WorldWideScience

Sample records for catalytic hot gas

  1. Catalytic hot gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P. [VTT Energy, Espoo (Finland)

    1996-12-31

    Gasification gas that contains particulates can be purified from tars and ammonia by using nickel monolith catalysts. Temperatures over 900 deg C are required at 20 bar pressure to avoid deactivation by H{sub 2}S and carbon. Dolomites and limestones are effective tar decomposing catalysts only when calcined. Tar decomposition in gasification conditions can take place by steam or dry (CO{sub 2}) reforming reactions. These reactions follow apparent first order kinetics with respect to hydrocarbons in gasification conditions. (author) (16 refs.)

  2. Catalytic hot gas cleaning of gasification gas

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1997-12-31

    The aim of this work was to study the catalytic cleaning of gasification gas from tars and ammonia. In addition, factors influencing catalytic activity in industrial applications were studied, as well as the effects of different operation conditions and limits. Also the catalytic reactions of tar and ammonia with gasification gas components were studied. The activities of different catalyst materials were measured with laboratory-scale reactors fed by slip streams taken from updraft and fluid bed gasifiers. Carbonate rocks and nickel catalysts proved to be active tar decomposing catalysts. Ammonia decomposition was in turn facilitated by nickel catalysts and iron materials like iron sinter and iron dolomite. Temperatures over 850 deg C were required at 2000{sup -1} space velocity at ambient pressure to achieve almost complete conversions. During catalytic reactions H{sub 2} and CO were formed and H{sub 2}O was consumed in addition to decomposing hydrocarbons and ammonia. Equilibrium gas composition was almost achieved with nickel catalysts at 900 deg C. No deactivation by H{sub 2}S or carbon took place in these conditions. Catalyst blocking by particulates was avoided by using a monolith type of catalyst. The apparent first order kinetic parameters were determined for the most active materials. The activities of dolomite, nickel catalyst and reference materials were measured in different gas atmospheres using laboratory apparatus. This consisted of nitrogen carrier, toluene as tar model compound, ammonia and one of the components H{sub 2}, H{sub 2}O, CO, CO{sub 2}, CO{sub 2}+H{sub 2}O or CO+CO{sub 2}. Also synthetic gasification gas was used. With the dolomite and nickel catalyst the highest toluene decomposition rates were measured with CO{sub 2} and H{sub 2}O. In gasification gas, however, the rate was retarded due to inhibition by reaction products (CO, H{sub 2}, CO{sub 2}). Tar decomposition over dolomite was modelled by benzene reactions with CO{sub 2}, H

  3. Development Of Hot Surface Polysilicon-Based Chemical Sensor And Actuator With Integrated Catalytic Micropatterns For Gas Sensing Applications

    Science.gov (United States)

    Vereshchagina, E.; Gardeniers, J. G. E.

    2009-05-01

    Over the last twenty years, we have followed a rapid expansion in the development of chemical sensors and microreactors for detection and analysis of volatile organic compounds. However, for many of the developed gas sensors poor sensitivity and selectivity, and high-power consumption remain among one of the main drawbacks. One promising approach to increase selectivity at lower power consumption is calorimetric sensing, performed in a pulsed regime and using specific catalytic materials. In this work, we study kinetics of various catalytic oxidation reactions using micromachined hot surface polysilicon-based sensor containing sensitive and selective catalysts. The sensor acts as both thermal actuator of chemical and biochemical reactions on hot-surfaces and detector of heats (enthalpies) associated with these reactions. Using novel deposition techniques we integrated selective catalysts in an array of hot plates such that they can be thermally actuated and sensed individually. This allows selective detection and analysis of dangerous gas compounds in a mixture, specifically hydrocarbons at concentrations down to low ppm level. In this contribution we compare various techniques for the local immobilization of catalytic material on hot spots of the sensor in terms of process compatibility, mechanical stress, stability and cost.

  4. ADVANCED HOT GAS FILTER DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    E.S. Connolly; G.D. Forsythe

    1998-12-22

    Advanced, coal-based power plants will require durable and reliable hot gas filtration systems to remove particulate contaminants from the gas streams to protect downstream components such as turbine blades from erosion damage. It is expected that the filter elements in these systems will have to be made of ceramic materials to withstand goal service temperatures of 1600 F or higher. Recent demonstration projects and pilot plant tests have indicated that the current generation of ceramic hot gas filters (cross-flow and candle configurations) are failing prematurely. Two of the most promising materials that have been extensively evaluated are clay-bonded silicon carbide and alumina-mullite porous monoliths. These candidates, however, have been found to suffer progressive thermal shock fatigue damage, as a result of rapid cooling/heating cycles. Such temperature changes occur when the hot filters are back-pulsed with cooler gas to clean them, or in process upset conditions, where even larger gas temperature changes may occur quickly and unpredictably. In addition, the clay-bonded silicon carbide materials are susceptible to chemical attack of the glassy binder phase that holds the SiC particles together, resulting in softening, strength loss, creep, and eventual failure.

  5. Liquid-phase catalytic reactor combined with measurement of hot electron flux and chemiluminescence

    Science.gov (United States)

    Nedrygailov, Ievgen I.; Lee, Changhwan; Moon, Song Yi; Lee, Hyosun; Park, Jeong Young

    2016-11-01

    Understanding the role of electronically nonadiabatic interactions during chemical reactions on metal surfaces in liquid media is of great importance for a variety of applications including catalysis, electrochemistry, and environmental science. Here, we report the design of an experimental apparatus for detection of the highly excited (hot) electrons created as a result of nonadiabatic energy transfer during the catalytic decomposition of hydrogen peroxide on thin-film metal-semiconductor nanodiodes. The apparatus enables the measurement of hot electron flows and related phenomena (e.g., surface chemiluminescence) as well as the corresponding reaction rates at different temperatures. The products of the chemical reaction can be characterized in the gaseous phase by means of gas chromatography. The combined measurement of hot electron flux, catalytic activity, and light emission can lead to a fundamental understanding of the elementary processes occurring during the heterogeneous catalytic reaction.

  6. Temperature Modulation of a Catalytic Gas Sensor

    OpenAIRE

    Eike Brauns; Eva Morsbach; Sebastian Kunz; Marcus Baeumer; Walter Lang

    2014-01-01

    The use of catalytic gas sensors usually offers low selectivity, only based on their different sensitivities for various gases due to their different heats of reaction. Furthermore, the identification of the gas present is not possible, which leads to possible misinterpretation of the sensor signals. The use of micro-machined catalytic gas sensors offers great advantages regarding the response time, which allows advanced analysis of the sensor response. By using temperature modulation, additi...

  7. ADVANCED HOT GAS FILTER DEVELOPMENT

    Energy Technology Data Exchange (ETDEWEB)

    Matthew R. June; John L. Hurley; Mark W. Johnson

    1999-04-01

    Iron aluminide hot gas filters have been developed using powder metallurgy techniques to form seamless cylinders. Three alloys were short-term corrosion tested in simulated IGCC atmospheres with temperatures between 925 F and 1200 F with hydrogen sulfide concentrations ranging from 783 ppm{sub v} to 78,300 ppm{sub v}. Long-term testing was conducted for 1500 hours at 925 F with 78,300 ppm{sub v}. The FAS and FAL alloys were found to be corrosion resistant in the simulated environments. The FAS alloy has been commercialized.

  8. Temperature modulation of a catalytic gas sensor.

    Science.gov (United States)

    Brauns, Eike; Morsbach, Eva; Kunz, Sebastian; Baeumer, Marcus; Lang, Walter

    2014-10-29

    The use of catalytic gas sensors usually offers low selectivity, only based on their different sensitivities for various gases due to their different heats of reaction. Furthermore, the identification of the gas present is not possible, which leads to possible misinterpretation of the sensor signals. The use of micro-machined catalytic gas sensors offers great advantages regarding the response time, which allows advanced analysis of the sensor response. By using temperature modulation, additional information about the gas characteristics can be measured and drift effects caused by material shifting or environmental temperature changes can be avoided. In this work a miniaturized catalytic gas sensor which offers a very short response time (electronic device was developed, since theory shows that harmonics induced by the electronics must be avoided to generate a comprehensible signal.

  9. Hot gas in clusters of galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Doroshkevich, A.G.; Klypin, A.A.

    1979-03-01

    The origin, space distribution, and emission of the hot intergalactic gas in galaxy clusters are discussed. This gas may have been left over from the period when the clusters were formed. According to the adiabatic theory of galaxy formation, primordial gas would have become heated and compressed into hot, thin pancake-shaped structures, representing protoclusters. As the primordial gas crosses the shock waves bounding the protocluster, its temperature and entropy will rise significantly. The gas not consumed in the formation of galaxies will remain in the hot phase, enriched with heavy elements from supernova explosions in the cluster members and from galactic winds. This gas will retain the entropy acquired during the contraction process, but its temperature will be governed by the depth of the cluster potential well. The primordial entropy of intracluster gas is estimated from this theory, and the results are compared with x-ray observations of clusters. The best fit is achieved for a nuclear region of 0.3-Mpc radius. Temperature fluctuations ..delta..T/Tapprox. = (1--2) x 10/sup -4/ in the microwave background radiation are inferred, depending only weakly on the model parameters.

  10. Advances in hot gas filtration technology

    Energy Technology Data Exchange (ETDEWEB)

    Weber, C.

    The past decade has seen the introduction of new filter media specifically designed for 'hot-gas' filtration. These media are available as woven or knitted fabrics and as non-wovens, i.e. needled felts. Needlefelted fabrics have proven so highly successful in the dedusting of hot gases that they are widely used nowadays in this new and necessary technology. Hot-gas filtration offers advantages in, for example, the saving or recycling of energy, the elimination of the cooling process, and the short-circuiting of process steps. This paper gives a survey of the types of textile fibres available for hot-gas filtration from the more recently developed organic fibres to refractory fibres. It describes, compares and contrasts their salient properties and lists the uses to which they may be put. It concentrates on such fibres which are generally referred to as 'high performance materials', since they are expected to provide satisfactory performance under extreme conditions of temperature, chemical environment and mechanical stress. It touches on filtration theory governing the collection mechanism. 9 refs., 7 figs., 3 tabs.

  11. Hot-Gas Filter Ash Characterization Project

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, M.L.; Hurley, J.P.; Dockter, B.A.; O`Keefe, C.A.

    1997-07-01

    Large-scale hot-gas filter testing over the past 10 years has revealed numerous cases of cake buildup on filter elements that has been difficult, if not impossible, to remove. At times, the cake can blind or bridge between candle filters, leading to filter failure. Physical factors, including particle-size distribution, particle shape, the aerodynamics of deposition, and system temperature, contribute to the difficulty in removing the cake, but chemical factors such as surface composition and gas-solid reactions also play roles in helping to bond the ash to the filters or to itself. This project is designed to perform the research necessary to determine the fuel-, sorbent-, and operations-related conditions that lead to blinding or bridging of hot-gas particle filters. The objectives of the project are threefold: (1) Determine the mechanisms by which a difficult-to-clean ash is formed and how it bridges hot-gas filters (2) Develop a method to determine the rate of bridging based on analyses of the feed coal and sorbent, filter properties, and system operating conditions and (3) Suggest and test ways to prevent filter bridging.

  12. Fast cold gas in hot AGN outflows

    CERN Document Server

    Costa, Tiago; Haehnelt, Martin

    2014-01-01

    Observations of the emission from spatially extended cold gas around bright high-redshift QSOs reveal surprisingly large velocity widths exceeding 2000 km s^(-1), out to projected distances as large as 30 kpc. The high velocity widths have been interpreted as the signature of powerful AGN-driven outflows. Naively, these findings appear in tension with hydrodynamic models in which AGN-driven outflows are energy-driven and thus very hot with typical temperatures T = 10^6-7 K. Using the moving-mesh code Arepo, we perform 'zoom-in' cosmological simulations of a z = 6 QSO and its environment, following black hole growth and feedback via energy-driven outflows. In the simulations, the QSO host galaxy is surrounded by a clumpy circum-galactic medium pre-enriched with metals due to supernovae-driven galactic outflows. As a result, part of the AGN-driven hot outflowing gas can cool radiatively, leading to large amounts (> 10^9 M_sun) of cold gas comoving with the hot bipolar outflow. This results in velocity widths of...

  13. Hot and Turbulent Gas in Clusters

    CERN Document Server

    Schmidt, Wolfram; Niemeyer, Jens C; Almgren, Ann S

    2016-01-01

    The gas in galaxy clusters is heated by shock compression through accretion (outer shocks) and mergers (inner shocks). These processes additionally produce turbulence. To analyse the relation between the thermal and turbulent energies of the gas under the influence of non-adiabatic processes, we performed numerical simulations of cosmic structure formation in a box of 152 Mpc comoving size with radiative cooling, UV background, and a subgrid scale model for numerically unresolved turbulence. By smoothing the gas velocities with an adaptive Kalman filter, we are able to estimate bulk flows toward cluster cores. This enables us to infer the velocity dispersion associated with the turbulent fluctuation relative to the bulk flow. For halos with masses above $10^{13}\\,M_\\odot$, we find that the turbulent velocity dispersions averaged over the warm-hot intergalactic medium (WHIM) and the intracluster medium (ICM) are approximately given by powers of the mean gas temperatures with exponents around 0.5, corresponding...

  14. METC CFD simulations of hot gas filtration

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, T.J.

    1995-06-01

    Computational Fluid Dynamic (CFD) simulations of the fluid/particle flow in several hot gas filtration vessels will be presented. These simulations have been useful in designing filtration vessels and in diagnosing problems with filter operation. The simulations were performed using the commercial code FLUENT and the METC-developed code MFIX. Simulations of the initial configuration of the Karhula facility indicated that the dirty gas flow over the filter assemblage was very non-uniform. The force of the dirty gas inlet flow was inducing a large circulation pattern that caused flow around the candles to be in opposite directions on opposite sides of the vessel. By introducing a system of baffles, a more uniform flow pattern was developed. This modification may have contributed to the success of the project. Several simulations of configurations proposed by Industrial Filter and Pump were performed, varying the position of the inlet. A detailed resolution of the geometry of the candles allowed determination of the flow between the individual candles. Recent simulations in support of the METC/CeraMem Cooperative Research and Development Agreement have analyzed the flow in the vessel during the cleaning back-pulse. Visualization of experiments at the CeraMem cold-flow facility provided confidence in the use of CFD. Extensive simulations were then performed to assist in the design of the hot test facility being built by Ahlstrom/Pyropower. These tests are intended to demonstrate the CeraMem technology.

  15. ENGINEERING EVALUATION OF HOT-GAS DESULFURIZATION WITH SULFUR RECOVERY

    Energy Technology Data Exchange (ETDEWEB)

    G.W. ROBERTS; J.W. PORTZER; S.C. KOZUP; S.K. GANGWAL

    1998-05-31

    Engineering evaluations and economic comparisons of two hot-gas desulfurization (HGD) processes with elemental sulfur recovery, being developed by Research Triangle Institute, are presented. In the first process, known as the Direct Sulfur Recovery Process (DSRP), the SO{sub 2} tail gas from air regeneration of zinc-based HGD sorbent is catalytically reduced to elemental sulfur with high selectivity using a small slipstream of coal gas. DSRP is a highly efficient first-generation process, promising sulfur recoveries as high as 99% in a single reaction stage. In the second process, known as the Advanced Hot Gas Process (AHGP), the zinc-based HGD sorbent is modified with iron so that the iron portion of the sorbent can be regenerated using SO{sub 2} . This is followed by air regeneration to fully regenerate the sorbent and provide the required SO{sub 2} for iron regeneration. This second-generation process uses less coal gas than DSRP. Commercial embodiments of both processes were developed. Process simulations with mass and energy balances were conducted using ASPEN Plus. Results show that AHGP is a more complex process to operate and may require more labor cost than the DSRP. Also capital costs for the AHGP are higher than those for the DSRP. However, annual operating costs for the AHGP appear to be considerably less than those for the DSRP with a potential break-even point between the two processes after just 2 years of operation for an integrated gasification combined cycle (IGCC) power plant using 3 to 5 wt% sulfur coal. Thus, despite its complexity, the potential savings with the AHGP encourage further development and scaleup of this advanced process.

  16. Power control for hot gas engines

    Science.gov (United States)

    Macglashan, W. F. (Inventor)

    1980-01-01

    A hot gas engine in which the expander piston of the engine is connected to an expander crankshaft. A displacer piston of the engine is connected to a separate displacer crankshaft which may or may not be coaxial with the expander crankshaft. A phase angle control mechanism used as a power control for changing the phase angle between the expander and displacer crankshaft is located between the two crankshafts. The phase angle control mechanism comprises a differential type mechanism comprised of a pair of gears, as for example, bevel gears, one of which is connected to one end of the expander crankshaft and the other of which is connected to the opposite end of the displacer crankshaft. A mating bevel gear is disposed in meshing engagement with the first two level gears to provide a phase angle control between the two crankshafts. Other forms of differential mechanisms may be used including conventional spur gears connected in a differential type arrangement.

  17. Hot gas path component cooling system

    Science.gov (United States)

    Lacy, Benjamin Paul; Bunker, Ronald Scott; Itzel, Gary Michael

    2014-02-18

    A cooling system for a hot gas path component is disclosed. The cooling system may include a component layer and a cover layer. The component layer may include a first inner surface and a second outer surface. The second outer surface may define a plurality of channels. The component layer may further define a plurality of passages extending generally between the first inner surface and the second outer surface. Each of the plurality of channels may be fluidly connected to at least one of the plurality of passages. The cover layer may be situated adjacent the second outer surface of the component layer. The plurality of passages may be configured to flow a cooling medium to the plurality of channels and provide impingement cooling to the cover layer. The plurality of channels may be configured to flow cooling medium therethrough, cooling the cover layer.

  18. Development of iron-aluminide hot-gas filters

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, P.F.; Wright, I.G.; Judkins, R.R.

    1996-06-01

    Removal of particles from hot synthesis gas produced by coal gasification is vital to the success of these systems. In Integrated [Coal] Gasification Combined Cycle systems, the synthesis gas is the fuel for gas turbines. To avoid damage to turbine components, it is necessary that particles be removed from the fuel gas prior to combustion and introduction into the turbine. Reliability and durability of the hot-gas filtering devices used to remove the particles is, of course, of special importance. Hot-gas filter materials include both ceramics and metals. Numerous considerations must be made in selecting materials for these filters. Constituents in the hot gases may potentially degrade the properties and performance of the filters to the point that they are ineffective in removing the particles. Very significant efforts have been made by DOE and others to develop effective hot-particle filters and, although improvements have been made, alternative materials and structures are still needed.

  19. Hot Molecular Gas in the Galactic Center

    CERN Document Server

    Herrnstein, R M G; Herrnstein, Robeson McGary; Ho, Paul T.P.

    2002-01-01

    Using the new 23 GHz receivers at the Very Large Array (VLA), we have detected NH3(6,6) emission (nu=25.056025 GHz) from hot (>150 K) molecular clouds in the central 10 pc of the Galaxy. This is the first successful detection of NH3(6,6) with the VLA. The brightest emission comes from a region interior to the ``circumnuclear disk'' (CND), less than 1.5 pc in projected distance from Sgr A*. This region does not show molecular emission from lower energy transitions such as NH3(1,1) and (2,2), HCN(1-0) and HCO+(1-0). Line ratios of NH3(6,6) and (3,3) emission as well as NH3(6,6) line widths have peak values within 1.5 pc of Sgr A*, indicating that the gas is physically close to the nucleus. NH3(6,6) is also detected towards many features outside the CND observed in NH3(1,1), (2,2), and (3,3). These features tend to lie along ridges of gas associated with Sgr A East or the massive ``molecular ridge'' that connects the ``20 km/s'' and ``50 km/s'' giant molecular clouds (GMCs).

  20. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT GAS DESULFURIZATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-04-01

    The objective of this project is to develop a hot-gas desulfurization process scheme for control of H{sub 2}S in HTHP coal gas that can be more simply and economically integrated with known regenerable sorbents in DOE/METC-sponsored work than current leading hot-gas desulfurization technologies. In addition to being more economical, the process scheme to be developed must yield an elemental sulfur byproduct.

  1. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT GAS DESULFURIZATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-31

    The objective of this project is to develop a hot-gas desulfurization process scheme for control of H{sub 2}S in HTHP coal gas that can be more simply and economically integrated with known regenerable sorbents in DOE/METC-sponsored work than current leading hot-gas desulfurization technologies. In addition to being more economical, the process scheme to be developed must yield an elemental sulfur byproduct.

  2. OPERATING SPECIFICATIONS OF CATALYTIC CLEANING OF GAS FROM BIOMASS GASIFICATION

    Directory of Open Access Journals (Sweden)

    Martin Lisý

    2015-12-01

    Full Text Available The paper focuses on the theoretical description of the cleaning of syngas from biomass and waste gasification using catalytic methods, and on the verification of the theory through experiments. The main obstruction to using syngas from fluid gasification of organic matter is the presence of various high-boiling point hydrocarbons (i.e., tar in the gas. The elimination of tar from the gas is a key factor in subsequent use of the gas in other technologies for cogeneration of electrical energy and heat. The application of a natural or artificial catalyst for catalytic destruction of tar is one of the methods of secondary elimination of tar from syngas. In our experiments, we used a natural catalyst (dolomite or calcium magnesium carbonate from Horní Lánov with great mechanical and catalytic properties, suitable for our purposes. The advantages of natural catalysts in contrast to artificial catalysts include their availability, low purchase prices and higher resilience to the so-called catalyst poison. Natural calcium catalysts may also capture undesired compounds of sulphure and chlorine. Our paper presents a theoretical description and analysis of catalytic destruction of tar into combustible gas components, and of the impact of dolomite calcination on its efficiency. The efficiency of the technology is verified in laboratories. The facility used for verification was a 150 kW pilot gasification unit with a laboratory catalytic filter. The efficiency of tar elimination reached 99.5%, the tar concentration complied with limits for use of the gas in combustion engines, and the tar content reached approximately 35 mg/mn3. The results of the measurements conducted in laboratories helped us design a pilot technology for catalytic gas cleaning.

  3. Structure and Evolution of Hot Gas in 30 Dor

    CERN Document Server

    Wang, Q D

    1999-01-01

    We have investigated the structure and evolution of hot gas in the 30 Dor nebula, based on recent X-ray observations. Our deep ROSAT HRI image shows that diffuse X-ray emission arises in blister-shaped regions outlined by loops of HII gas. X-ray spectroscopic data from ASCA confirm the thermal nature of the emission and indicate that hot gas temperature decreases from the core to the halo of the nebula. The structure of the nebula can be understood as outflows of hot and HII gases from the parent giant molecular cloud of the central OB association. The dynamic mixing between the two gas phases is likely responsible for the mass loading to the hot gas, as required to explain the observed thermal structure and X-ray luminosity of the nebula. Such processes should also be important in the formation of similar giant HII regions and in their subsequent evolution into supergiant bubbles or galactic chimneys.

  4. A catalytic distillation process for light gas oil hydrodesulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Vargas-Villamil, F.D.; Marroquin, J.O.; Paz, C. de la; Rodriguez, E. [Prog. de Matematicas Aplicadas y Computacion, Prog. de Tratamiento de Crudo Maya, Instituto Mexicano del Petroleo, Mexico City, DF (Mexico)

    2004-07-01

    A light gas oil hydrodesulfurization process via catalytic distillation is developed and compared to a conventional process. By integrating the separation and reaction into a single unit, the catalytic distillation may produce a diesel with low concentration of sulfur compounds at a lower cost than the traditional reaction/separation process. The process proposed in this work is compared to an optimised conventional hydrodesulfurization unit which represents fairly well a plant that belongs to the National System of Refineries. During the optimisation of the conventional process, a compromise is established among the production of diesel and naphtha and the operating costs. The results show that the light gas oil hydrodesulfurization via catalytic distillation is as or more efficient than the conventional process. However, the removal of the sulfur compounds is carried out under less rigorous conditions. This design reduces the fix and operational costs. (author)

  5. Hot Gas Halos in Early-Type Field Galaxies

    CERN Document Server

    Mulchaey, John S

    2010-01-01

    We use Chandra and XMM-Newton to study the hot gas content in a sample of field early-type galaxies. We find that the L_X-L_K relationship is steeper for field galaxies than for comparable galaxies in groups and clusters. The low hot gas content of field galaxies with L_K < L_star suggests that internal processes such as supernovae driven winds or AGN feedback expel hot gas from low mass galaxies. Such mechanisms may be less effective in groups and clusters where the presence of an intragroup or intracluster medium can confine outflowing material. In addition, galaxies in groups and clusters may be able to accrete gas from the ambient medium. While there is a population of L_K < L_star galaxies in groups and clusters that retain hot gas halos, some galaxies in these rich environments, including brighter galaxies, are largely devoid of hot gas. In these cases, the hot gas halos have likely been removed via ram pressure stripping. This suggests a very complex interplay between the intragroup/intracluster ...

  6. Carbon Formation and Metal Dusting in Hot-Gas Cleanup Systems of Coal Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, Peter F.; Judkins, Roddie R.; DeVan, Jackson H.; Wright, Ian G.

    1995-12-31

    There are several possible materials/systems degradation modes that result from gasification environments with appreciable carbon activities. These processes, which are not necessarily mutually exclusive, include carbon deposition, carburization, metal dusting, and CO disintegration of refractories. Carbon formation on solid surfaces occurs by deposition from gases in which the carbon activity (a sub C) exceeds unity. The presence of a carbon layer CO can directly affect gasifier performance by restricting gas flow, particularly in the hot gas filter, creating debris (that may be deposited elsewhere in the system or that may cause erosive damage of downstream components), and/or changing the catalytic activity of surfaces.

  7. HOT GAS LINES IN T TAURI STARS

    Energy Technology Data Exchange (ETDEWEB)

    Ardila, David R. [NASA Herschel Science Center, California Institute of Technology, MC 100-22, Pasadena, CA 91125 (United States); Herczeg, Gregory J. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Gregory, Scott G.; Hillenbrand, Lynne A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Ingleby, Laura; Bergin, Edwin; Bethell, Thomas; Calvet, Nuria [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); France, Kevin; Brown, Alexander [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309-0389 (United States); Edwards, Suzan [Department of Astronomy, Smith College, Northampton, MA 01063 (United States); Johns-Krull, Christopher [Department of Physics and Astronomy, Rice University, Houston, TX 77005 (United States); Linsky, Jeffrey L. [JILA, University of Colorado and NIST, 440 UCB Boulder, CO 80309-0440 (United States); Yang, Hao [Institute for Astrophysics, Central China Normal University, Wuhan 430079 (China); Valenti, Jeff A. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Abgrall, Herve [LUTH and UMR 8102 du CNRS, Observatoire de Paris, Section de Meudon, Place J. Janssen, F-92195 Meudon (France); Alexander, Richard D. [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Brown, Joanna M.; Espaillat, Catherine [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 78, Cambridge, MA 02138 (United States); Hussain, Gaitee, E-mail: ardila@ipac.caltech.edu [ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Muenchen (Germany); and others

    2013-07-01

    For Classical T Tauri Stars (CTTSs), the resonance doublets of N V, Si IV, and C IV, as well as the He II 1640 A line, trace hot gas flows and act as diagnostics of the accretion process. In this paper we assemble a large high-resolution, high-sensitivity data set of these lines in CTTSs and Weak T Tauri Stars (WTTSs). The sample comprises 35 stars: 1 Herbig Ae star, 28 CTTSs, and 6 WTTSs. We find that the C IV, Si IV, and N V lines in CTTSs all have similar shapes. We decompose the C IV and He II lines into broad and narrow Gaussian components (BC and NC). The most common (50%) C IV line morphology in CTTSs is that of a low-velocity NC together with a redshifted BC. For CTTSs, a strong BC is the result of the accretion process. The contribution fraction of the NC to the C IV line flux in CTTSs increases with accretion rate, from {approx}20% to up to {approx}80%. The velocity centroids of the BCs and NCs are such that V{sub BC} {approx}> 4 V{sub NC}, consistent with the predictions of the accretion shock model, in at most 12 out of 22 CTTSs. We do not find evidence of the post-shock becoming buried in the stellar photosphere due to the pressure of the accretion flow. The He II CTTSs lines are generally symmetric and narrow, with FWHM and redshifts comparable to those of WTTSs. They are less redshifted than the CTTSs C IV lines, by {approx}10 km s{sup -1}. The amount of flux in the BC of the He II line is small compared to that of the C IV line, and we show that this is consistent with models of the pre-shock column emission. Overall, the observations are consistent with the presence of multiple accretion columns with different densities or with accretion models that predict a slow-moving, low-density region in the periphery of the accretion column. For HN Tau A and RW Aur A, most of the C IV line is blueshifted suggesting that the C IV emission is produced by shocks within outflow jets. In our sample, the Herbig Ae star DX Cha is the only object for which we find a

  8. Development of catalytic gas cleaning in gasification

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P.; Kurkela, E.; Staahlberg, P.; Hepola, J. [VTT Energy, Espoo (Finland)

    1996-12-31

    Gasification gas containing dust can be efficiently purified from tars and ammonia with a nickel monolith catalyst. Temperatures of >900 deg C and a residence time of about 1 s (SV 2 500 1/h) were needed at 5 bar pressure to achieve complete tar decomposition and 80 % ammonia conversion. Catalyst deactivation was not observed during test runs of 100 h. At lower pressures dolomites and limestones can also be applied for tar removal at about 900 deg C temperatures. (orig.) 12 refs.

  9. Industrial Gas Turbine Engine Catalytic Pilot Combustor-Prototype Testing

    Energy Technology Data Exchange (ETDEWEB)

    Etemad, Shahrokh [Precision Combustion, Inc., North Haven, CT (United States); Baird, Benjamin [Precision Combustion, Inc., North Haven, CT (United States); Alavandi, Sandeep [Precision Combustion, Inc., North Haven, CT (United States); Pfefferle, William [Precision Combustion, Inc., North Haven, CT (United States)

    2010-04-01

    PCI has developed and demonstrated its Rich Catalytic Lean-burn (RCL®) technology for industrial and utility gas turbines to meet DOE's goals of low single digit emissions. The technology offers stable combustion with extended turndown allowing ultra-low emissions without the cost of exhaust after-treatment and further increasing overall efficiency (avoidance of after-treatment losses). The objective of the work was to develop and demonstrate emission benefits of the catalytic technology to meet strict emissions regulations. Two different applications of the RCL® concept were demonstrated: RCL® catalytic pilot and Full RCL®. The RCL® catalytic pilot was designed to replace the existing pilot (a typical source of high NOx production) in the existing Dry Low NOx (DLN) injector, providing benefit of catalytic combustion while minimizing engine modification. This report discusses the development and single injector and engine testing of a set of T70 injectors equipped with RCL® pilots for natural gas applications. The overall (catalytic pilot plus main injector) program NOx target of less than 5 ppm (corrected to 15% oxygen) was achieved in the T70 engine for the complete set of conditions with engine CO emissions less than 10 ppm. Combustor acoustics were low (at or below 0.1 psi RMS) during testing. The RCL® catalytic pilot supported engine startup and shutdown process without major modification of existing engine controls. During high pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over a wide range of flame temperatures. In applications where lower NOx production is required (i.e. less than 3 ppm), in parallel, a Full RCL® combustor was developed that replaces the existing DLN injector providing potential for maximum emissions reduction. This concept was tested at industrial gas turbine conditions in a Solar Turbines, Incorporated high-pressure (17 atm.) combustion rig and in a modified Solar

  10. Hot gas in the large magellanic cloud

    Directory of Open Access Journals (Sweden)

    You Hua Chu

    2000-01-01

    Full Text Available Debido a su cercanía, su orientación casi de frente y la baja extinción externa e interna, la Nube Mayor de Magallanes (LMC es un laboratorio excelente para estudiar la estructura física del medio interestelar (ISM. Estudios del gas de la LMC en el óptico y en el radio han mostrado estructuras interestelares que van de unos cuantos parsecs hasta más de 1000 pc. Los mosaicos hechos con ROSAT en rayos-X muestran la abundancia del gas caliente a 106 K, el cual a veces está rodeado de grandes cascarones, pero el resto no parece estar asociado a ninguna estructura interestelar visible. Las observaciones de rayos-X han sido analizadas para determinar las condiciones físicas del gas caliente. Para determinar su origen, la distribución del gas caliente puede ser comparada con la del gas más frío y con la de las estrellas masivas. Observaciones UV de líneas de absorción de iones de alta ionización como C IV, N V y O VI, pueden ser usadas para estudiar las interfases del gas a 106 K con el gas más frío y para dar restricciones sobre la localización de ambos a lo largo de la línea de visión.

  11. Hot particulate removal and desulfurization results from the METC integrated gasification and hot gas cleanup facility

    Energy Technology Data Exchange (ETDEWEB)

    Rockey, J.M.

    1995-06-01

    The Morgantown Energy Technology Center (METC) is conducting experimental testing using a 10-inch diameter fluid-bed gasifier (FBG) and modular hot gas cleanup rig (MGCR) to develop advanced methods for removing contaminants in hot coal gasifier gas streams for commercial development of integrated gasification combined-cycle (IGCC) power systems. The program focus is on hot gas particulate removal and desulfurization technologies that match the temperatures and pressures of the gasifier, cleanup system, and power generator. The purpose of this poster is to present the program objectives and results of the work conducted in cooperation with industrial users and vendors to meet the vision for IGCC of reducing the capital cost per kilowatt to $1050 and increasing the plant efficiency to 52% by the year 2010.

  12. Hot gas filtration: Investigations to remove gaseous pollutant components out of flue gas during hot gas filtration. Final report; HGR: Untersuchung zur Minimierung von gasfoermigen Schadstoffen aus Rauchgasen bei der Heissgasfiltration. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Christ, A.; Gross, R.; Renz, U.

    1998-07-01

    Power plants with gas and steam turbines in pressurized fluidized bed or pressurized gasification processes enable power generation of coal with high efficiency and little emissions. To run these plants the cleaning of the flue gas is necessary before entering the turbines under the conditions of high temperature and pressure. Ceramic filter elements are the most probable method for hot gas cleaning. A simultaneous reduction of gaseous pollutant components under these conditions could help to make the whole process more efficient. The aim of the project is to integrate the catalytic reduction of carbon monoxide, hydrocarbons and nitric oxides into the hot gas filtration with ceramic filter elements as a one step mecanism. The project is focused on: - the catalytic behaviour of ferruginous ashes of brown coal, - the effectiveness of calcinated aluminates as a catalyst to remove uncombusted hydrocarbons in a hot gas filtration unit, - numerical simulation of the combined removal of particles and gaseous pollutant components out of the flue gas. (orig.) [Deutsch] Gas- und Dampfturbinen-Kraftwerke mit Druckwirbelschicht- oder mit Druckvergasungsverfahren ermoeglichen die Verstromung von Kohle mit hohem Wirkungsgrad und niedrigen Emissionen. Eine Voraussetzung fuer den Betrieb dieser Anlagen ist die Entstaubung der Rauchgase bei hohen Temperaturen und Druecken. Abreinigungsfilter mit keramischen Elementen werden dazu eingesetzt. Eine Reduzierung gasfoermiger Schadstoffe unter den gleichen Bedingungen koennte die Rauchgaswaesche ersetzen. Ziel des Gesamtvorhabens ist es, die Integration von Heissgasfiltration und katalytischem Abbau der Schadstoffe Kohlenmonoxid, Kohlenwasserstoffe und Stickoxide in einem Verfahrensschritt zu untersuchen. Die Arbeitsschwerpunkte dieses Teilvorhabens betreffen - die katalytische Wirkung eisenhaltiger Braunkohlenaschen, - die Wirksamkeit des Calciumaluminats als Katalysator des Abbaus unverbrannter Kohlenwasserstoffe im Heissgasfilter

  13. DEVELOPMENT OF SMOVEN PROCESS FOR HOT GAS DESULFURIZATION

    Institute of Scientific and Technical Information of China (English)

    彭万旺; 步学朋; 王乃计; 戢绪国; 谢可玉

    1997-01-01

    The Beijing Research Institute of Coal Chemistry (BRICC) is developing the SMOVEN process for hot gas desulfurization. The SMOVEN process features sulfidation in an entrained bed, regeneration in a low velocity fluid bed or a moving bed with oxygen and sorbent circulation controlled by gas stream. A series of tests on the bench scale unit and the continuous process development unit were carried out. The regenerable metal oxide sorbents were adopted for the sulfurrelated components removing from coal gas at the temperature of 550~650℃. A fluidized bed gasifier of 100mm (id) generated coal gas for tests. The principle of SMOVEN process has been positively verified.

  14. The hot gas content of fossil galaxy clusters

    Science.gov (United States)

    Pratt, G. W.; Pointecouteau, E.; Arnaud, M.; van der Burg, R. F. J.

    2016-05-01

    We investigate the properties of the hot gas in four fossil galaxy systems detected at high significance in the Planck Sunyaev-Zeldovich (SZ) survey. XMM-Newton observations reveal overall temperatures of kT ~ 5-6 keV and yield hydrostatic masses M500,HE ≳ 3.5 × 1014M⊙, confirming their nature as bona fide massive clusters. We measure the thermodynamic properties of the hot gas in X-rays (out to beyond R500 in three cases) and derive their individual pressure profiles out to R ~ 2.5 R500 with the SZ data. We combine the X-ray and SZ data to measure hydrostatic mass profiles and to examine the hot gas content and its radial distribution. The average Navarro-Frenk-White (NFW) concentration parameter, ⟨ c500 ⟩ = 3.2 ± 0.4, is the same as that of relaxed "normal" clusters. The gas mass fraction profiles exhibit striking variation in the inner regions, but converge to approximately the cosmic baryon fraction (corrected for depletion) at R500. Beyond R500 the gas mass fraction profiles again diverge, which we interpret as being due to a difference in gas clumping and/or a breakdown of hydrostatic equilibrium in the external regions. Our observations point to considerable radial variation in the hot gas content and in the gas clumping and/or hydrostatic equilibrium properties in these fossil clusters, at odds with the interpretation of their being old, evolved, and undisturbed. At least some fossil objects appear to be dynamically young.

  15. The Hot Gas Halos of Galaxies in Groups

    CERN Document Server

    Jeltema, Tesla E; Mulchaey, John S

    2008-01-01

    We use Chandra observations of 13 nearby groups of galaxies to investigate the hot gas content of their member galaxies. We find that a large fraction of near-IR bright, early-type galaxies in groups have extended X-ray emission, indicating that they retain significant hot gas halos even in these dense environments. In particular, we detect hot gas halos in ~80% of L_K > L_star galaxies. We do not find a significant difference in the L_K-L_X relation for detected group and cluster early-type galaxies. However, we detect X-ray emission from a significantly higher fraction of galaxies brighter than L_star in groups compared to clusters, indicating that a larger fraction of galaxies in clusters experience significant stripping of their hot gas. In addition, group and cluster galaxies appear to be X-ray faint compared to field galaxies, though a Chandra based field sample is needed to confirm this result. The near-IR bright late-types galaxies in clusters and groups appear to follow the L_K-L_X relation for early...

  16. Low temperature catalytic combustion of natural gas - hydrogen - air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Newson, E.; Roth, F. von; Hottinger, P.; Truong, T.B. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    The low temperature catalytic combustion of natural gas - air mixtures would allow the development of no-NO{sub x} burners for heating and power applications. Using commercially available catalysts, the room temperature ignition of methane-propane-air mixtures has been shown in laboratory reactors with combustion efficiencies over 95% and maximum temperatures less than 700{sup o}C. After a 500 hour stability test, severe deactivation of both methane and propane oxidation functions was observed. In cooperation with industrial partners, scaleup to 3 kW is being investigated together with startup dynamics and catalyst stability. (author) 3 figs., 3 refs.

  17. The hot gas content of fossil galaxy clusters

    CERN Document Server

    Pratt, G W; Arnaud, M; van der Burg, R F J

    2016-01-01

    We investigate the properties of the hot gas in four fossil galaxy systems detected at high significance in the Planck Sunyaev-Zeldovich (SZ) survey. XMM-Newton observations reveal overall temperatures of kT ~ 5-6 keV and yield hydrostatic masses M500,HE > 3.5 x 10e14 Msun, confirming their nature as bona fide massive clusters. We measure the thermodynamic properties of the hot gas in X-rays (out to beyond R500 in three cases) and derive their individual pressure profiles out to R ~ 2.5 R500 with the SZ data. We combine the X-ray and SZ data to measure hydrostatic mass profiles and to examine the hot gas content and its radial distribution. The average Navarro-Frenk-White (NFW) concentration parameter, c500 = 3.2 +/- 0.4, is the same as that of relaxed `normal' clusters. The gas mass fraction profiles exhibit striking variation in the inner regions, but converge to approximately the cosmic baryon fraction (corrected for depletion) at R500. Beyond R500 the gas mass fraction profiles again diverge, which we int...

  18. Copper-based sorbents for hot coal gas desulfurization systems

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Slimane, R.B.; Zarnegar, M.K. [Inst. of Gas Technology, Des Plaines, IL (United States)] [and others

    1997-07-01

    High-temperature coal gas desulfurization has been recognized as essential in the development of emerging power generation technologies such as the Integrated Gasification Combined Cycle (IGCC), aiming to improve both the efficiency and environmental performance of power generation from coal. Hot gas desulfurization may be accomplished by using regenerable mixed metal oxides sorbents which can reduce the H{sub 2}S content of the coal gas to a few ppmv over many sulfidation/regeneration cycles. The focus of much of the current research on hot gas desulfurization has been on the use of zinc-based sorbents. Although these sorbents have been the subject of extensive pilot-scale and process development work, zinc-based sorbents have been shown to suffer from sulfate formation and zinc volatilization, leading to sorbent degradation over multicycle use, increasing sorbent replacement costs and the overall cost of hot gas desulfurization processes. A novel copper-chromite sorbent has been developed at IGT for hot coal gas desulfurization under the sponsorship of the Illinois Clean Coal Institute (ICCI). Results obtained so far indicate that this sorbent, in granular form (i.e., CuCr-29), has a much higher attrition resistance compared to the commercial granular zinc titanate sorbent, as well as excellent desulfurization efficiency. Furthermore, unlike most zinc titanate sorbents, the reactivity of IGT`s CuCr-29 sorbent gradually and consistently improved during the 20 cycles tested. The sorbent preparation techniques developed at IGT have been applied to produce highly reactive and attrition resistant sorbent pellets for moving-bed applications.

  19. Assessment of coal gasification/hot gas cleanup based advanced gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    The major objectives of the joint SCS/DOE study of air-blown gasification power plants with hot gas cleanup are to: (1) Evaluate various power plant configurations to determine if an air-blown gasification-based power plant with hot gas cleanup can compete against pulverized coal with flue gas desulfurization for baseload expansion at Georgia Power Company's Plant Wansley; (2) determine if air-blown gasification with hot gas cleanup is more cost effective than oxygen-blown IGCC with cold gas cleanup; (3) perform Second-Law/Thermoeconomic Analysis of air-blown IGCC with hot gas cleanup and oxygen-blown IGCC with cold gas cleanup; (4) compare cost, performance, and reliability of IGCC based on industrial gas turbines and ISTIG power island configurations based on aeroderivative gas turbines; (5) compare cost, performance, and reliability of large (400 MW) and small (100 to 200 MW) gasification power plants; and (6) compare cost, performance, and reliability of air-blown gasification power plants using fluidized-bed gasifiers to air-blown IGCC using transport gasification and pressurized combustion.

  20. Development of advanced hot-gas desulfurization sorbents. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jothimurugesan, K.; Adeyiga, A.A.; Gangwal, S.K.

    1997-10-01

    The objective of this project was to develop hot-gas desulfurization sorbent formulations for relatively lower temperature application, with emphasis on the temperature range from 343--538 C. The candidate sorbents include highly dispersed mixed metal oxides of zinc, iron, copper, cobalt, nickel and molybdenum. The specific objective was to develop suitable sorbents, that would have high and stable surface area and are sufficiently reactive and regenerable at the relatively lower temperatures of interest in this work. Stability of surface area during regeneration was achieved by adding stabilizers. To prevent sulfation, catalyst additives that promote the light-off of the regeneration reaction at lower temperature was considered. Another objective of this study was to develop attrition-resistant advanced hot-gas desulfurization sorbents which show stable and high sulfidation reactivity at 343 to 538 C and regenerability at lower temperatures than leading first generation sorbents.

  1. Durable zinc ferrite sorbent pellets for hot coal gas desulfurization

    Science.gov (United States)

    Jha, Mahesh C.; Blandon, Antonio E.; Hepworth, Malcolm T.

    1988-01-01

    Durable, porous sulfur sorbents useful in removing hydrogen sulfide from hot coal gas are prepared by water pelletizing a mixture of fine zinc oxide and fine iron oxide with inorganic and organic binders and small amounts of activators such as sodium carbonate and molybdenite; the pellets are dried and then indurated at a high temperature, e.g., 1800.degree. C., for a time sufficient to produce crush-resistant pellets.

  2. Production of light oil by injection of hot inert gas

    Science.gov (United States)

    Ruidas, Bidhan C.; Ganguly, Somenath

    2016-05-01

    Hot inert gas, when injected into an oil reservoir is capable of generating a vaporization-condensation drive and as a consequence, a preferential movement of the lighter components to the production well. This form of displacement is an important unit mechanism in hot flue-gas injection, or in thermal recovery from a watered-out oil reservoir. This article presents the movement of heat front vis-à-vis the changes in the saturation profile, and the gas-phase composition. The plateau in the temperature profile due to the exchange of latent heat, and the formation of water bank at the downstream are elaborated. The broadening of the vaporization-condensation zone with continued progression is discussed. The effect of inert gas temperature on the cumulative production of oil is reviewed. The results provide insight to the vaporization-condensation drive as a stand-alone mechanism. The paper underscores the relative importance of this mechanism, when operated in tandem with other processes in improved oil recovery and CO2 sequestration.

  3. X(3872) production and absorption in a hot hadron gas

    Science.gov (United States)

    Abreu, L. M.; Khemchandani, K. P.; Torres, A. Martínez; Navarra, F. S.; Nielsen, M.

    2016-10-01

    We calculate the time evolution of the X (3872) abundance in the hot hadron gas produced in the late stage of heavy ion collisions. We use effective field Lagrangians to obtain the production and dissociation cross sections of X (3872). In this evaluation we include diagrams involving the anomalous couplings πD*Dbar* and XDbar*D* and also the couplings of the X (3872) with charged D and D* mesons. With these new terms the X (3872) interaction cross sections are much larger than those found in previous works. Using these cross sections as input in rate equations, we conclude that during the expansion and cooling of the hadronic gas, the number of X (3872), originally produced at the end of the mixed QGP/hadron gas phase, is reduced by a factor of 4.

  4. Apparatus for hot-gas desulfurization of fuel gases

    Science.gov (United States)

    Bissett, Larry A.

    1992-01-01

    An apparatus for removing sulfur values from a hot fuel gas stream in a fdized bed contactor containing particulate sorbent material by employing a riser tube regeneration arrangement. Sulfur-laden sorbent is continuously removed from the fluidized bed through a stand pipe to the riser tube and is rapidly regenerated in the riser tube during transport of the sorbent therethrough by employing an oxygen-containing sorbent regenerating gas stream. The riser tube extends from a location below the fluidized bed to an elevation above the fluidized bed where a gas-solid separating mechanism is utilized to separate the regenerated particulate sorbent from the regeneration gases and reaction gases so that the regenerated sorbent can be returned to the fluidized bed for reuse.

  5. X(3872 production and absorption in a hot hadron gas

    Directory of Open Access Journals (Sweden)

    L.M. Abreu

    2016-10-01

    Full Text Available We calculate the time evolution of the X(3872 abundance in the hot hadron gas produced in the late stage of heavy ion collisions. We use effective field Lagrangians to obtain the production and dissociation cross sections of X(3872. In this evaluation we include diagrams involving the anomalous couplings πD⁎D¯⁎ and XD¯⁎D⁎ and also the couplings of the X(3872 with charged D and D⁎ mesons. With these new terms the X(3872 interaction cross sections are much larger than those found in previous works. Using these cross sections as input in rate equations, we conclude that during the expansion and cooling of the hadronic gas, the number of X(3872, originally produced at the end of the mixed QGP/hadron gas phase, is reduced by a factor of 4.

  6. $X(3872)$ production and absorption in a hot hadron gas

    CERN Document Server

    Abreu, L M; Torres, A Martinez; Navarra, F S; Nielsen, M

    2016-01-01

    We calculate the time evolution of the $X(3872)$ abundance in the hot hadron gas produced in the late stage of heavy ion collisions. We use effective field Lagrangians to obtain the production and dissociation cross sections of $X(3872)$. In this evaluation we include diagrams involving the anomalous couplings $\\pi D^*\\bar{D}^*$ and $X \\bar{D}^{\\ast} D^{\\ast}$ and also the couplings of the $X(3872)$ with charged $D$ and $D^*$ mesons. With these new terms the $X(3872)$ interaction cross sections are much larger than those found in previous works. Using these cross sections as input in rate equations, we conclude that during the expansion and cooling of the hadronic gas, the number of $X(3872)$, originally produced at the end of the mixed QGP/hadron gas phase, is reduced by a factor of 4.

  7. Utilization and mitigation of VAM/CMM emissions by a catalytic combustion gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, K.; Yoshino, Y.; Kashihara, H. [Kawasaki Heavy Industries Ltd., Hyougo (Japan); Kajita, S.

    2013-07-01

    A system configured with a catalytic combustion gas turbine generator unit is introduced. The system has been developed using technologies produced by Kawasaki Heavy Industries, Ltd., such as small gas turbines, recuperators and catalytic combustors, and catalytic oxidation units which use exhaust heat from gas turbines. The system combusts (oxidizes) ventilation air methane (less than 1% concentration) and low concentration coal mine methane (30% concentration or less) discharged as waste from coal mines. Thus, it cannot only reduce the consumption of high- quality fuel for power generation, but also mitigate greenhouse gas emissions.

  8. Development of advanced sorbents for hot gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Slimane, R.B.; Wangerow, J.R. [Inst. of Gas Technology, Des Plaines, IL (United States); Cicero, D.C. [Dept. of Energy, Morgantown, WV (United States). Morgantown Energy Technology Center

    1996-12-31

    Integrated Gasification Combined-Cycle (IGCC) processes are among the leading contenders for the production of electricity from coal. Coal gas desulfurization to sufficiently low levels at elevated temperatures (T > 350 C) is now recognized as crucial to efficient and economic coal utilization in advanced IGCC processes. The implementation of hot coal gas desulfurization relies heavily on the development of regenerable sorbent materials which can efficiently reduce H{sub 2}S from several thousand ppmv levels down to a few ppmv over many cycles of sulfidation/regeneration. Zinc-based sorbents, such as zinc titanate, are currently the leading candidate sorbents, however, they have been shown to suffer from zinc volatilization at elevated temperatures leading to sorbent deterioration, increasing sorbent replacement costs, and the overall cost of hot gas cleanup. This paper discusses the results obtained in an ongoing investigation geared towards developing advanced mixed-metal oxide sorbents for desulfurization of coal-derived fuel gases in the temperature range of 350 to 550 C. The paper focuses on the study related to the development of durable sorbents and addresses thermodynamic considerations, sulfidation kinetics, regenerability, and long term durability of a number of novel sorbents.

  9. Selective autocatalytic reduction of NO from sintering flue gas by the hot sintered ore in the presence of NH3.

    Science.gov (United States)

    Chen, Wangsheng; Luo, Jing; Qin, Linbo; Han, Jun

    2015-12-01

    In this paper, the selective autocatalytic reduction of NO by NH3 combined with multi-metal oxides in the hot sintered ore was studied, and the catalytic activity of the hot sintered ore was investigated as a function of temperature, NH3/NO ratio, O2 content, H2O and SO2. The experimental results indicated that the hot sintered ore, when combined with NH3, had a maximum denitration efficiency of 37.67% at 450 °C, 3000 h(-1) gas hourly space velocity (GHSV) and a NH3/NO ratio of 0.4/1. Additionally, it was found that O2 played an important role in removing NOx. However, high O2 content had a negative effect on NO reduction. H2O was found to promote the denitration efficiency in the absence of SO2, while SO2 inhibited the catalytic activity of the sintered ore. In the presence of H2O and SO2, the catalytic activity of the sintered ore was dramatically suppressed.

  10. Hot-gas filtration for pressurized fluidized-bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Chang, R.; Kuby, W.

    1984-03-01

    This topical report discusses the status of the work, conducted under EPRI contract 1336-4, on the evaluation and development of ceramic filter hot gas cleanup technology for pressurized fluidized bed combustion. This topical report represents the status of the work through September 1983. The goal of the effort is to achieve 6000 h of operation on a 13-filter durability test rig. The work includes two parallel tasks. The first is construction of a durability test facility, operation of the facility with an initial candidate filter media installed, and assessment of results. The second task includes a literature survey to identify state-of-the-art ceramic fibers suitable for high-temperature gas filtration applications and filter testing in a single-filter test facility to assess the performance of promising new filter media. The best candidate will be chosen for further evaluation in the durability facility.

  11. Development of advanced hot-gas desulfurization processes

    Energy Technology Data Exchange (ETDEWEB)

    Jothimurugesan, K.

    1999-10-14

    Advanced integrated gasification combined cycle (IGCC) power plants nearing completion, such as Sierra-Pacific, employ a circulating fluidized-bed (transport) reactor hot-gas desulfurization (HGD) process that uses 70-180 {micro}m average particle size (aps) zinc-based mixed-metal oxide sorbent for removing H{sub 2}S from coal gas down to less than 20 ppmv. The sorbent undergoes cycles of absorption (sulfidation) and air regeneration. The key barrier issues associated with a fluidized-bed HGD process are chemical degradation, physical attrition, high regeneration light-off (initiation) temperature, and high cost of the sorbent. Another inherent complication in all air-regeneration-based HGD processes is the disposal of the problematic dilute SO{sub 2} containing regeneration tail-gas. Direct Sulfur Recovery Process (DSRP), a leading first generation technology, efficiently reduces this SO{sub 2} to desirable elemental sulfur, but requires the use of 1-3 % of the coal gas, thus resulting in an energy penalty to the plant. Advanced second-generation processes are under development that can reduce this energy penalty by modifying the sorbent so that it could be directly regenerated to elemental sulfur. The objective of this research is to support the near and long term DOE efforts to commercialize the IGCC-HGD process technology. Specifically we aim to develop: optimized low-cost sorbent materials with 70-80 {micro}m average aps meeting all Sierra specs; attrition resistant sorbents with 170 {micro}m aps that allow greater flexibility in the choice of the type of fluidized-bed reactor e.g. they allow increased throughput in a bubbling-bed reactor; and modified fluidizable sorbent materials that can be regenerated to produce elemental sulfur directly with minimal or no use of coal gas The effort during the reporting period has been devoted to development of an advanced hot-gas process that can eliminate the problematic SO{sub 2} tail gas and yield elemental sulfur

  12. Integrated hot fuel gas cleaning for advanced gasification combined cycle process

    Energy Technology Data Exchange (ETDEWEB)

    Nieminen, M.; Kangasmaa, K.; Laatikainen, J.; Staahlberg, P.; Kurkela, E. [VTT Energy, Espoo (Finland). Gasification and Advanced Combustion

    1996-12-01

    The fate of halogens in pressurised fluidized-bed gasification and hot gas filtration is determined. Potential halogen removal sorbents, suitable for integrated hot gas cleaning, are screened and some selected sorbents are tested in bench scale. Finally, halogen removal results are verified using the PDU-scale pressurised fluidized-bed gasification and integrated hot gas cleaning facilities of VTT. The project is part of the JOULE II Extension programme of the European Union. (author)

  13. AGN-stimulated Cooling of Hot Gas in Elliptical Galaxies

    CERN Document Server

    Valentini, Milena

    2015-01-01

    We study the impact of relatively weak AGN feedback on the interstellar medium of intermediate and massive elliptical galaxies. We find that the AGN activity, while globally heating the ISM, naturally stimulates some degree of hot gas cooling on scales of several kpc. This process generates the persistent presence of a cold ISM phase, with mass ranging between 10$^4$ and $\\gtrsim$ 5 $\\times$ 10$^7$ M$_\\odot$, where the latter value is appropriate for group centered, massive galaxies. Widespread cooling occurs where the ratio of cooling to free-fall time before the activation of the AGN feedback satisfies $t_{cool}/t_{ff} \\lesssim 70$, that is we find a less restrictive threshold than commonly quoted in the literature. This process helps explaining the body of observations of cold gas (both ionized and neutral/molecular) in Ellipticals and, perhaps, the residual star formation detected in many early-type galaxies. The amount and distribution of the off-center cold gas vary irregularly with time. The cold ISM v...

  14. DEVELOPMENT OF ADVANCED HOT-GAS DESULFURIZATION PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    K. Jothimurugesan; Santosh K. Gangwal

    2000-12-01

    The techniques employed in this project have successfully demonstrated the feasibility of preparing sorbents that achieve greater than 99% H{sub 2}S removal at temperatures 480 C and that retain their activity over 50 cycles. Fundamental understanding of phenomena leading to chemical deactivation and high regeneration light-off temperature has enabled us to successfully prepare and scale up a FHR-32 sorbent that showed no loss in reactivity and capacity over 50 cycles. This sorbent removed H{sub 2}S below 80 ppmv and lighted-off nicely at 480 C during regeneration. Overall the test is a success with potential for an optimized FHR-32 to be a candidate for Sierra-Pacific. An advanced attrition resistant hot-gas desulfurization sorbent that can eliminate the problematic SO{sub 2} tail gas and yield elemental sulfur directly has been developed. Attrition resistant Zn-Fe sorbent (AHI-2) formulations have been prepared that can remove H{sub 2}S to below 20 ppmv from coal gas and can be regenerated using SO{sub 2} to produce elemental sulfur.

  15. Hot gas stream application in micro-bonding technique

    Science.gov (United States)

    Andrijasevic, Daniela; Giouroudi, Ioanna; Smetana, Walter; Boehm, Stefan; Brenner, Werner

    2006-01-01

    This paper presents a new concept for bonding micro-parts with dimensions in the range of 50 μm to 300 μm. Two different kinds of adhesives - polyurethane adhesive foil and hot melt glue - were applied to a basic substrate by different techniques. The focused and concentrated hot gas stream softened glue which had been applied in a solid state. Micro-parts were then embossed in the softened glue, or covered and shielded by it. In this way, a rigid and compact bond was obtained after cooling. For the positioning of micro-parts (optical fibers), it has been necessary to manufacture adequate V-grooves. Finite element analyses using the ANSYS TM program package were performed in order to evaluate parameters which govern the heat transfer to the adhesive and substrate respectively. Experimental results are in good agreement with results obtained by the numerical simulations. The advantages of this new approach are small system size, low capital costs, simple usage, applicability to many material combinations, easy integration into existing production lines, etc.

  16. Progress in catalytic membrane reactors for removing sulfur from natural gas

    Institute of Scientific and Technical Information of China (English)

    TAO Chang-yuan; LIU Zuo-hua; DU Jun; LIU Ren-long

    2007-01-01

    Increasingly high requirement driven by environmental concern leads to more rigorous standards for sulfur dosage in fuel. Natural gas desulfurization is an important unit for industrial natural gas process. Catalytic membrane reactor for sulfur compounds removal is a newly emerged and integrated membrane technology. We reviewed the current progress for desulfurization of natural gas with membrane process, and predicted that the process combined with catalytic membrane reactor and microwave irradiation for desulfurization of natural gas might be an integrated and promising unit for large scale desulfurization with high efficiency.

  17. Development of advanced hot-gas desulfurization processes

    Energy Technology Data Exchange (ETDEWEB)

    Jothimurugesan, K.

    1999-04-26

    Advanced integrated gasification combined cycle (IGCC) power plants nearing completion, such as Sierra-Pacific, employ a circulating fluidized-bed (transport) reactor hot-gas desulfurization (HGD) process that uses 70-180 {micro}m average particle size (aps) zinc-based mixed-metal oxide sorbent for removing H{sub 2}S from coal gas down to less than 20 ppmv. The sorbent undergoes cycles of absorption (sulfidation) and air regeneration. The key barrier issues associated with a fluidized-bed HGD process are chemical degradation, physical attrition, high regeneration light-off (initiation) temperature, and high cost of the sorbent. Another inherent complication in all air-regeneration-based HGD processes is the disposal of the problematic dilute SO{sub 2} containing regeneration tail-gas. Direct Sulfur Recovery Process (DSRP), a leading first generation technology, efficiently reduces this SO{sub 2} to desirable elemental sulfur, but requires the use of 1-3% of the coal gas, thus resulting in an energy penalty to the plant. Advanced second-generation processes are under development that can reduce this energy penalty by modifying the sorbent so that it could be directly regenerated to elemental sulfur. The objective of this research is to support the near and long term DOE efforts to commercialize the IGCC-HGD process technology. Specifically we aim to develop: optimized low-cost sorbent materials with 70-80 {micro}m average aps meeting all Sierra specs; attrition resistant sorbents with 170 {micro}m aps that allow greater flexibility in the choice of the type of fluidized-bed reactor e.g. they allow increased throughput in a bubbling-bed reactor; and modified fluidizable sorbent materials that can be regenerated to produce elemental sulfur directly with minimal or no use of coal gas. The effort during the reporting period has been devoted to development of optimized low-cost zinc-oxide-based sorbents for Sierra-Pacific. The sorbent surface were modified to prevent

  18. KINETICS OF HOT-GAS DESULFURIZATION SORBENTS FOR TRANSPORT REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    K.C. Kwon

    2003-02-01

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at elevated temperatures. Various metal oxide sorbents are formulated with metal oxides such as Fe, Co, Zn, and Ti. Initial reaction kinetics of formulated sorbents with hydrogen sulfide is studied in the presence of various amounts of moisture and hydrogen at various reaction temperatures. The objectives of this research are to study initial reaction kinetics for a sorbent-hydrogen sulfide heterogeneous reaction system, to investigate effects of concentrations of hydrogen sulfide, hydrogen, and moisture on dynamic absorption of H{sub 2}S into sorbents, and to evaluate effects of temperature and sorbent amounts on dynamic absorption of H{sub 2}S into sorbents. Experimental data on initial reaction kinetics of hydrogen sulfide with metal oxide sorbents were obtained with a 0.83-cm{sup 3} differential reactor. The reactivity of EX-SO3 was examined in this report. This sorbent was obtained from the Research Triangle Institute (RTI). The sorbent in the form of 110 {micro}m particles are reacted with 18000-ppm hydrogen sulfide at 350-550 C. The range of space time of reaction gas mixtures is 0.069-0.088 s. The range of reaction duration is 4-180 s.

  19. KINETICS OF HOT-GAS DESULFURIZATION SORBENTS FOR TRANSPORT REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    K.C. Kwon

    2002-01-01

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated by many researchers to remove effectively hydrogen sulfide with various metal oxide sorbents at elevated temperatures. Various metal oxide sorbents are formulated with metal oxides such as Fe, Co, Zn, and Ti. Initial reaction kinetics of formulated sorbents with hydrogen sulfide is studied in the presence of various amounts of moisture and hydrogen at various reaction temperatures. The objectives of this research are to study initial reaction kinetics for a sorbent-hydrogen sulfide heterogeneous reaction system, to investigate effects of concentrations of hydrogen sulfide, hydrogen, and moisture on dynamic absorption of H{sub 2}S into sorbents, and to evaluate effects of temperature and sorbent amounts on dynamic absorption of H{sub 2}S into sorbents. Experimental data on initial reaction kinetics of hydrogen sulfide with metal oxide sorbents were obtained with a 0.83-cm{sup 3} differential reactor. The reactivity of MCRH-67 was examined in this report. This sorbent was obtained from the Research Triangle Institute (RTI). The sorbent in the form of 130 mm particles are reacted with 18000-ppm hydrogen sulfide at 350-525 C. The range of space time of reaction gas mixtures is 0.069-0.088 s. The range of reaction duration is 4-180 s.

  20. Enrichment study of hot intra-cluster gas through X-ray spectroscopy

    NARCIS (Netherlands)

    Plaa, J. de

    2007-01-01

    Enrichment study of hot intra-cluster gas through X-ray spectroscopy Clouds of hot X-ray emitting gas associated with clusters of galaxies are the biggest aggregates of baryons that we know, except for the cosmic web. A typical cloud contains the nuclear-fusion products of billions of supernovae. Th

  1. Development of advanced hot-gas desulfurization processes

    Energy Technology Data Exchange (ETDEWEB)

    Jothimurugesan, K.

    2000-04-17

    Advanced integrated gasification combined cycle (IGCC) power plants nearing completion, such as Sierra-Pacific, employ a circulating fluidized-bed (transport) reactor hot-gas desulfurization (HGD) process that uses 70-180 {micro}m average particle size (aps) zinc-based mixed-metal oxide sorbent for removing H{sub 2}S from coal gas down to less than 20 ppmv. The sorbent undergoes cycles of absorption (sulfidation) and air regeneration. The key barrier issues associated with a fluidized-bed HGD process are chemical degradation, physical attrition, high regeneration light-off (initiation) temperature, and high cost of the sorbent. Another inherent complication in all air-regeneration-based HGD processes is the disposal of the problematic dilute SO{sub 2} containing regeneration tail-gas. Direct Sulfur Recovery Process (DSRP), a leading first generation technology, efficiently reduces this SO{sub 2} to desirable elemental sulfur, but requires the use of 1-3 % of the coal gas, thus resulting in an energy penalty to the plant. Advanced second-generation processes are under development that can reduce this energy penalty by modifying the sorbent so that it could be directly regenerated to elemental sulfur. The objective of this research is to support the near and long term DOE efforts to commercialize the IGCC-HGD process technology. Specifically we aim to develop: optimized low-cost sorbent materials with 70-80 {micro}m average aps meeting all Sierra specs; attrition resistant sorbents with 170 {micro}m aps that allow greater flexibility in the choice of the type of fluidized-bed reactor e.g. they allow increased throughput in a bubbling-bed reactor; and modified fluidizable sorbent materials that can be regenerated to produce elemental sulfur directly with minimal or no use of coal gas. The effort during the reporting period has been devoted to testing the FHR-32 sorbent. FHR-32 sorbent was tested for 50 cycles of sulfidation in a laboratory scale reactor.

  2. ENGINEERING A NEW MATERIAL FOR HOT GAS CLEANUP

    Energy Technology Data Exchange (ETDEWEB)

    T.D. Wheelock; L.K. Doraiswamy; K.P. Constant

    2003-09-01

    The overall purpose of this project was to develop a superior, regenerable, calcium-based sorbent for desulfurizing hot coal gas with the sorbent being in the form of small pellets made with a layered structure such that each pellet consists of a highly reactive lime core enclosed within a porous protective shell of strong but relatively inert material. The sorbent can be very useful for hot gas cleanup in advanced power generation systems where problems have been encountered with presently available materials. An economical method of preparing the desired material was demonstrated with a laboratory-scale revolving drum pelletizer. Core-in-shell pellets were produced by first pelletizing powdered limestone or other calcium-bearing material to make the pellet cores, and then the cores were coated with a mixture of powdered alumina and limestone to make the shells. The core-in-shell pellets were subsequently calcined at 1373 K (1100 C) to sinter the shell material and convert CaCO{sub 3} to CaO. The resulting product was shown to be highly reactive and a very good sorbent for H{sub 2}S at temperatures in the range of 1113 to 1193 K (840 to 920 C) which corresponds well with the outlet temperatures of some coal gasifiers. The product was also shown to be both strong and attrition resistant, and that it can be regenerated by a cyclic oxidation and reduction process. A preliminary evaluation of the material showed that while it was capable of withstanding repeated sulfidation and regeneration, the reactivity of the sorbent tended to decline with usage due to CaO sintering. Also it was found that the compressive strength of the shell material depends on the relative proportions of alumina and limestone as well as their particle size distributions. Therefore, an extensive study of formulation and preparation conditions was conducted to improve the performance of both the core and shell materials. It was subsequently determined that MgO tends to stabilize the high

  3. Biomass Conversion to Produce Hydrocarbon Liquid Fuel Via Hot-vapor Filtered Fast Pyrolysis and Catalytic Hydrotreating.

    Science.gov (United States)

    Wang, Huamin; Elliott, Douglas C; French, Richard J; Deutch, Steve; Iisa, Kristiina

    2016-12-25

    Lignocellulosic biomass conversion to produce biofuels has received significant attention because of the quest for a replacement for fossil fuels. Among the various thermochemical and biochemical routes, fast pyrolysis followed by catalytic hydrotreating is considered to be a promising near-term opportunity. This paper reports on experimental methods used 1) at the National Renewable Energy Laboratory (NREL) for fast pyrolysis of lignocellulosic biomass to produce bio-oils in a fluidized-bed reactor and 2) at Pacific Northwest National Laboratory (PNNL) for catalytic hydrotreating of bio-oils in a two-stage, fixed-bed, continuous-flow catalytic reactor. The configurations of the reactor systems, the operating procedures, and the processing and analysis of feedstocks, bio-oils, and biofuels are described in detail in this paper. We also demonstrate hot-vapor filtration during fast pyrolysis to remove fine char particles and inorganic contaminants from bio-oil. Representative results showed successful conversion of biomass feedstocks to fuel-range hydrocarbon biofuels and, specifically, the effect of hot-vapor filtration on bio-oil production and upgrading. The protocols provided in this report could help to generate rigorous and reliable data for biomass pyrolysis and bio-oil hydrotreating research.

  4. Development and test of a new catalytic converter for natural gas fuelled engine

    Indian Academy of Sciences (India)

    M A Kalam; H H Masjuki; M Redzuan; T M I Mahlia; M A Fuad; M Mohibah; K H Halim; A Ishak; M Khair; A Shahrir; A Yusoff

    2009-06-01

    This paper presents characteristics of a new catalytic converter (catco) to be used for natural gas fuelled engine. The catco were developed based on catalyst materials consisting of metal oxides such as titanium dioxide (TiO2) and cobalt oxide (CoO) with wire mesh substrate. Both of the catalyst materials (such as TiO2 and CoO) are inexpensive in comparison with conventional catalysts (noble metals) such as palladium or platinum. In addition, the noble metals such as platinum group metals are now identified as human health risk due to their rapid emissions in the environment from various resources like conventional catalytic converter, jewelers and other medical usages. It can be mentioned that the TiO2/CoO based catalytic converter and a new natural gas engine such as compressed natural gas (CNG) direct injection (DI) engine were developed under a research collaboration program. The original engine manufacture catalytic conveter (OEM catco) was tested for comparison purposes. The OEM catco was based on noble metal catalyst with honeycomb ceramic substrate. It is experimentally found that the conversion efficiencies of TiO2/CoO based catalytic converter are 93%, 89% and 82% for NOx, CO and HC emissions respectively. It is calculated that the TiO2/CoO based catalytic converter reduces 24%, 41% and 40% higher NOx, CO and HC emissions in comparison to OEM catco respectively. The objective of this paper is to develop a low-cost three way catalytic converter to be used with the newly developed CNG-DI engine. Detailed review on catalytic converter, low-cost catalytic converter development characteristics and CNGDI engine test results have been presented with discussions.

  5. Process analysis of syngas production by non-catalytic POX of oven gas

    Institute of Scientific and Technical Information of China (English)

    Fuchen WANG; Xinwen ZHOU; Wenyuan GUO; Zhenghua DAI; Xin GONG; Haifeng LIU; Guangsuo YU; Zunhong YU

    2009-01-01

    A non-catalytic POX of oven gas is proposed to solve the problem of secondary pollution due to solid wastes produced from the great amount of organic sulfur contained in oven gas in the traditional catalytic partial oxidation (POX) process. A study of the measurement of flow field and a thermodynamic analysis of the process characteristics were conducted. Results show that there exist a jet-flow region, a recirculation-flow region, a tube-flow region, and three corresponding reaction zones in the non-catalytic POX reformer. The combustion of oven gas occurs mainly in the jet-flow region, while the reformation of oven gas occurs mainly in the other two regions. Soot would not be formed by CH4 cracking at above 1200℃. Since there are very little C2+ hydrocarbons in oven gas, the soot produced would be very tiny, even if they underwent cracking reaction. The integrated model for entrained bed gasification process was applied to simulate a non-catalytic POX reformer. It indicated that the proper oxygen-to-oven gas ratio is 0.22-0.28 at differ-ent pressures in the oven gas reformation process.

  6. Low sulfur content hot reducing gas production using calcium oxide desulfurization with water recycle

    Energy Technology Data Exchange (ETDEWEB)

    Feinman, J.; Mcgreal, J.E.

    1982-03-23

    A process and apparatus are claimed for producing a low sulfur content, hot reducing gas by desulfurizing hot reducing gas. This is done in the following manner; by contacting the sulfur-bearing hot reducing gas with a bed of a particulate calcium oxide desulfurizing agent to thereby produce a product gas stream and a byproduct calcium sulfide compositions recovering sulfur from the calcium sulfide composition by contacting the calcium sulfide composition with hot liquid water at a temperature and corresponding pressure sufficient to maintain steam in the system and to thereby convert the sulfide to calcium hydroxide and hydrogen sulfide and to produce a liquid water stream containing sulfur; combining the sulfur containing water stream with a fresh water stream and recycling this water stream for contacting the calcium sulfide composition. Preferably water vapor produced in the contacting step is condensed and returned to the system in the final stage of contacting the calcium sulfide composition with hot liquid water.

  7. Hot coal gas desulfurization with manganese-based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, D.; Hepworth, M.T.

    1993-09-01

    The focus of work being performed on Hot Coal Gas Desulfurization is primarily in the use of zinc ferrite and zinc titanate sorbents; however, prior studies at the US Steel Fundamental Research Laboratories in Monroeville, PA, by E.T. Turkdogan indicated that an alternate sorbent, manganese dioxide-containing ore in mixture with alumina (75 wt % ore + 25 wt % Al{sub 2}/O{sub 3}) may be a viable alternative to zinc-based sorbents. Manganese, for example, has a lower vapor pressure in the elemental state than zinc hence it is not as likely to undergo depletion from the sorbent surface upon loading and regeneration cycles. Also manganese oxide is less readily reduced to the elemental state than iron hence the range of reduction potentials for oxygen is somewhat greater than for zinc ferrite. In addition, thermodynamic analysis of the manganese-oxygen-sulfur system shows it to be less amenable to sulfation than zinc ferrite. Potential also exists for utilization of manganese higher temperatures than zinc ferrite or zinc titanate. This presentation gives the thermodynamic background for consideration of manganese-based sorbents as an alternative to zinc ferrite. To date the work which has been in progress for nine months is limited at this stage to thermogravimetric testing of four formulations of manganese-alumina sorbents to determine the optimum conditions of pelletization and induration to produce reactive pellets.

  8. Fracture behavior of advanced ceramic hot gas filters: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Singh, J.P.; Majumdar, S.; Sutaria, M.; Bielke, W. [Argonne National Lab., IL (United States). Energy Technology Div.

    1997-03-01

    This report presents the results of mechanical/microstructural evaluation, thermal shock/fatigue testing, and stress analyses of advanced hot-gas filters obtained from different manufacturers. These filters were fabricated from both monolithic ceramics and composites. The composite filters, made of both oxide and nonoxide materials, were in both as-fabricated and exposed conditions, whereas the monolithic filters were made only of nonoxide materials. Mechanical property measurement of composite filters included diametral compression testing with O-ring specimens and burst-testing of short filter segments with rubber plugs. In-situ strength of fibers in the composite filters was evaluated by microscopic technique. Thermal shock/fatigue resistance was estimated by measuring the strengths of filter specimens before and after thermal cycling from an air environment at elevated temperatures to a room temperature oil bath. Filter performance during mechanical and thermal shock/fatigue loadings was correlated with microstructural observations. Micromechanical models were developed to derive properties of composite filter constituents on the basis of measured mechanical properties of the filters. Subsequently, these properties were used to analytically predict the performance of composite filters during thermal shock loading.

  9. Sulfur recovery from low H{sub 2}S content acid gas using catalytic partial oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Clark, P.D.; Dowling, N.I.; Huang, M.

    2010-01-15

    The poster presentation discussed a new strategy for recovering sulfur from low hydrogen-sulphide-content acid gas using catalytic partial oxidation. In a new technology for dealing with BTX-contaminated lean acid gas, a catalytic reactor replaces the burner-furnace stage to achieve BTX conversion greater than 95 percent and control the hydrogen sulfide/sulfur dioxide ratio. The product gas is then sent to the Claus catalytic converters. The best catalysts for this process are alumina-supported Co-Mo and y-alumina. This process was compared with SELECTOX, another process that deals with poor acid gas with BTX conversion better than 95 percent. Catalytic oxidation can deal with a higher BTX feed content than SELECTOX, but the running temperature is higher. Both processes produce acceptable sulfur quality. To improve this process, the quality of the sulfur produced and the lifetime of the catalyst need to be increased, and an economic way to increase the heat to reach the running temperature needs to be found. The partial oxidation (POX) of CH{sub 4} solves both of these problems. The catalytic POX of acid gas is combined with the POX of fuel gas in the pre-heating zone. This process has the advantage that the burner-furnace stage of the Claus process can be replaced by a stream containing H{sub 2}S/SO{sub 2}=2; the reaction is performed at its adiabatic temperature requiring only a small amount of fuel gas; the presence of H{sub 2} and CO produced by the POX of fuel gas improves the quality of sulfur; the catalyst remains active for about 30 hours; and the process can tolerate high BTX content. 6 tabs., 2 figs.

  10. Hot Gas in the Diffuse Interstellar Medium: The Soft X-ray Background

    Science.gov (United States)

    Sanders, Wilton

    1996-05-01

    The immediate solar neighborhood, the nearest 100 pc or so, is filled with hot low-density gas that has a substantial thermal pressure and is a dominant factor in the energy budget of the local interstellar medium. This gas produces substantial soft thermal soft x-ray emission below 1/4 keV, but is difficult to observe outside the soft x-ray band. Sounding rocket and satellite all-sky surveys in several broad x-ray energy bands provided the general picture of this million-degree gas surrounding the solar system, extending perhaps as far as 100 pc in the galactic plane and roughly twice that far out of the plane, and showing no signs of being absorbed by intervening neutral gas. ROSAT observations of "shadows" in the diffuse x-ray background have subsequently determined the spatial locations of this hot gas along a few lines of sight: closer than 65 pc in some low galactic latitude directions, farther than several hundred pc in some high galactic latitude directions. Other large regions of hot gas are seen nearby, within a few hundred parsecs, but the galactic filling factor of the hot gas is unknown. DXS obsrvations of the spectra of the diffuse soft x-ray background confirm that the emission in the plane is thermal, but the spectrum of the hot gas is not fit by standard thermal equilibrium models. The temperature distribution, emission measure, ionization distributions, and metallicity of the hot gas are unknown. This talk emphasizes a few of the things that are clear about the hot ISM, and discusses a few of the most puzzling problems in our understanding of the nature of the diffuse hot gas. New instruments with hig spectral resolution will make it possible to address some of these problems.

  11. Variation in the Deep Gas Composition in Hot Spots on Jupiter

    Science.gov (United States)

    Bjoraker, Gordon; de Pater, Imke; Wong, Michael H.; Adamkovics, Mate; Hewagama, Tilak; Hesman, Brigette

    2015-11-01

    We used CSHELL on NASA’s Infrared Telescope Facility and NIRSPEC on the Keck telescope in the last two years to spectrally resolve line profiles of CH3D, NH3, PH3, and H2O in 5-micron Hot Spots on Jupiter. The profile of the CH3D lines at 4.66 microns is very broad in both NEB and SEB Hot Spots due to collisions with up to 8 bars of H2, where unit optical depth occurs due to collision-induced H2 opacity. The extreme width of these CH3D features implies that the Hot Spots that we observed do not have significant cloud opacity for P > 2 bars. We retrieved NH3, PH3, and gaseous H2O within Hot Spots in both the NEB and SEB. We had dry nights on Mauna Kea and a sufficient Doppler shift to detect H2O. We will compare line wings to derive H2O profiles in the 2 to 6-bar region. NEB Hot Spots are depleted in NH3 with respect to adjacent regions. Interestingly, SEB Hot Spots exhibit stronger NH3 absorption than NEB Hot Spots. In addition, SEB Hot Spots have very similar 5-micron spectra as neighboring longitudes in the SEB, implying similar deep gas composition. The dynamical origin of SEB Hot Spots is much less studied than that of NEB Hot Spots, so our observations of gas composition in both regions may constrain mechanisms for forming Hot Spots.

  12. The origin of the hot metal-poor gas in NGC 1291 - Testing the hypothesis of gas dynamics as the cause of the gas heating

    NARCIS (Netherlands)

    Perez, [No Value; Freeman, K

    2006-01-01

    In this paper we test the idea that the low-metallicity hot gas in the centre of NGC 1291 is heated via a dynamical process. In this scenario, the gas from the outer gas-rich ring loses energy through bar-driven shocks and falls to the centre. Heating of the gas to X-ray temperatures comes from the

  13. Partial catalytic oxidation of CH{sub 4} to synthesis gas for power generation - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mantzaras, I.; Schneider, A.

    2006-03-15

    The partial oxidation of methane to synthesis gas over rhodium catalysts has been investigated experimentally and numerically in the pressure range of 4 to 10 bar. The methane/oxidizer feed has been diluted with large amounts of H{sub 2}O and CO{sub 2} (up to 70% vol.) in order to simulate new power generation cycles with large exhaust gas recycle. Experiments were carried out in an optically accessible channel-flow reactor that facilitated laser-based in situ measurements, and also in a subscale gas-turbine catalytic reactor. Full-elliptic steady and transient two-dimensional numerical codes were used, which included elementary hetero-/homogeneous chemical reaction schemes. The following are the key conclusions: a) Heterogeneous (catalytic) and homogeneous (gas-phase) schemes have been validated for the partial catalytic oxidation of methane with large exhaust gas recycle. b) The impact of added H{sub 2}O and CO{sub 2} has been elucidated. The added H{sub 2}O increased the methane conversion and hydrogen selectivity, while it decreased the CO selectivity. The chemical impact of CO{sub 2} (dry reforming) was minimal. c) The numerical model reproduced the measured catalytic ignition times. It was further shown that the chemical impact of H{sub 2}O and CO{sub 2} on the catalytic ignition delay times was minimal. d) The noble metal dispersion increased with different support materials, in the order Rh/{alpha}-Al{sub 2}O{sub 3}, Rh/ZrO{sub 2}, and Rh/Ce-ZrO{sub 2}. An evident relationship was established between the noble metal dispersion and the catalytic behavior. (authors)

  14. Improvement of Sulphur Resistance of a Nickel-modified Catalytic Filter for Tar Removal from Biomass Gasification Gas

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Draelants, D.J.; Engelen, K.; Baron, G.V.

    2002-09-19

    This work focuses on the development of catalytic candle filters for the simultaneous removal of tars and particles from the biomass gasification gas at high temperature. An improvement of sulphur resistance of the nickel-activated catalytic filter was developed by the addition of CaO. The influences of preparation procedure of catalytic filter, the ratio of Ni/CaO and the loading of Ni and CaO on the performance of the catalytic filter were investigated.

  15. Numerical Investigation of the Transient Behavior of a Hot Gas Duct under Rapid Depressurization

    Directory of Open Access Journals (Sweden)

    JingBao Liu

    2016-01-01

    Full Text Available A hot gas duct is an indispensable component for the nuclear-process heat applications of the Very-High-Temperature Reactor (VHTR, which has to fulfill three requirements: to withstand high temperature, high pressure, and large pressure transient. In this paper, numerical investigation of pressure transient is performed for a hot gas duct under rapid depressurization. System depressurization imposes an imploding pressure differential on the internal structural elements of a hot gas duct, the structural integrity of which is susceptible to being damaged. Pressure differential and its imposed duration, which are two key factors to evaluate the damage severity of a hot gas duct under depressurization, are examined in regard to depressurization rate and insulation packing tightness. It is revealed that depressurization rate is a decisive parameter for controlling the pressure differential and its duration, whereas insulating-packing tightness has little effect on them.

  16. Utilization of the Recycle Reactor in Determining Kinetics of Gas-Solid Catalytic Reactions.

    Science.gov (United States)

    Paspek, Stephen C.; And Others

    1980-01-01

    Describes a laboratory scale reactor that determines the kinetics of a gas-solid catalytic reaction. The external recycle reactor construction is detailed with accompanying diagrams. Experimental details, application of the reactor to CO oxidation kinetics, interphase gradients, and intraphase gradients are discussed. (CS)

  17. COMPARISON OF WEST GERMAN AND U.S. FLUE GAS DESULFURIZATION AND SELECTIVE CATALYTIC REDUCTION COSTS

    Science.gov (United States)

    The report documents a comparison of the actual cost retrofitting flue gas desulfurization (FGD) and selective catalytic reduction (SCR) on Federal Republic of German (FRG) boilers to cost estimating procedures used in the U.S. to estimate the retrofit of these controls on U.S. b...

  18. Appropriate conditions or maximizing catalytic reduction efficiency of nitrate into nitrogen gas in groundwater.

    Science.gov (United States)

    Chen, Ying-Xue; Zhang, Yan; Chen, Guang-Hao

    2003-05-01

    This study focused on the appropriate catalyst preparation and operating conditions for maximizing catalytic reduction efficiency of nitrate into nitrogen gas from groundwater. Batch experiments were conducted with prepared Pd and/or Cu catalysts with hydrogen gas supplied under specific operating conditions. It has been found that Pd-Cu combined catalysts prepared at a mass ratio of 4:1 can maximize the nitrate reduction into nitrogen gas. With an increase in the quantity of the catalysts, both nitrite intermediates and ammonia can be kept at a low level. It has also been found that the catalytic activity is mainly affected by the mass ratio of hydrogen gas to nitrate nitrogen, and hydrogen gas gauge pressure. Appropriate operating values of H(2)/NO(3)-N ratio, hydrogen gas gauge pressure, pH, and initial nitrate concentration have been determined to be 44.6g H(2)/g N, 0.15 atm, 5.2 (-), 100 mg x L(-1) for maximizing the catalytic reduction of nitrate from groundwater.

  19. Avoiding Carbon Bed Hot Spots in Thermal Process Off-Gas Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nick Soelberg; Joe Enneking

    2011-05-01

    Mercury has had various uses in nuclear fuel reprocessing and other nuclear processes, and so is often present in radioactive and mixed (radioactive and hazardous) wastes. Test programs performed in recent years have shown that mercury in off-gas streams from processes that treat radioactive wastes can be controlled using fixed beds of activated sulfur-impregnated carbon, to levels low enough to comply with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards. Carbon bed hot spots or fires have occurred several times during these tests, and also during a remediation of tanks that contained mixed waste. Hot spots occur when localized areas in a carbon bed become heated to temperatures where oxidation occurs. This heating typically occurs due to heat of absoption of gas species onto the carbon, but it can also be caused through external means such as external heaters used to heat the carbon bed vessel. Hot spots, if not promptly mitigated, can grow into bed fires. Carbon bed hot spots and fires must be avoided in processes that treat radioactive and mixed waste. Hot spots are detected by (a) monitoring in-bed and bed outlet gas temperatures, and (b) more important, monitoring of bed outlet gas CO concentrations. Hot spots are mitigated by (a) designing for appropriate in-bed gas velocity, for avoiding gas flow maldistribution, and for sufficient but not excessive bed depth, (b) appropriate monitoring and control of gas and bed temperatures and compositions, and (c) prompt implementation of corrective actions if bed hot spots are detected. Corrective actions must be implemented quickly if bed hot spots are detected, using a graded approach and sequence starting with corrective actions that are simple, quick, cause the least impact to the process, and are easiest to recover from.

  20. Catalytic and Gas-Solid Reactions Involving HCN over Limestone

    DEFF Research Database (Denmark)

    Jensen, Anker; Johnsson, Jan Erik; Dam-Johansen, Kim

    1997-01-01

    In coal-fired combustion systems solid calcium species may be present as ash components or limestone added to the combustion chamber. In this study heterogeneous reactions involving HCN over seven different limestones were investigated in a laboratory fixed-bed quartz reactor at 873-1,173 K....... Calcined limestone is an effective catalyst for oxidation of HCN. Under conditions with complete conversion of HCN at O-2 concentrations above about 5,000 ppmv the selectivity for formation of NO and N2O is 50-70% and below 5%, respectively. Nitric oxide can be reduced by HCN to N-2 in the absence of O-2...... and to N-2 and N2O in the presence of O-2. At low O-2 concentrations or low temperatures. HCN may react with CaO, forming calcium cyanamide, CaCN2. The selectivities for formation of NO and N2O from oxidation of CaCN2 is 20-25% for both species. The catalytic activity of limestone for oxidation of HCN...

  1. O VII and O VIII absorption by hot gas in the vicinity of the Galaxy

    CERN Document Server

    McKernan, B; Reynolds, C S

    2004-01-01

    (abridged) We searched for evidence of soft X-ray absorption by hot gas in the vicinity of the Galaxy in a small sample of fifteen type I AGN observed with the high resolution X-ray gratings on board Chandra. We find that around half of the sight lines in our sample exhibit absorption due to local H- or He-like Oxygen (or both) at confidence levels ranging from >90% to >3sigma. Depending on the sight line, the absorption can be identified with hot gas in particular local structures, the Local Group (LG) or the putative local hot intergalactic medium (IGM). Several sight lines in our sample coincide with sight lines in a study of O VI absorption by local gas, so an assumption of collisional ionization equilibrium (CIE) allows us to constrain the temperature of the local hot gas. We show that hot absorbing outflows apparently detected in the spectra of NGC 4051, PDS 456 and PG 1211+143 respectively could actually correspond to absorption by hot local gas since the outflow velocity from each of these AGN coincid...

  2. System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Shahrokh Etemad; Lance Smith; Kevin Burns

    2004-12-01

    Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

  3. Catalytic Production of Ethanol from Biomass-Derived Synthesis Gas

    Energy Technology Data Exchange (ETDEWEB)

    Trewyn, Brian G. [Colorado School of Mines, Golden, CO (United States); Smith, Ryan G. [Iowa State Univ., Ames, IA (United States)

    2016-06-01

    Heterogeneous catalysts have been developed for the conversion of biomass-derived synthetic gas (syngas) to ethanol. The objectives of this project were to develop a clean synthesis gas from biomass and develop robust catalysts with high selectivity and lifetime for C2 oxygenate production from biomass-derived syngas and surrogate syngas. During the timeframe for this project, we have made research progress on the four tasks: (1) Produce clean bio-oil generated from biomass, such as corn stover or switchgrass, by using fast pyrolysis system, (2) Produce clean, high pressure synthetic gas (syngas: carbon monoxide, CO, and hydrogen, H2) from bio-oil generated from biomass by gasification, (3) Develop and characterize mesoporous mixed oxide-supported metal catalysts for the selective production of ethanol and other alcohols, such as butanol, from synthesis gas, and (4) Design and build a laboratory scale synthesis gas to ethanol reactor system evaluation of the process. In this final report, detailed explanations of the research challenges associated with this project are given. Progress of the syngas production from various biomass feedstocks and catalyst synthesis for upgrading the syngas to C2-oxygenates is included. Reaction properties of the catalyst systems under different reaction conditions and different reactor set-ups are also presented and discussed. Specifically, the development and application of mesoporous silica and mesoporous carbon supports with rhodium nanoparticle catalysts and rhodium nanoparticle with manganese catalysts are described along with the significant material characterizations we completed. In addition to the synthesis and characterization, we described the activity and selectivity of catalysts in our micro-tubular reactor (small scale) and fixed bed reactor (larger scale). After years of hard work, we are proud of the work done on this project, and do believe that this work will provide a solid

  4. Reactors for Catalytic Methanation in the Conversion of Biomass to Synthetic Natural Gas (SNG).

    Science.gov (United States)

    Schildhauer, Tilman J; Biollaz, Serge M A

    2015-01-01

    Production of Synthetic Natural Gas (SNG) from biomass is an important step to decouple the use of bioenergy from the biomass production with respect to both time and place. While anaerobic digestion of wet biomass is a state-of-the art process, wood gasification to producer gas followed by gas cleaning and methanation has only just entered the demonstration scale. Power-to-Gas applications using biogas from biomass fermentation or producer gas from wood gasification as carbon oxide source are under development. Due to the importance of the (catalytic) methanation step in the production of SNG from dry biomass or within Power-to-Gas applications, the specific challenges of this step and the developed reactor types are discussed in this review.

  5. Dust In Hell: Discovery Of Dust In Hot Gas Around Group-Centered Elliptical Galaxies

    Science.gov (United States)

    Temi, Pasquale; Brighenti, F.; Mathews, W. G.

    2007-05-01

    Observations with the Spitzer infrared telescope reveal extended internally produced dust in the hot gas (KT 1 KeV) atmospheres surrounding two optically normal galaxies, NGC 5044 and NGC 4636. We interpret this as a dusty buoyant outflow resulting from energy released by gas accretion onto supermassive black holes in the galaxy cores. Both galaxies have highly disturbed, transient activities in the hot gas and contain strong dust emission at 70 and 160 microns in excess of what expected from normal stellar mass loss. The 70 micron image is clearly extended. The lifetime of dust in hot (KT=1KeV) interstellar gas to destruction by sputtering (ion impacts), 10 million years, establishes the time when the dust first entered the hot gas. Remarkably, in NGC 5044 we observe interstellar PAH dust-molecular emission at 8 microns out to about 5 Kpc that is spatially coincident with extended Halpha+[NII] emission from warm gas. We propose that this dust comes from the destruction and heating of dusty disks in the nuclei of these galaxies, followed by buoyant transport. A simple calculation shows that dust-assisted cooling in outflowing buoyant gas in NGC 5044 can cool the gas within a few Kpc in about 10 million years, explaining the optical line emission observed.

  6. Vertical assembly for hot gas cleaning system for short rotary furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Rabah, M.A. [Industrial Wastes Laboratory, Extractive Metallurgy Dept., Cairo (Egypt)

    1998-12-31

    A study was conducted to determine the feasibility of different ceramic fibres and metal wool as filtration media for cleaning lead sulphate from hot flue gas. Until recently, there was no established technology for removing particulates or condensable species such as salt vapours from flue gases at temperatures above 250 degrees C. In this study, the effects of the following parameters on the efficiency of filtration were examined: (1) gas temperature and velocity, (2) solid particle diameter, (3) density of solids in the gas, and (4) pressure gradient. A theoretical model for the removal of solid particles from a moving stream of hot gas was developed based on several assumptions. Results showed that ceramic fibres of high surface area per unit mass are a potentially significant means for cleaning lead smelter flue gases in hot conditions. 11 refs., 1 tab., 11 figs.

  7. Hot Gas Cleanup Test Facility for gasification and pressurized combustion. Quarterly report, October--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. The major emphasis during this reporting period was continuing the detailed design of the facility and integrating the particulate control devices (PCDs) into structural and process designs. Substantial progress in underground construction activities was achieved during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. MWK equipment at the grade level and the first tier are being set in the structure.

  8. The ATLAS3D project - XIX. The hot gas content of early-type galaxies: fast versus slow rotators

    NARCIS (Netherlands)

    Sarzi, Marc; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Crocker, Alison; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Scott, Nicholas; Serra, Paolo; Young, Lisa M.; Weijmans, Anne-Marie

    2013-01-01

    For early-type galaxies, the ability to sustain a corona of hot, X-ray-emitting gas could have played a key role in quenching their star formation history. A halo of hot gas may act as an effective shield against the acquisition of cold gas and can quickly absorb stellar mass loss material. Yet, sin

  9. The ATLAS(3D) project : XIX. The hot gas content of early-type galaxies: fast versus slow rotators

    NARCIS (Netherlands)

    Sarzi, Marc; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frederic; Bureau, Martin; Cappellari, Michele; Crocker, Alison; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnovic, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Scott, Nicholas; Serra, Paolo; Young, Lisa M.; Weijmans, Anne-Marie

    2013-01-01

    For early-type galaxies, the ability to sustain a corona of hot, X-ray-emitting gas could have played a key role in quenching their star formation history. A halo of hot gas may act as an effective shield against the acquisition of cold gas and can quickly absorb stellar mass loss material. Yet, sin

  10. Long-time experience in catalytic flue gas cleaning and catalytic NO{sub x} reduction in biofueled boilers

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen, M. [Tampella Power Inc., Tampere (Finland)

    1996-12-31

    NO emissions are reduced by primary or secondary methods. Primary methods are based on NO reduction in the combustion zone and secondary methods on flue gas cleaning. The most effective NO reduction method is selective catalytic reduction (SCR). It is based on NO reduction by ammonia on the surface of a catalyst. Reaction products are water and nitrogen. A titanium-dioxide-based catalyst is very durable and selective in coal-fired power plants. It is not poisoned by sulphur dioxide and side reactions with ammonia and sulphur dioxide hardly occur. The long time experience and suitability of a titanium-dioxide-based catalyst for NO reduction in biofuel-fired power plants was studied. The biofuels were: peat, wood and bark. It was noticed that deactivation varied very much due to the type of fuel and content of alkalinities in fuel ash. The deactivation in peat firing was moderate, close to the deactivation noticed in coal firing. Wood firing generally had a greater deactivation effect than peat firing. Fuel and fly ash were analyzed to get more information on the flue gas properties. The accumulation of alkali and alkaline earth metals and sulphates was examined together with changes in the physical composition of the catalysts. In the cases where the deactivation was the greatest, the amount of alkali and alkaline earth metals in fuels and fly ashes and their accumulation were very significant. (author) (3 refs.)

  11. Evaluating the Hot Corrosion Behavior of High-Temperature Alloys for Gas Turbine Engine Components

    Science.gov (United States)

    Deodeshmukh, V. P.

    2015-11-01

    The hot corrosion behavior of high-temperature alloys is critically important for gas turbine engine components operating near the marine environments. The two test methods—Two-Zone and Burner-Rig—used to evaluate the hot corrosion performance of high-temperature alloys are illustrated by comparing the Type I hot corrosion behavior of selected high-temperature alloys. Although the ranking of the alloys is quite comparable, it is evident that the two-zone hot corrosion test is significantly more aggressive than the burner-rig test. The effect of long-term exposures and the factors that influence the hot corrosion performance of high-temperature alloys are briefly discussed.

  12. Production behaviour of gas hydrate under hot sea water injection : laboratory case study

    Energy Technology Data Exchange (ETDEWEB)

    Nengkoda, A. [Schlumberger, Calgary, AB (Canada); Budhijanto, B.; Supranto, S.; Prasetyo, I.; Purwono, S.; Sutijan, S. [Gadjah Mada Univ., Yogyakarta (Indonesia)

    2010-07-01

    The gas hydrate potential in Indonesia was discussed, with particular reference to offshore production of gas from deep-water gas-hydrates by injection of hot seawater. In 2004, the Indonesian National Agency for Assessment and Application Technology estimated the gas hydrate resource potential to be 850 trillion cubic feet (tcf). To date, the 3 most reliable scenarios for gas hydrate production are thermal stimulation which involves increasing the temperature until the hydrates break into water and gas; depressurization which involves lowering the pressure by pumping out gas at the base of the hydrate to cause dissociation of hydrates into gas; and injection of a chemical inhibitor such as methanol into the hydrated sediments to cause destabilization, thus releasing gas from hydrates. This study investigated the effect of hot seawater injection on the gas hydrate production under laboratory conditions. The temperature profile distribution was examined along with operational parameters and flow characteristics of the dissociated gas and water from hydrates in porous systems under a synthetic hydrate setup. The study showed that gas production increases with time until a maximum is reached, at which time it begins to decrease. The energy ratio of thermal stimulation production was found to be influenced by the injection water temperature and rate as well as the hydrate content in the synthetic sediment. Scale problems were found to be associated with high temperature seawater injection. 8 refs., 3 tabs., 7 figs.

  13. On determining the sources of hot gas in the halo

    Directory of Open Access Journals (Sweden)

    R. L. Shelton

    2000-01-01

    Full Text Available El gas caliente sobre el disco gal actico representa un problema importante e interesante. >Podr a este gas haber sido lanzado desde el disco por burbujas calientes, provenir de fuera de la Galaxia o ser calentado in situ? Cada una de estas posibilidades tiene consecuencias importantes para la evoluci on de la Galaxia, por lo que es necesario tener mejores pruebas. Discutimos varios modelos sobre el origen del gas caliente, su historial de ionizaci on y su apariencia espectral, as como un esquema que permita diferenciar los diferentes modelos con los datos de rayos-X y lejano UV que colectar an los nuevos observatorios.

  14. Thermodynamic Analysis and Experimental Study on Reaction of CO2 Gas with Hot Metal

    Institute of Scientific and Technical Information of China (English)

    Guo WEI; Zhi-tao LI; Zi-liang LI; Qiang-jian GAO; Feng-man SHEN

    2016-01-01

    The reaction of CO2 gas with hot metal was investigated based on the thermodynamic analysis and experi-mental results.It shows that both silicon and carbon in hot metal can be oxidized by CO2 gas in the temperature range of 1 300-1 500 ℃.When using graphite crucible,temperature has little influence on final mass percent of car-bon w[C] because of the carburization effect.Decarburization degree rises significantly with increasing gas inj ection rate and w[C] can be reduced to 3�2% at most when using MgO crucible.Lower temperature or higher gas inj ection rate is propitious to promote desilication reaction,but only 5%-10% of desilication ratio could be obtained in 20 min. The final mass percent of silicon w[Si] when using MgO crucible is lower than that when using graphite crucible.Ex-perimental results also demonstrate that CO2 injection has no effect on the concentration of manganese,sulfur and phosphorus in hot metal.In view of the weak oxidation ability and temperature drop of hot metal,CO2 gas is sugges-ted to be used as carrier gas in desilication process rather than oxidizing agent.

  15. Measurement of gas flow velocity: anemometer with a vibrating hot wire.

    Science.gov (United States)

    Kiełbasa, Jan

    2010-01-01

    I propose a new method to measure velocity of a gas flow, which utilizes the time derivative of the voltage observed on a vibrating hot-wire sensor. The wire vibrates with an amplitude a and a frequency f, and is kept perpendicular to the gas flow direction in the plane containing the flow velocity vector v(g). When the parameters of vibrations are tuned, the number of zeros per vibration period of the hot-wire voltage function changes. I demonstrate that at the point of change, the unknown gas velocity is directly expressed by the parameters of vibrations v(g)=2pifa. Therefore, the velocity can be measured without any prior calibration of the hot-wire speed-voltage curve and the method can be used for gases of slowly changing temperature or composition.

  16. Analysis on Service Life of Hot-end Components of Gas Turbine Using Equivalent Operation

    Directory of Open Access Journals (Sweden)

    Taixing Wang

    2013-01-01

    Full Text Available The reliability of the gas turbine depends on the technical status and the maintenance level of the hot-end components in a large part.The three main factors influencing on the service life of the hot-end components of the gas turbine were analyzed first.On this basis,various common service life assessment methods for gas turbine were discussed in detail.Aiming at the features of the M701F gas-steam combined cycle unit in Huizhou LNG power plant,a gas turbine life assessment method based on equivalent operation time analysis was put forward.The calculation result of an example shows that the equivalent operation time analysis method is a simple and practical assessment method.

  17. Hot Gas TVC For Planetary Ascent Vehicle Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A Mars ascent vehicle (MAV) uses solid rocket motors to propel soil samples into orbit, but the motors cannot provide steering. Cold gas thrusters are used for...

  18. Postextraction Separation, On-Board Storage, and Catalytic Conversion of Methane in Natural Gas: A Review.

    Science.gov (United States)

    Saha, Dipendu; Grappe, Hippolyte A; Chakraborty, Amlan; Orkoulas, Gerassimos

    2016-10-12

    In today's perspective, natural gas has gained considerable attention, due to its low emission, indigenous availability, and improvement in the extraction technology. Upon extraction, it undergoes several purification protocols including dehydration, sweetening, and inert rejection. Although purification is a commercially established technology, several drawbacks of the current process provide an essential impetus for developing newer separation protocols, most importantly, adsorption and membrane separation. This Review summarizes the needs of natural gas separation, gives an overview of the current technology, and provides a detailed discussion of the progress in research on separation and purification of natural gas including the benefits and drawbacks of each of the processes. The transportation sector is another growing sector of natural gas utilization, and it requires an efficient and safe on-board storage system. Compressed natural gas (CNG) and liquefied natural gas (LNG) are the most common forms in which natural gas can be stored. Adsorbed natural gas (ANG) is an alternate storage system of natural gas, which is advantageous as compared to CNG and LNG in terms of safety and also in terms of temperature and pressure requirements. This Review provides a detailed discussion on ANG along with computation predictions. The catalytic conversion of methane to different useful chemicals including syngas, methanol, formaldehyde, dimethyl ether, heavier hydrocarbons, aromatics, and hydrogen is also reviewed. Finally, direct utilization of methane onto fuel cells is also discussed.

  19. Relation between the characteristics of the pitches produced on the basis of heavy gas-oil of catalytic cracking

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaeva, L.V.; Bulanova, V.V. [Rossiiskaya Akadeiya, Nauk (Russian Federation)

    1995-12-31

    Mesophase pitches are often used to produce carbon fibers. Results of microanalysis and fiber-forming ability of the pitches are described. The pitches were obtained by the catalytic cracking of heavy gas-oil.

  20. Heat transfer to finned tubes exposed to hot waste gas

    Energy Technology Data Exchange (ETDEWEB)

    Scholand, E.; Kremer, H.

    1975-05-01

    Transfer of heat by forced convection to finned tubes, particularly to those with an elliptical center pipe, is described. These pipes are used in gas-fired water heaters, boilers, and heat exchangers. Finned tubes in a test tunnel were exposed to a stream of waste gas from a gas/air mixture at different Reynolds numbers. Mathematical relationships showing the dependence of the Nusselt number on the Reynolds number and on the geometry of the tubes were derived. The single pipe showed a significant drop in the heat-transfer coefficient as the gap between fins became closer. The results of the measurement of heat transfer by forced convection to finned tubes were expressed in a standard form for all tubes. The same heat transfer law can be applied to electrically heated finned tubes exposed to a stream of cooling air.

  1. Numerical and experimental investigation on the performance of lean burn catalytic combustion for gas turbine application

    Science.gov (United States)

    Yin, Juan; Weng, Yi-wu; Zhu, Jun-qiang

    2015-04-01

    This manuscript presents our numerical and experimental results regarding the performance characteristics of lean burn catalytic combustion for gas turbine application. The reactant transport was assumed to be controlled by both bulk diffusion as well as surface kinetics, implemented by means of an approximate reaction rate equation and empirical coefficients to incorporate reaction mechanism. Experimental and numerical results were compared to examine the effects of methane mole fraction, inlet temperature, operating pressure, velocity and hydrogen species on combustion intensity. The results indicate that inlet temperature is the most significant parameter that impacts operation of the catalytic combustor and the most effective methods for improving the methane conversion are increasing the inlet temperature and increasing the methane mole fraction. Simulations from 1D heterogeneous plug flow model can capture the trend of catalytic combustion and describe the behavior of the catalytic monolith in detail. The addition of hydrogen will provide heat release by the exothermic combustion reaction so that the reactants reach a temperature at which methane oxidation can light-off.

  2. Probing Milky Way's hot gas halo density distribution using the dispersion measure of pulsars

    CERN Document Server

    Nugaev, Emin Ya; Zhezher, Yana V

    2015-01-01

    A number of recent studies indicates a significant amount of ionized gas in a form of the hot gas halo around the Milky Way. The halo extends over the region of 100 kpc and may be acountable for the missing baryon mass. In this paper we calculate the contribution of the proposed halo to the dispersion measure (DM) of the pulsars. The Navarro, Frenk & White (NFW), Maller & Bullock (MB) and Feldmann, Hooper & Gnedin (FHG) density distibutions are considered for the gas halo. The data set includes pulsars with the distance known independently from the DM, e.g. pulsars in globular clusters, LMC, SMC and pulsars with known parallax. The results exclude the NFW distribution for the hot gas, while the more realistic MB and FHG models are compatible with the observed dispersion measure.

  3. Probing Milky Way's hot gas halo density distribution using the dispersion measure of pulsars

    Science.gov (United States)

    Zhezher, Ya. V.; Nugaev, E. Ya.; Rubtsov, G. I.

    2016-03-01

    A number of recent studies indicates a significant amount of ionized gas in a form of the hot gas halo around the Milky Way. The halo extends over the region of 100 kpc and may be acountable for the missing baryon mass. In this paper we calculate the contribution of the proposed halo to the dispersion measure (DM) of the pulsars. The Navarro, Frenk, and White (NFW), Maller and Bullock (MB), and Feldmann, Hooper, and Gnedin (FHG) density distibutions are considered for the gas halo. The data set includes pulsars with the distance known independently from the DM, e.g., pulsars in globular clusters, LMC, SMC and pulsars with known parallax. The results exclude the NFW distribution for the hot gas, while the more realisticMB and FHG models are compatible with the observed dispersion measure.

  4. Numerical study of the generation of runaway electrons in a gas diode with a hot channel

    Energy Technology Data Exchange (ETDEWEB)

    Lisenkov, V. V., E-mail: lisenkov@iep.uran.ru [Institute of Electrophysics UrB RAS, 106 Amundsena St., Ekaterinburg 620012 (Russian Federation); Ural Federal University, 19 Mira St., Ekaterinburg 620002 (Russian Federation); Shklyaev, V. A., E-mail: shklyaev@to.hcei.tsc.ru [Institute of High Current Electronics SD RAS, 2/3 Akademichesky Avenue, 634055 Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk (Russian Federation)

    2015-11-15

    A new method for increasing the efficiency of runaway electron beam generation in atmospheric pressure gas media has been suggested and theoretically proved. The method consists of creating a hot region (e.g., a spark channel or a laser plume) with a decreased numerical density of gas molecules (N) near the cathode. In this method, the ratio E/N (E—electric field strength) is increased by decreasing N instead of increasing E, as has been done in the past. The numerical model that is used allows the simultaneous calculation of the formation of a subnanosecond gas discharge and the generation of runaway electrons in gas media. The calculations have demonstrated the possibility of obtaining current pulses of runaway electrons with amplitudes of hundred of amperes and durations of more than 100 ps. The influence of the hot channel geometry on the parameters of the generated beam has been investigated.

  5. Gas cleaning, gas conditioning and tar abatement by means of a catalytic filter candle in a biomass fluidized-bed gasifier.

    Science.gov (United States)

    Rapagnà, Sergio; Gallucci, Katia; Di Marcello, Manuela; Matt, Muriel; Nacken, Manfred; Heidenreich, Steffen; Foscolo, Pier Ugo

    2010-09-01

    A bench-scale fluidized-bed biomass gasification plant, operating at atmospheric pressure and temperature within the range 800-820 degrees C, has been used to test an innovative gas cleaning device: a catalytic filter candle fitted into the bed freeboard. This housing of the gas conditioning system within the gasifier itself results in a very compact unit and greatly reduced thermal losses. Long term (22h) tests were performed on the gasifier both with and without the catalytic candle filter, under otherwise identical conditions. Analysis of the product gas for the two cases showed the catalytic filtration to give rise to notable improvements in both gas quality and gas yield: an increase in hydrogen yield of 130% and an overall increase in gas yield of 69% - with corresponding decreases in methane and tar content of 20% and 79%, respectively. HPLC/UV analysis was used to characterize the tar compounds.

  6. Hot gas flow cell for optical measurements on reactive gases

    DEFF Research Database (Denmark)

    Grosch, Helge; Fateev, Alexander; Nielsen, Karsten Lindorff

    2013-01-01

    was validated for high resolution measurements at temperatures of up to 800 K (527 degrees C) in the ultraviolet (UV) and infrared (IR) regions (190-20 000 nm). Verification of the gas temperature in the cell is provided by a thermocouple and emission/transmission measurements in the IR and UV regions. High......-resolution measurements are presented for the absorption cross-section of sulfur dioxide (SO2) in the UV range up to 773 K (500 degrees C)...

  7. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corp. , Columbus, Ohio. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    The Solar Energy System located at the Columbia Gas Corporation, Columbus, Ohio, has 2978 ft/sup 2/ of Honeywell single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/h Bryan water-tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton Arkla hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts are included from the site files, specification references, drawings, installation, operation and maintenance instructions.

  8. Constraining supernova models using the hot gas in clusters of galaxies

    NARCIS (Netherlands)

    de Plaa, J.; Werner, N.; Bleeker, J.A.M.; Vink, J.; Kaastra, J.S.; Mendes, M.

    2009-01-01

    Context: The hot X-ray emitting gas in clusters of galaxies is a very large repository of metals produced by supernovae. During the evolution of clusters, billions of supernovae eject their material into this Intra-Cluster Medium (ICM). Aims: We aim to accurately measure the abundances in the ICM of

  9. A Reusable Calcium-Based Sorbent for Desulfurizing Hot Coal Gas

    Energy Technology Data Exchange (ETDEWEB)

    Wheelock, T.D.; Hasler, D.J.L.

    2002-09-19

    The overall objective of this project has been to develop a superior, regenerable, calcium-based sorbent for desulfurizing hot coal gas. The sorbent should be strong, durable, inexpensive to manufacture, and capable of being reused many times. To achieve these objectives the project has focused on the development of the very promising core-in-shell sorbent.

  10. Catalytic microtubular jet engines self-propelled by accumulated gas bubbles.

    Science.gov (United States)

    Solovev, Alexander A; Mei, Yongfeng; Bermúdez Ureña, Esteban; Huang, Gaoshan; Schmidt, Oliver G

    2009-07-01

    Strain-engineered microtubes with an inner catalytic surface serve as self-propelled microjet engines with speeds of up to approximately 2 mm s(-1) (approximately 50 body lengths per second). The motion of the microjets is caused by gas bubbles ejecting from one opening of the tube, and the velocity can be well approximated by the product of the bubble radius and the bubble ejection frequency. Trajectories of various different geometries are well visualized by long microbubble tails. If a magnetic layer is integrated into the wall of the microjet engine, we can control and localize the trajectories by applying external rotating magnetic fields. Fluid (i.e., fuel) pumping through the microtubes is revealed and directly clarifies the working principle of the catalytic microjet engines.

  11. 30 CFR 77.305 - Access to drying chambers, hot gas inlet chambers and ductwork; installation and maintenance.

    Science.gov (United States)

    2010-07-01

    ... chambers and ductwork; installation and maintenance. 77.305 Section 77.305 Mineral Resources MINE SAFETY... drying chambers, hot gas inlet chambers and ductwork; installation and maintenance. Drying chambers, hot gas inlet chambers and all ductwork in which coal dust may accumulate shall be equipped with...

  12. Sensitivity analysis of a light gas oil deep hydrodesulfurization process via catalytic distillation

    Energy Technology Data Exchange (ETDEWEB)

    Rosales-Quintero, A.; Vargas-Villamil, F.D. [Prog. de Matematicas Aplicadas y Computacion, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, Mexico, D.F. 07330 (Mexico); Arce-Medina, E. [Instituto Politecnico Nacional, ESIQIE, Ed. 8 Col. Lindavista, Mexico, D.F. 07738 (Mexico)

    2008-01-30

    In this work, a sensitivity analysis of a light gas oil deep hydrodesulfurization catalytic distillation column is presented. The aim is to evaluate the effects of various parameters and operating conditions on the organic sulfur compound elimination by using a realistic light gas oil fraction. The hydrocarbons are modeled using pseudocompounds, while the organic sulfur compounds are modeled using model compounds, i.e., dibenzothiophene (DBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT). These are among the most refractive sulfur compounds present in the oil fractions. A sensitivity analysis is discussed for the reflux ratio, bottom flow rate, condenser temperature, hydrogen and gas oil feed stages, catalyst loading, the reactive, stripping, and rectifying stages, feed disturbances, and multiple feeds. The results give insight into the qualitative effect of some of the operating variables and disturbances on organic sulfur elimination. In addition, they show that special attention must be given to the bottom flow rate and LGO feed rate control. (author)

  13. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT-GAS DESULFURIZATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    A. LOPEZ ORTIZ; D.P. HARRISON; F.R. GROVES; J.D. WHITE; S. ZHANG; W.-N. HUANG; Y. ZENG

    1998-10-31

    This research project examined the feasibility of a second generation high-temperature coal gas desulfurization process in which elemental sulfur is produced directly during the sorbent regeneration phase. Two concepts were evaluated experimentally. In the first, FeS was regenerated in a H2O-O2 mixture. Large fractions of the sulfur were liberated in elemental form when the H2O-O2 ratio was large. However, the mole percent of elemental sulfur in the product was always quite small (<<1%) and a process based on this concept was judged to be impractical because of the low temperature and high energy requirements associated with condensing the sulfur. The second concept involved desulfurization using CeO2 and regeneration of the sulfided sorbent, Ce2O2S, using SO2 to produce elemental sulfur directly. No significant side reactions were observed and the reaction was found to be quite rapid over the temperature range of 500°C to 700°C. Elemental sulfur concentrations (as S2) as large as 20 mol% were produced. Limitations associated with the cerium sorbent process are concentrated in the desulfurization phase. High temperature and highly reducing coal gas such as produced in the Shell gasification process are required if high sulfur removal efficiencies are to be achieved. For example, the equilibrium H2S concentration at 800°C from a Shell gas in contact with CeO2 is about 300 ppmv, well above the allowable IGCC specification. In this case, a two-stage desulfurization process using CeO2 for bulk H2S removal following by a zinc sorbent polishing step would be required. Under appropriate conditions, however, CeO2 can be reduced to non-stoichiometric CeOn (n<2) which has significantly greater affinity for H2S. Pre-breakthrough H2S concentrations in the range of 1 ppmv to 5 ppmv were measured in sulfidation tests using CeOn at 700°C in highly reducing gases, as measured by equilibrium O2 concentration, comparable to the Shell gas. Good sorbent durability was indicated in

  14. Hot gas and the gaseous structure of the galaxy

    Directory of Open Access Journals (Sweden)

    Donald P. Cox

    2000-01-01

    Full Text Available En la d ecada pasada se lograron grandes avances en nuestra concepci on del gas interestelar caliente de la V a L actea. El Di use X-ray Spectrometer obtuvo espectros del plano gal actico (esto es, de la Burbuja Local, en el rango 0.15{0.28 keV, que muestran l neas y mezclas de l neas de emisi on. Los espectros con rman que el fondo de rayos-X suaves, en estas energ as, es de origen t ermico a aproximadamente 106 K, pero el espectro no puede ser bien ajustado con los modelos de emisi on de plasma existentes. Los datos del sat elite ROSAT, tanto de muestreo de todo el cielo como de observaciones puntuales, restringen las distancias del gas que emite dentro de la Burbuja Local, el medio interestelar local y el halo. Los datos con rman que la Burbuja Local tiene un tama~no de 100 pc y que el halo gal actico tiene dos componentes de gas caliente; una componente muy inhomog enea de 106 K y otra componente m as caliente, de varios 106 K, cuya distribuci on es suave y sigue a la estructura general de la Galaxia. El sat elite ASCA ha detectado emisi on de plasmas a m as de 107 K en la cresta gal actica, en dos regiones del centro gal actico y en el bulbo. M as recientemente, el micro calor metro del experimento Wisconsin/Goddard con cohetes observ o el espectro de la emisi on difusa en (l; b (90 ; 60 , con un campo visual de 1 sr en el rango espectral 0.1{1 keV y con una resoluci on de 8 eV. Las l neas de O VII y O VIII son detectadas, pero s olo se obtienen l mites superiores para las l neas esperadas de Fe XVII.

  15. Phi meson propagation in a hot hadronic gas

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Ruso, Luis; Koch, Volker

    2002-02-20

    The Hidden Local Symmetry Lagrangian is used to study the interactions of phi mesons with other pseudoscalar and vector mesons in a hadronic gas at finite temperature. We have found a significantly small phi mean free path (less than 2.4 fm at T > 170 MeV) due to large collision rates with rho mesons, kaons and predominantly K* in spite of their heavy mass. This implies that phi mesons produced after hadronization in relativistic heavy ion collisions will not leave the hadronic system without scattering. The effect of these interactions on the time evolution of the phi density in the expanding hadronic fireball is investigated.

  16. Phi meson propagation in a hot hadronic gas

    CERN Document Server

    Alvarez-Ruso, L

    2002-01-01

    The Hidden Local Symmetry Lagrangian is used to study the interactions of phi mesons with other pseudoscalar and vector mesons in a hadronic gas at finite temperature. We have found a significantly small phi mean free path (less than 2.4 fm at T > 170 MeV) due to large collision rates with rho mesons, kaons and predominantly K* in spite of their heavy mass. This implies that phi mesons produced after hadronization in relativistic heavy ion collisions will not leave the hadronic system without scattering. The effect of these interactions on the time evolution of the phi density in the expanding hadronic fireball is investigated.

  17. Hot Gas, Cold Gas and Sub-Halos in a Lyman-alpha Blob at Redshift 2.38

    CERN Document Server

    Francis, Paul J; Colbert, James W; Palunas, Povilas; Scarlata, Claudia; Teplitz, Harry; Williger, Gerard M; Woodgate, Bruce E

    2012-01-01

    We present integral field spectroscopy of a Lyman-alpha blob at redshift 2.38, with a spectral resolution three times better than previous published work. As with previous observations, the blob has a chaotic velocity structure, much of which breaks up into multiple components. Our spectroscopy shows, however, that some of these multiple components are extremely narrow: they have velocity widths of less than 100 km/s. Combining these new data with previous observations, we argue that this Lyman-alpha blob resides in a dark-matter halo of around 10^13 solar masses. At the centre of this halo are two compact red massive galaxies. They are surrounded by hot gas, probably a super-wind from merger-induced nuclear starbursts. This hot gas has shut down star formation in the non-nuclear region of these galaxies, leading to their red-and-dead colours. A filament or lump of infalling cold gas is colliding with the hot gas phase and being shocked to high temperatures, while still around 30kpc from the red galaxies. The...

  18. Ceramic Hot Gas Filter with Integrated Failsafe System

    Energy Technology Data Exchange (ETDEWEB)

    Heidenreich, S.; Haag, W.; Walch, A.; Scheibner, B.; Mai, R.; Leibold, H.; Seifert, H.

    2002-09-18

    In order to integrate a failsafe system and to improve the cleaning intensity a new cleaning method was recently developed, the CPP (coupled pressure pulse) cleaning (Heidenreich et al. 2001). For the CPP method the cleaning system is directly coupled with the filter candles. One feature of this new technique is that the cleaning gas pressure exceeds the system pressure only by 0.05 to 0.1 MPa, whereas in case of conventional jet pulse systems two times the system pressure (at least 0.6 MPa) is standard. The key advantage of the coupled pressure pulse cleaning is that a safety filter for each filter candle can be integrated in the clean gas side of the filter. Thus, a candle failure is not longer a serious problem. The integrated safety filter enables the operation of the filter system also in case a filter candle breaks. This increases the availability of the filter and prevents an unscheduled costly shut-down of the system. In this paper the design of the ceramic filter wit h the failsafe system and the CPP cleaning will be described. The new developed safety filter elements, their pressure drop and their filtration and clogging behavior will be shown. Tests of single system components, of the whole filter system and first experiences of operating this system will be reported.

  19. Embryo impacts and gas giant mergers II: Diversity of Hot Jupiters' internal structure

    CERN Document Server

    Liu, Shang-Fei; Lin, D N C; Li, Shu-Lin

    2014-01-01

    We consider the origin of compact, short-period, Jupiter-mass planets. We propose that their diverse structure is caused by giant impacts of embryos and super-Earths or mergers with other gas giants during the formation and evolution of these hot Jupiters. Through a series of numerical simulations, we show that typical head-on collisions generally lead to total coalescence of impinging gas giants. Although extremely energetic collisions can disintegrate the envelope of gas giants, these events seldom occur. During oblique and moderately energetic collisions, the merger products retain higher fraction of the colliders' cores than their envelopes. They can also deposit considerable amount of spin angular momentum to the gas giants and desynchronize their spins from their orbital mean motion. We find that the oblateness of gas giants can be used to infer the impact history. Subsequent dissipation of stellar tide inside the planets' envelope can lead to runaway inflation and potentially a substantial loss of gas ...

  20. Hot gas cleanup test facility for gasification and pressurized combustion project. Quarterly report, October--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDs) into the structural and process designs. Substantial progress in construction activities was achieved during this quarter.

  1. Novel Gas Barrier SiOC Coating to PET Bottles through a Hot Wire CVD Method

    Directory of Open Access Journals (Sweden)

    Masaki Nakaya

    2016-01-01

    Full Text Available In an attempt to enhance the gas barrier enhancement of plastic containers such as poly(ethylene terephthalate bottles, a novel method was found using a hot wire CVD technique, where tantalum wire is heated and exposed to a gas flow of vinyl silane. The resultant SiOC thin film was confirmed to characteristically contain Si-Si bonds in its surface and demonstrate a remarkably and highly practical decrease of the permeation of various gas through poly(ethylene terephthalate bottles.

  2. Application of CFCC technology to hot gas filtration applications

    Energy Technology Data Exchange (ETDEWEB)

    Richlen, S.

    1995-06-01

    Discussion will feature high temperature filter development under the DOE`s Office of Industrial Technologies Continuous Fiber Ceramic Composite (CFCC) Program. Within the CFCC Program there are four industry projects and a national laboratory technology support project. Atlantic Research, Babcock & Wilcox, DuPont Lanxide Composites, and Textron are developing processing methods to produce CFCC Components with various types of matrices and composites, along with the manufacturing methods to produce industrial components, including high temperature gas filters. The Oak Ridge National Laboratory is leading a National Laboratory/University effort to increase knowledge of such generic and supportive technology areas as environmental degradation, measurement of mechanical properties, long-term performance, thermal shock and thermal cycling, creep and fatigue, and non-destructive characterization. Tasks include composite design, materials characterization, test methods, and performance-related phenomena, that will support the high temperature filter activities of industry and government.

  3. Catalytic methanation reaction over supported nickel-rhodium oxide for purification of simulated natural gas

    Institute of Scientific and Technical Information of China (English)

    Wan Azelee Wan Abu Bakar; Rusmidah Ali; Susilawati Toemen

    2011-01-01

    In this research,new catalyst with high industrial impact is developed,which can catalyze the conversion of CO2 to methane through methanation reaction.A series of catalysts based on nickel oxide were prepared using wetness impregnation technique and ageing,followed by calcination at 400 ℃.Rh/Ni (30∶70)/Al2O3 catalyst was revealed as the most potential catalyst based on the results of catalytic activity measurementmonitored by Fourier Transform Infrared Spectroscopy (FTIR) and Gas Chromatography (GC).The results showed 90.1% CO2 conversion and 70.8% yield at 400 ℃.

  4. Electrochemical Synthesis of Mo2C Catalytical Coatings for the Water-Gas Shift Reaction

    Science.gov (United States)

    Kuznetsov, Sergey A.; Dubrovskiy, Anton R.; Rebrov, Evgeny V.; Schouten, Jaap C.

    2007-11-01

    The electroreduction of CO32- ions on a molybdenum cathode in a NaCl-KCl-Li2CO3 melt was studied by cyclic voltammetry. The electrochemical synthesis of Mo2C on molybdenum substrates has been performed at 1123 K for 7 h with a cathodic current density of 5 mA cm-2. If molybdenum carbide is present as a thin (ca. 500 nm) film on a molybdenum substrate (Mo2C/Mo), its catalytic activity in the water gas-shift reaction is enhanced by at least an order of magnitude compared to that of the bulk Mo2C phase.

  5. The generation of electricity by gas turbines using the catalytic combustion of low-Btu gases

    DEFF Research Database (Denmark)

    Frederiksen, O.P.; Qvale, Einar Bjørn

    1989-01-01

    Various systems for the generation of electricity by gas turbines using catalytic combustion of low-Btu gases have been investigated. Parametric studies of three configurations that are deemed to be practically feasible have been completed. It is shown that thermodynamic efficiency of these systems...... may be quite high. The system design has been made to comply with generally accepted limitations on the operation of the compressors, turbines and heat exchangers. The heat catalyst has been investigated experimentally in order to establish design information. The system design has been carried out...... on the basis of these experiments and of commonly accepted limits on the operation of the compressors, turbines, and heat exchangers...

  6. Measuring the extent of x-ray emitting hot gas haloes around elliptical galaxies

    Science.gov (United States)

    Alpaslan, Mehmet; Marcum, Pamela M.

    2017-01-01

    The hot, x-ray emitting gas halos around galaxies can serve as tracers of previous merger history, and provide insight into the formation processes of elliptical galaxies. In order to better understand the relationship between a galaxy's local environment and its x-ray emitting hot gas corona, we examine the x-ray emission from 117 early type galaxies selected from SDSS DR12 that have been observed with Chandra's ACIS detector. We have developed a new methodology for determining the effective and Petrosian radii of the x-ray emission from the hot coronae of these galaxies, and with it find a positive correlation between fifth nearest neighbour density and corona size. Notably, we do not see a corresponding correlation between size and other galaxy properties such as mass, r-band Petrosian radius, and metallicity. These results suggest that the physical processes that drive the extension of the hot gas halo do not significantly influence the stellar content of the elliptical galaxy.

  7. Embryo impacts and gas giant mergers - II. Diversity of hot Jupiters' internal structure

    Science.gov (United States)

    Liu, Shang-Fei; Agnor, Craig B.; Lin, D. N. C.; Li, Shu-Lin

    2015-01-01

    We consider the origin of compact, short-period, Jupiter-mass planets. We propose that their diverse structure is caused by giant impacts of embryos and super-Earths or mergers with other gas giants during the formation and evolution of these hot Jupiters. Through a series of numerical simulations, we show that typical head-on collisions generally lead to total coalescence of impinging gas giants. Although extremely energetic collisions can disintegrate the envelope of gas giants, these events seldom occur. During oblique and moderately energetic collisions, the merger products retain higher fraction of the colliders' cores than their envelopes. They can also deposit considerable amount of spin angular momentum to the gas giants and desynchronize their spins from their orbital mean motion. We find that the oblateness of gas giants can be used to infer the impact history. Subsequent dissipation of stellar tide inside the planets' envelope can lead to runaway inflation and potentially a substantial loss of gas through Roche lobe overflow. The impact of super-Earths on parabolic orbits can also enlarge gas giant planets' envelope and elevates their tidal dissipation rate over ˜100 Myr time scale. Since giant impacts occur stochastically with a range of impactor sizes and energies, their diverse outcomes may account for the dispersion in the mass-radius relationship of hot Jupiters.

  8. CRADA opportunities with METC`s gasification and hot gas cleanup facility

    Energy Technology Data Exchange (ETDEWEB)

    Galloway, E.N.; Rockey, J.M.; Tucker, M.S.

    1995-06-01

    Opportunities exist for Cooperative Research and Development Agreements (CRADA) at the Morgantown Energy Technology Center (METC) to support commercialization of IGCC power systems. METC operates an integrated gasifier and hot gas cleanup facility for the development of gasification and hot gas cleanup technologies. The objective of our program is to gather performance data on gasifier operation, particulate removal, desulfurization and regeneration technologies. Additionally, slip streams are provided for developing various technologies such as; alkali monitoring, particulate measuring, chloride removal, and contaminate recovery processes. METC`s 10-inch diameter air blown Fluid Bed Gasifier (FBG) provides 300 lb/hr of coal gas at 1100{degrees}F and 425 psig. The particulate laden gas is transported to METC`s Modular Gas Cleanup Rig (MGCR). The gas pressure is reduced to 285 psig before being fed into a candle filter vessel. The candle filter vessel houses four candle filters and multiple test coupons. The particulate free gas is then desulfurized in a sorbent reactor. Starting in 1996 the MGCR system will be able to regenerate the sorbent in the same vessel.

  9. PARTICLE TRANSPORTATION AND DEPOSITION IN HOT GAS FILTER VESSELS - A COMPUTATIONAL AND EXPERIMENTAL MODELING APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    Goodarz Ahmadi

    2002-07-01

    In this project, a computational modeling approach for analyzing flow and ash transport and deposition in filter vessels was developed. An Eulerian-Lagrangian formulation for studying hot-gas filtration process was established. The approach uses an Eulerian analysis of gas flows in the filter vessel, and makes use of the Lagrangian trajectory analysis for the particle transport and deposition. Particular attention was given to the Siemens-Westinghouse filter vessel at Power System Development Facility in Wilsonville in Alabama. Details of hot-gas flow in this tangential flow filter vessel are evaluated. The simulation results show that the rapidly rotation flow in the spacing between the shroud and the vessel refractory acts as cyclone that leads to the removal of a large fraction of the larger particles from the gas stream. Several alternate designs for the filter vessel are considered. These include a vessel with a short shroud, a filter vessel with no shroud and a vessel with a deflector plate. The hot-gas flow and particle transport and deposition in various vessels are evaluated. The deposition patterns in various vessels are compared. It is shown that certain filter vessel designs allow for the large particles to remain suspended in the gas stream and to deposit on the filters. The presence of the larger particles in the filter cake leads to lower mechanical strength thus allowing for the back-pulse process to more easily remove the filter cake. A laboratory-scale filter vessel for testing the cold flow condition was designed and fabricated. A laser-based flow visualization technique is used and the gas flow condition in the laboratory-scale vessel was experimental studied. A computer model for the experimental vessel was also developed and the gas flow and particle transport patterns are evaluated.

  10. Increased capability gas generator for Space Shuttle APU. Development/hot restart test report

    Science.gov (United States)

    1980-01-01

    The design, fabrication, and testing of an increased capability gas generator for use in space shuttles are described. Results show an unlimited hot restart capability in the range of feed pressures from 400 psi to 80 psi. Effects of vacuum on hot restart were not addressed, and only beginning-of-life bed conditions were tested. No starts with bubbles were performed. A minimum expected life of 35 hours or more is projected, and the design will maintain a surface temperature of 350 F or more.

  11. Removal of nitrogen compounds from gasification gas by selective catalytic or non-catalytic oxidation; Typpiyhdisteiden poisto kaasutuskaasusta selektiivisellae katalyyttisellae ja ei-katalyyttisellae hapetuksella

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-01

    In gasification reactive nitrogenous compounds are formed from fuel nitrogen, which may form nitrogen oxides in gas combustion. In fluidized bed gasification the most important nitrogenous compound is ammonia (NH{sub 3}). If ammonia could be decomposed to N{sub 2} already before combustion, the emissions if nitrogen oxides could be reduced significantly. One way of increasing the decomposition rate of NH{sub 3} could be the addition of suitable reactants to the gas, which would react with NH{sub 3} and produce N{sub 2}. The aim of this research is to create basic information, which can be used to develop a new method for removal of nitrogen compounds from gasification gas. The reactions of nitrogen compounds and added reactants are studied in reductive atmosphere in order to find conditions, in which nitrogen compounds can be oxidized selectively to N{sub 2}. The project consists of following subtasks: (1) Selective non-catalytic oxidation (SNCO): Reactions of nitrogen compounds and oxidizers in the gas phase, (2) Selective catalytic oxidation (SCO): Reactions of nitrogen compounds and oxidizers on catalytically active surfaces, (3) Kinetic modelling of experimental results in co-operation with the Combustion Chemistry Research Group of Aabo Akademi University. The most important finding has been that NH{sub 3} can be made to react selectively with the oxidizers even in the presence of large amounts of CO and H{sub 2}. Aluminium oxides were found to be the most effective materials promoting selectivity. (author)

  12. Hot gas and magnetic arms of NGC 6946: indications for reconnection heating?

    CERN Document Server

    Wezgowiec, M; Beck, R

    2016-01-01

    The grand-design face-on spiral galaxy NGC6946 is remarkable because of its high star formation activity, the massive northern spiral arm, and the magnetic arms, which are observed in polarized radio synchrotron emission and are located between the optical arms and possibly are magnetic reconnection regions. X-ray observations of NGC6946 performed with XMM-Newton were used to study the emission from X-ray point sources and diffuse hot gas, including the magnetic arms and the halo. Spectral fitting of the diffuse X-ray emission allowed us to derive temperatures of the hot gas. With assumptions about the emission volume, this allowed us to estimate gas densities, masses, and cooling times. To explain the X-ray emission from the spiral arms of NGC6946 two-temperature plasma models are needed to account for the disk and halo emission. The interarm regions show only one thermal component. We observe that the temperature of the hot gas in and above the magnetic arm regions increases slightly when compared to the av...

  13. Investigation of a catalytic gas generator for the Space Shuttle APU. [hydrazine Auxiliary Propulsion Unit

    Science.gov (United States)

    Emmons, D. L.; Huxtable, D. D.; Blevins, D. R.

    1974-01-01

    An investigation was conducted to establish the capability of a monopropellant hydrazine catalytic gas generator to meet the requirements specified for the Space Shuttle APU. Detailed analytical and experimental studies were conducted on potential problem areas including long-term nitriding effects on materials, design variables affecting catalyst life, vehicle vibration effects, and catalyst oxidation/contamination. A full-scale gas generator, designed to operate at a chamber pressure of 750 psia and a flow rate of 0.36 lbm/sec, was fabricated and subjected to three separate life test series. The objective of the first test series was to demonstrate the capability of the gas generator to successfully complete 20 simulated Space Shuttle missions in steady-state operation. The gas generator was then refurbished and subjected to a second series of tests to demonstrate the pulse-mode capability of the gas generator during 20 simulated missions. The third series of tests was conducted with a refurbished reactor to further demonstrate pulse-mode capability with a modified catalyst bed.

  14. Solar heating, cooling and domestic hot water system installed at Columbia Gas System Service Corporation, Columbus, Ohio

    Science.gov (United States)

    1980-01-01

    The solar energy system installed in the building has 2,978 sq ft of single axis tracking, concentrating collectors and provides solar energy for space heating, space cooling and domestic hot water. A 1,200,000 Btu/hour water tube gas boiler provides hot water for space heating. Space cooling is provided by a 100 ton hot water fired absorption chiller. Domestic hot water heating is provided by a 50 gallon natural gas domestic storage water heater. Extracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  15. Design and Experimentation with Sandwich Microstructure for Catalytic Combustion-Type Gas Sensors

    Directory of Open Access Journals (Sweden)

    Jun-Tao Gu

    2014-03-01

    Full Text Available The traditional handmade catalytic combustion gas sensor has some problems such as a pairing difficulty, poor consistency, high power consumption, and not being interchangeable. To address these issues, integrated double catalytic combustion of alcohol gas sensor was designed and manufactured using silicon micro-electro-mechanical systems (MEMS technology. The temperature field of the sensor is analyzed using the ANSYS finite element analysis method. In this work, the silicon oxide-PECVD-oxidation technique is used to manufacture a SiO2-Si3N2-SiO2 microstructure carrier with a sandwich structure, while wet etching silicon is used to form a beam structure to reduce the heat consumption. Thin-film technology is adopted to manufacture the platinum-film sensitive resistance. Nano Al2O3-ZrO-ThO is coated to format the sensor carrier, and the sensitive unit is dipped in a Pt-Pd catalyst solution to form the catalytic sensitive bridge arm. Meanwhile the uncoated catalyst carrier is considered as the reference unit, realizing an integrated chip based on a micro double bridge and forming sensors. The lines of the Pt thin-film resistance have been observed with an electronic microscope. The compensation of the sensitive material carriers and compensation materials have been analyzed using an energy spectrum. The results show that the alcohol sensor can detect a volume fraction between 0 and 4,500 × 10−6 and has good linear output characteristic. The temperature ranges from −20 to +40 °C. The humidity ranges from 30% to 85% RH. The zero output of the sensor is less than ±2.0% FS. The power consumption is ≤0.2 W, and both the response and recovery time are approximately 20 s.

  16. Supernova Feedback and the Hot Gas Filling Fraction of the Interstellar Medium

    CERN Document Server

    Li, Miao; Cen, Renyue; Bryan, Greg L; Naab, Thorsten

    2015-01-01

    Supernovae are the most energetic among stellar feedback processes, and are crucial for regulating the interstellar medium (ISM) and launching galactic winds. We explore how supernova remnants (SNRs) create a multiphase medium by performing high resolution, 3D hydrodynamical simulations at various SN rates, $S$, and ISM average densities, $n$. We find that the evolution of a SNR in a self-consistently generated three-phase ISM is qualitatively different from that in a uniform or a two-phase warm/cold medium. By traveling faster and further in the cooling-inefficient hot phase, the spatial-temporal domain of a SNR is enlarged by $>10^{2.5}$ in a hot-dominated multiphase medium (HDMM) compared to the uniform case. We then examine the resultant ISM as we vary $n$ and $S$, finding that a steady state can only be achieved when the hot gas volume fraction \\fvh $\\lesssim 0.6\\pm 0.1$. Above that, overlapping SNRs render connecting topology of the hot gas, and such a HDMM is subjected to thermal runaway with growing p...

  17. Application of energy and exergy analysis to increase efficiency of a hot water gas fired boiler

    Directory of Open Access Journals (Sweden)

    Todorović Milena N.

    2014-01-01

    Full Text Available In engineering practice exergy can be used for technical and economic optimization of energy conversion processes. The problem of increasing energy consumption suggests that heating plants, i.e. hot water boilers, as energy suppliers for household heating should be subjected to exergy and energy analysis. Heating plants are typically designed to meet energy demands, without the distinguished difference between quality and quantity of the produced heat. In this paper, the energy and exergy analysis of a gas fired hot water boiler is conducted. Energy analysis gives only quantitative results, while exergy analysis provides an insight into the actually available useful energy with respect to the system environment. In this paper, a hot water boiler was decomposed into control volumes with respect to its functional components. Energy and exergy of the created physical model of the hot water boiler is performed and destruction of exergy and energy loss in each of the components is calculated. The paper describes the current state of energy and exergy efficiency of the hot water boiler. The obtained results are analyzed and used to investigate possibilities for improvement of availability and reliability of the boiler. A comparison between the actual and the proposed more reliable solution is made.

  18. Mapping the Physical Properties of Cosmic Hot Gas with Hyper-spectral Imaging

    CERN Document Server

    O'Dwyer, M; Raychaudhuri, S; Dwyer, Mark O'; Ponman, Trevor; Raychaudhury, Ela Claridge & Somak

    2005-01-01

    A novel inversion technique is proposed to compute parametric maps showing the temperature, density and chemical composition of cosmic hot gas from X-ray hyper-spectral images. The parameters are recovered by constructing a unique non-linear mapping derived by combining a physics-based modelling of the X-ray spectrum with the selection of optimal bandpass filters. Preliminary results and analysis are presented.

  19. Kinetic and Phase Behaviors of Catalytic Cracking Dry Gas Hydrate in Water-in-Oil Emulsion

    Institute of Scientific and Technical Information of China (English)

    MA Qinglan; HUANG Qiang; CHEN Guangjin; WANG Xiulin; SUN Changyu; YANG Lanying

    2013-01-01

    The systematic experimental studies were performed on the hydrate formation kinetics and gas-hydrate equilibrium for a simulated catalytic cracking gas in the water-in-oil emulsion.The effect of temperature,pressure and initial gas-liquid ratio on the hydrate formation was studied,respectively.The data were obtained at pressures ranging from 3.5 to 5 MPa and temperatures from 274.15 to 277.15 K.The results showed that hydrogen and methane can be separated from the C2+ fraction by forming hydrate at around 273.15 K which is much higher temperature than that of the cryogenic separation method,and the hydrate formation rate can be enhanced in the water-in-oil emulsion compared to pure water.The experiments provided the basic data for designing the industrial process,and setting the suitable operational conditions.The measured data of gas-hydrate equilibria were compared with the predictions by using the Chen-Guo hydrate thermodynamic model.

  20. GARROTXA cosmological simulations of Milky Way like galaxies - I. Hot gas and the missing baryons

    CERN Document Server

    Roca-Fàbrega, Santi; Colín, Pedro; Figueras, Francesca; Krongold, Yair; Velázquez, Héctor

    2015-01-01

    We introduce a new set of simulations of a Milky Way like galaxy using the AMR code ART + hydrodynamics in a $\\Lambda$CDM cosmogony. The simulation series is named GARROTXA and follow the formation of a late type galaxy from z=60 with a final virial mass of \\sim$7.4$\\times$10$^{11}$M$_{\\odot}$. This system has no major mergers since z=3 and at z=0 becomes a disk late-type spiral galaxy. Several of its large scale properties fall inside recent observational limits of our Galaxy, like the rotation curve shape, the presence of a stellar bar and flare, and a gaseous disk warp, as well as the stellar and baryonic mass. Here, as a first scientific exploitation of the model we study the total amount and spatial distribution of hot X-ray luminous gas. We do not observe in our models a significant presence of a hot gas thick disk as has been recently discussed in observational studies. The analysis of hot gas mock observations (column density and emission measure) revealed that commonly used hypothesis assumed to deri...

  1. FIR Spectroscopy of the Galactic Center: Hot and Warm Molecular Gas

    Science.gov (United States)

    Goicoechea, Javier R.; Etxaluze, Mireya; Cernicharo, José; Gerin, Maryvonne; Pety, Jerome

    2017-01-01

    The angular resolution (~10'') achieved by the Herschel Space Observatory ~3.5 m telescope at FIR wavelengths allowed us to roughly separate the emission toward the inner parsec of the galaxy (the central cavity) from that of the surrounding circumnuclear disk (the CND). The FIR spectrum toward Sgr A* is dominated by intense [O III], [O I], [C II], [N III], [N II], and [C I] fine-structure lines (in decreasing order of luminosity) arising in gas irradiated by the strong UV field from the central stellar cluster. The high-J CO rotational line intensities observed at the interface between the inner CND and the central cavity are consistent with a hot isothermal component at T k ~ 103.1 K and n(H2)~ 104 cm-3. They are also consistent with a distribution of lower temperatures at higher gas density, with most CO at T k~300 K. The hot CO component (either the bulk of the CO column density or just a small fraction depending on the above scenario) likely results from a combination of UV and shock-driven heating. If UV-irradiated and heated dense clumps do not exist, shocks likely dominate the heating of the hot molecular gas component. Although this component is beam diluted in our FIR observations, it may be resolved at much higher angular resolution. An ALMA project using different molecular tracers to characterize UV-irradiated shocks in the innermost layers of the CND is ongoing.

  2. Redistributing hot gas around galaxies: do cool clouds signal a solution to the overcooling problem?

    CERN Document Server

    Kaufmann, Tobias; Maller, Ariyeh H; Fang, Taotao; Wadsley, James

    2008-01-01

    We present a pair of high-resolution smoothed particle hydrodynamics (SPH) simulations that explore the evolution and cooling behavior of hot gas around Milky-Way size galaxies. The simulations contain the same total baryonic mass and are identical other than their initial gas density distributions. The first is initialised with a low entropy hot gas halo that traces the cuspy profile of the dark matter, and the second is initialised with a high-entropy hot halo with a cored density profile as might be expected in models with pre-heating feedback. Galaxy formation proceeds in dramatically different fashion depending on the initial setup. While the low-entropy halo cools rapidly, primarily from the central region, the high-entropy halo is quasi-stable for ~4 Gyr and eventually cools via the fragmentation and infall of clouds from ~100 kpc distances. The low-entropy halo's X-ray surface brightness is ~100 times brighter than current limits and the resultant disc galaxy contains more than half of the system's ba...

  3. Heating of X-Ray Hot Gas in Groups by Blast Waves

    CERN Document Server

    Fujita, Y

    2001-01-01

    In order to find the conditions which determine whether X-Ray hot gas in galaxy groups (intragroup gas; IGG) is heated externally or internally, we investigate the evolution of blast waves in galaxy groups growing on a hierarchical clustering scenario. We find that the blast waves driven by quasars are confined in groups and heat the IGG internally at z~ 1, they expel the IGG from groups; the expelled gas may fall back into the groups later as externally heated gas. Moreover, this may explain the observed low metal abundance of IGG. For blast waves driven by strong starbursts, the shift of the fate of blast waves occurs at z~ 3. On the other hand, although blast waves driven by weak starbursts do not expel IGG from groups, the heating efficiency decreases at z>~ 3 because of radiative cooling. It will be useful to compare these results with XMM-Newton observations.

  4. In bed and downstream hot gas desulphurization during solid fuel gasification: A review

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xiangmei; de Jong, Wiebren; Pal, Ranadeep; Verkooijen, Adrian H.M. [Faculty of Mechanical, Maritime and Materials Engineering, Process and Energy Department, Energy Technology Section, Delft University of Technology, Leeghwaterstraat 44, 2628 CA, Delft (Netherlands)

    2010-08-15

    Syngas produced by gasification process of biomass fuels is an environmental friendly alternative to conventional petrochemical fuels for the production of electricity, hydrogen, synthetic transportation biofuels and other chemicals. However, the advanced utilization of syngas is significantly limited due to the contaminants which can seriously deactivate the catalysts used for downstream reaction such as steam reforming methane, Fischer-Tropsch synthesis and corrosion of downstream equipments such as a gas turbine. Among the contaminants, sulphur compounds produced in the gasification process, which are mainly H{sub 2}S with small amounts of COS, CS{sub 2} and thiophenes depending on process conditions, must be removed. For biomass feedstock advances are required in the cleanup technologies and processes to upgrade the raw product gas with minimal impact on the overall process efficiency. Hot gas desulphurization (HGD) can improve the overall thermal efficiency due to the elimination of fuel gas cooling and associated heat exchangers. With this aim, the present review paper highlights currently developed methods used for desulphurization of hot gas produced from gasification process of solid fuels. The methods presented here are for both in situ and downstream sulphur capture. Also, the attention is paid to the regeneration of the used materials. In situ sulphur capture is mainly done by using calcium-based sorbents such as limestone and dolomite, whereas downstream sulphur capture is mainly focused on the use of regenerable single, mixed, and supported metal oxides. A comparison is indicated at the end to show the sulphur loading of various materials. (author)

  5. Development of regenerable copper-based sorbents for hot gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Slimane, R.B.; Hill, A.H. [Inst. of Gas Technology, Des Plaines, IL (United States); Honea, F.I. [Illinois Clean Coal Inst., Carbondale, IL (United States)

    1996-12-31

    The implementation of hot gas cleanup systems heavily depends on the development of regenerable sorbents for removal of sulfur-containing species (mainly H{sub 2}S) from the fuel gas stream at elevated temperatures (i.e., >350 C) from levels of several thousand ppm down to a few ppm, over many sulfidation/regeneration cycles. In addition, these sorbents must have high sulfur capacity, good sulfidation kinetics, good mechanical strength, and good chemical and structural stability over multicycle testing. Zinc-based sorbents, such as zinc titanates, are the leading contenders for hot gas desulfurization. However, these sorbents have been shown to suffer from zinc volatilization at elevated temperatures, resulting in sorbent deterioration and losses through attrition, loss of reactivity, leading to increasing sorbent replacement costs and overall cost of electricity. Copper-based sorbents do not suffer from volatilization problems due to the high melting point of the metal. However, bulk copper oxide is easily reduced to elemental copper in a reducing fuel gas environment, which in turn results in insufficient level of desulfurization. Fortunately, the sorbent desulfurization performance can be greatly enhanced by combining copper oxide with other oxides to minimize or prevent sorbent reduction during the sulfidation stage. This paper reports on research conducted to-date on the development of copper-based sorbents for hot coal gas desulfurization. The results of packed-bed experiments carried out for the determination of optimum operating conditions and for the evaluation of the long-term durability and regenerability of selected copper chromite sorbents are presented and discussed.

  6. Design, develop, and manufacture process gas lubricated hot recycle gas circulators. Final technical report, MTI--77TR5

    Energy Technology Data Exchange (ETDEWEB)

    Dominy, D.G.; Hurley, J.D.

    1976-10-01

    In the SYNTHANE coal gasification process raw product gas of approximately 35 mole % methane is passed through a methanator which increases the methane content (and heating value) to approximately 86 mole % methane. The reaction is highly exothermic. In order to limit the temperature rise of the reaction, high BTU methane process gas is diluted with raw product gas. A pressure increase is necessary to force the mixed gases back into the methanator. In addition, varying recycle ratios affect the total flow of the gas stream necessitating a compressor or other device to operate at varying flow capacities. The present hot gas recycle methanator system utilized an eductor to mix and raise the pressure of the product gas. This method has limitations. The pressure rise is small, in the order of 1/2 psig, and the eductor does not allow proper mixing pressures and temperatures if the flow conditions are changed. An eductor is useful for this purpose only in a pilot plant and represents an expedient solution to the problem. For commercial use a compressor is essential.

  7. Hot wire chemical vapor deposition chemistry in the gas phase and on the catalyst surface with organosilicon compounds.

    Science.gov (United States)

    Shi, Yujun

    2015-02-17

    CONSPECTUS: Hot wire chemical vapor deposition (HWCVD), also referred to as catalytic CVD (Cat-CVD), has been used to produce Si-containing thin films, nanomaterials, and functional polymer coatings that have found wide applications in microelectronic and photovoltaic devices, in automobiles, and in biotechnology. The success of HWCVD is largely due to its various advantages, including high deposition rate, low substrate temperatures, lack of plasma-induced damage, and large-area uniformity. Film growth in HWCVD is induced by reactive species generated from primary decomposition on the metal wire or from secondary reactions in the gas phase. In order to achieve a rational and efficient optimization of the process, it is essential to identify the reactive species and to understand the chemical kinetics that govern the production of these precursor species for film growth. In this Account, we report recent progress in unraveling the complex gas-phase reaction chemistry in the HWCVD growth of silicon carbide thin films using organosilicon compounds as single-source precursors. We have demonstrated that laser ionization mass spectrometry is a powerful diagnostic tool for studying the gas-phase reaction chemistry when combined with the methods of isotope labeling and chemical trapping. The four methyl-substituted silane molecules, belonging to open-chain alkylsilanes, dissociatively adsorb on W and Ta filaments to produce methyl radical and H2 molecule. Under the typical deposition pressures, with increasing number of methyl substitution, the dominant chemistry occurring in the gas phase switches from silylene/silene reactions to free-radical short chain reactions. This change in dominant reaction intermediates from silylene/silene to methyl radicals explains the observation from thin film deposition that silicon carbide films become more C-rich with a decreasing number of Si-H bonds in the four precursor molecules. In the case of cyclic monosilacyclobutanes, we have

  8. Selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-31

    In the combustion of fossil fuels, the principal source of nitrogen oxides is nitrogen bound in the fuel structure. In gasification, a large part of fuel nitrogen forms NH{sub 3}, which may form nitrogen oxides during gas combustion. If NH{sub 3} and other nitrogen species could be removed from hot gas, the NO emission could be considerably reduced. However, relatively little attention has been paid to finding new means of removing nitrogen compounds from the hot gasification gas. The possibility of selectively oxidizing NH{sub 3} to N{sub 2} in the hot gasification has been studied at VTT Energy. The largest NH{sub 3} reductions have been achieved by catalytic oxidation on aluminium oxides. (author) (4 refs.)

  9. {sup 18}O{sub 2} label mechanism of sulfur generation and characterization in properties over mesoporous Sm-based sorbents for hot coal gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Liu, B.S., E-mail: bingsiliu@tju.edu.cn [Department of Chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Wan, Z.Y.; Wang, F.; Zhan, Y.P. [Department of Chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Tian, M.; Cheung, A.S.C. [Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2014-02-01

    Graphical abstract: - Highlights: • Formation of sulfur originated from catalytic action of samarium oxysulfide. • Mechanism of sulfur desorption was first confirmed via time of flight MS. • Utilization of mesoporous Sm-based sorbents was favorable for diffusion of H{sub 2}S. • Stability of Sm-based sorbent correlated with reasonable regeneration procedure. - Abstract: Using a sol–gel method, SmMeO{sub x}/MCM-41 or SBA-15 (Me = Fe, Co and Zn) and corresponding unsupported sorbents were prepared. The desulfurization performance of these sorbents was evaluated over a fixed-bed reactor and the effects of reaction temperature, feed and sorbent composition on desulfurization performance were studied. Samarium-based sorbents used to remove H{sub 2}S from hot coal gas were reported for the first time. The results of successive sulfidation/regeneration cycles revealed that SmFeO{sub 3}/SBA-15 sorbent was suitable for desulfurization of hot coal gas in the chemical industry. The formation of elemental sulfur during both sulfidation and regeneration processes depended strongly on the catalytic action of Sm{sub 2}O{sub 2}S species, which was confirmed for the first time via high sensitive time of flight mass spectrometer (TOF-MS) using 6%vol{sup 18}O{sub 2}/Ar regeneration gas and can reduce markedly procedural complexity. The sorbents were characterized using N{sub 2}-adsorption, high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), temperature-programmed reduction of H{sub 2} (H{sub 2}-TPR), thermogravimetry (TG) and time-of-flight mass spectrometry (TOF-MS) techniques.

  10. Unraveling the complex chemistry using dimethylsilane as a precursor gas in hot wire chemical vapor deposition.

    Science.gov (United States)

    Toukabri, Rim; Shi, Yujun

    2014-05-07

    The gas-phase reaction chemistry when using dimethylsilane (DMS) as a source gas in a hot-wire chemical vapor deposition (CVD) process has been studied in this work. The complex chemistry is unraveled by using a soft 10.5 eV single photon ionization technique coupled with time-of-flight mass spectrometry in combination with the isotope labelling and chemical trapping methods. It has been demonstrated that both free-radical reactions and those involving silylene/silene intermediates are important. The reaction chemistry is characterized by the formation of 1,1,2,2-tetramethyldisilane (TMDS) from dimethylsilylene insertion into the Si-H bond of DMS, trimethylsilane (TriMS) from free-radical recombination, and 1,3-dimethyl-1,3-disilacyclobutane (DMDSCB) from the self dimerization of either dimethylsilylene or 1-methylsilene. At low filament temperatures and short reaction time, silylene chemistry dominates. The free-radical reactions become more important with increasing temperature and time. The same three products have been detected when using tantalum and tungsten filaments, indicating that changing the filament material from Ta to W does not affect much the gas-phase reaction chemistry when using DMS as a source gas in a hot-wire CVD reactor.

  11. Infrared Observations of Hot Gas and Cold Ice Toward the Low Mass Protostar Elias 29

    Science.gov (United States)

    Boogert, A. C. A.; Tielens, A. G. G. M.; Ceccarelli, C.; Boonman, A. M. S.; vanDishoeck, E. F.; Keane, J. V.; Whittet, D. C. B.; deGraauw, T.

    2000-01-01

    We have obtained the full 1-200 micrometer spectrum of the low luminosity (36 solar luminosity Class I protostar Elias 29 in the rho Ophiuchi molecular cloud. It provides a unique opportunity to study the origin and evolution of interstellar ice and the interrelationship of interstellar ice and hot core gases around low mass protostars. We see abundant hot CO and H2O gas, as well as the absorption bands of CO, CO2, H2O and "6.85 micrometer" ices. We compare the abundances and physical conditions of the gas and ices toward Elias 29 with the conditions around several well studied luminous, high mass protostars. The high gas temperature and gas/solid ratios resemble those of relatively evolved high mass objects (e.g. GL 2591). However, none of the ice band profiles shows evidence for significant thermal processing, and in this respect Elias 29 resembles the least evolved luminous protostars, such as NGC 7538 : IRS9. Thus we conclude that the heating of the envelope of the low mass object Elias 29 is qualitatively different from that of high mass protostars. This is possibly related to a different density gradient of the envelope or shielding of the ices in a circumstellar disk. This result is important for our understanding of the evolution of interstellar ices, and their relation to cometary ices.

  12. The Interaction of the Fermi Bubbles with the Milky Way's Hot Gas Halo

    CERN Document Server

    Miller, Matthew J

    2016-01-01

    The Fermi bubbles are two lobes filled with non-thermal particles that emit gamma rays, extend $\\approx$10 kpc vertically from the Galactic center, and formed from either nuclear star formation or accretion activity on Sgr A*. Simulations predict a range of shock strengths as the bubbles expand into the surrounding hot gas halo distribution ($T_{halo} \\approx 2 \\times 10^6$ K), but with significant uncertainties in the energetics, age, and thermal gas structure. The bubbles should contain thermal gas with temperatures between $10^6$ and $10^8$ K, with potential X-ray signatures. In this work, we constrain the bubbles' thermal gas structure by modeling the OVII and OVIII emission line strengths from archival XMM-Newton and Suzaku data. Our emission model includes a hot thermal volume-filled bubble component cospatial with the gamma-ray region, and a shell of compressed material. We find that a bubble/shell model with $n \\approx 1 \\times 10^{-3}$ cm$^{-3}$ and with log($T$) $\\approx$ 6.60-6.70 is consistent wit...

  13. A Technical and Economical Evaluation of CO2 Capture from Fluidized Catalytic Cracking (FCC Flue Gas

    Directory of Open Access Journals (Sweden)

    Digne Romina

    2014-11-01

    Full Text Available Environmental issues, related to greenhouse gas and among them CO2, are becoming short term challenges. Pressure on industries and therefore on refining to limit and manage CO2 emissions will be reinforced in next few years. Refining industry is responsible for about 2.7% of global CO2 emissions. Fluidized Catalytic Cracking unit (FCC, one of the main process in refining, represents by itself 20% of the refinery CO2 emissions. As FCC unit is present in half of the refining schemes, it is challenging to find technologies to manage its emissions. Based on an industrial case, the aims of the presented work are to determine if amine technology HiCapt+, developed for power plant, might be a relevant solution to manage FCC CO2 emissions and to evaluate the additional cost to be supported by refiners.

  14. Constraining the dynamical importance of hot gas and radiation pressure in quasar outflows using emission line ratios

    CERN Document Server

    Stern, Jonathan; Zakamska, Nadia L; Hennawi, Joseph F

    2015-01-01

    Quasar feedback models often predict an expanding hot gas bubble which drives a galaxy-scale outflow. In many circumstances the hot gas is predicted to radiate inefficiently, making the hot bubble hard to observe directly. We present an indirect method to detect the presence of a hot bubble using hydrostatic photoionization models of the cold (10^4 K) line-emitting gas. These models assume that the cold gas is in pressure equilibrium with either the hot gas pressure or with the radiation pressure, whichever is larger. We compare our models with observations of the broad line region (BLR), the inner face of the dusty torus, the narrow line region (NLR), and the extended NLR, and thus constrain the hot gas pressure over a dynamical range of 10^5 in radius, from 0.1 pc to 10 kpc. We find that the emission line ratios observed in the average quasar spectrum are consistent with radiation-pressure-dominated models on all scales. On scales > L_AGN/c inferred for galaxy-scale outflows in luminous quasars. This appare...

  15. HOT AND COLD GALACTIC GAS IN THE NGC 2563 GALAXY GROUP

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Jesper [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Bai, Xue-Ning [Department of Astrophysical Sciences, Peyton Hall, Princeton University, NJ 08544 (United States); Mulchaey, John S. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Van Gorkom, J. H.; Lee, Duane [Department of Astronomy, Columbia University, Mail Code 5246, 550 West 120th Street, New York, NY 10027 (United States); Jeltema, Tesla E. [UCO/Lick Observatories, 1156 High Street, Santa Cruz, CA 95064 (United States); Zabludoff, Ann I. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Wilcots, Eric [Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter St., Madison, WI 53706 (United States); Martini, Paul [Department of Astronomy, 4055 McPherson Laboratory, Ohio State University, 140 West 18th Avenue, Columbus, OH (United States); Roberts, Timothy P., E-mail: jr@dark-cosmology.dk [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2012-03-01

    The role of environmentally induced gas stripping in driving galaxy evolution in groups remains poorly understood. Here we present extensive Chandra and Very Large Array mosaic observations of the hot and cold interstellar medium within the members of the nearby, X-ray bright NGC 2563 group, a prime target for studies of the role of gas stripping and interactions in relatively small host halos. Our observations cover nearly all group members within a projected radius of 1.15 Mpc ({approx}1.4 R{sub vir}) of the group center, down to a limiting X-ray luminosity and H I mass of 3 Multiplication-Sign 10{sup 39} erg s{sup -1} and 2 Multiplication-Sign 10{sup 8} M{sub Sun }, respectively. The X-ray data are consistent with efficient ram pressure stripping of the hot gas halos of early-type galaxies near the group core, but no X-ray tails are seen and the limited statistics preclude strong conclusions. The H I results suggest moderate H I mass loss from the group members when compared to similar field galaxies. Six of the 20 H I-detected group members show H I evidence of ongoing interactions with other galaxies or with the intragroup medium. Suggestive evidence is further seen for galaxies with close neighbors in position-velocity space to show relatively low H I content, consistent with tidal removal of H I. The results thus indicate removal of both hot and cold gas from the group members via a combination of ram pressure stripping and tidal interactions. We also find that 16 of the 20 H I detections occur on one side of the group, reflecting an unusual morphological segregation whose origin remains unclear.

  16. Chandra Detects Halo Of Hot Gas Around Milky Way-Like Galaxy

    Science.gov (United States)

    2001-07-01

    The first unambiguous evidence for a giant halo of hot gas around a nearby, spiral galaxy much like our own Milky Way was found by astronomers using NASA's Chandra X-ray Observatory. This discovery may lead to a better understanding of our own Galaxy, as well the structure and evolution of galaxies in general. A team of astronomers, led by Professor Daniel Wang of the University of Massachusetts, Amherst, observed NGC 4631, a spiral galaxy approximately 25 million light years from Earth with both Chandra and NASA's Hubble Space Telescope. While previous X-ray satellites have detected extended X-ray emission from this and other spiral galaxies, because of Chandra's exceptional resolution this is the first time that astronomers were able to separate the individual X-ray sources from the diffuse halo. Chandra found the diffuse halo of X-ray gas to be radiating at a temperature of almost 3 million degrees and extending some 25,000 light years from the galactic plane. "Scientists have debated for over 40 years whether the Milky Way has an extended corona, or halo, of hot gas," said Wang, lead author of the paper which appeared this month in The Astrophysical Journal Letters. "Of course since we are within the Milky Way, we can't get outside and take a picture. However, by studying similar galaxies like NGC 4631, we can get an idea of what's going on within our own Galaxy." The Chandra image reveals a halo of hot gas that extends for approximately 25,000 light years above the disk of the galaxy. One important feature of the X-ray emission from NGC 4631 is that it closely resembles the overall size and shape seen in the radio emission from the galaxy. This indicates that there may be a close connection between the outflows of hot gas, seen in X-rays, and the galaxy's magnetic field, revealed by radio emission. The Hubble image of NGC 4631 shows filamentary, loop-like structures enclosing enhanced X-ray-emitting gas and emanating from regions of recent star formation in

  17. Hot gas ingestion characteristics and flow visualization of a vectored thrust STOVL concept

    Science.gov (United States)

    Johns, Albert L.; Neiner, George H.; Bencic, Timothy J.; Flood, Joseph D.; Amuedo, Kurt C.; Strock, Thomas W.; Williams, Ben R.

    1990-01-01

    The study presents results obtained at the compressor face of a 9.2-percent scale vectored thrust model in ground effects from Phases I and II of a test program to evaluate the hot ingestion phenomena and control techniques, and to conduct flow visualization of the model flowfield in and out of ground effects, respectively. A description of the model, facility, a new model support system, and a sheet laser illumination system are provided. The findings contain the compressor face pressure and temperature distortions, compressor face temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane temperature and pressure distributions, model airframe heating, and the location of the ground flow separation. Results from the sheet laser flow visualization test are also presented.

  18. Catalytic upgrading of gas from biofuels and implementation of electricity production

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P.; Hepola, J.; Heiskanen, K. [VTT Energy, Espoo (Finland)

    1997-10-01

    Kinetic modelling of tar model compound (benzene) reaction with CO{sub 2} over dolomite (Kalkkimaa dolomite) catalyst has been carried out. This modelling has been based mainly on results obtained in earlier project. However, some additional tests have been made to complete the data. The data obtained was fitted to four different Langmuir-Hinshelwood type of kinetic rate equations in order to find the best suited model for the reaction. The model that best described the data assumed single site benzene adsorption and non-dissociative CO{sub 2} adsorption. Kinetical modelling work was continued by studies considering steam reforming of tar. Reaction rates were measured with large excess of water to benzene then with stoichiometric ratio of water to benzene and in simulated gasification gas. Conditions free of external (film) and internal (pore) diffusion effects were used. Reactor was operated both in differential and integral modes. Preliminary modelling was carried out and kinetical parameters for simple first order reaction model were calculated. During the first half of the year complementary experiments concerning earlier studies on sulfur poisoning of nickel catalysts were carried out. The experiments were performed in fixed bed tube reactors and in a TPH-reactor of VTT. In addition, several analytical methods for determining the nature of adsorbed sulfur on the catalyst surface was used. During the other part of the year two complementary report drafts concerning sulfur poisoning of nickel catalysts at hot gas cleaning conditions of gasification gas were prepared. (orig.)

  19. Desulfurization of hot coal gas in fluidized bed with regenerable zinc titanate sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Mojtahedi, W.; Salo, K.; Abbasian, J. (Enviropower Inc., Espoo (Finland))

    1994-01-01

    Integrated gasification combined cycle (IGCC) power generation processes are considered to be among the most attractive technologies for the 21st century. In such processes, solid fuels such as coal are gasified at pressure and the fuel gas is cleaned and combusted in the gas turbine. The gas cleanup is necessary not only for the protection of the gas turbine hardware, but also to comply with environmental regulations. In the so-called 'simplified' IGCC process, the fuel gas is cleaned at high temperature and pressure to improve the overall cycle efficiency. The hot gas cleanup system includes a high-temperature, high-pressure desulfurization unit and particulate removal system. The former comprises two fluidized bed reactors utilizing regenerable zinc titanate sorbents capable of removing the sulfur gases (primarily H[sub 2]S) to below 50 ppmv. The latter employs rigid ceramic filter elements operating at up to 700[degree]C and 20 bar and is capable of reducing the 'fines' concentration to an acceptable level for a gas turbine. Novel regenerable zinc titanate sorbents suitable for fluidized-bed application have been tested. The sulfur capture and attrition characteristics of these sorbents have been evaluated in extensive testing in a bench-scale fluidized-bed reactor operating at high pressure and temperature conditions expected in IGCC operation. Two different gas mixtures representing air-blown gasifier exit gas with and without in-situ desulfurization with Ca-based sorbents have been used. H[sub 2]S removal efficiencies of higher than 99% at acceptable levels of sorbent conversion have been achieved in all these experiments with minimal sorbent deterioration. 4 refs., 7 figs., 1 tab.

  20. Initial phase hot corrosion mechanism of gas tunnel type plasma sprayed thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Yugeswaran, S. [Joining and Welding Research Institute, Osaka University, Osaka 567-0047 (Japan); Kobayashi, A., E-mail: kobayasi@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, Osaka 567-0047 (Japan); Ananthapadmanabhan, P.V. [L and PT Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2012-04-25

    Highlights: Black-Right-Pointing-Pointer Free standing TBC specimens were prepared by gas tunnel type plasma spraying with thickness of around 300-400 {mu}m. Black-Right-Pointing-Pointer 50%8YSZ + 50%La{sub 2}Zr{sub 2}O{sub 7} composite coating shows superior hot corrosion resistance. Black-Right-Pointing-Pointer Corrosive crystals structure and phase transformation was well controlled in this coating. - Abstract: The hot corrosion resistance of the top layer in TBC is one of the main constructive factors which determines the lifetime of the coatings under critical operating environments. In the present study, 8 wt% yttria stabilized zirconia (8YSZ), lanthanum zirconate (La{sub 2}Zr{sub 2}O{sub 7}) and equal weight percentage of its composite (50%8YSZ + 50% La{sub 2}Zr{sub 2}O{sub 7}) coatings were prepared by using gas tunnel type plasma spray torch at optimum spraying conditions. The hot corrosion performances of the above thermal barrier coatings were examined against 40 wt%V{sub 2}O{sub 5}-60 wt%Na{sub 2}SO{sub 4} corrosive ash at 1173 K for 5 h in open air atmosphere. After hot-corrosion testing, the coating surface was studied using a scanning electron microscope to observe the microstructure and X-ray diffraction techniques were used to identify the phase compositions. The results showed that LaVO{sub 4} and YVO{sub 4} are the main hot corrosion products along with the ZrO{sub 2} phase transformation from tetragonal to monoclinic phases in La{sub 2}Zr{sub 2}O{sub 7} and 8YSZ coatings respectively. The microstructure and phase formation mechanism of the hot corrosion products varied with each coating and among these, composition of 50%8YSZ + 50%La{sub 2}Zr{sub 2}O{sub 7} coating exhibited least degradation against V{sub 2}O{sub 5}-Na{sub 2}SO{sub 4} corrosive environment compared to the other coatings.

  1. Hot and Cold Galactic Gas in the NGC 2563 Galaxy Group

    CERN Document Server

    Rasmussen, Jesper; Mulchaey, John S; van Gorkom, J H; Jeltema, Tesla E; Zabludoff, Ann I; Wilcots, Eric; Martini, Paul; Lee, Duane; Roberts, Timothy P

    2012-01-01

    The role of environmentally induced gas stripping in driving galaxy evolution in groups remains poorly understood. Here we present extensive Chandra and Very Large Array mosaic observations of the hot and cold interstellar medium within the members of the nearby, X-ray bright NGC 2563 group, a prime target for studies of the role of gas stripping and interactions in relatively small host halos. Our observations cover nearly all group members within a projected radius of 1.15 Mpc (~1.4 R_vir) of the group center, down to a limiting X-ray luminosity and HI mass of 3e39 erg/s and 2e8 M_sun, respectively. The X-ray data are consistent with efficient ram pressure stripping of the hot gas halos of early-type galaxies near the group core, but no X-ray tails are seen and the limited statistics preclude strong conclusions. The HI results suggest moderate HI mass loss from the group members when compared to similar field galaxies. Six of the 20 HI-detected group members show HI evidence of ongoing interactions with oth...

  2. Single-stage temperature-controllable water gas shift reactor with catalytic nickel plates

    Science.gov (United States)

    Park, Jin-Woo; Lee, Sung-Wook; Lee, Chun-Boo; Park, Jong-Soo; Lee, Dong-Wook; Kim, Sung-Hyun; Kim, Sung-Soo; Ryi, Shin-Kun

    2014-02-01

    In this study, a microstructured reactor with catalytic nickel plates is newly designed and developed for proper heat management in an exothermic water gas shift WGS reaction. The reactor is designed to increase the reactor capacity simply by numbering-up a set of a catalyst layers and heat exchanger layers. The WGS reactor is built up with two sets of a catalyst layers and heat exchanger layers. The performance of the reactor is verified by WGS testing with the variation of the furnace temperatures, gas hourly space velocity (GHSV) and coolant (N2) flow rate. At a GHSV of 10,000 h-1, CO conversion reaches the equilibrium value with a CH4 selectivity of ≤0.5% at the furnace temperature of ≥375 °C. At high GHSV (40,000 h-1), CO conversion decreases considerably because of the heat from the exothermic WGS reaction at a large reactants mass. By increasing the coolant flow rate, the heat from the WGS reaction is properly managed, leading an increase of the CO conversion to the equilibrium value at GHSV of 40,000 h-1.

  3. Non-intrusive measurement of hot gas temperature in a gas turbine engine

    Science.gov (United States)

    DeSilva, Upul P.; Claussen, Heiko; Yan, Michelle Xiaohong; Rosca, Justinian; Ulerich, Nancy H.

    2016-09-27

    A method and apparatus for operating a gas turbine engine including determining a temperature of a working gas at a predetermined axial location within the engine. An acoustic signal is encoded with a distinct signature defined by a set of predetermined frequencies transmitted as a non-broadband signal. Acoustic signals are transmitted from an acoustic transmitter located at a predetermined axial location along the flow path of the gas turbine engine. A received signal is compared to one or more transmitted signals to identify a similarity of the received signal to a transmitted signal to identify a transmission time for the received signal. A time-of-flight is determined for the signal and the time-of-flight for the signal is processed to determine a temperature in a region of the predetermined axial location.

  4. Fracture toughness of Si3N4 processed by gas pressure sintering and hot pressing

    Directory of Open Access Journals (Sweden)

    Cláudio V. Rocha

    2006-06-01

    Full Text Available This present work evaluates the influence of microstructure on the fracture toughness of two types of silicon nitride. The two microstructural types of silicon nitride were processed using the gas pressure sintering (GPS and hot pressing (HP pathways. The fracture toughness was measured using the Single Edge V-Notch Beam (SEVNB and Chevron Notch Beam (CNB methods. The results from both methods for the two forms were in close agreement (with a maximum variation of 5.8%; the K Ic of the material processed by HP was 35% higher than that of GPS and the grain length had a direct influence on the fracture toughness.

  5. Hot and Dense Hadron Gas (HG): A New Excluded-volume approach

    CERN Document Server

    Tiwari, S K

    2013-01-01

    We formulate a thermodynamically consistent equation of state (EOS), based on excluded-volume approach, for a hot, dense hadron gas (HG). We calculate various thermodynamical quantities of HG and various hadron ratios and compare our model results with the results of other excluded-volume models and experimental data. We also calculate various transport coefficients such as $\\eta/s$ etc. and compare them with other HG model results. Furthermore, we test the validity of our model in getting the rapidity spectra of various hadrons and the effect of flow on them is investigated by matching our predictions with the experimental data.

  6. Development of novel copper-based sorbents for hot-gas cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.

    1991-01-01

    The objective of this investigation is to evaluate several novel copper-based binary oxides for their suitability as regenerable sorbents for hot gas cleanup application in the temperature range of 650{degree} to 850{degree}C (1200{degree}--1550{degree}F). To achieve this objective, several novel copper-based binary oxide sorbents will be prepared. Experimental tests will be conducted at ambient pressure to determine the stability, sulfidation capacity, regenerability, and sulfidation kinetics of the novel sorbents. Tests will also be conducted at high pressure for the determination of the sulfidation reactivity, regenerability, and durability of the sorbents. The attrition characteristics of the sorbents will also be determined.

  7. Absorption signatures of warm-hot gas at low redshift: Broad Lyman-Alpha Absorbers

    CERN Document Server

    Tepper-García, Thorsten; Schaye, Joop; Booth, Craig M; Vecchia, Claudio Dalla; Theuns, Tom

    2012-01-01

    We investigate the physical state of HI absorbing gas at low redshift (z=0.25) using a subset of cosmological, hydrodynamic simulations from the OWLS project, focusing in particular on broad (b_HI > 40 km/s) Lyman-Alpha absorbers (BLAs), which are believed to originate in shock-heated gas in the Warm-Hot Intergalactic Medium (WHIM). Our fiducial model, which includes radiative cooling by heavy elements and feedback by supernovae and active galactic nuclei, predicts that by z=0.25 nearly 60 per cent of the gas mass ends up at densities and temperatures characteristic of the WHIM and we find that half of this fraction is due to outflows. The standard HI observables (distribution of HI column densities N_HI, distribution of Doppler parameters b_HI, b_HI - N_HI correlation) and the BLA line number density predicted by our simulations are in remarkably good agreement with observations. BLAs arise in gas that is hotter, more highly ionised and more enriched than the gas giving rise to typical Lyman-Alpha forest abs...

  8. Non-catalytic recuperative reformer

    Energy Technology Data Exchange (ETDEWEB)

    Khinkis, Mark J.; Kozlov, Aleksandr P.; Kurek, Harry

    2015-12-22

    A non-catalytic recuperative reformer has a flue gas flow path for conducting hot flue gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is embedded in the flue gas flow path to permit heat transfer from the hot flue gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, extended surfaces of metal material such as stainless steel or metal alloy that are high in nickel content are included within at least a portion of the reforming mixture flow path.

  9. Gas Engine-Driven Heat Pump Chiller for Air-Conditioning and Hot Water Supply Systems

    Science.gov (United States)

    Fujita, Toshihiko; Mita, Nobuhiro; Moriyama, Tadashi; Hoshino, Norimasa; Kimura, Yoshihisa

    In Part 1 of this study, the performance characteristics of a 457kW gas engine-driven heat pump (GHP) chiller have been obtained from a simulation model analysis for both cooling and heating modes and it has been found that the part-load characteristics of the GHP chiller are fairly well. On the back of Part 1, a computer simulation program has been developed for the evaluation of GHP chiller systems to compare with the other types of heat source systems for air-conditioning and hot water supply applications. The simulation program can be used to estimate annual energy consumption, annual CO2 emission, etc. of the systems with the data of monthly and hourly thermal loads on various buildings, outdoor air conditions, and characteristics of various components comprising the systems. By applying this to some cases of medium-scale hotel, office, shop, and hospital buildings, it has been found that the GHP chiller systems have advantages particularly in the cases of hotels and hospitals where a lot of hot water demand exists. It has also been found that the combination of a GHP chiller and a direct-fired absorption water chiller boiler (hot and chilled water generator) appears promising.

  10. Simulating the escaping atmospheres of hot gas planets in the solar neighborhood

    CERN Document Server

    Salz, M; Schneider, P C; Schmitt, J H M M

    2016-01-01

    Absorption of high-energy radiation in planetary thermospheres is believed to lead to the formation of planetary winds. The resulting mass-loss rates can affect the evolution, particularly of small gas planets. We present 1D, spherically symmetric hydrodynamic simulations of the escaping atmospheres of 18 hot gas planets in the solar neighborhood. Our sample only includes strongly irradiated planets, whose expanded atmospheres may be detectable via transit spectroscopy. The simulations were performed with the PLUTO-CLOUDY interface, which couples a detailed photoionization and plasma simulation code with a general MHD code. We study the thermospheric escape and derive improved estimates for the planetary mass-loss rates. Our simulations reproduce the temperature-pressure profile measured via sodium D absorption in HD 189733 b, but show unexplained differences in the case of HD 209458 b. In contrast to general assumptions, we find that the gravitationally more tightly bound thermospheres of massive and compact...

  11. A study on thermodynamical properties of hot and dense hadron gas using the event generator

    CERN Document Server

    Sasaki, N

    2001-01-01

    We investigate the equilibration and the equation of state of the hot hadron gas at finite baryon density using an event generator that satisfies detailed balance at temperatures and baryon densities of present interests (80 < T < 170 MeV, 0.157 < n_B < 0.315 fm^-3). Molecular-dynamic-simulations are performed to the system of hadrons in the box with periodic boundary conditions. Starting from an initial condition composed of nucleons with uniform momentum distribution, the evolution takes place through interactions, productions and absorptions. The system approaches to a stationary state of baryons, mesons and their resonances. The system is characterized by an exponent in the energy distribution irrespective of the particle species, i.e., temperature. After the equilibration, thermodynamical quantities such as energy density, particle density, entropy and pressure are calculated. Obtained equation of state shows a remarkable deviation from the mixed free gas of mesons and baryons above T = m_pi....

  12. Effect of the Concentration of a Combustible Gas on the Limiting Critical Conditions of Its Catalytic Oxidation

    Science.gov (United States)

    Kalinchak, V. V.; Chernenko, A. S.; Kalugin, V. V.

    2015-05-01

    For the case of the cold, relative to a gas mixture, walls of an apparatus and radiation heat transfer, an investigation is made of the dependence of the limiting minimum gas mixture temperatures above which catalytic self-ignition and firing of a low-concentration combustible gas on a catalyst particle are possible. The proposed method is based on obtaining the desired dependences in a parametric form. An analysis of the degeneration of critical temperatures and of ignition and extinction diameters is carried out.

  13. The role of catalytic nanoparticle pretreatment on the growth of vertically aligned carbon nanotubes by hot-filament chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Hwan; Gohier, Aurélien; Bourée, Jean Eric; Châtelet, Marc; Cojocaru, Costel-Sorin, E-mail: costel-sorin.cojocaru@polytechnique.edu

    2015-01-30

    The effect of atomic hydrogen assisted pre-treatment on the growth of vertically aligned carbon nanotubes using hot-filament chemical vapor deposition was investigated. Iron nanoparticle catalysts were formed on an aluminum oxide support layer by spraying of iron chloride salt solutions as catalyst precursor. It is found that pre-treatment time and process temperature tune the density as well as the shape and the structure of the grown carbon nanotubes. An optimum pre-treatment time can be found for the growth of long and well aligned carbon nanotubes, densely packed to each other. To provide insight on this behavior, the iron catalytic nanoparticles formed after the atomic hydrogen assisted pre-treatment were analyzed by atomic force microscopy. The relations between the size and the density of the as-formed catalyst and the as-grown carbon nanotube's structure and density are discussed. - Highlights: • Effect of the atomic hydrogen assisted pre-treatment on the growth of VACNT using hot-filament CVD. • Pre-treatment time and process temperature tune the density, the shape and the structure of the CNTs. • Correlations between size and density of the as-formed catalyst and the CNT’s structure and density. • Carbon nanotubes synthesized at low temperature down to 500 °C using spayed iron chloride salts. • Density of the CNT carpet adjusted by catalytic nanoparticle engineering.

  14. Investigation of austenitic alloys for advanced heat recovery and hot gas cleanup systems

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, R.W.; Ren, W.

    1996-06-01

    The objective of the research is to provide databases and design criteria to assist in the selection of optimum alloys for construction of components needed to contain process streams in advanced heat recovery and hot-gas cleanup systems. Typical components include: steam line piping and superheater tubing for low emission boilers (600 to 700{degrees}C), heat exchanger tubing for advanced steam cycles and topping cycle systems (650 to 800{degrees}C), foil materials for recuperators, on advanced turbine systems (700 to 750{degrees}C), and tubesheets for barrier filters, liners for piping, cyclones, and blowback system tubing for hot-gas cleanup systems (850 to 1000{degrees}C). The materials being examined fall into several classes, depending on which of the advanced heat recovery concepts is of concern. These classes include martensitic steels for service to 650{degrees}C, lean stainless steels and modified 25Cr-30Ni steels for service to 700{degrees}C, modified 25Cr-20Ni steels for service to 900{degrees}C, and high Ni-Cr-Fe or Ni-Cr-Co-Fe alloys for service to 1000{degrees}C.

  15. FIR Spectroscopy of the Galactic Center: Hot and Warm Molecular Gas

    CERN Document Server

    Goicoechea, J R; Cernicharo, J; Gerin, M; Pety, J

    2016-01-01

    The angular resolution (~10") achieved by the Herschel Space Observatory ~3.5m telescope at FIR wavelengths allowed us to roughly separate the emission toward the inner parsec of the galaxy (the central cavity) from that of the surrounding circumnuclear disk (the CND). The FIR spectrum toward SgrA* is dominated by intense [Oiii], [Oi], [Cii], [Niii], [Nii], and [Ci] fine-structure lines (in decreasing order of luminosity) arising in gas irradiated by the strong UV field from the central stellar cluster. The high-J CO rotational line intensities observed at the interface between the inner CND and the central cavity are consistent with a hot isothermal component at T~10^{3.1} K and n(H_2)~10^4 cm^{-3}. They are also consistent with a distribution of lower temperatures at higher gas density, with most CO at T~300 K. The hot CO component (either the bulk of the CO column density or just a small fraction depending on the above scenario) likely results from a combination of UV and shock-driven heating. Although thi...

  16. Water-gas shift reaction on CuO-ZnO catalysts: I. Structure and catalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Kalchev, M.G.; Andreev, A.A. [Institute of Catalysis, Sofia (Bulgaria); Zotov, N.S. [Institute of Applied Mineralogy, Sofia (Bulgaria)

    1995-11-01

    The physicochemical properties of CuO-ZnO samples with different CuO contents were investgated by a complex of physical methods: DSC, XPS, EPR, TPR, and XRD. The samples containing {approximately}25 wt % CuO exhibited a maximum catalytic activity in the water-gas shift reaction. The catalytic activity was attributed to copper ions aggregated on the highly dispersed and defective CuO surface and to an anion-modified ZnO surface. Aggregates of copper ions, formed on metal species and probably modified with hydroxyl and carbonate groups, were shown to play a decisive role in the catalytic activity of the samples containing more than 15 wt % CuO.

  17. Gas temperature measurements inside a hot wall chemical vapor synthesis reactor.

    Science.gov (United States)

    Notthoff, Christian; Schilling, Carolin; Winterer, Markus

    2012-11-01

    One key but complex parameter in the chemical vapor synthesis (CVS) of nanoparticles is the time temperature profile of the gas phase, which determines particle characteristics such as size (distribution), morphology, microstructure, crystal, and local structure. Relevant for the CVS process and for the corresponding particle characteristics is, however, not the T(t)-profile generated by an external energy source such as a hot wall or microwave reactor but the temperature of the gas carrying reactants and products (particles). Due to a complex feedback of the thermodynamic and chemical processes in the reaction volume with the external energy source, it is very difficult to predict the real gas phase temperature field from the externally applied T(t)-profile. Therefore, a measurement technique capable to determine the temperature distribution of the gas phase under process conditions is needed. In this contribution, we demonstrate with three proof of principle experiments the use of laser induced fluorescence thermometry to investigate the CVS process under realistic conditions.

  18. Gas temperature measurements inside a hot wall chemical vapor synthesis reactor

    Science.gov (United States)

    Notthoff, Christian; Schilling, Carolin; Winterer, Markus

    2012-11-01

    One key but complex parameter in the chemical vapor synthesis (CVS) of nanoparticles is the time temperature profile of the gas phase, which determines particle characteristics such as size (distribution), morphology, microstructure, crystal, and local structure. Relevant for the CVS process and for the corresponding particle characteristics is, however, not the T(t)-profile generated by an external energy source such as a hot wall or microwave reactor but the temperature of the gas carrying reactants and products (particles). Due to a complex feedback of the thermodynamic and chemical processes in the reaction volume with the external energy source, it is very difficult to predict the real gas phase temperature field from the externally applied T(t)-profile. Therefore, a measurement technique capable to determine the temperature distribution of the gas phase under process conditions is needed. In this contribution, we demonstrate with three proof of principle experiments the use of laser induced fluorescence thermometry to investigate the CVS process under realistic conditions.

  19. Catalytic Properties of Mesoporous Silica (FSM-16) for Beckmann Rearrangement of Cyclohexanone Oxime in Gas Phase

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, T. [Shinshu Univ, Nagano (Japan). Department of Chemistry and Material Engineering Facutly of Engineering; Nakajima, T. [Iiyama Electric Co. Ltd., Nagano (Japan); Mishima, S. [Shinshu Univ, Nagano (Japan). Cooperative Research Center

    1997-08-10

    Catalytic properties of FSM-16 (porous silica with the honeycomb structure of uniform mesopores) were investigated for Beckmann rearrangement of cyclohexanone oxime in gas phase at 523-623 K, and were compared with those of other typical solid acid catalysts. FSM-16 was found to be a long-life catalyst and exhibited higher conversion of the oxime than silica-alumina, H-ZSM-5, Na-ZSM-5, HX-zeolite, and {gamma}-alumina. Selectivity for {epsilon}-caprolactam of FSM-16 was 42-25%, which was lower than that of H-ZSM-5 (89%), silica-alumina (77%), and HX-zeolite (74%). The product composition given by FSM-16 was very similar to that by silica gel. FSM-16, which was impregnated with a solution of aluminum nitrate and then calcined at 823 K, exhibited a higher selectivity (54%) for {epsilon}-caprolactam than an original one. The activity of FSM-16 was remarkably decreased when the catalyst was calcined at 1073 K or above. However, the selectivity for {epsilon}-caprolactam scarcely changed. 10 refs., 4 figs., 1 tab.

  20. Biomass Catalytic Pyrolysis with Ni Based Catalyst to Produce Hydrogen Rich Gas

    Institute of Scientific and Technical Information of China (English)

    WANG Mingfeng; LIU Min; XU Xiwei; LI Bosong; ZHANG Qiang; JIAN Enchen

    2010-01-01

    Hydrogen rich gas was produced using rice husk as biomass material on the continuous biomass pyrolysis apparatus which consisted of continuous pyrolysis reactor and secondary catalytic cracking reactor. Ni based catalysts of different Ni/Al mass ratio and calcined temperature were prepared by impregnating method. The catalysts were characterized by X-ray diffraction (XRD),scan electron microscope (SEM) and FT-IR Spectrometer (FT-IR). Ni based catalyst showed good selectivity for H2 production from biomass. Catalysts prepared under different conditions had little influence on the yields of three states products when used at the same cracking temperature. Ni/Al mass ratio played an important role in products selectivity. However, the content of NiO increased further when Ni/Al mass ratio values reached 0.7 : 10, and the yield of H2 slightly increased. Hydrogen yield was greatly impacted by calcined temperature. Catalyst calcined at 550"C performed best. When the catalyst was calcined at high temperature, NiO in the catalyst transformed into NiAl2O4, and the acid site also changed, which caused the deactivation of the catalyst. The hydrogen yield increased with the cracking temperature. The highest stable yield of hydrogen was about 30% without increasing with the cracking temperature.

  1. Catalytic decomposition of ammonia in fuel gas produced in pilot-scale pressurized fluidized-bed gasifier

    Energy Technology Data Exchange (ETDEWEB)

    Mojtahedi, W.; Ylitalo, M.; Maunula, T.; Abbasian, J. [Enviropower Inc., Tampere (Finland)

    1995-12-01

    Integrated Gasification Combined Cycle (IGCC) process, incorporating pressurized gasification of solid fuels (coal, peat, biomass) and hot gas cleanup, is being developed worldwide to generate power with high efficiency and in an environmentally acceptable manner. The gasifier product gas contains, among others, ammonia and to a lesser extent hydrogen cyanide (HCN) which are converted to oxides of nitrogen (NO{sub x}) when the gas is combusted in the gas turbine. Several nickel-based catalysts were developed and evaluated for decomposition of ammonia present in the gasifier product gas, at Enviropower`s 15 MW{sub th} pilot plant in coal- and biomass-gasification tests. Up to 75% of ammonia in the product gas was decomposed at 800-900{degree}C temperature range and 12-22 bar pressure. 11 refs., 12 figs., 4 tabs.

  2. The Atlas3D project - XIX. The hot-gas content of early-type galaxies: fast versus slow rotators

    CERN Document Server

    Sarzi, Marc; Blitz, Leo; Bois, Maxime; Bournaud, Frederic; Bureau, M; Cappellari, Michele; Crocker, Alison F; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Duc, Pierre-Alain; Khochfar, Sadegh; Krajnovic, Davor; Kuntschner, Harald; McDermid, Richard M; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M

    2013-01-01

    For early-type galaxies, the ability to sustain a corona of hot, X-ray emitting gas could have played a key role in quenching their star-formation history. Yet, it is still unclear what drives the precise amount of hot gas around these galaxies. By combining photometric and spectroscopic measurements for the early-type galaxies observed during the Atlas3D integral-field survey with measurements of their X-ray luminosity based on X-ray data of both low and high spatial resolution we conclude that the hot-gas content of early-type galaxies can depend on their dynamical structure. Specifically, whereas slow rotators generally have X-ray halos with luminosity L_X,gas and temperature T values that are in line with what is expected if the hot-gas emission is sustained by the thermalisaton of the kinetic energy carried by the stellar-mass loss material, fast rotators tend to display L_X,gas values that fall consistently below the prediction of this model, with similar T values that do not scale with the stellar kine...

  3. Hot Gas Particulate Cleaning Technology Applied for PFBC/IGFC -The Ceramic Tube Filter (CTF) and Metal Filter-

    Energy Technology Data Exchange (ETDEWEB)

    Sasatsu, H; Misawa, N; Kobori, K; Iritani, J

    2002-09-18

    Coal is a fossil fuel abundant and widespread all over world. It is a vital resource for energy security, because the supply is stable. However, its CO2 emission per unit calorific value is greater than that of other fossil fuels. It is necessary to develop more efficient coal utilization technologies to expand the coal utilization that meets the social demand for better environment. The Pressurized Fluidized Bed Combustion (PFBC) combined cycle has become a subject of world attention in terms of better plant operation, improved plant efficiency, lower flue gas emission and fuel flexibility. The gas turbine, one of the most important components in the PFBC, is eager for a hot gas (approximately 650-850C) cleaning system in order to eliminate the severe erosion problem with the less thermal loss. The cyclone is most popular system for a hot gas cleaning, however, the severe damage for gas turbine blades by highly concentrated fine fly ash from PFBC boiler is reported.

  4. The electrothermal feasibility of carbon microcoil heaters for cold/hot gas microthrusters

    Science.gov (United States)

    Williams, K. L.; Eriksson, A. B.; Thorslund, R.; Köhler, J.; Boman, M.; Stenmark, L.

    2006-07-01

    With the miniaturization of spacecraft the need for efficient, accurate and low-weight attitude control systems is becoming evident. To this end, the cold/hot gas microthruster system of this paper incorporates carbon microcoils—deposited via laser-induced chemical vapor deposition—for heating the propellant gas (nitrogen) before the nozzle inlet. By increasing the temperature of the propellant gas for such a system, the specific impulse (Isp) of the microthruster will increase. The benefits of a higher Isp are lower propellant mass, higher thrust and shorter burning times. Therefore, the feasibility of achieving this increase with the carbon microcoils is investigated. The carbon microcoils have been characterized experimentally with respect to their electrothermal performance, i.e. resistance, temperature, parasitic heat losses and degradation in ambient. The resulting heat losses from the heater and the heated gas have been estimated through a combination of experiments, numerical simulation and approximate analytical expressions. At high powers, degradation of the carbon material leads to coil failure in ambient where trace oxygen was present. Thus, the next generation of carbon microcoils to be tested will have a protective coating to extend their lifetime. Theoretical modeling showed that an increase in the propellant gas temperature from 300 to 1200 K and a corresponding two-fold increase in the Isp can be achieved if 1.0 W of power is supplied to each coil in a three-coil thruster. These simulation results show that if the coils are capable of dissipating 1 W of heat at 1700 K coil temperature, the doubling of the Isp may be achieved. Comparing to the electrothermal characterization results we find that the carbon coils can survive at 1700 K if protected, and that they can be expected to reach 1700 K at power below 1 W.

  5. The effect of hot gas in early-type galaxies on the cosmic microwave background

    Science.gov (United States)

    Trester, Jeffrey J.; Canizares, Claude R.

    1989-01-01

    The effects on the cosmic microwave background which are due to Compton scattering by the hot gas contained in early-type galaxies (the Sunyaev-Zeldovich effect) are computed. Using the known properties of the gas deduced from X-ray observations, it is found that the fractional attenuation DeltaT/T at the center of a gas-rich galaxy is likely to be less than 10 to the -5th, which is just below current limits of detectability. A distribution function is derived for the attenuation which is due to a population of early-type galaxies out to some redshift and the expected rms fluctuations in the background on subarcmin scales are computed. These fluctuations are comparable to those intrinsic to the microwave background in the 'cold dark matter' scenario on these angular scales, but they fall orders of magnitude below the detection limits and below the level of fluctuations expected from nonlinear density perturbations at the epoch of galaxy formation.

  6. Determination of the gas-to-membrane mass transfer coefficient in a catalytic membrane reactor

    NARCIS (Netherlands)

    Veldsink, J.W.; Versteeg, G.F.; Swaaij, W.P.M. van

    1995-01-01

    A novel method to determine the external mass transfer coefficient in catalytic membrane reactors (Sloot et al., 1992a, b) was presented in this study. In a catalytically active membrane reactor, in which a very fast reaction occurs, the external transfer coefficient can conveniently be measured by

  7. Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, January 1--March 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This quarterly technical progress report summarizes work completed during the Sixth Quarter of the First Budget Period, January 1 through March 31, 1992, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. The major emphasis during this reporting period was expanding the test facility to address system integration issues of hot particulate removal in advanced power generation systems. The conceptual design of the facility was extended to include additional modules for the expansion of the test facility, which is referred to as the Power Systems Development Facility (PSOF). A letter agreement was negotiated between Southern Company Services (SCS) and Foster Wheeler (FW) for the conceptual design of the Advanced Pressurized Fluid-Bed Combustion (APFBC)/Topping Combustor/Gas Turbine System to be added to the facility. The expanded conceptual design also included modifications to the existing conceptual design for the Hot Gas Cleanup Test Facility (HGCTF), facility layout and balance of plant design for the PSOF. Southern Research Institute (SRI) began investigating the sampling requirements for the expanded facility and assisted SCS in contacting Particulate Control Device (PCD) vendors for additional information. SCS also contacted the Electric Power Research Institute (EPRI) and two molten carbonate fuel cell vendors for input on the fuel cell module for the PSDF.

  8. Using hot wire and initiated chemical vapor deposition for gas barrier thin film encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Spee, D.A., E-mail: diederickspee@gmail.com; Rath, J.K.; Schropp, R.E.I.

    2015-01-30

    Hot wire CVD (HWCVD) and initiated CVD (iCVD) are very well suited deposition techniques for the fabrication of transparent thin film gas barriers. Single inorganic or organic layers, however, face challenges, which are hard to overcome: unavoidable defects and low intrinsic barrier function. We demonstrate that by combining inorganic HWCVD films and organic iCVD films, a water vapor transmission rate a low as 5 ∗ 10{sup −6} g/m{sup 2}/day at 60 °C and 90% RH for a simple pinhole free three layer structure is obtained even with non-optimized individual layers. Given the 100 °C deposition temperature, the layer stacks can be deposited on any sensitive electronic device.

  9. Investigation of austenitic alloys for advanced heat recovery and hot gas cleanup systems

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, R.W.; Ren, W. [Oak Ridge National Lab., TN (United States)

    1995-08-01

    Alloys for design and construction of structural components needed to contain process streams and provide internal structures in advanced heat recovery and hot gas cleanup systems were examined. Emphasis was placed on high-strength, corrosion-resistant alloys for service at temperatures above 1000 {degrees}F (540{degrees}C). Data were collected that related to fabrication, joining, corrosion protection, and failure criteria. Alloys systems include modified type 310 and 20Cr-25Ni-Nb steels and sulfidation-resistance alloys HR120 and HR160. Types of testing include creep, stress-rupture, creep crack growth, fatigue, and post-exposure short-time tensile. Because of the interest in relatively inexpensive alloys for high temperature service, a modified type 310 stainless steel was developed with a target strength of twice that for standard type 310 stainless steel.

  10. Investigation of austenitic alloys for advanced heat recovery and hot gas cleanup systems

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, R.W.; Ren, W. [Oak Ridge National Lab., TN (United States)

    1996-08-01

    Materials properties were collected for the design and construction of structural components for use in advanced heat recovery and hot gas cleanup systems. Alloys systems included 9Cr-1Mo-V steel, modified 316 stainless steel, modified type 310 stainless steel, modified 20Cr-25Ni-Nb stainless steel, modified alloy 800, and two sulfidation resistant alloys: HR160 and HR120. Experimental work was undertaken to expand the databases for potentially useful alloys. Types of testing included creep, stress-rupture, creep-crack growth, fatigue, and post-exposure short-time tensile tests. Because of the interest in relatively inexpensive alloys for service at 700{degrees}C and higher, research emphasis was placed on a modified type 310 stainless steel and a modified 20Cr-25Ni-Nb stainless steel. Both steels were found to have useful strength to 925{degrees}C with good weldability and ductility.

  11. Evidence for Proportionate Partition Between the Magnetic Field and Hot Gas in Turbulent Cassiopeia A

    CERN Document Server

    Keohane, J W; Petre, R

    1998-01-01

    We present a deep X-ray observation of the young Galactic supernova remnant Cas A, acquired with the ROSAT High Resolution Imager. This high dynamic range (232 ks) image reveals low-surface-brightness X-ray structure, which appears qualitatively similar to corresponding radio features. We consider the correlation between the X-ray and radio morphologies and its physical implications. After correcting for the inhomogeneous absorption across the remnant, we performed a point by point (4" resolution) surface brightness comparison between the X-ray and radio images. We find a strong (r = 0.75) log-log correlation, implying an overall relationship of $\\log(\\Sigma_{_{\\rm X-ray}}) \\propto (2.21\\pm0.05) \\times \\log(\\Sigma_{_{\\rm radio}})$. This is consistent with proportionate partition (and possibly equipartition) between the local magnetic field and the hot gas --- implying that Cas A's plasma is fully turbulent and continuously amplifying the magnetic field.

  12. Investigation of austenitic alloys for advanced heat recovery and hot-gas cleanup systems

    Energy Technology Data Exchange (ETDEWEB)

    Swindeman, R.W. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    Materials properties were collected for the design and construction of structural components for use in advanced heat recovery and hot gas cleanup systems. Alloys systems included 9Cr-1Mo-V steel, modified 316 stainless steel, modified type 310 stainless steel, modified 20Cr-25Ni-Nb stainless steel, and modified alloy 800. Experimental work was undertaken to expand the databases for potentially useful alloys. Types of testing included creep, stress-rupture, creep-crack growth, fatigue, and post-exposure short-time tensile tests. Because of the interest in relatively inexpensive alloys for service at 700 C and higher, research emphasis was placed on a modified type 310 stainless steel and a modified 20Cr-25Ni-Nb stainless steel. Both steels were found to have useful strength to 925 C with good weldability and ductility.

  13. Transverse azimuthal dephasing of vortex spin wave in a hot atomic gas

    CERN Document Server

    Shi, Shuai; Zhang, Wei; Zhou, Zhi-Yuan; Dong, Ming-Xin; Liu, Shi-Long; Shi, Bao-Sen; Guo, Guang-Can

    2016-01-01

    Optical fields with orbital angular momentum (OAM) interact with medium have many remarkable properties with its unique azimuthal phase, showing many potential applications in high capacity information processing, high precision measurement etc. The dephasing mechanics of optical fields with OAM in an interface between light and matter plays a vital role in many areas of physics. In this work, we study the transverse azimuthal dephasing of OAM spin wave in a hot atomic gas via OAM storage. The transverse azimuthal phase difference between the control and probe beams is mapped onto the spin wave, which essentially results in dephasing of atomic spin wave. The dephasing of OAM spin wave can be controlled by the parameters of OAM topological charge and beam waist. Our results are helpful for studying OAM light interaction with matter, maybe hold a promise in OAM-based quantum information processing.

  14. In-medium viscous coefficients of a hot hadronic gas mixture

    Science.gov (United States)

    Gangopadhyaya, Utsab; Ghosh, Snigdha; Sarkar, Sourav; Mitra, Sukanya

    2016-10-01

    We estimate the shear and the bulk viscous coefficients for a hot hadronic gas mixture made of pions and nucleons. The viscosities are evaluated in the relativistic kinetic theory approach by solving the transport equation in the relaxation time approximation for binary collisions (π π ,π N , and N N ). Instead of the vacuum cross sections usually used in the literature we employ in-medium scattering amplitudes in the estimation of the relaxation times. The modified cross sections for π π and π N scattering are obtained using one-loop modified thermal propagators for ρ ,σ , and Δ in the scattering amplitudes which are calculated using effective interactions. The resulting suppression of the cross sections at finite temperature and baryon density is observed to significantly affect the T and μN dependence of the viscosities of the system.

  15. Hot gas stripping of ammonia and carbon dioxide from simulated and actual in situ retort waters

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, C.L.

    1979-01-01

    This study proved that ammonia and carbon dioxide could be removed from retort water by hot gas stripping and that overall transfer rates were slower than for physical desorption alone. The ammonia in solution complexed with the carbonate species with the result that the CO/sub 2/ transfer rates were linked to the relatively slower desorption of NH/sub 3/ from solution. Ionic reactions in the liquid phase limited the quantity of free NH/sub 3/ and CO/sub 2/, thus decreasing the driving forces for mass transfer. The retort water exhibited foaming tendencies that affected the interfacial area which should be taken into account if a stripping tower is considered on a larger scale. Transfer unit heights were calculated for the process conditions studied and correlated such that scaleup to increased capacities is possible.

  16. Mechanical behavior of ceramic composite hot-gas filters after exposure to severe environments

    Energy Technology Data Exchange (ETDEWEB)

    Pysher, D.J.; Weaver, B.L.; Smith, R.G. [Ceramic Technology Center, St. Paul, MN (United States)] [and others

    1995-08-01

    A novel type of hot-gas filter based on a ceramic fiber reinforced ceramic matrix has been developed, as reported at previous Fossil Energy Materials Conferences, through research activities at Oak Ridge National Laboratory (ORNL) and at the 3M Company. Simulated testing has been done at the Westinghouse Science and Technology Center. This filter technology has been extended to full size, 60 mm OD by 1.5 meter long candle filters and a commercially viable process for producing the filters has been developed filters are undergoing testing and demonstration use throughout the world for applications in pressurized fluidized-bed combustion (PFBC) and integrated gasification combined cycle (IGCC) plants. Demonstration tests of this ceramic composite filter along with other filters are in progress at the Tidd PFBC plant Mechanical tests were performed on the 3 M brand Ceramic Composite Candle Filter after exposure to various corrosive environments in order to assess its ability to function as a hot gas filter in coal-fired applications. Due to the different construction of ceramic composite filters and the thin composite wall versus the typical thick-walled monolithic filter, standard mechanical property tests had to be refined or modified to accurately determine the filters properties. These tests and filter property results will be described Longitudinal tensile and diametral O-ring compression tests were performed on as-produced candle filters as well as on filters which had been exposed to various environments. The exposures were for 1000 hrs at 850{degrees}C in wet air, in wet air containing Na{sub 2}CO{sub 3}, and in wet air containing NaCl. In addition, a filter which bad been coated with ash (Old Grimethorpe) was exposed to wet air at 850{degrees}C for 1000 hours.

  17. Chemical hot gas purification for biomass gasification processes; Chemische Heissgasreinigung bei Biomassevergasungsprozessen

    Energy Technology Data Exchange (ETDEWEB)

    Stemmler, Michael

    2010-07-01

    The German government decided to increase the percentage of renewable energy up to 20 % of all energy consumed in 2020. The development of biomass gasification technology is advanced compared to most of the other technologies for producing renewable energy. So the overall efficiency of biomass gasification processes (IGCC) already increased to values above 50 %. Therefore, the production of renewable energy attaches great importance to the thermochemical biomass conversion. The feedstock for biomass gasification covers biomasses such as wood, straw and further energy plants. The detrimental trace elements released during gasification of these biomasses, e.g. KCl, H{sub 2}S and HCl, cause corrosion and harm downstream devices. Therefore, gas cleaning poses an especial challenge. In order to improve the overall efficiency this thesis aims at the development of gas cleaning concepts for the allothermic, water blown gasification at 800 C and 1 bar (Guessing-Process) as well as for the autothermic, water and oxygen blown gasification at 950 C and 18 bar (Vaernamo-Process). Although several mechanisms for KCl- and H{sub 2}S-sorption are already well known, the achievable reduction of the contamination concentration is still unknown. Therefore, calculations on the produced syngas and the chemical hot gas cleaning were done with a thermodynamic process model using SimuSage. The syngas production was included in the calculations because the knowledge of the biomass syngas composition is very limited. The results of these calculations prove the dependence of syngas composition on H{sub 2}/C-ratio and ROC (Relative Oxygen Content). Following the achievable sorption limits were detected via experiments. The KCl containing syngases were analysed by molecular beam mass spectrometry (MBMS). Furthermore, an optimised H{sub 2}S-sorbent was developed because the examined sorbents exceeded the sorption limit of 1 ppmv. The calculated sorption limits were compared to the limits

  18. Numerical Modeling of Reactive Multiphase Flow for FCC and Hot Gas Desulfurization Circulating Fluidized Beds

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Aubrey L. [WSU Research Corporation, Morgantown, WV (USA)

    2005-07-01

    This work was carried out to understand the behavior of the solid and gas phases in a CFB riser. Only the riser is modeled as a straight pipe. A model with linear algebraic approximation to solids viscosity of the form, {musubs} = 5.34{epsisubs}, ({espisubs} is the solids volume fraction) with an appropriate boundary condition at the wall obtained by approximate momentum balance solution at the wall to acount for the solids recirculation is tested against experimental results. The work done was to predict the flow patterns in the CFB risers from available experimental data, including data from a 7.5-cm-ID CFB riser at the Illinois Institute of Technology and data from a 20.0-cm-ID CFB riser at the Particulate Solid Research, Inc., facility. This research aims at modeling the removal of hydrogen sulfide from hot coal gas using zinc oxide as the sorbent in a circulating fluidized bed and in the process indentifying the parameters that affect the performance of the sulfidation reactor. Two different gas-solid reaction models, the unreacted shrinking core (USC) and the grain model were applied to take into account chemical reaction resistances. Also two different approaches were used to affect the hydrodynamics of the process streams. The first model takes into account the effect of micro-scale particle clustering by adjusting the gas-particle drag law and the second one assumes a turbulent core with pseudo-steady state boundary condition at the wall. A comparison is made with experimental results.

  19. Influence of rarefaction on the flow dynamics of a stationary supersonic hot-gas expansion.

    Science.gov (United States)

    Abbate, G; Kleijn, C R; Thijsse, B J; Engeln, R; van de Sanden, M C M; Schram, D C

    2008-03-01

    The gas dynamics of a stationary hot-gas jet supersonically expanding into a low pressure environment is studied through numerical simulations. A hybrid coupled continuum-molecular approach is used to model the flow field. Due to the low pressure and high thermodynamic gradients, continuum mechanics results are doubtful, while, because of its excessive time expenses, a full molecular method is not feasible. The results of the hybrid coupled continuum-molecular approach proposed have been successfully validated against experimental data by R. Engeln [Plasma Sources Sci. Technol. 10, 595 (2001)] obtained by means of laser induced fluorescence. Two main questions are addressed: the necessity of applying a molecular approach where rarefaction effects are present in order to correctly model the flow and the demonstration of an invasion of the supersonic part of the flow by background particles. A comparison between the hybrid method and full continuum simulations demonstrates the inadequacy of the latter, due to the influence of rarefaction effects on both velocity and temperature fields. An analysis of the particle velocity distribution in the expansion-shock region shows clear departure from thermodynamic equilibrium and confirms the invasion of the supersonic part of the flow by background particles. A study made through particles and collisions tracking in the supersonic region further proves the presence of background particles in this region and explains how they cause thermodynamic nonequilibrium by colliding and interacting with the local particles.

  20. High temperature corrosion of advanced ceramic materials for hot-gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Kupp, E.R.; Trubelja, M.F.; Spear, K.E.; Tressler, R.E. [Pennsylvania State Univ., University Park, PA (United States)

    1995-08-01

    Experimental corrosion studies of hot gas filter materials and heat exchanger materials in oxidizing combustion environments have been initiated. Filter materials from 3M Co. and DuPont Lanxide Composites Inc. are being tested over a range of temperatures, times and gas flows. It has been demonstrated that morphological and phase changes due to corrosive effects occur after exposure of the 3M material to a combustion environment for as little as 25 hours at 800{degrees}C. The study of heat exchanger materials has focused on enhancing the corrosion resistance of DuPont Lanxide Dimox{trademark} composite tubes by adding chromium to its surfaces by (1) heat treatments in a Cr{sub 2}O{sub 3} powder bed, or (2) infiltrating surface porosity with molten chromium nitrate. Each process is followed by a surface homogenization at 1500{degrees}C. The powder bed method has been most successful, producing continuous Cr-rich layers with thicknesses ranging from 20 to 250 {mu}m. As-received and Cr-modified DuPont Lanxide Dimox{trademark} samples will be reacted with commonly encountered coal-ash slags to determine the Cr effects on corrosion resistance.

  1. Einstein observations of the Vela supernova remnant - The spatial structure of the hot emitting gas

    Science.gov (United States)

    Kahn, S. M.; Gorenstein, P.; Harnden, F. R., Jr.; Seward, F. D.

    1985-01-01

    Spatially resolved (aproximately 1 arcmin) X-ray maps of the Vela supernova remnant have been constructed in two spectral bands, 0.2-1.0 keV and 0.8-2.0 keV, from a series of 36 separate observations with the Imaging Proportional Counter of the Einstein Observatory. The maps exhibit substantial structure on all angular scales. Spectral analysis shows that the emission from the remnant can be consistently described as thermal radiation from hot gas which is nonuniform in density and temperature, but which is in approximate pressure equilibrium. It is found that p/k is approximately 3-4 x 10 to the 5th/cu cm K. The soft X-ray emission exhibits a high degree of correlation with the optical filamentary structure, in the sense that the most prominent filaments either tightly surround or are coincident with the brightest X-ray regions. This suggests that the softest X-radiation may originate in 'warm' gas which is evaporated from the denser clouds responsible for the optical and ultraviolet filaments. Such an interpretation is quantitatively investigated, and shown to be only marginally consistent with the observations.

  2. The scatter and evolution of the global hot gas properties of simulated galaxy cluster populations

    CERN Document Server

    Brun, Amandine M C Le; Schaye, Joop; Ponman, Trevor J

    2016-01-01

    We use the cosmo-OWLS suite of cosmological hydrodynamical simulations to investigate the scatter and evolution of the global hot gas properties of large simulated populations of galaxy groups and clusters. Our aim is to compare the predictions of different physical models and to explore the extent to which commonly-adopted assumptions in observational analyses (e.g. self-similar evolution) are violated. We examine the relations between (true) halo mass and the X-ray temperature, X-ray luminosity, gas mass, Sunyaev-Zel'dovich (SZ) flux, the X-ray analogue of the SZ flux ($Y_X$) and the hydrostatic mass. For the most realistic models, which include AGN feedback, the slopes of the various mass-observable relations deviate substantially from the self-similar ones, particularly at late times and for low-mass clusters. The amplitude of the mass-temperature relation shows negative evolution with respect to the self-similar prediction (i.e. slower than the prediction) for all models, driven by an increase in non-the...

  3. Pretreated Landfill Gas Conversion Process via a Catalytic Membrane Reactor for Renewable Combined Fuel Cell-Power Generation

    Directory of Open Access Journals (Sweden)

    Zoe Ziaka

    2013-01-01

    Full Text Available A new landfill gas-based reforming catalytic processing system for the conversion of gaseous hydrocarbons, such as incoming methane to hydrogen and carbon oxide mixtures, is described and analyzed. The exit synthesis gas (syn-gas is fed to power effectively high-temperature fuel cells such as SOFC types for combined efficient electricity generation. The current research work is also referred on the description and design aspects of permreactors (permeable reformers carrying the same type of landfill gas-reforming reactions. Membrane reactors is a new technology that can be applied efficiently in such systems. Membrane reactors seem to perform better than the nonmembrane traditional reactors. The aim of this research includes turnkey system and process development for the landfill-based power generation and fuel cell industries. Also, a discussion of the efficient utilization of landfill and waste type resources for combined green-type/renewable power generation with increased processing capacity and efficiency via fuel cell systems is taking place. Moreover, pollution reduction is an additional design consideration in the current catalytic processors fuel cell cycles.

  4. Viewing inside Pyroclastic Flows - Large-scale Experiments on hot pyroclast-gas mixture flows

    Science.gov (United States)

    Breard, E. C.; Lube, G.; Cronin, S. J.; Jones, J.

    2014-12-01

    Pyroclastic density currents are the largest threat from volcanoes. Direct observations of natural flows are persistently prevented because of their violence and remain limited to broad estimates of bulk flow behaviour. The Pyroclastic Flow Generator - a large-scale experimental facility to synthesize hot gas-particle mixture flows scaled to pyroclastic flows and surges - allows investigating the physical processes behind PDC behaviour in safety. The ability to simulate natural eruption conditions and to view and measure inside the hot flows allows deriving validation and calibration data sets for existing numerical models, and to improve the constitutive relationships necessary for their effective use as powerful tools in hazard assessment. We here report on a systematic series of large-scale experiments on up to 30 ms-1 fast, 2-4.5 m thick, 20-35 m long flows of natural pyroclastic material and gas. We will show high-speed movies and non-invasive sensor data that detail the internal structure of the analogue pyroclastic flows. The experimental PDCs are synthesized by the controlled 'eruption column collapse' of variably diluted suspensions into an instrumented channel. Experiments show four flow phases: mixture acceleration and dilution during free fall; impact and lateral blasting; PDC runout; and co-ignimbrite cloud formation. The fully turbulent flows reach Reynolds number up to 107 and depositional facies similar to natural deposits. In the PDC runout phase, the shear flows develop a four-partite structure from top to base: a fully turbulent, strongly density-stratified ash cloud with average particle concentrations <<1vol%; a transient, turbulent dense suspension region with particle concentrations between 1 and 10 vol%; a non-turbulent, aerated and highly mobile dense underflows with particle concentrations between 40 and 50 vol%; and a vertically aggrading bed of static material. We characterise these regions and the exchanges of energy and momentum

  5. Effect of the Sequence of the Thermoelectric Generator and the Three-Way Catalytic Converter on Exhaust Gas Conversion Efficiency

    Science.gov (United States)

    Su, Chuqi; Tong, Naiqiang; Xu, Yuman; Chen, Shan; Liu, Xun

    2013-07-01

    The potential for thermoelectric exhaust heat recovery in vehicles has increased with recent improvements in the efficiency of thermoelectric generators (TEGs). The problem with using thermoelectric generators for vehicle applications is whether the device is compatible with the original vehicle exhaust system, which determines the quality of the exhaust gas treatment and the realization of energy conservation and emission reduction. Based on ANSYS CFX simulation analysis of the impact of two positional relationships between the TEG and three-way catalytic converter in the exhaust system on the working efficiency of both elements, it is concluded that the layout with the front three-way catalytic converter has an advantage over the other layout mode under current conditions. New ideas for an improvement program are proposed to provide the basis for further research.

  6. Testing and design of selective catalytic reduction DENOX catalysts on the basis of titanium dioxide for flue gas cleaning plants

    Energy Technology Data Exchange (ETDEWEB)

    Neufert, R.; Zuerbig, J. (Siemens AG, Redwitz (Germany). Unternehmensbereich KWU, Keramik- und Porzellanwerk)

    1990-12-01

    Selective catalytic reduction catalysers based on titanium dioxide enjoy a commanding position in the market. Reasons for this are high catalytic activity with simultaneous high specificity, low SO{sub 2}/SO{sub 3} oxidation rates, chemical resistance against acid, flue gas constituents and mechanical stability. The principle of DENOX catalyser design is precise knowledge and analyses of the limiting conditions under which use in power station shall result. A suitable type of catalyser has to be selected in accordance with the conditions of application. Manufacture has to be supported by a complex system of quality assurance measures and tests, so that the catalyser characteristics specified in the design can be guaranteed. 4 figs.

  7. Development of selective catalytic oxidation (SCO) for NH{sub 3} and HCN removal from gasification gas; Selektiivisen katalyyttisen hapetusprosessin (SCO) kehittaeminen kaasutuskaasun NH{sub 3}:n ja HCN:n poistoon

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T.; Heiskanen, K. [VTT Energy, Espoo (Finland)

    1997-10-01

    In gasification, reactive nitrogen compounds (mainly NH{sub 3} and HCN) are formed from fuel nitrogen. If the gas containing NH{sub 3} is burned, a high NO{sub x} emission may be formed. The content of nitrogen compounds of the hot gasification gas could be reduced in Selective Catalytic Oxidation (SCO) process. In this process small amounts of reactive oxidisers are injected into the gas in order to convert NH{sub 3} to N{sub 2}. The utilization of SCO process together with low NO{sub x} burners in advanced gasification power stations might offer an alternative for flue gas treatment technologies like SCR (Selective Catalytic Reduction). In the earlier research, conditions were found, where oxidizers reacted selectively with ammonia in the gasification gas. Highest ammonia reduction took place in the aluminium oxide bed in the presence of NO and O{sub 2}. The aim of this study is to examine the reaction mechanism in order to be able to further evaluate the development possibilities of this kind process. The effect of composition and the amount of added oxidizer, the content of combustible gas components, space velocity, pressure and temperature will be studied. The experiments are carried out with the laboratory scale high pressure flow reactor of VTT Energy. Kinetic modelling of the experimental results is carried out in co-operation with the combustion chemistry group of Aabo Akademi. The aim of the modelling work is to bring insight to the gas-phase reactions that are important for the SCO-process. (orig.)

  8. Formation of gas discharging from Taketomi submarine hot spring off Ishigaki Island in the southern Ryukyu Islands, Japan

    Science.gov (United States)

    Toki, Tomohiro; Iwata, Daigo; Tsunogai, Urumu; Komatsu, Daisuke D.; Sano, Yuji; Takahata, Naoto; Hamasaki, Hiroshi; Ishibashi, Jun-ichiro

    2017-01-01

    Taketomi submarine hot spring lies off Ishigaki Island in the southern Ryukyu Islands and vents hot spring waters at temperatures up to 50 °C from the seafloor at a depth of 20 m. We investigated the chemical and isotopic composition of gases discharging from Taketomi hot spring. The gases were composed mainly of methane, with secondary nitrogen at higher than atmospheric concentration. Carbon and hydrogen isotope data suggest that the methane in the discharging gases was derived mainly from thermal decomposition of organic matter. Helium isotopes were enriched in 3He relative to the atmosphere, suggesting a supply of mantle-derived helium to the discharging gases. The mantle-derived gases transfer the deep-originated thermal energy to the hot spring and thermogenesis of organic matter. The hydrocarbons in the venting gas could be sourced from sedimentary rocks of the Yaeyama or Shimajiri Groups, or Yaeyama metamorphic rocks, and added to the ascending gases as they pass through those source rocks on their way to the surface. Because the Pleistocene rocks of the Ryukyu Group beneath the hot spring have been altered by the spring activity, the Taketomi hot spring began venting after the Pleistocene.

  9. A Study on Process Characteristics and Performance of Hot Wire Gas Tungsten Arc Welding Process for High Temperature Materials

    OpenAIRE

    Padmanaban MR,Anantha; Neelakandan, Baskar; Kandasamy,Devakumaran

    2016-01-01

    Hot wire gas tungsten arc welding (HW-GTAW) process is the one where the filler wire is pre-heated close to its melting point before it is fed in to the arc. The effect of HW-GTAW parameters such as welding current, hot wire current and the wire feed rate during welding of super ASS 304H stainless steel tubes were evaluated in terms of heat input, voltage-current (V-I) characteristics and weld bead characteristics such as bead weight and geometry. The results obtained indicate that for a cons...

  10. Simultaneous probing of bulk liquid phase and catalytic gas-liquid-solid interface under working conditions using attenuated total reflection infrared spectroscopy

    Science.gov (United States)

    Meemken, Fabian; Müller, Philipp; Hungerbühler, Konrad; Baiker, Alfons

    2014-08-01

    Design and performance of a reactor set-up for attenuated total reflection infrared (ATR-IR) spectroscopy suitable for simultaneous reaction monitoring of bulk liquid and catalytic solid-liquid-gas interfaces under working conditions are presented. As advancement of in situ spectroscopy an operando methodology for gas-liquid-solid reaction monitoring was developed that simultaneously combines catalytic activity and molecular level detection at the catalytically active site of the same sample. Semi-batch reactor conditions are achieved with the analytical set-up by implementing the ATR-IR flow-through cell in a recycle reactor system and integrating a specifically designed gas feeding system coupled with a bubble trap. By the use of only one spectrometer the design of the new ATR-IR reactor cell allows for simultaneous detection of the bulk liquid and the catalytic interface during the working reaction. Holding two internal reflection elements (IRE) the sample compartments of the horizontally movable cell are consecutively flushed with reaction solution and pneumatically actuated, rapid switching of the cell (<1 s) enables to quasi simultaneously follow the heterogeneously catalysed reaction at the catalytic interface on a catalyst-coated IRE and in the bulk liquid on a blank IRE. For a complex heterogeneous reaction, the asymmetric hydrogenation of 2,2,2-trifluoroacetophenone on chirally modified Pt catalyst the elucidation of catalytic activity/enantioselectivity coupled with simultaneous monitoring of the catalytic solid-liquid-gas interface is shown. Both catalytic activity and enantioselectivity are strongly dependent on the experimental conditions. The opportunity to gain improved understanding by coupling measurements of catalytic performance and spectroscopic detection is presented. In addition, the applicability of modulation excitation spectroscopy and phase-sensitive detection are demonstrated.

  11. Simultaneous probing of bulk liquid phase and catalytic gas-liquid-solid interface under working conditions using attenuated total reflection infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Meemken, Fabian; Müller, Philipp; Hungerbühler, Konrad; Baiker, Alfons, E-mail: baiker@chem.ethz.ch [Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Hönggerberg, HCI, CH-8093 Zürich (Switzerland)

    2014-08-15

    Design and performance of a reactor set-up for attenuated total reflection infrared (ATR-IR) spectroscopy suitable for simultaneous reaction monitoring of bulk liquid and catalytic solid-liquid-gas interfaces under working conditions are presented. As advancement of in situ spectroscopy an operando methodology for gas-liquid-solid reaction monitoring was developed that simultaneously combines catalytic activity and molecular level detection at the catalytically active site of the same sample. Semi-batch reactor conditions are achieved with the analytical set-up by implementing the ATR-IR flow-through cell in a recycle reactor system and integrating a specifically designed gas feeding system coupled with a bubble trap. By the use of only one spectrometer the design of the new ATR-IR reactor cell allows for simultaneous detection of the bulk liquid and the catalytic interface during the working reaction. Holding two internal reflection elements (IRE) the sample compartments of the horizontally movable cell are consecutively flushed with reaction solution and pneumatically actuated, rapid switching of the cell (<1 s) enables to quasi simultaneously follow the heterogeneously catalysed reaction at the catalytic interface on a catalyst-coated IRE and in the bulk liquid on a blank IRE. For a complex heterogeneous reaction, the asymmetric hydrogenation of 2,2,2-trifluoroacetophenone on chirally modified Pt catalyst the elucidation of catalytic activity/enantioselectivity coupled with simultaneous monitoring of the catalytic solid-liquid-gas interface is shown. Both catalytic activity and enantioselectivity are strongly dependent on the experimental conditions. The opportunity to gain improved understanding by coupling measurements of catalytic performance and spectroscopic detection is presented. In addition, the applicability of modulation excitation spectroscopy and phase-sensitive detection are demonstrated.

  12. Volatile emissions and gas geochemistry of Hot Spring Basin, Yellowstone National Park, USA

    Science.gov (United States)

    Werner, C.; Hurwitz, S.; Evans, William C.; Lowenstern, J. B.; Bergfeld, D.; Heasler, H.; Jaworowski, C.; Hunt, A.

    2008-01-01

    We characterize and quantify volatile emissions at Hot Spring Basin (HSB), a large acid-sulfate region that lies just outside the northeastern edge of the 640??ka Yellowstone Caldera. Relative to other thermal areas in Yellowstone, HSB gases are rich in He and H2, and mildly enriched in CH4 and H2S. Gas compositions are consistent with boiling directly off a deep geothermal liquid at depth as it migrates toward the surface. This fluid, and the gases evolved from it, carries geochemical signatures of magmatic volatiles and water-rock reactions with multiple crustal sources, including limestones or quartz-rich sediments with low K/U (or 40*Ar/4*He). Variations in gas chemistry across the region reflect reservoir heterogeneity and variable degrees of boiling. Gas-geothermometer temperatures approach 300????C and suggest that the reservoir feeding HSB is one of the hottest at Yellowstone. Diffuse CO2 flux in the western basin of HSB, as measured by accumulation-chamber methods, is similar in magnitude to other acid-sulfate areas of Yellowstone and is well correlated to shallow soil temperatures. The extrapolation of diffuse CO2 fluxes across all the thermal/altered area suggests that 410 ?? 140??t d- 1 CO2 are emitted at HSB (vent emissions not included). Diffuse fluxes of H2S were measured in Yellowstone for the first time and likely exceed 2.4??t d- 1 at HSB. Comparing estimates of the total estimated diffuse H2S emission to the amount of sulfur as SO42- in streams indicates ~ 50% of the original H2S in the gas emission is lost into shallow groundwater, precipitated as native sulfur, or vented through fumaroles. We estimate the heat output of HSB as ~ 140-370??MW using CO2 as a tracer for steam condensate, but not including the contribution from fumaroles and hydrothermal vents. Overall, the diffuse heat and volatile fluxes of HSB are as great as some active volcanoes, but they are a small fraction (1-3% for CO2, 2-8% for heat) of that estimated for the entire

  13. Volatile emissions and gas geochemistry of Hot Spring Basin, Yellowstone National Park, USA

    Science.gov (United States)

    Werner, C.; Hurwitz, S.; Evans, W. C.; Lowenstern, J. B.; Bergfeld, D.; Heasler, H.; Jaworowski, C.; Hunt, A.

    2008-12-01

    We characterize and quantify volatile emissions at Hot Spring Basin (HSB), a large acid-sulfate region that lies just outside the northeastern edge of the 640 ka Yellowstone Caldera. Relative to other thermal areas in Yellowstone, HSB gases are rich in He and H 2, and mildly enriched in CH 4 and H 2S. Gas compositions are consistent with boiling directly off a deep geothermal liquid at depth as it migrates toward the surface. This fluid, and the gases evolved from it, carries geochemical signatures of magmatic volatiles and water-rock reactions with multiple crustal sources, including limestones or quartz-rich sediments with low K/U (or 40*Ar/ 4*He). Variations in gas chemistry across the region reflect reservoir heterogeneity and variable degrees of boiling. Gas-geothermometer temperatures approach 300 °C and suggest that the reservoir feeding HSB is one of the hottest at Yellowstone. Diffuse CO 2 flux in the western basin of HSB, as measured by accumulation-chamber methods, is similar in magnitude to other acid-sulfate areas of Yellowstone and is well correlated to shallow soil temperatures. The extrapolation of diffuse CO 2 fluxes across all the thermal/altered area suggests that 410 ± 140 t d - 1 CO 2 are emitted at HSB (vent emissions not included). Diffuse fluxes of H 2S were measured in Yellowstone for the first time and likely exceed 2.4 t d - 1 at HSB. Comparing estimates of the total estimated diffuse H 2S emission to the amount of sulfur as SO 42- in streams indicates ~ 50% of the original H 2S in the gas emission is lost into shallow groundwater, precipitated as native sulfur, or vented through fumaroles. We estimate the heat output of HSB as ~ 140-370 MW using CO 2 as a tracer for steam condensate, but not including the contribution from fumaroles and hydrothermal vents. Overall, the diffuse heat and volatile fluxes of HSB are as great as some active volcanoes, but they are a small fraction (1-3% for CO 2, 2-8% for heat) of that estimated for the

  14. In-Situ Investigation of Gas Phase Radical Chemistry in the Catalytic Partial Oxidation of Methane on Pt

    OpenAIRE

    Geske, M.; Pelzer, K.; Horn, R.; Jentoft, F.; R. Schlögl

    2009-01-01

    The catalytic partial oxidation of methane on platinum was studied in situ under atmospheric pressure and temperatures between 1000 and 1300 °C. By combining radical measurements using a molecular beam mass spectrometer and threshold ionization with GC, GC-MS and temperature profile measurements it was demonstrated that a homogeneous reaction pathway is opened at temperatures above 1100 °C, in parallel to hetero-geneous reactions which start already at 600 °C. Before ignition of gas phase che...

  15. High temperature corrosion of advanced ceramic materials for hot gas filters and heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Crossland, C.E.; Shelleman, D.L.; Spear, K.E. [Pennsylvania State Univ., University Park, PA (United States)] [and others

    1996-08-01

    A vertical flow-through furnace has been built to study the effect of corrosion on the morphology and mechanical properties of ceramic hot gas filters. Sections of 3M Type 203 and DuPont Lanxide SiC-SiC filter tubes were sealed at one end and suspended in the furnace while being subjected to a simulated coal combustion environment at 870{degrees}C. X-ray diffraction and electron microscopy is used to identify phase and morphology changes due to corrosion while burst testing determines the loss of mechanical strength after exposure to the combustion gases. Additionally, a thermodynamic database of gaseous silicon compounds is currently being established so that calculations can be made to predict important products of the reaction of the environment with the ceramics. These thermodynamic calculations provide useful information concerning the regimes where the ceramic may be degraded by material vaporization. To verify the durability and predict lifetime performance of ceramic heat exchangers in coal combustion environments, long-term exposure testing of stressed (internally pressurized) tubes must be performed in actual coal combustion environments. The authors have designed a system that will internally pressurize 2 inch OD by 48 inch long ceramic heat exchanger tubes to a maximum pressure of 200 psi while exposing the outer surface of the tubes to coal combustion gas at the Combustion and Environmental Research Facility (CERF) at the Pittsburgh Energy and Technology Center. Water-cooled, internal o-ring pressure seals were designed to accommodate the existing 6 inch by 6 inch access panels of the CERF. Tubes will be exposed for up to a maximum of 500 hours at temperatures of 2500 and 2600{degrees}F with an internal pressure of 200 psi. If the tubes survive, their retained strength will be measured using the high temperature tube burst test facility at Penn State University. Fractographic analysis will be performed to identify the failure source(s) for the tubes.

  16. Study on Influence to Waste Water Treatment Plant’s Sludge by Low-carbon Catalytic Combustion Furnace of Natural Gas

    Directory of Open Access Journals (Sweden)

    Ren TianQi

    2016-01-01

    Full Text Available There are two parts in this experiment. One of is about the concentration of Variation of exhaust gas while heating sludge of waste water treatment plant. The other one is about introduce the problems of the traditional incineration processes of sludge of waste water treatment as compared between the sludge heated by natural gas catalytic combustion furnace and the tradition’s. We can see that natural gas low-carbon catalytic combustion furnace realize the near-zero emission of contaminates.

  17. Development of a Calicum-Based Sorbent for Hot Gas Cleanup.

    Energy Technology Data Exchange (ETDEWEB)

    Wheelock, T.W.; Constant, K.; Doraiswamy, L.K.; Akiti, T.; Zhu, J.; Amanda, A.; Roe, R.

    1997-09-01

    Further review of the technical literature has provided additional information which will support the development of a superior calcium-based sorbent for hot gas cleanup in IGCC systems. Two general methods of sorbent preparation are being investigated. One method involves impregnating a porous refractory substrate with calcium while another method involves pelletizing lime or other calcium containing materials with a suitable binder. Several potential substrates, which are made of alumina and are commercially available, have been characterized by various methods. The surface area and apparent density of the materials have been measured, and it has been shown that some of the high surface area materials (i.e., 200-400 m{sub 2}/g) undergo a large decrease in surface area when heated to higher temperatures. Some of the lower surface area materials (i.e., 1-30 m{sub 2}/g) have been successfully impregnated with calcium by soaking them in a calcium nitrate solution and then heat treating them to decompose the nitrate. Potentially useful sorbents have also been prepared by pelletizing type I Portland cement and mixtures of cement and lime.

  18. A Systematic Search for X-ray Cavities in the Hot Gas of Galaxy Groups

    CERN Document Server

    Dong, Ruobing; Mulchaey, John S

    2010-01-01

    We have performed a systematic search for X-ray cavities in the hot gas of 51 galaxy groups with Chandra archival data. The cavities are identified based on two methods: subtracting an elliptical beta model fitted to the X-ray surface brightness, and performing unsharp masking. 13 groups in the sample 25% are identified as clearly containing cavities, with another 13 systems showing tentative evidence for such structures. We find tight correlations between the radial and tangential radii of the cavities, and between their size and projected distance from the group center, in quantitative agreement with the case for more massive clusters. This suggests that similar physical processes are responsible for cavity evolution and disruption in systems covering a large range in total mass. We see no clear association between the detection of cavities and the current 1.4 GHz radio luminosity of the central brightest group galaxy, but there is a clear tendency for systems with a cool core to be more likely to harbor de...

  19. Chandra Observations of MRK 273 Unveiling the Central AGN and the Extended Hot Gas Halo

    CERN Document Server

    Xia, X Y; Mao, S; Boller, T; Deng, Z G; Wu, H; Boller, Th.

    2001-01-01

    We report X-ray observations of the field containing the ultraluminous IRAS galaxy Mrk~273 Using the ACIS-S3 instrument on board Chandra. The high resolution X-ray image, for the first time, reveals a compact hard X-ray nucleus in Mrk~273. Its X-ray energy distribution is well described by a heavily obscured power-law spectrum plus a narrow $\\Feka$ emission line at 6.4 keV. The neutral hydrogen column density is about $4\\times10^{23}\\cm^{-2}$, implying an absorption -corrected X-ray luminosity (0.1--10 keV) for the nucleus of $\\Lx\\approx 6.5\\times 10^{43} \\ergs$. There are also bright soft X-ray clumps and diffuse soft X-ray emissions surrounding the central hard X-ray nucleus within the $10\\arcsec$ of the nuclear region. Its spectrum can be fitted by a MEKAL thermal model with temperature of about 0.8 keV and high metallicity ($Z\\sim 1.5Z_\\odot$) plus emission lines from $\\alpha$ elements and ions. Further outside the central region, the Chandra observations reveal a very extended hot gas halo with a project...

  20. High temperature corrosion of hot-dip aluminized steel in Ar/1%SO2 gas

    Science.gov (United States)

    Abro, Muhammad Ali; Lee, Dong Bok

    2017-01-01

    Carbon steels were hot-dip aluminized in Al or Al-1at%Si baths, and corroded in Ar/1%SO2 gas at 700-800 °C for up to 50 h. The aluminized layers consisted of not only an outer Al(Fe) topcoat that had interdispersed needle-like Al3Fe particles but also an inner Al-Fe alloy layer that consisted of an outer Al3Fe layer and an inner Al5Fe2 layer. The Si addition in the bath made the Al(Fe) topcoat thin and nonuniform, smoothened the tongue-like interface between the Al-Fe alloy layer and the substrate, and increased the microhardness of the aluminized layer. The aluminized steels exhibited good corrosion resistance by forming thin α-Al2O3 scales, along with a minor amount of iron oxides on the surface. The interdiffusion that occurred during heating made the aluminized layer thick and diffuse, resulting in the formation of Al5Fe2, AlFe and AlFe3 layers. It also smoothened the tongue-like interface, and decreased the microhardness of the aluminized layer. The non-aluminized steel formed thick, nonadherent, nonprotective (Fe3O4, FeS)-mixed scales.

  1. High-velocity gas toward hot molecular cores: evidence for collimated outflows from embedded sources

    CERN Document Server

    Gibb, A G; Wyrowski, F

    2004-01-01

    We present observations made with the Berkeley-Illinois-Maryland Association millimeter array of the H2S 2(2,0)-2(1,1) and C18O 2-1 transitions toward a sample of four hot molecular cores associated with ultracompact HII regions: G9.62+0.19, G10.47+0.03, G29.96-0.02 and G31.41+0.31. The angular resolution varies from 1.5 to 2.4 arcsec, corresponding to scales of ~0.06 pc at the distance of these sources. High-velocity wings characteristic of molecular outflows are detected toward all four sources in the H2S line. In two cases (G29.96 and G31.41) red- and blueshifted lobes are clearly defined and spatially separate, indicating that the flows are collimated. We also confirm the previous detection of the outflow in G9.62F. Although the gas-phase H2S abundance is not well constrained, assuming a value of 10^-7 yields lower limits to total outflow masses of ~8 Msun, values which are consistent with the driving sources being massive protostars. Linear velocity gradients are detected in both C18O and H2S across G9.6...

  2. Absorption signatures of warm-hot gas at low redshift: OVI

    CERN Document Server

    Tepper-Garcia, Thorsten; Schaye, Joop; Booth, C M; Vecchia, Claudio Dalla; Theuns, Tom; Wiersma, Robert P C

    2010-01-01

    [abridged] We investigate the origin and physical properties of OVI absorbers at low redshift (z = 0.25) using a subset of cosmological, hydrodynamical simulations from the OverWhelmingly Large Simulations (OWLS) project. Intervening OVI absorbers are believed to trace shock-heated gas in the Warm-Hot Intergalactic Medium (WHIM) and may thus play a key role in the search for the missing baryons in the present-day Universe. When compared to observations, the predicted distributions of the different OVI line parameters (column density, Doppler parameter, rest equivalent width) from our simulations exhibit a lack of strong OVI absorbers, a discrepancy that has also been found by Oppenheimer & Dave (2009b). This suggests that physical processes on sub-grid scales (e.g. turbulence) may strongly influence the observed properties of OVI systems. We find that the intervening OVI absorption arises in highly metal-enriched (10^{-1} < 10^2 and temperatures T =10^{5.3\\pm0.5} K. While the OVI resides in a similar ...

  3. Synthesis of functional xLayMn/KIT-6 and features in hot coal gas desulphurization.

    Science.gov (United States)

    Xia, Hong; Zhang, Fengmei; Zhang, Zhaofei; Liu, Bingsi

    2015-08-28

    To enhance the stability of sorbents during continuous desulphurization-regeneration cycles, KIT-6 with 3D pore channels was used as a support for the sorbents. A series of mesoporous xLayMn/KIT-6 sorbents with different La/Mn atomic ratios were fabricated using a sol-gel method and their desulphurization properties of hot coal gas were investigated at 700-850 °C. 3La97Mn/KIT-6 performed the best at 800 °C with a breakthrough sulphur capacity of 11.56 g sulphur per 100 g sorbent. The eight successive desulphurization (800 °C)-regeneration (600 °C) cycles revealed that 3La97Mn/KIT-6 with endurable regeneration abilities could retain 80% of the initial sulphur capacity. It indicated a better desulphurization performance compared to pure 3La97Mn and 3La97Mn/MCM-41. The fresh and used xLayMn/KIT-6 sorbents were characterized by means of BET, XRD, HRTEM, XPS and H2-TPR techniques. The XRD patterns and HRTEM images of fresh and used 3La97Mn/KIT-6 verified that the utilization of KIT-6 effectively suppressed the aggregation of Mn2O3 particles and improved the stability of the sorbent.

  4. Developments of advanced hot-gas desulfurization sorbents. Quarterly technical progress report, April--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Jothimurugesan, K.; Adeyiga, A.A.; Gangwal, S.K.

    1995-07-01

    The objectives of this project are to develop hot-gas cleanup sorbents for relatively lower temperature application, with emphasis on the temperature range from 343-538{degrees}C. The candidate sorbents include highly dispersed mixed metal oxides of zinc, iron, copper, cobalt and molybdenum. The specific objective in the successful preparation of H{sub 2}S absorbents will be to generate as high and as stable a surface area as possible, in order to develop suitable sorbent, that are sufficiently reactive and regenerable at the relatively lower temperatures of interest in this work. A number of formulations will be prepared and screened for testing in a 1/2-inch fixed bed reactor at high pressure (1 to 20 atm) and high temperatures using simulated coal-derived fuel-gases. Screening criteria will include, chemical reactivity, stability, and regenerability over the temperature range of 343{degrees}C (650{degrees}F) to 538{degrees}C (1000{degrees}F). Each formulation will be tested for up to 5 cycles of absorption and regeneration. To prevent sulfation, catalyst additives will be investigated, which would promote a lower ignition of the regeneration. Selected superior formulation will be tested for long term (up to least 30 cycles) durability and chemical reactivity in the reactor.

  5. Hot QCD, k-strings and the adjoint monopole gas model

    CERN Document Server

    Altes, C P K; Altes, Chris P. Korthals; Meyer, Harvey B.

    2005-01-01

    When the magnetic sector of hot QCD, 3D SU(N) Yang-Mills theory, is described as a dilute gas of non-Abelian monopoles in the adjoint representation of the magnetic group, Wilson loops of N-ality k are known to obey a periodic k(N-k) law. Lattice simulations have confirmed this prediction to a few percent for N=4 and 6. We describe in detail how the magnetic flux of the monopoles produces different area laws for spatial Wilson k-loops. A simple physical argument is presented, why the predicted and observed Casimir scaling is allowed in the large-N limit by usual power-counting arguments. The same scaling is also known to hold in two-loop perturbation theory for the spatial 't Hooft loop, which measures the electric flux. We then present new lattice data for 3D N=8 k-strings as long as 3`fm' that provide further confirmation. Finally we suggest new tests in theories with spontaneous breaking and in SO(4n+2) gauge groups.

  6. X-Ray Evidence for Multiphase Hot Gas with Solar Abundances in the Brightest Elliptical Galaxies

    CERN Document Server

    Buote, D A

    1998-01-01

    We examine whether single-phase models of the hot gas can successfully describe the ASCA and ROSAT spectra of NGC 1399, NGC 4472, NGC 4636, and NGC 5044. Broad-band spectral fitting of the ASCA SIS and GIS data accumulated within a radius of ~5 arcmin for each galaxy shows that single-phase models are unable to fit the SIS data near 1 keV. In addition, these single-phase models typically fail to produce the large equivalent widths of the K-alpha line blends of the H-like and He-like ions of Si and S which are measured independently of the Fe L emission lines. Two-phase models provide excellent broad-band fits to both the SIS and GIS data of each galaxy with the relative abundances (except for NGC 4636) fixed at their solar values. A simple multiphase cooling flow model fits nearly as well as the two-phase model for NGC 1399, NGC 4472, and NGC 5044. The multiphase models also predict more accurately the Si and S equivalent widths and the ratios of Si XIV/XIII and S XVI/XV than the single-phase models. Using va...

  7. Hot-gas cleanup system model development. Volume II. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ushimaru, K.; Bennett, A.; Bekowies, P.J.

    1982-11-01

    Under Contract to the Department of Energy (DOE) through the Morgantown Energy Technology Center (METC), Flow Industries, Inc., has developed computer models to simulate the physical performance of five hot-gas cleanup devices for pressurized, fluidized-bed combustion (PFBC), combined-cycle power plants. Separate cost models have also been developed to estimate the cost of each device. The work leading to the development of these models is described in Volume I of this report. This volume contains the user's manuals for both the physical and cost models. The manuals for the physical models are given first followed by those for the cost models. Each manual is a complete and separate document. The model names and devices and their respective subroutine names are: (1) Moving Granular Bed Filter by Combustion Power Company, USRCGB, QFCOST; (2) Ceramic Bag Filter by Acurex, USRACB, QDCOST; (3) Electrostatic Granular Bed Filter by General Electric, USRGGB, QACOST; (4) Electrostatic Precipitator by Research Cottrell, USRCEP, QECOST; and (5) Electrocyclone by General Electric, USRGCY, QBCOST.

  8. Catalytic modification of conventional SOFC anodes with a view to reducing their activity for direct internal reforming of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Boder, M.; Dittmeyer, R. [Research Group Technical Chemistry, Karl-Winnacker-Institut, DECHEMA e.V., Theodor-Heuss-Allee 25, D-60486 Frankfurt (Germany)

    2006-04-18

    When using natural gas as fuel for the solid oxide fuel cell (SOFC), direct internal reforming lowers the requirement for cell cooling and, theoretically, offers advantages with respect to capital cost and efficiency. The high metal content of a nickel/zirconia anode and the high temperature, however, cause the endothermic reforming reaction to take place very fast. The resulting drop of temperature at the inlet produces thermal stresses, which may lower the system efficiency and limit the stack lifetime. To reduce the reforming rate without lowering the electrochemical activity of the cell, a wet impregnation procedure for modifying conventional cermets by coverage with a less active metal was developed. As the coating material copper was chosen. Copper is affordable, catalytically inert for the reforming reaction and exhibits excellent electronic conductivity. The current density-voltage characteristics of the modified units showed that it is possible to maintain a good electrochemical performance of the cells despite the catalytic modification. A copper to nickel ratio of 1:3 resulted in a strong diminution of the catalytic reaction rate. This indicates that the modification could be a promising method to improve the performance of solid oxide fuel cells with direct internal reforming of hydrocarbons. (author)

  9. Quantification of real thermal, catalytic, and hydrodeoxygenated bio-oils via comprehensive two-dimensional gas chromatography with mass spectrometry.

    Science.gov (United States)

    Silva, Raquel V S; Tessarolo, Nathalia S; Pereira, Vinícius B; Ximenes, Vitor L; Mendes, Fábio L; de Almeida, Marlon B B; Azevedo, Débora A

    2017-03-01

    The elucidation of bio-oil composition is important to evaluate the processes of biomass conversion and its upgrading, and to suggest the proper use for each sample. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) is a widely applied analytical approach for bio-oil investigation due to the higher separation and resolution capacity from this technique. This work addresses the issue of analytical performance to assess the comprehensive characterization of real bio-oil samples via GC×GC-TOFMS. The approach was applied to the individual quantification of compounds of real thermal (PWT), catalytic process (CPO), and hydrodeoxygenation process (HDO) bio-oils. Quantification was performed with reliability using the analytical curves of oxygenated and hydrocarbon standards as well as the deuterated internal standards. The limit of quantification was set at 1ngµL(-1) for major standards, except for hexanoic acid, which was set at 5ngµL(-1). The GC×GC-TOFMS method provided good precision (bio-oil samples. Sugars, furans, and alcohols appear as the major constituents of the PWT, CPO, and HDO samples, respectively. In order to obtain bio-oils with better quality, the catalytic pyrolysis process may be a better option than hydrogenation due to the effective reduction of oxygenated compound concentrations and the lower cost of the process, when hydrogen is not required to promote deoxygenation in the catalytic pyrolysis process.

  10. X-ray Scaling Relation in Early-Type Galaxies: Dark Matter as a Primary Factor in Retaining Hot Gas

    CERN Document Server

    Kim, Dong-Woo

    2013-01-01

    We have revisited the X-ray scaling relations of early type galaxies (ETG) by investigating, for the first time, the LX,Gas - MTotal relation in a sample of 14 ETGs. In contrast to the large scatter (by a factor of 102-103) in the LX,Total - LB relation, we found a tight correlation between these physically motivated quantities with a rms deviation of a factor of 3 in LX,Gas = 1038 - 1043 erg s-1 or MTotal = a few x 1010 - a few x 1012 Mo. More striking, this relation becomes even tighter with a rms deviation of a factor of 1.3 among the gas-rich galaxies (with LX,Gas > 1040 erg s-1). In a simple power-law form, the new relation is (LX,Gas / 1040 erg s-1) = (MTotal / 3.2 x 1011 Mo)3. This relation is also consistent with the steep relation between the gas luminosity and temperature, LX,Gas ~ TGas4.5, identified by Boroson, Kim & Fabbiano (2011), if the gas is virialized. Our results indicate that the total mass of an ETG is the primary factor in regulating the amount of hot gas. Among the gas-poor galaxie...

  11. Numerical and experimental study on shear coaxial injectors with hot hydrogen-rich gas/oxygen-rich gas and GH2/GO2

    Science.gov (United States)

    Jin, Ping; Li, Mao; Cai, Guo-Biao

    2013-04-01

    The influences of the shear coaxial injector parameters on the combustion performance and the heat load of a combustor are studied numerically and experimentally. The injector parameters, including the ratio of the oxidizer pressure drop to the combustor pressure (DP), the velocity ratio of fuel to oxidizer (RV), the thickness (WO), and the recess (HO) of the oxidizer injector post tip, the temperature of the hydrogen-rich gas (TH) and the oxygen-rich gas (TO), are integrated by the orthogonal experimental design method to investigate the performance of the shear coaxial injector. The gaseous hydrogen/oxygen at ambient temperature (GH2/GO2), and the hot hydrogen-rich gas/oxygen-rich gas are used here. The length of the combustion (LC), the average temperatures of the combustor wall (TW), and the faceplate (TF) are selected as the indicators. The tendencies of the influences of injector parameters on the combustion performance and the heat load of the combustor for the GH2/GO2 case are similar to those in the hot propellants case. However, the combustion performance in the hot propellant case is better than that in the GH2/GO2 case, and the heat load of the combustor is also larger than that in the latter case.

  12. Numerical and experimental study on shear coaxial injectors with hot hydrogen-rich gas/oxygen-rich gas and GH2/GO2

    Institute of Scientific and Technical Information of China (English)

    Jin Ping; Li Mao; Cai Guo-Biao

    2013-01-01

    The influences of the shear coaxial injector parameters on the combustion performance and the heat load of a combustor are studied numerically and experimentally.The injector parameters,including the ratio of the oxidizer pressure drop to the combustor pressure (Dp),the velocity ratio of fuel to oxidizer (Rv),the thickness (Wo),and the recess (Ho) of the oxidizer injector post tip,the temperature of the hydrogen-rich gas (TH) and the oxygen-rich gas (To),are integrated by the orthogonal experimental design method to investigate the performance of the shear coaxial injector.The gaseous hydrogen/oxygen at ambient temperature (GH2/GO2),and the hot hydrogen-rich gas/oxygen-rich gas are used here.The length of the combustion (Lc),the average temperatures of the combustor wall (Tw),and the faceplate (TF) are selected as the indicators.The tendencies of the influences of injector parameters on the combustion performance and the heat load of the combustor for the GH2/GO2 case are similar to those in the hot propellants case.However,the combustion performancein the hot propellant case is better than that in the GH2/GO2 case,and the heat load of the combustor is also larger than that in the latter case.

  13. Thermodynamic analysis of a process for producing high-octane gasoline components from catalytic cracking gas

    Science.gov (United States)

    Ismailova, Z. R.; Pirieva, Kh. B.; Kasimov, A. A.; Dzhamalova, S. A.; Gadzhizade, S. M.; Nuriev, Sh. A.; Zeinalova, S. Kh.; Dzhafarov, R. P.

    2016-03-01

    The results from a thermodynamic analysis of high-octane gasoline component production from catalytic cracking gases using zeolite catalyst OMNIKAT-210P modified with Ni, Co, Cr are presented. The equilibrium constants of the reactions assumed to occur in this process are calculated, along with the equilibrium yield of the reactions.

  14. KINETICS OF Mn-BASED SORBENTS FOR HOT COAL GAS DESULFURIZATION

    Energy Technology Data Exchange (ETDEWEB)

    J.J. BERNS; K.A. SADECKI; M.T. HEPWORTH

    1997-09-15

    Mixed manganese oxide sorbents have been investigated for high-temperature removal of hydrogen sulfide (the primary sulfur bearing compound) from hot coal gases. The sorbents were screened by thermodynamic equilibrium considerations for sulfidation. Preliminary experimental work using thermogravimetric analysis (TGA) indicated titania to be a superior substrate than alumina. Four formulations showing superior reactivity in a TGA were then tested in an ambient pressure fixed-bed reactor to determine steady state H 2 S concentrations, breakthrough times and effectiveness of the sorbent when subjected to cyclic sulfidation and regeneration testing. Eight tests were conducted with each test consisting of five cycles of sulfidation and regeneration. Sulfidation occurred at 600 o C using a simulated coal gas at an empty-bed space velocity of approximately 12,000 per hour. Manganese-based sorbents with molar ratios > 1:1 Mn:Substrate were effective in reducing the H 2 S concentration in simulated coal gases to less than 100 ppmv over five cycles. Actual breakthrough time for formulation C6-2-1100 was as high as 73% of breakthrough time based on wt% Mn in sorbent at 600 o C. Regeneration tests determined that loaded pellets can be essentially completely regenerated in an air/steam mixture at 750 o C with minimal sulfate formation. The leading formulation (designated C6-2) from the fixed-bed tests was then further tested under varying sorbent induration temperature, sulfidation temperature and superficial gas velocity. Four tests were conducted with each test consisting of four cycles of sulfidation and regeneration. Results showed that the induration temperature of the sorbent and the reaction temperature greatly affected the H 2 S removal capacity of the sorbent while the superficial gas velocity between 1090 and 1635 cm/min had minimal affect on the sorbent's breakthrough capacity. Testing showed that the sorbent's strength was a strong function of the sorbent

  15. Catalytic hydrothermal gasification of biomass for the production of synthetic natural gas[Dissertation 17100

    Energy Technology Data Exchange (ETDEWEB)

    Waldner, M. H.

    2007-07-01

    Energy from biomass is a CO{sub 2} neutral, sustainable form of energy. Anaerobic digestion is an established technology for converting biomass to biogas, which contains around 60% methane, besides CO{sub 2} and various contaminants. Most types of biomass contain material that cannot be digested; in woody biomass, this portion is particularly high. Therefore, conventional anaerobic digestion is not suited for the production of biogas from woody biomass. While wood is already being converted to energy by conventional thermal methods (gasification with subsequent methanation), dung, manure, and sewage sludge represent types of biomass whose energy potential remains largely untapped (present energetic use of manure in Switzerland: 0.4%). Conventional gas phase processes suffer from a low efficiency due to the high water content of the feed (enthalpy of vaporization). An alternative technology is the hydrothermal gasification: the water contained within the biomass serves as reaction medium, which at high pressures of around 30 MPa turns into a supercritical fluid that exhibits apolar properties. Under these conditions, tar precursors, which cause significant problems in conventional gasification, can be solubilized and gasified. The need to dry the biomass prior to gasification is obsolete, and as a consequence high thermal process efficiencies (65 - 70%) are possible. Due to their low solubility in supercritical water, the inorganics that are present in the biomass (up to 20 wt % of the dry matter of manure) can be separated and further used as fertilizer. The biomass is thus not only converted into an energy carrier, but it allows valuable substances contained in the biomass to be extracted and re-used. Furthermore, the process can be used for aqueous waste stream destruction. The aim of this project at the Paul Scherrer Institute was to develop a catalytic process that demonstrates the gasification of wet biomass to synthetic natural gas (SNG) in a continuously

  16. Removal of P4, PH3 and H2S from Yellow Phosphoric Tail Gas by a Catalytic Oxidation Process

    Institute of Scientific and Technical Information of China (English)

    NingPing; Hans-JoergBart; MaLiping; WangXueqian

    2004-01-01

    Yellow phosphorus tail gas is a resource used to produce bulk chemicals, such as formates, oxalates, and methanol after its pretreatment and purification. In this study, catalytic oxidation of phosphorus and hydrogen sulfide in yellow phosphorus tail gas was investigated on an ordinary activated carbon (OAC) and a home-made catalyst KU2. The adsorption characteristics of phosphorus and hydrogen sulfide on the catalysts were studied in a fixed-bed system at different temperatures between 20℃ and 140℃ at atmospheric pressure. Both KU2 and OAC are proved to be effective catalysts in the catalytic oxidation process (COP) for H2S and PH3 removal. Purification efficiency increased with the increase of temperature and oxygen concentration in yellow phosphorus tail gases. Under optimized operation conditions, the product gases with a content of hydrogen sulfide <5mg/m3 and total phosphorus <5mg/m3 were obtained by using the COP process. Deactivated catalysts could be restored to the original activated state, even after several regenerations. A mathematical model was developed to simulate the experimental results and the mass transport coefficient from the experiment was evaluated. Good agreement between the experimental breakthrough curves and the model predictions was observed.

  17. Simultaneous probing of bulk liquid phase and catalytic gas-liquid-solid interface under working conditions using attenuated total reflection infrared spectroscopy.

    Science.gov (United States)

    Meemken, Fabian; Müller, Philipp; Hungerbühler, Konrad; Baiker, Alfons

    2014-08-01

    Design and performance of a reactor set-up for attenuated total reflection infrared (ATR-IR) spectroscopy suitable for simultaneous reaction monitoring of bulk liquid and catalytic solid-liquid-gas interfaces under working conditions are presented. As advancement of in situ spectroscopy an operando methodology for gas-liquid-solid reaction monitoring was developed that simultaneously combines catalytic activity and molecular level detection at the catalytically active site of the same sample. Semi-batch reactor conditions are achieved with the analytical set-up by implementing the ATR-IR flow-through cell in a recycle reactor system and integrating a specifically designed gas feeding system coupled with a bubble trap. By the use of only one spectrometer the design of the new ATR-IR reactor cell allows for simultaneous detection of the bulk liquid and the catalytic interface during the working reaction. Holding two internal reflection elements (IRE) the sample compartments of the horizontally movable cell are consecutively flushed with reaction solution and pneumatically actuated, rapid switching of the cell (interface on a catalyst-coated IRE and in the bulk liquid on a blank IRE. For a complex heterogeneous reaction, the asymmetric hydrogenation of 2,2,2-trifluoroacetophenone on chirally modified Pt catalyst the elucidation of catalytic activity/enantioselectivity coupled with simultaneous monitoring of the catalytic solid-liquid-gas interface is shown. Both catalytic activity and enantioselectivity are strongly dependent on the experimental conditions. The opportunity to gain improved understanding by coupling measurements of catalytic performance and spectroscopic detection is presented. In addition, the applicability of modulation excitation spectroscopy and phase-sensitive detection are demonstrated.

  18. Removal of volatile to semi-volatile organic contaminants from water using hollow fiber membrane contactors and catalytic destruction of the contaminants in the gas phase

    OpenAIRE

    Tarafder, Shamsul Abedin

    2007-01-01

    Abstract Chlorinated organic compounds and ether compounds are frequently found in groundwater and efficient treatment options are needed. In this study, the efficient transferal of the compounds from the water phase to the gas phase was studied followed by the catalytic treatment of the gas phase. For the removal of the organic contaminants from water, a microporous polypropylene hollow fiber membrane (HFM) module was operated under low strip gas flow to water flow ratios (_< 5:1). Rem...

  19. Catalytic hydrothermal gasification of biomass for the production of synthetic natural gas[Dissertation 17100

    Energy Technology Data Exchange (ETDEWEB)

    Waldner, M. H.

    2007-07-01

    Energy from biomass is a CO{sub 2} neutral, sustainable form of energy. Anaerobic digestion is an established technology for converting biomass to biogas, which contains around 60% methane, besides CO{sub 2} and various contaminants. Most types of biomass contain material that cannot be digested; in woody biomass, this portion is particularly high. Therefore, conventional anaerobic digestion is not suited for the production of biogas from woody biomass. While wood is already being converted to energy by conventional thermal methods (gasification with subsequent methanation), dung, manure, and sewage sludge represent types of biomass whose energy potential remains largely untapped (present energetic use of manure in Switzerland: 0.4%). Conventional gas phase processes suffer from a low efficiency due to the high water content of the feed (enthalpy of vaporization). An alternative technology is the hydrothermal gasification: the water contained within the biomass serves as reaction medium, which at high pressures of around 30 MPa turns into a supercritical fluid that exhibits apolar properties. Under these conditions, tar precursors, which cause significant problems in conventional gasification, can be solubilized and gasified. The need to dry the biomass prior to gasification is obsolete, and as a consequence high thermal process efficiencies (65 - 70%) are possible. Due to their low solubility in supercritical water, the inorganics that are present in the biomass (up to 20 wt % of the dry matter of manure) can be separated and further used as fertilizer. The biomass is thus not only converted into an energy carrier, but it allows valuable substances contained in the biomass to be extracted and re-used. Furthermore, the process can be used for aqueous waste stream destruction. The aim of this project at the Paul Scherrer Institute was to develop a catalytic process that demonstrates the gasification of wet biomass to synthetic natural gas (SNG) in a continuously

  20. The alignment and shape of dark matter, stellar, and hot gas distributions in the EAGLE and cosmo-OWLS simulations

    CERN Document Server

    Velliscig, Marco; Schaye, Joop; Bower, Richard G; Crain, Robert A; van Daalen, Marcel P; Vecchia, Claudio Dalla; Frenk, Carlos S; Furlong, Michelle; McCarthy, Ian G; Schaller, Matthieu; Theuns, Tom

    2015-01-01

    We report the alignment and shape of dark matter, stellar, and hot gas distributions in the EAGLE and cosmo-OWLS simulations. The combination of these state-of-the-art hydro-cosmological simulations enables us to span four orders of magnitude in halo mass ($11 < log_{10}(M_{200}/ [h^{-1}M_\\odot]) < 15$), a wide radial range ($-2.3 < log_{10}(r/[h^{-1}Mpc ]) < 1.3$) and redshifts $0 < z < 1$. The shape parameters of the dark matter, stellar and hot gas distributions follow qualitatively similar trends: they become more aspherical (and triaxial) with increasing halo mass, radius and redshift. We measure the misalignment of the baryonic components (hot gas and stars) of galaxies with their host halo as a function of halo mass, radius, redshift, and galaxy type (centrals vs satellites and early- vs late-type). Overall, galaxies align well with local distribution of the total (mostly dark) matter. However, the stellar distributions on galactic scales exhibit a median misalignment of about 45-50 d...

  1. Ceramic hot film sensor for exhaust gas mass flow measurements in automotive applications; Keramischer Heissfilmsensor zur Abgasmassenstrommessung in automotiven Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Dismon, Heinrich; Grimm, Karsten; Toennesmann, Andres; Nigrin, Sven [Pierburg GmbH, Neuss (Germany); Wienand, Karlheinz; Muziol, Matthias [Heraeus Sensor Technology GmbH, Kleinostheim (Germany)

    2008-07-01

    Due to increasingly stringent emission standards, a number of internal measures as well as exhaust gas aftertreatment systems have become state-of-the-art technology for passenger car and heavy duty engines. However, the full potential of these measures, for example the cooled external exhaust gas recirculation, can only be utilized if the engine control is adapted adequately well in all engine states. Thus, the requirements for future engine controls become more demanding and consequently the standards for sensors used in the control loop will increase. In this context this article introduces a new exhaust gas mass flow sensor based or the principle of hot film anemometry. The sensor comprising a ceramic sensor element is developed especially for the use in engine exhaust gases providing the exhaust gas mass flow as a direct measurement and control variable. Next to the sensor technology first results of engine tests are presented in this paper. (orig.)

  2. Ground-state diagrams for lattice-gas models of catalytic CO oxidation

    Directory of Open Access Journals (Sweden)

    I.S.Bzovska

    2007-01-01

    Full Text Available Based on simple lattice models of catalytic carbon dioxide synthesis from oxygen and carbon monoxide, phase diagrams are investigated at temperature T=0 by incorporating the nearest-neighbor interactions on a catalyst surface. The main types of ground-state phase diagrams of two lattice models are classified describing the cases of clean surface and surface containing impurities. Nonuniform phases are obtained and the conditions of their existence dependent on the interaction parameters are established.

  3. The interaction between radio lobes and hot gas in the nearby radio galaxies 3C285 and 3C442A

    CERN Document Server

    Hardcastle, M J; Worrall, D M; Croston, J H; Evans, D A; Birkinshaw, M; Murray, S S

    2007-01-01

    We present Chandra observations of two nearby radio galaxies in group environments, 3C285 and 3C442A. The host galaxies of both sources are involved in mergers with nearby massive galaxies, and the hot gas in the systems is extended along lines joining the interacting galaxies. Both sources show strong evidence for interactions between the radio lobes and the asymmetrical hot gas. We argue that the structure in the hot gas is independent of the existence of the radio lobes in these systems, and argue that hot gas shaped by an ongoing massive galaxy merger may play an important role in the dynamics of radio lobes in other objects. For 3C442A, our observations show that gas is being driven out of both members of the host interacting galaxy pair, and the implied constraints on galaxy velocities are consistent with mildly supersonic motions with respect to the group-scale hot gas. The previously known filamentary radio structure in the center of 3C442A may be a result of the interaction between hot gas expelled f...

  4. THE ORIGIN OF THE HOT GAS IN THE GALACTIC HALO: TESTING GALACTIC FOUNTAIN MODELS' X-RAY EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Henley, David B.; Shelton, Robin L. [Department of Physics and Astronomy, University of Georgia, Athens, GA 30602 (United States); Kwak, Kyujin [School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 689-798 (Korea, Republic of); Hill, Alex S. [CSIRO Astronomy and Space Science, Marsfield, NSW (Australia); Mac Low, Mordecai-Mark, E-mail: dbh@physast.uga.edu [Department of Astrophysics, American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024 (United States)

    2015-02-20

    We test the X-ray emission predictions of galactic fountain models against XMM-Newton measurements of the emission from the Milky Way's hot halo. These measurements are from 110 sight lines, spanning the full range of Galactic longitudes. We find that a magnetohydrodynamical simulation of a supernova-driven interstellar medium, which features a flow of hot gas from the disk to the halo, reproduces the temperature but significantly underpredicts the 0.5-2.0 keV surface brightness of the halo (by two orders of magnitude, if we compare the median predicted and observed values). This is true for versions of the model with and without an interstellar magnetic field. We consider different reasons for the discrepancy between the model predictions and the observations. We find that taking into account overionization in cooled halo plasma, which could in principle boost the predicted X-ray emission, is unlikely in practice to bring the predictions in line with the observations. We also find that including thermal conduction, which would tend to increase the surface brightnesses of interfaces between hot and cold gas, would not overcome the surface brightness shortfall. However, charge exchange emission from such interfaces, not included in the current model, may be significant. The faintness of the model may also be due to the lack of cosmic ray driving, meaning that the model may underestimate the amount of material transported from the disk to the halo. In addition, an extended hot halo of accreted material may be important, by supplying hot electrons that could boost the emission of the material driven out from the disk. Additional model predictions are needed to test the relative importance of these processes in explaining the observed halo emission.

  5. Catalytic decomposition of ammonia in a fuel gas at high temperature and pressure

    Energy Technology Data Exchange (ETDEWEB)

    Mojtahedi, W.; Abbasian, J. [Enviropower Inc., Espoo (Finland)

    1995-11-01

    In connection with the purification of fuel gas for gas turbines in the IGCC process to meet NO{sub x} standards and maintain the thermal efficiency of the process, tests were carried out with a 7.5 cm pressurized reactor to decompose ammonia at high temperature (700-900{degree}C) and pressure (2 MPa) using Ni-based catalysts. The effects of temperature, pressure, ammonia concentration and gas residence time were determined. The simulated coal gas composition was varied to allow assessment of the effect of contaminants (sulfur compounds and tars) on the ammonia decomposition efficiency of five catalysts under otherwise identical operating conditions. The results show that two of the catalysts tested are capable of efficiently reducing the concentration of ammonia in the gas. 12 refs., 13 figs.

  6. PENGARUH KATALIS Co DAN Fe TERHADAP KARAKTERISTIK CARBON NANOTUBES DARI GAS ASETILENA DENGAN MENGGUNAKAN PROSES CATALYTIC CHEMICAL VAPOUR DEPOSITION (CCVD

    Directory of Open Access Journals (Sweden)

    Tutuk Djoko Kusworo

    2013-11-01

    Full Text Available EFFECT OF Co AND Fe ON CARBON NANOTUBES CHARACTERISTICS FROM ACETYLENE USING CATALYTIC CHEMICAL VAPOUR DEPOSITION (CCVD PROCESS. Carbon Nanotubes (CNTs is one of the most well known nano-technology applications which the most of attracting the attention of researchers, because it has more advantages than other materials. The application of the CNT has extended into various aspects, such as electronics, materials, biology and chemistry. This research uses a system of Catalytic Chemical Vapour Deposition (CCVD, which aims to determine the influence of Co and Fe as a catalyst and zeolite 4A as a support catalyst with acetylene gas (C2H2 as carbon source in the synthesis of Carbon Nanotubes (CNTs. In this experiment, used the ratio of acetylene gas and flow rate of N2 gas is 1:1 by weight of the catalyst Co/Zeolite and Fe/Zeolite amounted to 0.5 grams at the operating temperature of 700oC for 20 minutes. N2 gas serves to minimize the occurrence of oxidation reaction (explosion when operating. From analysis result by Scanning Electron Microscopy (SEM shows the CNTs formed a type of MWNT with different of diameter size and product weight, depending on the size of the active component concentration on the catalyst. The larger of active components produced CNTs with larger diameter, whereas product weight syntheses result smaller. Use of the catalyst Fe/Zeolite produce CNTs with a diameter larger than the catalyst Co/Zeolite.  Carbon Nanotubes (CNTs merupakan salah satu aplikasi nanoteknologi yang paling terkenal dan banyak menarik perhatian para peneliti, karena memiliki beberapa kelebihan daripada material lainnya. Aplikasi dari CNT telah merambah ke berbagai aspek, seperti bidang elektronika, material, biologi dan kimia. Penelitian ini menggunakan sistem Catalytic Chemical Vapour Deposition (CCVD yang bertujuan untuk mengetahui pengaruh variasi Cobalt (Co dan Ferrum (Fe sebagai katalis dan zeolit tipe 4A sebagai penyangga katalis dengan gas

  7. Interactions Between Surface Reactions and Gas-phase Reactions in Catalytic Combustion and Their Influence on Ignition of HCCI Engine

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The catalytic combustion of methane in a microchannel whose surface was coated with platinum(Pt)catalyst was studied by numerical-simulation. The effects of gas-phase reactions on the whole catalytic combustion process were analyzed at a high inlet pressure. A sensitivity analysis of the detailed mechanisms of the surface reaction of methane on Pt revealed that the most sensitive reactions affecting the heterogeneous ignition are oxygen adsorption/desorption and methane adsorption, and the most sensitive reactions affecting the homogeneous ignition are OH and H2O adsorption/desorption. The combustion process of the homogeneous charge compression ignition(HCCI) engine whose piston face was coated with Pt catalyst was simulated. The effects of catalysis and the most sensitive reactions on the ignition timing and the concentration of the main intermediate species during the HCCI engine combustion are discussed. The results show that the ignition timing of the HCCI engine can be increased by catalysis, and the most sensitive reactions affecting the ignition timing of the HCCI engine are OH and H2O adsorption/desorption.

  8. The Origin of the Hot Gas in the Galactic Halo: Confronting Models with XMM-Newton Observations

    CERN Document Server

    Henley, David B; Kwak, Kyujin; Joung, M Ryan; Mac Low, Mordecai-Mark

    2010-01-01

    We compare the predictions of three physical models for the origin of the hot halo gas with the observed halo X-ray emission, derived from 26 high-latitude XMM-Newton observations of the soft X-ray background between $l=120\\degr$ and $l=240\\degr$. These observations were chosen from a much larger set of observations as they are expected to be the least contaminated by solar wind charge exchange emission. We characterize the halo emission in the XMM-Newton band with a single-temperature plasma model. We find that the observed halo temperature is fairly constant across the sky (~1.8e6-2.4e6 K), whereas the halo emission measure varies by an order of magnitude ($\\sim$0.0005-0.006 cm^-6 pc), including significant sightline-to-sightline variation on scales as small as a few degrees. When we compare our observations with the model predictions, we find that most of the hot gas observed with XMM-Newton does not reside in an extended hot halo (predicted by disk galaxy formation models), nor is it contained within isol...

  9. Effects of inert species in the gas phase in a model for the catalytic oxidation of CO

    CERN Document Server

    Buendia, G M

    2011-01-01

    We study by kinetic Monte Carlo simulations the catalytic oxidation of carbon monoxide on a surface in the presence of contaminants in the gas phase. The process is simulated by a Ziff-Gulari-Barshad (ZGB) model that has been modified to include the effect of the contaminants and to eliminate the unphysical oxygen-poisoned phase. The impurities can adsorb and desorb on the surface, but otherwise remain inert. We find that, if the impurities can not desorb, no matter how small their proportion in the gas mixture, the first order transition and the reactive window that characterize the ZGB model disappear. The coverages become continuous, and once the surface has reached a steady state there is no production of CO$_2$. This is quite different from the behavior of a system in which the surface presents a fixed percentage of impurities. When the contaminants are allowed to desorb, the reactive window appears again, and disappears at a value that depends on the proportion of contaminants in the gas and on their de...

  10. Spatially resolved characterization of catalyst-coated membranes by distance-controlled scanning mass spectrometry utilizing catalytic methanol oxidation as gas-solid probe reaction.

    Science.gov (United States)

    Li, Nan; Assmann, Jens; Schuhmann, Wolfgang; Muhler, Martin

    2007-08-01

    The spatially resolved catalytic activity of a catalyst-coated membrane (CCM), which is the essential part of PEM fuel cells, was visualized rapidly without any damage by a distance-controlled scanning mass spectrometer with an improved resolution of 250 microm. Methanol oxidation was identified as a suitable gas-solid probe reaction for the characterization of local catalytic activity. In addition, defects were manually generated in the CCM to simulate inhomogeneous coating and pinholes. The measurements successfully demonstrated that catalytically active and less active regions can be clearly distinguished. Simultaneously, the local topography was recorded, providing additional information on the location of the scratches and pinholes. The catalytic results were highly reproducible due to the constant-distance feedback loop rendering scanning mass spectrometry a promising tool for the quantitative quality control of CCMs.

  11. Nine-Lump Kinetic Study of Catalytic Pyrolysis of Gas Oils Derived from Canadian Synthetic Crude Oil

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2016-01-01

    Full Text Available Catalytic pyrolysis of gas oils derived from Canadian synthetic crude oil on a kind of zeolite catalyst was conducted in a confined fluidized bed reactor for the production of light olefins. The overall reactants and products were classified into nine species, and a nine-lump kinetic model was proposed to describe the reactions based on appropriate assumptions. This kinetic model had 24 rate constants and a catalyst deactivation constant. The kinetic constants at 620°C, 640°C, 660°C, and 680°C were estimated by means of nonlinear least-square regression method. Preexponential factors and apparent activation energies were then calculated according to the Arrhenius equation. The apparent activation energies of the three feed lumps were lower than those of the intermediate product lumps. The nine-lump kinetic model showed good calculation precision and the calculated yields were close to the experimental ones.

  12. Catalytic partial oxidation of methane to synthesis gas over a ruthenium catalyst: the role of the oxidation state.

    Science.gov (United States)

    Rabe, Stefan; Nachtegaal, Maarten; Vogel, Frédéric

    2007-03-28

    The catalytic partial oxidation of methane to synthesis gas over ruthenium catalysts was investigated by thermogravimetry coupled with infrared spectroscopy (TGA-FTIR) and in situ X-ray absorption spectroscopy (XAS). It was found that the oxidation state of the catalyst influences the product formation. On oxidized ruthenium sites, carbon dioxide was formed. The reduced catalyst yielded carbon monoxide as a product. The influence of the temperature was also investigated. At temperatures below the ignition point of the reaction, the catalyst was in an oxidized state. At temperatures above the ignition point, the catalyst was reduced. This was also confirmed by the in situ XAS spectroscopy. The results indicate that both a direct reaction mechanism as well as a combustion-reforming mechanism can occur. The importance of knowing the oxidation state of the surface is discussed and a method to determine it under reaction conditions is presented.

  13. Controlled synthesis and enhanced catalytic and gas-sensing properties of tin dioxide nanoparticles with exposed high-energy facets.

    Science.gov (United States)

    Wang, Xue; Han, Xiguang; Xie, Shuifen; Kuang, Qin; Jiang, Yaqi; Zhang, Subing; Mu, Xiaoliang; Chen, Guangxu; Xie, Zhaoxiong; Zheng, Lansun

    2012-02-20

    A morphology evolution of SnO(2) nanoparticles from low-energy facets (i.e., {101} and {110}) to high-energy facets (i.e., {111}) was achieved in a basic environment. In the proposed synthetic method, octahedral SnO(2) nanoparticles enclosed by high-energy {111} facets were successfully synthesized for the first time, and tetramethylammonium hydroxide was found to be crucial for the control of exposed facets. Furthermore, our experiments demonstrated that the SnO(2) nanoparticles with exposed high-energy facets, such as {221} or {111}, exhibited enhanced catalytic activity for the oxidation of CO and enhanced gas-sensing properties due to their high chemical activity, which results from unsaturated coordination of surface atoms, superior to that of low-energy facets. These results effectively demonstrate the significance of research into improving the physical and chemical properties of materials by tailoring exposed facets of nanomaterials.

  14. Functional MRI and NMR spectroscopy of an operating gas-liquid-solid catalytic reactor.

    Science.gov (United States)

    Koptyug, Igor V; Lysova, Anna A; Kulikov, Alexander V; Kirillov, Valery A; Parmon, Valentin N; Sagdeev, Renad Z

    2005-02-01

    A dynamic in situ study of alpha-methylstyrene catalytic hydrogenation on a single catalyst pellet or in a granular bed is performed using 1H MRI and spatially resolved 1H NMR spectroscopy. Owing to reaction exothermicity, a reciprocating motion of the liquid front within the pellet accompanied by pellet temperature oscillations has been observed. Spatially resolved information on the reactant to product conversion within the catalyst bed has been obtained for a steady-state regime. Two-dimensional 27Al NMR images of alumina catalyst supports and other alumina-containing materials have been detected using moderate magnetic field gradients (80 G/cm) and a two-pulse spin-echo sequence. Temperature dependence of signal intensity and 27Al T1 time of alumina are considered as possible temperature sensors for NMR thermometry applications.

  15. Decomposition of hexamethyldisilane on a hot tungsten filament and gas-phase reactions in a hot-wire chemical vapor deposition reactor.

    Science.gov (United States)

    Shi, Yujun; Li, Xinmao; Tong, Ling; Toukabri, Rim; Eustergerling, Brett

    2008-05-14

    To study the effect of an Si-Si bond on gas-phase reaction chemistry in the hot-wire chemical vapor deposition (HWCVD) process with a single source alkylsilane molecule, soft ionization with a vacuum ultraviolet wavelength of 118 nm was used with time-of-flight mass spectrometry to examine the products from the primary decomposition of hexamethyldisilane (HMDS) on a heated tungsten (W) filament and from secondary gas-phase reactions in a HWCVD reactor. It is found that both Si-Si and Si-C bonds break when HMDS decomposes on the W filament. The dominance of the breakage of Si-Si over Si-C bond has been demonstrated. In the reactor, the abstraction of methyl and H atom, respectively, from the abundant HMDS molecules by the dominant primary trimethylsilyl radicals produces tetramethylsilane (TMS) and trimethylsilane (TriMS). Along with TMS and TriMS, various other alkyl-substituted silanes (m/z = 160, 204, 262) and silyl-substituted alkanes (m/z = 218, 276, 290) are also formed from radical combination reactions. With HMDS, an increasing number of Si-Si bonds are found in the gas-phase reaction products aside from the Si-C bond which has been shown to be the major bond connection in the products when TMS is used in the same reactor. Three methyl-substituted 1,3-disilacyclobutane species (m/z = 116, 130, 144) are present in the reactor with HMDS, suggesting a more active involvement from the reactive silene intermediates.

  16. Coupled simulation of CFD-flight-mechanics with a two-species-gas-model for the hot rocket staging

    Science.gov (United States)

    Li, Yi; Reimann, Bodo; Eggers, Thino

    2016-11-01

    The hot rocket staging is to separate the lowest stage by directly ignite the continuing-stage-motor. During the hot staging, the rocket stages move in a harsh dynamic environment. In this work, the hot staging dynamics of a multistage rocket is studied using the coupled simulation of Computational Fluid Dynamics and Flight Mechanics. Plume modeling is crucial for a coupled simulation with high fidelity. A 2-species-gas model is proposed to simulate the flow system of the rocket during the staging: the free-stream is modeled as "cold air" and the exhausted plume from the continuing-stage-motor is modeled with an equivalent calorically-perfect-gas that approximates the properties of the plume at the nozzle exit. This gas model can well comprise between the computation accuracy and efficiency. In the coupled simulations, the Navier-Stokes equations are time-accurately solved in moving system, with which the Flight Mechanics equations can be fully coupled. The Chimera mesh technique is utilized to deal with the relative motions of the separated stages. A few representative staging cases with different initial flight conditions of the rocket are studied with the coupled simulation. The torque led by the plume-induced-flow-separation at the aft-wall of the continuing-stage is captured during the staging, which can assist the design of the controller of the rocket. With the increasing of the initial angle-of-attack of the rocket, the staging quality becomes evidently poorer, but the separated stages are generally stable when the initial angle-of-attack of the rocket is small.

  17. Development of novel copper-based sorbents for hot-gas cleanup. Technical report, September 1--November 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.

    1991-12-31

    The objective of this investigation is to evaluate several novel copper-based binary oxides for their suitability as regenerable sorbents for hot gas cleanup application in the temperature range of 650{degree} to 850{degree}C (1200{degree}--1550{degree}F). To achieve this objective, several novel copper-based binary oxide sorbents will be prepared. Experimental tests will be conducted at ambient pressure to determine the stability, sulfidation capacity, regenerability, and sulfidation kinetics of the novel sorbents. Tests will also be conducted at high pressure for the determination of the sulfidation reactivity, regenerability, and durability of the sorbents. The attrition characteristics of the sorbents will also be determined.

  18. Development of a gas backup heater for solar domestic hot-water systems. Final report, April 1978-April 1980

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, D.J.; Grunes, H.E.; de Winter, F.; Armstrong, P.R.

    1980-06-01

    A comprehensive program was undertaken to develop a unique gas fired backup for solar domestic hot water systems. Detailed computer design tools were written. A series of heat transfer experiments were performed to characterize the performance of individual components. A full scale engineering prototype, including the solar preheat tank and solar heat exchanger, was designed, fabricated and subjected to limited testing. Firing efficiency for the backup system was found to be 81.4% at a firing rate of 50,000 Btu/h. Long term standby losses should be negligible.

  19. Operating condition influences on PCDD/Fs emissions from sinter pot tests with hot flue gas recycling

    Institute of Scientific and Technical Information of China (English)

    Yongmei Yu; Minghui Zheng; Xianwei Li; Xiaolei He

    2012-01-01

    This study was designed to clarify the influence of operating conditions on the formation and emissions of polychlorinated-p- dibenzodioxins and dibenzofurans (PCDD/Fs) from a sintering process with hot flue gas recycling.A pilot scale sinter pot with simulated flue gas recycling was developed,and four key operational parameters,including temperature,oxygen content of the simulated waste,flue gas,the coke rate of the sintering mixture,and the quicklime quality,were selected for exploring PCDD/Fs formation.The results showed that the temperature of the recycled flue gas had a major affect on PCDD/Fs formation,and a high temperature could significantly increase their formation during sintering.A clear linear correlation between the temperature of recycling flue gas and PCDD/Fs emission (r =0.93) was found.PCDD/Fs could be reduced to a certain extent by decreasing the level of oxygen in the recycled flue gas,while sintering quality was unchanged.The coke rate had no significant influence on the formation of PCDD/Fs,but the quality of quicklime used in the sintering mixture could affect not only the amount of PCDD/Fs emissions but also the sintering productivity.Compared with a benchmark sinter pot test,PCDD/Fs emissions markedly decreased with improvements to quicklime quality.However,the reduction in PCDD/Fs emissions realized by using high-quality quicklime was limited by the temperature of the inlet gas.The highest reduction achieved was 51% compared with conventional quicklime when the temperature of the inlet gas was 150 ℃.

  20. Structural and catalytic properties of a novel vanadium containing solid core mesoporous silica shell catalysts for gas phase oxidation reaction

    Indian Academy of Sciences (India)

    N Venkatathri; Vijayamohanan K Pillai; A Rajini; M Nooka Raju; I A K Reddy

    2013-01-01

    A novel vanadium containing solid core mesoporous silica shell catalyst was synthesized with different Si/V ratios by sol-gel method under neutral conditions. The synthesized materials were characterized by various techniques and gas phase diphenyl methane oxidation reaction. The mesoporosity combined with microporosity are formed by incorporation of octadecyltrichloro silane and triethylamine in the catalyst and it was found out from E-DAX and BET—surface area analysis. The material was found to be nanocrystalline. Vanadium is present as V4+ species in as-synthesized samples and convert to V5+ on calcination. Most of the vanadium is present in tetrahedral or square pyramidal environment. Incorporation of vanadium in silica framework was confirmed by 29Si MAS NMR analysis. Among the various vanadium containing solid core mesoporous silica shell catalysts, the Si/V =100 ratio exhibited maximum efficiency towards diphenyl methane to benzophenone gas phase reaction. The optimum condition required for maximum conversion and selectivity was found out from the catalytic studies.

  1. Control element for controlling a hot gas piston engine, and a hot gas engine with such a control element. Regelelement zur Regelung einer Heissgaskolbenmaschine sowie ein Heissgasmotor mit einem derartigen Regelelement

    Energy Technology Data Exchange (ETDEWEB)

    Jaspers, H.A.

    1981-09-10

    The invention refers to a control element for controlling a hot gas piston engine, which contains a movable part, which takes up a certain position depending on the engine speed and with one or more adjustable valves for removing or introducing the working medium from or into the working part of the engine. The purpose of the invention is to create a robust and cheap control element, which emits a signal proportional to speed, by which the engine can be controlled and which is not mechanically connected to the crankshaft. According to the invention, the problem is solved by the part consisting of a movable wall, which separates 2 closed spaces, which are connected together by a capillary tube and where the first space on one side of the movable wall is connected to the working space of the hot gas piston engine by a first non-return valve allowing flow in the direction of the first space, and the second space on the other side of this wall is connected to the same working space by a second non-return valve preventing flow in the direction of the second space, where the gaseous working medium is in the working space and where cyclic pressure changes occur, and where further there is a spring loaded element, which exerts forces on the movable wall in the direction of the first space.

  2. Hot gas injection as an artificial lift system through a concentric tubing completion in a heavy oil well, Pilon field, Faja Petrolifera del Orinoco

    Energy Technology Data Exchange (ETDEWEB)

    Marfissi, S.; Lujan, A. [PDVSA EandP (Venezuela)

    2011-07-01

    The Pilon Field in the Morichal District, Venezuela is producing heavy oil with numerous gas lift wells. Some of these wells are now inactive due to casing damage. The purpose of this paper is to assess the benefits of using hot gas injection as an artificial lift system through a concentric tubing completion in such wells. A pilot test was conducted on a well presenting a low water cut and 12 degree API, an indirect fire heater was installed near the wells. Results showed that heat losses were minimized thanks to the concentric pipe completion. In addition hot gas injection resulted in an oil production increase of 57%. The hot gas injection method used with a concentric tubing completion was proved to be a good alternative to the use of diluent but an economic analysis is nevertheless recommended to determine the costs of installing heating equipment.

  3. Supermassive Black Hole in an Elliptical Galaxy: Accretion of a Hot Gas with a Low but Finite Angular Momentum

    CERN Document Server

    Sunyaev, R A

    2011-01-01

    The accretion of hot slowly rotating gas onto a supermassive black hole is considered. Rotation velocities at the Bondi radius r_B are small in comparison with speed of sound c_s. The centrifugal barrier at a depth r_c = l^2/G M_BH r_c) and inner (rgas enters the zone of the internal ADAF flow along the accretion disk (r

  4. Catalytic conversion of biomass-derived synthesis gas to liquid fuels

    OpenAIRE

    2016-01-01

    Climate change is one of the biggest global threats of the 21st century. Fossil fuels constitute by far the most important energy source for transportation and the different governments are starting to take action to promote the use of cleaner fuels. Biomass-derived fuels are a promising alternative for diversifying fuel sources, reducing fossil fuel dependency and abating greenhouse gas emissions. The research interest has quickly shifted from first-generation biofuels, obtained from food co...

  5. How to get cool in the heat: comparing analytic models of hot, cold, and cooling gas in haloes and galaxies with EAGLE

    Science.gov (United States)

    Stevens, Adam R. H.; del P. Lagos, Claudia; Contreras, Sergio; Croton, Darren J.; Padilla, Nelson D.; Schaller, Matthieu; Schaye, Joop; Theuns, Tom

    2017-01-01

    We use the hydrodynamic, cosmological EAGLE simulations to investigate how hot gas in haloes condenses to form and grow galaxies. We select haloes from the simulations that are actively cooling and study the temperature, distribution, and metallicity of their hot, cold, and transitioning `cooling' gas, placing these in context of semi-analytic models. Our selection criteria lead us to focus on Milky Way-like haloes. We find the hot-gas density profiles of the haloes form a progressively stronger core over time, the nature of which can be captured by a β profile that has a simple dependence on redshift. In contrast, the hot gas that will cool over a time-step is broadly consistent with a singular isothermal sphere. We find that cooling gas carries a few times the specific angular momentum of the halo and is offset in spin direction from the rest of the hot gas. The gas loses ˜60% of its specific angular momentum during the cooling process, generally remaining greater than that of the halo, and it precesses to become aligned with the cold gas already in the disc. We find tentative evidence that angular-momentum losses are slightly larger when gas cools onto dispersion-supported galaxies. We show that an exponential surface density profile for gas arriving on a disc remains a reasonable approximation, but a cusp containing ˜20% of the mass is always present, and disc scale radii are larger than predicted by a vanilla Fall & Efstathiou model. These scale radii are still closely correlated with the halo spin parameter, for which we suggest an updated prescription for galaxy formation models.

  6. X-ray emission from the nuclei, lobes and hot-gas environments of two FR-II radio galaxies

    CERN Document Server

    Croston, J H; Hardcastle, M J; Worrall, D M

    2004-01-01

    We report the detection of multiple components of X-ray emission from the two FR-II radio galaxies 3C 223 and 3C 284, based on new XMM-Newton observations. We attribute the detected X-ray emission from the lobes of both sources to inverse-Compton scattering of cosmic microwave background photons. With this model, we find that the magnetic field strength in the lobes is at the equipartition value for 3C 284, and within a factor of two of the equipartition value for 3C 223. We also detect group-scale hot atmospheres around both sources, and determine temperatures and pressures in the gas. The lobes of both sources are in pressure balance with the hot-gas environments, if the lobes contain only the synchrotron-emitting particles and the measured magnetic field strength. The core spectra of both sources contain an unabsorbed soft component, likely to be related to the radio jet, and an additional heavily absorbed power-law component. 3C 223 also displays a bright (EW ~ 500 eV) Fe K-alpha emission line.

  7. Catalytic oxidation of gas-phase elemental mercury by nano-Fe2O3

    Institute of Scientific and Technical Information of China (English)

    Fanhai Kong; Jianrong Qiu; Hao Liu; Ran Zhao; Zhihui Ai

    2011-01-01

    Heterogeneous oxidation of gas-phase Hg0 by nano-Fe2O3 was investigated on a fixed bed reactor, and the effects of oxygen concentration, bed temperature, water vapour concentration and particle size have been discussed. The results showed that Hg0 could be oxidized by active oxygen atom on the surface of nano-Fe2O3 as well as lattice oxygen in nano-Fe2O3. Among the factors that affect Hg0 oxidation by nano-Fe2O3, bed temperature plays an important role. More than 40% of total mercury was oxidized at 300℃,however, the test temperature at 400℃ could cause sintering of nano-catalyst, which led to a lower efficiency of Hg0 oxidation. The increase of oxygen concentration could promote mercury oxidation and led to higher Hg0 oxidation efficiency. No obvious mercury oxidation was detected in the pure N2 atmosphere, which indicates that oxygen is required in the gas stream for mercury oxidation. The presence of water vapour showed different effects on mercury oxidation depending on its concentration. The lower content of water vapour could promote mercury oxidation, while the higher content of water vapour inhibits mercury oxidation.

  8. Gas isotopes and geochemistry of hot springs in Hengjing,Jiangxi Province

    Institute of Scientific and Technical Information of China (English)

    周文斌; 张卫民

    2001-01-01

    With emphasis on gas isotopes and geochemistry as well as hydrogeochemistry, a field investigation has been carried out in Hengjing geothermal area, south Jiangxi Province of south-eastern China. The water chemistry of the geothermal waters indicates their local meteoric water origin, whereas their gas composition and carbon and helium isotopes reveal that some gases in the geothermal waters have mantle origin.

  9. Application of energy and exergy analysis to increase efficiency of a hot water gas fired boiler

    OpenAIRE

    Todorović Milena N.; Živković Dragoljub S.; Mančić Marko V.; Ilić Gradimir S.

    2014-01-01

    In engineering practice exergy can be used for technical and economic optimization of energy conversion processes. The problem of increasing energy consumption suggests that heating plants, i.e. hot water boilers, as energy suppliers for household heating should be subjected to exergy and energy analysis. Heating plants are typically designed to meet energy demands, without the distinguished difference between quality and quantity of the produced heat. In t...

  10. XMM-Newton and Chandra Observations of the Galaxy Group NGC 5044. 1; Evidence for Limited Multiphase Hot Gas

    Science.gov (United States)

    Buote, David A.; Lewis, Aaron D.; Brighenti, Fabrizio; Mathews, William G.

    2003-01-01

    Using new XMM and Chandra observations, we present an analysis of the temperature structure of the hot gas within a radius of 100 kpc of the bright nearby galaxy group NGC 5044. A spectral deprojection analysis of data extracted from circular annuli reveals that a two-temperature model (2T) of the hot gas is favored over single-phase or cooling flow (M = 4.5 +/- 0.2 solar mass/yr) models within the central approx.30 kpc. Alternatively, the data can be fitted equally well if the temperature within each spherical shell varies continuously from approx.T(sub h) to T(sub c) approx. T(sub h)/2, but no lower. The high spatial resolution of the Chandra data allows us to determine that the temperature excursion T(sub h) approaches T(sub c) required in each shell exceeds the temperature range between the boundaries of the same shell in the best-fitting single-phase model. This is strong evidence for a multiphase gas having a limited temperature range. We do not find any evidence that azimuthal temperature variations within each annulus on the sky can account for the range in temperatures within each shell. We provide a detailed investigation of the systematic errors on the derived spectral models considering the effects of calibration, plasma codes, bandwidth, variable NH, and background rate. We find that the RGS gratings and the EPIC and ACIS CCDs give fully consistent results when the same models are fitted over the same energy ranges for each instrument. The cooler component of the 2T model has a temperature (T(sub c) approx. 0.7 keV) similar to the kinetic temperature of the stars. The hot phase has a temperature (T(sub h) approx. 1.4 keV) characteristic of the virial temperature of the solar mass halo expected in the NGC 5044 group. However, in view of the morphological disturbances and X-ray holes visible in the Chandra image within R approx. equals 10 kpc, bubbles of gas heated to approx.T(sub h) in this region may be formed by intermittent AGN feedback. Some

  11. The Cosmic Evolution of Galaxies: The Hunt for Hot Gas (and Winds!) at High Redshift

    Science.gov (United States)

    Hornschemeier, Ann; Kilbourne, Caroline; Lehmer, Bret; Yukita, Mihoko; Smith, Randall; Basu-Zych, Antara; Ptak, Andrew; Tatum, Malachi

    Deep surveys with current missions have revealed a population of high-redshift normal galaxies whose X-ray emission is dominated not by accretion onto supermassive black holes, but by the hot interstellar medium and accreting neutron star and black hole binary populations. Enormous progress has been made on the evolution of galaxies in the X-ray band, however there are some glaring holes in our understanding. For one, it is very difficult to measure the properties of the hot phase of the interstellar medium at high redshift, which in many galaxies is tremendously important component. Also, we know from optical, IR and UV studies that outflows from starburst galaxies appear to be relatively ubiquitous; such outflows are thought to be superwinds from the combination of many supernova explosions and stellar winds. Only with high-resolution X-ray spectroscopy will we have the capability of catching the hot phase of these outflows. The outflows remove fuel for subsequent generations of star formation and pollute the Intergalactic Medium with metals. Prospects for observations by next-generation X-ray spectroscopic instruments will be discussed.

  12. Analysis of trace contaminants in hot gas streams using time-weighted average solid-phase microextraction: proof of concept.

    Science.gov (United States)

    Woolcock, Patrick J; Koziel, Jacek A; Cai, Lingshuang; Johnston, Patrick A; Brown, Robert C

    2013-03-15

    Time-weighted average (TWA) passive sampling using solid-phase microextraction (SPME) and gas chromatography was investigated as a new method of collecting, identifying and quantifying contaminants in process gas streams. Unlike previous TWA-SPME techniques using the retracted fiber configuration (fiber within needle) to monitor ambient conditions or relatively stagnant gases, this method was developed for fast-moving process gas streams at temperatures approaching 300 °C. The goal was to develop a consistent and reliable method of analyzing low concentrations of contaminants in hot gas streams without performing time-consuming exhaustive extraction with a slipstream. This work in particular aims to quantify trace tar compounds found in a syngas stream generated from biomass gasification. This paper evaluates the concept of retracted SPME at high temperatures by testing the three essential requirements for TWA passive sampling: (1) zero-sink assumption, (2) consistent and reliable response by the sampling device to changing concentrations, and (3) equal concentrations in the bulk gas stream relative to the face of the fiber syringe opening. Results indicated the method can accurately predict gas stream concentrations at elevated temperatures. Evidence was also discovered to validate the existence of a second boundary layer within the fiber during the adsorption/absorption process. This limits the technique to operating within reasonable mass loadings and loading rates, established by appropriate sampling depths and times for concentrations of interest. A limit of quantification for the benzene model tar system was estimated at 0.02 g m(-3) (8 ppm) with a limit of detection of 0.5 mg m(-3) (200 ppb). Using the appropriate conditions, the technique was applied to a pilot-scale fluidized-bed gasifier to verify its feasibility. Results from this test were in good agreement with literature and prior pilot plant operation, indicating the new method can measure low

  13. Catalytically activated palladium@platinum nanowires for accelerated hydrogen gas detection.

    Science.gov (United States)

    Li, Xiaowei; Liu, Yu; Hemminger, John C; Penner, Reginald M

    2015-03-24

    Platinum (Pt)-modified palladium (Pd) nanowires (or Pd@Pt nanowires) are prepared with controlled Pt coverage. These Pd@Pt nanowires are used as resistive gas sensors for the detection of hydrogen gas in air, and the influence of the Pt surface layer is assessed. Pd nanowires with dimensions of 40 nm (h) × 100 nm (w) × 50 μm (l) are first prepared using lithographically patterned nanowire electrodeposition. A thin Pt surface layer is electrodeposited conformally onto a Pd nanowire at coverages, θPt, of 0.10 monolayer (ML), 1.0 ML, and 10 ML. X-ray photoelectron spectroscopy coupled with scanning electron microscopy and electrochemical measurements is consistent with a layer-by-layer deposition mode for Pt on the Pd nanowire surface. The resistance of a single Pd@Pt nanowire is measured during the exposure of these nanowires to pulses of hydrogen gas in air at concentrations ranging from 0.05 to 5.0 vol %. Both Pd nanowires and Pd@Pt nanowires show a prompt and reversible increase in resistance upon exposure to H2 in air, caused by the conversion of Pd to more resistive PdHx. Relative to a pure Pd nanowire, the addition of 1.0 ML of Pt to the Pd surface alters the H2 detection properties of Pd@Pt nanowires in two ways. First, the amplitude of the relative resistance change, ΔR/R0, measured at each H2 concentration is reduced at low temperatures (T = 294 and 303 K) and is unaffected at higher temperatures (T = 316, 344, and 376 K). Second, response and recovery rates are both faster at all temperatures in this range and for all H2 concentrations. For higher θPt = 10 ML, sensitivity to H2 is dramatically reduced. For lower θPt = 0.1 ML, no significant influence on sensitivity or the speed of response/recovery is observed.

  14. Selectivity of Catalytically Modified Tin Dioxide to CO and NH3 Gas Mixtures

    Directory of Open Access Journals (Sweden)

    Artem Marikutsa

    2015-10-01

    Full Text Available This paper is aimed at selectivity investigation of gas sensors, based on chemically modified nanocrystalline tin dioxide in the detection of CO and ammonia mixtures in air. Sol-gel prepared tin dioxide was modified by palladium and ruthenium oxides clusters via an impregnation technique. Sensing behavior to CO, NH3 and their mixtures in air was studied by in situ resistance measurements. Using the appropriate match of operating temperatures, it was shown that the reducing gases mixed in a ppm-level with air could be discriminated by the noble metal oxide-modified SnO2. Introducing palladium oxide provided high CO-sensitivity at 25–50 °C. Tin dioxide modified by ruthenium oxide demonstrated increased sensor signals to ammonia at 150–200 °C, and selectivity to NH3 in presence of higher CO concentrations.

  15. PEFC catalytic properties of Pt - Ni nanoparticles prepared by a plasma-gas-condensation

    Science.gov (United States)

    Umezawa, Michihisa; Ishikawa, Ryoichi; Miyazaki, Reona; Hihara, Takehiko

    2017-01-01

    Pt - Ni nanoparticles were fabricated via the gas phase method. Their performance as anode catalysts for the proton exchange membrane fuel cell was investigated as a function of Ni concentration. The microscopic configurations of the nanoparticles were rather heterogeneous; Pt-rich alloys existed in the core region of particles while a part of the surface layer was composed of the Ni-rich layer. Despite the Ni-rich layer in the shell region, the anode catalyst performance of the Pt - Ni nanoparticles was never deteriorated compared with that of the Pt ones. When the anode catalyst was composed of the Pt nanoparticles, a maximum power density of 112 mW/cm2 was obtained. However, 90% of the power density was still kept even when 40 at. % of Pt was replaced with Ni. The results suggest that a further decrease of Pt composition with maintaining its catalyst performance can be feasible by effective particle dispersing.

  16. Impregnation of Catalytic Metals in Single-Walled Carbon Nanotubes for Toxic Gas Conversion in Life Support System

    Science.gov (United States)

    Li, Jing; Wignarajah, Kanapathipillai; Cinke, Marty; Partridge, Harry; Fisher, John

    2004-01-01

    Carbon nanotubes (CNTs) possess extraordinary properties such as high surface area, ordered chemical structure that allows functionalization, larger pore volume, and very narrow pore size distribution that have attracted considerable research attention from around the world since their discovery in 1991. The development and characterization of an original and innovative approach for the control and elimination of gaseous toxins using single walled carbon nanotubes (SWNTs) promise superior performance over conventional approaches due to the ability to direct the selective uptake of gaseous species based on their controlled pore size, increased adsorptive capacity due to their increased surface area and the effectiveness of carbon nanotubes as catalyst supports for gaseous conversion. We present our recent investigation of using SWNTs as catalytic supporting materials to impregnate metals, such as rhodium (Rh), palladium (Pd) and other catalysts. A protocol has been developed to oxidize the SWNTs first and then impregnate the Rh in aqueous rhodium chloride solution, according to unique surface properties of SWNTs. The Rh has been successfully impregnated in SWNTs. The Rh-SWNTs have been characterized by various techniques, such as TGA, XPS, TEM, and FTIR. The project is funded by a NASA Research Announcement Grant to find applications of single walled nanocarbons in eliminating toxic gas Contaminant in life support system. This knowledge will be utilized in the development of a prototype SWNT KO, gas purification system that would represent a significant step in the development of high efficiency systems capable of selectively removing specific gaseous for use in regenerative life support system for human exploration missions.

  17. Support effects and catalytic trends for water gas shift activity of transition metals

    DEFF Research Database (Denmark)

    Boisen, Astrid; Janssens, T.V.W.; Schumacher, Nana Maria Pii;

    2010-01-01

    CO and atomic oxygen on the metal; the latter is a good measure for the reactivity of the metal towards H2O. Generally, the activity of the catalysts with the Ce0.75Zr0.25O2 support is higher, compared to the corresponding MgAl2O4-supported catalysts. Exceptions are Cu and Au, which have a higher......Water gas shift activity measurements for 12 transition metals (Fe, Co, Ni, Cu, Ru, Rh, Pd, Ag, Re, Ir, Pt, Au) supported on inert MgAl2O4 and Ce0.75Zr0.25O2 are presented, to elucidate the influence of the active metal and the support. The activity is related to the adsorption energy of molecular...... activity on the MgAl2O4 support and are both characterized by weak CO adsorption. For the MgAl2O4-supported catalysts a volcano-type relation between the activity and the adsorption energy of atomic oxygen on the metal is obtained. The maximum activity is found for metals with a binding energy of oxygen...

  18. Catalytic performance of cerium iron complex oxides for partial oxidation of methane to synthesis gas

    Institute of Scientific and Technical Information of China (English)

    LI Kongzhai; WANG Hua; WEI Yonggang; LIU Mingchun

    2008-01-01

    The cerium iron complex oxides oxygen carder was prepared by the co-precipitation method. The reactions between methane and lattice oxygen from the complex oxides were investigated in a fixed micro-reactor system. The reduced oxygen carrier could be re-oxidized by air and its initial state could be restored. The characterizations of the oxygen carriers were studied using XRD, O2-TPD, and H2-TPR. The results showed that the bulk lattice oxygen of CeO2-Fe2O3 was found to be suitable for the partial oxidation of methane to synthesis gas. There were two kinds of oxygen species on the oxygen carder: the stronger oxygen species that was responsible for the complete oxidation of methane, and the weaker oxygen species (bulk lattice oxygen) that was responsible for the selective oxidation of methane to CO and H2 at a higher temperature. Then, the lost bulk lattice oxygen could be selectively supplemented by air re-oxidation at an appropriate reaction con-dition. CeFeO3 appeared on the oxygen carrier after 10 successive redox cycles, however, it was not bad for the selectivity of CO and H2.

  19. Catalytic Steam Reforming of Bio-Oil to Hydrogen Rich Gas

    DEFF Research Database (Denmark)

    Trane-Restrup, Rasmus

    Bio-oil is a liquid produced by pyrolysis of biomass and its main advantage compared with biomass is an up to ten times higher energy density. This entails lower transportation costs associated with the utilization of biomass for production of energy and fuels. Nevertheless, the bio-oil has a low...... heating value and high content of oxygen, which makes it unsuited for direct utilization in engines. One prospective technology for upgrading of bio-oil is steam reforming (SR), which can be used to produce H2 for upgrading of bio-oil through hydrodeoxygenation or synthesis gas for processes like...... the Fischer-Tropsch synthesis. In the SR of bio-oil or biooil model compounds high degrees of conversion and high yields of H2 can be achieved, but stability with time-on-stream is rarely achieved. The deactivation is mainly due to carbon deposition and is one of the major hurdles in the SR of bio-oil...

  20. Characterization of the efficiency of the gas-solid contact in circulating bed at by the use of a test reaction: the cumene catalytic cracking

    Energy Technology Data Exchange (ETDEWEB)

    Bayle, J.; Gauthier, T.; Pontier, R. [Institut Francais du Petrole (IFP), 92 - Rueil-Malmaison (France); Briens, C.L.; Bergougnou, M. [University of Western Ontario, London, ON (Canada). Dept. of Physics

    1995-12-31

    The gas-solid down with the stream reactor, the ``downer``, presents a main interest for the high-speed reactions because it is well adapted to hard conditions uses: very short residence times, high temperatures and feeds of catalyst. This reactor type already presents a certain advantage to estimate the charges or new catalysts potential. But, it particularly constitutes an interesting option for some processes as petroleum cuts catalytic cracking. In order to intensify the contact between the catalyst and the reagents, the temperature increase of the reagents has to be almost instantaneous and the initial contact between the gas and the solid particles particularly effective. So as to validate these two hypothesis, the test reaction of the cumene catalytic cracking is carried out in the pilot unit ``downer`` of the Western Ontario University. (O.M.). 11 refs., 3 figs.

  1. The effect of preparation factors on the structural and catalytic properties of mesoporous nanocrystalline iron-based catalysts for high temperature water gas shift reaction

    Energy Technology Data Exchange (ETDEWEB)

    Meshkani, Fereshteh; Rezaei, Mehran [University of Kashan, Kashan (Iran, Islamic Republic of)

    2015-07-15

    A systematic study was done on the effect of preparation factors on the structural and catalytic properties of mesoporous nanocrystalline iron-based catalysts in high temperature water gas shift reaction. The catalysts were prepared by coprecipitation method, and the effect of the main preparation factors (pH, refluxing temperature, refluxing time, concentration of the precursors solution) was studied. The catalysts were characterized by powder X-ray diffraction (XRD), N{sub 2} adsorption (BET), Temperature programmed reduction (TPR), transmission and scanning electron microscopies (TEM, SEM) techniques. The results revealed that the preparation factors affected the textural and catalytic properties of the Fe-Cr-Cu catalyst. The results showed that the prepared catalyst with the highest activity showed higher specific surface area compared to commercial catalyst and consequently exhibited higher activity in high temperature water gas shift reaction. The TEM analysis showed a nanostructure for this sample with crystallite size less than 20 nm.

  2. Hot-gas cleanup system model development. Volume I. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ushimaru, K.; Bennett, A.; Bekowies, P.J.

    1982-11-01

    This two-volume report summarizes the state of the art in performance modeling of advanced high-temperature, high-pressure (HTHP) gas cleanup devices. Volume I contains the culmination of the research effort carried over the past 12 months and is a summary of research achievements. Volume II is the user's manual for the computer programs developed under the present research project. In this volume, Section 2 presents background information on pressurized, fluidized-bed combustion concepts, a description of the role of the advanced gas cleanup systems, and a list of advanced gas cleanup systems that are currently in development under DOE sponsorship. Section 3 describes the methodology for the software architecture that forms the basis of the well-disciplined and structured computer programs developed under the present project. Section 4 reviews the fundamental theories that are important in analyzing the cleanup performance of HTHP gas filters. Section 5 discusses the effect of alkali agents in HTHP gas cleanup. Section 6 evaluates the advanced HTHP gas cleanup models based on their mathematical integrity, availability of supporting data, and the likelihood of commercialization. As a result of the evaluation procedure detailed in Section 6, five performance models were chosen to be incorporated into the overall system simulation code, ASPEN. These five models (the electrocyclone, ceramic bag filter, moving granular bed filter, electrostatic granular bed filter, and electrostatic precipitator) are described in Section 7. The method of cost projection for these five models is discussed in Section 8. The supporting data and validation of the computer codes are presented in Section 9, and finally the conclusions and recommendations for the HTHP gas cleanup system model development are given in Section 10. 72 references, 19 figures, 25 tables.

  3. The initial conditions and evolution of isolated galaxy models: effects of the hot gas halo

    CERN Document Server

    Hwang, Jeong-Sun; Choi, Jun-Hwan

    2013-01-01

    We construct several Milky Way-like galaxy models containing a gas halo (as well as gaseous and stellar disks, a dark matter halo, and a stellar bulge) following either an isothermal or an NFW density profile with varying mass and initial spin. In addition, galactic winds associated with star formation are tested in some of the simulations. We evolve these isolated galaxy models using the GADGET-3 $N$-body/hydrodynamic simulation code, paying particular attention to the effects of the gas halo on the evolution. We find that the evolution of the models is strongly affected by the adopted gas halo component. The model without a gas halo shows an increasing star formation rate (SFR) at the beginning of the simulation for some hundreds of millions of years and then a continuously decreasing rate to the end of the run at 3 Gyr. On the other hand, the SFRs in the models with a gas halo emerge to be either relatively flat throughout the simulations or increasing over a gigayear and then decreasing to the end. The mo...

  4. Effect of a condensation utilizer on the operation of steam and hot-water gas-fired boilers

    Science.gov (United States)

    Ionkin, I. L.; Ragutkin, A. V.; Roslyakov, P. V.; Supranov, V. M.; Zaichenko, M. N.; Luning, B.

    2015-05-01

    Various designs for condensation utilizers of the low-grade heat of furnace gases that are constructed based on an open-type heat exchanger are considered. Computational investigations are carried out for the effect of the condensation utilizer with tempering and moistening of air on the operation of steam and hot-water boilers burning natural gas. The investigations are performed based on the predeveloped adequate calculating models of the steam and hot-water boilers in a Boiler Designer program complex. Investigation results for TGM-96B and PTVM-120 boilers are given. The enhancement of the operation efficiency of the condensation utilizer can be attained using a design with tempering and moistening of air supplied to combustion that results in an insignificant increase in the temperature of waste gases. This has no effect on the total operation efficiency of the boiler and the condenser unit, because additional losses with waste gases are compensated owing to the operation of the last. The tempering and moistening of air provide a substantial decrease in the temperature in the zone of active combustion and shortening the nitrogen oxide emission. The computational investigations show that the premoistening of air supplied to combustion makes the technical and economic efficiency of boilers operating with the Condensation Utilizer no worse.

  5. Hot-gas desulfurization. II. Use of gasifier ash in a fluidized-bed process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schrodt, J.T.

    1981-02-01

    Three gasifier coal ashes were used as reactant/sorbents in batch fluidized-beds to remove hydrogen sulfide from hot, made-up fuel gases. It is predominantly the iron oxide in the ash that reacts with and removes the hydrogen sulfide; the sulfur reappears in ferrous sulfide. Sulfided ashes were regenerated by hot, fluidizing streams of oxygen in air; the sulfur is recovered as sulfur dioxide, exclusively. Ash sorption efficiency and sulfur capacity increase and stabilize after several cycles of use. These two parameters vary directly with the iron oxide content of the ash and process temperature, but are independent of particle size in the range 0.01 - 0.02 cm. A western Kentucky No. 9 ash containing 22 weight percent iron as iron oxide sorbed 4.3 weight percent sulfur at 1200/sup 0/F with an ash sorption efficiency of 0.83 at ten percent breakthrough. A global, fluidized-bed, reaction rate model was fitted to the data and it was concluded that chemical kinetics is the controlling mechanism with a predicted activation energy of 19,600 Btu/lb mol. Iron oxide reduction and the water-gas-shift reaction were two side reactions that occurred during desulfurization. The regeneration reaction occurred very rapidly in the fluid-bed regime, and it is suspected that mass transfer is the controlling phenomenon.

  6. Tidal interaction vs. ram pressure stripping effects as seen in X-rays. Hot gas in group and cluster galaxies

    CERN Document Server

    Wezgowiec, M; Ehle, M; Chyzy, K T; Urbanik, M; Braine, J; Soida, M

    2012-01-01

    The hot intracluster/intragroup medium (ICM/IGM) and a high galaxy density can lead to perturbations of the galactic interstellar medium (ISM) due to ram pressure and/or tidal interaction effects. In radio polarimetry observations, both phenomena may manifest similar features. X-ray data can help to determine the real origin of the perturbation. We analyse the distribution and physical properties of the hot gas in the Virgo cluster spiral galaxies NGC 4254 and NGC 4569, which indicate that the cluster environment has had a significant influence on their properties. By performing both spatial and spectral analyses of X-ray data, we try to distinguish between two major phenomena: tidal and ram pressure interactions. We compare our findings with the case of NGC 2276, in which a shock was reported, by analysing XMM-Newton X-ray data for this galaxy. We use archival XMM-Newton observations of NGC 4254, NGC 4569, and NGC 2276. Maps of the soft diffuse emission in the energy band 0.2 - 1 keV are obtained. For the th...

  7. USE OF GAS BURNERS TYPE "DAVA" OPERATING UNDER VARIABLE LOAD TO PRODUCE HEAT AND HOT WATER

    Directory of Open Access Journals (Sweden)

    Daud V.

    2014-12-01

    Full Text Available The article brings additional information referred to upgraded gas burners type "DAVA", which are characterized by high performance at variable load. Adaptation of burner operation is carried out automatically. There are presented design features that allow increase of the efficiency and the reliability of these burners at variable load, and reducing natural gas consumption. The range of variation of the coefficient of excess air affects the efficiency of the burner. The experimental results of the tests of gas burners of different power had confirmed the economic effect of the upgraded burners at heat production. It is proved that economic effect increases with increasing of burner output and of operation time during the season.

  8. Modelling and experimental validation of the hot-gas defrost process of an air-cooled evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Dopazo, J. Alberto; Fernandez-Seara, Jose; Uhia, Francisco J.; Diz, Ruben [Area de Maquinas y Motores Termicos, E.T.S. de Ingenieros Industriales, University of Vigo, Campus Lagoas-Marcosende No 9, 36310 Vigo, Pontevedra (Spain)

    2010-06-15

    A detailed transient simulation model has been developed to predict and evaluate the performance of the hot-gas defrost process of an air-coil evaporator. In the model, the defrost process is subdivided into six stages: preheating, tube frost melting start, fin frost melting start, air presence, tube-fin water film and dry-heating. In each stage, the control volume is subdivided into systems represented by a single node, which has the representative properties of the system. A finite difference approach was used to solve the model equations. The results include the time required to defrost, the distribution of the energy during defrost process, the instantaneous refrigerant properties and the instantaneous fin and tube temperature distribution. The results are compared with experimental data obtained in a local storage facility under actual operating conditions and also using data available in the literature. The model results substantially agree with the experimental data in both cases. (author)

  9. Effect of hot isostatic pressing on microstructure of cast gas-turbine vanes of K452 alloy

    Directory of Open Access Journals (Sweden)

    Jie Li

    2014-12-01

    Full Text Available The effect of hot isostatic pressing (HIP treatment on microstructure of gas-turbine vanes made of K452 alloy was investigated by OM, SEM and TEM. The results showed that HIP treatment played a great role in the porosity healing processing, where 80% of porosities were eliminated and the diameter of remnant porosities decreased to 10 μm. The healing mechanism of the porosities was consistent with existing theories of porosity closure based on vacancy diffusion. According to the result of the tensile test, the plasticity of the alloy was improved as the result of the elimination of the porosities and the improvement of dendritic segregation, while there was not an obvious improvement in the tensile strength after the programmed HIP process. In addition, HIP had a positive effect on narrowing down the dispersion of tensile properties.

  10. Effect of hot isostatic pressing on microstructure of cast gas-turbine vanes of K452 alloy

    Institute of Scientific and Technical Information of China (English)

    Jie Li; Chao Yuan; Jianting Guo; Jieshan Hou; Lanzhang Zhou

    2014-01-01

    The effect of hot isostatic pressing (HIP) treatment on microstructure of gas-turbine vanes made of K452 alloy was investigated by OM, SEM and TEM. The results showed that HIP treatment played a great role in the porosity healing processing, where 80%of porosities were eliminated and the diameter of remnant porosities decreased to 10μm. The healing mechanism of the porosities was consistent with existing theories of porosity closure based on vacancy diffusion. According to the result of the tensile test, the plasticity of the alloy was improved as the result of the elimination of the porosities and the improvement of dendritic segregation, while there was not an obvious improvement in the tensile strength after the programmed HIP process. In addition, HIP had a positive effect on narrowing down the dispersion of tensile properties.

  11. Monopropellant engine investigation for space shuttle reaction control. Volume 2: Design, fabrication, and demonstration test of a catalytic gas generator for the space shuttle APU

    Science.gov (United States)

    1975-01-01

    The capability of a catalytic gas generator to meet the requirement specified for the space shuttle APU is established. A full-scale gas generator, designed to operate at a chamber pressure of 750 psia and a flow rate of 0.36 lbm/sec, was fabricated and subjected to three separate life test series. The nickel foam metal used for catalyst retention was investigated. Inspection of the foam metal following the first life test revealed significant degradation. Consequently an investigation was conducted to determine the mechanism of degradation and to provide an improved foam metal.

  12. The Cosmic History of Hot Gas Cooling and Radio AGN Activity in Massive Early-Type Galaxies

    Science.gov (United States)

    Danielson, A. L. R.; Lehmer, B. D.; Alexander, D. M.; Brandt, W. M.; Luo, B.; Miller, N.; Xue, Y. Q.; Stott, J. P.

    2012-01-01

    We study the X-ray properties of 393 optically selected early-type galaxies (ETGs) over the redshift range of z approx equals 0.0-1.2 in the Chandra Deep Fields. To measure the average X-ray properties of the ETG population, we use X-ray stacking analyses with a subset of 158 passive ETGs (148 of which were individually undetected in X-ray). This ETG subset was constructed to span the redshift ranges of z = 0.1-1.2 in the approx equals 4 Ms CDF-S and approx equals 2 Ms CDF-N and z = 0.1-0.6 in the approx equals 250 ks E-CDF-S where the contribution from individually undetected AGNs is expected to be negligible in our stacking. We find that 55 of the ETGs are detected individually in the X-rays, and 12 of these galaxies have properties consistent with being passive hot-gas dominated systems (i.e., systems not dominated by an X-ray bright Active Galactic Nucleus; AGN). On the basis of our analyses, we find little evolution in the mean 0.5-2 keY to B-band luminosity ratio (L(sub x) /L(sub Beta) varies as [1 +z]) since z approx equals 1.2, implying that some heating mechanism prevents the gas from cooling in these systems. We consider that feedback from radio-mode AGN activity could be responsible for heating the gas. We select radio AGNs in the ETG population using their far-infrared/radio flux ratio. Our radio observations allow us to constrain the duty cycle history of radio AGN activity in our ETG sample. We estimate that if scaling relations between radio and mechanical power hold out to z approx equals 1.2 for the ETG population being studied here, the average mechanical power from AGN activity is a factor of approx equals1.4 -- 2.6 times larger than the average radiative cooling power from hot gas over the redshift range z approx equals 0-1.2. The excess of inferred AGN mechanical power from these ETGs is consistent with that found in the local Universe for similar types of galaxies.

  13. Evaluation of an all-ceramic tubesheet assembly for a hot gas filter

    Energy Technology Data Exchange (ETDEWEB)

    Bitner, J.L. [Mallett Technology, Inc., Canonsburg, PA (United States); Mallett, R.H. [Mallett Technology, Inc., Research Triangle Park, NC (United States); Eggerstedt, P.M. [Industrial Filter and Pump Mfg. Co., Cicero, IL (United States); Swindeman, R.W. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    A 10-inch thick, all-ceramic tubesheet design is evaluated for differential pressure and thermal conditions. Primary stresses from differential pressure are well within a safe allowable. The calculated peak thermal stresses at local discontinuities approach the modules of rupture for the ceramic material. Kiln tests were performed to demonstrate differential temperatures between hot center and cooler rim do not cause failures or visible tensile cracks. There appear to be mitigating mechanisms and design features in the Industrial Filter and Pump (IF and P) Mfg. Co. all-ceramic tubesheet design concept that add forgiveness in accommodating differential pressure and thermal loading stresses. A material characterization program on the ceramic materials is recommended.

  14. Utilization of metal oxide-containing waste materials for hot coal gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Slimane, R.B. [Gas Processing Research Group, Gas Technology Institute, 1700 S. Mount Prospect Road, 60018-1804 Des Plaines, IL (United States); Abbasian, J. [Department of Chemical and Environmental Engineering, Illinois Institute of Technology, 10 West, 33rd Street, 60616 Chicago, IL (United States)

    2001-05-01

    Four metal oxide waste materials from metal processing operations and one coal bottom ash sample were procured and their reactivities toward hydrogen sulfide (H{sub 2}S) were evaluated in the temperature range of 400C to 600C. A low-cost sorbent pelletization/granulation technique was applied to produce preliminary sorbent formulations in the form of attrition-resistant granules that were also evaluated. The results indicate that sorbents based on an iron oxide waste material, in the as-received as well as processed form, were the most reactive and exhibited the highest effective capacities for sulfur. The regeneration of these sorbents could be carried out over a relatively moderate temperature range, suggesting that the iron oxide waste material might be a viable candidate for the development of low-cost regenerable sorbents for H{sub 2}S removal from hot coal gases under conditions of current practical interest.

  15. Eliminación de Bandas Calientes en Reformador de Gas Natural Elimination of Hot Bands in a Natural Gas Reformer

    Directory of Open Access Journals (Sweden)

    D.J. Correa

    2004-01-01

    Full Text Available El objetivo de este trabajo fue encontrar las causas de la formación de bandas calientes por deposición de coque en un reformador de gas natural, que provoca la salida de servicio de la unidad y mayores costos de producción. Se recurrió a la literatura para determinar las variables que tienen incidencia en esta problemática y se creó un trazador que cuantifica la formación de coque, denominado Índice de Obstrucción. Se analizó sistemáticamente el impacto de las distintas variables y se relacionaron con la evolución del Índice de Obstrucción, siempre tomando información de la propia planta industrial. Descartando todas las hipótesis, excepto la presencia de hidrocarburos livianos, se determinó que el problema de las bandas calientes no se origina en el propio horno de reforma, sino aguas arriba del proceso, en el desulfuradorThe purpose of this study was to find the causes of formation of hot bands due to coke deposition in a natural gas reformer which caused the unit to go out of service, resulting in higher production costs. A literature study was made to determine the variables which affected the incidence of this problem, and to produce an index which quantified the formation of coke, named Obstruction Index. The impact of different variables was systematically analyzed and these variables were related to the evolution of the Obstruction Index, always taking into account the information from the industrial plant studied. All hypotheses were discarded except that relating to the presence of light hydrocarbons. It was determined that the problem of the hot bands did not originate within the reforming unit, but rather upstream of the process in the desulfurization unit

  16. Dense Gas in Nearby Galaxies XIV. Detection of hot ammonia in Maffei 2

    CERN Document Server

    Henkel, C; Peck, A B; Falcke, H; Hagiwara, Y

    2000-01-01

    The (J,K) = (1,1), (2,2), (3,3), and (4,4) inversion lines of ammonia (NH3) have been detected toward the nuclear 40'' sized bar of the nearby spiral galaxy Maffei 2. The relative intensities of the ammonia lines are characterized by a rotational temperature of 85 K. This is higher than rotational temperatures measured toward IC342 and most Galactic Center clouds, implying kinetic temperatures of at least 100 K. Since the kinetic temperature of the gas is larger than that of the dust, NH3 is tracing a particularly dense warm gas component that is heated by young massive stars, cloud-cloud collisions, or ion-slip heating in the nuclear starburst. The gas north of the nucleus (V(LSR} = -80 km/s) is more highly excited than the gas further south (+6 km/s). This asymmetry might be related to a pronounced morphological distortion that is observed in the north-eastern part of the galaxy.

  17. Recent federal initiatives to promote unconventional gas: High octane delivery of just hot air?

    Energy Technology Data Exchange (ETDEWEB)

    Griff, M.T.

    1995-10-01

    This paper provides an overview of recent initiatives of the United States which promote greater use of natural gas and unconventional gas as one part of this nations`s larger response to the global warming threat. Measurable increases in greenhouse gas concentrations since the beginning of the industrial revolution have led to the belief in the existence of a global warming problem. The international community has responded to the global warming threat with the United Nations Framework Convention on Climate Change which is directed toward the stabilization of greenhouse gases in the atmosphere. The Climate Change Action Plan is the Clinton Administration`s detailed response to the global warming threat. It is designed to return United States emissions of greenhouse gases to their 1990 levels by the year 2000. The Action Plan targets all greenhouse gases and emphasizes energy efficiency. Significant regulatory reformation designed to increase the efficiency of the natural gas industry has already occurred and will be continued. Recovery of methane emissions from landfills will be encouraged through indentification of suitable sites and use of existing technology and development of new technology. Recovery of methane from coal mining operations will be promoted by targeting 50 of the gassiest mines in the United States. Even if the Action Plan is fully implemented. legitimate questions arise as to whether its goals will be achieved as a result of funding shortfalls.

  18. Experimental and numerical investigation of the catalytic partial oxidation of methane to synthesis gas for power generation applications[Dissertation 17183

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, A.

    2007-07-01

    The present work addresses the catalytic partial oxidation (CPO) of methane to synthesis gas, with particular emphasis on power generation applications. A combined experimental and numerical investigation of methane partial oxidation to synthesis gas (H{sub 2}, CO) over rhodium-based catalysts has been carried out at pressures of up to 10 bar. The reactivity of the produced hydrogen and the suitably-low light-off temperatures of the CPO reactor, greatly facilitate operation of power generation gas turbines with reduced NO{sub x} emissions, stable operation with low calorific value fuels, and new combustion strategies for efficient CO{sub 2} capture. Those strategies utilize CPO of methane with oxygen (separated from air) and large exhaust gas recycle (H{sub 2}O and CO{sub 2}). An optically accessible catalytic channel-flow reactor was used to carry out Raman spectroscopy of major gas-phase species and laser induced fluorescence (LIF) of formaldehyde, in order to gain fundamental information on the catalytic and gas-phase chemical pathways. Transverse concentration profiles measured by the spontaneous Raman scattering technique determined the catalytic reactivity, while the LIF provided flame shapes and anchoring positions that, in turn, characterized the gaseous reactivity. Comparison between measurements and 2-D CFD computations, led to the validation of detailed catalytic and gas-phase reaction mechanisms. Experiments in a subscale gas-turbine honeycomb catalytic reactor have shown that the foregoing reaction mechanisms were also appropriate under gas-turbine relevant conditions with short reactant residence times. The light-off behavior of the subscale honeycomb reactor was reproduced by transient 2-D CFD computations. Ignition and extinction in CPO was studied. It was shown that, despite the chemical impact of the H{sub 2}O diluent during the transient catalytic ignition event, the light-off times themselves were largely unaffected by the exhaust gas dilution

  19. Gas-liquid countercurrent two-phase flow in a PWR hot leg: A comprehensive research review

    Energy Technology Data Exchange (ETDEWEB)

    Deendarlianto, E-mail: deendarlianto@ugm.ac.id [Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Safety Research, P.O. Box 510 119, D-01314 Dresden (Germany); Department of Mechanical and Industrial Engineering, Faculty of Engineering, Gadjah Mada University, Jalan Grafika No. 2, Yogyakarta 55281 (Indonesia); Hoehne, Thomas; Lucas, Dirk [Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Safety Research, P.O. Box 510 119, D-01314 Dresden (Germany); Vierow, Karen [Department of Nuclear Engineering Texas A and M University, 129 Zachry Engineering Center, 3133 TAMU College Station, TX 77843-3133 (United States)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer We review the scientific progress on the CCFL in a PWR hot leg. Black-Right-Pointing-Pointer It includes the experimental data, one-dimensional and CFD models in the open literatures. Black-Right-Pointing-Pointer The weak and strong points of the published works were clarified. Black-Right-Pointing-Pointer The research directions in this field were proposed. - Abstract: Research into gas-liquid countercurrent two-phase flow in a model of pressurized water reactor (PWR) hot leg has been carried out over the last several decades. An extensive experimental data base has been accumulated from these studies, leading to the development of phenomenological correlations and scaling parameters of the countercurrent flow limitation (CCFL). However, most of the proposed correlations apply under a relatively narrow range of conditions, generally limited to the test section conditions and/or geometry. Moreover the development of mechanistic models based on the underlying physical processes has been limited. In contrast to this mechanistic form of modelling, the implementation of computational fluid dynamics (CFD) techniques has also been pursued, but the considerable robust three-dimensional (3D) closure relations for this application remain an unachieved goal due to lack of detailed phenomenological knowledge and consequent application of empirical one-dimensional experimental correlations to the multidimensional problem. This paper presents a comprehensive review of research work on countercurrent gas-liquid two-phase flow in a PWR hot leg and provides direction regarding future research on this topic. In the introductory section, the problems facing current research are described. In the following sections, recent experimental as well as theoretical research achievements are overviewed. In the last section, the problems that remain unsolved are discussed, along with some concluding remarks. It was found that only limited theoretical

  20. Bench-Scale Testing of Zinc Ferrite Sorbent for Hot Gas Clean-up

    Institute of Scientific and Technical Information of China (English)

    Meisheng Liang; Hongyan Xu; Kechang Xie

    2007-01-01

    Advanced integrated gasification combined cycle (IGCC) power generation systems require the development of high-temperature, regenerable desulfurization sorbents, which are capable of removing hydrogen sulfide from coal gasifier gas to very low levels. In this paper, zinc ferrites prepared by co-precipitation were identified as a novel coal gas desulfurization sorbent at high temperature. Preparation of zinc ferrite and effects of binders on pore volume, strength and desulfurization efficiency of zinc ferrite desulfurizer were studied. Moreover, the behavior of zinc ferrite sorbent during desulfurization and regeneration under the temperature range of 350-400 ℃ are investigated. Effects of binders on the pore volume, mechanical strength and desulfurization efficiency of zinc ferrite sorbents indicated that the addition of kaolinite to zinc ferrite desulfurizer seems to be superior to other binders under the experimental conditions.

  1. Dissolver Off-gas Hot Operations Authorization (AFCI CETE Milestone Report)

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, Robert Thomas [ORNL

    2009-06-01

    The head-end processing of the Coupled-End-to-End (CETE) Demonstration includes fuel receipt, fuel disassembly, exposure of fuel (e.g., by segmenting the fuel pins), voloxidation of the fuel to separate tritium, and fuel dissolution. All of these processing steps with the exception of the dissolution step will be accomplished in the Irradiated Fuels Examination Laboratory (IFEL) (Building 3525). The final headend step will be performed in the Radiochemical Engineering Development Center (Building 7920). The primary purpose of the fuel dissolution step is to prepare the solid fuel for subsequent liquid separations steps. This is accomplished by dissolving the fuel solids using nitric acid. During the dissolution process gases are evolved. Oxides of nitrogen are the primary off-gas components generated by the reactions of nitric acid and the fuel oxides however, during the dissolution and sparging of the resulting solution, iodine, C-14 as carbon dioxide, xenon, and krypton gasses are also released to the off-gas stream. The Dissolver Off-gas treatment rack provides a means of trapping these volatile fission products and other gases via various trapping media. Specifically the rack will recover iodine on a solid sorbent bed, scrub NOx in a water/acid column, scrub CO{sub 2} in a caustic scrubber column, remove moisture with solid sorbent drier beds and recover Xe and Kr using solid absorbent beds. The primary purpose of this experimental rack and the off-gas rack associated with the voloxidation equipment located at IFEL is to close the material balances around the volatile gases and to provide an understanding of the impacts of specific processing conditions on the fractions of the volatile components released from the various head-end processing steps.

  2. observations of hot molecular gas emission from embedded low-mass protostars

    DEFF Research Database (Denmark)

    Visser, R.; Kristensen, L. E.; Bruderer, S.;

    2012-01-01

    the observations quantitatively, to investigate the origin of the emission, and to use the lines as probes of the various heating mechanisms. Methods. The model consists of a spherical envelope with a power-law density structure and a bipolar outflow cavity. Three heating mechanisms are considered: passive heating...... such as luminosity and envelope mass. Results. The bulk of the gas in the envelope, heated by the protostellar luminosity, accounts for 3–10% of the CO luminosity summed over all rotational lines up to J = 40–39; it is best probed by low-J CO isotopologue lines such as C18O 2–1 and 3–2. The UV-heated gas and the C......-type shocks, probed by 12CO 10–9 and higher-J lines, contribute 20–80% each. The model fits show a tentative evolutionary trend: the CO emission is dominated by shocks in the youngest source and by UV-heated gas in the oldest one. This trend is mainly driven by the lower envelope density in more evolved...

  3. Toward improved durability in advanced aircraft engine hot sections; Proceedings of the Thirty-third ASME International Gas Turbine and Aeroengine Congress and Exposition, Amsterdam, Netherlands, June 5-9, 1988

    Science.gov (United States)

    Sokolowski, Daniel E. (Editor)

    1988-01-01

    The present conference on durability improvement methods for advanced aircraft gas turbine hot-section components discusses NASA's 'HOST' project, advanced high-temperature instrumentation for hot-section research, the development and application of combustor aerothermal models, and the evaluation of a data base and numerical model for turbine heat transfer. Also discussed are structural analysis methods for gas turbine hot section components, fatigue life-prediction modeling for turbine hot section materials, and the service life modeling of thermal barrier coatings for aircraft gas turbine engines.

  4. WLAN Hot Spot services for the automotive and oil industries :a business analysis Or : "Refuel the car with petrol and information, both ways at the gas station"

    NARCIS (Netherlands)

    L-F. Pau (Louis-François); M.H.P. Oremus

    2003-01-01

    textabstractWhile you refuel for gas ,why not refuel for information or download vehicle data ? This paper analyzes in extensive detail the user segmentation by vehicle usage , service offering , and full business models from WLAN hot spot services delivered to vehicles (private, professional , publ

  5. Evidence for the Direct Detection of the Thermal Spectrum of the Non-Transiting Hot Gas Giant HD 88133 b

    Science.gov (United States)

    Piskorz, Danielle; Crockett, Nathan R.; Lockwood, Alexandra; Benneke, Björn; Blake, Geoffrey A.; Barman, Travis S.; Bender, Chad F.; Bryan, Marta; Carr, John S.; Fischer, Debra; Howard, Andrew; Isaacson, Howard T.; Johnson, John A.

    2016-10-01

    We target the thermal emission spectrum of the non-transiting gas giant HD 88133 b with high-resolution near-infrared spectroscopy, by treating the planet and its host star as a spectroscopic binary. For sufficiently deep summed flux observations of the star and planet across multiple epochs, it is possible to resolve the signal of the hot gas giant's atmosphere compared to the brighter stellar spectrum, at a level consistent with the aggregate shot noise of the full data set. To do this, we first perform a principal component analysis to remove the contribution of the Earth's atmosphere to the observed spectra. Then, we use a cross-correlation analysis to tease out the spectra of the host star and HD 88133 b to determine its orbit and identify key sources of atmospheric opacity. In total, six epochs of Keck NIRSPEC L band observations and three epochs of Keck NIRSPEC K band observations of the HD 88133 system were obtained. Based on an analysis of the maximum likelihood curves calculated from the multi-epoch cross correlation of the full data set with two atmospheric models, we report the direct detection of the emission spectrum of the non-transiting exoplanet HD 88133 b and measure a radial projection of its Keplerian orbital velocity, its true mass, its orbital inclination, and dominant atmospheric species. This, combined with eleven years of radial velocity measurements of the system, provides the most up-to-date ephemeris for HD 88133.

  6. On the Structure of Hot Gas in Halos: Implications for the Lx-Tx Relation & Missing Baryons

    CERN Document Server

    Sharma, Prateek; Parrish, Ian J; Quataert, Eliot

    2012-01-01

    We present one-dimensional models of the hot gas in dark-matter halos, which both predict the existence of cool cores and explain their structure. Our models are directly applicable to semi-analytic models (SAMs) of galaxy formation. We have previously argued that filaments of cold (~10^4 K) gas condense out of the intracluster medium (ICM) in hydrostatic and thermal equilibrium when the ratio of the thermal instability timescale to the free-fall time $t_{TI}/t_{ff}$ falls below 5-10. This criterion corresponds to an upper limit on the density of the ICM and motivates a model in which a density core forms wherever $t_{TI}/t_{ff} \\lesssim 10$. Consistent with observations and numerical simulations, this model predicts larger and more tenuous cores for lower-mass halos---while the core density in a cluster may be as large as ~ 0.1 cm^{-3}, the core density in the Galactic halo should not exceed ~ 10^{-4} cm^{-3}. Our models produce a favorable match to the observational X-ray luminosity-temperature (Lx-Tx) rela...

  7. Evidence for the Direct Detection of the Thermal Spectrum of the Non-Transiting Hot Gas Giant HD 88133 b

    CERN Document Server

    Piskorz, Danielle; Crockett, Nathan R; Lockwood, Alexandra C; Blake, Geoffrey A; Barman, Travis S; Bender, Chad F; Bryan, Marta L; Carr, John S; Fischer, Debra A; Howard, Andrew W; Isaacson, Howard; Johnson, John A

    2016-01-01

    We target the thermal emission spectrum of the non-transiting gas giant HD 88133 b with high-resolution near-infrared spectroscopy, by treating the planet and its host star as a spectroscopic binary. For sufficiently deep summed flux observations of the star and planet across multiple epochs, it is possible to resolve the signal of the hot gas giant's atmosphere compared to the brighter stellar spectrum, at a level consistent with the aggregate shot noise of the full data set. To do this, we first perform a principal component analysis to remove the contribution of the Earth's atmosphere to the observed spectra. Then, we use a cross-correlation analysis to tease out the spectra of the host star and HD 88133 b to determine its orbit and identify key sources of atmospheric opacity. In total, six epochs of Keck NIRSPEC L band observations and three epochs of Keck NIRSPEC K band observations of the HD 88133 system were obtained. Based on an analysis of the maximum likelihood curves calculated from the multi-epoch...

  8. VOF Calculations of Countercurrent Gas-Liquid Flow in a PWR Hot Leg

    Directory of Open Access Journals (Sweden)

    M. Murase

    2012-01-01

    Full Text Available We improved the computational grid and schemes in the VOF (volume of fluid method with the standard − turbulent model in our previous study to evaluate CCFL (countercurrent flow limitation characteristics in a full-scale PWR hot leg (750 mm diameter, and the calculated CCFL characteristics agreed well with the UPTF data at 1.5 MPa. In this paper, therefore, to evaluate applicability of the VOF method to different fluid properties and a different scale, we did numerical simulations for full-scale air-water conditions and the 1/15-scale air-water tests (50 mm diameter, respectively. The results calculated for full-scale conditions agreed well with CCFL data and showed that CCFL characteristics in the Wallis diagram were mitigated under 1.5 MPa steam-water conditions comparing with air-water flows. However, the results calculated for the 1/15-scale air-water tests greatly underestimated the falling water flow rates in calculations with the standard − turbulent model, but agreed well with the CCFL data in calculations with a laminar flow model. This indicated that suitable calculation models and conditions should be selected to get good agreement with data for each scale.

  9. Constraining supernova models using the hot gas in clusters of galaxies

    CERN Document Server

    De Plaa, J; Bleeker, J A M; Vink, J; Kaastra, J S; Méndez, M; Vink, Jacco

    2007-01-01

    The hot Intra-Cluster Medium (ICM) in clusters of galaxies is a very large repository of metals produced by supernovae. We aim to accurately measure the abundances in the ICM of many clusters and compare these data with metal yields produced by supernovae. Using the data archive of the XMM-Newton X-ray observatory, we compile a sample of 22 clusters. We fit spectra extracted from the core regions and determine the abundances of silicon, sulfur, argon, alcium, iron, and nickel. The abundances from the spectral fits are subsequently fitted to supernova yields determined from several supernova type Ia and core-collapse supernova models. We find that the argon and calcium abundances cannot be fitted with currently favoured supernova type Ia models. We obtain a major improvement of the fit, when we use an empirically modified delayed-detonation model that is calibrated on the Tycho supernova remnant. The two modified parameters are the density where the sound wave in the supernova turns into a shock and the ratio ...

  10. Hot gas in the galaxy: what do we know for sure?

    Directory of Open Access Journals (Sweden)

    W. T. Sanders

    2000-01-01

    Full Text Available En la d ecada pasada se lograron grandes avances en nuestra concepci on del gas interestelar caliente de la V a L actea. El Di use X-ray Spectrometer obtuvo espectros del plano gal actico (esto es, de la Burbuja Local, en el rango 0.15{0.28 keV, que muestran l neas y mezclas de l neas de emisi on. Los espectros con rman que el fondo de rayos-X suaves, en estas energ as, es de origen t ermico a aproximadamente 106 K, pero el espectro no puede ser bien ajustado con los modelos de emisi on de plasma existentes. Los datos del sat elite ROSAT, tanto de muestreo de todo el cielo como de observaciones puntuales, restringen las distancias del gas que emite dentro de la Burbuja Local, el medio interestelar local y el halo. Los datos con rman que la Burbuja Local tiene un tama~no de 100 pc y que el halo gal actico tiene dos componentes de gas caliente; una componente muy inhomog enea de 106 K y otra componente m as caliente, de varios 106 K, cuya distribuci on es suave y sigue a la estructura general de la Galaxia. El sat elite ASCA ha detectado emisi on de plasmas a m as de 107 K en la cresta gal actica, en dos regiones del centro gal actico y en el bulbo. M as recientemente, el micro calor metro del experimento Wisconsin/Goddard con cohetes observ o el espectro de la emisi on difusa en (l; b (90 ; 60 , con un campo visual de 1 sr en el rango espectral 0.1{1 keV y con una resoluci on de 8 eV. Las l neas de O VII y O VIII son detectadas, pero s olo se obtienen l mites superiores para las l neas esperadas de Fe XVII.

  11. Carbon formation and metal dusting in hot-gas cleanup systems of coal gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, P.F.; DeVan, H.J.; Judkins, R.R. [and others

    1995-06-01

    The product gas resulting from the partial oxidation of carboniferous materials in a gasifier consists predominantly of CO, CO{sub 2}, H{sub 2}, H{sub 2}O, CH{sub 4}, and, for air-blown units, N{sub 2} in various proportions at temperatures ranging from about 400 to 1000{degree}C. Depending on the source of the fuel, smaller concentrations of H{sub 2}S, COS, and NH{sub 3} can also be present. The gas phase is typically characterized by high carbon and sulfur, but low oxygen, activities and, consequently, severe degradation of the structural and functional materials used in the gasifier can occur. Therefore, there are numerous concerns about materials performance in coal gasification systems, particularly at the present time when demonstration-scale projects are in or nearing the construction and operation phases. This study focused on the subset of materials degradation phenomena resulting from carbon formation and carburization processes, which are related to potential operating problems in certain gasification components and subsystems. More specifically, it examined the current state of knowledge regarding carbon deposition and a carbon-related degradation phemonenon known as metal dusting as they affect the long-term operation of the gas clean-up equipment downstream of the gasifier and addressed possible means to mitigate the degradation processes. These effects would be primarily associated with the filtering and cooling of coal-derived fuel gases from the gasifier exit temperature to as low as 400{degree}C. However, some of the consideratins are sufficiently general to cover conditions relevant to other parts of gasification systems.

  12. Dissipative properties of hot and dense hadronic matter in excluded volume hadron resonance gas model

    CERN Document Server

    Kadam, Guru Prakash

    2015-01-01

    We estimate dissipative properties viz: shear and bulk viscosities of hadronic matter using rel- ativistic Boltzmann equation in relaxation time approximation within ambit of excluded volume hadron resonance gas (EHRG) model. We find that at zero baryon chemical potential the shear viscosity to entropy ratio ({\\eta}/s) decreases with temperature and reaches very close to Kovtun-Son- Starinets (KSS) bound. At sufficiently large baryon chemical potential this ratio shows same behav- ior as a function of temperature but goes below KSS bound. We further find that along chemical freezout line {\\eta}/s increases monotonically while the bulk viscosity to entropy ratio ({\\zeta}/s) decreases monotonically.

  13. Long way to go: how outflows from large galaxies propagate through the hot halo gas

    CERN Document Server

    Sarkar, Kartick Chandra; Sharma, Prateek; Shchekinov, Yuri

    2014-01-01

    Abridged Abstract: Using hydrodynamic simulations, we study the mass loss rate due to supernova-driven outflows from Milky Way type disk galaxies. Our goal is to relate the wind mass loss rates at different radii and times, and the central star formation rate (SFR). In particular, we study the role of the often-neglected extended halo gas. We find that the time averaged mass loss rate at inner radii scales roughly linearly with the star formation rate ($\\dot{M} \\propto {\\rm SFR}^{0.75}$), and that the mass loading factor at the virial radius is roughly half its value at the inner radii. The temperature distribution of the outflowing material in the very inner region ($\\sim $10 kpc) is found to be bimodal in nature , peaking at $10^5$ K and $10^{6.5}$ K, responsible for optical and X-ray emission, respectively. The contribution of cold/warm gas with temperature $\\le 10^{5.5}$ K to the outflow rate within 10 kpc is $\\approx 0.3\\hbox{--}0.5$. This helps us to connect the warm mass loading factor ($\\eta_{3e5}$, e...

  14. Development of novel copper-based sorbents for hot gas cleanup

    Energy Technology Data Exchange (ETDEWEB)

    Hill, A.H.; Abbasian, J. (Institute of Gas Technology, Chicago, IL (United States)); Flytzani-Stephanopoulos, M.; Bo, L.; Li, Li. (Massachusetts Inst. of Tech., Cambridge, MA (United States)); Honea, F.I. (Illinois Clean Coal Inst., Carterville, IL (United States))

    1993-01-01

    The objective of this investigation is to evaluate two novel copper-based sorbents (i.e. copper-chromium and copper-cerium) for their effectiveness in removing hydrogen sulfide from fuel gas in the temperature range of 650[degree] to 850[degree]C. New sorbent compositions from the selected Cu-Cr-O and Cu-Ce-O binary oxides were prepared and characterized by BET N[sub 2]-desorption surface area measurement following various calcination/time-temperature exposures. The general trends reported last quarter (on 11 different compositions) were validated this quarter in that both binary oxides lose surface area as the amount of CuO is increased. Time-resolved sulfidation tests were conducted at 850[degree]C using the equimolar CuO.Cr[sub 2]O[sub 3] composition. The two selected binary oxides prepared in larger qauntities (for testing in a two-inch reactor) have physical properties typical of the sorbents prepared in past programs. Two multicycle desulfurization tests, conducted this quarter on the Cu-Ce-O sorbent at 850[degree]C, using a feed gas containing 5000 ppm H[sub 2]S, 10 vol % H[sub 2] and 10 vol % H[sub 2]O at a space velocity (STP) of 2000 h[sup [minus]1], demonstrated high sulfur removal efficiency for the first one or two cycles, and a significant reduction in efficiency in the following cycles.

  15. Hot gas ingestion test results of a two-poster vectored thrust concept with flow visualization in the NASA Lewis 9- x 15-foot low speed wind tunnel

    Science.gov (United States)

    Johns, Albert L.; Neiner, George; Bencic, Timothy J.; Flood, Joseph D.; Amuedo, Kurt C.; Strock, Thomas W.

    1990-01-01

    A 9.2 percent scale Short Takeoff and Vertical Landing (STOVL) hot gas ingestion model was designed and built by McDonnell Douglas Corporation (MCAIR) and tested in the Lewis Research Center 9 x 15 foot Low Speed Wind Tunnel (LSWT). Hot gas ingestion, the entrainment of heated engine exhaust into the inlet flow field, is a key development issure for advanced short takeoff and vertical landing aircraft. Flow visualization from the Phase 1 test program, which evaluated the hot ingestion phenomena and control techniques, is covered. The Phase 2 test program evaluated the hot gas ingestion phenomena at higher temperatures and used a laser sheet to investigate the flow field. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/life improvement devices (LIDs) which reduced the hot gas ingestion. The model support system had four degrees of freedom - pitch, roll, yaw, and vertical height variation. The model support system also provided heated high-pressure air for nozzle flow and a suction system exhaust for inlet flow. The test was conducted at full scale nozzle pressure ratios and inlet Mach numbers. Test and data analysis results from Phase 2 and flow visualization from both Phase 1 and 2 are documented. A description of the model and facility modifications is also provided. Headwind velocity was varied from 10 to 23 kn. Results are presented over a range of nozzle pressure ratios at a 10 kn headwind velocity. The Phase 2 program was conducted at exhaust nozzle temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. The results reported are for nozzle exhaust temperatures up to 1160 R. These results will contain the compressor face pressure and temperature distortions, the total pressure recovery, the inlet temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane contours

  16. Effect of Mg/Al atom ratio of support on catalytic performance of Co-Mo/MgO-Al2O3 catalyst for water gas shift reaction

    Institute of Scientific and Technical Information of China (English)

    Yixin Lian; Huifang Wang; Quanxing Zheng; Weiping Fang; Yiquan Yang

    2009-01-01

    Co-Mo-based catalysts supported on mixed oxide supports MgO-Al2O3 with different Mg/Al atom ratios for water gas shift reaction were studied by means of TPR, Raman, XPS and ESR. It was found that the octahedral Mo species in oxidized Co-Mo/MgO(x)-Al2O3 catalyst and the contents of Mo5+, Mo4+, S2- and S2-2 species in the functioning catalysts increased with increasing the Mg/Al atom ratio of the support under the studied experimental conditions. This is favorable for the formation of the active Co-Mo-S phase of the catalysts. Catalytic performance testing results showed that the catalysts Co-Mo/MgO-Al2O3 with the Mg/Al atom ratio of the support in the range of 0.475-0.525 exhibited optimal catalytic activity for the reaction.

  17. Dramatically different kinetics and mechanism at solid/liquid and solid/gas interfaces for catalytic isopropanol oxidation over size-controlled platinum nanoparticles.

    Science.gov (United States)

    Wang, Hailiang; Sapi, Andras; Thompson, Christopher M; Liu, Fudong; Zherebetskyy, Danylo; Krier, James M; Carl, Lindsay M; Cai, Xiaojun; Wang, Lin-Wang; Somorjai, Gabor A

    2014-07-23

    We synthesize platinum nanoparticles with controlled average sizes of 2, 4, 6, and 8 nm and use them as model catalysts to study isopropanol oxidation to acetone in both the liquid and gas phases at 60 °C. The reaction at the solid/liquid interface is 2 orders of magnitude slower than that at the solid/gas interface, while catalytic activity increases with the size of platinum nanoparticles for both the liquid-phase and gas-phase reactions. The activation energy of the gas-phase reaction decreases with the platinum nanoparticle size and is in general much higher than that of the liquid-phase reaction which is largely insensitive to the size of catalyst nanoparticles. Water substantially promotes isopropanol oxidation in the liquid phase. However, it inhibits the reaction in the gas phase. The kinetic results suggest different mechanisms between the liquid-phase and gas-phase reactions, correlating well with different orientations of IPA species at the solid/liquid interface vs the solid/gas interface as probed by sum frequency generation vibrational spectroscopy under reaction conditions and simulated by computational calculations.

  18. Comparing the catalytic oxidation of ethanol at the solid-gas and solid-liquid interfaces over size-controlled Pt nanoparticles: striking differences in kinetics and mechanism.

    Science.gov (United States)

    Sapi, Andras; Liu, Fudong; Cai, Xiaojun; Thompson, Christopher M; Wang, Hailiang; An, Kwangjin; Krier, James M; Somorjai, Gabor A

    2014-11-12

    Pt nanoparticles with controlled size (2, 4, and 6 nm) are synthesized and tested in ethanol oxidation by molecular oxygen at 60 °C to acetaldehyde and carbon dioxide both in the gas and liquid phases. The turnover frequency of the reaction is ∼80 times faster, and the activation energy is ∼5 times higher at the gas-solid interface compared to the liquid-solid interface. The catalytic activity is highly dependent on the size of the Pt nanoparticles; however, the selectivity is not size sensitive. Acetaldehyde is the main product in both media, while twice as much carbon dioxide was observed in the gas phase compared to the liquid phase. Added water boosts the reaction in the liquid phase; however, it acts as an inhibitor in the gas phase. The more water vapor was added, the more carbon dioxide was formed in the gas phase, while the selectivity was not affected by the concentration of the water in the liquid phase. The differences in the reaction kinetics of the solid-gas and solid-liquid interfaces can be attributed to the molecular orientation deviation of the ethanol molecules on the Pt surface in the gas and liquid phases as evidenced by sum frequency generation vibrational spectroscopy.

  19. Carbon formation and metal dusting in hot-gas cleanup systems of coal gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Judkins, R.R.; Tortorelli, P.F.; Judkins, R.R.; DeVan, J.H.; Wright, I.G. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1995-11-01

    The product gas resulting from the partial oxidation of Carboniferous materials in a gasifier is typically characterized by high carbon and sulfur, but low oxygen, activities and, consequently, severe degradation of the structural and functional materials can occur. The objective of this task was to establish the potential risks of carbon deposition and metal dusting in advanced coal gasification processes by examining the current state of knowledge regarding these phenomena, making appropriate thermochemical calculations for representative coal gasifiers, and addressing possible mitigation methods. The paper discusses carbon activities, iron-based phase stabilities, steam injection, conditions that influence kinetics of carbon deposition, and influence of system operating parameters on carbon deposition and metal dusting.

  20. Advanced hot gas filter development. Topical report, May 1995--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, J.L.; June, M.R.

    1997-12-31

    Porous iron aluminide was evaluated for use as a particulate filter in pressurized fluid-bed combustion (PFBC) and integrated gasification combined cycles (IGCC) with a short term test. Three alloy compositions were tested: Fe{sub 3}Al 5% chromium (FAL), Fe{sub 3}Al 2% chromium (FAS) and FeAl 0% chromium. The test conditions simulated air blown (Tampa Electric) and oxygen blown (Sierra Pacific) gasifiers with one test gas composition. Four test conditions were used with hydrogen sulfide levels varying from 783 ppm to 78,3000 ppm at 1 atmosphere along with temperatures ranging between 925 F and 1200 F. The iron aluminide was found capable of withstanding the proposed operating conditions and capable of giving years of service. The production method and preferred composition were established as seamless cylinders of Fe{sub 3}Al 2% chromium with a preoxidation of seven hours at 1472 F.

  1. Bose-Einstein condensation in an ultra-hot gas of pumped magnons.

    Science.gov (United States)

    Serga, Alexander A; Tiberkevich, Vasil S; Sandweg, Christian W; Vasyuchka, Vitaliy I; Bozhko, Dmytro A; Chumak, Andrii V; Neumann, Timo; Obry, Björn; Melkov, Gennadii A; Slavin, Andrei N; Hillebrands, Burkard

    2014-03-11

    Bose-Einstein condensation of quasi-particles such as excitons, polaritons, magnons and photons is a fascinating quantum mechanical phenomenon. Unlike the Bose-Einstein condensation of real particles (like atoms), these processes do not require low temperatures, since the high densities of low-energy quasi-particles needed for the condensate to form can be produced via external pumping. Here we demonstrate that such a pumping can create remarkably high effective temperatures in a narrow spectral region of the lowest energy states in a magnon gas, resulting in strikingly unexpected transitional dynamics of Bose-Einstein magnon condensate: the density of the condensate increases immediately after the external magnon flow is switched off and initially decreases if it is switched on again. This behaviour finds explanation in a nonlinear 'evaporative supercooling' mechanism that couples the low-energy magnons overheated by pumping with all the other thermal magnons, removing the excess heat, and allowing Bose-Einstein condensate formation.

  2. Experimental and numerical investigation of the catalytic partial oxidation of methane to synthesis gas for power generation applications[Dissertation 17183

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, A.

    2007-07-01

    The present work addresses the catalytic partial oxidation (CPO) of methane to synthesis gas, with particular emphasis on power generation applications. A combined experimental and numerical investigation of methane partial oxidation to synthesis gas (H{sub 2}, CO) over rhodium-based catalysts has been carried out at pressures of up to 10 bar. The reactivity of the produced hydrogen and the suitably-low light-off temperatures of the CPO reactor, greatly facilitate operation of power generation gas turbines with reduced NO{sub x} emissions, stable operation with low calorific value fuels, and new combustion strategies for efficient CO{sub 2} capture. Those strategies utilize CPO of methane with oxygen (separated from air) and large exhaust gas recycle (H{sub 2}O and CO{sub 2}). An optically accessible catalytic channel-flow reactor was used to carry out Raman spectroscopy of major gas-phase species and laser induced fluorescence (LIF) of formaldehyde, in order to gain fundamental information on the catalytic and gas-phase chemical pathways. Transverse concentration profiles measured by the spontaneous Raman scattering technique determined the catalytic reactivity, while the LIF provided flame shapes and anchoring positions that, in turn, characterized the gaseous reactivity. Comparison between measurements and 2-D CFD computations, led to the validation of detailed catalytic and gas-phase reaction mechanisms. Experiments in a subscale gas-turbine honeycomb catalytic reactor have shown that the foregoing reaction mechanisms were also appropriate under gas-turbine relevant conditions with short reactant residence times. The light-off behavior of the subscale honeycomb reactor was reproduced by transient 2-D CFD computations. Ignition and extinction in CPO was studied. It was shown that, despite the chemical impact of the H{sub 2}O diluent during the transient catalytic ignition event, the light-off times themselves were largely unaffected by the exhaust gas dilution

  3. Comparative study on the corrosion behavior of the cold rolled and hot rolled low-alloy steels containing copper and antimony in flue gas desulfurization environment

    Science.gov (United States)

    Park, S. A.; Kim, J. G.; He, Y. S.; Shin, K. S.; Yoon, J. B.

    2014-12-01

    The correlation between the corrosion and microstructual characteristics of cold rolled and hot rolled low-alloy steels containing copper and antimony was established. The corrosion behavior of the specimens used in flue gas desulfurization systems was examined by electrochemical and weight loss measurements in an aggressive solution of 16.9 vol % H2SO4 + 0.35 vol % HCl at 60°C, pH 0.3. It has been shown that the corrosion rate of hot rolled steel is lower than that of cold rolled steel. The corrosion rate of cold rolled steel was increased by grain refinement, inclusion formation, and preferred grain orientation.

  4. The Thermochemical Degradation of Hot Section Materials for Gas Turbine Engines in Alternative-Fuel Combustion Environments

    Science.gov (United States)

    Montalbano, Timothy

    Gas turbine engines remain an integral part of providing the world's propulsion and power generation needs. The continued use of gas turbines requires increased temperature operation to reach higher efficiencies and the implementation of alternative fuels for a lower net-carbon footprint. This necessitates evaluation of the material coatings used to shield the hot section components of gas turbines in these new extreme environments in order to understand how material degradation mechanisms change. Recently, the US Navy has sought to reduce its use of fossil fuels by implementing a blended hydroprocessed renewable diesel (HRD) derived from algae in its fleet. To evaluate the material degradation in this alternative environment, metal alloys are exposed in a simulated combustion environment using this blended fuel or the traditional diesel-like fuel. Evaluation of the metal alloys showed the development of thick, porous scales with a large depletion of aluminum for the blend fuel test. A mechanism linking an increased solubility of the scale to the blend fuel test environment will be discussed. For power generation applications, Integrated Gasification Combined Cycle (IGCC) power plants can provide electricity with 45% efficiency and full carbon capture by using a synthetic gas (syngas) derived from coal, biomass, or another carbon feedstock. However, the combustion of syngas is known to cause high water vapor content levels in the exhaust stream with unknown material consequences. To evaluate the effect of increased humidity, air-plasma sprayed (APS), yttria-stabilized zirconia (YSZ) is thermally aged in an environment with and without humidity. An enhanced destabilization of the parent phase by humid aging is revealed by x-ray diffraction (XRD) and Raman spectroscopy. Microstructural analysis by transmission electron microscopy (TEM) and scanning-TEM (STEM) indicate an enhanced coarsening of the domain structure of the YSZ in the humid environment. The enhanced

  5. Dense gas in nearby galaxies XV. Hot ammonia in NGC253, Maffei2 and IC342

    CERN Document Server

    Mauersberger, R; Weiss, A; Peck, A B; Hagiwara, Y

    2003-01-01

    The detection of NH3 inversion lines up to the (J,K)=(6,6) level is reported toward the central regions of the nearby galaxies NGC253, Maffei2, and IC342. The observed lines are up to 406K (for (J,K)=(6,6)) and 848K (for the (9,9) transition) above the ground state and reveal a warm (T_kin= 100 - 140 K) molecular component toward all galaxies studied. The tentatively detected (J,K)=(9,9) line is evidence for an even warmer (>400K) component toward IC342. Toward NGC253, IC342 and Maffei2 the global beam averaged NH3 abundances are 1-2 10^-8, while the abundance relative to warm H2 is around 10^-7. The temperatures and NH3 abundances are similar to values found for the Galactic central region. C-shocks produced in cloud-cloud collisions can explain kinetic temperatures and chemical abundances. In the central region of M82, however, the NH3 emitting gas component is comparatively cool (~ 30K). It must be dense (to provide sufficient NH3 excitation) and well shielded from dissociating photons and comprises only a...

  6. Experimental Study on Emission Control of Premixed Catalytic Combustion of Natural Gas Using Preheated Air%使用加热空气的预混天然气催化燃烧的实验研究

    Institute of Scientific and Technical Information of China (English)

    许考; 刘中良; 何洪; 程水源; 马重芳

    2007-01-01

    In this paper the premixed catalytic combustion emissions such as CO, unburned hydrocarbon (UHC),NOx and the temperature distribution in the catalytic monolith with ultra low concentration of Pd were studied.Three types of monoliths were used for experiments and the temperature of preheated air was respectively 50℃,100℃ and 200℃. The results showed that preheated air made radial temperature in the catalytic monolith uniform which helped to avoid local hot spots so as to decrease NOx emission. The experiment also proved that the shorter monolith showed much better catalytic combustion performance than longer one and the temperature at the exit of the shorter monolith was relatively lower. On the contrary, the temperature was higher in the longer monolith and the lethal NOx emission was slightly increased.

  7. EVIDENCE FOR THE DIRECT DETECTION OF THE THERMAL SPECTRUM OF THE NON-TRANSITING HOT GAS GIANT HD 88133 b

    KAUST Repository

    Piskorz, Danielle

    2016-11-23

    We target the thermal emission spectrum of the non-transiting gas giant HD 88133 b with high-resolution near-infrared spectroscopy, by treating the planet and its host star as a spectroscopic binary. For sufficiently deep summed flux observations of the star and planet across multiple epochs, it is possible to resolve the signal of the hot gas giant\\'s atmosphere compared to the brighter stellar spectrum, at a level consistent with the aggregate shot noise of the full data set. To do this, we first perform a principal component analysis to remove the contribution of the Earth\\'s atmosphere to the observed spectra. Then, we use a cross-correlation analysis to tease out the spectra of the host star and HD 88133 b to determine its orbit and identify key sources of atmospheric opacity. In total, six epochs of Keck NIRSPEC L-band observations and three epochs of Keck NIRSPEC K-band observations of the HD 88133 system were obtained. Based on an analysis of the maximum likelihood curves calculated from the multi-epoch cross-correlation of the full data set with two atmospheric models, we report the direct detection of the emission spectrum of the non-transiting exoplanet HD 88133 b and measure a radial projection of the Keplerian orbital velocity of 40 +/- 15 km s(-1), a true mass of 1.02(-0.28)(+0.61) M-J, a nearly face-on orbital inclination of 15(-5)(+60), and an atmosphere opacity structure at high dispersion dominated by water vapor. This, combined with 11 years of radial velocity measurements of the system, provides the most up-to-date ephemeris for HD 88133.

  8. Reactions of hot deuterium atoms with OCS in the gas phase and in OCS--DI complexes

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, E.; Mikhaylichenko, K.; Wittig, C. (University of Southern California, Department of Chemistry, Los Angeles, California 90089-0482 (United States))

    1993-11-01

    Reactions of photolytically prepared hot deuterium atoms with OCS have been investigated: (i) under gas phase, single collision, arrested relaxation (i.e., bulk) conditions; and (ii) by photoinitiating reactions within weakly bound OCS--DI complexes. Nascent SD([ital X] [sup 2][Pi], [ital v]=0) rotational, spin--orbit, and [Lambda]-doublet populations were obtained for the photolysis wavelengths 250, 225, and 223 nm by using [ital A] [sup 2][Sigma][l arrow][ital X] [sup 2][Pi] laser induced fluorescence (LIF). The reason for using deuterium is strictly experimental: [ital A] [sup 2][Sigma] predissociation rates are considerably smaller for SD than for SH. The SD ([ital v]=0) rotational distribution was found to be very cold and essentially the same for both bulk and complexed conditions; the most probable rotational energy is [similar to]180 cm[sup [minus]1]. No bias in [Lambda]-doublet populations was detected. Spin--orbit excitation for bulk conditions was estimated to be [[sup 2][Pi][sub 1/2

  9. Reactions of hot deuterium atoms with OCS in the gas phase and in OCS-DI complexes

    Science.gov (United States)

    Böhmer, E.; Mikhaylichenko, K.; Wittig, C.

    1993-11-01

    Reactions of photolytically prepared hot deuterium atoms with OCS have been investigated: (i) under gas phase, single collision, arrested relaxation (i.e., bulk) conditions; and (ii) by photoinitiating reactions within weakly bound OCS-DI complexes. Nascent SD(X 2Π, v=0) rotational, spin-orbit, and Λ-doublet populations were obtained for the photolysis wavelengths 250, 225, and 223 nm by using A 2Σ←X 2Π laser induced fluorescence (LIF). The reason for using deuterium is strictly experimental: A 2Σ predissociation rates are considerably smaller for SD than for SH. The SD (v=0) rotational distribution was found to be very cold and essentially the same for both bulk and complexed conditions; the most probable rotational energy is ˜180 cm-1. No bias in Λ-doublet populations was detected. Spin-orbit excitation for bulk conditions was estimated to be [2Π1/2]/[2Π3/2]˜0.25, where 2Π1/2 is the upper spin-orbit component. This ratio could not be obtained with complexes because of limited S/N. The complete set of present and past experimental findings, combined with recent theoretical results of Rice, Cartland, and Chabalowski suggest a mechanism in which SD derives from a very short lived HSCO precursor. This can result from direct hydrogen attack at the sulfur and/or the transfer of hydrogen from carbon to sulfur via the HCOS intermediate.

  10. Thermal investigation of an internally cooled strut injector for scramjet application at moderate and hot gas conditions

    Science.gov (United States)

    Dröske, Nils C.; Förster, Felix J.; Weigand, Bernhard; von Wolfersdorf, Jens

    2017-03-01

    In this paper, we present a combined experimental and numerical approach to assess the thermal loads and the cooling mechanism of an internally cooled strut injector for a supersonic combustion ramjet. Infrared measurements of the injector surface are conducted at a moderate external flow temperature. In addition, the main flow field is investigated with the LITA technique. Main features of the cooling mechanism are identified based on experimental data. However, a full evaluation can only be obtained using a complex, conjugate CFD simulation, which couples the external and internal flow fields to the heat conduction inside the injector body. Furthermore, numerical simulations are also presented for hot gas conditions corresponding to combustion experiments. Both hydrogen, which would be used as fuel for flight tests, and air are considered as coolants. While the main features of the cooling mechanism will be shown to remain unchanged, the combustor wall temperature is found to have a significant influence on the cooling. This emphasizes the importance and the usefulness of such complex conjugate numerical simulations.

  11. Composition modification of zinc titanate sorbents for hot gas desulfurization. Technical report, March 1--May 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Swisher, J.H.

    1995-12-31

    For new coal gasification systems, zinc titanate sorbents are being developed to remove sulfur from the hot product gas prior to its use in combined cycle turbines and high temperature fuel cells. Although most of the properties of these sorbents are very attractive, there are still concerns about durability over many sulfidation-regeneration cycles and zinc losses due to vaporization. Doping the zinc titanate with other metal ions could alleviate both concerns, which are the objectives of this project. After a screening study was completed, it was decided that Cr offered more promise as a dopant than Ni, Cu, Mg, and Al. Therefore six new sorbent formulations containing Cr were prepared, and they are now being evaluated with a series of bulk density, X-ray diffraction, crush strength and thermogravimetric analysis (TGA) measurements. Results to date suggest that, while Zn vaporization losses can be reduced with Cr additions, a penalty in chemical reactivity occurs. A fixed bed test was also completed this quarter on a Cr-containing formulation. The H{sub 2}S breakthrough time was about 11 hours, and utilization of Zn in the sorbent was 60.5%.

  12. Ultraviolet spectra of HZ Herculis/Hercules X-1 from HST: Hot gas during total eclipse of the neutron star

    Science.gov (United States)

    Anderson, Scott F.; Wachter, Stefanie; Margon, Bruce; Downes, Ronald A.; Blair, William P.; Halpern, Jules P.

    1994-01-01

    The Faint Object Spectrograph (FOS) aboard Hubble Space Telescope (HST) has been used in the UV to observe the prototypical X-ray pulsar Her X-1 and its companion HZ Her. Optical spectra were also obtained contemporaneously at the Kitt Peak National Observatory (KPNO) 2.1 m. The FOS spectra encompass the 1150-3300 A range near binary orbital phases 0.5 (X-ray maximum) and at 0.0 (mid-X-ray eclipse). The maximum light spectra show strong, narrow C III, N V, O V, Si IV + O IV), N IV), C IV, He II, and N IV emission lines, extending previous IUE results; the O III lambda 3133 Bowen resonance line is also prominent, confirming that the Bowen mechanism is the source of the strong lambda lambda 4640, 4650 emission complex, also seen at maximum light. Most remarkable, however, are the minimum light spectra, where the object is too faint for reasonable observations from IUE. Despite the total eclipse of the X-ray-emitting neutron star, our spectra show strong emission at N V lambda 1240, S IV + O IV) whose emission dominates the UV light at phase 0.0 might be associated with the 'accretion disk corona,' it is more likely the source is somewhat less hot (but extended) gas above and around the disk, or perhaps circumstellar material such as a stellar wind.

  13. Hot gas in groups: NGC 5328 and the intriguing case of NGC 4756 with XMM-Newton

    CERN Document Server

    Trinchieri, G; Mazzei, P; Rampazzo, R; Wolter, A

    2012-01-01

    [Abridged] NGC 5238 and NGC 4756 are the brightest unperturbed elliptical galaxies in their respective loose groups. In the present study we aim at characterizing the properties of the hot gas in the halos of the brightest members and in the environment. In NGC 4756 we are also interested in the properties of a substructure identified to the SW and the region connecting the two structures, to search for a physical connection between the two. However, we have to take into account the fact that the group is projected against the bright, X-ray emitting cluster A1361, which heavily contaminates and confuses the emission from the foreground structure. We present a careful analysis of XMM-Newton data of the groups to separate different components. We also present a re-evaluation of the dynamical properties of the systems and . SPH simulations to interpret the results. We find that the X-ray source associated with NGC 4756 indeed sits on top of extended emission from the background cluster A1361, but can be relative...

  14. The Influence of Coronal Mass Ejections on the Gas Dynamics of the Atmosphere of a "Hot~Jupiter" Exoplanet

    CERN Document Server

    Bisikalo, D V

    2016-01-01

    The results of three-dimensional numerical simulations of the gas dynamics of the atmosphere of a "hot Jupiter" exoplanet during the passage of a coronal mass ejection (CME) from the central star are presented. These computations assumed the parameters for the stellar wind and the CME to be typical of the solar values. The characteristic variations of the flow pattern are considered for quasi-closed and closed (but appreciably distorted by the gravitational influence of the star) gaseous envelopes of the exoplanet. It is shown that a typical CME is sufficient to tear off the outer part of an asymmetric envelope that is located beyond the Roche lobe and carry it away from the exoplanet. This leads to a substantial increase in the mass-loss rate from the exoplanet envelope during the passage of CMEs. The mass-loss rate grows by about a factor of 11 for a closed envelope, and by about a factor of 14 for a quasi-closed envelope. Possible evolutionary consequences of the loss of part of the atmosphere during the p...

  15. Development of novel copper-based sorbents for hot-gas cleanup. Technical report, March 1, 1992--May 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Hill, A.H.; Wangerow, J.R. [Institute of Gas Technology, Chicago, IL (United States); Flytzani-Stephanopoulos, M.; Bo, L.; Patel, C. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1992-10-01

    The objective of this investigation is to evaluate several novel copper-based binary oxides for their suitability as regenerable sorbents for hot gas cleanup application in the temperature range of 650{degrees} to 850{degrees}C. During this quarter cyclic sulfidation/regeneration tests of the sorbents Cu{sub 2}Cr-O and Cu-Ce-0 were conducted using different compositions of the feed gases to investigate the effects of H{sub 2}0, H{sub 2} and CO. These tests were conducted in a packed-bed microreactor at 850{degrees}C. The results of these tests showed that H{sub 2} and CO (along with C02) had a significant effect on the H{sub 2}S pre-breakthrough levels, whereas H{sub 2}0 did not have an effect. The physical properties of the fresh and reacted samples of the Cu-2Cr-O and Cu-Ce-0 sorbents prepared in this program and used in the cyclic sulfidation/regeneration tests were also measured. In addition, sulfidation/regeneration tests were conducted using two commercial copper chromite sorbents (G-13 and G-89, United Catalyst, Inc.) and a zinc titanate sorbent (L-3014) in a one-inch fluidized-bed reactor at 650{degrees}C. The G-13 sorbent appears to have a much higher sulfur capacity than the G-89 sorbent.

  16. Development of novel copper-based sorbents for hot-gas cleanup. Final technical report, September 1, 1991--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Hill, A.H.; Wangerow, J.R. [Institute of Gas Technology, Chicago, IL (United States); Flytzani-Stephanopoulos, M.; Bo, Luhong; Patel, C.; Chang, D. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1992-12-31

    The objective of this investigation was to evaluate several novel copper-based binary oxides for their suitability as regenerable sorbents for hot gas cleanup application in the temperature range of 650{degree} to 850{degree}C. To achieve this objective, several novel binary oxides of copper were systematically evaluated and ranked in terms of their high-temperature stability against reduction to metal, sulfidation reactivity, and regenerability. The sorbents studied included oxides of chromium, cerium, aluminum, magnesium, manganese, titanium, iron, and silicon. The results of initial testing indicated that mixed binary oxides of copper with chromium (CuCr{sub 2}O{sub 4}) and cerium (CuO{circle_dot}CeO{sub 2}) were the most promising sorbents for such high temperature gas cleanup applications. These two sorbents were further evaluated in cyclic sulfidation/regeneration tests in 10--15 cycles to determine the effect of operating conditions on their performance. The results of this investigation indicate that the two selected sorbents, copper-chromium and copper-cerium, are capable of removing H{sub 2}S from the hot fuel gas to very low levels (<10 ppmv) at temperatures as high as 850{degree}C with good sorbent regenerability in cyclic process. These sorbents should be further studied to achieve optimum sorbent composition for hot gas cleanup application.

  17. Change On The S-Z Effect Induced By The Cooling Flow CF On The Hot Electronic Gas At The Center OF The Clusters Of Galaxies

    Directory of Open Access Journals (Sweden)

    Enkelejd Caca

    2015-06-01

    Full Text Available ABSTRACT Building more accurate profiles for temperature and density of hot electronic gas concentrated in the center of clusters of galaxies is a constant problem in survey of Sunyeav Zeldovich effect SZ. An effect that consists in the inverse Compton effect of the hot electronic gas interacting with Cosmic Microwave Back- ground CMB photons passing through Intra Cluster Medium ICM. So far the Isothermal model is used for temperature profiling in the calculation of the inverse Compton effect but based on the recent improved observations from satellites which showed that the hot electronic gas presents a feature called Cooling Flow CF. Temperatures in this model differs towards the edges of the Clusters of Galaxies leading to a change on the Compton parameter in comparison with Isothermal model. In this paper are processed data provided by X-ray satellite Chandra. The X-ray analysis is based on two models for the electron density and temperature profile. A sample of 12 clusters of galaxies are analyzed and by building the temperature profiles using CF model the differences on the Compton parameter are 10-100 in comparison with Isothermal model. Therefore to increase the accuracy of evaluation of the Compton parameter we should take into account the change of the electronic gas tempera- ture change that affect changes in both CMB spectrum and temperature from SZ effect.

  18. The Hot Interstellar Medium of Normal Elliptical Galaxies. I. A Chandra Gas Gallery and Comparison of X-ray and Optical Morphology

    CERN Document Server

    Diehl, S; Diehl, Steven; Statler, Thomas S.

    2006-01-01

    We present an X-ray analysis of 54 normal elliptical galaxies in the Chandra archive and isolate their hot gas component from the contaminating point source emission. This makes it possible to conduct, for the first time, a complete morphological analysis on the gas alone. A comparison with optical DSS images and published optical photometry shows that the hot gas morphology has surprisingly little in common with the shape of the stellar distribution. In particular, we observe no correlation between optical and X-ray ellipticity, as would be expected if the gas had settled into hydrostatic equilibrium with the underlying gravitational potential. In fact, the observed X-ray ellipticity exceeds the optical ellipticity in many cases. We exclude rotational support as the dominant factor to produce these high ellipticities. Instead, we find that the gas appears to be very disturbed and that the general perception of normal elliptical galaxies hosting calm, hydrostatic gas has to be revised. We conclude that, even ...

  19. β-Molybdenum nitride: synthesis mechanism and catalytic response in the gas phase hydrogenation of p-chloronitrobenzene

    NARCIS (Netherlands)

    Cárdenas-Lizana, F.; Gómez-Quero, S.; Perret, N.; Kiwi-Minsker, L.; Keane, M.A.

    2011-01-01

    A temperature programmed treatment of MoO3 in flowing N2 + H2 has been employed to prepare β-phase molybdenum nitride (β-Mo2N) which has been used to promote, for the first time, the catalytic hydrogenation of p-chloronitrobenzene. The reduction/nitridation synthesis steps have been monitored in sit

  20. Effect of Al Hot-Dipping on High-Temperature Corrosion of Carbon Steel in N2/0.1% H2S Gas

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Abro

    2016-02-01

    Full Text Available High-temperature corrosion of carbon steel in N2/0.1% H2S mixed gas at 600–800 °C for 50–100 h was studied after hot-dipping in the aluminum molten bath. Hot-dipping resulted in the formation of the Al topcoat and the Al-Fe alloy layer firmly adhered on the substrate. The Al-Fe alloy layer consisted primarily of a wide, tongue-like Al5Fe2 layer and narrow Al3Fe layer. When corroded at 800 °C for 100 h, the Al topcoat partially oxidized to the protective but non-adherent α-Al2O3 layer, and the interdiffusion converted the Al-Fe alloy layer to an (Al13Fe4, AlFe3-mixed layer. The interdiffusion also lowered the microhardness of the hot-dipped steel. The α-Al2O3 layer formed on the hot-dipped steel protected the carbon steel against corrosion. Without the Al hot-dipping, the carbon steel failed by forming a thick, fragile, and non-protective FeS scale.

  1. Diamond films grown on seeded substrates by hot-filament chemical vapour deposition with H sub 2 as the only feeding gas

    CERN Document Server

    LiuHongWu; Gao Chun Xi; Han Yong; Luo Ji Feng; Zou Guang Tian; Wen Chao

    2002-01-01

    Diamond films have been grown on polished Si substrates seeded with nanocrystalline diamond powder colloid using hot-filament chemical vapour deposition. Instead of using the conventional gaseous carbon source, a carbonized W filament was used as the carbon source. The only feeding gas was hydrogen. Compared with those produced by traditional methods, the polycrystalline diamond grown by this new method has smaller grain size. The growth mechanism is also discussed.

  2. Hot tapping and plugging in gas pipeline - GASCAB-I and GASDUC-I; Furacao em carga e plugueamento em gasodutos - GASCAB-I e GASDUC-I

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Jeziel; Ciuffo, Mauro Cunha; Santa Cruz, Sergio de Freitas [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2003-07-01

    It is difficult to accomplish interventions avoiding the shutdown on of the main lines during the operation of process plants or gas pipelines. It involves unit halt as well supply contract interruption, which can result heavy financial penalties with fines or cost due to profit loss. In such case it is necessary to use special techniques as hot tapping or line plugging. This paper aim to present the technical feasibility of applying line-plugging technique in a gas pipeline submitted to high pressure (82 kg f/cm{sup 2}) in non-straight section. It also presents the technical feasibility of repairing the fastening system of the connection plug. (author)

  3. 29 MW燃天然气热水锅炉设计特点%Design Characteristics of 29 MW Natural Gas Fired Hot Water Boiler

    Institute of Scientific and Technical Information of China (English)

    郭建明; 宋占启; 蒋红宇

    2000-01-01

    详细介绍了29MW热水锅炉的设计特点。分述了锅炉水冷壁系统、包墙系统、省煤器系统、燃烧系统等的设计思路和参教,强调了燃气锅炉结构紧凑的特点和经济性。%Describs the design characteristics of 29MW natural gas fired hot water boiler. Introduces the design thinkings and parameters of water wall system, economizer system and combustion system. Emphasizes the compact structure and economic advantages of natural gas fired boiler.

  4. Facile synthesis of titania nanowires via a hot filament method and conductometric measurement of their response to hydrogen sulfide gas.

    Science.gov (United States)

    Munz, Martin; Langridge, Mark T; Devarepally, Kishore K; Cox, David C; Patel, Pravin; Martin, Nicholas A; Vargha, Gergely; Stolojan, Vlad; White, Sam; Curry, Richard J

    2013-02-01

    Titania nanostructures are of increasing interest for a variety of applications, including photovoltaics, water splitting, and chemical sensing. Because of the photocatalytical properties of TiO₂, chemical processes that occur at its surface can be exploited for highly efficient nanodevices. A facile and fast synthesis route has been explored that is free of catalysts or templates. An environmental scanning electron microscopy (ESEM) system was employed to grow titania nanowires (NWs) in a water vapor atmosphere (∼1 mbar) and to monitor the growth in situ. In addition, the growth process was also demonstrated using a simple vacuum chamber. In both processes, a titanium filament was heated via the Joule effect and NWs were found to grow on its surface, as a result of thermal oxidation processes. A variety of nanostructures were observed across the filament, with morphologies changing with the wire temperature from the center to the end points. The longest NWs were obtained for temperatures between ∼730 °C and 810 °C. Typically, they have an approximate thickness of ∼300 nm and lengths of up to a few micrometers. Cross sections prepared by focused-ion-beam milling revealed the presence of a porous layer beneath the NW clusters. This indicates that the growth of NWs is driven by oxidation-induced stresses in the subsurface region of the Ti filament and by enhanced diffusion along grain boundaries. To demonstrate the potential of titania NWs grown via the hot filament method, single NW devices were fabricated and used for conductometric sensing of hydrogen sulfide (H₂S) gas. The NW electric resistance was found to decrease in the presence of H₂S. Its variation can be explained in terms of the surface depletion model.

  5. Summary on Characteristics and Applications for Low -Carbon Catalytic Combustion of Natural Gas%天然气低碳催化燃烧特性与应用*

    Institute of Scientific and Technical Information of China (English)

    张世红; Valerie Dupont; Alan Williams

    2013-01-01

      催化燃烧反应较低的活化能容许反应在贫碳氢化合物浓度下发生,因此绝热反应的温度低于NOx形成的限制,并完全氧化,不形成CO和未完全燃烧的碳氢化合物,燃烧发生在常规气相易燃极限之外,因此燃烧更加稳定。根据分步化学机理方法模拟出的结果可以得出,铂表面的异相反应抑制了气相氧化反应的程度,并且提高了单相点燃的表面温度。在此理论的指导下,进行了多种天然气催化燃烧装置的设计和研究,催化燃烧过程可达到近零污染排放。作为低碳战略,对天然气催化燃烧锅炉、烤箱和炉窑的应用前景进行了讨论。%Lower activation energies of combustion reaction allows reactions occurring at very small hydrocarbons concentration in air, therefore the adiabatic reaction temperature is very low and below the threshold of NOx formation. Oxidation can be complete even when at extremely small fuel concentrations in air, therefore products--CO and unburned hydrocarbons of incomplete combustion do not form. Combustion can occur outside of normal gas phase flammability limits, therefore the combustion can be more stable. According to the modelling results obtained with the detailed chemical mechanism, the Pt surface reactions inhibited in several ways the extent of the gas-phase oxidation and increased the surface temperature of homogeneous ignition. Due to the theory, several catalytic combustion burners of natural gas were designed and studied. The operating conditions verified "near zero" pollutant emissions that only a catalytic combustion process can achieve at present. As low-carbon strategies, the application prospect of national gas catalytic combustion boiler, oven and furnace were discussed.

  6. The hot gas cleaning with multifunctional sorbent technique at 1-20 bar pressure; Kaasujen kuumapuhdistus multifunktionaalisella sorbenttitekniikalla 1-20 bar:n paineessa

    Energy Technology Data Exchange (ETDEWEB)

    Jaanu, K.; Orjala, M.; Paakkinen, K.; Rantanen, J. [VTT Energy, Espoo (Finland)

    1996-12-01

    The aim of the research was to study the simultaneous hot gas cleanup of alkali metals and selected heavy metals under pressure of 1-20 bar using multifunctional sorbent technology, to investigate effects of it on sulfur and nitrogen emissions and to improve the total efficiency of the hot gas cleanup method by reducing the concentrations of harmful components to the level required by the gas turbines. The research has started in the year 1993. The optimization of the test facility at 900 deg C and 20 bar has been accomplished, as targeted. The main topics have been the alkali metals. The main targets of the year 1994 was to concentrate on the research of sorbent effectiveness to remove the impurities like alkalies etc. from the flue gas. Furthermore researches on kinetics and mechanisms were started. The results showed that the developed multifunctional sorbent are highly effective to remove alkalies from the flue gas. Also a mechanism for alkali and lead sorption was proposed. The main topics for 1995 were scheduled to be the completion of the kinetic and mechanical studies and the modelling and the estimation of the data for the pilot scale unit. The kinetic data for one sorbent has been completed and a model for that has also been developed. The measured and calculated results are indicating that the developed multifunctional sorption process is highly effective to remove alkalies and heavy metals such as lead and cadmium from high-temperature combustion gases. The tests are carried out mainly using the pressurized entrained flow reactor of VTT Energy, located in Jyvaeskylae, and in the university of Arizona, where the tests are conducted under atmospheric pressure. Some comparisons of the results might be made with those of Aabo Akademi during the future modelling. 3. The results are applied to purification of the hot gases in boilers, power and process industry. (Abstract Truncated)

  7. Oxygen and coke oven gas (COG) consumption optimization at hot stove of Usiminas blast furnace 3; Otimizacao do consumo de oxigenio e GCO nos regeneradores do alto forno 3 da Usiminas

    Energy Technology Data Exchange (ETDEWEB)

    Cervino, Marco Antonio; Bastos, Moises Hofer [Usiminas, Ipatinga, MG (Brazil)

    2001-07-01

    This paper presents the model developed for determination of the correlation between oxygen and coke oven gas (COG) consumption in the hot stove at Usiminas blast furnace 3, the applicability and results obtained. (author)

  8. Construction of new tie-in in the Bolivia-Brazil Gas Pipeline (GASBOL) using hot tapping techniques; Derivacao do Gasoduto Bolivia-Brasil com a tecnica de hot-tapping

    Energy Technology Data Exchange (ETDEWEB)

    Frisoli, Caetano [TRANSPETRO - PETROBRAS Transportes, Rio de Janeiro, RJ (Brazil); Frota, Cristiane Souto; Leite Filho, Ismael Casono; Lobao Filho, Jesualdo Pereira; Saavedra, Marcelo Curto [Transportadora Brasileira Gasoduto Bolivia-Brasil, S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    To supply 2,4 MM m3/d of natural gas to Tres Lagoas thermo electric plant, it was necessary to install a new delivery point of 12'' in the 32'' trunk line of Bolivia-Brazil gas pipeline. The most efficient method for executing new delivery points and maintenance repairs in pipelines is using the 'hot-tapping' technique, because there is no need to stop flow and blow down lines. This paper shows the project, specifications, planning and a detailed job execution to support this new city-gate, using a T split sleeve welded in the pipeline, explaining all the activities. Complex and innovative aspects related to the welding and inspection processes, executed in a API 5L X70 pipe at 92 kgf/cm{sup 2}, are also reported. (author)

  9. A high precision gas flow cell for performing in situ neutron studies of local atomic structure in catalytic materials

    Science.gov (United States)

    Olds, Daniel; Page, Katharine; Paecklar, Arnold; Peterson, Peter F.; Liu, Jue; Rucker, Gerald; Ruiz-Rodriguez, Mariano; Olsen, Michael; Pawel, Michelle; Overbury, Steven H.; Neilson, James R.

    2017-03-01

    Gas-solid interfaces enable a multitude of industrial processes, including heterogeneous catalysis; however, there are few methods available for studying the structure of this interface under operating conditions. Here, we present a new sample environment for interrogating materials under gas-flow conditions using time-of-flight neutron scattering under both constant and pulse probe gas flow. Outlined are descriptions of the gas flow cell and a commissioning example using the adsorption of N2 by Ca-exchanged zeolite-X (Na78-2xCaxAl78Si144O384,x ≈ 38). We demonstrate sensitivities to lattice contraction and N2 adsorption sites in the structure, with both static gas loading and gas flow. A steady-state isotope transient kinetic analysis of N2 adsorption measured simultaneously with mass spectrometry is also demonstrated. In the experiment, the gas flow through a plugged-flow gas-solid contactor is switched between 15N2 and 14N2 isotopes at a temperature of 300 K and a constant pressure of 1 atm; the gas flow and mass spectrum are correlated with the structure factor determined from event-based neutron total scattering. Available flow conditions, sample considerations, and future applications are discussed.

  10. Dual catalytic purpose of the tungsten filament during the synthesis of single-helix carbon microcoils by hot-wire CVD.

    Science.gov (United States)

    Oliphant, C J; Arendse, C J; Malgas, G F; Motaung, D E; Muller, T F G; Knoesen, D

    2009-10-01

    We report on the deposition of crystalline single-helix carbon microcoils, in the as-deposited state, by the hot-wire chemical vapor deposition process without any special preparation of nano-sized transition metal catalysts and subsequent post-deposition annealing. Tungsten, originating from the heated tungsten filament, is identified as the catalyst material responsible for the growth of the microcoils. High-resolution transmission spectroscopy, combined with Raman spectroscopy, confirm that the as-deposited microcoils are crystalline, which is induced by the high deposition temperature in the vicinity of the heated filament. These results suggest a simplified, less tedious deposition process for the growth of carbon microcoils, once the process has been optimized.

  11. Effect of Si-H bond on the gas-phase chemistry of trimethylsilane in the hot wire chemical vapor deposition process.

    Science.gov (United States)

    Shi, Y J; Li, X M; Toukabri, R; Tong, L

    2011-09-22

    The effect of the Si-H bond on the gas-phase reaction chemistry of trimethylsilane in the hot-wire chemical vapor deposition (HWCVD) process has been studied by examining its decomposition on a hot tungsten filament and the secondary gas-phase reactions in a reactor using a soft laser ionization source coupled with mass spectrometry. Trimethylsilane decomposes on the hot filament via Si-H and Si-CH(3) bond cleavages. A short-chain mechanism is found to dominate in the secondary reactions in the reactor. It has been shown that the hydrogen abstractions of both Si-H and C-H occur simultaneously, with the abstraction of Si-H being favored. Tetramethylsilane and hexamethyldisilane are the two major products formed from the radical recombination reactions in the termination steps. Three methyl-substituted disilacyclobutane molecules, i.e., 1,3-dimethyl-1,3-disilacyclobutane, 1,1,3-trimethyl-1,3-disilacyclobutane, and 1,1,3,3-tetramethyl-1,3-disilacyclobutane are also produced in reactor from the cycloaddition reactions of methyl-substituted silene species. Compared to tetramethylsilane and hexamethyldisilane, a common feature with trimethylsilane is that the short-chain mechanism still dominates. However, a more active involvement of the reactive silene intermediates has been found with trimethylsilane.

  12. Recent advances in AFB biomass gasification pilot plant with catalytic reactors in a downstream slip flow

    Energy Technology Data Exchange (ETDEWEB)

    Aznar, M.P.; Gil, J.; Martin, J.A.; Frances, E.; Olivares, A.; Caballero, M.A.; Perez, P. [Saragossa Univ. (Spain). Dept. of Chemistry and Environment; Corella, J. [Madrid Univ. (Spain)

    1996-12-31

    A new 3rd generation pilot plant is being used for hot catalytic raw gas cleaning. It is based on a 15 cm. i.d. fluidized bed with biomass throughputs of 400-650 kg/h.m{sup 2}. Gasification is performed using mixtures of steam and oxygen. The produced gas is passed in a slip flow by two reactors in series containing a calcined dolomite and a commercial reforming catalyst. Tars are periodically sampled and analysed after the three reactors. Tar conversions of 99.99 % and a 300 % increase of the hydrogen content in the gas are obtained. (author) (2 refs.)

  13. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik

    2003-09-01

    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  14. Catalytic and Noncatalytic Conversion of Methane to Olefins and Synthesis Gas in an AC Parallel Plate Discharge Reactor

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Khodagholi

    2013-01-01

    Full Text Available Direct conversion of methane to ethylene, acetylene, and synthesis gas at ambient pressure and temperature in a parallel plate discharge reactor was investigated. The experiments were carried out using a quartz reactor of outer diameter of 9 millimeter and a driving force of ac current of 50 Hz. The input power to the reactor to establish a stable gas discharge varied from 9.6 to maximum 15.3 watts (w. The effects of ZSM5, Fe–ZSM5, and Ni–ZSM5 catalysts combined with corona discharge for conversion of methane to more valued products have been addressed. It was found that in presence or absence of a catalyst in gas discharge reactor, the rate of methane and oxygen conversion increased upon higher input power supplied to the reactor. The effect of Fe–ZSM5 catalyst combined with gas discharge plasma yields C2 hydrocarbons up to 21.9%, which is the highest productions of C2 hydrocarbons in this work. The effect of combined Ni–ZSM5 and gas discharge plasma was mainly production of synthesis gas. The advantage of introducing ZSM5 to the plasma zone was increase in synthesis gas and acetylene production. The highest energy efficiency was 0.22 mmol/kJ, which belongs to lower rate of energy injection to the reactor.

  15. Catalytic hydrolysis of urea with fly ash for generation of ammonia in a batch reactor for flue gas conditioning and NOx reduction

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, J.N.; Gangadharan, P.; Patwardhan, A.V.; Meikap, B.C. [Indian Institute of Technology, Kharagpur (India). Dept. of Chemical Engineering

    2009-01-15

    Ammonia is a highly volatile noxious material with adverse physiological effects, which become intolerable even at very low concentrations and present substantial environmental and operating hazards and risk. Yet ammonia has long been known to be used for feedstock of flue gas conditioning and NOx reduction. Urea as the source of ammonia for the production of ammonia has the obvious advantages that no ammonia shipping, handling, and storage is required. The process of this invention minimizes the risks and hazards associated with the transport, storage, and use of anhydrous and aqueous ammonia. Yet no such rapid urea conversion process is available as per requirement of high conversion in shorter time, so here we study the catalytic hydrolysis of urea for fast conversion in a batch reactor. The catalyst used in this study is fly ash, a waste material originating in great amounts in combustion processes. A number of experiments were carried out in a batch reactor at different catalytic doses, temperatures, times, and at a constant concentration of urea solution 10% by weight, and equilibrium and kinetic studies have been made.

  16. Catalytic hydroprocessing of SRC-II heavy distillate fractions: Conversion of the acidic fractions characterized by gas chromatography/mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, D.W.; Petrakis, L.; Li, C.; Gates, B.C.

    1986-01-01

    Kinetics data have been determined for the catalytic hydroprocessing of the acidic fractions of a heavy distillate of a liquid derived from Powhatan No. 5 coal. A commercial, sulfided Ni-Mo/..gamma..-Al/sub 2/O/sub 3/ catalyst was used in the experiments, carried out at 350/sup 0/C and 120 atm with the coal liquid fractions dissolved in cyclohexane. The feed and hydrotreated products were analyzed by gas chromatography/mass spectrometry. The data were analyzed with group-type methods for compound classes, and results were also obtained for some individual organooxygen compounds. Catalytic hydroprocessing leads to a large increase in the number of compounds and a shift to lower boiling ranges. The data are broadly consistent with reaction networks determined with pure compounds; the most important reactions include aromatic ring hydrogenation, hydrodeoxygenation, and hydrodemethylation. Pseudo-first-order rate constants for conversion of the predominant organooxygen coupounds are on the order of 10/sup -4/ L/(g of catalysts); the reactivity decreases in the order cyclohexylphenol > dimethylhydroxyindan > tetrahydronaphthol > phenylphenol > 1-naphthol.

  17. Gas Phase Selective Catalytic Oxidation of Toluene to Benzaldehyde on V2O5-Ag2O/η-Al2O3 Catalyst

    Institute of Scientific and Technical Information of China (English)

    Tonglai Zhang; Liqiu Mao; Weihua Liu

    2004-01-01

    Gas phase selective catalytic oxidation of toluene to benzaldehyde was studied on V2O5-Ag2O/η-Al2O3 catalyst prepared by impregnation. The catalyst was characterized by XRD, XPS, TEM,and FT-IR. The catalytic results showed that toluene conversion and selectivity for benzaldehyde on catalyst sample No.4 (V/(V+Ag)=0.68) was higher than other catalysts with different V/Ag ratios. This was attributed to the higher surface area, larger pore volume and pore diameter of the catalyst sample No.4 than the other catalysts. The XRD patterns recorded from the catalyst before and after the oxidation reaction revealed that the new phases were developed, and this suggested that silver had entered the vanadium lattice. XPS results showed that the vanadium on the surface of No.4 and No.5 sample was more than that in the bulk, thus forming a vanadium rich layer on the surface. It was noted that when the catalyst was doped by potassium promoter, the toluene conversion and selectivity for benzaldehyde were higher than those on the undoped catalyst. This was attributed to the disordered structure of V2O5 lattice of the K-doped catalyst and a better interfacial contact between the particles.

  18. Gas chromatographic-mass spectrometric characterization of all acyclic C5-C7 alkenes from fluid catalytic cracked gasoline using polydimethylsiloxane and squalane stationary phases.

    Science.gov (United States)

    Soják, Ladislav; Addová, Gabriela; Kubinec, Róbert; Kraus, Angelika; Hu, Gengyuan

    2002-02-15

    Published retention indices of acyclic alkenes C5-C7 on squalane and polydimethylsiloxane as stationary phases were investigated, and reliable retention indices of alkenes from various sources were converted to separation systems used in a laboratory. Retention indices measured on available authentic commercial alkenes and on alkenic fraction of gasoline, published retention indices as well as means of GC-MS were used for verification of calculated retention indices. Retention of some gas chromatographic unseparated isomer pairs was obtained by mass spectrometric deconvolution using a specific single-ion monitoring. On the basis of these retention data, C5-C7 alkenes were identified and analyzed in the gasoline from fluid catalytic cracking. In the gasoline all 59 acyclic C5-C7 isomeric alkenes were determined at significantly different concentration levels.

  19. Inorganic-organic phase arrangement as a factor affecting gas-phase desulfurization on catalytic carbonaceous adsorbents.

    Science.gov (United States)

    Ansari, Adil; Bandosz, Teresa J

    2005-08-15

    Dried sewage sludge was physically mixed with waste paper (paper-to-sludge ratios from 25% to 75%). To increase the catalytic activity, from 1% to 6% calcium hydroxide was added to the mixtures. Then the precursors were carbonized at 950 degrees C. The performance of materials as H2S adsorbents was tested using a home-developed dynamic breakthrough test. The samples, before and after the adsorption process, were characterized by adsorption of nitrogen, potentiometric titration, thermal analysis, XRF, and SEM. Differences in the performance were linked to the surface properties. Itwas found that mixing paper with sludge increases the amount of H2S adsorbed/oxidized in comparison with that adsorbed/oxidized by the adsorbents obtained from pure precursors (sludge or waste paper) and the capacity is comparable to those of the best activated carbons existing on the market. Although both sewage sludge and waste paper provide the catalytic centers for hydrogen sulfide oxidation, the dispersion of the catalyst and its location within accessible pores is an important factor. The presence of cellulose in the precursor mixture leads to the formation of a light macroporous char whose particles physically separate the inorganic catalytic phase of the sewage sludge origin, decreasing the density of the adsorbent and thus providing more space for storage of oxidation products. This, along with calcium, contributes to a significant increase in the capacity of the materials as hydrogen sulfide adsorbents. On their surface about 30 wt % H2S can be adsorbed, mainly as elemental sulfur or sulfates. The results demonstrate the importance of the composition and arrangement of inorganic/ organic phases for the removal of hydrogen sulfide. The interesting finding is that although some microporosity is necessary to increase the storage area for oxidation products, the carbonaceous phase does not need to be highly microporous. It is important that it provides space for deposition of sulfur

  20. Criteria for selection of dolomites and catalysts for tar elimination from biomass gasification gas. Kinetic constants

    Energy Technology Data Exchange (ETDEWEB)

    Corella, J.; Narvaez, I.; Orio, A. [Madrid Univ. (Spain). Dept. of Chem. Eng.

    1996-12-31

    Calcined dolomites and commercial steam reforming catalysts are used downstream biomass gasifiers for hot catalytic raw gas cleaning. To further compare these solids under a rigorous basis, a reaction network and a kinetic model are presented. The apparent kinetic constant for the tar reduction is here proposed as a basis of comparison. Tar sampling and analysis, and the units used for the space-time in the catalytic reactor affect the kinetic constants observed. (author) (2 refs.)

  1. Development and characterization of Textron continuous fiber ceramic composite hot gas filter materials. Final report, September 30, 1994--October 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    DiPietro, S.G.; Alvin, M.A.

    1997-12-31

    Uncertainties about the long-term ability of monolithic ceramics to survive in the IGCC or PFBC hot gas filter environment led DOE/METC to consider the merits of using continuous fiber reinforced ceramic composites (CFCCs) as potential next-generation high temperature filter elements. This seems to be a logical strategy to pursue in light of the fact that properly-engineered CFCC materials have shown much-improved damage tolerance and thermal shock behavior as compared to existing monolithic ceramic materials. Textron`s Advanced Hot Gas Filter Development Program was intended to be a two year, two phase program which transitioned developmental materials R and D into prototype filter element fabrication. The first phase was to demonstrate the technical feasibility of fabricating CFCC hot gas filter elements which could meet the pressure drop specifications of less than ten inches of water (iwg) at a face velocity of ten feet per minute (fpm), while showing sufficient integrity to survive normal mechanical loads and adequate environmental resistance to steam/alkali corrosion conditions at a temperature of approximately 870 C (1600 F). The primary objective of the second phase of the program was to scale up fabrication methods developed in Phase 1 to produce full-scale CFCC candle filters for validation testing. Textron encountered significant process-related and technical difficulties in merely meeting the program permeability specifications, and much effort was expended in showing that this could indeed be achieved. Thus, by the time the Phase 1 program was completed, expenditure of program funds precluded continuing on with Phase 2, and Textron elected to terminate their program after Phase 1. This allowed Textron to be able to focus technical and commercialization efforts on their largely successful DOE CFCC Program.

  2. Determination of chlorobenzenes in textiles by pressurized hot water extraction followed by vortex-assisted liquid-liquid microextraction and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Lu, Yang; Zhu, Yan

    2013-12-06

    A method for quantitative determination of chlorobenzenes in textiles is developed, using pressurized hot water extraction (PHWE), vortex-assisted liquid-liquid microextraction (VALLME) and gas chromatography-mass spectrometry (GC-MS). VALLME serves as a trapping step after PHWE. The extraction conditions are investigated, as well as the quantitative features such as linearity, limits of detection (LODs), limits of quantification (LOQs), repeatabilities and reproducibilities between days. LOQs of 0.018-0.032mg/kg were achieved. The present method provides good repeatabilities (RSDGC-MS is a simple, rapid and environmentally friendly method for determination of chlorobenzenes in textiles.

  3. Development of novel copper-based sorbents for hot-gas cleanup. [Quarterly] technical report, December 1, 1991--February 29, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Hill, A.H.; Wangerow, J.R. [Institute of Gas Technology, Chicago, IL (United States); Flytzani-Stephanopoulos, M.; Bo, L.; Patel, C. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1992-08-01

    The objective of this investigation is to evaluate several novel copper-based binary oxides for their suitability as regenerable sorbents for hot gas cleanup application in the temperature range of 650{degrees} to 850{degrees}C. To achieve this objective, several novel copper-based binary oxide sorbents will be prepared. Experimental tests will be conducted at ambient pressure to determine the stability, sulfidation capacity, regenerability, and sulfidation kinetics of the novel sorbents. Tests will also be conducted at high pressure for the determination of the sulfidation reactivity, regenerability, and durability of the sorbents. The attrition characteristics of the sorbents will also be determined.

  4. Hot Money, Hot Potato

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    International hot money flowing into Chinese capital markets has caught the attention of Chinese watchdogs The Chinese are not the only ones feasting on the thriving property and stock markets. Apparently, these markets are the targets of international h

  5. Comparison of the enhanced gas sensing properties of tin dioxide samples doped with different catalytic transition elements.

    Science.gov (United States)

    Yang, Fuchao; Guo, Zhiguang

    2015-06-15

    In this work, non-doped SnO2 samples, and SnO2 samples doped with Zn(II), Cu(II), or Mn(II), having hierarchical microstructures, were prepared using an otherwise identical hydrothermal process, followed by annealing. The morphological and structural characteristics of the samples were systematically characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) measurements, and X-ray photoelectron spectroscopy (XPS). Ten gas sensors were constructed from each material, and compared as to detection of gas-phase ethanol, acetone, glacial acetic acid, methanol, and ammonia. The results indicated, for example, that SnO2 containing 2.91% Mn dopant exhibited a 2.5-fold higher gas detection response toward ethanol at 100 ppm than that of the non-doped material. The fastest response time for 100 ppm ethanol was found for Cu(II)-doped SnO2 (9.7 s), compared with 12.4 s for non-doped SnO2. Graphs of sensor response versus operating temperature for SnO2 containing different types and quantities of dopant exhibited quite different morphologies. The gas-sensing mechanism appears to involve reactions between the detected gases and the various oxygenous ions, such as O, O2(-), and O(2-), present at the surface of the sensor.

  6. Tree Coring as a Complement to Soil Gas Screening to Locate PCE and TCE Source Zones and Hot Spots

    DEFF Research Database (Denmark)

    Nielsen, Mette Algreen; Trapp, Stefan; Rehne Jensen, Pernille

    2015-01-01

    ) or trichloroethylene (TCE) to evaluate their ability to locate source zones and contaminant hot spots. One test site represented a relatively homogeneous sandy soil and aquifer, and the second a more heterogeneous geology with both sandy and less permeable clay till layers overlying a chalk aquifer. Tree cores from...

  7. CFD studies on the phenomena around counter-current flow limitations of gas/liquid two-phase flow in a model of a PWR hot leg

    Energy Technology Data Exchange (ETDEWEB)

    Deendarlianto, E-mail: deendarlianto@ugm.ac.id [Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Safety Research, P.O. Box 510 119, D-01314 Dresden (Germany); Department of Mechanical and Industrial Engineering, Faculty of Engineering, Gadjah Mada University, Jalan Grafika No. 2, Yogyakarta 55281 (Indonesia); Hoehne, Thomas; Lucas, Dirk; Vallee, Christophe [Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Safety Research, P.O. Box 510 119, D-01314 Dresden (Germany); Zabala, Gustavo Adolfo Montoya [Department of Chemical Engineering, Simon Bolivar University, Valle of Sartenejas, Caracas 1080 (Venezuela, Bolivarian Republic of)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer We modelled CCFL in a PWR hot leg using Algebraic Interfacial Area Density model. Black-Right-Pointing-Pointer The model is able to distinguish the local flow morphologies. Black-Right-Pointing-Pointer Test fluids are air-water and steam-water. Black-Right-Pointing-Pointer Calculated CCFL and water level are in good agreement with experimental data. - Abstract: In order to improve the understanding of counter-current two-phase flow and to validate new physical models, CFD simulations of a 1/3rd scale model of the hot leg of a German Konvoi pressurized water reactor (PWR) with rectangular cross section were performed. Selected counter-current flow limitation (CCFL) experiments conducted at Helmholtz-Zentrum Dresden-Rossendorf (HZDR) were calculated with ANSYS CFX using the multi-fluid Euler-Euler modelling approach. The transient calculations were carried out using a gas/liquid inhomogeneous multiphase flow model coupled with a shear stress transport (SST) turbulence model. In the simulation, the drag law was approached by a newly developed correlation of the drag coefficient in the Algebraic Interfacial Area Density (AIAD) model. The model can distinguish the bubbles, droplets and the free surface using the local liquid phase volume fraction value. A comparison with the high-speed video observations shows a good qualitative agreement. The results indicate also a quantitative agreement between calculations and experimental data for the CCFL characteristics and the water level inside the hot leg channel.

  8. Au@ZnO nanostructures on porous silicon for photocatalysis and gas-sensing: the effect of plasmonic hot-electrons driven by visible-light

    Science.gov (United States)

    Zhou, Fang; Wang, Qiang; Liu, Wenjun

    2016-08-01

    Nanostructured heterojunctions play key role for transfer and separation of interfacial photo-carriers. At visible light illumination, the effects of Au nanoparticles (NPs) for the photocatalysis and gas-sensing performance of Au@ZnO nanstructures on porous silicon layer are reported. At optimized loading amount of Au NPs, the local surface plasmon resonance (LSPR) effect of Au NPs is studied. Generated by visible light irradiation, the LSPR effect of Au NPs promotes desorption and activation of surface adsorption oxygen species -{{{{O}}}2}-, which is initiated by hot electrons transfer through Au-ZnO nanojunctions. This mechanism is responsible for the enhanced photocatalysis of methyl orange molecular, as well as enhancing the detecting performance for ammonia (NH3) gas at room temperature.

  9. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification.

    Science.gov (United States)

    Castro-Dominguez, Bernardo; Mardilovich, Ivan P; Ma, Liang-Chih; Ma, Rui; Dixon, Anthony G; Kazantzis, Nikolaos K; Ma, Yi Hua

    2016-09-19

    Palladium-based catalytic membrane reactors (CMRs) effectively remove H₂ to induce higher conversions in methane steam reforming (MSR) and water-gas-shift reactions (WGS). Within such a context, this work evaluates the technical performance of a novel CMR, which utilizes two catalysts in series, rather than one. In the process system under consideration, the first catalyst, confined within the shell side of the reactor, reforms methane with water yielding H₂, CO and CO₂. After reforming is completed, a second catalyst, positioned in series, reacts with CO and water through the WGS reaction yielding pure H₂O, CO₂ and H₂. A tubular composite asymmetric Pd/Au/Pd membrane is situated throughout the reactor to continuously remove the produced H₂ and induce higher methane and CO conversions while yielding ultrapure H₂ and compressed CO₂ ready for dehydration. Experimental results involving (i) a conventional packed bed reactor packed (PBR) for MSR, (ii) a PBR with five layers of two catalysts in series and (iii) a CMR with two layers of two catalysts in series are comparatively assessed and thoroughly characterized. Furthermore, a comprehensive 2D computational fluid dynamics (CFD) model was developed to explore further the features of the proposed configuration. The reaction was studied at different process intensification-relevant conditions, such as space velocities, temperatures, pressures and initial feed gas composition. Finally, it is demonstrated that the above CMR module, which was operated for 600 h, displays quite high H₂ permeance and purity, high CH₄ conversion levels and reduced CO yields.

  10. Advanced anticorrosive coatings prepared from electroactive polyimide/graphene nanocomposites with synergistic effects of redox catalytic capability and gas barrier properties

    Directory of Open Access Journals (Sweden)

    J. M. Yeh

    2014-04-01

    Full Text Available In this study, electroactive polyimide (EPI/graphene nanocomposite (EPGN coatings were prepared by thermal imidization and then characterized by Fourier transformation infrared (FTIR and transmission electron microscope (TEM. The redox behavior of the as-prepared EPGN materials was identified by in situ monitoring for cyclic voltammetry (CV studies. Demonstrating that EPGN coatings provided advanced corrosion protection of cold-rolled steel (CRS electrodes as compared to that of neat EPI coating. The superior corrosion protection of EPGN coatings over EPI coatings on CRS electrodes could be explained by the following two reasons. First, the redox catalytic capabilities of amino-capped aniline trimer (ACAT units existing in the EPGN may induce the formation of passive metal oxide layers on the CRS electrode, as indicated by scanning electron microscope (SEM and electron spectroscopy for chemical analysis (ESCA studies. Moreover, the well-dispersed carboxyl-graphene nanosheets embedded in the EPGN matrix hinder gas migration exponentially. This would explain enhanced oxygen barrier properties of EPGN, as indicated by gas permeability analysis (GPA studies.

  11. Kinetic of Catalytic CO{sub 2} Gasification for Cyprus Coal by Gas-Solid Reaction Model

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Soon Choel; Lee, Do Kyun; Kim, Sang Kyum; Rhee, Young Woo [Chungnam National University, Daejeon (Korea, Republic of); Lee, Si Hyun [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2015-10-15

    In general, the coal gasification has to be operated under high temperature (1300~1400 .deg. C) and pressure (30~40 bar). However, to keep this conditions, it needs unnecessary and excessive energy. In this work, to reduce the temperature of process, alkali catalysts such as K{sub 2}CO{sub 3} and Na{sub 2}CO{sub 3} were added into Cyprus coal. We investigated the kinetic of Cyprus char-CO{sub 2} gasification. To determine the gasification conditions, the coal (with and without catalysts) gasified with fixed variables (catalyst loading, catalytic effects of Na{sub 2}CO{sub 3} and K{sub 2}CO{sub 3}, temperatures) by using TGA. When catalysts are added by physical mixing method into Cyprus coal the reaction rate of coal added 7 wt% Na{sub 2}CO{sub 3} is faster than raw coal for Cyprus char-CO{sub 2} gasification. The activation energy of coal added 7 wt% Na{sub 2}CO{sub 3} was calculated as 63 kJ/mol which was lower than raw char. It indicates that Na{sub 2}CO{sub 3} can improve the reactivity of char-CO{sub 2} gasification.

  12. XMM-Newton Detection of Hot Gas in Two Evolved Elliptical Planetary Nebulae: the Eskimo Nebula and the Ghost of Jupiter

    Science.gov (United States)

    Guerrero, M. A.; Chu, Y.-H.; Gruendl, R. A.; Meixner, M.

    2004-12-01

    Planetary nebulae (PNe) consist of the stellar material ejected by low- and intermediate-mass stars (1-8 M⊙) at the end of the asymptotic giant branch phase (AGB). As such a star evolves off the AGB phase, the copious mass-loss strips off the stellar envelope and exposes the hot stellar core that ionizes the nebular material. The central stars of PNe present fast stellar winds with terminal velocities 1000-4000 km s-1, while fast collimated outflows with velocities up to 1000 km s-1 are also observed in PNe. The interactions of the fast stellar wind and/or collimated outflows with nebular material can give rise to diffuse X-ray emission from PNe. Diffuse X-ray emission has been detected only in young PNe previously. To investigate the evolution of hot gas in PN interiors, we obtained XMM-Newton observations of NGC 2392 (the Eskimo Nebula) and NGC 3242 (the Ghost of Jupiter), two evolved elliptical PNe. Diffuse X-ray emission is detected in both nebulae. In both cases, the hot gas is confined within the innermost shell, the X-ray spectrum can be described by a thin plasma emission model with temperature ˜2×106 K, and the X-ray luminosity is ˜1×1031 ergs s-1. Furthermore, the X-ray spectrum of NGC 3242 shows evidence of enhanced nitrogen abundance, while the X-ray morphology of NGC 2392 hints a possible association with its fast collimated outflows.

  13. 催化水煤气变换反应的计算模拟进展%Progress of theoretical simulation of catalytic water-gas-shift reaction

    Institute of Scientific and Technical Information of China (English)

    陈玉; 张福丽; 姚辉超; 刘植昌; 崔佳; 徐春明

    2012-01-01

    The progress of theoretical simulation of catalytic water-gas-shift(WGS) reaction is reviewed,by focusing on the reaction mechanism.As to traditional Cu-Zn-,Fe-Cr-,and Co-Mo-based heterogeneous catalysts,carboxyl and redox mechanisms dominate.Promoters and supports also affect the entire reaction process,and may take part in the reaction process directly.Improved or novel catalysts,such as gold or gold-loaded catalyst have also been explored theoretically,and there is also no end to apprehending respective catalytic reaction mechanism.For those homogeneous catalytic reactions like WGS catalyzed by carbonyls of iron group,the understanding of the reaction mechanism is getting deeper.Theoretical studies are expected to expand from those simple model systems to more complex and real WGS model systems.Theoretical studies will show their advantages,such as convenience and low cost,in comparison with experimental investigation,and also provide successful examples for the design of catalysts.%综述了对具有广泛工业应用的水煤气变换(WGS)反应进行理论模拟所取得的进展,重点讨论反应机理方面获得的成果。对于传统的铜锌、铁铬和钴钼等非均相催化剂而言,羧基机理和氧化还原机理占统治地位,而助剂和载体对反应机理也有影响,有时甚至直接参与反应过程。对改进型、新型催化剂如金或负载金等催化WGS反应机理的认识过程尚未结束。对铁族羰基络合均相催化WGS反应机理的理解逐步深入。理论模拟研究将从少数简单的WGS模型体系扩展到更多复杂的真实体系;在预言新的催化体系反应机理上,与实验研究相比,有望体现出费用低和非常便利的优势,并能为催化剂的设计提供理论依据和成功案例。

  14. Layer texture of hot-rolled BCC metals and its significance for stress-corrosion cracking of main gas pipelines

    Science.gov (United States)

    Perlovich, Yu. A.; Isaenkova, M. G.; Krymskaya, O. A.; Morozov, N. S.

    2016-10-01

    Based on data of X-ray texture analysis of hot-rolled BCC materials it was shown that the layerwise texture inhomogeneity of products is formed during their manufacturing. The effect can be explained by saturation with interstitial impurities of the surface layer, resulting in dynamical deformation aging (DDA). DDA prevents the dislocation slip under rolling and leads to an increase of lattice parameters in the external layer. The degree of arising inhomogeneity correlates with the tendency of hot-rolled sheets and obtained therefrom tubes to stress-corrosion cracking under exploitation, since internal layers have a compressive effect on external layers, and prevents opening of corrosion cracks at the tube surface.

  15. Chemical, isotopic, and dissolved gas compositions of the hot springs of the Owyhee Uplands, Malheur County, Oregon

    Science.gov (United States)

    Mariner, R.H.; Young, H.W.; Evans, William C.; Nielson, Dennis L.

    1994-01-01

    Hot springs along the Owyhee River in southeastern Oregon between Three Forks and Lake Owyhee could be part of a north flowing regional system or a series of small separate geothermal systems Heat for the waters could be from a very young (Holocene) volcanic activity (basalt flows) of the Owyhee Uplands or the regional heat flow. The springs discharge warm to hot, dilute, slightly alkaline, sodium bicarbonate water. Chemically they are similar to the dilute thermal water at Bruneau Grand View and Twin Falls, Idaho. Maximum aquifer temperatures in the Owyhee Uplands, estimated from chemical geothermometry, are about 100°C. Dissolved helium concentrations, carbon 14 activity, and chemical and isotope data are examined fro systematic trends which would indicate a geothermal system of regional extent.

  16. Tree Coring as a Complement to Soil Gas Screening to Locate PCE and TCE Source Zones and Hot Spots

    DEFF Research Database (Denmark)

    Nielsen, Mette Algreen; Trapp, Stefan; Rehne Jensen, Pernille;

    2015-01-01

    Preliminary risk assessment for prioritisation of site investigations requires efficient screening to reveal type and level of contamination. The screening methods, tree coring and soil gas sampling were applied and compared at two forested sites contaminated with tetrachloroethylene (PCE...

  17. Enhanced catalytic activity of nanoscale platinum islands loaded onto SnO2 thin film for sensitive LPG gas sensors

    Indian Academy of Sciences (India)

    Divya Haridas; Vinay Gupta; K Sreenivas

    2008-06-01

    In the present study, different catalysts (∼ 10 nm thick) including metals, noble metals and metal oxides, were loaded in dotted island form over SnO2 thin film for LPG gas detection. A comparison of various catalysts indicated that the presence of platinum dotted islands over SnO2 thin film deposited by r.f. sputtering exhibited enhanced response characteristics with a high sensitivity, ∼ 742, at an operating temperature of ∼ 280°C. Different characterization techniques have been employed such as atomic force microscopy, X-ray diffraction and UV–vis spectroscopy, to study the surface morphology, grain size and optical properties of the deposited thin films. The results suggest the possibility of utilizing the sensor element with the present novel method of catalyst dispersal for the efficient detection of LPG.

  18. Summary and assessment of METC zinc ferrite hot coal gas desulfurization test program, final report: Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Underkoffler, V.S.

    1986-12-01

    The Morgantown Energy Technology Center (METC) has conducted a test program to develop a zinc ferrite-based high temperature desulfurization process which could be applied to fuel gas entering downstream components such as molten carbonate fuel cells or gas turbines. As a result of prior METC work with iron oxide and zinc oxide sorbents, zinc ferrite evolved as a candidate with the potential for high capacity, low equilibrium levels of H/sub 2/S, and structural stability after multiple regenerations. The program consisted of laboratory-scale testing with a two-inch diameter reactor and simulated fixed-bed gasifier gas; bench-scale testing with a six-inch diameter reactor and actual gas from the METC 42-inch fixed bed gasifier; as well as laboratory-scale testing of zinc ferrite with simulated fluidized bed gasifier gas. Optimum operating parameters for zinc ferrite such as temperatures, gas compositions, and space velocities are discussed. From the test results, salient features of zinc ferrite were derived and discussed in regard to system implications, issues raised, and technical requirements. 47 refs., 53 figs., 41 tabs.

  19. Multiple-Line Study of NGC 1068: Hot Molecular Gas Caused by Jet-Gas Interaction in the Central 100pc?

    Science.gov (United States)

    Krips, Melanie

    2012-07-01

    A multiple molecular line and line transition study is presented for the circumnuclear disk (CND) of the proto-typical Seyfert galaxy NGC 1068. A detailed analysis of the kinematics and excitation conditions of the molecular gas, as traced by 12CO, 13CO, HCN and HCO+, suggests that part of the molecular gas in the CND is shocked, expanding and heated to high kinetic temperatures most likely as a consequence of an interaction between the radio jet and the CND. We further find support for an X-ray altered chemistry of the molecular gas in the CND based on the significantly elevated abundance of HCN when compared to star-forming, starbursting or quiescent gas regions.

  20. Recent progress in understanding the hot and warm gas phases in the halos of star-forming galaxies

    CERN Document Server

    Strickland, D K; Colbert, E J M; Hoopes, C G; Weaver, K A

    2002-01-01

    In this contribution we present a few selected examples of how the latest generation of space-based instrumentation -- NASA's Chandra X-ray Observatory and the Far-Ultraviolet Spectroscopic Explorer (FUSE) -- are finally answering old questions about the influence of massive star feedback on the warm and hot phases of the ISM and IGM. In particular, we discuss the physical origin of the soft thermal X-ray emission in the halos of star-forming and starburst galaxies, its relationship to extra-planar H-alpha emission, and plasma diagnostics using FUSE observations of O VI absorption and emission.

  1. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification

    Science.gov (United States)

    Castro-Dominguez, Bernardo; Mardilovich, Ivan P.; Ma, Liang-Chih; Ma, Rui; Dixon, Anthony G.; Kazantzis, Nikolaos K.; Ma, Yi Hua

    2016-01-01

    Palladium-based catalytic membrane reactors (CMRs) effectively remove H2 to induce higher conversions in methane steam reforming (MSR) and water-gas-shift reactions (WGS). Within such a context, this work evaluates the technical performance of a novel CMR, which utilizes two catalysts in series, rather than one. In the process system under consideration, the first catalyst, confined within the shell side of the reactor, reforms methane with water yielding H2, CO and CO2. After reforming is completed, a second catalyst, positioned in series, reacts with CO and water through the WGS reaction yielding pure H2O, CO2 and H2. A tubular composite asymmetric Pd/Au/Pd membrane is situated throughout the reactor to continuously remove the produced H2 and induce higher methane and CO conversions while yielding ultrapure H2 and compressed CO2 ready for dehydration. Experimental results involving (i) a conventional packed bed reactor packed (PBR) for MSR, (ii) a PBR with five layers of two catalysts in series and (iii) a CMR with two layers of two catalysts in series are comparatively assessed and thoroughly characterized. Furthermore, a comprehensive 2D computational fluid dynamics (CFD) model was developed to explore further the features of the proposed configuration. The reaction was studied at different process intensification-relevant conditions, such as space velocities, temperatures, pressures and initial feed gas composition. Finally, it is demonstrated that the above CMR module, which was operated for 600 h, displays quite high H2 permeance and purity, high CH4 conversion levels and reduced CO yields. PMID:27657143

  2. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification

    Directory of Open Access Journals (Sweden)

    Bernardo Castro-Dominguez

    2016-09-01

    Full Text Available Palladium-based catalytic membrane reactors (CMRs effectively remove H2 to induce higher conversions in methane steam reforming (MSR and water-gas-shift reactions (WGS. Within such a context, this work evaluates the technical performance of a novel CMR, which utilizes two catalysts in series, rather than one. In the process system under consideration, the first catalyst, confined within the shell side of the reactor, reforms methane with water yielding H2, CO and CO2. After reforming is completed, a second catalyst, positioned in series, reacts with CO and water through the WGS reaction yielding pure H2O, CO2 and H2. A tubular composite asymmetric Pd/Au/Pd membrane is situated throughout the reactor to continuously remove the produced H2 and induce higher methane and CO conversions while yielding ultrapure H2 and compressed CO2 ready for dehydration. Experimental results involving (i a conventional packed bed reactor packed (PBR for MSR, (ii a PBR with five layers of two catalysts in series and (iii a CMR with two layers of two catalysts in series are comparatively assessed and thoroughly characterized. Furthermore, a comprehensive 2D computational fluid dynamics (CFD model was developed to explore further the features of the proposed configuration. The reaction was studied at different process intensification-relevant conditions, such as space velocities, temperatures, pressures and initial feed gas composition. Finally, it is demonstrated that the above CMR module, which was operated for 600 h, displays quite high H2 permeance and purity, high CH4 conversion levels and reduced CO yields.

  3. Gas dynamic modeling of the CME propagation through the envelope of a hot Jupiter-type exoplanet

    Science.gov (United States)

    Cherenkov, A. A.; Kaygorodov, P. V.; Bisikalo, D. V.

    2016-05-01

    We propose a 3D gasdynamic numerical model for the study of the interaction between the extended envelopes of hot Jupiters, overfilling their Roche lobes, and non-stationary stellar wind. In the model we use a Roe-Osher numerical scheme with Eindfeldt entropy fix. To test the model we have simulated a flow structure, forming due to the interaction between the extended quasi-stationary envelope of the hot Jupiter planet HD 209458b and the bow shock formed ahead of a propagating coronal mass ejection (CME). We have adopted the solar CME parameters in our computations and taken into account the fact that the planet is located close to its host star. The simulation results show that the bow shock of the CME partially destroys the stream, starting from the Li point of the quasi-closed planet's envelope. A bow shock, existing ahead of the planet in its orbital motion when the stellar wind is undisturbed, almost disappears when the CME shock passes through the system.

  4. Catalytic synthesis of ZnO nanorods on patterned silicon wafer—An optimum material for gas sensor

    Indian Academy of Sciences (India)

    S K Panda; C Jacob

    2009-10-01

    ZnO nanorods have been synthesized over etch-patterned Si (110) wafer using annealed silver thin film as growth catalyst. The growth of ZnO nanorods were performed by a two-step process. Initially, the deposition of Zn thin film was done on the annealed silver catalyst film over etch-patterned Si (110) substrate by thermal evaporation, and then annealed at 800°C in air. The etching of the patterned Si (110) wafers was carried out by 50% aqueous KOH solution. The samples were investigated by optical microscopy, scanning electron microscopy, X-ray diffraction, Raman spectroscopy and room temperature photoluminescence spectroscopy. `V’ shaped grooves with no undercut were formed after etching due to the anisotropic nature of the KOH etchant. The etch-patterned wafer was used to provide larger surface area for ZnO growth by forming `V’-grooves. This ZnO film may be predicted as a very good material for gas sensor.

  5. Search for Solar Axions by the CERN Axion Solar Telescope with 3 He Buffer Gas: Closing the Hot Dark Matter Gap

    CERN Document Server

    Arik, M.; Barth, K.; Belov, A.; Borghi, S.; Bräuninger, H.; Cantatore, G.; Carmona, J.M.; Cetin, S.A.; Collar, J.I.; Da Riva, E.; Dafni, T.; Davenport, M.; Eleftheriadis, C.; Elias, N.; Fanourakis, G.; Ferrer-Ribas, E.; Friedrich, P.; Galán, J.; García, J.A.; Gardikiotis, A.; Garza, J.G.; Gazis, E.N.; Geralis, T.; Georgiopoulou, E.; Giomataris, I.; Gninenko, S.; Gómez, H.; Gómez Marzoa, M.; Gruber, E.; Guthörl, T.; Hartmann, R.; Hauf, S.; Haug, F.; Hasinoff, M.D.; Hoffmann, D.H.H.; Iguaz, F.J.; Irastorza, I.G.; Jacoby, J.; Jakovčić, K.; Karuza, M.; Königsmann, K.; Kotthaus, R.; Krčmar, M.; Kuster, M.; Lakić, B.; Lang, P.M.; Laurent, J.M.; Liolios, A.; Ljubičić, A.; Lozza, V.; Luzón, G.; Neff, S.; Niinikoski, T.; Nordt, A.; Papaevangelou, T.; Pivovaroff, M.J.; Raffelt, G.; Riege, H.; Rodríguez, A.; Rosu, M.; Ruz, J.; Savvidis, I.; Shilon, I.; Silva, P.S.; Solanki, S.K.; Stewart, L.; Tomás, A.; Tsagri, M.; van Bibber, K.; Vafeiadis, T.; Villar, J.; Vogel, J.K.; Yildiz, S.C.; Zioutas, K.

    2014-01-01

    The CERN Axion Solar Telescope (CAST) has finished its search for solar axions with 3^He buffer gas, covering the search range 0.64 eV < m_a <1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess X-rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g_ag < 3.3 x 10^{-10} GeV^{-1} at 95% CL, with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of g_a, for example by the currently discussed next generation helioscope IAXO.

  6. Efficiency of Pumping of the Active Medium of Metal Vapor Lasers: Gas-Discharge Tubes with Electrodes in the Hot Zone of the Discharge Channel

    Science.gov (United States)

    Yudin, N. A.; Yudin, N. N.

    2016-10-01

    The electrophysical approach is used to estimate conditions for effective pumping of the active medium of lasers on self-terminating metal atom transitions in gas-discharge tubes (GDT) with electrodes located in the hot zone of the discharge channel. It is demonstrated that in the laser discharge contour there are processes limiting the frequency and energy characteristics (FEC) of radiation. The mechanism of influence of these processes on the FEC of radiation, and technical methods of their neutralization are considered. It is demonstrated that the practical efficiency of a copper vapor laser can reach 10% under conditions of neutralization of these processes. Conditions for forming the distributed GDT impedance when the active medium is pumped on the front of the fast ionization wave are determined.

  7. Search for solar axions by the CERN axion solar telescope with 3He buffer gas: closing the hot dark matter gap.

    Science.gov (United States)

    Arik, M; Aune, S; Barth, K; Belov, A; Borghi, S; Bräuninger, H; Cantatore, G; Carmona, J M; Cetin, S A; Collar, J I; Da Riva, E; Dafni, T; Davenport, M; Eleftheriadis, C; Elias, N; Fanourakis, G; Ferrer-Ribas, E; Friedrich, P; Galán, J; García, J A; Gardikiotis, A; Garza, J G; Gazis, E N; Geralis, T; Georgiopoulou, E; Giomataris, I; Gninenko, S; Gómez, H; Gómez Marzoa, M; Gruber, E; Guthörl, T; Hartmann, R; Hauf, S; Haug, F; Hasinoff, M D; Hoffmann, D H H; Iguaz, F J; Irastorza, I G; Jacoby, J; Jakovčić, K; Karuza, M; Königsmann, K; Kotthaus, R; Krčmar, M; Kuster, M; Lakić, B; Lang, P M; Laurent, J M; Liolios, A; Ljubičić, A; Luzón, G; Neff, S; Niinikoski, T; Nordt, A; Papaevangelou, T; Pivovaroff, M J; Raffelt, G; Riege, H; Rodríguez, A; Rosu, M; Ruz, J; Savvidis, I; Shilon, I; Silva, P S; Solanki, S K; Stewart, L; Tomás, A; Tsagri, M; van Bibber, K; Vafeiadis, T; Villar, J; Vogel, J K; Yildiz, S C; Zioutas, K

    2014-03-07

    The CERN Axion Solar Telescope has finished its search for solar axions with (3)He buffer gas, covering the search range 0.64 eV ≲ ma ≲ 1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess x rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of gaγ ≲ 3.3 × 10(-10)  GeV(-1) at 95% C.L., with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of gaγ, for example by the currently discussed next generation helioscope International AXion Observatory.

  8. The Hot-gas screw-type engine - Simulation as a basis for construction. Pt. 3; Die Heissgasschraubenmaschine - simulationsgestuetzte Auslegung. T. 3

    Energy Technology Data Exchange (ETDEWEB)

    Kauder, K.; Unwerth, T. von [Dortmund Univ. (Germany). FG Fluidenergiemaschinen

    1998-12-31

    In this paper new results of the research regarding the design of the first experimental plant for a hot-gas screw-type machine are reported. Target of the development is the verification of operating behaviour as well as the thermal and mechanical behaviour of the screw-type motor parts. The selection and dimensioning of the plant components is described with a main focus on the construction of the thermally high-loaded hot-gas screw-type engine. Its manufacturing tolerances are based on simulations, with which the mechanical deformations of the rotors and the casing respective the resulting clearance-heights can be calculated. With inclusion of an efficient cooling method for the motor parts, for the, in the article documented, projected nominal working condition with a material-depending limit for the entrance temperature at {theta}{sub E,} {sub M}=600 C, a pressure ratio {pi}=6 and a male rotor peripheral speed u{sub HR}=120 ms{sup -1}, each rotor should be decreased by 0.07 mm. (orig.) [Deutsch] Es wird ueber neue Forschungsergebnisse im Hinblick auf die konstruktive Realisierung der ersten Versuchsanlage einer Heissgasschraubenmaschine berichtet. Ziel der daran durchgefuehrten Untersuchungen ist die Verifikation des Betriebsverhaltens sowie des thermischen und mechanischen Bauteilverhaltens des Heissgasschraubenmotors. Nachzulesen ist die Auswahl und Dimensionierung der Anlagenkomponenten, wobei ein Hauptaugenmerk auf der Auslegung des thermisch hoch belasteten Schraubenmotors liegt. Dessen Dimensionierung liegen Simulationsrechnungen zugrunde, mit deren Hilfe die mechanischen Verformungen der Rotoren und des Gehaeuses respektive der daraus resultierenden Spalthoehen a priori angegeben werden koennen. Fuer den hier dokumentierten, angestrebten Nennbetriebszustand mit einer werkstoffbedingt begrenzten Motoreintrittstemperatur von {theta}{sub E,} {sub M}=600 C, einem Druckverhaeltnis von {pi}=6 und einer Hauptrotorumfangsgeschwindigkeit von u{sub HR}=120 ms

  9. Performance of new generation TWC catalytic systems working under different conditions in order to reduce the emission of a global warming gas: N{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Mac-Beath, I.; Castillo, S.; Camposeco, R.; Moran-Pineda, M. [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico). Programa de Ingenieria Molecular

    2010-07-01

    In this work, three-way catalytic systems (TWC-K, TWC-M and TWC-P) were prepared and tested experimentally in order to analyze N{sub 2}O emissions. Various types and quantities of precious metals (Pt-Pd-Rh), and different mixed oxides (CexBayLazMgwO{sub 2}-Al{sub 2}O{sub 3}) to prepare the supports were used. The catalytic tests were carried out by using common exhaust gases from a gasoline engine under different oxidizing conditions. The TWC catalytic compositions were based on catalytic converters used in retrofitting programs in the Metropolitan Area in Mexico City. Fresh and aged TWC catalytic samples were tested; in both conditions, the catalytic compositions were characterized by BET, TEM-EDS and XRD in order to analyze the efficiency of the catalytic behavior. Due to the fact that the 4{sup th} TWC generation (Pd-Only TWC) has Pd as main active metal, the tested TWC catalytic samples were synthesized by having Pd in a higher proportion with regard to Pt and Rh used as complements with some differences in support composition. (orig.)

  10. Amperometric NOx-sensor for Combustion Exhaust Gas Control. Studies on transport properties and catalytic activity of oxygen permeable ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Romer, E.W.J.

    2001-04-27

    The aim of the research described in this thesis is the development of a mixed conducting oxide layer, which can be used as an oxygen permselective membrane in an amperometric NOx sensor. The sensor will be used in exhaust gas systems. The exhaust gas-producing engine will run in the lean mix mode. The preparation of this sensor is carried out using screen-printing technology, in which the different layers of the sensor are applied successively. Hereafter, a co-firing step is applied in which all layers are sintered together. This co-firing step imposes several demands on the selection of materials. The design specifications of the sensor further include requirements concerning the operating temperature, measurement range and overall stability. The operating temperature of the sensor varies between 700 and 850C, enabling measurement of NOx concentrations between 50 and 1200 ppm with a measurement accuracy of 10 ppm. Concerning the stability of the sensor, it must withstand the exhaust gas atmosphere containing, amongst others, smoke, acids, abrasive particles and sulphur. Because of the chosen lean-mix engine concept, in which the fuel/air mixture switches continuously between lean (excess oxygen) and fat (excess fuel) mixtures, the sensor must withstand alternately oxidising and reducing atmospheres. Besides, it should be resistant to thermal shock and show no cross-sensitivity of NOx with other exhaust gas constituents like oxygen and hydrocarbons. The response time should be short, typically less than 500 ms. Because of the application in combustion engines of cars, the operational lifetime should be longer than 10 years. Demands on the mixed conducting oxide layer include the following ones. The layer should show minimal catalytic activity towards NOx-reduction. The oxygen permeability must be larger than 6.22 10{sup -8} mol/cm{sup 2}s at a layer thickness between 3-50 {mu}m. Since the mixed conducting oxide layer is coated on the YSZ electrolyte embodiment

  11. The improvement of the effectiveness of using natural gas in hot-water boilers by means of condensing economizers

    Science.gov (United States)

    Vnukov, A. K.; Rozanova, F. A.

    2013-07-01

    The paper describes the results of the study of the mathematical model of a condensing economizer (CE) interacting with the technological parameter of the particular district heating station. This model has been developed by the authors. It is shown that the CE, due to condensation of water vapor and augmentation of convective heat exchange between products of natural gas combustion, makes it possible to save up to 8% of fuel.

  12. Development of novel copper-based sorbents for hot-gas cleanup. Technical report, 1 March--31 May 1994

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Hill, A.H. [Inst. of Gas Technology, Chicago, IL (United States); Flytzani-Stephanopoulos, M.; Li, Z. [Tufts Univ., Medford, MA (United States)

    1994-09-01

    The objective of this investigation is to evaluate two novel copper-based sorbents, namely copper-chromium and copper-cerium, for their effectiveness in removing hydrogen sulfide from fuel gas in the temperature range of 650 to 850 C. Such high temperatures will be required for the new generation of gas turbines (inlet > 750 C) in Integrated Gasification Combined Cycle (IGCC) systems. Results of fixed-bed reactor tests conducted in this quarter, indicate that, at 750 C, pre-reduction with H{sub 2} in the presence of H{sub 2}O does not effect the performance of either sorbent for H{sub 2}S removal. For the pre-reduced CuCr{sub 2}O{sub 4} sorbent, copper utilization before the first H{sub 2}S breakthrough is substantially higher in synthesis feed gas mixture than in feed gas containing 30 Vol% H{sub 2}, and slightly lower than in 10 vol% H{sub 2}. In sulfidation-regeneration testing of copper- and additive-rich sorbents, chromium-rich CuO-3Cr{sub 2}O{sub 4} sorbent demonstrated very high H{sub 2}S removal efficiency and high copper conversion levels (comparable to that of the 1:1 molar composition sorbent). Similar results were obtained with the cerium-rich CuO-3CeO{sub 2} sorbent, but only for the first cycle. The H{sub 2}S removal performance of both copper-rich sorbents was inferior to that of the respective 1:1 molar compositions. CuO-CeO{sub 2} sorbent testing in a TGA indicates no appreciable decrease in the sulfidation rate over 5 1/2 cycles. However, weight changes during regeneration of the CuO-CeO{sub 2} suggest that some copper or cerium sulfates formed.

  13. Development of novel copper-based sorbents for hot-gas cleanup. [Quarterly] technical report, September 1--November 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Hill, A.H. [Institute of Gas Technology, Chicago, IL (United States); Flytzani-Stephanopoulos, M.; Li Li [Massachusetts Inst. of Technology, Cambridge, MA (United States)

    1994-03-01

    The objective of this investigation is to evaluate two novel copper-based sorbents, namely copper-chromium and copper-cerium, for their effectiveness in removing hydrogen sulfide from fuel gas in the temperature range of 650{degree} to 850{degree}C. Such high temperatures will be required for the new generation of gas turbines (inlet >750{degree}C) in Integrated Gasification Combined Cycle (IGCC) systems. The effect of pre-reduction on the performance of the sorbents as well as the rate of different reactions occurring in cyclic sulfidation/regeneration, were studied in a thermogravimetric analyzer (TGA). Sulfidation was conducted with and without H{sub 2} and H{sub 2}O, and with and without pre-reduction in H{sub 2} or H{sub 2}/H{sub 2}O. The results of these tests indicate that reduction and regeneration of both sorbents occurs rapidly. Sulfidation of CuCr{sub 2}O{sub 4}, in H{sub 2}O-free and H{sub 2}-/H{sub 2}O-free gas indicates the possible sulfidation of both copper and chromium. Small quantities of SO{sub 2}, were released during sulfidation suggesting the possible oxidation of H{sub 2}S by the sorbent. Regeneration of the CuCr{sub 2}O{sub 4} was complete while regeneration of the CuO-CeO{sub 2} indicated possible limited sulfate formation.

  14. Bench-scale demonstration of hot-gas desulfurization technology. Quarterly report, January 1--March 31, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    At the start of the current project, the DSRP (Direct Sulfur Recovery Process) technology was at the bench-scale development stage with a skid-mounted system ready for field testing. The process had been extended to fluidized-bed operation in the Stage 1 reactor. A preliminary economic study for a 100 MW plant in which the two-stage DSRP was compared to conventional processes indicated the economic attractiveness of the DSRP. Through bench-scale development, both fluidized-bed zinc titanate and DSRP technologies have been shown to be technically and economically attractive. The demonstrations prior to the start of this project, however, had only been conducted using simulated (rather than real) coal gas and simulated regeneration off-gas. Thus, the effect of trace contaminants in real coal gases on the sorbent and DSRP catalyst was not known. Also, the zinc titanate desulfurization unit and DSRP had not been demonstrated in an integrated manner. The overall goal of this project is to continue further development of the zinc titanate desulfurization and DSRP technologies by scale-up and field testing (with actual coal gas) of the zinc titanate fluidized-bed reactor system, and the Direct Sulfur Recovery Process.

  15. The nature and energetics of AGN-driven perturbations in the hot gas in the Perseus Cluster

    CERN Document Server

    Zhuravleva, I; Arevalo, P; Schekochihin, A A; Forman, W R; Allen, S W; Simionescu, A; Sunyaev, R; Vikhlinin, A; Werner, N

    2016-01-01

    Cores of relaxed galaxy clusters are often disturbed by AGN. Their Chandra observations revealed a wealth of structures induced by shocks, subsonic gas motions, bubbles of relativistic plasma, etc. In this paper, we determine the nature and energy content of gas fluctuations in the Perseus core by probing statistical properties of emissivity fluctuations imprinted in the soft- and hard-band X-ray images. About 80 per cent of the total variance of perturbations on ~ 8-70 kpc scales in the inner region have an isobaric nature, i.e., are consistent with slow displacements of the gas in pressure equilibrium with ambient medium. Observed variance translates to the ratio of non-thermal to thermal energy of ~13 per cent. In the region dominated by weak "ripples", about half of the total variance is also associated with isobaric perturbations on scales ~ a few tens of kpc. If these isobaric perturbations are induced by buoyantly rising bubbles, then these results suggest that most of the AGN-injected energy should fi...

  16. A high spatial resolution X-ray and H-alpha study of hot gas in the halos of star-forming disk galaxies. II. Quantifying supernova feedback

    CERN Document Server

    Strickland, D K; Colbert, E J M; Hoopes, C G; Weaver, K A

    2004-01-01

    We investigate how the empirical properties of hot X-ray-emitting gas in a sample of 7 starburst and 3 normal edge-on spiral galaxies correlate with the size, mass, star formation rate and star formation intensity in the host galaxies. From this analysis we investigate various aspects of mechanical energy feedback on galactic scales. We demonstrate, using a variety of multi-wavelength star formation rate and intensity indicators, that the diffuse X-ray emission is ultimately driven by mechanical energy feedback from massive stars. We find that the luminosity of the extra-planar diffuse X-ray emission is proportional to proxies of the star formation rate of the host galaxy, for example the FIR or 1.4 GHz radio luminosity. Larger galaxies tend to have more extended X-ray-emitting halos, but galaxy mass appears to play no role in determining the properties of the disk or extra-planar X-ray emitting plasma. Accretion of gas from the IGM does not appear to be a significant contributor to the diffuse X-ray emission...

  17. Studies on Microstructure and Thermoelectric Properties of p-Type Bi-Sb-Te Based Alloys by Gas Atomization and Hot Extrusion Processes

    Science.gov (United States)

    Park, Ki-Chan; Madavali, Babu; Kim, Eun-Bin; Koo, Kyung-Wan; Hong, Soon-Jik

    2016-10-01

    p-Type Bi2Te3 + 75% Sb2Te3 based thermoelectric materials were fabricated via gas atomization and the hot extrusion process. The gas atomized powder showed a clean surface with a spherical shape, and expanded in a wide particle size distribution (average particle size 50 μm). The phase of the fabricated extruded and R-extruded bars was identified using x-ray diffraction. The relative densities of both the extruded and R-extruded samples were measured by Archimedes principle with ˜98% relative density. The R-extruded bar exhibited finer grain microstructure than that of single extrusion process, which was attributed to a recrystallization mechanism during the fabrication. The R-extruded sample showed improved Vickers hardness compared to the extruded sample due to its fine grain microstructure. The electrical conductivity improved for the extruded sample whereas the Seebeck coefficient decreases due to its high carrier concentration. The peak power factor, ˜4.26 × 10-3 w/mK2 was obtained for the single extrusion sample, which is higher than the R-extrusion sample owing to its high electrical properties.

  18. Application of Gas-fired Heating and Hot Water Combi-boilers in Residential Buildings%燃气采暖热水炉在居住建筑中的应用

    Institute of Scientific and Technical Information of China (English)

    陆继红; 李伟

    2013-01-01

    The development trend of gas-fired consumption is introduced briefly, as well as the utilization of gas-fired heating and hot water combi-boilers in residential building at home and abroad. “The National 12th Five-Year Plan for the Cities and Towns Gas-Fired De-velopment”,“Gas-Fired Heating And Hot Water Combi-Boilers (GB 25034-2010)”, and construction of gas-fired pipeline network promote popularity and rapid growth of gas-fired heating and hot water combi-boilers. The classification and main components of gas-fired heating and hot water combi-boilers are presented. The pollutant emission of gas-fired heating and hot water combi-boilers is far lower than the de-mands in standards by illustrating an example, meeting related requirements of national environmental protection. Main points of designing heating system of gas-fired heating and hot water combi-boilers are sketched.%简要介绍了燃气消费的发展趋势、燃气采暖热水炉在国内外居住建筑中的使用情况。《全国城镇燃气发展“十二五”规划》和GB 25034-2010《燃气采暖热水炉》强制性国家标准的发布实施,燃气管网的建设,推动了城镇燃气采暖热水炉产品的进一步普及和快速增长。介绍了燃气采暖热水炉的种类和组成。举例说明了燃气采暖热水炉的烟气排放中污染物含量远低于标准中污染物排放要求,满足国家环保规定。简述了燃气采暖热水炉采暖系统的设计要点。

  19. Catalytic Performance and Characterization of Pt-Co/Al2O3Catalysts for CO2 Reforming of CH4 to Synthesis Gas

    Institute of Scientific and Technical Information of China (English)

    HUANG, Chuan-Jing; ZHENG, Xiao-Ming; MO, Liu-Ye; FEI, Jin-Hua

    2001-01-01

    Pt-Co/Al2O3 catalyst has been studied for CO2 reforming of CH4 to synthesis gas. It was found that the catalytic performance of the catalyst was sensitive to calcination temperature.When Co/Al2O3 was calcined at 1473 K prior to adding a small amount of Pt to it, the resulting bimetallic catalyst showed high activity, optimal stability and excellent resistance to carbon deposition, which was more effective to the reaction than Co/Al2O3 and Pt/Al2O3 catalysts. At lower metal loading, catalyst activity decreased in the following order: Pt-Co/Al2O3 > Pt/Al2O3 》 Co/Al2O3. With 9% Co, the Co/Al2O3calcined at 923 K was also active for CO2 reforming of CH4,however, its carbon formation was much more fast than that of the Pt-Co/Al2O3 catalyst. The XRD results indicated that Pt species well dispersed over the bimetallic catalyst. Its high dispersion was related to the presence of CoAl2O4, formed during calcining of Co/Al2O3 at high temperature before Pt addition. Promoted by Pt, CoAl2O4 in the catalyst could be reduced partially even at 923 K, the temperature of pre-re-duction for the reaction, confirmed by TPR. Based on these results, it was considered that the zerovalent platinum with high dispersion over the catalyst surface and the zerovalent cobalt resulting from CoAl2O4 reduction are responsible for high activity of the Pt-Co/Al2O3 catalyst, and the remain CoAl2O4 is beneficial to suppression of carbon deposition over the catalyst.

  20. Rhapsody-G simulations I: the cool cores, hot gas and stellar content of massive galaxy clusters

    CERN Document Server

    Hahn, Oliver; Wu, Hao-Yi; Evrard, August E; Teyssier, Romain; Wechsler, Risa H

    2015-01-01

    We present the Rhapsody-G suite of cosmological hydrodynamic AMR zoom simulations of ten massive galaxy clusters at the $M_{\\rm vir}\\sim10^{15}\\,{\\rm M}_\\odot$ scale. These simulations include cooling and sub-resolution models for star formation and stellar and supermassive black hole feedback. The sample is selected to capture the whole gamut of assembly histories that produce clusters of similar final mass. We present an overview of the successes and shortcomings of such simulations in reproducing both the stellar properties of galaxies as well as properties of the hot plasma in clusters. In our simulations, a long-lived cool-core/non-cool core dichotomy arises naturally, and the emergence of non-cool cores is related to low angular momentum major mergers. Nevertheless, the cool-core clusters exhibit a low central entropy compared to observations, which cannot be alleviated by thermal AGN feedback. For cluster scaling relations we find that the simulations match well the $M_{500}-Y_{500}$ scaling of Planck ...

  1. The nature and energetics of AGN-driven perturbations in the hot gas in the Perseus Cluster

    Science.gov (United States)

    Zhuravleva, I.; Churazov, E.; Arévalo, P.; Schekochihin, A. A.; Forman, W. R.; Allen, S. W.; Simionescu, A.; Sunyaev, R.; Vikhlinin, A.; Werner, N.

    2016-05-01

    Cores of relaxed galaxy clusters are often disturbed by AGN. Their Chandra observations revealed a wealth of structures induced by shocks, subsonic gas motions, bubbles of relativistic plasma, etc. In this paper, we determine the nature and energy content of gas fluctuations in the Perseus core by probing statistical properties of emissivity fluctuations imprinted in the soft- and hard-band X-ray images. About 80 per cent of the total variance of perturbations on ˜8-70 kpc scales in the core have an isobaric nature, i.e. are consistent with subsonic displacements of the gas in pressure equilibrium with the ambient medium. The observed variance translates to the ratio of energy in perturbations to thermal energy of ˜13 per cent. In the region dominated by weak `ripples', about half of the total variance is associated with isobaric perturbations on scales of a few tens of kpc. If these isobaric perturbations are induced by buoyantly rising bubbles, then these results suggest that most of the AGN-injected energy should first go into bubbles rather than into shocks. Using simulations of a shock propagating through the Perseus atmosphere, we found that models reproducing the observed features of a central shock have more than 50 per cent of the AGN-injected energy associated with the bubble enthalpy and only about 20 per cent is carried away with the shock. Such energy partition is consistent with the AGN-feedback model, mediated by bubbles of relativistic plasma, and supports the importance of turbulence in the cooling-heating balance.

  2. Effects of Turbulence Model on Prediction of Hot-Gas Lateral Jet Interaction in a Supersonic Crossflow

    Science.gov (United States)

    2015-07-01

    engineering technology (e.g., gas- turbine fuel injection and aerodynamic divert thrusters).1,2 A lateral reaction jet is one type of aerodynamic divert...composed of 37.6% carbon dioxide (CO2) (mass ratio %), 1.7% hydrogen (H2), 1.1% lead (Pb), 10.3% water (H2O), 34.9% carbon monoxide (CO), 13.9% nitrogen...0°. Moments due to these forces follow directly, and the equations using coefficients are similar. On a flat plate or a projectile at 0° angle of

  3. The impact of stellar feedback on hot gas in galaxy haloes: the Sunyaev-Zel'dovich effect and soft X-ray emission

    Science.gov (United States)

    van de Voort, Freeke; Quataert, Eliot; Hopkins, Philip F.; Faucher-Giguère, Claude-André; Feldmann, Robert; Kereš, Dušan; Chan, T. K.; Hafen, Zachary

    2016-12-01

    The thermal Sunyaev-Zel'dovich (SZ) effect and soft X-ray emission are routinely observed around massive galaxies and in galaxy groups and clusters. We study these observational diagnostics of galaxy haloes for a suite of cosmological `zoom-in' simulations from the `Feedback In Realistic Environments' project, which spans a large range in halo mass (1010-13 M⊙). We explore the effect of stellar feedback on the hot gas observables. The properties of our simulated groups, such as baryon fractions, SZ flux, and X-ray luminosities (LX), are broadly consistent with existing observations, even though feedback from active galactic nuclei is not included. We make predictions for future observations of lower mass objects for both SZ and diffuse X-ray measurements, finding that they are not just scaled-down versions of massive galaxies, but more strongly affected by galactic winds driven by star formation. Low-mass haloes (≲1011 M⊙) retain a low fraction of their baryons, which results in a strong suppression of the SZ signal. Our simulations therefore predict a scaling with halo mass that is steeper than self-similar for haloes less massive than 1013 M⊙. For halo masses ≲1012 M⊙, LX is time variable and correlated primarily with the star formation rate (SFR). For these objects, the diffuse X-ray emission is powered mostly by galactic winds and the gas dominating the X-ray emission is flowing out with radial velocities close to the halo's circular velocity. For halo masses ≳1013 M⊙, on the other hand, LX is much less variable and not correlated with the SFR, because the emission originates from the quasi-hydrostatic, virialized halo gas.

  4. A nucleation and growth model of vertically-oriented carbon nanofibers or nanotubes by plasma-enhanced catalytic chemical vapor deposition.

    Science.gov (United States)

    Cojocaru, C S; Senger, A; Le Normand, F

    2006-05-01

    Carbon nanofibers are grown by direct current and hot filaments-activated catalytic chemical vapor deposition while varying the power of the hot filaments. Observations of these carbon nanofibers vertically oriented on a SiO2 (8 nm thick)/Si(100) substrate covered with Co nanoparticles (10-15 nm particle size) by Scanning Electron and Transmission Electron Microscopies show the presence of a graphitic "nest" either on the surface of the substrate or at the end of the specific nanofiber that does not encapsulate the catalytic particle. Strictly in our conditions, the activation by hot filaments is required to grow nanofibers with a C2H2 - H2 gas mixture, as large amounts of amorphous carbon cover the surface of the substrate without using hot filaments. From these observations as well as data of the literature, it is proposed that the nucleation of carbon nanofibers occurs through a complex process involving several steps: carbon concentration gradient starting from the catalytic carbon decomposition and diffusion from the surface of the catalytic nanoparticles exposed to the activated gas and promoted by energetic ionic species of the gas phase; subsequent graphitic condensation of a "nest" at the interface of the Co particle and substrate. The large concentration of highly reactive hydrogen radicals mainly provided by activation with hot filaments precludes further spreading out of this interfacial carbon nest over the entire surface of the substrate and thus selectively orientates the growth towards the condensation of graphene over facets that are perpendicular to the surface. Carbon nanofibers can then be grown within the well-known Vapor-Liquid-Solid process. Thus the effect of energetic ions and highly reactive neutrals like atomic hydrogen in the preferential etching of carbon on the edge of graphene shells and on the broadening of the carbon nanofiber is underlined.

  5. Abundance Ratios in Stars vs. Hot Gas in Elliptical Galaxies: the Chemical Evolution Modeller Point of View

    CERN Document Server

    Pipino, A

    2009-01-01

    I will present predictions from chemical evolution model aimed at a self-consistent study of both optical (i.e. stellar) and X-ray (i.e.gas) properties of present-day elliptical galaxies. Detailed cooling and heating processes in the interstellar medium (ISM) are taken into and allow a reliable modelling of the SN-driven galactic wind. SNe Ia activity, in fact, may power a galactic wind lasting for a considerable amount of the galactic lifetime, even in the case for which the efficiency of energy transfer into the ISM per SN Ia event is less than unity. The model simultaneously reproduces the mass-metallicity, the colour-magnitude, the L_X - L_B and the L_X - T relations, as well as the observed trend of the [Mg/Fe] ratio as a function of sigma, by adopting the prescriptions of Pipino & Matteucci (2004) for the gas infall and star formation timescales. The "iron discrepancy", namely the too high predicted iron abundance in X-ray haloes of ellipticals compared to observations, can be solved by taking into ...

  6. Development of novel copper-based sorbents for hot gas cleanup. Technical report, December 1, 1992--February 28, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hill, A.H.; Abbasian, J. [Institute of Gas Technology, Chicago, IL (United States); Flytzani-Stephanopoulos, M.; Bo, L.; Li, Li. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Honea, F.I. [Illinois Clean Coal Inst., Carterville, IL (United States)

    1993-05-01

    The objective of this investigation is to evaluate two novel copper-based sorbents (i.e. copper-chromium and copper-cerium) for their effectiveness in removing hydrogen sulfide from fuel gas in the temperature range of 650{degree} to 850{degree}C. New sorbent compositions from the selected Cu-Cr-O and Cu-Ce-O binary oxides were prepared and characterized by BET N{sub 2}-desorption surface area measurement following various calcination/time-temperature exposures. The general trends reported last quarter (on 11 different compositions) were validated this quarter in that both binary oxides lose surface area as the amount of CuO is increased. Time-resolved sulfidation tests were conducted at 850{degree}C using the equimolar CuO.Cr{sub 2}O{sub 3} composition. The two selected binary oxides prepared in larger qauntities (for testing in a two-inch reactor) have physical properties typical of the sorbents prepared in past programs. Two multicycle desulfurization tests, conducted this quarter on the Cu-Ce-O sorbent at 850{degree}C, using a feed gas containing 5000 ppm H{sub 2}S, 10 vol % H{sub 2} and 10 vol % H{sub 2}O at a space velocity (STP) of 2000 h{sup {minus}1}, demonstrated high sulfur removal efficiency for the first one or two cycles, and a significant reduction in efficiency in the following cycles.

  7. Hot microswimmers

    Science.gov (United States)

    Kroy, Klaus; Chakraborty, Dipanjan; Cichos, Frank

    2016-11-01

    Hot microswimmers are self-propelled Brownian particles that exploit local heating for their directed self-thermophoretic motion. We provide a pedagogical overview of the key physical mechanisms underlying this promising new technology. It covers the hydrodynamics of swimming, thermophoresis and -osmosis, hot Brownian motion, force-free steering, and dedicated experimental and simulation tools to analyze hot Brownian swimmers.

  8. Rhapsody-G simulations I: the cool cores, hot gas and stellar content of massive galaxy clusters

    Science.gov (United States)

    Hahn, Oliver; Martizzi, Davide; Wu, Hao-Yi; Evrard, August E.; Teyssier, Romain; Wechsler, Risa H.

    2017-01-01

    We present the RHAPSODY-G suite of cosmological hydrodynamic AMR zoom simulations of ten massive galaxy clusters at the Mvir ˜ 1015 M⊙ scale. These simulations include cooling and sub-resolution models for star formation and stellar and supermassive black hole feedback. The sample is selected to capture the whole gamut of assembly histories that produce clusters of similar final mass. We present an overview of the successes and shortcomings of such simulations in reproducing both the stellar properties of galaxies as well as properties of the hot plasma in clusters. In our simulations, a long-lived cool-core/non-cool core dichotomy arises naturally, and the emergence of non-cool cores is related to low angular momentum major mergers. Nevertheless, the cool-core clusters exhibit a low central entropy compared to observations, which cannot be alleviated by thermal AGN feedback. For cluster scaling relations we find that the simulations match well the M500 - Y500 scaling of Planck SZ clusters but deviate somewhat from the observed X-ray luminosity and temperature scaling relations in the sense of being slightly too bright and too cool at fixed mass, respectively. Stars are produced at an efficiency consistent with abundance matching constraints and central galaxies have star formation rates consistent with recent observations. While our simulations thus match various key properties remarkably well, we conclude that the shortcomings strongly suggest an important role for non-thermal processes (through feedback or otherwise) or thermal conduction in shaping the intra-cluster medium.

  9. Gas giants in hot water: inhibiting giant planet formation and planet habitability in dense star clusters through cosmic time

    Science.gov (United States)

    Thompson, Todd A.

    2013-05-01

    I show that the temperature of nuclear star clusters, starburst clusters in M82, compact high-z galaxies and some globular clusters of the Galaxy likely exceeded the ice-line temperature (TIce ≈ 150-170 K) during formation for a time comparable to the planet formation time-scale. The protoplanetary discs within these systems will thus, not have an ice line, decreasing the total material available for building protoplanetary embryos, inhibiting the formation of gas- and ice-giants if they form by core accretion, and prohibiting habitability. Planet formation by gravitational instability is similarly suppressed because Toomre's Q > 1 in all but the most massive discs. I show that cluster irradiation can in many cases dominate the thermodynamics and structure of passive and active protoplanetary discs for semi-major axes larger than ˜1-5 au. I discuss these results in the context of the observed lack of planets in 47 Tuc. I predict that a similar search for planets in the globular cluster NGC 6366 ([Fe/H] = -0.82) should yield detections, whereas (counterintuitively) the relatively metal-rich globular clusters NGC 6440, 6441 and 6388 should be devoid of giant planets. The characteristic stellar surface density above which TIce is exceeded in star clusters is ˜ 6 × 103 M⊙ pc- 2 f- 1/2dg, MW, where fdg, MW is the dust-to-gas ratio of the embedding material, normalized to the Milky Way value. Simple estimates suggest that ˜5-50 per cent of the stars in the universe formed in an environment exceeding this surface density. Future microlensing planet searches that directly distinguish between the bulge and disc planet populations of the Galaxy and M31 can test these predictions. Caveats and uncertainties are detailed.

  10. Application of catalytic combustion technology in the treatment of foul gas from refinery waste water treatment plant%催化燃烧技术在炼油污水处理场恶臭治理中的应用

    Institute of Scientific and Technical Information of China (English)

    刘永斌; 程俊梅; 程彬彬

    2011-01-01

    介绍了催化燃烧技术在炼油污水处理场恶臭治理中的应用情况.工业应用表明,催化燃烧技术适用于处理石化炼油污水场总进水口、隔油池、浮选池等散发的恶臭气体,废气处理效果良好.恶臭治理设施运行后,对硫化物的去除率达95%以上,对硫化氢的去除率接近100%,对总烃的去除率达到85%以上,净化后的气体能够满足国家排放标准的要求.催化燃烧技术治理恶臭污染项目的实施,对同类型炼化装置将起到借鉴作用.%The application of catalytic combustion technology in the treatment of foul gas from refinery waste water treatment plant was introduced. The catalytic combustion technology was applicable for the treatment of foul gases from water inlet of refinery waste water treatment plant, API separator, flotation pit, etc with good results. After operation of foul gas treatment facilities, the sulfide removal rate is over 95% , the H2S removal rate is close to 100% and total hydrocarbons removal rate is more than 85%. The purified gas meets China national emission standards. The implementation of foul gas treatment facilities using catalytic combustion technology provides a good reference for the operation of similar refinery process units.

  11. Radiation/Catalytic Augmented Combustion.

    Science.gov (United States)

    1980-09-01

    NATIO& NAk H(fJI At tl TANUAHTOb 19 A ~omm.81-0287 LVL RADIATION/CATALYTIC AUGMENTED COMBUST ION MOSHE LAVID CORPORATE RESEARCH-TECHNOLOGY FEASIBILITY...refinements as necessary. i. Perform cannular combustor experiments to Investigate ignition and flame attachment in flowing, liquid -fuel, unpremixed...stabilizer, with a sintered metal disk on the downstream side through which hot gases or products of partial fuel oxidation can be passed. Experimental

  12. Catalytic ethanolysis and gasification of kraft lignin into aromatic alcohols and H2-rich gas over Rh supported on La2O3/CeO2-ZrO2.

    Science.gov (United States)

    Yang, Jing; Zhao, Liang; Liu, Chunze; Wang, Yuanyuan; Dai, Liyi

    2016-10-01

    Efficient catalytic ethanolysis and gasification of kraft lignin were conducted over a versatile supported catalyst Rh/La2O3/CeO2-ZrO2 to give high-value aromatic alcohols and H2-rich gas. The removal of phenolic hydroxyl group was the most prevalent reaction, and importantly, almost no phenols, undesired char and saturating the aromatic ring were detected. Meanwhile, the feedstock and solvent both played key roles in H2 generation that contributed to the hydrodeoxygenation of liquid components and made the whole catalytic process out of H2 supply. Reusability tests of catalyst indicated that the crystalline phase transition and agglomeration of support, the loss of noble metal Rh and carbon deposition were the possible reasons for its deactivation in supercritical ethanol. Comparing with water, methanol and isopropanol system, ethanol was the only effective solvent for the depolymerization process.

  13. Testing and design of selective catalytic reduction DENOX catalysts on the basis of titanium dioxide for flue gas cleaning plants. Pruefung und Auslegung von SCR-DENOX-Katalysatoren auf Basis TiO sub 2 fuer Rauchgasreinigungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Neufert, R.; Zuerbig, J. (Siemens AG Unternehmensbereich KWU, Redwitz (Germany, F.R.). Keramik- und Porzellanwerk)

    1990-12-01

    Selective catalytic reduction catalysts based on titanium dioxide enjoy a commanding position in the market. Reasons for this are high catalytic activity with simultaneous high specificity, low SO{sub 2}/SO{sub 3} oxidation rates, chemical resistance against acid, flue gas constituents and mechanical stabiliy. The principle of DENOX catalyst design is precise knowledge and analyses of the limiting conditions under which use in the power station shall result. A suitable type of catalyst has to be selected in accordance with the conditions of application. Manufacture has to be supported by a complex system of quality assurance measures and tests, so that the catalyst characteristics specified in the design can be guaranteed. (orig.).

  14. Fluid geochemistry and soil gas fluxes (CO2-CH4-H2S) at a promissory Hot Dry Rock Geothermal System: The Acoculco caldera, Mexico

    Science.gov (United States)

    Peiffer, L.; Bernard-Romero, R.; Mazot, A.; Taran, Y. A.; Guevara, M.; Santoyo, E.

    2014-09-01

    The Acoculco caldera has been recognized by the Mexican Federal Electricity Company (CFE) as a Hot Dry Rock Geothermal System (HDR) and could be a potential candidate for developing an Enhanced Geothermal System (EGS). Apart from hydrothermally altered rocks, geothermal manifestations within the Acoculco caldera are scarce. Close to ambient temperature bubbling springs and soil degassing are reported inside the caldera while a few springs discharge warm water on the periphery of the caldera. In this study, we infer the origin of fluids and we characterize for the first time the soil degassing dynamic. Chemical and isotopic (δ18O-δD) analyses of spring waters indicate a meteoric origin and the dissolution of CO2 and H2S gases, while gas chemical and isotopic compositions (N2/He, 3He/4He, 13C, 15N) reveal a magmatic contribution with both MORB- and arc-type signatures which could be explained by an extension regime created by local and regional fault systems. Gas geothermometry results are in agreement with temperature measured during well drilling (260 °C-300 °C). Absence of well-developed water reservoir at depth impedes re-equilibration of gases upon surface. A multi-gas flux survey including CO2, CH4 and H2S measurements was performed within the caldera. Using the graphical statistical analysis (GSA) approach, CO2 flux measurements were classified in two populations. Population A, representing 95% of measured fluxes is characterized by low values (mean: 18 g m- 2 day- 1) while the remaining 5% fluxes belonging to Population B are much higher (mean: 5543 g m- 2 day- 1). This low degassing rate probably reflects the low permeability of the system, a consequence of the intense hydrothermal alteration observed in the upper 800 m of volcanic rocks. An attempt to interpret the origin and transport mechanism of these fluxes is proposed by means of flux ratios as well as by numerical modeling. Measurements with CO2/CH4 and CO2/H2S flux ratios similar to mass ratios

  15. Gas Giants in Hot Water: Inhibiting Giant Planet Formation and Planet Habitability in Dense Star Clusters Through Cosmic Time

    CERN Document Server

    Thompson, Todd A

    2012-01-01

    I show that the temperature of nuclear star clusters, starburst clusters in M82, compact high-z galaxies, and some globular clusters of the Galaxy likely exceeded the ice line temperature (T_Ice ~ 150-170 K) during formation for a time comparable to the planet formation timescale. The protoplanetary disks within these systems will thus not have an ice line, decreasing the total material available for building protoplanetary embryos, inhibiting the formation of gas- and ice-giants if they form by core accretion, and prohibiting habitability. Planet formation by gravitational instability is similarly suppressed because Toomre's Q > 1 in all but the most massive disks. I discuss these results in the context of the observed lack of planets in 47 Tuc. I predict that a similar search for planets in the globular cluster NGC 6366 ([Fe/H] = -0.82) should yield detections, whereas (counterintuitively) the relatively metal-rich globular clusters NGC 6440, 6441, and 6388 should be devoid of giant planets. The characteris...

  16. The nearby interstellar medium towards alpha Leo -- UV observations and modeling of a warm cloud within hot gas

    CERN Document Server

    Gry, Cecile

    2016-01-01

    We analyze interstellar absorption features in the full UV spectrum of the nearby (d = 24 pc) B8 IVn star alpha Leo (Regulus) obtained at high resolution and high S/N by the HST ASTRAL Treasury program. We derive column densities for many key atomic species and interpret their partial ionizations. The gas in front of alpha Leo exhibits two absorption components, one of which coincides in velocity with the local interstellar cloud (LIC) that surrounds the Sun. The second, smaller, component is shifted by +5.6 km/s relative to the main component, in agreement with results for other lines of sight in this region of the sky. The excitation of the C II fine-structure levels and the ratio of Mg I to Mg II reveal a temperature T = 6500 (+750,-600)K and electron density n(e) = 0.11 (+0.025,-0.03) cm^-3. Our investigation of the ionization balance of all the available species indicates that about 1/3 of the hydrogen atoms are ionized and that metals are significantly depleted onto grains. We infer that N(H I) = 1.9 (+...

  17. Origin of the hot gas in low-mass protostars: Herschel-PACS spectroscopy of HH 46

    CERN Document Server

    van Kempen, T A; Herczeg, G J; Visser, R; van Dishoeck, E F; Wampfler, S F; Bruderer, S; Benz, A O; Doty, S D; Brinch, C; Hogerheijde, M R; Jørgensen, J K; Tafalla, M; Neufeld, D; Bachiller, R; Baudry, A; Benedettini, M; Bergin, E A; Bjerkeli, P; Blake, G A; Bontemps, S; Braine, J; Caselli, P; Cernicharo, J; Codella, C; Daniel, F; di Giorgio, A M; Dominik, C; Encrenaz, P; Fich, M; Fuente, A; Giannini, T; Goicoechea, J R; de Graauw, Th; Helmich, F; Herpin, F; Jacq, T; Johnstone, D; Kaufman, M J; Larsson, B; Lis, D; Liseau, R; Marseille, M; McCoey, C; Melnick, G; Nisini, B; Olberg, M; Parise, B; Pearson, J C; Plume, R; Risacher, C; Santiago-Garcia, J; Saraceno, P; Shipman, R; van der Tak, F; Wyrowski, F; Yildiz, U A; Ciechanowicz, M; Dubbeldam, L; Glenz, S; Huisman, R; Lin, R H; Morris, P; Murphy, J A; Trappe, N

    2010-01-01

    'Water in Star-forming regions with Herschel' (WISH) is a Herschel Key Programme aimed at understanding the physical and chemical structure of young stellar objects (YSOs) with a focus on water and related species. The low-mass protostar HH 46 was observed with the Photodetector Array Camera and Spectrometer (PACS) on the Herschel Space Observatory to measure emission in H2O, CO, OH, [OI], and [CII] lines located between 63 and 186 um. The excitation and spatial distribution of emission can disentangle the different heating mechanisms of YSOs, with better spatial resolution and sensitivity than previously possible. Far-IR line emission is detected at the position of the protostar and along the outflow axis. The OH emission is concentrated at the central position, CO emission is bright at the central position and along the outflow, and H2O emission is concentrated in the outflow. In addition, [OI] emission is seen in low-velocity gas, assumed to be related to the envelope, and is also seen shifted up to 170 km...

  18. Development of regenerable copper-based sorbents for hot gas cleanup. Technical report, September 1, 1995--November 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Abbasian, J.; Slimane, R.B.; Hill, A.H. [Institute of Gas Technology, Chicago, IL (United States)

    1995-12-31

    The overall objective of this study is to determine the effectiveness of the copper-chromite sorbent (developed in previous ICCI-funded projects) for longer duration application under optimum conditions in the temperature range of 550{degrees}-650{degrees}C to minimize sorbent reduction and degradation during the cyclic process. To achieve this objective, several formulations of copper chromite sorbents are prepared. These sorbent formulations are screened for their desulfurization and regeneration capability at predetermined temperatures and gas residence times. The durability of the best sorbent formulation identified in the screening tests is evaluated in ``long-term`` durability tests conducted at the optimum operating conditions. This includes testing the sorbent in pellet and granular forms in packed- and fluidized-bed reactors. During this quarter, twenty one copper chromite-based sorbent formulations were prepared. Two sorbent formulations that have acceptable crush strength, designated as CuCr-10 and CuCr-21, were tested over 5 and 6 cycles respectively. The results indicate that both sorbents are reactive toward H{sub 2}S at 650{degrees}C and that the reactivity of the sorbents are relatively constant over the first 5 to 6 cycles. The H{sub 2}S prebreakthrough concentrations were generally about 20 to 30 ppm, making them suitable for IGCC application.

  19. 恒温热线式气体流量传感器的研究%Study of Constant Temperature Hot-wire Gas-flow Transducer

    Institute of Scientific and Technical Information of China (English)

    沈永滨; 李庆军; 修爱军

    2000-01-01

    通过理论分析对金属丝在强迫热交换下,建立了测量气体流量数学模型;设计了温度补偿电路,通过实验数据对其性能作出了评价,使恒温热线式气体流量传感器具有灵敏度高、响应速度快、测量范围宽等特点.此测量方法可广泛应用于各种可燃气体流量的测量.%The mathematical model of Hot-wire gas-flow transducer is built up through theoretical analysis on the metal-wire under forced heat exchanging; and the temperaturecompensating circuit is designed and evaluated by experimental data, so that the transducer gets the features of high-sensitivity, quick-responding, wide-measuring range and so on. This kind of mesuring-methiod can be widely used in the flow-measuring of various flammable gases.

  20. The impact of stellar feedback on hot gas in galaxy haloes: the Sunyaev-Zel'dovich effect and soft X-ray emission

    CERN Document Server

    van de Voort, Freeke; Hopkins, Philip F; Faucher-Giguère, Claude-André; Feldmann, Robert; Kereš, Dušan; Chan, T K; Hafen, Zachary H

    2016-01-01

    The thermal Sunyaev-Zel'dovich (SZ) effect and soft X-ray emission are routinely observed around massive galaxies and in galaxy groups and clusters. We study these observational diagnostics of galaxy haloes for a suite of cosmological `zoom-in' simulations from the `Feedback In Realistic Environments' project, which spans a large range in halo mass 10^10-10^13 Msun). We explore the effect of stellar feedback on the hot gas observables. The properties of our simulated groups, such as baryon fractions, SZ flux, and X-ray luminosities (L_X), are broadly consistent with existing observations, even though feedback from active galactic nuclei is not included. We make predictions for future observations of lower-mass objects for both SZ and diffuse X-ray measurements, finding that they are not just scaled-down versions of massive galaxies, but more strongly affected by galactic winds driven by star formation. Low-mass haloes (~10^13 Msun, on the other hand, L_X is much less variable and not correlated with the SFR, ...

  1. Hot gas ingestion testing of an advanced STOVL concept in the NASA Lewis 9- by 15-foot Low Speed Wind Tunnel with flow visualization

    Science.gov (United States)

    Johns, Albert L.; Flood, Joseph D.; Strock, Thomas W.; Amuedo, Kurt C.

    1988-01-01

    Advanced Short Takeoff/Vertical Landing (STOVL) aircraft capable of operating from remote sites, damaged runways, and small air capable ships are being pursued for deployment around the turn of the century. To achieve this goal, it is important that the technologies critical to this unique class of aircraft be developed. Recognizing this need, NASA Lewis Research Center, McDonnell Douglas Aircraft, and DARPA defined a cooperative program for testing in the NASA Lewis 9- by 15-foot Low Speed Wind Tunnel (LSWT) to establish a database for hot gas ingestion, one of the technologies critical to STOVL. Results from a test program are presented along with a discussion of the facility modifications allowing this type of testing at modal scale. These modifications to the tunnel include a novel ground plane, an elaborate model support which included 4 degrees of freedom, heated high pressure air for nozzle flow, a suction system exhaust for inlet flow, and tunnel sidewall modifications. Several flow visualization techniques were employed including water mist in the nozzle flows and tufts on the ground plane. Headwind (free-stream) velocity was varied from 8 to 23 knots.

  2. Determination of parabens in house dust by pressurised hot water extraction followed by stir bar sorptive extraction and thermal desorption-gas chromatography-mass spectrometry.

    Science.gov (United States)

    Ramírez, Noelia; Marcé, Rosa Maria; Borrull, Francesc

    2011-09-16

    This study describes the development of a new method for determining p-hydroxybenzoic esters (parabens) in house dust. This optimised method was based on the pressurised hot water extraction (PHWE) of house dust, followed by the acetylation of the extracted parabens, stir bar sorptive extraction (SBSE) with a polydimethylsiloxane stir bar, and finally analysis using thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). The combination of SBSE and PHWE allows the analytes to be preconcentrated and extracted from the aqueous extract in a single step with minimal manipulation of the sample. Furthermore the in situ acetylation of parabens prior to SBSE improved their extraction efficiency and their GC-MS signal. The method showed recoveries of between 40 and 80%, good linearity, repeatability and reproducibility (paraben to 2.1 ng g(-1) for methyl paraben) and quantification (from 3.3 ng g(-1) for propyl paraben to 8.5 ng g(-1) for methyl paraben). The proposed method was applied to the analysis of house dust samples. All the target parabens were found in the samples. Methyl and propyl parabens were the most abundant, with concentrations up to 2440 ng g(-1) and 910 ng g(-1), respectively. The high levels of parabens found in the samples confirm the importance of determining organic contaminants in indoor environments.

  3. HOT 2012

    DEFF Research Database (Denmark)

    Lund, Henriette Romme

    Undersøgelse af, hvad der er hot - og hvad der burde være hot på læseområdet med 21 læsekyndige. Undersøgelsen er gennemført siden 2010. HOT-undersøgelsen er foretaget af Nationalt Videncenter for Læsning - Professionshøjskolerne i samarb. med Dansklærerforeningen...

  4. Herschel observations of extra-ordinary sources: H{sub 2}S as a probe of dense gas and possibly hidden luminosity toward the Orion KL hot core

    Energy Technology Data Exchange (ETDEWEB)

    Crockett, N. R.; Bergin, E. A.; Neill, J. L. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Black, J. H. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala (Sweden); Blake, G. A.; Kleshcheva, M. [California Institute of Technology, Division of Geological and Planetary Sciences, MS 150-21, Pasadena, CA 91125 (United States)

    2014-02-01

    We present Herschel/HIFI observations of the light hydride H{sub 2}S obtained from the full spectral scan of the Orion Kleinmann-Low nebula (Orion KL) taken as part of the Herschel Observations of EXtra-Ordinary Sources GT (guaranteed time) key program. In total, we observe 52, 24, and 8 unblended or slightly blended features from H{sub 2} {sup 32}S, H{sub 2} {sup 34}S, and H{sub 2} {sup 33}S, respectively. We only analyze emission from the so-called hot core, but emission from the plateau, extended ridge, and/or compact ridge are also detected. Rotation diagrams for ortho and para H{sub 2}S follow straight lines given the uncertainties and yield T {sub rot} = 141 ± 12 K. This indicates H{sub 2}S is in local thermodynamic equilibrium and is well characterized by a single kinetic temperature or an intense far-IR radiation field is redistributing the population to produce the observed trend. We argue the latter scenario is more probable and find that the most highly excited states (E {sub up} ≳ 1000 K) are likely populated primarily by radiation pumping. We derive a column density, N {sub tot}(H{sub 2} {sup 32}S) = 9.5 ± 1.9 × 10{sup 17} cm{sup –2}, gas kinetic temperature, T {sub kin} = 120±{sub 10}{sup 13} K, and constrain the H{sub 2} volume density, n{sub H{sub 2}} ≳ 9 × 10 {sup 7} cm{sup –3}, for the H{sub 2}S emitting gas. These results point to an H{sub 2}S origin in markedly dense, heavily embedded gas, possibly in close proximity to a hidden self-luminous source (or sources), which are conceivably responsible for Orion KL's high luminosity. We also derive an H{sub 2}S ortho/para ratio of 1.7 ± 0.8 and set an upper limit for HDS/H{sub 2}S of <4.9 × 10 {sup –3}.

  5. Combined effects Na and SO2 in flue gas on Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO by NH3 simulated by Na2SO4 doping

    Science.gov (United States)

    Zhou, Aiyi; Yu, Danqing; Yang, Liu; Sheng, Zhongyi

    2016-08-01

    A series of Mn-Ce/TiO2 catalysts were synthesized through an impregnation method and used for low temperature selective catalytic reduction (SCR) of NOx with ammonia (NH3). Na2SO4 was added into the catalyst to simulate the combined effects of alkali metal and SO2 in the flue gas. Experimental results showed that Na2SO4 had strong and fluctuant influence on the activity of Mn-Ce/TiO2, because the effect of Na2SO4 included pore occlusion and sulfation effect simultaneously. When Na2SO4 loading content increased from 0 to 1 wt.%, the SCR activities of Na2SO4-doped catalysts decreased greatly. With further increasing amount of Na2SO4, however, the catalytic activity increased gradually. XRD results showed that Na2SO4 doping could induce the crystallization of MnOx phases, which were also confirmed by TEM and SEM results. BET results showed that the surface areas decreased and a new bimodal mesoporous structure formed gradually with the increasing amount of Na2SO4. XPS results indicated that part of Ce4+ and Mn3+ were transferred to Ce3+ and Mn4+ due to the sulfation after Na2SO4 deposition on the surface of the catalysts. When the doped amounts of Na2SO4 increased, NH3-TPD results showed that the Lewis acid sites decreased and the Brønsted acid sites of Mn-Ce/TiO2 increased quickly, which could be considered as another reason for the observed changes in the catalytic activity. The decreased Mn and Ce atomic concentration, the changes of their oxidative states, and the variation in acidic properties on the surface of Na2SO4-doped catalysts could be the reasons for the fluctuant changes of the catalytic activity.

  6. 攀钢干热高炉煤气直送利用技术的探索与应用%The Exploration and Application of the Technology of Direct Supply of Hot Blast Furnace Gas

    Institute of Scientific and Technical Information of China (English)

    吕勇; 李苹

    2015-01-01

    Through analysis of the present situation and performance of utilization of blast furnace gas, the potential utilization value of blast furnace gas was clarified. The tech-nology of direct delivery and utilization of dry hot blast furnace gas was implemented, which has lowered the coke rate of blast furnace and increased gas utilization efficiency.%通过对高炉煤气利用现状及性能分析,明确高炉煤气潜在利用价值,实施了干热高炉煤气直送利用技术,降低了高炉焦比,提高了煤气利用效率.

  7. Application of alcohol-amine method dry gas desulfurization technology in catalytic cracking unit%醇胺法干气脱硫工艺在催化裂化装置上的应用

    Institute of Scientific and Technical Information of China (English)

    马俊

    2016-01-01

    The 1.0 Mt/a catalytic cracking unit of an oil refinery uses alcohol-amine method dry gas desulfurization technology. Test run result showed that this process is simple and stable in operation;because of the dry gas knockout drum installed in front of dry gas desulfurization tower,the problem of dry gas carrying liquid is eliminated;the problem of dry gas carrying ammonia liquid is avoided;the hydrogen sulfide content is decreased from 6 071mg/m3 to 16 mg/m3.%某炼油厂1.0 Mt/a重油催化裂化装置采用醇胺法干气脱硫工艺。标定结果表明,该工艺操作简单,运行平稳。由于干气脱硫塔前设有干气分液罐,消除了原稳定装置干气带液的问题;杜绝了干气携带胺液的问题;工艺脱硫效果显著,净化后的干气中硫化氢含量由原来的6071 mg/m3降低到16 mg/m3。

  8. Characterization and catalytic performance of CeO2-Co/SiO2 catalyst for Fischer-Tropsch synthesis using nitrogen-diluted synthesis gas over a laboratory scale fixed-bed reactor

    Institute of Scientific and Technical Information of China (English)

    Xiaoping Dai; Changchun Yu

    2008-01-01

    The surface species of CO hydrogenation on CeO2-Co/SiO2 catalyst were investigated using the techniques of temperature programmed reaction and transient response method. The results indicated that the formation of H2O and CO2 was the competitive reaction for the surface oxygen species, CH4 was produced via the hydrogenation of carbon species step by step, and C2 products were formed by the polymerization of surface-active carbon species (-CH2-). Hydrogen assisted the dissociation of CO. The hydrogenation of surface carbon species was the rate-limiting step in the hydrogenation of CO over CeO2-Co/SiO2 catalyst. The investigation of total pressure, gas hourly space velocity (GHSV), and product distribution using nitrogen-rich synthesis gas as feedstock over a laboratory scale fixed-bed reactor indicated that total pressure and GHSV had a significant effect on the catalytic performance of CeO2-Co/SiO2 catalyst. The removal of heat and control of the reaction temperature were extremely critical steps, which required lower GHSV and appropriate CO conversion to avoid the deactivation of the catalyst. The feedstock of nitrogen-rich synthesis gas was favorable to increase the conversion of CO, but there was a shift of product distribution toward the light hydrocarbon. The nitrogen-rich synthesis gas was feasible for F-T synthesis for the utilization of remote natural gas.

  9. 催化氧化活性炭法净化磷化氢熏蒸尾气综述%Purification of exhausted gas from phosphine fumigation with catalytic oxidation activated carbon

    Institute of Scientific and Technical Information of China (English)

    李云玲; 黄健翔

    2016-01-01

    在磷化氢进行熏蒸保护粮食、烟草仓储过程中,会产生有剧毒的磷化氢熏蒸尾气,对周围人和环境产生重大影响,催化氧化活性炭是解决这一问题最有效的方法之一。简述了历来磷化氢气体净化技术的优缺点,较详细的论述了催化氧化活性炭净化磷化氢工作原理、处理工艺及再生方法。%In the process of fumigation with phosphine for protecting food and tobacco in store,highly toxic exhausted gas containing phosphine is likely to be produced,which may produce significant im-pact on the surrounding environment. Catalytic oxidation activated carbon is one of the most effective ways to solve this problem. The paper mainly introduces the advantages and disadvantages of tradi-tionally phosphine gas purification technology ,with more detailed discussion on the principles of work,treatment process and regeneration methods for catalytic oxidation activated carbon purification of phosphine.

  10. Sanitary hot water; Eau chaude sanitaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Cegibat, the information-recommendation agency of Gaz de France for building engineering professionals, has organized this conference meeting on sanitary hot water to present the solutions proposed by Gaz de France to meet its clients requirements in terms of water quality, comfort, energy conservation and respect of the environment: quantitative aspects of the hot water needs, qualitative aspects, presentation of the Dolce Vita offer for residential buildings, gas water heaters and boilers, combined solar-thermal/natural gas solutions, key-specifications of hot water distribution systems, testimony: implementation of a gas hot water reservoir and two accumulation boilers in an apartment building for young workers. (J.S.)

  11. IR Hot Wave

    Energy Technology Data Exchange (ETDEWEB)

    Graham, T. B.

    2010-04-01

    The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.

  12. 温室气体CO2资源化催化转化研究进展%Current status on catalytic conversion of greenhouse gas CO2 to value-added chemicals

    Institute of Scientific and Technical Information of China (English)

    杨烽; 王睿

    2013-01-01

    With the global low carbon economy era commences,the reduction and utilization of greenhouse gas becomes a major concern in the world.The reclamation of greenhouse gas CO2 and the new opportunity it brings in the research area of carbon chemistry will become a new hot spot in the research frontier of green catalysis.In this paper,various typical catalytic reaction pathways for enabling direct conversion of CO2 to useful value-added chemicals were reviewed,including oxidation of saturated hydrocarbon by CO2,synthesis of organic acids and esters with CO2.Furthermore,some comments were made regarding the advantages and disadvantages of the catalysts involved,and their underlying reaction mechanisms of CO2 activation by catalysis.Based on these discussions,future work in this category was proposed.The authors believes that,the task-oriented activation of CO2 is the key factor governing the whole process of its chemical utilization,where suitable catalysts with high activity need to be developed;the exploitation of new reaction media and use of new phase state CO2 may greatly enhance the conversion and selectivity of the reaction and hence deserve further investigation ;as to the direct use of CO2 emitted from different practical sources,it is quite necessary to develop multi-functional catalysts with desirable adsorption-catalysis activity,so as to meet the requirements from different cases ; in addition,the investigation of photocatalysis of CO2,and the characterization and simulation on the process of photosynthesis are beneficial to both the utilization of new energy and the mitigation of greenhouse gas.%随着全球化低碳经济时代的开启,温室气体的减排及利用成为举世关注的焦点,二氧化碳资源化利用及由此形成的新的碳一化学将成为绿色催化研究领域的热点问题.本文综述了二氧化碳资源化催化转化为高附加值化学品的若干反应途径,包括二氧化碳氧化饱和烃类、二氧化碳合成有

  13. Hot conditioning equipment conceptual design report

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hot Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.

  14. Measurement of thermal conductivity of gas hydrate with transient hot-wire method%瞬态热线法测定瓦斯水合物导热系数

    Institute of Scientific and Technical Information of China (English)

    陈文胜; 潘长虹

    2013-01-01

    为研究瓦斯水合物的热量传递机理,基于瞬态热线法原理,建立一套实验设备对瓦斯水合物及纯甲烷水合物的导热系数进行了测试.结果表明,实验所选瓦斯气体生成水合物的导热系数与甲烷水合物导热系数均随温度的升高而升高.该研究从瓦斯水合物的热物性因素方面论证了对煤矿抽采瓦斯进行水合固化分离后以NGH(水合物储运)形式进行储运的可行性.%This paper is an effort to study the heat transfer mechanism of gas hydrate by developing an experiment apparatus based on the principle of transient hot-wire method in order to measure thermal conductivity of methane hydrate and gas hydrate.The results show an increase in the thermal conductivity of the selected gas hydrate formation and methane hydrate due to the increasing temperature.From the aspects of thermal factors of gas hydrate,the study verifies the feasibility of gas storage and transportation in the form of NGH (natural gas hydrate) following the hydration solidification and separation of coal mine gas.

  15. Four new WMO/GAW Observatories for the investigation of trace gas and aerosol variability in the Mediterranean hot-spot

    Science.gov (United States)

    Cristofanelli, Paolo; Marinoni, Angela; Duchi, Rocco; Busetto, Maurizio; Calzolari, Francescopiero; Bourcier, Laureline; Landi, Tony Christian; Calidonna, Claudia; Contini, Daniele; Ammoscato, Ivano; Gulli', Daniel; Dinoi, Adelaide; Sprovieri, Francesca; Carbone, Francesco; Naccarato, Attilio; Mannarino, Valentino; Pirrone, Nicola; Bonasoni, Paolo

    2016-04-01

    The Mediterranean Basin is considered a hot-spot region in term of air-quality and climate change due to the impact of anthropogenic and natural processes. Nevertheless, permanent infrastructures for the observations and the recognition of the atmospheric composition variability changes are still too sparse in this region. To contribute to a more accurate and wide-spread observation system, in the framework of the Project "I-AMICA" - Advanced Infrastructure for the Environmental-Climatic Monitoring (a three years Italian National Operative Program - PON, co-founded by the European Regional Development Fund), four permanent Climatic-Environmental Observatories have been set up in the southern Italy: Lecce (Apulia Region, 40° 20' 8" N, 18° 07' 28" E, 37 m a.s.l.), Lamezia Terme (Calabria Region, 38° 52' 34" N, 16° 13' 56" E, 6 m a.s.l.), Capo Granitola (Sicily, 37° 34' N, 12° 39' E, 5 m a.s.l.) and Mt. Curcio (Calabria, 39° 31' N, 16° 42' E, 1796 m a.s.l). These Observatories were equipped with homogeneous and standardized experimental set-up for measurements of aerosol properties (number size distribution, absorption and scattering coefficient, mass, equivalent black carbon), reactive and greenhouse gases (O3, NO, NO2, SO2, CO, CO2, CH4). The I-AMICA Observatories represent different conditions of the Mediterranean region, from suburban conditions at Lecce to costal background conditions at Lamezia Terme and Capo Granitola and high-mountain remote conditions at Mt. Curcio. The integration of the information from this high-quality observation network can be used for studies of aerosol transport from marine environment and Sahara desert, as well as for investigation of secondary pollutants formation in the gaseous and aerosol phase, investigation of continental outflow to Mediterranean Sea, impacts of vessel emissions on regional air quality and trans-boundary pollution. In this work, we provide a preliminary overview of gas and aerosol variability, together

  16. Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, Michael; Henderson, Ann

    2012-04-01

    The GreatPoint Energy (GPE) concept for producing synthetic natural gas and hydrogen from coal involves the catalytic gasification of coal and carbon. GPE’s technology “refines” coal by employing a novel catalyst to “crack” the carbon bonds and transform the coal into cleanburning methane (natural gas) and hydrogen. The GPE mild “catalytic” gasifier design and operating conditions result in reactor components that are less expensive and produce pipeline-grade methane and relatively high purity hydrogen. The system operates extremely efficiently on very low cost carbon sources such as lignites, subbituminous coals, tar sands, petcoke, and petroleum residual oil. In addition, GPE’s catalytic coal gasification process eliminates troublesome ash removal and slagging problems, reduces maintenance requirements, and increases thermal efficiency, significantly reducing the size of the air separation plant (a system that alone accounts for 20% of the capital cost of most gasification systems) in the catalytic gasification process. Energy & Environmental Research Center (EERC) pilot-scale gasification facilities were used to demonstrate how coal and catalyst are fed into a fluid-bed reactor with pressurized steam and a small amount of oxygen to “fluidize” the mixture and ensure constant contact between the catalyst and the carbon particles. In this environment, the catalyst facilitates multiple chemical reactions between the carbon and the steam on the surface of the coal. These reactions generate a mixture of predominantly methane, hydrogen, and carbon dioxide. Product gases from the process are sent to a gas-cleaning system where CO{sub 2} and other contaminants are removed. In a full-scale system, catalyst would be recovered from the bottom of the gasifier and recycled back into the fluid-bed reactor. The by-products (such as sulfur, nitrogen, and CO{sub 2}) would be captured and could be sold to the chemicals and petroleum industries, resulting in

  17. CFD analysis of hot spot formation through a fixed bed reactor of Fischer-Tropsch synthesis

    Directory of Open Access Journals (Sweden)

    Hamed Aligolzadeh

    2015-12-01

    Full Text Available One of the interesting methods for conversion of synthesis gas to heavy hydrocarbons is Fischer–Tropsch process. The process has some bottlenecks, such as hot spot formation and low degree of conversion. In this work, computational fluid dynamics technique was used to simulate conversion of synthetic gas and product distribution. Also, hot spot formation in the catalytic fixed-bed reactor was investigated in several runs. Simulation results indicated that hot spot formation occurred more likely in the early and middle part of reactor due to high reaction rates. Based on the simulation results, the temperature of hot spots increased with increase in the inlet temperature as well as pressure. Among the many CFD runs conducted, it is found that the optimal temperature and pressure for Fischer–Tropsch synthesis are 565 K and 20 bar, respectively. As it seems that the reactor shall work very well under optimal conditions, the reaction rates and catalyst duration would simultaneously be maximum .

  18. Comparison between a Water-Based and a Solvent-Based Impregnation Method towards Dispersed CuO/SBA-15 Catalysts: Texture, Structure and Catalytic Performance in Automotive Exhaust Gas Abatement

    Directory of Open Access Journals (Sweden)

    Qi Xin

    2016-10-01

    Full Text Available Supported copper oxide nanoparticles are a potential candidate for replacing the rare and expensive precious metals within the automotive three-way catalyst. However, a well-designed dispersion method is necessary to allow a stable high loading of active material, compensating its lower intrinsic activity and stability. In this work, a CuO-loaded SBA-15 catalyst has been manufactured by two methods. The ammonia-driven deposition precipitation (ADP and the molecular designed dispersion (MDD methods are both considered as efficient deposition methods to provide well-dispersed copper oxide-based catalysts. Their morphology, copper dispersion and the chemical state of copper were characterized and compared. Due to the differences in the synthesis approach, a difference in the obtained copper oxide phases has been observed, leading to a distinct behavior in the catalytic performance. The structure-activity correlation of both catalysts has also been revealed for automotive exhaust gas abatement. Results demonstrate that various copper species can be formed depending on the precursor–support interaction, affecting selectivity and conversion during the catalytic reaction.

  19. SELECTIVE CATALYTIC REDUCTION MERCURY FIELD SAMPLING PROJECT

    Science.gov (United States)

    A lack of data still exists as to the effect of selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas conditioning on the speciation and removal of mercury (Hg) at power plants. This project investigates the impact that SCR, SNCR, and flue gas...

  20. Improvement of flue gas selective catalytic reduction technology and equipment for propane dehydrogenation (PDH) unit%丙烷脱氢装置烟气脱硝技术与设备改造

    Institute of Scientific and Technical Information of China (English)

    刘唯奇; 张国甫; 高海见; 陈金锋

    2016-01-01

    为降低烟气中的氮氧化物含量,采用丹麦托普索公司催化剂和工艺技术,在烟气余热锅炉内增加脱硝段,以满足达标排放的目的.并与工程公司合作,优化脱硝注氨系统的工艺流程,减少氨水消耗量,降低氨逃逸浓度.技术与设备改进后,烟色得到改善,烟气中的NOx含量大幅降低,同时氨水消耗量低于设计值,产生了良好的环境效益和经济效益.%The NOx concentration in the flue gas is reduced for standardized emission by a selective catalytic reduction (SCR) reactor installed in the waste heat boiler.The catalyst and reactor design are provided by Denmark HALDOR TOPSOE.New ammonia injection process is studied with engineering company to reduce ammonia consumption and slip concentration.After the improvement of process and equipment,the colour of flue gas looks better than before.The flue gas NOx concentration is significantly decreased and ammonia consumption is lower than hte design value,which produce good environmental and economic benefits.

  1. 气固下行床超短接触反应器催化技术及其发展%Catalytic Technology and Its Development of Gas-solid downer Quick - Contact Reactor

    Institute of Scientific and Technical Information of China (English)

    刘宏巍; 李健; 韩毅

    2009-01-01

    介绍了超短接触反应器的工业应用及其发展现状,指出气固下行床超短接触反应是一项新的催化工艺,它将过去气固上行逆重力场运动改变成气固下行顺重力场运动,从而减少了返混、缩短停留时间,能大幅度提高轻油收率.该反应系统也比较容易实现提升管催化裂化、催化裂解装置的改造,有利于降低装置建、改造成本.%The gas-solid downer quick-contact reaction is a new catalytic process, it changes the gas-solid upward inverse gravity field motion into the gas-solid downward gravity field motion, thereby reduces the backmixing, shortens the residence time and increases yield.In this paper,applications and development of the reactor were introduced.

  2. Influence of Gas Feed Composition and Pressure on the Catalytic Conversion of CO2 to Hydrocarbons Using a Traditional Cobalt-Based Fischer-Tropsch Catalyst

    Science.gov (United States)

    2009-06-25

    availability. Fuel independence would alleviate uncertainties in the world market supply of oil along with commercial fluctuations in price. In addition...this supply by supporting the development of synthetic hydrocarbon fuel from the vast natural resources, such as coal, shale, gas hydrates, and CO2...product a day by steam-reforming coal to generate syngas for the FT process.5 A water-gas shift is needed to obtain a 2:1 ratio of hydrogen/carbon

  3. Effect of H{sub 2}S on the catalytic decomposition of tar and ammonia with dolomite and sintered iron ore in synthetic gasification gas

    Energy Technology Data Exchange (ETDEWEB)

    Hepola, J. [VTT Energy, Espoo (Finland)

    1996-12-31

    The toluene-decomposing activity of calcined dolomite was not affected by the H{sub 2}S content of synthetic gasification gas. Iron was active with respect to toluene and ammonia at metallic state. The increase of the H{sub 2}S content of synthetic gasification gas (0 - 500 ppmv) decreased the tar-decomposing activity but not the ammonia- decomposing activity of sintered iron ore. (author) (12 refs.)

  4. 催化干气制乙苯装置工业操作方案优化与应用%Optimization and Application of the Industrial Operation Scheme for Catalytic Dry Gas-to-Ethylbenzene Plant

    Institute of Scientific and Technical Information of China (English)

    申永贵; 郑长有; 孟令猛

    2013-01-01

      介绍了干气制乙苯装置两台烃化反应器并联运行的可行性、操作方案及运行数据。大庆炼化公司干气制乙苯装置两个阶段的烃化反应器并联的实践证明:无论是采用调和汽油生产方案,还是乙苯生产方案,烃化反应器的并联,解决了在不开干气压缩机条件下束缚装置提高干气进料量的瓶颈,有效提高了原料干气中的乙烯转化率、以及产品产量,且不影响产品质量;同时,还可以有效降低反应器压降,为催化干气制乙苯装置工业操作方案优化及节能降耗提供参考和借鉴。%  The feasibility, operation scheme and running results of parallel operation of two alkylation reactors in catalytic dry gas-to-ethylbenzene plant were discussed. The running results in Daqing Refining & Chemical Company(DRCC) show that the parallel operation of two alkylation reactors is feasibility, and the parallel operation can break the bottleneck that restrict the increasing of the catalytic dry gas feed rate, improve ethylene conversion and product output, and dose not affect product quality. At the same time, the pressure drop of reactors can be effectively decreased.

  5. Catalytic gasification of biomass

    Science.gov (United States)

    Robertus, R. J.; Mudge, L. K.; Sealock, L. J., Jr.; Mitchell, D. H.; Weber, S. L.

    1981-12-01

    Methane and methanol synthesis gas can be produced by steam gasification of biomass in the presence of appropriate catalysts. This concept is to use catalysts in a fluidized bed reactor which is heated indirectly. The objective is to determine the technical and economic feasibility of the concept. Technically the concept has been demonstrated on a 50 lb per hr scale. Potential advantages over conventional processes include: no oxygen plant is needed, little tar is produced so gas and water treatment are simplified, and yields and efficiencies are greater than obtained by conventional gasification. Economic studies for a plant processing 2000 T/per day dry wood show that the cost of methanol from wood by catalytic gasification is competitive with the current price of methanol. Similar studies show the cost of methane from wood is competitive with projected future costs of synthetic natural gas. When the plant capacity is decreased to 200 T per day dry wood, neither product is very attractive in today's market.

  6. Catalytic combustor for integrated gasification combined cycle power plant

    Science.gov (United States)

    Bachovchin, Dennis M.; Lippert, Thomas E.

    2008-12-16

    A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.

  7. 基于陶瓷微热板的高温气体传感器研究%Study of high-temperature gas sensor based on ceramic micro-hot-plate

    Institute of Scientific and Technical Information of China (English)

    薛严冰; 唐祯安

    2011-01-01

    针对目前商用陶瓷气体传感器功耗大、封装困难等缺点,提出一种陶瓷微加工微热板式气体传感器的结构和无内引线封装的方式。通过光刻剥离的方法,在氧化铝陶瓷基底上制作出Pt微加热器及接触电极。采用激光微细加工技术,制作出不同结构参数的陶瓷微热板器件。从温度同加热功率的关系、热响应时间和微加热器稳定性等方面对微热板进行了测试和评价。结果表明,陶瓷微热板具有较低功耗和高温工作的优势,可稳定工作的温度达到600℃。作为热板的高温应用之一,研制了CH4气体传感器,在500℃的工作条件下,对CH4气有很好响应灵敏度,且对CO%A novel gas sensor based on micro-machined ceramic hot-plate and wire-free bonding is presented to overcome the shortcomings of high power consumption and packaging difficulty existing in the current commercial ceramic gas sensors.The Pt heater and contact electrodes were sputtered on alumina substrate by controlled lift-off processing.The devices with different parameters were fabricated using the laser micro-machining technique.The performance of the hot-plate was tested and evaluated from the following aspects:the relationship between temperature and heating power,thermal response time and the stability of the heater.The results show that the ceramic hot plates have advantages of lower power consumption and higher working temperature,and they can steadily work at temperature of 600 ℃.As one of the applications of the hot-plate working in high temperature,CH4 gas sensors were developed.The sensors have high sensitivity to CH4 under 500 ℃,and basically have no response to the interfering gas of CO.

  8. Hot Tickets

    Science.gov (United States)

    Fox, Bette-Lee; Hoffert, Barbara; Kuzyk, Raya; McCormack, Heather; Williams, Wilda

    2008-01-01

    This article describes the highlights of this year's BookExpo America (BEA) held at the Los Angeles Convention Center. The attendees at BEA had not minded that the air was recycled, the lighting was fluorescent, and the food was bad. The first hot book sighting came courtesy of Anne Rice. Michelle Moran, author of newly published novel, "The…

  9. Effect of Ballistic-Type Hot Atom Adsorption Mechanism on the Phase Diagram of Monomer-Dimer CO-O2 Surface Catalytic Reaction:A Monte Carlo Simulation

    Institute of Scientific and Technical Information of China (English)

    M. Khalid; K. M. Khan; A. U. Qaisrani; Q. N. Malik

    2004-01-01

    @@ We investigate the effect of the ballistic mechanism on the phase diagram using a square surface. While using this mechanism whenever an O2 molecule hits a randomly vacant selected site, the molecule breaks up into atomic form and then executes a ballistic flight. The paths of the two oxygen atoms are taken exactly to be opposite to each other, i.e. anti-parallel, and the ranges of the atoms are taken to be equal, i.e. they may fly up to 1 or 1.414 or 2 of the atomic spacing from the site of impact. Four cases have been studied on the basis of the range of hot atoms. The range of the hot oxygen atoms executing a ballistic flight might be up to the first nearest neighbourhood (1 atomic spacing from the site of impact), the second nearest neighbourhood (1.414 atomic spacing from the site of impact), the third nearest neighbourhood (2 atomic spacing from the site of impact),known as cases a, b, and c, respectively, while for case d the range of the oxygen atoms executing the ballistic flight might be up to 1 atomic spacing or 1.414 atomic spacing or 2 atomic spacing from the site of impact. The steady reactive window is observed and the continuous transition disappears. As soon as the CO partial pressure departs from zero, the production of CO2 is observed, which clearly verifies the experimental observation.

  10. Analysis of the photo catalytic degradation of the 4-chloro phenol and endosulfan by gas chromatography; Analisis de la degradacion fotocatalitica del 4-clorofenol y endosulfan por cromatografia de gases

    Energy Technology Data Exchange (ETDEWEB)

    Pichardo S, E. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2007-07-01

    The water and soil pollution by organic compounds of considerable toxicity, is every time more alarming. The phenols and organo chlorinated compounds are some of the pollutants of more environmental concern. The present work shows the degradation by heterogeneous photo catalysis of the 4-chloro phenol and endosulfan in watery solutions using a photo reactor at laboratory scale, under ultraviolet irradiation as energy source and titanium dioxide TiO{sub 2} Degussa P25 as catalyst. Solutions of both compounds at concentrations of 10, 20, 30 and 40 mg/L were used, analyzing the more important operation parameters with those that the maxima degradation levels were reached. The analyzed variables were catalyst concentration and irradiation time, the analytical techniques of ultraviolet-visible spectroscopy and gas chromatography were used as process control. By means of ultraviolet-visible spectroscopy it was settled down that starting from the quantitative analysis, the 4-chloro phenol presented bigger degradation at smaller concentrations. Under the operation conditions mentioned in this work, it was observed that the photo catalytic processes obey a first order behavior in the chemical kinetics being adjusted to the Langmuir-Hinshelwood model (L-H). With the purpose of checking the degradation of the same ones it was used the gas chromatography, which is an advanced technique for the process pursuit, auxiliary in the quantification and analysis of the photo catalytic degradation of the 4-chloro phenol and endosulfan. It was based on the development and validation of the analytical method, by means of which was proven that the method is good and reliable in the research environment. The results of the quantitative analysis by gas chromatography and ultraviolet-visible, derived of the photo catalytic degradation of the 4-chloro phenol, in the maximum time of study (180 minutes), using the concentrations of 10, 20, 30 and 40 mg/L was found, by gas chromatography, a

  11. Measurement of Gas and Liquid Velocities in an Air-Water Two-Phase Flow using Cross-Correlation of Signals from a Double Senor Hot-Film Probe

    Energy Technology Data Exchange (ETDEWEB)

    B. Gurau; P. Vassalo; K. Keller

    2002-02-19

    Local gas and liquid velocities are measured by cross-correlating signals from a double sensor hot-film anemometer probe in pure water flow and air water two-phase flow. The gas phase velocity measured in two-phase flow agrees with velocity data obtained using high-speed video to within +/-5%. A turbulent structure, present in the liquid phase, allows a correlation to be taken, which is consistent with the expected velocity profiles in pure liquid flow. This turbulent structure is also present in the liquid phase of a two-phase flow system. Therefore, a similar technique can be applied to measure the local liquid velocity in a two-phase system, when conditions permit.

  12. Waste Heat Recovery Technology for the Flue Gas of Hot Rolling Heating Furnace%热轧加热炉烟气余热回收利用技术

    Institute of Scientific and Technical Information of China (English)

    刘伟

    2014-01-01

    介绍一种热轧加热炉烟气余热回收利用技术的系统流程、工艺设计方案、主要参数及经济效益。利用这套技术将加热炉烟气潜在余热进行梯级高效利用,并通过生产实践证明,达到了理想的应用效果。%The systematic process, technological design, main parameters and economic benefits of the waste heat recovery technology for the flue gas of hot rolling heating furnace are introduced.Potential waste heat from the heating furnace flue gas was efficiently utilized in a cascade model through adopting the technology, the ideal effect of which has been proved by production practice.

  13. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas.

    Science.gov (United States)

    Li, Hailong; Wu, Chang-Yu; Li, Ying; Zhang, Junying

    2011-09-01

    CeO(2)-TiO(2) (CeTi) catalysts synthesized by an ultrasound-assisted impregnation method were employed to oxidize elemental mercury (Hg(0)) in simulated low-rank (sub-bituminous and lignite) coal combustion flue gas. The CeTi catalysts with a CeO(2)/TiO(2) weight ratio of 1-2 exhibited high Hg(0) oxidation activity from 150 to 250 °C. The high concentrations of surface cerium and oxygen were responsible for their superior performance. Hg(0) oxidation over CeTi catalysts was proposed to follow the Langmuir-Hinshelwood mechanism whereby reactive species from adsorbed flue gas components react with adjacently adsorbed Hg(0). In the presence of O(2), a promotional effect of HCl, NO, and SO(2) on Hg(0) oxidation was observed. Without O(2), HCl and NO still promoted Hg(0) oxidation due to the surface oxygen, while SO(2) inhibited Hg(0) adsorption and subsequent oxidation. Water vapor also inhibited Hg(0) oxidation. HCl was the most effective flue gas component responsible for Hg(0) oxidation. However, the combination of SO(2) and NO without HCl also resulted in high Hg(0) oxidation efficiency. This superior oxidation capability is advantageous to Hg(0) oxidation in low-rank coal combustion flue gas with low HCl concentration.

  14. Evaluation of a Transportable Hot-Gas Decontamination System for the Decontamination of Explosives-Contaminated Debris & Piping. Operations & Maintenance Manual. Volume III.

    Science.gov (United States)

    1995-06-27

    Forming Gas: This is a prepared gas mixed by an industrial gas supplier or mixed on site with a gas ATMOSPHERES mbdng device. Includes from 4% to 5...Procedures LEL UEL N1/A N/A N/A N/A DATE PREPARED : 10/o1/85 DATE REVISED: B.±•.i Page 2 ONAT!IAL SAFETY DATA sZTDS GROUP?: 0? 7 TZE COCIC & MTTCO...PRODUCT AS MANUFACTURED IS AN ALUMINOSILICATE WHICH COULD TRANSFORM UPON HEATING TO MULLTE AND CRISTOBALITE (A FORM OF CRYSTALLINE SILICA). REMOVAL OF THIS

  15. Micromachined Catalytic Combustible Hydrogen Gas Sensor Based on Nano-structured SnO2%纳米氧化锡修饰的微催化燃烧式氢气传感器的研制

    Institute of Scientific and Technical Information of China (English)

    刘西锋; 董汉鹏; 夏善红

    2013-01-01

    研制了一种基于多孔纳米氧化锡(SnO2)催化剂的微催化燃烧式气体传感芯片(Pellistor).基于微机电系统(MicroElectro-Mechanical Systems,MEMS)工艺制备硅基封闭膜式微催化燃烧式传感器,通过气相沉积技术在Pt微加热电极和高温绝缘层表面制备三维纳米氧化锡催化膜,利用催化膜对氢气良好的催化特性,采用惠斯通电桥电路进行测量,实现对空气环境中氢气在0~4%浓度范围内的快速检测,响应时间和恢复时间分别达到0.65 s和2.32 s,灵敏度达75.4mV/1% H2,线性度为99.4%.考察200天内该传感芯片对氢气的检测能力,传感芯片表现出良好的稳定性,精确度保持在95%以上.在绝缘层高温性能稳定的条件下,将三维纳米氧化锡应用于微催化燃烧式传感器的氢气检测,对催化燃烧式传感器性能的改进具有重要的意义.%A new type of micro catalytic combustible gas sensor system was designed and fabricated using micro-electro mechanical system (MEMS) technology. A chemical vapor deposition (CVD) method is used to coat porous nano-crystalline SnO2 catalyst layer. Tin chloride anhydrate vapor was used as the precursor, and it reacted with ammonium sulfide [(NH4)2S] to form tin disulfide (SnS2) nanoparticles. The tin disulfide was dried up, annealed in air, then it transformed into polycrystal-line SnO2 nanoparticles. The X-ray diffraction (XRD) measurement was used to investigate the structural properties of the SnO2 films. The morphology of the samples was investigated by field-emission scanning electron microscopy (FESEM). X-ray photoelectron spectroscopy (XPS) provided the information on chemical composition of the SnO2 films. The sensing elements and the reference elements were connected to a Wheatstone bridge circuit for the measurement of gas-sensing properties. The catalytic combustion sensor exhibited relatively higher sensitivity (75.4 mV/1% H2) and good linearity (99.4%) to H2 from 0 to 4% V

  16. A self-heated silicon nanowire array: selective surface modification with catalytic nanoparticles by nanoscale Joule heating and its gas sensing applications.

    Science.gov (United States)

    Yun, Jeonghoon; Jin, Chun Yan; Ahn, Jae-Hyuk; Jeon, Seokwoo; Park, Inkyu

    2013-08-07

    We demonstrated novel methods for selective surface modification of silicon nanowire (SiNW) devices with catalytic metal nanoparticles by nanoscale Joule heating and local chemical reaction. The Joule heating of a SiNW generated a localized heat along the SiNW and produced endothermic reactions such as hydrothermal synthesis of nanoparticles or thermal decomposition of polymer thin films. In the first method, palladium (Pd) nanoparticles could be selectively synthesized and directly coated on a SiNW by the reduction of the Pd precursor via Joule heating of the SiNW. In the second method, a sequential process composed of thermal decomposition of a polymer, evaporation of a Pd thin film, and a lift-off process was utilized. The selective decoration of Pd nanoparticles on SiNW was successfully accomplished by using both methods. Finally, we demonstrated the applications of SiNWs decorated with Pd nanoparticles as hydrogen detectors. We also investigated the effect of self-heating of the SiNW sensor on its sensing performance.

  17. Catalytic Combustor for Fuel-Flexible Turbine

    Energy Technology Data Exchange (ETDEWEB)

    Laster, W. R.; Anoshkina, E.

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy’s National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1- Implementation Plan, Phase 2- Validation Testing and Phase 3 – Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  18. Catalytic Combustor for Fuel-Flexible Turbine

    Energy Technology Data Exchange (ETDEWEB)

    W. R. Laster; E. Anoshkina

    2008-01-31

    Under the sponsorship of the U. S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse has conducted a three-year program to develop an ultra low NOx, fuel flexible catalytic combustor for gas turbine application in IGCC. The program is defined in three phases: Phase 1 - Implementation Plan, Phase 2 - Validation Testing and Phase 3 - Field Testing. Both Phase 1 and Phase 2 of the program have been completed. In IGCC power plants, the gas turbine must be capable of operating on syngas as a primary fuel and an available back-up fuel such as natural gas. In this program the Rich Catalytic Lean (RCLTM) technology is being developed as an ultra low NOx combustor. In this concept, ultra low NOx is achieved by stabilizing a lean premix combustion process by using a catalytic reactor to oxidize a portion of the fuel, increasing the temperature of fuel/air mixture prior to the main combustion zone. In Phase 1, the feasibility of the catalytic concept for syngas application has been evaluated and the key technology issues identified. In Phase II the technology necessary for the application of the catalytic concept to IGCC fuels was developed through detailed design and subscale testing. Phase III (currently not funded) will consist of full-scale combustor basket testing on natural gas and syngas.

  19. Small Friends of Hot Jupiters

    Science.gov (United States)

    Nunez, Luis Ernesto; Johnson, John A.

    2017-01-01

    Hot Jupiters are Jupiter-sized gas giant exoplanets that closely orbit their host star in periods of about 10 days or less. Early models hypothesized that these exoplanets formed away from the star, then over time drifted to their characteristically closer locations. However, new theories predict that Hot Jupiters form at their close proximity during the process of core accretion (Batygin et al. 2015). In fact, a super-Earth and a Neptune-sized exoplanet have already been detected in the Hot Jupiter-hosting star WASP-47 (Becker et al. 2015). We will present our analysis of radial velocity time series plots to determine whether low-mass, short-period planets have been previously overlooked in systems of stars which host Hot Jupiters.The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851.

  20. Component Development to Accelerate Commercial Implementation of Ultra-Low Emissions Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, Jon; Berry, Brian; Lundberg, Kare; Anson, Orris

    2003-03-31

    This final report describes a 2000-2003 program for the development of components and processes to enhance the commercialization of ultra-low emissions catalytic combustion in industrial gas turbines. The range of project tasks includes: development of more durable, lower-cost catalysts and catalytic combustor components; development and design of a catalytic pre-burner and a catalytic pilot burner for gas turbines, and on-site fuel conversion processing for utilization of liquid fuel.

  1. Experimental Researches on Catalytic Reforming Gas into Scramjet Model Engine%超燃模型发动机中引入催化重整燃气的试验研究

    Institute of Scientific and Technical Information of China (English)

    侯凌云; 龚景松; 柳发成; 马雪松; 刘小勇

    2012-01-01

    催化重整燃烧室能够产生氢体积分数高达16%的高温富油可燃燃气,所产生的可燃燃气从后支板供入到超燃模型发动机中,进行了直连式联调试验.在相同超音速来流状态下,与不通入可燃燃气的两种工况进行了压力、出口火焰形貌和壁面温度的对比,发现可燃燃气的加入能够在几乎不加入高压气堵情况下迅速着火,并能维持住稳定的超音速燃烧,在富油恶劣状态下,燃烧良好.结果表明,催化重整可燃成分在超燃模型发动机中起到了助燃和稳定燃烧的作用.%Catalytic reforming combustor can produce high temperature and hydrogen-rich (volumetric fraction up to 16%) flammable gases, which are supplied into scramjet model engine from the back strut of scramjet model engine. Under the same supersonic inflowing conditions, ignition and combustion experiments on the engine are carried out between one case with flammable gas and the other two cases without flammable gases. Their wall pressures, temperatures and flames are compared. The results show that the adding of flammable gases can rapidly ignite, almost without back aerodynamic throat, and the stable combustion can be sustained even with rich fuel. It is demonstrated that flammable gases generated by catalytic reforming can be helpful in igniting and combusting in the hydrocarbon-fueled scramjet engine.

  2. Research progress on catalytic reduction technique for denitration of cement flue gas%水泥窑炉烟气催化还原脱硝技术研究进展

    Institute of Scientific and Technical Information of China (English)

    房晶瑞; 马忠诚; 汪澜

    2013-01-01

    Cement production is one of the highest NOx emission industries, where the post-combustion control technology should be utilized in future because the combustion control technology used is difficult to meet the enhanced demand of environmental protection and emission standard. Selective catalytic reduction technique is the most efficient denitration technology and has been widely used in the field of power plants. However, its utilization in cement industry is relatively few because the commercial SCR technique is not applicable to the condition and component of the exhausted gas from cement kilns. This paper briefly introduced the mechanism of selective catalytic reduction process, reaction mechanism, concluded the application of SCR in cement kilns and discussed the research focus on catalysts for denitration of cement kilns.%水泥工业是NOx的高排放行业,现有的燃烧控制技术难以满足日益提高的环保要求,因此烟气脱硝技术在水泥工业的应用将势在必行.选择性催化还原(SCR)脱硝技术是脱硝率最高的烟气脱硝技术,在燃煤电厂已有较大规模的应用,但是在水泥工业中的研究和应用相对滞后.简要介绍了SCR脱硝技术工作原理及其在水泥窑炉的应用现状,总结了催化材料研究和应用进展,探讨了水泥窑炉NOx减排用SCR脱硝技术和催化材料的研究方向.

  3. Promethus Hot Leg Piping Concept

    Energy Technology Data Exchange (ETDEWEB)

    AM Girbik; PA Dilorenzo

    2006-01-24

    The Naval Reactors Prime Contractor Team (NRPCT) recommended the development of a gas cooled reactor directly coupled to a Brayton energy conversion system as the Space Nuclear Power Plant (SNPP) for NASA's Project Prometheus. The section of piping between the reactor outlet and turbine inlet, designated as the hot leg piping, required unique design features to allow the use of a nickel superalloy rather than a refractory metal as the pressure boundary. The NRPCT evaluated a variety of hot leg piping concepts for performance relative to SNPP system parameters, manufacturability, material considerations, and comparison to past high temperature gas reactor (HTGR) practice. Manufacturability challenges and the impact of pressure drop and turbine entrance temperature reduction on cycle efficiency were discriminators between the piping concepts. This paper summarizes the NRPCT hot leg piping evaluation, presents the concept recommended, and summarizes developmental issues for the recommended concept.

  4. Hot Money,Hot Problems

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    After emerging from the economic doldrums, developing economies are now confronted with a new danger-a flood of international hot money. But how has the speculative capital circumvented regulatory controls and what are the consequences concerning the stability of the developing world? Zhao Zhongwei, a senior researcher with the Institute of World Politics and Economics at the Chinese Academy of Social Sciences, discussed these issues in an article recently published in the China Securities Journal. Edited excerpts follow

  5. Are 'hot spots' hot spots?

    Science.gov (United States)

    Foulger, Gillian R.

    2012-07-01

    The term 'hot spot' emerged in the 1960s from speculations that Hawaii might have its origins in an unusually hot source region in the mantle. It subsequently became widely used to refer to volcanic regions considered to be anomalous in the then-new plate tectonic paradigm. It carried with it the implication that volcanism (a) is emplaced by a single, spatially restricted, mongenetic melt-delivery system, assumed to be a mantle plume, and (b) that the source is unusually hot. This model has tended to be assumed a priori to be correct. Nevertheless, there are many geological ways of testing it, and a great deal of work has recently been done to do so. Two fundamental problems challenge this work. First is the difficulty of deciding a 'normal' mantle temperature against which to compare estimates. This is usually taken to be the source temperature of mid-ocean ridge basalts (MORBs). However, Earth's surface conduction layer is ˜200 km thick, and such a norm is not appropriate if the lavas under investigation formed deeper than the 40-50 km source depth of MORB. Second, methods for estimating temperature suffer from ambiguity of interpretation with composition and partial melt, controversy regarding how they should be applied, lack of repeatability between studies using the same data, and insufficient precision to detect the 200-300 °C temperature variations postulated. Available methods include multiple seismological and petrological approaches, modelling bathymetry and topography, and measuring heat flow. Investigations have been carried out in many areas postulated to represent either (hot) plume heads or (hotter) tails. These include sections of the mid-ocean spreading ridge postulated to include ridge-centred plumes, the North Atlantic Igneous Province, Iceland, Hawaii, oceanic plateaus, and high-standing continental areas such as the Hoggar swell. Most volcanic regions that may reasonably be considered anomalous in the simple plate-tectonic paradigm have been

  6. 超声速气流中煤油喷雾的热射流强迫点火%Forced ignition of kerosene spray in supersonic airflow with hot gas injection

    Institute of Scientific and Technical Information of China (English)

    席文雄; 王振国; 李庆; 梁剑寒

    2012-01-01

    在来流马赫数为2、总温为840K的双模态超燃冲压发动机扩张型燃烧室的冷起动工况条件下,对凹腔上游的煤油横向射流喷雾的热射流强迫点火过程进行了试验研究.采用高速相机拍摄了点火过程中的煤油喷雾阴影和自发光火焰的动态发展图像,对比分析了热射流喷射位置和喷射方向对点火试验结果及其凹腔驻留火焰形成的影响.试验结果表明:热射流点火主要以凹腔下游热射流与煤油喷雾的掺混燃烧为主要特征;远场的火焰逆流传播形成凹腔驻留火焰是热射流实现成功点火的主要机制.%Forced ignition of kerosene spray with hot gas injection was investigated ex- perimentally in an expanding scramjet combustor with incoming air total temperature of 800 K and Mach number 2 which was related to a typical cold start-up condition of dual-model scramjet. The fuel was injected vertically into the crossflow upstream the flame-holding cav- ity. The kerosene spray shadow and self-luminosity flame evolvement during the process of ignition were observed using high speed camera. The effects of injection scheme such as po- sition and direction of hot jet on the ignition results and cavity-trapped flame generation were compared and analyzed. Results reveal that the enhanced ignition by hot gas injection is characterized by the far-field diffusive burning between spray and hot jet. The trapped flame within cavity is created due to the flame propagation upstream which is the dominant mecha- nism of successful flame establishment.

  7. Catalytic carbon deposition-oxidation over Ni, Fe and Co catalysts: a new indirect route to store and transport gas hydrocarbon fuels.

    OpenAIRE

    Oliveira, Patrícia E. F.; Ribeiro, Leandro Passos; Rosmaninho, Marcelo Gonçalves; Ardisson, José Domingos; Dias, Anderson; Oliveira,Luiz Carlos Alves; Lago, Rochel Montero

    2013-01-01

    In this work, a new two-step route to store and transport associated natural gas, promoted by Ni, Fe and Co supported catalyst was presented. Initially, CH4 is converted into carbon deposits (M/C composite), being Fe catalyst the most active catalyst. In Step 2, M/C composite reacts with H2O producing H2, CO and CH4. TPO experiments showed that efficiency and selectivity of oxidation depends on the metal. Ni catalyst produced mainly H2 and CO, while Fe system was more selective to convert car...

  8. Synthesis of a catalytic reactor membrane for synthesis gas production; Elaboration d'une membrane de reacteur catalytique pour la production de gaz de synthese

    Energy Technology Data Exchange (ETDEWEB)

    Juste, E.; Julian, A.; Chartier, T. [Limoges Univ., Lab. Science des Procedes Ceramiques et de Traitements de Surface (SPCTS, UMR 6638 CNRS), 87 (France); Juste, E.; Julian, A.; Del Gallo, P.; Richet, N. [Centre de Recherche Claude-Delorme, Air Liquide, 78 - Jouy en Josas (France)

    2007-07-01

    The conversion of natural gas to synthesis gas (mixture of H{sub 2} and CO) is a main challenge for the hydrogen and clean fuels production. Mixed (ionic O{sup 2-} and electronic) conducing ceramics membrane reactors seem particularly promising. The design considered for the membrane is a tri-layer system integrating a reforming catalyst and a dense membrane laying on a porous support. Among the materials considered for the dense membrane, perovskites La{sub 1-x}Sr{sub x}Fe{sub 1-y}Ga{sub y}O{sub 3-{delta}} seem to be interesting for their performances and stability. The oxygen flux through the membrane is measured in terms of temperature under different oxygen partial pressure gradients. In the industrial experimental conditions, the membrane is submitted to a strong oxygen (air/methane) partial pressure gradient of about 900 C which induces mechanical stresses, on account of the material expansion difference, in terms of p{sub O2}. In this framework, the evolutions of the performances and of the expansion coefficient have been followed in terms of the substitutions rates in La{sub (1-x)}Sr{sub x}Fe{sub (1-y)}Ga{sub y}O{sub 3-{delta}} with x{<=}0.5 and y{<=}0.5. (O.M.)

  9. Gas-solid catalytic reactions over ruthenium-based catalysts%钌基催化剂催化的气固相反应

    Institute of Scientific and Technical Information of China (English)

    施文博; 刘霄龙; 曾俊淋; 王健; 魏耀东; 朱廷钰

    2016-01-01

    防止高温焙烧导致催化剂烧结.对于 HCl氧化虽然研究较少,但是 Over等人对 HCl氧化机理进行了深入研究,并且日本住友化工设计的 Ru基催化剂已经商业化. Ru基催化剂可以有效降低甲烷部分氧化的反应温度和压力,并具有高的选择性和稳定性,避免副产物生成.现有催化系统以及新型催化剂开发仍面临诸多挑战,例如:对于单一 VOC氧化过程和多元 VOCs催化氧化的机理和动力学需要进一步研究;对于氨合成需要寻求具有高电导率的载体,从而将电子快速转移到 Ru颗粒表面,使得氨合成在更低温度下进行;为了避免副产物生成,需确保新型 Ru基催化剂上PROX和甲烷部分氧化在低温低压条件下进行; Ru基催化剂理化性质对活性的影响以及失活等问题需要进一步研究.%Ruthenium (Ru)‐based catalysts are widely employed in several types of gas‐solid reactions because of their high catalytic activities. This review provides theoretical research on Ru‐based catalysts and an analysis of their basic properties and oxidation behavior. There is particular emphasis on Ru‐catalyzed gas‐solid catalytic reactions, including the catalytic oxidation of VOCs, preferential oxidation of CO, synthesis of ammonia, oxidation of HCl and partial oxidation of CH4. Recent litera‐ture on catalysis is summarized and compared. Finally, we describe current challenges in the field and propose approaches for future development of Ru‐based catalysts.

  10. Microstructure and mechanical properties of Al-Si-Ni-Ce alloys prepared by gas-atomization spark plasma sintering and hot-extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, E.R. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Hui, X.D., E-mail: xdhui@ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Wang, S.S.; Zhao, Y.F.; Chen, G.L. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2011-07-15

    Highlights: {yields} There are distinct microstructures in the as-atomized powders with different size. {yields} The morphology of Al{sub 11}Ce{sub 3} crystals is related to the Ni content. {yields} Tiny Al{sub 3}Ni precipitated from the supersaturated matrix after SPS process. {yields} Hot-extrusion leads to the improved microstructures. {yields} This kind of alloy exhibits high comprehensive mechanical properties. - Abstract: Al-Si-Ni-Ce alloys with the composition of Al{sub 78.5}Si{sub 19}Ni{sub 2}Ce{sub 0.5}, Al{sub 76}Si{sub 19}Ni{sub 4}Ce{sub 1} and Al{sub 73}Si{sub 19}Ni{sub 7}Ce{sub 1} were atomized and then sintered by using spark plasma method. The microstructure of the as-atomized powders, sintered and hot-extruded samples was analyzed. The influences of granularity and sintering parameters including time and temperature on the density of sintered alloy were also discussed. It is shown that the atomized powders are composed of Si, Al{sub 11}Ce{sub 3}, Al{sub 3}Ni and alpha Al. Tiny Al{sub 3}Ni particles precipitate from supersaturated matrix near the powder boundaries during SPS. Hot-extrusion process leads to the layer structure and more homogeneous distribution of precipitates. These alloys exhibit high comprehensive mechanical properties with combination of high Vicker's micro-hardness, moderate tensile properties and elongation, which provide a novel kind of promising engineering materials.

  11. A Method for Integrating ZnO Coated Nanosprings into a Low Cost Redox-Based Chemical Sensor and Catalytic Tool for Determining Gas Phase Reaction Kinetics

    Directory of Open Access Journals (Sweden)

    Pavel V. Bakharev

    2014-01-01

    Full Text Available A chemical sensor (chemiresistor was constructed from a xenon light bulb by coating it with a 3-D zinc oxide coated silica nanospring mat, where the xenon light bulb serves as the sensor heater. The sensor response to toluene as a function of xenon light bulb sensor temperature (TLB and vapor temperature (TV was observed and analyzed. The optimum operational parameters in terms of TLB and TV were determined to be 435 °C and 250 °C, respectively. The activation energy of toluene oxidation (Ed on the ZnO surface was determined to be 87 kJ·mol−1, while the activation energy of oxidation (Ea of the depleted ZnO surface was determined to be 83 kJ·mol−1. This study serves as proof of principle for integrating nanomaterials into an inexpensive sensor platform, which can also be used to characterize gas-solid, or vapor-solid, redox processes.

  12. 汽油族组成对汽油催化裂化反应中干气生成的影响%EFFECT OF GASOLINE GROUP COMPOSITION ON DRY GAS FORMATION IN CATALYTIC CRACKING OF GASOLINE

    Institute of Scientific and Technical Information of China (English)

    沙有鑫; 龙军; 谢朝钢; 李正

    2011-01-01

    The effect of gasoline group composition on the formation of dry gas in FCC process is investigated using a fixed-fluidized bed reaction unit and MMC-2 catalyst.Results show that in the FCC process dry gas is mainly produced by catalytic cracking reactions, the percentage of dry gas formed by thermal cracking is low.With the increase of olefin content in gasoline feedstock, the ethylene yield increases significantly, yet the yields of hydrogen, methane and ethane remain almost unchanged.The dry gas components,including hydrogen, methane, ethane and ethylene, are produced during the scissions of penta-coordinated carbonium ions formed by the protonation of paraffin.Ethylene could also be produced by the β-scissions of tri-coordinated primary carbonium ions formed by the protonation of olefin.The ratio of the β-scissions of the primary carbonium ions and the β-scissions of the secondary carbonium ions formed by the isomerization of primary carbonium ions is fixed.%利用小型固定流化床(FFB)装置,采用MMC-2催化剂,考察汽油族组成对汽油催化裂化反应过程中干气生成的影响.结果表明,汽油催化裂化反应过程中干气主要南催化裂化反应产生,热裂化反应产生的干气所占的比例很低.随着汽油原料中烯烃含量的增加,氢气、甲烷和乙烷的产率基本保持不变,乙烯的产率明显增加.烷烃引发反应时形成的五配位正碳离子的裂解反应生成氢气、甲烷、乙烷和乙烯等干气组分.烯烃质子化形成的三配位伯正碳离子可能直接发生β裂解生成乙烯.伯正碳离子直接发生β裂解的反应和先发生异构化生成仲正碳离子再发生β裂解反应的比值基本是固定的.

  13. Types of Hot Jupiter Atmospheres

    Science.gov (United States)

    Bisikalo, Dmitry V.; Kaygorodov, Pavel V.; Ionov, Dmitry E.; Shematovich, Valery I.

    Hot Jupiters, i.e. exoplanet gas giants, having masses comparable to the mass of Jupiter and semimajor axes shorter than 0.1 AU, are a unique class of objects. Since they are so close to the host stars, their atmospheres form and evolve under the action of very active gas dynamical processes caused by the gravitational field and irradiation of the host star. As a matter of fact, the atmospheres of several of these planets fill their Roche lobes , which results in a powerful outflow of material from the planet towards the host star. The energy budget of this process is so important that it almost solely governs the evolution of hot Jupiters gaseous envelopes. Based on the years of experience in the simulations of gas dynamics in mass-exchanging close binary stars, we have investigated specific features of hot Jupiters atmospheres. The analytical estimates and results of 3D numerical simulations, discussed in this Chapter, show that the gaseous envelopes around hot Jupiters may be significantly non-spherical and, at the same time, stationary and long-lived. These results are of fundamental importance for the interpretation of observational data.

  14. Study on synthesis of N-ethylpiperazine by gas-solid phase catalytic%气固相催化法合成N-乙基哌嗪的研究

    Institute of Scientific and Technical Information of China (English)

    兰婷; 李穆琼; 李明华; 高鹏; 张俊娜; 苏海鹏; 王宝龙

    2013-01-01

    The synthesis of N-ethylpiperazine by gas-solid phase catalytic,using piperazine and ethanol as raw material.The influence of the concentration of piperazine and flow rate,temperature and pressure on the conversion rate of piperazine,the selectivity of N-ethylpiperazine and triethylenediamine was investigated.Results shows that the reaction had a better selectivity in condition of piperazine concentration 30%,temperature 280 ℃,liquid flow rate 1.5 mL/min,hydrogen pressure 0.6 MPa.%以哌嗪和乙醇为原料,采用气固相催化法合成N-乙基哌嗪,考察了哌嗪浓度、流量、温度和压力对哌嗪转化率、N-乙基哌嗪和三乙烯二胺选择性的影响.结果表明,哌嗪浓度为30%,温度280℃,反应液流率1.5 mL/min,氢气压力为0.6 MPa时反应结果较好.

  15. 催化裂化油浆中硫化物气相色谱分析%Determination of Sulfur Compounds in Catalytic Cracking Slurry by Gas Chromatography With Sulfur Chemiluminescence Detection

    Institute of Scientific and Technical Information of China (English)

    何俊辉; 贾广信; 黎爱群; 薛晓军

    2014-01-01

    采用气相色谱配硫化学发光检测器(SCD)结合高温模拟蒸馏ASTM D7169-05方法对巴陵石化催化裂化油浆中含硫化合物进行了分析鉴定,结果表明:油浆的馏程在253℃到690℃左右范围内,硫化物类型主要是二苯并噻吩类和萘并噻吩类化合物;定量分析结果表明,萘并噻吩类化合物占油浆中总硫化物含量的70%以上。%The catalytic cracking slurry was analyzed by gas chromatography with sulfur chemiluminescence detection (GC-SCD) and SimDis ASTM D7169-05 method. The results show that distillation range of the slurry is from 253 ℃to 690 ℃,and main sulfide types are dibenzothiophenes and naphthothiophenes. Quantitative analysis results show that naphthothiophene compounds account for more than 70%of the total sulfur content in the slurry.

  16. Numerical Simulation for Uniform Mixing of Flue Gas and Ammonia in the Selective Catalytic Reduction Denitration Reacto%SCR脱硝反应器内烟气与氨均混的数值模拟

    Institute of Scientific and Technical Information of China (English)

    彭慧; 姜昌伟; 陈冬林; 刘小波; 冯延林; 曾昭良

    2011-01-01

    为了改善选择性催化还原(SCR)脱硝反应器内烟气与氨气的混合效果,提出3种导流板布置方案,应用数值模拟方法分析了导流板布置方式对SCR反应器内烟气流场与氨浓度分布的影响。分析结果表明:不同的导流板布置方式对烟气与氨气混合效果具有重要影响,采用3块导流板不均匀布置的方案具有最佳的混合效果。%In order to improve the mixing effect of the flue gas and ammonia in SCR( selective catalytic reduc- tion) denitration reactor, three layout methods for deflectors are proposed. A numerical simulation has been applied for the study on the field of flue ga

  17. Rh promoted La0.75Sr0.25(Fe0.8Co0.2)1-xGaxO3-δ perovskite catalysts: Characterization and catalytic performance for methane partial oxidation to synthesis gas

    Science.gov (United States)

    Palcheva, R.; Olsbye, U.; Palcut, M.; Rauwel, P.; Tyuliev, G.; Velinov, N.; Fjellvåg, H. H.

    2015-12-01

    Synthesis gas production via selective oxidation of methane at 600 °C in a pulse reaction over La0.75Sr0.25(Fe0.8Co0.2)1-xGaxO3-δ (x = 0.1, 0.25, 0.4) perovskite-supported rhodium catalysts, was investigated. The perovskite oxides were prepared by sol-gel citrate method and characterized by X-ray Diffraction (XRD), Moessbauer Spectroscopy (MS), Temperature Programmed Reduction (TPR-H2), X-ray Photoelectron Spectroscopy (XPS) and High Resolution Transmission Electron Microscopy (HRTEM). According to XRD analysis, the synthesized samples were a single perovskite phase. The perovskite structure of Ga substituted samples remained stable after TPR-H2, as confirmed by XRD. Data of MS identified Fe3+ ions in two distinctive coordination environments, and Fe4+ ions. The Rh2O3 thin overlayer was detected by the HRTEM for the Rh impregnated perovskite oxides. During the interaction of methane with oxidized perovskite-supported Rh (0.5 wt.%) catalysts, besides CO, H2, and surface carbon, CO2 and H2O were formed. The Rh perovskite catalyst with x = 0.25 gallium exhibits the highest catalytic activity of 83% at 600 °C. The CO selectivity was affected by the reducibility of La0.75Sr0.25(Fe0.8Co0.2)1-xGaxO3-δ perovskite materials.

  18. Detection and characterization of small hot fires: Comparing FireBird, BIRD, S-NPP VIIRS and MODIS capacities over gas flares

    Science.gov (United States)

    Ruecker, Gernot; Schroeder, Wilfrid; Lorenz, Eckehard; Kaiser, Johannes; Caseiro, Alexandre

    2016-04-01

    According to recent research, black carbon has the second strongest effect on the earth climate system after carbon dioxide. In high Northern latitudes, industrial gas flares are an important source of black carbon, especially in winter. This fact is particularly relevant for the relatively fast observed climate change in the Arctic since deposition of black carbon changes the albedo of snow and ice, thus leading to a positive feedback cycle. Here we explore gas flare detection and Fire Radiative Power (FRP) retrievals of the German FireBird TET-1 and BIRD Hotspot Recognition Systems (HSRS), the VIIRS sensor on board of the S-NPP satellite, and the MODIS sensor using temporally close to near coincident data acquisitions. Comparison is based on level 2 products developed for fire detection for the different sensors; in the case of S-NPP VIIRS we use two products: the new VIIRS 750m algorithm based on MODIS collection 6, and the 350 m algorithm based on the VIIRS mid-infrared I (Imaging) band, which offers high resolution, but no FRP retrievals. Results indicate that the highest resolution FireBird sensors offer the best detection capacities, though the level two product shows false alarms, followed by the VIIRS 350 m and 750 m algorithms. MODIS has the lowest detection rate. Preliminary results of FRP retrievals show that FireBird and VIIRS algorithms have a good agreement. Given the fact that most gas flaring is at the detection limit for medium to coarse resolution space borne sensors - and hence measurement errors may be high - our results indicates that a quantitative evaluation of gas flaring using these sensors is feasible. Results shall be used to develop a gas flare detection algorithm for Sentinel-3, and a similar methodology will be employed to validate the capacity of Sentinel 3 to detect and characterize small high temperature sources such as gas flares.

  19. Hot and Dry Cleaning of Biomass-Gasified Gas Using Activated Carbons with Simultaneous Removal of Tar, Particles, and Sulfur Compounds

    Directory of Open Access Journals (Sweden)

    Kinya Sakanishi

    2012-05-01

    Full Text Available This study proposes a gas-cleaning process for the simultaneous removal of sulfur compounds, tar, and particles from biomass-gasified gas using Fe-supported activated carbon and a water-gas shift reaction. On a laboratory scale, the simultaneous removal of H2S and COS was performed under a mixture of gases (H2/CO/CO2/CH4/C2H4/N2/H2S/COS/steam. The reactions such as COS + H2 → H2S + CO and COS + H2O → H2S + CO2 and the water-gas shift reaction were promoted on the Fe-supported activated carbon. The adsorption capacity with steam was higher than that without steam. On a bench scale, the removal of impurities from a gas derived from biomass gasification was investigated using two activated filters packed with Fe-supported activated carbon. H2S and COS, three- and four-ring polycyclic aromatic hydrocarbons (PAHs, and particles were removed and a water-gas shift reaction was promoted through the first filter at 320–350 °C. The concentrations of H2S and COS decreased to less than 0.1 ppmv. Particles and the one- and two-ring PAHs, except for benzene, were then removed through the second filter at 60–170 °C. The concentration of tar and particles decreased from 2428 to 102 mg Nm−3 and from 2244 to 181 mg Nm−3, respectively.

  20. Application of a Natural Gas Fired Hot Blast Stove in Drying Industry%天然气热风炉在干燥行业中的节能应用

    Institute of Scientific and Technical Information of China (English)

    张丽丽; 姜谋

    2012-01-01

    An application of a natural gas fired hot blast stove in drying industry is introduced. Using natural gas fired hot blast stove instead of vapor heat exchanger, thermal efficiency of drying industry is improved significantly, and remarkable energy -saving effect is obtained. According to the retrofitting practice of drying system in a biopharmacy corporation, satisfactory results were obtained. After the retrofitting, the temperature of drying -medium can exceed 180℃ , and maintain stable, which improve production by 20%. The temperature of drying - medium can adjusted automatically according to moisture content of biomass feed, so drying quality can be guaranteed. The thermal efficiency of drying system is increased from 44% to above 96%.%介绍了天然气直燃热风炉在干燥行业的节能应用.采用天然气直燃热风炉代替蒸汽换热装置,可大幅提高干燥系统的热效率,节能效果显著.通过对某生物制药公司干燥系统的改造实践,取得了比较满意的改造效果.改造后,干燥介质温度可达到180℃以上,出力稳定,使设备生产能力提高20%.另外,干燥介质的温度可以根据生物质饲料所含水分自动调节,确保了干燥品质.系统热效率由改造前的44%提高到96%以上.

  1. La catalyse d'épuration des gaz d'échappement automobiles. Situation actuelle et nouvelles orientations Catalytic Automotive Exhaust Gas Depollution. Present Status and New Trends

    Directory of Open Access Journals (Sweden)

    Prigent M.

    2006-11-01

    Full Text Available Cet article passe en revue les différents systèmes catalytiques de post-traitement utilisés actuellement sur la plupart des automobiles pour limiter leurs rejets de polluants. Les systèmes sont différenciés par leur mode de fonctionnement, le type de moteur à dépolluer (deux-temps, quatre-temps, diesel ou essence ou par leur mode de réalisation. Les nouvelles orientations, prévues pour respecter les futures réglementations antipollution, sont également décrites. On montre que certains véhicules prototypes, équipés de moteurs à combustion interne, sont capables d'avoir des émissions très proches de zéro tout comme les véhicules électriques. A review is made of the various types of exhaust gas aftertreatment systems presently used on most vehicles to reduce pollutant emissions. The systems are differentiated by their mode of action, according to the engine type to be depolluted (two-stroke, four-stroke, diesel or spark-ignition, and by their type of make-up. The major developments foreseen in the future, in view of compliance with the new legislations, are described. It is shown that some prototype vehicles with internal combustion engines are able to emit pollutant quantities really close to zero, such as electric cars.

  2. Preparation and Water-Gas Shift Catalytic Activities of the Perovskite Type Complex Oxide La1-x CexFeO3

    Institute of Scientific and Technical Information of China (English)

    马红钦; 谭欣; 朱慧铭; 张继炎; 张鎏

    2003-01-01

    The perovskite type rare-earth iron complex (REIC) oxide La1-xCexFeO3 is designed and prepared as water-gas shift catalyst. Activity evaluation and heat-resisting test show that the perovskite type compounds La1-xCexFeO3 (· K) has a good thermal stability if x is less than or equal to 0. 5. But when x is greater than 0. 5, La1-x Cex FeO3 ( · K) will turn out to be ceria and magnetite partially or completely at high temperature in the shift reaction atmosphere. In the case of x = 0. 5, the conversion of carbon monoxide is about 68% at 530℃. Potassium can greatly improve the low temperature activity, but slightly lower the high temperature activity,and has little impact on the thermal stability. La0.5 Ce0.5 FeO3 ( · K) is a promising chromium-free high-temperature shift catalyst.

  3. Preparation and High-Temperature Water-Gas Shift Catalytic Features of La1-xCexFeO3 Perovskite

    Institute of Scientific and Technical Information of China (English)

    马红钦; 朱慧铭; 谭欣; 张继炎; 张鎏

    2004-01-01

    Based on water-gas shift reaction mechanism and perovskite compounds characteristics, La1-xCexFeO3 (.K) perovskite were designed and prepared as shift catalysts. DTA and XRD results reveal that La1-xCexFeO3 can be formed at 730~760 ℃ by mechanic-mix thermal decomposition method. Activity and heat-resisting tests show that La1-xCexFeO3 (.K) possess high thermal stability if x is less than or equals to 0.5. But when x is greater than 0.5, La1-xCexFeO3 (.K) will be converted into ceria and magnetite partially or completely under shift reaction conditions. In the case of x=0.5, the conversion of CO is about 68% at 530 ℃. Potassium can greatly improve the low temperature activity, but slightly reduces the high temperature activity, and has little impact on the thermal stability. La0.5Ce0.5FeO3 (.K) is a promising chromium-free high temperature shift catalyst.

  4. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders

    2003-04-01

    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  5. Gas doping ratio effects on p-type hydrogenated nanocrystalline silicon thin films grown by hot-wire chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Luo, P.Q. [Solar Energy Institute, Department of Physics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)], E-mail: robt@sjtu.edu.cn; Zhou, Z.B. [Solar Energy Institute, Department of Physics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)], E-mail: zbzhou@sjtu.edu.cn; Chan, K.Y. [Thin Film Laboratory, Faculty of Engineering, Multimedia University, Jalan Multimedia, Cyberjaya 63100, Selangor (Malaysia); Tang, D.Y.; Cui, R.Q.; Dou, X.M. [Solar Energy Institute, Department of Physics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2008-12-30

    Hydrogenated nanocrystalline silicon (nc-Si:H) grown by hot-wire chemical vapor deposition (HWCVD) has recently drawn significant attention in the area of thin-film large area optoelectronics due to possibility of high deposition rate. We report on the effects of diborane (B{sub 2}H{sub 6}) doping ratio on the microstructural and optoelectrical properties of the p-type nc-Si:H thin films grown by HWCVD at low substrate temperature of 200 deg. C and with high hydrogen dilution ratio of 98.8%. An attempt has been made to elucidate the boron doping mechanism of the p-type nc-Si:H thin films deposited by HWCVD and the correlation between the B{sub 2}H{sub 6} doping ratio, crystalline volume fraction, optical band gap and dark conductivity.

  6. Warm gas phase chemistry as possible origin of high HDO/H2O ratios in hot and dense gases: application to inner protoplanetary discs

    CERN Document Server

    Thi, Wing-Fai; Kamp, Inga

    2009-01-01

    The origin of Earth oceans is controversial. Earth could have acquired its water either from hydrated silicates (wet Earth scenario) or from comets (dry Earth scenario). [HDO]/[H2O] ratios are used to discriminate between the scenarios. High [HDO]/[H2O] ratios are found in Earth oceans. These high ratios are often attributed to the release of deuterium enriched cometary water ice, which was formed at low gas and dust temperatures. Observations do not show high [HDO]/[H2O] in interstellar ices. We investigate the possible formation of high [HDO]/[H2O] ratios in dense (nH> 1E6 cm^{-3}) and warm gas (T=100-1000 K) by gas-phase photochemistry in the absence of grain surface chemistry. We derive analytical solutions, taking into account the major neutral-neutral reactions for gases at T>100 K. The chemical network is dominated by photodissociation and neutral-neutral reactions. Despite the high gas temperature, deuterium fractionation occurs because of the difference in activation energy between deuteration enrich...

  7. IntegralitU Assessment for Corrosion Defects in Hot-bend Pipe for Natural Gas Transmission Pipelines%天然气输送管道热弯钢管腐蚀缺陷的完整性评价

    Institute of Scientific and Technical Information of China (English)

    张忠秀; 安立芬; 陶爱莲; 陈利华

    2011-01-01

    为了评价天然气输送管道热弯钢管腐蚀缺陷的完整性,分别对热弯钢管及含腐蚀热弯钢管进行了有限元分析(FEA).对热弯钢管有限元分析的结果表明,应变在拉伸区域轴向为正值,在压缩区域轴向为负值,而径向应变分布却与此相反,且钢管的壁厚和应变与弯曲角无关.通过对不同壁厚、平均壁厚、含对称腐蚀缺陷以及含非对称腐蚀缺陷热弯钢管爆破压力的预测及对比,得出了将弯曲系数和平均壁厚引入用于直钢管完整性评价的 PCORRC方程,可以合理预测出有腐蚀缺陷热弯钢管的爆破压力的结论.%In order to assess integrality of hot-bend pipe corrosion defects for natural gas transmission pipeline, finite element analysis (FEA) was separately performed to hot-bend pipe and corrosive hot-bend pipe. The results showed that strain value is positive in axial tensile area,it is negative in axial compress area,while longitudinal strain distribution is in contrast, and thickness is not relevant to strain and bending angle. Through prediction and contrast to 4 kinds of bursting pressure of hot-bend pipe, different thickness, average thickness, symmetry corrosive defects and asymmetry corrosive defects, it can obtain PCORIRC equation which applied bend coefficient and average wall thickness to straight steel pipe structural integrity assessment, and can get bursting pressure through reasonable prediction.

  8. Fundamental studies of synthesis-gas production based on fluidised-bed gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Kurkela, E.; Reinikainen, M.; Moilanen, A.; Simell, P.; McKeough, P.; Hannula, I. (VTT Technical Research Centre of Finland, Espoo (Finland))

    2008-07-01

    The research is directed towards methods of producing transportation bio-fuels via the synthesis-gas route, with emphasis on the synthesis-gas production and gas cleaning steps. The project will both broaden and deepen the knowledge base and, in particular, will generate new fundamental information about the most critical process steps from the point of view of the realisation of the technology. The results will be exploited in the ongoing industrial-driven development and demonstration projects. The subtopics of the research project are (1) fuel characterisation and ash behaviour in the gasification step, (2) reaction mechanisms related to gas cleaning, in particular the reactions of hydrocarbons at gasification temperatures, during hot-gas filtration and on catalytic surfaces, (3) evaluations of alternative process configurations and applications and (4) monitoring of developments elsewhere in the world. In addition VTT itself finances two additions subtopics (5) new analysis techniques and (6) hydrogen from biomass via gasification. (orig.)

  9. Unusual Physical and Chemical Properties of Ni in Ce1-xNixO2-y Oxides: Structural Characterization and Catalytic Activity for the Water Gas Shift Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Barrio, L.; Kubacka, A; Zhou, G; Estrella, M; Martinez-Arias, A; Hanson, J; Fernandez-Garcia, M; Rodriguez, J

    2010-01-01

    The structural and electronic properties of Ce{sub 1-x}Ni{sub x}O{sub 2-y} nanosystems prepared by a reverse microemulsion method were characterized with synchrotron-based X-ray diffraction, X-ray absorption spectroscopy, Raman spectroscopy, and density functional calculations. The Ce{sub 1-x}Ni{sub x}O{sub 2-y} systems adopt a lattice with a fluorite-type structure with an acute local order where Ni displays a strongly distorted (oxygen) nearest-neighbor coordination and the presence of Ni atoms as first cation distances, pointing to the existence of Ni-O-Ni entities embedded into the ceria lattice. A Ni {leftrightarrow} Ce exchange within the CeO{sub 2} leads to a charge redistribution and the appearance of O vacancies. The Ni-O bonds in Ce{sub 1-x}Ni{sub x}O{sub 2-y} are more difficult to reduce than the bonds in pure NiO. The specific structural configuration of Ni inside the mixed-metal oxide leads to a unique catalyst with a high activity for the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction and a simultaneous reduction of the methanation activity of nickel. Characterization results indicate that small particles of metallic Ni at the interface position of a ceria network may be the key for high WGS activity and that the formate-carbonate route is operative for the production of hydrogen.

  10. Unusual Physical and Chemical Properties of Ni in Ce1-xNixO2-y Oxides: Structural Characterization and Catalytic Activity for the Water Gas Shift Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, J.A.; Barrio, L.; Kubacka, A.; Zhou, G.; Estrella, M.; Mart& #305; nez-Arias, A.; Hanson, J.C.; Fernandez-Garc& #305; a, M.

    2010-07-29

    The structural and electronic properties of Ce{sub 1-x}Ni{sub x}O{sub 2-y} nanosystems prepared by a reverse microemulsion method were characterized with synchrotron-based X-ray diffraction, X-ray absorption spectroscopy, Raman spectroscopy, and density functional calculations. The Ce{sub 1-x}Ni{sub x}O{sub 2-y} systems adopt a lattice with a fluorite-type structure with an acute local order where Ni displays a strongly distorted (oxygen) nearest-neighbor coordination and the presence of Ni atoms as first cation distances, pointing to the existence of Ni-O-Ni entities embedded into the ceria lattice. A Ni {leftrightarrow} Ce exchange within the CeO{sub 2} leads to a charge redistribution and the appearance of O vacancies. The Ni?O bonds in Ce{sub 1-x}Ni{sub x}O{sub 2-y} are more difficult to reduce than the bonds in pure NiO. The specific structural configuration of Ni inside the mixed-metal oxide leads to a unique catalyst with a high activity for the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction and a simultaneous reduction of the methanation activity of nickel. Characterization results indicate that small particles of metallic Ni at the interface position of a ceria network may be the key for high WGS activity and that the formate?carbonate route is operative for the production of hydrogen.

  11. 减压蜡油催化裂化结构导向集总动力学模型研究%RESEARCH ON KINETIC MODEL FOR CATALYTIC CRACKING OF VACUUM GAS OIL USING STRUCTURE ORIENTED LUMP METHOD

    Institute of Scientific and Technical Information of China (English)

    祝然; 沈本贤; 刘纪昌

    2013-01-01

    Structure oriented lumping was applied to construct a catalytic cracking kinetic model of vacuum gas oil (VGO) on molecular level.686 kinds of single-core molecules were selected to form a matrix of VGO feedstock and non-linear least squares method was used to obtain the percentage of individual molecule.60 reaction rules were proposed to build a complex reaction network including more than 40 000 times of reactions.To reduce the number of variable parameters, rate constants were calculated by 5 segments.The reaction network was solved by matrix transformation instead of Runge-Kutta method and product distributions could be obtained.Experimental data were collected from catalytic cracking of mixed Middle East VGO performed on a XTL-6 type of riser reactor for model verification.Comparison results showed that the calculated values of product distributions agreed well with the experimental data, the relative errors were less than 10%.Besides, this model exhibited well adaptability with the changing of reaction temperature and catalyst to oil ratio.%应用结构导向集总方法构建基于分子尺度的减压蜡油催化裂化动力学模型.选取686种单核分子组成原料矩阵,采用非线性最小二乘法求取各分子含量;通过制定60条反应规则构建包含超过40 000个反应的反应网络;将动力学因子分5层进行计算,减少了参数数目;以矩阵变换的形式取代龙格库塔法求解反应网络,从而计算产物分布.采集实验室XTL-6型小型提升管催化裂化装置对中东混合蜡油的催化裂化实验数据对模型参数进行验证.结果表明,所构建的模型对产物分布的预测较为准确,相对误差均小于10%,且对温度、剂油比的变化具有较好的适应性.

  12. Use of low temperature blowers for recirculation of hot gases

    Science.gov (United States)

    Maru, H.C.; Forooque, M.

    1982-08-19

    An apparatus is described for maintaining motors at low operating temperatures during recirculation of hot gases in fuel cell operations and chemical processes such as fluidized bed coal gasification. The apparatus includes a means for separating the hot process gas from the motor using a secondary lower temperature gas, thereby minimizing the temperature increase of the motor and associated accessories.

  13. Development of novel copper-based sorbents for hot-gas cleanup. [Quarterly] technical report, March 1, 1993--May 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hill, A.H.; Abbasian, J. [Institute of Gas Technology, Chicago, IL (United States); Flytzani-Stephanopoulos, M.; Li, Li [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1993-09-01

    The objective of this investigation is to evaluate two novel copper-based sorbents (i.e. copper-chromium and copper-cerium) for their effectiveness in removing hydrogen sulfide from fuel gas in the temperature range of 650{degrees} to 850{degrees}C. In this program, structural and kinetic studies are conducted on various compositions of the two selected copper-based sorbents to determine the optimum sorbent composition. The effect of operating conditions on the performance of the sorbents alone with the stability and regenerability of the selected sorbents in successive sulfidation/regeneration operation are determined. Parametric multicycle desulfurization tests were conducted this quarter in a bench-scale (5-cm-diameter) quartz reactor at one atmosphere using the CuCr{sub 2}O{sub 4} and CuO/CeO{sub 2} sorbents. The parameters studied included temperature, space velocity, and feed gas composition. Both sorbents were able to reduce the H{sub 2}S concentration of the reactor feed gas to <10 ppM under all conditions tested. The apparent reactivity of the CuO/CeO{sub 2} sorbent was lower after the first cycle which may be attributed to incomplete regeneration caused by sulfate formation.

  14. 甲烷与二氧化碳催化重整制取合成气催化剂%Catalysts for Carbon Dioxide Catalytic Reforming of Methane to Synthesis Gas

    Institute of Scientific and Technical Information of China (English)

    王莉; 敖先权; 王诗瀚

    2012-01-01

    甲烷自然资源丰富,并且也可利用生物质通过发酵制备,而将甲烷与二氧化碳催化重整制取合成气是同时利用两种温室气体的一条有效途径,对清洁能源和环保具有重大意义。近年来,由于该方法与其他技术相比具有较大优势,催化剂、反应机理及一些非常规手段的研究引起了科学界广泛关注。本文概述了近几年来甲烷与二氧化碳催化重整催化剂的活性组分、载体、助催化剂、催化剂积炭行为及制备方法等研究新进展,归纳了影响催化剂抗积炭能力的因素,重点介绍了负载型双金属催化剂、复合氧化物催化剂、介孔型催化剂、金属氧化物载体的活性及稳定性,催化剂制备方法对催化活性和抗积炭能力的影响,催化剂抗积炭方法及等离子体技术的应用等研究,包括普遍认为反应主要受到表面氧原子、表面氢原子与催化剂表面活性位三者影响的反应机理,并展望了双金属催化剂、钙钛矿型催化剂、介孔型催化剂及等离子体协同催化技术的应用及催化机理的研究等发展前景。%The natural resources of methane are abundant,and methane also can be produced from biomass by fermentation process. It is an effective way to use two kinds of greenhouse gases simultaneously through preparation of synthesis gas by CH4-CO2 catalytic reforming, so this technique has a great significance to clean energy and environment protection. In recent years, a great attention has been paid to the catalysts, reaction mechanism and some unconventional means of this process due to their greater advantages compared to other methane conversion techniques. The recent studies in catalysts of this process including catalytic active components, supports, additives, carbon deposition of catalyst and catalyst preparation methods are reviewed in this paper. A series of influencing factors in the resistance to carbon deposition are summarized. The

  15. 烟气脱硝选择性催化还原催化剂反应模拟研究%Mathematical Simulation of Flue Gas Denitration Based on Selective Catalytic Reduction Catalyst

    Institute of Scientific and Technical Information of China (English)

    沈伯雄; 赵宁; 刘亭

    2011-01-01

    以E-R机制为动力学基础,建立了选择性催化还原(selective catalytic reduction,SCR)催化剂单孔道一维数学模型,用于模拟SCR催化剂孔道内的反应进程.模型同时还考虑了氨氧化的副反应以及孔道内反应的热效应.经过模拟结果和实验结果对照,证明了模型的合理性.利用模型计算了孔道内的浓度和温度分布、不同运行参数对NO转化率的影响,及催化剂孔大小与孔形状对脱硝效率的影响.模拟计算结果表明,沿孔道方向反应物浓度逐渐降低,而温度略有提高;在反应温度为320~380℃、氨氮比为1.0~1.05和空速为3 200 h-1的运行条件下,单孔道SCR的NO转化率能达到65%以上;另外,通过对孔形状和孔大小的模拟计算发现,催化剂孔节距应设计小于10mm为宜,而催化剂选用蜂窝式较板式和波纹板式具有更高的NO转化率.%Based on Eley-Rideal kinetic mechanism, the one dimensional mathematical model for (selective catalytic reduction, SCR) catalyst was established, to simulate the selective catalytic reduction process in the catalyst channel. The side effect of ammonia oxidation and the thermal effect on the reaction in the channel were considered simultaneously in the modeling. The model was testified to be reliable by compared with the experimental data. By the model, the concentration and temperature distributions in the channel were calculated. The effects of different operation parameters, the pitch and the shape of catalyst channel on De-Nox efficiency were also studied. It was shown that the concentration of reactants decreased along the channel direction, but the temperature increased slightly. According to the calculated results, the SCR de-NO+ efficiency for the single channel can reach over 65%, for the operating condition of temperature 320-380℃, NH3/N0 feed ratio 1.0-1.05, and gas hourly space velocity 3 200h-1. Besides, the pitch of catalyst should be designed less than 10mm; the

  16. Herschel observations of Extra-Ordinary Sources: H2S as a Probe of Dense Gas and Possibly Hidden Luminosity Toward the Orion KL Hot Core

    CERN Document Server

    Crockett, N R; Neill, J L; Black, J H; Blake, G A; Kleshcheva, M

    2014-01-01

    We present Herschel/HIFI observations of the light hydride H$_{2}$S obtained from the full spectral scan of the Orion Kleinmann-Low nebula (Orion KL) taken as part of the HEXOS GT key program. In total, we observe 52, 24, and 8 unblended or slightly blended features from H$_{2}$$^{32}$S, H$_{2}$$^{34}$S, and H$_{2}$$^{33}$S, respectively. We only analyze emission from the so called hot core, but emission from the plateau, extended ridge, and/or compact ridge are also detected. Rotation diagrams for ortho and para H$_{2}$S follow straight lines given the uncertainties and yield T$_{\\rm rot}$=141$\\pm$12 K. This indicates H$_{2}$S is in LTE and is well characterized by a single kinetic temperature or an intense far-IR radiation field is redistributing the population to produce the observed trend. We argue the latter scenario is more probable and find that the most highly excited states (E$_{\\rm up}$>1000 K) are likely populated primarily by radiation pumping. We derive an H$_{2}$$^{32}$S column density, N$_{\\rm ...

  17. Large-scale time-resolved digital particle image velocimetry (TR-DPIV) for measurement of high subsonic hot coaxial jet exhaust of a gas turbine engine

    Science.gov (United States)

    Timmerman, B. H.; Skeen, A. J.; Bryanston-Cross, P. J.; Graves, M. J.

    2009-07-01

    The development of a highly configurable triple digital particle image velocimetry (DPIV) system is described, which is capable of acquiring both continuous, statistically independent measurements at up to 14 Hz and time-resolved PIV data at MHz rates. The system was used at QinetiQ's Noise Test Facility (NTF) as part of the EU-funded CoJeN programme to obtain measurements from high subsonic (Mach <= 0.9), hot (~500 °C), large (1/10th) scale coaxial jet flows at a standoff distance of ~1 m. High-resolution time-averaged velocity and turbulence data were obtained for complete coaxial engine exhaust plumes down to 4 m (20 jet diameters) from the nozzle exit in less than 1 h. In addition, the system allowed volumetric data to be obtained, enabling fast assessment of spatial alignment of nozzle configurations. Furthermore, novel six-frame time-series data-capture is demonstrated up to 330 kHz, used to calculate time-space correlations within the exhaust, allowing for study of spatio-temporal developments in the jet, associated with jet-noise production. The highly automated system provides synchronization triggers for simultaneous acquisition from different measurement systems (e.g. LDA) and is shown to be versatile, rugged, reliable and portable, operating remotely in a hostile environment. Data are presented for three operating conditions and two nozzle geometries, providing a database to be used to validate CFD models of coaxial jet flow.

  18. Catalytic production of biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Theilgaard Madsen, A.

    2011-07-01

    The focus of this thesis is the catalytic production of diesel from biomass, especially emphasising catalytic conversion of waste vegetable oils and fats. In chapter 1 an introduction to biofuels and a review on different catalytic methods for diesel production from biomass is given. Two of these methods have been used industrially for a number of years already, namely the transesterification (and esterification) of oils and fats with methanol to form fatty acid methyl esters (FAME), and the hydrodeoxygenation (HDO) of fats and oils to form straight-chain alkanes. Other possible routes to diesel include upgrading and deoxygenation of pyrolysis oils or aqueous sludge wastes, condensations and reductions of sugars in aqueous phase (aqueous-phase reforming, APR) for monofunctional hydrocarbons, and gasification of any type of biomass followed by Fischer-Tropsch-synthesis for alkane biofuels. These methods have not yet been industrialised, but may be more promising due to the larger abundance of their potential feedstocks, especially waste feedstocks. Chapter 2 deals with formation of FAME from waste fats and oils. A range of acidic catalysts were tested in a model fat mixture of methanol, lauric acid and trioctanoin. Sulphonic acid-functionalised ionic liquids showed extremely fast convertion of lauric acid to methyl laurate, and trioctanoate was converted to methyl octanoate within 24 h. A catalyst based on a sulphonated carbon-matrix made by pyrolysing (or carbonising) carbohydrates, so-called sulphonated pyrolysed sucrose (SPS), was optimised further. No systematic dependency on pyrolysis and sulphonation conditions could be obtained, however, with respect to esterification activity, but high activity was obtained in the model fat mixture. SPS impregnated on opel-cell Al{sub 2}O{sub 3} and microporous SiO{sub 2} (ISPS) was much less active in the esterification than the original SPS powder due to low loading and thereby low number of strongly acidic sites on the

  19. Catalytic combustor for hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mercea, J.; Grecu, E.; Fodor, T.; Kreibik, S.

    1982-01-01

    The performance of catalytic combustors for hydrogen using platinum-supported catalysts is described. Catalytic plates of different sizes were constructed using fibrous and ceramic supports. The temperature distribution as well as the reaction efficiency as a function of the fuel input rate was determined, and a comparison between the performances of different plates is discussed.

  20. Simulation on Toxic Gases in Vehicle Exhaust Equipped with Modified Catalytic Converter : A Review

    Directory of Open Access Journals (Sweden)

    Leman A.M.

    2016-01-01

    Full Text Available Air pollution and global warming is a major issue nowadays. One of the main contributors to be the emission of harmful gases produced by vehicle exhausts lines. The harmful gases like NOx, CO, unburned HC and particulate matter increases the global warming, so catalytic converter plays a vital role in reducing harmful gases. Catalytic converters are used on most vehicles on the road today. This research deals with the gas emission flow in the catalytic converter involving the heat transfer, velocity flow, back pressure and others chemical reaction in the modified catalytic converter by using FeCrAl as a substrate that is treated using the ultrasonic bath and electroplating techniques. The objective of this study is to obtain a quantitative description of the gas emission in the catalytic converter system of automobile exhaust gas using ANSYS Software. The description of the gas emission in the catalytic converter system of automobile exhaust gas using ANSYS Software was simulated in this research in order to provide better efficiency and ease the reusability of the catalytic converter by comparing experimental data with software analysing data. The result will be expected to demonstrate a good approximation of gas emission in the modified catalytic converter simulation data compared to experimental data in order to verify the effectiveness of modified catalytic converter. Therefore studies on simulation of flow through the modified catalytic converter are very important to increase the accuracy of the obtained emission result.