the same reaction scheme reach the same dynamical equilibrium, whereas, in the protocell case, simulations with identical reaction schemes can reach very different dynamical states, despite starting from the same initial conditions.

  18. Hydrocarbon conversion with ZSM-12

    Energy Technology Data Exchange (ETDEWEB)

    Rosinski, E.J.; Rubin, M.K.

    1976-07-20

    The specification discloses conversion of hydrocarbons using, as catalyst, a crystalline zeolite designated ZSM-12. The zeolite has the following composition: 1,0 +- 0.4 M/sub 2/O . W/sub 2/O . 20-200 YO/sub 2/ . ZH/sub 2/O where M is at least one cation and n is the valence thereof, W is aluminum or gallium, Y is silicon or germanium, and Z is a value ranging from 0 to 60. In a preferred synthesized form, M is a mixture of alkali metal cations, especially sodium, and tetraalkylammonium cations. These zeolites are characterized by a specified x-ray powder diffraction pattern. Catalytically-active forms of said zeolites are used in a wide variety of hydrocarbon conversion reactions.

  19. Structural and catalytic properties of a novel vanadium containing solid core mesoporous silica shell catalysts for gas phase oxidation reaction

    Indian Academy of Sciences (India)

    N Venkatathri; Vijayamohanan K Pillai; A Rajini; M Nooka Raju; I A K Reddy

    2013-01-01

    A novel vanadium containing solid core mesoporous silica shell catalyst was synthesized with different Si/V ratios by sol-gel method under neutral conditions. The synthesized materials were characterized by various techniques and gas phase diphenyl methane oxidation reaction. The mesoporosity combined with microporosity are formed by incorporation of octadecyltrichloro silane and triethylamine in the catalyst and it was found out from E-DAX and BET—surface area analysis. The material was found to be nanocrystalline. Vanadium is present as V4+ species in as-synthesized samples and convert to V5+ on calcination. Most of the vanadium is present in tetrahedral or square pyramidal environment. Incorporation of vanadium in silica framework was confirmed by 29Si MAS NMR analysis. Among the various vanadium containing solid core mesoporous silica shell catalysts, the Si/V =100 ratio exhibited maximum efficiency towards diphenyl methane to benzophenone gas phase reaction. The optimum condition required for maximum conversion and selectivity was found out from the catalytic studies.

  20. On the Catalytic Effect of Water in the Intramolecular Diels–Alder Reaction of Quinone Systems: A Theoretical Study

    Directory of Open Access Journals (Sweden)

    Jorge Soto-Delgado

    2012-11-01

    Full Text Available The mechanism of the intramolecular Diels–Alder (IMDA reaction of benzoquinone 1, in the absence and in the presence of three water molecules, 1w, has been studied by means of density functional theory (DFT methods, using the M05-2X and B3LYP functionals for exploration of the potential energy surface (PES. The energy and geometrical results obtained are complemented with a population analysis using the NBO method, and an analysis based on the global, local and group electrophilicity and nucleophilicity indices. Both implicit and explicit solvation emphasize the increase of the polarity of the reaction and the reduction of activation free energies associated with the transition states (TSs of this IMDA process. These results are reinforced by the analysis of the reactivity indices derived from the conceptual DFT, which show that the increase of the electrophilicity of the quinone framework by the hydrogen-bond formation correctly explains the high polar character of this intramolecular process. Large polarization at the TSs promoted by hydrogen-bonds and implicit solvation by water together with a high electrophilicity-nucleophilicity difference consistently explains the catalytic effects of water molecules.

  1. Spectrophotometric Determination of Trace Cyanide in Fruit Wines by the Catalytic Reaction of Ninhydrin Following Micro-Distillation

    Directory of Open Access Journals (Sweden)

    Saksit Chanthai

    2014-03-01

    Full Text Available Trace analysis of cyanide (CN based on the absorbance of the catalytic reaction of ninhydrin (NH in the presence of CN- was developed. This reaction was investigated consisting of 0.08 M NH, 0.4 M Na2CO3, 1% (v/v Tween 20 and 2.5 M NaOH in 5-mL final volume. The absorbance of the CN-NH complex was measured against the reagent blank at 598 nm. The calibration curve was widely linear over the range of 40-160 µg/L with r2 >0.99. The method recoveries of free cyanide, bound cyanide and total cyanide for wine samples were found in the range of 76.2-89.2%, 73.2-91.2% and 76.8-94.8%, respectively, at 250 µg/L CN- spiked level. Limit of detection was 6 µg/L. The reproducibility of the proposed method was less than 4.44%. This method was then applied for local Thai fruit wines. No trace amount of cyanide was detected, as if high recovery (88.4% of the micro-distillation was guaranteed. The obtained results were in agreement with those of the chloramine-T/barbituric acid-pyridine method with no statistically significant difference at 95% confidence level.

  2. Co-Adsorption of CO in NO-CO Reaction on a Metal Catalytic Surface Studied by Computer Simulation

    Institute of Scientific and Technical Information of China (English)

    Waqar Ahmad

    2009-01-01

    The effect of co-adsorption of CO molecules in the NO-CO reaction on a metal catalytic surface like Pt(001) is studied by applying the Langmuir-Hinshelwood mechanism using the Monte Carlo simulations.The system is investigated by two approaches of NO adsorption;dissociatively at two empty surface sites and molecularly at a single vacant site. The elementary steps are the same as those in the conventional Ziff-Gulari-Barshad model.With the additional reaction step of co-adsorption,the sustained production of CO2 is obtained,which has never been seen on a square lattice without introducing additional parameters.The most interesting result is the elimination of continuous second order phase transition,i.e.the production of CO2 starts as soon as the partial pressure of CO departs from zero,which is in accordance with the experimental observations,The effect of co-adsorption probability on the phase diagrams has also been studied.

  3. Copper(I) complexes with trispyrazolylmethane ligands: synthesis, characterization, and catalytic activity in cross-coupling reactions.

    Science.gov (United States)

    Haldón, Estela; Álvarez, Eleuterio; Nicasio, M Carmen; Pérez, Pedro J

    2012-08-01

    Three novel Cu(I) complexes bearing tris(pyrazolyl)methane ligands, Tpm(x), have been prepared from reactions of equimolar amounts of CuI and the ligands Tpm, (HC(pz)(3)), Tpm*, (HC(3,5-Me(2)-pz)(3)), and Tpm(Ms), (HC(3-Ms-pz)(3)). X-ray diffraction studies have shown that the Tpm and Tpm(Ms) derivatives exhibit a 2:1 Cu:ligand ratio, whereas the Tpm* complex is a mononuclear species in nature. The latter has been employed as a precatalyst in the arylation of amides and aromatic thiols with good activity. The synthesis of a Tpm*Cu(I)-phthalimidate, a feasible intermediate in this catalytic process, has also been performed. Low temperature (1)H NMR studies in CDCl(3) have indicated that this complex exists in solution as a mixture of two, neutral and ionic forms. Conductivity measurements have reinforced this proposal, the ionic form predominating in a very polar solvent such as DMSO. The reaction of Tpm*Cu(I)-phthalimidate with iodobenzene afforded the expected C-N coupling product in 76% yield accounting for its role as an intermediate in this transformation.

  4. Synthesis of ordered conjugated polycyclic aromatic hydrocarbon polymers through polymerization reaction on Au(111)

    DEFF Research Database (Denmark)

    Wang, Zhongping; Zhao, Huiling; Lu, Yan;

    2016-01-01

    One-dimensional pi-conjugated polymer chains with variable lengths have been synthesized successfully via thermal polymerization reaction on the Au(111) surface. Such polymer chains form parallel arrays along specific directions according to the initial assembly orientations of the close-packed Br...

  5. Synthesis of ordered conjugated polycyclic aromatic hydrocarbon polymers through polymerization reaction on Au(111).

    Science.gov (United States)

    Wang, Zhongping; Zhao, Huiling; Lu, Yan; Xiang, Feifei; Leng, Xinli; Liu, Xiaoqing; Song, Xin; Dong, Mingdong; Wang, Li

    2016-06-28

    One-dimensional π-conjugated polymer chains with variable lengths have been synthesized successfully via thermal polymerization reaction on the Au(111) surface. Such polymer chains form parallel arrays along specific directions according to the initial assembly orientations of the close-packed Br-BTTN precursors. PMID:27302478

  6. A Ternary Catalytic System for the Room Temperature Suzuki-Miyaura Reaction in Water

    Directory of Open Access Journals (Sweden)

    Aires da Conceição Silva

    2013-01-01

    Full Text Available The formation of Pd(0 in the absence of any classical reducing agent in a medium containing Mg2+/Al3+ layered double hydroxide (LDH and N,N-dimethylformamide was evidenced. XRD analysis showed the presence of crystalline phases of palladium in the Pd/LDH composite. Suzuki-Miyaura reactions in aqueous medium were carried out at room temperature, and good yields were obtained with bromoarenes and iodoarenes using the ternary system LDH-Pd-CD (cyclodextrin as catalyst.

  7. Catalytic degradation of methylene blue by Fenton like system:model to the environmental reaction

    Institute of Scientific and Technical Information of China (English)

    Sanjay R. Thakare

    2004-01-01

    To develop more efficient chemical methods for the demineralization of organic pollutants from waterbodies, which one was also mimic to the nature, a degradation of methylene blue by Fe( Ⅲ ) and H2O2 in theabsence of light instead of Fe( Ⅱ ) and H2O2 was studied. Results showed that use of Fe ( Ⅲ ) is more promisingthan Fe( Ⅱ ). The present study reflects that Fenton reaction is more efficient, in the presence of a small amount ofsalicylic acid is added which is a one of the priority pollutant.

  8. Structural Basis on the Catalytic Reaction Mechanism of Novel 1,2-Alpha L-Fucosidase (AFCA) From Bifidobacterium Bifidum

    Energy Technology Data Exchange (ETDEWEB)

    Nagae, M.; Tsuchiya, A.; Katayama, T.; Yamamoto, K.; Wakatsuki, S.; Kato, R.

    2009-06-03

    1,2-alpha-L-fucosidase (AfcA), which hydrolyzes the glycosidic linkage of Fucalpha1-2Gal via an inverting mechanism, was recently isolated from Bifidobacterium bifidum and classified as the first member of the novel glycoside hydrolase family 95. To better understand the molecular mechanism of this enzyme, we determined the x-ray crystal structures of the AfcA catalytic (Fuc) domain in unliganded and complexed forms with deoxyfuconojirimycin (inhibitor), 2'-fucosyllactose (substrate), and L-fucose and lactose (products) at 1.12-2.10 A resolution. The AfcA Fuc domain is composed of four regions, an N-terminal beta region, a helical linker, an (alpha/alpha)6 helical barrel domain, and a C-terminal beta region, and this arrangement is similar to bacterial phosphorylases. In the complex structures, the ligands were buried in the central cavity of the helical barrel domain. Structural analyses in combination with mutational experiments revealed that the highly conserved Glu566 probably acts as a general acid catalyst. However, no carboxylic acid residue is found at the appropriate position for a general base catalyst. Instead, a water molecule stabilized by Asn423 in the substrate-bound complex is suitably located to perform a nucleophilic attack on the C1 atom of L-fucose moiety in 2'-fucosyllactose, and its location is nearly identical near the O1 atom of beta-L-fucose in the products-bound complex. Based on these data, we propose and discuss a novel catalytic reaction mechanism of AfcA.

  9. Screening of catalytic oxygen reduction reaction activity of metal-doped graphene by density functional theory

    Science.gov (United States)

    Chen, Xin; Chen, Shuangjing; Wang, Jinyu

    2016-08-01

    Graphene doping is a promising direction for developing effective oxygen reduction reaction (ORR) catalysts. In this paper, we computationally investigated the ORR performance of 10 kinds of metal-doped graphene (M-G) catalysts, namely, Al-, Si-, Mn-, Fe-, Co-, Ni-, Pd-, Ag-, Pt-, and Au-G. The results shown that the binding energies of the metal atoms incorporated into the graphene vacancy are higher than their bulk cohesive energies, indicating the formed M-G catalysts are even more stable than the corresponding bulk metal surfaces, and thus avoid the metals dissolution in the reaction environment. We demonstrated that the linear relation among the binding energies of the ORR intermediates that found on metal-based materials does not hold for the M-G catalysts, therefore a single binding energy of intermediate alone is not sufficient to evaluate the ORR activity of an arbitrary catalyst. By analysis of the detailed ORR processes, we predicted that the Au-, Co-, and Ag-G materials can be used as the ORR catalysts.

  10. Analysis of saturated hydrocarbons by redox reaction with negative-ion electrospray Fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Zhou, Xibin; Shi, Quan; Zhang, Yahe; Zhao, Suoqi; Zhang, Rui; Chung, Keng H; Xu, Chunming

    2012-04-01

    A novel technique was developed for characterization of saturated hydrocarbons. Linear alkanes were selectively oxidized to ketones by ruthenium ion catalyzed oxidation (RICO). Branched and cyclic alkanes were oxidized to alcohols and ketones. The ketones were then reduced to alcohols by lithium aluminum hydride (LiAlH(4)). The monohydric alcohols (O(1)) in the products obtained from the RICO and RICO-LiAlH(4) reduction reactions were characterized using negative-ion electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) for identification of iso-paraffins, acyclic paraffins and cyclic paraffins. Various model saturated compounds were used to determine the RICO reaction and ionization selectivity. The results from the FTICR MS analysis on the petroleum distillates derived saturated fraction were in agreement with those from field ionization gas chromatography time-of-flight mass spectrometry (FI GC-TOF MS) analysis. The technique was also used to characterize a petroleum vacuum residue (VR) derived saturates. The results showed that the saturated molecules in the VR contained up to 11 cyclic rings, and the maximum carbon number was up to 92. PMID:22424498

  11. Direct determination of atom and radical concentrations in thermal reactions of hydrocarbons and other gases

    International Nuclear Information System (INIS)

    This is the sixth annual progress report on this project. During the period covered by the first five reports (June 1976 through December 1980) a shock tube and optical systems to measure H, D and O atom concentrations were built and fully characterized. The performance of our microwave discharge lamps was defined by numerous high-resolution spectroscopic profiles, while empirical calibrations were also made for all three of the above species. H, D and O atom concentrations were measured in gas mixtures containing H2, D2, O2, CD4, C2H6, C2D6, C3H8 and C3D8 in various proportions, and rate constants of several elementary reactions were deduced from the data. During the period covered by this report (January 1 to November 30, 1981) we have made an extensive series of measurements of O concentrations in shock-heated mixtures of C2H6-O2-AR, C2D6-O2-Ar, C3H8-O2-Ar and C3D8-O2-Ar. We have made kinetic modelling calculations for these mixtures to correlate these observed O concentrations, and also our earlier measurements of H and D atom concentrations in similar mixtures, with elementary reaction rate constants. From these calculations we expect to deduce rate constants for a number of reactions. We have also completed a series of O atom measurements in H2-N2O-Ar and D2-N2O-Ar mixtures, from which we have obtained good rate constant data for the reactions O + H2 → OH + H and O + D2 → OD + D. Our immediate future plans involve meaurements of H and D atoms in the dissociation of benzene, toluene, neopentane and their deuterium analogs leading to direct evaluation of rate constants for the unimolecular dissociation of these substances

  12. Compartmentalization and Cell Division through Molecular Discreteness and Crowding in a Catalytic Reaction Network

    Directory of Open Access Journals (Sweden)

    Atsushi Kamimura

    2014-10-01

    Full Text Available Explanation of the emergence of primitive cellular structures from a set of chemical reactions is necessary to unveil the origin of life and to experimentally synthesize protocells. By simulating a cellular automaton model with a two-species hypercycle, we demonstrate the reproduction of a localized cluster; that is, a protocell with a growth-division process emerges when the replication and degradation speeds of one species are respectively slower than those of the other species, because of overcrowding of molecules as a natural outcome of the replication. The protocell exhibits synchrony between its division process and replication of the minority molecule. We discuss the effects of the crowding molecule on the formation of primitive structures. The generality of this result is demonstrated through the extension of our model to a hypercycle with three molecular species, where a localized layered structure of molecules continues to divide, triggered by the replication of a minority molecule at the center.

  13. Reproduction of a Protocell by Replication of a Minority Molecule in a Catalytic Reaction Network

    Science.gov (United States)

    Kamimura, Atsushi; Kaneko, Kunihiko

    2010-12-01

    For understanding the origin of life, it is essential to explain the development of a compartmentalized structure, which undergoes growth and division, from a set of chemical reactions. In this study, a hypercycle with two chemicals that mutually catalyze each other is considered in order to show that the reproduction of a protocell with a growth-division process naturally occurs when the replication speed of one chemical is considerably slower than that of the other chemical, and molecules are crowded as a result of replication. It is observed that the protocell divides after a minority molecule is replicated at a slow synthesis rate, and thus, a synchrony between the reproduction of a cell and molecule replication is achieved. The robustness of such protocells against the invasion of parasitic molecules is also demonstrated.

  14. General Tritium Labelling of Gentamicin C by catalytic hydrogen exchange Reaction with Tritiated Water

    International Nuclear Information System (INIS)

    Gentamicin C was labelled with tritium by means of a PtO2 catalyzed hydrogen exchange reaction. Under the conditions of the exchange (100 mg of gentamicin, basic form, 0,3 ml H2O-3H, and 50 mg of prereduced PtO2) the radiochemical yield was 0,24, 0,38 and 0,48 % at 120 degree celsius, for 8, 16 and 24 hours respectively. Chemical yield for purified gentamicin was about 60 %. Purification was accomplished with a cellulose column eluted with the lower phase of chloroform-methanol 17 % ammonium hydroxide (2:1:1, v/v) . Chemical purity, determined by HPLC, was 96,5 % and radiochemical one was 95. Main exchange degradation products show biological activity. (Author) 12 refs

  15. Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries.

    Science.gov (United States)

    Lu, Yi-Chun; Gasteiger, Hubert A; Shao-Horn, Yang

    2011-11-30

    We report the intrinsic oxygen reduction reaction (ORR) activity of polycrystalline palladium, platinum, ruthenium, gold, and glassy carbon surfaces in 0.1 M LiClO(4) 1,2-dimethoxyethane via rotating disk electrode measurements. The nonaqueous Li(+)-ORR activity of these surfaces primarily correlates to oxygen adsorption energy, forming a "volcano-type" trend. The activity trend found on the polycrystalline surfaces was in good agreement with the trend in the discharge voltage of Li-O(2) cells catalyzed by nanoparticle catalysts. Our findings provide insights into Li(+)-ORR mechanisms in nonaqueous media and design of efficient air electrodes for Li-air battery applications. PMID:22044022

  16. Copper(I Complexes of Mesoionic Carbene: Structural Characterization and Catalytic Hydrosilylation Reactions

    Directory of Open Access Journals (Sweden)

    Stephan Hohloch

    2015-04-01

    Full Text Available Two series of different Cu(I-complexes of “click” derived mesoionic carbenes are reported. Halide complexes of the type (MICCuI (with MIC = 1,4-(2,6-diisopropyl-phenyl-3-methyl-1,2,3-triazol-5-ylidene (for 1b, 1-benzyl-3-methyl-4-phenyl-1,2,3-triazol-5-ylidene (for 1c and cationic complexes of the general formula [Cu(MIC2]X (with MIC =1,4-dimesityl-3-methyl-1,2,3-triazol-5-ylidene, X = CuI2− (for 2á, 1,4-dimesityl-3-methyl-1,2,3-triazol-5-ylidene, X = BF4− (for 2a, 1,4-(2,6-diisopropylphenyl-3-methyl-1,2,3-triazol-5-ylidene, X = BF4− (for 2b, 1-benzyl-3-methyl-4-phenyl-1,2,3-triazol-5-ylidene, X = BF4− (for 2c have been prepared from CuI or [Cu(CH3CN4](BF4 and the corresponding ligands, respectively. All complexes were characterized by elemental analysis and standard spectroscopic methods. Complexes 2á and 1b were studied by single-crystal X-ray diffraction analysis. Structural analysis revealed 2á to adopt a cationic form as [Cu(MIC2](CuI2 and comparison of the NMR spectra of 2á and 2a confirmed this conformation in solution. In contrast, after crystallization complex 1b was found to adopt the desired neutral form. All complexes were tested for the reduction of cyclohexanone under hydrosilylation condition at elevated temperatures. These complexes were found to be efficient catalysts for this reaction. 2c was also found to catalyze this reaction at room temperature. Mechanistic studies have been carried out as well.

  17. Research advance in non-thermal plasma induced selective catalytic reduction NOx with low hydrocarbon compounds%低温等离子体诱导低碳烃选择性催化还原NOx研究进展

    Institute of Scientific and Technical Information of China (English)

    苏清发; 刘亚敏; 陈杰; 潘华; 施耀

    2009-01-01

    The emission of nitrogen oxides (NOx) from stationary sources, primarily from power stations, industrial heaters and cogeneration plants, represents a major environmental problem. This paper intends to give a general review over the advances in non-thermal plasma assisted selective catalytic reduction (SCR) of NOx with lower hydrocarbon compounds. In the last decade, the non-thermal plasma induced SCR of nitrogen oxide with low hydrocarbon compounds has received much attention. The different hydrocarbons (≤C3) used in the research are discussed. As we know,methane is more difficultly activated than non-methane hydrocarbons, such as ethylene and propylene etc. The reduction mechanism is also discussed. In addition, aiming at the difficulties existed, the direction for future research is prospected.%综述了近年来低温等离子体诱导低碳烃选择性催化还原NOx的研究进展,详细介绍了难活化的甲烷及较易活化的非甲烷低碳烃气体如乙烯、丙烯及丙烷等的研究现状,探讨了低温等离子体诱导低碳烃选择性催化还原NOx的反应机理,并展望了低温等离子体诱导低碳烃选择性催化还原NOx今后研究方向.

  18. Forest Thinning Dramatically Enhances Ozone Flux due to Reactions With Elevated Emissions of Biogenic Hydrocarbons

    Science.gov (United States)

    Goldstein, A. H.; McKay, M.; Kurpius, M. R.; Schade, G. W.

    2003-12-01

    Forests are routinely managed for timber production and fire suppression by thinning and harvesting. The impact of these activities on biosphere-atmosphere exchange of reactive trace gases is profound, but has rarely been studied in the field. Here we present simultaneous observations of ozone and terpene fluxes before, during, and after pre-commercial thinning of a ponderosa pine plantation at Blodgett Forest (1300 m elevation on the western slope of the Sierra Nevada Mountains, CA). We previously reported that monoterpene emissions increased by an order of magnitude during and following forest thinning (Schade and Goldstein, GRL 2003). We also previously reported that half the daytime ozone flux to this ecosystem under normal summertime conditions (no disturbance) was due to gas-phase chemical loss, and we suggested that this ozone loss was occurring by reactions with biogenically emitted terpenes whose lifetime was short enough that they reacted before escaping the forest canopy (Kurpius and Goldstein, GRL 2003). Here we report that ozone loss was also dramatically enhanced during and following thinning, and we link these observations to confirm that the chemical ozone loss in the canopy was indeed due to reaction with biogenically emitted compounds whose emission was enhanced by disturbance. Based on the magnitudes of ozone flux due to chemical loss and the measured terpene fluxes, we infer that the emissions of previously undetected short-lived terpenes are approximately 15-20 times those of a-pinene during thinning, and 30-50 times those of a-pinene during summer and fall. Since a-pinene accounts for approximately 25% of the total monoterpenes we routinely measure with our automated in-situ GC instrumentation, we conclude that emissions of highly reactive terpenoid compounds could have been drastically under measured in previous field campaigns and that emissions of unidentified reactive terpenes could be 5-10 times larger than emissions of total terpenes

  19. Carboxylic acid-grafted mesoporous material and its high catalytic activity in one-pot three-component coupling reaction

    Directory of Open Access Journals (Sweden)

    Ruth Gomes

    2014-11-01

    Full Text Available A new carboxylic acid functionalized mesoporous organic polymer has been synthesized via in situ radical polymerization of divinylbenzene and acrylic acid using a mesoporous silica as a seed during the polymerization process under solvothermal conditions. The mesoporous material MPDVAA-1 has been thoroughly characterized employing powder XRD, solid state 13C cross polarization magic angle spinning-nuclear magnetic resonance, FT-IR spectroscopy, N2 sorption, HR-TEM, and NH3 temperature programmed desorption-thermal conductivity detector (TPD-TCD analysis to understand its porosity, chemical environment, bonding, and surface properties. The mesoporous polymer was used as a catalyst for a three comp onent Biginelli condensation between various aldehydes, β-keto esters, and urea/thioureas to give 3,4-dihydropyrimidine-2(1H-ones. The reactions were carried out under conventional heating as well as solvent-free microwave irradiation of solid components, and in both the cases, the mesoporous polymer MPDVAA-1 proved to be a powerful, robust, and reusable catalyst with high catalytic efficiency.

  20. Synthesis, characterization, crystal structure determination and catalytic activity in epoxidation reaction of two new oxidovanadium(IV) Schiff base complexes

    Science.gov (United States)

    Tahmasebi, Vida; Grivani, Gholamhossein; Bruno, Giuseppe

    2016-11-01

    The five coordinated vanadium(IV) Schiff base complexes of VOL1 (1) and VOL2 (2), HL1 = 2-{(E)-[2-bromoethyl)imino]methyl}-2- naphthol, HL2 = 2-{(E)-[2-chloroethyl)imino]methyl}-2- naphthol, have been synthesized and they were characterized by using single-crystal X-ray crystallography, elemental analysis (CHN) and FT-IR spectroscopy. Crystal structure determination of these complexes shows that the Schiff base ligands (L1 and L2) act as bidentate ligands with two phenolato oxygen atoms and two imine nitrogen atoms in the trans geometry. The coordination geometry around the vanadium(IV) is distorted square pyramidal in which vanadium(IV) is coordinated by two nitrogen and two oxygen atoms of two independent ligands in the basal plane and by one oxygen atom in the apical position. The catalytic activity of the Schiff base complexes of 1 and 2 in the epoxidation of alkenes were investigated using different reaction parameters such as solvent effect, oxidant, alkene/oxidant ratio and the catalyst amount. The results showed that in the presence of TBHP as oxidant in 1: 4 and 1:3 ratio of the cyclooctene/oxidant ratio, high epoxide yield was obtained for 1 (76%) and 2 (80%) with TON(= mole of substrate/mole of catalyst) of 27 and 28.5, respectively, in epoxidation of cyclooctene.

  1. Robust non-carbon titanium nitride nanotubes supported Pt catalyst with enhanced catalytic activity and durability for methanol oxidation reaction

    International Nuclear Information System (INIS)

    By the combination of solvothermal alcoholysis and post-nitriding method, titanium nitride nanotubes (TiN NTs), with high surface area, hollow and interior porous structure are prepared successfully and used at a support for Pt nanoparticles. The TiN NTs supported Pt (Pt/TiN NTs) catalyst displays enhanced activity and durability towards methanol oxidation reaction (MOR) compared with the commercial Pt/C (E-TEK) catalyst. X ray diffraction (XRD), nitrogen adsorption/desorption, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) measurements are performed to investigate the physicochemical properties of the synthesized catalyst. SEM and TEM images reveal that the wall of the TiN NTs is porous and Pt nanoparticles supported on the dendritic TiN nanocrystals exhibit small size and good dispersion. Effects of inherent corrosion-resistant, tubular and porous nanostructures and electron transfer due to the strong metal–support interactions of TiN NTs contribute to the enhanced catalytic activity and stability of Pt/TiN NTs towards the MOR

  2. Reaction Mechanism for the Formation of Nitrogen Oxides (NO x ) During Coke Oxidation in Fluidized Catalytic Cracking Units

    KAUST Repository

    Chaparala, Sree Vidya

    2015-06-11

    Fluidized catalytic cracking (FCC) units in refineries process heavy feedstock obtained from crude oil distillation. While cracking feed, catalysts get deactivated due to coke deposition. During catalyst regeneration by burning coke in air, nitrogen oxides (NOx) are formed. The increase in nitrogen content in feed over time has resulted in increased NOx emissions. To predict NOx concentration in flue gas, a reliable model for FCC regenerators is needed that requires comprehensive understanding and accurate kinetics for NOx formation. Based on the nitrogen-containing functional groups on coke, model molecules are selected to study reactions between coke-bound nitrogen and O2 to form NO and NO2 using density functional theory. The reaction kinetics for the proposed pathways are evaluated using transition state theory. It is observed that the addition of O2 on coke is favored only when the free radical is present on the carbon atom instead of nitrogen atom. Thus, NOx formation during coke oxidation does not result from the direct attack by O2 on N atoms of coke, but from the transfer of an O atom to N from a neighboring site. The low activation energies required for NO formation indicate that it is more likely to form than NO2 during coke oxidation. The favorable pathways for NOx formation that can be used in FCC models are identified. Copyright © 2015 Taylor & Francis Group, LLC.

  3. Process for the conversion of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Goudriaan, F.; Klinken, J.V.

    1978-11-21

    Residual hydrocarbon stocks obtained after vacuum distillation are converted into light distillates by certain sequences of processing steps including vacuum distillation, deasphalting, hydrocracking, atmospheric distillation and catalytic hydrotreating.

  4. Modification of the performance of WO{sub 3}-ZrO{sub 2} catalysts by metal addition in hydrocarbon reactions

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Gerardo Carlos; Manuale, Debora Laura; Benitez, Viviana Monica; Vera, Carlos Roman; Yori, Juan Carlos, E-mail: jyori@fiq.unl.edu.ar [Instituto de Investigaciones en Catalisis y Petroquimica, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Consejo Nacional de Investigaciones Cientifica y Tecnicas, Santiago del Estero Santa Fe (Argentina)

    2012-07-01

    A study of the different hydrocarbon reactions over Ni doped WO{sub 3}-ZrO{sub 2} catalysts was performed. Ni was found as NiO at low Ni concentration while at high Ni concentrations a small fraction was present as a metal. For both cases, Ni strongly modified total acidity and concentration of strong acid sites. In the cyclohexane dehydrogenation reaction, Ni addition promotes both benzene and methyl cyclopentane production. The hydroconversion activity (n-butane and n-octane) increases with the augment of total acidity produced by Ni. The selectivity to reaction products is modified according to the acid strength distribution changes produced by Ni addition. (author)

  5. Quantum chemical study on the catalytic mechanism of Na/K on NO-char heterogeneous reactions during the coal reburning process

    Institute of Scientific and Technical Information of China (English)

    Zheng-cheng WEN; Zhi-hua WANG; Jun-hu ZHOU; Ke-fa CEN

    2009-01-01

    Quantum chemical simulation was used to investigate the catalytic mechanism of Na/K on NO-char heterogeneous reactions during the coal reburning process. Both NO-char and NO-NaYK reactions were considered as three-step processes in this calculation. Based on geometry optimizations made using the UB3LYP/6-31 G(d) method, the activation energies of NO-char and NO-Na/K reactions were calculated using the QC1SD(T)/6-3 i 1G(d, p) method; Results showed that the activation energy of the NO-Na/K reaction (107.9/82.0 kJ/mol) was much lower than that of the NO-char reaction (245.1 kJ/mol). The reactions of NaO/KO and Na2P/K2O reduced by char were also studied, and their thermodynamics were calculated using the UB3LYP/6-31G(d) method; Results showed that both Na and K can be refreshed easily and rapidly by char at high temperature during the coal rebuming process. Based on the calculations and analyses, the catalytic mechanism of Na/K on NO-char het-erogeneous reactions during the coal reburning process was clarified.

  6. Synthesis of magnetically recyclable ZIF-8@SiO{sub 2}@Fe{sub 3}O{sub 4} catalysts and their catalytic performance for Knoevenagel reaction

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qingyuan; Jiang, Sai; Ji, Shengfu, E-mail: jisf@mail.buct.edu.cn; Ammar, Muhammad; Zhang, Qingmin; Yan, Junlei

    2015-03-15

    Novel magnetic ZIF-8@SiO{sub 2}@Fe{sub 3}O{sub 4} catalysts were synthesized by encapsulating magnetic SiO{sub 2}@Fe{sub 3}O{sub 4} nanoparticles into ZIF-8 through in situ method. The structures of the catalysts were characterized by TEM, SEM, XRD, FT-IR, VSM, N{sub 2} adsorption/desorption and CO{sub 2}-TPD technology. The catalytic activity and recovery properties of the catalysts for the Knoevenagel reaction of p-chlorobenzaldehyde with malononitrile were evaluated. The results showed that the magnetic ZIF-8@SiO{sub 2}@Fe{sub 3}O{sub 4} catalysts had the larger surface areas, the suitable superparamagnetism, and good catalytic activity for Knoevenagel reaction. The conversion of p-chlorobenzaldehyde can reach ~98% and the selectivity of the production can reach ~99% over35.8%ZIF-8@SiO{sub 2}@Fe{sub 3}O{sub 4} (MZC-5) catalyst under the reaction condition of 25 °C and 4 h. The magnetic ZIF-8@SiO{sub 2}@Fe{sub 3}O{sub 4} catalysts also had good substrates adaptation. After reaction, the catalyst can be easily separated from the reaction mixture by an external magnet. The recovery catalyst can be reused five times and the conversion of p-chlorobenzaldehyde can be kept over 90%. - Graphical abstract: Novel magnetically recyclable ZIF-8@SiO{sub 2}@Fe{sub 3}O{sub 4} catalysts were synthesized by encapsulating magnetic SiO{sub 2}@Fe{sub 3}O{sub 4} nanoparticles into ZIF-8 and the as-synthesized catalysts exhibited a good catalytic activity for the Knoevenagel reaction. - Highlights: • A series of novel magnetic ZIF-8@SiO{sub 2}@Fe{sub 3}O{sub 4} catalysts were synthesized. • The catalysts had the larger surface areas and the suitable superparamagnetism. • The catalysts exhibited good catalytic activity for the Knoevenagel reaction. • After reaction the catalyst can be easily separated by an external magnet. • The recovery catalyst can be reused five times and can keep its catalytic activity.

  7. Characterization of the efficiency of the gas-solid contact in circulating bed at by the use of a test reaction: the cumene catalytic cracking

    Energy Technology Data Exchange (ETDEWEB)

    Bayle, J.; Gauthier, T.; Pontier, R. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France); Briens, C.L.; Bergougnou, M. [University of Western Ontario, London, ON (Canada). Dept. of Physics

    1995-12-31

    The gas-solid down with the stream reactor, the ``downer``, presents a main interest for the high-speed reactions because it is well adapted to hard conditions uses: very short residence times, high temperatures and feeds of catalyst. This reactor type already presents a certain advantage to estimate the charges or new catalysts potential. But, it particularly constitutes an interesting option for some processes as petroleum cuts catalytic cracking. In order to intensify the contact between the catalyst and the reagents, the temperature increase of the reagents has to be almost instantaneous and the initial contact between the gas and the solid particles particularly effective. So as to validate these two hypothesis, the test reaction of the cumene catalytic cracking is carried out in the pilot unit ``downer`` of the Western Ontario University. (O.M.). 11 refs., 3 figs.

  8. Effect of Mg/Al atom ratio of support on catalytic performance of Co-Mo/MgO-Al2O3 catalyst for water gas shift reaction

    Institute of Scientific and Technical Information of China (English)

    Yixin Lian; Huifang Wang; Quanxing Zheng; Weiping Fang; Yiquan Yang

    2009-01-01

    Co-Mo-based catalysts supported on mixed oxide supports MgO-Al2O3 with different Mg/Al atom ratios for water gas shift reaction were studied by means of TPR, Raman, XPS and ESR. It was found that the octahedral Mo species in oxidized Co-Mo/MgO(x)-Al2O3 catalyst and the contents of Mo5+, Mo4+, S2- and S2-2 species in the functioning catalysts increased with increasing the Mg/Al atom ratio of the support under the studied experimental conditions. This is favorable for the formation of the active Co-Mo-S phase of the catalysts. Catalytic performance testing results showed that the catalysts Co-Mo/MgO-Al2O3 with the Mg/Al atom ratio of the support in the range of 0.475-0.525 exhibited optimal catalytic activity for the reaction.

  9. Size-dependent catalytic activity of supported metal clusters

    Science.gov (United States)

    Xu, Z.; Xiao, F.-S.; Purnell, S. K.; Alexeev, O.; Kawi, S.; Deutsch, S. E.; Gates, B. C.

    1994-11-01

    BECAUSE catalysis by metals is a surface phenomenon, many technological catalysts contain small (typically nanometre-sized) supported metal particles with a large fraction of the atoms exposed1. Many reactions, such as hydrocarbon hydrogenations, are structure-insensitive, proceeding at approximately the same rate on metal particles of various sizes provided that they are larger than about 1 nm and show bulk-like metallic behaviour1. But it is not known whether the catalytic properties of metal particles become size-dependent as the particles become so small that they are no longer metallic in character. Here we investigate the catalytic behaviour of precisely defined clusters of just four and six iridium atoms on solid supports. We find that the Ir4 and Ir6 clusters differ in catalytic activity both from each other and from metallic Ir particles. This raises the possibility of tailoring the catalytic behaviour of metal clusters by controlling the cluster size.

  10. Catalytic conversion of light alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  11. Design and Synthesis of Chiral Zn2+ Complexes Mimicking Natural Aldolases for Catalytic C–C Bond Forming Reactions in Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Susumu Itoh

    2014-01-01

    Full Text Available Extending carbon frameworks via a series of C–C bond forming reactions is essential for the synthesis of natural products, pharmaceutically active compounds, active agrochemical ingredients, and a variety of functional materials. The application of stereoselective C–C bond forming reactions to the one-pot synthesis of biorelevant compounds is now emerging as a challenging and powerful strategy for improving the efficiency of a chemical reaction, in which some of the reactants are subjected to successive chemical reactions in just one reactor. However, organic reactions are generally conducted in organic solvents, as many organic molecules, reagents, and intermediates are not stable or soluble in water. In contrast, enzymatic reactions in living systems proceed in aqueous solvents, as most of enzymes generally function only within a narrow range of temperature and pH and are not so stable in less polar organic environments, which makes it difficult to conduct chemoenzymatic reactions in organic solvents. In this review, we describe the design and synthesis of chiral metal complexes with Zn2+ ions as a catalytic factor that mimic aldolases in stereoselective C–C bond forming reactions, especially for enantioselective aldol reactions. Their application to chemoenzymatic reactions in aqueous solution is also presented.

  12. Managing the process of catalytic reforming by the optimal distribution of temperature at the reactor block inlets

    OpenAIRE

    Левчук, Игорь Леонидович

    2015-01-01

    In this paper it is investigated an influence of the temperature of the reaction mixture at the inlets of a catalytic reforming reactor block on increment of aromatic hydrocarbons at outlets of separate reactors. It is found that for each reactor of a catalytic reforming exists some optimal temperature of the initial mixture from the standpoint of the increment of aromatics, which does not exceed a noticeable increase of flavoring materials, however, increases the rate of deactivation of the ...

  13. First-principles quantum mechanical investigations: Catalytic reactions of furfural on Pd(111) and at the water/Pd(111) interface

    Science.gov (United States)

    Xue, Wenhua

    Bio-oils have drawn more and more attention from scientists as a promising new clean, cheap energy source. One of the most interesting relevant issues is the effect of catalysts on the catalytic reactions that are used for producing bio-oils. Furfural, as a very important intermediate during these reactions, has attracted significant studies. However, the effect of catalysts, including particularly the liquid/solid interface formed by a metal catalyst and liquid water, in the catalytic reactions involving furfural still remains elusive. In this research, we performed ab initio molecular dynamics simulations and first-principles density-functional theory calculations to investigate the atomic-scale mechanisms of catalytic hydrogenation of furfural on the palladium surface and at the liquid/state interface formed by the palladium surface and liquid water. We studied all the possible mechanisms that lead to formation of furfuryl alcohol (FOL), formation of tetrahydrofurfural (THFAL), and formation of tetrahydrofurfurfuryl alcohol (THFOL). We found that liquid water plays a significant role in the hydrogenation reactions. During the reaction in the presence of water and the palladium catalyst, in particular, water directly participates in the hydrogenation of the aldehyde group of furfural and facilitates the formation of FOL by reducing the activation energy. Our calculations show that water provides hydrogen for the hydrogenation of the aldehyde group, and at the same time, a pre-existing hydrogen atom, which is resulted from dissociation of molecular hydrogen (experimentally, molecular hydrogen is always supplied for hydrogenation) on the palladium surface, is bonded to water, making the water molecule intact in structure. In the absence of water, on the other hand, formation of FOL and THFAL on the palladium surface involves almost the same energy barriers, suggesting a comparable selectivity. Overall, as water reduces the activation energy for the formation of FOL

  14. Catalytic distillation structure

    Science.gov (United States)

    Smith, Jr., Lawrence A.

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  15. Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures.

    Science.gov (United States)

    Sarina, Sarina; Zhu, Huaiyong; Jaatinen, Esa; Xiao, Qi; Liu, Hongwei; Jia, Jianfeng; Chen, Chao; Zhao, Jian

    2013-04-17

    The intrinsic catalytic activity of palladium (Pd) is significantly enhanced in gold (Au)-Pd alloy nanoparticles (NPs) under visible light irradiation at ambient temperatures. The alloy NPs strongly absorb light and efficiently enhance the conversion of several reactions, including Suzuki-Miyaura cross coupling, oxidative addition of benzylamine, selective oxidation of aromatic alcohols to corresponding aldehydes and ketones, and phenol oxidation. The Au/Pd molar ratio of the alloy NPs has an important impact on performance of the catalysts since it determines both the electronic heterogeneity and the distribution of Pd sites at the NP surface, with these two factors playing key roles in the catalytic activity. Irradiating with light produces an even more profound enhancement in the catalytic performance of the NPs. For example, the best conversion rate achieved thermally at 30 °C for Suzuki-Miyaura cross coupling was 37% at a Au/Pd ratio of 1:1.86, while under light illumination the yield increased to 96% under the same conditions. The catalytic activity of the alloy NPs depends on the intensity and wavelength of incident light. Light absorption due to the Localized Surface Plasmon Resonance of gold nanocrystals plays an important role in enhancing catalyst performance. We believe that the conduction electrons of the NPs gain the light absorbed energy producing energetic electrons at the surface Pd sites, which enhances the sites' intrinsic catalytic ability. These findings provide useful guidelines for designing efficient catalysts composed of alloys of a plasmonic metal and a catalytically active transition metal for various organic syntheses driven by sunlight. PMID:23566035

  16. Catalytic diastereoselective tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts by C-C bond cleavage

    KAUST Repository

    Yang, Wenguo

    2012-02-08

    Through the cleavage of the C-C bond, the first catalytic tandem conjugate addition-elimination reaction of Morita-Baylis-Hillman C adducts has been presented. Various S N2′-like C-, S-, and P-allylic compounds could be obtained with exclusive E configuration in good to excellent yields. The Michael product could also be easily prepared by tuning the β-C-substituent group of the α-methylene ester under the same reaction conditions. Calculated relative energies of various transition states by DFT methods strongly support the observed chemoselectivity and diastereoselectivity. © 2012 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim.

  17. Pathways for Biomass-Derived Lignin to Hydrocarbon Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Laskar, Dhrubojyoti; Yang, Bin; Wang, Huamin; Lee, Guo-Shuh J.

    2013-09-01

    Production of hydrocarbon fuel from biomass-derived lignin sources with current version of biorefinery infrastructure would significantly improve the total carbon use in biomass and make biomass conversion more economically viable. Thus, developing specialty and commodity products from biomass derived-lignin has been an important industrial and scientific endeavor for several decades. However, deconstruction of lignin’s complex polymeric framework into low molecular weight reactive moieties amenable for deoxygenation and subsequent processing into hydrocarbons has been proven challenging. This review offers a comprehensive outlook on the existing body of work that has been devoted to catalytic processing of lignin derivatives into hydrocarbon fuels, focusing on: (1) The intrinsic complexity and characteristic structural features of biomass-derived lignin; (2) Existing processing technologies for the isolation and depolymerization of bulk lignin (including detailed mechanistic considerations); (3) Approaches aimed at significantly improving the yields of depolymerized lignin species amenable to catalytic upgrading, and; (4) Catalytic upgrading, using aqueous phase processes for transforming depolymerized lignin to hydrocarbon derivatives. Technical barriers and challenges to the valorization of lignin are highlighted throughout. The central goal of this review is to present an array of strategies that have been reported to obtain lignin, deconstruct it to reactive intermediates, and reduce its substantial oxygen content to yield hydrocarbon liquids. In this regard, reaction networks with reference to studies of lignin model compounds are exclusively surveyed. Special attention is paid to catalytic hydrodeoxygenation, hydrogenolyis and hydrogenation. Finally, this review addresses important features of lignin that are vital to economic success of hydrocarbon production.

  18. Studies on the Catalytic Activities of Cyclopalladated Ferrocenylimine in the Suzuki Reaction of Pyridylboronic Acid Derivative with Arylhalides

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-Li; YANG Liang-Ru; ZHAO Liang; GUI Xiu-Ling; GONG Jun-Fang; WU Yang-Jie

    2003-01-01

    @@ Heterobiaryls have important biologicalproperties. [1] The use of catalytic cross-coupling methodologies forpreparing aryl functionalized heterocycles with pharmaceutical, agrochemical, materials, and supermolecular appli-cations is a burgeoning field of study. [2

  19. Effect of calcination temperature on structural properties and catalytic activity in oxidation reactions of LaNiO3 perovskite prepared by Pechini method

    Institute of Scientific and Technical Information of China (English)

    K.Rida; M.A.Pe(n)a; E.Sastre; A.Martínez-Arias

    2012-01-01

    The study presented the preparation of the perovskite oxide LaNiO3 by the complex citrate method,paying particular attention to evolution of its formation from the amorphous precursor with varied calcination temperatures.The products obtained after heat treatment under air between 200 and 800 ℃ were characterized by X-ray diffraction (XRD),thermogravimetric and differential thermal analysis (TG-DTA),Fourier transform infrared spectroscopy (FTIR),SBET measurements and X-ray photoelectron spectroscopy (XPS).The results showed the formation of a single phase with perovskite structure from ca.550 ℃.Tests on the two catalytic oxidation reactions of C3H6 and CO over the system calcined between mentioned temperatures were examined on the basis of characterization results and showed that optimum catalytic properties for such reactions were achieved for the perovskite calcined at 600 ℃.In turn,correlations between redox and catalytic properties were established on the basis of thermogravimetric temperature programmed reduction (TPR) analysis.

  20. Synthesis of Hydrocarbons from H2-Deficient Syngas in Fischer-Tropsch Synthesis over Co-Based Catalyst Coupled with Fe-Based Catalyst as Water-Gas Shift Reaction

    Directory of Open Access Journals (Sweden)

    Ting Ma

    2015-01-01

    Full Text Available The effects of metal species in an Fe-based catalyst on structural properties were investigated through the synthesis of Fe-based catalysts containing various metal species such, as Mn, Zr, and Ce. The addition of the metal species to the Fe-based catalyst resulted in high dispersions of the Fe species and high surface areas due to the formation of mesoporous voids about 2–4 nm surrounded by the catalyst particles. The metal-added Fe-based catalysts were employed together with Co-loaded beta zeolite for the synthesis of hydrocarbons from syngas with a lower H2/CO ratio of 1 than the stoichiometric H2/CO ratio of 2 for the Fischer-Tropsch synthesis (FTS. Among the catalysts, the Mn-added Fe-based catalyst exhibited a high activity for the water-gas shift (WGS reaction with a comparative durability, leading to the enhancement of the CO hydrogenation in the FTS in comparison with Co-loaded beta zeolite alone. Furthermore, the loading of Pd on the Mn-added Fe-based catalyst enhanced the catalytic durability due to the hydrogenation of carbonaceous species by the hydrogen activated over Pd.

  1. A Monte Carlo Simulation of a Monomer Dimer CO-O2 Catalytic Reaction on the Surface and Subsurface of a Face-centered Cubic Lattice

    Institute of Scientific and Technical Information of China (English)

    K.Iqbal; A.Basit

    2011-01-01

    @@ The presence of oxygen in the subsurface in monomer-dimer reactions(CO-O2 and NO-CO)is observed experimentally.The effect of subsurface oxygen on a CO-O2 catalytic reaction on a face-centered cubic(FCC)lattice is studied using Monte Carlo simulation.The effect of adding subsurface neighbours on the phase diagram is also extensively explored.It is observed that the subsurface oxygen totally eliminates the typical second order phase transition.It is also shown that the introduction of the diffusion of O atoms and the subsurface of the FCC lattice shifts the single transition point towards the stoichiometric ratio.%The presence of oxygen in the subsurface in monomer-dimer reactions (CO-O2 and NO-CO) is observed experimentally. The effect of subsurface oxygen on a CO-O2 catalytic reaction on a face-centered cubic (FCC) lattice is studied using Monte Carlo simulation. The effect of adding subsurface neighbours on the phase diagram is also extensively explored. It is observed that the subsurface oxygen totally eliminates the typical second order phase transition. It is also shown that the introduction of the diffusion of O atoms and the subsurface of the FCC lattice shifts the single transition point towards the stoichiometric ratio.

  2. Reaction pathway investigation on the selective catalytic reduction of NO with NH3 over Cu/SSZ-13 at low temperatures.

    Science.gov (United States)

    Su, Wenkang; Chang, Huazhen; Peng, Yue; Zhang, Chaozhi; Li, Junhua

    2015-01-01

    The mechanism of the selective catalytic reduction of NO with NH3 was studied using Cu/SSZ-13. The adspecies of NO and NH3 as well as the active intermediates were investigated using in situ diffuse reflectance infrared Fourier transform spectroscopy and temperature-programmed surface reaction. The results revealed that three reactions were possible between adsorbed NH3 and NOx. NO2(-) could be generated by direct formation or NO3(-) reduction via NO. In a standard selective catalytic reduction (SCR) reaction, NO3(-) was hard to form, because NO2(-) was consumed by ammonia before it could be further oxidized to nitrates. Additionally, adsorbed NH3 on the Lewis acid site was more active than NH4(+). Thus, SCR mainly followed the reaction between Lewis acid site-adsorbed NH3 and directly formed NO2(-). Higher Cu loading could favor the formation of active Cu-NH3, Cu-NO2(-), and Cu-NO3(-), improving the SCR activity at low temperature. PMID:25485842

  3. HYDROGEN TRANSFER IN CATALYTIC CRACKING

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Hydrogen transfer is an important secondary reaction of catalytic cracking reactions, which affects product yield distribution and product quality. It is an exothermic reaction with low activation energy around 43.3 kJ/mol. Catalyst properties and operation parameters in catalytic cracking greatly influence the hydrogen transfer reaction. Satisfactory results are expected through careful selection of proper catalysts and operation conditions.

  4. Nonaqueous catalytic fluorometric trace determination of vanadium based on the pyronine B-hydrogen peroxide reaction and flow injection after cloud point extraction.

    Science.gov (United States)

    Paleologos, E K; Koupparis, M A; Karayannis, M I; Veltsistas, P G

    2001-09-15

    The catalytic effect of vanadium on the pyronine B-H2O2 system is examined. Enhancement of the catalytic reaction rate along with the efficiency and selectivity against vanadium is achieved in a formic acid environment in the presence of a nonionic surfactant (Triton X-114). Elimination of drastic interference caused by inorganic acids and aqueous matrix along with a 50-fold preconcentration of vanadium are facilitated through cloud point extraction of its neutral complex with 8-quinolinol in an acidic solution. Subsequent flow injection analysis (FIA) with fluorometric detection renders the proposed method ideal for selective and cost-effective determination of as little as 0.020 microng L(-1) vanadium in environmental, biological, and food substrates. The preconcentration step can be applied simultaneously to multiple samples, allowing for massive preparation prior to analysis, compensating, thus, for the time-consuming procedure.

  5. Catalytic distillation process

    Science.gov (United States)

    Smith, Jr., Lawrence A.

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  6. Crossed beam investigation of elementary reactions relevant to the formation of polycyclic aromatic hydrocarbon (PAH)-like molecules in extraterrestrial environments

    Science.gov (United States)

    Kaiser, R. I.; Asvany, O.; Lee, Y. T.

    2000-04-01

    The reactions of ground state carbon atoms, C( 3P j), with benzene, C 6H 6, and phenyl radicals, C 6H 5, with methylacetylene, CH 3CCH, were investigated in crossed beam experiments at collision energies of 21.8 and 140 kJ mol -1 to investigate elementary reactions relevant to the formation and chemistry of polycyclic aromatic hydrocarbons (PAHs) in extraterrestrial environments. The C( 3P j) reaction proceeds via complex formation and gives a cyclic, seven-membered C 7H 5 doublet radical plus atomic hydrogen. This pathway has neither an entrance nor exit barrier, and is exothermic. Together with the experimental verification of the carbon versus hydrogen exchange under single collision conditions, the findings have an important impact on the chemistry of aromatic molecules in interstellar clouds and outflow of carbon stars. Even in the coldest molecular clouds ( T=10 K), the benzene molecule can be destroyed upon reaction with carbon atoms, whereas they are resistant toward an attack of oxygen and nitrogen atoms. Since the aromatic benzene unit is ubiquitous in extraterrestrial, PAH-like material, our results suggest that PAHs might react with carbon atoms as well. On the other side, the reaction of C 6H 5 radicals with methylacetylene to form phenylmethylacetylene is direct. Since an entrance barrier inhibits the reaction in cold molecular clouds and in the atmospheres of hydrocarbon rich planets like Jupiter and Saturn and satellites such as Titan, this reaction is expected to play a role in PAH synthesis only in high temperature interstellar environments, such as circumstellar outflows of carbon stars.

  7. SYNTHESIS, REACTIVITY, AND CATALYTIC BEHAVIOR OF IRON/ZINC-CONTAINING SPECIES INVOLVED IN OXIDATION OF HYDROCARBONS UNDER GIF-TYPE CONDITIONS. (R823377)

    Science.gov (United States)

    The present study explores the nature and reactivity of iron- and zinc-containing speciesgenerated in hydrocarbon-oxidizing Gif(IV)-type solutions Fe catalyst/Zn/O-2 in pyridine/acetic acid(10:1 v/v). The ultimate goal of this investigation is to unravel the role of metal...

  8. Air/Water-Stable Tridentate NHC-PdII Complex; Catalytic C-H Activation of Hydrocarbons via H/D Exchange Process in D2O

    OpenAIRE

    Lee, Joo Ho; Yoo, Kyung Soo; Park, Chan Pil; Olsen, Janet M.; Sakaguchi, Satoshi; Surya Prakash, G. K.; Mathew, Thomas; Jung, Kyung Woon

    2009-01-01

    While developing novel catalysts for carbon-carbon or carbon-heteroatom coupling (N, O, or F), we were able to introduce tridentate NHC-amidate-alkoxide palladium(II) complexes. In aqueous solution, these NHC-Pd(II) complexes showed high ability for C-H activation of various hydrocarbons (cyclohexane, cyclopentane, dimethyl ether, THF, acetone, and toluene) under mild conditions.

  9. Catalytic production of aromatics and olefins from plant materials

    Energy Technology Data Exchange (ETDEWEB)

    Haag, W.O.; Rodewald, P.G.; Weisz, P.B.

    1980-08-01

    Hydrocarbons and hydrocarbon-like plant materials offer the possibility of relatively simple and energy-efficient processing to liquid fuels or petrochemicals. The use of such highly reduced photosynthesis products as potential fuels has been advocated by Calvin and coworkers, and Buchanan and coworkers have evaluated several hundred plant species for the presence of hydrocarbons. The yield of extracted oils may exceed 10 wt % of the plant dry weight. Some field growth studies of the most promising of these plants are underway, e.g., by Calvin in California, by Native Plants, Inc., and by the Diamond Shamrock Co., in conjunction with the University of Arizona, mostly with Euphorbia and related genera. Exploratory studies were performed to determine if direct catalytic upgrading of the hydrocarbon-like plant constituents could be carried out. A preliminary report has been published recently. A variety of plant materials were shown to be upgraded to liquid premium fuels by relatively simple catalytic processing over Mobil's shape selective zeolite, ZSM-5. The present paper contains additional information on the conversion of a variety of plant materials with special emphasis on the production of petrochemicals, and discusses key mechanistic aspects of the reactions. Feedstocks were chosen to represent different types of plant materials: corn oil, castor oil and jojoba seed oil; plant extracts from Euphorbia lathyrus and Grindelia squarrosa; and hydrocarbons obtained by tapping of trees such as copaiba oil and natural rubber latex.

  10. Non-catalytic recuperative reformer

    Energy Technology Data Exchange (ETDEWEB)

    Khinkis, Mark J.; Kozlov, Aleksandr P.; Kurek, Harry

    2015-12-22

    A non-catalytic recuperative reformer has a flue gas flow path for conducting hot flue gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is embedded in the flue gas flow path to permit heat transfer from the hot flue gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, extended surfaces of metal material such as stainless steel or metal alloy that are high in nickel content are included within at least a portion of the reforming mixture flow path.

  11. Upward Trend in Catalytic Efficiency of Rare-Earth Triflate Catalysts in Friedel-Crafts Aromatic Sulfonylation Reactions

    DEFF Research Database (Denmark)

    Duus, Fritz; Le, Thach Ngoc; Nguyen, Vo Thu An

    2014-01-01

    90 % were achieved for short irradiation periods. This was the case especially for Tm(OTf)3, Yb(OTf)3, and Lu(OTf)3, of which Yb(OTf)3 was the most efficient. The upward trend in catalytic efficiency therefore correlates with the lanthanide sequence in the periodic table. The results can be explained...

  12. Thieme Chemistry Journal Awardees - Where are They Now? Catalytic Transport with an Amine Carrier in a Fluorous Triphasic Reaction

    OpenAIRE

    Montanari, Vittorio; Yu, Marvin S.; Curran, Dennis P.

    2009-01-01

    Several aromatic aldehydes are transported by a fluorous amine from one organic phase through a fluorous phase to another organic phase. The derived imines react with phenylhydrazine to immobilize the transported product as a hydrazone and release the amine for reuse. In this way, catalytic transport is accomplished for the first time.

  13. Catalytic ozonation not relying on hydroxyl radical oxidation: A selective and competitive reaction process related to metal-carboxylate complexes

    KAUST Repository

    Zhang, Tao

    2014-01-01

    Catalytic ozonation following non-hydroxyl radical pathway is an important technique not only to degrade refractory carboxylic-containing organic compounds/matter but also to avoid catalyst deactivation caused by metal-carboxylate complexation. It is unknown whether this process is effective for all carboxylates or selective to special molecule structures. In this work, the selectivity was confirmed using O3/(CuO/CeO2) and six distinct ozone-resistant probe carboxylates (i.e., acetate, citrate, malonate, oxalate, pyruvate and succinate). Among these probe compounds, pyruvate, oxalate, and citrate were readily degraded following the rate order of oxalate>citrate>pyruvate, while the degradation of acetate, malonate, and succinate was not promoted. The selectivity was independent on carboxylate group number of the probe compounds and solution pH. Competitive degradation was observed for carboxylate mixtures following the preference order of citrate, oxalate, and finally pyruvate. The competitive degradation was ascribed to competitive adsorption on the catalyst surface. It was revealed that the catalytically degradable compounds formed bidentate chelating or bridging complexes with surface copper sites of the catalyst, i.e., the active sites. The catalytically undegradable carboxylates formed monodentate complexes with surface copper sites or just electrostatically adsorbed on the catalyst surface. The selectivity, relying on the structure of surface metal-carboxylate complex, should be considered in the design of catalytic ozonation process. © 2013 Elsevier B.V.

  14. Preparation of acid-base bifunctional mesoporous KIT-6 (KIT: Korea Advanced Institute of Science and Technology) and its catalytic performance in Knoevenagel reaction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ling [College of Chemistry and Chemical Engineering, Inner Mongolia University for Nationalities, Tongliao 028000 (China); Wang, Chunhua [Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Changchun 130023 (China); Guan, Jingqi, E-mail: guanjq@jlu.edu.cn [Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Changchun 130023 (China)

    2014-05-01

    Acid-base bifunctional mesoporous catalysts Al-KIT-6-NH{sub 2} containing different aluminum content have been synthesized through post synthetic grafting method. The materials were characterized by X-ray diffraction (XRD), scanning electron micrographs (SEM), transmission electron micrographs (TEM), Fourier-transform infrared spectroscopy (FTIR), IR spectra of pyridine adsorption, NH{sub 3}-TPD and TG analysis. The characterization results indicated that the pore structure of KIT-6 was well kept after the addition of aluminum and grafting of aminopropyl groups. The acid amount of Al-KIT-6 increased with enhancing aluminum content. Catalytic results showed that weak acid and weak base favor the Knoevenagel reaction, while catalysts with strong acid and weak base exhibited worse catalytic behavior. - Graphical abstract: The postulated steps of mechanism for the acid-base catalyzed process are as follows: (1) the aldehyde gets activated by the surface acidic sites which allow the amine undergoes nucleophilic to attack the carbonyl carbon of benzaldehyde. (2) Water is released in the formation of imine intermediate. (3) The ethyl cyanoacetate reacts with the intermediate. (4) The benzylidene ethyl cyanoacetate is formed and the amine is regenerated. - Highlights: • KIT-6 and Al-KIT-6-NH{sub 2} with different Si/Al ratios has been successfully prepared. • 79.4% Yield was obtained over 46-Al-KIT-6-NH{sub 2} within 20 min in Knoevenagel reaction. • Low Al-content Al-KIT-6-NH{sub 2} shows better catalytic stability than high Al-content catalysts. • There is acid-base synergistic effect in Knoevenagel reaction.

  15. Modelling of non-catalytic reactions in a gas-solid trickle flow reactor: dry, regenerative flue gas desulphurization using a silica-supported copper oxide sorbent

    OpenAIRE

    Kiel, J.H.A.; De Prins, W.; Swaaij, van, W.P.M.

    1992-01-01

    A one-dimensional, two-phase dispersed plug flow model has been developed to describe the steady-state performance of a relatively new type of reactor, the gas-solid trickle flow reactor (GSTFR). In this reactor, an upward-flowing gas phase is contacted with as downward-flowing dilute solids phase over an inert packing. The model is derived from the separate mass heat balances for both the gas and (porous) solids phases for the case of a non-catalytic gas-solid reaction, which is first-order ...

  16. Catalytic titrations of silver(I) applying the iodide-catalysed manganese(IV)-arsenic(III) indicator reaction in the presence of sulphuric acid

    OpenAIRE

    TIBOR J. PASTOR; VOJKA V. ANTONIJEVIC; FERENC T. PASTOR

    1999-01-01

    A new catalytic potentiometric titration method for the determination of silver(I), applying the iodide-catalysed manganese(IV)-arsenic(III) indicator reaction in the presence of sulphuric acid, has been developed. The effect of the concentration of sulphuric acid and different ions, and of the mole ratio of manganese(IV) to arsenic(III) in the titrated solution, as well as of the titrand temperature on the conditions for the determination of silver(I) in solutions of various concentrations, ...

  17. 菲加氢裂化制BTX的催化反应研究%Research on Catalytic Reaction of Phenanthrene Hydrocracking to Produce Xylene

    Institute of Scientific and Technical Information of China (English)

    杨健; 吴倩; 朱志荣

    2012-01-01

    采用性能较优的6% Ni/USY催化剂,进行菲加氢裂化制取苯、甲苯、二甲苯(BTX)的反应研究.探讨了不同反应压强、反应温度及进料速率对反应的影响,实验结果表明:反应压强4MPa、反应温度420℃、进料速率<0.27mL/min时,转化率可达95%左右,且BTX的选择性约60%,并结合反应机理对实验结果进行了探讨.%The 6% Ni/USY catalyst with good performance was used for the catalytic reaction of phenanthrene hydrocracking to obtain benzene, toluene and xylene (BTX). The impact of different reaction pressure, reaction temperature and the flow rate of the feed on the reaction was studied. The results showed that the phenanthrene conversion rate could reach about 95%, and the BTX selectivity could be about 60%, when the reaction conditions were 4 MPa, 420 ℃ and 0.27 mL/min. The test results were probed into with reference to the reaction mechanism.

  18. Studies on Catalytic Conversion of Ethylene

    Institute of Scientific and Technical Information of China (English)

    Fuyu Liu; Chunyi Li; Xue Ding; Xinghua You

    2007-01-01

    FCC dry gas contains a large amount of ethylene.It is used by most of the refineries in China as fuel or simply burned in atmosphere.Few refineries make good use of the dry gas,so the precious ethylene resource in the dry gas is wasted.In this article,the possibility of catalytic conversion of ethylene to C3,C4,and some high molecular weight hydrocarbons in a fixed bed micro-reactor using LTB-1 catalyst,with pure ethylene as feedstock was studied.Effects of reaction temperature,reaction pressure,and feedstock flow rate,on the conversion of ethylene and the distribution of products were investigated to determine the proper reaction parameters to be used in practice.Good results indicate that this study may provide a new way of using the ethylene resource in the FCC dry gas.

  19. Interplay between nanoscale reactivity and bulk performance of H-ZSM-5 catalysts during the methanol-to-hydrocarbons reaction

    NARCIS (Netherlands)

    Aramburo, Luis R.; Teketel, Shewangizaw; Svelle, Stian; Bare, Simon R.; Arstad, Bjornar; Zandbergen, Henny W.; Olsbye, Unni; de Groot, Frank M. F.; Weckhuysen, Bert M.

    2013-01-01

    H-ZSM-5 catalyst powders before and after a steaming post-treatment have been investigated during the Methanol-To-Hydrocarbons (MTH) process at 350 degrees C. Bulk and surface characterization techniques have been combined with in situ Scanning Transmission X-ray Microscopy (STXM) at the aluminum an

  20. Fuel Flexible, Low Emission Catalytic Combustor for Opportunity Fuel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Eteman, Shahrokh

    2013-06-30

    Limited fuel resources, increasing energy demand and stringent emission regulations are drivers to evaluate process off-gases or process waste streams as fuels for power generation. Often these process waste streams have low energy content and/or highly reactive components. Operability of low energy content fuels in gas turbines leads to issues such as unstable and incomplete combustion. On the other hand, fuels containing higher-order hydrocarbons lead to flashback and auto-ignition issues. Due to above reasons, these fuels cannot be used directly without modifications or efficiency penalties in gas turbine engines. To enable the use of these wide variety of fuels in gas turbine engines a rich catalytic lean burn (RCL®) combustion system was developed and tested in a subscale high pressure (10 atm.) rig. The RCL® injector provided stability and extended turndown to low Btu fuels due to catalytic pre-reaction. Previous work has shown promise with fuels such as blast furnace gas (BFG) with LHV of 85 Btu/ft3 successfully combusted. This program extends on this work by further modifying the combustor to achieve greater catalytic stability enhancement. Fuels containing low energy content such as weak natural gas with a Lower Heating Value (LHV) of 6.5 MJ/m3 (180 Btu/ft3 to natural gas fuels containing higher hydrocarbon (e.g ethane) with LHV of 37.6 MJ/m3 (1010 Btu/ft3) were demonstrated with improved combustion stability; an extended turndown (defined as the difference between catalytic and non-catalytic lean blow out) of greater than 250oF was achieved with CO and NOx emissions lower than 5 ppm corrected to 15% O2. In addition, for highly reactive fuels the catalytic region preferentially pre-reacted the higher order hydrocarbons with no events of flashback or auto-ignition allowing a stable and safe operation with low NOx and CO emissions.

  1. Formation, phase composition, texture and catalytic properties of Co-MgO-alumino-calcium catalysts in synthesis of hydrocarbons from CO and H/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.L.; Bruk, I.A.; Mal' tsev, V.V.; Iem, K.C.; Yakerson, V.I.; Golosman, Y.Z.; Mamayeva, I.A.; Kalacheva, N.B.; Danyushevskii, V.Y.; Nissenbaum, V.D.

    1981-01-01

    A study was made of the mechanism of formation of catalysts; a special feature of this mechanism is the interaction of components (calcium aluminates and basic carbonates of cobalt and magnesium); the carrier with a developed surface and the active component distributed on this surface are formed during this process. Catalysts show maximum selectivity in synthesis of liquid hydrocarbons from CO and H/sub 2/ with a degree of reduction of the metal of 65-84% and a dispersion (according to chemisorption of CO) of 6 x 10/sup -3/ - 10 x 10/sup -3/. Maximum yield of liquid hydrocarbons (114.1 g/nm/sup 3/) was obtained in the pressure of a system of 33Co-3MgO-64 talum treated with hydrogen at 550/sup 0/C.

  2. GREENER REACTIONS UNDER SOLVENT FREE CONDITIONS

    Directory of Open Access Journals (Sweden)

    Hiren M. Marvaniya

    2011-06-01

    Full Text Available The toxicity and volatile nature of many organic solvents, particularly chlorinated hydrocarbons that are widely used in huge amounts for organic reactions have posed a serious threat to the environment. Thus, design of solventless catalytic reaction has received tremendous attention in recent times in the area of green synthesis. A solvent-free or solid state reaction may be carried out using the reactants alone or incorporating them in clays, zeolites, silica, alumina or other matrices to achieve high degree of stereoselectivity in the products, to reduce byproducts, to maximize rate of reaction. We illustrate the environmentally benign approach to 1,2-Oxazine-2- oxides, Michael addition, Wohl–Ziegler reaction, Acylation, Heck reaction, Tishchenko reaction, Diels– Alder reaction, Reformatsky and Luche Reaction, Oxidative coupling Reaction, Synthesis of chalcones, Synthesis of Dihydropyrimidinones

  3. Basic research for nuclear energy : a study on photo-catalytic decomposition reactions of organics dissolved in water

    International Nuclear Information System (INIS)

    In an experiment on TiO2 photo-catalysis of five nitrogen-containing organic compounds, the changes of pH and total carbon contents were measured, and the dependence of their photo-catalytic characteristic upon their chemical structures were investigated. -- calculation of the effect of ionic carbon species in an aqueous solution on thermodynamic equilibrium, pH and conductivity showed a small quantity of organics could lead conductivity increase and pH reduction. -- Based on the results of photo-catalytic experiment of ethylamine, phenylhydrazine, pyridine, urea or EDTA, irradiated for 180 minutes after adsorption onto titanium dioxide for 60 minutes, relationship between nitrogen atomic charge and the first-order rate constant was as the following: R (1st - order rate constant) = δ (ε - a )1/3 + b where, ε : atomic charge of nitrogen in a molecular, δ, a and b : corrective coefficients

  4. Catalytic combustor for hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mercea, J.; Grecu, E.; Fodor, T.; Kreibik, S.

    1982-01-01

    The performance of catalytic combustors for hydrogen using platinum-supported catalysts is described. Catalytic plates of different sizes were constructed using fibrous and ceramic supports. The temperature distribution as well as the reaction efficiency as a function of the fuel input rate was determined, and a comparison between the performances of different plates is discussed.

  5. A General Catalytic Enantioselective Transfer Hydrogenation Reaction of β,β-Disubstituted Nitroalkenes Promoted by a Simple Organocatalyst.

    Science.gov (United States)

    Bernardi, Luca; Fochi, Mariafrancesca

    2016-01-01

    Given its synthetic relevance, the catalytic enantioselective reduction of β,β-disubstituted nitroalkenes has received a great deal of attention. Several bio-, metal-, and organo-catalytic methods have been developed, which however are usually applicable to single classes of nitroalkene substrates. In this paper, we present an account of our previous work on this transformation, which implemented with new disclosures and mechanistic insights results in a very general protocol for nitroalkene reductions. The proposed methodology is characterized by (i) a remarkably broad scope encompassing various nitroalkene classes; (ii) Hantzsch esters as convenient (on a preparative scale) hydrogen surrogates; (iii) a simple and commercially available thiourea as catalyst; (iv) user-friendly procedures. Overall, the proposed protocol gives a practical dimension to the catalytic enantioselective reduction of β,β-disubstituted nitroalkenes, offering a useful and general platform for the preparation of nitroalkanes bearing a stereogenic center at the β-position in a highly enantioenriched form. A transition state model derived from control kinetic experiments combined with literature data is proposed and discussed. This model accounts and justifies the observed experimental results. PMID:27483233

  6. Nickel(II) complexes containing ONS donor ligands: Synthesis, characterization, crystal structure and catalytic application towards C-C cross-coupling reactions

    Indian Academy of Sciences (India)

    Panneerselvam Anitha; Rajendran Manikandan; Paranthaman Vijayan; Govindan Prakash; Periasamy Viswanathamurthi; Ray Jay Butcher

    2015-04-01

    Nickel(II) complexes containing thiosemicarbazone ligands [Ni(L)2] (1-3) (L = 9,10-phenanthrenequinonethiosemicarbazone (HL1), 9,10-phenanthrenequinone-N-methylthio semicarbazone (HL2) and 9, 10-phenanthrenequinone-N-phenylthiosemicarbazone (HL3)) have been synthesized and characterized by elemental analysis and spectroscopic (IR, UV-Vis, 1H, 13C-NMR and ESI mass) methods. The molecular structures of complexes 1 and 2 were identified by means of single-crystal X-ray diffraction analysis. The analysis revealed that the complexes possess a distorted octahedral geometry with the ligand coordinating in a uni-negative tridentate ONS fashion. The catalytic activity of complexes towards some C–C coupling reactions (viz., Kumada-Corriu, Suzuki-Miyaura and Sonogashira) has been examined. The complexes behave as efficient catalysts in the Kumada-Corriu and Sonogashira coupling reactions rather than Suzuki-Miyaura coupling.

  7. Synthesis, characterization and catalytic properties of nanocrystaline Y2O3-coated TiO2 in the ethanol dehydration reaction

    International Nuclear Information System (INIS)

    In the present study, TiO2 nano powder was partially coated with Y2O3 precursors generated by a sol-gel modified route. The system of nanocoated particles formed an ultra thin structure on the TiO2 surfaces. The modified nanoparticles were characterized by high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD) analysis, Zeta potential and surface area through N2 physisorption measurements. Bioethanol dehydration was used as a probe reaction to investigate the modifications on the nanoparticles surface. The process led to the obtainment of nanoparticles with important surface characteristics and catalytic behavior in the bioethanol dehydration reaction, with improved activity and particular selectivity in comparison to their non-coated analogs. The ethylene production was disfavored and selectivity toward acetaldehyde, hydrogen and ethane increased over modified nanoparticles. (author)

  8. Synthesis, characterization and catalytic properties of nanocrystaline Y{sub 2}O{sub 3}-coated TiO{sub 2} in the ethanol dehydration reaction

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, Humberto Vieira [Universidade Federal de Ouro Preto (UFOP), MG (Brazil). Departamento de Quimica; Longo, Elson [Universidade Estadual Paulista (UNESP), Araraquara, SP (Brazil). Departamento de Fisico-Quimica; Leite, Edson Roberto; Libanori, Rafael [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Quimica; Probst, Luiz Fernando Dias [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Departamento de Quimica; Carreno, Neftali Lenin Villarreal [Universidade Federal de Pelotas (UFPel), RS (Brazil). Departamento de Quimica Analitica e Inorganica

    2012-03-15

    In the present study, TiO{sub 2} nano powder was partially coated with Y{sub 2}O{sub 3} precursors generated by a sol-gel modified route. The system of nanocoated particles formed an ultra thin structure on the TiO{sub 2} surfaces. The modified nanoparticles were characterized by high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD) analysis, Zeta potential and surface area through N{sub 2} physisorption measurements. Bioethanol dehydration was used as a probe reaction to investigate the modifications on the nanoparticles surface. The process led to the obtainment of nanoparticles with important surface characteristics and catalytic behavior in the bioethanol dehydration reaction, with improved activity and particular selectivity in comparison to their non-coated analogs. The ethylene production was disfavored and selectivity toward acetaldehyde, hydrogen and ethane increased over modified nanoparticles. (author)

  9. Synthesis, characterization and catalytic properties of nanocrystaline Y2O3-coated TiO2 in the ethanol dehydration reaction

    Directory of Open Access Journals (Sweden)

    Humberto Vieira Fajardo

    2012-04-01

    Full Text Available In the present study, TiO2 nanopowder was partially coated with Y2O3 precursors generated by a sol-gel modified route. The system of nanocoated particles formed an ultra thin structure on the TiO2 surfaces. The modified nanoparticles were characterized by high resolution transmission electron microscopy (HR-TEM, X-ray diffraction (XRD analysis, Zeta potential and surface area through N2 fisisorption measurements. Bioethanol dehydration was used as a probe reaction to investigate the modifications on the nanoparticles surface. The process led to the obtainment of nanoparticles with important surface characteristics and catalytic behavior in the bioethanol dehydration reaction, with improved activity and particular selectivity in comparison to their non-coated analogs. The ethylene production was disfavored and selectivity toward acetaldehyde, hydrogen and ethane increased over modified nanoparticles.

  10. High Surface Area Tungsten Carbides: Synthesis, Characterization and Catalytic Activity towards the Hydrogen Evolution Reaction in Phosphoric Acid at Elevated Temperatures

    DEFF Research Database (Denmark)

    Tomás García, Antonio Luis; Li, Qingfeng; Jensen, Jens Oluf;

    2014-01-01

    Tungsten carbide powders were synthesized as a potential electrocatalyst for the hydrogen evolution reaction in phosphoric acid at elevated temperatures. With ammonium metatungstate as the precursor, two synthetic routes with and without carbon templates were investigated. Through the intermediate...... nitride route and with carbon black as template, the obtained tungsten carbide samples had higher BET area. In 100% H3PO4 at temperatures up to 185°C, the carbide powders showed superior activity towards the hydrogen evolution reaction. A deviation was found in the correlation between the BET area...... and catalytic activity; this was attributed to the presence of excess amorphous carbon in the carbide powder. TEM imaging and TGA-DTA results revealed a better correlation of the activity with the carbide particle size....

  11. Self-assembly growth of alloyed NiPt nanocrystals with holothuria-like shape for oxygen evolution reaction with enhanced catalytic activity

    Directory of Open Access Journals (Sweden)

    Tao Ding

    2016-01-01

    Full Text Available Self-assembly growth of alloyed NiPt nanocrystals with holothuria-like wire shape has been achieved via a facile and moderate hydrothermal process at 120 °C for 1 h from the reaction of nickel nitrate and chloroplatinic acid in alkaline solution in the presence of ethanediamine and hydrazine hydrate. The holothuria-like alloyed NiPt wires are Ni-rich in composition (Ni23.6Pt and uniform in diameter with many tiny tips outstretched from the wires surface. The holothuria-like wires are assembled from granular subunits with the assistance of capping molecular of ethanediamine and the wires display an improved oxygen evolution reaction catalytic activity.

  12. Microwave-induced synthesis and characterization of nanometer Ce0.5Zr0.5O2 solid solution for the acidic catalytic reaction

    Institute of Scientific and Technical Information of China (English)

    HU Yucai; YIN Ping; LIANG Tao; JIANG Wei; DU Zhengkun; CHEN Yonghua

    2008-01-01

    Ce0.5Zr0.5O2 solid solution was successfully synthesized using cerium nitrate,zirconium nitrate,and urea as raw materials by the microwave irradiation method and charactefizde by X-ray diffraction,fluorescence spectrum,transmission electron microscopy,and infrared spectrum.Its acid catalytic activity was evaluated in the esterification reaction of acetic acid and n-butyl alcohol.The results show that Ce0.5Zr0.5O2 solid solution has cubic fluorite structure,and its particle diameter is in the nanometer scale.As a sort of solid acid,it possesses a higher acid catalytic activity and can be easily separated from reaction liquids.It can be used for several times,and basically,its activity keeps constant.The proton acid sites and Lewis acid sites exist in the structure of Ce0.5Zr0.5O2 solid solution.

  13. Catalytic cracking of lignites

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, M.; Nowak, S.; Naegler, T.; Zimmermann, J. [Hochschule Merseburg (Germany); Welscher, J.; Schwieger, W. [Erlangen-Nuernberg Univ. (Germany); Hahn, T. [Halle-Wittenberg Univ., Halle (Germany)

    2013-11-01

    A most important factor for the chemical industry is the availability of cheap raw materials. As the oil price of crude oil is rising alternative feedstocks like coal are coming into focus. This work, the catalytic cracking of lignite is part of the alliance ibi (innovative Braunkohlenintegration) to use lignite as a raw material to produce chemicals. With this new one step process without an input of external hydrogen, mostly propylene, butenes and aromatics and char are formed. The product yield depends on manifold process parameters. The use of acid catalysts (zeolites like MFI) shows the highest amount of the desired products. Hydrogen rich lignites with a molar H/C ratio of > 1 are to be favoured. Due to primary cracking and secondary reactions the ratio between catalyst and lignite, temperature and residence time are the most important parameter to control the product distribution. Experiments at 500 C in a discontinuous rotary kiln reactor show yields up to 32 wt-% of hydrocarbons per lignite (maf - moisture and ash free) and 43 wt-% char, which can be gasified. Particularly, the yields of propylene and butenes as main products can be enhanced four times to about 8 wt-% by the use of catalysts while the tar yield decreases. In order to develop this innovative process catalyst systems fixed on beads were developed for an easy separation and regeneration of the used catalyst from the formed char. (orig.)

  14. Utilizing carbon dioxide as a reaction medium to mitigate production of polycyclic aromatic hydrocarbons from the thermal decomposition of styrene butadiene rubber.

    Science.gov (United States)

    Kwon, Eilhann E; Yi, Haakrho; Castaldi, Marco J

    2012-10-01

    The CO(2) cofeed impact on the pyrolysis of styrene butadiene rubber (SBR) was investigated using thermogravimetric analysis (TGA) coupled to online gas chromatography/mass spectroscopy (GC/MS). The direct comparison of the chemical species evolved from the thermal degradation of SBR in N(2) and CO(2) led to a preliminary mechanistic understanding of the formation and relationship of light hydrocarbons (C(1-4)), aromatic derivatives, and polycyclic aromatic hydrocarbons (PAHs), clarifying the role of CO(2) in the thermal degradation of SBR. The identification and quantification of over 50 major and minor chemical species from hydrogen and benzo[ghi]perylene were carried out experimentally in the temperature regime between 300 and 500 °C in N(2) and CO(2). The significant amounts of benzene derivatives from the direct bond dissociation of the backbone of SBR, induced by thermal degradation, provided favorable conditions for PAHs by the gas-phase addition reaction at a relatively low temperature compared to that with conventional fuels such as coal and petroleum-derived fuels. However, the formation of PAHs in a CO(2) atmosphere was decreased considerably (i.e., ∼50%) by the enhanced thermal cracking behavior, and the ultimate fates of these species were determined by different pathways in CO(2) and N(2) atmospheres. Consequently, this work has provided a new approach to mitigate PAHs by utilizing CO(2) as a reaction medium in thermochemical processes. PMID:22950720

  15. Crossed-beam reaction of carbon atoms with hydrocarbon molecules. V. Chemical dynamics of n-C4H3 formation from reaction of C(3Pj) with allene, H2CCCH2(X 1A1)

    Science.gov (United States)

    Kaiser, R. I.; Mebel, A. M.; Chang, A. H. H.; Lin, S. H.; Lee, Y. T.

    1999-06-01

    The crossed molecular beams technique was employed to investigate the reaction between ground state carbon atoms, C(3Pj), and allene, H2CCCH2(X 1A1), at two averaged collision energies of 19.6 and 38.8 kJ mol-1. Product angular distributions and time-of-flight spectra of C4H3 were recorded. Forward-convolution fitting of the data yields weakly polarized center-of-mass angular flux distributions isotropic at lower, but forward scattered with respect to the carbon beam at a higher collision energy. The maximum translational energy release and the angular distributions combined with ab initio and RRKM calculations are consistent with the formation of the n-C4H3 radical in its electronic ground state. The channel to the i-C4H3 isomer contributes less than 1.5%. Reaction dynamics inferred from the experimental data indicate that the carbon atom attacks the π-orbitals of the allenic carbon-carbon double bond barrierless via a loose, reactant-like transition state located at the centrifugal barrier. The initially formed cyclopropylidene derivative rotates in a plane almost perpendicular to the total angular momentum vector around its C-axis and undergoes ring opening to triplet butatriene. At higher collision energy, the butatriene complex decomposes within 0.6 ps via hydrogen emission to form the n-C4H3 isomer and atomic hydrogen through an exit transition state located 9.2 kJ mol-1 above the products. The explicit identification of the n-C4H3 radical under single collision represents a further example of a carbon-hydrogen exchange in reactions of ground state carbon atoms with unsaturated hydrocarbons. This channel opens a barrierless route to synthesize extremely reactive hydrocarbon radicals in combustion processes, interstellar chemistry, and hydrocarbon-rich atmospheres of Jupiter, Saturn, Titan, as well as Triton.

  16. Studies on Zeolite-Supported Mo and Re Catalysts : Catalytic Performance in Methane Aromatization Reaction and Their Structural Characterization

    OpenAIRE

    Wang, Linsheng

    1999-01-01

    The main achievements in the present studies are summarized as 4 key points: 1) HZSM-5 supported Mo and Re catalysts are found to be quite active and selective for directly conyerting methane to benzene, naphthalene and C2 hydrocarbons. A great progress for methane aromatization has been made because of the discover of the two new catalysts. 2) Coke deposition on the catalyst for non-oxidative conversion of methane is solved by varying methane pressure combined with addition of CO2 in methane...

  17. Synthesis and Characterization of Benzimidazolium Salts as Novel Ionic Liquids and their Catalytic Behavior in the Reaction of Alkylation

    Institute of Scientific and Technical Information of China (English)

    Wei Guo HUANG; Bo CHEN; Yuan Yuan WANG; Li Yi DAI; Yong Kui SHAN

    2005-01-01

    A new series of ionic liquids have been prepared containing benzimidazolium cation (abbreviated as Bim). These salts were characterized by DSC, NMR, elemental analysis and thermogravimetric analysis. They showed different properties compared to imidazolium cation due to the introduction of benzene ring. The alkylation of benzene/diphenyl ether with 1-dodecene was carried in C4eBimBr-AlCl3 ionic liquids showing high catalytic activity when the mole ratio of C4eBimB:AlCl3 was 1:2.

  18. Operando magnetic resonance: monitoring the evolution of conversion and product distribution during the heterogeneous catalytic ethene oligomerisation reaction.

    Science.gov (United States)

    Roberts, S Tegan; Renshaw, Matthew P; Lutecki, Michal; McGregor, James; Sederman, Andrew J; Mantle, Mick D; Gladden, Lynn F

    2013-11-18

    Operando magnetic resonance (MR) spectroscopy has been used to follow an ethene oligomerisation reaction performed at 110 °C, 28 barg over a 1 wt% Ni/SiO2-Al2O3 catalyst. Spectra acquired over the timecourse of the reaction allow the calculation of conversion and product distribution as a function of time-on-stream. PMID:24088715

  19. Elementary steps of the catalytic NO{sub x} reduction with NH{sub 3}: Cluster studies on reaction paths and energetics at vanadium oxide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, M.; Hermann, K. [Inorganic Chemistry Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany)

    2013-12-28

    We consider different reaction scenarios of the selective catalytic reduction (SCR) of NO in the presence of ammonia at perfect as well as reduced vanadium oxide surfaces modeled by V{sub 2}O{sub 5}(010) without and with oxygen vacancies. Geometric and energetic details as well as reaction paths are evaluated using extended cluster models together with density-functional theory. Based on earlier work of adsorption, diffusion, and reaction of the different surface species participating in the SCR we confirm that at Brønsted acid sites (i.e., OH groups) of the perfect oxide surface nitrosamide, NH{sub 2}NO, forms a stable intermediate. Here adsorption of NH{sub 3} results in NH{sub 4} surface species which reacts with gas phase NO to produce the intermediate. Nitrosamide is also found as intermediate of the SCR near Lewis acid sites of the reduced oxide surface (i.e., near oxygen vacancies). However, here the adsorbed NH{sub 3} species is dehydrogenated to surface NH{sub 2} before it reacts with gas phase NO to produce the intermediate. The calculations suggest that reaction barriers for the SCR are overall higher near Brønsted acid sites of the perfect surface compared with Lewis acid sites of the reduced surface, examined for the first time in this work. The theoretical results are consistent with experimental findings and confirm the importance of surface reduction for the SCR process.

  20. Catalytic activity of hydrophobic Pt/C/PTFE catalysts of different PTFE content for hydrogen-water liquid exchange reaction

    International Nuclear Information System (INIS)

    10%Pt/C catalysts were prepared by liquid reduction method. PTFE and Pt/ C catalysts were adhered to porous metal and hydrophobic Pt/C/PTFE catalysts were prepared. The structure and size of Pt crystal particles of Pt/C catalysts were analyzed by XRD, and their mean size was 3.1 nm. The dispersion state of Pt/C and PTFE was analyzed by SEM, and they had good dispersion mostly, but PTFE membrane could be observed on local parts of Pt/C/PTFE surface. Because of low hydrophobicity, Pt/C/ PTFE catalysts have low activity when the mass ratio of PTFE and Pt/C is 0.5: 1, and their catalytic activity increases markedly when the ratio is 1:1. When the ratio increases again, more Pt active sites would be covered by PTFE and interior diffusion effect would increase, which result in the decrease of catalytic activity of Pt/C/PTFE. By PTFE pretreatment of porous metal carrier, the activity of Pt/C/PTFE catalysts decreases when the mass ratio of PTFE and Pt/C is 0.5:1, and their activity decreases when the mass ratio is 1:1. (authors)

  1. Effect of Calcination Temperature on Catalytic Activity and Textual Property of Cu/HMOR Catalysts in Dimethyl Ether Carbonylation Reaction

    Institute of Scientific and Technical Information of China (English)

    Xue Zhang; Yu-ping Li; Song-bai Qiu; Tie-jun Wang; Long-long Ma; Qi Zhang; Ming-yue Ding

    2013-01-01

    The effect of calcination temperature on the catalytic activity for the dimethyl ether (DME) carbonylation into methyl acetate (MA) was investigated over mordenite supported copper (Cu/HMOR) prepared by ion-exchange process.The results showed that the catalytic activity was obviously affected by the calcination temperature.The maximal DME conversion of 97.2% and the MA selectivity of 97.9% were obtained over the Cu/HMOR calcined at 430 ℃ under conditions of 210 ℃,1.5 MPa,and GSHV of 4883 h-1.The obtained Cu/HMOR catalysts were characterized by powder X-ray diffraction,N2 absorption,NH3 temperature program desorption,CO temperature program desorption,and Raman techniques.Proper calcination temperature was effective to promote copper ions migration and diffusion,and led the support HMOR to possess more acid activity sites,which exhibited the complete decomposing of copper nitrate,large surface area and optimum micropore structure,more amount of CO adsorption site and proper amount of weak acid centers.

  2. Catalytic combustion over high temperature stable metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Berg, M. [TPS Termiska Processer AB, Nykoeping (Sweden)

    1996-12-31

    This thesis presents a study of the catalytic effects of two interesting high temperature stable metal oxides - magnesium oxide and manganese substituted barium hexa-aluminate (BMA) - both of which can be used in the development of new monolithic catalysts for such applications. In the first part of the thesis, the development of catalytic combustion for gas turbine applications is reviewed, with special attention to alternative fuels such as low-BTU gas, e.g. produced in an air blown gasifier. When catalytic combustion is applied for such a fuel, the primary advantage is the possibility of decreasing the conversion of fuel nitrogen to NO{sub x}, and achieving flame stability. In the experimental work, MgO was shown to have a significant activity for the catalytic combustion of methane, lowering the temperature needed to achieve 10 percent conversion by 270 deg C compared with homogeneous combustion.The reaction kinetics for methane combustion over MgO was also studied. It was shown that the heterogeneous catalytic reactions were dominant but that the catalytically initiated homogeneous gas phase reactions were also important, specially at high temperatures. MgO and BMA were compared. The latter showed a higher catalytic activity, even when the differences in activity decreased with increasing calcination temperature. For BMA, CO{sub 2} was the only product detected, but for MgO significant amounts of CO and C{sub 2}-hydrocarbons were formed. BMA needed a much lower temperature to achieve total conversion of other fuels, e.g. CO and hydrogen, compared to the temperature for total conversion of methane. This shows that BMA-like catalysts are interesting for combustion of fuel mixtures with high CO and H{sub 2} content, e.g. gas produced from gasification of biomass. 74 refs

  3. Vacuum-insulated catalytic converter

    Energy Technology Data Exchange (ETDEWEB)

    Benson, David K. (Golden, CO)

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  4. Synthesis of ceramic catalytic system based on CuO/CeO2 for preferential oxidation reaction of CO

    International Nuclear Information System (INIS)

    The aim this is work is to develop catalysts based on CuO/CeO2 by means two different types of synthesis methods: combustion synthesis and Pechini. CuO/CeO2 catalysts were synthesized with 0.5 mol of CuO for both synthesis methods used. The catalysts were characterized by XRD with the Rietveld refinement, EDX and textural analysis by the BET method. The results show that both methods of synthesis led to the formation of catalysts with segregated phases formed on the structures of the obtained materials, such segregated phases were formed by the presence of catalytic active species CuO and these phases had different characteristics depending on the type of method synthesis used. Small differences were observed in the evaluation of textural characteristics of the catalysts developed in this work according to the synthesis method employed. (author)

  5. Isolation and Characterization of Well-Defined Silica-Supported Azametallacyclopentane: A Key Intermediate in Catalytic Hydroaminoalkylation Reactions

    KAUST Repository

    Hamzaoui, Bilel

    2015-09-25

    Intermolecular catalytic hydroaminoalkylation of unactivated alkene occurs with silica-supported azazirconacyclopropane [[TRIPLE BOND]Si[BOND]O[BOND]Zr(HNMe2)(η2-NMeCH2)(NMe2)]. Mechanistic studies were conducted using surface organometallic chemistry (SOMC) concepts to identify the key surface intermediates. The azametallacyclopentene intermediate {[TRIPLE BOND]Si[BOND]O[BOND]Zr(HNMe2)[η2-NMeCH2CH(Me)CH2](NMe2)} was isolated after treating with 1-propylene and characterized by FT-IR spectroscopy, elemental analysis, 1H 13C HETCOR, DARR SS-NMR and DQ TQ SS-NMR. The regeneration of the catalyst was conducted by dimethylamine protonolysis to yield the pure amine.

  6. Preparation and Characterization of A New Dinuclear Ruthenium Complex with BDPX Ligand and Its Catalytic Hydrogenation Reactions for Cinnamaldehyde

    Institute of Scientific and Technical Information of China (English)

    TANG,Yuan-You(唐元友); LI,Rui-Xiang(李瑞祥); LI,Xian-Jun(李贤均); WONG,Ning-Bew(黄宁表); TIN,Kim-Chung(田金忠); ZHANG,Zhe-Ying(张哲英); MAK,Thomas C.W.(麦松威)

    2004-01-01

    A new anionic dinuclear ruthenium complex bearing 1,2-bis(diphenylphosphinomethyl)benzene (BDPX)[NH2Et2][{RuCl (BDPX)}2(μ-Cl)3] (1) was synthesized and its structure was determined by an X-ray crystallographic analysis. This result indicated that complex 1 consisted of an anion dinuclear BDPX-Ru and a cationic diethylammonium. The crystal belonged to monoclinic system, C2/c space group with a=3.3552(7) nm, b= 1.8448(4)nm, c=2.4265(5) nm, β= 101.89(3)° and Z=8. The catalytic hydrogenation activities and selectivities of complex 1 for cinnamaldehyde were investigated.

  7. Catalytic Activity of Cationic and Neutral Silver(I)-XPhos Complexes with Nitrogen Ligands or Tolylsulfonate for Mannich and Aza-Diels-Alder Coupling Reactions.

    Science.gov (United States)

    Grirrane, Abdessamad; Álvarez, Eleuterio; García, Hermenegildo; Corma, Avelino

    2016-01-01

    Cationic and neutral silver(I)-L complexes (L=Buchwald-type biaryl phosphanes) with nitrogen co-ligands or organosulfonate counter ions have been synthesised and characterised through their structural and spectroscopic properties. At room temperature, both cationic and neutral silver(I)-L complexes are extremely active catalysts in the promotion of the single and double A(3) coupling of terminal (di)alkynes, pyrrolidine and formaldehyde. In addition, the aza-Diels-Alder two- and three-component coupling reactions of Danishefsky's diene with an imine or amine and aldehyde are efficiently catalysed by these cationic or neutral silver(I)-L complexes. The solvent influences the catalytic performance due to limited complex solubility or solvent decomposition and reactivity. The isolation of new silver(I)-L complexes with reagents as ligands lends support to mechanistic proposals for such catalytic processes. The activity, stability and metal-distal arene interaction of these silver(I)-L catalysts have been compared with those of analogous cationic gold(I) and copper(I) complexes. PMID:26598792

  8. Submonolayer-Pt-Coated Ultrathin Au Nanowires and Their Self-Organized Nanoporous Film: SERS and Catalysis Active Substrates for Operando SERS Monitoring of Catalytic Reactions.

    Science.gov (United States)

    Liu, Rui; Liu, Jing-Fu; Zhang, Zong-Mian; Zhang, Li-Qiang; Sun, Jie-Fang; Sun, Meng-Tao; Jiang, Gui-Bin

    2014-03-20

    For their unique properties, core-shell bimetal nanostructures are currently of immense interest. However, their synthesis is not a trivial work, and most works have been conducted on nanoparticles. We report herein a new synthetic tactic for submonolyer-Pt coated ultrathin Au nanowires (NWs). Besides providing a strong electromagnetic field for Raman signal enhancing, the underlined Au NWs markedly enhanced the catalytic activity of Pt atoms through increasing their dispersity and altering their electronic state. The integration of excellent SERS and high catalytic activity within Au@Pt NWs enable it work as platform for catalyzed reaction study. As a proof of principle, the self-organized Au@Pt NWs thin film is employed in operando SERS monitoring of the p-nitrothiophenol reduction process. In addition to providing kinetic data for structure-activity relationship study, the azo-intermidate independent path is also directly witnessed. This synthetic tactic can be extended to other metals, thus offering a general approach to modulate the physical/chemical properties of both core and shell metals. PMID:26270975

  9. The importance of hinge sequence for loop function and catalytic activity in the reaction catalyzed by triosephosphate isomerase.

    Science.gov (United States)

    Xiang, J; Sun, J; Sampson, N S

    2001-04-01

    We have determined the sequence requirements for the N-terminal protein hinge of the active-site lid of triosephosphate isomerase. The codons for the hinge (PVW) were replaced with a genetic library of all possible 8000 amino acid combinations. The most active of these 8000 mutants were selected using in vivo complementation of a triosephosphate isomerase-deficient strain of Escherichia coli, DF502. Approximately 0.3 % of the mutants complement DF502 with an activity that is between 10 and 70 % of wild-type activity. They all contain Pro at the first position. Furthermore, the sequences of these hinge mutants reveal that hydrophobic packing is very important for efficient formation of the enediol intermediate. However, the reduced catalytic activities observed are not due to increased rates of loop opening. To explore the relationship between the N-terminal and C-terminal hinges, three semi-active mutants from the N-terminal hinge selection experiment (PLH, PHS and PTF), and six active C-terminal hinge mutants from previous work (NSS, LWA, YSL, KTK, NPN, KVA) were combined to form 18 "double-hinge" mutants. The activities of these mutants suggest that the N-terminal and C-terminal hinge structures affect one another. It appears that specific side-chain interactions are important for forming a catalytically active enzyme, but not for preventing release of the unstable enediol intermediate from the active site of the enzyme. The independence of intermediate release on amino acid sequence is consistent with the absence of a "universal" hinge sequence in structurally related enzymes.

  10. Advances in catalytic removal of NOx under lean-burn conditions

    Institute of Scientific and Technical Information of China (English)

    LIU Zhiming; HAO Jiming; FU Lixin; LI Junhua; CUI Xiangyu

    2004-01-01

    The catalytic removal of NOx under lean conditions is one of the most important targets in catalysis research. The activities of metal oxides, zeolite-based catalysts and noble metal catalysts together with the factors are influencing the selective reduction of NOx with hydrocarbons are reviewed. The reaction mechanisms for the three types of catalysts are briefly discussed. Recent progress in combined catalyst and NOx storage reduction catalysts is also introduced. Finally, future research directions are forecasted.

  11. Catalytic Conversion of Alcohols into Olefins: Spectroscopy, Kinetics and Catalyst Deactivation

    OpenAIRE

    Qian, Q

    2014-01-01

    The alcohols-to-olefins (ATO) catalytic process, a technology based on oil-alternative feedstocks, has gained increasing attention due to the current high price of crude oil as well as the growing environmental concerns. Intensive academic and industrial research, mainly performed under ex-situ conditions with bulk characterization techniques as well as advanced theoretical calculations, have yielded important insights into the ATO reaction mechanism, which follows the so-called “hydrocarbon ...

  12. Catalytic, Conjugate Reduction-Aldol Addition Reaction of β'Oxoal kyl α, β-Unsatu rated Carboxylates%Catalytic, Conjugate Reduction-Aldol Addition Reaction of β'Oxoal kyl α, β-Unsatu rated Carboxylates

    Institute of Scientific and Technical Information of China (English)

    郑爱军; 姜岚; 李争宁

    2012-01-01

    Intramolecular conjugate reduction-aldol addition reactions of β'-oxoalkyl a,fl-unsaturated carboxylates were performed in the presence of copper catalysts generated in situ from copper salts, phosphine ligands and silanes. Moderate to good yields and high diastereoselectivities were obtained in 15 min to 3 h using bis[(2-diphenyl- phosphino)phenyl] ether as the ligand.

  13. Diesel NO{sub x} catalytic converter development: A review

    Energy Technology Data Exchange (ETDEWEB)

    Heimrich, M.J. [Southwest Research Inst., San Antonio, TX (United States)

    1996-07-01

    This paper summarizes the findings of several technical articles on diesel NO{sub x} catalytic converter technology. Simplified theoretical reactions for NO{sub x} removal are discussed. Currently, development of catalytic NO{sub x} control technology for diesel engines is focused on systems that incorporate fuel hydrocarbons as the chemical reducing agent. Copper- and zeolite-based catalysts have been the predominant systems studied to date, but now catalysts containing precious metals are being investigated. Observed NO{sub x} reduction efficiencies typically ranged from 10 to 30 percent on actual engine exhaust systems when exhaust hydrocarbon enrichment strategies were used. Effects of carbon monoxide, sulfur dioxide, and water on NO{sub x} reduction efficiencies are reviewed. Recommendations for future research include attempts to broaden the temperature range of efficient NO{sub x} reduction, improving hydrocarbon selectivity toward the NO{sub x} reduction reaction, and the development of a supplementary reductant delivery system suitable for transient diesel engine operation.

  14. NH3-SCR performance of fresh and hydrothermally aged Fe-ZSM-5 in standard and fast selective catalytic reduction reactions.

    Science.gov (United States)

    Shi, Xiaoyan; Liu, Fudong; Xie, Lijuan; Shan, Wenpo; He, Hong

    2013-04-01

    Hydrothermal stability is one of the challenges for the practical application of Fe-ZSM-5 catalysts in the selective catalytic reduction (SCR) of NO with NH3 (NH(3)-SCR) for diesel engines. The presence of NO(3) in the exhaust gases can enhance the deNOx activity because of the fast SCR reaction. In this work, a Fe-ZSM-5 catalyst was prepared by a solid-state ion-exchange method and was hydrothermally deactivated at 800 °C in the presence of 10% H(2)O. The activity of fresh and hydrothermal aged Fe-ZSM-5 catalysts was investigated in standard SCR (NO(2)/NOx = 0) and in fast SCR with NO(2)/NOx = 0.3 and 0.5. In standard SCR, hydrothermal aging of Fe-ZSM-5 resulted in a significant decrease of low-temperature activity and a slight increase in high-temperature activity. In fast SCR, NOx conversion over aged Fe-ZSM-5 was significantly increased but was still lower than that over fresh catalyst. Additionally, production of N(2)O in fast SCR was much more apparent over aged Fe-ZSM-5 than over fresh catalyst. We propose that, in fast SCR, the rate of key reactions related to NO is slower over aged Fe-ZSM-5 than over fresh catalyst, thus increasing the probabilities of side reactions involving the formation of N(2)O. PMID:23477804

  15. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification.

    Science.gov (United States)

    Castro-Dominguez, Bernardo; Mardilovich, Ivan P; Ma, Liang-Chih; Ma, Rui; Dixon, Anthony G; Kazantzis, Nikolaos K; Ma, Yi Hua

    2016-09-19

    Palladium-based catalytic membrane reactors (CMRs) effectively remove H₂ to induce higher conversions in methane steam reforming (MSR) and water-gas-shift reactions (WGS). Within such a context, this work evaluates the technical performance of a novel CMR, which utilizes two catalysts in series, rather than one. In the process system under consideration, the first catalyst, confined within the shell side of the reactor, reforms methane with water yielding H₂, CO and CO₂. After reforming is completed, a second catalyst, positioned in series, reacts with CO and water through the WGS reaction yielding pure H₂O, CO₂ and H₂. A tubular composite asymmetric Pd/Au/Pd membrane is situated throughout the reactor to continuously remove the produced H₂ and induce higher methane and CO conversions while yielding ultrapure H₂ and compressed CO₂ ready for dehydration. Experimental results involving (i) a conventional packed bed reactor packed (PBR) for MSR, (ii) a PBR with five layers of two catalysts in series and (iii) a CMR with two layers of two catalysts in series are comparatively assessed and thoroughly characterized. Furthermore, a comprehensive 2D computational fluid dynamics (CFD) model was developed to explore further the features of the proposed configuration. The reaction was studied at different process intensification-relevant conditions, such as space velocities, temperatures, pressures and initial feed gas composition. Finally, it is demonstrated that the above CMR module, which was operated for 600 h, displays quite high H₂ permeance and purity, high CH₄ conversion levels and reduced CO yields.

  16. An efficient route for catalytic activity promotion via hybrid electro-depositional modification on commercial nickel foam for hydrogen evolution reaction in alkaline water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Guanshui; He, Yongwei; Wang, Mei; Zhu, Fuchun; Tang, Bin [Research Institute of Surface Engineering, Taiyuan University of Technology, Yingze West Road 79, Taiyuan 030024 (China); Wang, Xiaoguang, E-mail: wangxiaog1982@163.com [Research Institute of Surface Engineering, Taiyuan University of Technology, Yingze West Road 79, Taiyuan 030024 (China); International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga (Portugal)

    2014-09-15

    Highlights: • Mono-Cu surface modification depress the HER activity of Ni-foam. • Hybrid Ni-foam/Cu0.01/Co0.05 exhibits superior HER performance. • Layer-by-layer structure may contribute to a synergistic promoting effect. - Abstract: In this paper, the single- and hybrid-layered Cu, Ni and Co thin films were electrochemically deposited onto the three-dimensional nickel foam as composite cathode catalyst for hydrogen evolution reaction in alkaline water electrolysis. The morphology, structure and chemical composition of the electrodeposited composite catalysts were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). Electrochemical measurement depicted that, for the case of the monometallic layered samples, the general activity for hydrogen evolution reaction followed the sequence: Ni-foam/Ni > Ni-foam/Co > bare Ni-foam > Ni-foam/Cu. It is noteworthy that, the hybrid-layered Ni-foam/Cu0.01/Co0.05 exhibited the highest catalytic activity towards hydrogen evolution reaction with the current density as high as 2.82 times that of the bare Ni-foam. Moreover, both excellent electrochemical and physical stabilities can also be acquired on the Ni-foam/Cu0.01/Co0.05, making this hybrid-layered composite structure as a promising HER electro-catalyst.

  17. Aqueous-phase catalytic hydrogenation of furfural to cyclopentanol over Cu-Mg-Al hydrotalcites derived catalysts:Model reaction for upgrading of bio-oil

    Institute of Scientific and Technical Information of China (English)

    Minghao; Zhou; Zuo; Zeng; Hongyan; Zhu; Guomin; Xiao; Rui; Xiao

    2014-01-01

    A series of Cu-Mg-Al hydrotalcites derived oxides with a(Cu+Mg)/Al mole ratio of 3 and varied Cu/Mg mole ratio(from 0.07 to 0.30) were prepared by co-precipitation and calcination methods, then they were introduced to the hydrogenation of furfural in aqueous-phase. Effects of Cu/Mg mole ratio, reaction temperature, initial hydrogen pressure, reaction time and catalyst amount on the conversion rate of furfural as well as the selectivity toward desired product cyclopentanol were systematically investigated. The conversion of furfural over calcined hydrotalcite catalyst with a Cu/Mg mole ratio of 0.2 was up to 98.5% when the reaction was carried out under 140 ?C and the initial hydrogen pressure of 4 MPa for 10 h, while the selectivity toward cyclopentanol was up to 94.8%. The catalysts were characterized by XRD and SEM. XRD diffraction of all the samples showed characteristic pattern of hydrotalcite with varied peak intensity as a result of different Cu content. The catalytic activity was improved gradually with the increase of Cu component in the hydrotalcite.

  18. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification.

    Science.gov (United States)

    Castro-Dominguez, Bernardo; Mardilovich, Ivan P; Ma, Liang-Chih; Ma, Rui; Dixon, Anthony G; Kazantzis, Nikolaos K; Ma, Yi Hua

    2016-01-01

    Palladium-based catalytic membrane reactors (CMRs) effectively remove H₂ to induce higher conversions in methane steam reforming (MSR) and water-gas-shift reactions (WGS). Within such a context, this work evaluates the technical performance of a novel CMR, which utilizes two catalysts in series, rather than one. In the process system under consideration, the first catalyst, confined within the shell side of the reactor, reforms methane with water yielding H₂, CO and CO₂. After reforming is completed, a second catalyst, positioned in series, reacts with CO and water through the WGS reaction yielding pure H₂O, CO₂ and H₂. A tubular composite asymmetric Pd/Au/Pd membrane is situated throughout the reactor to continuously remove the produced H₂ and induce higher methane and CO conversions while yielding ultrapure H₂ and compressed CO₂ ready for dehydration. Experimental results involving (i) a conventional packed bed reactor packed (PBR) for MSR, (ii) a PBR with five layers of two catalysts in series and (iii) a CMR with two layers of two catalysts in series are comparatively assessed and thoroughly characterized. Furthermore, a comprehensive 2D computational fluid dynamics (CFD) model was developed to explore further the features of the proposed configuration. The reaction was studied at different process intensification-relevant conditions, such as space velocities, temperatures, pressures and initial feed gas composition. Finally, it is demonstrated that the above CMR module, which was operated for 600 h, displays quite high H₂ permeance and purity, high CH₄ conversion levels and reduced CO yields. PMID:27657143

  19. EPR spectroscopy of catalytic systems based on nickel complexes of 1,4-diaza-1,3-butadiene (alpha-diimine) ligands in hydrogenation and polymerization reactions

    International Nuclear Information System (INIS)

    The catalytic systems based on .-diimine complexes of Ni(0) and Ni(II) of the general formulas NiBr2(DAD-R) (R = -C3H7 or -CH3) and Ni(DAD-CH3)2 (DAD(-C3H7) = 1,4-bis(2,6-diiso-propylphenyl)-2,3-(dimethyl-1,4-diazabuta-1,3-diene, DAD(-CH3) = 1,4-bis 2,6-dimethylphenyl)-2,3-dimethyl-1,4-diazabuta-1,3-diene), with Lewis acids (AlEt3, AlEt2Cl, AlEtCl2, B(F5C6)3, BF3 centre dot OEt2) in hydrogenation and polymerization reactions were investigated by the EPR spectroscopy method. The Ni(I) complexes of a (DAD-R)NiX2AlXy(C2H5)3-y composition (instead of the aluminum atom may be a boron atom) were identified where R = -CH3 or -C3H7, X = Br, X = Cl or -C2H5. The .-diimines radical-anions are included in the derivatives of aluminum or boron. It is found that there occur oxidation reactions between Ni(DAD-CH3)2 and aluminum organic compounds or boron derivatives, resulting in the formation of paramagnetic complexes. It is shown that there is no direct relationship between activity in polymerization or hydrogenation reactions and concentration of paramagnetic particles.

  20. NH3-SCR performance of fresh and hydrothermally aged Fe-ZSM-5 in standard and fast selective catalytic reduction reactions.

    Science.gov (United States)

    Shi, Xiaoyan; Liu, Fudong; Xie, Lijuan; Shan, Wenpo; He, Hong

    2013-04-01

    Hydrothermal stability is one of the challenges for the practical application of Fe-ZSM-5 catalysts in the selective catalytic reduction (SCR) of NO with NH3 (NH(3)-SCR) for diesel engines. The presence of NO(3) in the exhaust gases can enhance the deNOx activity because of the fast SCR reaction. In this work, a Fe-ZSM-5 catalyst was prepared by a solid-state ion-exchange method and was hydrothermally deactivated at 800 °C in the presence of 10% H(2)O. The activity of fresh and hydrothermal aged Fe-ZSM-5 catalysts was investigated in standard SCR (NO(2)/NOx = 0) and in fast SCR with NO(2)/NOx = 0.3 and 0.5. In standard SCR, hydrothermal aging of Fe-ZSM-5 resulted in a significant decrease of low-temperature activity and a slight increase in high-temperature activity. In fast SCR, NOx conversion over aged Fe-ZSM-5 was significantly increased but was still lower than that over fresh catalyst. Additionally, production of N(2)O in fast SCR was much more apparent over aged Fe-ZSM-5 than over fresh catalyst. We propose that, in fast SCR, the rate of key reactions related to NO is slower over aged Fe-ZSM-5 than over fresh catalyst, thus increasing the probabilities of side reactions involving the formation of N(2)O.

  1. Model catalytic oxidation studies using supported monometallic and heterobimetallic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Ekerdt, J.G.

    1992-02-03

    This research program is directed toward a more fundamental understanding of the effects of catalyst composition and structure on the catalytic properties of metal oxides. Metal oxide catalysts play an important role in many reactions bearing on the chemical aspects of energy processes. Metal oxides are the catalysts for water-gas shift reactions, methanol and higher alcohol synthesis, isosynthesis, selective catalytic reduction of nitric oxides, and oxidation of hydrocarbons. A key limitation to developing insight into how oxides function in catalytic reactions is in not having precise information of the surface composition under reaction conditions. To address this problem we have prepared oxide systems that can be used to study cation-cation effects and the role of bridging (-O-) and/or terminal (=O) surface oxygen anion ligands in a systematic fashion. Since many oxide catalyst systems involve mixtures of oxides, we selected a model system that would permit us to examine the role of each cation separately and in pairwise combinations. Organometallic molybdenum and tungsten complexes were proposed for use, to prepare model systems consisting of isolated monomeric cations, isolated monometallic dimers and isolated bimetallic dimers supported on silica and alumina. The monometallic and bimetallic dimers were to be used as models of more complex mixed- oxide catalysts. Our current program was to develop the systems and use them in model oxidation reactions.

  2. Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels

    OpenAIRE

    Climent Olmedo, María José; Corma Canós, Avelino; Iborra Chornet, Sara

    2014-01-01

    In this work some relevant processes for the preparation of liquid hydrocarbon fuels and fuel additives from cellulose, hemicellulose and triglycerides derived platform molecules are discussed. Thus, it is shown that a series of platform molecules such as levulinic acid, furans, fatty acids and polyols can be converted into a variety of fuel additives through catalytic transformations that include reduction, esterification, etherification, and acetalization reactions. Moreover, we...

  3. Analysis of heterogeneous oxygen exchange and fuel oxidation on the catalytic surface of perovskite membranes

    KAUST Repository

    Hong, Jongsup

    2013-10-01

    The catalytic kinetics of oxygen surface exchange and fuel oxidation for a perovskite membrane is investigated in terms of the thermodynamic state in the immediate vicinity of or on the membrane surface. Perovskite membranes have been shown to exhibit both oxygen perm-selectivity and catalytic activity for hydrocarbon conversion. A fundamental description of their catalytic surface reactions is needed. In this study, we infer the kinetic parameters for heterogeneous oxygen surface exchange and catalytic fuel conversion reactions, based on permeation rate measurements and a spatially resolved physical model that incorporates detailed chemical kinetics and transport in the gas-phase. The conservation equations for surface and bulk species are coupled with those of the gas-phase species through the species production rates from surface reactions. It is shown that oxygen surface exchange is limited by dissociative/associative adsorption/desorption of oxygen molecules onto/from the membrane surface. On the sweep side, while the catalytic conversion of methane to methyl radical governs the overall surface reactions at high temperature, carbon monoxide oxidation on the membrane surface is dominant at low temperature. Given the sweep side conditions considered in ITM reactor experiments, gas-phase reactions also play an important role, indicating the significance of investigating both homogeneous and heterogeneous chemistry and their coupling when examining the results. We show that the local thermodynamic state at the membrane surface should be considered when constructing and examining models of oxygen permeation and heterogeneous chemistry. © 2013 Elsevier B.V.

  4. Studies of the Catalytic Activity and Deactivation of Calcined Layered Double Hydroxides in the Reaction of Ethanol with Propylene Oxide

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The reaction of ethanol with propylene oxide over calcined layered double hydroxides(CLDH) was investigated. The results show that CLDH has a good activity and a good selectivity, but the activity and the selectivity of CLDH decrease when CLDH reforms LDH- the so called "memory effect". The influence of the "memory effect" on the CLDH returning to LDH was studied by the hydration reaction. It is shown that the "memory effect" is not complete, and the decreases of the Mg/Al molar ratio of LDH and the crystallite size due to the increase of the hydration reaction time result in the drop of the activity and the selectivity.Keyworcds Ethanol, Propylene oxide, Calcined layered double hydroxide, "Memory effect", Hydration

  5. Tritium labeled Gentamicin C : II.- Bioradioactive products of Gentamicin by Catalytic H2O-3H exchange reaction

    International Nuclear Information System (INIS)

    The main bioradioactive degradation products from catalytic hydrogen exchange of gentamicin C, (C1 + C2 + C1a) in basic form, are generated by N-dimethylations in 3-N and 6'-N positions. Their structures were confirmed by HNMR and 13 CNMR. These derivatives were fractionated by chromatography on silica gel. Antibacterial activities were similar to those of the parent antibiotics. Tritium exchange, under vacuum or nitrogen, is highly increased (4:1) when gentamicina are in basic form. In contrast with gentamicin sulfate, hydrolytic subproducts as garamine, gentamicine, garosamine and purpurosamines are practically absent. To properly optimize the exchange process, the composition of the gentamicin C complex must be taken into account. The exchange decreases in the order C2 > C1 > C1a. Because of 6' -N-dimenthyl gentamicin C1 is C2, the radiochemical yield of C2 appears enhanced in the H2O-3H exchange of a mixture of them. Radioactivity distribution among the components and subunits of these three gentamicins were studied by stron and mild hydrolysis, and by methanolysis. (author)

  6. Tritium Labeled Gentamicin C: II.- Bioradiactive Degradation Products of Gentamicin by Catalytic H2O-3H Exchange Reaction

    International Nuclear Information System (INIS)

    The main bio radioactive degradation products from catalytic hydrogen exchange of gentamicin C, (C1 + C2 + Cla) in basic form, are generated by N-demethylation in 3-N and 6-N positions. Their structures were confirmed by 1HNMR and 13CNMR. These derivatives were fractionated by chromatography on silica gel. Antibacterial activities were similar to those of the parent antibiotics. Tritium exchange, under vacuum or nitrogen, is highly increased (4:1) when gentamicin are in basic form. In contrast with gentamicin sulfate, hydrolytic sub products as gramine, genta mines, garosamine and purpurosamines are practically absent. To properly optimize the exchange process, the composition of the gentamicin C complex must be taken into account. The exchange decreases in the order C2 > C1> Cla. Because of 6'-N-demethyl gentamicin C1 is C2, the radiochemical yield of C2 appears enhanced in the H2O-3H exchange of a mixture of them. Radioactivity distribution among the components and subunits of these three gentamicin were studied by strong and mild hydrolysis, and by methanolysis. (Author) 18 refs

  7. Characterization of catalytic supports based in mixed oxides for control reactions of NO and N{sub 2}O; Caracterizacion de soportes cataliticos basados en oxidos mixtos para reacciones de control de NO y N{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Garcia C, M.A.; Perez H, R.; Gomez C, A.; Diaz, G. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    The catalytic supports Al{sub 2}O{sub 3}, La{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-La{sub 2}O{sub 3} were prepared by the Precipitation and Coprecipitation techniques. The catalytic supports Al{sub 2}O{sub 3}, La{sub 2}O{sub 3} and Al{sub 2}O{sub 3}-La{sub 2}O{sub 3} were characterized by several techniques to determine: texture (Bet), crystallinity (XRD), chemical composition (Sem)(Ftir) and it was evaluated their total acidity by reaction with 2-propanol. The investigation will be continued with the cobalt addition and this will be evaluated for its catalytic activity in control reactions of N O and N{sub 2}O. (Author)

  8. Composite polymer/oxide hollow fiber contactors: versatile and scalable flow reactors for heterogeneous catalytic reactions in organic synthesis.

    Science.gov (United States)

    Moschetta, Eric G; Negretti, Solymar; Chepiga, Kathryn M; Brunelli, Nicholas A; Labreche, Ying; Feng, Yan; Rezaei, Fateme; Lively, Ryan P; Koros, William J; Davies, Huw M L; Jones, Christopher W

    2015-05-26

    Flexible composite polymer/oxide hollow fibers are used as flow reactors for heterogeneously catalyzed reactions in organic synthesis. The fiber synthesis allows for a variety of supported catalysts to be embedded in the walls of the fibers, thus leading to a diverse set of reactions that can be catalyzed in flow. Additionally, the fiber synthesis is scalable (e.g. several reactor beds containing many fibers in a module may be used) and thus they could potentially be used for the large-scale production of organic compounds. Incorporating heterogeneous catalysts in the walls of the fibers presents an alternative to a traditional packed-bed reactor and avoids large pressure drops, which is a crucial challenge when employing microreactors.

  9. An Environmentally-Friendly and Catalytic Procedure for Mukaiyama Aldol Reaction Using Organic Catalyst DBU under Solvent Free Conditions

    Institute of Scientific and Technical Information of China (English)

    SHEN,Zhi-Liang; JI,Shun-Jun; LOH,Teck Peng

    2004-01-01

    @@ Recently, methods based exclusively on organic catalysts have become of major significance in synthetic chemistry.Mukaiyama-aldol reaction, as one of the most important and frequently utilized methods for C-C bond formation, is well documented in literatures recently. A variety of reagents, particularly metal-containing Lewis acids or bases, are known to promote the nucleophilic process. However, many of the reported strategies might have the following limitations from environmental viewpoints: (1) the use of metal-containing catalyst. Some of the catalysts are air or moisture sensitive (such as lithium amide), and crucial reaction conditions are needed; Some of the catalysts derived from poisonous metal (for example: SnCl4, SmI2 etc.) may cause harmful influence on humane body and environment; (2) the use of organic solvent (such as DMF, CH2Cl2 etc.) may bring about environmental pollution and solvent waste.

  10. Synthesis, characterization of amine-bridged bis (phenolate) yttrium alkyl complex and its catalytic behavior for the Tishchenko reaction

    Institute of Scientific and Technical Information of China (English)

    PANG MingLun; YAO YingMing; ZHANG Yong; SHEN Qi

    2008-01-01

    Reaction of homoleptic yttrium tris-alkyl complex YR3 (R=CH2C3H4NMe2-o) with 1 equivalent of amine bis(phenol)s LH2 (L=Me2NCH2CH2N(CH2-(2-O-C6H2-Butt2-3,5))2) afforded the solvent-free yttrium alkyl complex LYR (1), which has been characterized with elemental analysis, 1H NMR and IR spectra, and structural determination. The coordination geometry around the center metal atom can be best de-scribed as a distorted octahedron. It was found that complex 1 can be used as an efficient catalyst for the Tishchenko reaction.

  11. Synthesis and Catalytic Activity of a Two-core Ruthenium Carbene Complex: a Unique Catalyst for Ring Closing Metathesis Reaction

    Institute of Scientific and Technical Information of China (English)

    SHAO Ming-bo; WANG Jian-hui

    2011-01-01

    The reaction of a ruthenium carbide complex RuCl2(C:)(PCy3)2 with [H(Et2O)x]+[BF4]- at a molar ratio of 1:2 produced a two-core ruthenium carbene complex,{[RuCl(=HPCy3)(PCy3)]2(μ-Cl)3}+[BF4]-,in the form of a yellow-green crystalline solid in a yield of 94%.This two-core ruthenium complex is a selective catalyst for ring closing metathesis of unsubstituted terminal dienes.More importantly,no isomerized byproduct was observed for N-substrates when the two-core ruthenium complex was used as the catalyst at an elevated temperature(137 ℃),indicating that the complex is a chemo-selective catalyst for ring closing metathesis reactions.

  12. Unsteady catalytic processes and sorption-catalytic technologies

    International Nuclear Information System (INIS)

    Catalytic processes that occur under conditions of the targeted unsteady state of the catalyst are considered. The highest efficiency of catalytic processes was found to be ensured by a controlled combination of thermal non-stationarity and unsteady composition of the catalyst surface. The processes based on this principle are analysed, in particular, catalytic selective reduction of nitrogen oxides, deep oxidation of volatile organic impurities, production of sulfur by the Claus process and by hydrogen sulfide decomposition, oxidation of sulfur dioxide, methane steam reforming and anaerobic combustion, selective oxidation of hydrocarbons, etc.

  13. Unsteady catalytic processes and sorption-catalytic technologies

    Energy Technology Data Exchange (ETDEWEB)

    Zagoruiko, A N [G.K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2007-07-31

    Catalytic processes that occur under conditions of the targeted unsteady state of the catalyst are considered. The highest efficiency of catalytic processes was found to be ensured by a controlled combination of thermal non-stationarity and unsteady composition of the catalyst surface. The processes based on this principle are analysed, in particular, catalytic selective reduction of nitrogen oxides, deep oxidation of volatile organic impurities, production of sulfur by the Claus process and by hydrogen sulfide decomposition, oxidation of sulfur dioxide, methane steam reforming and anaerobic combustion, selective oxidation of hydrocarbons, etc.

  14. 催化裂化提升管反应器中颗粒聚团裂化反应的数值模拟%Numerical Predication of Cracking Reaction of Particle Clusters in Fluid Catalytic Cracking Riser Reactors

    Institute of Scientific and Technical Information of China (English)

    王淑彦; 陆慧林; 高金森; 徐春明; 孙丹

    2008-01-01

    Behavior of catalytic cracking reactions of particle cluster in fluid catalytic cracking(FCC)riser reac-tors was numerically analyzed using a four-lump mathematical model.Effects of the cluster porosity.inlet gas ve-locity and temperature,and coke deposition on cracking reactions of the cluster were investigated. Distributions of temperature,gases,and gasoline from both catalyst particle cluster and an isolated catalyst particle are presented.The reaction rates from vacuum gas oil(VGO)to gasoline,gas and coke of individual particle in the cluster arehigher than those of the isolated particle,but it reverses for the reaction rates from gasoline to gas and coke.Less gasoline is produccd bv particle clustering.Simulated results show that the produced mass fluxes of gas and gasolineincrease with the operating temperature and molar concentration of VGO,and decrease due to the formation of coke.

  15. Recent Advances in Catalytic Conversion of Ethanol to Chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Junming; Wang, Yong

    2014-04-30

    With increased availability and decreased cost, ethanol is potentially a promising platform molecule for the production of a variety of value-added chemicals. In this review, we provide a detailed summary of recent advances in catalytic conversion of ethanol to a wide range of chemicals and fuels. We particularly focus on catalyst advances and fundamental understanding of reaction mechanisms involved in ethanol steam reforming (ESR) to produce hydrogen, ethanol conversion to hydrocarbons ranging from light olefins to longer chain alkenes/alkanes and aromatics, and ethanol conversion to other oxygenates including 1-butanol, acetaldehyde, acetone, diethyl ether, and ethyl acetate.

  16. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, Christopher P; Boldingh, Edwin P

    2014-10-07

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and shown to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub.1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hydrocarbons into hydrocarbons and removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  17. PVA降解酶催化反应的动力学方程%Kinetic Equation on the Catalytic Reaction of PVA-Degradation Enzyme

    Institute of Scientific and Technical Information of China (English)

    郭雅妮; 段士然; 周明; 崔双科

    2012-01-01

    The properties and catalytic reaction kinetics of PVA-degradation enzyme from a newly selected mixed strain that is able to fully degrade PVA were studied for its actual use. Through the determination of changes in enzymatic activities in the course of the PVA degradation process, a catalysis kinetic equation was assumed first and then verified. The results indicated that the enzymatic activities would get lower along with the PVA degradation efficiency rising when PVA was not yet completely degraded. After the degradation was completed, the enzymatic activities tended to keep at certain level. As the PVA concentration increased, the enzymatic activities enhanced gradually. Michaelis constant Kr, of PVA-degradation enzyme was 2.06×10^-3 mol/L and the highest reaction rate Vr~,x was 19.5 units per minute. Thus, the kinetic equation on the catalytic reaction could be obtained as V=19.5 [S] / (2.06×10^-3+[S]).%筛选了1种能够完全降解PVA的混合菌系,对其所生产的PVA降解酶的降解性质及其酶催化反应动力学进行了研究。通过测定在PVA降解过程中酶活的变化,采用"先假设-后验证"的方法研究酶催化动力学方程。结果表明,在PVA未完全降解时,该降解酶的酶活随着PVA降解效率的提高而降低;在完全降解后,其酶活趋于一定。随着PVA浓度的升高,酶活逐渐提高。该酶的米氏常数Km=2.06×10^-3mol/L,最大反应速率Vmax=19.5U/min,得到该酶对PVA的催化反应动力学方程,为V=19.5[S]/(2.06×10^-3+[S]),从而为混合菌系的实际应用提供理论依据。

  18. Developments in catalytic asymmetric Strecker reaction of aldimines%醛亚胺的不对称Strecker反应研究进展

    Institute of Scientific and Technical Information of China (English)

    唐贝; 李高伟

    2013-01-01

    α-Aminonitriles can be easily converted to α-amino acids, and is an important intermediate for the synthesis of many biologically active natural products and drugs. The asymmetric Strecker reaction of the aldimine as a direct and affective method of synthesis of optically active α-aminonitriles has been widely accepted. In this current paper, the developments in catalytic asymmetric Strecker reaction of aldimines is introduced.%α-氨基腈不仅可以很容易地转化为α-氨基酸,而且是合成许多具有生物活性的天然产物和药物的重要中间体.醛亚胺的不对称Strecker反应作为制备光学活性α-氨基腈的直接而有效的方法之一,已被广泛接受.作者介绍了醛亚胺的不对称Strecker反应研究进展.

  19. Interaction Induced High Catalytic Activities of CoO Nanoparticles Grown on Nitrogen-Doped Hollow Graphene Microspheres for Oxygen Reduction and Evolution Reactions

    Science.gov (United States)

    Jiang, Zhong-Jie; Jiang, Zhongqing

    2016-06-01

    Nitrogen doped graphene hollow microspheres (NGHSs) have been used as the supports for the growth of the CoO nanoparticles. The nitrogen doped structure favors the nucleation and growth of the CoO nanoparticles and the CoO nanoparticles are mostly anchored on the quaternary nitrogen doped sites of the NGHSs with good monodispersity since the higher electron density of the quaternary nitrogen favors the nucleation and growth of the CoO nanoparticles through its coordination and electrostatic interactions with the Co2+ ions. The resulting NGHSs supported CoO nanoparticles (CoO/NGHSs) are highly active for the oxygen reduction reaction (ORR) with activity and stability higher than the Pt/C and for the oxygen evolution reaction (OER) with activity and stability comparable to the most efficient catalysts reported to date. This indicates that the CoO/NGHSs could be used as efficient bi-functional catalysts for ORR and OER. Systematic analysis shows that the superior catalytic activities of the CoO/NGHSs for ORR and OER mainly originate from the nitrogen doped structure of the NGHSs, the small size of the CoO nanoparticles, the higher specific and electroactive surface area of the CoO/NGHSs, the good electric conductivity of the CoO/NGHSs, the strong interaction between the CoO nanoparticles and the NGHSs, etc.

  20. Synthesis and Characterization of Graphene and Graphene Oxide Based Palladium Nanocomposites and Their Catalytic Applications in Carbon-Carbon Cross-Coupling Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Minjae [Kunsan National Univ., Gunsan (Korea, Republic of); Kim, Bohyun; Lee, Yuna; Kim, Beomtae; Park, Joon B. [Chonbuk National Univ., Jeonju (Korea, Republic of)

    2014-07-15

    We have developed an efficient method to generate highly active Pd and PdO nanoparticles (NPs) dispersed on graphene and graphene oxide (GO) by an impregnation method combined with thermal treatments in H{sub 2} and O{sub 2} gas flows, respectively. The Pd NPs supported on graphene (Pd/G) and the PdO NPs supported on GO (PdO/GO) demonstrated excellent carbon-carbon cross-coupling reactions under a solvent-free, environmentally-friendly condition. The morphological and chemical structures of PdO/GO and Pd/G were fully characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). We found that the remarkable reactivity of the Pd/G and PdO/GO catalysts toward the cross-coupling reaction is attributed to the high degree of dispersion of the Pd and PdO NPs while the oxidative states of Pd and the oxygen functionalities of graphene oxide are not critical for their catalytic performance.

  1. Qualitative Aspects of the Solutions of a Mathematical Model for the Dynamic Analysis of the Reversible Chemical Reaction SO2(g)+1/2O2(g)<=>SO3(g) in a Catalytic Reactor

    CERN Document Server

    Wilfredo, Angulo

    2014-01-01

    We present some qualitative aspects concerning the solution to the mathematical model describing the dynamical behavior of the reversible chemical reaction SO2(g)+1/2O2(g)SO3(g) carried out in a catalytic reactor used in the process of sulfuric acid production.

  2. Liquid Phase Hydrogenation of Benzalacetophenone:Effect of Solvent,Catalyst Support,Catalytic Metal and Reaction Conditions%Liquid Phase Hydrogenation of Benzalacetophenone: Effect of Solvent, Catalyst Support, Catalytic Metal and Reaction Conditions

    Institute of Scientific and Technical Information of China (English)

    Achim STOLLE; Christine SCHMOGER; Bernd ONDRUSCHKA; Werner BONRATH; Thomas F. KELLER; Klaus D. JANDT

    2011-01-01

    Innovative catalysts based on a “porous glass” support material were developed and investigated for the reduction of benzalacetophenone.The easy preparation conditions and possibility to use different metals (e.g.Pd,Pt,Rh) for impregnation gave a broad variety of these catalysts.Hydrogenation experiments with these supported catalysts were carried out under different hydrogen pressures and temperatures.Porous glass catalysts with Pd as the active component gave chemoselective hydrogenation of benzalacetophenone,while Pt- and Rh-catalysts tended to further reduce the carbonyl group,especially at elevated hydrogen pressures and temperatures.Kinetic analysis of the reactions revealed these had zero order kinetics,which was independent of the type of porous glass support and solvent used.

  3. Analysis of hydrocarbons generated in coalbeds

    Science.gov (United States)

    Butala, Steven John M.

    This dissertation describes kinetic calculations using literature data to predict formation rates and product yields of oil and gas at typical low-temperature conditions in coalbeds. These data indicate that gas formation rates from hydrocarbon thermolysis are too low to have generated commercial quantities of natural gas, assuming bulk first-order kinetics. Acid-mineral-catalyzed cracking, transition-metal-catalyzed hydrogenolysis of liquid hydrocarbons, and catalyzed CO2 hydrogenation form gas at high rates. The gaseous product compositions for these reactions are nearly the same as those for typical natural coalbed gases, while those from thermal and catalytic cracking are more representative of atypical coalbed gases. Three Argonne Premium Coals (Upper-Freeport, Pittsburgh #8 and Lewiston-Stockton) were extracted with benzene in both Soxhlet and elevated pressure extraction (EPE) systems. The extracts were compared on the basis of dry mass yield and hydrocarbon profiles obtained by gas chromatography/mass spectrometry. The dry mass yields for the Upper-Freeport coal gave consistent results by both methods, while the yields from the Pittsburgh #8 and Lewiston-Stockton coals were greater by the EPE method. EPE required ˜90 vol. % less solvent compared to Soxhlet extraction. Single-ion-chromatograms of the Soxhlet extracts all exhibited bimodal distributions, while those of the EPE extracts did not. Hydrocarbons analyzed from Greater Green River Basin samples indicate that the natural oils in the basin originated from the coal seams. Analysis of artificially produced oil indicates that hydrous pyrolysis mimics generation of C15+ n-alkanes, but significant variations were found in the branched alkane, low-molecular-weight n-alkanes, and high-molecular-weight aromatic hydrocarbon distributions.

  4. Modification of the adsorption and catalytic properties of micro-and mesoporous materials by reactions with organometallic complexes

    Institute of Scientific and Technical Information of China (English)

    LEFEBVRE; Frédéric; PUTAJ; Piotr; BASSET; Jean-Marie

    2010-01-01

    This review describes the work of two laboratories in the field of the modification of micro-and mesoporous molecular sieves through reactions with organometallic complexes.The modification of zeolites can occur inside the pore channels or on the external surface,depending on the size of the organometallic complex.When the modification occurs on the external surface,it results in a decrease of the pore entrance,which will lead in turn to a modification of the sorption properties of the zeolite,by decreasing the rate of the adsorption(mainly by a kinetic control).Such a material can be also used in catalysis,because the external acid sites,which are responsible for side-reactions,have been removed upon grafting.When small organometallic complexes are used,they can fill the channels and cages of the zeolite and react with internal hydroxyl groups.Due to the high acidity of zeolites,the reaction occurs very easily(for example at-100℃ on faujasite),in contrast to what is observed on the external surface,therefore leading to high metal loadings.In that case,the modification of the sorption properties will be mainly related to a thermodynamic control.The resulting materials can be useful in catalysis,by combining the activity of the organometallic complex and properties(for example shape-selectivity) of the zeolite.Modification of mesoporous molecular sieves occurs always in the pores and results in altering of the sorption properties of the solid,by changing the interaction type between the sorbent and the sorbate.For example the sorption isotherm of alkanes is changed from type II to type III according to the IUPAC nomenclature.

  5. Insight into the Catalytic Mechanism of Bimetallic Platinum-Copper Core-Shell Nanostructures for Nonaqueous Oxygen Evolution Reactions.

    Science.gov (United States)

    Ma, Lu; Luo, Xiangyi; Kropf, A Jeremy; Wen, Jianguo; Wang, Xiaoping; Lee, Sungsik; Myers, Deborah J; Miller, Dean; Wu, Tianpin; Lu, Jun; Amine, Khalil

    2016-01-13

    The oxygen evolution reaction (OER) plays a critical role in multiple energy conversion and storage applications. However, its sluggish kinetics usually results in large voltage polarization and unnecessary energy loss. Therefore, designing efficient catalysts that could facilitate this process has become an emerging topic. Here, we present a unique Pt-Cu core-shell nanostructure for catalyzing the nonaqueous OER. The catalysts were systematically investigated with comprehensive spectroscopic techniques, and applied in nonaqueous Li-O2 electrochemical cells, which exhibited dramatically reduced charging overpotential (OER catalysts. PMID:26709945

  6. Time- and space-resolved high energy operando X-ray diffraction for monitoring the methanol to hydrocarbons reaction over H-ZSM-22 zeolite catalyst in different conditions

    Science.gov (United States)

    del Campo, Pablo; Slawinski, Wojciech Andrzej; Henry, Reynald; Erichsen, Marius Westgård; Svelle, Stian; Beato, Pablo; Wragg, David; Olsbye, Unni

    2016-06-01

    The conversion of methanol to hydrocarbons (MTH) over H-ZSM-22 was studied by operando time- and space-resolved X-ray diffraction (XRD) at 370-385 °C and WHSV = 2 g/g h at the Swiss-Norwegian Beamline at ESRF. The performance of a commercial H-ZSM-22 sample was compared before and after acid-base treatment, and with and without propanol co-feed, respectively. N2 adsorption, Scanning Electron Microscopy and propyl amine desorption experiments showed that acid-base treatment led to enhanced accessibility of acid sites, mainly due to the formation of mesopores between agglomerated H-ZSM-22 crystals. The catalytic set-up allowed us to simultaneously observe the catalyst activity and unit cell volume variations by time- and space-resolved HXRD in operando conditions. The expansion of the unit cell and final flattening at different positions in the catalytic bed matched very nicely with the catalytic activity gradients. Different scenarios provided different behaviors and gave insights in the effect of morphology and co-feed process on the activity in the MTH process. This technique is the only one which has so far been able to provide direct evidence of the behavior of the species inside the catalytic reactor.

  7. Influence of Molecular Sieve Supported Metal Oxides on the Desulfurization in Catalytic Cracking of Sulfur-containing Model Compounds and Hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    申宝剑; 李海丽; 李会峰; 鲍晓军; 周小虹

    2003-01-01

    Zn, La, Zr, Sn and Ti loaded molecular sieves were prepared by impregnation method. Conversions of benzothiophene and dibenzothiophene over the metal oxides modified ultra stable zeolite Y(USY), ZSM-5, β and MSU-2 molecular sieve catalysts were investigated by means of micro-activity test (MAT) experiments. The results showed that Zn and La loaded catalysts were better than the other metals, and ZSM-5 with lower SiO2/Al2O3 mole ratio showed better results than those with higher SiO2/Al2O3 as far as desulfurization reaction is considered. A comparison of the desulfurization activities of the La/Zn-USY catalyst with USY catalyst indicated that the bimetal loaded USY catalyst gave good products selectivity when sulfur containing heavy oil was used as the feedstock. The sulfur content in gasoline fraction was decreased by 25%, and there was no loss in the Research Octane Number.

  8. Catalysis by platinum single crystal surfaces: low pressure hydrocarbon reactions and the effects of introducing strongly bound oxygen at the surface

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.E.

    1978-07-01

    The dehydrogenation of cyclohexene and cyclohexane, and the hydrogenation of cyclohexene were studied on the clean and preoxidized surfaces of three platinum single crystals: a Pt(111), a stepped Pt(S) - (6(111) x (100)) and a kinked Pt(S) - (7(111) x (310)). The choice of reaction conditions is discussed with respect to detection limits and the variation of the catalyst reactivity with reagent pressures and catalyst temperature; the reactions were carried out using flow conditions at low pressure (10/sup -6/ to 10/sup -5/ torr total pressure), at a platinum temperature of 150/sup 0/C. Oxygen coverages were monitored by Auger electron spectroscopy (AES), an Auger peak ratio of O/sub 510//Pt/sub 237/ = 0.5 having been determined to correspond to approximately 5 x 10/sup 14/ oxygen atoms/cm/sup 2/. The surface structures of the clean and oxidized platinum crystals were determined by low energy electron diffraction (LEED): after high temperature (800/sup 0/C) oxygen treatment, the predominant oxygen structure observed on the Pt(111) was a (2 x 2); the predominant oxygen structure observed on both the Pt(S) - (6(111) x (100)) and the Pt(S) - (7(111) x (310)) was a (radical 3 x radical 3) - R30/sup 0/. Low coverages of strongly bound oxygen enhanced the rates of the dehydrogenation and hydrogenation reactions, and changed the selectivity of cyclohexene dehydrogenation to benzene over hydrogenation to cyclohexane. These effects of preoxidation on catalytic rates and selectivity were found to be sensitive to the structure of the platinum surface, kink sites playing a particularly active role in the enhancement of dehydrogenation and hydrogenation activity by strongly bound oxygen. Three models are discussed which relate the oxidation of platinum surfaces to the observed effects on catalytic reactivity and the structure sensitivity. A change in the electronic structure of the platinum surface through oxidation provides the best general model for explaining the oxygen

  9. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification

    Science.gov (United States)

    Castro-Dominguez, Bernardo; Mardilovich, Ivan P.; Ma, Liang-Chih; Ma, Rui; Dixon, Anthony G.; Kazantzis, Nikolaos K.; Ma, Yi Hua

    2016-01-01

    Palladium-based catalytic membrane reactors (CMRs) effectively remove H2 to induce higher conversions in methane steam reforming (MSR) and water-gas-shift reactions (WGS). Within such a context, this work evaluates the technical performance of a novel CMR, which utilizes two catalysts in series, rather than one. In the process system under consideration, the first catalyst, confined within the shell side of the reactor, reforms methane with water yielding H2, CO and CO2. After reforming is completed, a second catalyst, positioned in series, reacts with CO and water through the WGS reaction yielding pure H2O, CO2 and H2. A tubular composite asymmetric Pd/Au/Pd membrane is situated throughout the reactor to continuously remove the produced H2 and induce higher methane and CO conversions while yielding ultrapure H2 and compressed CO2 ready for dehydration. Experimental results involving (i) a conventional packed bed reactor packed (PBR) for MSR, (ii) a PBR with five layers of two catalysts in series and (iii) a CMR with two layers of two catalysts in series are comparatively assessed and thoroughly characterized. Furthermore, a comprehensive 2D computational fluid dynamics (CFD) model was developed to explore further the features of the proposed configuration. The reaction was studied at different process intensification-relevant conditions, such as space velocities, temperatures, pressures and initial feed gas composition. Finally, it is demonstrated that the above CMR module, which was operated for 600 h, displays quite high H2 permeance and purity, high CH4 conversion levels and reduced CO yields. PMID:27657143

  10. Ultrathin Coating of Confined Pt Nanocatalysts by Atomic Layer Deposition for Enhanced Catalytic Performance in Hydrogenation Reactions.

    Science.gov (United States)

    Wang, Meihua; Gao, Zhe; Zhang, Bin; Yang, Huimin; Qiao, Yan; Chen, Shuai; Ge, Huibin; Zhang, Jiankang; Qin, Yong

    2016-06-13

    Metal-support interfaces play a prominent role in heterogeneous catalysis. However, tailoring the metal-support interfaces to realize full utilization remains a major challenge. In this work, we propose a graceful strategy to maximize the metal-oxide interfaces by coating confined nanoparticles with an ultrathin oxide layer. This is achieved by sequential deposition of ultrathin Al2 O3 coats, Pt, and a thick Al2 O3 layer on carbon nanocoils templates by atomic layer deposition (ALD), followed by removal of the templates. Compared with the Pt catalysts confined in Al2 O3 nanotubes without the ultrathin coats, the ultrathin coated samples have larger Pt-Al2 O3 interfaces. The maximized interfaces significantly improve the activity and the protecting Al2 O3 nanotubes retain the stability for hydrogenation reactions of 4-nitrophenol. We believe that applying ALD ultrathin coats on confined catalysts is a promising way to achieve enhanced performance for other catalysts. PMID:27061428

  11. Ultrathin Coating of Confined Pt Nanocatalysts by Atomic Layer Deposition for Enhanced Catalytic Performance in Hydrogenation Reactions.

    Science.gov (United States)

    Wang, Meihua; Gao, Zhe; Zhang, Bin; Yang, Huimin; Qiao, Yan; Chen, Shuai; Ge, Huibin; Zhang, Jiankang; Qin, Yong

    2016-06-13

    Metal-support interfaces play a prominent role in heterogeneous catalysis. However, tailoring the metal-support interfaces to realize full utilization remains a major challenge. In this work, we propose a graceful strategy to maximize the metal-oxide interfaces by coating confined nanoparticles with an ultrathin oxide layer. This is achieved by sequential deposition of ultrathin Al2 O3 coats, Pt, and a thick Al2 O3 layer on carbon nanocoils templates by atomic layer deposition (ALD), followed by removal of the templates. Compared with the Pt catalysts confined in Al2 O3 nanotubes without the ultrathin coats, the ultrathin coated samples have larger Pt-Al2 O3 interfaces. The maximized interfaces significantly improve the activity and the protecting Al2 O3 nanotubes retain the stability for hydrogenation reactions of 4-nitrophenol. We believe that applying ALD ultrathin coats on confined catalysts is a promising way to achieve enhanced performance for other catalysts.

  12. High Pressure Scanning Tunneling Microscopy Studies of Adsorbate Structure and Mobility during Catalytic Reactions. Novel Design of an Ultra High Pressure, High Temperature Scanning Tunneling Microscope System for Probing Catalytic Conversions

    International Nuclear Information System (INIS)

    The aim of the work presented therein is to take advantage of scanning tunneling microscope's (STM) capability for operation under a variety of environments under real time and at atomic resolution to monitor adsorbate structures and mobility under high pressures, as well as to design a new generation of STM systems that allow imaging in situ at both higher pressures (35 atm) and temperatures (350 C). The design of a high pressure, high temperature scanning tunneling microscope system, that is capable of monitoring reactions in situ at conditions from UHV and ambient temperature up to 1 atm and 250 C, is briefly presented along with vibrational and thermal analysis, as this system serves as a template to improve upon during the design of the new ultra high pressure, high temperature STM. Using this existing high pressure scanning tunneling microscope we monitored the co-adsorption of hydrogen, ethylene and carbon dioxide on platinum (111) and rhodium (111) crystal faces in the mTorr pressure range at 300 K in equilibrium with the gas phase. During the catalytic hydrogenation of ethylene to ethane in the absence of CO the metal surfaces are covered by an adsorbate layer that is very mobile on the time scale of STM imaging. We found that the addition of CO poisons the hydrogenation reaction and induces ordered structures on the single crystal surfaces. Several ordered structures were observed upon CO addition to the surfaces pre-covered with hydrogen and ethylene: a rotated (√19 x √19)R23.4o on Pt(111), and domains of c(4 x 2)-CO+C2H3, previously unobserved (4 x 2)-CO+3C2H3, and (2 x 2)-3CO on Rh(111). A mechanism for CO poisoning of ethylene hydrogenation on the metal single crystals was proposed, in which CO blocks surface metal sites and reduces adsorbate mobility to limit adsorption and reaction rate of ethylene and hydrogen. In order to observe heterogeneous catalytic reactions that occur well above ambient pressure and temperature that more closely resemble

  13. Crossed beam reaction of cyano radicals with hydrocarbon molecules. IV. Chemical dynamics of cyanoacetylene (HCCCN; X 1Σ+) formation from reaction of CN(X 2Σ+) with acetylene, C2H2(X 1Σg+)

    Science.gov (United States)

    Huang, L. C. L.; Asvany, O.; Chang, A. H. H.; Balucani, N.; Lin, S. H.; Lee, Y. T.; Kaiser, R. I.; Osamura, Y.

    2000-11-01

    The chemical reaction dynamics to form cyanoacetylene, HCCCN (X 1Σ+), via the radical-neutral reaction of cyano radicals, CN(X 2Σ+;ν=0), with acetylene, C2H2(X 1Σg+), are unraveled in crossed molecular beam experiments at two collision energies of 21.1 and 27.0 kJ mol-1. Laboratory angular distributions and time-of-flight spectra of the HCCCN product are recorded at m/e=51 and 50. Experiments were supplemented by electronic structure calculations on the doublet C3H2N potential energy surface and RRKM investigations. Forward-convolution fitting of the crossed beam data combined with our theoretical investigations shows that the reaction has no entrance barrier and is initiated by an attack of the CN radical to the π electron density of the acetylene molecule to form a doublet cis/trans HCCHCN collision complex on the 2A' surface via indirect reactive scattering dynamics. Here 85% of the collision complexes undergo C-H bond rupture through a tight transition state located 22 kJ mol-1 above the cyanoacetylene, HCCCN (X 1Σ+) and H(2S1/2) products (microchannel 1). To a minor amount (15%) trans HCCHCN shows a 1,2-H shift via a 177 kJ mol-1 barrier to form a doublet H2CCCN radical, which is 46 kJ mol-1 more stable than the initial reaction intermediate (microchannel 2). The H2CCCN complex decomposes via a rather loose exit transition state situated only 7 kJ mol-1 above the reaction products HCCCN (X 1Σ+) and H(2S1/2). In both cases the geometry of the exit transition states is reflected in the observed center-of-mass angular distributions showing a mild forward/sideways peaking. The explicit identification of the cyanoacetylene as the only reaction product represents a solid background for the title reaction to be included in reaction networks modeling the chemistry in dark, molecular clouds, outflow of dying carbon stars, hot molecular cores, as well as the atmosphere of hydrocarbon rich planets and satellites such as the Saturnian moon Titan.

  14. Catalytic production of biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Theilgaard Madsen, A.

    2011-07-01

    The focus of this thesis is the catalytic production of diesel from biomass, especially emphasising catalytic conversion of waste vegetable oils and fats. In chapter 1 an introduction to biofuels and a review on different catalytic methods for diesel production from biomass is given. Two of these methods have been used industrially for a number of years already, namely the transesterification (and esterification) of oils and fats with methanol to form fatty acid methyl esters (FAME), and the hydrodeoxygenation (HDO) of fats and oils to form straight-chain alkanes. Other possible routes to diesel include upgrading and deoxygenation of pyrolysis oils or aqueous sludge wastes, condensations and reductions of sugars in aqueous phase (aqueous-phase reforming, APR) for monofunctional hydrocarbons, and gasification of any type of biomass followed by Fischer-Tropsch-synthesis for alkane biofuels. These methods have not yet been industrialised, but may be more promising due to the larger abundance of their potential feedstocks, especially waste feedstocks. Chapter 2 deals with formation of FAME from waste fats and oils. A range of acidic catalysts were tested in a model fat mixture of methanol, lauric acid and trioctanoin. Sulphonic acid-functionalised ionic liquids showed extremely fast convertion of lauric acid to methyl laurate, and trioctanoate was converted to methyl octanoate within 24 h. A catalyst based on a sulphonated carbon-matrix made by pyrolysing (or carbonising) carbohydrates, so-called sulphonated pyrolysed sucrose (SPS), was optimised further. No systematic dependency on pyrolysis and sulphonation conditions could be obtained, however, with respect to esterification activity, but high activity was obtained in the model fat mixture. SPS impregnated on opel-cell Al{sub 2}O{sub 3} and microporous SiO{sub 2} (ISPS) was much less active in the esterification than the original SPS powder due to low loading and thereby low number of strongly acidic sites on the

  15. Activation of Aryl Halides by Nickel(I) Pincer Complexes: Reaction Pathways of Stoichiometric and Catalytic Dehalogenations.

    Science.gov (United States)

    Rettenmeier, Christoph A; Wenz, Jan; Wadepohl, Hubert; Gade, Lutz H

    2016-08-15

    Homolytic C-X bond cleavage of organohalides by the T-shaped nickel(I) complexes [LigNi(I)] 1 bearing the iso-PyrrMeBox ligand had been found previously to be the crucial activation step in the asymmetric hydrodehalogenation of geminal dihalides. Here, this mechanistic investigation is extended to aryl halides, which allowed a systematic study of the activation process by a combination of experimental data and density functional theory modeling. While the activation of both aryl chlorides and geminal dichlorides appears to proceed via an analogous transition state, the generation of a highly stabile nickel(II)aryl species in the reaction of the aryl chlorides for the former represents a major difference in the reactive behavior. This difference was found to have a crucial impact on the activity of these nickel pincer systems as catalysts in the dehalogenation of aryl chlorides compared to geminal dichlorides and highlights the importance of the regulatory pathways controlling the nickel(I) concentration throughout the catalysis. These results along with the identification and characterization of novel nickel(II)aryl species are presented. PMID:27483018

  16. Steam reforming of methane over Ni catalysts prepared from hydrotalcite-type precursors:Catalytic activity and reaction kinetics

    Institute of Scientific and Technical Information of China (English)

    Yang Qi; Zhenmin Cheng; Zhiming Zhou

    2015-01-01

    Ni/Mg–Al catalysts derived from hydrotalcite-type precursors were prepared by a co-precipitation technique and applied to steam reforming of methane. By comparison with Ni/γ-Al2O3 and Ni/α-Al2O3 catalysts prepared by in-cipient wetness impregnation, the Ni/Mg–Al catalyst presented much higher activity as a result of higher specific surface area and better Ni dispersion. The Ni/Mg–Al catalyst with a Ni/Mg/Al molar ratio of 0.5:2.5:1 exhibited the highest activity for steam methane reforming and was selected for kinetic investigation. With external and inter-nal diffusion limitations eliminated, kinetic experiments were carried out at atmospheric pressure and over a temperature range of 823–973 K. The results demonstrated that the overal conversion of CH4 and the conversion of CH4 to CO2 were strongly influenced by reaction temperature, residence time of reactants as wel as molar ratio of steam to methane. A classical Langmuir–Hinshelwood kinetic model proposed by Xu and Froment (1989) fitted the experimental data with excellent agreement. The estimated adsorption parameters were consistent thermodynamical y.

  17. High-effective approach from amino acid esters to chiral amino alcohols over Cu/ZnO/Al2O3 catalyst and its catalytic reaction mechanism

    Science.gov (United States)

    Zhang, Shuangshuang; Yu, Jun; Li, Huiying; Mao, Dongsen; Lu, Guanzhong

    2016-09-01

    Developing the high-efficient and green synthetic method for chiral amino alcohols is an intriguing target. We have developed the Mg2+-doped Cu/ZnO/Al2O3 catalyst for hydrogenation of L-phenylalanine methyl ester to chiral L-phenylalaninol without racemization. The effect of different L-phenylalanine esters on this title reaction was studied, verifying that Cu/ZnO/Al2O3 is an excellent catalyst for the hydrogenation of amino acid esters to chiral amino alcohols. DFT calculation was used to study the adsorption of substrate on the catalyst, and showed that the substrate adsorbs on the surface active sites mainly by amino group (-NH2) absorbed on Al2O3, and carbonyl (C=O) and alkoxy (RO-) group oxygen absorbed on the boundary of Cu and Al2O3. This catalytic hydrogenation undergoes the formation of a hemiacetal intermediate and the cleavage of the C–O bond (rate-determining step) by reacting with dissociated H to obtain amino aldehyde and methanol ad-species. The former is further hydrogenated to amino alcohols, and the latter desorbs from the catalyst surface.

  18. Three-dimensional FeSe2 microflowers assembled by nanosheets: Synthesis, optical properties, and catalytic activity for the hydrogen evolution reaction

    Science.gov (United States)

    Chang, Xiaoying; Jian, Jikang; Cai, Gemei; Wu, Rong; Li, Jin

    2016-03-01

    Three-dimensional FeSe2 microflowers were synthesized for the first time by a facile solvothermal method, using FeCl2·4H2O and selenium powder as raw materials, along with ethanolamine as solvent. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The results show that the FeSe2 microflowers consist of nanosheets with a thickness of about 50 - 80 nm. The Raman spectrum shows the characteristic peaks of Se-Se vibration modes. The optical band gap of the sample was determined to be 1.48 eV by UV-visible absorption spectroscopy. The photoluminescence properties of the FeSe2 microflowers and their catalytic activity for the hydrogen evolution reaction were also assessed. Finally, a possible growth mechanism of the FeSe2 microflowers is proposed. [Figure not available: see fulltext.

  19. High-effective approach from amino acid esters to chiral amino alcohols over Cu/ZnO/Al2O3 catalyst and its catalytic reaction mechanism.

    Science.gov (United States)

    Zhang, Shuangshuang; Yu, Jun; Li, Huiying; Mao, Dongsen; Lu, Guanzhong

    2016-01-01

    Developing the high-efficient and green synthetic method for chiral amino alcohols is an intriguing target. We have developed the Mg(2+)-doped Cu/ZnO/Al2O3 catalyst for hydrogenation of L-phenylalanine methyl ester to chiral L-phenylalaninol without racemization. The effect of different L-phenylalanine esters on this title reaction was studied, verifying that Cu/ZnO/Al2O3 is an excellent catalyst for the hydrogenation of amino acid esters to chiral amino alcohols. DFT calculation was used to study the adsorption of substrate on the catalyst, and showed that the substrate adsorbs on the surface active sites mainly by amino group (-NH2) absorbed on Al2O3, and carbonyl (C=O) and alkoxy (RO-) group oxygen absorbed on the boundary of Cu and Al2O3. This catalytic hydrogenation undergoes the formation of a hemiacetal intermediate and the cleavage of the C-O bond (rate-determining step) by reacting with dissociated H to obtain amino aldehyde and methanol ad-species. The former is further hydrogenated to amino alcohols, and the latter desorbs from the catalyst surface. PMID:27619990

  20. High-effective approach from amino acid esters to chiral amino alcohols over Cu/ZnO/Al2O3 catalyst and its catalytic reaction mechanism

    Science.gov (United States)

    Zhang, Shuangshuang; Yu, Jun; Li, Huiying; Mao, Dongsen; Lu, Guanzhong

    2016-01-01

    Developing the high-efficient and green synthetic method for chiral amino alcohols is an intriguing target. We have developed the Mg2+-doped Cu/ZnO/Al2O3 catalyst for hydrogenation of L-phenylalanine methyl ester to chiral L-phenylalaninol without racemization. The effect of different L-phenylalanine esters on this title reaction was studied, verifying that Cu/ZnO/Al2O3 is an excellent catalyst for the hydrogenation of amino acid esters to chiral amino alcohols. DFT calculation was used to study the adsorption of substrate on the catalyst, and showed that the substrate adsorbs on the surface active sites mainly by amino group (-NH2) absorbed on Al2O3, and carbonyl (C=O) and alkoxy (RO-) group oxygen absorbed on the boundary of Cu and Al2O3. This catalytic hydrogenation undergoes the formation of a hemiacetal intermediate and the cleavage of the C–O bond (rate-determining step) by reacting with dissociated H to obtain amino aldehyde and methanol ad-species. The former is further hydrogenated to amino alcohols, and the latter desorbs from the catalyst surface. PMID:27619990

  1. Fe-N-C electrocatalysts for oxygen reduction reaction synthesized by using aniline salt and Fe3+/H2O2 catalytic system

    KAUST Repository

    Bukola, Saheed

    2014-11-01

    Non-precious metal (NPM) catalysts are synthesized by polymerizing aniline salt using an aqueous Fe3+/H2O2 coupled catalytic system on a carbon matrix with a porous creating agent. The sulfur containing compunds such as ammonium peroxydisulfate, are eliminated in this method resulting in a much simpler process. The catalysts\\' porous structures are enhanced with ammonium carbonate as a sacrificial material that yields voids when decomposed during the heat treatment at 900 °C in N2 atmosphere. Two catalysts Fe-N-C/Vu and Fe-N-C/KB (Vu = Vulcan and KB = Ketjen black) were synthesized and characterized. Their oxygen reduction reaction (ORR) activities were investigated using a rotating ring-disk electrode (RRDE) in both 0.1 M KOH and 0.1 M HClO4. The catalysts show improved ORR activities close to that of Pt-based catalysts, low H2O2 formation and also demonstrated a remarkable tolerance towards methanol oxidation.

  2. Detection of „Hotspot Mutations in Catalytic Subunit of Phosphatidylinositol 3-Kinase (Pik3ca by Allele-Specific Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    A. Mendelova

    2014-09-01

    Full Text Available The phosphatidylinositol 3-kinases (PI3Ks are a family of proteins involved in the regulation of cell survival, growth, metabolism, and glucose homeostasis. Increased PI3K activity is associated with many cancers. PIK3CA gene (encoding p110 , the catalytic subunit of PI3K is commonly mutated in breast cancer. In our study we focused on the detection of “hotspot” mutations in exons 9 and 20 of the PIK3CA gene in paraffin-embedded tissue of patients with breast cancer. We optimized conditions of allele specific polymerase chain reaction (PCR and we used direct sequencing to verify our results. Overall, three “hotspot” mutations in PIK3CA gene in paraffin-embadded tissue from breast cancer were detected by allele-specific PCR. All results were verified by direct sequencing of PCR products and we observed 100% agreement between those two methods. We confirmed that allele-specific PCR assay is low cost method usefull for accurate detection of PIK3CA mutations.

  3. Hydrogen Effect on Coke Removal and Catalytic Performance in Pre-Carburization and Methane Dehydro-Aromatization Reaction on Mo/HZSM-5

    Institute of Scientific and Technical Information of China (English)

    Hongtao Ma; Ryoichi Kojima; Satoshi Kikuchi; Masaru Ichikawa

    2005-01-01

    In this study,the effects of pre-carburization of catalyst,hydrogen addition to methane feed and the space velocity of methane on the catalytic performance in methane to benzene (MTB) reaction were discussed in detail over Mo/HZSM-5 catalyst at 1023 K and 0.3 MPa. Compared with the non-precarburized catalyst,the Mo catalyst pre-carburized under the flow of CH4+4H2 at 973 K was found to have the higher activity and better stability. Further 6% H2 addition to the methane feed suppressed the aromatic type of coke formation effectively,and improved the stability of catalyst markedly,moreover gave a much longer reaction life of catalyst (53 h at 1023 K and 5400 ml/(g·h)) and much more formation amounts of benzene and hydrogen. With increase of methane space velocity,both the naphthalene formation selectivity and the coke formation selectivity were decreased by the shortened contact time;the benzene formation selectivity and total formation amount before the complete deactivation of catalyst were increased ly,while the total naphthalene and coke formation amounts did not change much.At high methane space velocity (≥5400 ml/(g·h)),a new middle temperature coke derived from the high temperature aromatic coke was formed on the catalyst; all the coke formed could be burnt off at lower temperature in oxygen,compared with those obtained at low space velocity. Considering the benzene formation amount and catalyst stability together,5400 ml/(g·h) was proved to be the most efficient methane space velocity for benzene production.

  4. The role of the catalysts with highly dispersed and isolated active sites in the selective oxidation of light hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    WANG Hongxuan; ZHAO Zhen

    2005-01-01

    This review summarizes the role of catalysts with highly dispersed and isolated active sites (active sites: supported atoms f≤0.5 % ) in the selective oxidation of light hydrocarbons, such as methane, ethane and propane, into oxygenatesand the epoxidation of olefins. The plausible structures of the highly dispersed and isolated active species, as well as their effects on the catalytic performances are discussed. The special physico-chemical properties and the functional mechanism of the catalysts with highly dispersed and isolated active sites, as well as the preparation, characterization of the catalysts with highly dispersed and isolated active sites and their applications in other types of reactions of lower hydrocarbons are summarized.

  5. The role of isovalency in the reactions of the cyano (CN), boron monoxide (BO), silicon nitride (SiN), and ethynyl (C2H) radicals with unsaturated hydrocarbons acetylene (C2H2) and ethylene (C2H4).

    Science.gov (United States)

    Parker, D S N; Mebel, A M; Kaiser, R I

    2014-04-21

    The classification of chemical reactions based on shared characteristics is at the heart of the chemical sciences, and is well exemplified by Langmuir's concept of isovalency, in which 'two molecular entities with the same number of valence electrons have similar chemistries'. Within this account we further investigate the ramifications of the isovalency of four radicals with the same X(2)Σ(+) electronic structure - cyano (CN), boron monoxide (BO), silicon nitride (SiN), and ethynyl (C2H), and their reactions with simple prototype hydrocarbons acetylene (C2H2) and ethylene (C2H4). The fact that these four reactants own the same X(2)Σ(+) electronic ground state should dictate the outcome of their reactions with prototypical hydrocarbons holding a carbon-carbon triple and double bond. However, we find that other factors come into play, namely, atomic radii, bonding orbital overlaps, and preferential location of the radical site. These doublet radical reactions with simple hydrocarbons play significant roles in extreme environments such as the interstellar medium and planetary atmospheres (CN, SiN and C2H), and combustion flames (C2H, BO). PMID:24418936

  6. Some Aspects of the Catalytic Organic Synthesis

    Institute of Scientific and Technical Information of China (English)

    Anil; K.Saikia

    2007-01-01

    1 Results Catalytic reactions are gaining importance due to its low cost, operational simplicity, high efficiency and selectivity. It is also getting much attention in green synthesis. Many useful organic reactions, including the acylation of alcohols and aldehydes, carbon-carbon, carbon-nitrogen, carbon-sulfur bond forming and oxidation reactions are carried out by catalyst. We are exploring the catalytic acylation of alcohols and aldehydes in a simple and efficient manner. Catalytic activation of unr...

  7. Miniaturized metal (metal alloy)/ PdO.sub.x/SiC hydrogen and hydrocarbon gas sensors

    Science.gov (United States)

    Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor); Lukco, Dorothy (Inventor)

    2011-01-01

    A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO.sub.x ). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600.degree. C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sized sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.

  8. Miniaturized Metal (Metal Alloy)/PdO(x)/SiC Hydrogen and Hydrocarbon Gas Sensors

    Science.gov (United States)

    Hunter, Gary W. (Inventor); Xu, Jennifer C. (Inventor); Lukco, Dorothy (Inventor)

    2008-01-01

    A miniaturized Schottky diode hydrogen and hydrocarbon sensor and the method of making same is disclosed and claimed. The sensor comprises a catalytic metal layer, such as palladium, a silicon carbide substrate layer and a thin barrier layer in between the catalytic and substrate layers made of palladium oxide (PdO(x)). This highly stable device provides sensitive gas detection at temperatures ranging from at least 450 to 600 C. The barrier layer prevents reactions between the catalytic metal layer and the substrate layer. Conventional semiconductor fabrication techniques are used to fabricate the small-sided sensors. The use of a thicker palladium oxide barrier layer for other semiconductor structures such as a capacitor and transistor structures is also disclosed.

  9. Effect of Ni+2-substituted Fe2TiO5 on the H2-reduction and CO2 Catalytic Decomposition Reactions at 500℃

    Institute of Scientific and Technical Information of China (English)

    M.H.Khedr

    2006-01-01

    CO2 is a major component of the greenhouse gases, which causes the global warming. To reduce CO2 gas,high activity nanosized Ni+2 substituted Fe2TiO5 samples were synthesized by conventional ceramic method.The effect of the composition of the synthesized ferrite on the H2-reduction and CO2-catalytic decomposition was investigated. Fe2TiO5 (iron titanate) phase that has a nanocrystallite size of ~80 nm is formed as a result of heating Fe2O3 and TiO2 while the addition of NiO leads to the formation of new phases (~80 nm)NiTiO3 and NiFe2O4, but the mixed solid of NiO and Fe2O3 results in the formation of NiFe2O4 only.Samples with Ni+2=0 shows the lowest reduction extent (20%); as the extent of Ni+2 increases, the extent of reduction increases. The increase in the reduction percent is attributed to the presence of NiTiO3 and NiFe2O4 phases, which are more reducible phases than Fe2TiO5. The CO2 decomposition reactions were monitored by thermogravimetric analysis (TGA) experiments. The oxidation of the H2-reduced Ni+2 substituted Fe2TiO5 at 500℃ was investigated. As Ni+2 increases, the rate of reoxidation increases. Samples with the highest reduction extents gave the highest reoxidation extent, which is attributed to the highly porous nature and deficiency in oxygen due to the presence of metallic Fe, Ni and/or FeNi alloy. X-ray diffraction (XRD) and transmission electron microscopy (TEM) of oxidized samples show also the presence of carbon in the sample containing Ni+2>0, which appears in the form of nanotubes (25 nm).

  10. Catalytic activity of Pt anchored onto graphite nanofiber-poly (3,4-ethylenedioxythiophene) composite toward oxygen reduction reaction in polymer electrolyte fuel cells

    International Nuclear Information System (INIS)

    Highlights: • GNF–PEDOT is explored as a catalyst support for PEFCs. • PEDOT bridges the Pt nanoparticles with GNF via π–π interaction. • Binding strength between Pt and GNF is improved and hence mitigates Pt aggregation. • GNF–PEDOT composite enhances ORR activity and durability in fuel cells. -- Abstract: The potential of graphite nanofiber (GNF)–Poly(3,4-ethylenedioxythiophene) (PEDOT) composite is explored as a catalyst support for polymer electrolyte fuel cells (PEFCs). Due to electron accepting nature of GNF and electron donating nature of PEDOT, the monomer EDOT adsorbs on the surface of GNF due to strong electrostatic π–π interaction. Pt nanoparticles are impregnated on GNF–PEDOT composite by ethylene glycol reduction method and their effects on electro catalytic activity for oxygen reduction reaction (ORR) are systemically studied. Pt particles supported on GNF–PEDOT with catalyst loading of 0.2 mg cm−2 exhibit a peak power density of 537 mW cm−2 at a load current density of 1120 mA cm−2, while it was only 338 mW cm−2 at a load current density of 720 mA cm−2 in case of Pt particles supported on pristine GNF. The superior behavior of GNF–PEDOT supported Pt catalyst could be exclusively credited to the high graphitic nature of GNF and their mild functionalization with PEDOT increasing uniform dispersion of Pt. Indeed, the non-destructive functionalization of GNF with conducting polymer, such as PEDOT, makes them promising catalyst-supports for PEFCs

  11. An oxyferrous heme/protein-based radical intermediate is catalytically competent in the catalase reaction of Mycobacterium tuberculosis catalase-peroxidase (KatG).

    Science.gov (United States)

    Suarez, Javier; Ranguelova, Kalina; Jarzecki, Andrzej A; Manzerova, Julia; Krymov, Vladimir; Zhao, Xiangbo; Yu, Shengwei; Metlitsky, Leonid; Gerfen, Gary J; Magliozzo, Richard S

    2009-03-13

    A mechanism accounting for the robust catalase activity in catalase-peroxidases (KatG) presents a new challenge in heme protein enzymology. In Mycobacterium tuberculosis, KatG is the sole catalase and is also responsible for peroxidative activation of isoniazid, an anti-tuberculosis pro-drug. Here, optical stopped-flow spectrophotometry, rapid freeze-quench EPR spectroscopy both at the X-band and at the D-band, and mutagenesis are used to identify catalase reaction intermediates in M. tuberculosis KatG. In the presence of millimolar H2O2 at neutral pH, oxyferrous heme is formed within milliseconds from ferric (resting) KatG, whereas at pH 8.5, low spin ferric heme is formed. Using rapid freeze-quench EPR at X-band under both of these conditions, a narrow doublet radical signal with an 11 G principal hyperfine splitting was detected within the first milliseconds of turnover. The radical and the unique heme intermediates persist in wild-type KatG only during the time course of turnover of excess H2O2 (1000-fold or more). Mutation of Met255, Tyr229, or Trp107, which have covalently linked side chains in a unique distal side adduct (MYW) in wild-type KatG, abolishes this radical and the catalase activity. The D-band EPR spectrum of the radical exhibits a rhombic g tensor with dual gx values (2.00550 and 2.00606) and unique gy (2.00344) and gz values (2.00186) similar to but not typical of native tyrosyl radicals. Density functional theory calculations based on a model of an MYW adduct radical built from x-ray coordinates predict experimentally observed hyperfine interactions and a shift in g values away from the native tyrosyl radical. A catalytic role for an MYW adduct radical in the catalase mechanism of KatG is proposed.

  12. An ab initio study on the chemical reactions in the Cl-ClO catalytic cycle%Cl-ClO催化循环圈的从头算研究

    Institute of Scientific and Technical Information of China (English)

    毛连港; 邴单; 赵永芳; 李根全; 李新营; 蒿凤有; 刘凤丽

    2006-01-01

    One of processes of the ozone depletion in the polar stratosphere is investigated by using an ab initio calculation at the B3LYP/6-311+G (3df) and the G2 levels. The calculated result obviously supported the theory on destroying ozone mechanism of the Cl-ClO catalytic cycle, and explained basic reason of the destroying ozone from the energy point of view. The reactional energy, the enthalpy of formation, and relative Gibbs free energy of the reactions in the ClClO catalytic cycle are calculated exactly, and provided thermodynamics quantities for the reactions in the Cl-ClO catalytic cycle.%采用分子轨道从头算方法,在B3LYP/6-311+G(3df)和G2水平上研究了极地平流层臭氧损耗的一个基本过程.计算结果明显支持Cl-ClO催化循环圈机理,并且从能量角度解释了了臭氧破坏的基本原因.还对循环圈中各个反应的反应能,生成焓,相对吉布斯自由能做了计算,计算结果相互协调都说明了Cl-ClO催化循环圈破坏臭氧机理的正确性.

  13. Catalytic pyrolysis using UZM-39 aluminosilicate zeolite

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, Christpher P; Boldingh, Edwin P

    2013-12-17

    A new family of coherently grown composites of TUN and IMF zeotypes has been synthesized and show to be effective catalysts for catalytic pyrolysis of biomass. These zeolites are represented by the empirical formula. Na.sub.nM.sub.m.sup.n+R.sub.rQ.sub.qAl.sub1-xE.sub.xSi.sub.yO.s- ub.z where M represents zinc or a metal or metals from Group 1, Group 2, Group 3 or the lanthanide series of the periodic table, R is an A,.OMEGA.-dihalosubstituted paraffin such as 1,4-dibromobutane, Q is a neutral amine containing 5 or fewer carbon atoms such as 1-methylpyrrolidine and E is a framework element such as gallium. The process involves contacting a carbonaceous biomass feedstock with UZM-39 at pyrolysis conditions to produce pyrolysis gases comprising hydrocarbons. The catalyst catalyzes a deoxygenation reaction converting oxygenated hyrdocarbons into hydrocarbons removing the oxygen as carbon oxides and water. A portion of the pyrolysis gases is condensed to produce low oxygen biomass-derived pyrolysis oil.

  14. GREEN CATALYZED OXIDATION OF HYDROCARBONS IN ALTERNATIVE SOLVENT SYSTEMS GENERATED BY PARIS II DECHEMA; GREEN SOLVENTS FOR CATALYSIS - ENVIRONMENTALLY BENIGN REACTION MEDIA

    Science.gov (United States)

    Green catalyzed oxidation of hydrocarbons in alternative solvent systems generated by PARIS IIThomas M. Becker, Michael A. Gonzalez, Paul F. Harten; Sustainable Technology Division, Office of Research and Development; United States Environmental Protection Agency, 26 West Mar...

  15. Incorporation of catalytic dehydrogenation into fischer-tropsch synthesis to significantly reduce carbon dioxide emissions

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, Gerald P.

    2012-11-13

    A new method of producing liquid transportation fuels from coal and other hydrocarbons that significantly reduces carbon dioxide emissions by combining Fischer-Tropsch synthesis with catalytic dehydrogenation is claimed. Catalytic dehydrogenation (CDH) of the gaseous products (C1-C4) of Fischer-Tropsch synthesis (FTS) can produce large quantities of hydrogen while converting the carbon to multi-walled carbon nanotubes (MWCNT). Incorporation of CDH into a FTS-CDH plant converting coal to liquid fuels can eliminate all or most of the CO.sub.2 emissions from the water-gas shift (WGS) reaction that is currently used to elevate the H.sub.2 level of coal-derived syngas for FTS. Additionally, the FTS-CDH process saves large amounts of water used by the WGS reaction and produces a valuable by-product, MWCNT.

  16. Catalysis of Photochemical Reactions.

    Science.gov (United States)

    Albini, A.

    1986-01-01

    Offers a classification system of catalytic effects in photochemical reactions, contrasting characteristic properties of photochemical and thermal reactions. Discusses catalysis and sensitization, examples of catalyzed reactions of excepted states, complexing ground state substrates, and catalysis of primary photoproducts. (JM)

  17. THERMOCHEMISTRY OF HYDROCARBON RADICALS

    Energy Technology Data Exchange (ETDEWEB)

    Kent M. Ervin, Principal Investigator

    2004-08-17

    Gas phase negative ion chemistry methods are employed to determine enthalpies of formation of hydrocarbon radicals that are important in combustion processes and to investigate the dynamics of ion-molecule reactions. Using guided ion beam tandem mass spectrometry, we measure collisional threshold energies of endoergic proton transfer and hydrogen atom transfer reactions of hydrocarbon molecules with negative reagent ions. The measured reaction threshold energies for proton transfer yield the relative gas phase acidities. In an alternative methodology, competitive collision-induced dissociation of proton-bound ion-molecule complexes provides accurate gas phase acidities relative to a reference acid. Combined with the electron affinity of the R {center_dot} radical, the gas phase acidity yields the RH bond dissociation energy of the corresponding neutral molecule, or equivalently the enthalpy of formation of the R{center_dot} organic radical, using equation: D(R-H) = {Delta}{sub acid}H(RH) + EA(R) - IE(H). The threshold energy for hydrogen abstraction from a hydrocarbon molecule yields its hydrogen atom affinity relative to the reagent anion, providing the RH bond dissociation energy directly. Electronic structure calculations are used to evaluate the possibility of potential energy barriers or dynamical constrictions along the reaction path, and as input for RRKM and phase space theory calculations. In newer experiments, we have measured the product velocity distributions to obtain additional information on the energetics and dynamics of the reactions.

  18. Free radical hydrogen atom abstraction from saturated hydrocarbons: A crossed-molecular-beams study of the reaction Cl + C{sub 3}H{sub 8} {yields} HCl + C{sub 3}H{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Blank, D.A.; Hemmi, N.; Suits, A.G.; Lee, Y.T. [Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    The abstraction of hydrogen atoms from saturated hydrocarbons are reactions of fundamental importance in combustion as well as often being the rate limiting step in free radical substitution reactions. The authors have begun studying these reactions under single collision conditions using the crossed molecular beam technique on beamline 9.0.2.1, utilizing VUV undulator radiation to selectively ionize the scattered hydrocarbon free radical products (C{sub x}H{sub 2x+1}). The crossed molecular beam technique involves two reactant molecular beams fixed at 90{degrees}. The molecular beam sources are rotatable in the plane defined by the two beams. The scattered neutral products travel 12.0 cm where they are photoionized using the VUV undulator radiation, mass selected, and counted as a function of time. In the authors initial investigations they are using halogen atoms as protypical free radicals to abstract hydrogen atoms from small alkanes. Their first study has been looking at the reaction of Cl + propane {r_arrow} HCl + propyl radical. In their preliminary efforts the authors have measured the laboratory scattering angular distribution and time of flight spectra for the propyl radical products at collision energies of 9.6 kcal/mol and 14.9 kcal/mol.

  19. Using a dual plasma process to produce cobalt--polypyrrole catalysts for the oxygen reduction reaction in fuel cells -- part I: characterisation of the catalytic activity and surface structure

    CERN Document Server

    Walter, Christian; Vyalikh, Denis; Brüser, Volker; Quade, Antje; Weltmann, Klaus-Dieter; 10.1149/2.078208jes

    2012-01-01

    A new dual plasma coating process to produce platinum-free catalysts for the oxygen reduction reaction in a fuel cell is introduced. The catalysts thus produced were analysed with various methods. Electrochemical characterisation was carried out by cyclic voltammetry, rotating ring- and rotating ring-disk electrode. The surface porosity of the different catalysts thus obtained was characterised with the nitrogen gas adsorption technique and scanning electron microscopy was used to determine the growth mechanisms of the films. It is shown that catalytically active compounds can be produced with this dual plasma process. Furthermore, the catalytic activity can be varied significantly by changing the plasma process parameters. The amount of H$_2$O$_2$ produced was calculated and shows that a 2 electron mechanism is predominant. The plasma coating mechanism does not significantly change the surface BET area and pore size distribution of the carbon support used. Furthermore, scanning electron microscopy pictures o...

  20. LaMn1-xFe xO3 and LaMn0.1-xFe0.90Mo x O3 perovskites: synthesis, characterization and catalytic activity in H2O2 reactions

    Directory of Open Access Journals (Sweden)

    Fabiano Magalhães

    2008-09-01

    Full Text Available In this work two perovskites were prepared: LaMn1-xFe xO3, and LaMn0.1-x Fe0.90Mo xO3. XRD and Mössbauer spectroscopy suggest the formation of pure phase perovskite with the incorporation of Fe and Mo in the structure. The catalytic activity of these materials was studied in two reactions with H2O2: the decomposition to O2, and the oxidation of the model organic contaminant methylene blue. The perovskite composition strongly affects the catalytic activity, while Fe decreases the H2O2 decomposition Mo strongly improves dye oxidation.

  1. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  2. Catalytic Cracking of Palm Oil Over Zeolite Catalysts: Statistical Approach

    Directory of Open Access Journals (Sweden)

    F. A. A. Twaiq and S. Bhatia

    2012-08-01

    Full Text Available The catalytic cracking of palm oil was conducted in a fixed bed micro-reactor over HZSM-5, zeolite ? and ultrastable Y (USY zeolite catalysts. The objective of the present investigation was to study the effect of cracking reaction variables such as temperature, weight hourly space velocity, catalyst pore size and type of palm oil feed of different molecular weight on the conversion, yield of hydrocarbons in gasoline boiling range and BTX aromatics in the organic liquid product.  Statistical Design of Experiment (DOE with 24 full factorial design was used in experimentation at the first stage.  The nonlinear model and Response Surface Methodology (RSM were utilized in the second stage of experimentation to obtain the optimum values of the variables for maximum yields of hydrocarbons in gasoline boiling range and aromatics.  The HZSM-5 showed the best performance amongst the three catalysts tested.  At 623 K and WHSV of 1 h-1, the highest experimental yields of gasoline and aromatics were 28.3 wt.% and 27 wt.%, respectively over the HZSM-5 catalyst.  For the same catalyst, the statistical model predicted that the optimum yield of gasoline was 28.1 wt.% at WHSV of 1.75 h-1 and 623 K.  The predicted optimum yield of gasoline was 25.5 wt.% at 623 K and WHSV of 1 h-1.KEY WORDS: Catalytic Cracking, Palm Oil, Zeolite, Design Of Experiment, Response Surface Methodology.

  3. High-pressure catalytic and thermal cracking of polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Mosio-Mosiewski, Jan; Warzala, Marek; Morawski, Ireneusz; Dobrzanski, Tadeusz [Institute of Heavy Organic Synthesis, ul. Energetykow 9, 47-225 Kedzierzyn-Kozle (Poland)

    2007-04-15

    The thermal cracking and catalytic cracking processes of low-density polyethylene were studied in a closed autoclave. The compositions of gaseous and liquid products were analysed by means of GC/FID and GS/MS chromatographic methods. The fractional composition of liquid products was found by distillation. Increased temperature of PE depolymerisation process increases the production of gaseous products and low-boiling liquid compounds; more aromatic hydrocarbons are formed instead of alkenes. When a lower temperature and longer time are adopted for the process to reach the assumed conversion, more straight chained hydrocarbons are produced. The acidic aluminosilicate catalyst yields more low-boiling liquid fractions, more isoalkanes and more aromatics. The neutral alumina is favourable for the production of alkenes and vacuum gas oil fraction in comparison to a non-catalytic process. The Ni-Mo/Al{sub 2}O{sub 3} catalyst is efficient in hydrogenation of depolymerisation products. The reaction products contain only saturated compounds then and no aromatics are formed. (author)

  4. Preparation of Rh-TPPTS complex intercalated layered double hydroxide and influences of host and guest compositions on its catalytic performances in hydroformylation reaction

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xian; LU Jun; JIN Lan; WEI Min

    2008-01-01

    Based on the concept of intercalation chemistry of layered double hydroxides (LDHs), RhCI(GO)-(TPPTS)2 (TPPTS: P(m-C6H4SO3Na)3) and TPPTS co-intercalated LDHs were successfully synthesized by in situ complexation method. Characterizations of structure and composition of composite materials by powder XRD, FT-IR, and ICP-AES techniques confirmed the supramolecular structures of the catalytic species intercalated LDHs. The correlation between catalytic performance of intercalated catalyst and the composition of both host layers and interlayer guest species was also investigated.

  5. Syngas Conversion to Gasoline-Range Hydrocarbons over Pd/ZnO/Al2O3 and ZSM-5 Composite Catalyst System

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Robert A.; Lizarazo Adarme, Jair A.; Lebarbier, Vanessa MC; Gray, Michel J.; White, James F.; King, David L.; Palo, Daniel R.

    2014-07-01

    A composite Pd/ZnO/Al2O3-HZSM-5 (Si/Al=40) catalytic system was evaluated for the synthesis of gasoline-range hydrocarbons directly from synthesis gas. Bifunctional catalyst comprising PdZn metal and acid sites present the required catalytically active sites necessary for the methanol synthesis, methanol dehydration, and methanol-to-gasoline reactions. This system provides a unique catalytic pathway for the production of liquid hydrocarbons directly from syngas. However, selectivity control is difficult and poses many challenges. The composite catalytic system was evaluated under various process conditions. Investigated were the effects of temperature (310-375oC), pressure (300-1000 psig), time-on-stream (50 hrs), and gas-hour space velocity (740-2970 hr-1), using a H2/CO molar syngas ratio of 2.0. By operating at the lower end of the temperature range investigated, liquid hydrocarbon formation was favored, as was decreased amounts of undesirable light hydrocarbons. However, lower operating temperatures also facilitated undesirable CO2 formation via the water-gas shift reaction. Higher operating pressures slightly favored liquid synthesis. Operating at relatively low pressures (e.g. 300 psig) was made possible, whereas for methanol synthesis alone higher pressure are usually required to achieve similar conversion levels (e.g. 1000 psig). Thermodynamic constraints on methanol synthesis are eased by pushing the equilibrium through hydrocarbon formation. Catalytic performance was also evaluated by altering Pd and Zn composition of the Pd/ZnO/Al2O3 catalyst. Of the catalysts and conditions tested, selectivity toward liquid hydrocarbon was highest when using a 5% Pd metal loading and Pd/Zn molar ratio of 0.25 and mixed with HZMS-5, operating at 310oC and 300 psig, CO conversion was 43 % and selectivity (carbon weight basis) to hydrocarbons was 49 wt. %. Of the hydrocarbon fraction, 44wt. % was in the C5-C12 liquid product range and consisted primarily of aromatic

  6. Method and apparatus for a catalytic firebox reactor

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Lance L. (North Haven, CT); Etemad, Shahrokh (Trumbull, CT); Ulkarim, Hasan (Hamden, CT); Castaldi, Marco J. (Bridgeport, CT); Pfefferle, William C. (Madison, CT)

    2001-01-01

    A catalytic firebox reactor employing an exothermic catalytic reaction channel and multiple cooling conduits for creating a partially reacted fuel/oxidant mixture. An oxidation catalyst is deposited on the walls forming the boundary between the multiple cooling conduits and the exothermic catalytic reaction channel, on the side of the walls facing the exothermic catalytic reaction channel. This configuration allows the oxidation catalyst to be backside cooled by any fluid passing through the cooling conduits. The heat of reaction is added to both the fluid in the exothermic catalytic reaction channel and the fluid passing through the cooling conduits. After discharge of the fluids from the exothermic catalytic reaction channel, the fluids mix to create a single combined flow. A further innovation in the reactor incorporates geometric changes in the exothermic catalytic reaction channel to provide streamwise variation of the velocity of the fluids in the reactor.

  7. Catalytic distillation water recovery subsystem

    Science.gov (United States)

    Budininkas, P.; Rasouli, F.

    1985-01-01

    An integrated engineering breadboard subsystem for the recovery of potable water from untreated urine based on the vapor phase catalytic ammonia removal was designed, fabricated and tested. Unlike other evaporative methods, this process catalytically oxidizes ammonia and volatile hydrocarbons vaporizing with water to innocuous products; therefore, no pretreatment of urine is required. Since the subsystem is fabricated from commercially available components, its volume, weight and power requirements are not optimized; however, it is suitable for zero-g operation. The testing program consists of parametric tests, one month of daily tests and a continuous test of 168 hours duration. The recovered water is clear, odorless, low in ammonia and organic carbon, and requires only an adjustment of its pH to meet potable water standards. The obtained data indicate that the vapor phase catalytic ammonia removal process, if further developed, would also be competitive with other water recovery systems in weight, volume and power requirements.

  8. Catalytic reduction of nitrate and nitrite ions by hydrogen : investigation of the reaction mechanism over Pd and Pd-Cu catalysts

    NARCIS (Netherlands)

    Ilinitch, OM; Nosova, LV; Gorodetskii, VV; Ivanov, VP; Trukhan, SN; Gribov, EN; Bogdanov, SV; Cuperus, FP

    2000-01-01

    The catalytic behavior of mono- and bimetallic catalysts with Pd and/or Cu supported over gamma-Al2O3 in the reduction of aqueous nitrate and nitrite ions by hydrogen was investigated. The composition of the supported metal catalysts was analysed using secondary ion mass spectroscopy (SIMS) and X-ra

  9. Systems including catalysts in porous zeolite materials within a reactor for use in synthesizing hydrocarbons

    Science.gov (United States)

    Rolllins, Harry W.; Petkovic, Lucia M.; Ginosar, Daniel M.

    2012-07-24

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  10. Catalytic hot gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P. [VTT Energy, Espoo (Finland)

    1996-12-31

    Gasification gas that contains particulates can be purified from tars and ammonia by using nickel monolith catalysts. Temperatures over 900 deg C are required at 20 bar pressure to avoid deactivation by H{sub 2}S and carbon. Dolomites and limestones are effective tar decomposing catalysts only when calcined. Tar decomposition in gasification conditions can take place by steam or dry (CO{sub 2}) reforming reactions. These reactions follow apparent first order kinetics with respect to hydrocarbons in gasification conditions. (author) (16 refs.)

  11. Deep catalytic oxidation of heavy hydrocarbons on Pt/Al{sub 2}O{sub 3} catalysts; Oxydation catalytique totale des hydrocarbures lourds sur Pt/Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, F.

    1998-12-09

    Deep oxidation by air on Pt supported on alumina of a large number of heavy hydrocarbons representative of those found in a real Diesel car exhaust has been studied. Light-off temperatures between 140 and 320 deg. C on 1%Pt/alumina (80% metal dispersion) have been found. Results show that not only the physical state around the conversion area but also the chemical nature of the hydrocarbon plays an important role. Heavy hydrocarbons deep oxidation behaviour has been classified as a function of their chemical category (alkane, alkene, aromatics etc..). Oxidation of binary mixtures of hydrocarbons has shown strong inhibition effects on n-alkane or CO oxidation by polycyclic compounds like 1-methyl-naphthalene. In some cases, by-product compounds in the gas effluent (other than CO{sub 2} and H{sub 2}O) have been identified by mass-spectrometry leading to oxidation mechanism proposals for different hydrocarbons. Catalyst nature (metal dispersion, content) influence has also been studied. It is shown that turn-over activity is favoured by the increase of the metal bulk size. Acidity influence of the carrier has shown only very little influence on n-alkane or di-aromatic compound oxidation. (author)

  12. 曲克芦丁钯配合物的制备及其对Heck反应的催化性能%Synthesis of troxerutin-Pd complex and its catalytic properties for Heck reaction

    Institute of Scientific and Technical Information of China (English)

    徐启杰; 时文中; 刘雷英; 王文豪; 崔元臣

    2011-01-01

    The complex of troxerutin-Pd was synthesized. The structure of the complex was characterized by means of infrared spectrometry and ultraviolet spectrometry. Besides, the catalytic performance of the complex for the Heck arylation reaction of bromobenzene and acrylic acid was examined. Results showed that the complex had good catalytic performance for the Heck arylation reaction of bromobenzene and acrylic acid under optimized reaction conditions.Namely, a yield of above 70% was reached at bromobenzene to acrylic acid molar ratio of 1∶ 2,reaction time of 8 h, and reaction temperature of 120 ℃ in the presence of tri-n-butylamine as the alkali and tetrabutylammonium bromide as the solvent.%制备了曲克芦丁钯配合物,利用红外光谱和紫外光谱表征了配合物的结构;同时考察了其对溴苯和丙烯酸的Heck芳基化反应的催化性能.结果表明:在反应物的物质的量之比(溴苯与丙烯酸)为1:2、反应温度120℃、反应时间8 h、三正丁胺为碱、四丁基溴化铵为溶剂的条件下,曲克芦丁钯配合物对溴苯和丙烯酸的Heck芳基化反应有较好的催化作用,产率可达70%以上.

  13. Reforming of methane in tubes with a catalytic active wall

    International Nuclear Information System (INIS)

    The heterogeneous steam reforming process in tubes with catalytic active inner surface is studied. The purpose of this ivestigation is to find a method of predicting the reaction rate of the catalytic conversion of methane by steam. The dependency of the reaction rate upon the temperature, pressure, gas composition, Reynolds number, geometrical sizes of tubes and catalytic behaviour of the catalytic active inner wall of these tubes has been examined. It was found that the reaction rate mainly depends on the temperature. The reaction rate is limited by the catalytic behaviour and the heat resisting properties of the materials used. (author)

  14. Thermocatalytic CO2-Free Production of Hydrogen from Hydrocarbon Fuels

    Energy Technology Data Exchange (ETDEWEB)

    University of Central Florida

    2004-01-30

    The main objective of this project is the development of an economically viable thermocatalytic process for production of hydrogen and carbon from natural gas or other hydrocarbon fuels with minimal environmental impact. The three major technical goals of this project are: (1) to accomplish efficient production of hydrogen and carbon via sustainable catalytic decomposition of methane or other hydrocarbons using inexpensive and durable carbon catalysts, (2) to obviate the concurrent production of CO/CO{sub 2} byproducts and drastically reduce CO{sub 2} emissions from the process, and (3) to produce valuable carbon products in order to reduce the cost of hydrogen production The important feature of the process is that the reaction is catalyzed by carbon particulates produced in the process, so no external catalyst is required (except for the start-up operation). This results in the following advantages: (1) no CO/CO{sub 2} byproducts are generated during hydrocarbon decomposition stage, (2) no expensive catalysts are used in the process, (3) several valuable forms of carbon can be produced in the process depending on the process conditions (e.g., turbostratic carbon, pyrolytic graphite, spherical carbon particles, carbon filaments etc.), and (4) CO{sub 2} emissions could be drastically reduced (compared to conventional processes).

  15. Process analysis of syngas production by non-catalytic POX of oven gas

    Institute of Scientific and Technical Information of China (English)

    Fuchen WANG; Xinwen ZHOU; Wenyuan GUO; Zhenghua DAI; Xin GONG; Haifeng LIU; Guangsuo YU; Zunhong YU

    2009-01-01

    A non-catalytic POX of oven gas is proposed to solve the problem of secondary pollution due to solid wastes produced from the great amount of organic sulfur contained in oven gas in the traditional catalytic partial oxidation (POX) process. A study of the measurement of flow field and a thermodynamic analysis of the process characteristics were conducted. Results show that there exist a jet-flow region, a recirculation-flow region, a tube-flow region, and three corresponding reaction zones in the non-catalytic POX reformer. The combustion of oven gas occurs mainly in the jet-flow region, while the reformation of oven gas occurs mainly in the other two regions. Soot would not be formed by CH4 cracking at above 1200℃. Since there are very little C2+ hydrocarbons in oven gas, the soot produced would be very tiny, even if they underwent cracking reaction. The integrated model for entrained bed gasification process was applied to simulate a non-catalytic POX reformer. It indicated that the proper oxygen-to-oven gas ratio is 0.22-0.28 at differ-ent pressures in the oven gas reformation process.

  16. Using Ionic Liquids in Selective Hydrocarbon Conversion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yongchun; Periana, Roy; Chen, Weiqun; van Duin, Adri; Nielsen, Robert; Shuler, Patrick; Ma, Qisheng; Blanco, Mario; Li, Zaiwei; Oxgaard, Jonas; Cheng, Jihong; Cheung, Sam; Pudar, Sanja

    2009-09-28

    This is the Final Report of the five-year project Using Ionic Liquids in Selective Hydrocarbon Conversion Processes (DE-FC36-04GO14276, July 1, 2004- June 30, 2009), in which we present our major accomplishments with detailed descriptions of our experimental and theoretical efforts. Upon the successful conduction of this project, we have followed our proposed breakdown work structure completing most of the technical tasks. Finally, we have developed and demonstrated several optimized homogenously catalytic methane conversion systems involving applications of novel ionic liquids, which present much more superior performance than the Catalytica system (the best-to-date system) in terms of three times higher reaction rates and longer catalysts lifetime and much stronger resistance to water deactivation. We have developed in-depth mechanistic understandings on the complicated chemistry involved in homogenously catalytic methane oxidation as well as developed the unique yet effective experimental protocols (reactors, analytical tools and screening methodologies) for achieving a highly efficient yet economically feasible and environmentally friendly catalytic methane conversion system. The most important findings have been published, patented as well as reported to DOE in this Final Report and our 20 Quarterly Reports.

  17. Catalytic microwave pyrolysis of biomass for renewable phenols and fuels

    Science.gov (United States)

    Bu, Quan

    Bio-oil is an unstable intermediate and needs to be upgraded before its use. This study focused on improving the selectivity of bio-oilby catalytic pyrolysis of biomass using activated carbon (AC) catalysts. Firstly, the effects of process conditions on product quality and product yield were investigated by catalytic microwave pyrolysis of biomass using AC as a catalyst. The optimized reaction condition for bio-oil and volatile was determined. Chemical composition analysis by GC/MS showed that phenols rich bio-oils were obtained. Furthermore, the effects of different carbon sources based AC catalysts on products yield and chemical composition selectivity of obtained bio-oils were investigated during microwave pyrolysis of Douglas fir pellet. The catalysts recycling test of the selected catalysts indicated that the AC catalysts can be used for 3-4 times with high concentration of phenolic compounds. The individual surface polar/acidic oxygen functional groups analysis suggested the changes of functional groups in ACs explained the reaction mechanism of this process. In addition, the potential for production of renewable phenols and fuels by catalytic pyrolysis of biomass using lignin as a model compound was explored. The main chemical compounds of the obtained bio-oils were phenols, guaiacols, hydrocarbons and esters. The thermal decomposition behaviors of lignin and kinetics study were investigated by TGA. The change of functional groups of AC catalyst indicated the bio-oil reduction was related to the reaction mechanism of this process. Finally, the effects of Fe-modified AC catalyst on bio-oil upgrading and kintic study of biomass pyrolysis were investigated. The catalytic pyrolysis of biomass using the Fe-modified AC catalyst may promote the occurrence of the fragmentation of cellulose, rather than repolymerization as in the non-catalytic pyrolysis which leads to partial of guaiacols derived from furans. Results showed that the main chemical compounds of bio

  18. On the Structural Context and Identification of Enzyme Catalytic Residues

    OpenAIRE

    Yu-Tung Chien; Shao-Wei Huang

    2013-01-01

    Enzymes play important roles in most of the biological processes. Although only a small fraction of residues are directly involved in catalytic reactions, these catalytic residues are the most crucial parts in enzymes. The study of the fundamental and unique features of catalytic residues benefits the understanding of enzyme functions and catalytic mechanisms. In this work, we analyze the structural context of catalytic residues based on theoretical and experimental structure flexibility. The...

  19. A novel liquid system of catalytic hydrogenation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    On the basis that endothermic aqueous-phase reforming of oxygenated hydrocarbons for H2 production and exothermic liquid phase hydrogenation of organic compounds are carried out under extremely close conditions of temperature and pressure over the same type of catalyst, a novel liquid system of catalytic hydrogenation has been proposed, in which hydrogen produced from aqueous-phase reforming of oxygenated hydrocarbons is in situ used for liquid phase hydrogenation of organic compounds. The usage of active hydrogen generated from aqueous-phase reforming of oxygenated hydrocarbons for liquid catalytic hydrogenation of organic compounds could lead to increasing the selectivity to H2 in the aqueous-phase reforming due to the prompt removal of hydrogen on the active centers of the catalyst. Meanwhile, this novel liquid system of catalytic hydrogenation might be a potential method to improve the selectivity to the desired product in liquid phase catalytic hydrogenation of organic compounds. On the other hand, for this novel liquid system of catalytic hydrogenation, some special facilities for H2 generation, storage and transportation in traditional liquid phase hydrogenation industry process are yet not needed. Thus, it would simplify the working process of liquid phase hydrogenation and increase the energy usage and hydrogen productivity.

  20. H2CAP - Hydrogen assisted catalytic biomass pyrolysis for green fuels

    DEFF Research Database (Denmark)

    Arndal, Trine Marie Hartmann; Høj, Martin; Jensen, Peter Arendt;

    2014-01-01

    Pyrolysis of biomass produces a high yield of condensable oil at moderate temperature and low pressure.This bio-oil has adverse properties such as high oxygen and water contents, high acidity and immiscibility with fossil hydrocarbons. Catalytic hydrodeoxygenation (HDO) is a promising technology...... that can be used to upgrade the crude bio-oil to fuel-grade oil. The development of the HDO process is challenged by rapid catalyst deactivation, instability of the pyrolysis oil, poorly investigated reaction conditions and a high complexity and variability of the input oil composition. However, continuous...... catalytic hydropyrolysis coupled with downstream HDO of the pyrolysis vapors before condensation shows promise (Figure 1). A bench scale experimental setup will be constructed for the continuous conversion of solid biomass (100g /h) to low oxygen, fuel-grade bio-oil. The aim is to provide a proof...

  1. Catalytic conversion of light alkanes, Phase 1. Topical report, January 1990--January 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The authors have found a family of new catalytic materials which, if successfully developed, will be effective in the conversion of light alkanes to alcohols or other oxygenates. Catalysts of this type have the potential to convert natural gas to clean-burning high octane liquid fuels directly without requiring the energy-intensive steam reforming step. In addition they also have the potential to upgrade light hydrocarbons found in natural gas to a variety of high value fuel and chemical products. In order for commercially useful processes to be developed, increases in catalytic life, reaction rate and selectivity are required. Recent progress in the experimental program geared to the further improvement of these catalysts is outlined.

  2. 甲烷等离子体转化合成碳二烃反应过程和过渡态理论%Theoretical Study of Reaction Paths and Transition States on Conversion Methane into C2 Hydrocarbons Through Plasma

    Institute of Scientific and Technical Information of China (English)

    王保伟; 杨恩翠; 许根慧; 郝金库

    2007-01-01

    The direct synthesis of C2 hydrocarbons (ethylene, acetylene and ethane) from methane is one of the most important task in C1 chemistry. Higher conversion of methane and selectivity to C2 hydrocarbons can be realized through plasma reaction. In order to explore the reaction process and mechanism, the possible reaction paths (1)-(4) were proposed on coupling reaction of methane through plasma and studied theoretically using semi-PM3 method [PM3 is parametcrization method of modified neglect of diatomic overlap (MNDO)] including determining the transition state, calculating the activation energy and thermodynamic state functions and analyzing the bond order and intrinsic reaction coordinate. The reaction heat results indicate that the reactions (2) and (4) are exothermic,while reactions of (1) and (3) are endothermic. The activation energy results show that activation energy for reactions (1) and (2) was much lower than that of reaction paths (3) and (4). Therefore, paths (1) and (2) is the favorable reaction path energetically. More interestingly by comparing the intrinsic reaction coordinated (IRC) of the reaction paths (1) and (2), it is found that the variations of bond lengths in reaction path (1) has a crucial effect on the potential energy, while in reaction path (2), the adjustment of the system geometry also contributes to the whole potential energy of the system.

  3. Production of alkyl aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Bonacci, J.C.; Billings, R.P.

    1975-01-30

    An improved method is claimed for producing aromatic hydrocarbons from a hydrocarbon charge containing aromatic hydrocarbons including benzene and C/sub 8/ alkyl aromatics and aliphatic hydrocarbons which charge is rich in such aromatic hydrocarbons and lean in aliphatic hydrocarbons boiling above about 220/sup 0/F by reason of conversion under severe conditions which comprises subjecting said charge to distillation conditions of temperature and pressure such that at least a portion of the benzene content of said fraction is separated as vapor from an alkyl aromatic fraction containing aliphatic hydrocarbons and the major portion of C/sub 8/ aromatics in said charge, reacting said alkyl aromatic fraction in the presence of hydrogen in contact with a catalyst containing type ZSM-5 zeolite, zeolite ZSM-12, zeolite ZSM-21 or zeolite beta in combination with a hydrogenation/dehydrogenation component at conversion conditions to convert aliphatic hydrocarbons to lower boiling material of five carbon atoms and lighter separable from aromatics by distillation including a temperature of about 500/sup 0/ to 1000/sup 0/F, a pressure of about 100 to about 600 pounds, a hydrogen to hydrocarbon mol ratio of 0.2 to 8 and weight hourly space velocity of 0.5 to 15, concurrently contacting a mixture of hydrogen and toluene with a disproportionation catalyst under reaction conditions to disproportionate said toluene, combining the effluents of said contacting steps, separating hydrogen from the combined effluents of said contacting steps, separating hydrogen from the combined effluents, recycling at least a portion of said separated hydrogen to said contacting steps, distilling the hydrocarbon residue from said separation step to recover therefrom at least toluene and mixed xylenes, and recycling at least a portion of said recovered toluene as feed to the disproportionation step aforesaid.

  4. Electrochemical CO2 Reduction to Hydrocarbons on a Heterogeneous Molecular Cu Catalyst in Aqueous Solution.

    Science.gov (United States)

    Weng, Zhe; Jiang, Jianbing; Wu, Yueshen; Wu, Zishan; Guo, Xiaoting; Materna, Kelly L; Liu, Wen; Batista, Victor S; Brudvig, Gary W; Wang, Hailiang

    2016-07-01

    Exploration of heterogeneous molecular catalysts combining the atomic-level tunability of molecular structures and the practical handling advantages of heterogeneous catalysts represents an attractive approach to developing high-performance catalysts for important and challenging chemical reactions such as electrochemical carbon dioxide reduction which holds the promise for converting emissions back to fuels utilizing renewable energy. Thus, far, efficient and selective electroreduction of CO2 to deeply reduced products such as hydrocarbons remains a big challenge. Here, we report a molecular copper-porphyrin complex (copper(II)-5,10,15,20-tetrakis(2,6-dihydroxyphenyl)porphyrin) that can be used as a heterogeneous electrocatalyst with high activity and selectivity for reducing CO2 to hydrocarbons in aqueous media. At -0.976 V vs the reversible hydrogen electrode, the catalyst is able to drive partial current densities of 13.2 and 8.4 mA cm(-2) for methane and ethylene production from CO2 reduction, corresponding to turnover frequencies of 4.3 and 1.8 molecules·site(-1)·s(-1) for methane and ethylene, respectively. This represents the highest catalytic activity to date for hydrocarbon production over a molecular CO2 reduction electrocatalyst. The unprecedented catalytic performance is attributed to the built-in hydroxyl groups in the porphyrin structure and the reactivity of the copper(I) metal center. PMID:27310487

  5. High effective synthesis gas production by steam hydrocarbon conversion

    International Nuclear Information System (INIS)

    Synthesis gas production by steam hydrocarbon conversion underlies of the series processes as hydrogen, methanol, dimethyl ether, ammonia, petrol, etc. It is known that the stage of synthesis gas production takes 70% of capital and operation costs of total final product production. Synthesis gas production is complicated, expansive and power-consuming process. Traditionally the process of steam hydrocarbon conversion is carried out in the tubular reformers and shift reactors over a nickel catalyst. The heat supply required for endothermic reaction is carried out by fuel gases through the walls of the reaction tubes at the expense of fuel gas burned in the inter-tubular space or at the expense of a part of the hydrocarbons to be burned inside the reactor above the catalyst bed combined with oxygen or air. The using 'FAST ENGINEERING' design of catalytic reactors, heat exchanger and mass-transfer apparatuses for synthesis gas production enables to decrease too much capital investment, energy consumption as well as to solve environment problems. 'FAST ENGINEERING' catalytic reactor design is compact, provides optimal temperature conditions for carry out catalytic process, effective heat supply (remove) to (from) the reaction zone, an opportunity of using the most active fine-grained catalyst keeping low pressure drop in the granular bed and wide range of loads, pressures and temperatures for a catalytic process. Compact 'FAST ENGINEERING' heat exchanger design provides low pressure drop, an opportunity to carry out the heat exchanging process in wide range of temperatures (from minus 269 till 1100 C), pressures and loads of heat exchange mediums, has maximum specific surface for heat exchanging in volume unit of cylindrical apparatus. They could be used as air-cooled apparatus, evaporator, condenser, etc. The using 'FAST ENGINEERING' catalytic reactors and heat exchanger apparatuses for synthesis gas production by steam or steam and carbon-dioxide natural gas

  6. Monopropellant engine investigation for space shuttle reaction control. Volume 2: Design, fabrication, and demonstration test of a catalytic gas generator for the space shuttle APU

    Science.gov (United States)

    1975-01-01

    The capability of a catalytic gas generator to meet the requirement specified for the space shuttle APU is established. A full-scale gas generator, designed to operate at a chamber pressure of 750 psia and a flow rate of 0.36 lbm/sec, was fabricated and subjected to three separate life test series. The nickel foam metal used for catalyst retention was investigated. Inspection of the foam metal following the first life test revealed significant degradation. Consequently an investigation was conducted to determine the mechanism of degradation and to provide an improved foam metal.

  7. Model catalytic oxidation studies using supported monometallic and heterobimetallic oxides. Progress report, August 1, 1991--January 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Ekerdt, J.G.

    1992-02-03

    This research program is directed toward a more fundamental understanding of the effects of catalyst composition and structure on the catalytic properties of metal oxides. Metal oxide catalysts play an important role in many reactions bearing on the chemical aspects of energy processes. Metal oxides are the catalysts for water-gas shift reactions, methanol and higher alcohol synthesis, isosynthesis, selective catalytic reduction of nitric oxides, and oxidation of hydrocarbons. A key limitation to developing insight into how oxides function in catalytic reactions is in not having precise information of the surface composition under reaction conditions. To address this problem we have prepared oxide systems that can be used to study cation-cation effects and the role of bridging (-O-) and/or terminal (=O) surface oxygen anion ligands in a systematic fashion. Since many oxide catalyst systems involve mixtures of oxides, we selected a model system that would permit us to examine the role of each cation separately and in pairwise combinations. Organometallic molybdenum and tungsten complexes were proposed for use, to prepare model systems consisting of isolated monomeric cations, isolated monometallic dimers and isolated bimetallic dimers supported on silica and alumina. The monometallic and bimetallic dimers were to be used as models of more complex mixed- oxide catalysts. Our current program was to develop the systems and use them in model oxidation reactions.

  8. Crossed-beam reaction of carbon atoms with hydrocarbon molecules. IV. Chemical dynamics of methylpropargyl radical formation, C{sub 4}H{sub 5}, from reaction of C({sup 3}P{sub j}) with propylene, C{sub 3}H{sub 6} (X{sup 1}A)

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, R.I.; Stranges, D.; Bevsek, H.M.; Lee, Y.T.; Suits, A.G. [Department of Chemistry, University of California, Berkeley, California 94720 (United States)]|[Chemical Sciences Division, Berkeley National Laboratory, Berkeley, California 94720 (United States)

    1997-03-01

    The reaction between ground state carbon atoms and propylene, C{sub 3}H{sub 6}, was studied at average collision energies of 23.3 and 45.0 kJmol{sup {minus}1} using the crossed molecular beam technique. Product angular distributions and time-of-flight spectra of C{sub 4}H{sub 5} at m/e=53 were recorded. Forward-convolution fitting of the data yields a maximum energy release as well as angular distributions consistent with the formation of methylpropargyl radicals. Reaction dynamics inferred from the experimental results suggest that the reaction proceeds on the lowest {sup 3}A surface via an initial addition of the carbon atom to the {pi}-orbital to form a triplet methylcyclopropylidene collision complex followed by ring opening to triplet 1,2-butadiene. Within 0.3{endash}0.6 ps, 1,2-butadiene decomposes through carbon{endash}hydrogen bond rupture to atomic hydrogen and methylpropargyl radicals. The explicit identification of C{sub 4}H{sub 5} under single collision conditions represents a further example of a carbon{endash}hydrogen exchange in reactions of ground state carbon with unsaturated hydrocarbons. This versatile machine represents an alternative pathway to build up unsaturated hydrocarbon chains in combustion processes, chemical vapor deposition, and in the interstellar medium. {copyright} {ital 1997 American Institute of Physics.}

  9. Catalytic hot gas cleaning of gasification gas

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    The aim of this work was to study the catalytic cleaning of gasification gas from tars and ammonia. In addition, factors influencing catalytic activity in industrial applications were studied, as well as the effects of different operation conditions and limits. Also the catalytic reactions of tar and ammonia with gasification gas components were studied. The activities of different catalyst materials were measured with laboratory-scale reactors fed by slip streams taken from updraft and fluid bed gasifiers. Carbonate rocks and nickel catalysts proved to be active tar decomposing catalysts. Ammonia decomposition was in turn facilitated by nickel catalysts and iron materials like iron sinter and iron dolomite. Temperatures over 850 deg C were required at 2000{sup -1} space velocity at ambient pressure to achieve almost complete conversions. During catalytic reactions H{sub 2} and CO were formed and H{sub 2}O was consumed in addition to decomposing hydrocarbons and ammonia. Equilibrium gas composition was almost achieved with nickel catalysts at 900 deg C. No deactivation by H{sub 2}S or carbon took place in these conditions. Catalyst blocking by particulates was avoided by using a monolith type of catalyst. The apparent first order kinetic parameters were determined for the most active materials. The activities of dolomite, nickel catalyst and reference materials were measured in different gas atmospheres using laboratory apparatus. This consisted of nitrogen carrier, toluene as tar model compound, ammonia and one of the components H{sub 2}, H{sub 2}O, CO, CO{sub 2}, CO{sub 2}+H{sub 2}O or CO+CO{sub 2}. Also synthetic gasification gas was used. With the dolomite and nickel catalyst the highest toluene decomposition rates were measured with CO{sub 2} and H{sub 2}O. In gasification gas, however, the rate was retarded due to inhibition by reaction products (CO, H{sub 2}, CO{sub 2}). Tar decomposition over dolomite was modelled by benzene reactions with CO{sub 2}, H

  10. Low efficiency deasphalting and catalytic cracking

    International Nuclear Information System (INIS)

    This patent describes a process for converting an asphaltene and metals containing heavy hydrocarbon feed to lighter, more valuable products the metals comprising Ni and V. It comprises: demetallizing the feed by deasphalting the feed in a solvent deasphalting means operating at solvent deasphalting conditions including a solvent: feed volume ratio of about 1:1 to 4:1, using a solvent selected from the group of C4 to 400 degrees F. hydrocarbons and mixtures thereof; recovering from the solvent rich fraction a demetallized oil intermediate product, having a boiling range and containing at least 10 wt.% of the asphaltenes, and 5 to 30% of the Ni and V, and at least 10 wt.% of the solvent present in the solvent rich phase produced in the deasphalting means; catalytically cracking the demetallized oil intermediate product in a catalytic cracking means operating at catalytic cracking conditions to produce a catalytically cracked product vapor fraction having a lower boiling range than the boiling range of the demetallized oil intermediate product; and fractionating the catalytically cracked product in a fractionation means to produce catalytically cracked product fractions

  11. Biogeochemistry of Halogenated Hydrocarbons

    Science.gov (United States)

    Adriaens, P.; Gruden, C.; McCormick, M. L.

    2003-12-01

    Halogenated hydrocarbons originate from both natural and industrial sources. Whereas direct anthropogenic emissions to the atmosphere and biosphere are often easy to assess, particularly when they are tied to major industrial activities, the attribution of emissions to other human activities (e.g., biomass burning), diffuse sources (e.g., atmospheric discharge, run off), and natural production (e.g., soils, fungi, algae, microorganisms) are difficult to quantify. The widespread occurrence of both alkyl and aryl halides in groundwater, surface water, soils, and various trophic food chains, even those not affected by known point sources, suggests a substantial biogeochemical cycling of these compounds (Wania and Mackay, 1996; Adriaens et al., 1999; Gruden et al., 2003). The transport and reactive fate mechanisms controlling their reactivity are compounded by the differences in sources of alkyl-, aryl-, and complex organic halides, and the largely unknown impact of biogenic processes, such as enzymatically mediated halogenation of organic matter, fungal production of halogenated hydrocarbons, and microbial or abiotic transformation reactions (e.g., Asplund and Grimvall, 1991; Gribble, 1996; Watling and Harper, 1998; Oberg, 2002). The largest source may be the natural halogenation processes in the terrestrial environment, as the quantities detected often exceed the amount that can be explained by human activities in the surrounding areas ( Oberg, 1998). Since biogeochemical processes result in the distribution of a wide range of halogenated hydrocarbon profiles, altered chemical structures, and isomer distributions in natural systems, source apportionment (or environmental forensics) can often only be resolved using multivariate statistical methods (e.g., Goovaerts, 1998; Barabas et al., 2003; Murphy and Morrison, 2002).This chapter will describe the widespread occurrence of halogenated hydrocarbons, interpret their distribution and biogeochemical cycling in light of

  12. C-H activation reactions by yttrium and lutetium hydride complexes : H/D exchange vs metalation of hydrocarbons. Importance of the hybridization state at the α carbon

    NARCIS (Netherlands)

    Deelman, Berth-Jan; Teuben, Jan H.; Macgregor, Stuart A.; Eisenstein, Odile

    1995-01-01

    Extended Hückel (EHT) calculations have been used to discuss the two alternative σ-bond C-H metathesis reactions which occur with organo-lanthanide (Ln = Y, Lu) compounds. The two reactions lead either to H/H (H/D) exchange or to metalation and have been modelled by studying the interaction of a Cp2

  13. Catalytic activity of Au nanoparticles

    DEFF Research Database (Denmark)

    Larsen, Britt Hvolbæk; Janssens, Ton V.W.; Clausen, Bjerne;

    2007-01-01

    Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change with par......Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change...... with particle size. We find that the fraction of low-coordinated Au atoms scales approximately with the catalytic activity, suggesting that atoms on the corners and edges of Au nanoparticles are the active sites. This effect is explained using density functional calculations....

  14. High efficiency chemical energy conversion system based on a methane catalytic decomposition reaction and two fuel cells. Part II. Exergy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qinghua; Tian, Ye; Li, Hongjiao; Jia, Lijun; Xia, Chun; Li, Yongdan [Tianjin Key Laboratory of Catalysis Science and Technology and State Key Laboratory for Chemical Engineering (Tianjin University), School of Chemical Engineering, Tianjin University, Tianjin 300072 (China); Thompson, Levi T. [Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2136 (United States)

    2010-10-01

    A methane catalytic decomposition reactor-direct carbon fuel cell-internal reforming solid oxide fuel cell (MCDR-DCFC-IRSOFC) energy system is highly efficient for converting the chemical energy of methane into electrical energy. A gas turbine cycle is also used to output more power from the thermal energy generated in the IRSOFC. In part I of this work, models of the fuel cells and the system are proposed and validated. In this part, exergy conservation analysis is carried out based on the developed electrochemical and thermodynamic models. The ratio of the exergy destruction of each unit is examined. The results show that the electrical exergy efficiency of 68.24% is achieved with the system. The possibility of further recovery of the waste heat is discussed and the combined power-heat exergy efficiency is over 80%. (author)

  15. Dependence of catalytic properties of Al/Fe2O3 thermites on morphology of Fe2O3 particles in combustion reactions

    Science.gov (United States)

    Zhao, Ningning; He, Cuicui; Liu, Jianbing; Gong, Hujun; An, Ting; Xu, Huixiang; Zhao, Fengqi; Hu, Rongzu; Ma, Haixia; Zhang, Jinzhong

    2014-11-01

    Three Fe2O3 particle samples with the same crystal structure but different morphologies were prepared by the hydrothermal method and then combined with Al nanoparticles to produce Al/Fe2O3 thermites using ultrasonic mixing. The properties of Fe2O3 and Al/Fe2O3 were studied using a combination of experimental techniques including scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The influences of the three Al/Fe2O3 thermites on the combustion properties of the AP/HTPB (ammonium perchlorate/hydroxyl-terminated polybutadiene) composite propellant were investigated in comparison to those of Fe2O3. The results show that the Al/Fe2O3 thermites are better than Fe2O3 in enhancing the combustion performance of AP/HTPB. Furthermore, the surface area, which depends on size and mophology, of Fe2O3 particles was found to play a vital role in improving the burning rate of the thermites-containing propellant formulation, with the smallest particles with the largest surface-to-volume (S/V) ratio performing the best. The enhanced catalytic property of the granular-shape Fe2O3 and the corresponding thermite is attributed to the large specific surface area of Fe2O3. The different thermal behaviors of these three superthemites were supposed to be attributed to the surface site of Fe2O3 particles. This work provides a better understanding on the catalytic properties of thermites that are important for combustion applications.

  16. Effect the conditions of the acid-thermal modification of clinoptilolite have on the catalytic properties of palladium-copper complexes anchored on it in the reaction of carbon monoxide oxidation

    Science.gov (United States)

    Rakitskaya, T. L.; Kiose, T. A.; Ennan, A. A.; Golubchik, K. O.; Oleksenko, L. P.; Gerasiova, V. G.

    2016-06-01

    The dependence of the physicochemical and structural-adsorption properties of natural and acid-thermal modified clinoptilolite, and of Pd(II)-Cu(II) catalysts based on them, on the duration of acid-thermal modification is investigated. The samples under study are described via XRD and thermal gravimetric (DTG and DTA) analysis, IR, DR UV-Vis, EPR spectroscopy, and water vapor adsorption. Values of both the specific surface area ( S sp) and pH of aqueous suspensions are determined. The resulting catalysts are tested in the reaction of low-temperature carbon monoxide oxidation with air oxygen. A conclusion is drawn about the nature of surface bimetallic Pd(II)-Cu(II) complexes. The greatest catalytic activity is shown by complexes based on clinoptilolite and modified with 3 M HNO3 for 0.5 and 1 h.

  17. Catalytic properties of niobium compounds

    International Nuclear Information System (INIS)

    The catalytic activity and selectivity of niobium compounds including oxides, salts, organometallic compounds and others are outlined. The application of these compounds as catalysts to diversified reactions is reported. The nature and action of niobium catalysts are characteristic and sometimes anomalous, suggesting the necessity of basic research and the potential use as catalysts for important processes in the chemical industry. (Author)

  18. 咪唑类离子液体及其催化有机不对称反应%Imidazolium ionic liquids and catalytic asymmetric reactions of organic

    Institute of Scientific and Technical Information of China (English)

    姜红波

    2011-01-01

    离子液体作为一种新型绿色溶剂,具有许多独特的物理化学性质,近年来逐渐被人们所认知,并发现可用在许多重要领域.本文简单介绍离子液体及其特点,重点介绍在咪唑类离子液体中典型的不对称加氢反应、不对称Michael加成反应、不对称Aldol反应、不对称烯丙基反应和不对称氟化反应.%As a new type of green solvents, ionic liquids has many unique physical and chemical properties.It has been perceived and found in many important areas available in recent years.This article briefly describes the types and characteristics of ionic liquids, focusing on the typical asymmetric hydrogenation reaction, asymmetric Michael addition reaction, asymmetric Aldol reaction, asymmetric allylation reaction and asymmetric fluorination reaction in imidazolium ionic liquids.

  19. The role of additives in Fischer-Tropsch reactions

    OpenAIRE

    Perdjon-Abel, Michal

    2011-01-01

    The Fischer-Tropsch Synthesis (FTS) is an alternative route to produce liquid fuels from a variety of carbon feedstocks including coal and biomass. Typically iron and cobalt based catalysts have been used for the FTS reaction, in which a mixture of CO and H2 (syn-gas) reacts to form hydrocarbons. Enhanced performance has been reported for iron-based systems doped with alkali metals and chalcogenides. Sulfides are considered a poison for most catalytic processes, but sulfur in the form of sulf...

  20. Reaction engineering calculation for ethylene catalytic oxidation over gear-shaped catalysts%外齿轮形颗粒催化剂上乙烯催化氧化的反应工程计算

    Institute of Scientific and Technical Information of China (English)

    周继鹏; 房鼎业; 李涛

    2016-01-01

    For the reaction of ethylene catalytic oxidation to ethylene oxide over a gear-shaped catalyst particle, a three-dimensional reaction-mass transfer-heat transfer model is developed to calculate effectiveness factor of the catalyst. Effective diffusivities and effective thermal conductivity are the function of temperature and concentration distribution in catalyst particle. The finite element method is employed to solve the set of highly nonlinear partial differential equations, and the values obtained agree well with those given by literatures. Geometric external surface area is a key parameter for the effectiveness factor. The effectiveness factor is 0.1804 for gear-shaped catalyst with geometric external surface area of 1862 m2·m−3, and 0.0993 for cylindrical catalyst with geometric external surface area of 924 m2·m−3. The quantitative calculation for reaction-transport phenomena in a single catalyst particle could be a guide for catalyst design and a basis for multi-scale simulation of coupling hydromechanics and catalytic reaction-transport phenomena.%针对乙烯氧化制环氧乙烷反应体系,对外齿轮异形催化剂建立三维反应-传质-传热模型。有效扩散系数和有效热导率均为待求解浓度场和温度场的函数,使得偏微分方程组模型为强非线性。采用有限元算法求解,并对模型有效性进行验证,定量研究了催化剂几何比外表面积和内扩散效率因子的关系。计算结果表明,几何比外表面积为1862 m2·m−3的外齿轮催化剂内扩散效率因子为0.1804,而几何比外表面积为924 m2·m−3的圆柱形催化剂内扩散效率因子为0.0993。对单个催化剂颗粒反应-传递现象的研究能定量指导催化剂设计,并为耦合反应器流体力学和催化剂反应传递现象多尺度模拟计算奠定基础。

  1. Influence of catalytic activity and reaction conditions on the product distribution in coal liquefaction; Sekitan ekikayu no seiseibutsu bunpu ni taisuru shokubai kassei oyobi hanno joken no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Hasuo, H.; Sakanishi, K.; Mochida, I. [Kyushu University, Fukuoka (Japan). Institute of Advanced Material Study

    1996-10-28

    The NiMo sulfide supported on Ketjen Black (KB) was more effective and yielded lighter oil products containing light fractions with their boiling point below 300{degree}C during the two stage liquefaction combining low temperature and high temperature hydrogenation the conventional NiMo/alumina catalyst and FeS2 catalyst. Although the NiMo/alumina yielded increased oil products during the two stage liquefaction, the lighter oil fractions did not increase and the heavier fractions increased mainly. This suggests that the hydrogenation of aromatic rings and successive cleavage of the rings are necessary for producing the light oil, which is derived from the sufficient hydrogenation of aromatic rings using catalysts. For the two stage reaction with NiMo/KB catalyst, it was considered that sufficient hydrogen was directly transferred to coal molecules at the first stage of the low temperature reaction, which promoted the solubilization of coal and the successive hydrogenation at the high temperature reaction. Thus, high activity of the catalyst must be obtained. It is expected that further high quality distillates can be produced through the optimization of catalysts and solvents at the two stage reaction. 1 ref., 4 figs., 1 tab.

  2. Highly efficient catalytic enantioselective Mannich reaction of malonates with N-tert-butoxycarbonyl imines by using Yb(OTf)3/pybox catalysts at room temperature.

    Science.gov (United States)

    Karimi, Babak; Jafari, Ehsan; Enders, Dieter

    2013-07-29

    Go Mannich! A highly efficient and enantioselective method for the direct asymmetric reaction of dibenzyl malonate with N-tert-butoxycarbonyl aldimines in the presence of Yb(OTf)3 and iPr-pybox complexes is described (see scheme; pybox = pyridine bisoxazoline).

  3. Comparison of dry reforming of methane in low temperature hybrid plasma-catalytic corona with thermal catalytic reactor over Ni/γ-Al2O3

    Institute of Scientific and Technical Information of China (English)

    Amin Aziznia; Hamid Reza Bozorgzadeh; Naser Seyed-Matin; Morteza Baghalha; Ali Mohamadalizadeh

    2012-01-01

    In the current study,the hybrid effect of a corona discharge and γ-alumina supported Ni catalysts in CO2 reforming of methane is investigated.The study includes both purely catalytic operation in the temperature range of 923-1023 K,and hybrid catalytic-plasma operation of DC corona discharge reactor at room temperature and ambient pressure.The effect of feed flow rate,discharge power and Ni/γ-Al2O3 catalysts are studied.When CH4/CO2 ratio in the feed is 1/2,the syngas of low H2/CO ratio at about 0.56 is obtained,which is a potential feedstock for synthesis of liquid hydrocarbons.Although Ni catalyst is only active above 573 K,presence of Ni catalysts in the cold corona plasma reactor (T≤523 K) shows promising increase in the conversions of methane and carbon dioxide.When Ni catalysts are used in the plasma reaction,H2/CO ratios in the products are slightly modified,selectivity to CO increases whereas fewer by-products such as hydrocarbons and oxygenates are formed.

  4. High efficiency chemical energy conversion system based on a methane catalytic decomposition reaction and two fuel cells: Part I. Process modeling and validation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qinghua; Tian, Ye; Li, Hongjiao; Jia, Lijun; Xia, Chun; Li, Yongdan [Tianjin Key Laboratory of Catalysis Science and Technology and State Key Laboratory for Chemical Engineering (Tianjin University), School of Chemical Engineering, Tianjin University, Tianjin 300072 (China); Thompson, Levi T. [Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2136 (United States)

    2010-10-01

    A highly efficient integrated energy conversion system is built based on a methane catalytic decomposition reactor (MCDR) together with a direct carbon fuel cell (DCFC) and an internal reforming solid oxide fuel cell (IRSOFC). In the MCDR, methane is decomposed to pure carbon and hydrogen. Carbon is used as the fuel of DCFC to generate power and produce pure carbon dioxide. The hydrogen and unconverted methane are used as the fuel in the IRSOFC. A gas turbine cycle is also used to produce more power output from the thermal energy generated in the IRSOFC. The output performance and efficiency of both the DCFC and IRSOFC are investigated and compared by development of exact models of them. It is found that this system has a unique loading flexibility due to the good high-loading property of DCFC and the good low loading property of IRSOFC. The effects of temperature, pressure, current densities, and methane conversion on the performance of the fuel cells and the system are discussed. The CO{sub 2} emission reduction is effective, up to 80%, can be reduced with the proposed system. (author)

  5. Recent advances in catalytic combustion for ground power gas turbine engines

    Energy Technology Data Exchange (ETDEWEB)

    Smith, L.L.; Karim, H.; Castaldi, M.; Etemad, S.; Pfefferle, W.C.; Newburry, D.; Bachovchin, D.

    1999-07-01

    Catalytic combustion is one means of meeting increasingly strict emissions requirements for ground-based gas turbine engines for power generation. In conventional homogeneous combustion, high flame temperatures and incomplete combustion lead to emissions of oxides of nitrogen (NO{sub x}) and carbon monoxide (CO), and in lean premixed systems unburned hydrocarbons (UHC). However, catalytic reaction upstream of a lean premixed homogeneous combustion zone can increase the fuel/air mixture reactivity sufficiently to allow low CO/UHC emissions at adiabatic flame temperatures below 1,500 C, with concurrent low NO{sub x} emissions. As a result, catalytic combustion technologies have demonstrated single-digit emissions, and meet DOE-ATS goals (NO{sub x} {lt} 10 ppm, and CO/UHC {lt} 20 ppm) by a wide margin. Precision Combustion, Inc. (PCI) is currently developing catalytic combustion systems for Siemens Westinghouse Power Corporation. For natural gas fuel operation, PCI has demonstrated NO{sub x} {lt} 5 ppm, CO {lt} 1 ppm, and UHC {lt} 1 ppm (all corrected to 15% O2) in a sub-scale atmospheric rig, using a catalytic pre-reactor upstream of the combustion zone. For these tests, gas-phase combustion was stabilized in an 8-inch diameter convection-cooled metal liner at adiabatic flame temperatures from 1,250 C to 1,550 C. In parallel, extensive high pressure reactor component development and testing have been conducted at sub-scale, in preparation for high pressure testing of a full-scale catalytic combustor.

  6. Using supercritical fluids to refine hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Yarbro, Stephen Lee

    2015-06-09

    A system and method for reactively refining hydrocarbons, such as heavy oils with API gravities of less than 20 degrees and bitumen-like hydrocarbons with viscosities greater than 1000 cp at standard temperature and pressure, using a selected fluid at supercritical conditions. A reaction portion of the system and method delivers lightweight, volatile hydrocarbons to an associated contacting unit which operates in mixed subcritical/supercritical or supercritical modes. Using thermal diffusion, multiphase contact, or a momentum generating pressure gradient, the contacting unit separates the reaction products into portions that are viable for use or sale without further conventional refining and hydro-processing techniques.

  7. C-H activation reactions by yttrium and lutetium hydride complexes: H/D exchange vs metalation of hydrocarbons. Importance of the hybridization state at the α carbon

    OpenAIRE

    Deelman, Berth-Jan; Teuben, Jan H.; Macgregor, Stuart A.; Eisenstein, Odile

    1995-01-01

    Extended Hückel (EHT) calculations have been used to discuss the two alternative σ-bond C-H metathesis reactions which occur with organo-lanthanide (Ln = Y, Lu) compounds. The two reactions lead either to H/H (H/D) exchange or to metalation and have been modelled by studying the interaction of a Cp2Ln+ fragment with [H-R-H]- and [R-H-H]- respectively. It is shown that the metallic fragment interacts in a similar way with the two organic fragments and that the preference for one of the two pat...

  8. Recent Advances on Electro-Oxidation of Ethanol on Pt- and Pd-Based Catalysts: From Reaction Mechanisms to Catalytic Materials

    OpenAIRE

    Ye Wang; Shouzhong Zou; Wen-Bin Cai

    2015-01-01

    The ethanol oxidation reaction (EOR) has drawn increasing interest in electrocatalysis and fuel cells by considering that ethanol as a biomass fuel has advantages of low toxicity, renewability, and a high theoretical energy density compared to methanol. Since EOR is a complex multiple-electron process involving various intermediates and products, the mechanistic investigation as well as the rational design of electrocatalysts are challenging yet essential for the desired complete oxidation to...

  9. NaIO4/LiBr-mediated diastereoselective dihydroxylation of olefins: a catalytic approach to the Prevost-Woodward reaction.

    Science.gov (United States)

    Emmanuvel, Lourdusamy; Shaikh, Tanveer Mahammad Ali; Sudalai, Arumugam

    2005-10-27

    [reaction: see text] LiBr catalyzes efficiently the dihydroxylation of alkenes to afford syn and anti diols with excellent diastereoselectivity depending upon the use of NaIO(4) (30 mol %) or PhI(OAc)(2) (1 equiv), respectively, as the oxidants. The oxidation of non-benzylic halides has been achieved for the first time to afford the corresponding diols in excellent yields.

  10. A computational study of detoxification of lewisite warfare agents by British anti-lewisite: catalytic effects of water and ammonia on reaction mechanism and kinetics.

    Science.gov (United States)

    Sahu, Chandan; Pakhira, Srimanta; Sen, Kaushik; Das, Abhijit K

    2013-04-25

    trans-2-Chlorovinyldichloroarsine (lewisite, L agent, Lew-I) acts as a blistering agents. British anti-lewisite (BAL, 2,3-dimercaptopropanol) has long been used as an L-agent antidote. The main reaction channels for the detoxification proceed via breaking of As-Cl bonds and formation of As-S bonds, producing stable, nontoxic ring product [(2-methyl-1,3,2-dithiarsolan-4-yl)methanol]. M06-2X/GENECP calculations have been carried out to establish the enhanced rate of detoxification mechanism in the presence of NH3 and H2O catalysts in both gas and solvent phases, which has been modeled by use of the polarized continuum model (PCM). In addition, natural bond orbital (NBO) and atoms in molecules (AIM) analysis have been performed to characterize the intermolecular hydrogen bonding in the transition states. Transition-state theory (TST) calculation establishes that the rates of NH3-catalyzed (2.88 × 10(-11) s(-1)) and H2O-catalyzed (2.42 × 10(-11) s(-1)) reactions are reasonably faster than the uncatalyzed detoxification (5.44 × 10(-13) s(-1)). The results obtained by these techniques give new insight into the mechanism of the detoxification process, identification and thermodynamic characterization of the relevant stationary species, the proposal of alternative paths on modeled potential energy surfaces for uncatalyzed reaction, and the rationalization of the mechanistic role played by catalysts and solvents. PMID:23540856

  11. Catalytic Oxidized Reaction of Paraffin Wax Based on BP Neural Network%基于BP神经网络的石蜡催化氧化反应的研究

    Institute of Scientific and Technical Information of China (English)

    黄玮; 丛玉凤; 郭大鹏

    2012-01-01

    The oxidized wax was prepared by catalytic oxidized reaction of paraffin wax which used BP neural network to build mathematical model of acid value and saponification value influenced by the amount of reactive catalyst and accessory ingredient, airflow rate, reaction temperature and time, and utilized the model of neutral network to calculate the technology condition of preparing oxidized wax through catalyzing and oxidizing paraffin wax. Consequently, optimum technology conditions were gained in order to achieve the objective of reducing experimental number of times.%在石蜡催化氧化反应制备氧化蜡的研究中,利用BP神经网络建立反应催化剂用量、助剂用量、空气流量、反应温度和反应时间对酸值和皂化值影响的数学模型,并利用该神经网络模型对石蜡催化氧化制备氧化蜡的工艺条件进行预测,从而获得最优工艺条件,达到缩短实验次数的目的.

  12. Ethenolysis: A Green Catalytic Tool to Cleave Carbon-Carbon Double Bonds.

    Science.gov (United States)

    Bidange, Johan; Fischmeister, Cédric; Bruneau, Christian

    2016-08-22

    Remarkable innovations have been made in the field of olefin metathesis due to the design and preparation of new catalysts. Ethenolysis, which is cross-metathesis with ethylene, represents one catalytic transformation that has been used with the purpose of cleaving internal carbon-carbon double bonds. The objectives were either the ring opening of cyclic olefins to produce dienes or the shortening of unsaturated hydrocarbon chains to degrade polymers or generate valuable shorter terminal olefins in a controlled manner. This Review summarizes several aspects of this reaction: the catalysts, their degradation in the presence of ethylene, some parameters driving their productivity, the side reactions, and the applications of ethenolysis in organic synthesis and in potential industrial applications. PMID:27359344

  13. Catalytic transformation of methyl benzenes over zeolite catalysts

    KAUST Repository

    Al-Khattaf, S.

    2011-02-01

    Catalytic transformation of three methyl benzenes (toluene, m-xylene, and 1,2,4-trimethyl benzene) has been investigated over ZSM-5, TNU-9, mordenite and SSZ-33 catalysts in a novel riser simulator at different operating conditions. Catalytic experiments were carried out in the temperature range of 300-400 °C to understand the transformation of these alkyl benzenes over large pore (mordenite and SSZ-33) in contrast to medium-pore (ZSM-5 and TNU-9) zeolite-based catalysts. The effect of reaction conditions on the isomerization to disproportionation product ratio, distribution of trimethylbenzene (TMB) isomers, and p-xylene/o-xylene ratios are reported. The sequence of reactivity of the three alkyl benzenes depends upon the pore structure of zeolites. The zeolite structure controls primarily the diffusion of reactants and products while the acidity of these zeolites is of a secondary importance. In the case of medium pore zeolites, the order of conversion was m-xylene > 1,2,4-TMB > toluene. Over large pore zeolites the order of reactivity was 1,2,4-TMB > m-xylene > toluene for SSZ-33 catalyst, and m-xylene ∼ 1,2,4-TMB > toluene over mordenite. Significant effect of pore size between ZSM-5 and TNU-9 was observed; although TNU-9 is also 3D 10-ring channel system, its slightly larger pores compared with ZSM-5 provide sufficient reaction space to behave like large-pore zeolites in transformation of aromatic hydrocarbons. We have also carried out kinetic studies for these reactions and activation energies for all three reactants over all zeolite catalysts under study have been calculated. © 2011 Elsevier B.V.

  14. One-pot synthesis of monodisperse palladium-copper nanocrystals supported on reduced graphene oxide nanosheets with improved catalytic activity and methanol tolerance for oxygen reduction reaction

    Science.gov (United States)

    Lv, Jing-Jing; Li, Shan-Shan; Wang, Ai-Jun; Mei, Li-Ping; Feng, Jiu-Ju; Chen, Jian-Rong; Chen, Zhaojiang

    2014-12-01

    Monodisperse bimetallic alloyed palladium-copper nanocrystals are uniformly supported on reduced graphene oxide nanosheets by a one-pot solvothermal strategy, with an average size of 6.81 nm. As a result, the as-prepared nanocomposites have the enlarged electrochemically active surface area (49.2 m2 g-1), and display the improved electrocatalytic performance and high methanol-tolerance ability for oxygen reduction reaction in alkaline media, compared with commercial Pd black and RGOs. Those RGOs-supporting Pd-Cu alloys would have potential applications in fuel cells.

  15. Update: An efficient synthesis of poly(ethylene glycol)-supported iron(II) porphyrin using a click reaction and its application for the catalytic olefination of aldehydes

    KAUST Repository

    Chinnusamy, Tamilselvi R.

    2012-05-09

    The facile synthesis of polyethylene glycol (PEG)-immobilized iron(II) porphyrin using a copper-catalyzed azide-alkyne [3+2] cycloaddition "click" reaction is reported. The prepared complex 5 (PEG-C 51H 39FeN 7O) was found to be an efficient catalyst for the selective olefination of aldehydes with ethyl diazoacetate in the presence of triphenylphosphine, and afforded excellent olefin yields with high (E) selectivities. The PEG-supported catalyst 5 was readily recovered by precipitation and filtration, and was recycled through ten runs without significant activity loss. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Phosphorus/sulfur Co-doped porous carbon with enhanced specific capacitance for supercapacitor and improved catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Zhou, Yao; Ma, Ruguang; Candelaria, Stephanie L.; Wang, Jiacheng; Liu, Qian; Uchaker, Evan; Li, Pengxi; Chen, Yongfang; Cao, Guozhong

    2016-05-01

    Phosphorus (P)/sulfur (S) co-doped porous carbon derived from resorcinol and furaldehyde are synthesized through one-step sol-gel processing with the addition of phosphorus pentasulfide as P and S source followed with freeze-drying and pyrolysis in nitrogen. The P/S co-doping strategy facilitates the pore size widening both in micropore and mesopore regions, together with the positive effect on the degree of graphitization of porous carbon through elimination of amorphous carbon through the formation and evaporation of carbon disulfide. As an electrode for supercapacitor application, P/S co-doped porous carbon demonstrates 43.5% improvement on specific capacitance of the single electrode compared to pristine porous carbon in organic electrolyte at a current of 0.5 mA due to the P-induced pseudocapacitive reactions. As for electrocatalytic use, promoted electrocatalytic activity and high resistance to crossover effects of oxygen reduction reaction (ORR) in alkaline media are observed after the introduction of P and S into porous carbon. After air activation, the specific capacitance of the single electrode of sample PS-pC reaches up to 103.5 F g-1 and an improved oxygen reduction current density.

  17. Recent Advances on Electro-Oxidation of Ethanol on Pt- and Pd-Based Catalysts: From Reaction Mechanisms to Catalytic Materials

    Directory of Open Access Journals (Sweden)

    Ye Wang

    2015-09-01

    Full Text Available The ethanol oxidation reaction (EOR has drawn increasing interest in electrocatalysis and fuel cells by considering that ethanol as a biomass fuel has advantages of low toxicity, renewability, and a high theoretical energy density compared to methanol. Since EOR is a complex multiple-electron process involving various intermediates and products, the mechanistic investigation as well as the rational design of electrocatalysts are challenging yet essential for the desired complete oxidation to CO2. This mini review is aimed at presenting an overview of the advances in the study of reaction mechanisms and electrocatalytic materials for EOR over the past two decades with a focus on Pt- and Pd-based catalysts. We start with discussion on the mechanistic understanding of EOR on Pt and Pd surfaces using selected publications as examples. Consensuses from the mechanistic studies are that sufficient active surface sites to facilitate the cleavage of the C–C bond and the adsorption of water or its residue are critical for obtaining a higher electro-oxidation activity. We then show how this understanding has been applied to achieve improved performance on various Pt- and Pd-based catalysts through optimizing electronic and bifunctional effects, as well as by tuning their surface composition and structure. Finally we point out the remaining key problems in the development of anode electrocatalysts for EOR.

  18. The hydrocarbon sphere

    Energy Technology Data Exchange (ETDEWEB)

    Mandev, P.

    1984-01-01

    The hydrocarbon sphere is understood to be the area in which hydrocarbon compounds are available. It is believed that the lower boundary on the hydrocarbon sphere is most probably located at a depth where the predominant temperatures aid in the destruction of hydrocarbons (300 to 400 degrees centigrade). The upper limit on the hydrocarbon sphere obviously occurs at the earth's surface, where hydrocarbons oxidize to H20 and CO2. Within these ranges, the occurrence of the hydrocarbon sphere may vary from the first few hundred meters to 15 kilometers or more. The hydrocarbon sphere is divided into the external (mantle) sphere in which the primary gas, oil and solid hydrocarbon fields are located, and the internal (metamorphic) sphere containing primarily noncommercial accumulations of hydrocarbon gases and solid carbon containing compounds (anthraxilite, shungite, graphite, etc.) based on the nature and scale of hydrocarbon compound concentrations (natural gas, oil, maltha, asphalt, asphaltite, etc.).

  19. Methane Conversion to C2 Hydrocarbons Using Glow Discharge Plasma

    Institute of Scientific and Technical Information of China (English)

    HU Miao; CHEN Jierong

    2007-01-01

    The infrared emission spectra of methane, H', CH and C2 hydrocarbons in natural gas were measured. The process of methane decomposition and C2 hydrocarbons formation was investigated. The experiment showed that the time and conditions of methane decomposition and C2 hydrocarbons formation were different. Methane conversion rate increased with the increase in the current and decrease in the amount of methane. Furthermore, an examination of the reaction mechanisms revealed that free radicals played an important role in the chain reaction.

  20. Catalytic modification of conventional SOFC anodes with a view to reducing their activity for direct internal reforming of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Boder, M.; Dittmeyer, R. [Research Group Technical Chemistry, Karl-Winnacker-Institut, DECHEMA e.V., Theodor-Heuss-Allee 25, D-60486 Frankfurt (Germany)

    2006-04-18

    When using natural gas as fuel for the solid oxide fuel cell (SOFC), direct internal reforming lowers the requirement for cell cooling and, theoretically, offers advantages with respect to capital cost and efficiency. The high metal content of a nickel/zirconia anode and the high temperature, however, cause the endothermic reforming reaction to take place very fast. The resulting drop of temperature at the inlet produces thermal stresses, which may lower the system efficiency and limit the stack lifetime. To reduce the reforming rate without lowering the electrochemical activity of the cell, a wet impregnation procedure for modifying conventional cermets by coverage with a less active metal was developed. As the coating material copper was chosen. Copper is affordable, catalytically inert for the reforming reaction and exhibits excellent electronic conductivity. The current density-voltage characteristics of the modified units showed that it is possible to maintain a good electrochemical performance of the cells despite the catalytic modification. A copper to nickel ratio of 1:3 resulted in a strong diminution of the catalytic reaction rate. This indicates that the modification could be a promising method to improve the performance of solid oxide fuel cells with direct internal reforming of hydrocarbons. (author)

  1. Hydrogen production by aqueous phase reforming of light oxygenated hydrocarbons

    Science.gov (United States)

    Shabaker, John William

    Aqueous phase reforming (APR) of renewable oxygenated hydrocarbons (e.g., methanol, ethylene glycol, glycerol, sorbitol, glucose) is a promising new technology for the catalytic production of high-purity hydrogen for fuel cells and chemical processing. Supported Pt catalysts are effective catalysts for stable and rapid H2 production at temperatures near 500 K (H 2 turnover frequencies near 10 min-1). Inexpensive Raney Ni-based catalysts have been developed using a combination of fundamental and high-throughput studies that have similar catalytic properties as Pt-based materials. Promotion of Raney Ni with Sn by controlled surface reaction of organometallic tin compounds is necessary to control formation of thermodynamically-favorable alkane byproducts. Detailed characterization by Mossbauer spectroscopy, electron microscopy, adsorption studies, and x-ray photoelectron spectroscopy (XPS/ESCA) has shown that NiSn alloys are formed during heat treatment, and may be responsible for enhanced stability and selectivity for hydrogen production. Detailed kinetic studies led to the development of a kinetic mechanism for the APR reaction on Pt and NiSn catalysts, in which the oxygenate decomposes through C--H and O--H cleavage, followed by C--C cleavage and water gas shift of the CO intermediate. The rate limiting step on Pt surfaces is the initial dehydrogenation, while C--C cleavage appears rate limiting over NiSn catalysts. Tin promotion of Raney Ni catalysts suppresses C--O bond scission reactions that lead to alkane formation without inhibiting fast C--C and C--H cleavage steps that are necessary for high rates of reforming. A window of operating temperature, pressure, and reactor residence time has been identified for use of the inexpensive NiSn catalysts as a Pt substitute. Concentrated feed stocks and aggressive pretreatments have been found to counteract catalyst deactivation by sintering in the hydrothermal APR environment and allow stable, long-term production of H

  2. Electro-catalytic activity of multiwall carbon nanotube-metal (Pt or Pd) nanohybrid materials synthesized using microwave-induced reactions and their possible use in fuel cells

    Science.gov (United States)

    V, Lakshman Kumar; Ntim, Susana Addo; Sae-Khow, Ornthida; Janardhana, Chelli; Lakshminarayanan, V.; Mitra, Somenath

    2012-01-01

    Microwave induced reactions for immobilizing platinum and palladium nanoparticles on multiwall carbon nanotubes are presented. The resulting hybrid materials were used as catalysts for direct methanol, ethanol and formic acid oxidation in acidic as well as alkaline media. The electrodes are formed by simply mixing the hybrids with graphite paste, thus using a relatively small quantity of the precious metal. We report Tafel slopes and apparent activation energies at different potentials and temperatures. Ethanol electro-oxidation with the palladium hybrid showed an activation energy of 7.64 kJmol−1 which is lower than those observed for other systems. This system is economically attractive because Pd is significantly less expensive than Pt and ethanol is fast evolving as a commercial biofuel. PMID:23118490

  3. Electro-catalytic activity of multiwall carbon nanotube-metal (Pt or Pd) nanohybrid materials synthesized using microwave-induced reactions and their possible use in fuel cells.

    Science.gov (United States)

    V, Lakshman Kumar; Ntim, Susana Addo; Sae-Khow, Ornthida; Janardhana, Chelli; Lakshminarayanan, V; Mitra, Somenath

    2012-11-30

    Microwave induced reactions for immobilizing platinum and palladium nanoparticles on multiwall carbon nanotubes are presented. The resulting hybrid materials were used as catalysts for direct methanol, ethanol and formic acid oxidation in acidic as well as alkaline media. The electrodes are formed by simply mixing the hybrids with graphite paste, thus using a relatively small quantity of the precious metal. We report Tafel slopes and apparent activation energies at different potentials and temperatures. Ethanol electro-oxidation with the palladium hybrid showed an activation energy of 7.64 kJmol(-1) which is lower than those observed for other systems. This system is economically attractive because Pd is significantly less expensive than Pt and ethanol is fast evolving as a commercial biofuel.

  4. Catalytic conversion of light alkanes phase II. Topical report, January 1990--January 1993

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The Topical Report on Phase II of the project entitled, Catalytic Conversion of Light Alkanes reviews work done between January 1, 1990 and September 30, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products which can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon transportation fuel. This Topical Report documents our efforts to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. Research on the Cooperative Agreement is divided into three Phases relating to three molecular environments for the active catalytic species that we are trying to generate. In this report we present our work on catalysts which have oxidation-active metals in polyoxoanions (PHASE II).

  5. Catalytic conversion of light alkanes: Quarterly report, January 1-March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Biscardi, J.; Bowden, P.T.; Durante, V.A.; Ellis, P.E. Jr.; Gray, H.B.; Gorbey, R.G.; Hayes, R.C.; Hodge, J.; Hughes, M.; Langdale, W.A.; Lyons, J.E.; Marcus, B.; Messick, D.; Merrill, R.A.; Moore, F.A.; Myers, H.K. Jr.; Seitzer, W.H.; Shaikh, S.N.; Tsao, W.H.; Wagner, R.W.; Warren, R.W.; Wijesekera, T.P.

    1997-05-01

    The first Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between January 1. 1992 and March 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products which can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon transportation fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient porphryinic macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE III).

  6. Catalytic conversion of light alkanes. Quarterly progress report, April 1--June 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  7. Methane emission from automobile equipped with three-way catalytic converter while driving

    Energy Technology Data Exchange (ETDEWEB)

    Takigawa, A. [Maebashi Inst. of Technology, Dept. of Civil Engineering, Maebashi, Gunma (Japan); Matsunami, A.; Arai, N. [Nagoya Univ., Research Center for Advanced Energy Conversion, Nagoya (Japan)

    2005-03-01

    In this study, the hydrocarbon emission from a three-way catalytic converter with a gasoline engine was investigated experimentally. The results reveal that converters have lower catalytic oxidation activity for methane than the other hydrocarbons, and degradation of the catalyst with use results in a significant effect on methane emission. The maximum methane concentration in exhaust using a converter with 78,000 km use is about 100 ppm, which is 1.4 times that for a new converter. The light-off temperature of the catalytic converter for hydrocarbon oxidation also rises from 548 to 598 K with an increase in the operating age of catalytic converter from 0 to 78,000 km. The ratio of CH{sub 4} concentration to total hydrocarbon increases with increasing vehicle speed and methane emission from the fuel of regular grade is higher than that of the premium grade. (Author)

  8. Kinetics and mechanism of catalytic hydroprocessing of components of coal-derived liquids. Seventh quarterly report, November 16, 1980-February 15, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Gates, B.C.; Katzer, J.R.; Kwart, H.; Olson, J.H.; Schuit, G.C.A.; Stiles, A.B.; Petrakis, L.

    1981-10-21

    An asphaltene-containing SRC-II coal liquid derived from Powhatan No. 5 coal and produced in the Ft. Lewis demonstration plant was selected for study of catalytic hydroprocessing reactions. Separation by liquid chromatography has been carried out to produce nine distinct fractions. Experiments have begun to determine the reactivities of these fractions in high-pressure catalytic hydroprocessing. Hydroprocessing experiments with aromatic hydrocarbons under industrially relevant conditions have shown that the reaction networks involve reversible hydrogenation and isomerization, and significant concentrations of hydroaromatic (hydrogen-donor) species are attainable under practical conditions. The least reactive class of aromatic hydrocarbons consists of substituted benzenes. Biphenyl has been selected for thorough study, and quantitative kinetics of the biphenyl hydrogenation to give cyclohexylbenzene has been determined. Kinetics of hydrodenitrogenation of indole was studied in an autoclave between 321 and 400/sup 0/C and 16.3 to 69 atm, using American Cyanamid HDS-9A catalyst. A reaction network with kinetics parameters was developed for the calculation of product distribution and nitrogen removal. Lumping of components in a reaction network simplifies the kinetics determination of fuel feedstocks. Component lumping simulations involving first-order kinetics were successfully carried out for certain schemes in the quinoline network. This network can be represented by the reactant, the hydrogenated intermediate (lumps), and the denitrogenated product.

  9. Direct determination of atom and radical concentrations in thermal reactions of hydrocarbons and other gases. Progress report, December 1, 1981-December 31, 1982

    International Nuclear Information System (INIS)

    This is the seventh annual progress report on this project. During the period covered by the first six reports (June 1976 through December 1980) a shock tube and optical systems to measure H, D and O atom concentrations were built and fully characterized. The performance of our microwave discharge lamps were defined by numerous high-resolution spectroscopic profiles, while empirical calibrations were also made for all three of the above species. H, D and O atom concentrations were measured in gas mixtures containing H2, D2, O2, CD4, C2H6, C2D6, C3H8 and C3D8 in various proportions, and rate constants of several elementary reactions were deduced from the data. During the period covered by this report (December 1, 1981 to December 31, 1982) we have made kinetic modelling calculations to correlate H, D and O atom concentrations measured in shock-heated mixtures of C2H6-O2-Ar, C2D6-O2-Ar, C3H8-O2-Ar and C3D8-O2-Ar. These computations are difficult because there are several reactions for which rate constants are not known, so that it is necessary to do many calculations to completely optimize the results. Consequently, work is still going on with these calculations. We have completed an extensive series of measurements of H and D atom concentrations in pyrolysis experiments of benzene, toluene and neopentane and deuterium analogs, that have led to rate constants for the initial dissociation of these compounds, and for the reaction of H atoms with benzene and toluene

  10. Catalytic cracking process employing an acid-reacted metakaolin catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Lussier, R.J.

    1990-07-10

    This patent describes a method for cracking hydrocarbons. It comprises: reacting a hydrocarbon feedstock under catalytic cracking conditions with a catalyst which comprises an acid reacted metakaolin composition having a mole composition of about 0.8 to 1.0 Al{sub 2}O{sub 3}.2 SiO{sub 2} and characterized by a surface area of above bout 150 m{sup 2}/g.

  11. Performance of Catalyst Ni-NiO/γ-Al2O3 in the Catalytic Reaction from Tetrahydrofurfuryl to Pyridine%Ni-NiO/γ-Al2O3催化四氢糠醇制备吡啶

    Institute of Scientific and Technical Information of China (English)

    徐哲; 张卫红; 孟舒献; 冯亚青

    2012-01-01

    采用捏合挤条法制备了催化剂Ni-NiO/γ-Al2 O3,用SEM、XRD、BET等方法对催化剂进行了表征,并将催化剂应用于四氢糠醇(THFA)与氨气在固定床反应器中制备吡啶.考察了Ni-NiO负载量、温度、氨醇摩尔比等因素对催化反应的影响,结果表明,随着催化剂组分Ni-NiO负载量的升高,吡啶的收率随之升高,而哌啶的收率随之降低,异喹啉收率在Ni -NiO质量分数为20%时达最高;在350~550℃,随着温度的升高,吡啶的收率随之升高,而副产物哌啶的收率随之降低,异喹啉在400℃收率较高;当氨醇摩尔比为3∶1时,吡啶与异喹啉的收率较高,2∶1时哌啶收率较高.%The catalyst Ni-NiO/γ-Al2O3 was prepared by kneading extruding method, and was characterized by means of SEM,XRD,BET and some other methods. It was then applied in the catalytic reaction from tetrahydrofurfuryl and ammonia to pyridine in a fixed-bed reactor. The influence of such factors as catalyst content,temperature,molar ratio of ammonia to THFA on the catalytic reaction was investigated. The experimental results are as follows. With the increase of Ni-NiO content in the catalyst,the yield of pyridine increases,while that of piperidine decreases. The yield of isoquinoline is of a higher value at the Ni-NiO content of 20%. Within a certain temperature range between 350 -550 ℃ ,with the temperature increasing, the yield of pyridine increases, while that of piperidine decreases. The yield of isoquinoline is the highest at the temperature of 400 ℃. When the molar ratio of ammonia to THFA was 3:1, the yield of pyridine and that of isoquinoline are both relatively higher. When that ratio was 2:l ,the yield of piperidine is relatively higher.

  12. Preparation and Catalytic Oxidation Activity on 2-mercaptoethanol of a Novel Catalytic Cellulose Fibres

    Institute of Scientific and Technical Information of China (English)

    YAO Yu-yuan; LI Ying-jie; CHEN Wen-xing; Lü Wang-yang; Lü Su-fang; XU Min-hong; LIU Fan

    2007-01-01

    Cobalt tetra(N-carbonylacylic) aminophthalocyanine was supported on cellulose fibres by graft reaction to obtain a novel polymer catalyst, catalytic cellulose fibres (CCF),and the optimal supporting conditions were pH = 6, 80℃,t = 120 min. The catalytic oxidation activity of CCF towards oxidation of 2-mereaptoethanol (MEA) in aqueous solution was investigated. The experimental results demonstrated that CCF had good catalytic oxidation activity on MEA at room temperature, causing no secondary pollution and remaining efficient for the repetitive tests with no obvious decrease of catalytic activity.

  13. DNA-binding, catalytic oxidation, C—C coupling reactions and antibacterial activities of binuclear Ru(II thiosemicarbazone complexes: Synthesis and spectral characterization

    Directory of Open Access Journals (Sweden)

    Arumugam Manimaran

    2012-07-01

    Full Text Available New hexa-coordinated binuclear Ru(II thiosemicarbazone complexes of the type {[(B(EPh3(COClRu]2L} (where, E = P or As; B = PPh3 or AsPh3 or pyridine; L = mononucleating NS donor of N-substituted thiosemicarbazones have been synthesized and characterized by elemental analysis, FT-IR, UV–vis and 31P{1H} NMR cyclic voltammetric studies. The DNA-binding studies of Ru(II complexes with calf thymus DNA (CT-DNA were investigated by UV–vis, viscosity measurements, gel-electrophoresis and fluorescence spectroscopy. The new complexes have been used as catalysts in C—C coupling reaction and in the oxidation of alcohols to their corresponding carbonyl compounds by using NMO as co-oxidant and molecular oxygen (O2 atmosphere at ambient temperature. Further, the new binucleating thiosemicarbazone ligands and their Ru(II complexes were also screened for their antibacterial activity against Klebsiella pneumoniae, Shigella sp., Micrococcus luteus, Escherichia coli and Salmonella typhi. From this study, it was found out that the activity of the complexes almost reaches the effectiveness of the conventional bacteriocide.

  14. The influence of anionic ligands on stereoisomerism of Ru carbenes and their importance to efficiency and selectivity of catalytic olefin metathesis reactions.

    Science.gov (United States)

    Torker, Sebastian; Khan, R Kashif M; Hoveyda, Amir H

    2014-03-01

    Investigations detailed herein provide insight regarding the mechanism of stereochemical inversion of stereogenic-at-Ru carbene complexes through a nonolefin metathesis-based polytopal rearrangement pathway. Computational analyses (DFT) reveal that there are two key factors that generate sufficient energy barriers that are responsible for the possibility of isolation and characterization of high-energy, but kinetically stable, intermediates: (1) donor-donor interactions that involve the anionic ligands and the strongly electron donating carbene groups and (2) dipolar effects arising from the syn relationship between the anionic groups (iodide and phenoxide). We demonstrate that a Brønsted acid lowers barriers to facilitate isomerization, and that the positive influence of a proton source is the result of its ability to diminish the repulsive electronic interactions originating from the anionic ligands. The implications of the present studies regarding a more sophisticated knowledge of the role of anionic units on the efficiency of Ru-catalyzed olefin metathesis reactions are discussed. The electronic basis for the increased facility with which allylic alcohols participate in olefin metathesis processes will be presented as well. Finally, we illustrate how a better understanding of the role of anionic ligands has served as the basis for successful design of Ru-based Z-selective catalysts for alkene metathesis.

  15. The influence of anionic ligands on stereoisomerism of Ru carbenes and their importance to efficiency and selectivity of catalytic olefin metathesis reactions.

    Science.gov (United States)

    Torker, Sebastian; Khan, R Kashif M; Hoveyda, Amir H

    2014-03-01

    Investigations detailed herein provide insight regarding the mechanism of stereochemical inversion of stereogenic-at-Ru carbene complexes through a nonolefin metathesis-based polytopal rearrangement pathway. Computational analyses (DFT) reveal that there are two key factors that generate sufficient energy barriers that are responsible for the possibility of isolation and characterization of high-energy, but kinetically stable, intermediates: (1) donor-donor interactions that involve the anionic ligands and the strongly electron donating carbene groups and (2) dipolar effects arising from the syn relationship between the anionic groups (iodide and phenoxide). We demonstrate that a Brønsted acid lowers barriers to facilitate isomerization, and that the positive influence of a proton source is the result of its ability to diminish the repulsive electronic interactions originating from the anionic ligands. The implications of the present studies regarding a more sophisticated knowledge of the role of anionic units on the efficiency of Ru-catalyzed olefin metathesis reactions are discussed. The electronic basis for the increased facility with which allylic alcohols participate in olefin metathesis processes will be presented as well. Finally, we illustrate how a better understanding of the role of anionic ligands has served as the basis for successful design of Ru-based Z-selective catalysts for alkene metathesis. PMID:24533571

  16. Multi-stage selective catalytic reduction of NOx in lean burn engine exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    Many studies suggest that the conversion of NO to NO{sub 2} is an important intermediate step in the selective catalytic reduction (SCR) of NO{sub x} to N{sub 2}. Some effort has been devoted to separating the oxidative and reductive functions of the catalyst in a multi-stage system. This method works fine for systems that require hydrocarbon addition. The hydrocarbon has to be injected between the NO oxidation catalyst and the NO{sub 2} reduction catalyst; otherwise, the first-stage oxidation catalyst will also oxidize the hydrocarbon and decrease its effectiveness as a reductant. The multi-stage catalytic scheme is appropriate for diesel engine exhausts since they contain insufficient hydrocarbons for SCR, and the hydrocarbons can be added at the desired location. For lean-burn gasoline engine exhausts, the hydrocarbons already present in the exhausts will make it necessary to find an oxidation catalyst that can oxidize NO to NO{sub 2} but not oxidize the hydrocarbon. A plasma can also be used to oxidize NO to NO{sub 2}. Plasma oxidation has several advantages over catalytic oxidation. Plasma-assisted catalysis can work well for both diesel engine and lean-burn gasoline engine exhausts. This is because the plasma can oxidize NO in the presence of hydrocarbons without degrading the effectiveness of the hydrocarbon as a reductant for SCR. In the plasma, the hydrocarbon enhances the oxidation of NO, minimizes the electrical energy requirement, and prevents the oxidation of SO{sub 2}. This paper discusses the use of multi-stage systems for selective catalytic reduction of NO{sub x}. The multi-stage catalytic scheme is compared to the plasma-assisted catalytic scheme.

  17. An apparatus for vapor conversion of hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, K.; Matsumoto, I.

    1983-03-23

    The installation for vapor conversion of hydrocarbons (Uv) with the formation of a mixture of H2 and C02 is a catalyst chamber (KK) filled with longitudinally disposed thin pipes (with thin walls) or with pipe units made of dolomite, MgO or potassium aluminate. These pipes have a multilayered coating (Pk) on their internal and external surfaces (Pv), which contain catalytically active components. Such pipes or pipe units form a honeycombed structure with through longitudinal channels. The catalyst chamber itself is made of a ceramic material and has a heating winding outside for heating the catalyst. To save fuel and to increase the efficiency (KPD) of the heating device, the catalyst chamber is in turn enclosed by two additional shells filled with heat conducting packings which are easily penetrated by the gases being processed. The hydrocarbon vapors or gaseous fuel from the natural gas or methane and the steam are fed through the above cited heat exchange layers with packings into the facial part of the catalytic chamber, in which the conversion of the hydrocarbons occurs with the production of H2 and C02. From the catalyzer layer the mixture of gases and steam goes through a refrigerator into a trap for the steam excess and when it is necessary, into a C02 absorber and then, pure H2 is discharged from the latter. Such a catalytic installation is convenient to use for producing pure H2 from natural gas, methane, propane or kerosene.

  18. Silver nanocluster catalytic microreactors for water purification

    Science.gov (United States)

    Da Silva, B.; Habibi, M.; Ognier, S.; Schelcher, G.; Mostafavi-Amjad, J.; Khalesifard, H. R. M.; Tatoulian, M.; Bonn, D.

    2016-07-01

    A new method for the elaboration of a novel type of catalytic microsystem with a high specific area catalyst is developed. A silver nanocluster catalytic microreactor was elaborated by doping a soda-lime glass with a silver salt. By applying a high power laser beam to the glass, silver nanoclusters are obtained at one of the surfaces which were characterized by BET measurements and AFM. A microfluidic chip was obtained by sealing the silver coated glass with a NOA 81 microchannel. The catalytic activity of the silver nanoclusters was then tested for the efficiency of water purification by using catalytic ozonation to oxidize an organic pollutant. The silver nanoclusters were found to be very stable in the microreactor and efficiently oxidized the pollutant, in spite of the very short residence times in the microchannel. This opens the way to study catalytic reactions in microchannels without the need of introducing the catalyst as a powder or manufacturing complex packed bed microreactors.

  19. 四氯化硅催化氢化合成三氯氢硅机理研究%First Principles Study on the Reaction Mechanism of Catalytic Hydrogenation Process of Silicon Tetrachloride

    Institute of Scientific and Technical Information of China (English)

    岳晓宁; 龙雨谦; 黄韬; 蒋炜; 陈建钧; 梁斌

    2013-01-01

    针对四氯化硅催化氢化过程采用第一性原理机理对其进行模拟研究,结果表明:没有催化剂时,SiCl4与H2反应能垒为464.45 kJ/mol,反应能量为74.94 kJ/mol,与热力学计算结果71.85 kJ/mol一致.负载在HZSM-5分子筛上的氯化钡可催化四氯化硅氢化反应,其最具催化活性表面为(111)面;H2在BaCl2(111)面上表现排斥性;SiCl4表现为吸附性,可在BaCl2(111)表面稳定吸附并生成·SiCl3自由基,过程吸附能为448.33 kJ/mol;在催化剂BaCl2存在条件下,SiCl4与H2反应为自由基反应,反应步骤能垒为400.23 kJ/mol;氢化过程能垒降为184.97kJ/mol;催化氢化反应过程所需能量为64.20 kJ/mol.催化氢化过程反应条件相对无催化剂过程更为温和.%The treatment of silicon tetrachloride is the key problem for the development of polysilicon industries.Catalytic hydrogenation process is a promising alternative technology for current industrial process.However,the reaction mechanism of this process is not clear yet.In this research,hydrogenation process of silicon tetrachloride with and without catalyst was studied to determine the reaction mechanism with the first principle calculation.The calculation demonstrates that the thermo-hydrogenation without catalyst is a molecular reaction.The reaction energy of thermo-hydrogenation reaction of SiCl4 is 74.94 kJ/mol and the energy barrier is 464.45 kJ/mol,which is agreement with the results of thermo dynamic calculation.Employing barium chlorideloaded on the HZSM-5 zeolite,as catalyst,the hydrogenation process transfers into radical reactions.The best active crystal plane of BaCl2 is surface (111).Hydrogen molecular is repulsed by surface (111),meanwhile SiCl4 molecular can be adsorbed steadily to generate silicon trichloridefree radical · SiCl3,and adsorbed chloride.Then,the free radical · SiCl3 reacts with H2 to produce trichlorosilane and free hydrogen atom.The latter combines with the adsorbed chloride atom to yield

  20. Structures of the Ca2+-regulated photoprotein obelin Y138F mutant before and after bioluminescence support the catalytic function of a water molecule in the reaction.

    Science.gov (United States)

    Natashin, Pavel V; Ding, Wei; Eremeeva, Elena V; Markova, Svetlana V; Lee, John; Vysotski, Eugene S; Liu, Zhi-Jie

    2014-03-01

    Ca(2+)-regulated photoproteins, which are responsible for light emission in a variety of marine coelenterates, are a highly valuable tool for measuring Ca(2+) inside living cells. All of the photoproteins are a single-chain polypeptide to which a 2-hydroperoxycoelenterazine molecule is tightly but noncovalently bound. Bioluminescence results from the oxidative decarboxylation of 2-hydroperoxycoelenterazine, generating protein-bound coelenteramide in an excited state. Here, the crystal structures of the Y138F obelin mutant before and after bioluminescence are reported at 1.72 and 1.30 Å resolution, respectively. The comparison of the spatial structures of the conformational states of Y138F obelin with those of wild-type obelin gives clear evidence that the substitution of Tyr by Phe does not affect the overall structure of both Y138F obelin and its product following Ca(2+) discharge compared with the corresponding conformational states of wild-type obelin. Despite the similarity of the overall structures and internal cavities of Y138F and wild-type obelins, there is a substantial difference: in the cavity of Y138F obelin a water molecule corresponding to W2 in wild-type obelin is not found. However, in Ca(2+)-discharged Y138F obelin this water molecule now appears in the same location. This finding, together with the observed much slower kinetics of Y138F obelin, clearly supports the hypothesis that the function of a water molecule in this location is to catalyze the 2-hydroperoxycoelenterazine decarboxylation reaction by protonation of a dioxetanone anion before its decomposition into the excited-state product. Although obelin differs from other hydromedusan Ca(2+)-regulated photoproteins in some of its properties, they are believed to share a common mechanism.