WorldWideScience

Sample records for catalytic enantioselective reductions

  1. Catalytic enantioselective reductions and allylations of prochiral ketones

    CERN Document Server

    Cunningham, A

    2002-01-01

    The use of LiGaH sub 4 in combination with the S,O-chelate 2-hydroxy-2'-mercapto-1,1'-binaphthyl (monothiobinaphthol, MTBH sub 2), forms an active catalyst (2 mol %) for the asymmetric reduction of prochiral ketones, when using catecholborane as the hydride source. This catalyst has successfully been applied to the enantioselective reduction of aryl/n-alkyl ketones, providing the chiral sec-alcohols in yields of 82 - 96% and with enantiomeric excess values of 59 - 93%. Alkyl/methyl ketones are reduced in yields of 72 - 93% and in 46 - 79% enantiomeric excess. Enantioface differentiation is on the basis of the steric requirements of the ketone substituents. The X-ray structure of the pre-catalyst, Li(THF) sub 3 Ga(MTB) sub 2 has been determined and in solution is in equilibrium with a dimeric species of constitution Li sub 2 Ga sub 2 (MTB) sub 4. An indium analogue whose X-ray structure was determined as Li sub 2 (THF) sub 5 lnCI(MTB) sub 2 has also been prepared. The indium- based catalyst does not form an en...

  2. Towards chiral diamines as chiral catalytic precursors for the borane-mediated enantioselective reduction of prochiral ketones

    Indian Academy of Sciences (India)

    Deevi Basavaiah; Utpal Das; Suparna Roy

    2009-11-01

    Two chiral diamines (3)-3-anilinomethyl-1,2,3,4-tetrahydroisoquinoline (1) and (2)-2-anilinomethylpiperidine (2) have been employed as chiral catalytic sources in the borane-mediated asymmetric reduction of prochiral ketones thus providing the resulting secondary alcohols in good enantiomeric purities (up to 81% ).

  3. Enantioselective CuH-Catalyzed Reductive Coupling of Aryl Alkenes and Activated Carboxylic Acids.

    Science.gov (United States)

    Bandar, Jeffrey S; Ascic, Erhad; Buchwald, Stephen L

    2016-05-11

    A new method for the enantioselective reductive coupling of aryl alkenes with activated carboxylic acid derivatives via copper hydride catalysis is described. Dual catalytic cycles are proposed, with a relatively fast enantioselective hydroacylation cycle followed by a slower diastereoselective ketone reduction cycle. Symmetrical aryl carboxyclic anhydrides provide access to enantioenriched α-substituted ketones or alcohols with excellent stereoselectivity and functional group tolerance. PMID:27121395

  4. The Catalytic Enantioselective Total Synthesis of (+)-Liphagal

    KAUST Repository

    Day, Joshua J.

    2011-06-10

    Ring a ding: The meroterpenoid natural product (+)-liphagal has been synthesized enantioselectively in 19 steps from commercially available materials. The trans-homodecalin system was achieved by ring expansion followed by stereoselective hydrogenation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Catalytic Enantioselective 1,2-Addition of Terminal 1,3-Diynes to Trifluoromethyl Ketones

    Institute of Scientific and Technical Information of China (English)

    Yan Zheng; Hai Ma; Jun-An Ma

    2016-01-01

    A facile catalytic enantioselective 1,2-addition of diynes to trifluoromethyl ketones was developed.By a combination of Me2Zn,Ti(OPr-i)4,BaF2 and quinine,the reaction of a series of terminal diynes with trifluoromethyl ketones proceeded to afford trifluoromethylated chrial tertiary alcohols with the diyne moiety in good to high yields with moderate to high enantioselectivities.Furthermore,this catalytic asymmetric diyne addition to trifluoromethylketone was applied in the synthesis of the Efavirenz analogue.

  6. Enantioselective reduction of acetyldimethylphenylsilane by Trigonopsis variabilis (DSM 70714)

    OpenAIRE

    Syldatk, C.; Andree, H.; Stoffregen, A.; F. Wagner; Stumpf, B; Ernst, L; Zilch, H.; Tacke, Reinhold

    2012-01-01

    Growing and resting cells of the yeast Trigonapsis variabilis (DSM 70714) can be used for the enantioselective reduction of the organosilicon compound acetyldimethylphenylsilane (J) to give optically active (R)-(1-hydroxyethyl)dimethylphenylsilane [(R)-2] in good yields. The enantiomeric purity of the isolated product was determined tobe 62-86% ee depending on the substrate concentration used. Both substrate and product caused an inhibition of the reaction at concentrations higher than 0.35 a...

  7. A General Catalytic Enantioselective Transfer Hydrogenation Reaction of β,β-Disubstituted Nitroalkenes Promoted by a Simple Organocatalyst.

    Science.gov (United States)

    Bernardi, Luca; Fochi, Mariafrancesca

    2016-01-01

    Given its synthetic relevance, the catalytic enantioselective reduction of β,β-disubstituted nitroalkenes has received a great deal of attention. Several bio-, metal-, and organo-catalytic methods have been developed, which however are usually applicable to single classes of nitroalkene substrates. In this paper, we present an account of our previous work on this transformation, which implemented with new disclosures and mechanistic insights results in a very general protocol for nitroalkene reductions. The proposed methodology is characterized by (i) a remarkably broad scope encompassing various nitroalkene classes; (ii) Hantzsch esters as convenient (on a preparative scale) hydrogen surrogates; (iii) a simple and commercially available thiourea as catalyst; (iv) user-friendly procedures. Overall, the proposed protocol gives a practical dimension to the catalytic enantioselective reduction of β,β-disubstituted nitroalkenes, offering a useful and general platform for the preparation of nitroalkanes bearing a stereogenic center at the β-position in a highly enantioenriched form. A transition state model derived from control kinetic experiments combined with literature data is proposed and discussed. This model accounts and justifies the observed experimental results. PMID:27483233

  8. Enantioselective reduction of acetophenone analogues using carrot and celeriac enzymes system

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The enantioselective reduction of acetophenone analogues catalyzed by carrot and celeriac was performed in moderate conversions and excellent enantiomeric excesses.The steric factors and electronic effects of the substituents at the aromatic ring were found to significantly affect the efficiency of the enantioselective reduction of acetophenone analogues,while they had a little effect on the enantioselectivity of acetophenone analogues reduction.It was also found that the conversions of acetophenone anal...

  9. Catalytic enantioselective addition of organoboron reagents to fluoroketones controlled by electrostatic interactions

    Science.gov (United States)

    Lee, Kyunga; Silverio, Daniel L.; Torker, Sebastian; Robbins, Daniel W.; Haeffner, Fredrik; van der Mei, Farid W.; Hoveyda, Amir H.

    2016-08-01

    Organofluorine compounds are central to modern chemistry, and broadly applicable transformations that generate them efficiently and enantioselectively are in much demand. Here we introduce efficient catalytic methods for the addition of allyl and allenyl organoboron reagents to fluorine-substituted ketones. These reactions are facilitated by readily and inexpensively available catalysts and deliver versatile and otherwise difficult-to-access tertiary homoallylic alcohols in up to 98% yield and >99:1 enantiomeric ratio. Utility is highlighted by a concise enantioselective approach to the synthesis of the antiparasitic drug fluralaner (Bravecto, presently sold as the racemate). Different forms of ammonium-organofluorine interactions play a key role in the control of enantioselectivity. The greater understanding of various non-bonding interactions afforded by these studies should facilitate the future development of transformations that involve fluoroorganic entities.

  10. Catalytic enantioselective OFF ↔ ON activation processes initiated by hydrogen transfer: concepts and challenges.

    Science.gov (United States)

    Quintard, Adrien; Rodriguez, Jean

    2016-08-18

    Hydrogen transfer initiated processes are eco-compatible transformations allowing the reversible OFF ↔ ON activation of otherwise unreactive substrates. The minimization of stoichiometric waste as well as the unique activation modes provided by these transformations make them key players for a greener future for organic synthesis. Long limited to catalytic reactions that form racemic products, considerable progress on the development of strategies for controlling diastereo- and enantioselectivity has been made in the last decade. The aim of this review is to present the different strategies that enable enantioselective transformations of this type and to highlight how they can be used to construct key synthetic building blocks in fewer operations with less waste generation. PMID:27381644

  11. Direct Formation of Oxocarbenium Ions under Weakly Acidic Conditions: Catalytic Enantioselective Oxa-Pictet-Spengler Reactions.

    Science.gov (United States)

    Zhao, Chenfei; Chen, Shawn B; Seidel, Daniel

    2016-07-27

    Two catalysts, an amine HCl salt and a bisthiourea, work in concert to enable the generation of oxocarbenium ions under mild conditions. The amine catalyst generates an iminium ion of sufficient electrophilicity to enable 1,2-attack by an alcohol. Catalyst turnover is achieved by amine elimination with concomitant formation of an oxocarbenium intermediate. The bisthiourea catalyst accelerates all of the steps of the reaction and controls the stereoselectivity via anion binding/ion pair formation. This new concept was applied to direct catalytic enantioselective oxa-Pictet-Spengler reactions of tryptophol with aldehydes. PMID:27396413

  12. Catalytic enantioselective 1,3-dipolar cycloadditions of azomethine ylides for biology-oriented synthesis.

    Science.gov (United States)

    Narayan, Rishikesh; Potowski, Marco; Jia, Zhi-Jun; Antonchick, Andrey P; Waldmann, Herbert

    2014-04-15

    , mostly from our work, of the application of 1,3-dipolar cycloaddition reactions of azomethine ylides for the catalytic enantioselective synthesis of complex products. We successfully applied the 1,3-dipolar cycloaddition in the synthesis of spiro-compounds such as spirooxindoles, for kinetic resolution of racemic compounds in the synthesis of an iridoid inspired compound collection and in the synthesis of a nitrogen-bridged bicyclic tropane scaffold by application of 1,3-fused azomethine ylides. Furthermore, we performed the synthesis of complex molecules with eight stereocenters using tandem cycloadditions. In a programmable sequential double cycloaddition, we demonstrated the synthesis of both enantiomers of complex products by simple changes in the order of addition of chemicals. Complex products were obtained using enantioselective higher order [6 + 3] cycloaddition of azomethine ylides with fulvenes followed by Diels-Alder reaction. The bioactivity of these compound collections is also discussed. PMID:24730692

  13. Enantioselective Evans-Tishchenko Reduction of b-Hydroxyketone Catalyzed by Lithium Binaphtholate

    Directory of Open Access Journals (Sweden)

    Makoto Nakajima

    2011-06-01

    Full Text Available Lithium diphenylbinaphtholate catalyzed the enantioselective Evans-Tishchenko reduction of achiral b-hydroxyketones to afford monoacyl-protected 1,3-diols with high stereoselectivities. In the reaction of racemic b-hydroxyketones, kinetic optical resolution occurred in a highly stereoselective manner.

  14. Predicting CYP2C19 catalytic parameters for enantioselective oxidations using artificial neural networks and a chirality code.

    Science.gov (United States)

    Hartman, Jessica H; Cothren, Steven D; Park, Sun-Ha; Yun, Chul-Ho; Darsey, Jerry A; Miller, Grover P

    2013-07-01

    Cytochromes P450 (CYP for isoforms) play a central role in biological processes especially metabolism of chiral molecules; thus, development of computational methods to predict parameters for chiral reactions is important for advancing this field. In this study, we identified the most optimal artificial neural networks using conformation-independent chirality codes to predict CYP2C19 catalytic parameters for enantioselective reactions. Optimization of the neural networks required identifying the most suitable representation of structure among a diverse array of training substrates, normalizing distribution of the corresponding catalytic parameters (k(cat), K(m), and k(cat)/K(m)), and determining the best topology for networks to make predictions. Among different structural descriptors, the use of partial atomic charges according to the CHelpG scheme and inclusion of hydrogens yielded the most optimal artificial neural networks. Their training also required resolution of poorly distributed output catalytic parameters using a Box-Cox transformation. End point leave-one-out cross correlations of the best neural networks revealed that predictions for individual catalytic parameters (k(cat) and K(m)) were more consistent with experimental values than those for catalytic efficiency (k(cat)/K(m)). Lastly, neural networks predicted correctly enantioselectivity and comparable catalytic parameters measured in this study for previously uncharacterized CYP2C19 substrates, R- and S-propranolol. Taken together, these seminal computational studies for CYP2C19 are the first to predict all catalytic parameters for enantioselective reactions using artificial neural networks and thus provide a foundation for expanding the prediction of cytochrome P450 reactions to chiral drugs, pollutants, and other biologically active compounds.

  15. Enantioselective Reduction by Crude Plant Parts: Reduction of Benzofuran-2-yl Methyl Ketone with Carrot ("Daucus carota") Bits

    Science.gov (United States)

    Ravia, Silvana; Gamenara, Daniela; Schapiro, Valeria; Bellomo, Ana; Adum, Jorge; Seoane, Gustavo; Gonzalez, David

    2006-01-01

    The use of biocatalysis and biotransformations are important tools in green chemistry. The enantioselective reduction of a ketone by crude plant parts, using carrot ("Daucus carota") as the reducing agent is presented. The experiment introduces an example of a green chemistry procedure that can be tailored to fit in a regular laboratory session.…

  16. Baker's yeast mediated reduction of substituted acenaphthenequinones: Regio- and enantioselective preparation of mono-hydroxyacenaphthenones

    Institute of Scientific and Technical Information of China (English)

    Xing Yong Wang; Jing Nan Cui; Wei Min Ren; Feng Li; Chun Liang Lu; Xu Hong Qian

    2007-01-01

    Baker's yeast mediated reduction of acenaphthenequinone within 4-10 h afforded mono-hydroxyacenaphthenone mainly with low enantioselectivity, the substrate and mono-hydroxyacenaphthenone product almost converted to dihydroxyacenaphthene after 48 h.By control of the reaction time and in the presence of DMF as co-solvent, the reduction of 6-substituted acenaphthenequinones under vigorous agitation afforded the corresponding 2-hydroxyacenaphthenones in 24-84% yields with 10-93% ee.

  17. Application of 3-Methyl-2-vinylindoles in Catalytic Asymmetric Povarov Reaction: Diastereo- and Enantioselective Synthesis of Indole-Derived Tetrahydroquinolines.

    Science.gov (United States)

    Dai, Wei; Jiang, Xiao-Li; Tao, Ji-Yu; Shi, Feng

    2016-01-01

    The first application of 3-methyl-2-vinylindoles in catalytic asymmetric Povarov reactions has been established via the three-component reactions of 3-methyl-2-vinylindoles, aldehydes, and anilines in the presence of chiral phosphoric acid, providing easy access to chiral indole-derived tetrahydroquinolines with three contiguous stereogenic centers at high yields (up to 99%) and with excellent diastereo- and enantioselectivities (all >95:5 dr, up to 96% ee). This mode of catalytic asymmetric three-component reaction offers a step-economic and atom-economic strategy for accessing enantioenriched indole-derived tetrahydroquinolines with structural diversity and complexity. PMID:26652222

  18. Catalytic Enantioselective Alkylation of Benzaldehyde with Diethylzinc Using Chiral Nonracemic (Thio)-phosphoramidates

    NARCIS (Netherlands)

    Hulst, Ron; Heres, Hero; Fitzpatrick, Kevin; Peper, Nathalie C.M.W.; Kellogg, Richard M.

    1996-01-01

    Two chiral nonracemic γ-amino alcohols, ephedrine thiol and the corresponding (thio)-phosphoramidates have been examined as catalysts for the enantioselective alkylation of benzaldehyde by diethylzinc. Addition of titanium tetraisopropoxide increases the yield as well as the enantioselectivity; 1-ph

  19. Practical and Broadly Applicable Catalytic Enantioselective Additions of Allyl-B(pin) Compounds to Ketones and α-Ketoesters.

    Science.gov (United States)

    Robbins, Daniel W; Lee, KyungA; Silverio, Daniel L; Volkov, Alexey; Torker, Sebastian; Hoveyda, Amir H

    2016-08-01

    A set of broadly applicable methods for efficient catalytic additions of easy-to-handle allyl-B(pin) (pin=pinacolato) compounds to ketones and acyclic α-ketoesters was developed. Accordingly, a large array of tertiary alcohols can be obtained in 60 to >98 % yield and up to 99:1 enantiomeric ratio. At the heart of this development is rational alteration of the structures of the small-molecule aminophenol-based catalysts. Notably, with ketones, increasing the size of a catalyst moiety (tBu to SiPh3 ) results in much higher enantioselectivity. With α-ketoesters, on the other hand, not only does the opposite hold true, since Me substitution leads to substantially higher enantioselectivity, but the sense of the selectivity is reversed as well.

  20. SELECTIVE CATALYTIC REDUCTION MERCURY FIELD SAMPLING PROJECT

    Science.gov (United States)

    A lack of data still exists as to the effect of selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas conditioning on the speciation and removal of mercury (Hg) at power plants. This project investigates the impact that SCR, SNCR, and flue gas...

  1. Modular, Catalytic Enantioselective Construction of Quaternary Carbon Stereocenters by Sequential Cross-Coupling Reactions.

    Science.gov (United States)

    Potter, Bowman; Edelstein, Emma K; Morken, James P

    2016-07-01

    The catalytic Suzuki-Miyaura cross-coupling with chiral γ,γ-disubstituted allylboronates in the presence of RuPhos ligand occurs with high regioselectivity and enantiospecificity, furnishing nonracemic compounds with quaternary centers. Mechanistic experiments suggest that the reaction occurs by transmetalation with allyl migration, followed by rapid reductive elimination.

  2. Quantum chemical study on the mechanism of enantioselective reduction of prochiral ketones catalyzed by oxazaborolidines

    Institute of Scientific and Technical Information of China (English)

    LI; Ming

    2001-01-01

    [1]Corey, E. J., Bakshi, R. K., Shibata, S., Highly enantioselective borane reduction ketones catalyzed by chiral oxazaborolidines, J. Am. Chem. Soc., 1987, 109:5551-5553.[2]Wallbaum, S., Martens, J., Asymmetric syntheses with chiral oxazaborolidines, Tetrahedron Asymmetry, 1992, 3: 1475-1504.[3]Deloux, L., Srebnik, M., Asymmetric borane-catalyzed reactions, Chem. Rev., 1993, 93: 763-784.[4]Togni, A., Venanzi, L. M., Nitrogen donors in organometallic chemistry and in homogeneous catalysis, Angew Chem. Int. Ed. Engl., 1994, 33: 497-562.[5]Ager, D. J., Prakash, I., Schaad, D. R., 1,2-amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis, Chem. Rev., 1996, 96: 835-875.[6]Nevalainen, V., Quantum chemical modeling of chiral catalysis, Part 4. On the hydride transfer in ketone complexes of borane adducts of oxazaborolidines and regeneration of catalyst, Tetrahedron Asymmetry, 1991, 2:1133-1155.[7]Nevalainen, V., Quantum chemical modeling of chiral catalysis, Part 8. On the conformational freedom of the ketone of ketone-borane complexes of oxazaborolidines used as catalysts in the enantioselective reduction of ketones, Tetrahedron Asymmetry. 1992, 3: 1563-1572.[8]Nevalainen, V., Quantum chemical modeling of chiral catalysis, Part 7. On the effects controlling the coordination of borane to chiral oxazaborolidines used as catalysts in the enantioselective reduction of ketones, Tetrahedron Asymmetry,1992, 3: 1441-1453.[9]Nevalainen, V., Quantum chemical modeling of chiral catalysis, Part 12. On the influence of the nature of the ring system on binding in ketone-borane complexes of chiral oxazaborolidines used as catalysts in the enantioselective reduction of ketones. Tetrahedron Asymmetry, 1993, 4: 1597-1602.[10]Nevalainen, V., Quantum chemical modeling of chiral catalysis, Part 19. Strain and stability-oxazadiboretanes potentially involved in the enantioselective reduction of ketones promoted

  3. Hydroxymethylation beyond Carbonylation: Enantioselective Iridium-Catalyzed Reductive Coupling of Formaldehyde with Allylic Acetates via Enantiotopic π-Facial Discrimination.

    Science.gov (United States)

    Garza, Victoria J; Krische, Michael J

    2016-03-23

    Chiral iridium complexes modified by SEGPHOS catalyze the 2-propanol-mediated reductive coupling of branched allylic acetates 1a-1o with formaldehyde to form primary homoallylic alcohols 2a-2o with excellent control of regio- and enantioselectivity. These processes, which rely on enantiotopic π-facial discrimination of σ-allyliridium intermediates, represent the first examples of enantioselective formaldehyde C-C coupling beyond aldol addition. PMID:26958737

  4. Selective Catalytic Reduction of NO with Methane

    Institute of Scientific and Technical Information of China (English)

    Xiang Gao; Qi Yu; Limin Chen

    2003-01-01

    The removal of nitrogen oxides from exhaust gases has attracted great attention in recent years, and many approaches have been developed depending on the application. Methane, the main component of natural gas, has great potential as a NO reductant. In this paper, a number of catalysts previous reported for this catalytic reduction of NO have been reviewed, including a direct comparison of the relative activities and effective factors of the catalysts. Reaction mechanisms have also been explored preliminarily.

  5. Quantum chemical study on the mechanism of enantioselective reduction of prochiral ketones catalyzed by oxazaborolidines

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The ab initio molecular orbital study on the mechanism of enantioselective reduction of 3,3-dimethyl butanone-2 with borane catalyzed by chiral oxazaborolidine is performed. As illus trated, this enantioselective reduction is exothermic and goes mainly through the formations of the catalyst-borane adduct, the catalyst-borane-3,3-dimethyl butanone-2 adduct, and the cata lyst-alkoxyborane adduct with a B-O-B-N 4-member ring and through the decomposition of the catalyst-alkoxyborane adduct with the regeneration of the catalyst. During the hydride transfer in the catalyst-borane-3,3-dimethyl butanone-2 adduct to form the catalyst-alkoxyborane adduct, the hydride transfer and the formation of the B-O-B-N 4-member ring in the catalyst-alkoxyborane ad duct happen simultaneously. The controlling step for the reduction is the transfer of hydride from the borane moiety to the carbonyl carbon of 3,3-dimethyl butanone-2. The transition state for the hydride transfer is a twisted chair structure and the reduction leads to R-chiral alcohols.

  6. Catalytic enantioselective addition of hydrogen cyanide to benzaldehyde and p-methoxybenzaldehyde using cyclo-His-(αMe)Phe as catalyst

    NARCIS (Netherlands)

    Hulst, Ron; Broxterman, Quirinus B.; Kamphuis, Johan; Formaggio, Fernando; Crisma, Marco; Toniolo, Claudio; Kellogg, Richard M.

    1997-01-01

    Two cyclo-dipeptides based on His and the unnatural (αMe)Phe have been examined as catalysts in the enantioselective addition of hydrogen cyanide to benzaldehyde and p-methoxy-benzaldehyde. The synthesis, catalytic activity and NMR study towards the mechanism of this reaction are presented.

  7. Catalytic enantioselective addition of hydrogen cyanide to benzaldehyde and p-methoxybenzaldehyde using cyclo-His-(alpha-Me)Phe as catalyst

    NARCIS (Netherlands)

    Hulst, R; Broxterman, QB; Kamphuis, J; Formaggio, F; Crisma, M; Toniolo, C; Kellogg, RM

    1997-01-01

    Two cyclo-dipeptides based on His and the unnatural (alpha Me)Phe have been examined as catalysts in the enantioselective addition of hydrogen cyanide to benzaldehyde and p-methoxy-benzaldehyde. The synthesis, catalytic activity and NMR study towards the mechanism of this reaction are presented. (C)

  8. A direct approach to amines with remote stereocentres by enantioselective CuH-catalysed reductive relay hydroamination

    Science.gov (United States)

    Zhu, Shaolin; Niljianskul, Nootaree; Buchwald, Stephen L.

    2016-02-01

    Amines with remote stereocentres (stereocentres that are three or more bonds away from the C-N bond) are important structural elements in many pharmaceutical agents and natural products. However, previously reported methods to prepare these compounds in an enantioselective manner are indirect and require multistep synthesis. Here, we report a copper-hydride-catalysed, enantioselective synthesis of γ- or δ-chiral amines from readily available allylic alcohols, esters and ethers using a reductive relay hydroamination strategy (a net reductive process in which an amino group is installed at a site remote from the original carbon-carbon double bond). The protocol was suitable for substrates containing a wide range of functional groups and provided remote chiral amine products with high levels of regio- and enantioselectivity. Sequential amination of substrates containing several carbon-carbon double bonds could be achieved, demonstrating the high chemoselectivity of this process.

  9. Highly Catalytic Enantioselective Addition of Diethyl Zinc to Aldehydes and Chalcone in the Presence of Chiral Ligands

    Institute of Scientific and Technical Information of China (English)

    WANG; Rui

    2001-01-01

    Catalytic asymmetric carbon-carbon bond formation is one of the most important reactions and have attracted much attention to develop more efficient enantioselective C-C formation methods in organic synthesis. In this field, asymmetric addition of diethylzinc to aldehydes[1] and conjugate addition to enones[2] have drawn special interests and have been greatly developed. Regardless of it, much spaces in these areas still exist, so it needs more extensive and intensive researches for the purpose of as follows: (1) attaching ligands to a polymer for the easy separation of the catalysts so as to be able to allow very efficient recovery and reuse of the catalysts, and the possibility of carrying out the desired transfomation in continuous mode in a flow reactor, etc., (2) searching for novel chiral catalysts with such features as more suitable for more extensive substrates varieties, and more convenient and economical as well as possessing applicable prospect, and so on. Here we report some works in these areas done in our laboratory.  ……

  10. Highly Catalytic Enantioselective Addition of Diethyl Zinc to Aldehydes and Chalcone in the Presence of Chiral Ligands

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Catalytic asymmetric carbon-carbon bond formation is one of the most important reactions and have attracted much attention to develop more efficient enantioselective C-C formation methods in organic synthesis. In this field, asymmetric addition of diethylzinc to aldehydes[1] and conjugate addition to enones[2] have drawn special interests and have been greatly developed. Regardless of it, much spaces in these areas still exist, so it needs more extensive and intensive researches for the purpose of as follows: (1) attaching ligands to a polymer for the easy separation of the catalysts so as to be able to allow very efficient recovery and reuse of the catalysts, and the possibility of carrying out the desired transfomation in continuous mode in a flow reactor, etc., (2) searching for novel chiral catalysts with such features as more suitable for more extensive substrates varieties, and more convenient and economical as well as possessing applicable prospect, and so on. Here we report some works in these areas done in our laboratory.

  11. NOX REMOVAL WITH COMBINED SELECTIVE CATALYTIC REDUCTION AND SELECTIVE NONCATALYTIC REDUCTION: PILOT- SCALE TEST RESULTS

    Science.gov (United States)

    Pilot-scale tests were conducted to develop a combined nitrogen oxide (NOx) reduction technology using both selective catalytic reduction (SCR) and selective noncatalytic reduction (SNCR). A commercially available vanadium-and titatnium-based composite honeycomb catalyst and enh...

  12. Reduction of nitrate from groundwater: powder catalysts and catalytic membrane

    Institute of Scientific and Technical Information of China (English)

    CHEN Ying-xu; ZHANG Yan; LIU Hong-yuan

    2003-01-01

    The reduction of nitrate contaminant in groundwater has gained renewed and intensive attention due to the environmental problems and health risks. Catalytic denetrification presents one of the most promising approaches for the removal of nitrate from water. Catalytic nitrate reduction from water by powder catalysts and catalytic membrane in a batch reactor was studied. And the effects of the initial concentration, the amounts of catalyst, and the flux H2 on the nitrate reduction were also discussed. The results demonstrated that nitrate reduction activity and the selectivity to nitrogen gas were mainly controlled by diffusion limitations and the mass transfer of the reactants. The selectivity can improved while retaining a high catalytic activity under controlled diffusion condition or the intensification of the mass transfer, and a good reaction condition. The total nitrogen removal efficiency reached above 80%. Moreover, catalytic membrane can create a high effective gas/liquid/solid interface, and show a good selectivity to nitrogen in comparative with the powder catalyst, the selectivity to nitrogen was improved from 73.4% to 89.4%.

  13. Studies on catalytic reduction of nitrate in groundwater

    Institute of Scientific and Technical Information of China (English)

    GENG Bing; ZHU Yanfang; JIN Zhaohui; LI Tielong; KANG Haiyan; WANG Shuaima

    2007-01-01

    Catalytic reduction of nitrate in groundwater by sodium formate over the catalyst was investigated.Pd-Cu/γ-Al2O3 catalyst was prepared by impregnation and characterized by brunauer-emmett-teller (BET),inductive coupled plasma (ICP),X-ray diffraction (XRD),transmission electron microscopy (TEM) and energy dispersive X-ray (EDX).It was found that total nitrogen was effectively removed from the nitrate solution (100 mg/L) and the removal efficiency was 87%.The catalytic activity was affected by pH,catalyst amount used,concentration of sodium formate,and initial concentration of nitrate.As sodium formate was used as reductant,precise control in the initial pH was needed.Excessively high or low initial pH (7.0 or 3.0) reduced catalytic activity.At initial pH of 4.5,catalytic activity was enhanced by reducing the amount of catalyst,while concentrations of sodium formate increased with a considerable decrease in N2 selectivity.In which case,catalytic reduction followed the first order kinetics.

  14. INDUSTRIAL BOILER RETROFIT FOR NOX CONTROL: COMBINED SELECTIVE NONCATALYTIC REDUCTION AND SELECTIVE CATALYTIC REDUCTION

    Science.gov (United States)

    The paper describes retrofitting and testing a 590 kW (2 MBtu/hr), oil-fired, three-pass, fire-tube package boiler with a combined selective noncatalytic reduction (SNCR) and selective catalytic reduction (SCR) system. The system demonstrated 85% nitrogen oxides (NOx) reduction w...

  15. DEVELOPMENT OF HIGH ACTIVITY, CATALYTIC SYSTEMS FOR NOx REDUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2001-12-01

    This project was directed at an investigation of catalytic NO{sub x} reduction on carbonaceous supports at low temperatures. The experimental work was conducted primarily in a packed bed reactor/gas flow system that was constructed for this work. The analytical techniques employed were mass spectrometry, NO{sub x} chemiluminescence, and gas chromatography. The experimental plan was focused on steady-state reactivity experiments, followed by temperature programmed desorption (TPD) of surface intermediates, and also selected temperature-programmed reaction (TPR) experiments. Both uncatalyzed and catalyzed (potassium-promoted) phenolic resin char, were investigated as well as the catalytic effect of additional CO in the gas phase.

  16. Optimization and multigram scalability of a catalytic enantioselective borylative migration for the synthesis of functionalized chiral piperidines.

    Science.gov (United States)

    Kim, You-Ri; Hall, Dennis G

    2016-05-18

    The development of new, efficient and economical methods for the preparation of functionalized, optically enriched piperidines is important in the field of drug discovery where this class of heterocycles is often deemed a privileged structure. We have optimized a Pd-catalyzed enantioselective borylative migration of an alkenyl nonaflate derivative of the simple precursor, N-Boc-4-piperidone. This anomalous borylation reaction lends access to a chiral optically enriched piperidinyl allylic boronate that can be employed in carbonyl allylboration and stereoselective cross-coupling to produce substituted dehydropiperidines related to numerous pharmaceutical agents. A systematic fine-tuning of reaction conditions revealed that diethyl ether and the green solvent cyclopentyl methyl ether are suitable reaction solvents providing the highest enantioselectivity (up to 92% ee) under a low catalyst loading of 3 mol%. Optimization of the aldehyde allylboration step led to higher yields with further solvent economy. The multigram-scalability of the entire process was demonstrated under the reaction conditions that provide optimal atom-economy and efficiency. PMID:27143333

  17. Reduction of greenhouse gas emissions by catalytic processes

    International Nuclear Information System (INIS)

    Catalytic technologies for the abatement of greenhouse gases (GGs) can be an effective possibility for limiting the increasing tropospheric concentration of GGs and reducing their contribution to global warming. Two different cases are discussed: (1) reduction of anthropogenic emissions of non-CO2 GGs (N2O and CH4) and (2) reduction or conversion of CO2. In methane conversion waste gases containing diluted methane can be converted at low temperature using Pd supported on titania-ceria catalysts which show also a good resistance to deactivation. Rh supported on modified zirconia-alumina catalysts are effective and stable catalysts in low temperature decomposition of N2O. The concept of reduction of CO2 back to fuels in a photo-electrocatalytic reactor is also presented

  18. First One-step Enantioselective Reduction of á-Haloacetophenones into Styrene Oxides using Sodium Borohydride in Water

    Institute of Scientific and Technical Information of China (English)

    LI Jing-wei; XU Li-wen; XIA Chun-gu

    2004-01-01

    The synthesis of enantiomerically enriched epoxides especially styrene oxides is an interesting challenge1,2 since they are often valuable building blocks for various fine chemical products and pharmaceuticals such as (a)2-, (a)3-, and á1-adrenergic receptor agonists3, 4. In recent years,there has been a flood of papers describing the synthetical methods of the chiral non-racemic epoxides5,6. Here we firstly developed a green, simple and potential epoxidation system by enantioselective reduction of a-haloacetophenones using NaBH4 in water.The procedure of the unexpected epoxidation was firstly found accidentally in the study of L-proline-catalyzed asymmetric reduction of aldehydes, ketones in water. In that time, we observed not only reductive product a-bromophenethyl alcohol but also a small quantity of styrene oxide after three hour reduction of a-bromoacephenone in water. It is impossible to produce the epoxide in the reduction when THF acts as solvent. Then we optimized the reaction conditions and extended reaction time to 5 hr until we obtained the epoxide as a major product.Encouraged by the front results, we tried a-CD as a chiral inducement and catalyst. Cyclodextrins (CDs), a cyclic oligosaccharide composed of several D-glucose units with an a-1, 4 linkage (6, 7, 8for á-, (a)-, (a)-CD, respectively), have been recognized as versatile enzyme mimics since every one molecule of them possesses a hydrophilic outside, which can dissolve in water, and a hydrophobic cavity, which provides an apolar matrix, described as "micro heterogeneous enwronment"7. All the experiments were carried out in water under room temperature. The procedure is a green, simple and potential, although the optically active styrene oxides are obtained in only moderate ees. and yields.When á-bromoacephenone and Sodium Borohydride (1.2 equiv, to ketone) reacts in water using 150mol% (a)-CD as catalyst, a 41% chemical yield and 45% optical yield of the corresponding epoxide were obtained

  19. Alkali resistivity of Cu based selective catalytic reduction catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Jensen, Anker Degn; Riisager, Anders;

    2012-01-01

    The deactivation of V2O5–WO3–TiO2, Cu–HZSM5 and Cu–HMOR plate type monolithic catalysts was investigated when exposed to KCl aerosols in a bench-scale reactor. Fresh and exposed catalysts were characterized by selective catalytic reduction (SCR) activity measurements, scanning electron microscope...... catalysts revealed that the potassium salt not only deposited on the catalyst surface, but also penetrated into the catalyst wall. Thus, the K/M ratio (M = V or Cu) was high on V2O5–WO3–TiO2 catalyst and comparatively less on Cu–HZSM5 and Cu–HMOR catalysts. NH3-TPD revealed that the KCl exposed Cu–HZSM5...

  20. A convenient enantioselective CBS-reduction of arylketones in flow-microreactor systems.

    Science.gov (United States)

    De Angelis, Sonia; De Renzo, Maddalena; Carlucci, Claudia; Degennaro, Leonardo; Luisi, Renzo

    2016-05-01

    A convenient, versatile, and green CBS-asymmetric reduction of aryl and heteroaryl ketones has been developed by using the microreactor technology. The study demonstrates that it is possible to handle borane solution safely within microreactors and that the reaction performs well using 2-MeTHF as a greener solvent. PMID:27086654

  1. Enantioselective microbial reduction of 1,1-dimethyl-1-sila-cyclohexan-2-one with growing cells of the yeast Kloeckera corticis (ATCC 20109)

    OpenAIRE

    Tacke, Reinhold; Hengelsberg, H.; Zilch, H.; Stumpf, B

    2012-01-01

    (R)-1,1-Dimethyl-1-sila-cyclohexan-2-ol [(R)-2] was prepared by enantioselective microbial reduction of 1,1-dimethyl-1-sila-cyclohexan-2-one (1) with growing cells of the yeast Kloeckera corticis (ATCC 20109). At a substrate concentration of 0.5 g/1 (temperature 27° C, incubation time 16 h), (R}-2 was obtained on a preparative scale in 60% yield and with an enantiomeric purity of 92% ee. Repeated recrystallization of the biotransformation product from n-hexane raised the enantiomeric purity t...

  2. Atmospheric emissions from a passenger ferry with selective catalytic reduction.

    Science.gov (United States)

    Nuszkowski, John; Clark, Nigel N; Spencer, Thomas K; Carder, Daniel K; Gautam, Mridul; Balon, Thomas H; Moynihan, Paul J

    2009-01-01

    The two main propulsion engines on Staten Island Ferry Alice Austen (Caterpillar 3516A, 1550 hp each) were fitted with selective catalytic reduction (SCR) aftertreatment technology to reduce emissions of oxides of nitrogen (NOx). After the installation of the SCR system, emissions from the ferry were characterized both pre- and post-aftertreatment. Prior research has shown that the ferry operates in four modes, namely idle, acceleration, cruise, and maneuvering modes. Emissions were measured for both engines (designated NY and SI) and for travel in both directions between Manhattan and Staten Island. The emissions characterization used an analyzer system, a data logger, and a filter-based particulate matter (PM) measurement system. The measurement of NOx, carbon monoxide (CO), and carbon dioxide (CO2) were based on federal reference methods. With the existing control strategy for the SCR urea injection, the SCR provided approximately 64% reduction of NOx for engine NY and 36% reduction for engine SI for a complete round trip with less than 6.5 parts per million by volume (ppmv) of ammonia slip during urea injection. Average reductions during the cruise mode were 75% for engine NY and 47% for engine SI, which was operating differently than engine NY. Reductions for the cruise mode during urea injection typically exceeded 94% from both engines, but urea was injected only when the catalyst temperature reached a 300 degrees C threshold pre- and postcatalyst. Data analysis showed a total NOx mass emission split with 80% produced during cruise, and the remaining 20% spread across idle, acceleration, and maneuvering. Examination of continuous NOx data showed that higher reductions of NOx could be achieved on both engines by initiating the urea injection at an earlier point (lower exhaust temperature) in the acceleration and cruise modes of operation. The oxidation catalyst reduced the CO production 94% for engine NY and 82% for engine SI, although the high CO levels

  3. COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS

    Science.gov (United States)

    The report provides a methodology for estimating budgetary costs associated with retrofit applications of selective catalytic reduction (SCR) technology on coal-fired boilers. SCR is a postcombustion nitrogen oxides (NOx) control technology capable of providing NOx reductions >90...

  4. Stability and activity of alcohol dehydrogenases in W/O-microemulsions: enantioselective reduction including cofactor regeneration.

    Science.gov (United States)

    Orlich, B; Berger, H; Lade, M; Schomäcker, R

    2000-12-20

    Microemulsions provide an interesting alternative to classical methods for the conversion of less water-soluble substrates by alcohol dehydrogenase, but until now stability and activity were too low for economically useful processes. The activity and stability of the enzymes are dependent on the microemulsion composition, mostly the water and the surfactant concentration. Therefore, it is necessary to know the exact phase behavior of a given microemulsion reaction system and the corresponding enzyme behavior therein. Because of their economic and ecologic suitability polyethoxylated fatty alcohols were investigated concerning their phase behavior and their compatibility with enzymes in ternary mixtures. The phase behavior of Marlipal O13-60 (C13EO6 in industrial quality)/cyclohexane/water and its effect on the activity and stability of alcohol dehydrogenase from Yeast (YADH) and horse liver (HLADH) and the carbonyl reductase from Candida parapsilosis (CPCR) is presented in this study. Beside the macroscopic phase behavior of the reaction system, the viscosity of the system indicates structural changes of aggregates in the microemulsion. The changes of the enzyme activities with the composition are discussed on the basis of transitions from reverse micelles to swollen reverse micelles and finally, the transition to the phase separation. The formate dehydrogenase from Candida boidinii was used for the NADH-regeneration during reduction reactions. While the formate dehydrogenase did not show any kinetic effect on the microemulsion composition, the other enzymes show significant changes of activity and stability varying the water or surfactant concentration of the microemulsion. Under certain conditions, stability could be maintained with HLADH for several weeks. Successful experiments with semi-batch processes including cofactor regeneration and product separation were performed.

  5. Diesel Engine Emission Reduction Using Catalytic Nanoparticles: An Experimental Investigation

    Directory of Open Access Journals (Sweden)

    Ajin C. Sajeevan

    2013-01-01

    Full Text Available Cerium oxide being a rare earth metal with dual valance state existence has exceptional catalytic activity due to its oxygen buffering capability, especially in the nanosized form. Hence when used as an additive in the diesel fuel it leads to simultaneous reduction and oxidation of nitrogen dioxide and hydrocarbon emissions, respectively, from diesel engine. The present work investigates the effect of cerium oxide nanoparticles on performance and emissions of diesel engine. Cerium oxide nanoparticles were synthesized by chemical method and techniques such as TEM, EDS, and XRD have been used for the characterization. Cerium oxide was mixed in diesel by means of standard ultrasonic shaker to obtain stable suspension, in a two-step process. The influence of nanoparticles on various physicochemical properties of diesel fuel has also been investigated through extensive experimentation by means of ASTM standard testing methods. Load test was done in the diesel engine to investigate the effect of nanoparticles on the efficiency and the emissions from the engine. Comparisons of fuel properties with and without additives are also presented.

  6. Method and apparatus for monitoring a hydrocarbon-selective catalytic reduction device

    Energy Technology Data Exchange (ETDEWEB)

    Schmieg, Steven J; Viola, Michael B; Cheng, Shi-Wai S; Mulawa, Patricia A; Hilden, David L; Sloane, Thompson M; Lee, Jong H

    2014-05-06

    A method for monitoring a hydrocarbon-selective catalytic reactor device of an exhaust aftertreatment system of an internal combustion engine operating lean of stoichiometry includes injecting a reductant into an exhaust gas feedstream upstream of the hydrocarbon-selective catalytic reactor device at a predetermined mass flowrate of the reductant, and determining a space velocity associated with a predetermined forward portion of the hydrocarbon-selective catalytic reactor device. When the space velocity exceeds a predetermined threshold space velocity, a temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is determined, and a threshold temperature as a function of the space velocity and the mass flowrate of the reductant is determined. If the temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is below the threshold temperature, operation of the engine is controlled to regenerate the hydrocarbon-selective catalytic reactor device.

  7. Enantioselectivity Induced by Oxazaborolidine Supported on Mesoporous Silica or by Its Analog in Homogeneous Phase

    Directory of Open Access Journals (Sweden)

    Jeremy H. Yune

    2010-05-01

    Full Text Available The impact of immobilization of oxazaborolidines supported on silica via different substituents on the boron and nitrogen atoms is evaluated in the enantioselective reduction of acetophenone. The performances of the homogeneous analog oxazaborolidines and silica supported-ones are compared by varying different parameters. This article deals with the synthesis, characterization and catalytic evaluation of silica-supported oxazaborolidines, their recycling capabilities and regeneration limitations.

  8. Selective catalytic reduction of nitrogen oxides with ammonia over microporous zeolite catalysts

    OpenAIRE

    VENNESTROM, PETER NICOLAI RAVNBORG

    2014-01-01

    With increasing legislative demands to remove nitrogen oxides (NOx) from automotive diesel exhaust, new catalyst systems are investigated and intensely studied in industry as well in academia. The most prevailing catalytic method of choice is the selective catalytic reduction (SCR) where non-toxic urea is used as a reductant for practical reasons. Usually urea is stored in a separate tank and once injected into the exhaust system it hydrolyses into the more aggressive reductant NH3 and CO2. ...

  9. Efficient anti-Prelog enantioselective reduction of acetyltrimethylsilane to (R-1-trimethylsilylethanol by immobilized Candida parapsilosis CCTCC M203011 cells in ionic liquid-based biphasic systems

    Directory of Open Access Journals (Sweden)

    Zhang Bo-Bo

    2012-08-01

    Full Text Available Abstract Background Biocatalytic asymmetric reductions with whole cells can offer high enantioselectivity, environmentally benign processes and energy-effective operations and thus are of great interest. The application of whole cell-mediated bioreduction is often restricted if substrate and product have low water solubility and/or high toxicity to the biocatalyst. Many studies have shown that a biphasic system is often useful in this instance. Hence, we developed efficient biphasic reaction systems with biocompatible water-immiscible ionic liquids (ILs, to improve the biocatalytic anti-Prelog enantioselective reduction of acetyltrimethylsilane (ATMS to (R-1-trimethylsilylethanol {(R-1-TMSE}, which is key synthon for a large number of silicon-containing drugs, using immobilized Candida parapsilosis CCTCC M203011 cells as the biocatalyst. Results It was found that the substrate ATMS and the product 1-TMSE exerted pronounced toxicity to immobilized Candida parapsilosis CCTCC M203011 cells. The biocompatible water-immiscible ILs can be applied as a substrate reservoir and in situ extractant for the product, thus greatly enhancing the efficiency of the biocatalytic process and the operational stability of the cells as compared to the IL-free aqueous system. Various ILs exerted significant but different effects on the bioreduction and the performances of biocatalysts were closely related to the kinds and combination of cation and anion of ILs. Among all the water-immiscible ILs investigated, the best results were observed in 1-butyl-3-methylimidazolium hexafluorophosphate (C4mim·PF6/buffer biphasic system. Furthermore, it was shown that the optimum substrate concentration, volume ratio of buffer to IL, buffer pH, reaction temperature and shaking rate for the bioreduction were 120 mM, 8/1 (v/v, 6.0, 30°C and 180 r/min, respectively. Under these optimized conditions, the initial reaction rate, the maximum yield and the product e.e. were 8.1

  10. Modular Terpenoid Construction via Catalytic Enantioselective Formation of All-Carbon Quaternary Centers: Total Synthesis of Oridamycin A, Triptoquinones B and C, and Isoiresin.

    Science.gov (United States)

    Feng, Jiajie; Noack, Florian; Krische, Michael J

    2016-09-28

    Total syntheses of oridamycin A, triptoquinones B and C, and isoiresin are accomplished from a common intermediate prepared via iridium-catalyzed alcohol C-H tert-(hydroxy)prenylation - a byproduct-free process that forms an all-carbon quaternary stereocenter with excellent control of diastereo- and enantioselectivity.

  11. Highly efficient catalytic enantioselective Mannich reaction of malonates with N-tert-butoxycarbonyl imines by using Yb(OTf)3/pybox catalysts at room temperature.

    Science.gov (United States)

    Karimi, Babak; Jafari, Ehsan; Enders, Dieter

    2013-07-29

    Go Mannich! A highly efficient and enantioselective method for the direct asymmetric reaction of dibenzyl malonate with N-tert-butoxycarbonyl aldimines in the presence of Yb(OTf)3 and iPr-pybox complexes is described (see scheme; pybox = pyridine bisoxazoline).

  12. Novel, Regenerable Microlith Catalytic Reactor for CO2 Reduction via Bosch Process Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision Combustion, Inc. (PCI) proposes to develop an extremely compact, lightweight and regenerable MicrolithREG catalytic CO2 reduction reactor, capable of...

  13. Catalytic Radical Reduction in Aqueous Solution by a Ruthenium Hydride Intermediate.

    Science.gov (United States)

    Htet, Yamin; Tennyson, Andrew G

    2016-07-18

    Some manganese complexes can catalyze both antioxidant and pro-oxidant reactions, whereby the disparate reactivity modes are determined by the catalyst environment and afford distinct therapeutic effects. We recently reported the reduction of radicals in buffered aqueous solution catalyzed by a ruthenium complex with biologically relevant non-tertiary alcohols as terminal reductants. Mechanistic evidence is presented, indicating that this catalytic radical reduction is achieved by a Ru-hydride intermediate formed by β-hydride elimination from a Ru-alkoxide species. A similar mechanism and Ru-hydride intermediate was previously reported to kill cancer cells with catalytic pro-oxidant effects. Therefore, our demonstration of catalytic antioxidant effects by the same type of intermediate reveals new potential therapeutic strategies and applications for catalytic systems that form Ru-hydride intermediates. PMID:27254303

  14. Adaptive Model Predictive Control of Diesel Engine Selective Catalytic Reduction (SCR) Systems

    Science.gov (United States)

    McKinley, Thomas L.

    2009-01-01

    Selective catalytic reduction or SCR is coming into worldwide use for diesel engine emissions reduction for on- and off-highway vehicles. These applications are characterized by broad operating range as well as rapid and unpredictable changes in operating conditions. Significant nonlinearity, input and output constraints, and stringent performance…

  15. Enantioselectivity of Photochemical Reactions within Polymer Microcapsules

    Institute of Scientific and Technical Information of China (English)

    MA,Lei; WU,Li-Zhu; ZHANG,Li-Ping; TUNG,Chen-Ho

    2003-01-01

    Polymer microcapsule was employed as a reaction medium to achieve enantioselectivity in photochemical reduction of phenyl cyclohexyl ketone and photoelectrocyclization of tropolone methyl ether unader the influence of various chiral inductors. In all cases,low but evident enantioselectivity was observed. The poor enantioselectivity is probably due to the facts that not all the capsules include simultaneously both the chiral inductor and the reactant molecules, and the wall of the microcapsule is not rigid enough tohold the reactant and the chiral inductor moleculesin close contact.

  16. Tuning the catalytic activity of graphene nanosheets for oxygen reduction reaction via size and thickness reduction.

    Science.gov (United States)

    Benson, John; Xu, Qian; Wang, Peng; Shen, Yuting; Sun, Litao; Wang, Tanyuan; Li, Meixian; Papakonstantinou, Pagona

    2014-11-26

    Currently, the fundamental factors that control the oxygen reduction reaction (ORR) activity of graphene itself, in particular, the dependence of the ORR activity on the number of exposed edge sites remain elusive, mainly due to limited synthesis routes of achieving small size graphene. In this work, the synthesis of low oxygen content (graphene nanosheets with lateral dimensions smaller than a few hundred nanometers were achieved using a combination of ionic liquid assisted grinding of high purity graphite coupled with sequential centrifugation. We show for the first time that the graphene nanosheets possessing a plethora of edges exhibited considerably higher electron transfer numbers compared to the thicker graphene nanoplatelets. This enhanced ORR activity was accomplished by successfully exploiting the plethora of edges of the nanosized graphene as well as the efficient electron communication between the active edge sites and the electrode substrate. The graphene nanosheets were characterized by an onset potential of -0.13 V vs Ag/AgCl and a current density of -3.85 mA/cm2 at -1 V, which represent the best ORR performance ever achieved from an undoped carbon based catalyst. This work demonstrates how low oxygen content nanosized graphene synthesized by a simple route can considerably impact the ORR catalytic activity and hence it is of significance in designing and optimizing advanced metal-free ORR electrocatalysts.

  17. Multi-stage selective catalytic reduction of NOx in lean burn engine exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    Many studies suggest that the conversion of NO to NO{sub 2} is an important intermediate step in the selective catalytic reduction (SCR) of NO{sub x} to N{sub 2}. Some effort has been devoted to separating the oxidative and reductive functions of the catalyst in a multi-stage system. This method works fine for systems that require hydrocarbon addition. The hydrocarbon has to be injected between the NO oxidation catalyst and the NO{sub 2} reduction catalyst; otherwise, the first-stage oxidation catalyst will also oxidize the hydrocarbon and decrease its effectiveness as a reductant. The multi-stage catalytic scheme is appropriate for diesel engine exhausts since they contain insufficient hydrocarbons for SCR, and the hydrocarbons can be added at the desired location. For lean-burn gasoline engine exhausts, the hydrocarbons already present in the exhausts will make it necessary to find an oxidation catalyst that can oxidize NO to NO{sub 2} but not oxidize the hydrocarbon. A plasma can also be used to oxidize NO to NO{sub 2}. Plasma oxidation has several advantages over catalytic oxidation. Plasma-assisted catalysis can work well for both diesel engine and lean-burn gasoline engine exhausts. This is because the plasma can oxidize NO in the presence of hydrocarbons without degrading the effectiveness of the hydrocarbon as a reductant for SCR. In the plasma, the hydrocarbon enhances the oxidation of NO, minimizes the electrical energy requirement, and prevents the oxidation of SO{sub 2}. This paper discusses the use of multi-stage systems for selective catalytic reduction of NO{sub x}. The multi-stage catalytic scheme is compared to the plasma-assisted catalytic scheme.

  18. Reductive cyclodimerization of arylmethylidenemalononitriles promoted by samarium and catalytic amount of iodine: facile synthesis of cyclopentene derivatives

    Institute of Scientific and Technical Information of China (English)

    陈珏; 张永敏

    2004-01-01

    Samarium and a catalytic amount of iodine were used to obtain functionalized cyclopentenes by reductive dimerization followed by intramolecular cyclization of 1, 1-dicyanoalkenes under mild conditions.

  19. A consistent reaction scheme for the selective catalytic reduction of nitrogen oxides with ammonia

    DEFF Research Database (Denmark)

    Janssens, Ton V.W.; Falsig, Hanne; Lundegaard, Lars Fahl;

    2015-01-01

    For the first time, the standard and fast selective catalytic reduction of NO by NH3 are described in a complete catalytic cycle, that is able to produce the correct stoichiometry, while only allowing adsorption and desorption of stable molecules. The standard SCR reaction is a coupling of the ac......For the first time, the standard and fast selective catalytic reduction of NO by NH3 are described in a complete catalytic cycle, that is able to produce the correct stoichiometry, while only allowing adsorption and desorption of stable molecules. The standard SCR reaction is a coupling...... of the activation of NO by O2 with the fast SCR reaction, enabled by the release of NO2. According to the scheme, the SCR reaction can be divided in an oxidation of the catalyst by NO + O2 and a reduction by NO + NH3; these steps together constitute a complete catalytic cycle. Furthermore both NO and NH3...... spectroscopy (FTIR). A consequence of the reaction scheme is that all intermediates in fast SCR are also part of the standard SCR cycle. The calculated activation energy by density functional theory (DFT) indicates that the oxidation of an NO molecule by O2 to a bidentate nitrate ligand is rate determining...

  20. Water Soluble Iron aminoclay for Catalytic Reduction of Nitrophenol

    Directory of Open Access Journals (Sweden)

    S. ANBU ANJUGAM VANDARKUZHALI

    2013-06-01

    Full Text Available Water soluble iron decorated phyllosilicate is synthesized through one pot sol-gel synthesis by a wet chemical method using NaBH4 as reducing agent. The as-synthesized nanocomposite is characterized by powder-XRD and TGA techniques. The morphology of the composite is obtained using HRSEM and HRTEM. The prepared nanocomposite is an efficient catalyst for the reduction of nitrophenol.

  1. Long-time experience in catalytic flue gas cleaning and catalytic NO{sub x} reduction in biofueled boilers

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen, M. [Tampella Power Inc., Tampere (Finland)

    1996-12-31

    NO emissions are reduced by primary or secondary methods. Primary methods are based on NO reduction in the combustion zone and secondary methods on flue gas cleaning. The most effective NO reduction method is selective catalytic reduction (SCR). It is based on NO reduction by ammonia on the surface of a catalyst. Reaction products are water and nitrogen. A titanium-dioxide-based catalyst is very durable and selective in coal-fired power plants. It is not poisoned by sulphur dioxide and side reactions with ammonia and sulphur dioxide hardly occur. The long time experience and suitability of a titanium-dioxide-based catalyst for NO reduction in biofuel-fired power plants was studied. The biofuels were: peat, wood and bark. It was noticed that deactivation varied very much due to the type of fuel and content of alkalinities in fuel ash. The deactivation in peat firing was moderate, close to the deactivation noticed in coal firing. Wood firing generally had a greater deactivation effect than peat firing. Fuel and fly ash were analyzed to get more information on the flue gas properties. The accumulation of alkali and alkaline earth metals and sulphates was examined together with changes in the physical composition of the catalysts. In the cases where the deactivation was the greatest, the amount of alkali and alkaline earth metals in fuels and fly ashes and their accumulation were very significant. (author) (3 refs.)

  2. GENERIC VERIFICATION PROTOCOL FOR DETERMINATION OF EMISSIONS REDUCTIONS FROM SELECTIVE CATALYTIC REDUCTIONS CONTROL TECHNOLOGIES FOR HIGHWAY, NONROAD, AND STATIONARY USE DIESEL ENGINES

    Science.gov (United States)

    The protocol describes the Environmental Technology Verification (ETV) Program's considerations and requirements for verification of emissions reduction provided by selective catalytic reduction (SCR) technologies. The basis of the ETV will be comparison of the emissions and perf...

  3. INVESTIGATION OF SELECTIVE CATALYTIC REDUCTION IMPACT ON MERCURY SPECIATION UNDER SIMULATED NOX EMISSION CONTROL CONDITIONS

    Science.gov (United States)

    Selective catalytic reduction (SCR) technology is being increasingly applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury in the coal com...

  4. COMPARISON OF WEST GERMAN AND U.S. FLUE GAS DESULFURIZATION AND SELECTIVE CATALYTIC REDUCTION COSTS

    Science.gov (United States)

    The report documents a comparison of the actual cost retrofitting flue gas desulfurization (FGD) and selective catalytic reduction (SCR) on Federal Republic of German (FRG) boilers to cost estimating procedures used in the U.S. to estimate the retrofit of these controls on U.S. b...

  5. Chemical deactivation of Cu-SSZ-13 ammonia selective catalytic reduction (NH3-SCR) systems

    NARCIS (Netherlands)

    Lezcano-Gonzalez, I.; Deka, U.; van der Bij, H. E.; Paalanen, P.; Arstad, B.; Weckhuysen, B. M.; Beale, A. M.

    2014-01-01

    The chemical deactivation of Cu-SSZ-13 Ammonia Selective Catalytic Reduction (NH3-SCR) catalysts by Pt, Zn, Ca and P has been systematically investigated using a range of analytical techniques in order to study the influence on both the zeolitic framework and the active Cu2+ ions. The results obtain

  6. Synthesis of chitosan supported palladium nanoparticles and its catalytic activity towards 2-nitrophenol reduction

    Science.gov (United States)

    Dhanavel, S.; Nivethaa, E. A. K.; Esther, G.; Narayanan, V.; Stephen, A.

    2016-05-01

    Chitosan supported Palladium nanoparticles were synthesized by a simple cost effective chemical reduction method using NaBH4. The prepared nanocomposite was characterized by X-Ray diffraction analysis, FESEM and Energy dispersive spectroscopy analysis of X-rays (EDAX). The catalytic performance of the nanocomposite was evaluated on the reduction of 2-Nitrophenol to the 2-Amino phenol with rate constant 1.08 × 10-3 S-1 by NaBH4 using Spectrophotometer.

  7. Enantioselective olefin metathesis with cyclometalated ruthenium complexes.

    Science.gov (United States)

    Hartung, John; Dornan, Peter K; Grubbs, Robert H

    2014-09-17

    The success of enantioselective olefin metathesis relies on the design of enantioenriched alkylidene complexes capable of transferring stereochemical information from the catalyst structure to the reactants. Cyclometalation of the NHC ligand has proven to be a successful strategy to incorporate stereogenic atoms into the catalyst structure. Enantioenriched complexes incorporating this design element catalyze highly Z- and enantioselective asymmetric ring opening/cross metathesis (AROCM) of norbornenes and cyclobutenes, and the difference in ring strain between these two substrates leads to different propagating species in the catalytic cycle. Asymmetric ring closing metathesis (ARCM) of a challenging class of prochiral trienes has also been achieved. The extent of reversibility and effect of reaction setup was also explored. Finally, promising levels of enantioselectivity in an unprecedented Z-selective asymmetric cross metathesis (ACM) of a prochiral 1,4-diene was demonstrated.

  8. Enantioselective Olefin Metathesis with Cyclometalated Ruthenium Complexes

    Science.gov (United States)

    2015-01-01

    The success of enantioselective olefin metathesis relies on the design of enantioenriched alkylidene complexes capable of transferring stereochemical information from the catalyst structure to the reactants. Cyclometalation of the NHC ligand has proven to be a successful strategy to incorporate stereogenic atoms into the catalyst structure. Enantioenriched complexes incorporating this design element catalyze highly Z- and enantioselective asymmetric ring opening/cross metathesis (AROCM) of norbornenes and cyclobutenes, and the difference in ring strain between these two substrates leads to different propagating species in the catalytic cycle. Asymmetric ring closing metathesis (ARCM) of a challenging class of prochiral trienes has also been achieved. The extent of reversibility and effect of reaction setup was also explored. Finally, promising levels of enantioselectivity in an unprecedented Z-selective asymmetric cross metathesis (ACM) of a prochiral 1,4-diene was demonstrated. PMID:25137310

  9. Enantioselective olefin metathesis with cyclometalated ruthenium complexes.

    Science.gov (United States)

    Hartung, John; Dornan, Peter K; Grubbs, Robert H

    2014-09-17

    The success of enantioselective olefin metathesis relies on the design of enantioenriched alkylidene complexes capable of transferring stereochemical information from the catalyst structure to the reactants. Cyclometalation of the NHC ligand has proven to be a successful strategy to incorporate stereogenic atoms into the catalyst structure. Enantioenriched complexes incorporating this design element catalyze highly Z- and enantioselective asymmetric ring opening/cross metathesis (AROCM) of norbornenes and cyclobutenes, and the difference in ring strain between these two substrates leads to different propagating species in the catalytic cycle. Asymmetric ring closing metathesis (ARCM) of a challenging class of prochiral trienes has also been achieved. The extent of reversibility and effect of reaction setup was also explored. Finally, promising levels of enantioselectivity in an unprecedented Z-selective asymmetric cross metathesis (ACM) of a prochiral 1,4-diene was demonstrated. PMID:25137310

  10. Catalytic Activity of Iridium Dioxide With Different Morphologies for Oxygen Reduction Reaction

    Institute of Scientific and Technical Information of China (English)

    WANG Guangjin; HUANG Fei; XU Tian; YU Yi; CHENG Feng; ZHANG Yue; PAN Mu

    2015-01-01

    Iridium dioxide with different morphologies (nanorod and nanogranular) is successfully prepared by a modiifed sol-gel and Adams methods. The catalytic activity of both samples for oxygen reduction reaction is investigated in an alkaline solution. The electrochemical results show that the catalytic activity of the nanogranular IrO2 sample is superior to that of the nanorod sample due to its higher onset potential for oxygen reduction reaction and higher electrode current density in low potential region. The results of Koutecky-Levich analysis indicate that the oxygen reduction reaction catalyzed by both samples is a mixture transfer pathway. It is dominated by four electron transfer pathway for both samples in high overpotential area, while it is controlled by two electron transfer process for both samples in low overpotential area.

  11. In situ synthesized gold nanoparticles in hydrogels for catalytic reduction of nitroaromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiao-Qiong; Wu, Xing-Wen; Huang, Qing [Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Shen, Jiang-Shan, E-mail: jsshen@iue.ac.cn [Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China); Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo 315800 (China); Zhang, Hong-Wu, E-mail: hwzhang@iue.ac.cn [Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021 (China)

    2015-03-15

    Graphical abstract: - Highlights: • In situ preparing Au nanoparticles by photoreduction in chitosan hydrogels was firstly achieved. • In situ photoreduction for creating Au nanoparticles is environmentally friendly and the operation procedure is very simple. • The as-prepared Au nanoparticles have good catalytic performance. • Affording an effective strategy for converting some high explosive compounds such as 2,4,6-tNT to nonexplosive. - Abstract: Developing hydrogel systems featured by catalytic active is of importance to construct highly effective platforms for removing environmental pollutants/hazardous substances or for bio-/chemosensing. Reported herein are our recent finding that Au nanoparticles could be in situ prepared in chitosan-Au{sup III} hydrogel system via photoreduction, and the as-prepared Au nanoparticles could be employed for the catalytic reduction of a series of nitroaromatic compounds by sodium borohydride (NaBH{sub 4}). Experimental conditions of synthesizing Au nanoparticles, including pH, concentration of Au{sup III}, and light irradiation time were systematically investigated. The as-prepared Au nanoparticles were characterized by UV–vis absorption spectroscopy, X-ray diffraction (XRD), transmission and field emission scanning electron microscopy (TEM and FESEM). This is the first example for in situ formed metal nanoparticles in chitosan hydrogel systems via photoreduction. The effectiveness of the as-prepared Au nanoparticles as nanocatalysts was evaluated by employing the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by NaBH{sub 4} as a model reaction. The catalytic reduction reaction was found to be very efficient and to follow a pseudo-first-order kinetics. The as-prepared Au nanoparticles demonstrated good reusability and stability. The reduction of a series of other nitroaromatic compounds including highly explosives 2,4,6-trinitrophenol (2,4,6-tNP) and 2,4,6-trinitrotoluene (2,4,6-tNT) was achieved by means

  12. A feasibility study of catalytic reduction method for tritium recovery from tritiated water

    International Nuclear Information System (INIS)

    Feasibility of catalytic reduction method for the application to the tritium recovery process in the fusion fuel cleanup system and the blanket tritium recovery system was studied by experimental work and the thermodynamic analysis. Reduction experiments of H2O vapor with Ar carrier were carried out under the following conditions: temperature; 350 -- 650 K, H2O vapor concentration in feed gas; 103 -- 104 ppm, mole ratio of CO to H2O; 1 -- 10, space velocity; 2 x 102 -- 2 x 104 hr-1. Catalyst was the mixture of CuO, ZnO and Cr2O3, which has been used as the catalyst for the water-gas shift reaction H2O(g) + CO(g) reversible H2(g) + CO2(g). Relations between the conversion factor for H2O vapor and the operating conditions such as temperature, feed composition and feed flow rate were obtained by the experiments. Catalytic reaction rate equation and the rate constants, which can be used for designing a practicable catalytic reduction bed, were also determined by the treatment of the second order reaction. Advantages of the tritium recovery system composed of the reduction bed and palladium diffusers were verified by the present experiments and the study of several tritium recovery systems. Very high recovery ratio will be obtained at low operation temperature by the systems. (author)

  13. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  14. Conformation and Catalytic Properties Studies of Candida rugosa Lip7 via Enantioselective Esterification of Ibuprofen in Organic Solvents and Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2013-01-01

    Full Text Available Enantioselective esterification of ibuprofen was conducted to evaluate the enzyme activity and ees of lipase from Candida rugosa (CRL7 in ten conventional organic solvents and three ionic liquids. Different alcohols were tested for selecting the most suitable acyl acceptor due to the fact that the structure of alcohols (branch and length of carbon chains; location of –OH functional group could affect the enzyme activity and ees. The results of alcohol and solvent selection revealed that 1-isooctanol and isooctane were the best substrate and reaction medium, respectively, because of the highest enzyme activity and ees. Compared with the control, conformational studies via FT-IR indicate that the variations of CRL7’s secondary structure elements are probably responsible for the differences of enzyme activity and ees in the organic solvents and ionic liquids. Moreover, the effects of reaction parameters, such as molar ratio, water content, temperature, and reaction time, in the selected reaction medium, were also examined.

  15. Research on Catalytic Properties of Palladium Catalyst Prepared by Biological Reduction Method

    Institute of Scientific and Technical Information of China (English)

    Zhang Feng; Fu Jiquan

    2013-01-01

    This paper relates to highly dispersed supported Pd/MWCNTs and Pd/α-Al2O3 catalysts prepared by biological reduction method. The physico-chemical properties and the difference in catalytic activity of Pd catalysts prepared by bio-logical reduction method and chemical method, respectively, were investigated using XRD, TEM and speciifc surface char-acterization methods. The catalytic properties of catalysts were studied through activity evaluation means. The test results showed that the catalysts prepared by biological method were characteristic of small Pd nanoparticle size, good dispersion and low agglomeration, while possessing a high activity and stability in styrene hydrogenation reaction in comparison with catalysts prepared via the chemical method.

  16. Selective catalytic reduction of nitrogen oxides from industrial gases by hydrogen or methane

    International Nuclear Information System (INIS)

    This work deals with the selective catalytic reduction of nitrogen oxides (NOx), contained in the effluents of industrial plants, by hydrogen or methane. The aim is to replace ammonia, used as reducing agent, in the conventional process. The use of others reducing agents such as hydrogen or methane is interesting for different reasons: practical, economical and ecological. The catalyst has to convert selectively NO into N2, in presence of an excess of oxygen, steam and sulfur dioxide. The developed catalyst is constituted by a support such as perovskites, particularly LaCoO3, on which are dispersed noble metals (palladium, platinum). The interaction between the noble metal and the support, generated during the activation of the catalyst, allows to minimize the water and sulfur dioxide inhibitor phenomena on the catalytic performances, particularly in the reduction of NO by hydrogen. (O.M.)

  17. Solid-phase reduction of Cr2O3 under chemical catalytic conditions

    Science.gov (United States)

    Simonov, V. K.; Grishin, A. M.

    2016-06-01

    The kinetics of the solid-phase reduction of Cr2O3 with carbon under chemical catalytic action on the reacting system is studied. A significant intensification of the process in the presence of small amounts of potassium and sodium salts is established. The concepts of the catalyst action mechanism are considered and experimentally substantiated. Manufacture of iron-chromium master alloys with a restricted content of carbon can be organized at low temperatures, and they can be used in steelmaking.

  18. Catalytic reduction of NO by methane using a Pt/C/polybenzimidazole/Pt/C fuel cell

    DEFF Research Database (Denmark)

    Petrushina, Irina; Cleemann, Lars Nilausen; Refshauge, Rasmus;

    2007-01-01

    The catalytic NO reduction by methane was studied using a (NO,CH4,Ar),Pt|polybenzimidazole(PBI)–H3PO4|Pt,(H2,Ar) fuel cell at 135 and 165°C. It has been found that, without any reducing agent (like CH4), NO can be electrochemically reduced in the (NO, Ar), Pt/C|PBI–H3PO4|Pt/C, (H2,Ar) fuel cell...

  19. HYBRID SELECTIVE NON-CATALYTIC REDUCTION (SNCR)/SELECTIVE CATALYTIC REDUCTION (SCR) DEMONSTRATION FOR THE REMOVAL OF NOx FROM BOILER FLUE GASES; FINAL

    International Nuclear Information System (INIS)

    The U. S. Department of Energy (DOE), Electric Power Research Institute (EPRI), Pennsylvania Electric Energy Research Council, (PEERC), New York State Electric and Gas and GPU Generation, Inc. jointly funded a demonstration to determine the capabilities for Hybrid SNCR/SCR (Selective Non-Catalytic Reduction/Selective Catalytic Reduction) technology. The demonstration site was GPU Generation's Seward Unit No.5 (147MW) located in Seward Pennsylvania. The demonstration began in October of 1997 and ended in December 1998. DOE funding was provided through Grant No. DE-FG22-96PC96256 with T. J. Feeley as the Project Manager. EPRI funding was provided through agreements TC4599-001-26999 and TC4599-002-26999 with E. Hughes as the Project Manager. This project demonstrated the operation of the Hybrid SNCR/SCR NO(sub x) control process on a full-scale coal fired utility boiler. The hybrid technology was expected to provide a cost-effective method of reducing NO(sub x) while balancing capital and operation costs. An existing urea based SNCR system was modified with an expanded-duct catalyst to provide increased NO(sub x) reduction efficiency from the SNCR while producing increased ammonia slip levels to the catalyst. The catalyst was sized to reduce the ammonia slip to the air heaters to less than 2 ppm while providing equivalent NO(sub x) reductions. The project goals were to demonstrate hybrid technology is capable of achieving at least a 55% reduction in NO(sub x) emissions while maintaining less than 2ppm ammonia slip to the air heaters, maintain flyash marketability, verify the cost benefit and applicability of Hybrid post combustion technology, and reduce forced outages due to ammonium bisulfate (ABS) fouling of the air heaters. Early system limitations, due to gas temperature stratification, restricted the Hybrid NO(sub x) reduction capabilities to 48% with an ammonia slip of 6.1 mg/Nm(sup 3) (8 ppm) at the catalyst inlet. After resolving the stratification problem

  20. HYBRID SELECTIVE NON-CATALYTIC REDUCTION (SNCR)/SELECTIVE CATALYTIC REDUCTION (SCR) DEMONSTRATION FOR THE REMOVAL OF NOx FROM BOILER FLUE GASES

    Energy Technology Data Exchange (ETDEWEB)

    Jerry B. Urbas

    1999-05-01

    The U. S. Department of Energy (DOE), Electric Power Research Institute (EPRI), Pennsylvania Electric Energy Research Council, (PEERC), New York State Electric and Gas and GPU Generation, Inc. jointly funded a demonstration to determine the capabilities for Hybrid SNCR/SCR (Selective Non-Catalytic Reduction/Selective Catalytic Reduction) technology. The demonstration site was GPU Generation's Seward Unit No.5 (147MW) located in Seward Pennsylvania. The demonstration began in October of 1997 and ended in December 1998. DOE funding was provided through Grant No. DE-FG22-96PC96256 with T. J. Feeley as the Project Manager. EPRI funding was provided through agreements TC4599-001-26999 and TC4599-002-26999 with E. Hughes as the Project Manager. This project demonstrated the operation of the Hybrid SNCR/SCR NO{sub x} control process on a full-scale coal fired utility boiler. The hybrid technology was expected to provide a cost-effective method of reducing NO{sub x} while balancing capital and operation costs. An existing urea based SNCR system was modified with an expanded-duct catalyst to provide increased NO{sub x} reduction efficiency from the SNCR while producing increased ammonia slip levels to the catalyst. The catalyst was sized to reduce the ammonia slip to the air heaters to less than 2 ppm while providing equivalent NO{sub x} reductions. The project goals were to demonstrate hybrid technology is capable of achieving at least a 55% reduction in NO{sub x} emissions while maintaining less than 2ppm ammonia slip to the air heaters, maintain flyash marketability, verify the cost benefit and applicability of Hybrid post combustion technology, and reduce forced outages due to ammonium bisulfate (ABS) fouling of the air heaters. Early system limitations, due to gas temperature stratification, restricted the Hybrid NO{sub x} reduction capabilities to 48% with an ammonia slip of 6.1 mg/Nm{sup 3} (8 ppm) at the catalyst inlet. After resolving the stratification

  1. Kinetics of Carbothermic Reduction of MnO2 and Catalytic Effect of La2O3

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Kinetics of carbothermic reduction of manganese oxide and the catalytic effect of La2O3 on the reduction have been studied by the measurement of mass loss in N2 atmosphere at different temperatures and followed by SEM analysis. It is concluded that the kinetics of carbothermic reduction of manganese oxide is divided into three stages: gas diffusion controlling stage, carbon gasification controlling stage and solid state diffusion controlling stage. La2O3 has catalytic effect on the reduction. The catalytic effect of La2O3 increases with the added amount of La2O3. SEM analysis shows that the catalytic mechanism is that Laa2O3 promotes the transfer of oxygen ions so that carbon gasifying is catalyzed and thus carbothermic reduction of MnO3 is catalyzed.

  2. Catalytic reduction of NO by methane using a Pt/C/polybenzimidazole/Pt/C fuel cell

    OpenAIRE

    Petrushina, Irina; Cleemann, Lars Nilausen; Refshauge, Rasmus; Bjerrum, Niels; Bandur, Viktor

    2007-01-01

    The catalytic NO reduction by methane was studied using a (NO,CH4,Ar),Pt|polybenzimidazole(PBI)–H3PO4|Pt,(H2,Ar) fuel cell at 135 and 165°C. It has been found that, without any reducing agent (like CH4), NO can be electrochemically reduced in the (NO, Ar), Pt/C|PBI–H3PO4|Pt/C, (H2,Ar) fuel cell with participation of H+ or electrochemically produced hydrogen. When added, methane partially suppresses the electrochemical reduction of NO. Methane outlet concentration monitoring has shown the CH4 ...

  3. Biomimetic Modeling of Copper Complexes: A Study of Enantioselective Catalytic Oxidation on D-(+-Catechin and L-(−-Epicatechin with Copper Complexes

    Directory of Open Access Journals (Sweden)

    Francesco G. Mutti

    2008-01-01

    Full Text Available The biomimetic catalytic oxidations of the dinuclear and trinuclear copper(II complexes versus two catechols, namely, D-(+-catechin and L-(−-epicatechin to give the corresponding quinones are reported. The unstable quinones were trapped by the nucleophilic reagent, 3-methyl-2-benzothiazolinone hydrazone (MBTH, and have been calculated the molar absorptivities of the different quinones. The catalytic efficiency is moderate, as inferred by kinetic constants, but the complexes exhibit significant enantio-differentiating ability towards the catechols, albeit for the dinuclear complexes, this enantio-differentiating ability is lower. In all cases, the preferred enantiomeric substrate is D-(+-catechin to respect the other catechol, because of the spatial disposition of this substrate.

  4. Catalytic performance of Fe-ZSM-5 catalysts for selective catalytic reduction of nitric oxide by ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Long, R.Q.; Yang, R.T.

    1999-12-10

    A series of Fe-exchanged molecular sieves were studied as catalysts for the selective catalytic reduction (SCR) of NO with ammonia. It was found that Fe-ZSM-5 and Fe-mordenite catalysts were highly active for the SCR reaction. Nearly 100% NO conversions were obtained at 400--500 C under conditions with a high space velocity (GHSV = 4.6 x 10{sup 5} 1/h). However, Fe-Y and Fe-MCM-41 with larger pore sizes showed lower activities for this reaction. F or Fe-ZSM-5 catalysts, the SCR activity decreased with increasing Si/Al ratio in the zeolites. As the Fe-exchange level in the Fe-ZSM-5 catalysts was increased from 58 to 252%, NO conversion increased at lower temperatures (e.g., 300 C), but decreased at high temperatures (e.g., 600 C). Compared with the commercial vanadia catalyst, based on the first-order rate constants, the Fe-ZSM-5 catalyst was five times more active at 400 C and seven times more active at 450 C. It also functioned in a broader temperature window, produced only N{sub 2} (rather than N{sub 2}O) and H{sub 2}O, and showed a substantially lower activity for oxidation of SO{sub 2} to SO{sub 3}.

  5. Selective catalytic reduction of nitric oxide by ammonia over Cu-exchanged Cuban natural zeolites

    International Nuclear Information System (INIS)

    The catalytic selective reduction of NO over Cu-exchanged natural zeolites (mordenite (MP) and clinoptilolite (HC)) from Cuba using NH3 as reducing agent and in the presence of excess oxygen was studied. Cu(II)-exchanged zeolites are very active catalysts, with conversions of NO of 95%, a high selectivity to N2 at low temperatures, and exhibiting good water tolerance. The chemical state of the Cu(II) in exchanged zeolites was characterized by H2-TPR and XPS. Cu(II)-exchanged clinoptilolite underwent a severe deactivation in the presence of SO2. However, Cu(II)-exchanged mordenite not only maintained its catalytic activity, but even showed a slight improvement after 20h of reaction in the presence of 100ppm of SO2

  6. Communication: Towards catalytic nitric oxide reduction via oligomerization on boron doped graphene

    Science.gov (United States)

    Cantatore, Valentina; Panas, Itai

    2016-04-01

    We use density functional theory to describe a novel way for metal free catalytic reduction of nitric oxide NO utilizing boron doped graphene. The present study is based on the observation that boron doped graphene and O—N=N—O- act as Lewis acid-base pair allowing the graphene surface to act as a catalyst. The process implies electron assisted N=N bond formation prior to N—O dissociation. Two N2 + O2 product channels, one of which favoring N2O formation, are envisaged as outcome of the catalytic process. Besides, we show also that the N2 + O2 formation pathways are contrasted by a side reaction that brings to N3O3- formation and decomposition into N2O + NO2-.

  7. Enhanced Activity of Nanocrystalline Zeolites for Selective Catalytic Reduction of NOx

    International Nuclear Information System (INIS)

    Nanocrystalline zeolites with discrete crystal sizes of less than 100 nm have different properties relative to zeolites with larger crystal sizes. Nanocrystalline zeolites have improved mass transfer properties and very large internal and external surface areas that can be exploited for many different applications. The additional external surface active sites and the improved mass transfer properties of nanocrystalline zeolites offer significant advantages for selective catalytic reduction (SCR) catalysis with ammonia as a reductant in coal-fired power plants relative to current zeolite based SCR catalysts. Nanocrystalline NaY was synthesized with a crystal size of 15-20 nm and was thoroughly characterized using x-ray diffraction, electron paramagnetic resonance spectroscopy, nitrogen adsorption isotherms and Fourier Transform Infrared (FT-IR) spectroscopy. Copper ions were exchanged into nanocrystalline NaY to increase the catalytic activity. The reactions of nitrogen dioxides (NOx) and ammonia (NH3) on nanocrystalline NaY and CuY were investigated using FT-IR spectroscopy. Significant conversion of NO2 was observed at room temperature in the presence of NH3 as monitored by FT-IR spectroscopy. Copper-exchanged nanocrystalline NaY was more active for NO2 reduction with NH3 relative to nanocrystalline NaY

  8. Using Acetylene for Selective Catalytic Reduction of NO in Excess Oxygen

    Institute of Scientific and Technical Information of China (English)

    YU Shan-Shan; WANG Xin-Ping; WANG Chong; XU Yan

    2006-01-01

    Acetylene as a reducing agent for selective catalytic reduction of NO (C2H2-SCR) was investigated over a series of metal exchanged HY catalysts, in the reaction system of 0.16% NO, 0.08% C2H2, and 9.95% O2 (volume percent)in He. 75% of NO conversion to N2 with hydrocarbon efficiency about 1.5 was achieved over a Ce-HY catalyst around 300 ℃. The NO removal level was comparable with that of selective catalytic reduction of NOx by C3H6reported in literatures, although only one third of the reducing agent in carbon moles was used in the C2H2-SCR of NO. The protons in zeolite were crucial to the C2H2-SCR of NO, and the performance of HY in the reaction was significantly promoted by cerium incorporation into the zeolite. NO2 was proposed to be the intermediate of NO reduction to N2, and the oxidation of NO to NO2 was rate-determining step of the C2H2-SCR of NO over Ce-HY.The suggestion was well supported by the results of the NO oxidation with O2, and the C2H2 consumption under the conditions in the presence or absence of NO.

  9. Selective catalytic reduction of sulfur dioxide to elemental sulfur. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

    1995-06-01

    This project has investigated new metal oxide catalysts for the single stage selective reduction of SO{sub 2} to elemental sulfur by a reductant, such as CO. Significant progress in catalyst development has been made during the course of the project. We have found that fluorite oxides, CeO{sub 2} and ZrO{sub 2}, and rare earth zirconates such as Gd{sub 2}Zr{sub 2}O{sub 7} are active and stable catalysts for reduction Of SO{sub 2} by CO. More than 95% sulfur yield was achieved at reaction temperatures about 450{degrees}C or higher with the feed gas of stoichiometric composition. Reaction of SO{sub 2} and CO over these catalysts demonstrated a strong correlation of catalytic activity with the catalyst oxygen mobility. Furthermore, the catalytic activity and resistance to H{sub 2}O and CO{sub 2} poisoning of these catalysts were significantly enhanced by adding small amounts of transition metals, such as Co, Ni, Co, etc. The resulting transition metal-fluorite oxide composite catalyst has superior activity and stability, and shows promise in long use for the development of a greatly simplified single-step sulfur recovery process to treat variable and dilute SO{sub 2} concentration gas streams. Among various active composite catalyst systems the Cu-CeO{sub 2} system has been extensively studied. XRD, XPS, and STEM analyses of the used Cu-CeO{sub 2} catalyst found that the fluorite crystal structure of ceria was stable at the present reaction conditions, small amounts of copper was dispersed and stabilized on the ceria matrix, and excess copper oxide particles formed copper sulfide crystals of little contribution to catalytic activity. A working catalyst consisted of partially sulfated cerium oxide surface and partially sulfided copper clusters. The overall reaction kinetics were approximately represented by a first order equation.

  10. Selective catalytic reduction system and process using a pre-sulfated zirconia binder

    Science.gov (United States)

    Sobolevskiy, Anatoly; Rossin, Joseph A.

    2010-06-29

    A selective catalytic reduction (SCR) process with a palladium catalyst for reducing NOx in a gas, using hydrogen as a reducing agent is provided. The process comprises contacting the gas stream with a catalyst system, the catalyst system comprising (ZrO.sub.2)SO.sub.4, palladium, and a pre-sulfated zirconia binder. The inclusion of a pre-sulfated zirconia binder substantially increases the durability of a Pd-based SCR catalyst system. A system for implementing the disclosed process is further provided.

  11. Study of tritium labelling by solid-state catalytic reductive dehalogenation

    Energy Technology Data Exchange (ETDEWEB)

    Filikov, A.V.; Myasoedov, N.F. (AN SSSR, Moscow. Inst. Molekulyarnoj Genetiki)

    1984-04-02

    A reaction mechanism is proposed for tritium labelling by the solid-state catalytic reductive dehalogenation (SCRD) method based on hydrogen spillover. A model system (palladium membrane with a layer of the original organic compound) is used for a kinetic study of the debromination of 5-bromouracil and the isotope exchange of ..cap alpha..-alanine at pressure of 0.07-20 kPa. A kinetic model is considered for the spillover stoppage due to the contamination of penetration centres by the reaction product. Other possible causes of the spillover stoppage are discussed. 6 refs.; 3 figs.

  12. Aromaticity as stabilizing element in the bidentate activation for the catalytic reduction of carbon dioxide.

    Science.gov (United States)

    Lu, Zhenpin; Hausmann, Heike; Becker, Sabine; Wegner, Hermann A

    2015-04-29

    A new transition-metal-free mode for the catalytic reduction of carbon dioxide via bidentate interaction has been developed. In the presence of Li2[1,2-C6H4(BH3)2], CO2 can be selectively transformed to either methane or methanol, depending on the reducing agent. The bidentate nature of binding is supported by X-ray analysis of an intermediate analogue, which experiences special stabilization due to aromatic character in the bidentate interaction. Kinetic studies revealed a first-order reaction rate. The transformation can be conducted without any solvent. PMID:25871326

  13. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity.

    Science.gov (United States)

    Matsubu, John C; Yang, Vanessa N; Christopher, Phillip

    2015-03-01

    CO2 reduction by H2 on heterogeneous catalysts is an important class of reactions that has been studied for decades. However, atomic scale details of structure-function relationships are still poorly understood. Particularly, it has been suggested that metal particle size plays a unique role in controlling the stability of CO2 hydrogenation catalysts and the distribution of active sites, which dictates reactivity and selectivity. These studies often have not considered the possible role of isolated metal active sites in the observed dependences. Here, we utilize probe molecule diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) with known site-specific extinction coefficients to quantify the fraction of Rh sites residing as atomically dispersed isolated sites (Rhiso), as well as Rh sites on the surface of Rh nanoparticles (RhNP) for a series of TiO2 supported Rh catalysts. Strong correlations were observed between the catalytic reverse water gas shift turn over frequency (TOF) and the fraction of Rhiso sites and between catalytic methanation TOF and the fraction of RhNP sites. Furthermore, it was observed that reaction condition-induced disintegration of Rh nanoparticles, forming Rhiso active sites, controls the changing reactivity with time on stream. This work demonstrates that isolated atoms and nanoparticles of the same metal on the same support can exhibit uniquely different catalytic selectivity in competing parallel reaction pathways and that disintegration of nanoparticles under reaction conditions can play a significant role in controlling stability. PMID:25671686

  14. Self-Assembly of a Library of Polyborate Chiral Anions for Asymmetric Catalytic Quinoline Reduction

    Science.gov (United States)

    Desai, Aman A.; Guan, Yong; Odom, Aaron L.; Majumder, Supriyo; Wulff, William D.

    2015-01-01

    The ‘template’ polyborate BOROX catalysts are shown to mediate the asymmetric transfer hydrogenation of 2-quinolines. The rapid and simple generation of a large family of BOROX catalysts with significantly altered asymmetric pockets is described. A transition state model that explains the enantioselectivity is proposed. PMID:26034335

  15. Catalytic Reductive Degradation of Methyl Orange Using Air Resilient Copper Nanostructures

    Directory of Open Access Journals (Sweden)

    Razium Ali Soomro

    2015-01-01

    Full Text Available The study describes the application of oxidation resistant copper nanostructures as an efficient heterogeneous catalyst for the treatment of organic dye containing waste waters. Copper nanostructures were synthesized in an aqueous environment using modified surfactant assisted chemical reduction route. The synthesized nanostructures have been characterized by UV-Vis, Fourier transform infrared spectroscopy FTIR spectroscopy, Atomic force microscopy (AFM, Scanning Electron Microscopy (SEM, and X-ray diffractometry (XRD. These surfactant capped Cu nanostructures have been used as a heterogeneous catalyst for the comparative reductive degradation of methyl orange (MO in the presence of sodium borohydride (NaBH4 used as a potential reductant. Copper nanoparticles (Cu NPs were found to be more efficient compared to copper nanorods (Cu NRds with the degradation reaction obeying pseudofirst order reaction kinetics. Shape dependent catalytic efficiency was further evaluated from activation energy (EA of reductive degradation reaction. The more efficient Cu NPs were further employed for reductive degradation of real waste water samples containing dyes collected from the drain of different local textile industries situated in Hyderabad region, Pakistan.

  16. Selective catalytic reduction of NO by ammonia over oil shale ash and fly ash catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Changtao Yue; Shuyuan Li [University of Petroleum, Beijing (China). State Key Lab of Heavy Oil Processing

    2003-07-01

    Acid rain and urban air pollution, produced mainly by pollutants such as SOX and NOX and other volatile organic compounds, has become the most serious environmental problem. The selective catalytic reduction (SCR) of NO with NH{sub 3} in the presence of oxygen is a wellproven method to limit the NOX emissions. The work in this field has been the subject of much research in recent years. In this paper, NO reduction with NH{sub 3} over oil shale ash or fly ash catalysts was studied. Fe, Cu, V or Ni as active elements was loaded by adding aqueous solutions of the metal nitrate over the oil shale ash or fly ash support. The activities of the catalysts for NO removal were measured in a fixed-bed reactor. According to the results, oil shale ash or fly ash, after pre-treatment, can be reasonably used as the SCR catalyst support to remove NO from flue gas. Cu gave the highest catalytic activity and NO conversion for fly ash while V for oil shale ash. As the support, fly ash is more feasible than oil shale ash. Because of their low cost and high efficiency, the catalysts should be used in the SCR process. Further research on this subject is necessary in the future to understand more details of the SCR system and issue of pollution control. 9 refs., 2 figs., 2 tabs.

  17. Poly(N-isopropylacrylamide-co-methacrylic acid microgel stabilized copper nanoparticles for catalytic reduction of nitrobenzene

    Directory of Open Access Journals (Sweden)

    Farooqi Zahoor H.

    2015-09-01

    Full Text Available Poly(N-isopropylacrylamide-co-methacrylic acid microgels [p(NIPAM-co-MAAc] were synthesized by precipitation polymerization of N-isopropylacrylamide and methacrylic acid in aqueous medium. These microgels were characterized by dynamic light scattering and Fourier transform infrared spectroscopy. These microgels were used as micro-reactors for in situ synthesis of copper nanoparticles using sodium borohydride (NaBH4 as reducing agent. The hybrid microgels were used as catalysts for the reduction of nitrobenzene in aqueous media. The reaction was performed with different concentrations of cat­alyst and reducing agent. A linear relationship was found between apparent rate constant (kapp and amount of catalyst. When the amount of catalyst was increased from 0.13 to 0.76 mg/mL then kapp was increased from 0.03 to 0.14 min-1. Activation parameters were also determined by performing reaction at two different temperatures. The catalytic process has been discussed in terms of energy of activation, enthalpy of activation and entropy of activation. The synthesized particles were found to be stable even after 14 weeks and showed catalytic activity for the reduction of nitrobenzene.

  18. On reasons of different catalytic activity of 4B-6B subgroup metallocenedichlorides in carbon monoxide amalgam reduction

    International Nuclear Information System (INIS)

    A study was made on catalytic activity of metallocenedichlorides of 4B-6B subgroup elements (Ti, Nb, Mo, W) in carbon monoxide amalgam reduction in THP and DMFA medium. It is shown that the difference in catalytic activity of these elements is conditioned by thermodynamic factors, which dictate impossibility of amalgam reduction of catalyst-substrate complex (4th subgroup), as well as by the difference in stability of corresponding metallocenes (5B and 6B subgroups). Amalgam reduction of CO bounded in complex with metallocene proceeds under conditions of the first electron transfer opposite to potential gradient

  19. Confirmation of Isolated Cu2+ Ions in SSZ-13 Zeolite as Active Sites in NH3-Selective Catalytic Reduction

    NARCIS (Netherlands)

    Deka, U.; Juhin, A.F.; Eilertsen, E.A.; Emerich, H.; Green, M.A.; Korhonen, S.T.; Weckhuysen, B.M.; Beale, A.M.

    2012-01-01

    NH3-Selective Catalytic Reduction (NH3-SCR) is a widely used technology for NOx reduction in the emission control systems of heavy duty diesel vehicles. Copper-based ion exchanged zeolites and in particular Cu-SSZ-13 (CHA framework) catalysts show both exceptional activity and hydrothermal stability

  20. Dynamic control of chirality in phosphine ligands for enantioselective catalysis

    NARCIS (Netherlands)

    Zhao, Depeng; Neubauer, Thomas M; Feringa, Ben L

    2015-01-01

    Chirality plays a fundamental role in biology and chemistry and the precise control of chirality in a catalytic conversion is a key to modern synthesis most prominently seen in the production of pharmaceuticals. In enantioselective metal-based catalysis, access to each product enantiomer is commonly

  1. Selective catalytic reduction of NOx by hydrocarbons over Fe/ZSM5 prepared by sublimation of FeCl3

    OpenAIRE

    Battiston, A.A.

    2003-01-01

    Selective Catalytic Reduction of NOx by Hydrocarbons over Fe/ZSM5 Prepared by Sublimation of FeCl3. Characterization and Catalysis Nitrogen oxides (NOx) are unwanted by-products of combustion. They are generated primarily from motor vehicles and stationary sources, like power stations and industrial heaters. New catalytic materials are constantly developed in order to improve the efficiency of the cleaning-up technologies for NOx. With this respect an important breakthrough has recently been ...

  2. Effect of process parameters and injector position on the efficiency of NOx reduction by selective non catalytic reduction technique

    International Nuclear Information System (INIS)

    An experimental investigation has been performed to study the effect of atomizer pressure dilution of the reducing reagent and the injector position on the efficiency or the NOx reduction by a selective non-catalytic reduction technique using urea as a reducing agent. Experiments were performed with a flow reactor in which flue gas was generated by the combustion of methane in air at stoichiometric amount of oxygen and the desired levels of initial NOx (400-450 ppm) were achieved by doping the flame with ammonia. The work was directed to investigate the effect of atomizer pressure, dilution of urea reagent and the injector position. The atomizer pressure was varied from 1 to 3bar and 20-25% increase in efficiency was observed by decreasing the pressure. Effect of dilution of urea solution was investigated by varying the strength of the solution from the 8 to 32% and 40-45% increase in the efficiency was observed. Effects of injector position was investigated by injecting the urea solution both in co current and counter current direction of the flue gases and 20-25% increase in the efficiency was observed in counter current direction. (author)

  3. PILLARED CLAYS AS SUPERIOR CATALYSTS FOR SELECTIVE CATALYTIC REDUCTION OF NITRIC OXIDE

    Energy Technology Data Exchange (ETDEWEB)

    R.Q. Long; N. Tharappiwattananon; W.B. Li; R.T. Yang

    2000-09-01

    Removal of NO{sub x} (NO + NO{sub 2}) from exhaust gases is a challenging subject. V{sub 2}O{sub 5}-based catalysts are commercial catalysts for selective catalytic reduction (SCR) with NH{sub 3} for stationary sources. However, for diesel and lean-burn gasoline engines in vehicles, hydrocarbons would be the preferred reducing agents over NH{sub 3} because of the practical problems associated with the use of NH{sub 3} (i.e., handling and slippage through the reactor). The noble-metal three-way catalysts are not effective under these conditions. The first catalyst found to be active for selective catalytic reduction of NO by hydrocarbons in the presence of excess oxygen was copper exchanged ZSM-5 and other zeolites, reported in 1990 by Iwamoto in Japan and Held et al. in Germany. Although Cu-ZSM-5 is very active and the most intensively studied catalyst, it suffers from severe deactivation in engine tests, mainly due to H{sub 2}O and SO{sub 2}. In this project, we found that ion-exchanged pillared clays and MCM-41 catalysts showed superior SCR activities of NO with hydrocarbon. All Cu{sup 2+}-exchanged pillared clays showed higher SCR activities than Cu-ZSM-5 reported in the literature. In particular, H{sub 2}O and SO{sub 2} only slightly deactivated the SCR activity of Cu-TiO{sub 2}-PILC, whereas severe deactivation was observed for Cu-ZSM-5. Moreover, Pt/MCM-41 provided the highest specific NO reduction rates as compared with other Pt doped catalysts, i.e., Pt/Al{sub 2}O{sub 3}, Pt/SiO{sub 2} and Pt/ZSM-5. The Pt/MCM-41 catalyst also showed a good stability in the presence of H{sub 2}O and SO{sub 2}.

  4. The application of a low temperature selective catalytic reduction system for municipal and hazardous waste combustors

    Energy Technology Data Exchange (ETDEWEB)

    Hartenstein, H.U. [L. and C. Steinmueller GmbH, Gummersbach (Germany); Licata, A. [Licata Energy and Environmental Consultants, Inc., Yonkers, NY (United States)

    1996-09-01

    In Central Europe during the late 1980`s and through the early 1990`s, emission regulations on municipal and hazardous waste combustors (MWCs and HWCs) were tightened drastically. Among other pollutants, NO{sub x} emissions had to be limited to an extent that required the installation of special NO{sub x} control technologies and 70 mg NO{sub x}/Nm{sup 3} (56 ppmdv) (corrected to 11% O{sub 2} if the measured value exceeded 11% O{sub 2}). This became a commonly accepted value for most permitting agencies in Germany, Holland, Austria and Switzerland. The Selective Catalytic Reduction (SCR) technology became the preferred NO{sub x} control technology for retrofitting existing MWCs and HWCs, as well as for new facilities. This paper presents the Low Temperature SCR technology (LTSCR) as a major new development in SCR technology adapted to MWCs and HWCs. LTSCR`s can be operated at temperatures as low as 150 C (302 F) while SCR`s operate at temperatures above 280 C (536 F). The paper outlines the specific needs and restrictions of LTSCR, as well as its advantages. A detailed description of the correlation between required volume of catalyst, temperature, and specific catalytic activity is given. The application of LTSCR is shown for MWCs and HWCs, and for each case, one retrofit and one new facility are introduced. Finally, the paper reports on some two and a half years of operating experience with LTSCR and gives an outlook on further applications.

  5. Selective catalytic reduction (SCR) NOx control for small natural gas-fired prime movers

    International Nuclear Information System (INIS)

    The application of selective catalytic reduction (SCR) to small natural gas-fired prime movers at cogeneration facilities and compressor stations could possibly increase due to regulatory forces to limit NOx from such sources. The natural gas industry is presently without a current database with which to evaluate the cost and operating characteristics of SCR under the conditions anticipated for small prime movers. This paper presents the results from a two-phase study undertaken to document SCR applications with emphasis on SCR system performance and costs. The database of small natural gas-fired prime mover SCR experience, focusing on prime mover characterization, SCR system performance, and SCR system costs will be described. Result from analysis of performance and cost data will be discussed, including analytical tools developed to project SCR system performance and costs

  6. Co$_9$S$_8$ nanotubes: facile synthesis and application in the catalytic reduction of 4-nitrophenol

    Indian Academy of Sciences (India)

    TAO GENG; YONGHONG NI; HONGYAN WANG; XIA ZHOU

    2016-10-01

    Co$_9$S$_8$ nanotubes have been successfully synthesized via a facile two-step solvothermal method without the assistance of any template or surfactant, using cobalt sulphate (CoSO$_4$·7H$_2$O), urea and sodium sulphide (Na$_2$S·9H$_2$O) as starting reactants, and deionized water and glycol as the reactive medium. The phase and the morphologyof the as-obtained product were characterized by means of powder X-ray diffraction, energy dispersive spectrometry and scanning electron microscopy. The result displays that the Co9S8 nanotubes have hexagonal crosssections,the diameter of the nanotubes is about 200 nm and the wall thickness is of 50 nm. The experiments showed that the Co$_9$S$_8$ nanotubes could be used as new-type catalysts for the reduction of 4-nitrophenol. It was found thatthe as-obtained Co$_9$S$_8$ nanotubes contributed to the best catalytic activity.

  7. Direct Comparison of Electrochemical and Spectrochemical Kinetics for Catalytic Oxygen Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Wasylenko, Derek J.; Rodriguez, Carlos; Pegis, Michael L.; Mayer, James M.

    2014-09-10

    We describe here a direct comparison of electrochemical and spectrochemical experiments to determine rates and selectivity of oxygen reduction catalyzed by iron 5,10,15,20-meso-tetraphenylporphyrin chloride. Strong agreement was found between the two methods suggesting the same mechanism is occurring under both conditions, with the same overall third order rate constant kcat = (1.1 ± 0.1) × 106 M-2 s-1. This report provides a rare example of characterization of a redox catalytic process by two common but very different methods. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences.

  8. Electro-catalytic effect of manganese oxide on oxygen reduction at teflonbonded carbon electrode

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Oxygen reduction(OR)on Teflon-bonded carbon electrodes with manganese oxide as catalyst in 6 mol/L KOH solution was investigated using AC impedance spectroscopy combined with other techniques. For OR at this electrode, the Tafel slope is-0.084V/dec and the apparent exchange current density is (1.02-3.0)×10-7 A/cm2. In the presence of manganese oxide on carbon electrode,the couple Mn3+/Mn4+ reacts with the O2 adsorbed on carbon sites forming O2- radicals and acceletes the dismutation of O2-, which contributes to the catalytic effect of manganese oxide for OR reaction.

  9. Nitrogen oxides from waste incineration: control by selective non-catalytic reduction.

    Science.gov (United States)

    Zandaryaa, S; Gavasci, R; Lombardi, F; Fiore, A

    2001-01-01

    An experimental study of the selective non-catalytic reduction (SNCR) process was carried out to determine the efficiency of NOx removal and NH3 mass balance, the NOx reducing reagent used. Experimental tests were conducted on a full-scale SNCR system installed in a hospital waste incineration plant. Anhydrous NH3 was injected at the boiler entrance for NOx removal. Ammonia was analyzed after each flue-gas treatment unit in order to establish its mass balance and NH3 slip in the stack gas was monitored as well. The effective fraction of NH3 for the thermal NOx reduction was calculated from measured values of injected and residual NH3. Results show that a NOx reduction efficiency in the range of 46.7-76.7% is possible at a NH3/NO molar ratio of 0.9-1.5. The fraction of NH3 used in NOx removal was found to decrease with rising NH3/NO molar ratio. The NH3 slip in the stack gas was very low, below permitted limits, even at the higher NH3 dosages used. No direct correlation was found between the NH3/NO molar ratio and the NH3 slip in the stack gas since the major part of the residual NH3 was converted into ammonium salts in the dry scrubbing reactor and subsequently collected in the fabric filter. Moreover, another fraction of NH3 was dissolved in the scrubbing liquor.

  10. A study on the indirect urea dosing method in the Selective Catalytic Reduction system

    Science.gov (United States)

    Brzeżański, M.; Sala, R.

    2016-09-01

    This article presents the results of studies on concept solution of dosing urea in a gas phase in a selective catalytic reduction system. The idea of the concept was to heat-up and evaporate the water urea solution before introducing it into the exhaust gas stream. The aim was to enhance the processes of urea converting into ammonia, what is the target reductant for nitrogen oxides treatment. The study was conducted on a medium-duty Euro 5 diesel engine with exhaust line consisting of DOC catalyst, DPF filter and an SCR system with a changeable setup allowing to dose the urea in liquid phase (regular solution) and to dose it in a gas phase (concept solution). The main criteria was to assess the effect of physical state of urea dosed on the NOx conversion ratio in the SCR catalyst. In order to compare both urea dosing methods a special test procedure was developed which consisted of six test steps covering a wide temperature range of exhaust gas generated at steady state engine operation condition. Tests were conducted for different urea dosing quantities defined by the a equivalence ratio. Based on the obtained results, a remarkable improvement in NOx reduction was found for gas urea application in comparison to the standard liquid urea dosing. Measured results indicate a high potential to increase an efficiency of the SCR catalyst by using a gas phase urea and provide the basis for further scientific research on this type of concept.

  11. Low Temperature Selective Catalytic Reduction of Nitrogen Oxides in Production of Nitric Acid by the Use of Liquid

    Directory of Open Access Journals (Sweden)

    Kabljanac, Ž.

    2011-11-01

    Full Text Available This paper presents the application of low-temperature selective catalytic reduction of nitrous oxides in the tail gas of the dual-pressure process of nitric acid production. The process of selective catalytic reduction is carried out using the TiO2/WO3 heterogeneous catalyst applied on a ceramic honeycomb structure with a high geometric surface area per volume. The process design parameters for nitric acid production by the dual-pressure procedure in a capacity range from 75 to 100 % in comparison with designed capacity for one production line is shown in the Table 1. Shown is the effectiveness of selective catalytic reduction in the temperature range of the tail gas from 180 to 230 °C with direct application of liquid ammonia, without prior evaporation to gaseous state. The results of inlet and outlet concentrations of nitrous oxides in the tail gas of the nitric acid production process are shown in Figures 1 and 2. Figure 3 shows the temperature dependence of the selective catalytic reduction of nitrous oxides expressed as NO2in the tail gas of nitric acid production with the application of a constant mass flow of liquid ammonia of 13,0 kg h-1 and average inlet mass concentration of the nitrous oxides expressed as NO2of 800,0 mgm-3 during 100 % production capacity. The specially designed liquid-ammonia direct-dosing system along with the effective homogenization of the tail gas resulted in emission levels of nitrous oxides expressed as NO2 in tail gas ranging from 100,0 to 185,0 mg m-3. The applied low-temperature selective catalytic reduction of the nitrous oxides in the tail gases by direct use of liquid ammonia is shown in Figure 4. It is shown that low-temperature selective catalytic reduction with direct application of liquid ammonia opens a new opportunity in the reduction of nitrous oxide emissions during nitric acid production without the risk of dangerous ammonium nitrate occurring in the process of subsequent energy utilization of

  12. Investigation of Catalytic NOx, reduction with transient techniques, isotopic exchange and FT-IR spectroscopy

    International Nuclear Information System (INIS)

    Emissions from vehicles are suppressed by catalytic conversion, i.e. total oxidation of carbon monoxide and hydrocarbons and reduction of nitrogen oxides. The on-going demand for lower emissions requires more detailed knowledge about the catalytic reaction mechanisms and kinetics on the level of elementary steps, especially because of the mutual interactions in the complex reaction mixture. The reaction mechanisms for the abatement of nitrogen oxides (NOx) are of particular interest, since they are environmentally very unfriendly compounds. Transient experimental techniques can be used as a tool to understand the reaction mechanisms and to develop mathematical models allowing simulation and optimisation of the behaviour of three-way catalyst converters. In chemical kinetics, isotope-labelled reactants are frequently employed to follow reaction pathways and to determine reaction mechanisms. The kinetics and mechanisms of the catalytic reduction of nitrogen oxide (NO) by hydrogen as well as self-decomposition of NO and N2O were studied over alumina based palladium and rhodium-alumina monoliths. In addition, NO reduction with H2 and D2, isotope exchange of hydrogen atoms in water, ammonia and hydrogen with deuterium, as well as adsorption of ammonia and water on the Pd-monolith were studied with transient experiments. Transient step-response experiments, isotopic jumping techniques, steady- state isotopic-transient analysis, temperature programmed desorption (TPD) and Fourier-transformed infrared spectroscopy (FT-IR) were used as experimental techniques. The catalysts were characterised by carbon monoxide chemisorption, nitrogen physisorption and X-ray photoelectron spectroscopy (XPS). Nitrogen, nitrous oxide, ammonia, and water were detected as reaction products in NO reduction by hydrogen. The transient and FT-IR experiments yielded information about the surface reaction mechanisms. The dissociation of NO on the catalyst surface is the crucial step, dominating the

  13. Enantioselective Total Synthesis of (-)-Alstoscholarisine A.

    Science.gov (United States)

    Liang, Xiao; Jiang, Shi-Zhi; Wei, Kun; Yang, Yu-Rong

    2016-03-01

    We report a concise and highly enantioselective total synthesis of (-)-alstoscholarisine A (1), a recently isolated monoterpenoid indole alkaloid that has significant bioactivity in promoting adult neuronal stem cells proliferation. A highly enantioselective (99% ee), intramolecular Ir-catalyzed Friedel-Crafts alkylation of indole 9 with a secondary allylic alcohol was utilized to establish the first stereogenic center upon which the other three contiguous chiral centers were readily set by a highly stereoselective tandem 1,4-addition and aldol reaction. The key tetrahydropyran was constructed through a hemiacetal reduction, and the final aminal bridge was forged by a one-pot reductive amination/cyclization. The conciseness of this approach was highlighted by building core bonds in each step with a minimalist protecting group strategy. PMID:26882407

  14. Selective catalytic reduction operation with heavy fuel oil: NOx, NH3, and particle emissions.

    Science.gov (United States)

    Lehtoranta, Kati; Vesala, Hannu; Koponen, Päivi; Korhonen, Satu

    2015-04-01

    To meet stringent NOx emission limits, selective catalytic reduction (SCR) is increasingly utilized in ships, likely also in combination with low-priced higher sulfur level fuels. In this study, the performance of SCR was studied by utilizing NOx, NH3, and particle measurements. Urea decomposition was studied with ammonia and isocyanic acid measurements and was found to be more effective with heavy fuel oil (HFO) than with light fuel oil. This is suggested to be explained by the metals found in HFO contributing to metal oxide particles catalyzing the hydrolysis reaction prior to SCR. At the exhaust temperature of 340 °C NOx reduction was 85-90%, while at lower temperatures the efficiency decreased. By increasing the catalyst loading, the low temperature behavior of the SCR was enhanced. The drawback of this, however, was the tendency of particle emissions (sulfate) to increase at higher temperatures with higher loaded catalysts. The particle size distribution results showed high amounts of nanoparticles (in 25-30 nm size), the formation of which SCR either increased or decreased. The findings of this work provide a better understanding of the usage of SCR in combination with a higher sulfur level fuel and also of ship particle emissions, which are a growing concern.

  15. System and method for selective catalytic reduction of nitrogen oxides in combustion exhaust gases

    Science.gov (United States)

    Sobolevskiy, Anatoly; Rossin, Joseph A

    2014-04-08

    A multi-stage selective catalytic reduction (SCR) unit (32) provides efficient reduction of NOx and other pollutants from about 50-550.degree. C. in a power plant (19). Hydrogen (24) and ammonia (29) are variably supplied to the SCR unit depending on temperature. An upstream portion (34) of the SCR unit catalyzes NOx+NH.sub.3 reactions above about 200.degree. C. A downstream portion (36) catalyzes NOx+H.sub.2 reactions below about 260.degree. C., and catalyzes oxidation of NH.sub.3, CO, and VOCs with oxygen in the exhaust above about 200.degree. C., efficiently removing NOx and other pollutants over a range of conditions with low slippage of NH.sub.3. An ammonia synthesis unit (28) may be connected to the SCR unit to provide NH.sub.3 as needed, avoiding transport and storage of ammonia or urea at the site. A carbonaceous gasification plant (18) on site may supply hydrogen and nitrogen to the ammonia synthesis unit, and hydrogen to the SCR unit.

  16. Catalytic activity of various pepsin reduced Au nanostructures towards reduction of nitroarenes and resazurin

    International Nuclear Information System (INIS)

    Pepsin, a digestive protease enzyme, could function as a reducing as well as stabilizing agent for the synthesis of Au nanostructures of various size and shape under different reaction conditions. The simple tuning of the pH of the reaction medium led to the formation of spherical Au nanoparticles, anisotropic Au nanostructures such as triangles, hexagons, etc., as well as ultra small fluorescent Au nanoclusters. The activity of the enzyme was significantly inhibited after its participation in the formation of Au nanoparticles due to conformational changes in the native structure of the enzyme which was studied by fluorescence, circular dichroism (CD), and infra red spectroscopy. However, the Au nanoparticle-enzyme composites served as excellent catalyst for the reduction of p-nitrophenol and resazurin, with the catalytic activity varying with size and shape of the nanoparticles. The presence of pepsin as the surface stabilizer played a crucial role in the activity of the Au nanoparticles as reduction catalysts, as the approach of the reacting molecules to the nanoparticle surface was actively controlled by the stabilizing enzyme

  17. Catalytic activity of various pepsin reduced Au nanostructures towards reduction of nitroarenes and resazurin

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Bhagwati; Mandani, Sonam; Sarma, Tridib K., E-mail: tridib@iiti.ac.in [Indian Institute of Technology Indore, Discipline of Chemistry, School of Basic Sciences (India)

    2015-01-15

    Pepsin, a digestive protease enzyme, could function as a reducing as well as stabilizing agent for the synthesis of Au nanostructures of various size and shape under different reaction conditions. The simple tuning of the pH of the reaction medium led to the formation of spherical Au nanoparticles, anisotropic Au nanostructures such as triangles, hexagons, etc., as well as ultra small fluorescent Au nanoclusters. The activity of the enzyme was significantly inhibited after its participation in the formation of Au nanoparticles due to conformational changes in the native structure of the enzyme which was studied by fluorescence, circular dichroism (CD), and infra red spectroscopy. However, the Au nanoparticle-enzyme composites served as excellent catalyst for the reduction of p-nitrophenol and resazurin, with the catalytic activity varying with size and shape of the nanoparticles. The presence of pepsin as the surface stabilizer played a crucial role in the activity of the Au nanoparticles as reduction catalysts, as the approach of the reacting molecules to the nanoparticle surface was actively controlled by the stabilizing enzyme.

  18. Catalytic pyrolysis of LDPE leads to valuable resource recovery and reduction of waste problems

    International Nuclear Information System (INIS)

    confirmed by Bromine number tests. The values of which lie in the range of 0.1-12.8 g/ml, which fall in the range for olefin mixture. Phenol and carbonyl contents were quantified using UV/Visible spectroscopy and the values lie in the range of 1-8920 μg/ml and 5-169 μg/ml for both phenols and carbonyls respectively. The components of different hydrocarbons in the oil mixture were separated by using column chromatography and fractional distillation followed by characterization with FT-IR spectroscopy. The interpretation of FT-IR spectra shows that catalytic pyrolysis of LDPE leads to the formation of a complex mixture of alkanes, alkenes, carbonyl group containing compounds like aldehydes, ketones, aromatic compounds and substituted aromatic compounds like phenols. It could be concluded, that catalytic pyrolysis of LDPE leads to valuable resource recovery and reduction of waste problem.

  19. Catalytic pyrolysis of LDPE leads to valuable resource recovery and reduction of waste problems

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Jasmin [Institute of Chemical Sciences, University of Peshawar, N.W.F.P. (Pakistan); Jan, M. Rasul [University of Malakand, Chakdara, N.W.F.P. (Pakistan); Mabood, Fazal [Department of Chemistry, University of Malakand, Chakdara, N.W.F.P. (Pakistan); Jabeen, Farah [Department of Chemistry, Sarhad University, N.W.F.P. (Pakistan)

    2010-12-15

    . This was further confirmed by Bromine number tests. The values of which lie in the range of 0.1-12.8 g/ml, which fall in the range for olefin mixture. Phenol and carbonyl contents were quantified using UV/Visible spectroscopy and the values lie in the range of 1-8920 {mu}g/ml and 5-169 {mu}g/ml for both phenols and carbonyls respectively. The components of different hydrocarbons in the oil mixture were separated by using column chromatography and fractional distillation followed by characterization with FT-IR spectroscopy. The interpretation of FT-IR spectra shows that catalytic pyrolysis of LDPE leads to the formation of a complex mixture of alkanes, alkenes, carbonyl group containing compounds like aldehydes, ketones, aromatic compounds and substituted aromatic compounds like phenols. It could be concluded, that catalytic pyrolysis of LDPE leads to valuable resource recovery and reduction of waste problem. (author)

  20. MERCURY OXIDATION PROMOTED BY A SELECTIVE CATALYTIC REDUCTION CATALYST UNDER SIMULATED POWDER RIVER BASIN COAL COMBUSTION CONDITIONS

    Science.gov (United States)

    A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury oxidation under SCR conditions. A low sulfur Power River Basin (PRB) coal combustion ...

  1. One-step selective synthesis of branched 1-O-alkyl-glycerol/diglycerol monoethers by catalytic reductive alkylation of ketones

    Institute of Scientific and Technical Information of China (English)

    DAYOUB; Wissam; LEMAIRE; Marc

    2010-01-01

    Branched 1-O-alkyl glycerol and diglycerol monoethers were obtained in good yields and high selectivity by a straightforward catalytic reductive alkylation of glycerol with relevant ketones in the presence of 0.5 mol% of Pd/C under 10 bar of hydrogen pressure using a Brφnsted acid as the co-catalyst.

  2. Mesoporous Fe-containing ZSM-5 zeolite single crystal catalysts for selective catalytic reduction of nitric oxide by ammonia

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Egeblad, Kresten; Kustova, Marina;

    2007-01-01

    Mesoporous and conventional Fe-containing ZSM-5 catalysts (0.5–8 wt% Fe) were prepared using a simple impregnationmethod and tested in NO selective catalytic reduction (SCR) with NH3. It was found that mesoporous Fe-ZSM-5 catalysts exhibit higher SCR activities than comparable conventional cataly...

  3. Determining the storage, availability and reactivity of NH3 within Cu-Chabazite-based Ammonia Selective Catalytic Reduction systems

    NARCIS (Netherlands)

    Lezcano-Gonzalez, I; Deka, U; Arstad, B; Van Yperen-De Deyne, A; Hemelsoet, K; Waroquier, M; Van Speybroeck, V; Weckhuysen, B M; Beale, A M

    2014-01-01

    Three different types of NH3 species can be simultaneously present on Cu(2+)-exchanged CHA-type zeolites, commonly used in Ammonia Selective Catalytic Reduction (NH3-SCR) systems. These include ammonium ions (NH4(+)), formed on the Brønsted acid sites, [Cu(NH3)4](2+) complexes, resulting from NH3 co

  4. Selective catalytic reduction of NOx by hydrocarbons over Fe/ZSM5 prepared by sublimation of FeCl3

    NARCIS (Netherlands)

    Battiston, A.A.

    2003-01-01

    Selective Catalytic Reduction of NOx by Hydrocarbons over Fe/ZSM5 Prepared by Sublimation of FeCl3. Characterization and Catalysis Nitrogen oxides (NOx) are unwanted by-products of combustion. They are generated primarily from motor vehicles and stationary sources, like power stations and indust

  5. Catalytic activities enhanced by abundant structural defects and balanced N distribution of N-doped graphene in oxygen reduction reaction

    Science.gov (United States)

    Bai, Xiaogong; Shi, Yantao; Guo, Jiahao; Gao, Liguo; Wang, Kai; Du, Yi; Ma, Tingli

    2016-02-01

    N-doped graphene (NG) is a promising candidate for oxygen reduction reaction (ORR) in the cathode of fuel cells. However, the catalytic activity of NG is lower than that of commercial Pt/C in alkaline and acidic media. In this study, NG samples were obtained using urea as N source. The structural defects and N distribution in the samples were adjusted by regulating the pyrolysis temperature. The new NG type exhibited remarkable catalytic activities for ORR in both alkaline and acidic media.

  6. Enantioselective Hydrolysis of Amino Acid Esters Promoted by Bis(β-cyclodextrin) Copper Complexes

    Science.gov (United States)

    Xue, Shan-Shan; Zhao, Meng; Ke, Zhuo-Feng; Cheng, Bei-Chen; Su, Hua; Cao, Qian; Cao, Zhen-Kun; Wang, Jun; Ji, Liang-Nian; Mao, Zong-Wan

    2016-02-01

    It is challenging to create artificial catalysts that approach enzymes with regard to catalytic efficiency and selectivity. The enantioselective catalysis ranks the privileged characteristic of enzymatic transformations. Here, we report two pyridine-linked bis(β-cyclodextrin) (bisCD) copper(II) complexes that enantioselectively hydrolyse chiral esters. Hydrolytic kinetic resolution of three pairs of amino acid ester enantiomers (S1–S3) at neutral pH indicated that the “back-to-back” bisCD complex CuL1 favoured higher catalytic efficiency and more pronounced enantioselectivity than the “face-to-face” complex CuL2. The best enantioselectivity was observed for N-Boc-phenylalanine 4-nitrophenyl ester (S2) enantiomers promoted by CuL1, which exhibited an enantiomer selectivity of 15.7. We observed preferential hydrolysis of L-S2 by CuL1, even in racemic S2, through chiral high-performance liquid chromatography (HPLC). We demonstrated that the enantioselective hydrolysis was related to the cooperative roles of the intramolecular flanking chiral CD cavities with the coordinated copper ion, according to the results of electrospray ionization mass spectrometry (ESI-MS), inhibition experiments, rotating-frame nuclear Overhauser effect spectroscopy (ROESY), and theoretical calculations. Although the catalytic parameters lag behind the level of enzymatic transformation, this study confirms the cooperative effect of the first and second coordination spheres of artificial catalysts in enantioselectivity and provides hints that may guide future explorations of enzyme mimics.

  7. Enantioselective Hydrolysis of Amino Acid Esters Promoted by Bis(β-cyclodextrin) Copper Complexes.

    Science.gov (United States)

    Xue, Shan-Shan; Zhao, Meng; Ke, Zhuo-Feng; Cheng, Bei-Chen; Su, Hua; Cao, Qian; Cao, Zhen-Kun; Wang, Jun; Ji, Liang-Nian; Mao, Zong-Wan

    2016-02-26

    It is challenging to create artificial catalysts that approach enzymes with regard to catalytic efficiency and selectivity. The enantioselective catalysis ranks the privileged characteristic of enzymatic transformations. Here, we report two pyridine-linked bis(β-cyclodextrin) (bisCD) copper(II) complexes that enantioselectively hydrolyse chiral esters. Hydrolytic kinetic resolution of three pairs of amino acid ester enantiomers (S1-S3) at neutral pH indicated that the "back-to-back" bisCD complex CuL(1) favoured higher catalytic efficiency and more pronounced enantioselectivity than the "face-to-face" complex CuL(2). The best enantioselectivity was observed for N-Boc-phenylalanine 4-nitrophenyl ester (S2) enantiomers promoted by CuL(1), which exhibited an enantiomer selectivity of 15.7. We observed preferential hydrolysis of L-S2 by CuL(1), even in racemic S2, through chiral high-performance liquid chromatography (HPLC). We demonstrated that the enantioselective hydrolysis was related to the cooperative roles of the intramolecular flanking chiral CD cavities with the coordinated copper ion, according to the results of electrospray ionization mass spectrometry (ESI-MS), inhibition experiments, rotating-frame nuclear Overhauser effect spectroscopy (ROESY), and theoretical calculations. Although the catalytic parameters lag behind the level of enzymatic transformation, this study confirms the cooperative effect of the first and second coordination spheres of artificial catalysts in enantioselectivity and provides hints that may guide future explorations of enzyme mimics.

  8. A new protocol for the in situ generation of aromatic, heteroaromatic, and unsaturated diazo compounds and its application in catalytic and asymmetric epoxidation of carbonyl compounds. Extensive studies to map out scope and limitations, and rationalization of diastereo- and enantioselectivities.

    Science.gov (United States)

    Aggarwal, Varinder K; Alonso, Emma; Bae, Imhyuck; Hynd, George; Lydon, Kevin M; Palmer, Matthew J; Patel, Mamta; Porcelloni, Marina; Richardson, Jeffery; Stenson, Rachel A; Studley, John R; Vasse, Jean-Luc; Winn, Caroline L

    2003-09-10

    A variety of metalated tosylhydrazone salts derived from benzaldehyde have been prepared and were reacted with benzaldehyde in the presence of tetrahydrothiophene (THT) (20 mol %) and Rh(2)(OAc)(4) (1 mol %) to give stilbene oxide. Of the lithium, sodium, and potassium salts tested, the sodium salt was found to give the highest yield and selectivity. This study was extended to a wide variety of aromatic, heteroaromatic, aliphatic, alpha,beta-unsaturated, and acetylenic aldehydes and to ketones. On the whole, high yields of epoxides with moderate to very high diastereoselectivities were observed. A broad range of tosylhydrazone salts derived from aromatic, heteroaromatic, and alpha,beta-unsaturated aldehydes was also examined using the same protocol in reactions with benzaldehyde, and again, good yields and high diastereoselectivities were observed in most cases. Thus, a general process for the in situ generation of diazo compounds from tosylhydrazone sodium salts has been established and applied in sulfur-ylide mediated epoxidation reactions. The chiral, camphor-derived, [2.2.1] bicyclic sulfide 7 was employed (at 5-20 mol % loading) to render the above processes asymmetric with a range of carbonyl compounds and tosylhydrazone sodium salts. Benzaldehyde tosylhydrazone sodium salt gave enantioselectivities of 91 +/- 3% ee and high levels of diastereoselectivity with a range of aldehydes. However, tosylhydrazone salts derived from a range of carbonyl compounds gave more variable selectivities. Although those salts derived from electron-rich or neutral aldehydes gave high enantioselectivities, those derived from electron-deficient or hindered aromatic aldehydes gave somewhat reduced enantioselectivities. Using alpha,beta-unsaturated hydrazones, chiral sulfide 7 gave epoxides with high diastereoselectivities, but only moderate yields were achieved (12-56%) with varying degrees of enantioselectivity. A study of solvent effects showed that, while the impact on

  9. Oxidation of diesel-generated volatile organic compounds in the selective catalytic reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Elsener, M. [Paul Scherrer Inst., Villigen (Switzerland). Combustion Research

    1998-10-01

    The main part of the VOCs (volatile organic compounds) contained in diesel exhaust ({approx}80%) is oxidized to CO and CO{sub 2} over an SCR (selective catalytic reduction) catalyst. CO is the major product of this oxidation, representing about 50--70% of the formed products (CO + CO{sub 2}). This preferential formation of CO leads to a pronounced increase of CO emissions when an SCR process is added to a diesel engine. A small fraction of the VOCs is selectively oxidized to carboxylic acids over the SCR catalyst. This selectivity is due to the acidic properties of the catalyst causing the preferential desorption at the oxidation state of the acid. The main products of these oxidation reactions are the lower monocarboxylic acids and some dicarboxylic acids forming stable anhydrides, especially maleic and phthalic acid. The highest emissions of these acids are found at low temperatures; they decrease at higher temperatures. Formic acid is preferentially decomposed into carbon monoxide and water. It must therefore be assumed that the strong increase of CO mentioned above is due to a mechanism involving the thermal decomposition of formic acid formed from various primary VOCs.

  10. Impact of selective catalytic reduction on exhaust particle formation over excess ammonia events.

    Science.gov (United States)

    Amanatidis, Stavros; Ntziachristos, Leonidas; Giechaskiel, Barouch; Bergmann, Alexander; Samaras, Zissis

    2014-10-01

    The introduction of selective catalytic reduction (SCR) aftertreatment to meet stringent diesel NOx emission standards around the world increases exhaust ammonia. Further to the direct air quality and health implications of ammonia, this may also lead to particle formation in the exhaust. In this study, an ammonia SCR system was examined with respect to its impact on both solid and total exhaust particle number and size distribution, downstream of a diesel particulate filter (DPF). Fuel post-injection was conducted in some tests to investigate the effect of ammonia during active DPF regeneration. On average, the post-DPF solid >23 nm and total <23 nm particle number emissions were increased by 129% (range 80-193%) and by 67% (range 26-136%), respectively, when 100 ppm ammonia level was induced downstream of the SCR catalyst. This is a typical level during ammonia overdosing, often practiced for efficient NOx control. Ammonia did not have a significant additional effect on the high particle concentrations measured during DPF regeneration. Based on species availability and formation conditions, sulfate, nitrate, and chloride salts with ammonium are possible sources of the new particles formed. Ammonia-induced particle formation corresponds to an environmental problem which is not adequately addressed by current regulations.

  11. Superior Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Long, R.Q.; Yang, R.T. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering

    1999-06-16

    Nitrogen oxides in the exhaust gases from combustion of fossil fuels remain a major source for air pollution and acid rain. The current technology for reducing NO{sub x} (NO + NO{sub 2}) emissions from power plants is selective catalytic reduction (SCR) with ammonia in the presence of oxygen. For the SCR reaction, V{sub 2}O{sub 5} + WO{sub 3} (or MoO{sub 3}) supported on TiO{sub 2} are the commercial catalysts. The mechanism of the reaction on the vanadia catalysts has been studied extensively, and several different mechanisms have been proposed. Ion-exchanged zeolite catalysts have also been studied, e.g., Fe-Y, Cu-ZSM-5, and Fe-ZSM-5, but the reported activities were lower than that of the commercial vanadia catalysts. The SCR technology based on vanadia catalysts is being used in Europe and Japan and is being quickly adopted in the US. However, problems associated with vanadia catalysts remain, e.g., high activity for oxidation of SO{sub 2} to SO{sub 3}, toxicity of vanadia, and formation of N{sub 2}O at high temperature. Hence, there are continuing efforts in developing new catalysts. In this paper, the authors report a superior Fe-ZSM-5 catalyst that is much more active than the commercial vanadia catalysts and does not have the deficiencies that are associated with the vanadia catalysts.

  12. Emission reduction from a diesel engine fueled by pine oil biofuel using SCR and catalytic converter

    Science.gov (United States)

    Vallinayagam, R.; Vedharaj, S.; Yang, W. M.; Saravanan, C. G.; Lee, P. S.; Chua, K. J. E.; Chou, S. K.

    2013-12-01

    In this work, we propose pine oil biofuel, a renewable fuel obtained from the resins of pine tree, as a potential substitute fuel for a diesel engine. Pine oil is endowed with enhanced physical and thermal properties such as lower viscosity and boiling point, which enhances the atomization and fuel/air mixing process. However, the lower cetane number of the pine oil hinders its direct use in diesel engine and hence, it is blended in suitable proportions with diesel so that the ignition assistance could be provided by higher cetane diesel. Since lower cetane fuels are prone to more NOX formation, SCR (selective catalyst reduction), using urea as reducing agent, along with a CC (catalytic converter) has been implemented in the exhaust pipe. From the experimental study, the BTE (brake thermal efficiency) was observed to be increased as the composition of pine oil increases in the blend, with B50 (50% pine oil and 50% diesel) showing 7.5% increase over diesel at full load condition. The major emissions such as smoke, CO, HC and NOX were reduced by 70.1%, 67.5%, 58.6% and 15.2%, respectively, than diesel. Further, the average emissions of B50 with SCR and CC assembly were observed to be reduced, signifying the positive impact of pine oil biofuel on atmospheric environment. In the combustion characteristics front, peak heat release rate and maximum in-cylinder pressure were observed to be higher with longer ignition delay.

  13. INVESTIGATION OF AMMONIA ADSORPTION ON FLY ASH DUE TO INSTALLATION OF SELECTIVE CATALYTIC REDUCTION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    G.F. Brendel; J.E. Bonetti; R.F. Rathbone; R.N. Frey Jr.

    2000-11-01

    This report summarizes an investigation of the potential impacts associated with the utilization of selective catalytic reduction (SCR) systems at coal-fired power plants. The study was sponsored by the U.S. Department of Energy Emission Control By-Products Consortium, Dominion Generation, the University of Kentucky Center for Applied Energy Research and GAI Consultants, Inc. SCR systems are effective in reducing nitrogen oxides (NOx) emissions as required by the Clean Air Act (CAA) Amendments. However, there may be potential consequences associated with ammonia contamination of stack emissions and combustion by-products from these systems. Costs for air quality, landfill and pond environmental compliance may increase significantly and the marketability of ash may be seriously reduced, which, in turn, may also lead to increased disposal costs. The potential impacts to air, surface water, groundwater, ash disposal, ash utilization, health and safety, and environmental compliance can not be easily quantified based on the information presently available. The investigation included: (1) a review of information and data available from published and unpublished sources; (2) baseline ash characterization testing of ash samples produced from several central Appalachian high-volatile bituminous coals from plants that do not currently employ SCR systems in order to characterize the ash prior to ammonia exposure; (3) an investigation of ammonia release from fly ash, including leaching and thermal studies; and (4) an evaluation of the potential impacts on plant equipment, air quality, water quality, ash disposal operations, and ash marketing.

  14. Selective Catalytic Reduction of Nitric Oxide in Diesel Engine Exhaust over Monolithic

    Directory of Open Access Journals (Sweden)

    Ahmad Zuhairi Abdullah

    2009-01-01

    Full Text Available Selective catalytic reduction (SCR of nitric oxide (NO in diesel engine exhaust over Cu-Zn/ZSM-5 washcoated ceramic monolithic catalysts is reported. The washcoat component was prepared by ion-exchanging ZSM-5 (Si/Al=40 with zinc while copper was incorporated through impregnation. The dispersed washcoat component was then incorporated into 400 cpsi ceramic monolith through a dipping process with the final loadings between 19.6 wt. % and 31.4 wt. %. The SCR process was studied with a feed comprising of 900 ppm NO, 2,000 ppm iso butane and 3 % oxygen at gas hourly space velocities (GHSV between 5,000 and 13,000 h-1. NO conversion increased until a loading of 23.6 wt. % to give a conversion of 88 % at 400 °C. The activity dropped at higher loadings due to the partial blockage of cell openings and diffusion limitations while unstable washcoating adherence was also demonstrated. After an initial deactivation of about 10 % in the first 48 h, this catalyst showed stable residual activity. Between 325 and 375 °C, minimal effect on the activity was detected when the space time was reduced from 0.94 s to 0.24 s, suggesting the absence of external mass transfer limitations for up to a GHSV of 16,000 h-1.

  15. Selective catalytic reduction of NO in a reverse-flow reactor: Modelling and experimental validation

    International Nuclear Information System (INIS)

    Highlights: • Reverse-flow reactors easily overcome feed concentration disturbances. • Central feeding improves ammonia adsorption in reverse-flow reactors. • Dynamic heterogeneous model validated with bench-scale experiments. • Optimum reverse-flow reactor design improves efficiency and reduces reactor size. - Abstract: The abatement of nitrogen oxides produced in combustion processes and in the chemical industry requires efficient and reliable technologies capable of fulfilling strict environmental regulations. Selective catalytic reduction (SCR) with ammonia in fixed-bed (monolithic) reactors has stood out among other techniques in the last decades. In this work, the use of reverse-flow reactors, operated under the forced un-steady state generated by the periodic reversal of the flow direction, is studied for improving the SCR performance. This reactor can take advantage of ammonia adsorption in the catalyst to enhance concentration profiles in the reactor, increasing reaction rate, efficiency and reducing the emission of un-reacted ammonia. The process has been studied experimentally in a bench-scale device using a commercial monolithic catalyst. The optimum operating conditions, best ammonia feed configuration (side or central) and capacity of the reactor to deal with feed concentration disturbances is analysed. The experiments have also been used for validating a mathematical model of the reactor based on mass conservation equations, and the model has been used to design a full-size reverse-flow reactor able of operating at industrial conditions

  16. Controllable Synthesis of Mesoporous Iron Oxide Nanoparticle Assemblies for Chemoselective Catalytic Reduction of Nitroarenes.

    Science.gov (United States)

    Papadas, Ioannis T; Fountoulaki, Stella; Lykakis, Ioannis N; Armatas, Gerasimos S

    2016-03-18

    Iron(III) oxide is a low-cost material with applications ranging from electronics to magnetism, and catalysis. Recent efforts have targeted new nanostructured forms of Fe2O3 with high surface area-to-volume ratio and large pore volume. Herein, the synthesis of 3D mesoporous networks consisting of 4-5 nm γ-Fe2O3 nanoparticles by a polymer-assisted aggregating self-assembly method is reported. Iron oxide assemblies obtained from the hybrid networks after heat treatment have an open-pore structure with high surface area (up to 167 m(2)g(-1)) and uniform pores (ca. 6.3 nm). The constituent iron oxide nanocrystals can undergo controllable phase transition from γ-Fe2O3 to α-Fe2O3 and to Fe3O4 under different annealing conditions while maintaining the 3D structure and open porosity. These new ensemble structures exhibit high catalytic activity and stability for the selective reduction of aryl and alkyl nitro compounds to the corresponding aryl amines and oximes, even in large-scale synthesis. PMID:26880681

  17. Optimization of internals for Selective Catalytic Reduction (SCR) for NO removal.

    Science.gov (United States)

    Lei, Zhigang; Wen, Cuiping; Chen, Biaohua

    2011-04-15

    This work tried to identify the relationship between the internals of selective catalytic reduction (SCR) system and mixing performance for controlling ammonia (NH(3)) slip. In the SCR flow section, arranging the flow-guided internals can improve the uniformity of velocity distribution but is unfavorable for the uniformity of NH(3) concentration distribution. The ammonia injection grids (AIG) with four kinds of nozzle diameters (i.e., 1.0 mm, 1.5 mm, 2.0 mm, and mixed diameters) were investigated, and it was found that the AIG with mixed nozzle diameters in which A3, A4, B3, and B4 nozzles' diameters are 1.0 mm and other nozzles' diameters are 1.5 mm is the most favorable for the uniformity of NH(3) concentration distribution. In the SCR reactor section, the appropriate space length between two catalyst layers, which serves as gas mixing in order to prevent maldistribution of gas concentrations into the second catalyst layer, under the investigated conditions is about 100, 1000, and 12 mm for honeycomb-like cordierite catalyst, plate-type catalysts with parallel channel arrangement, and with cross channel arrangement, respectively. Therefore, the cross channel arrangement is superior to the parallel channel arrangement in saving the SCR reactor volume.

  18. PILLARED CLAYS AS SUPERIOR CATALYSTS FOR SELECTIVE CATALYTIC REDUCTION OF NITRIC OXIDE

    Energy Technology Data Exchange (ETDEWEB)

    R. T. Yang; R.Q. Long

    1999-03-31

    In the last annual reports, we reported Cu-exchanged pillared clays as superior selective catalytic reduction (SCR) catalysts. During the past year we explored the possibilities with MCM-41, a new class of molecular sieve. In this report, Rh exchanged Al-MCM-41 is studied for the SCR of NO by C{sub 3}H{sub 6} in the presence of excess oxygen. It shows a high activity in converting NO to N{sub 2} and N{sub 2}O at low temperatures. In situ FT-IR studies indicate that Rh-NO{sup +} species (1910-1898 cm{sup {minus}1}) is formed on the Rh-Al-MCM-41 catalyst in flowing NO/He, NO+O{sub 2}/He and NO+C{sub 3}H{sub 6}+O{sub 2}/He at 100-350 C. This species is quite active in reacting with propylene and/or propylene adspecies (e.g., {pi}-C{sub 3}H{sub 5}, polyene, etc.) at 250 C in the presence/absence of oxygen, leading to the formation of the isocyanate species (Rh-NCO, at 2174 cm{sup {minus}1}), CO and CO{sub 2}. Rh-NCO is also detected under reaction conditions. A possible reaction pathway for reduction of NO by C{sub 3}H{sub 6} is proposed. In the SCR reaction, Rh-NO{sup +} and propylene adspecies react to generate the Rh-NCO species, then Rh-NCO reacts with O{sub 2}, NO and NO{sub 2} to produce N{sub 2}, N{sub 2}O and CO{sub 2}. Rh-NO{sup +} and Rh-NCO species are two main intermediates for the SCR reaction on Rh-Al-MCM-41 catalyst.

  19. DEVELOPMENT OF HIGH ACTIVITY, COAL-DERIVED, PROMOTED CATALYTIC SYSTEMS FOR NOx REDUCTION AT LOW TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Joseph M. Calo

    2000-07-21

    This project is directed at an investigation of catalytic NO{sub x} reduction mechanisms on coal-derived, activated carbon supports at low temperatures. Promoted carbon systems offer some potentially significant advantages for heterogeneous NO{sub x} reduction. These include: low cost; high activity at low temperatures, which minimizes carbon loss; oxygen resistance; and a support material which can be engineered with respect to porosity, transport and catalyst dispersion characteristics. During the reporting period, the following has been accomplished: (1) Steady-state reactivity studies in the packed bed reactor were extended to the NO/CO-carbon reaction system as a function of temperature and NO and CO concentrations. It was found that the NO reaction rate increased in the presence of CO, and the apparent activation energy decreased to about 75 {+-} 8 kJ/mol. In addition, the influence of mass transfer limitations were noted at low NO and CO concentrations. (2) The packed bed reactor/gas flow system has been applied to performing post-reaction temperature programmed desorption (TPD) studies of intermediate surface complexes following steady-state reaction. It was found that the amount of CO-evolving intermediate surface complexes exceeded that of the N{sub 2}-evolving surface complexes, and that both increased with reaction temperature. The TPD spectra indicates that both types of complexes desorb late, suggesting that they have high desorption activation energies. Plans for the next reporting period include extending the temperature programmed desorption studies in the packed bed reactor system to the NO/CO reaction system, including exposure to just CO, as well as NO/CO mixtures.

  20. Enhanced catalytic activity over MIL-100(Fe) loaded ceria catalysts for the selective catalytic reduction of NOx with NH₃ at low temperature.

    Science.gov (United States)

    Wang, Peng; Sun, Hong; Quan, Xie; Chen, Shuo

    2016-01-15

    The development of catalysts for selective catalytic reduction (SCR) reactions that are highly active at low temperatures and show good resistance to SO2 and H2O is still a challenge. In this study, we have designed and developed a high-performance SCR catalyst based on nano-sized ceria encapsulated inside the pores of MIL-100(Fe) that combines excellent catalytic power with a metal organic framework architecture synthesized by the impregnation method (IM). Transmission electron microscopy (TEM) revealed the encapsulation of ceria in the cavities of MIL-100(Fe). The prepared IM-CeO2/MIL-100(Fe) catalyst shows improved catalytic activity both at low temperatures and throughout a wide temperature window. The temperature window for 90% NOx conversion ranges from 196 to 300°C. X-ray photoelectron spectroscopy (XPS) and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) analysis indicated that the nano-sized ceria encapsulated inside MIL-100(Fe) promotes the production of chemisorbed oxygen on the catalyst surface, which greatly enhances the formation of the NO2 species responsible for fast SCR reactions. PMID:26414927

  1. Fe Promotion Effect in Mn/USY for Low-temperature Selective Catalytic Reduction of NO with NH3

    Institute of Scientific and Technical Information of China (English)

    Qi Chun LIN; Ji Ming HAO; Jun Hua LI

    2006-01-01

    A series of catalysts of Mn/USY and Mn-Fe/USY prepared by impregnation were studied for low-temperature selective catalytic reduction (SCR) of NO with NH3 in the presence of excess of oxygen. It was found that the addition of Fe enhanced the catalytic performance at low-temperature. Mn-Fe/USY catalyst yielded nearly 100% NO conversion in a range of manganese and iron oxides enhanced the dispersion of the supported oxides, no visible phase of the oxides can be observed on catalyst. The addition of Fe enhanced the number and strength of the Bronsted and Lewis acid sites on the surface of the catalyst, which might promote the absorption of NH3 to form active intermediate and enhance the catalytic performance at low-temperature.

  2. Robust, chiral, and porous BINAP-based metal-organic frameworks for highly enantioselective cyclization reactions.

    Science.gov (United States)

    Sawano, Takahiro; Thacker, Nathan C; Lin, Zekai; McIsaac, Alexandra R; Lin, Wenbin

    2015-09-30

    We report here the design of BINAP-based metal-organic frameworks and their postsynthetic metalation with Rh complexes to afford highly active and enantioselective single-site solid catalysts for the asymmetric cyclization reactions of 1,6-enynes. Robust, chiral, and porous Zr-MOFs of UiO topology, BINAP-MOF (I) or BINAP-dMOF (II), were prepared using purely BINAP-derived dicarboxylate linkers or by mixing BINAP-derived linkers with unfunctionalized dicarboxylate linkers, respectively. Upon metalation with Rh(nbd)2BF4 and [Rh(nbd)Cl]2/AgSbF6, the MOF precatalysts I·Rh(BF4) and I·Rh(SbF6) efficiently catalyzed highly enantioselective (up to 99% ee) reductive cyclization and Alder-ene cycloisomerization of 1,6-enynes, respectively. I·Rh catalysts afforded cyclization products at comparable enantiomeric excesses (ee's) and 4-7 times higher catalytic activity than the homogeneous controls, likely a result of catalytic site isolation in the MOF which prevents bimolecular catalyst deactivation pathways. However, I·Rh is inactive in the more sterically encumbered Pauson-Khand reactions between 1,6-enynes and carbon monoxide. In contrast, with a more open structure, Rh-functionalized BINAP-dMOF, II·Rh, effectively catalyzed Pauson-Khand cyclization reactions between 1,6-enynes and carbon monoxide at 10 times higher activity than the homogeneous control. II·Rh was readily recovered and used three times in Pauson-Khand cyclization reactions without deterioration of yields or ee's. Our work has expanded the scope of MOF-catalyzed asymmetric reactions and showed that the mixed linker strategy can effectively enlarge the open space around the catalytic active site to accommodate highly sterically demanding polycyclic metallocycle transition states/intermediates in asymmetric intramolecular cyclization reactions. PMID:26335305

  3. Robust, Chiral, and Porous BINAP-Based Metal–Organic Frameworks for Highly Enantioselective Cyclization Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sawano, Takahiro; Thacker, Nathan C.; Lin, Zekai; McIsaac, Alexandra R.; Lin, Wenbin (UC)

    2016-05-06

    We report here the design of BINAP-based metal–organic frameworks and their postsynthetic metalation with Rh complexes to afford highly active and enantioselective single-site solid catalysts for the asymmetric cyclization reactions of 1,6-enynes. Robust, chiral, and porous Zr-MOFs of UiO topology, BINAP-MOF (I) or BINAP-dMOF (II), were prepared using purely BINAP-derived dicarboxylate linkers or by mixing BINAP-derived linkers with unfunctionalized dicarboxylate linkers, respectively. Upon metalation with Rh(nbd)2BF4 and [Rh(nbd)Cl]2/AgSbF6, the MOF precatalysts I·Rh(BF4) and I·Rh(SbF6) efficiently catalyzed highly enantioselective (up to 99% ee) reductive cyclization and Alder-ene cycloisomerization of 1,6-enynes, respectively. I·Rh catalysts afforded cyclization products at comparable enantiomeric excesses (ee’s) and 4–7 times higher catalytic activity than the homogeneous controls, likely a result of catalytic site isolation in the MOF which prevents bimolecular catalyst deactivation pathways. However, I·Rh is inactive in the more sterically encumbered Pauson–Khand reactions between 1,6-enynes and carbon monoxide. In contrast, with a more open structure, Rh-functionalized BINAP-dMOF, II·Rh, effectively catalyzed Pauson–Khand cyclization reactions between 1,6-enynes and carbon monoxide at 10 times higher activity than the homogeneous control. II·Rh was readily recovered and used three times in Pauson–Khand cyclization reactions without deterioration of yields or ee’s. Our work has expanded the scope of MOF-catalyzed asymmetric reactions and showed that the mixed linker strategy can effectively enlarge the open space around the catalytic active site to accommodate highly sterically demanding polycyclic metallocycle transition states/intermediates in asymmetric intramolecular cyclization reactions.

  4. Selective catalytic reduction system and process for treating NOx emissions using a palladium and rhodium or ruthenium catalyst

    Science.gov (United States)

    Sobolevskiy, Anatoly; Rossin, Joseph A.; Knapke, Michael J.

    2011-07-12

    A process for the catalytic reduction of nitrogen oxides (NOx) in a gas stream (29) in the presence of H.sub.2 is provided. The process comprises contacting the gas stream with a catalyst system (38) comprising zirconia-silica washcoat particles (41), a pre-sulfated zirconia binder (44), and a catalyst combination (40) comprising palladium and at least one of rhodium, ruthenium, or a mixture of ruthenium and rhodium.

  5. Synthesis and Catalytic Asymmetric Reaction of Chiral Pyridine Prolinol Derivatives

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao; ZHANG Yong-Xin; DU Da-Ming; HUA Wen-Ting

    2003-01-01

    @@ The enantioselective reduction of prochiral ketones with borane in the presence of a chiral ligand leading to enantiomerically pure secondary alcohols has received considerable attention in recent years. [1] Enantiomerically pure secondary alcohols are important intermediates for the synthesis of various other organic compounds such as halides, esters, ethers, ketones and amines. To the best of our knowledge, the use of pyridine prolinol derivatives in the reduction of ketones has not been reported so far. Thus, it should be of interest to investigate the catalytic a bility of such ligands. We have an ongoing project in the synthesis and application of chiral pyridine derivatives in chiral molecular recognition[2] and we want to evaluate the effect resulting from the introduction of a pyridinyl moiety onto the catalysts. We expect that the cooperation of pyridine unit and chiral prolinol unit in new ligands may result in unique properties for catalytic reaction.

  6. ADVANCED BYPRODUCT RECOVERY: DIRECT CATALYTIC REDUCTION OF SO2 TO ELEMENTAL SULFUR

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Weber

    1999-05-01

    Arthur D. Little, Inc., together with its commercialization partner, Engelhard Corporation, and its university partner Tufts, investigated a single-step process for direct, catalytic reduction of sulfur dioxide from regenerable flue gas desulfurization processes to the more valuable elemental sulfur by-product. This development built on recently demonstrated SO{sub 2}-reduction catalyst performance at Tufts University on a DOE-sponsored program and is, in principle, applicable to processing of regenerator off-gases from all regenerable SO{sub 2}-control processes. In this program, laboratory-scale catalyst optimization work at Tufts was combined with supported catalyst formulation work at Engelhard, bench-scale supported catalyst testing at Arthur D. Little and market assessments, also by Arthur D. Little. Objectives included identification and performance evaluation of a catalyst which is robust and flexible with regard to choice of reducing gas. The catalyst formulation was improved significantly over the course of this work owing to the identification of a number of underlying phenomena that tended to reduce catalyst selectivity. The most promising catalysts discovered in the bench-scale tests at Tufts were transformed into monolith-supported catalysts at Engelhard. These catalyst samples were tested at larger scale at Arthur D. Little, where the laboratory-scale results were confirmed, namely that the catalysts do effectively reduce sulfur dioxide to elemental sulfur when operated under appropriate levels of conversion and in conditions that do not contain too much water or hydrogen. Ways to overcome those limitations were suggested by the laboratory results. Nonetheless, at the end of Phase I, the catalysts did not exhibit the very stringent levels of activity or selectivity that would have permitted ready scale-up to pilot or commercial operation. Therefore, we chose not to pursue Phase II of this work which would have included further bench-scale testing

  7. DEVELOPMENT OF HIGH ACTIVITY, COAL-DERIVED, PROMOTED CATALYTIC SYSTEMS FOR NOx REDUCTION AT LOW TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Joseph M. Calo

    2000-07-24

    This project is directed at an investigation of catalytic NO{sub x} reduction mechanisms on coal-derived, activated carbon supports at low temperatures. Promoted carbon systems offer some potentially significant advantages for heterogeneous NO{sub x} reduction. These include: low cost; high activity at low temperatures, which minimizes carbon loss; oxygen resistance; and a support material which can be engineered with respect to porosity, transport and catalyst dispersion characteristics. During the reporting period, TPD studies were conducted following steady-state reaction in NO/CO mixtures in helium. From these studies, the following points have been concluded: (1) The total amount of CO and N{sub 2} evolved following reaction in NO increases with reaction temperature. The TPD spectra are skewed to high temperatures, indicating more stable surface complexes with high desorption activation energies. (2) The total amount of CO evolved following exposure of the char sample to CO at reaction temperatures decreases with reaction temperature, similar to chemisorption behavior. The CO TPD spectra are shifted to lower temperatures, indicating more labile oxygen surface complexes with lower desorption activation energies. (3) The total amount of CO evolved following reaction in NO/CO mixtures decreases with reaction temperature, while the evolved N{sub 2} still increases with reaction temperature. The CO TPD spectra appear more similar to those obtained following exposure to pure CO, while the N{sub 2} TPD spectra are more similar to those obtained followed reaction in just CO. Based on the preceding observations, a simple mechanism was formulated whereby two different types of surface complexes are formed by NO and CO; the former are more stable, and the latter more labile. This produces two parallel routes for the NO-carbon reaction: (a) the C(O) complexes formed directly by NO desorb as CO; and (b) The C(CO) complexes formed by CO, react with NO to produce CO{sub 2

  8. Photo catalytic reduction of benzophenone on TiO{sub 2}: Effect of preparation method and reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Albiter E, E.; Valenzuela Z, M. A.; Alfaro H, S.; Flores V, S. O.; Rios B, O.; Gonzalez A, V. J.; Cordova R, I., E-mail: mavalenz@ipn.m [IPN, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Laboratorio de Catalisis y Materiales, Zacatenco, 07738 Mexico D. F. (Mexico)

    2010-07-01

    The photo catalytic reduction of benzophenone was studied focussing on improving the yield to benzhydrol. TiO{sub 2} was synthesized by means of a hydrothermal technique. TiO{sub 2} (Degussa TiO{sub 2}-P25) was used as a reference. Catalysts were characterized by X-ray diffraction and nitrogen physisorption. The photo catalytic reduction was carried out in a batch reactor at 25 C under nitrogen atmosphere, acetonitrile as solvent and isopropanol as electron donor. A 200 W Xe-Hg lamp ({lambda}= 360 nm) was employed as irradiation source. The chemical composition of the reaction system was determined by HPLC. Structural and textural properties of the synthesized TiO{sub 2} depended on the type of acid used during sol formation step. Using HCl, a higher specific surface area and narrower pore size distribution of TiO{sub 2} was obtained in comparison with acetic acid. As expected, the photochemical reduction of benzophenone yielded benzopinacol as main product, whereas, benzhydrol is only produced in presence of TiO{sub 2} (i.e. photo catalytic route). In general, the hydrothermally synthesized catalysts were less active and with a lower yield to benzhydrol. The optimal reaction conditions to highest values of benzhydrol yield (70-80%) were found at 2 g/L (catalyst loading) and 0.5 m M of initial concentration of benzophenone, using commercial TiO{sub 2}-P25. (Author)

  9. Electrochemical characterization of praseodymia doped zircon. Catalytic effect on the electrochemical reduction of molecular oxygen in polar organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Domenech, Antonio, E-mail: antonio.domenech@uv.es [Departament de Quimica Analitica, Universitat de Valencia, Dr. Moliner, 50, 46100 Burjassot, Valencia (Spain); Montoya, Noemi; Alarcon, Javier [Departament de Quimica Inorganica, Universitat de Valencia, Dr. Moliner, 50, 46100 Burjassot, Valencia (Spain)

    2011-08-01

    Highlights: > Electrochemical characterization of Pr centers in praseodymia-doped zircon. > Study of the catalytic effect on the reduction of peroxide radical anion in nonaqueous solvents. > Assessment of non-uniform distribution of Pr centers in the zircon grains. - Abstract: The voltammetry of microparticles and scanning electrochemical microscopy methodologies are applied to characterize praseodymium centers in praseodymia-doped zircon (Pr{sub x}Zr{sub (1-y)}Si{sub (1-z)}O{sub 4}; y + z = x; 0.02 < x < 0.10) specimens prepared via sol-gel synthetic routes. In contact with aqueous electrolytes, two overlapping Pr-centered cathodic processes, attributable to the Pr (IV) to Pr (III) reduction of Pr centers in different sites are obtained. In water-containing, air-saturated acetone and DMSO solutions as solvent, Pr{sub x}Zr{sub (1-y)}Si{sub (1-z)}O{sub 4} materials produce a significant catalytic effect on the electrochemical reduction of peroxide radical anion electrochemically generated. These electrochemical features denote that most of the Pr centers are originally in its 4+ oxidation state in the parent Pr{sub x}Zr{sub (1-y)}Si{sub (1-z)}O{sub 4} specimens. The variation of the catalytic performance of such specimens with potential scan rate, water concentration and Pr loading suggests that Pr is not uniformly distributed within the zircon grains, being concentrated in the outer region of such grains.

  10. Selective catalytic reduction of NOx from diesel engine exhaust using injection of urea. Doctoral thesis

    Energy Technology Data Exchange (ETDEWEB)

    Hultermans, R.J.

    1995-09-25

    ;Contents: Diesel exhaust NOx formation and abatement (Diesel DeNOxing literature, System Considerations, Summary); Catalytic testing (Experimental facilities for testing catalysts, transport phenomena in steady state fixed bed reactors, Catalyst testing); Development of a urea injection system.

  11. Novel Catalytic Reactor for CO2 Reduction via Sabatier Process Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision Combustion, Inc. (PCI) proposes to develop a novel, efficient, and lightweight catalytic Sabatier CO2 methanation unit, capable of converting a mixture of...

  12. Substitution of Val72 residue alters the enantioselectivity and activity of Penicillium expansum lipase.

    Science.gov (United States)

    Tang, Lianghua; Su, Min; Zhu, Ling; Chi, Liying; Zhang, Junling; Zhou, Qiong

    2013-01-01

    Error-prone PCR was used to create more active or enantioselective variants of Penicillium expansum lipase (PEL). A variant with a valine to glycine substitution at residue 72 in the lid structure exhibited higher activity and enantioselectivity than those of wild-type PEL. Site-directed saturation mutagenesis was used to explore the sequence-function relationship and the substitution of Val72 of P. expansum lipase changed both catalytic activity and enantioselectivity greatly. The variant V72A, displayed a highest enantioselectivity enhanced to about twofold for the resolution of (R, S)-naproxen (E value increased from 104 to 200.7 for wild-type PEL and V72A variant, respectively). In comparison to PEL, the variant V72A showed a remarkable increase in specific activity towards p-nitrophenyl palmitate (11- and 4-fold increase at 25 and 35 °C, respectively) whereas it had a decreased thermostability. The results suggest that the enantioselective variant V72A could be used for the production of pharmaceutical drugs such as enantiomerically pure (S)-naproxen and the residue Val 72 of P. expansum lipase plays a significant role in the enantioselectivity and activity of this enantioselective lipase. PMID:22972595

  13. Isolation of the Copper Redox Steps in the Standard Selective Catalytic Reduction on Cu-SSZ-13

    Energy Technology Data Exchange (ETDEWEB)

    Paolucci, Christopher; Verma, Anuj A.; Bates, Shane A.; Kispersky, Vincent F.; Miller, Jeffrey T.; Gounder, Rajmani; Delgass, Nick; Ribeiro, Fabio; Schneider, William F.

    2014-10-27

    Operando X-ray absorption experiments and density functional theory (DFT) calculations are reported that elucidate the role of copper redox chemistry in the selective catalytic reduction (SCR) of NO over Cu-exchanged SSZ-13. Catalysts prepared to contain only isolated, exchanged CuII ions evidence both CuII and CuI ions under standard SCR conditions at 473 K. Reactant cutoff experiments show that NO and NH3 together are necessary for CuII reduction to CuI. DFT calculations show that NO-assisted NH3 dissociation is both energetically favorable and accounts for the observed CuII reduction. The calculations predict in situ generation of Brønsted sites proximal to CuI upon reduction, which we quantify in separate titration experiments. Both NO and O2 are necessary for oxidation of CuI to CuII, which DFT suggests to occur by a NO2 intermediate. Reaction of Cu-bound NO2 with proximal NH4 + completes the catalytic cycle. N2 is produced in both reduction and oxidation half-cycles.

  14. Isolation of the copper redox steps in the standard selective catalytic reduction on Cu-SSZ-13.

    Science.gov (United States)

    Paolucci, Christopher; Verma, Anuj A; Bates, Shane A; Kispersky, Vincent F; Miller, Jeffrey T; Gounder, Rajamani; Delgass, W Nicholas; Ribeiro, Fabio H; Schneider, William F

    2014-10-27

    Operando X-ray absorption experiments and density functional theory (DFT) calculations are reported that elucidate the role of copper redox chemistry in the selective catalytic reduction (SCR) of NO over Cu-exchanged SSZ-13. Catalysts prepared to contain only isolated, exchanged Cu(II) ions evidence both Cu(II) and Cu(I) ions under standard SCR conditions at 473 K. Reactant cutoff experiments show that NO and NH3 together are necessary for Cu(II) reduction to Cu(I). DFT calculations show that NO-assisted NH3 dissociation is both energetically favorable and accounts for the observed Cu(II) reduction. The calculations predict in situ generation of Brønsted sites proximal to Cu(I) upon reduction, which we quantify in separate titration experiments. Both NO and O2 are necessary for oxidation of Cu(I) to Cu(II), which DFT suggests to occur by a NO2 intermediate. Reaction of Cu-bound NO2 with proximal NH4(+) completes the catalytic cycle. N2 is produced in both reduction and oxidation half-cycles. PMID:25220217

  15. Promotional Effect of Ce on Iron-Based Catalysts for Selective Catalytic Reduction of NO with NH3

    Directory of Open Access Journals (Sweden)

    Xiaobo Wang

    2016-07-01

    Full Text Available A series of Fe–Ce–Ti catalysts were prepared via co-precipitation method to investigate the effect of doping Ce into Fe–Ti catalysts for selective catalytic reduction of NO with NH3. The NO conversion over Fe–Ce–Ti catalysts was considerably improved after Ce doping compared to that of Fe–Ti catalysts. The Fe(0.2–Ce(0.4–Ti catalysts exhibited superior catalytic activity to that of Fe(0.2–Ti catalysts. The obtained catalysts were characterized by N2 adsorption (BET, X-ray diffraction (XRD, temperature programmed reduction (H2-TPR, temperature programmed desorption (NH3-TPD, Fourier transform infrared (FT-IR spectrophotometry, thermogravimetric analysis (TGA, and X-ray photoelectron spectroscopy (XPS. The data showed that the introduction of Ce results in higher surface area and better dispersion of active components on the catalyst surface and enhances the amount of surface acid sites. The interactions between Fe and Ce species were found to improve the redox ability of the catalyst, which promotes catalytic performance at low temperature. The XPS results revealed that Fe3+/Fe2+ and Ce4+/Ce3+ coexisted on the catalyst surface and that Ti was in 4+ oxidation state on catalyst surface. Ce doping increased the atomic ratio of Fe/Ti and Ce/Ti and enhanced the surface adsorbed oxygen species. In addition, Fe(0.2–Ce(0.4–Ti catalyst also showed better tolerance to H2O and SO2 and up to 92% NO conversion at 270 °C with 200 ppm SO2 added over 25 h, which suggests that it is a promising industrial catalyst for mid-low temperature NH3–selective catalytic reduction (SCR reaction.

  16. Catalytic Destruction of a Surrogate Organic Hazardous Air Pollutant as a Potential Co-benefit for Coal-fired Selective Catalyst Reduction Systems

    Science.gov (United States)

    Catalytic destruction of benzene (C6H6), a surrogate for organic hazardous air pollutants (HAPs) produced from coal combustion, was investigated using a commercial selective catalytic reduction (SCR) catalyst for evaluating the potential co-benefit of the SCR technology for reduc...

  17. Synthesis and Catalytic Activity of Two New Cyclic Tetraaza Ligands

    Directory of Open Access Journals (Sweden)

    Burkhard König

    2003-05-01

    Full Text Available Two new chiral cyclic tetraaza ligands were synthesized and characterized. Their catalytic activity was tested in the asymmetric addition of diethylzinc to benzaldehyde. The expected secondary alcohol was obtained in moderate yields, but with very low enantioselectivity.

  18. Suppressed N2O formation during NH3 selective catalytic reduction using vanadium on zeolitic microporous TiO2

    Science.gov (United States)

    Lee, Seung Gwan; Lee, Hyun Jeong; Song, Inhak; Youn, Seunghee; Kim, Do Heui; Cho, Sung June

    2015-08-01

    Emission of N2O from mobile and off-road engine is now being currently regulated because of its high impact compared to that of CO2, thereby implying that N2O formation from the exhaust gas after-treatment system should be suppressed. Selective catalytic reduction using vanadium supported TiO2 catalyst in mobile and off-road engine has been considered to be major source for N2O emission in the system. Here we have demonstrated that vanadium catalyst supported on zeolitic microporous TiO2 obtained from the hydrothermal reaction of bulk TiO2 at 400 K in the presence of LiOH suppresses significantly the N2O emission compared to conventional VOx/TiO2 catalyst, while maintaining the excellent NOx reduction, which was ascribed to the location of VOx domain in the micropore of TiO2, resulting in the strong metal support interaction. The use of zeolitic microporous TiO2 provides a new way of preparing SCR catalyst with a high thermal stability and superior catalytic performance. It can be also extended further to the other catalytic system employing TiO2-based substrate.

  19. Chitosan based polymer matrix with silver nanoparticles decorated multiwalled carbon nanotubes for catalytic reduction of 4-nitrophenol.

    Science.gov (United States)

    Alshehri, Saad M; Almuqati, Turki; Almuqati, Naif; Al-Farraj, Eida; Alhokbany, Norah; Ahamad, Tansir

    2016-10-20

    A novel catalyst for the reduction of 4-nitrophenol (4-NP) was prepared using carboxyl group-functionalized multiwalled carbon nanotubes (MWCNTs), polymer matrix, and silver nanoparticles (AgNPs). The AgNPs were prepared by the reduction of silver nitrate by trisodium citrate in the MWCNTs-polymer nanocomposite; the size of the synthesized AgNPs was found to be 3nm (average diameter). The synthesized nanocomposites were characterized using several analytical techniques. Ag@MWCNTs-polymer composite in the presence of sodium borohydride (NaBH4) in aqueous solution is an effective catalyst for the reduction of 4-NP. The apparent kinetics of reduction has a pseudo-first-order kinetics, and the rate constant and catalytic activity parameter were found to be respectively 7.88×10(-3)s(-1)and 11.64s(-1)g(-1). The MWCNTs-polymer nanocomposite renders stability to AgNPs against the environment and the reaction medium, which means that the Ag@MWCNTs-polymer composite can be re-used for many catalytic cycles. PMID:27474552

  20. Uniform Ni/SiO2@Au magnetic hollow microspheres: rational design and excellent catalytic performance in 4-nitrophenol reduction

    Science.gov (United States)

    Zhang, Shenghuan; Gai, Shili; He, Fei; Dai, Yunlu; Gao, Peng; Li, Lei; Chen, Yujin; Yang, Piaoping

    2014-05-01

    A unique and rational design was presented to fabricate Ni/SiO2@Au magnetic hollow microspheres (MHMs) with interesting structures and well-dispersed metal nanoparticles. Hierarchical nickel silicate hollow microspheres were synthesized using silica colloidal spheres as a chemical template. Then, Ni/SiO2 MHMs with well-dispersed Ni nanoparticles were prepared via an in situ reduction approach. Ni/SiO2@Au MHMs were finally obtained by immobilizing uniform Au nanoparticles onto Ni/SiO2 support through a low-temperature chemical reduction process. It was found that Ni/SiO2@Au MHMs inherit the shape and uniformity of the original silica scaffold, and Ni NPs and Au NPs, which were less than 5 nm in size, were well dispersed on the mesoporous silica shell with narrow size distribution. Both Ni/SiO2 and Ni/SiO2@Au MHMs showed excellent catalytic activity in the 4-nitrophenol reduction reaction. Importantly, introduction of a small amount of Au NPs onto Ni/SiO2 MHMs markedly improved the catalytic activity. In particular, Ni/SiO2@Au MHMs showed high conversion even after re-use for several cycles with magnetic separation. The unique structure, high catalytic performance, and ease of separation make Ni/SiO2@Au MHMs highly promising candidates for diverse applications.A unique and rational design was presented to fabricate Ni/SiO2@Au magnetic hollow microspheres (MHMs) with interesting structures and well-dispersed metal nanoparticles. Hierarchical nickel silicate hollow microspheres were synthesized using silica colloidal spheres as a chemical template. Then, Ni/SiO2 MHMs with well-dispersed Ni nanoparticles were prepared via an in situ reduction approach. Ni/SiO2@Au MHMs were finally obtained by immobilizing uniform Au nanoparticles onto Ni/SiO2 support through a low-temperature chemical reduction process. It was found that Ni/SiO2@Au MHMs inherit the shape and uniformity of the original silica scaffold, and Ni NPs and Au NPs, which were less than 5 nm in size, were well

  1. Plasma-catalytic Selective Reduction of NO with C2H4 in the Presence of Excess Oxygen

    Institute of Scientific and Technical Information of China (English)

    Qi SUN; Ai Min ZHU; Xue Feng YANG; Jin Hai NIU; Yong XU; Zhi Min SONG; Jing LIU

    2005-01-01

    This paper reports observations of significant synergistic effects between dielectric barrier discharge (DBD) plasmas and Cu-ZSM-5 catalysts for C2H4 selective reduction of NOx at250 ℃ in the presence of excess oxygen by using a one-stage plasma-over-catalyst (POC) reactor.With the reactant gas mixture of 530 ppm NO, 650 ppm C2H4, 5.8% O2 in N2and GHSV = 12000h-1, the pure catalytic, pure plasma-induced (discharges over fused silica pellets) and plasmacatalytic (in the POC reactor) NOx conversion are 39%, 1.5% and 79%, respectively. The in-situ optical emission spectra of the reactive systems imply some short-lived active species formed from plasma-induced and plasma-catalytic processes may be responsible to the observed synergistic effects in this one-stage POC system.

  2. Effect of manufacturing methods of AgCl/Al2O3 catalyst on selective catalytic reduction of NOx

    Institute of Scientific and Technical Information of China (English)

    Satoshi Kishida; Dong-Ying Ju; Hirofumi Aritani

    2011-01-01

    The AgCl/Al2O3 catalyst has potential for use in the selective catalytic reduction (SCR) of NOx. A compound hydrocarbon, following oxygenation is used as a type of reducing agent. In this experiment, the AgCl/Al2O3 catalyst was produced by four different methods,and the differences among their reduction catalysis of NOx were compared. Ethanol was used as a type of reducing agent. X-ray diffraction analysis was performed to study the crystalline structure and scanning electron microscope and transmission electron microscope (TEM) were applied to determine the microindentation. The results indicated that, in the range of 350-400℃, there was no significant difference on the NOx reduction rate; however, there was dispersion at high and low temperature ranges. The size of the AgCl particles was about 20-100 nm.

  3. Investigation of catalytic activity towards oxygen reduction reaction of Pt dispersed on boron doped graphene in acid medium.

    Science.gov (United States)

    Pullamsetty, Ashok; Sundara, Ramaprabhu

    2016-10-01

    Boron doped graphene was prepared by a facile method and platinum (Pt) decoration over boron doped graphene was done in various chemical reduction methods such as sodium borohydride (NaBH4), polyol and modified polyol. X-ray diffraction analysis indicates that the synthesized catalyst particles are present in a nanocrystalline structure and transmission and scanning electron microscopy were employed to investigate the morphology and particle distribution. The electrochemical properties were investigated with the help of the rotating disk electrode (RDE) technique and cyclic voltammetry. The results show that the oxygen reduction reaction (ORR) takes place by a four-electron process. The kinetics of the ORR was evaluated using K-L and Tafel plots. The electrocatalyst obtained in modified polyol reduction method has shown the better catalytic activity compared to other two electrocatalysts. PMID:27393888

  4. 油包水微乳液中抗体酶催化布洛芬酯选择性水解的酶学特性%Enzymological Characteristics of Catalytic Antibody-catalyzed enantioselective Hydrolysis of Ibuprofen Ester in Water-in-oil microemulsion

    Institute of Scientific and Technical Information of China (English)

    杨根生; 戚映丹; 欧志敏; 姚善泾

    2009-01-01

    The asymmetric hydrolyzation of racemic ibuprofen ester is one of the most important methods for chiral separation of ibuprofen. A catalytic antibody that accelerates the rate of enantioselective hydrolysis of ibuprofen methyl ester was successfully elicited against an immunogen consisting of tetrahedral sulfate hapten attached to bovine serum albumin (BSA). The rate constant enhancement factor Kcat/Kuncat was about 1.6x104. The catalytic activity of the catalytic antibody in a reverse micelle reaction system based on sodium b/s (2-ethylhexyl) sodium sulfosuccinate (AOT) in isooctane was studied. Kinetic analysis of the catalytic antibody-catalyzed reaction was found to be possible in this system. Kinetic studies showed that hydrolysis in the microemulsion system follow Michaelis-Menten kinetics. The catalytic antibody can also accelerate catalysis of S-ibuprofen methyl ester in the microemulsion system. Temperature effects, the pH profile, Km,app and Kcat were determined. The dependence of the catalytic antibody hydrolytic activity on the Wo (molar ratio of water to surfactant) showed a bell-shaped curve, presenting a maximum at about wo = 21.%根据过渡态理论设计和合成了能诱导产生催化选择性水解布洛芬甲酯的催化抗体的四面体硫酸盐半抗原,并与牛血清白蛋白(BSA)偶联制备成免疫源,通过免疫手段成功筛选出具有加速选择性水解生成S-布洛芬的特异性催化抗体.其Kcat,app/Kuncat,app达1.6x104.进一步地将催化抗体运用到W/O微乳体系(反胶束)中进行布洛芬酯的选择性水解研究,其动力学研究证明其催化过程同样遵循Michaelis.Menten方程.考察了pH值和温度对催化初速度影响,Wo(体系中水和琥珀酸二辛酯磺酸钠(AOT)的摩尔比)对催化初速度影响呈现为钟罩型,最适的Wo.为21.

  5. Highly active Ag clusters stabilized on TiO2 nanocrystals for catalytic reduction of p-nitrophenol

    Science.gov (United States)

    Wang, Xin; Zhao, Zhe; Ou, Dingrong; Tu, Baofeng; Cui, Daan; Wei, Xuming; Cheng, Mojie

    2016-11-01

    Ag/TiO2 nanocomposites comprising of Ag clusters on TiO2 nanocrystal surfaces are of great significance in catalysts and advanced functional materials. Herein a novel method to synthesize Ag/TiO2 nanocomposites with Ag clusters under 2 nm on TiO2 nanocrystal surfaces have been developed. The success of this method relies on a silver mirror reaction in toluene, which refers to the reduction of silver-dodecylamine complexes by acetaldehyde in the presence of mono-dispersed TiO2 nanocrystals. The prepared Ag/TiO2 nanocomposites have been characterized by FT-IR spectra, UV-vis absorption spectra, X-ray diffraction (XRD) analysis, ultra high resolution scanning electron microscope (Ultra-HRSEM), high resolution transmission electron microscope (HRTEM) and X-ray photoelectron spectra (XPS). Catalytic activity of Ag/TiO2 nanocomposites is evaluated for the reduction of p-nitrophenol (4-NP) into p-aminophenol (4-AP) by NaBH4. Results demonstrate that Ag/TiO2 nanocomposites have shown an outstanding catalytic activity as well as a good stability in successive reduction of 4-NP. Noticeably, TOF of Ag/TiO2-0.75 nanocomposites obtained in this work is the highest among Ag based catalysts previously reported.

  6. Spectroscopic and Kinetic Study of Copper-Exchanged Zeolites for the Selective Catalytic Reduction of NOx with Ammonia

    OpenAIRE

    Bates, Shane Adam

    2013-01-01

    The recent application of metal-exchanged, small-pore zeolites for use in the selective catalytic reduction (SCR) of NOx with ammonia NH3 for automotive deNOx applications has been a great stride in achieving emission standard goals. Copper-exchanged SSZ-13 (Cu-SSZ-13), the small-pore zeolite in this study, has been shown to be very hydrothermally stable and active under conditions presented in the exhaust of the lean-burn diesel engine. In this work, detailed studies were performed to identi...

  7. System and method for controlling an engine based on ammonia storage in multiple selective catalytic reduction catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sun, MIn; Perry, Kevin L.

    2015-11-20

    A system according to the principles of the present disclosure includes a storage estimation module and an air/fuel ratio control module. The storage estimation module estimates a first amount of ammonia stored in a first selective catalytic reduction (SCR) catalyst and estimates a second amount of ammonia stored in a second SCR catalyst. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the first amount, the second amount, and a temperature of a substrate disposed in the second SCR catalyst.

  8. Modelling of catalytic oxidation of NH3 and reduction of NO on limestone during sulphur capture

    DEFF Research Database (Denmark)

    Kiil, Søren; Bhatia, Suresh K.; Dam-Johansen, Kim

    1996-01-01

    A theoretical study of the complex transient system of simultaneous sulphur capture and catalytic reactions of N-containing compounds taking place on a single limestone particle is conducted. The numerical technique developed previously by the authors (Kiil et al. 1994) based on collocation...... on moving finite elements is used to solve the model equations. To our knowledge, this is the first serious attempt to model such transient systems in detail. The particle is divided into moving zones, described by the reaction between limestone and SO2, and each zone is assigned a certain catalytic...... activity with respect to each species involved. An existing particle model, the Grain-Micrograin Model, which simulates sulphur capture on limestone under oxidizing conditions is considered in the modelling. Simulation results in good qualitative agreement with experimental data are obtained here...

  9. Highly Diastereo- and Enantioselective Michael Addition of Nitroalkanes to 2-Enoyl-Pyridine N-Oxides Catalyzed by Scandium(III)/Copper(II) Complexes.

    Science.gov (United States)

    Li, Lijun; Zhang, Sheng; Hu, Yanbin; Li, Yanan; Li, Chong; Zha, Zhenggen; Wang, Zhiyong

    2015-09-01

    A C2 -symmetric Schiff-base ligand, derived from tridentate-Schiff-base, was developed and successfully applied to the asymmetric Michael addition of nitroalkanes to 2-enoyl-pyridine N-oxides. With this newly catalytic system, an unprecedented diastereoselectivity was obtained in the asymmetric Michael addition of nitroalkanes to 2-enoyl-pyridine N-oxides. In addition, a switch in enantioselectivity was achieved by using this newly catalytic system and our previous catalyst. After a facile reduction, the optically active adduct was converted to a biologically active dihydro-2H-pyrrol 4 a. Furthermore, a connection of two tridentate-Schiff-base subunits proved to be an effective strategy in ligand design. PMID:26202331

  10. Experimental Study of Selective Catalytic Reduction System On CI Engine Fuelled with Diesel-Ethanol Blend for NOx Reduction with Injection of Urea Solutions

    Directory of Open Access Journals (Sweden)

    R. Praveen

    2014-05-01

    Full Text Available Nowadays exhaust emission control from internal combustion engines have become one of the most important challenges. Oxides of nitrogen (NOx are one of the major hazardous pollutants that come out from diesel engines. There are various techniques existing for NOx control but each techniques has its own advantages and disadvantages. Technologies available for NOx reductions either increase other polluting gas emission or increase fuel consumption. The objective of this paper is to determine the maximum reduction of NOx emissions by varying concentration of urea solution with reduction catalyst. An aqueous solution of urea was injected in engine exhaust pipe for reducing NOx emissions in single cylinder light duty stationery DI diesel engine fuelled with diesel and diesel- (10% ethanol blend. A concentration of urea solution varying from 30 to 35% by weight with constant flow rates and tested with fitting Titanium dioxide (TiO2 coated catalyst which controls by products of ammonia and water vapour. Results indicated that a maximum of 70 % of NOx reduction was achieved an engine fuelled with diesel-ethanol blend and constant flow rate of 0.75 lit/hr with an urea concentration of 35% and 66% NOx of reduced with neat diesel using Titanium dioxide catalyst in Selective Catalytic Reduction system.

  11. Enantioselective Synthesis of the 5-6-7 Carbocyclic Core of the Gagunin Diterpenoids

    OpenAIRE

    Shibuya, Grant M.; Enquist, John A.; Stoltz, Brian M.

    2013-01-01

    A catalytic enantioselective double allylic alkylation reaction has been employed in the synthesis of the core of the gagunin diterpenoids. Enantioenriched material was advanced in 11 steps to afford the core of the highly oxygenated target, which includes two all-carbon quaternary stereocenters.

  12. A DFT exploration of the enantioselective rearrangement of cyclohexene oxide to cyclohexenol

    DEFF Research Database (Denmark)

    Brandt, Peter; Norrby, Per-Ola; Andersson, Pher G.

    2003-01-01

    In this paper, we present computational results for the (1S,3R,4R)-3-(pyrrolidinyl)-methyl-2-azabicyclo[2.2.1]heptane mediated rearrangement of cyclohexene oxide. The results nicely explain the differences in enantioselectivities between catalytic and stoichiometric mode between different ligands...

  13. Promotional effect of CO pretreatment on CuO/CeO2 catalyst for catalytic reduction of NO by CO

    Institute of Scientific and Technical Information of China (English)

    顾贤睿; 李昊; 刘礼晨; 汤常金; 高飞; 董林

    2014-01-01

    The CuO/CeO2 catalysts were investigated by means of X-ray diffraction (XRD), laser Raman spectroscopy (LRS), X-ray photoelectronic spectroscopy (XPS), temperature-programmed reduction (TPR), in situ Fourier transform infrared spectroscopy (FTIR) and NO+CO reaction. The results revealed that the low temperature (<150 °C) catalytic performances were enhanced for CO pretreated samples. During CO pretreatment, the surface Cu+/Cu0 and oxygen vacancies on ceria surface were present. The low va-lence copper species activated the adsorbed CO and surface oxygen vacancies facilitated the NO dissociation. These effects in turn led to higher activities of CuO/CeO2 for NO reduction. The current study provided helpful understandings of active sites and reaction mechanism in NO+CO reaction.

  14. SCR氨区的运行维护%Operation and uphold of area of liquid ammonia in Selective Catalytic Reduction

    Institute of Scientific and Technical Information of China (English)

    陈建明

    2014-01-01

    液氨是选择性催化还原脱硝法( SCR)工艺首选的脱硝反应剂,它属于危险化学品。氨区的安全运行是SCR系统安全运行的基础保障。从氨区的运行、维护、人员防护和事故处理等方面阐述了SCR系统运行维护中需要注意的一些关键点。%Liquid ammonia is the first choice of reductant in selective catalytic reduction,it is a sort of dangerous chemical. The safe operation in the area of liquid ammonia is foundation of SCR. lt describes take notice of SCR from the operation,uphold,physical protection and accident handling in the area of liquid ammonia.

  15. Operation and uphold of area of liquid ammonia in Selective Catalytic Reduction%SCR氨区的运行维护

    Institute of Scientific and Technical Information of China (English)

    陈建明

    2014-01-01

    液氨是选择性催化还原脱硝法( SCR)工艺首选的脱硝反应剂,它属于危险化学品。氨区的安全运行是SCR系统安全运行的基础保障。从氨区的运行、维护、人员防护和事故处理等方面阐述了SCR系统运行维护中需要注意的一些关键点。%Liquid ammonia is the first choice of reductant in selective catalytic reduction,it is a sort of dangerous chemical. The safe operation in the area of liquid ammonia is foundation of SCR. lt describes take notice of SCR from the operation,uphold,physical protection and accident handling in the area of liquid ammonia.

  16. The Significance of Lewis Acid Sites for the Selective Catalytic Reduction of Nitric Oxide on Vanadium-Based Catalysts.

    Science.gov (United States)

    Marberger, Adrian; Ferri, Davide; Elsener, Martin; Kröcher, Oliver

    2016-09-19

    The long debated reaction mechanisms of the selective catalytic reduction (SCR) of nitric oxide with ammonia (NH3 ) on vanadium-based catalysts rely on the involvement of Brønsted or Lewis acid sites. This issue has been clearly elucidated using a combination of transient perturbations of the catalyst environment with operando time-resolved spectroscopy to obtain unique molecular level insights. Nitric oxide reacts predominantly with NH3 coordinated to Lewis sites on vanadia on tungsta-titania (V2 O5 -WO3 -TiO2 ), while Brønsted sites are not involved in the catalytic cycle. The Lewis site is a mono-oxo vanadyl group that reduces only in the presence of both nitric oxide and NH3 . We were also able to verify the formation of the nitrosamide (NH2 NO) intermediate, which forms in tandem with vanadium reduction, and thus the entire mechanism of SCR. Our experimental approach, demonstrated in the specific case of SCR, promises to progress the understanding of chemical reactions of technological relevance.

  17. The Significance of Lewis Acid Sites for the Selective Catalytic Reduction of Nitric Oxide on Vanadium-Based Catalysts.

    Science.gov (United States)

    Marberger, Adrian; Ferri, Davide; Elsener, Martin; Kröcher, Oliver

    2016-09-19

    The long debated reaction mechanisms of the selective catalytic reduction (SCR) of nitric oxide with ammonia (NH3 ) on vanadium-based catalysts rely on the involvement of Brønsted or Lewis acid sites. This issue has been clearly elucidated using a combination of transient perturbations of the catalyst environment with operando time-resolved spectroscopy to obtain unique molecular level insights. Nitric oxide reacts predominantly with NH3 coordinated to Lewis sites on vanadia on tungsta-titania (V2 O5 -WO3 -TiO2 ), while Brønsted sites are not involved in the catalytic cycle. The Lewis site is a mono-oxo vanadyl group that reduces only in the presence of both nitric oxide and NH3 . We were also able to verify the formation of the nitrosamide (NH2 NO) intermediate, which forms in tandem with vanadium reduction, and thus the entire mechanism of SCR. Our experimental approach, demonstrated in the specific case of SCR, promises to progress the understanding of chemical reactions of technological relevance. PMID:27553251

  18. Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China

    Science.gov (United States)

    Li, Zhen; Jiang, Jingkun; Ma, Zizhen; Wang, Shuxiao; Duan, Lei

    2015-11-01

    Nitrogen oxides (NOx) emission abatement of coal-fired power plants (CFPPs) requires large-scaled installation of selective catalytic reduction (SCR), which would reduce secondary fine particulate matter (PM2.5) (by reducing nitrate aerosol) in the atmosphere. However, our field measurement of two CFPPs equipped with SCR indicates a significant increase of SO42- and NH4+ emission in primary PM2.5, due to catalytic enhancement of SO2 oxidation to SO3 and introducing of NH3 as reducing agent. The subsequent formation of (NH4)2SO4 or NH4HSO4 aerosol is commonly concentrated in sub-micrometer particulate matter (PM1) with a bimodal pattern. The measurement at the inlet of stack also showed doubled primary PM2.5 emission by SCR operation. This effect should therefore be considered when updating emission inventory of CFPPs. By rough estimation, the enhanced primary PM2.5 emission from CFPPs by SCR operation would offset 12% of the ambient PM2.5 concentration reduction in cities as the benefit of national NOx emission abatement, which should draw attention of policy-makers for air pollution control.

  19. Selective catalytic reduction of nitric oxide with acetaldehyde over NaY zeolite catalyst in lean exhaust feed

    International Nuclear Information System (INIS)

    Steady-state selective catalytic reduction (SCR) of nitric oxide (NO) was investigated under simulated lean-burn conditions using acetaldehyde (CH3CHO) as the reductant. This work describes the influence of catalyst space velocity and the impact of nitric oxide, acetaldehyde, oxygen, sulfur dioxide, and water on NOx reduction activity over NaY zeolite catalyst. Results indicate that with sufficient catalyst volume 90% NOx conversion can be achieved at temperatures relevant to light-duty diesel exhaust (150-350C). Nitric oxide and acetaldehyde react to form N2, HCN, and CO2. Oxygen is necessary in the exhaust feed stream to oxidize NO to NO2 over the catalyst prior to reduction, and water is required to prevent catalyst deactivation. Under conditions of excess acetaldehyde (C1:N>6:1) and low temperature (x conversion is apparently very high; however, the NOx conversion steadily declines with time due to catalytic oxidation of some of the stored (adsorbed) NO to NO2, which can have a significant impact on steady-state NOx conversion. With 250ppm NO in the exhaust feed stream, maximum NOx conversion at 200C can be achieved with =400ppm of acetaldehyde, with higher acetaldehyde concentrations resulting in production of acetic acid and breakthrough of NO2 causing lower NOx conversion levels. Less acetaldehyde is necessary at lower NO concentrations, while more acetaldehyde is required at higher temperatures. Sulfur in the exhaust feed stream as SO2 can cause slow deactivation of the catalyst by poisoning the adsorption and subsequent reaction of nitric oxide and acetaldehyde, particularly at low temperature

  20. Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust

    International Nuclear Information System (INIS)

    Increasingly stringent emission legislations, such as US 2010 and Euro VI, for NOx in mobile applications will require the use of intensification of NOx reduction aftertreatment technologies, such as the selective catalytic reduction (SCR). Due to the required higher deNOx efficiency, a lot of efforts have recently been concentrated on the optimization of the SCR systems for broadening the active deNOx temperature window as widely as possible, especially at low temperatures, enhancing the catalysts durability, and reducing the cost of the deNOx system. This paper provides a comprehensive overview of the state-of-the-art SCR technologies, including the alternative ammonia generation from the solid reductants, Vanadium-based, Cu-zeolite (CuZ) and Fe-zeolite (FeZ) based, and the novel chabazite zeolite with small pore size SCR catalysts. Furthermore, the progresses of the highly optimized hybrid approaches, involving combined CuZ and FeZ SCR, passive SCR, integration of DOC + (DPF, SCR), as well as SCR catalyst coated on DPF (referred as SCRF hereinafter) systems are well discussed. Even though SCR technology is considered as the leading NOx aftertreatment technology, attentions have been paid to the adverse by-products, such as NH3 and N2O. Relevant regulations have been established to address the issues. - Highlights: •The review of state of the art technologies of selective catalytic reduction of NOx. •The mainstream V-based, Cu- and Fe-zeolite, and chabazite catalysts are illustrated. •The development of highly optimized hybrid integration SCR systems are analyzed. •The by-products of SCR systems and the corresponding regulations are discussed. •The future perspectives of the advanced SCR technologies are described

  1. Side reactions in the selective catalytic reduction of NO with NH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Madia, G.; Koebel, M.; Elsener, M.; Wokaun, A.

    2002-03-01

    The main and the side reactions of the SCR reaction with ammonia over TiO{sub 2}-WO{sub 3}-V{sub 2}O{sub 5} catalysts have been investigated using synthetic gas mixtures matching the composition of diesel exhaust. At high temperatures the selective catalytic oxidation of ammonia (SCO) and the formation of nitrous oxide compete with the SCR reaction. Water strongly inhibits the SCO of ammonia and the formation of nitrous oxide thus increasing the selectivity of the SCR reaction. However, water also inhibits SCR activity, most pronounced at low temperatures. (author)

  2. Reduções enantiosseletivas de cetonas utilizando-se fermento de pão Enantioselective reductions of ketones using baker's yeast

    Directory of Open Access Journals (Sweden)

    José Augusto R. Rodrigues

    2001-12-01

    Full Text Available Baker's yeast has been successful employed to reduce carbonyl compounds carrying appropriated substituents at distances under the electronic influence of the keto group. High yields and enantiomeric excess (ee were obtained with 1,2-alkanedione, 1,2-alkanedione (2-O-methyloxime and 1,3-alkanedione. Potential chiral building blocks were obtained and applied for stereoselective synthesis of valuable compounds. Evidence for a free radical chain process was obtained with baker's yeast reduction of a-iodoacetophenone using radical inhibitors.

  3. Impact of Substituents Attached to N-Heterocyclic Carbenes on the Catalytic Activity of Copper Complexes in the Reduction of Carbonyl Compounds with Triethoxysilane

    Institute of Scientific and Technical Information of China (English)

    PENG, Jiajian; CHEN, Lingzhen; XU, Zheng; HU, Yingqian; LI, Jiayun; BAI, Ying; QIU, Huayu; LAI, Guoqiao

    2009-01-01

    By using functionalized imidazolium salts such as 1-allyl-3-alkylimidazolium or 1-alkyi-3-vinylimidazolium salts as carbene ligand precursors, the reduction of aryl ketones with triethoxysilane may be catalyzed by copper salt/imidazolium salt/KO~tBu systems. The functional substituents attached to the N-heterocyclic carbene (NHC) serve to enhance the catalytic activity. Different copper salts also have an effect on the catalytic activity, with copper(Ⅱ) acetate monohydrate being superior to copper(I) chloride.

  4. The Effect of Copper Loading on the Selective Catalytic Reduction of Nitric Oxide by Ammonia Over Cu-SSZ-13

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Ja Hun; Tran, Diana N.; Szanyi, Janos; Peden, Charles HF; Lee, Jong H.

    2012-03-01

    The effect of Cu loading on the selective catalytic reduction of NOx by NH3 was examined over 20-80% ion-exchanged Cu-SSZ-13 zeolite catalysts. High NO reduction efficiency (80-95%) was obtained over all catalyst samples between 250 and 500°C, and the gas hourly space velocity of 200,000 h-1. Both NO reduction and NH3 oxidation activities under these conditions were found to increase slightly with increasing Cu loading at low temperatures. However, NO reduction activity was suppressed with increasing Cu loadings at high temperatures (>500oC) due to excess NH3 oxidation. The optimum Cu ion exchange level appears to be ~40-60% as higher than 80% NO reduction efficiency was obtained over 50% Cu ion-exchanged SSZ-13 up to 600oC. The NO oxidation activity of Cu-SSZ-13 was found to be low regardless of Cu loading, although it was somewhat improved with increasing Cu ion exchange level at high temperatures. During the “fast” SCR (i.e., NO/NO2 =1), only a slight improvement in NOx reduction activity was obtained for Cu-SSZ-13. Regardless of Cu loading, near 100% selectivity to N2 was observed; only a very small amount of N2O was produced even in the presence of NO2. Based on the Cu loading, the apparent activation energies for NO oxidation and NO SCR were estimated to be ~58 kJ/mol and ~41 kJ/mol, respectively.

  5. Novel Catalytic Reactor for CO2 Reduction via Sabatier Process Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel short contact time Microlith Sabatier reactor system for CO2 reduction offers a significant advance in support of manned spaceflight. Compared to current...

  6. A facile approach to fabricate Au nanoparticles loaded SiO2 microspheres for catalytic reduction of 4-nitrophenol

    International Nuclear Information System (INIS)

    Hydrophilic and biocompatible macromolecules were used to improve and simplify the process for the fabrication of core/shell SiO2@Au composite particles. The influence of polymers on the morphology of SiO2@Au particles with different size of SiO2 cores was analyzed by transmission electron microscopy and scanning electron microscopy. The optical property of the SiO2@Au particles was studied with UV–Vis spectroscopy. The results indicate that the structure and composition of macromolecules affect the morphology of Au layers on SiO2 microspheres. The SiO2@Au particles prepared in the presence of polyvinyl alcohol (PVA) or polyvinylpyrrolidone (PVP) have thin and complete Au nanoshells owing to their inducing act in preferential growth of Au nanoparticles along the surface of SiO2 microspheres. SiO2@Au particles can be also prepared from SiO2 microspheres modified with 3-aminopropyltrimethoxysilane in the presence of PVA or PVP. This offers a simple way to fabricate a Au layer on SiO2 or other microspheres. The SiO2@Au particles demonstrated high catalytic activity in the reduction of 4-nitrophenol. - Highlights: • Facile direct deposition method for Au nanoparticles on silica microspheres. • Influence of different types of macromolecule on the formation of Au shell. • High catalytic performance of Au nanoparticles on silica microspheres

  7. A facile approach to fabricate Au nanoparticles loaded SiO{sub 2} microspheres for catalytic reduction of 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Mingyi, E-mail: mingyitjucu@163.com [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Huang, Guanbo, E-mail: gbhuang2007@hotmail.com [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Li, Xianxian; Pang, Xiaobo [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Qiu, Haixia [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China)

    2015-07-15

    Hydrophilic and biocompatible macromolecules were used to improve and simplify the process for the fabrication of core/shell SiO{sub 2}@Au composite particles. The influence of polymers on the morphology of SiO{sub 2}@Au particles with different size of SiO{sub 2} cores was analyzed by transmission electron microscopy and scanning electron microscopy. The optical property of the SiO{sub 2}@Au particles was studied with UV–Vis spectroscopy. The results indicate that the structure and composition of macromolecules affect the morphology of Au layers on SiO{sub 2} microspheres. The SiO{sub 2}@Au particles prepared in the presence of polyvinyl alcohol (PVA) or polyvinylpyrrolidone (PVP) have thin and complete Au nanoshells owing to their inducing act in preferential growth of Au nanoparticles along the surface of SiO{sub 2} microspheres. SiO{sub 2}@Au particles can be also prepared from SiO{sub 2} microspheres modified with 3-aminopropyltrimethoxysilane in the presence of PVA or PVP. This offers a simple way to fabricate a Au layer on SiO{sub 2} or other microspheres. The SiO{sub 2}@Au particles demonstrated high catalytic activity in the reduction of 4-nitrophenol. - Highlights: • Facile direct deposition method for Au nanoparticles on silica microspheres. • Influence of different types of macromolecule on the formation of Au shell. • High catalytic performance of Au nanoparticles on silica microspheres.

  8. Low-temperature selective catalytic reduction of NO with NH3 based on MnOx-CeOx/ACFN

    Institute of Scientific and Technical Information of China (English)

    Boxiong SHEN; Ting LIU; Zhanliang SHI; Jianwei SHI; Tingting YANG; Ning ZHAO

    2008-01-01

    MnOx-CeOx/ACFN were prepared by the impregnation method and used as catalyst for selective catalytic reduction of NO with NH3 at 80℃-150℃.The catalyst was characterized by N2-BET,scanning electron microscopy (SEM) and Fourier transform infrared spec-troscopy (FT-IR).The fraction of the mesopore and the oxygen functional groups on the surface of activated car-bon fiber (ACF) increased after the treatment with nitric acid,which was favorable to improve the catalytic activ-ities of MnOx-CeOx/ACFN.The experimental results show that the conversion of NO is nearly 100% in the range 100℃-150℃ under the optimal preparation condi-tions of MnOx-CeOx/ACFN.In addition,the effects of a series of performance parameters,including initial NH3 concentration,NO concentration and O2 concentration,on the conversion of NO were studied.

  9. Mesoporous titania-alumina mixed oxide: A preliminary study on synthesis and application in selective catalytic reduction of NOx

    International Nuclear Information System (INIS)

    Titania-alumina mixed oxide was synthesized hydrothermally using tetrapropylammonium hydroxide (TPAOH) as the template. The dried, calcined and palladium loaded samples were characterized for particle morphology, weight loss, nitrogen adsorption/desorption at liquid nitrogen temperature, texture and metal dispersion. The Pd loaded material was tested for NO reduction in a fixed bed catalytic reactor using a simulated gas mixture closely resembling lean burn engine exhaust. Scanning electron microscopy of the dried and calcined samples revealed a well developed tubular fibrous network of titania-alumina. Thermogravimetry (TG) of the dried sample indicated about 16% weight loss due to decomposition of an oxy-hydroxide structure of the material, mostly boehmite, which was confirmed by X-ray diffraction (XRD) measurements. The boehmite phase changed to poorly crystalline γ-alumina upon calcination where as titania remained as anatase. BET specific surface area, adsorption-desorption isotherms and BJH pore size distributions indicated formation of a mesoporous structure. The surface area of the dried material increased when calcined at 600 deg. C but the pore size distribution patterns for the dried, calcined and palladium dispersed materials remained unchanged. These observations along with TG and XRD analyses suggest that a thermo-resistant, mesoporous, high surface area, crystalline titania-alumina framework can be prepared using the hydrothermal synthesis route. A peak NOx conversion of 75% with the palladium dispersed catalyst indicates high catalytic activity, possibly due to high dispersion of Pd confirmed by CO chemisorption studies

  10. Low temperature selective catalytic reduction of NOx with NH3 over Mn-based catalyst: A review

    Directory of Open Access Journals (Sweden)

    TsungYu Lee

    2016-05-01

    Full Text Available The removals of NOx by catalytic technology at low temperatures (100–300 °C for industrial flue gas treatment have received increasing attention. However, the development of low temperature catalysts for selective catalytic reduction (SCR of NOx with ammonia is still a challenge especially in the presence of SO2. The current status of using Mn-based catalysts for low temperature SCR of NOx with ammonia (NH3-SCR is reviewed. Reaction mechanisms and effects of operating factors on low temperature NH3-SCR are addressed, and the SCR efficiencies of Mn-based metal oxides with and without SO2 poisoning have also been discussed with different supports and co-metals. The key factors for enhancing low temperature NH3-SCR efficiency and SO2 resistance with Mn-based catalysts are identified to be (1 high specific surface area; (2 high surface acidity; (3 oxidation states of manganese; (4 well dispersion of manganese oxide metals; (5 more surface adsorbed oxygen; (6 more absorbed NO3− on the catalyst surface; (7 easier decomposition of ammonium sulfates. Moreover, the regenerative methods such as water washing, acid and/or alkali washing and heat treatment to the poisoned catalysts could help to recover the low temperature SCR efficiency to its initial level.

  11. Fe-MCM-41 from Coal-Series Kaolin as Catalysts for the Selective Catalytic Reduction of NO with Ammonia

    Science.gov (United States)

    Li, Shuiping; Wu, Qisheng; Lu, Guosen; Zhang, Changsen; Liu, Xueran; Cui, Chong; Yan, Zhiye

    2013-12-01

    Fe-MCM-41, one kind of high-ordered mesoporous materials catalysts, with molar ratio of Fe/Si = 0.01-0.1, was synthesized by hydrothermal method from coal-series kaolin. Fe-MCM-41 catalysts were characterized by Fourier transform infrared spectroscopy, high resolution transmission electron microscopy, N2 adsorption-desorption, x-ray photoelectron spectroscopy, and UV-vis spectroscopy. The results clearly indicated that: (1) all the samples exhibited typical hexagonal arrangement of mesoporous structure; (2) the incorporation of tiny amount of Fe3+ onto the surface and pore channel of MCM-41 mesoporous materials could efficiently promote the deNO x activity of these catalysts. Moreover, the Fe-MCM-41 mesoporous materials were evaluated in the selective catalytic reduction of NO with NH3. The results showed that Fe-MCM-41 catalyst with Fe/Si = 0.05 showed the highest catalytic activity at 350 °C, a gas hourly space velocity of 5000 h-1, n(NH3)/ n(NO) = 1.1, and O2% = 2.5%.

  12. Enantioselective biotransformations of nitriles in organic synthesis.

    Science.gov (United States)

    Wang, Mei-Xiang

    2015-03-17

    The hydration and hydrolysis of nitriles are valuable synthetic methods used to prepare carboxamides and carboxylic acids. However, chemical hydration and hydrolysis of nitriles involve harsh reaction conditions, have low selectivity, and generate large amounts of waste. Therefore, researchers have confined the scope of these reactions to simple nitrile substrates. However, biological transformations of nitriles are highly efficient, chemoselective, and environmentally benign, which has led synthetic organic chemists and biotechologists to study these reactions in detail over the last two decades. In nature, biological systems degrade nitriles via two distinct pathways: nitrilases catalyze the direct hydrolysis of nitriles to afford carboxylic acids with release of ammonia, and nitrile hydratases catalyze the conversion of nitriles into carboxamides, which then furnish carboxylic acids via hydrolysis in the presence of amidases. Researchers have subsequently developed biocatalytic methods into useful industrial processes for the manufacture of commodity chemicals, including acrylamide. Since the late 1990s, research by my group and others has led to enormous progress in the understanding and application of enantioselective biotransformations of nitriles in organic synthesis. In this Account, I summarize the important advances in enantioselective biotransformations of nitriles and amides, with a primary focus on research from my laboratory. I describe microbial whole-cell-catalyzed kinetic resolution of various functionalized nitriles, amino- and hydroxynitriles, and nitriles that contain small rings and the desymmetrization of prochiral and meso dinitriles and diamides. I also demonstrate how we can apply the biocatalytic protocol to synthesize natural products and bioactive compounds. These nitrile biotransformations offer an attractive and unique protocol for the enantioselective synthesis of polyfunctionalized organic compounds that are not readily obtainable by

  13. Selective catalytic reduction of NO over commercial DeNO{sub x} catalysts: Comparison of the measured and calculated performance

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Elsener, M. [Paul Scherrer Inst., Villigen (Switzerland)

    1998-02-01

    The performance of selective catalytic reduction monolithic catalysts may best be characterized by plotting the ammonia slip as a function of the percentage of NO{sub x} conversion achieved. Experimental results obtained on a Diesel engine test stand have been compared with predicted values obtained by model calculations. In this way the possibilities and limits of such calculations could be shown. The model has no adjustable parameters. An exact prediction of performance is not possible under all conditions due to minor differences in composition between the real exhaust and the test gas mixtures used in the determination of the intrinsic catalyst properties. The value of such a model therefore lies in the prediction of the performance of new catalysts (e.g., layer catalysts) or under changed operating conditions (other temperature or GHSV).

  14. Laboratory test reactor for the investigation of liquid reducing agents in the selective catalytic reduction of NOx

    Science.gov (United States)

    Peitz, D.; Bernhard, A.; Elsener, M.; Kröcher, O.

    2011-08-01

    A test reactor was designed and built for investigating liquid reducing agents in the selective catalytic reduction (SCR) process in the laboratory. The design of the experimental setup is described in detail and its performance was evaluated. Using a glass nebulizer, liquid reducing agents were sprayed directly onto a catalyst positioned in a heated glass reactor with a length of 250 mm and an internal diameter of 20.4 mm or 40 mm. Model exhaust gases were mixed from individual gas components and were heated up to 450 °C in a heat exchanger before entering the reactor. The off-gas was analyzed using two complimentary techniques, a multi-component online FTIR gas analysis and a liquid quench gas absorption setup, to detect higher molecular compounds and aerosols. Due to the versatility of construction, processes not related to SCR, but involving three-phase reactions with gases, liquids and a catalyst, can also be investigated.

  15. Size Control of Iron Oxide Nanoparticles Using Reverse Microemulsion Method: Morphology, Reduction, and Catalytic Activity in CO Hydrogenation

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Housaindokht

    2013-01-01

    Full Text Available Iron oxide nanoparticles were prepared by microemulsion method and evaluated in Fischer-Tropsch synthesis. The precipitation process was performed in a single-phase microemulsion operating region. Different HLB values of surfactant were prepared by mixing of sodium dodecyl sulfate (SDS and Triton X-100. Transmission electron microscopy (TEM, surface area, pore volume, average pore diameter, pore size distribution, and XRD patterns were used to analyze size distribution, shape, and structure of precipitated hematite nanoparticles. Furthermore, temperature programmed reduction (TPR and catalytic activity in CO hydrogenation were implemented to assess the performance of the samples. It was found that methane and CO2 selectivity and also the syngas conversion increased as the HLB value of surfactant decreased. In addition, the selectivity to heavy hydrocarbons and chain growth probability (α decreased by decreasing the catalyst crystal size.

  16. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Ja Hun; Tonkyn, Russell G.; Kim, Do Heui; Szanyi, Janos; Peden, Charles HF

    2010-10-21

    Superior activity and selectivity of a Cu ion-exchanged SSZ-13 zeolite in the selective catalytic reduction (SCR) of NOx with NH3 were observed, in comparison to Cu-beta and Cu-ZSM-5 zeolites. Cu-SSZ-13 was not only more active in the NOx SCR reaction over the entire temperature range studied (up to 550 °C), but also more selective toward nitrogen formation, resulting in significantly lower amounts of NOx by-products (i.e., NO2 and N2O) than the other two zeolites. In addition, Cu-SSZ-13 demonstrated the highest activity and N2 formation selectivity in the oxidation of NH3. The results of this study strongly suggest that Cu-SSZ-13 is a promising candidate as a catalyst for NOx SCR with great potential in after-treatment systems for either mobile or stationary sources.

  17. Coke formation over zeolites and CeO2-zeolites and its influence on selective catalytic reduction of NOx

    International Nuclear Information System (INIS)

    Selective catalytic reduction, various possible reasons of coke formation, and temperature programmed oxidation of coke deposits are studied over HFER, HZSM-5 and 15|wt% CeO2-H zeolites. The materials are characterised by TGA, NH3-TPD and in-situ FTIR measurements. HFER based catalysts showed superior NOx (NO+NO2) conversion in SCR with propene compared with HZSM-5 based catalysts. It is found that NO2 (formed by the oxidation of NO) is not the only important intermediate in determining the extent of NOx conversion. The topology and acidity of the zeolites play an important role in selective activation of propene and its reaction with NO2. Over HZSM-5 based catalysts the rate of deposition of carbonaceous compounds is higher than the rate of reaction of activated propene with NO2, leading to unselective reduction to NO. The nature and the amount of the carbonaceous products deposited over the zeolites are found to depend on the acidity, structure of the zeolite and reaction conditions (inert or oxidative atmosphere). Coke deposition rate is enhanced in the presence of oxygen and most of the coke is retained by the zeolite which is detrimental for NOx reduction. in-situ IR studies show that hydrocarbon deposits are more heterogeneous and carbon rich over HZSM-5 compared with HFER. TPO studies show that only a negligible fraction of hydrocarbon deposits are active in NOx conversion

  18. Species active in the selective catalytic reduction of no with iso-butane on iron-exchanged ZSM-5 zeolites

    Directory of Open Access Journals (Sweden)

    M. S. Batista

    2005-09-01

    Full Text Available Fe-ZSM-5 catalysts were prepared by ion exchange in aqueous medium or in the solid state and tested in the catalytic reduction of NO with iso-butane. X-ray powder diffraction (XRD, atomic absorption spectroscopy (AAS, electron paramagnetic resonance spectroscopy (EPR, X-ray absorption spectroscopy (XANES, EXAFS, temperature-programmed reduction by H2 (H2-TPR and Mössbauer spectroscopy (MÖS-S were used for sample characterisation. Irrespective of the method used in catalyst preparation, EPR, XANES and MÖS-S showed Fe atoms in the oxidation state of 3+. MÖS-S and H2-TPR data on Fe-ZSM-5 prepared by ion exchange in the solid state allowed quantification of a lower hematite (Fe2O3 concentration and a higher proportion of Fe cations than samples prepared in an aqueous medium. In all the catalysts studied these Fe cations were the active sites in the reduction of NO to N2 and in the oxidation of iso-butane. It is further suggested that coordination of Fe species is another important aspect to be considered in their behaviour.

  19. RNA-Cleaving DNA Enzymes with Altered Regio- or Enantioselectivity

    Science.gov (United States)

    Ordoukhanian, Phillip; Joyce, Gerald F.

    2002-01-01

    In vitro evolution methods were used to obtain DNA enzymes that cleave either a 2',5' - phosphodiester following a wibonucleotide or a 3',5' -phosphodiester following an L-ribonucleotide. Both enzymes can operate in an intermolecular reaction format with multiple turnover. The DNA enzyme that cleaves a 2',5' -phosphodiester exhibits a k(sub cat) of approx. 0.01/ min and catalytic efficiency, k(sub cat)/k(sub m) of approx. 10(exp 5)/ M min. The enzyme that cleaves an L-ribonudeotide is about 10-fold slower and has a catalytic efficiency of approx. 4 x 10(exp 5)/ M min. Both enzymes require a divalent metal cation for their activity and have optimal catalytic rate at pH 7-8 and 35-50 C. In a comparison of each enzyme s activity with either its corresponding substrate that contains an unnatural ribonudeotide or a substrate that instead contains a standard ribonucleotide, the 2',5' -phosphodiester-deaving DNA enzyme exhibited a regioselectivity of 6000- fold, while the L-ribonucleotide-cleaving DNA enzyme exhibited an enantioselectivity of 50-fold. These molecules demonstrate how in vitro evolution can be used to obtain regio- and enantioselective catalysts that exhibit specificities for nonnatural analogues of biological compounds.

  20. Role of iron oxide catalysts in selective catalytic reduction of NOx and soot from vehicular emission

    International Nuclear Information System (INIS)

    This study deals with Iron containing catalysts i.e Iron oxide Fe/sub 2/O/sub 3/) Iron potassium oxide Fe/sub 1.9/K/sub 0.1/O/sub 3/, copper iron oxide Cu/sub 0.9/K/sub 0.1/, Fe/sub 2/O/sub 3/, nickel iron oxide Ni Fe/sub 2/O/sub 4/, and Nickel potassium iron oxide Ni/sub 0.95/K/sub 0.05/ Fe/sub 2/O/sub 4/ catalyst were synthesized by using PVA technique. By X-ray Diffraction technique these catalysts were characterized to ensure the formation of crystalline structure. Energy Dispersive X-rays analysis (EDX) was used for the confirmation of presence of different metals and Scanning Electron Microscopy (SEM) for Surface Morphology. Then the catalytic investigations of the prepared catalyst were carried out for their activity measurement toward simultaneous conversion of NOx and Soot from an engine exhaust. Some Iron containing oxide catalysts were partially modified by alkali metal potassium and were used for NOx -Soot reaction in a model exhaust gas. Fe/sub 1.9 K /sub 0.1/O/sub 3/ show high catalytic performance for N/sub 2/ formation in the prepared catalyst. Further studies have shown that Fe/sub 1.9/ K/sub 0.1/ O/sub 3/ was deactivated in a substantial way after about 20 Temperature. Temperature Programmed Reaction (TPR) experiments due to agglomeration of the promoter potassium. Experiments carried out over the aged Fe/sub 1.9/K/sub 0.1/O/sub 3/ catalyst have shown that NOx-soot reaction was suppressed at higher oxygen concentration, since O/sub 2/-soot conversion was kindly favored. More over nitrite species formed at the catalyst surface might play an important role in NOx-soot conversion. (author)

  1. Understanding ammonia selective catalytic reduction kinetics over Cu-SSZ-13 from motion of the Cu ions

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng; Walter, Eric D.; Kollar, Marton; Wang, Yilin; Szanyi, Janos; Peden, Charles HF

    2014-11-01

    Cu-SSZ-13 catalysts with three Si/Al ratios, at 6, 12 and 35, are synthesized with solution ion exchange. Catalysts are characterized with surface area/pore volume measurements, temperature programmed reduction (TPR), and electron paramagnetic resonance (EPR) spectroscopy. Catalytic properties are examined using NO oxidation, ammonia oxidation, and standard ammonia selective catalytic reduction (NH3-SCR) reactions. By varying Si/Al ratios and Cu loadings, it is possible to synthesize catalysts with one dominant type of isolated Cu2+ ion species. Prior to full dehydration of the zeolite catalyst, hydrated Cu2+ ions are found to be very mobile as judged from EPR. NO oxidation is catalyzed by O-bridged Cu-dimer species that form at relatively high Cu loadings and in the presence of O2. For NH3 oxidation and standard SCR reactions, transient Cu-dimers even form at much lower Cu loadings; and these are proposed to be the active sites for reaction temperatures ≤ 350 °C. These dimer species can be viewed as in equilibrium with monomeric Cu ion complexes. Between ~250 and 350 °C, these moieties become less stable causing SCR reaction rates to decrease. At temperatures above 350 °C and at low Cu loadings, Cu-dimers completely dissociate to regenerate isolated Cu2+ monomers that then locate at ion-exchange sites of the zeolite lattice. At low Cu loadings, these Cu species are the high-temperature active SCR catalytic centers. At high Cu loadings, on the other hand, both Cu-dimers and monomers are highly active in the high temperature kinetic regime, yet Cu-dimers are less selective in SCR. Brönsted acidity is also very important for SCR reactivity in the high-temperature regime. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national

  2. Formation of catalytically active gold-polymer microgel hybrids via a controlled in situ reductive process

    NARCIS (Netherlands)

    Agrawal, Garima; Schuerings, Marco Philipp; van Rijn, Patrick; Pich, Andrij

    2013-01-01

    A newly developed N-vinylcaprolactam/acetoacetoxyethyl methacrylate/acrylic acid based microgel displays in situ reductive reactivity towards HAuCl4, forming hybrid polymer-gold nanostructures at ambient temperature without additional reducing agents. The colloidal gold nanostructure is selectively

  3. Zeolite catalysts and their use in selective catalytic reduction of NOx

    NARCIS (Netherlands)

    Seijger, G.B.F.; Van den Bleek, C.M.; Calis, H.P.A.

    2003-01-01

    The invention is directed to catalyst compositions comprising a zeolite, as well as to processes for the reduction of nitrogen oxides (NOx) employing these catalyst compositions. The catalyst compositions of the invention comprise a zeolite of the ferrierite type (FER), which zeolite is ion exchange

  4. Development of catalysts and ligands for enantioselective gold catalysis.

    Science.gov (United States)

    Wang, Yi-Ming; Lackner, Aaron D; Toste, F Dean

    2014-03-18

    During the past decade, the use of Au(I) complexes for the catalytic activation of C-C π-bonds has been investigated intensely. Over this time period, the development of homogeneous gold catalysis has been extraordinarily rapid and has yielded a host of mild and selective methods for the formation of carbon-carbon and carbon-heteroatom bonds. The facile formation of new bonds facilitated by gold naturally led to efforts toward rendering these transformations enantioselective. In this Account, we survey the development of catalysts and ligands for enantioselective gold catalysis by our research group as well as related work by others. We also discuss some of our strategies to address the challenges of enantioselective gold(I) catalysis. Early on, our work with enantioselective gold-catalyzed transformations focused on bis(phosphinegold) complexes derived from axially chiral scaffolds. Although these complexes were highly successful in some reactions like cyclopropanation, the careful choice of the weakly coordinating ligand (or counterion) was necessary to obtain high levels of enantioselectivity for the case of allene hydroamination. These counterion effects led us to use the anion itself as a source of chirality, which was successful in the case of allene hydroalkoxylation. In general, these tactics enhance the steric influence around the reactive gold center beyond the two-coordinate ligand environment. The use of binuclear complexes allowed us to use the second gold center and its associated ligand (or counterion) to exert a further steric influence. In a similar vein, we employed a chiral anion (in place of or in addition to a chiral ligand) to move the chiral information closer to the reactive center. In order to expand the scope of reactions amenable to enantioselective gold catalysis to cycloadditions and other carbocyclization processes, we also developed a new class of mononuclear phosphite and phosphoramidite ligands to supplement the previously widely

  5. Cyclopalladated complexes in enantioselective catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Dunina, Valeria V; Gorunova, Olga N; Zykov, P A; Kochetkov, Konstantin A

    2011-01-31

    The results of the use of optically active palladacycles in enantioselective catalysis of [3,3]-sigmatropic rearrangements, aldol condensation, the Michael reaction and cross-coupling are analyzed. Reactions with allylic substrates or reagents and some other transformations are considered.

  6. Cyclopalladated complexes in enantioselective catalysis

    Science.gov (United States)

    Dunina, Valeria V.; Gorunova, Olga N.; Zykov, P. A.; Kochetkov, Konstantin A.

    2011-01-01

    The results of the use of optically active palladacycles in enantioselective catalysis of [3,3]-sigmatropic rearrangements, aldol condensation, the Michael reaction and cross-coupling are analyzed. Reactions with allylic substrates or reagents and some other transformations are considered.

  7. Identification of intrinsic catalytic activity for electrochemical reduction of water molecules to generate hydrogen

    KAUST Repository

    Shinagawa, Tatsuya

    2015-01-01

    Insufficient hydronium ion activities at near-neutral pH and under unbuffered conditions induce diffusion-limited currents for hydrogen evolution, followed by a reaction with water molecules to generate hydrogen at elevated potentials. The observed constant current behaviors at near neutral pH reflect the intrinsic electrocatalytic reactivity of the metal electrodes for water reduction. This journal is © the Owner Societies.

  8. Kinetic Study of Co-β-Zeolite for Selective Catalytic Reduction of NOx with Propane

    Institute of Scientific and Technical Information of China (English)

    毛树红; 王润平; 池永庆; 王艳; 张清华; 丛燕青

    2011-01-01

    The effects of grain size, space velocity, temperature and reactant concentration on the kinetics of NOx reduction with propane over Co-β-zeolite catalyst were investigated. The external mass transfer phenomenon was examined by varying the space velocity. The results show that the transfer can be negligible when the space velocity is greater than 60000 h-1 in low temperature range. However, the transfer exists at high temperatures even when the space velocity reaches a high level.Variation of the catalyst grain size from 0.05 to 0.125 mm does not change the conversion rate of NOx. The concentrations of components, NOx, C3H8 and O2, were also investigated to have a better understanding of mechanism. Based on the experimental data, the selectivity formula was proposed. The results shows that lower temperature is helpful to get higher selectivity as the activation energy of hydrocarbon oxidation, Ea,2, is greater than that of NOx reduction, Ea,1, (Ea,2>Ea,l). High NOx concentration and low C3H8 concentration are beneficial to high selectivity. However in order to maintain high activity simultaneously, the temperature and C3H8 concentration should be high enough to promote NOx reduction. 10%(φ) H2O and 75×i0-6(φ) SO2 were introduced into the reaction system, and Co-β-zeolite shows strong resistance to water and SO2.

  9. Structural basis for high substrate-binding affinity and enantioselectivity of 3-quinuclidinone reductase AtQR

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Feng; Miyakawa, Takuya [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Kataoka, Michihiko [Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 559-8531 (Japan); Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Takeshita, Daijiro [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Kumashiro, Shoko [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Uzura, Atsuko [Research and Development Center, Nagase and Co., Ltd., 2-2-3 Muratani, Nishi-ku, Kobe 651-2241 (Japan); Urano, Nobuyuki [Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 559-8531 (Japan); Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Nagata, Koji [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Shimizu, Sakayu [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Faculty of Bioenvironmental Science, Kyoto Gakuen University, Sogabe-cho, Kameoka 621-8555 (Japan); Tanokura, Masaru, E-mail: amtanok@mail.ecc.u-tokyo.ac.jp [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan)

    2014-04-18

    Highlights: • Crystal structure of AtQR has been determined at 1.72 Å. • NADH binding induces the formation of substrate binding site. • AtQR possesses a conserved hydrophobic wall for stereospecific binding of substrate. • Additional Glu197 residue is critical to the high binding affinity. - Abstract: (R)-3-Quinuclidinol, a useful compound for the synthesis of various pharmaceuticals, can be enantioselectively produced from 3-quinuclidinone by 3-quinuclidinone reductase. Recently, a novel NADH-dependent 3-quinuclidionone reductase (AtQR) was isolated from Agrobacterium tumefaciens, and showed much higher substrate-binding affinity (>100 fold) than the reported 3-quinuclidionone reductase (RrQR) from Rhodotorula rubra. Here, we report the crystal structure of AtQR at 1.72 Å. Three NADH-bound protomers and one NADH-free protomer form a tetrameric structure in an asymmetric unit of crystals. NADH not only acts as a proton donor, but also contributes to the stability of the α7 helix. This helix is a unique and functionally significant part of AtQR and is related to form a deep catalytic cavity. AtQR has all three catalytic residues of the short-chain dehydrogenases/reductases family and the hydrophobic wall for the enantioselective reduction of 3-quinuclidinone as well as RrQR. An additional residue on the α7 helix, Glu197, exists near the active site of AtQR. This acidic residue is considered to form a direct interaction with the amine part of 3-quinuclidinone, which contributes to substrate orientation and enhancement of substrate-binding affinity. Mutational analyses also support that Glu197 is an indispensable residue for the activity.

  10. Kinetics of selective catalytic reduction of NO by NH3 on Fe-Mo/ZSM-5 catalyst

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The catalyst of Fe-Mo/ZSM-5 has been found to be more active than Fe-ZSM-5 and Mo/ZSM-5 separately for selective catalytic reduction (SCR) of nitric oxide (NO) with NH3. The kinetics of the SCR reaction in the presence of O2 was studied in this work. The results show that the observed reaction orders were 0.74-0.99, 0.01-0.13, and 0 for NO, O2 and NH3, respectively, at 350-450℃. And the apparent activation energy of the SCR was 65 kJ/mol on the Fe-Mo/ZSM-5 catalyst. The SCR mechanism was also deduced. Adsorbed NO species can react directly with adsorbed ammonia species on the active sites to form N2 and H2O. Gaseous O2 might serve as a reoxidizing agent for the active sites that have undergone reduction in the SCR process. It is also important to note that a certain amount of NO was decomposed directly over the Fe-Mo/ZSM-5 catalyst in the absence of NH3.

  11. Green synthesis of silver nanoparticles using Terminalia cuneata and its catalytic action in reduction of direct yellow-12 dye

    Science.gov (United States)

    Edison, Thomas Nesakumar Jebakumar Immanuel; Lee, Yong Rok; Sethuraman, Mathur Gopalakrishnan

    2016-05-01

    Facile green synthesis of silver nanoparticles (AgNPs) using aqueous bark extract of Terminalia cuneata has been reported in this article. The effects of concentration of the extract, reaction time and pH were studied by UV-Vis spectroscopy. Appearance of yellow color with λmax around ~ 420 nm suggested the formation of AgNPs. The stable AgNPs were further characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), dynamic light scattering (DLS) with zeta potential and high resolution transmission electron microscopy (HR-TEM) with energy dispersive X-ray spectroscopy (EDS) analysis. The synthesized AgNPs were in the size range of 25-50 nm with a distorted spherical shape identified from HR-TEM analysis. The catalytic activity of AgNPs on the reduction of direct yellow-12 using NaBH4 was analyzed using a UV-Vis spectrophotometer. This study showed the efficacy of biogenic AgNPs in catalyzing the reduction of direct yellow-12.

  12. Selective catalytic reduction of nitric oxide by methane over cerium and silver ion-exchanged ZSM-5 zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhijiang; Flytzani-Stephanopoulos, Maria [Department of Chemical Engineering, Tufts University, Medford, MA (United States)

    1997-12-31

    A new catalyst comprising cerium and silver ion-exchanged ZSM-5 zeolite is reported in this paper, for the reduction of nitric oxide by methane in the presence of excess oxygen. The bi-cation exchanged Ce-Ag-ZSM-5 catalyst was very active for this reaction, while either Ce-ZSM-5 or Ag-ZSM-5 alone showed low activity. The presence of oxygen in the feed gas mixture enhanced the activity of the catalyst and the NO conversion to N{sub 2} increased with the CH{sub 4}/NO ratio and Ag loading of the zeolite. The presence of water vapor had a small adverse effect on the catalyst activity. The coexistence of Ce and Ag ions in the zeolite is crucial for achieving high NO conversion to N{sub 2}. A small amount of cerium is adequate to promote the selective catalytic reduction of NO. The two main functions of Ce ions are (1) to provide the Ag ion sites with NO{sub 2} by catalyzing the oxidation of NO to NO{sub 2} and (2) to suppress the direct CH{sub 4} oxidation to CO{sub 2}. The Ag sites are the active centers where the reaction of NO{sub 2} with CH{sub 4} takes place

  13. The selective catalytic reduction (SCR) of NO with NH3 at vanadium oxide catalysts: Adsorption, diffusion, reaction

    International Nuclear Information System (INIS)

    The selective catalytic reduction (SCR) of NOx with NH3 over vanadium based metal-oxide (VOx) catalysts has been proven to be one of the most effective NOx reduction processes. Even though it is widely used in commercial applications details of the reaction mechanism are still under debate. Experiments show that adsorption, diffusion, and reactions with NO and (de)hydrogenation processes at the VOx surface contribute elementary steps. These processes are examined in theoretical studies employing density-functional theory together with gradient corrected functionals. The VOx substrate is modeled by clusters cut out from the ideal V2O5(010) surface where peripheral oxygen bonds are saturated by hydrogen. Apart from the perfect oxide surface also differently reduced surfaces are considered by introducing oxygen vacancies. NH3 is found to interact only weakly with the perfect V2O5(010) surface. In the presence of OH groups (Broensted acid sites) NH3 can form a surface NH4+ species. NH3 can also interact with the surface near oxygen vacancies, adsorbing at vanadium centers of lower coordination (Lewis acid sites). In contrast, NO interacts much more weakly with the surface. Further, simultaneous NO, NH3 adsorption and SCR reaction scenarios at Broensted and Lewis acid sites are examined. They result in different reaction paths and intermediates as will be discussed in detail.

  14. PILOT-SCALE STUDY OF THE EFFECT OF SELECTIVE CATALYTIC REDUCTION CATALYST ON MERCURY SPECIATION IN ILLINOIS AND POWDER RIVER BASIN COAL COMBUSTION FLUE GASES

    Science.gov (United States)

    A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur and chlorine) and one Po...

  15. Ethanol-selective catalytic reduction of NO by Ag/Al2O3 catalysts: Activity and deactivation by alkali salts

    DEFF Research Database (Denmark)

    Schill, Leonhard; Putluru, Siva Sankar Reddy; Jacobsen, Casper Funk;

    2012-01-01

    Ag/Al2O3 catalysts with and without potassium doping were prepared by incipient wetness impregnation and characterized by N2 physisorption, XRPD, NH3-TPD and SEM. The influence of the Ag content from 1 to 5 wt.% was investigated for the selective catalytic reduction (SCR) of NO with ethanol. The 3...

  16. Catalytic reduction of nitrate and nitrite ions by hydrogen : investigation of the reaction mechanism over Pd and Pd-Cu catalysts

    NARCIS (Netherlands)

    Ilinitch, OM; Nosova, LV; Gorodetskii, VV; Ivanov, VP; Trukhan, SN; Gribov, EN; Bogdanov, SV; Cuperus, FP

    2000-01-01

    The catalytic behavior of mono- and bimetallic catalysts with Pd and/or Cu supported over gamma-Al2O3 in the reduction of aqueous nitrate and nitrite ions by hydrogen was investigated. The composition of the supported metal catalysts was analysed using secondary ion mass spectroscopy (SIMS) and X-ra

  17. Study on Simultaneous Catalytic Reduction of Sulfur Dioxide and Nitric Oxide on Rare Earth Mixed Compounds

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    CeO2/γ-Al2O3, La2O3/γ-Al2O3, CeO2-La2O3/γ-Al2O3 and CeO2-La2O3, which were prepared by impregnating in certain ratio, were used as the catalysts for the reduction of SO2 and NO by CO. Separate and simultaneous removal of SO2 and NO over La2O3/γ-Al2O3, CeO2/γ-Al2O3, CeO2-La2O3/γ-Al2O3 were investigated. The phase characteristics of catalysts were also analyzed by X-ray diffraction. The result shows that the conversions of SO2 and NO are above 98% over CeO2/γ-Al2O3 and CeO2-La2O3/γ-Al2O3. After SO2 is added in the NO-CO-N2 system (NO∶SO2=1∶2~1∶3), the conversions of SO2 and NO are both above 98%. Furthermore, it is found that CeO2-La2O3 with various ratios has different activity for the simultaneous reduction of SO2 and NO.

  18. Formic acid as an alternative reducing agent for the catalytic nitrate reduction in aqueous media

    Institute of Scientific and Technical Information of China (English)

    Eun-kyoung Choi; Kuy-hyun Park; Ho-bin Lee; Misun Cho; Samyoung Ahn

    2013-01-01

    Formic acid was used for the nitrate reduction as a reductant in the presence of Pd∶Cu/γ-alumina catalysts.The surfatce characteristics of the bimetallic catalyst synthesized by wet impregnation were investigated by SEM,TEM-EDS.The metals were not distributed homogeneously on the surface of catalyst,although the total contents of both metals in particles agreed well with the theoretical values.Formic acid decomposition on the catalyst surface,its influence on solution pH and nitrate removal efficacy was investigated.The best removal of nitrate (50 ppm) was obtained under the condition of 0.75 g/L catalyst with Pd∶Cu ratio (4∶1) and two fold excess of formic acid.Formic acid decay patterns resembled those of nitrate removal,showing a linear relationship between kf (formic acid decay) and k (nitrate removal).Negligible amount of ammonia was detected,and no nitrite was detected,possibly due to buffering effect of bicarbonate that is in situ produced by the decomposition of formic acid,and due to the sustained release of H2 gas.

  19. Copper nanoparticles supported on permeable monolith with carboxylic acid surface functionality: Stability and catalytic properties under reductive conditions

    Energy Technology Data Exchange (ETDEWEB)

    Poupart, Romain; Le Droumaguet, Benjamin, E-mail: ledroumaguet@icmpe.cnrs.fr; Guerrouache, Mohamed; Carbonnier, Benjamin, E-mail: carbonnier@icmpe.cnrs.fr

    2015-08-01

    This work reported on the immobilization of copper metallic nanoparticles at the interface of mercaptosuccinic acid-functionalized N-acryloxysuccinimide-based monoliths. Upon photochemically-mediated free radical copolymerization of N-acryloxysuccinimide reactive monomer with ethylene glycol dimethacrylate cross-linker, reactive monoliths were obtained. Nucleophilic substitution of the N-hydroxysuccinimide moieties with allylamine, allowed for the synthesis of an olefin-functionalized monolith, as demonstrated by Raman spectroscopy. Mercaptosuccinic acid was anchored at the surface of the porous polymeric material through photochemically-driven thiol-ene “click” addition. In a final step, adsorption of copper nanoparticles at the surface of the resulting carboxylic acid functionalized monolith was achieved via two distinct pathways. It was either realized by percolation of a suspension of pre-formed copper nanoparticles through the capillary or by in situ reduction of Cu{sup (II)}Br{sub 2} salt solution preliminary flown through the monolith. After characterization of the resulting hybrids by scanning electron microscopy and energy-dispersive X-ray spectroscopy, investigations were further pursued regarding the catalytic behavior of such hybrid materials. The possibility to reduce 2-nitrophenol into the corresponding 2-aminophenol within a few minutes via a flow-through process inside the hybrid monolithic capillary was notably successfully demonstrated. - Graphical abstract: Display Omitted - Highlights: • Monolithic micro-reactors with surface immobilized copper nanoparticle for flow through catalytic processes. • Porous polymer-stabilized copper nanoparticles. • Photothiol-ene click chemistry for the effective surface functionalization of porous monolithic polymers. • Surface adsorption of copper nanoparticles through in-situ and ex-situ strategies.

  20. Catalytic asymmetric synthesis of mycocerosic acid

    NARCIS (Netherlands)

    ter Horst, B.; Feringa, B.L.; J. Minnaard, A.

    2007-01-01

    The first catalytic asymmetric total synthesis of mycocerosic acid was achieved via the application of iterative enantioselective 1,4-addition reactions and allows for the efficient construction of 1,3-polymethyl arrays with full stereocontrol; further exemplified by the synthesis of tetramethyl-dec

  1. Asymmetric NHC-catalyzed aza-Diels-Alder reactions: Highly enantioselective route to α-amino acid derivatives and DFT calculations

    KAUST Repository

    Yang, Limin

    2014-08-01

    A facile N-heterocyclic carbene catalytic enantioselective aza-Diels-Alder reaction of oxodiazenes with α-chloroaldehydes as dienophile precursors is reported, with excellent enantioselectivity (ee > 99%) and excellent yield (up to 93%). DFT study showed that cis-TSa, formed from a top face approach of oxodiazene to cis-IIa, is the most favorable transition state and is consistent with the experimental observations. © 2014 American Chemical Society.

  2. Combined Particle Filter and Selective Catalytic Reduction Catalyst for Diesel Engines

    DEFF Research Database (Denmark)

    Hvam, Jeanette

    for exhaust gas purification. By combining the particulate filtration application with the application as catalyst support for NOx reduction, the low emissions standards can be met. This project was initiated as a result of the need for new and improved filters with characteristics making it suitable...... them ideal for multiple applications like high power electronic devices, heating elements, abrasive materials and cutting tools. Porous silicon carbide is suitable for electrode and catalyst support material as well as hot gas filter units or a combination of these. The automotive industry demands new...... here. A new and improved filter was developed on the basis of the research results concerning copper as partner additive. In comparison to filters produced with aluminium as sole additive, these new filters exhibit enhanced mechanical stability, enhanced microstructure and controllable surface...

  3. Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries.

    Science.gov (United States)

    Lu, Yi-Chun; Gasteiger, Hubert A; Shao-Horn, Yang

    2011-11-30

    We report the intrinsic oxygen reduction reaction (ORR) activity of polycrystalline palladium, platinum, ruthenium, gold, and glassy carbon surfaces in 0.1 M LiClO(4) 1,2-dimethoxyethane via rotating disk electrode measurements. The nonaqueous Li(+)-ORR activity of these surfaces primarily correlates to oxygen adsorption energy, forming a "volcano-type" trend. The activity trend found on the polycrystalline surfaces was in good agreement with the trend in the discharge voltage of Li-O(2) cells catalyzed by nanoparticle catalysts. Our findings provide insights into Li(+)-ORR mechanisms in nonaqueous media and design of efficient air electrodes for Li-air battery applications. PMID:22044022

  4. One-pot hydrothermal synthesis of CuBi co-doped mesoporous zeolite Beta for the removal of NOx by selective catalytic reduction with ammonia

    Science.gov (United States)

    Xie, Zhiguo; Zhou, Xiaoxia; Wu, Huixia; Chen, Lisong; Zhao, Han; Liu, Yan; Pan, Linyu; Chen, Hangrong

    2016-07-01

    A series of CuBi co-doped mesoporous zeolite Beta (CuxBiy-mBeta) were prepared by a facile one-pot hydrothermal treatment approach and were characterized by XRD, N2 adsorption-desorption, TEM/SEM, XPS, H2-TPR, NH3-TPD and in situ DRIFTS. The catalysts CuxBiy-mBeta were applied to the removal of NOx by selective catalytic reduction with ammonia (NH3-SCR), especially the optimized Cu1Bi1-mBeta achieved the high efficiency for the removal of NOx and N2 selectivity, superior water and sulfur resistance as well as good durability. The excellent catalytic performance could be attributed to the acid sites of the support and the synergistic effect between copper and bismuth species. Moreover, in situ DRIFTS results showed that amides NH2 and NH4+ generated from NH3 adsorption could be responsible for the high selective catalytic reduction of NOx to N2. In addition, a possible catalytic reaction mechanism on Cu1Bi1-mBeta for the removal of NOx by NH3-SCR was proposed for explaining this catalytic process.

  5. One-pot hydrothermal synthesis of CuBi co-doped mesoporous zeolite Beta for the removal of NOx by selective catalytic reduction with ammonia.

    Science.gov (United States)

    Xie, Zhiguo; Zhou, Xiaoxia; Wu, Huixia; Chen, Lisong; Zhao, Han; Liu, Yan; Pan, Linyu; Chen, Hangrong

    2016-01-01

    A series of CuBi co-doped mesoporous zeolite Beta (CuxBiy-mBeta) were prepared by a facile one-pot hydrothermal treatment approach and were characterized by XRD, N2 adsorption-desorption, TEM/SEM, XPS, H2-TPR, NH3-TPD and in situ DRIFTS. The catalysts CuxBiy-mBeta were applied to the removal of NOx by selective catalytic reduction with ammonia (NH3-SCR), especially the optimized Cu1Bi1-mBeta achieved the high efficiency for the removal of NOx and N2 selectivity, superior water and sulfur resistance as well as good durability. The excellent catalytic performance could be attributed to the acid sites of the support and the synergistic effect between copper and bismuth species. Moreover, in situ DRIFTS results showed that amides NH2 and NH4(+) generated from NH3 adsorption could be responsible for the high selective catalytic reduction of NOx to N2. In addition, a possible catalytic reaction mechanism on Cu1Bi1-mBeta for the removal of NOx by NH3-SCR was proposed for explaining this catalytic process. PMID:27445009

  6. One-pot hydrothermal synthesis of CuBi co-doped mesoporous zeolite Beta for the removal of NOx by selective catalytic reduction with ammonia

    Science.gov (United States)

    Xie, Zhiguo; Zhou, Xiaoxia; Wu, Huixia; Chen, Lisong; Zhao, Han; Liu, Yan; Pan, Linyu; Chen, Hangrong

    2016-01-01

    A series of CuBi co-doped mesoporous zeolite Beta (CuxBiy-mBeta) were prepared by a facile one-pot hydrothermal treatment approach and were characterized by XRD, N2 adsorption-desorption, TEM/SEM, XPS, H2-TPR, NH3-TPD and in situ DRIFTS. The catalysts CuxBiy-mBeta were applied to the removal of NOx by selective catalytic reduction with ammonia (NH3-SCR), especially the optimized Cu1Bi1-mBeta achieved the high efficiency for the removal of NOx and N2 selectivity, superior water and sulfur resistance as well as good durability. The excellent catalytic performance could be attributed to the acid sites of the support and the synergistic effect between copper and bismuth species. Moreover, in situ DRIFTS results showed that amides NH2 and NH4+ generated from NH3 adsorption could be responsible for the high selective catalytic reduction of NOx to N2. In addition, a possible catalytic reaction mechanism on Cu1Bi1-mBeta for the removal of NOx by NH3-SCR was proposed for explaining this catalytic process. PMID:27445009

  7. DEVELOPMENT OF IMPROVED CATALYSTS FOR THE SELECTIVE CATALYTIC REDUCTION OF NITROGEN OXIDES WITH HYDROCARBONS

    Energy Technology Data Exchange (ETDEWEB)

    Ates Akyurtlu; Jale F. Akyurtlu

    2003-11-30

    Significant work has been done by the investigators on the cerium oxide-copper oxide based sorbent/catalysts for the combined removal of sulfur and nitrogen oxides from the flue gases of stationary sources. Evaluation of these sorbents as catalysts for the selective reduction of NO{sub x} gave promising results with methane. Since the replacement of ammonia by methane is commercially very attractive, in this project, the effect of promoters on the activity and selectivity of copper oxide/cerium oxide-based catalysts and the reaction mechanism for the SCR with methane was investigated. Unpromoted and promoted catalysts were investigated for their SCR activity with methane in a microreactor setup and also, by the temperature-programmed desorption (TPD) technique. The results from the SCR experiments indicated that manganese is a more effective promoter than the other metals (Rh, Li, K, Na, Zn, and Sn) for the supported copper oxide-ceria catalysts under study. The effectiveness of the promoter increased with the increase in Ce/Cu ratio. Among the catalysts tested, the Cu1Ce3 catalyst promoted with 1 weight % Mn was found to be the best catalyst for the SCR of NO with methane. This catalyst was subjected to long-term testing at the facilities of our industrial partner TDA Research. TDA report indicated that the performance of this catalyst did not deteriorate during 100 hours of operation and the activity and selectivity of the catalyst was not affected by the presence of SO{sub 2}. The conversions obtained by TDA were significantly lower than those obtained at Hampton University due to the transport limitations on the reaction rate in the TDA reactor, in which 1/8th inch pellets were used while the Hampton University reactor contained 250-425-{micro}m catalyst particles. The selected catalyst was also tested at the TDA facilities with high-sulfur heavy oil as the reducing agent. Depending on the heavy oil flow rate, up to 100% NO conversions were obtained. The

  8. Selective catalytic reduction of NO and NO{sub 2} at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, Manfred; Madia, Giuseppe; Elsener, Martin [Paul Scherrer Institute, CH-5232 PSI Villigen (Switzerland)

    2002-04-15

    The fast SCR reaction using equimolar amounts of NO and NO{sub 2} is a powerful means to enhance the NO{sub x} conversion over a given SCR catalyst. NO{sub 2} fractions in excess of 50% of total NO{sub x} should be avoided because the reaction with NO{sub 2} only is slower than the standard SCR reaction. At temperatures below 200C, due to its negative temperature coefficient, the ammonium nitrate reaction gets increasingly important. Half of each NH{sub 3} and NO{sub 2} react to form dinitrogen and water in analogy to a typical SCR reaction. The other half of NH{sub 3} and NO{sub 2} form ammonium nitrate in close analogy to a NO{sub x} storage-reduction catalyst. Ammonium nitrate tends to deposit in solid or liquid form in the pores of the catalyst and this will lead to its temporary deactivation.The various reactions have been studied experimentally in the temperature range 150-450C for various NO{sub 2}/NO{sub x} ratios. The fate of the deposited ammonium nitrate during a later reheating of the catalyst has also been investigated. In the absence of NO, the thermal decomposition yields mainly ammonia and nitric acid. If NO is present, its reaction with nitric acid on the catalyst will cause the formation of NO{sub 2}.

  9. Technology Roadmap: Energy and GHG reductions in the chemical industry via catalytic processes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    The chemical industry is a large energy user; but chemical products and technologies also are used in a wide array of energy saving and/or renewable energy applications so the industry has also an energy saving role. The chemical and petrochemical sector is by far the largest industrial energy user, accounting for roughly 10% of total worldwide final energy demand and 7% of global GHG emissions. The International Council of Chemical Associations (ICCA) has partnered with the IEA and DECHEMA (Society for Chemical Engineering and Biotechnology) to describe the path toward further improvements in energy efficiency and GHG reductions in the chemical sector. The roadmap looks at measures needed from the chemical industry, policymakers, investors and academia to press on with catalysis technology and unleash its potential around the globe. The report uncovers findings and best practice opportunities that illustrate how continuous improvements and breakthrough technology options can cut energy use and bring down greenhouse gas (GHG) emission rates. Around 90% of chemical processes involve the use of catalysts – such as added substances that increase the rate of reaction without being consumed by it – and related processes to enhance production efficiency and reduce energy use, thereby curtailing GHG emission levels. This work shows an energy savings potential approaching 13 exajoules (EJ) by 2050 – equivalent to the current annual primary energy use of Germany.

  10. Catalytic reductive dechlorination of p-chlorophenol in water using Ni/Fe nanoscale particles

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei-hua; QUAN Xie; ZHANG Zhuo-yong

    2007-01-01

    Nanoscale bimetallic Ni/Fe particles were synthesized from the reaction of sodium borohydride (NaBH4)with reduction of Ni2+and Fe2+ in aqueous solution.The obtained Ni/Fe particles were characterized by TEM(transmission electron microscope),XRD(X-ray diffractometer),and N2-BET The dechlorination activity of the Ni/Fe was investigated using P-chlorophenol (p-CP)as a pmbe agent.Results demonstrated that the nanoscale Ni/Fe could effectively dechlorinate P-CP at relatively low metal to solution ratio of 0.4 g/L (Ni 5 wt%).The target with initial concentration of P-CP O.625 mmol/L was dechlorinted completely in 60 min under ambient temperature and pressure.Factors affecting dechlorination efficiency,including reaction temperature,pH,Ni loading percentage over Fe,and metal to solution ratio.were investigated.The possible mechanism of dechlorination of P-CP was proposed and discussed.The pseudo-first-order reaction took place on the surface of the Ni/Fe bimetallic particles,and the activation energy of the dechlorination reaction was determined to be 21.2 kJ/mol at the temperature rang of 287-313 K.

  11. Screening of catalytic oxygen reduction reaction activity of metal-doped graphene by density functional theory

    Science.gov (United States)

    Chen, Xin; Chen, Shuangjing; Wang, Jinyu

    2016-08-01

    Graphene doping is a promising direction for developing effective oxygen reduction reaction (ORR) catalysts. In this paper, we computationally investigated the ORR performance of 10 kinds of metal-doped graphene (M-G) catalysts, namely, Al-, Si-, Mn-, Fe-, Co-, Ni-, Pd-, Ag-, Pt-, and Au-G. The results shown that the binding energies of the metal atoms incorporated into the graphene vacancy are higher than their bulk cohesive energies, indicating the formed M-G catalysts are even more stable than the corresponding bulk metal surfaces, and thus avoid the metals dissolution in the reaction environment. We demonstrated that the linear relation among the binding energies of the ORR intermediates that found on metal-based materials does not hold for the M-G catalysts, therefore a single binding energy of intermediate alone is not sufficient to evaluate the ORR activity of an arbitrary catalyst. By analysis of the detailed ORR processes, we predicted that the Au-, Co-, and Ag-G materials can be used as the ORR catalysts.

  12. Mercury Oxidation over Selective Catalytic Reduction (SCR) Catalysts - Ph.d. thesis Karin Madsen

    DEFF Research Database (Denmark)

    Madsen, Karin

    The vanadium-based SCR catalyst used for NOx-control promotes the oxidation of elemental mercury Hg0 to Hg2+ in flue gases from coal-fired power plants. Hg2+ is water soluble and can effectively be captured in a wet scrubber. This means that the combination of an SCR with a wet FGD can offer...... an effective control option for mercury. Laboratory experiments have been carried out to quantify the Hg0 oxidation that can be achieved over commercial SCR catalysts for different gas compositions, operating conditions and catalyst types. The following three net reactions have been identified as relevant...... for the mercury chemistry over the SCR: R1. 2 HCl + Hg0 + 1/2 O2 ↔ HgCl2 + H2O R2. 2 NH3 + 3 HgCl2 ↔ N2 + 3 Hg0 + 6 HCl R3. 2 NO + 2 NH3 + 1/2 O2 ↔ 2 N2 + 3 H2O where reaction R1 is the oxidation of Hg0 by HCl, reaction R2 is the reduction of HgCl2 by NH3 and reaction R3 is the DeNOx reaction. The importance...

  13. Fabrication of doped Titania (TiO2) nanofibers to serve as catalysts in NH3-Selective CatalyticReduction (SCR)

    DEFF Research Database (Denmark)

    Marani, Debora; Silva, Rafael Hubert; Dankeaw, Apiwat;

    2016-01-01

    of the NOx in exhausts via the NH3 SelectiveCatalytic Reduction (SCR) method. By combining electrospinning and sol-gel chemistry, materials areprocessed as nanofibers with the catalytic components (e. g. V2O5-WO3) incorporated as dopants into thesupporting anatase phase (e. g TiO2). Remarkable high NOx...... conversion efficiencies are obtained andassociated with the unique features deriving from the synergism among the doping approach, the nanoscaleconfinement, and the nano-fibrous texture. A novel concept of self-supported, lightweight and ultra-compactdesign SCR reactor is defined....

  14. Enantioselective Synthesis of (+)-Peganumine A.

    Science.gov (United States)

    Piemontesi, Cyril; Wang, Qian; Zhu, Jieping

    2016-09-01

    A gram-scale enantioselective total synthesis of (+)-peganumine A was accomplished in 7 steps from commercially available 6-methoxytryptamine. Key steps included (a) a Liebeskind-Srogl cross-coupling; (b) a one-pot construction of the tetracyclic skeleton from an ω-isocyano-γ-oxo-aldehyde via a sequence of an unprecedented C-C bond forming lactamization and a transannular condensation; (c) a one-pot organocatalytic process merging two achiral building blocks into an octacyclic structure via a sequence of enantioselective Pictet-Spengler reaction followed by a transannular cyclization. This last reaction created two spirocycles and a 2,7-diazabicyclo[2.2.1]heptan-3-one unit with excellent control of both the absolute and relative stereochemistry of the two newly created quaternary stereocenters. PMID:27558528

  15. Synergistic chiral iminium and palladium catalysis: Highly regio- and enantioselective [3 + 2] annulation reaction of 2-vinylcyclopropanes with enals

    Science.gov (United States)

    Zhu, Haipan; Du, Peile; Li, Jianjun; Liao, Ziyang; Liu, Guohua

    2016-01-01

    Summary A cooperative catalytic strategy of chiral iminium catalysis by regioselective activation of the C=C bond in enals and a transition metal promoting to open the 2-vinylcyclopropanes for highly regio- and enantioselective [3 + 2] cycloaddition reaction of 2-vinylcyclopropanes with α,β-unsaturated aldehydes has been developed. PMID:27559383

  16. Fabrication and catalytic activity of FeNi@Ni nanocables for the reduction of p-nitrophenol.

    Science.gov (United States)

    Zhou, Linyi; Wen, Ming; Wu, Qingsheng; Wu, Dandan

    2014-06-01

    Magnetic FeNi@Ni nanocables were prepared as a superior recyclable catalyst towards the hydrogenation reduction of p-nitrophenol to p-aminophenol through a two-step tunable assembly process in a solvothermal system. The proposed fabrication mechanism was verified through characterization by SEM, TEM, XRD, XPS, and UV-Vis. The as-prepared FeNi@Ni nanocomposites are core-shell-structured nanocables with Ni nanoparticles (NPs) attached on FeNi nanorods (NRs) surface loosely. The catalytic reactivity monitored by means of a UV-vis dynamic process shows FeNi@Ni nanocables can catalyse the transformation of p-nitrophenol to p-aminophenol completely under an ambient atmosphere at room temperature, and enable the catalysis to be more efficient than its counterparts FeNi NRs and Ni NPs due to the interfacial synergistic effect. Additionally, the resultant hierarchical metal-alloy nanocomposites possess ferromagnetic behaviour, and can be easily separated and recycled by an external magnet field for application. PMID:24714959

  17. [Low-temperature catalytic reduction of NO over Fe-MnOx-CeO2/ZrO2 catalyst].

    Science.gov (United States)

    Liu, Rong; Yang, Zhi-Qin

    2012-06-01

    Fe-MnOx-CeO2/ZrO2 catalysts were prepared through impregnation method with nanometer ZrO2 as a carrier and used in selective catalytic reduction of NO with NH3 at low temperature. Effects of active component ratio and loading of promoter on the catalyst activity were investigated. The catalysts were characterized by means of XRD, SEM, EDS and BET. The effects of temperature, SO2 and H2O on NO conversion were studied and the results showed that in the absence of SO2 and H2O, the catalyst of 8% Fe-10% MnOx-CeO2/ZrO2 had good activity and stability as well as the NOx removal efficiency reached 85.23% at 120 degrees C and 92.0% at 180 degrees C. The presence of SO2 and H2O results in the catalyst deactivated. Properties of the catalyst on different reaction stages were characterized by FT-IR to study the inactivation mechanism of the catalyst. The results showed that the catalyst deactivation was due to the deposition of ammonium sulfate on the catalyst and the sulphation of the catalyst.

  18. Mechanism of propene poisoning on Fe-ZSM-5 for selective catalytic reduction of NO(x) with ammonia.

    Science.gov (United States)

    Li, Junhua; Zhu, Ronghai; Cheng, Yisun; Lambert, Christine K; Yang, Ralph T

    2010-03-01

    Application of Fe-zeolites for urea-SCR of NO(x) in diesel engine is limited by catalyst deactivation with hydrocarbons. In this work, we investigated the effect of propene on the activity of Fe-ZSM-5 for selective catalytic reduction of NO(x) with ammonia (NH(3)-SCR), and proposed a deactivation mechanism of Fe(3+) active site blockage by propene residue. The NO conversion decreased in the presence of propene at various temperatures, while the effect was not significant when NO was replaced by NO(2) in the feed, especially at low temperatures (<300 degrees C). The surface area and pore volume were decreased due to carbonaceous deposition. The site blockage was mainly on Fe(3+) sites on which NO was to be oxidized to NO(2). The activity for NO oxidation to NO(2) was significantly inhibited on a propene poisoned catalyst below 400 degrees C. The adsorption of NH(3) on the Bronsted acid sites to form NH(4)(+) was not hindered even on the propene poisoned catalyst, and the amount of absorbed NH(3) was still abundant and enough to react with NO(2) to generate N(2). The hydrocarbon oxygenates such as formate, acetate, and containing nitrogen organic compounds were observed on catalyst surface, however, no graphitic carbonaceous deposit was formed. PMID:20136123

  19. Fabrication of Bi-Fe3O4@RGO hybrids and their catalytic performance for the reduction of 4-nitrophenol

    International Nuclear Information System (INIS)

    Nanocatalysts are frequently connected to magnetic nanoparticles. These composites are easy to be retrieved from the reaction system under a magnetic field because of their magnetic properties. Magnetic separation is particularly promising in industry since it can solve many issues present in filtration, centrifugation, or gravitation separation. Herein, a facile method to prepare bismuth and Fe3O4 nanoparticles loaded on reduced graphene oxide magnetic hybrids (Bi-Fe3O4@RGO) using soluble starch as a dispersant is demonstrated. The magnetic Fe3O4 nanoparticles were synthesized by the co-precipitation of Fe2+ and Fe3+ ions, and Bi nanoparticles were fabricated by the redox reactions between sodium borohydride and ammonium bismuth citrate in the presence of soluble starch. Transmission electron microscopy images demonstrate that the average diameter of the Fe3O4 nanoparticles is about 5 nm and the diameters of Bi nanoparticles range from 10 to 20 nm. The magnetic Bi-Fe3O4@RGO hybrids exhibit high catalytic activity in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by NaBH4 with a first-order rate constant (K) of 0.00808 s−1 and is magnetically recyclable for at least five cycles. This strategy provides an efficient and recyclable catalyst for the use in environmental protection applications

  20. Determining the storage, availability and reactivity of NH3 within Cu-Chabazite-based Ammonia Selective Catalytic Reduction systems.

    Science.gov (United States)

    Lezcano-Gonzalez, I; Deka, U; Arstad, B; Van Yperen-De Deyne, A; Hemelsoet, K; Waroquier, M; Van Speybroeck, V; Weckhuysen, B M; Beale, A M

    2014-01-28

    Three different types of NH3 species can be simultaneously present on Cu(2+)-exchanged CHA-type zeolites, commonly used in Ammonia Selective Catalytic Reduction (NH3-SCR) systems. These include ammonium ions (NH4(+)), formed on the Brønsted acid sites, [Cu(NH3)4](2+) complexes, resulting from NH3 coordination with the Cu(2+) Lewis sites, and NH3 adsorbed on extra-framework Al (EFAl) species, in contrast to the only two reacting NH3 species recently reported on Cu-SSZ-13 zeolite. The NH4(+) ions react very slowly in comparison to NH3 coordinated to Cu(2+) ions and are likely to contribute little to the standard NH3-SCR process, with the Brønsted groups acting primarily as NH3 storage sites. The availability/reactivity of NH4(+) ions can be however, notably improved by submitting the zeolite to repeated exchanges with Cu(2+), accompanied by a remarkable enhancement in the low temperature activity. Moreover, the presence of EFAl species could also have a positive influence on the reaction rate of the available NH4(+) ions. These results have important implications for NH3 storage and availability in Cu-Chabazite-based NH3-SCR systems. PMID:24322601

  1. Strongly coupled Pd nanotetrahedron/tungsten oxide nanosheet hybrids with enhanced catalytic activity and stability as oxygen reduction electrocatalysts.

    Science.gov (United States)

    Lu, Yizhong; Jiang, Yuanyuan; Gao, Xiaohui; Wang, Xiaodan; Chen, Wei

    2014-08-20

    The design and synthesis of highly active oxygen reduction reaction (ORR) catalysts with strong durability at low cost is extremely desirable but still remains a significant challenge. Here we develop an efficient strategy that utilizes organopalladium(I) complexes containing palladium-palladium bonds as precursors for the synthesis of strongly coupled Pd tetrahedron-tungsten oxide nanosheet hybrids (Pd/W18O49) to improve the electrocatalytic activity and stability of Pd nanocrystals. The hybrid materials are synthesized by direct nucleation, growth, and anchoring of Pd tetrahedral nanocrystals on the in situ-synthesized W18O49 nanosheets. Compared to supportless Pd nanocrystals and W18O49, their hybrids exhibited not only surprisingly high activity but also superior stability to Pt for the ORR in alkaline solutions. X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and electrochemical analyses indicated that the enhanced electrocatalytic activity and durability are associated with the increased number and improved catalytic activity of active sites, which is induced by the strong interaction between the Pd tetrahedrons and W18O49 nanosheet supports. The present study provides a novel strategy for synthesizing hybrid catalysts with strong chemical attachment and electrical coupling between nanocatalysts and supports. The strategy is expected to open up exciting opportunities for developing a novel class of metal-support hybrid nanoelectrocatalysts with improved ORR activity and durability for both fuel cells and metal-air batteries. PMID:25054583

  2. Mercury oxidation promoted by a selective catalytic reduction catalyst under simulated Powder River Basin coal combustion conditions.

    Science.gov (United States)

    Lee, Chun W; Serre, Shannon D; Zhao, Yongxin; Lee, Sung Jun; Hastings, Thomas W

    2008-04-01

    A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury (Hg(o)) oxidation under SCR conditions. A low sulfur Powder River Basin (PRB) subbituminous coal combustion fly ash was injected into the entrained-flow reactor along with sulfur dioxide (SO2), nitrogen oxides (NOx), hydrogen chloride (HCl), and trace Hg(o). Concentrations of Hg(o) and total mercury (Hg) upstream and downstream of the SCR catalyst were measured using a Hg monitor. The effects of HCl concentration, SCR operating temperature, catalyst space velocity, and feed rate of PRB fly ash on Hg(o) oxidation were evaluated. It was observed that HCl provides the source of chlorine for Hg(o) oxidation under simulated PRB coal-fired SCR conditions. The decrease in Hg mass balance closure across the catalyst with decreasing HCl concentration suggests that transient Hg capture on the SCR catalyst occurred during the short test exposure periods and that the outlet speciation observed may not be representative of steady-state operation at longer exposure times. Increasing the space velocity and operating temperature of the SCR led to less Hg(o) oxidized. Introduction of PRB coal fly ash resulted in slightly decreased outlet oxidized mercury (Hg2+) as a percentage of total inlet Hg and correspondingly resulted in an incremental increase in Hg capture. The injection of ammonia (NH3) for NOx reduction by SCR was found to have a strong effect to decrease Hg oxidation. The observations suggest that Hg(o) oxidation may occur near the exit region of commercial SCR reactors. Passage of flue gas through SCR systems without NH3 injection, such as during the low-ozone season, may also impact Hg speciation and capture in the flue gas. PMID:18422035

  3. Catalytic reduction of methane/unburned hydrocarbons in smoke from lean-burn gas engines

    International Nuclear Information System (INIS)

    The aim of this project has been: To describe the flue gas conditions of typical stationary gas engines for cogeneration; To evaluate the predominant causes of deactivation of oxidation catalysts under realistic operation conditions; To develop improved long-term stable oxidation catalysts; To evaluate alternative catalyst-based methane reduction technologies. Most gas engines for stationary purposes are efficient lean-burn gas engines. Both the high efficiency and the very lean operation lead to low exhaust temperatures. However, there is now a tendency to design engines with un-cooled exhaust manifolds. This leads to higher shaft efficiency and increases the exhaust temperature. Exhaust gas composition and temperatures during continuous operation and start/stops are given in this report. Analyses have been made of catalyst samples to find predominant causes for oxidation catalyst deactivation. The analyses have shown that the presence of sulphur dioxide in the flue gas causes sulphur poisoning on the active catalyst surface. This effect is dependent on both the catalyst formulation and the catalyst support material composition. Neither sintering, nor other poisoning components than sulphur have been on the examined catalyst samples. The sulphur dioxide in the exhaust is a result of the sulphur in the odorisation additive used in the natural gas (approx. 10 mg/n3 m THT) and of the sulphur present in combusted lubrication oil. These sources leads to a level of approx. 0.3 - 0.6 ppm (vol) SO2 in the exhaust gas. Based on a large number of laboratory tests, a new oxidation catalyst formulation has been developed and successfully tested over 5000 hours of operation at a commercial cogeneration plant. This long-term testing has been additionally supplemented by short-term testings at test sites to see performance under other operation conditions. It has been shown that a rise in flue gas temperature (from e.g. 450 deg. C) will significantly reduce the necessary

  4. Highly selective catalytic reduction of NO via SO2/H2O-tolerant spinel catalysts at low temperature.

    Science.gov (United States)

    Cai, Xuanxuan; Sun, Wei; Xu, Chaochao; Cao, Limei; Yang, Ji

    2016-09-01

    Selective catalytic reduction of NO X by hydrogen (H2-SCR) in the presence of oxygen has been investigated over the NiCo2O4 and Pd-doped NiCo2O4 catalysts under varying conditions. The catalysts were prepared by a sol-gel method in the presence of oxygen within 50-350 °C and were characterized using XRD, BET, EDS, XPS, Raman, H2-TPR, and NH3-TPD analysis. The results demonstrated that the doped Pd could improve the catalyst reducibility and change the surface acidity and redox properties, resulting in a higher catalytic performance. The performance of NiCo1.95Pd0.05O4 was consistently better than that of NiCo2O4 within the 150-350 °C range at a gas hourly space velocity (GHSV) of 4800 mL g(-1) h(-1), with a feed stream containing 1070 ppm NO, 10,700 ppm H2, 2 % O2, and N2 as balance gas. The effects of GHSV, NO/H2 ratios, and O2 feed concentration on the NO conversion over the NiCo2O4 and NiCo1.95Pd0.05O4 catalysts were also investigated. The two samples similarly showed that an increase in GHSV from 4800 to 9600 mL h(-1) g(-1), the NO/H2 ratio from 1:10 to 1:1, and the O2 content from 0 to 6 % would result in a decrease in NO conversion. In addition, 2 %, 5 %, and 8 % H2O into the feed gas had a slightly negative influence on SCR activity over the two catalysts. The effect of SO2 on the SCR activity indicated that the NiCo1.95Pd0.05O4 possesses better SO2 tolerance than NiCo2O4 catalyst does. Graphical abstract The NiCo1.95Pd0.05O4 catalyst achieved over 90 % NO conversion with N2 selectivity of 100 % in the 200∼250 °C range than the maximum 40.5 % NO conversion over NiCo2O4 with N2 selectivity of approximately 80 % in 350 °C. PMID:27301438

  5. Selective catalytic reduction (SCR) of NO by urea loaded on activated carbon fibre (ACF) and CeO2/ACF at 30 degrees C: the SCR mechanism.

    Science.gov (United States)

    Zeng, Zheng; Lu, Pei; Li, Caiting; Zeng, Guangming; Jiang, Xiao; Zhai, Yunbo; Fan, Xiaopeng

    2012-06-01

    Selective catalytic reduction (SCR) of NO by urea loaded on rayon-based activated carbon fibre (ACF) and CeO2/ACF (CA) was studied at ambient temperature (30 degrees C) to establish a basic scheme for its reduction. Nitric oxide was found to be reduced to N2 with urea deposited on the ACF and CA. When oxygen was present, the greater the amount of loaded urea (20-60%), the greater the NO(x) conversions, which were between 72.03% and 77.30%, whereas the NO(x) conversions were about 50% when oxygen was absent. Moreover, when the urea was loaded on CA, a catalyst containing 40% urea/ACF loaded with 10% CeO2 (UCA4) could yield a NO(x) conversion of about 80% for 24.5 h. Based on the experimental results, the catalytic mechanisms of SCR with and without oxygen are discussed. The enhancing effect of oxygen resulted from the oxidation of NO to NO2, and urea was the main reducing agent in the SCR of loaded catalysts. ACF-C was the catalytic centre in the SCR of NO of ACF, while CeO2 of urea-loaded CA was the catalytic centre.

  6. Catalytic Asymmetric Reduction of a 3,4-Dihydroisoquinoline for the Large-Scale Production of Almorexant: Hydrogenation or Transfer Hydrogenation?

    OpenAIRE

    Verzijl, Gerard K.M.; Vries, André H.M. de; Vries, Johannes G. de; Kapitan, Peter; Dax, Thomas; Helms, Matthias; Nazir, Zarghun; Skranc, Wolfgang; Imboden, Christoph; Stichler, Juergen; Ward, Richard A.; Abele, Stefan; Lefort, Laurent

    2013-01-01

    Several methods are presented for the enantioselective synthesis of the tetrahydroisoquinoline core of almorexant (ACT-078573A), a dual orexin receptor antagonist. Initial clinical supplies were secured by the Noyori Ru-catalyzed asymmetric transfer hydrogenation (Ru-Noyori ATH) of the dihydroisoquinoline precursor. Both the yield and enantioselectivity eroded upon scale-up. A broad screening exercise identified TaniaPhos as ligand for the iridium-catalyzed asymmetric hydrogenation with a ded...

  7. Mo-catalyzed asymmetric olefin metathesis in target-oriented synthesis: Enantioselective synthesis of (+)-africanol

    Science.gov (United States)

    Weatherhead, Gabriel S.; Cortez, G. A.; Schrock, Richard R.; Hoveyda, Amir H.

    2004-01-01

    Catalytic asymmetric ring-opening metathesis (AROM) provides an efficient method for the synthesis of a variety of optically enriched small organic molecules that cannot be easily prepared by alternative methods. The development of Mo-catalyzed AROM transformations that occur in tandem with ring-closing metathesis are described. The utility of the Mo-catalyzed AROM/ring-closing metathesis is demonstrated through an enantioselective approach to the synthesis of (+)-africanol. PMID:15056762

  8. Chiral Phosphoric Acid-Catalyzed Enantioselective Formal [3+2] Cycloaddition of Azomethine Imines with Enecarbamates.

    Science.gov (United States)

    Wang, Yang; Wang, Qian; Zhu, Jieping

    2016-06-01

    The first catalytic asymmetric inverse electron demand 1,3-dipolar cycloaddition of azomethine imines with enecarbamates has been developed. Isoquinoline-fused pyrazolidines containing two or three contiguous stereogenic centers were obtained in high yields with excellent regio-, diastereo-, and enantioselectivities. The pyrazolidine ring can be opened to install an aminal, α-amino nitrile, or homoallylamine function with an excellent control of the newly generated stereogenic center. Access to aminobenzo[a]quinolizidine is also documented. PMID:27135440

  9. Synthesis of 3-fluoro-3-aryl oxindoles: Direct enantioselective α arylation of amides

    KAUST Repository

    Wu, Linglin

    2012-02-06

    Modus operandi: Catalytic access to the title compounds through a new asymmetric α-arylation protocol is reported (see scheme). These products are formed in good yields and excellent enantioselectivities by using a new and easily synthesized chiral N-heterocyclic carbene (NHC) ligand. Advanced DFT calculations reveal the properties of the NHC ligand and the mode of operation of the catalyst. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Asymmetric Roadmap to Diverse Polycyclic Benzopyrans via Phosphine-Catalyzed Enantioselective [4 + 2]-Annulation Reaction.

    Science.gov (United States)

    Danda, Adithi; Kesava-Reddy, Naredla; Golz, Christopher; Strohmann, Carsten; Kumar, Kamal

    2016-06-01

    The catalytic addition of the amino acid derived bifunctional N-acylaminophosphine to an α-substituted allene ester generated a zwitterionic dipole that engaged the vinylogous ester function of 3-cyano-chromones in a [4 + 2] annulation reaction to deliver tetrahydroxanthones embodying three consecutive chiral centers in high yields and with excellent enantioselectivities. The established asymmetric synthesis further paves the way to two different classes of complex, sp(3)-rich tetracyclic benzopyrans via efficient cascade reactions. PMID:27187586

  11. Influence of MnO2 modification methods on the catalytic performance of CuO/CeO2 for NO reduction by CO

    Institute of Scientific and Technical Information of China (English)

    姚小江; 熊燕; 孙敬方; 高飞; 邓昱; 汤常金; 董林

    2014-01-01

    In order to investigate the influence of MnO2 modification methods on the catalytic performance of CuO/CeO2 catalyst for NO reduction by CO, two series of catalysts (xCuyMn/Ce and xCu/yMn/Ce) were prepared by co-impregnation and step-wise-impregnation methods, and characterized by means of X-ray diffraction (XRD), Raman spectra, H2-temperature programmed reduction (H2-TPR), in situ diffuse reflectance infrared Fourier transform spectra (in situ DRIFTS) techniques. Furthermore, the cata-lytic performances of these catalysts were evaluated by NO+CO model reaction. The obtained results indicated that:(1) The catalysts acquired by co-impregnation method exhibited stronger interaction owing to the more sufficient contact among each component of the catalysts compared with the catalysts obtained by stepwise-impregnation method, which was beneficial to the improvement of the reduction behavior;(2) The excellent reduction behavior was conducive to the formation of low valence state copper species (Cu+/Cu0) and more oxygen vacancies (especially the surface synergetic oxygen vacancies (SSOV, Cu+-Mn(4-x)+)) during the reaction process, which were beneficial to the adsorption of CO species and the dissociation of NO species, respectively, and further promoted the en-hancement of the catalytic performance. Finally, in order to further understand the difference between the catalytic performances of these catalysts prepared by co-impregnation and stepwise-impregnation methods, a possible reaction mechanism (schematic diagram) was tentatively proposed.

  12. Enantioselective Synthesis of N-PMP-1,2-dihydropyridines via Formal [4 + 2] Cycloaddition between Aqueous Glutaraldehyde and Imines.

    Science.gov (United States)

    Ramaraju, Panduga; Mir, Nisar A; Singh, Deepika; Gupta, Vivek K; Kant, Rajni; Kumar, Indresh

    2015-11-20

    A simple and highly practical one-pot formal [4 + 2] cycloaddition approach for the enantioselective synthesis of N-PMP-1,2-dihydropyridines (DHPs) is described. This chemistry involves an amino-catalytic direct Mannich reaction/cyclization followed by IBX-mediated chemo- and regioselective oxidation sequence between readily available aqueous glutaraldehyde and imines under very mild conditions. A series of N-PMP-1,2-DHPs have been prepared in high yields and excellent enantioselectivity. This method also gives access to both enantiomers of 1,2-DHPs in surplus amount by shifting the catalyst configuration.

  13. Effect of Mole Percentage of Crosslinker of Silver-poly(N-isopropylacrylamide-co-acrylic acid Hybrid Microgels on Catalytic Reduction of Nitrobenzene

    Directory of Open Access Journals (Sweden)

    Zahoor H. FAROOQI

    2015-02-01

    Full Text Available Poly(N-isopropylacrylamide-co-acrylic acid microgels [P(NIPAM-co-AAc] with 2, 4, 6 and 8 mole percentage of N,N-methylene-bis-acrylamide were used as micro-reactors for the fabrication of Ag nanoparticles using the in situ reduction method. The pure and hybrid microgels were characterized by Fourier transform infrared and Ultraviolet-Visible spectroscopies. Silver-poly(N-isopropylacrylamide-co-acrylic acid hybrid microgels [Ag-P(NIPAM-co-AAc] with different crosslinker contents were used as catalysts for reduction of nitrobenzene (NB in aqueous medium in order to investigate the effect of crosslinker content on the value of apparent rate constant (kapp. 0.041, 0.146, 0.2388 and 0.255 min-1 were found as values of kapp for catalytic reduction of NB using hybrid microgels with 2, 4, 6 and 8 mole percentage of crosslinker, respectively. The effect of crosslinker feed content of hybrid microgels on catalytic activity for reduction of NB was compared to that of reduction of p-nitrophenol in aqueous medium.

  14. Enantioselective Synthesis of Chiral Piperidines via the Stepwise Dearomatization/Borylation of Pyridines.

    Science.gov (United States)

    Kubota, Koji; Watanabe, Yuta; Hayama, Keiichi; Ito, Hajime

    2016-04-01

    We have developed a novel approach for the synthesis of enantioenriched 3-boryl-tetrahydropyridines via the Cu(I)-catalyzed regio-, diastereo-, and enantioselective protoborylation of 1,2-dihydropyridines, which were obtained by the partial reduction of the pyridine derivatives. This dearomatization/enantioselective borylation stepwise strategy provides facile access to chiral piperidines together with the stereospecific transformation of a stereogenic C-B bond from readily available starting materials. Furthermore, the utility of this method is demonstrated for the concise synthesis of the antidepressant drug (-)-paroxetine. A theoretical study of the reaction mechanism is also described. PMID:26967578

  15. Enantioselective functionalization of allylic C-H bonds following a strategy of functionalization and diversification.

    Science.gov (United States)

    Sharma, Ankit; Hartwig, John F

    2013-11-27

    We report the enantioselective functionalization of allylic C-H bonds in terminal alkenes by a strategy involving the installation of a temporary functional group at the terminal carbon atom by C-H bond functionalization, followed by the catalytic diversification of this intermediate with a broad scope of reagents. The method consists of a one-pot sequence of palladium-catalyzed allylic C-H bond oxidation under neutral conditions to form linear allyl benzoates, followed by iridium-catalyzed allylic substitution. This overall transformation forms a variety of chiral products containing a new C-N, C-O, C-S, or C-C bond at the allylic position in good yield with a high branched-to-linear selectivity and excellent enantioselectivity (ee ≤97%). The broad scope of the overall process results from separating the oxidation and functionalization steps; by doing so, the scope of nucleophile encompasses those sensitive to direct oxidative functionalization. The high enantioselectivity of the overall process is achieved by developing an allylic oxidation that occurs without acid to form the linear isomer with high selectivity. These allylic functionalization processes are amenable to an iterative sequence leading to (1,n)-functionalized products with catalyst-controlled diastereo- and enantioselectivity. The utility of the method in the synthesis of biologically active molecules has been demonstrated.

  16. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: A mechanistic study

    KAUST Repository

    Ahmed, Syud M.

    2013-12-18

    The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands. © 2013 American Chemical Society.

  17. Catalytic NO reduction with ammonia at low temperatures on V2O5/AC catalysts. Effect of metal oxides addition and SO2

    International Nuclear Information System (INIS)

    The catalytic behavior of the V-M/AC (M=W, Mo, Zr, and Sn) catalysts were studied for the NO reduction with ammonia at low temperatures, especially in the presence of SO2. The presence of the metal oxides does not increase the V2O5/AC activity but decreases it. Except V-Mo/AC, the other catalysts are promoted by SO2 at 250C, especially for V-Sn/AC. However, the promoting effect of SO2 is gradually depressed by catalyst deactivation. Changes in catalyst preparation method can improve the catalyst stability in short-term but cannot completely prevent the catalyst from a long-term deactivation. Mechanisms of the promoting effect and the deactivation of V-Sn/AC catalyst by SO2 were studied using Fourier transform infrared spectroscopy (FT-IR) spectra and measurement of catalyst surface area and pore volume. The results showed that both the SO2 promotion and deactivation are associated with the formation of sulfate species on the catalyst surface. In the initial period of the selective catalytic reduction (SCR) reaction in the presence of SO2, the formed sulfate species provide new acid sites to enhance ammonia adsorption and thus the catalytic activity. However, as the SCR reaction proceeds, excess amount of sulfate species and then ammonium-sulfate salts are formed which is stabilized by the presence of tin oxide, resulting in gradual plugging of the pore structures and the catalyst deactivation

  18. In situ DRIFTS studies on MnOx nanowires supported by activated semi-coke for low temperature selective catalytic reduction of NOx with NH3

    Science.gov (United States)

    Chen, Yan; Zhang, Zuotai; Liu, Lili; Mi, Liang; Wang, Xidong

    2016-03-01

    To mitigate the threat of NOx on the environment, MnOx nanowires were fabricated on activated semi-coke (MnOx NW/ASC) for the first time. The prepared MnOx NW/ASC was used for the low temperature selective catalytic reduction (SCR) of NOx with NH3, which achieved an efficiency of over 90% with a low loading content of 1.64 wt% at 150-210 °C. This high performance could be ascribed to synergistic effect between MnOx and ASC. Specifically, the large specific surface area and reducible property of ASC facilitated the dispersion of MnOx and the formation of Mn3+, respectively. Meanwhile, MnOx nanowires provided more redox sites and lattice oxygen species due to the coexistence of Mn3+ and Mn4+, which accelerated the catalytic cycle. The in situ DRIFTS studies revealed that ASC was conducive to the adsorption of NO and NH3. Most importantly, the existence of Mn3+ favored the formation of amide species and the subsequent reduction reaction. Furthermore, the Langmuir-Hinshelwood (L-H) route between coordinated NH3 and bidentate nitrate was predominating in the SCR process and responsible for the high catalytic activity at low temperature.

  19. One-pot synthesis of hierarchical FeZSM-5 zeolites from natural aluminosilicates for selective catalytic reduction of NO by NH3

    Science.gov (United States)

    Yue, Yuanyuan; Liu, Haiyan; Yuan, Pei; Yu, Chengzhong; Bao, Xiaojun

    2015-03-01

    Iron-modified ZSM-5 zeolites (FeZSM-5s) have been considered to be a promising catalyst system to reduce nitrogen oxide emissions, one of the most important global environmental issues, but their synthesis faces enormous economic and environmental challenges. Herein we report a cheap and green strategy to fabricate hierarchical FeZSM-5 zeolites from natural aluminosilicate minerals via a nanoscale depolymerization-reorganization method. Our strategy is featured by neither using any aluminum-, silicon-, or iron-containing inorganic chemical nor involving any mesoscale template and any post-synthetic modification. Compared with the conventional FeZSM-5 synthesized from inorganic chemicals with the similar Fe content, the resulting hierarchical FeZSM-5 with highly-dispersed iron species showed superior catalytic activity in the selective catalytic reduction of NO by NH3.

  20. Enantioselective synthesis of tetrafluorinated ribose and fructose.

    Science.gov (United States)

    Linclau, Bruno; Boydell, A James; Timofte, Roxana S; Brown, Kylie J; Vinader, Victoria; Weymouth-Wilson, Alexander C

    2009-02-21

    A perfluoroalkylidene lithium mediated cyclisation approach for the enantioselective synthesis of a tetrafluorinated aldose (ribose) and of a tetrafluorinated ketose (fructose), both in the furanose and in the pyranose form, is described. PMID:19194597

  1. Proline Based Chiral Ionic Liquids for Enantioselective Michael Reaction

    Directory of Open Access Journals (Sweden)

    Kaoru Nobuoka

    2014-01-01

    Full Text Available Chiral ionic liquids, starting from (S-proline, have been prepared and evaluated the ability of a chiral catalyst. In Michael reaction of trans-β-nitrostyrene and cyclohexanone, all the reactions were carried out under homogeneous conditions without any solvent except for excess cyclohexanone. The chiral ionic liquid catalyst with the positive charge delocalized bulky pyrrolidinium cation shows excellent yields (up to 92%, diastereoselectivities (syn/anti = 96/4, and enantioselectivities (up to 95% ee and could be reused at least three times without any loss of its catalytic activity. Such results demonstrated a promising new approach for green and economic chiral synthesis by using the chiral ionic liquids as a chiral catalyst and a chiral medium.

  2. Synthesis of Au nanoparticles decorated graphene oxide nanosheets: Noncovalent functionalization by TWEEN 20 in situ reduction of aqueous chloroaurate ions for hydrazine detection and catalytic reduction of 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wenbo [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin (China); Ning, Rui [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Qin, Xiaoyun; Zhang, Yingwei; Chang, Guohui; Liu, Sen; Luo, Yonglan [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin (China); Sun, Xuping, E-mail: sunxp@ciac.jl.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin (China)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer TWEEN 20 is used as a stabilizing agent for GO as well as a reducing and immobilizing agent for Au nanoparticles. Black-Right-Pointing-Pointer The hydrazine sensor based on the nanocomposites has a fast amperometric response. Black-Right-Pointing-Pointer The detection limit of the hydrazine sensor is estimated to be 78 nM. Black-Right-Pointing-Pointer The nanocomposites also exhibit good catalytic activity toward 4-nitrophenol reduction. - Abstract: In this paper, we develop a cost-effective and simple route for the synthesis of Au nanoparticles (AuNPs) decorated graphene oxide (GO) nanosheets using polyoxyethylene sorbitol anhydride monolaurate (TWEEN 20) as a stabilizing agent for GO as well as a reducing and immobilizing agent for AuNPs. The AuNPs assemble on the surface of TWEEN-functionalized GO by the in situ reduction of HAuCl{sub 4} aqueous solution. The morphologies of these composites were characterized by atomic force microscopy (AFM) and transmission electron microscopy (TEM). It is found that the resultant AuNPs decorated GO nanosheets (AuNPs/TWEEN/GO) exhibit remarkable catalytic performance for hydrazine oxidation. This hydrazine sensor has a fast amperometric response time of less than 3 s. The linear range is estimated to be from 5 {mu}M to 3 mM (r = 0.999), and the detection limit is estimated to be 78 nM at a signal-to-noise ratio of 3. The AuNPs/TWEEN/GO composites also exhibit good catalytic activity toward 4-nitrophenol (4-NP) reduction and the GO supports also enhance the catalytic activity via a synergistic effect.

  3. Local Environment and Nature of Cu Active Sites in Zeolite-Based Catalysts for the Selective Catalytic Reduction of NOx

    NARCIS (Netherlands)

    Deka, U.; Lezcano-Gonzalez, I.; Weckhuysen, B.M.; Beale, A.M.

    2013-01-01

    Cu-exchanged zeolites have demonstrated widespread use as catalyst materials in the abatement of NOx, especially from mobile sources. Recent studies focusing on Cu-exchanged zeolites with the CHA structure have demonstrated them to be excellent catalysts in the ammonia-assisted selective catalytic r

  4. EMISSION REDUCTION FROM A DIESEL ENGINE FUELED BY CERIUM OXIDE NANO-ADDITIVES USING SCR WITH DIFFERENT METAL OXIDES COATED CATALYTIC CONVERTER

    Directory of Open Access Journals (Sweden)

    B. JOTHI THIRUMAL

    2015-11-01

    Full Text Available This paper reports the results of experimental investigations on the influence of the addition of cerium oxide in nanoparticle form on the major physiochemical properties and the performance of diesel. The fuel is modified by dispersing the catalytic nanoparticle by ultrasonic agitation. The physiochemical properties of sole diesel fuel and modified fuel are tested with ASTM standard procedures. The effects of the additive nanoparticles on the individual fuel properties, the engine performance, and emissions are studied, and the dosing level of the additive is optimized. Cerium oxide acts as an oxygen-donating catalyst and provides oxygen for the oxidation of CO during combustion. The active energy of cerium oxide acts to burn off carbon deposits within the engine cylinder at the wall temperature and prevents the deposition of non-polar compounds on the cylinder wall which results in reduction in HC emission by 56.5%. Furthermore, a low-cost metal oxide coated SCR (selective catalyst reduction, using urea as a reducing agent, along with different types of CC (catalytic converter, has been implemented in the exhaust pipe to reduce NOx. It was observed that a reduction in NOx emission is 50–60%. The tests revealed that cerium oxide nanoparticles can be used as an additive in diesel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  5. Reaction pathway investigation on the selective catalytic reduction of NO with NH3 over Cu/SSZ-13 at low temperatures.

    Science.gov (United States)

    Su, Wenkang; Chang, Huazhen; Peng, Yue; Zhang, Chaozhi; Li, Junhua

    2015-01-01

    The mechanism of the selective catalytic reduction of NO with NH3 was studied using Cu/SSZ-13. The adspecies of NO and NH3 as well as the active intermediates were investigated using in situ diffuse reflectance infrared Fourier transform spectroscopy and temperature-programmed surface reaction. The results revealed that three reactions were possible between adsorbed NH3 and NOx. NO2(-) could be generated by direct formation or NO3(-) reduction via NO. In a standard selective catalytic reduction (SCR) reaction, NO3(-) was hard to form, because NO2(-) was consumed by ammonia before it could be further oxidized to nitrates. Additionally, adsorbed NH3 on the Lewis acid site was more active than NH4(+). Thus, SCR mainly followed the reaction between Lewis acid site-adsorbed NH3 and directly formed NO2(-). Higher Cu loading could favor the formation of active Cu-NH3, Cu-NO2(-), and Cu-NO3(-), improving the SCR activity at low temperature. PMID:25485842

  6. Bauxite-supported Transition Metal Oxides: Promising Low-temperature and SO2-tolerant Catalysts for Selective Catalytic Reduction of NOx

    OpenAIRE

    Xiuyun Wang; Wen Wu; Zhilin Chen; Ruihu Wang

    2015-01-01

    In order to develop low-temperature (below 200 °C) and SO2-tolerant catalysts for selective catalytic reduction (SCR) of NOx, a series of cheap M/bauxite (M = Mn, Ni and Cu) catalysts were prepared using bauxite as a support. Their SCR performances are much superior to typical V2O5/TiO2, the addition of M into bauxite results in significant promotion of NOx removal efficiency, especially at low temperature. Among the catalysts, Cu/bauxite exhibits wide temperature window over 50–400 °C, stron...

  7. Nitrated Confined Imidodiphosphates Enable a Catalytic Asymmetric Oxa-Pictet-Spengler Reaction.

    Science.gov (United States)

    Das, Sayantani; Liu, Luping; Zheng, Yiying; Alachraf, M Wasim; Thiel, Walter; De, Chandra Kanta; List, Benjamin

    2016-08-01

    The development of a highly enantioselective catalytic oxa-Pictet-Spengler reaction has proven a great challenge for chemical synthesis. We now report the first example of such a process, which was realized by utilizing a nitrated confined imidodiphosphoric acid catalyst. Our approach provides substituted isochroman derivatives from both aliphatic and aromatic aldehydes with high yields and excellent enantioselectivities. DFT calculations provide insight into the reaction mechanism. PMID:27457383

  8. Enantioselective catalytic syntheses of alpha-branched chiral amines

    DEFF Research Database (Denmark)

    Brase, S.; Baumann, T.; Dahmen, S.;

    2007-01-01

    Chiral amines play a pivotal role in fine chemical and natural product syntheses and the design of novel materials.......Chiral amines play a pivotal role in fine chemical and natural product syntheses and the design of novel materials....

  9. The Catalytic Enantioselective Total Synthesis of (+)‐Liphagal

    DEFF Research Database (Denmark)

    Day, Joshua J.; McFadden, Ryan M.; Virgil, Scott C.;

    2011-01-01

    catalysis, and an intramolecular aryne capture cyclization reaction. Pivotal to the successful completion of the synthesis was a sequence involving ring expansion from a [6-5-4] tricycle to a [6-7] bicyclic core followed by stereoselective hydrogenation of a sterically occluded tri-substituted olefin...

  10. WO3/CeO2/TiO2 Catalysts for Selective Catalytic Reduction of NO(x) by NH3: Effect of the Synthesis Method.

    Science.gov (United States)

    Michalow-Mauke, Katarzyna A; Lu, Ye; Ferri, Davide; Graule, Thomas; Kowalski, Kazimierz; Elsener, Martin; Kröcher, Oliver

    2015-01-01

    WO3/CeO2/TiO2, CeO2/TiO2 and WO3/TiO2 catalysts were prepared by wet impregnation. CeO2/TiO2 and WO3/TiO2 showed activity towards the selective catalytic reduction (SCR) of NO(x) by NH3, which was significantly improved by subsequent impregnation of CeO/TiO2 with WO3. Catalytic performance, NH3 oxidation and NH3 temperature programmed desorption of wet-impregnated WO3/CeO2/TiO2 were compared to those of a flame-made counterpart. The flame-made catalyst exhibits a peculiar arrangement of W-Ce-Ti-oxides that makes it very active for NH3-SCR. Catalysts prepared by wet impregnation with the aim to mimic the structure of the flame-made catalyst were not able to fully reproduce its activity. The differences in the catalytic performance between the investigated catalysts were related to their structural properties and the different interaction of the catalyst components.

  11. Fabrication of magnetically recyclable Fe3O4@Cu nanocomposites with high catalytic performance for the reduction of organic dyes and 4-nitrophenol

    International Nuclear Information System (INIS)

    A facile and efficient approach to synthesize Fe3O4@Cu nanocomposites using L-Lysine as a linker was developed. The morphology, composition and crystallinity of the Fe3O4@Cu nanocomposites were characterized by Fourier Transform infrared spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and powder X-ray diffraction. In addition, the magnetic properties were determined with vibrating sample magnetometer. The surface of the Fe3O4 contained many small Cu nanoparticles with sizes of about 3 nm. It was found that the Fe3O4@Cu nanocomposites could catalyze the degradation of organic dyes. The catalytic activities of the Fe3O4@Cu nanocomposites for the reduction of nitrophenol were also studied. The Fe3O4@Cu nanocomposites are more efficient catalysts compared with Cu nanoparticles and can easily be recovered from the reaction mixture with magnet. The cost effective and recyclable Fe3O4@Cu nanocomposites provide an exciting new material for environmental protection applications. - Highlights: • Cu nanoparticles as small as 3 nm are synthesized. • Low cost Fe3O4@Cu magnetical nanoparticles show catalytic activity for organic dyes and 4-nitrophenol. • The Fe3O4@Cu display high catalytic activity after 13 cycles

  12. The Poisoning Effect of Na Doping over Mn-Ce/TiO2 Catalyst for Low-Temperature Selective Catalytic Reduction of NO by NH3

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2014-01-01

    Full Text Available Sodium carbonate (Na2CO3, sodium nitrate (NaNO3, and sodium chloride (NaCl were chosen as the precursors to prepare the Na salts deposited Mn-Ce/TiO2 catalysts through an impregnation method. The influence of Na on the performance of the Mn-Ce/TiO2 catalyst for low-temperature selective catalytic reduction of NOx by NH3 was investigated. Experimental results showed that Na salts had negative effects on the activity of Mn-Ce/TiO2 and the precursors of Na salts also affected the catalytic activity. The precursor Na2CO3 had a greater impact on the catalytic activity, while NaNO3 had minimal effect. The characterization results indicated that the significant changes in physical and chemical properties of Mn-Ce/TiO2 were observed after Na was doped on the catalysts. The significant decreases in surface areas and NH3 adsorption amounts were observed after Na was doped on the catalysts, which could be considered as the main reasons for the deactivation of Na deposited Mn-Ce/TiO2.

  13. Influence of calcination temperature on selective catalytic reduction of NOx with NH3 over CeO2-ZrO2-WO3 catalyst

    Institute of Scientific and Technical Information of China (English)

    李军燕; 宋忠贤; 宁平; 张秋林; 刘昕; 李昊; 黄真真

    2015-01-01

    A series of CeO2-ZrO2-WO3 catalysts for the selective catalytic reduction (SCR) of NO with NH3 were prepared by hydro-thermal method. The influence of calcination temperature on the catalytic activity, microstructure, surface acidity and redox behavior of CeO2-ZrO2-WO3 catalyst was investigated using various characterization methods. It was found that the CeO2-ZrO2-WO3 catalyst calcined at 600 ºC showed the best catalytic performance and excellent N2 selectivity, and yielded more than 90% NO conversion in a wide temperature range of 250–500 ºC with a space velocity (GHSV) of 60000 h–1. As the calcination temperature was increased from 400 to 600 ºC, the NO conversion obviously increased, but decreased at higher calcination temperature. The results implied that the higher surface area, the strongest synergistic interaction, the superior redox property and the highly dispersed or amorphous WO3 species contributed to the excellent SCR activity of the CeO2-ZrO2-WO3 catalyst calcined at 600 ºC.

  14. Enantioselective Intramolecular Hydroarylation of Alkenes via Directed C-H Bond Activation

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Hitoshi; Thalji, Reema; Bergman, Robert; Ellman, Jonathan

    2008-05-22

    Highly enantioselective catalytic intramolecular ortho-alkylation of aromatic imines containing alkenyl groups tethered at the meta position relative to the imine directing group has been achieved using [RhCl(coe){sub 2}]{sub 2} and chiral phosphoramidite ligands. Cyclization of substrates containing 1,1- and 1,2-disubstituted as well as trisubstituted alkenes were achieved with enantioselectivities >90% ee for each substrate class. Cyclization of substrates with Z-alkene isomers proceeded much more efficiently than substrates with E-alkene isomers. This further enabled the highly stereoselective intramolecular alkylation of certain substrates containing Z/E-alkene mixtures via a Rh-catalyzed alkene isomerization with preferential cyclization of the Z-isomer.

  15. Highly diastereoselective and enantioselective olefin cyclopropanation using engineered myoglobin-based catalysts.

    Science.gov (United States)

    Bordeaux, Melanie; Tyagi, Vikas; Fasan, Rudi

    2015-02-01

    Using rational design, an engineered myoglobin-based catalyst capable of catalyzing the cyclopropanation of aryl-substituted olefins with catalytic proficiency (up to 46,800 turnovers) and excellent diastereo- and enantioselectivity (98-99.9%) was developed. This transformation could be carried out in the presence of up to 20 g L(-1) olefin substrate with no loss in diastereo- and/or enantioselectivity. Mutagenesis and mechanistic studies support a cyclopropanation mechanism mediated by an electrophilic, heme-bound carbene species and a model is provided to rationalize the stereopreference of the protein catalyst. This work shows that myoglobin constitutes a promising and robust scaffold for the development of biocatalysts with carbene-transfer reactivity.

  16. Enantioselective desymmetrization of prochiral cyclohexanones by organocatalytic intramolecular Michael additions to α,β-unsaturated esters.

    Science.gov (United States)

    Gammack Yamagata, Adam D; Datta, Swarup; Jackson, Kelvin E; Stegbauer, Linus; Paton, Robert S; Dixon, Darren J

    2015-04-13

    A new catalytic asymmetric desymmetrization reaction for the synthesis of enantioenriched derivatives of 2-azabicyclo[3.3.1]nonane, a key motif common to many alkaloids, has been developed. Employing a cyclohexanediamine-derived primary amine organocatalyst, a range of prochiral cyclohexanone derivatives possessing an α,β-unsaturated ester moiety linked to the 4-position afforded the bicyclic products, which possess three stereogenic centers, as single diastereoisomers in high enantioselectivity (83-99% ee) and in good yields (60-90%). Calculations revealed that stepwise C-C bond formation and proton transfer via a chair-shaped transition state dictate the exclusive endo selectivity and enabled the development of a highly enantioselective primary amine catalyst. PMID:25727215

  17. Continuous-flow enantioselective α-aminoxylation of aldehydes catalyzed by a polystyrene-immobilized hydroxyproline

    Directory of Open Access Journals (Sweden)

    Xacobe C. Cambeiro

    2011-10-01

    Full Text Available The application of polystyrene-immobilized proline-based catalysts in packed-bed reactors for the continuous-flow, direct, enantioselective α-aminoxylation of aldehydes is described. The system allows the easy preparation of a series of β-aminoxy alcohols (after a reductive workup with excellent optical purity and with an effective catalyst loading of ca. 2.5% (four-fold reduction compared to the batch process working at residence times of ca. 5 min.

  18. Catalytic Asymmetric Reduction of a 3,4-Dihydroisoquinoline for the Large-Scale Production of Almorexant : Hydrogenation or Transfer Hydrogenation?

    NARCIS (Netherlands)

    Verzijl, Gerard K.M.; Vries, André H.M. de; Vries, Johannes G. de; Kapitan, Peter; Dax, Thomas; Helms, Matthias; Nazir, Zarghun; Skranc, Wolfgang; Imboden, Christoph; Stichler, Juergen; Ward, Richard A.; Abele, Stefan; Lefort, Laurent

    2013-01-01

    Several methods are presented for the enantioselective synthesis of the tetrahydroisoquinoline core of almorexant (ACT-078573A), a dual orexin receptor antagonist. Initial clinical supplies were secured by the Noyori Ru-catalyzed asymmetric transfer hydrogenation (Ru-Noyori ATH) of the dihydroisoqui

  19. Influence of Sulfation on the Catalytic Activity of Ni-ZrO2 for NO Reduction with Propane in Excess Oxygen

    Institute of Scientific and Technical Information of China (English)

    Shujuan Zhang; Landong Li; Fuxiang Zhang; Naijia Guan

    2005-01-01

    Selective catalytic reduction (SCR) of nitric oxide with propane in excess oxygen was investigated on Ni-ZrO2 (NZ) and sulfated Ni-ZrO2 (SNZ), prepared by coprecipitation from a mixture of nickel nitrate-zirconium oxychloride followed by modifying with (NH4)2SO4. It was found that sulfated Ni-ZrO2catalyst showed higher activity for the SCR of NO with propane than that of Ni-ZrO2. The structural and surface properties of catalysts were studied by XRD, BET, SEM and FT-IR of pyridine adsorption. The experimental results indicated that the modification of (NH4)2SO4 resulted in the generation of strong Bronsted and Lewis acid sites and promoted the dispersion of the Ni species, which could lead to higher NO conversion and propane efficiency in NO reduction.

  20. New phosphine-diamine and phosphine-amino-alcohol tridentate ligands for ruthenium catalysed enantioselective hydrogenation of ketones and a concise lactone synthesis enabled by asymmetric reduction of cyano-ketones

    Directory of Open Access Journals (Sweden)

    Fuentes José A

    2012-12-01

    Full Text Available Abstract Enantioselective hydrogenation of ketones is a key reaction in organic chemistry. In the past, we have attempted to deal with some unsolved challenges in this arena by introducing chiral tridentate phosphine-diamine/Ru catalysts. New catalysts and new applications are presented here, including the synthesis of phosphine-amino-alcohol P,N,OH ligands derived from (R,S-1-amino-2-indanol, (S,S-1-amino-2-indanol and a new chiral P,N,N ligand derived from (R,R-1,2-diphenylethylenediamine. Ruthenium pre-catalysts of type [RuCl2(L(DMSO] were isolated and then examined in the hydrogenation of ketones. While the new P,N,OH ligand based catalysts are poor, the new P,N,N system gives up to 98% e.e. on substrates that do not react at all with most catalysts. A preliminary attempt at realising a new delta lactone synthesis by organocatalytic Michael addition between acetophenone and acrylonitrile, followed by asymmetric hydrogenation of the nitrile functionalised ketone is challenging in part due to the Michael addition chemistry, but also since Noyori pressure hydrogenation catalysts gave massively reduced reactivity relative to their performance for other acetophenone derivatives. The Ru phosphine-diamine system allowed quantitative conversion and around 50% e.e. The product can be converted into a delta lactone by treatment with KOH with complete retention of enantiomeric excess. This approach potentially offers access to this class of chiral molecules in three steps from the extremely cheap building blocks acrylonitrile and methyl-ketones; we encourage researchers to improve on our efforts in this potentially useful but currently flawed process.

  1. Study on methane selective catalytic reduction of NO on Pt/Ce0.67Zr0.33O2 and its application

    Institute of Scientific and Technical Information of China (English)

    Zhimin Liu; Kangcai Wang; Xiaoyu Zhang; Jianli Wang; Hongyan Cao; Maochu Gong; Yaoqiang Chen

    2009-01-01

    Monolithic catalysts of Pt/La-Al2O3 and Pt/Ce0.67Zr0.33O2 were prepared to investigate methane selective catalytic reduction (SCR) of NO.The results indicate that Pt/Ce0.67Zr0.33O2 shows high activity and both NO and CH4 can be converted completely at 450 ℃.Meanwhile,NO and CH4 can be converted completely when there exists excess oxygen.The Pt/Ce0.67Zr0.33O2 catalyst were further investigated by using methane as reducing agent to SCR NO in a novel equipment which combined the CH4 selective catalytic reduction of NO with methane combustion.The result shows that the catalyst is high active and the novel equipment is very effective.The conversion of NO is above 92% under the conditions used in this work.The prepared burner and catalysts have great potential for application.

  2. Preparation of FeO(OH Modified with Polyethylene Glycol and Its Catalytic Activity on the Reduction of Nitrobenzene with Hydrazine Hydrate

    Directory of Open Access Journals (Sweden)

    Ke Ying Cai

    2016-10-01

    Full Text Available Iron oxyhydroxide was prepared by dropping ammonia water to Fe(NO33.9H2O dispersed in polyethylene glycol (PEG 1000. The catalyst was characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy and laser particle size analyzer. The results showed the catalyst modified with polyethylene glycol was amorphous. The addition of PEG during the preparation make the particle size of the catalyst was smaller and more uniform. The catalytic performance was tested in the reduction of nitroarenes to corresponding amines with hydrazine hydrate, and the catalyst showed excellent activity and stability. Copyright © 2016 BCREC GROUP. All rights reserved Received: 2nd February 2016; Revised: 26th April 2016; Accepted: 7th June 2016 How to Cite: Cai, K.Y., Liu, Y.S., Song, M., Zhou, Y.M., Liu, Q., Wang, X.H. (2016. Preparation of FeO(OH Modified with Polyethylene Glycol and Its Catalytic Activity on the Reduction of Nitrobenzene with Hydrazine Hydrate. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (3: 363-368 (doi:10.9767/bcrec.11.3.576.363-368 Permalink/DOI: http://doi.org/10.9767/bcrec.11.3.576.363-368

  3. Introduction manner of sulfate acid for improving the performance of SO42-/CeO2 on selective catalytic reduction of NO by NH3

    Institute of Scientific and Technical Information of China (English)

    宋忠贤; 张秋林; 宁平; 刘昕; 樊洁; 黄真真

    2016-01-01

    A series of sulfated CeO2 catalysts were synthesized by impregnation and sol-gel methods and used for selective catalytic reduction (SCR) of NOx by NH3. The results showed that the sulfated CeO2 catalysts prepared by sol-gel method showed excellent catalytic activity at 150–450 °C, and more than 90% NOx conversion was obtained at 232–450 °C with a gas hourly space velocity of 60000 h–1. The catalysts were characterized by X-ray diffraction (XRD), N2 adsorption, Raman, thermogravimetry (TG), H2-tem-perature-programmed reduction (H2-TPR) and Py-infrared spectroscopy (Py-IR). The excellent SCR performance was associated with the surface acidity and the micro-structure. The introduction of sulfate acid into CeO2 could increase the amount of Brönsted and Lewis acid sites over the catalysts, resulting in the improvement of the low temperature activity. The sulfated CeO2 catalysts prepared by sol-gel method possessed lower crystallization degree, excellent redox property and larger specific surface areas, which were re-sponsible for the superior SCR performance.

  4. Advanced byproduct recovery: Direct catalytic reduction of sulfur dioxide to elemental sulfur. Quarterly report, April 1--June 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The team of Arthur D. Little, Tufts University and Engelhard Corporation are conducting Phase 1 of a four and a half year, two-phase effort to develop and scale-up an advanced byproduct recovery technology that is a direct, single-stage, catalytic process for converting sulfur dioxide to elemental sulfur. This catalytic process reduces SO{sub 2} over a fluorite-type oxide (such as ceria and zirconia). The catalytic activity can be significantly promoted by active transition metals, such as copper. More than 95% elemental sulfur yield, corresponding to almost complete sulfur dioxide conversion, was obtained over a Cu-Ce-O oxide catalyst as part of an on-going DOE-sponsored, University Coal Research Program. This type of mixed metal oxide catalyst has stable activity, high selectivity for sulfur production, and is resistant to water and carbon dioxide poisoning. Tests with CO and CH{sub 4} reducing gases indicate that the catalyst has the potential for flexibility with regard to the composition of the reducing gas, making it attractive for utility use. The performance of the catalyst is consistently good over a range of SO{sub 2} inlet concentration (0.1 to 10%) indicating its flexibility in treating SO{sub 2} tail gases as well as high concentration streams. The principal objective of the Phase 1 program is to identify and evaluate the performance of a catalyst which is robust and flexible with regard to choice of reducing gas. In order to achieve this goal, the authors have planned a structured program including: Market/process/cost/evaluation; Lab-scale catalyst preparation/optimization studies; Lab-scale, bulk/supported catalyst kinetic studies; Bench-scale catalyst/process studies; and Utility review. Progress is reported from all three organizations.

  5. Catalytic reduction of NO{sub x}. Final report; Katalytisk Reduktion av NO{sub x}. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Khodayari, Raziyeh; Odenbrand, Ingemar [Lund Univ. (Sweden). Chemical Engineering II

    2002-02-01

    This report is intended to show the work regarding the SCR technique performed at Chemical Engineering II, Lund Inst. of Tech. since the start in 1982. The emphasis is on work performed the last 7 years which deals with deactivation and regeneration of SCR catalysts. In chapter 1 a short general introduction to the SCR technique is given. Chapter 2 describes the work performed up to 1995. It shows the kinetics for the reaction between NO and NH{sub 3}, reactions between NO{sub 2} and NH{sub 3} as well as patents for a new process for cleaning flue gases based on our research results. Later work on using zeolites as catalysts for the reduction and for the oxidation of NO was presented. Then a series of characterisations were performed on model catalysts consisting of 2-30 wt.% V{sub 2}O{sub 5} on a coprecipitated silica-titania support. The formation of nitrous oxide was studied and found to be noticeable when water is not present in the gas and on a catalyst which contains large amounts of crystallites of V{sub 2}O{sub 5}. Chapter 3 deals with international research in the area of deactivation of SCR catalysts in i.e. biofuelled applications. Material from a literature search from December 2001 is presented. It contains general material on the deactivation with alkali metals and SO{sub 2}. Chapter 4 deals with our studies of deactivated SCR catalysts. During 1995-2001 we have studied the deactivation of catalysts in a number of Swedish plants. The sensitivity of zeolites to poisoning in waste combustion (GRAAB) was tested by artificial poisoning with 2 wt.% metal of the elements; Na, K, Mg, Fe, Zn, Cu, Al, Ni and Cr. The combustion of waste at SYSAV gave high contents of Na, Y, Ca, Pb and Zn on the catalyst after 2000 hours on stream. Activity measurements showed that low concentrations of ammonium sulphate, 1-5 vol.%, promotes the SCR reaction. A maximal activity is obtained at around 5 vol.%. There exists an optimal content of ammonium sulphate on the catalyst

  6. Enantioselective Cu-Catalyzed Arylation of Secondary Phosphine Oxides with Diaryliodonium Salts toward the Synthesis of P-Chiral Phosphines

    Science.gov (United States)

    2016-01-01

    Catalytic synthesis of nonracemic P-chiral phosphine derivatives remains a significant challenge. Here we report Cu-catalyzed enantioselective arylation of secondary phosphine oxides with diaryliodonium salts for the synthesis of tertiary phosphine oxides with high enantiomeric excess. The new process is demonstrated on a wide range of substrates and leads to products that are well-established P-chiral catalysts and ligands. PMID:27689432

  7. Catalytic role of Cu(II) in the reduction of Cr(VI) by citric acid under an irradiation of simulated solar light.

    Science.gov (United States)

    Li, Ying; Chen, Cheng; Zhang, Jing; Lan, Yeqing

    2015-05-01

    The catalytic role of Cu(II) in the reduction of Cr(VI) by citric acid with simulated solar light was investigated. The results demonstrated that Cu(II) could significantly accelerate Cr(VI) reduction and the reaction obeyed to pseudo zero-order kinetics with respect to Cr(VI). The removal of Cr(VI) was related to the initial concentrations of Cu(II), citric acid, and the types of organic acids. The optimal removal of Cr(VI) was achieved at pH 4, and the rates of Cu(II) photocatalytic reduction of Cr(VI) by organic acids were in the order: tartaric acid (two α-OH groups, two -COOH groups)>citric acid (one α-OH group, three -COOH groups)>malic acid (one α-OH group, two -COOH groups)>lactic acid (one α-OH group, one -COOH group)≫succinic acid (two -COOH groups), suggesting that the number of α-OH was the key factor for the reaction, followed by the number of -COOH. The formation of Cu(II)-citric acid complex could generate Cu(I) and radicals through a pathway of metal-ligand-electron transfer, promoting the reduction of Cr(VI). This study is helpful to fully understanding the conversion of Cr(VI) in the existence of both organic acids and Cu(II) with solar light in aquatic environments.

  8. Developing a Practical Chiral Toolbox for Asymmetric Catalytic Reactions

    Institute of Scientific and Technical Information of China (English)

    ZHANG; XuMu

    2001-01-01

    Chiral Quest's Toolbox Approach: During the last several decades, chemists have made major progress in discovering man-made catalysts to perform challenging asymmetric transformations. However, there is no universal chiral ligand or catalyst for solving problems in enantioselective transformations. The focus of Chiral Quest's research is to develop a useful chiral toolbox for strategically important asymmetric catalytic reactions by inventing a diverse set of novel chiral ligands and combining them with transition metals as effective enantioselective catalysts. The toolbox approach addresses significant problems in organic stereochemistry and has resulted in practical methods for the synthesis of chiral pharmaceuticals and agrochemicals  ……

  9. Developing a Practical Chiral Toolbox for Asymmetric Catalytic Reactions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Chiral Quest's Toolbox Approach: During the last several decades, chemists have made major progress in discovering man-made catalysts to perform challenging asymmetric transformations. However, there is no universal chiral ligand or catalyst for solving problems in enantioselective transformations. The focus of Chiral Quest's research is to develop a useful chiral toolbox for strategically important asymmetric catalytic reactions by inventing a diverse set of novel chiral ligands and combining them with transition metals as effective enantioselective catalysts. The toolbox approach addresses significant problems in organic stereochemistry and has resulted in practical methods for the synthesis of chiral pharmaceuticals and agrochemicals

  10. TiO2-Supported Binary Metal Oxide Catalysts for Low-temperature Selective Catalytic Reduction of NOx with NH3

    Institute of Scientific and Technical Information of China (English)

    WU Bi-jun; LIU Xiao-qin; XIAO Ping; WANG Shu-gang

    2008-01-01

    Binary metal oxide(MnOx-A/TiO2) catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 selectivity,and SO2 poisonous tolerance were investigated.The catalytic performance at low temperatures decreased in the following order:Mn-W/TiO2>Mn-Fe/TiO2>Mn-Cr/TiO2>Mn-Mo/TiO2,whereas the N2 selectivity decreased in the order:Mn-Fe/TiO2>Mn-W/TiO2>Mn-Mo/TiO2>Mn-Cr/TiO2.In the presence of 0.01% SO2 and 6% H2O,the NOx conversions in the presence of Mn-W/TiO2,Mn-Fe/TiO2,or Mn-Mo/TiO2 maintain 98.5%,95.8% and 94.2%,respectively,after 8 h at 120 ℃ at GHSV 12600 h-1.As effective promoters,WO3 and Fe2O3 can increase N2 selectivity and the resistance to SO2 of MnOx/TiO2 significantly.The Fourier transform infrared(FTIR) spectra of NH3 over WO3 show the presence of Lewis acid sites.The results suggest that WO3 is the best promoter of MnOx/TiO2,and Mn-W/TiO2 is one of the most active catalysts for the low temperature selective catalytic reduction of NO with NH3.

  11. Low temperature selective catalytic reduction of NO by C3H6 over CeOx loaded on AC treated by HNO3

    Institute of Scientific and Technical Information of China (English)

    楚英豪; 尹华强; 张腾腾; 朱晓帆; 郭家秀; 刘勇军; 刘超

    2015-01-01

    The activated carbons from coal were treated by HNO3 (named as NAC) and used as carriers to load 7% Ce (named as Ce(0.07)/NAC) by impregnation method. The physical and chemical properties were investigated by thermogravimetric-differential thermal analysis (TG-DTA), Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscopy (SEM) and NH3-temperature programmed desorption (NH3-TPD) and NO-temperature programmed desorption techniques. The catalytic activities of Ce(0.07)/NAC were evaluated for the low temperature selective catalytic reduction (SCR) of NO with C3H6 using temperature-programmed reaction (TP-reaction) in NO, C3H6, O2 and N2 as a balance. The results showed that the specific surface area of Ce(0.07)/NAC was 850.8 m2/g and less than NAC, but Ce oxides could be dispersed highly on the acti-vated carbons. Ce oxides could change acid sites and NO adsorption as well as oxygen-containing functional groups of activated car-bons, and Ce4+ and Ce3+ coexisted in catalysts. The conversion of NO with C3H6 achieved 70% at 280 °C over Ce(0.07)/NAC, but with the increase of O2 concentration, heat accumulation and nonselective combustion were exacerbated, which could cause surface ashing and roughness, resulting in a sharp decrease of catalytic activities. The optimum O2 concentration used in the reaction system was 3% and achieved the high conversion of NO and the widest temperature window. The conversion of NO was closely related to the NO concentrations and [NO]/[C3H6] ratios, and the stoichiometric number was just close to 2:1, but the presence of H2O could af-fect the denitration efficiency of catalyst.

  12. Comparison study of Cu-Fe-Ti and Co-Fe-Ti oxide catalysts for selective catalytic reduction of NO with NH3 at low temperature.

    Science.gov (United States)

    Zhu, Lin; Zhong, Zhaoping; Yang, Han; Wang, Chunhua

    2016-09-15

    In this paper, a series of Cu-Fe-Ti and Co-Fe-Ti oxide catalysts were prepared by sol gel method. Cu-Fe-Ti and Co-Fe-Ti oxide catalysts showed the moderate catalytic activity for selective catalytic reduction (SCR) of NO with NH3 at low temperature. The catalysts with the molar ratio as 4:1:10 (M:Fe:Ti) were selected as the representatives for comparison of reaction properties and H2O resistance, which were denoted as Cu-Fe/TiO2 and Co-Fe/TiO2 respectively. The characterization results manifested Co-Fe/TiO2 owned more adsorption capacity of the reactants and Cu-Fe/TiO2 had better redox ability. The in situ DRIFTS experiments indicated that adsorbed NH3 species and nitrate species both exhibited reaction activity for Co-Fe/TiO2, while nitric oxide was only be reduced by adsorbed NH3 species through Eley-Rideal mechanism for Cu-Fe/TiO2 at 150°C. Co-Fe/TiO2 exhibited the better resistance to H2O and its temperature window shifted towards the higher temperature in presence of 10vol% H2O, while the SCR activity of Cu-Fe/TiO2 was inhibited significantly in the whole temperature range investigated. The suppression of adsorption and activation for NH3 and NOx might be the reasons for the reversible inactivation, which was confirmed by the inhibitation of catalytic activities for separation NH3 and NO oxidation under the wet condition. We speculated that different thermal stability of adsorbed species and redox capacity of catalysts leaded to the different SCR behavior in absence and presence of H2O. PMID:27280535

  13. The selective catalytic reduction of NO with NH3 over a novel Ce-Sn-Ti mixed oxides catalyst: Promotional effect of SnO2

    Science.gov (United States)

    Yu, Ming'e.; Li, Caiting; Zeng, Guangming; Zhou, Yang; Zhang, Xunan; Xie, Yin'e.

    2015-07-01

    A series of novel catalysts (CexSny) for the selective catalytic reduction of NO by NH3 were prepared by the inverse co-precipitation method. The aim of this novel design was to improve the NO removal efficiency of CeTi by the introduction of SnO2. It was found that the Ce-Sn-Ti catalyst was much more active than Ce-Ti and the best Ce:Sn molar ratio was 2:1. Ce2Sn1 possessed a satisfied NO removal efficiency at low temperature (160-280 °C), while over 90% NO removal efficiency maintained in the temperature range of 280-400 °C at the gas hourly space velocity (GHSV) of 50,000 h-1. Besides, Ce2Sn1 kept a stable NO removal efficiency within a wide range of GHSV and a long period of reacting time. Meanwhile, Ce2Sn1 exhibited remarkable resistance to both respectively and simultaneously H2O and SO2 poisoning due to the introduction of SnO2. The promotional effect of SnO2 was studied by N2 adsorption-desorption, X-ray diffraction (XRD), Raman spectra, X-ray photoelectron spectroscopy (XPS) and H2 temperature programmed reduction (H2-TPR) for detail information. The characterization results revealed that the excellent catalytic performance of Ce2Sn1 was associated with the higher specific surface area, larger pore volume and poorer crystallization. Besides, the introduction of SnO2 could result in not only greater conversion of Ce4+ to Ce3+ but also the increase amount of chemisorbed oxygen, which are beneficial to improve the SCR activity. More importantly, a novel peak appearing at lower temperatures through the new redox equilibrium of 2Ce4+ + Sn2+ ↔ 2Ce3+ + Sn4+ and higher total H2 consumption can be obtained by the addition of SnO2. Finally, the possible reaction mechanism of the selective catalytic reduction over Ce2Sn1 was also proposed.

  14. Effect of metal ions doping (M = Ti4+, Sn4+) on the catalytic performance of MnOx/CeO2 catalyst for low temperature selective catalytic reduction of NO with NH3

    Science.gov (United States)

    Xiong, Yan; Tang, Changjin; Dong, Lin

    2015-04-01

    Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China The abatement of nitrogen oxides (NOx) emission from exhaust gases of diesel and stationary sources is a significant challenge for economic and social development. Ceria-based solid solutions were synthesized and used as supports to prepare MnOx/Ce0.8Ti0.2O2 and MnOx/Ce0.8Sn0.2O2 catalysts (Mn/CeTi and Mn/CeSn) for low temperature selective catalytic reduction of NO by NH3 (NH3-SCR). The effects of Ti or Sn doping on the catalytic performance of MnOx/CeO2 catalyst were investigated. Experimental results show that doping of Ti or Sn increases the NO removal efficiency of MnOx/CeO2. The NO conversion of Mn/CeTi catalyst is more than 90 % at temperature window of 175 ~ 300 °C under a gas hour space velocity of 60,000 mL.g-1.h-1. Modified catalysts are also found to exhibit greatly improved resistance to sulfur-poisoning. NH3-TPD results suggest that NH3 desorption on the catalysts is observed over a wide temperature range, due to the variability of adsorbed NH3 species with different thermal stabilities. Doping of Ti and Sn into Mn/CeO2 greatly increased the NH3 adsorption ability of the composites which could promote the SCR reaction. Characterization results also indicate that doping of Ti or Sn brings about catalysts with higher BET surface area, enhanced oxygen storage capacity and increased surface acidity.

  15. Catalytic, Conjugate Reduction-Aldol Addition Reaction of β'Oxoal kyl α, β-Unsatu rated Carboxylates%Catalytic, Conjugate Reduction-Aldol Addition Reaction of β'Oxoal kyl α, β-Unsatu rated Carboxylates

    Institute of Scientific and Technical Information of China (English)

    郑爱军; 姜岚; 李争宁

    2012-01-01

    Intramolecular conjugate reduction-aldol addition reactions of β'-oxoalkyl a,fl-unsaturated carboxylates were performed in the presence of copper catalysts generated in situ from copper salts, phosphine ligands and silanes. Moderate to good yields and high diastereoselectivities were obtained in 15 min to 3 h using bis[(2-diphenyl- phosphino)phenyl] ether as the ligand.

  16. Branch number matters: Promoting catalytic reduction of 4-nitrophenol over gold nanostars by raising the number of branches and coating with mesoporous SiO2.

    Science.gov (United States)

    Ndokoye, Pancras; Zhao, Qidong; Li, Xinyong; Li, Tingting; Tade, Moses O; Wang, Shaobin

    2016-09-01

    In this study, we demonstrate for the first time that highly branched gold nanostars (AuNSs) and silica-coated AuNSs (AuNSs@mSiO2) could potentially serve as efficient hydrogenation catalysts. The catalytic activity could be promoted by raising the number of tipped-branches of AuNSs, which reveals that the tips play an important role as active sites. The fabricated sharply-pointed AuNSs benefit the electron transfer from BH4 anions to 4-nitrophenol. Coating AuNSs with mesoporous silica (AuNSs@mSiO2) further enhanced the reduction rate and recyclability, and also contributed to reducing the induction period. The AuNSs@mSiO2 (50-100nm in diameter) are large enough to be catalytically inactive, but they consist of sharply-pointed tips with the radius of 2.6-3.6nm, which are rich in coordinately unsaturated sites similar to those of nanoparticles and clusters. Such features in structure and activity would also extend their application range in heterogeneous catalysis. PMID:27235790

  17. The Cu-CHA deNOx Catalyst in Action: Temperature-Dependent NH3-Assisted Selective Catalytic Reduction Monitored by Operando XAS and XES.

    Science.gov (United States)

    Lomachenko, Kirill A; Borfecchia, Elisa; Negri, Chiara; Berlier, Gloria; Lamberti, Carlo; Beato, Pablo; Falsig, Hanne; Bordiga, Silvia

    2016-09-21

    The small-pore Cu-CHA zeolite is today the object of intensive research efforts to rationalize its outstanding performance in the NH3-assisted selective catalytic reduction (SCR) of harmful nitrogen oxides and to unveil the SCR mechanism. Herein we exploit operando X-ray spectroscopies to monitor the Cu-CHA catalyst in action during NH3-SCR in the 150-400 °C range, targeting Cu oxidation state, mobility, and preferential N or O ligation as a function of reaction temperature. By combining operando XANES, EXAFS, and vtc-XES, we unambiguously identify two distinct regimes for the atomic-scale behavior of Cu active-sites. Low-temperature SCR, up to ∼200 °C, is characterized by balanced populations of Cu(I)/Cu(II) sites and dominated by mobile NH3-solvated Cu-species. From 250 °C upward, in correspondence to the steep increase in catalytic activity, the largely dominant Cu-species are framework-coordinated Cu(II) sites, likely representing the active sites for high-temperature SCR. PMID:27532483

  18. Engineered materials as potential geocatalysts in deep geological nuclear waste repositories: A case study of the stainless steel catalytic effect on nitrate reduction by hydrogen

    International Nuclear Information System (INIS)

    Highlights: • We demonstrate that stainless steels (316L and Hastelloy) can catalyse nitrate reduction in the presence of hydrogen. • Hydrogen is the sole electron donor. • The reaction proceeds via nitrate sorption at the steel surface up to pH = 9 following Langmuir–Hinshelwood mechanism. • The reaction is inhibited by the presence of phosphate anions which compete with nitrate for the steel sorption sites. - Abstract: The reduction of NO3- in natural waters is commonly promoted by biological activity. In the context of deep geological nuclear waste repositories with potentially high H2 pressure, abiotic redox reactions may be envisaged. Here, the catalytic effect of “inert” metallic surfaces, in part used for nuclear waste canisters, on NO3- reduction under H2 pressure is evaluated. The study is focused on stainless steels by testing the 316L and Hastelloy C276 steels. A parametric kinetic study (0 < P(H2) < 10 bar, 0.1 < [NO3-] < 10 mM, 90 < T° < 150 °C, 4 < pHin situ < 9) reveals that NO3- reduction, in the presence of stainless steel 316L and Hastelloy C276, proceeds via a pH-independent reaction requiring H2 as an electron donor. No corrosion of these steels is observed indicating a true catalytic process. The reaction is inhibited in the presence of PO43-. Activation energies assuming a first-order reaction in the 90–150 °C temperature range are found to be 46 kJ/mol for stainless steel 316L and 186 kJ/mol for Hastelloy C276, making the reaction efficient at lower temperature and on a human time scale. Nitrate sorption at the metallic surface being thought to be the limiting step, sorption and competitive sorption isotherms of several oxyanions were performed at 90 °C on 316L. Nitrate and PO43- are more strongly sorbed than SO42-, likely as inner sphere complexes, and in a large pH range, from acidic to pH 9. The Langmuir–Hinshelwood formalism best fits the kinetic data. The nature of the surface complex, and the competition for

  19. Modelling substrate specificity and enantioselectivity for lipases and esterases by substrate-imprinted docking

    Directory of Open Access Journals (Sweden)

    Tyagi Sadhna

    2009-06-01

    Full Text Available Abstract Background Previously, ways to adapt docking programs that were developed for modelling inhibitor-receptor interaction have been explored. Two main issues were discussed. First, when trying to model catalysis a reaction intermediate of the substrate is expected to provide more valid information than the ground state of the substrate. Second, the incorporation of protein flexibility is essential for reliable predictions. Results Here we present a predictive and robust method to model substrate specificity and enantioselectivity of lipases and esterases that uses reaction intermediates and incorporates protein flexibility. Substrate-imprinted docking starts with covalent docking of reaction intermediates, followed by geometry optimisation of the resulting enzyme-substrate complex. After a second round of docking the same substrate into the geometry-optimised structures, productive poses are identified by geometric filter criteria and ranked by their docking scores. Substrate-imprinted docking was applied in order to model (i enantioselectivity of Candida antarctica lipase B and a W104A mutant, (ii enantioselectivity and substrate specificity of Candida rugosa lipase and Burkholderia cepacia lipase, and (iii substrate specificity of an acetyl- and a butyrylcholine esterase toward the substrates acetyl- and butyrylcholine. Conclusion The experimentally observed differences in selectivity and specificity of the enzymes were reproduced with an accuracy of 81%. The method was robust toward small differences in initial structures (different crystallisation conditions or a co-crystallised ligand, although large displacements of catalytic residues often resulted in substrate poses that did not pass the geometric filter criteria.

  20. Synthesis of novel chiral tetraaza ligands and their application in enantioselective transfer hydrogenation of ketones

    Institute of Scientific and Technical Information of China (English)

    Shen Luan Yu; Yan Yun Li; Zhen Rong Dong; Jing Xing Gao

    2012-01-01

    Novel chiral tetraaza ligands (R)-N,N'-bis[2-(piperidin-l-yl)benzylidene]propane-1,2-diamine 6 and (S)-N-[2-(piperidin-1-yl)benzylidene]-3-{ [2-(piperidin-1-yl)benzylidene]amino}-alanine sodium salt 7 have been synthesized and fully characterized by NMR,IR,MS and CD spectra.The catalytic property of the ligands was investigated in Ir-catalyzed enantioselective transfer hydrogenation of ketones.The corresponding optical active alcohols were obtained with high yields and moderate ees under mild reaction conditions.

  1. The poisoning effect of Na and K on Mn/TiO2 catalyst for selective catalytic reduction of NO with NH3: A comparative study

    Science.gov (United States)

    Guo, Rui-tang; Wang, Qing-shan; Pan, Wei-guo; Zhen, Wen-long; Chen, Qi-lin; Ding, Hong-lei; Yang, Ning-zhi; Lu, Chen-zi

    2014-10-01

    Mn/TiO2 catalyst is of high activity for low temperature selective catalytic reduction (SCR) of NO with NH3. And the deposition of alkali metal would lead to the deactivation of Mn/TiO2 catalyst. In this paper, the poisoning effect of Na and K on Mn/TiO2 was investigated based on experimental and theoretical study. It was found that K had a stronger poisoning effect than that of Na. The bad performance of K-Mn/TiO2 may be due to its small surface area, high crystallinity, weak surface acidity, low content of Mn4+ and chemisorbed oxygen, and bad redox ability. The interpretation of the experimental results is supported by DFT calculations.

  2. The homogeneous reduction of CO₂ by [Ni(cyclam)]⁺: increased catalytic rates with the addition of a CO scavenger.

    Science.gov (United States)

    Froehlich, Jesse D; Kubiak, Clifford P

    2015-03-18

    The homogeneous electrochemical reduction of CO2 by the molecular catalyst [Ni(cyclam)](2+) is studied by electrochemistry and infrared spectroelectrochemistry. The electrochemical kinetics are probed by varying CO2 substrate and proton concentrations. Products of CO2 reduction are observed in infrared spectra obtained from spectroelectrochemical experiments. The two major species observed are a Ni(I) carbonyl, [Ni(cyclam)(CO)](+), and a Ni(II) coordinated bicarbonate, [Ni(cyclam)(CO2OH)](+). The rate-limiting step during electrocatalysis is determined to be CO loss from the deactivated species, [Ni(cyclam)(CO)](+), to produce the active catalyst, [Ni(cyclam)](+). Another macrocyclic complex, [Ni(TMC)](+), is deployed as a CO scavenger in order to inhibit the deactivation of [Ni(cyclam)](+) by CO. Addition of the CO scavenger is shown to dramatically increase the catalytic current observed for CO2 reduction. Evidence for the [Ni(TMC)](+) acting as a CO scavenger includes the observation of [Ni(TMC)(CO)](+) by IR. Density functional theory (DFT) calculations probing the optimized geometry of the [Ni(cyclam)(CO)](+) species are also presented. PMID:25714353

  3. Effect of Ni+2-substituted Fe2TiO5 on the H2-reduction and CO2 Catalytic Decomposition Reactions at 500℃

    Institute of Scientific and Technical Information of China (English)

    M.H.Khedr

    2006-01-01

    CO2 is a major component of the greenhouse gases, which causes the global warming. To reduce CO2 gas,high activity nanosized Ni+2 substituted Fe2TiO5 samples were synthesized by conventional ceramic method.The effect of the composition of the synthesized ferrite on the H2-reduction and CO2-catalytic decomposition was investigated. Fe2TiO5 (iron titanate) phase that has a nanocrystallite size of ~80 nm is formed as a result of heating Fe2O3 and TiO2 while the addition of NiO leads to the formation of new phases (~80 nm)NiTiO3 and NiFe2O4, but the mixed solid of NiO and Fe2O3 results in the formation of NiFe2O4 only.Samples with Ni+2=0 shows the lowest reduction extent (20%); as the extent of Ni+2 increases, the extent of reduction increases. The increase in the reduction percent is attributed to the presence of NiTiO3 and NiFe2O4 phases, which are more reducible phases than Fe2TiO5. The CO2 decomposition reactions were monitored by thermogravimetric analysis (TGA) experiments. The oxidation of the H2-reduced Ni+2 substituted Fe2TiO5 at 500℃ was investigated. As Ni+2 increases, the rate of reoxidation increases. Samples with the highest reduction extents gave the highest reoxidation extent, which is attributed to the highly porous nature and deficiency in oxygen due to the presence of metallic Fe, Ni and/or FeNi alloy. X-ray diffraction (XRD) and transmission electron microscopy (TEM) of oxidized samples show also the presence of carbon in the sample containing Ni+2>0, which appears in the form of nanotubes (25 nm).

  4. Selective catalytic reduction of NO over Fe-ZSM-5: mechanistic insights by operando HERFD-XANES and valence-to-core X-ray emission spectroscopy.

    Science.gov (United States)

    Boubnov, Alexey; Carvalho, Hudson W P; Doronkin, Dmitry E; Günter, Tobias; Gallo, Erik; Atkins, Andrew J; Jacob, Christoph R; Grunwaldt, Jan-Dierk

    2014-09-17

    An in-depth understanding of the active site requires advanced operando techniques and the preparation of defined catalysts. We elucidate here the mechanism of the selective catalytic reduction of NO by NH3 (NH3-SCR) over a Fe-ZSM-5 zeolite catalyst. 1.3 wt % Fe-ZSM-5 with low nuclearity Fe sites was synthesized, tested in the SCR reaction and characterized by UV-vis, X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) spectroscopy. Next, this defined Fe-zeolite catalyst was studied by complementary high-energy-resolution fluorescence-detected XANES (HERFD-XANES) and valence-to-core X-ray emission spectroscopy (V2C XES) under different model in situ and realistic working (operando) conditions identical to the catalyst test bench including the presence of water vapor. HERFD-XANES uncovered that the coordination (between 4 and 5), geometry (tetrahedral, partly 5-fold), and oxidation state of the Fe centers (reduced in NH3, partly in SCR mixture, slight reduction in NO) strongly changed. V2C XES supported by DFT calculations provided important insight into the chemical nature of the species adsorbed on Fe sites. The unique combination of techniques applied under realistic reaction conditions and the corresponding catalytic data unraveled the adsorption of ammonia via oxygen on the iron site. The derived reaction model supports a mechanism where adsorbed NOx reacts with ammonia coordinated to the Fe(3+) site yielding Fe(2+) whose reoxidation is slow. PMID:25105343

  5. Pt-Doped NiFe₂O₄ Spinel as a Highly Efficient Catalyst for H₂ Selective Catalytic Reduction of NO at Room Temperature.

    Science.gov (United States)

    Sun, Wei; Qiao, Kai; Liu, Ji-Yuan; Cao, Li-Mei; Gong, Xue-Qing; Yang, Ji

    2016-04-11

    H2 selective catalytic reduction (H2-SCR) has been proposed as a promising technology for controlling NOx emission because hydrogen is clean and does not emit greenhouse gases. We demonstrate that Pt doped into a nickel ferrite spinel structure can afford a high catalytic activity of H2-SCR. A superior NO conversion of 96% can be achieved by employing a novel NiFe1.95Pt0.05O4 spinel-type catalyst at 60 °C. This novel catalyst is different from traditional H2-SCR catalysts, which focus on the role of metallic Pt species and neglect the effect of oxidized Pt states in the reduction of NO. The obtained Raman and XPS spectra indicate that Pt in the spinel lattice has different valence states with Pt(2+) occupying the tetrahedral sites and Pt(4+) residing in the octahedral ones. These oxidation states of Pt enhance the back-donation process, and the lack of filling electrons of the 5d band causes Pt to more readily hybridize with the 5σ orbital of the NO molecule, especially for octahedral Pt(4+), which enhances the NO chemisorption on the Pt sites. We also performed DFT calculations to confirm the enhancement of adsorption of NO onto Pt sites when doped into the Ni-Fe spinel structure. The prepared Pt/Ni-Fe catalysts indicate that increasing the dispersity of Pt on the surfaces of the individual Ni-Fe spinel-type catalysts can efficiently promote the H2-SCR activity. Our demonstration provides new insight into designing advanced catalysts for H2-SCR. PMID:26982816

  6. Enantioselective solvent-free Robinson annulation reactions

    Indian Academy of Sciences (India)

    D Rajagopal; R Narayanan; S Swaminathan

    2001-06-01

    The enantioselective cyclization of the prochiral cyclic substrates 1 to 7 and 26, can be carried out in the neat using -proline as catalyst. The substrates 18 to 22 and 27 could not be cyclized with S-proline but could be cyclized with a mixture of -phenylalanine and -camphorsulphonic acid. The enantioselective cyclization of prochiral acyclic triones 45 and 47 and also the racemic tricarbonyl compounds 54 to 57 could also be carried out in the \\text{neat} using -proline as catalyst. The optically active enediones obtained in the above cyclizations could also be obtained directly from 1,3-diones or 2-hydroxymethylene cycloalkanones in a one-pot reaction with methyl vinyl ketone (MVK) and S-proline in the absence of solvents. 13C NMR studies of the one-pot synthesis of S-11 and S-14 reveal that the annulations involve initial formation of an acid-base complex followed by a Michael reaction and then an enantioselective cyclization. Such enantioselective cyclizations probably occur on the surface of -proline crystals.

  7. Characterization and activity of alkaline earth metals loaded CeO{sub 2}–MO{sub x} (M = Mn, Fe) mixed oxides in catalytic reduction of NO

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, Seyed Mahdi [Department of Applied Chemistry and Chemical Engineering, Faculty of Chemistry, University of Tabriz, 5166616471 Tabriz (Iran, Islamic Republic of); Niaei, Aligholi, E-mail: niaei@yahoo.com [Department of Applied Chemistry and Chemical Engineering, Faculty of Chemistry, University of Tabriz, 5166616471 Tabriz (Iran, Islamic Republic of); Illán Gómez, María José [Carbon Materials and Environment Research Group, Department of Inorganic Chemistry, Faculty of Science, Universidad de Alicante, Alicante (Spain); Salari, Dariush; Nakhostin Panahi, Parvaneh [Department of Applied Chemistry and Chemical Engineering, Faculty of Chemistry, University of Tabriz, 5166616471 Tabriz (Iran, Islamic Republic of); Abaladejo-Fuentes, Vicente [Carbon Materials and Environment Research Group, Department of Inorganic Chemistry, Faculty of Science, Universidad de Alicante, Alicante (Spain)

    2014-02-14

    Nanocrystalline CeO{sub 2}–MO{sub x} mixed oxides (M = Mn, Fe) with different M/(M + Ce) molar ratio are prepared by sol–gel combustion method. X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), Temperature Programmed Reduction with H{sub 2} (H{sub 2}-TPR) and N{sub 2}-adsorption (BET) analyses are conducted to characterize the physical–chemical properties of the catalysts. The activity of catalysts for reduction of NOx with ammonia has been evaluated. The CeO{sub 2}–MnO{sub x} catalysts showed better low temperature activity than CeO{sub 2}–FeO{sub x}. The superior activity of CeO{sub 2}–MnO{sub x} with Mn/(Mn + Ce) molar ratio of 0.25 respect to other catalysts (with 83% NO conversion and 68% N{sub 2} yield at 200 °C) is associated to nanocrystalline structure, reducibility at low temperature and synergistic effect between Ce and Mn that are observed by XRD, TEM and H{sub 2}-TPR. The CeO{sub 2}–FeO{sub x} catalysts were found to be active at high temperature, being Ce–Fe the best catalyst yielded 82% NO conversion at 300 °C. The effect of alkaline earth metals (Ca, Mg, Sr and Ba) loading on the structure and catalytic activity of cerium mixed oxides are also investigated. Loading of Ba enhanced the NO reduction activity of mixed oxides due to the increase of number of basic sites. Highest performance with 91% NO conversion and 80% N{sub 2} yield attained over CeO{sub 2}–MnO{sub x} (0.25)-Ba (7%) catalyst at 200 °C. - Highlights: • CeO{sub 2}–MO{sub x} mixed oxides (M = Mn, Fe) were synthesized by sol–gel combustion method. • The activity of mixed oxides is evaluated in catalytic reduction of NO with NH{sub 3}. • The CeO{sub 2}–MnO{sub x} showed better activity than CeO{sub 2}–FeO{sub x} due to better redox properties. • Ba loading enhanced the activity due to the increase of number of basic sites. • 91% NO conversion and 80% N{sub 2} yield attained over 7%Ba–Ce{sub 0.75}Mn{sub 0.25}O{sub 2} at 200 °C.

  8. In-line localized monitoring of catalyst activity in selective catalytic NO.sub.x reduction systems

    Science.gov (United States)

    Muzio, Lawrence J.; Smith, Randall A.

    2009-12-22

    Localized catalyst activity in an SCR unit for controlling emissions from a boiler, power plant, or any facility that generates NO.sub.x-containing flue gases is monitored by one or more modules that operate on-line without disrupting the normal operation of the facility. Each module is positioned over a designated lateral area of one of the catalyst beds in the SCR unit, and supplies ammonia, urea, or other suitable reductant to the catalyst in the designated area at a rate that produces an excess of the reductant over NO.sub.x on a molar basis through the designated area. Sampling probes upstream and downstream of the designated area draw samples of the gas stream for NO.sub.x analysis, and the catalyst activity is determined from the difference in NO.sub.x levels between the two probes.

  9. Saraca indica bark extract mediated green synthesis of polyshaped gold nanoparticles and its application in catalytic reduction

    Science.gov (United States)

    Dash, Shib Shankar; Majumdar, Rakhi; Sikder, Arun Kanti; Bag, Braja Gopal; Patra, Biplab Kumar

    2014-04-01

    The bark extract of the traditional ayurvedic medicinal plant Saraca indica containing redox active polyphenolic compounds has been utilized for the one-step synthesis of gold nanoparticles at room temperature. The polyphenolic compounds acted as the reducing agent as well as the stabilizing agent without any additional capping agent. The synthesis of the gold nanoparticles of 15-23 nm size was complete in several minutes and no photo irradiation or heat treatment was necessary. Surface plasmon resonance, HRTEM, AFM, X-ray diffraction, and FTIR studies have been carried out to characterize the nanoparticles. Gold nanoparticles synthesized were of triangular, tetragonal, pentagonal, hexagonal, and spherical shapes. The synthesized gold nanoparticles have been used as a catalyst for the reduction of 4-nitrophenol to 4-aminophenol at room temperature and the kinetics of the reduction reaction has been studied spectrophotometrically.

  10. Catalytic Activity Enhancement for Oxygen Reduction on Epitaxial Perovskite Thin Films for Solid-Oxide Fuel Cells

    KAUST Repository

    la O', Gerardo Jose

    2010-06-22

    Figure Presented The active ingredient: La0.8Sr 0.2CoO3-δ (LSC) epitaxial thin films are prepared on (001 )-oriented yttria-stabilized zirconia (YSZ) single crystals with a gadolinium-doped ceria (GDC) buffer layer (see picture). The LSC epitaxial films exhibit better oxygen reduction kinetics than bulk LSC. The enhanced activity is attributed in part to higher oxygen nonstoichiometry. © 2010 Wiley-VCH Verlag GmbH & Co. KCaA, Weinheim.

  11. Highly Robust Hybrid Photocatalyst for Carbon Dioxide Reduction: Tuning and Optimization of Catalytic Activities of Dye/TiO2/Re(I) Organic-Inorganic Ternary Systems.

    Science.gov (United States)

    Won, Dong-Il; Lee, Jong-Su; Ji, Jung-Min; Jung, Won-Jo; Son, Ho-Jin; Pac, Chyongjin; Kang, Sang Ook

    2015-10-28

    Herein we report a detailed investigation of a highly robust hybrid system (sensitizer/TiO2/catalyst) for the visible-light reduction of CO2 to CO; the system comprises 5'-(4-[bis(4-methoxymethylphenyl)amino]phenyl-2,2'-dithiophen-5-yl)cyanoacrylic acid as the sensitizer and (4,4'-bis(methylphosphonic acid)-2,2'-bipyridine)Re(I)(CO)3Cl as the catalyst, both of which have been anchored on three different types of TiO2 particles (s-TiO2, h-TiO2, d-TiO2). It was found that remarkable enhancements in the CO2 conversion activity of the hybrid photocatalytic system can be achieved by addition of water or such other additives as Li(+), Na(+), and TEOA. The photocatalytic CO2 reduction efficiency was enhanced by approximately 300% upon addition of 3% (v/v) H2O, giving a turnover number of ≥570 for 30 h. A series of Mott-Schottky (MS) analyses on nanoparticle TiO2 films demonstrated that the flat-band potential (V(fb)) of TiO2 in dry DMF is substantially negative but positively shifts to considerable degrees in the presence of water or Li(+), indicating that the enhancement effects of the additives on the catalytic activity should mainly arise from optimal alignment of the TiO2 V(fb) with respect to the excited-state oxidation potential of the sensitizer and the reduction potential of the catalyst in our ternary system. The present results confirm that the TiO2 semiconductor in our heterogeneous hybrid system is an essential component that can effectively work as an electron reservoir and as an electron transporting mediator to play essential roles in the persistent photocatalysis activity of the hybrid system in the selective reduction of CO2 to CO. PMID:26456369

  12. Enantioselectivity in environmental risk assessment of modern chiral pesticides

    International Nuclear Information System (INIS)

    Chiral pesticides comprise a new and important class of environmental pollutants nowadays. With the development of industry, more and more chiral pesticides will be introduced into the market. But their enantioselective ecotoxicology is not clear. Currently used synthetic pyrethroids, organophosphates, acylanilides, phenoxypropanoic acids and imidazolinones often behave enantioselectively in agriculture use and they always pose unpredictable enantioselective ecological risks on non-target organisms or human. It is necessary to explore the enantioselective toxicology and ecological fate of these chiral pesticides in environmental risk assessment. The enantioselective toxicology and the fate of these currently widely used pesticides have been discussed in this review article. - Chiral pesticides could pose unpredictable enantioselective toxicity on non-target organisms.

  13. In situ IR studies of Co and Ce doped Mn/TiO2 catalyst for low-temperature selective catalytic reduction of NO with NH3

    Science.gov (United States)

    Qiu, Lu; Pang, Dandan; Zhang, Changliang; Meng, Jiaojiao; Zhu, Rongshu; Ouyang, Feng

    2015-12-01

    The Mn-Co-Ce/TiO2 catalyst was prepared by wet co-impregnation method for selective catalytic reduction of NO by NH3 in the presence of oxygen. The adsorption and co-adsorption of NH3, NO and O2 on catalysts were investigated by in situ FTIR spectroscopy. The results suggested that addition of cobalt and cerium oxides increased the numbers of acid and redox sites. Especially, the cobalt oxide produced lots of Brønsted acid sites, which favor to the adsorption of coordinated NH3 through NH3 migration. Ce addition improved amide ions formation to reach best NO reduction selectivity. A mechanistic pathway over Mn-Co-Ce/TiO2 was proposed. At low-temperature SCR reaction, coordinated NH3 reacted with NO2-, and amide reacted with NO (ad) or NO (g) to form N2. NO2 was related to the formation of nitrite on Co-contained catalysts and the generation of sbnd NH2- on Ce-contained catalysts. At high temperature, the other branch reaction also occurred between the coordinated NH3 and nitrate species, resulting in N2O yield increase.

  14. Synthesis of magnetically recyclable MnFe2O4@SiO2@Ag nanocatalyst: Its high catalytic performances for azo dyes and nitro compounds reduction

    Science.gov (United States)

    Kurtan, U.; Amir, Md.; Yıldız, A.; Baykal, A.

    2016-07-01

    In this study, magnetically recycable MnFe2O4@SiO2@Ag nanocatalyst (MnFe2O4@SiO2@Ag MRCs) has been synthesized through co-precipition and chemical reduction method. XRD analysis confirmed the synthesis of single phase nanoproduct with crystallite size of 10 nm. VSM measurements showed the superparamagnetic property of the product. Catalytic studies showed that MnFe2O4@SiO2@Ag MRC could catalyze the reduction of the various azo compounds like methyl orange (MO), methylene blue (MB), eosin Y (EY), and rhodamine B (RhB) and also aromatic nitro compounds such as 4-nitrophenol (4-NP), 4-nitroaniline (4-NA) and 2-nitroaniline (2-NA). Moreover, the magnetic nanocatalyst showed an excellent reusability properties that remained unchanged after several cycles. Therefore, MnFe2O4@SiO2@Ag is the potential candidate for the application of organic pollutants for wastewater treatment.

  15. Integrated Removal of NOx with Carbon Monoxide as Reductant, and Capture of Mercury in a Low Temperature Selective Catalytic and Adsorptive Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Neville Pinto; Panagiotis Smirniotis; Stephen Thiel

    2010-08-31

    Coal will likely continue to be a dominant component of power generation in the foreseeable future. This project addresses the issue of environmental compliance for two important pollutants: NO{sub x} and mercury. Integration of emission control units is in principle possible through a Low Temperature Selective Catalytic and Adsorptive Reactor (LTSCAR) in which NO{sub x} removal is achieved in a traditional SCR mode but at low temperature, and, uniquely, using carbon monoxide as a reductant. The capture of mercury is integrated into the same process unit. Such an arrangement would reduce mercury removal costs significantly, and provide improved control for the ultimate disposal of mercury. The work completed in this project demonstrates that the use of CO as a reductant in LTSCR is technically feasible using supported manganese oxide catalysts, that the simultaneous warm-gas capture of elemental and oxidized mercury is technically feasible using both nanostructured chelating adsorbents and ceria-titania-based materials, and that integrated removal of mercury and NO{sub x} is technically feasible using ceria-titania-based materials.

  16. Selective catalytic reduction of NO with NH{sub 3} at V{sub 2}O{sub 5}(010) and silica supported vanadium oxide: DFT studies

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Mathis; Hermann, Klaus [Fritz-Haber-Institut der MPG, Sfb 546, Berlin (Germany)

    2011-07-01

    The selective catalytic reduction (SCR) of NO{sub x} with NH{sub 3} over vanadium based metal-oxide (VO{sub x}) catalysts has been proven to be one of the most effective NO{sub x} reduction processes. Details of the reaction mechanism are still under debate. Adsorption, (de)hydrogenation, reactions with NO, and surface water formation at the VO{sub x} catalyst contribute elementary steps. These processes are examined in theoretical studies employing density-functional theory together with gradient corrected functionals. The VO{sub x} substrate is modeled by clusters cut out from the clean V{sub 2}O{sub 5}(010) surface where peripheral oxygen bonds are saturated by hydrogen. Reduced surfaces are represented by introducing oxygen vacancies. In addition, silica supported vanadium oxide clusters are considered. NH{sub 3} is found to interact with the clean V{sub 2}O{sub 5}(010) surface only in the presence of OH groups (Boernsted acid sites) where it can form a rather stable surface NH{sub 4}{sup +} species. Further, NH{sub 3} can adsorb at vanadium centers of lower coordination at the reduced surface (Lewis acid sites). This leads to two different SCR reaction scenarios transferring NH{sub 3} and NO to N{sub 2} and H{sub 2}O which are discussed by corresponding reaction paths and intermediates.

  17. Roles of Promoters in V2O5/TiO2 Catalysts for Selective Catalytic Reduction of NOx with NH3: Effect of Order of Impregnation.

    Science.gov (United States)

    Youn, Seunghee; Song, Inhak; Kim, Do Heui

    2016-05-01

    Recently, various promoters for commercial selective catalytic reduction (SCR) catalysts are used to improve DeNOx activity at low temperature. We aimed at finding the optimum condition to prepare V2O5/TiO2 catalyst by changing promoters (W, Ce, Zr and Mn), not only for improving SCR reactivity, but also for reducing N2O formation at high temperature. In addition, we changed the order of impregnation between promoter and vanadium precursors on TiO2 support and observed its effect on activity and N2O selectivity. We utilized various analytical techniques, such as N2 adsorption-desorption, X-ray Diffraction (XRD), Raman spectroscopy, UV-visible Diffuse Reflectance Spectroscopy (UV-vis DRS) and Temperature Programmed Reduction with hydrogen (H2-TPR) to investigate the physicochemical properties of V2O5/TiO2 catalysts. It was found that W and Ce added V2O5/TiO2 catalysts showed the most active DeNOx properties at low temperature. Additionally, the difference in impregnation order affected the SCR activity. The superiority of low temperature activity of the vanadium firstly added catalysts (W or Ce/V/TiO2) is attributed to the formation of more polymerized V2O5 on the sample. PMID:27483756

  18. Elementary steps of the catalytic NO{sub x} reduction with NH{sub 3}: Cluster studies on reaction paths and energetics at vanadium oxide substrate

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, M.; Hermann, K. [Inorganic Chemistry Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany)

    2013-12-28

    We consider different reaction scenarios of the selective catalytic reduction (SCR) of NO in the presence of ammonia at perfect as well as reduced vanadium oxide surfaces modeled by V{sub 2}O{sub 5}(010) without and with oxygen vacancies. Geometric and energetic details as well as reaction paths are evaluated using extended cluster models together with density-functional theory. Based on earlier work of adsorption, diffusion, and reaction of the different surface species participating in the SCR we confirm that at Brønsted acid sites (i.e., OH groups) of the perfect oxide surface nitrosamide, NH{sub 2}NO, forms a stable intermediate. Here adsorption of NH{sub 3} results in NH{sub 4} surface species which reacts with gas phase NO to produce the intermediate. Nitrosamide is also found as intermediate of the SCR near Lewis acid sites of the reduced oxide surface (i.e., near oxygen vacancies). However, here the adsorbed NH{sub 3} species is dehydrogenated to surface NH{sub 2} before it reacts with gas phase NO to produce the intermediate. The calculations suggest that reaction barriers for the SCR are overall higher near Brønsted acid sites of the perfect surface compared with Lewis acid sites of the reduced surface, examined for the first time in this work. The theoretical results are consistent with experimental findings and confirm the importance of surface reduction for the SCR process.

  19. A Catalytic Path for Electrolyte Reduction in Lithium-Ion Cells Revealed by in Situ Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy

    KAUST Repository

    Shi, Feifei

    2015-03-11

    © 2015 American Chemical Society. Although controlling the interfacial chemistry of electrodes in Li-ion batteries (LIBs) is crucial for maintaining the reversibility, electrolyte decomposition has not been fully understood. In this study, electrolyte decomposition on model electrode surfaces (Au and Sn) was investigated by in situ attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. Simultaneously obtained ATR-FTIR spectra and cyclic voltammetry measurements show that lithium ethylene dicarbonate and lithium propionate form on the Au electrode at 0.6 V, whereas diethyl 2,5-dioxahexane dicarboxylate and lithium propionate form on the Sn electrode surface at 1.25 V. A noncatalytic reduction path on the Au surface and a catalytic reduction path on the Sn surface are introduced to explain the surface dependence of the overpotential and product selectivity. This represents a new concept for explaining electrolyte reactions on the anode of LIBs. The present investigation shows that catalysis plays a dominant role in the electrolyte decomposition process and has important implications in electrode surface modification and electrolyte recipe selection, which are critical factors for enhancing the efficiency, durability, and reliability of LIBs.

  20. Structural insights into omega-class glutathione transferases: a snapshot of enzyme reduction and identification of a non-catalytic ligandin site.

    Directory of Open Access Journals (Sweden)

    Joseph Brock

    Full Text Available Glutathione transferases (GSTs are dimeric enzymes containing one active-site per monomer. The omega-class GSTs (hGSTO1-1 and hGSTO2-2 in humans are homodimeric and carry out a range of reactions including the glutathione-dependant reduction of a range of compounds and the reduction of S-(phenacylglutathiones to acetophenones. Both types of reaction result in the formation of a mixed-disulfide of the enzyme with glutathione through the catalytic cysteine (C32. Recycling of the enzyme utilizes a second glutathione molecule and results in oxidized glutathione (GSSG release. The crystal structure of an active-site mutant (C32A of the hGSTO1-1 isozyme in complex with GSSG provides a snapshot of the enzyme in the process of regeneration. GSSG occupies both the G (GSH-binding and H (hydrophobic-binding sites and causes re-arrangement of some H-site residues. In the same structure we demonstrate the existence of a novel "ligandin" binding site deep within in the dimer interface of this enzyme, containing S-(4-nitrophenacylglutathione, an isozyme-specific substrate for hGSTO1-1. The ligandin site, conserved in Omega class GSTs from a range of species, is hydrophobic in nature and may represent the binding location for tocopherol esters that are uncompetitive hGSTO1-1 inhibitors.

  1. Reduction of CO2 to low carbon alcohols on CuO FCs/Fe2O3 NTs catalyst with photoelectric dual catalytic interfaces.

    Science.gov (United States)

    Li, Peiqiang; Wang, Huying; Xu, Jinfeng; Jing, Hua; Zhang, Jun; Han, Haixiang; Lu, Fusui

    2013-12-01

    In this paper, the CuO FCs/Fe2O3 NTs catalyst was obtained after Fe2O3 nanotubes (Fe2O3 NTs) were decorated with CuO flower clusters (CuO FCs) by the pulse electrochemical deposition method. The in situ vertically aligned Fe2O3 NTs were prepared on the ferrous substrate by a potentiostatic anodization method. The SEM result showed the volcano-like Fe2O3 NTs were arranged in order and the CuO FCs constituted of flaky CuO distributed on the Fe2O3 NTs surface uniformly. After CuO FCs were loaded on Fe2O3 NTs, the absorption of visible light was enhanced noticeably, and its band gap narrowed to 1.78 eV from 2.03 eV. The conduction band and valence band locating at -0.73 eV and 1.05 eV, respectively were further obtained. In the PEC reduction of CO2 process, methanol and ethanol were two major products identified by chromatography. Their contents reached 1.00 mmol L(-1) cm(-2) and 107.38 μmol L(-1) cm(-2) after 6 h, respectively. This high-efficiency catalyst with photoelectric dual catalytic interfaces has a great guidance and reference significance for CO2 reduction to liquid carbon fuels.

  2. Artificial neural networks study of the catalytic reduction of resazurin: stopped-flow injection kinetic-spectrophotometric determination of Cu(II) and Ni(II)

    Energy Technology Data Exchange (ETDEWEB)

    Magni, Diana M. [Departamento de Quimica, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina); Olivieri, Alejandro C. [Departamento de Quimica Analitica, Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario (Argentina); Bonivardi, Adrian L. [Departamento de Quimica, Facultad de Ingenieria Quimica, Universidad Nacional del Litoral, Santiago del Estero 2829, S3000AOM Santa Fe (Argentina) and Instituto de Desarrollo Tecnologico para la Industria Quimica, Gueemes 3450, S3000GLN Santa Fe (Argentina)]. E-mail: bonivar@fiqus.unl.edu.ar

    2005-01-10

    An artificial neural network (ANN) procedure was used in the development of a catalytic spectrophotometric method for the determination of Cu(II) and Ni(II) employing a stopped-flow injection system. The method is based on the catalytic action of these ions on the reduction of resazurin by sulfide. ANNs trained by back-propagation of errors allowed us to model the systems in a concentration range of 0.5-6 and 1-15 mg l{sup -1} for Cu(II) and Ni(II), respectively, with a low relative error of prediction (REP) for each cation: REP{sub Cu(II)} = 0.85% and REP{sub Ni(II)} = 0.79%. The standard deviations of the repeatability (s{sub r}) and of the within-laboratory reproducibility (s{sub w}) were measured using standard solutions of Cu(II) and Ni(II) equal to 2.75 and 3.5 mg l{sup -1}, respectively: s{sub r}[Cu(II)] = 0.039 mg l{sup -1}, s{sub r}[Ni(II)] = 0.044 mg l{sup -1}, s{sub w}[Ni(II)] = 0.045 mg l{sup -1} and s{sub w}[Ni(II)] = 0.050 mg l{sup -1}. The ANNs-kinetic method has been applied to the determination of Cu(II) and Ni(II) in electroplating solutions and provided satisfactory results as compared with flame atomic absorption spectrophotometry method. The effect of resazurin, NaOH and Na{sub 2}S concentrations and the reaction temperature on the analytical sensitivity is discussed.

  3. Activity and hydrothermal stability of CeO2-ZrO2-WO3 for the selective catalytic reduction of NOx with NH3.

    Science.gov (United States)

    Song, Zhongxian; Ning, Ping; Zhang, Qiulin; Li, Hao; Zhang, Jinhui; Wang, Yancai; Liu, Xin; Huang, Zhenzhen

    2016-04-01

    A series of CeO2-ZrO2-WO3 (CZW) catalysts prepared by a hydrothermal synthesis method showed excellent catalytic activity for selective catalytic reduction (SCR) of NO with NH3 over a wide temperature of 150-550°C. The effect of hydrothermal treatment of CZW catalysts on SCR activity was investigated in the presence of 10% H2O. The fresh catalyst showed above 90% NOx conversion at 201-459°C, which is applicable to diesel exhaust NOx purification (200-440°C). The SCR activity results indicated that hydrothermal aging decreased the SCR activity of CZW at low temperatures (below 300°C), while the activity was notably enhanced at high temperature (above 450°C). The aged CZW catalyst (hydrothermal aging at 700°C for 8hr) showed almost 80% NOx conversion at 229-550°C, while the V2O5-WO3/TiO2 catalyst presented above 80% NOx conversion at 308-370°C. The effect of structural changes, acidity, and redox properties of CZW on the SCR activity was investigated. The results indicated that the excellent hydrothermal stability of CZW was mainly due to the CeO2-ZrO2 solid solution, amorphous WO3 phase and optimal acidity. In addition, the formation of WO3 clusters increased in size as the hydrothermal aging temperature increased, resulting in the collapse of structure, which could further affect the acidity and redox properties. PMID:27090708

  4. A general enantioselective route to the chamigrene natural product family

    KAUST Repository

    White, David E.

    2010-06-01

    Described in this report is an enantioselective route toward the chamigrene natural product family. The key disconnections in our synthetic approach include sequential enantioselective decarboxylative allylation and ring-closing olefin metathesis to form the all-carbon quaternary stereocenter and spirocyclic core present in all members of this class of compounds. The generality of this strategy is demonstrated by the first total syntheses of elatol and the proposed structure of laurencenone B, as well as the first enantioselective total syntheses of laurencenone C and α-chamigrene. A brief exploration of the substrate scope of the enantioselective decarboxylative allylation/ring-closing metathesis sequence with fully substituted vinyl chlorides is also presented.

  5. Synthesis of honeycomb-like palladium nanostructures by using cucurbit[7]uril and their catalytic activities for reduction of 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Premkumar, Thathan [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); The University College/Department of Chemistry, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Geckeler, Kurt E., E-mail: keg@gist.ac.kr [Department of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of); Department of Nanobio Materials and Electronics (WCU), Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712 (Korea, Republic of)

    2014-12-15

    An eco-friendly one-pot method to synthesize self-assembled palladium nanoclusters using a macrocycle, namely cucurbit[7]uril, in the alkaline medium without employing any special reducing or capping agents and/or external energy at room temperature is described. This greener approach, which utilizes water as a benign solvent and biocompatible cucurbit[7]uril as both reducing and protecting agents, can be applied to synthesize other noble metal nanoparticles such as gold, silver, and platinum. Owing to unique structural arrangement of cucurbit[7]uril, it was possible to prepare palladium nanoclusters of honeycomb-like structure irrespective of the reaction conditions. The honeycomb-like palladium nanoclusters were characterized using transmission electron microscopy (TEM), higher-resolution TEM (HR-TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), UV–vis, and FT-IR spectroscopy. Significantly, the synthesized palladium nanoclusters exhibited catalytic activity for the reduction reaction of 4-nitrophenol at room temperature. The approach launched here is easy, green, and user-friendly in contrast to the conventional techniques using polymers or surfactants and harsh reductants. - Highlights: • A simple and one-pot method to synthesis palladium nanostructures with honey-comb like structure. • The strategy established here does not require any harsh and toxic reducing agents. • It has a potential to be a general method for the synthesis of metal nanoparticles in water medium. • Palladium nanoclusters can be used as catalyst for the reduction reaction of 4-nitrophenol. • This system makes a novel platform for industrial and biomedical applications.

  6. Selective Catalytic Reduction of Oxides of Nitrogen with Ethanol/Gasoline Blends over a Silver/Alumina Catalyst on Lean Gasoline Engine

    Energy Technology Data Exchange (ETDEWEB)

    Prikhodko, Vitaly Y [ORNL; Pihl, Josh A [ORNL; Toops, Todd J [ORNL; Thomas, John F [ORNL; Parks, II, James E [ORNL; West, Brian H [ORNL

    2015-01-01

    Ethanol is a very effective reductant of nitrogen oxides (NOX) over silver/alumina (Ag/Al2O3) catalysts in lean exhaust environment. With the widespread availability of ethanol/gasoline-blended fuel in the USA, lean gasoline engines equipped with an Ag/Al2O3 catalyst have the potential to deliver higher fuel economy than stoichiometric gasoline engines and to increase biofuel utilization while meeting exhaust emissions regulations. In this work a pre-commercial 2 wt% Ag/Al2O3 catalyst was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine for the selective catalytic reduction (SCR) of NOX with ethanol/gasoline blends. The ethanol/gasoline blends were delivered via in-pipe injection upstream of the Ag/Al2O3 catalyst with the engine operating under lean conditions. A number of engine conditions were chosen to provide a range of temperatures and space velocities for the catalyst performance evaluations. High NOX conversions were achieved with ethanol/gasoline blends containing at least 50% ethanol; however, higher C1/N ratio was needed to achieve greater than 90% NOX conversion, which also resulted in significant HC slip. Temperature and HC dosing were important in controlling selectivity to NH3 and N2O. At high temperatures, NH3 and N2O yields increased with increased HC dosing. At low temperatures, NH3 yield was very low, however, N2O levels became significant. The ability to generate NH3 under lean conditions has potential for application of a dual SCR approach (HC SCR + NH3 SCR) to reduce fuel consumption needed for NOX reduction and/or increased NOX conversion, which is discussed in this work.

  7. Intercalation assembly of Li3VO4 nanoribbons/graphene sandwich-structured composites with enhanced oxygen reduction catalytic performance

    International Nuclear Information System (INIS)

    Novel sandwich-like nanocomposites of alternative stacked ultrathin Li3VO4 nanoribbons and graphene sheets (LVO-G) were successfully developed by a facile intercalation assembly method with a post heating treatment. The characterization results demonstrate that the average size of the Li3VO4 nanoribbons with a non-layered crystal structure is a few micrometers in length, 50–100 nm in width and a few atomic layers in height. The addition of graphene sheets can modify the preferred orientation of the Li3VO4 nanoribbons from (110) to (011) plane and restrict the growth of impurity phase at the same time. In addition, EIS analysis has also verified the reduced resistance and thus the enhance conductivity of LVO-G nanocomposites compared with bare Li3VO4 nanoribbons. What's more, the electrocatalytic performances of these novel LVO-G nanocomposites for oxygen reduction reaction (ORR) in alkaline solution are further investigated by cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometry test. It is found that the enhanced activity and stability of LVO-G can be attributed to the synergistic effect between the Li3VO4 nanoribbons and graphene sheets with a larger reduction current density and a smaller onset potential value for LVO-G25 compared with LVO-G50 due to the change of components. - Highlights: • Novel sandwich-structured LVO-G by a facile intercalation assembly method. • Addition of G sheets can modify the preferred orientation of Li3VO4 nanoribbon. • Enhanced ORR activity and stability due to synergistic effect are demonstrated

  8. Catalytically supported reduction of emissions from small-scale biomass furnace systems; Katalytisch unterstuetzte Minderung von Emissionen aus Biomasse-Kleinfeuerungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Ingo; Lenz, Volker; Schenker, Marian; Thiel, Christian [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany); Kraus, Markus; Matthes, Mirjam; Roland, Ulf [Helmholtz-Zentrum fuer Umweltforschung GmbH - UFZ, Leipzig (Germany); Bindig, Rene; Einicke, Wolf-Dietrich [Leipzig Univ. (Germany)

    2011-06-29

    The increased use of solid biomass in small combustion for generating heat from renewable energy sources is unfortunately associated with increased emissions of airborne pollutants. The reduction is possible on the one hand by the use of high-quality modern furnaces to the latest state of the art. On the other hand, several promising approaches method for retrofitting small-scale furnaces are currently being developed that will allow an effective emission reduction by the subsequent treatment of the exhaust gas. The overview of current available emission control technologies for small-scale biomass combustion plants shows that there is still considerable need for research on the sustainable production of heat from solid biofuels. The amendment to the 1st BImSchV provides a necessary drastic reduction of discharged pollutants from small-scale biomass furnaces. When using the fuel wood in modern central heating boilers the required limits can be met at full load. However, dynamic load changes can cause brief dramatic emission increases even with wood central heating boilers. Firebox and control optimization must contribute in the future to a further reduction of emissions. The typical simple single-room fireplaces like hand-fed wood stoves are suitable under type test conditions to comply the limit values. By contrast, in practical operation, the harmful gas emissions be exceeded without secondary measures normally. The performed experimental investigations show that a reduction of both CO and of organic compounds by catalytic combustion is possible. In addition to developing specially adapted catalysts, it is necessary to provide additional dust separation by combined processes, since conventional catalysts are not suitable for deposition and retention of particulate matter or would lose their activity due to dust accumulation on the active surface, when the catalyst would act as a filter at the same time. To enable sufficiently high reaction temperatures and thus a

  9. Enantioselective aldol reactions with masked fluoroacetates

    Science.gov (United States)

    Saadi, Jakub; Wennemers, Helma

    2016-03-01

    Despite the growing importance of organofluorines as pharmaceuticals and agrochemicals, the stereoselective introduction of fluorine into many prominent classes of natural products and chemotherapeutic agents is difficult. One long-standing unsolved challenge is the enantioselective aldol reaction of fluoroacetate to enable access to fluorinated analogues of medicinally relevant acetate-derived compounds, such as polyketides and statins. Herein we present fluoromalonic acid halfthioesters as biomimetic surrogates of fluoroacetate and demonstrate their use in highly stereoselective aldol reactions that proceed under mild organocatalytic conditions. We also show that the methodology can be extended to formal aldol reactions with fluoroacetaldehyde and consecutive aldol reactions. The synthetic utility of the fluorinated aldol products is illustrated by the synthesis of a fluorinated derivative of the top-selling drug atorvastatin. The results show the prospects of the method for the enantioselective introduction of fluoroacetate to access a wide variety of highly functionalized fluorinated compounds.

  10. Vancomycin Molecular Interactions: Antibiotic and Enantioselective Mechanisms

    Science.gov (United States)

    Ward, Timothy J.; Gilmore, Aprile; Ward, Karen; Vowell, Courtney

    Medical studies established that vancomycin and other related macrocyclic antibiotics have an enhanced antimicrobial activity when they are associated as dimers. The carbohydrate units attached to the vancomycin basket have an essential role in the dimerization reaction. Covalently synthesized dimers were found active against vancomycin-resistant bacterial strains. A great similarity between antibiotic potential and enantioselectivity was established. A covalent vancomycin dimer was studied in capillary electrophoresis producing excellent chiral separation of dansyl amino acids. Balhimycin is a macrocyclic glycopeptide structurally similar to vancomycin. The small differences are, however, responsible for drastic differences in enantioselectivity in the same experimental conditions. Contributions from studies examining vancomycin's mechanism for antimicrobial activity have substantially aided our understanding of its mechanism in chiral recognition.

  11. Selective catalytic reduction of NOx in lean-burn engine exhaust over a Pt/V/MCM-41 catalyst

    International Nuclear Information System (INIS)

    The activities of Pt supported on various metal-substituted MCM-41 (V-, Ti-, Fe-, Al-, Ga-, La-, Co-, Mo-, Ce-, and Zr-MCM-41) and V-impregnated MCM-41 were investigated for the reduction of NO by C3H6. Among these catalysts, Pt supported on V-impregnated MCM-41 showed the best activity. The maximum conversion of NO into N2+N2O over this Pt/V/MCM-41 catalyst (Pt=1wt.%, V=3.8wt.%) was 73%, and this maximum conversion was sustained over a temperature range of 70C from 270 to 340C. The high activity of Pt/V/MCM-41 over a broad temperature range resulted from two additional reactions besides the reaction occurring on usual supported Pt, the reaction of NO with surface carbonaceous materials, and the reaction of NO occurring on support V-impregnated MCM-41. The former additional reaction showed an oscillation characteristic, a phenomenon in which the concentrations of parts of reactant and product gases oscillate continuously. At low temperature, some water vapor injected into the reactant gas mixture promoted the reaction occurring on usual supported Pt, whereas at high temperature, it suppressed the additional reaction related to carbonaceous materials. Five-hundred parts per million of SO2 added to the reactant gas mixture only slightly decreased the NO conversion of Pt/V/MCM-41

  12. Study of the catalytic reduction or uranyl nitrate by hydrogen. Sizing of a three-phase reactor

    International Nuclear Information System (INIS)

    As solutions generated by nuclear fuel processing plants contain a mixing of uranium VI (uranyl nitrate) and of plutonium IV, and as uranous nitrate can be used to reduce plutonium to its valence III, this last reduction reaction raises many problems, and the first objective of this research thesis is to better understand and control the various phenomena involved in this reaction. Thus, a first part addresses the reaction chemistry and kinetics. It is based on tests performed in a closed reactor, and aims at clarifying problems of re-oxidation and at devising a kinetic model. A specific attention is paid to matter transfers between the different gaseous, liquid and solid phases. In the second part, the author reports the study of the hydrodynamic behaviour of an airlift-type reactor. Such an apparatus displays indeed interesting benefits to implement the reaction. It notably allows temperature to be well controlled, and the catalyst to be easier handled. Based on these kinetic and hydrodynamic studies, the third part proposes a reactor model, and reports the calculation of its performance by simulation

  13. Green chemistry: C-C coupling and asymmetric reduction by innovative catalysis

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng Wu; Jun Mo; Xiaohong Li; Zeyn Hyder; Jianliang Xiao

    2008-01-01

    A catalytic method has been developed, which allows aryl halides to couple with various electron-rich olefins to give 1, 1'-substituted olefins. The palladium-catalysed coupling in ionic liquid solvent proceeds with high efficiency and remarkable regioselectivity without the need for any costly or toxic halide scavengers. Parallel to this, an environmentally-appealing method for the asymmetric reduction of ketones has been established, with which a variety of chiral alcohols can be accessed with high enantioselectivity in water with no need for any organic solvents. The same chemistry has been explored for the reduction of aldehydes, which is shown to be fast and highly chemoselective. These methods add new tools to the armoury of synthetic chemists.

  14. Preparation of zeolite supported TiO2, ZnO and ZrO2 and the study on their catalytic activity in NOx reduction and 1-pentanol dehydration

    Science.gov (United States)

    Fatimah, Is

    2016-03-01

    Preparation of zeolite supported TiO2, ZnO and ZrO2 and their catalytic activity was studied. Activated natural zeolite from Indonesia was utilized for the preparation and catalytic activity test on NOx reduction by NH3 and also 1-pentanol dehydration were examined. Physicochemical characterization of materials was studied by x-ray diffraction (XRD) measurement, scanning electron microscope, solid acidity determination and also gas sorption analysis. The results confirmed that the preparation gives some improvements on physicochemical characters suitable for catalysis mechanism in those reactions. Solid acidity and specific surface area contributed significantly to the activity.

  15. Enantioselectivity in the phytotoxicity of herbicide imazethapyr.

    Science.gov (United States)

    Zhou, Qingyan; Xu, Chao; Zhang, Yongsong; Liu, Weiping

    2009-02-25

    Chiral compounds usually behave enantioselectively in phyto-biochemical processes. With the increasing application of chiral herbicides, their enantioselective phytotoxicity to plants merits further study, and little information is available in this area. The purpose of this study was to examine the enantioselective phytotoxicity of the herbicide imazethapyr (IM) on the roots of maize (Zea mays L.) seedlings. Enantiomers of IM were separated by HPLC, and their absolute configurations were confirmed as S-(+)-IM and R-(-)-IM by the octant rule. Plant growth measurements and morphological, microscopic, and ultrastructural observations were conducted after treatment with individual IM enantiomers and the racemate. Observations of root morphology showed that the root diameter significantly increased, whereas the root volume, surface area, and number of root tips decreased significantly. IM enantiomers selectively damaged root hair growth and significantly reduced the sloughing of border cells from the tips. IM also had adverse effects on cell organelles, such as statocytes, mitochondria, dictyosomes, and endoplasmic reticulum in maize roots. Moreover, cell membranes and cell walls were thicker than usual after IM treatment. All of the results showed the same trend that the R-(-)-IM affected the root growth of maize seedlings more severely than the S-(+)-IM. The inhibition abilities of (+/-)-IM was between S-(+)- and R-(-)-IM. The behavior of the active enantiomer, instead of just the racemate, may have more relevance to the herbicidal effects and ecological safety of IM. Therefore, enantiomeric differences should be considered when evaluating the bioavailability of the herbicide IM.

  16. [Synthesis of Fe/nitrogen-doped Carbon Nanotube/Nanoparticle Composite and Its Catalytic Performance in Oxygen Reduction].

    Science.gov (United States)

    Yang, Ting-ting; Zhu, Neng-wu; Lu, Yu; Wu, Ping-xiao

    2016-01-15

    The cathode catalyst plays an important role in the electricity generation of microbial fuel cells (MFCs). In order to achieve the large-scale application of MFCs, cathode catalyst with low cost and high oxygen reduction reaction (ORR) has great sense to substitute the precious catalyst of Pt/C. Here chemical vapor deposition (CVD) method was utilized accompanied with melamine as a nitrogen and carbon precursor, oxidized carbon powder (Black Pearls 2000 or Acetylene Black) as carbon precursor and iron acetate as an iron precursor so as to synthesize two kinds of Fe and nitrogen doped carbon nanotube/nanoparticle composites (FeNCB and FeNCC) as MFCs cathode catalysts. The cyclic voltammetry and rotating ring-disk electrode were applied to analyze the ORR activity discrepancies of FeNCB, FeNCC, and Pt/C (20%), which was confirmed by MFC operation. The results showed that the ORR performance of FeNCB was slightly better than Pt/C and dramatically better than FeNCC. Moreover, the catalysis of ORR by FeNCB was through a four-electron transfer pathway. Besides, the performance of MFC-FeNCB was higher than MFC-Pt/C and observably higher than MFC-FeNCC which was a contribute to promote the scale of MFC. MFC-FeNCB achieved the maximum power output density of 1212.8 mW x m(-2), an open circuit potential of 0.875 V, and a stabilized voltage of (0.500 +/- 0.025) V. Further analysis via X-ray diffraction, X ray photoelectron spectroscopy, and Raman exhibited that the diameter of carbon nanotube, the types of N and Fe as well as the concentration of nitrogen, iron and oxygen was the reason for the discrepancies of ORR characteristics for the prepared catalysts. PMID:27078977

  17. Low-temperature selective catalytic reduction of NO with NH3 over nanoflaky MnOx on carbon nanotubes in situ prepared via a chemical bath deposition route

    Science.gov (United States)

    Fang, Cheng; Zhang, Dengsong; Cai, Sixiang; Zhang, Lei; Huang, Lei; Li, Hongrui; Maitarad, Phornphimon; Shi, Liyi; Gao, Ruihua; Zhang, Jianping

    2013-09-01

    Nanoflaky MnOx on carbon nanotubes (nf-MnOx@CNTs) was in situ synthesized by a facile chemical bath deposition route for low-temperature selective catalytic reduction (SCR) of NO with NH3. This catalyst was mainly characterized by the techniques of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2 adsorption-desorption analysis, X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and NH3 temperature-programmed desorption (NH3-TPD). The SEM, TEM, XRD results and N2 adsorption-desorption analysis indicated that the CNTs were surrounded by nanoflaky MnOx and the obtained catalyst exhibited a large surface area as well. Compared with the MnOx/CNT and MnOx/TiO2 catalysts prepared by an impregnation method, the nf-MnOx@CNTs presented better NH3-SCR activity at low temperature and a more extensive operating temperature window. The XPS results showed that a higher atomic concentration of Mn4+ and more chemisorbed oxygen species existed on the surface of CNTs for nf-MnOx@CNTs. The H2-TPR and NH3-TPD results demonstrated that the nf-MnOx@CNTs possessed stronger reducing ability, more acid sites and stronger acid strength than the other two catalysts. Based on the above mentioned favourable properties, the nf-MnOx@CNT catalyst has an excellent performance in the low-temperature SCR of NO to N2 with NH3. In addition, the nf-MnOx@CNT catalyst also presented favourable stability and H2O resistance.Nanoflaky MnOx on carbon nanotubes (nf-MnOx@CNTs) was in situ synthesized by a facile chemical bath deposition route for low-temperature selective catalytic reduction (SCR) of NO with NH3. This catalyst was mainly characterized by the techniques of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2 adsorption-desorption analysis, X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and NH3 temperature

  18. The influence of a silica pillar in lamellar tetratitanate for selective catalytic reduction of NO{sub x} using NH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira da Cunha, Beatriz; Gonçalves, Alécia Maria; Gomes da Silveira, Rafael [Institute of Chemistry, Federal University of Goiás, C. Postal 131, CEP 74001-970 Goiânia, GO (Brazil); Urquieta-González, Ernesto A. [Laboratory of Applied Catalysis, Department of Chemical Engineering, Federal University of Sao Carlos, Rodovia Washington Luis Km 235, C. Postal 676, CEP 13565-905 São Carlos, SP (Brazil); Magalhães Nunes, Liliane, E-mail: lilianemnunes@gmail.com [Institute of Chemistry, Federal University of Goiás, C. Postal 131, CEP 74001-970 Goiânia, GO (Brazil)

    2015-01-15

    Highlights: • Potassium ions significantly affected the SCR. • The introduction of silica in the catalyst promotes the NH{sub 3}-SCR reaction. • The catalysts activities were not significantly influenced by SO{sub 2} addition. - Abstract: Silica-pillared layered titanate (SiO{sub 2}–Ti{sub 4}O{sub 9}) was prepared by intercalating organosilanes into the interlayers of a layered K{sub 2}Ti{sub 4}O{sub 9} followed by calcination at 500 °C. The lamellar titanates produced were used as a support to prepare vanadium catalysts (1 and 2 wt%) through wet impregnation for selective catalytic reduction (SCR) of NO. The catalysts were characterized using nitrogen adsorption (BET), X-ray diffraction (XRD), temperature programmed reduction (H{sub 2}-TPR), nuclear magnetic resonance ({sup 29}Si NMR), and infrared spectroscopy (FT-IR). Reduction of NO by NH{sub 3} was studied in a fixed-bed reactor packed with the catalysts and fed a mixture comprising 1% NH{sub 3}, 1% NO, 10% O{sub 2}, and 34 ppm SO{sub 2} (when used) in helium. The results demonstrate that activity is correlated with the support, i.e., with acidic strength of catalysts. The potassium in the support, K{sub 2}Ti{sub 4}O{sub 9}, significantly affected the reaction and level of vanadium species reduction. The catalyst (1VSiT) with 1 wt% vanadium impregnated on the SiO{sub 2}–Ti{sub 4}O{sub 9} support reduced ∼80% of the NO. Approximately the same conversion rate was generated on the catalyst (2VSiT) with 2 wt% vanadium using the same support. The increased NH{sub 3} adsorption demonstrate that introduction of silica in the catalyst promotes the NH{sub 3}-SCR reaction. More importantly, 2VSiT and 1VSiT were strongly resistant to SO{sub 2} poisoning.

  19. DRIFT studies on promotion mechanism of H3PW12O40 in selective catalytic reduction of NO with NH3.

    Science.gov (United States)

    Weng, Xiaole; Dai, Xiaoxia; Zeng, Qingshan; Liu, Yue; Wu, Zhongbiao

    2016-01-01

    Heteropoly acids (HPAs) have been effectively utilized in selective catalytic reduction (SCR) of NO to improve the NH3 absorption capacity and alkaline/alkali metal resistance for SCR catalysts. However, despite the promise on super-acidities, their other properties that would work on SCR process are still lack of exploration. In this study, a 12-tungstaphosphoric acid (H3PW12O40, HPW) was selected to modify a well-reported CeO2 catalyst. The resulted CeO2/HPW catalyst was subsequently utilized for SCR of NO with excess NH3, which revealed a significantly promoted performance in SCR reaction. DRIFT analyses showed that the unique NO2 absorption capacity of HPW could prevent the NO2 being further oxidized into nitrate species and the abundant Brønsted acid sites could effectively retain the NH3, avoiding them being over-oxidized at evaluated temperatures. The presence of NO2 was demonstrated able to induce a so called "fast SCR" reaction over the CeO2/HPW catalyst, which effectively facilitated the SCR reaction. Furthermore, we have also constructed a CeO2@HPW catalyst, which showed an enhanced SO2 poisoning resistance in SCR reaction.

  20. Optimization of the fluid catalytic cracking unit performance by application of a high motor Octane catalyst and reduction of gasoline vapour pressure

    International Nuclear Information System (INIS)

    Full text: The fluid catalytic cracking (FCC) gasoline is the main contributor to the refinery gasoline pool in the LUKOIL Neftohim Burgas (LNB) refinery. Next in quantity contributor in the refinery gasoline pool is the reformate. The FCC gasoline sensitivity (MON-RON) is about 12 points. The reformer gasoline sensitivity is 11 points. The high sensitivity of the main contributors to the LNB refinery gasoline pool leads to a shortage in the motor octane number. For that reason a selection of an FCC catalyst that is capable of increasing the motor octane number of the FCC gasoline was performed. The application of this catalyst in the LNB FCC unit has led to an increase of the motor octane number of the FCC gasoline by 0.5 points, which enabled the refinery to increase the production of automotive gasolines by 1.3 % and to increase the share of premium automotive gasoline by 5 %. This had an effect of improvement of the refinery economics by a six figure number of US $ per year. The optimization of the FCC gasoline Reid Vapor Pressure (RVP) during the winter season, consisting in a reduction of the RVP from 60 to 50 kPa and an increase of the FCC C4 olefins yield, has led to an augmentation of high motor octane number alkylate production. As a result the refinery economics was improved by a five figure number of US $ per year. key words: FCC gasoline motor octane number, gasoline RVP, FCC operation profitability

  1. Selective catalytic reduction of NO with NH3 over CeO2-ZrO2-WO3 catalysts prepared by different methods

    Science.gov (United States)

    Ning, Ping; Song, Zhongxian; Li, Hao; Zhang, Qiulin; Liu, Xin; Zhang, Jinhui; Tang, Xiaosu; Huang, Zhenzhen

    2015-03-01

    The selective catalytic reduction (SCR) of NO by NH3 has been investigated over the CeO2-ZrO2-WO3 (CZW) catalysts prepared by hydrothermal synthesis, incipient impregnation, co-precipitation and sol-gel methods. The results indicate that the CZW catalyst prepared by hydrothermal method shows the best SCR activity, and more than 90% NO conversion is obtained at 195-450 °C with a gas hourly space velocity of 50,000 h-1. The samples are characterized by XRD, N2 adsorption-desorption, SEM, EDS, XPS, H2-TPR, NH3-TPD and Pyridine-IR techniques. The results imply that the superior SCR activity of CZW catalyst is contributed to the excellent redox property, strong acidity and highest content of chemisorbed oxygen species. Furthermore, the larger surface area and greater total pore volume improve the redox ability and enhance NO conversion at low temperature, while the co-existence of Lewis and Brønsted acid sites enhance the SCR activity at high temperature.

  2. The poisoning effect of potassium ions doped on MnOx/TiO2 catalysts for low-temperature selective catalytic reduction

    Science.gov (United States)

    Zhang, Liangjing; Cui, Suping; Guo, Hongxia; Ma, Xiaoyu; Luo, Xiaogen

    2015-11-01

    The poisoning of alkali metal on MnOx/TiO2 catalysts used for selective catalytic reduction (SCR) of NOx by NH3 was investigated. KNO3, KCl and K2SO4 were doped on MnOx/TiO2 catalysts by sol-gel method, respectively. The SCR activity of each catalyst was measured for the removal of NOx with NH3 in the temperature range 90-330 °C. The experimental results showed that catalyst with KNO3 have a stronger deactivation effect than other catalysts. The properties of the catalysts were characterized by XRD, BET, SEM, XPS, H2-TPR, NH3-TPD and in situ DRIFTS analyses. The characterized results indicated that KNO3, KCl and K2SO4 caused the similar decrease of specific surface area and pore volume, but the quantity of acid sites for KNO3-MnOx/TiO2 catalyst reduced sharply. The main reason for catalyst deactivation is attributed to two aspects: one was physical influences for the decrease of surface area and pore volume, another was chemical influences that the K+ ions decomposed by KNO3 neutralized Brønsted acid sites of catalyst and reduced their reducibility. The chemical influence played a leading role on the deactivation of catalysts.

  3. NH3-SCR performance of fresh and hydrothermally aged Fe-ZSM-5 in standard and fast selective catalytic reduction reactions.

    Science.gov (United States)

    Shi, Xiaoyan; Liu, Fudong; Xie, Lijuan; Shan, Wenpo; He, Hong

    2013-04-01

    Hydrothermal stability is one of the challenges for the practical application of Fe-ZSM-5 catalysts in the selective catalytic reduction (SCR) of NO with NH3 (NH(3)-SCR) for diesel engines. The presence of NO(3) in the exhaust gases can enhance the deNOx activity because of the fast SCR reaction. In this work, a Fe-ZSM-5 catalyst was prepared by a solid-state ion-exchange method and was hydrothermally deactivated at 800 °C in the presence of 10% H(2)O. The activity of fresh and hydrothermal aged Fe-ZSM-5 catalysts was investigated in standard SCR (NO(2)/NOx = 0) and in fast SCR with NO(2)/NOx = 0.3 and 0.5. In standard SCR, hydrothermal aging of Fe-ZSM-5 resulted in a significant decrease of low-temperature activity and a slight increase in high-temperature activity. In fast SCR, NOx conversion over aged Fe-ZSM-5 was significantly increased but was still lower than that over fresh catalyst. Additionally, production of N(2)O in fast SCR was much more apparent over aged Fe-ZSM-5 than over fresh catalyst. We propose that, in fast SCR, the rate of key reactions related to NO is slower over aged Fe-ZSM-5 than over fresh catalyst, thus increasing the probabilities of side reactions involving the formation of N(2)O. PMID:23477804

  4. Deactivation of La-Fe-ZSM-5 catalyst for selective catalytic reduction of NO with NH{sup 3}. Field study results

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Gongshin; Yang, Ralph T. [Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 (United States); Chang, Ramsay; Cardoso, Sylvio [Air Pollution Control, Power Generation, Electric Power Research Institute, Palo Alto, CA 94304-1395 (United States); Smith, Randall A. [Fossil Energy Research Corporation, Laguna Hills, CA 92653 (United States)

    2004-11-08

    Results are summarized for a study on the effects of poisons on the La-Fe-ZSM-5 catalyst activity for the selective catalytic reduction of NO by ammonia. The deactivation of La-Fe-ZSM-5 honeycombs was studied in field tests. A honeycomb catalyst containing 25%La-Fe-ZSM-5 had an overall activity similar to that of a commercial vanadia honeycomb catalyst. Long-term activity test results show that the 25%La-Fe-ZSM-5 catalyst activity decreased to 50% after 300h and 25% after 1769h of on-stream flue gas exposure. The deactivation is correlated to the amounts of poisons deposited on the catalyst. Poisons include alkali and alkaline earth metals, As and Hg. Hg was found to be ion-exchanged from HgCl{sup 2} to form Hg-ZSM-5, and Hg was found to be among the strongest poisons. The poisoning effects of these elements appeared to be additive. Thus, from the chemical analysis of the deactivated catalyst, the deactivation of Fe-ZSM-5 can be predicted.

  5. Identification of the arsenic resistance on MoO3 doped CeO2/TiO2 catalyst for selective catalytic reduction of NOx with ammonia.

    Science.gov (United States)

    Li, Xiang; Li, Xiansheng; Li, Junhua; Hao, Jiming

    2016-11-15

    Arsenic resistance on MoO3 doped CeO2/TiO2 catalysts for selective catalytic reduction of NOx with NH3 (NH3-SCR) is investigated. It is found that the activity loss of CeO2-MoO3/TiO2 caused by As oxide is obvious less than that of CeO2/TiO2 catalysts. The fresh and poisoned catalysts are compared and analyzed using XRD, Raman, XPS, H2-TPR and in situ DRIFTS. The results manifest that the introduction of arsenic oxide to CeO2/TiO2 catalyst not only weakens BET surface area, surface acid sites and adsorbed NOx species, but also destroy the redox circle of Ce(4+) to Ce(3+) because of interaction between Ce and As. When MoO3 is added into CeO2/TiO2 system, the main SCR reaction path are found to be changed from the reaction between coordinated NH3 and ad-NOx species to that between an amide and gaseous NO. Additionally, for CeO2-MoO3/TiO2 catalyst, As toxic effect on active sites CeO2 can be released because of stronger As-Mo interaction. Moreover, not only are the reactable Brønsted and Lewis acid sites partly restored, but the cycle of Ce(4+) to Ce(3+) can also be free to some extent.

  6. Interaction Induced High Catalytic Activities of CoO Nanoparticles Grown on Nitrogen-Doped Hollow Graphene Microspheres for Oxygen Reduction and Evolution Reactions

    Science.gov (United States)

    Jiang, Zhong-Jie; Jiang, Zhongqing

    2016-06-01

    Nitrogen doped graphene hollow microspheres (NGHSs) have been used as the supports for the growth of the CoO nanoparticles. The nitrogen doped structure favors the nucleation and growth of the CoO nanoparticles and the CoO nanoparticles are mostly anchored on the quaternary nitrogen doped sites of the NGHSs with good monodispersity since the higher electron density of the quaternary nitrogen favors the nucleation and growth of the CoO nanoparticles through its coordination and electrostatic interactions with the Co2+ ions. The resulting NGHSs supported CoO nanoparticles (CoO/NGHSs) are highly active for the oxygen reduction reaction (ORR) with activity and stability higher than the Pt/C and for the oxygen evolution reaction (OER) with activity and stability comparable to the most efficient catalysts reported to date. This indicates that the CoO/NGHSs could be used as efficient bi-functional catalysts for ORR and OER. Systematic analysis shows that the superior catalytic activities of the CoO/NGHSs for ORR and OER mainly originate from the nitrogen doped structure of the NGHSs, the small size of the CoO nanoparticles, the higher specific and electroactive surface area of the CoO/NGHSs, the good electric conductivity of the CoO/NGHSs, the strong interaction between the CoO nanoparticles and the NGHSs, etc.

  7. Fe-N-C electrocatalysts for oxygen reduction reaction synthesized by using aniline salt and Fe3+/H2O2 catalytic system

    KAUST Repository

    Bukola, Saheed

    2014-11-01

    Non-precious metal (NPM) catalysts are synthesized by polymerizing aniline salt using an aqueous Fe3+/H2O2 coupled catalytic system on a carbon matrix with a porous creating agent. The sulfur containing compunds such as ammonium peroxydisulfate, are eliminated in this method resulting in a much simpler process. The catalysts\\' porous structures are enhanced with ammonium carbonate as a sacrificial material that yields voids when decomposed during the heat treatment at 900 °C in N2 atmosphere. Two catalysts Fe-N-C/Vu and Fe-N-C/KB (Vu = Vulcan and KB = Ketjen black) were synthesized and characterized. Their oxygen reduction reaction (ORR) activities were investigated using a rotating ring-disk electrode (RRDE) in both 0.1 M KOH and 0.1 M HClO4. The catalysts show improved ORR activities close to that of Pt-based catalysts, low H2O2 formation and also demonstrated a remarkable tolerance towards methanol oxidation.

  8. Selective catalytic reduction of NO by C2H2 over Ce-Al2O3 catalyst with rate-determining step of NO oxidation

    Institute of Scientific and Technical Information of China (English)

    Suhua Yan; Xinping Wang; Wenchen Wang; Zequn Liu; Jiahao Niu

    2012-01-01

    Ce-Al2O3 catalysts prepared by co-precipitation are investigated both in NO oxidation by O2 and in selective catalytic reduction of NO by C2H2 (C2H2-SCR).It is found that C2H2-SCR is initiated and controlled by NO oxidation to NO2 over A12O3.Ce loading on Al2O3 is almost inactive for NO oxidation below 350 ℃,since NO2 strongly adsorbs on cerium oxide,leading to the active sites being blocked,which was characterized by temperature-programmed desorption of NO and NO2 and Fourier transform infrared spectroscopy after NO+O2 coadsorption over the samples.However,in the case of C2H2-SCR,Ce loading on Al2O3 significantly improves the reaction by accelerating the NO oxidation step in the temperature range of 250-450 ℃,since the nitrate species produced by NO2 adsorption is an active intermediate required by C2H2-SCR.

  9. Facile approach to synthesize uniform Au@mesoporous SnO{sub 2} yolk–shell nanoparticles and their excellent catalytic activity in 4-nitrophenol reduction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ya [Changchun University of Science and Technology, School of Chemistry & Environmental Engineering (China); Li, Lu; Wang, Chungang, E-mail: wangcg925@nenu.edu.cn [Northeast Normal University, Faculty of Chemistry (China); Wang, Tingting, E-mail: wangtt@cust.edu.cn [Changchun University of Science and Technology, School of Chemistry & Environmental Engineering (China)

    2016-01-15

    Monodispersed and uniform Au@mesoporous SnO{sub 2} yolk–shell nanoparticles (Au@mSnO{sub 2} yolk–shell NPs) composed of the moveable Au NP cores and mSnO{sub 2} shells have been successfully fabricated via a facile and reproducible approach. The outside mSnO{sub 2} shells of Au@mSnO{sub 2} yolk–shell NPs not only prevent Au NPs from aggregating and corroding by the reaction solution but also allow the Au NPs to contact with reactant molecules easily through the mesoporous channels. The obtained Au@mSnO{sub 2} yolk–shell NPs are characterized by means of transmission electron microscope, scanning electron microscopy, X-ray powder diffraction, X-ray photoelectron spectrum, and UV–vis absorption spectroscopy. The synthesized materials exhibit excellent catalytic performance and high stability towards the reduction of 4-nitrophenol with NaBH{sub 4} as a reducing agent, which may be ascribed to their high specific surface area and unique mesoporous structure. Moreover, the synthetic strategy reported in this paper can be extended to fabricate a series of multifunctional noble metal@metal oxide yolk–shell nanocomposite materials with unique properties for various applications.

  10. NH3-SCR performance of fresh and hydrothermally aged Fe-ZSM-5 in standard and fast selective catalytic reduction reactions.

    Science.gov (United States)

    Shi, Xiaoyan; Liu, Fudong; Xie, Lijuan; Shan, Wenpo; He, Hong

    2013-04-01

    Hydrothermal stability is one of the challenges for the practical application of Fe-ZSM-5 catalysts in the selective catalytic reduction (SCR) of NO with NH3 (NH(3)-SCR) for diesel engines. The presence of NO(3) in the exhaust gases can enhance the deNOx activity because of the fast SCR reaction. In this work, a Fe-ZSM-5 catalyst was prepared by a solid-state ion-exchange method and was hydrothermally deactivated at 800 °C in the presence of 10% H(2)O. The activity of fresh and hydrothermal aged Fe-ZSM-5 catalysts was investigated in standard SCR (NO(2)/NOx = 0) and in fast SCR with NO(2)/NOx = 0.3 and 0.5. In standard SCR, hydrothermal aging of Fe-ZSM-5 resulted in a significant decrease of low-temperature activity and a slight increase in high-temperature activity. In fast SCR, NOx conversion over aged Fe-ZSM-5 was significantly increased but was still lower than that over fresh catalyst. Additionally, production of N(2)O in fast SCR was much more apparent over aged Fe-ZSM-5 than over fresh catalyst. We propose that, in fast SCR, the rate of key reactions related to NO is slower over aged Fe-ZSM-5 than over fresh catalyst, thus increasing the probabilities of side reactions involving the formation of N(2)O.

  11. Study on the mechanism of NH3-selective catalytic reduction over CuCexZr1-x/TiO2

    Science.gov (United States)

    Chen, Xujuan; Sun, Xiaoliang; Gong, Cairong; Lv, Gang; Song, Chonglin

    2016-06-01

    Copper-cerium-zirconium catalysts loaded on TiO2 prepared by a wet impregnation method were investigated for NH3-selective catalytic reduction (SCR) of NOx. The reaction mechanism was proposed on the basis of results from in situ diffuse reflectance infrared transform spectroscopy (DRIFT). When NH3 is introduced, ammonia bonded to Lewis acid sites is more stable over CuCe0.25Zr0.75/TiO2 at high temperature, while Brønsted acid sites are more important than Lewis acid sites at low temperature. For the NH3+NO+O2 co-adsorption, NH3 species occupy most of activity sites on CuCe0.25Zr0.75/TiO2 catalyst, and mainly exist in the forms of NH4 + (at low temperature) and NH3 coordinated (at high temperature), playing a crucial role in the NH3-SCR process. Two different reaction routes, the L-H mechanism at low temperature ( 200°C), are presented for the SCR reaction over CuCe0.25Zr0.75/TiO2 catalyst.

  12. Adaptation of HepG2 cells to a steady-state reduction in the content of protein phosphatase 6 (PP6) catalytic subunit

    Energy Technology Data Exchange (ETDEWEB)

    Boylan, Joan M. [Department of Pediatrics, Brown University and Rhode Island Hospital, Providence, RI (United States); Salomon, Arthur R. [Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI (United States); Department of Chemistry, Brown University, Providence, RI (United States); Tantravahi, Umadevi [Division of Genetics, Department of Pathology, Brown University and Women and Infants Hospital, Providence, RI (United States); Gruppuso, Philip A., E-mail: philip_gruppuso@brown.edu [Department of Pediatrics, Brown University and Rhode Island Hospital, Providence, RI (United States); Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI (United States)

    2015-07-15

    Protein phosphatase 6 (PP6) is a ubiquitous Ser/Thr phosphatase involved in an array of cellular processes. To assess the potential of PP6 as a therapeutic target in liver disorders, we attenuated expression of the PP6 catalytic subunit in HepG2 cells using lentiviral-transduced shRNA. Two PP6 knock-down (PP6KD) cell lines (90% reduction of PP6-C protein content) were studied in depth. Both proliferated at a rate similar to control cells. However, flow cytometry indicated G2/M cell cycle arrest that was accounted for by a shift of the cells from a diploid to tetraploid state. PP6KD cells did not show an increase in apoptosis, nor did they exhibit reduced viability in the presence of bleomycin or taxol. Gene expression analysis by microarray showed attenuated anti-inflammatory signaling. Genes associated with DNA replication were downregulated. Mass spectrometry-based phosphoproteomic analysis yielded 80 phosphopeptides representing 56 proteins that were significantly affected by a stable reduction in PP6-C. Proteins involved in DNA replication, DNA damage repair and pre-mRNA splicing were overrepresented among these. PP6KD cells showed intact mTOR signaling. Our studies demonstrated involvement of PP6 in a diverse set of biological pathways and an adaptive response that may limit the effectiveness of targeting PP6 in liver disorders. - Highlights: • Lentiviral-transduced shRNA was used to generate a stable knockdown of PP6 in HepG2 cells. • Cells adapted to reduced PP6; cell proliferation was unaffected, and cell survival was normal. • However, PP6 knockdown was associated with a transition to a tetraploid state. • Genomic profiling showed downregulated anti-inflammatory signaling and DNA replication. • Phosphoproteomic profiling showed changes in proteins associated with DNA replication and repair.

  13. Catalytic activity of Pt anchored onto graphite nanofiber-poly (3,4-ethylenedioxythiophene) composite toward oxygen reduction reaction in polymer electrolyte fuel cells

    International Nuclear Information System (INIS)

    Highlights: • GNF–PEDOT is explored as a catalyst support for PEFCs. • PEDOT bridges the Pt nanoparticles with GNF via π–π interaction. • Binding strength between Pt and GNF is improved and hence mitigates Pt aggregation. • GNF–PEDOT composite enhances ORR activity and durability in fuel cells. -- Abstract: The potential of graphite nanofiber (GNF)–Poly(3,4-ethylenedioxythiophene) (PEDOT) composite is explored as a catalyst support for polymer electrolyte fuel cells (PEFCs). Due to electron accepting nature of GNF and electron donating nature of PEDOT, the monomer EDOT adsorbs on the surface of GNF due to strong electrostatic π–π interaction. Pt nanoparticles are impregnated on GNF–PEDOT composite by ethylene glycol reduction method and their effects on electro catalytic activity for oxygen reduction reaction (ORR) are systemically studied. Pt particles supported on GNF–PEDOT with catalyst loading of 0.2 mg cm−2 exhibit a peak power density of 537 mW cm−2 at a load current density of 1120 mA cm−2, while it was only 338 mW cm−2 at a load current density of 720 mA cm−2 in case of Pt particles supported on pristine GNF. The superior behavior of GNF–PEDOT supported Pt catalyst could be exclusively credited to the high graphitic nature of GNF and their mild functionalization with PEDOT increasing uniform dispersion of Pt. Indeed, the non-destructive functionalization of GNF with conducting polymer, such as PEDOT, makes them promising catalyst-supports for PEFCs

  14. Synthesis of small silver nanoparticles under light radiation by fungus Penicillium oxalicum and its application for the catalytic reduction of methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Du, Liangwei, E-mail: dulily9@163.com [State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi (China); College of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi (China); Xu, Qiuhong; Huang, Meiying [State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi (China); College of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi (China); Xian, Liang [State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi (China); College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi (China); Feng, Jia-Xun, E-mail: jiaxunfeng@sohu.com [State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi (China); College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, Guangxi (China)

    2015-06-15

    At present, green and efficient synthetic strategies have been gaining great interest for the synthesis of metal nanoparticles. In this study, the synthesis of extracellular silver nanoparticles (AgNPs) under light radiation was described using the cell filtrate of Penicillium oxalicum 1–208. The pH effect of the cell filtrate on nanosynthesis was investigated by visual observation, ultraviolet–visible absorption spectroscopy, dynamic light scattering and zeta potential. The results showed that the pH of the cell filtrate affected the time of nanosynthesis, and the size, size distribution and stability of the synthesized nanoparticles. The AgNPs synthesized at pH 8.0 and 12.0 were further characterized by X-ray diffraction, selected area electron diffraction, energy-dispersive X-ray spectroscopy and transmission electron microscopy. The synthesized AgNPs were spherical in shape, crystalline in nature and preferentially oriented in (111) plane. Small AgNPs with an average particle size of about 4 nm were successfully synthesized at pH 12.0 and well dispersed in solution without obvious aggregation. Furthermore, the AgNPs synthesized at pH 8.0 were used as catalyst and exhibited excellent catalytic activity for the reduction of methylene blue in the presence of NaBH{sub 4} at ambient temperature. - Highlights: • Extracellular silver nanoparticles were synthesized using Penicillium oxalicum assisted by simulated sunlight. • The pH of the cell filtrate affected the synthesis of silver nanoparticles. • The silver nanoparticles were more stable in weakly alkaline and alkaline solutions. • Small silver nanoparticles with good dispersibility and stability were rapidly synthesized at pH 12.0. • The reduction of methylene blue was instantly completed with silver nanoparticles synthesized at pH 8.0 used as catalyst.

  15. Synergy of CuO and CeO2 combination for mercury oxidation under low-temperature selective catalytic reduction atmosphere

    KAUST Repository

    Li, Hailong

    2016-07-19

    Synergy for low temperature Hg0 oxidation under selective catalytic reduction (SCR) atmosphere was achieved when copper oxides and cerium oxides were combined in a CuO-CeO2/TiO2 (CuCeTi) catalyst. Hg0 oxidation efficiency as high as 99.0% was observed on the CuCeTi catalyst at 200 °C, even the gas hourly space velocity was extremely high. To analyze the synergistic effect, comparisons of catalyst performance in the presence of different SCR reaction gases were systematically conducted over CuO/TiO2 (CuTi), CeO2/TiO2 (CeTi) and CuCeTi catalysts prepared by sol-gel method. The interactions between copper oxides and cerium oxides in CuCeTi catalyst yielded more surface chemisorbed oxygen, and facilitated the conversion of gas-phase O2 to surface oxygen, which are favorable for Hg0 oxidation. Copper oxides in the combination interacted with NO forming more chemisorbed oxygen for Hg0 oxidation in the absence of gas-phase O2. Cerium oxides in the combination promoted Hg0 oxidation through enhancing the transformations of NO to NO2. In the absence of NO, NH3 exhibited no inhibitive effect on Hg0 oxidation, because enough Lewis acid sites due to the combination of copper oxides and cerium oxides scavenged the competitive adsorption between NH3 and Hg0. In the presence of NO, although NH3 lowered Hg0 oxidation rate through inducing reduction of oxidized mercury, complete recovery of Hg0 oxidation activity over the CuCeTi catalyst was quickly achieved after cutting off NH3. This study revealed the synergistic effect of the combination of copper oxides and cerium oxides on Hg0 oxidation, and explored the involved mechanisms. Such knowledge would help obtaining maximum Hg0 oxidation co-benefit from SCR units in coal-fired power plants.

  16. Chiral separation by enantioselective liquid-liquid extraction

    NARCIS (Netherlands)

    Schuur, B.; Verkuijl, B. J. V.; Minnaard, A. J.; De Vries, J. G.; Heeres, H. J.; Feringa, B. L.

    2011-01-01

    The literature on enantioselective liquid-liquid extraction (ELLE) spans more than half a century of research. Nonetheless, a comprehensive overview has not appeared during the past few decades. Enantioselective liquid-liquid extraction is a technology of interest for a wide range of chemists and ch

  17. Chiral amides via copper-catalysed enantioselective conjugate addition

    NARCIS (Netherlands)

    Schoonen, Anne K.; Fernández-Ibáñez, M. Ángeles; Fañanás-Mastral, Martín; Teichert, Johannes F.; Feringa, Bernard

    2014-01-01

    A highly enantioselective one pot procedure for the synthesis of β-substituted amides was developed starting from the corresponding α,β-unsaturated esters. This new methodology is based on the copper-catalysed enantioselective conjugate addition of Grignard reagents to α,β-unsaturated esters and sub

  18. Low absorption vitreous carbon reactors for operando XAS: a case study on Cu/Zeolites for selective catalytic reduction of NO(x) by NH3.

    Science.gov (United States)

    Kispersky, Vincent F; Kropf, A Jeremy; Ribeiro, Fabio H; Miller, Jeffrey T

    2012-02-21

    We describe the use of vitreous carbon as an improved reactor material for an operando X-ray absorption spectroscopy (XAS) plug-flow reactor. These tubes significantly broaden the operating range for operando experiments. Using selective catalytic reduction (SCR) of NO(x) by NH(3) on Cu/Zeolites (SSZ-13, SAPO-34 and ZSM-5) as an example reaction, we illustrate the high-quality XAS data achievable with these reactors. The operando experiments showed that in Standard SCR conditions of 300 ppm NO, 300 ppm NH(3), 5% O(2), 5% H(2)O, 5% CO(2) and balance He at 200 °C, the Cu was a mixture of Cu(I) and Cu(II) oxidation states. XANES and EXAFS fitting found the percent of Cu(I) to be 15%, 45% and 65% for SSZ-13, SAPO-34 and ZSM-5, respectively. For Standard SCR, the catalytic rates per mole of Cu for Cu/SSZ-13 and Cu/SAPO-34 were about one third of the rate per mole of Cu on Cu/ZSM-5. Based on the apparent lack of correlation of rate with the presence of Cu(I), we propose that the reaction occurs via a redox cycle of Cu(I) and Cu(II). Cu(I) was not found in in situ SCR experiments on Cu/Zeolites under the same conditions, demonstrating a possible pitfall of in situ measurements. A Cu/SiO(2) catalyst, reduced in H(2) at 300 °C, was also used to demonstrate the reactor's operando capabilities using a bending magnet beamline. Analysis of the EXAFS data showed the Cu/SiO(2) catalyst to be in a partially reduced Cu metal-Cu(I) state. In addition to improvements in data quality, the reactors are superior in temperature, stability, strength and ease of use compared to previously proposed borosilicate glass, polyimide tubing, beryllium and capillary reactors. The solid carbon tubes are non-porous, machinable, can be operated at high pressure (tested at 25 bar), are inert, have high material purity and high X-ray transmittance.

  19. The effect of soot on ammonium nitrate species and NO2 selective catalytic reduction over Cu-zeolite catalyst-coated particulate filter.

    Science.gov (United States)

    Mihai, Oana; Tamm, Stefanie; Stenfeldt, Marie; Olsson, Louise

    2016-02-28

    A selective catalytic reduction (SCR)-coated particulate filter was evaluated by means of dynamic tests performed using NH3, NO2, O2 and H2O. The reactions were examined both prior to and after soot removal in order to study the effect of soot on ammonium nitrate formation and decomposition, ammonia storage and NO2 SCR. A slightly larger ammonia storage capacity was observed when soot was present in the sample, which indicated that small amounts of ammonia can adsorb on the soot. Feeding of NO2 and NH3 in the presence of O2 and H2O at low temperature (150, 175 and 200°C) leads to a large formation of ammonium nitrate species and during the subsequent temperature ramp using H2O and argon, a production of nitrous oxides was observed. The N2O formation is often related to ammonium nitrate decomposition, and our results showed that the N2O formation was clearly decreased by the presence of soot. We therefore propose that in the presence of soot, there are fewer ammonium nitrate species on the surface due to the interactions with the soot. Indeed, we do observe CO2 production during the reaction conditions also at 150°C, which shows that there is a reaction with these species and soot. In addition, the conversion of NOx due to NO2 SCR was significantly enhanced in the presence of soot; we attribute this to the smaller amount of ammonium nitrate species present in the experiments where soot is available since it is well known that ammonium nitrate formation is a major problem at low temperature due to the blocking of the catalytic sites. Further, a scanning electron microscopy analysis of the soot particles shows that they are about 30-40 nm and are therefore too large to enter the pores of the zeolites. There are likely CuxOy or other copper species available on the outside of the zeolite crystallites, which could have been enhanced due to the hydrothermal treatment at 850°C of the SCR-coated filter prior to the soot loading. We therefore propose that soot is

  20. Low Absorption Vitreous Carbon Reactors for Operando XAS: A Case Study on Cu/Zeolites for Selective Catalytic Reduction of NOx by NH3

    Energy Technology Data Exchange (ETDEWEB)

    Kispersky, Vincent F.; Kropf, Jeremy; Ribeiro, Fabio H; Miller, Jeffrey T

    2012-01-01

    We describe the use of vitreous carbon as an improved reactor material for an operando X-ray absorption spectroscopy (XAS) plug-flow reactor. These tubes significantly broaden the operating range for operando experiments. Using selective catalytic reduction (SCR) of NOx by NH₃ on Cu/Zeolites (SSZ-13, SAPO-34 and ZSM-5) as an example reaction, we illustrate the high-quality XAS data achievable with these reactors. The operando experiments showed that in Standard SCR conditions of 300 ppm NO, 300 ppm NH₃, 5% O₂, 5% H₂O, 5% CO₂ and balance He at 200 °C, the Cu was a mixture of Cu(I) and Cu(II) oxidation states. XANES and EXAFS fitting found the percent of Cu(I) to be 15%, 45% and 65% for SSZ-13, SAPO-34 and ZSM-5, respectively. For Standard SCR, the catalytic rates per mole of Cu for Cu/SSZ-13 and Cu/SAPO-34 were about one third of the rate per mole of Cu on Cu/ZSM-5. Based on the apparent lack of correlation of rate with the presence of Cu(I), we propose that the reaction occurs via a redox cycle of Cu(I) and Cu(II). Cu(I) was not found in in situSCR experiments on Cu/Zeolites under the same conditions, demonstrating a possible pitfall of in situ measurements. A Cu/SiO₂ catalyst, reduced in H₂ at 300 °C, was also used to demonstrate the reactor's operando capabilities using a bending magnet beamline. Analysis of the EXAFS data showed the Cu/SiO₂ catalyst to be in a partially reduced Cu metal–Cu(I) state. In addition to improvements in data quality, the reactors are superior in temperature, stability, strength and ease of use compared to previously proposed borosilicate glass, polyimide tubing, beryllium and capillary reactors. The solid carbon tubes are non-porous, machinable, can be operated at high pressure (tested at 25 bar), are inert, have high material purity and high X-ray transmittance.

  1. Low absorption vitreous carbon reactors for operando XAS: a case study on Cu/Zeolites for selective catalytic reduction of NO(x) by NH3.

    Science.gov (United States)

    Kispersky, Vincent F; Kropf, A Jeremy; Ribeiro, Fabio H; Miller, Jeffrey T

    2012-02-21

    We describe the use of vitreous carbon as an improved reactor material for an operando X-ray absorption spectroscopy (XAS) plug-flow reactor. These tubes significantly broaden the operating range for operando experiments. Using selective catalytic reduction (SCR) of NO(x) by NH(3) on Cu/Zeolites (SSZ-13, SAPO-34 and ZSM-5) as an example reaction, we illustrate the high-quality XAS data achievable with these reactors. The operando experiments showed that in Standard SCR conditions of 300 ppm NO, 300 ppm NH(3), 5% O(2), 5% H(2)O, 5% CO(2) and balance He at 200 °C, the Cu was a mixture of Cu(I) and Cu(II) oxidation states. XANES and EXAFS fitting found the percent of Cu(I) to be 15%, 45% and 65% for SSZ-13, SAPO-34 and ZSM-5, respectively. For Standard SCR, the catalytic rates per mole of Cu for Cu/SSZ-13 and Cu/SAPO-34 were about one third of the rate per mole of Cu on Cu/ZSM-5. Based on the apparent lack of correlation of rate with the presence of Cu(I), we propose that the reaction occurs via a redox cycle of Cu(I) and Cu(II). Cu(I) was not found in in situ SCR experiments on Cu/Zeolites under the same conditions, demonstrating a possible pitfall of in situ measurements. A Cu/SiO(2) catalyst, reduced in H(2) at 300 °C, was also used to demonstrate the reactor's operando capabilities using a bending magnet beamline. Analysis of the EXAFS data showed the Cu/SiO(2) catalyst to be in a partially reduced Cu metal-Cu(I) state. In addition to improvements in data quality, the reactors are superior in temperature, stability, strength and ease of use compared to previously proposed borosilicate glass, polyimide tubing, beryllium and capillary reactors. The solid carbon tubes are non-porous, machinable, can be operated at high pressure (tested at 25 bar), are inert, have high material purity and high X-ray transmittance. PMID:22158950

  2. The effect of soot on ammonium nitrate species and NO2 selective catalytic reduction over Cu-zeolite catalyst-coated particulate filter.

    Science.gov (United States)

    Mihai, Oana; Tamm, Stefanie; Stenfeldt, Marie; Olsson, Louise

    2016-02-28

    A selective catalytic reduction (SCR)-coated particulate filter was evaluated by means of dynamic tests performed using NH3, NO2, O2 and H2O. The reactions were examined both prior to and after soot removal in order to study the effect of soot on ammonium nitrate formation and decomposition, ammonia storage and NO2 SCR. A slightly larger ammonia storage capacity was observed when soot was present in the sample, which indicated that small amounts of ammonia can adsorb on the soot. Feeding of NO2 and NH3 in the presence of O2 and H2O at low temperature (150, 175 and 200°C) leads to a large formation of ammonium nitrate species and during the subsequent temperature ramp using H2O and argon, a production of nitrous oxides was observed. The N2O formation is often related to ammonium nitrate decomposition, and our results showed that the N2O formation was clearly decreased by the presence of soot. We therefore propose that in the presence of soot, there are fewer ammonium nitrate species on the surface due to the interactions with the soot. Indeed, we do observe CO2 production during the reaction conditions also at 150°C, which shows that there is a reaction with these species and soot. In addition, the conversion of NOx due to NO2 SCR was significantly enhanced in the presence of soot; we attribute this to the smaller amount of ammonium nitrate species present in the experiments where soot is available since it is well known that ammonium nitrate formation is a major problem at low temperature due to the blocking of the catalytic sites. Further, a scanning electron microscopy analysis of the soot particles shows that they are about 30-40 nm and are therefore too large to enter the pores of the zeolites. There are likely CuxOy or other copper species available on the outside of the zeolite crystallites, which could have been enhanced due to the hydrothermal treatment at 850°C of the SCR-coated filter prior to the soot loading. We therefore propose that soot is

  3. Chiral separation by enantioselective liquid-liquid extraction.

    Science.gov (United States)

    Schuur, Boelo; Verkuijl, Bastiaan J V; Minnaard, Adriaan J; de Vries, Johannes G; Heeres, Hero J; Feringa, Ben L

    2011-01-01

    The literature on enantioselective liquid-liquid extraction (ELLE) spans more than half a century of research. Nonetheless, a comprehensive overview has not appeared during the past few decades. Enantioselective liquid-liquid extraction is a technology of interest for a wide range of chemists and chemical engineers in the fields of fine chemicals, pharmaceuticals, agrochemicals, fragrances and foods. In this review the principles and advances of resolution through enantioselective liquid-liquid extraction are discussed, starting with an introduction on the principles of enantioselective liquid-liquid extraction including host-guest chemistry, extraction and phase transfer mechanisms, and multistage liquid-liquid extraction processing. Then the literature on enantioselective liquid-liquid extraction systems is reviewed, structured on extractant classes. The following extractant classes are considered: crown ether based extractants, metal complexes and metalloids, extractants based on tartrates, and a final section with all other types of chiral extractants. PMID:21107491

  4. Assessment of Malawi’s success in child mortality reduction through the lens of the Catalytic Initiative Integrated Health Systems Strengthening programme: Retrospective evaluation

    Directory of Open Access Journals (Sweden)

    Tanya Doherty

    2015-12-01

    Full Text Available Malawi is estimated to have achieved its Millennium Development Goal (MDG 4 target. This paper explores factors influencing progress in child survival in Malawi including coverage of interventions and the role of key national policies. We performed a retrospective evaluation of the Catalytic Initiative (CI programme of support (2007–2013. We developed estimates of child mortality using four population household surveys undertaken between 2000 and 2010. We recalculated coverage indicators for high impact child health interventions and documented child health programmes and policies. The Lives Saved Tool (LiST was used to estimate child lives saved in 2013. The mortality rate in children under 5 years decreased rapidly in the 10 CI districts from 219 deaths per 1000 live births (95% confidence interval (CI 189 to 249 in the period 1991–1995 to 119 deaths (95% CI 105 to 132 in the period 2006–2010. Coverage for all indicators except vitamin A supplementation increased in the 10 CI districts across the time period 2000 to 2013. The LiST analysis estimates that there were 10 800 child deaths averted in the 10 CI districts in 2013, primarily attributable to the introduction of the pneumococcal vaccine (24% and increased household coverage of insecticide–treated bednets (19%. These improvements have taken place within a context of investment in child health policies and scale up of integrated community case management of childhood illnesses. Malawi provides a strong example for countries in sub–Saharan Africa of how high impact child health interventions implemented within a decentralised health system with an established community–based delivery platform, can lead to significant reductions in child mortality.

  5. SnxTi1-xO2 Solid Solution Catalysts for Nitrogen Oxide Selective Catalytic Reduction by Propene in Presence of Oxygen

    Institute of Scientific and Technical Information of China (English)

    尉继英; 马军; 朱月香; 蔡小海; 谢有畅

    2001-01-01

    A series of SnO2-TiO2 binary oxide catalysts prepared by cocurrent precipitation method was found to be a novel and good system for the selective catalytic reduction of NO by propene in the presence of oxygen with high activity and good selectivity to N2. The NO conversion to N2 over SnO2-TiO2 oxide catalysts varied with SnO2 content and attainted a maximum at 65% over the catalyst with SnO2 content at 40wt% for a feed with 1186 ppm NO, 948 ppm propene and 2.23% O2 in He and a space velocity of 15000 h-1 at 350℃. The SnO2-TiO2catalysts could sustain moderate activity in the presence of 10% steam. Because of the identical valence and the similar radius of Sn4+ and Ti4+ , SnO2-TiO2 binary oxides can form solid solution in three different phases as proved by XRD,electron diffraction and TPR. Sn4+ is the main active species in the SnO2-TiO2 catalysts, and it is enriched on the solid solution surface as tested by XPS analysis. H2-TPR, NH3-TPD and BET tests show that SnO2-TiO2 solid solution can dilute SnO2 and suppress the activity of propene complete oxidation over SnO2. This may be beneficial to the reactivity enhancement of NO conversion.

  6. A Comparative Study of N2O Formation during the Selective Catalytic Reduction of NOx with NH3 on Zeolite Supported Cu Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hai-Ying; Wei, Zhehao; Kollar, Marton; Gao, Feng; Wang, Yilin; Szanyi, Janos; Peden, Charles HF

    2015-09-01

    A comparative study was carried out on a small-pore CHA.Cu and a large-pore BEA.Cu zeolite catalyst to understand the lower N2O formation on small-pore zeolite supported Cu catalysts in the selective catalytic reduction (SCR) of NOx with NH3. On both catalysts, the N2O yield increases with an increase in the NO2/NOx ratios of the feed gas, suggesting N2O formation via the decomposition of NH4NO3. Temperature-programmed desorption experiments reveal that NH4NO3 is more stable on CHA.Cu than on BEA.Cu. In situ FTIR spectra following stepwise (NO2 + O2) and (15NO + NH3 + O2) adsorption and reaction, and product distribution analysis using isotope-labelled reactants, unambiguously prove that surface nitrate groups are essential for the formation of NH4NO3. Furthermore, CHA.Cu is shown to be considerably less active than BEA.Cu in catalyzing NO oxidation and the subsequent formation of surface nitrate groups. Both factors, i.e., (1) the higher thermal stability of NH4NO3 on CHA.Cu, and (2) the lower activity for this catalyst to catalyze NO oxidation and the subsequent formation of surface nitrates, likely contribute to the higher SCR selectivity with less N2O formation on this catalyst as compared to BEA.Cu. The latter is determined as the primary reason since surface nitrates are the source that leads to the formation of NH4NO3 on the catalysts.

  7. Active sites, deactivation and stabilization of Fe-ZSM-5 for the selective catalytic reduction (SCR) of NO with NH(3).

    Science.gov (United States)

    Kröcher, Oliver; Brandenberger, Sandro

    2012-01-01

    Fe-ZSM-5 has been systematically investigated as catalyst for the selective catalytic reduction (SCR) of NO with NH(3), concentrating on the active sites, the deactivation mechanism during hydrothermal aging and the chemical possibilities to stabilize this type of SCR catalyst. Regarding the active SCR sites, it could be shown that monomeric species start to become active at the lowest temperatures (E(a,app) ≈ 36.3 ± 0.2 kJ/mol), followed by dimeric species at intermediate temperatures (E(a,app) ≈ 77 ± 16 kJ/mol) and oligomeric species at high temperatures. Experiments with Fe-ZSM-5 samples, in which the Brønsted acidity was specifically removed, proved that Brønsted acidity is not required for high SCR activity and that NH(3) can also be adsorbed on other acidic sites on the zeolite surface. The hydrothermal deactivation of Fe-ZSM-5 could be explained by the migration of active iron ions from the exchange sites. Parallel to the iron migration dealumination of the zeolite framework occurs, which has to be regarded as an independent process. The migration of iron can be reduced by the targeted reaction of the aluminum hydroxide groups in the lattice with trimethylaluminium followed by calcination. With respect to the application of iron zeolites in the SCR process in diesel vehicles, the most efficient stabilization method would be to switch from the ZSM-5 to the BEA structure type. The addition of NO(2) to the feed gas is another effective measure to increase the activity of even strongly deactivated iron zeolites tremendously. PMID:23211727

  8. Influence on the oxidative potential of a heavy-duty engine particle emission due to selective catalytic reduction system and biodiesel blend.

    Science.gov (United States)

    Godoi, Ricardo H M; Polezer, Gabriela; Borillo, Guilherme C; Brown, Andrew; Valebona, Fabio B; Silva, Thiago O B; Ingberman, Aline B G; Nalin, Marcelo; Yamamoto, Carlos I; Potgieter-Vermaak, Sanja; Penteado Neto, Renato A; de Marchi, Mary Rosa R; Saldiva, Paulo H N; Pauliquevis, Theotonio; Godoi, Ana Flavia L

    2016-08-01

    Although the particulate matter (PM) emissions from biodiesel fuelled engines are acknowledged to be lower than those of fossil diesel, there is a concern on the impact of PM produced by biodiesel to human health. As the oxidative potential of PM has been suggested as trigger for adverse health effects, it was measured using the Electron Spin Resonance (OP(ESR)) technique. Additionally, Energy Dispersive X-ray Fluorescence Spectroscopy (EDXRF) was employed to determine elemental concentration, and Raman Spectroscopy was used to describe the amorphous carbon character of the soot collected on exhaust PM from biodiesel blends fuelled test-bed engine, with and without Selective Catalytic Reduction (SCR). OP(ESR) results showed higher oxidative potential per kWh of PM produced from a blend of 20% soybean biodiesel and 80% ULSD (B20) engine compared with a blend of 5% soybean biodiesel and 95% ULSD (B5), whereas the SCR was able to reduce oxidative potential for each fuel. EDXRF data indicates a correlation of 0.99 between concentration of copper and oxidative potential. Raman Spectroscopy centered on the expected carbon peaks between 1100cm(-1) and 1600cm(-1) indicate lower molecular disorder for the B20 particulate matter, an indicative of a more graphitic carbon structure. The analytical techniques used in this study highlight the link between biodiesel engine exhaust and increased oxidative potential relative to biodiesel addition on fossil diesel combustion. The EDXRF analysis confirmed the prominent role of metals on free radical production. As a whole, these results suggest that 20% of biodiesel blends run without SCR may pose an increased health risk due to an increase in OH radical generation. PMID:27101453

  9. Fabrication of Bi-Fe{sub 3}O{sub 4}@RGO hybrids and their catalytic performance for the reduction of 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuefang; Xia, Fengling; Li, Xichuan; Xu, Xiaoyang; Wang, Huan; Yang, Nian; Gao, Jianping, E-mail: jianpinggaols@126.com [Tianjin University, School of Science (China)

    2015-11-15

    Nanocatalysts are frequently connected to magnetic nanoparticles. These composites are easy to be retrieved from the reaction system under a magnetic field because of their magnetic properties. Magnetic separation is particularly promising in industry since it can solve many issues present in filtration, centrifugation, or gravitation separation. Herein, a facile method to prepare bismuth and Fe{sub 3}O{sub 4} nanoparticles loaded on reduced graphene oxide magnetic hybrids (Bi-Fe{sub 3}O{sub 4}@RGO) using soluble starch as a dispersant is demonstrated. The magnetic Fe{sub 3}O{sub 4} nanoparticles were synthesized by the co-precipitation of Fe{sup 2+} and Fe{sup 3+} ions, and Bi nanoparticles were fabricated by the redox reactions between sodium borohydride and ammonium bismuth citrate in the presence of soluble starch. Transmission electron microscopy images demonstrate that the average diameter of the Fe{sub 3}O{sub 4} nanoparticles is about 5 nm and the diameters of Bi nanoparticles range from 10 to 20 nm. The magnetic Bi-Fe{sub 3}O{sub 4}@RGO hybrids exhibit high catalytic activity in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by NaBH{sub 4} with a first-order rate constant (K) of 0.00808 s{sup −1} and is magnetically recyclable for at least five cycles. This strategy provides an efficient and recyclable catalyst for the use in environmental protection applications.

  10. Active sites, deactivation and stabilization of Fe-ZSM-5 for the selective catalytic reduction (SCR) of NO with NH(3).

    Science.gov (United States)

    Kröcher, Oliver; Brandenberger, Sandro

    2012-01-01

    Fe-ZSM-5 has been systematically investigated as catalyst for the selective catalytic reduction (SCR) of NO with NH(3), concentrating on the active sites, the deactivation mechanism during hydrothermal aging and the chemical possibilities to stabilize this type of SCR catalyst. Regarding the active SCR sites, it could be shown that monomeric species start to become active at the lowest temperatures (E(a,app) ≈ 36.3 ± 0.2 kJ/mol), followed by dimeric species at intermediate temperatures (E(a,app) ≈ 77 ± 16 kJ/mol) and oligomeric species at high temperatures. Experiments with Fe-ZSM-5 samples, in which the Brønsted acidity was specifically removed, proved that Brønsted acidity is not required for high SCR activity and that NH(3) can also be adsorbed on other acidic sites on the zeolite surface. The hydrothermal deactivation of Fe-ZSM-5 could be explained by the migration of active iron ions from the exchange sites. Parallel to the iron migration dealumination of the zeolite framework occurs, which has to be regarded as an independent process. The migration of iron can be reduced by the targeted reaction of the aluminum hydroxide groups in the lattice with trimethylaluminium followed by calcination. With respect to the application of iron zeolites in the SCR process in diesel vehicles, the most efficient stabilization method would be to switch from the ZSM-5 to the BEA structure type. The addition of NO(2) to the feed gas is another effective measure to increase the activity of even strongly deactivated iron zeolites tremendously.

  11. Conjugate addition–enantioselective protonation reactions

    Science.gov (United States)

    Phelan, James P

    2016-01-01

    Summary The addition of nucleophiles to electron-deficient alkenes represents one of the more general and commonly used strategies for the convergent assembly of more complex structures from simple precursors. In this review the addition of diverse protic and organometallic nucleophiles to electron-deficient alkenes followed by enantioselective protonation is summarized. Reactions are first categorized by the type of electron-deficient alkene and then are further classified according to whether catalysis is achieved with chiral Lewis acids, organocatalysts, or transition metals. PMID:27559372

  12. Catalytically supported reduction of emissions from small-scale biomass furnace systems; Katalytisch unterstuetzte Minderung von Emissionen aus Biomasse-Kleinfeuerungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Ingo; Lenz, Volker; Schenker, Marian; Thiel, Christian [DBFZ Deutsches Biomasseforschungszentrum gemeinnuetzige GmbH, Leipzig (Germany); Kraus, Markus; Matthes, Mirjam; Roland, Ulf [Helmholtz-Zentrum fuer Umweltforschung GmbH - UFZ, Leipzig (Germany); Bindig, Rene; Einicke, Wolf-Dietrich [Leipzig Univ. (Germany)

    2011-06-29

    The increased use of solid biomass in small combustion for generating heat from renewable energy sources is unfortunately associated with increased emissions of airborne pollutants. The reduction is possible on the one hand by the use of high-quality modern furnaces to the latest state of the art. On the other hand, several promising approaches method for retrofitting small-scale furnaces are currently being developed that will allow an effective emission reduction by the subsequent treatment of the exhaust gas. The overview of current available emission control technologies for small-scale biomass combustion plants shows that there is still considerable need for research on the sustainable production of heat from solid biofuels. The amendment to the 1st BImSchV provides a necessary drastic reduction of discharged pollutants from small-scale biomass furnaces. When using the fuel wood in modern central heating boilers the required limits can be met at full load. However, dynamic load changes can cause brief dramatic emission increases even with wood central heating boilers. Firebox and control optimization must contribute in the future to a further reduction of emissions. The typical simple single-room fireplaces like hand-fed wood stoves are suitable under type test conditions to comply the limit values. By contrast, in practical operation, the harmful gas emissions be exceeded without secondary measures normally. The performed experimental investigations show that a reduction of both CO and of organic compounds by catalytic combustion is possible. In addition to developing specially adapted catalysts, it is necessary to provide additional dust separation by combined processes, since conventional catalysts are not suitable for deposition and retention of particulate matter or would lose their activity due to dust accumulation on the active surface, when the catalyst would act as a filter at the same time. To enable sufficiently high reaction temperatures and thus a

  13. The first catalytic asymmetric addition of diethylzinc to aldehyde promoted by chiral thiourea

    Institute of Scientific and Technical Information of China (English)

    Zhi Guo Qiao; Tian Hua Shen; Zhen Fang Fu; Jun Qi Li; Hong Wang; Qing Bao Song

    2011-01-01

    A series of C2-symmetric and asymmetric chiral thiourea derivatives were synthesized from commercial L-phenylalanine. All of the new compounds have been fully characterized by IR, 1H NMR, 13C NMR, MS spectra and elemental analyses. The chiral thioureas were used as chiral ligands in the catalytic enantioselective ethylation of aldehydes with diethylzinc, the corresponding sec-alcohols were gained with excellent enantioselectivities (up to 87.1 % ee) and high yields (up to 76.7%) after the conditions were optimized.

  14. Enantioselective Synthesis of Both Epimers at C-21 in the Proposed Structure of Cytotoxic Macrolide Callyspongiolide.

    Science.gov (United States)

    Ghosh, Arun K; Kassekert, Luke A

    2016-07-01

    Both epimers at C-21 in the proposed structure of (+)-callyspongiolide have been synthesized in a convergent and enantioselective manner. The 14-membered macrolide with a sensitive C2-C3 cis-olefin functionality was installed by a Yamaguchi macrolactonization of hydroxyl alkynoic acid followed by hydrogenation over Lindlar's catalyst. The C5 methyl stereocenter was constructed by a ring-closing olefin metathesis followed by addition of methyl cuprate to an α,β-unsaturated δ-lactone. Other key reactions are chiral Corey-Bakshi-Shibata (CBS) reduction and Sonogashira coupling to conjoin the macrocyclic core and side chain. PMID:27331421

  15. Enantioselective alcohol synthesis using ketoreductases, lipases or an aldolase

    NARCIS (Netherlands)

    Sorgedrager, M.J.

    2006-01-01

    The demand for optically pure secondary alcohols, which has grown rapidly in recent years, has spurred the development of adequate enantioselective synthetic procedures. Although there are various chemical methods available, biocatalysts are increasingly applied due to their natural characteristic t

  16. Multivalent polyglycerol supported imidazolidin-4-one organocatalysts for enantioselective Friedel–Crafts alkylations

    Directory of Open Access Journals (Sweden)

    Tommaso Pecchioli

    2015-05-01

    Full Text Available The first immobilization of a MacMillan’s first generation organocatalyst onto dendritic support is described. A modified tyrosine-based imidazolidin-4-one was grafted to a soluble high-loading hyperbranched polyglycerol via a copper-catalyzed alkyne–azide cycloaddition (CuAAC reaction and readily purified by dialysis. The efficiency of differently functionalized multivalent organocatalysts 4a–c was tested in the asymmetric Friedel–Crafts alkylation of N-methylpyrrole with α,β-unsaturated aldehydes. A variety of substituted enals was investigated to explore the activity of the catalytic system which was also compared with monovalent analogues. The catalyst 4b showed excellent turnover rates and no loss of activity due to immobilization, albeit moderate enantioselectivities were observed. Moreover, easy recovery by selective precipitation allowed the reuse of the catalyst for three cycles.

  17. Facile Synthesis of Chiral Diphosphine-Containing Multiple Dendrimeric Catalysts for Enantioselective Hydrogenation

    Institute of Scientific and Technical Information of China (English)

    赵立文; 刘继; 冯宇; 何艳梅; 范青华

    2012-01-01

    A new kind of chiral diphosphine PyrPhos-functionalized codendrimers have been synthesized via a liq- uid-phase strategy in high yields. The resulting dendrimeric PyrPhos ligands were purified by a simple solvent pre- cipitation without the need for chromatographic separation, and well characterized by 1H, 13C and 31p NMR, MALDI-TOF mass spectroscopy as well as elemental analysis. Their rhodium complexes were applied to the asymmetric hydrogenation of a-acetamido cinnamic acids. Excellent enantioselectivities were achieved, which are comparable to those with the corresponding small molecular catalysts. In addition, these codendrimeric catalysts showed better catalytic performance than the dendrimeric catalysts with Rh(PyrPhos) sites located in the focal point ofpoly(aryl ether) dendrons or in the periphery ofpoly(propyleneimine) dendrimers.

  18. Enantioselective Degradation of Triadimefon in Green-house Soil

    Directory of Open Access Journals (Sweden)

    Liu Hong Cheng

    2015-09-01

    Full Text Available To study enantioselctive degradation of triadimefon, the enantioselective degradation of triadimefon in greenhouse soil and normal soil were investigated in detail. The enantiomers of triadimefon were separated by Chiralpak AD column and determined by Liquid Chromatography Via Tandem Mass Spectrometry (LC-MS/MS. The degradation exhibited some enantioselective, resulting in a concentration order of R-(- tridimefon>S-(+ triadimefon and the degradation of triadimefon in greenhouse soils with high content of organic matter was faster than normal soil.

  19. Enantioselective Determination of Fluoxetine and Norfluoxetine in Wastewater

    OpenAIRE

    Ribeiro, Ana R.; Maia, Alexandra S.; Moreira, Irina S.; Afonso, Carlos; Castro, Paula M. L.; Tiritan, Maria E.

    2013-01-01

    Microbial degradation of chiral compounds during wastewater treatment processes can be enantioselective and needs chiral analytical methodology to discriminate the biodegradation of both enantiomers. An enantioselective HPLC-FD method was developed and validated to monitor the degradation of fluoxetine (FLX) enantiomers by wastewater and the possible formation of its metabolite norfluoxetine (NFLX). The Solid Phase Extraction (SPE) of 50 mL of wastewater samples on 500 mg ...

  20. Enantioselective Nazarov Cyclization Catalyzed by a Cinchona Alkaloid Derivative

    Science.gov (United States)

    Huang, Yu-Wen; Frontier, Alison J.

    2015-01-01

    Nucleophilic catalysts for a 1,6 addition/Nazarov cyclization/elimination sequence were evaluated for their ability to induce enantioselectivity in the electrocyclization step. Of the tertiary amines examined, it was found that a cinchona alkaloid derivative was able to generate substituted 5-hydroxy γ-methylene cyclopentenones with excellent enantioselectivity. The study results suggest that successful cyclization depends upon the ability of the dienyl diketone substrate to readily adopt an s-cis conformation. PMID:26085696

  1. Using a dual plasma process to produce cobalt--polypyrrole catalysts for the oxygen reduction reaction in fuel cells -- part I: characterisation of the catalytic activity and surface structure

    CERN Document Server

    Walter, Christian; Vyalikh, Denis; Brüser, Volker; Quade, Antje; Weltmann, Klaus-Dieter; 10.1149/2.078208jes

    2012-01-01

    A new dual plasma coating process to produce platinum-free catalysts for the oxygen reduction reaction in a fuel cell is introduced. The catalysts thus produced were analysed with various methods. Electrochemical characterisation was carried out by cyclic voltammetry, rotating ring- and rotating ring-disk electrode. The surface porosity of the different catalysts thus obtained was characterised with the nitrogen gas adsorption technique and scanning electron microscopy was used to determine the growth mechanisms of the films. It is shown that catalytically active compounds can be produced with this dual plasma process. Furthermore, the catalytic activity can be varied significantly by changing the plasma process parameters. The amount of H$_2$O$_2$ produced was calculated and shows that a 2 electron mechanism is predominant. The plasma coating mechanism does not significantly change the surface BET area and pore size distribution of the carbon support used. Furthermore, scanning electron microscopy pictures o...

  2. Fe-Mo/ZSM-5蜂窝催化剂上NOx的催化还原性能%STUDY ON CATALYTIC REDUCTION OF NOx PERFORMANCE OF HONEYCOMB Fe-Mo/ZSM-5 CATALYST

    Institute of Scientific and Technical Information of China (English)

    常立亚; 何凯; 王婧; 黄伟; 李哲

    2011-01-01

    Fe-Mo/ZSM-5 has a good NOx catalytic activity. In this basis, we compared the preparation methods of catalyst powder, catalyst additives, carriers and other factors on the honeycomb catalyst reduction. The results show that the catalytic activity prepared monolithic catalysts by gas phase ion exchange method is the best, at 350℃, the catalytic activity can be reach more than 90%. In high temperature(350℃-600℃ ) catalytic activity remained at 100%.The addition of K+ catalyst additives help increase powder catalytic activity. Powder catalyst impregnated on the carrier and roasting 2 times is the best.%Fe-Mo/ZSM-5具有较好的NOx催化活性,比较了不同粉末的制备方法、催化剂助剂和载体等因素对蜂窝状催化剂催化还原性能的影响.结果表明,气相离子交换法制备的蜂窝状催化剂的催化活性最好,在350℃时NOx转化率已达到90%以上,在高温400℃~600℃范围,催化剂对NOx的催化还原转化率保持在98%.K+离子的加入明显提高了Fe-Mo/ZSM-5催化剂活性,可能调变了催化剂的表面性质,催化剂粉末在载体上的浸涂次数为2次时效果最佳.

  3. Catalytic Enantioselective Olefin Metathesis in Natural Product Synthesis. Chiral Metal-Based Complexes that Deliver High Enantioselectivity and More

    Science.gov (United States)

    Malcolmson, Steven J.; Meek, Simon J.; Zhugralin, Adil R.

    2012-01-01

    Chiral olefin metathesis catalysts enable chemists to access enantiomerically enriched small molecules with high efficiency; synthesis schemes involving such complexes can be substantially more concise than those that would involve enantiomerically pure substrates and achiral Mo alkylidenes or Ru-based carbenes. The scope of research towards design and development of chiral catalysts is not limited to discovery of complexes that are merely the chiral versions of the related achiral variants. A chiral olefin metathesis catalyst, in addition to furnishing products of high enantiomeric purity, can offer levels of efficiency, product selectivity and/or olefin stereoselectivity that are unavailable through the achiral variants. Such positive attributes of chiral catalysts (whether utilized in racemic or enantiomerically enriched form) should be considered as general, applicable to other classes of transformations. PMID:19967680

  4. SELECTIVE CATALYTIC REDUCTION (SCR OF NO BY AMMONIA OVER V2O5/TiO2 CATALYST IN A CATALYTIC FILTER MEDIUM AND HONEYCOMB REACTOR: A KINETIC MODELING STUDY

    Directory of Open Access Journals (Sweden)

    M. Nahavandi

    2015-12-01

    Full Text Available Abstract The present study addresses a numerical modeling and simulation based on the available knowledge of SCR kinetics for prediction of NO conversion over a V2O3/TiO3 catalyst through a catalytic filter medium and honeycomb reactor. After introducing the NH3-SCR system with specific operational criteria, a reactor model was developed to evaluate the effect of various operating parameters such as flue gas temperature, velocity, NH3/NO molar ratio, etc., on the SCR process. Computational investigations were performed based on the proposed model and optimum operational conditions were identified. Simulation results indicate that SCR performance is substantially under the effects of reactant concentration and operating temperature, so that the concentration of unreacted ammonia emitted from reactor discharge (ammonia slip increases significantly at NH3/NO ratios of more than 1.14 and operating temperatures less than 360 ºC and 300 ºC, respectively, in the catalytic filter medium and honeycomb reactor. The results also show that there are three sections in NO conversion variation versus changing temperature and the required conversion with a maximum of almost 87% and low level of ammonia slip can be achieved at the NH3/NO ratio of 1 and temperature range of 240–360 ºC in both reactors.

  5. A Study of Different Doped Metal Cations on the Physicochemical Properties and Catalytic Activities of Ce20 M1 Ox (M=Zr, Cr, Mn, Fe, Co, Sn) Composite Oxides for Nitric Oxide Reduction by Carbon Monoxide.

    Science.gov (United States)

    Deng, Changshun; Li, Min; Qian, Junning; Hu, Qun; Huang, Meina; Lin, Qingjin; Ruan, Yongshun; Dong, Lihui; Li, Bin; Fan, Minguang

    2016-08-01

    This work is mainly focused on investigating the effects of different doped metal cations on the formation of Ce20 M1 Ox (M=Zr, Cr, Mn, Fe, Co, Sn) composite oxides and their physicochemical and catalytic properties for NO reduction by CO as a model reaction. The obtained samples were characterized by using N2 physisorption, X-ray diffraction, laser Raman spectroscopy, UV/Vis diffuse reflectance spectroscopy, inductively coupled plasma atomic emission spectroscopy, X-ray photoelectron spectroscopy, temperature-programmed reduction by hydrogen and by oxygen (H2 -TPR and O2 -TPD), in situ diffuse reflectance infrared Fourier transform spectroscopy, and the NO+CO model reaction. The results imply that the introduction of M(x+) into the lattice of CeO2 increases the specific surface area and pore volume, especially for variable valence metal cations, and enhances the catalytic performance to a great extent. In this regard, increases in the oxygen vacancies, reduction properties, and chemisorbed O2 (-) (and/or O(-) ) species of these Ce20 M1 Ox composite oxides (M refers to variable valence metals) play significant roles in this reaction. Among the samples, Ce20 Cr1 Ox exhibited the best catalytic performance, mainly because it has the best reducibility and more chemisorbed oxygen, and significant reasons for these attributes may be closely related to favorable synergistic interactions of the vacancies and near-surface Ce(3+) and Cr(3+) . Finally, a possible reaction mechanism was tentatively proposed to understand the reactions. PMID:27435470

  6. A Study of Different Doped Metal Cations on the Physicochemical Properties and Catalytic Activities of Ce20 M1 Ox (M=Zr, Cr, Mn, Fe, Co, Sn) Composite Oxides for Nitric Oxide Reduction by Carbon Monoxide.

    Science.gov (United States)

    Deng, Changshun; Li, Min; Qian, Junning; Hu, Qun; Huang, Meina; Lin, Qingjin; Ruan, Yongshun; Dong, Lihui; Li, Bin; Fan, Minguang

    2016-08-01

    This work is mainly focused on investigating the effects of different doped metal cations on the formation of Ce20 M1 Ox (M=Zr, Cr, Mn, Fe, Co, Sn) composite oxides and their physicochemical and catalytic properties for NO reduction by CO as a model reaction. The obtained samples were characterized by using N2 physisorption, X-ray diffraction, laser Raman spectroscopy, UV/Vis diffuse reflectance spectroscopy, inductively coupled plasma atomic emission spectroscopy, X-ray photoelectron spectroscopy, temperature-programmed reduction by hydrogen and by oxygen (H2 -TPR and O2 -TPD), in situ diffuse reflectance infrared Fourier transform spectroscopy, and the NO+CO model reaction. The results imply that the introduction of M(x+) into the lattice of CeO2 increases the specific surface area and pore volume, especially for variable valence metal cations, and enhances the catalytic performance to a great extent. In this regard, increases in the oxygen vacancies, reduction properties, and chemisorbed O2 (-) (and/or O(-) ) species of these Ce20 M1 Ox composite oxides (M refers to variable valence metals) play significant roles in this reaction. Among the samples, Ce20 Cr1 Ox exhibited the best catalytic performance, mainly because it has the best reducibility and more chemisorbed oxygen, and significant reasons for these attributes may be closely related to favorable synergistic interactions of the vacancies and near-surface Ce(3+) and Cr(3+) . Finally, a possible reaction mechanism was tentatively proposed to understand the reactions.

  7. Selective catalytic reduction of nitrogen oxides from industrial gases by hydrogen or methane; Reduction catalytique selective des oxydes d'azote (NO{sub x}) provenant d'effluents gazeux industriels par l'hydrogene ou le methane

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann Pirez, M

    2004-12-15

    This work deals with the selective catalytic reduction of nitrogen oxides (NO{sub x}), contained in the effluents of industrial plants, by hydrogen or methane. The aim is to replace ammonia, used as reducing agent, in the conventional process. The use of others reducing agents such as hydrogen or methane is interesting for different reasons: practical, economical and ecological. The catalyst has to convert selectively NO into N{sub 2}, in presence of an excess of oxygen, steam and sulfur dioxide. The developed catalyst is constituted by a support such as perovskites, particularly LaCoO{sub 3}, on which are dispersed noble metals (palladium, platinum). The interaction between the noble metal and the support, generated during the activation of the catalyst, allows to minimize the water and sulfur dioxide inhibitor phenomena on the catalytic performances, particularly in the reduction of NO by hydrogen. (O.M.)

  8. La{sub 1−x}Ce{sub x}Mn{sub 1−y}Co{sub y}O{sub 3} perovskite oxides: Preparation, physico-chemical properties and catalytic activity for the reduction of diesel soot

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shaohua; Song, Chonglin, E-mail: songchonglin@tju.edu.cn; Bin, Feng; Lv, Gang; Song, Jinou; Gong, Cairong

    2014-11-14

    La{sub 1−x}Ce{sub x}Mn{sub 1−y}Co{sub y}O{sub 3} catalysts were prepared by the “glucose method”. The structures and physico-chemical properties for these catalysts were characterized using X-ray diffraction (XRD), nitrogen adsorption, scanning electron microscopy (SEM), Fourier transform infrared spectra (FT-IR), H{sub 2}-temperature-programmed reduction (H{sub 2}-TPR) and O{sub 2}-tempreature-programmed desorption (O{sub 2}-TPD). Results showed that cerium substitution at the A-site in LaMnO{sub 3} produced a CeO{sub 2} phase. The cobalt can be introduced into the B-site in La{sub 0.8}Ce{sub 0.2}MnO{sub 3} at any substitution ratio because of the similar ionic radii between cobalt and manganese. The catalytic activity for soot combustion in air was evaluated using a TG/DTA analyzer. Cerium substitution at A-site enhances the catalytic activity, while cobalt substitution at B-site inhibits the catalytic activity. The activation energy for soot combustion was calculated using the Horowitz method. The activation energy for non-catalytic soot combustion was 164.1 kJ mol{sup −1}. The addition of catalysts decreased the activation energy by about 26–63 kJ mol{sup −1}. Among the applied catalysts, Ce20Mn exhibited the lowest activation energy (101.1 kJ mol{sup −1}). - Highlights: • Cerium substitution at A-site in Mn100 enhances the catalytic activity. • Cerium substitution leads to the formation of the CeO{sub 2} phase. • Cobalt substitution at B-site in Ce20Mn generally decreases the catalytic activity. • Cerium substitution increases the α-O{sub 2} amount and low-temperature reducibility. • Cobalt substitution decreases the α-O{sub 2} amount and low-temperature reducibility.

  9. Carboxylic acid derivatives via catalytic carboxylation of unsaturated hydrocarbons: whether the nature of a reductant may determine the mechanism of CO2 incorporation?

    OpenAIRE

    Kirillov, E.; Carpentier, J.-F.; Bunel, E

    2015-01-01

    International audience Application of CO2 as a renewable feedstock and C1 building block for prodn. of commodity and fine chems. is a highly challenging but obvious industry-relevant task. Of particular interest is the catalytic coupling of CO2 with inexpensive unsatd. hydrocarbons (olefins, dienes, styrenes, alkynes), providing direct access to carboxylic acids and their derivs. Although not brand new for the scientific community, it is still a complete challenge, as no truly effective ca...

  10. EMISSION REDUCTION FROM A DIESEL ENGINE FUELED BY CERIUM OXIDE NANO-ADDITIVES USING SCR WITH DIFFERENT METAL OXIDES COATED CATALYTIC CONVERTER

    OpenAIRE

    B. JOTHI THIRUMAL; E, JAMES GUNASEKARAN; LOGANATHAN; C.G. Saravanan

    2015-01-01

    This paper reports the results of experimental investigations on the influence of the addition of cerium oxide in nanoparticle form on the major physiochemical properties and the performance of diesel. The fuel is modified by dispersing the catalytic nanoparticle by ultrasonic agitation. The physiochemical properties of sole diesel fuel and modified fuel are tested with ASTM standard procedures. The effects of the additive nanoparticles on the individual fuel properties, the engine performanc...

  11. Evaluation of toxicity reduction, mineralization, and treatability of phenolic wastewater treated with combined system of catalytic ozonation process / biological reactor (SBR)

    OpenAIRE

    Y Dadban Shahamat; M. Farzadkia; S Nasseri; A.H Mahvi; Gholami, M.; A Esrafily

    2016-01-01

    Background and Objectives: Phenol is one of the industrial pollutants in wastewaters, which due to its toxicity for biological systems various pretreatment processes have been used for its detoxification. In this study, the combination of catalytic ozonation process (COP) and sequencing batch reactor (SBR) were used for detoxification of these types of wastewaters. Materials and Methodology: In this study, the effect of COP on phenol degradation, COD removal, and detoxification of wastewa...

  12. Combined effects Na and SO2 in flue gas on Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO by NH3 simulated by Na2SO4 doping

    Science.gov (United States)

    Zhou, Aiyi; Yu, Danqing; Yang, Liu; Sheng, Zhongyi

    2016-08-01

    A series of Mn-Ce/TiO2 catalysts were synthesized through an impregnation method and used for low temperature selective catalytic reduction (SCR) of NOx with ammonia (NH3). Na2SO4 was added into the catalyst to simulate the combined effects of alkali metal and SO2 in the flue gas. Experimental results showed that Na2SO4 had strong and fluctuant influence on the activity of Mn-Ce/TiO2, because the effect of Na2SO4 included pore occlusion and sulfation effect simultaneously. When Na2SO4 loading content increased from 0 to 1 wt.%, the SCR activities of Na2SO4-doped catalysts decreased greatly. With further increasing amount of Na2SO4, however, the catalytic activity increased gradually. XRD results showed that Na2SO4 doping could induce the crystallization of MnOx phases, which were also confirmed by TEM and SEM results. BET results showed that the surface areas decreased and a new bimodal mesoporous structure formed gradually with the increasing amount of Na2SO4. XPS results indicated that part of Ce4+ and Mn3+ were transferred to Ce3+ and Mn4+ due to the sulfation after Na2SO4 deposition on the surface of the catalysts. When the doped amounts of Na2SO4 increased, NH3-TPD results showed that the Lewis acid sites decreased and the Brønsted acid sites of Mn-Ce/TiO2 increased quickly, which could be considered as another reason for the observed changes in the catalytic activity. The decreased Mn and Ce atomic concentration, the changes of their oxidative states, and the variation in acidic properties on the surface of Na2SO4-doped catalysts could be the reasons for the fluctuant changes of the catalytic activity.

  13. Unsteady catalytic processes and sorption-catalytic technologies

    International Nuclear Information System (INIS)

    Catalytic processes that occur under conditions of the targeted unsteady state of the catalyst are considered. The highest efficiency of catalytic processes was found to be ensured by a controlled combination of thermal non-stationarity and unsteady composition of the catalyst surface. The processes based on this principle are analysed, in particular, catalytic selective reduction of nitrogen oxides, deep oxidation of volatile organic impurities, production of sulfur by the Claus process and by hydrogen sulfide decomposition, oxidation of sulfur dioxide, methane steam reforming and anaerobic combustion, selective oxidation of hydrocarbons, etc.

  14. Unsteady catalytic processes and sorption-catalytic technologies

    Energy Technology Data Exchange (ETDEWEB)

    Zagoruiko, A N [G.K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2007-07-31

    Catalytic processes that occur under conditions of the targeted unsteady state of the catalyst are considered. The highest efficiency of catalytic processes was found to be ensured by a controlled combination of thermal non-stationarity and unsteady composition of the catalyst surface. The processes based on this principle are analysed, in particular, catalytic selective reduction of nitrogen oxides, deep oxidation of volatile organic impurities, production of sulfur by the Claus process and by hydrogen sulfide decomposition, oxidation of sulfur dioxide, methane steam reforming and anaerobic combustion, selective oxidation of hydrocarbons, etc.

  15. Innovative clean coal technology (ICCT): demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NOx) emission from high-sulfur, coal-fired boilers - economic evaluation of commercial-scale SCR applications for utility boilers

    International Nuclear Information System (INIS)

    This report presents the results of an economic evaluation produced as part of the Innovative Clean Coal Technology project, which demonstrated selective catalytic reduction (SCR) technology for reduction of NOx emissions from utility boilers burning U.S. high-sulfur coal. The document includes a commercial-scale capital and O ampersand M cost evaluation of SCR technology applied to a new facility, coal-fired boiler utilizing high-sulfur U.S. coal. The base case presented herein determines the total capital requirement, fixed and variable operating costs, and levelized costs for a new 250-MW pulverized coal utility boiler operating with a 60-percent NOx removal. Sensitivity evaluations are included to demonstrate the variation in cost due to changes in process variables and assumptions. This report also presents the results of a study completed by SCS to determine the cost and technical feasibility of retrofitting SCR technology to selected coal-fired generating units within the Southern electric system

  16. Facile synthesis of well-dispersed silver nanoparticles on hierarchical flower-like Ni3Si2O5(OH)4 with a high catalytic activity towards 4-nitrophenol reduction.

    Science.gov (United States)

    Jin, Renxi; Xing, Yan; Yu, Xiaodan; Sun, Shaolin; Yu, Donghui; Wang, Fangfang; Wu, Wenbin; Song, Shuyan

    2012-12-01

    Layered nickel silicate nanoflowers (NSFs) with a hierarchical nanostructure have been successfully fabricated by a template-free solvothermal method. The as-prepared nanoflowers were composed of many interconnected edge-curving lamellae with a thickness of about 15 nm and had a high specific surface area (279 m(2)  g(-1)) and large pore volume (0.67 cm(3)  g(-1)). The highly dispersed small silver nanoparticles (AgNPs) were immobilized on the surface of NSFs through the in situ reduction of Ag(+) by Sn(2+). The AgNP/NSF nanocomposites showed a high performance in the catalytic reduction of 4-nitrophenol. In particular, there was no visible decrease in the catalytic activity of the reused catalysts even after being recycled four times. The as-prepared AgNP/NSF nanocomposites might be an excellent catalyst owing to their availability, formability, chemical and thermal stability, and high specific surface area. PMID:23042713

  17. An enantioselective formal synthesis of montelukast sodium.

    Science.gov (United States)

    Bollikonda, Satyanarayana; Mohanarangam, Saravanan; Jinna, Rajender Reddy; Kandirelli, Venkata Kiran Kumar; Makthala, Laxman; Sen, Saikat; Chaplin, David A; Lloyd, Richard C; Mahoney, Thomas; Dahanukar, Vilas Hareshwar; Oruganti, Srinivas; Fox, Martin E

    2015-04-17

    A formal synthesis of the antiasthma drug montelukast sodium is described, wherein the key chiral diol intermediate was accessed with greater convergence of the C-C bond-forming steps as compared to previous routes. Improved synthetic efficiency was achieved by deploying homogeneous metal-based catalysis in two pivotal steps. In the first, a tandem Mizoroki-Heck reaction and double-bond isomerization between a previously known allyl alcohol intermediate and a hindered 2-(2-halophenyl)propan-2-ol secured direct access to the 3-(2-(2-hydroxypropan-2-yl)phenyl)-1-phenylpropan-1-one moiety in the product. In the second step, asymmetric hydrogenation of the ketone functionality in the Mizoroki-Heck reaction product provided a convenient method to introduce the benzylic alcohol chiral center and obtain the desired chiral diol precursor of montelukast sodium. A detailed catalyst screening led to the identification of ((R)-Xyl-BINAP)((R,R)-DPEN)RuCl2 as a catalyst that afforded an enantioselectivity of 99% ee in the hydrogenation step on a multigram lab scale at a molar substrate:catalyst loading of 5000:1. PMID:25807000

  18. Scalable enantioselective total synthesis of taxanes

    Science.gov (United States)

    Mendoza, Abraham; Ishihara, Yoshihiro; Baran, Phil S.

    2012-01-01

    Taxanes form a large family of terpenes comprising over 350 members, the most famous of which is Taxol (paclitaxel), a billion-dollar anticancer drug. Here, we describe the first practical and scalable synthetic entry to these natural products via a concise preparation of (+)-taxa-4(5),11(12)-dien-2-one, which has a suitable functional handle with which to access more oxidized members of its family. This route enables a gram-scale preparation of the ‘parent’ taxane—taxadiene—which is the largest quantity of this naturally occurring terpene ever isolated or prepared in pure form. The characteristic 6-8-6 tricyclic system of the taxane family, containing a bridgehead alkene, is forged via a vicinal difunctionalization/Diels-Alder strategy. Asymmetry is introduced by means of an enantioselective conjugate addition that forms an all-carbon quaternary centre, from which all other stereocentres are fixed through substrate control. This study lays a critical foundation for a planned access to minimally oxidized taxane analogues and a scalable laboratory preparation of Taxol itself.

  19. A new chiral binaphthalene-based fluorescence polymer sensor for the highly enantioselective recognition of phenylalaninol.

    Science.gov (United States)

    Wei, Guo; Zhang, Shuwei; Dai, Chunhui; Quan, Yiwu; Cheng, Yixiang; Zhu, Chengjian

    2013-11-18

    A new (S)-binaphthalene-based polymer (P-1) was synthesized by the polymerization of 5,5'-((2,5-dibutoxy-1,4-phenylene)bis(ethyne-2,1-diyl))bis(2-hydroxy-3-(piperidin-1-ylmethyl) benzaldehyde (M-1) with (S)-2,2'-dimethoxy-(1,1'-binaphthalene)-3,3'-diamine (M-2) through the formation of a Schiff base; the corresponding chiral polymer (P-2) could be obtained by the reduction of polymer P-1 with NaBH4 . Chiral polymer P-1 exhibited a remarkable "turn-on" fluorescence-enhancement response towards (D)-phenylalaninol and excellent enantioselective recognition behavior with enantiomeric fluorescence difference ratios (ef) as high as 8.99. More importantly, chiral polymer P-1 displays a bright blue fluorescence color change upon the addition of (D)-phenylalaninol under a commercially available UV lamp, which can be clearly observed by the naked eye. On the contrary, chiral polymer P-2 showed weaker enantioselective fluorescence ability towards the enantiomers of phenylalaninol. PMID:24123510

  20. Enantioselective direct aldol reactions catalyzed by l-prolinamide derivatives

    OpenAIRE

    Tang, Zhuo; Jiang, Fan; Cui, Xin; Gong, Liu-Zhu; Mi, Ai-Qiao; Jiang, Yao-Zhong; Wu, Yun-Dong

    2004-01-01

    l-Prolinamides 2, prepared from l-proline and simple aliphatic and aromatic amines, have been found to be active catalysts for the direct aldol reaction of 4-nitrobenzaldehyde with neat acetone at room temperature. They give moderate enantioselectivities of up to 46% enantiomeric excess (ee). The enantioselectivity increases as the amide N—H becomes a better hydrogen bond donor. l-Prolinamides 3, derived from the reaction of l-proline with α,β-hydroxyamines such that there is a terminal hydro...

  1. Development of Enantioselective Fluorescent Sensors for Chiral Recognition

    Institute of Scientific and Technical Information of China (English)

    Lin Pu

    2004-01-01

    Novel chiral compounds have been synthesized for the enantioselective fluorescent recognition of alpha-hydroxycarboxylic acids and amino acids. By introducing dendritic branches to the chiral receptor units, the fluorescence signals of the receptors are significantly amplified because of the light-harvesting effect of the dendritic structure. This has greatly increased the sensitivity of the sensors in the fluorescent recognition. Highly enantioselective fluorescent responses have also been achieved. These sensors are potentially useful for the high throughput screening of chiral catalysts for asymmetric synthesis.

  2. Pentanidium-catalyzed enantioselective phase-transfer conjugate addition reactions

    KAUST Repository

    Ma, Ting

    2011-03-09

    A new chiral entity, pentanidium, has been shown to be an excellent chiral phase-transfer catalyst. The enantioselective Michael addition reactions of tert-butyl glycinate-benzophenone Schiff base with various α,β- unsaturated acceptors provide adducts with high enantioselectivities. A successful gram-scale experiment at a low catalyst loading of 0.05 mol % indicates the potential for practical applications of this methodology. Phosphoglycine ester analogues can also be utilized as the Michael donor, affording enantioenriched α-aminophosphonic acid derivatives and phosphonic analogues of (S)-proline. © 2011 American Chemical Society.

  3. Fabrication of MgAl2Si2O8 : M0.01 (M = Ni2+, Cu2+, Pd2+, Pt2+ and Ru3+): catalytic effects for the reduction of 2- or 4-nitroanilines in water

    Indian Academy of Sciences (India)

    Serkan Dayan; Sevgi Öztürk; Nilgün Kayaci; Nilgun Kalaycioglu Ozpozan; Esra Öztürk

    2015-10-01

    Five new MgAl2Si2O8 : M0.01 (M = Ni2+, Cu2+, Pd2+, Pt2+ and Ru3+) materials were developed for the reduction of nitroarenes as catalysts by conventional solid state reaction at 1300°C. The prepared materials were characterized by thermal analysis, Fourier transform infrared spectroscopy, X-ray powder diffraction analysis, scanning electron microscopy, energy-dispersive X-ray analysis and nitrogen adsorption–desorption analysis. The catalytic activities of the prepared catalysts were tested in the reduction of 2- or 4-nitroanilines in aqueous media at ambient temperature in the presence of NaBH4 by UV–vis spectrophotometer. Furthermore, the MgAl2Si2O8 : M0.01 catalysts can be recovered by filtration and reused for five cycles for the reduction of 2-nitroaniline. These results show that the MgAl2Si2O8 : M0.01 catalysts can be used in practical applications in the reduction of nitroanilines.

  4. Covalently immobilized lipase on aminoalkyl-, carboxy- and hydroxy-multi-wall carbon nanotubes in the enantioselective synthesis of Solketal esters.

    Science.gov (United States)

    Zniszczoł, Aurelia; Herman, Artur P; Szymańska, Katarzyna; Mrowiec-Białoń, Julita; Walczak, Krzysztof Z; Jarzębski, Andrzej; Boncel, Sławomir

    2016-06-01

    Aiming at the preparation of efficient, stable on storage and recyclable nanobiocatalysts for enantioselective transesterification, alkaline lipase from Pseudomonas fluorescens was covalently immobilized (up to 8.5wt.%) on functionalized multi-wall carbon nanotubes (f-MWCNTs). f-MWCNTs were synthesized via: (a) (2+1)-cycloaddition of a nitrene to the C-sp(2) nanotube walls (3.2mmolg(-1), a novel synthetic approach) and, (b) oxidative treatments, i.e. Fenton reagent (3.5mmolg(-1)) and nitrating mixture (2.5mmolg(-1)), yielding aminoalkyl-, hydroxyl- and carboxyl-MWCNTs, respectively. Amino- and epoxy- functionalized mesoporous silica (f-SBA-15) were used as the reference supports. Transesterification of vinyl n-butyrate by racemic Solketal with a chromatographically (GC) traced kinetics was selected as the model reaction. The studies revealed that different chemical functionalization of morphologically identical nanotube supports led to various enzyme loadings, catalytic activities and enantioselectivities. MWCNT-NH2-based nanobiocatalyst was found to be the most active composite among all of the tested systems (yield 20%, t=0.5h, 1321Ug(-1)), i.e. 12 times more active than the native enzyme. In turn, lipase immobilized on MWCNT-COOH emerged as the most enantioselective system (ex aequo with SBA-NH2) (eeR=74%, t=0.5h at yield of 3-5%). The activity of the MWCNT-NH2-based nanobiocatalyst after 8 cycles of transesterification dropped to 60% of its initial value, whereas for SBA-NH2-based composite remained unchanged. Importantly, stability on storage was fully maintained for all MWCNT-based nanobiocatalysts or even 'extra-enhanced' for MWCNT-OH. PMID:27178796

  5. Catalytic X-H insertion reactions based on carbenoids.

    Science.gov (United States)

    Gillingham, Dennis; Fei, Na

    2013-06-21

    Catalysed X-H insertion reactions into diazo compounds (where X is any heteroatom) are a powerful yet underutilized class of transformations. The following review will explore the historical development of X-H insertion and give an up-to-date account of the metal catalysts most often employed, including an assessment of their strengths and weaknesses. Despite decades of development, recent work on enantioselective variants, as well as applying catalytic X-H insertion towards problems in chemical biology indicate that this field has ample room for innovation. PMID:23407887

  6. Design of multi-shell Fe2O3@MnOx@CNTs for the selective catalytic reduction of NO with NH3: improvement of catalytic activity and SO2 tolerance

    Science.gov (United States)

    Cai, Sixiang; Hu, Hang; Li, Hongrui; Shi, Liyi; Zhang, Dengsong

    2016-02-01

    -NOx performance. Moreover, the Fe2O3 shell could effectively suppress the formation of the surface sulfate species, leading to the desirable SO2 resistance to the multi-shell catalyst. Hence, the synthesis protocol could provide guidance for the preparation and elevation of manganese based catalysts. Electronic supplementary information (ESI) available: Experimental details and catalytic performance of the Fe-Mn@CNTs IM, TEM images of Fe@Mn CNTs, stability and H2O resistance studies of the catalysts. See DOI: 10.1039/c5nr08701e

  7. Preparation of High Purity Crystalline Silicon by Electro-Catalytic Reduction of Sodium Hexafluorosilicate with Sodium below 180°C

    OpenAIRE

    Chen, Yuan; Liu, Yang; Wang, Xin; Li, Kai; Chen, Pu

    2014-01-01

    The growing field of silicon solar cells requires a substantial reduction in the cost of semiconductor grade silicon, which has been mainly produced by the rod-based Siemens method. Because silicon can react with almost all of the elements and form a number of alloys at high temperatures, it is highly desired to obtain high purity crystalline silicon at relatively low temperatures through low cost process. Here we report a fast, complete and inexpensive reduction method for converting sodium ...

  8. Selective catalytic reduction of NO with NH3 over V2O5 supported on TiO2 and Al2O3: A comparative study

    Science.gov (United States)

    Huang, Xianming; Zhang, Shule; Chen, Huinan; Zhong, Qin

    2015-10-01

    This study aimed at investigating the interaction of V2O5 species with TiO2 and Al2O3 supports to understand the effect of supports on SCR reaction. Analysis by XRD, BET, UV-vis, and DFT theoretical calculations, XPS, EPR and in situ DRIFT showed that the two kinds of supports could interact with V2O5. The interaction of electron excitation and charge transfer of supports to V2O5 species was important to the formation of the reduced V2O5. These aspects increased the formation of superoxide ions that could improve the NO oxidation over V2O5/TiO2. It was responsible for the higher SCR catalytic activity of V2O5/TiO2 than V2O5/Al2O3.

  9. Water-Soluble Phenanthroline Complexes of Rhodium, Iridium and Ruthenium for the Regeneration of NADH in the Enzymatic Reduction of Ketones

    OpenAIRE

    Canivet, Jérôme; Süss-Fink, Georg; Štěpnička, Petr

    2009-01-01

    The nicotinamide coenzyme NADH, consumed in enantioselective reduction of ketones catalysed by alcohol dehydrogenases, needs to be regenerated in order to maintain enzymatic activity. We therefore studied the catalytic potential of the cationic complexes [(η5-C5Me5)Rh(N∩N)Cl]+ (1: N∩N = 1,10-phenanthroline; 2: N∩N = 5-nitro-1,10-phenanthroline; 3: N∩N = 5-amino-1,10-phenanthroline), [(η5-C5Me5)Ir(N∩N)Cl]+ (4: N∩N = 5-nitro-1,10-phenanthroline) and [(η6-C6Me6)Ru(N∩N)Cl]+ (5: N∩N = 5-nitro-1,10...

  10. 酞菁铁的模板合成及其对氧还原的电催化性能%Template synthesis of phthalocyanine iron and its electro-catalytic performance for oxygen reduction

    Institute of Scientific and Technical Information of China (English)

    刘鹏; 吴钟晴; 周伟伟; 孙福龙; 许旭东; 李海斌

    2012-01-01

    针对直接甲醇燃料电池阴极常用的铂基催化剂易中毒、选择性差等问题,以Fe2+为模板剂控制合成了酞菁铁配合物催化剂.红外光谱测试表明,Fe2+与酞菁中的N形成了配键.研究结果表明,随着温度的升高,酞菁铁对氧还原反应的电催化活性逐渐增强,且对甲醇氧化反应无催化活性,证明酞菁铁具有较好的催化选择性.%This paper is focused on the issues of platinum-based cathode for direct methanol fuel cell,such as high sensitivity to catalyst poisons and poor selectivity against methanol oxidation.Phthalocyanine iron complex catalyst with controlled morphology was synthesized using Fe2+ as the template agent.IR spectra testing showed that N in phthalocyanine molecule coordinated with Fe2+.According to the electrode polarization curves,the electro-catalytic activity of phthalocyanine iron for the oxygen reduction was gradually improved with the rise of the temperature.And the catalyst displayed inertness for methanol oxidation.It is proved that phthalocyanine iron has good catalytic selectivity.

  11. Examination of surface phenomena of V₂O₅ loaded on new nanostructured TiO₂ prepared by chemical vapor condensation for enhanced NH₃-based selective catalytic reduction (SCR) at low temperatures.

    Science.gov (United States)

    Cha, Woojoon; Yun, Seong-Taek; Jurng, Jongsoo

    2014-09-01

    In this article, we describe the investigation and surface characterization of a chemical vapor condensation (CVC)-TiO2 support material used in a V2O5/TiO2 catalyst for enhanced selective catalytic reduction (SCR) activity and confirm the mechanism of surface reactions. On the basis of previous studies and comparison with a commercial TiO2 catalyst, we examine four fundamental questions: first, the reason for increased surface V(4+) ion concentrations; second, the origin of the increase in surface acid sites; third, a basis for synergistic influences on improvements in SCR activity; and fourth, a reason for improved catalytic activity at low reaction temperatures. In this study, we have cited the result of SCR with NH3 activity for removing NOx and analyzed data using the reported result and data from previous studies on V2O5/CVC-TiO2 for the SCR catalyst. In order to determine the properties of suitable CVC-TiO2 surfaces for efficient SCR catalysis at low temperatures, CVC-TiO2 specimens were prepared and characterized using techniques such as XRD, BET, HR-TEM, XPS, FT-IR, NH3-TPD, photoluminescence (PL) spectroscopy, H2-TPR, and cyclic voltammetry. The results obtained for the CVC-TiO2 materials were also compared with those of commercial TiO2.

  12. Enantioselective Enzymes by Computational Design and In Silico Screening

    NARCIS (Netherlands)

    Wijma, Hein J; Floor, Robert J; Bjelic, Sinisa; Marrink, Siewert J; Baker, David; Janssen, Dick B

    2015-01-01

    Computational enzyme design holds great promise for providing new biocatalysts for synthetic chemistry. A strategy to design small mutant libraries of complementary enantioselective epoxide hydrolase variants for the production of highly enantioenriched (S,S)-diols and (R,R)-diols is developed. Key

  13. Loop grafting of Bacillus subtilis lipase A: inversion of enantioselectivity.

    Science.gov (United States)

    Boersma, Ykelien L; Pijning, Tjaard; Bosma, Margriet S; van der Sloot, Almer M; Godinho, Luís F; Dröge, Melloney J; Winter, Remko T; van Pouderoyen, Gertie; Dijkstra, Bauke W; Quax, Wim J

    2008-08-25

    Lipases are successfully applied in enantioselective biocatalysis. Most lipases contain a lid domain controlling access to the active site, but Bacillus subtilis Lipase A (LipA) is a notable exception: its active site is solvent exposed. To improve the enantioselectivity of LipA in the kinetic resolution of 1,2-O-isopropylidene-sn-glycerol (IPG) esters, we replaced a loop near the active-site entrance by longer loops originating from Fusarium solani cutinase and Penicillium purpurogenum acetylxylan esterase, thereby aiming to increase the interaction surface for the substrate. The resulting loop hybrids showed enantioselectivities inverted toward the desired enantiomer of IPG. The acetylxylan esterase-derived variant showed an inversion in enantiomeric excess (ee) from -12.9% to +6.0%, whereas the cutinase-derived variant was improved to an ee of +26.5%. The enantioselectivity of the cutinase-derived variant was further improved by directed evolution to an ee of +57.4%. PMID:18721749

  14. A Green Enantioselective Aldol Condensation for the Undergraduate Organic Laboratory

    Science.gov (United States)

    Bennett, George D.

    2006-01-01

    A number of laboratory exercises for the organic chemistry curriculum that emphasize enantioselective synthesis of the aldol condensation which involves the proline-catalyzed condensation between acetone and isobutyraldehyde are explored. The experiment illustrates some of the trade-offs involved in green chemistry like the use of acetone in large…

  15. Guanidine-catalyzed enantioselective desymmetrization of meso-aziridines

    KAUST Repository

    Zhang, Yan

    2011-01-01

    An amino-indanol derived chiral guanidine was developed as an efficient Brønsted base catalyst for the desymmetrization of meso-aziridines with both thiols and carbamodithioic acids as nucleophiles, which provided 1,2-difunctionalized ring-opened products in high yields and enantioselectivities. © The Royal Society of Chemistry.

  16. DNA and RNA induced enantioselectivity in chemical synthesis

    NARCIS (Netherlands)

    Roelfes, Gerard

    2007-01-01

    One of the hallmarks of DNA and RNA structures is their elegant chirality. Using these chiral structures to induce enantioselectivity in chemical synthesis is as enticing as it is challenging. In recent years, three general approaches have been developed to achieve this, including chirality transfer

  17. Enantioselective Hydroxylation of 4-Alkylphenols by Vanillyl Alcohol Oxidase

    NARCIS (Netherlands)

    Drijfhout, Falko P.; Fraaije, Marco W.; Jongejan, Hugo; Berkel, Willem J.H. van; Franssen, Maurice C.R.

    1998-01-01

    Vanillyl alcohol oxidase (VAO) from Penicillium simplicissimum catalyzes the enantioselective hydroxylation of 4-ethylphenol, 4-propylphenol, and 2-methoxy-4-propylphenol into 1-(4'-hydroxyphenyl)ethanol, 1-(4'-hydroxyphenyl)propanol, and 1-(4'-hydroxy-3'-methoxyphenyl)propanol, respectively, with a

  18. Molecular and Merrifield supported chiral diamines for enantioselective addition of ZnR2 (R = Me, Et) to ketones.

    Science.gov (United States)

    Calvillo-Barahona, Mercedes; Cordovilla, Carlos; Genov, Miroslav N; Martínez-Ilarduya, Jesús M; Espinet, Pablo

    2013-10-28

    Chiral 1,2-ethylenediamines have been previously reported as active catalysts in the enantioselective addition reactions of ZnR2 to either methyl- or trifluoromethyl-ketones. Subtle changes in the molecular structure of different catalysts are described herein and lead to a dramatic effect in their catalytic activity. From these findings, we demonstrate the selective reactivity of the ligands used in the addition of ZnR2 (R = Me, Et) to methyl- and trifluoromethyl-ketones offering an enantioselective access either to chiral non-fluorinated alcohols or to chiral fluorinated tertiary alcohols. Considering the importance of the chiral trifluoromethyl carbinol fragment in several biologically active compounds, we have extended the scope of the addition reaction of ZnEt2 to several trifluoromethylketones catalyzed by (R,R)-1,2-diphenylethylenediamine derivatives. This work explores a homogeneous approach that provides excellent yields and very high ee and the use of a heterogenized tail-tied ligand affording moderate ee, high yields and allowing an easier handling and recycling.

  19. The selective catalytic reduction of NO with NH{sub 3} over a novel Ce–Sn–Ti mixed oxides catalyst: Promotional effect of SnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ming’e [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Li, Caiting, E-mail: ctli@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zeng, Guangming; Zhou, Yang; Zhang, Xunan; Xie, Yin’e [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2015-07-01

    Graphical abstract: - Highlights: • A novel catalyst was developed for selective catalytic reduction of NO with NH{sub 3}. • The NO removal efficiency of CeTi catalyst was improved by the addition of SnO{sub 2}. • The novel catalyst possessed remarkable resistance to H{sub 2}O and SO{sub 2}. • The promotional effects of SnO{sub 2} were investigated in detail. • Possible reaction mechanism over the novel catalyst was discussed. - Abstract: A series of novel catalysts (CexSny) for the selective catalytic reduction of NO by NH{sub 3} were prepared by the inverse co-precipitation method. The aim of this novel design was to improve the NO removal efficiency of CeTi by the introduction of SnO{sub 2}. It was found that the Ce–Sn–Ti catalyst was much more active than Ce–Ti and the best Ce:Sn molar ratio was 2:1. Ce2Sn1 possessed a satisfied NO removal efficiency at low temperature (160–280 °C), while over 90% NO removal efficiency maintained in the temperature range of 280–400 °C at the gas hourly space velocity (GHSV) of 50,000 h{sup −1}. Besides, Ce2Sn1 kept a stable NO removal efficiency within a wide range of GHSV and a long period of reacting time. Meanwhile, Ce2Sn1 exhibited remarkable resistance to both respectively and simultaneously H{sub 2}O and SO{sub 2} poisoning due to the introduction of SnO{sub 2}. The promotional effect of SnO{sub 2} was studied by N{sub 2} adsorption–desorption, X-ray diffraction (XRD), Raman spectra, X-ray photoelectron spectroscopy (XPS) and H{sub 2} temperature programmed reduction (H{sub 2}-TPR) for detail information. The characterization results revealed that the excellent catalytic performance of Ce2Sn1 was associated with the higher specific surface area, larger pore volume and poorer crystallization. Besides, the introduction of SnO{sub 2} could result in not only greater conversion of Ce{sup 4+} to Ce{sup 3+} but also the increase amount of chemisorbed oxygen, which are beneficial to improve the SCR

  20. Green synthesis, characterization and catalytic activity of natural bentonite-supported copper nanoparticles for the solvent-free synthesis of 1-substituted 1H-1,2,3,4-tetrazoles and reduction of 4-nitrophenol

    Directory of Open Access Journals (Sweden)

    Akbar Rostami-Vartooni

    2015-12-01

    Full Text Available In this study, Cu nanoparticles were immobilized on the surface of natural bentonite using Thymus vulgaris extract as a reducing and stabilizing agent. The natural bentonite-supported copper nanoparticles (Cu NPs/bentonite were characterized by FTIR spectroscopy, X-ray diffraction (XRD, X-ray fluorescence (XRF, field emission scanning electron microscopy (FE-SEM, energy dispersive X-ray spectroscopy (EDS, transmission electron microscopy (TEM, selected area electron diffraction (SAED and Brunauer–Emmett–Teller (BET analysis. Afterward, the catalytic performance of the prepared catalyst was investigated for the solvent-free synthesis of 1-substituted 1H-1,2,3,4-tetrazoles and reduction of 4-nitrophenol (4-NP in water. It was found that the Cu NPs/bentonite is a highly active and recyclable catalyst for related reactions.

  1. Chemical Reduction of CO2 to Different Products during Photo Catalytic Reaction on TiO2 under Diverse Conditions: an Overview

    Institute of Scientific and Technical Information of China (English)

    G.R.Dey

    2007-01-01

    The chemical reduction of CO2 remains a challenge with respect to the reversal of the oxidative degradation of any organic materials.The conversion of CO2 into useful substances is essential in developing alternative fuels and various raw materials for different industries.This also aids in preventing the continuous rise in tropospheric temperature due to the green house effect of CO2.In this article an overview of the growth taken place so far in the field of CO2 chemical reduction is presented.The discussion comprises of photochemical methods for the development of different products,viz.CO,CH3OH and CH4,through chemical reduction of CO2.This includes the use of photo catalysts,mainly TiO2,and the role of a hole scavenger(such as 2-propan01) for this purpose.

  2. Synthesis of TiO2-loaded Co0.85Se thin films with heterostructure and their enhanced catalytic activity for p-nitrophenol reduction and hydrazine hydrate decomposition

    Science.gov (United States)

    Zuo, Yong; Song, Ji-Ming; Niu, He-Lin; Mao, Chang-Jie; Zhang, Sheng-Yi; Shen, Yu-Hua

    2016-04-01

    P-nitrophenol (4-NP) and hydrazine hydrate are considered to be highly toxic pollutants in wastewater, and it is of great importance to remove them. Herein, TiO2-loaded Co0.85Se thin films with heterostructure were successfully synthesized by a hydrothermal route. The as-synthesized samples were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, transmission electron microscopy and selective-area electron diffraction. The results demonstrate that TiO2 nanoparticles with a size of about 10 nm are easily loaded on the surface of graphene-like Co0.85Se nanofilms, and the NH3 · H2O plays an important role in the generation and crystallization of TiO2 nanoparticles. Brunauer-Emmett-Teller measurement shows that the obtained nanocomposites have a larger specific surface area (199.3 m2 g-1) than that of Co0.85Se nanofilms (55.17 m2 g-1) and TiO2 nanoparticles (19.49 m2 g-1). The catalytic tests indicate Co0.85Se-TiO2 nanofilms have the highest activity for 4-NP reduction and hydrazine hydrate decomposition within 10 min and 8 min, respectively, compared with the corresponding precursor Co0.85Se nanofilms and TiO2 nanoparticles. The enhanced catalytic performance can be attributed to the larger specific surface area and higher rate of interfacial charge transfer in the heterojunction than that of the single components. In addition, recycling tests show that the as-synthesized sample presents stable conversion efficiency for 4-NP reduction.

  3. Synthesis of TiO₂-loaded Co0.85Se thin films with heterostructure and their enhanced catalytic activity for p-nitrophenol reduction and hydrazine hydrate decomposition.

    Science.gov (United States)

    Zuo, Yong; Song, Ji-Ming; Niu, He-Lin; Mao, Chang-Jie; Zhang, Sheng-Yi; Shen, Yu-Hua

    2016-04-01

    P-nitrophenol (4-NP) and hydrazine hydrate are considered to be highly toxic pollutants in wastewater, and it is of great importance to remove them. Herein, TiO2-loaded Co0.85Se thin films with heterostructure were successfully synthesized by a hydrothermal route. The as-synthesized samples were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, transmission electron microscopy and selective-area electron diffraction. The results demonstrate that TiO2 nanoparticles with a size of about 10 nm are easily loaded on the surface of graphene-like Co0.85Se nanofilms, and the NH3 · H2O plays an important role in the generation and crystallization of TiO2 nanoparticles. Brunauer-Emmett-Teller measurement shows that the obtained nanocomposites have a larger specific surface area (199.3 m(2) g(-1)) than that of Co0.85Se nanofilms (55.17 m(2) g(-1)) and TiO2 nanoparticles (19.49 m(2) g(-1)). The catalytic tests indicate Co0.85Se-TiO2 nanofilms have the highest activity for 4-NP reduction and hydrazine hydrate decomposition within 10 min and 8 min, respectively, compared with the corresponding precursor Co0.85Se nanofilms and TiO2 nanoparticles. The enhanced catalytic performance can be attributed to the larger specific surface area and higher rate of interfacial charge transfer in the heterojunction than that of the single components. In addition, recycling tests show that the as-synthesized sample presents stable conversion efficiency for 4-NP reduction. PMID:26903086

  4. Selective catalytic reduction of NO with NH{sub 3} over CeO{sub 2}–ZrO{sub 2}–WO{sub 3} catalysts prepared by different methods

    Energy Technology Data Exchange (ETDEWEB)

    Ning, Ping; Song, Zhongxian; Li, Hao [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Zhang, Qiulin, E-mail: qiulinzhang_kmust@163.com [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Liu, Xin; Zhang, Jinhui; Tang, Xiaosu [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Huang, Zhenzhen [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China)

    2015-03-30

    Graphical abstract: The CeO{sub 2}–ZrO{sub 2}–WO{sub 3} (CZW) catalysts are prepared by different methods for the selective catalytic reduction of NO by NH{sub 3}. The CZW (HT) catalyst (synthesized by hydrothermal method) shows the best catalytic activity and above 90% NO conversion is obtained at 195–450 °C. Furthermore, the CZW (HT) also exhibits the excellent performance in the presence of H{sub 2}O and SO{sub 2}. Besides, the hydrothermal method contributes to the formation of Brønsted acid sites and then results in the exceptional high-temperature activity. - Highlights: • The CeO{sub 2}–ZrO{sub 2}–WO{sub 3} catalyst exhibits the superior SCR activity at 175–450 °C. • The hydrothermal method is beneficial to the formation of Brønsted acid sites. • The CeO{sub 2}–ZrO{sub 2}–WO{sub 3} catalyst shows the excellent resistance to SO{sub 2} + H{sub 2}O. • The highly dispersed tungsten oxide species result in the excellent performance. - Abstract: The selective catalytic reduction (SCR) of NO by NH{sub 3} has been investigated over the CeO{sub 2}–ZrO{sub 2}–WO{sub 3} (CZW) catalysts prepared by hydrothermal synthesis, incipient impregnation, co-precipitation and sol–gel methods. The results indicate that the CZW catalyst prepared by hydrothermal method shows the best SCR activity, and more than 90% NO conversion is obtained at 195–450 °C with a gas hourly space velocity of 50,000 h{sup −1}. The samples are characterized by XRD, N{sub 2} adsorption–desorption, SEM, EDS, XPS, H{sub 2}-TPR, NH{sub 3}-TPD and Pyridine-IR techniques. The results imply that the superior SCR activity of CZW catalyst is contributed to the excellent redox property, strong acidity and highest content of chemisorbed oxygen species. Furthermore, the larger surface area and greater total pore volume improve the redox ability and enhance NO conversion at low temperature, while the co-existence of Lewis and Brønsted acid sites enhance the SCR activity at

  5. Study of the Effect of Preparation Method on the Catalytic Reduction of NOx over Fe-Mn/ZSM-5/CC%制备方法对Fe-Mn/ZSM-5/CC催化还原NOx性能的影响

    Institute of Scientific and Technical Information of China (English)

    郭玉玉; 张申; 刘鹏飞; 李哲

    2015-01-01

    Solution impregnation ,slurry dip coating and ultrasonic assisted dip coating were a‐dopted to prepare three kinds of Fe‐Mn/ZSM‐5/CC (CC :cordierite) monolithic catalysts .Their performance in catalytic reduction of NO x was studied .N2 adsorption and desorption ,XRD and SEM were used to explore the structure and properties of the catalysts .The results show that the catalyst preparation methods had significant impact on the performance of Fe‐M n/ZSM‐5/CC monolithic catalysts in catalytic reduction of NO x .The catalyst produced by ultrasonic assisted dip coating showed the best catalytic performance when compared with those prepared by solution impregnation or slurry dip coating .The reason was explained by its larger specific surface area , more uniform coatings and mesoporous structure .Its conversion rate was above 90% in the tem‐perature range of 180~430 ℃ .%采用溶液浸渍法、浆液浸涂法和超声波辅助浸涂法制备了3种Fe‐Mn/ZSM‐5/CC(CC即堇青石)整体式催化剂,研究了其催化还原 NOx 的性能。利用 N2吸附脱附、XRD、扫描电镜等技术对催化剂结构和性质进行探究。结果表明,制备方法对Fe‐M n/ZSM‐5/CC整体式催化剂催化还原NOx 性能有明显的影响,与溶液浸渍法和浆液浸涂法相比,超声波辅助浸涂法制备的催化剂具有较大的比表面积、较均匀的涂层以及较多的介孔结构,使其显示出最佳的催化性能,在180~430℃的温度范围内其转化率都在90%以上。

  6. Catalytic reduction of NH4NO3 by NO. Effects of solid acids and implications for low temperature DeNOx processes

    International Nuclear Information System (INIS)

    Ammonium nitrate is thermally stable below 250 C and could potentially deactivate low temperature NOx reduction catalysts by blocking active sites. It is shown that NO reduces neat NH4NO3 above its 170 C melting point, while acidic solids catalyze this reaction even at temperatures below 100 C. NO2, a product of the reduction, can dimerize and then dissociate in molten NH4NO3 to NO+ + NO3-, and may be stabilized within the melt as either an adduct or as HNO2 formed from the hydrolysis of NO+ or N2O4. The other product of reduction, NH4NO2, readily decomposes at ≤100 C to N2 and H2O, the desired end products of DeNOx catalysis. A mechanism for the acid catalyzed reduction of NH4NO3 by NO is proposed, with HNO3 as an intermediate. These findings indicate that the use of acidic catalysts or promoters in DeNOx systems could help mitigate catalyst deactivation at low operating temperatures (<150 C). (author)

  7. Selective catalytic reduction of NOx from exhaust of lean-burn engine over Ag-Al2O3/cordierite catalyst

    Institute of Scientific and Technical Information of China (English)

    LI Junhua; KANG Shoufang; FU Lixin; HAO Jiming

    2007-01-01

    A highly effective Ag-Al2O3 catalyst was prepared using the in-situ sol-gel method,and characterized by surface area using nitrogen adsorption,scanning electron microscopy(SEM),and transmission electron microscopy(TEM)techniques.The catalyst performance was tested on a real lean-burn gasoline engine.Only unburned hydrocarbons and carbon monoxide in the exhaust were directly used as reductant(without any external reductant),the maximum NOx conversion could only reach 40% at 450℃.When an external reductant,ethanol was added,the average NOx conversion was greater than 60%.At exhaust gas temperature range of 350-500℃.the maximum NOx conversion reached about 90%.CO and HC could be efficiently oxidized with Pt-AlO3 oxidation catalyst placed at the end of SCR converter.However,NOx conversion drastically decreased because of the oxidation of some intermediates to NOx again.The possible reaction mechanism was proposed as two typical processes,nitration,and reduction in HC-SCR over Ag-Al2O3.

  8. Ruthenium catalyst on carbon nanofiber support layers for use in silicon-based structured microreactors, Part II: Catalytic reduction of bromate contaminants in aqueous phase

    NARCIS (Netherlands)

    Thakur, D.B.; Tiggelaar, R.M.; Weber, Y.; Gardeniers, J.G.E.; Lefferts, L.; Seshan, K.

    2011-01-01

    Catalyst layers were synthesized inside a structured channel of silicon based microreactor and used to remove bromate contaminants in water. It is demonstrated that Ru/CNF based catalyst is active for bromate reduction, resulting in turn over frequencies (TOFs) higher than conventional powdered cata

  9. A novel approach for enhancing the catalytic efficiency of a protease at low temperature: reduction in substrate inhibition by chemical modification.

    Science.gov (United States)

    Siddiqui, Khawar Sohail; Parkin, Don M; Curmi, Paul M G; De Francisci, Davide; Poljak, Anne; Barrow, Kevin; Noble, Malcolm H; Trewhella, Jill; Cavicchioli, Ricardo

    2009-07-01

    The alkaline protease, savinase was chemically modified to enhance the productivity of the enzyme at low temperatures on a complex polymeric protein (azocasein) substrate. At 5 and 15 degrees C, savinase modified with ficol or dextran hydrolyzed fivefold more azocasein than the unmodified savinase. Kinetic studies showed that the catalytic improvements are associated with changes in uncompetitive substrate inhibition with K(i) values of modified savinases sixfold higher than the unmodified savinase. Modeling of small-angle scattering data indicates that two substrate molecules bind on opposing sides of the enzyme. The combined kinetic and structural data indicate that the polysaccharide modifier sterically blocks the allosteric site and reduces substrate inhibition. In contrast to the properties of cold-active enzymes that generally manifest as low activation enthalpy and high flexibility, this study shows that increased activity and productivity at low temperature can be achieved by reducing uncompetitive substrate inhibition, and that this can be achieved using chemical modification with an enzyme in a commercial enzyme-formulation. PMID:19288442

  10. Evaluation of toxicity reduction, mineralization, and treatability of phenolic wastewater treated with combined system of catalytic ozonation process / biological reactor (SBR

    Directory of Open Access Journals (Sweden)

    Y Dadban Shahamat

    2016-01-01

    Full Text Available Background and Objectives: Phenol is one of the industrial pollutants in wastewaters, which due to its toxicity for biological systems various pretreatment processes have been used for its detoxification. In this study, the combination of catalytic ozonation process (COP and sequencing batch reactor (SBR were used for detoxification of these types of wastewaters. Materials and Methodology: In this study, the effect of COP on phenol degradation, COD removal, and detoxification of wastewater was investigated. To determine the acute toxicity of effluents and identification of intermediate compounds produced in COP, bioassay using Daphnia Magna and GC / MS were used, respectively. Then, phenol and COD removal of pretreated wastewater was investigated in SBR. Results: It was found that under optimal conditions in COP (time = 60 min, the concentrations of phenol and COD reduced from 500 and 1162 to 7.5 and 351 mg/L respectively and pretreated effluent toxicity (TU = 36, after rising in the initial stage of reaction, effectively reduced at the end of process (TU=2.3. the integration of this process with SBR could decreased the COD and phenol concentration less than the detectable range by HPLC.  Conclusion: Results showed that COP has a high effect on biodegradability, detoxification, and mineralization of phenol and combination of COP with SBR process can effectively treat wastewaters containing phenol.

  11. Enantioselective rhodium/ruthenium photoredox catalysis en route to chiral 1,2-aminoalcohols.

    Science.gov (United States)

    Ma, Jiajia; Harms, Klaus; Meggers, Eric

    2016-08-01

    A rhodium-based chiral Lewis acid catalyst combined with [Ru(bpy)3](PF6)2 as a photoredox sensitizer allows for the visible-light-activated redox coupling of α-silylamines with 2-acyl imidazoles to afford, after desilylation, 1,2-amino-alcohols in yields of 69-88% and with high enantioselectivity (54-99% ee). The reaction is proposed to proceed via an electron exchange between the α-silylamine (electron donor) and the rhodium-chelated 2-acyl imidazole (electron acceptor), followed by a stereocontrolled radical-radical reaction. Substrate scope and control experiments reveal that the trimethylsilyl group plays a crucial role in this reductive umpolung of the carbonyl group. PMID:27462824

  12. Synthesis of 7,7'-Disubstituted BINAP and Their Application in Asymmetric Catalytic Reaction

    Institute of Scientific and Technical Information of China (English)

    Yuan Wei-Cheng; Liu Hua; Mi Ai-Qiao; Gong Liu-Zhu; Jiang Yao-Zhong

    2004-01-01

    The design of new chiral ligands plays a very important role in the development of transition metal catalyzed asymmetric synthesis. Many chiral diphosphine ligands have been prepared and applied in asymmetric catalytic reactions with excellent enantioselectivities. Among the chiral diphosphine ligands reported, BINAP was found to have been the widest application in the transition metal catalyzed reaction. Recently we have developed a novel oxovanadium (Ⅳ)complex catalyst for the oxidative coupling of naphthol with high enantioselectivity.[1] And then a series of optically pure 7,7'-disubstituted BINOLs were successfully synthesized by using the catalyst,[2] on the basis of above, the 7,7'-disubstituted BINAP ligands ( 1-5 ) were easily prepared from the 7,7'-disubstituted BINOLs with high total yields (up to 64% of 5 steps from the BINOLs ).To demonstrate the efficiency of ligands 1-5, we applied their ruthenium complexes for asymmetric hydrogenation of simple ketones with high activity (S/C up to 5000 ), high converation (up to 100%) and moderate enantioselectivity (ee up to 88.3% ) under mild conditions. In addition, in the asymmetric 1,4-addition of arylboronic acids, these ligands also provide excellent enantioselectivity (ee up to 99%) and yield ( up to 99%).

  13. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst

    OpenAIRE

    Yang, Hong Bin; Miao, Jianwei; Hung, Sung-Fu; Chen, Jiazang; Tao, Hua Bing; Wang, Xizu; Zhang, Liping; Chen, Rong; Gao, Jiajian; Chen, Hao Ming; Dai, Liming; Liu, Bin

    2016-01-01

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are critical to renewable energy conversion and storage technologies. Heteroatom-doped carbon nanomaterials have been reported to be efficient metal-free electrocatalysts for ORR in fuel cells for energy conversion, as well as ORR and OER in metal-air batteries for energy storage. We reported that metal-free three-dimensional (3D) graphene nanoribbon networks (N-GRW) doped with nitrogen exhibited superb bifunctional electroca...

  14. Flexible Enantioselectivity of Tryptophanase Attributable to Benzene Ring in Heterocyclic Moiety of D-Tryptophan

    OpenAIRE

    Akihiko Shimada; Haruka Ozaki

    2012-01-01

    The invariance principle of enzyme enantioselectivity must be absolute because it is absolutely essential to the homochiral biological world. Most enzymes are strictly enantioselective, and tryptophanase is one of the enzymes with extreme absolute enantioselectivity for L-tryptophan. Contrary to conventional knowledge about the principle, tryptophanase becomes flexible to catalyze D-tryptophan in the presence of diammonium hydrogenphosphate. Since D-amino acids are ordinarily inert or functio...

  15. Highly Enantioselective Rhodium-Catalyzed Addition of Arylboroxines to Simple Aryl Ketones: Efficient Synthesis of Escitalopram.

    Science.gov (United States)

    Huang, Linwei; Zhu, Jinbin; Jiao, Guangjun; Wang, Zheng; Yu, Xingxin; Deng, Wei-Ping; Tang, Wenjun

    2016-03-24

    Highly enantioselective additions of arylboroxines to simple aryl ketones have been achieved for the first time with a Rh/(R,R,R,R)-WingPhos catalyst, thus providing a range of chiral diaryl alkyl carbinols with excellent ee values and yields. (R,R,R,R)-WingPhos has been proven to be crucial for the high reactivity and enantioselectivity. The method has enabled a new, concise, and enantioselective synthesis of the antidepressant drug escitalopram. PMID:26933831

  16. Development of a hydrophilic interaction liquid chromatography-mass spectrometry method for detection and quantification of urea thermal decomposition by-products in emission from diesel engine employing selective catalytic reduction technology.

    Science.gov (United States)

    Yassine, Mahmoud M; Dabek-Zlotorzynska, Ewa; Celo, Valbona

    2012-03-16

    The use of urea based selective catalytic reduction (SCR) technology for the reduction of NOx from the exhaust of diesel-powered vehicles has the potential to emit at least six thermal decomposition by-products, ammonia, and unreacted urea from the tailpipe. These compounds may include: biuret, dicyandiamine, cyanuric acid, ammelide, ammeline and melamine. In the present study, a simple, sensitive and reliable hydrophilic interaction liquid chromatography (HILIC)-electrospray ionization (ESI)/mass spectrometry (MS) method without complex sample pre-treatment was developed for identification and determination of urea decomposition by-products in diesel exhaust. Gradient separation was performed on a SeQuant ZIC-HILIC column with a highly polar zwitterionic stationary phase, and using a mobile phase consisting of acetonitrile (eluent A) and 15 mM ammonium formate (pH 6; eluent B). Detection and quantification were performed using a quadrupole ESI/MS operated simultaneously in negative and positive mode. With 10 μL injection volume, LODs for all target analytes were in the range of 0.2-3 μg/L. The method showed a good inter-day precision of retention time (RSDfilter (DPF) and urea based SCR technology showed the presence of five target analytes with cyanuric acid and ammelide the most abundant compounds in the exhaust.

  17. Research advance in non-thermal plasma induced selective catalytic reduction NOx with low hydrocarbon compounds%低温等离子体诱导低碳烃选择性催化还原NOx研究进展

    Institute of Scientific and Technical Information of China (English)

    苏清发; 刘亚敏; 陈杰; 潘华; 施耀

    2009-01-01

    The emission of nitrogen oxides (NOx) from stationary sources, primarily from power stations, industrial heaters and cogeneration plants, represents a major environmental problem. This paper intends to give a general review over the advances in non-thermal plasma assisted selective catalytic reduction (SCR) of NOx with lower hydrocarbon compounds. In the last decade, the non-thermal plasma induced SCR of nitrogen oxide with low hydrocarbon compounds has received much attention. The different hydrocarbons (≤C3) used in the research are discussed. As we know,methane is more difficultly activated than non-methane hydrocarbons, such as ethylene and propylene etc. The reduction mechanism is also discussed. In addition, aiming at the difficulties existed, the direction for future research is prospected.%综述了近年来低温等离子体诱导低碳烃选择性催化还原NOx的研究进展,详细介绍了难活化的甲烷及较易活化的非甲烷低碳烃气体如乙烯、丙烯及丙烷等的研究现状,探讨了低温等离子体诱导低碳烃选择性催化还原NOx的反应机理,并展望了低温等离子体诱导低碳烃选择性催化还原NOx今后研究方向.

  18. One-pot synthesis of monodisperse palladium-copper nanocrystals supported on reduced graphene oxide nanosheets with improved catalytic activity and methanol tolerance for oxygen reduction reaction

    Science.gov (United States)

    Lv, Jing-Jing; Li, Shan-Shan; Wang, Ai-Jun; Mei, Li-Ping; Feng, Jiu-Ju; Chen, Jian-Rong; Chen, Zhaojiang

    2014-12-01

    Monodisperse bimetallic alloyed palladium-copper nanocrystals are uniformly supported on reduced graphene oxide nanosheets by a one-pot solvothermal strategy, with an average size of 6.81 nm. As a result, the as-prepared nanocomposites have the enlarged electrochemically active surface area (49.2 m2 g-1), and display the improved electrocatalytic performance and high methanol-tolerance ability for oxygen reduction reaction in alkaline media, compared with commercial Pd black and RGOs. Those RGOs-supporting Pd-Cu alloys would have potential applications in fuel cells.

  19. Phosphorus/sulfur Co-doped porous carbon with enhanced specific capacitance for supercapacitor and improved catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Zhou, Yao; Ma, Ruguang; Candelaria, Stephanie L.; Wang, Jiacheng; Liu, Qian; Uchaker, Evan; Li, Pengxi; Chen, Yongfang; Cao, Guozhong

    2016-05-01

    Phosphorus (P)/sulfur (S) co-doped porous carbon derived from resorcinol and furaldehyde are synthesized through one-step sol-gel processing with the addition of phosphorus pentasulfide as P and S source followed with freeze-drying and pyrolysis in nitrogen. The P/S co-doping strategy facilitates the pore size widening both in micropore and mesopore regions, together with the positive effect on the degree of graphitization of porous carbon through elimination of amorphous carbon through the formation and evaporation of carbon disulfide. As an electrode for supercapacitor application, P/S co-doped porous carbon demonstrates 43.5% improvement on specific capacitance of the single electrode compared to pristine porous carbon in organic electrolyte at a current of 0.5 mA due to the P-induced pseudocapacitive reactions. As for electrocatalytic use, promoted electrocatalytic activity and high resistance to crossover effects of oxygen reduction reaction (ORR) in alkaline media are observed after the introduction of P and S into porous carbon. After air activation, the specific capacitance of the single electrode of sample PS-pC reaches up to 103.5 F g-1 and an improved oxygen reduction current density.

  20. Design and Stereoselective Preparation of a New Class of Chiral Olefin Metathesis Catalysts and Application to Enantioselective Synthesis of Quebrachamine: Catalyst Development Inspired by Natural Product Synthesis

    Science.gov (United States)

    Sattely, Elizabeth S.; Meek, Simon J.; Malcolmson, Steven J.; Schrock, Richard R.; Hoveyda, Amir H.

    2010-01-01

    A total synthesis of the Aspidosperma alkaloid quebrachamine in racemic form is first described. A key catalytic ring-closing metathesis of an achiral triene is used to establish the all-carbon quaternary stereogenic center and the tetracyclic structure of the natural product; the catalytic transformation proceeds with reasonable efficiency through the use of existing achiral Ru or Mo catalysts. Ru- or Mo-based chiral olefin metathesis catalysts have proven to be inefficient and entirely nonselective in cases where the desired product is observed. In the present study, the synthesis route thus serves as a platform for the discovery of new olefin metathesis catalysts that allow for efficient completion of an enantioselective synthesis of quebrachamine. Accordingly, on the basis of mechanistic principles, stereogenic-at-Mo complexes bearing only monodentate ligands have been designed. The new catalysts provide significantly higher levels of activity than observed with the previously reported Ru- or Mo-based complexes. Enantiomerically enriched chiral alkylidenes are generated through diastereoselective reactions involving achiral Mo-based bispyrrolides and enantiomerically pure silyl-protected binaphthols. Such chiral catalysts initiate the key enantioselective ring-closing metathesis step in the total synthesis of quebrachamine efficiently (1 mol % loading, 22 °C, 1 h, >98% conversion, 84% yield) and with high selectivity (98:2 er, 96% ee). PMID:19113867

  1. Enantioselective synthesis of fluorinated branched allylic compounds via Ir-catalyzed allylations of functionalized fluorinated methylene derivatives.

    Science.gov (United States)

    Zhang, Hongbo; Chen, Jiteng; Zhao, Xiao-Ming

    2016-08-14

    Enantioselective introduction of the functionalized monofluorinated methylenes into the allylic fragment under Ir catalysis has been realized, which gave the fluorinated branched allyl products in good to high yields with excellent regio- and enantioselectivities. PMID:27383920

  2. Enantioselective conjugate addition of diethylzinc to chalcone catalyzed by Co(acac)2 and chiral amino alcohols

    NARCIS (Netherlands)

    Vries, André H.M. de; Feringa, Bernard

    1997-01-01

    Co(acac)2 in the presence of chiral ligands has been employed as catalyst for the enantioselective conjugate addition of diethylzinc to chalcone. With chiral amino alcohols derived from (+)-camphor, enantioselectivities up to 83% were achieved.

  3. Enantioselective Epoxide Polymerization Using a Bimetallic Cobalt Catalyst

    KAUST Repository

    Thomas, Renee M.

    2010-11-24

    A highly active enantiopure bimetallic cobalt complex was explored for the enantioselective polymerization of a variety of monosubstituted epoxides. The polymerizations were optimized for high rates and stereoselectivity, with s-factors (kfast/kslow) for most epoxides exceeding 50 and some exceeding 300, well above the threshold for preparative utility of enantiopure epoxides and isotactic polyethers. Values for mm triads of the resulting polymers are typically greater than 95%, with some even surpassing 98%. In addition, the use of a racemic catalyst allowed the preparation of isotactic polyethers in quantitative yields. The thermal properties of these isotactic polyethers are presented, with many polymers exhibiting high T m values. This is the first report of the rapid synthesis of a broad range of highly isotactic polyethers via the enantioselective polymerization of racemic epoxides. © 2010 American Chemical Society.

  4. Enantioselective extraction of terbutaline enantiomers by lipophilic tartaric acid

    Institute of Scientific and Technical Information of China (English)

    唐课文; 周春山

    2003-01-01

    Distribution behavior of terbutaline enantiomers was examined in the aqueous and organic solvent of a two-phase system containing L-dibenzoyltartaric acid and lipophilic phase transfer reagent of Na-tetraphenylborate. The influences of pH, organic solvents, concentrations of Na-tetraphenylborate and L-dibenzoyltartaric acid on the partition coefficients and enantioselectivity of terbutaline enantiomers, were investigated. The results show that tetraphenylborate lipophilic anion and terbutaline enantiomers form two lipophilic salt complexes , which facilitates the solubility of the enantiomers in the organic phase. L-dibenzoyltartaric acid forms more stable complexes with enantiomer Ⅱ than with enantiomer I . Enantioselectivity and partition coefficient increase with the addition of the length of alkyl chain of alcohols. pH and concentrations of lipophilic anion and L-dibenzoyltartaric acid influence them obviously and differently.

  5. A Au/Cu2O-TiO2 system for photo-catalytic hydrogen production. A pn-junction effect or a simple case of in situ reduction?

    KAUST Repository

    Sinatra, Lutfan

    2015-02-01

    Photo-catalytic H2 production from water has been studied over Au-Cu2O nanoparticle deposited on TiO2 (anatase) in order to probe into both the plasmon resonance effect (Au nanoparticles) and the pn-junction at the Cu2O-TiO2 interface. The Au-Cu2O composite is in the form of ∼10 nm Au nanoparticles grown on ∼475 nm Cu2O octahedral nanocrystals with (111) facets by partial galvanic replacement. X-ray Photoelectron Spectroscopy (XPS) Cu2p and Auger L3M4,5M4,5 lines indicate that the surface of Cu2O is mainly composed of Cu+. The rate for H2 production (from 95 water/5 ethylene glycol; vol.%) over 2 wt.% (Au/Cu2O)-TiO2 is found to be ∼10 times faster than that on 2 wt.% Au-TiO2 alone. Raman spectroscopy before and after reaction showed the disappearance of Cu+ lines (2Eu) at 220 cm-1. These observations coupled with the induction time observed for the reaction rate suggest that in situ reduction from Cu+ to Cu0 occurs upon photo-excitation. The reduction requires the presence of TiO2 (electron transfer). The prolonged activity of the reaction (with no signs of deactivation) despite the reduction to Cu0 indicates that the latter takes part in the reaction by providing additional sites for the reaction, most likely as recombination centers for hydrogen atoms to form molecular hydrogen. This phenomenon provides an additional route for enhancing the efficiency and lifetime of Cu2O-TiO2 photocatalytic systems, beyond the usually ascribed pn-junction effect.

  6. Selective catalytic reduction of nitric oxide by ethylene over metal-modified ZSM-5- and {gamma}-Al{sub 2}O{sub 3}-catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Eraenen, K.; Kumar, N.; Lindfors, L.E. [Aabo Akademi, Turku (Finland). Lab. of Industrial Chemistry

    1996-12-31

    Metal-modified ZSM-5 and {gamma}-Al{sub 2}O{sub 3} catalysts were tested in reduction of nitric oxide by ethylene. Different metals were introduced into the ZSM-5 catalyst by ion-exchange and by introduction of metals during the zeolite synthesis. To prepare bimetallic catalysts a combination of these methods was used. The {gamma}-Al{sub 2}O{sub 3} was impregnated with different metals by the incipient wetness technique and by adsorption. Activity measurements showed that the ZSM-5 based catalysts were more active than the {gamma}-Al{sub 2}O{sub 3} based catalysts. The highest conversion was obtained over a ZSM-5 catalyst prepared by introduction of Pd during synthesis of the zeolite and subsequently ion-exchanged with copper. (author)

  7. Intercalation assembly of Li{sub 3}VO{sub 4} nanoribbons/graphene sandwich-structured composites with enhanced oxygen reduction catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Huang, K.; Ling, Q.N.; Huang, C.H.; Bi, K. [State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Wang, W.J.; Yang, T.Z. [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Lu, Y.K. [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Liu, J., E-mail: liujun4982004@csu.edu.cn [School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083 (China); Zhang, R.; Fan, D.Y.; Wang, Y.G. [State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Lei, Ming, E-mail: mlei@bupt.edu.cn [State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2015-10-15

    Novel sandwich-like nanocomposites of alternative stacked ultrathin Li{sub 3}VO{sub 4} nanoribbons and graphene sheets (LVO-G) were successfully developed by a facile intercalation assembly method with a post heating treatment. The characterization results demonstrate that the average size of the Li{sub 3}VO{sub 4} nanoribbons with a non-layered crystal structure is a few micrometers in length, 50–100 nm in width and a few atomic layers in height. The addition of graphene sheets can modify the preferred orientation of the Li{sub 3}VO{sub 4} nanoribbons from (110) to (011) plane and restrict the growth of impurity phase at the same time. In addition, EIS analysis has also verified the reduced resistance and thus the enhance conductivity of LVO-G nanocomposites compared with bare Li{sub 3}VO{sub 4} nanoribbons. What's more, the electrocatalytic performances of these novel LVO-G nanocomposites for oxygen reduction reaction (ORR) in alkaline solution are further investigated by cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometry test. It is found that the enhanced activity and stability of LVO-G can be attributed to the synergistic effect between the Li{sub 3}VO{sub 4} nanoribbons and graphene sheets with a larger reduction current density and a smaller onset potential value for LVO-G25 compared with LVO-G50 due to the change of components. - Highlights: • Novel sandwich-structured LVO-G by a facile intercalation assembly method. • Addition of G sheets can modify the preferred orientation of Li{sub 3}VO{sub 4} nanoribbon. • Enhanced ORR activity and stability due to synergistic effect are demonstrated.

  8. The catalytic effect of sodium and lithium ions on coupled sorption-reduction of chromate at the biotite edge-fluid interface

    Science.gov (United States)

    Ilton, Eugene S.; Veblen, David R.; Moses, Carl O.; Raeburn, Stuart P.

    1997-09-01

    Large single crystals of biotite and near-endmember phlogopite were reacted with aqueous solutions bearing 20 μM Cr(VI) and different concentrations of NaCl, LiCl, RbCl, CsCl, NaClO 4, and Na 2SO 4. Solutions were maintained at 25 ± 0.5°C, 1 atm, and pH = 4.00 ± 0.02. Samples were extracted from the reaction chamber at 1, 3, 5, 10, and 20 h. The edges and basal planes of the reacted micas were analyzed by X-ray photoelectron spectroscopy (XPS) for major elements and Cr. XPS analyses of biotite show trivalent chromium on edge surfaces but no detectable chromium on the basal plane. XPS analyses of near-endmember phlogopites that were reacted in the same experiments as biotite showed no detectable Cr on either the basal plane or edge surfaces. Increasing Na and Li salt concentrations increased the rate of coupled sorption-reduction of chromate at the biotite edge-fluid interface, where the order of effectiveness was NaCl ˜ NaClO 4 > Na 2SO 4 > LiCl. In contrast, no Cr was detected on mica edges after reaction in RbCl and CsCl solutions. Comparison of equimolar NaCl and LiCl experiments indicate that the active agent is Na and Li, not ionic strength or the anion. Sulfate tends to block the reaction more so than chloride. We conclude that it is the substitution of hydrated cations for interlayer K in biotite that enhances the heterogeneous reduction of chromate at the biotite edge-fluid interface.

  9. Cooperative catalysis of metal and O-H···O/sp3-C-H···O two-point hydrogen bonds in alcoholic solvents: Cu-catalyzed enantioselective direct alkynylation of aldehydes with terminal alkynes.

    Science.gov (United States)

    Ishii, Takaoki; Watanabe, Ryo; Moriya, Toshimitsu; Ohmiya, Hirohisa; Mori, Seiji; Sawamura, Masaya

    2013-09-27

    Catalyst-substrate hydrogen bonds in artificial catalysts usually occur in aprotic solvents, but not in protic solvents, in contrast to enzymatic catalysis. We report a case in which ligand-substrate hydrogen-bonding interactions cooperate with a transition-metal center in alcoholic solvents for enantioselective catalysis. Copper(I) complexes with prolinol-based hydroxy amino phosphane chiral ligands catalytically promoted the direct alkynylation of aldehydes with terminal alkynes in alcoholic solvents to afford nonracemic secondary propargylic alcohols with high enantioselectivities. Quantum-mechanical calculations of enantiodiscriminating transition states show the occurrence of a nonclassical sp(3)-C-H···O hydrogen bond as a secondary interaction between the ligand and substrate, which results in highly directional catalyst-substrate two-point hydrogen bonding.

  10. Preparation of new Calix[4]arene-immobilized biopolymers for enhancing catalytic properties of Candida rugosa lipase by sol-gel encapsulation.

    Science.gov (United States)

    Ozyilmaz, Elif; Sayin, Serkan

    2013-08-01

    The article describes preparation of new calixarene biopolymers consisting of the immobilization of convenience calixarene derivative onto cellulose and chitosan biopolymers, and the encapsulation of these calixarene biopolymers with Candida rugosa lipase within a chemical inert sol-gel supported by polycondensation with tetraethoxysilane and octyltriethoxysilane. The catalytic properties of immobilized lipase were evaluated into model reactions employing the hydrolysis of p-nitrophenylpalmitate and the enantioselective hydrolysis of naproxen methyl esters from racemic prodrugs in aqueous buffer solution/isooctane reaction system. The resolution studies using sol-gel support have observed more improvement in the enantioselectivity of naproxen E = 300 with Cel-Calix-E than with encapsulated lipase without calixarene-based materials. Furthermore, the encapsulated lipase (Cel-Calix-E) was still retained about 39 % of their conversion ratios after the fifth reuse in the enantioselective reaction.

  11. Enantioselective epoxidation and carbon-carbon bond cleavage catalyzed by Coprinus cinereus peroxidase and myeloperoxidase.

    Science.gov (United States)

    Tuynman, A; Spelberg, J L; Kooter, I M; Schoemaker, H E; Wever, R

    2000-02-01

    We demonstrate that myeloperoxidase (MPO) and Coprinus cinereus peroxidase (CiP) catalyze the enantioselective epoxidation of styrene and a number of substituted derivatives with a reasonable enantiomeric excess (up to 80%) and in a moderate yield. Three major differences with respect to the chloroperoxidase from Caldariomyces fumago (CPO) are observed in the reactivity of MPO and CiP toward styrene derivatives. First, in contrast to CPO, MPO and CiP produced the (S)-isomers of the epoxides in enantiomeric excess. Second, for MPO and CiP the H(2)O(2) had to be added very slowly (10 eq in 16 h) to prevent accumulation of catalytically inactive enzyme intermediates. Under these conditions, CPO hardly showed any epoxidizing activity; only with a high influx of H(2)O(2) (300 eq in 1.6 h) was epoxidation observed. Third, both MPO and CiP formed significant amounts of (substituted) benzaldehydes as side products as a consequence of C-alpha-C-beta bond cleavage of the styrene derivatives, whereas for CPO and cytochrome c peroxidase this activity is not observed. C-alpha-C-beta cleavage was the most prominent reaction catalyzed by CiP, whereas with MPO the relative amount of epoxide formed was higher. This is the first report of peroxidases catalyzing both epoxidation reactions and carbon-carbon bond cleavage. The results are discussed in terms of mechanisms involving ferryl oxygen transfer and electron transfer, respectively.

  12. Asymmetric catalytic formation of quaternary carbons by iminium ion trapping of radicals

    Science.gov (United States)

    Murphy, John J.; Bastida, David; Paria, Suva; Fagnoni, Maurizio; Melchiorre, Paolo

    2016-04-01

    An important goal of modern organic chemistry is to develop new catalytic strategies for enantioselective carbon–carbon bond formation that can be used to generate quaternary stereogenic centres. Whereas considerable advances have been achieved by exploiting polar reactivity, radical transformations have been far less successful. This is despite the fact that open-shell intermediates are intrinsically primed for connecting structurally congested carbons, as their reactivity is only marginally affected by steric factors. Here we show how the combination of photoredox and asymmetric organic catalysis enables enantioselective radical conjugate additions to β,β-disubstituted cyclic enones to obtain quaternary carbon stereocentres with high fidelity. Critical to our success was the design of a chiral organic catalyst, containing a redox-active carbazole moiety, that drives the formation of iminium ions and the stereoselective trapping of photochemically generated carbon-centred radicals by means of an electron-relay mechanism. We demonstrate the generality of this organocatalytic radical-trapping strategy with two sets of open-shell intermediates, formed through unrelated light-triggered pathways from readily available substrates and photoredox catalysts—this method represents the application of iminium ion activation (a successful catalytic strategy for enantioselective polar chemistry) within the realm of radical reactivity.

  13. Ring-Contraction Strategy for the Practical, Scalable, Catalytic Asymmetric Synthesis of Versatile γ-Quaternary Acylcyclopentenes

    KAUST Repository

    Hong, Allen Y.

    2011-02-24

    Contraction action! A simple protocol for the catalytic asymmetric synthesis of highly functionalized γ-quaternary acylcyclopentenes (see schematic) in up to 91 % overall yield and 92 % ee has been developed. The reaction sequence employs a palladium-catalyzed enantioselective alkylation reaction and exploits the unusual stability of β-hydroxy cycloheptanones to achieve a general and robust method for performing two-carbon ring contractions.

  14. Cyclodextrin Derivatives as Chiral Supramolecular Receptors for Enantioselective Sensing

    Directory of Open Access Journals (Sweden)

    Uwe Pieles

    2006-06-01

    Full Text Available In view of the chiral nature of many bio-molecules (and all bio-macromolecules,most of therapeutically active compounds which target these molecules need to be chiraland “good handed” to be effective. In addition to asymmetric synthetic and separationmethodologies, enantioselective chemical sensors, able to distinguish between twoenantiomers of the same molecule, are of relevance. In order to design these sensing tools,two major classes of enantioselective layers have been developed. The first is based onmolecularly imprinted polymers which are produced (polymerized in the presence of theirtarget, thus the polymeric material keep in “memory” the size and the shape of this moleculeand the system could be used for sensing (not reviewed here. The second approach makesuse of sensitive layers containing chiral macrocyclic receptors able of stereoselectivemolecular recognition; these receptors are mainly based on cyclodextrins. In thiscontribution, are reviewed achievements in the use of native or chemically modifiedcyclodextrins for chiral sensing purposes (at interfaces. Potentialities of other chiralmacrocycles based on calixarenes, calix-resorcinarenes or crown-ethers as supramolecularreceptors for enantioselective sensing are discussed.

  15. Catalytic studies of nitric oxide: A. Reduction of nitric oxide with methane over alumina supported rhidium. B. Characterization of alumina supported cobalt molybdate for olefin metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Hardee, J.R.

    1978-01-01

    Kinetic studies at 300/sup 0/-400/sup 0/C in a gradientless recirculating reactor showed that nitric oxide reduction was first order in methane and -0.63 order in nitric oxide, with an activation energy of 18.4 kcal/mole, and a deuterium kinetic isotope effect of 1.9, suggesting that dissociative methane adsorption is the rate-determining step. Nitrogen-15 tracer studies showed that the reaction involves N/sub 2/O as a surface intermediate, and a mechanism is proposed involving two-step dissociation of adsorbed NO to adsorbed N/sub 2/O and N/sub 2/ and surface oxygen atoms, which rapidly poison the catalyst unless removed by methane. Propylene metathesis to ethylene and 2-butene over cobalt molybdate was studied by nitric oxide poisoning and shown to follow Langmuir-Hinshelwood kinetics. Two different dual-site mechanisms, one involving propylene adsorption on adjacent molybdenum atoms and the other involving adsorption of two propylene molecules on one molybdenum atom, fit the data equally well. An upper limit to the active site density was determined as 2.5 x 10/sup 13//sq cm at 27/sup 0/C, i.e., only 9Vertical Bar3< of the surface molybdenum atom density.

  16. Performance of V2O5-WO3-MoO3/TiO2 Catalyst for Selective Catalytic Reduction of NOx by NH3

    Institute of Scientific and Technical Information of China (English)

    GAO Yan; LUAN Tao; L(U) Tao; CHENG Kai; XU Hongming

    2013-01-01

    The V2O5-WO3-MoO3/TiO2 honeycomb catalyst was prepared with industrial grade chemicals.The structural and physico-chemical properties were analyzed with X-ray diffraction (XRD),scanning electron micrograph (SEM) and mercury porosimetry.The NOx conversion and durability were investigated on a pilot plant test set under the actual operational conditions of a coal fired boiler.The catalyst monolith had good formability with mass percentage ofV: W: Mo: TiO2: fiber glass=1: 4.5: 4.5: 72: 18.Vanadium,tungsten and molybdenum species were highly dispersed on anatase TiO2 without causing the transformation of anatase TiO2 to rutile by calcining under a current of air at 450 ℃ for 4.5 h,but there were some degrees of crystal distortion.The catalyst particle sizes were almost uniform with close pile-up and the pore structure was regular with complete macro-pore formation and large specific surface area.The NOx conversion was sensitive to temperature but nearly insensitive to NH3.The catalyst showed strong adaptability to NOx concentration with activity above 80% in the range of 615-1640 mg·m-3.Within the range of 720-8640 h continuous operation,the NOx conversion dropped at a rate of about 1% reduction per 600 h.

  17. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst.

    Science.gov (United States)

    Yang, Hong Bin; Miao, Jianwei; Hung, Sung-Fu; Chen, Jiazang; Tao, Hua Bing; Wang, Xizu; Zhang, Liping; Chen, Rong; Gao, Jiajian; Chen, Hao Ming; Dai, Liming; Liu, Bin

    2016-04-01

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are critical to renewable energy conversion and storage technologies. Heteroatom-doped carbon nanomaterials have been reported to be efficient metal-free electrocatalysts for ORR in fuel cells for energy conversion, as well as ORR and OER in metal-air batteries for energy storage. We reported that metal-free three-dimensional (3D) graphene nanoribbon networks (N-GRW) doped with nitrogen exhibited superb bifunctional electrocatalytic activities for both ORR and OER, with an excellent stability in alkaline electrolytes (for example, KOH). For the first time, it was experimentally demonstrated that the electron-donating quaternary N sites were responsible for ORR, whereas the electron-withdrawing pyridinic N moieties in N-GRW served as active sites for OER. The unique 3D nanoarchitecture provided a high density of the ORR and OER active sites and facilitated the electrolyte and electron transports. As a result, the as-prepared N-GRW holds great potential as a low-cost, highly efficient air cathode in rechargeable metal-air batteries. Rechargeable zinc-air batteries with the N-GRW air electrode in a two-electrode configuration exhibited an open-circuit voltage of 1.46 V, a specific capacity of 873 mAh g(-1), and a peak power density of 65 mW cm(-2), which could be continuously charged and discharged with an excellent cycling stability. Our work should open up new avenues for the development of various carbon-based metal-free bifunctional electrocatalysts of practical significance. PMID:27152333

  18. Enantioselective addition of diphenyl phosphonate to ketimines derived from isatins catalyzed by binaphthyl-modified organocatalysts

    Science.gov (United States)

    Jang, Hee Seung; Kim, Yubin

    2016-01-01

    Summary Chiral binaphthyl-modified squaramide-catalyzed enantioselective addition of diphenyl phosphonate to ketimines derived from isatins has been achieved. This method affords practical and efficient access to chiral 3-amino-3-phosphonyl-substituted oxindole derivatives in high yields with excellent enantioselectivities (up to 99% ee). PMID:27559405

  19. Enantioselective carbenoid insertion into C(sp3)–H bonds

    Science.gov (United States)

    Santiago, J V

    2016-01-01

    Summary The enantioselective carbenoid insertion into C(sp3)–H bonds is an important tool for the synthesis of complex molecules due to the high control of enantioselectivity in the formation of stereogenic centers. This paper presents a brief review of the early issues, related mechanistic studies and recent applications on this chemistry area. PMID:27340479

  20. Enantioselective Friedel-Crafts Alkylation Reactions of 3-Substituted Indoles with Electron-Deficient Alkenes.

    Science.gov (United States)

    Weng, Jian-Quan; Fan, Ren-Jie; Deng, Qiao-Man; Liu, Ren-Rong; Gao, Jian-Rong; Jia, Yi-Xia

    2016-04-01

    Highly enantioselective Friedel-Crafts C2-alkylation reactions of 3-substituted indoles with α,β-unsaturated esters and nitroalkenes were developed using chiral Lewis acids as catalysts, which afforded chiral indole derivatives bearing C2-benzylic stereogenic centers in good to excellent yields (up to 99%) and enantioselectivities (up to 96% ee). PMID:26959867

  1. Enantioselective Pinacol Coupling of Aromatic Aldehydes Induced by Chiral Titanium Complexes

    Institute of Scientific and Technical Information of China (English)

    Qing Fang CHENG; Xing You XU; Ming Yan WANG; Jun CHEN; Wei Xing MA; Xu Jie YANG

    2006-01-01

    Asymmetric pinacol coupling of aromatic aldehydes with TiCl4-Zn in the presence of enantiopure squaric acid amidoalcohols afforded 1, 2-diols in excellent yields with high dldiastereoselectivities and enantioselectivities in the range of 46-89% ee. Some factors influencing dl-diastereoselectivity and enantioselectivity were discussed.

  2. Gold(I)-Catalyzed Dearomative Rautenstrauch Rearrangement: Enantioselective Access to Cyclopenta[b]indoles

    Science.gov (United States)

    Zi, Weiwei; Wu, Hongmiao; Toste, F. Dean

    2016-01-01

    A highly enantioselective dearomative Rautenstrauch rearrangement catalyzed by cationic (S)-DTBM-Segphosgold(I) is reported. This reaction provides a straightforward method to prepare enantioenriched cyclopenta[b]indoles. These studies show vast difference in enantioselectivity in the reactions of propargyl acetates and propargyl acetals in the chiral ligand-controlled Rautenstrauch reaction. PMID:25710515

  3. Enantioselective Addition of Organolithium Reagents to Imines Mediated by C2-Symmetric Bis(aziridine) Ligands

    DEFF Research Database (Denmark)

    Johansson, F.; Tanner, David Ackland

    1998-01-01

    The C-2-symmetric bis(aziridine) ligands 1 - 5 have been screened in the enantioselective addition of organolithium reagents to imines. Ligand 1 (used in stoichiometric amounts) was found to be superior in terms of chemical yield and enantioselectivity, the best result being 90% yield and 89% e.e...

  4. Enhancement of the enantioselectivity of carboxylesterase A by structure-based mutagenesis

    NARCIS (Netherlands)

    Godinho, Luis F.; Reis, Carlos R.; Rozeboom, Henriette J.; Dekker, Frank J.; Dijkstra, Bauke W.; Poelarends, Gerrit J.; Quax, Wim J.

    2012-01-01

    Previously studied Bacillus subtilis carboxylesterases (CesA and CesB) have potential for the kinetic resolution of racemic esters of 1,2-O-isopropylideneglycerol (IPG). CesA exhibits high activity but low enantioselectivity towards IPG-butyrate and IPG-caprylate, while the more enantioselective Ces

  5. Chemical speciation of PM emissions from heavy-duty diesel vehicles equipped with diesel particulate filter (DPF) and selective catalytic reduction (SCR) retrofits

    Science.gov (United States)

    Biswas, Subhasis; Verma, Vishal; Schauer, James J.; Sioutas, Constantinos

    Four heavy-duty diesel vehicles (HDDVs) in six retrofitted configurations (CRT ®, V-SCRT ®, Z-SCRT ®, Horizon, DPX and CCRT ®) and a baseline vehicle operating without after--treatment were tested under cruise (50 mph), transient UDDS and idle driving modes. As a continuation of the work by Biswas et al. [Biswas, S., Hu, S., Verma, V., Herner, J., Robertson, W.J., Ayala, A., Sioutas, C., 2008. Physical properties of particulate matter (PM) from late model heavy-duty diesel vehicles operating with advanced emission control technologies. Atmospheric Environment 42, 5622-5634.] on particle physical parameters, this paper focuses on PM chemical characteristics (Total carbon [TC], Elemental carbon [EC], Organic Carbon [OC], ions and water-soluble organic carbon [WSOC]) for cruise and UDDS cycles only. Size-resolved PM collected by MOUDI-Nano-MOUDI was analyzed for TC, EC and OC and ions (such as sulfate, nitrate, ammonium, potassium, sodium and phosphate), while Teflon coated glass fiber filters from a high volume sampler were extracted to determine WSOC. The introduction of retrofits reduced PM mass emissions over 90% in cruise and 95% in UDDS. Similarly, significant reductions in the emission of major chemical constituents (TC, OC and EC) were achieved. Sulfate dominated PM composition in vehicle configurations (V-SCRT ®-UDDS, Z-SCRT ®-Cruise, CRT ® and DPX) with considerable nucleation mode and TC was predominant for configurations with less (Z-SCRT ®-UDDS) or insignificant (CCRT ®, Horizon) nucleation. The transient operation increases EC emissions, consistent with its higher accumulation PM mode content. In general, solubility of organic carbon is higher (average ˜5 times) for retrofitted vehicles than the baseline vehicle. The retrofitted vehicles with catalyzed filters (DPX, CCRT ®) had decreased OC solubility (WSOC/OC: 8-25%) unlike those with uncatalyzed filters (SCRT ®s, Horizon; WSOC/OC ˜ 60-100%). Ammonium was present predominantly in the

  6. Contribution to Conversion of CO2 to fuel by electro-photo-catalytic reduction in hydro-genocarbonated aqueous solution tion

    Science.gov (United States)

    Nezzal, Ghania; Benammar, Souad; Hamouni, Samia; Meziane, Dalila; Naama, Sabrina; Abdessemed, Djamel

    2015-04-01

    Referring to the last World Conference COPENHAGEN (2010), endorsed by the United Nations,to '' RISKS OF CLIMATE CHANGES ', states had not reached an agreement to work fairly, in an international program, to limit Carbon dioxide emissions into the atmosphere, to put off it, to the next (in 2015), the right decisions, despite the recommendations of the 'IPCC'. Based on the natural reaction of photosynthesis, which converts carbon dioxide in the presence of water and sun, to '' OSA'' ', it is natural that scientists believe to implement an artificial conversion of CO2 in a renewable energy faster. Our contribution focuses on the same goals, by a different line. In this perspective, nano-materials, catalysts, pervaporation membranes, pervaporation unit, and a photo-reactor prototype, have been made. A summary of the preliminary results presented: For example, are given the concentrations of the various species present in a aqueous solution of sodium hydrogen carbonate, 0.5M, saturated with CO2, at standard temperature and pressure: (CO2) = 1M; (H2CO3) = 0,038M; (HCO3-) = 0,336M; (CO3 --) = 0,34M; pH = 7.33, an overall concentration = 1,714M, more than three times that of the initial solution. It is in such conditions that the conversion of carbon dioxide by the hydrogen produced in situ by electrolysis, in fuel, must be done in the presence of catalyst, under UV radiation. For electrodes, a nano-porous layer was formed on their surface to receive the suitable catalyst. These lats prepared, are made of porous supports (montmorillonite, aluminum and silicon oxides) into which are inserted the metal precursor, by impregnation interactive, in Iron, cobalt, nickel salt solutions, cobalt, nickel. Their performance has been identified by the reduction of para- nitrophenol, to para-aminophenol in aqueous medium in the presence of sodium borohydride. This is the catalyst 'Cobalt supported by SiO2'' that gave the best conversion, 99.5% instead of 99.7%, for a platinum catalyst

  7. The Key Role of pH Value in the Synthesis of Titanate Nanotubes-Loaded Manganese Oxides as a Superior Catalyst for the Selective Catalytic Reduction of NO with NH3

    Directory of Open Access Journals (Sweden)

    Xiongbo Chen

    2013-01-01

    Full Text Available Titanate nanotubes (TNTs synthesized by hydrothermal method were increasingly used as the catalyst support for the selective catalytic reduction (SCR of NO with ammonia. This paper reports the critical process of postwashing to prepare satisfactory TNTs for the uses of SCR catalysts. Herein, alkaline TNTs (TNTs-AL, acidic TNTs (TNTs-AC, and neutral TNTs (TNTs-NE were synthesized by controlling washing pH value. When these TNTs were utilized as the catalyst supports for manganese oxides (Mn/TNTs-AL, Mn/TNTs-AC, and Mn/TNTs-NE, the key role of pH value was found. Titanate nanosheets, titanate nanorods and titanate nanotubes were dominated in Mn/TNTs-AL, Mn/TNTs-AC, and Mn/TNTs-NE, respectively. MnO2 crystal was observed when using TNTs-AC or TNTs-NE as the support. By contrast, Mn3O4 and NaNO3 were observed when using TNTs-AL as the support. Mn/TNTs-NE showed the best SCR activity, in line with the largest surface area, the best dispersion, and the most active redox property of manganese oxides. Mn/TNTs-AL showed negligible SCR activity, resulting from the minimum surface area, the Mn3O4-dominating crystal structure, and the bad dispersion of manganese oxides.

  8. Session 6: Active Sites for the Selective Catalytic Reduction of NO with NH{sub 3} or Isobutane over Fe-ZSM-5: A New View onto a Controversial Question

    Energy Technology Data Exchange (ETDEWEB)

    Schwidder, M.; Klementiev, K.; GrUnert, W. [Bochum Ruhr Univ., Lab. of Industrial Chemistry (Germany); Matam, S.K.; Bentrup, U.; Bruckner, A. [Institute of Applied Chemistry Berlin-Adlershof (ACA), Berlin (Germany)

    2004-07-01

    In recent work, we have demonstrated that Fe-ZSM-5 catalysts prepared via CVD of FeCl{sub 3} contain iron species of a broad distribution of nuclearity, from monomeric species up to large oxide crystals. While this distribution is strongly affected by the nature of catalyst pretreatments, the resulting effects on the activity in HC-SCR are small. To elucidate the origin of this effect we have adopted a methodology that includes new spectroscopic techniques capable of differentiating coexisting iron species (UV-Vis, EPR), extends to new preparation routes with the goal of creating as much homogeneity in site structure as possible, and employs in-situ spectroscopic studies (IR, UV-Vis, EPR) to differentiate between catalytically relevant sites and spectators. Given the technological importance of NH{sub 3}-SCR and the likely role of NH{sub 3} as the actual reducing agent in HC-SCR we have included the NH{sub 3} reductant in our research. (authors)

  9. Improvement of flue gas selective catalytic reduction technology and equipment for propane dehydrogenation (PDH) unit%丙烷脱氢装置烟气脱硝技术与设备改造

    Institute of Scientific and Technical Information of China (English)

    刘唯奇; 张国甫; 高海见; 陈金锋

    2016-01-01

    为降低烟气中的氮氧化物含量,采用丹麦托普索公司催化剂和工艺技术,在烟气余热锅炉内增加脱硝段,以满足达标排放的目的.并与工程公司合作,优化脱硝注氨系统的工艺流程,减少氨水消耗量,降低氨逃逸浓度.技术与设备改进后,烟色得到改善,烟气中的NOx含量大幅降低,同时氨水消耗量低于设计值,产生了良好的环境效益和经济效益.%The NOx concentration in the flue gas is reduced for standardized emission by a selective catalytic reduction (SCR) reactor installed in the waste heat boiler.The catalyst and reactor design are provided by Denmark HALDOR TOPSOE.New ammonia injection process is studied with engineering company to reduce ammonia consumption and slip concentration.After the improvement of process and equipment,the colour of flue gas looks better than before.The flue gas NOx concentration is significantly decreased and ammonia consumption is lower than hte design value,which produce good environmental and economic benefits.

  10. Development of a hydrophilic interaction liquid chromatography-mass spectrometry method for detection and quantification of urea thermal decomposition by-products in emission from diesel engine employing selective catalytic reduction technology.

    Science.gov (United States)

    Yassine, Mahmoud M; Dabek-Zlotorzynska, Ewa; Celo, Valbona

    2012-03-16

    The use of urea based selective catalytic reduction (SCR) technology for the reduction of NOx from the exhaust of diesel-powered vehicles has the potential to emit at least six thermal decomposition by-products, ammonia, and unreacted urea from the tailpipe. These compounds may include: biuret, dicyandiamine, cyanuric acid, ammelide, ammeline and melamine. In the present study, a simple, sensitive and reliable hydrophilic interaction liquid chromatography (HILIC)-electrospray ionization (ESI)/mass spectrometry (MS) method without complex sample pre-treatment was developed for identification and determination of urea decomposition by-products in diesel exhaust. Gradient separation was performed on a SeQuant ZIC-HILIC column with a highly polar zwitterionic stationary phase, and using a mobile phase consisting of acetonitrile (eluent A) and 15 mM ammonium formate (pH 6; eluent B). Detection and quantification were performed using a quadrupole ESI/MS operated simultaneously in negative and positive mode. With 10 μL injection volume, LODs for all target analytes were in the range of 0.2-3 μg/L. The method showed a good inter-day precision of retention time (RSD<0.5%) and peak area (RSD<3%). Satisfactory extraction recoveries from spiked blanks ranged between 96 and 98%. Analyses of samples collected during transient chassis dynamometer tests of a bus engine equipped with a diesel particulate filter (DPF) and urea based SCR technology showed the presence of five target analytes with cyanuric acid and ammelide the most abundant compounds in the exhaust. PMID:22318005

  11. Heterogeneous versus homogeneous copper(II) catalysis in enantioselective conjugate-addition reactions of boron in water.

    Science.gov (United States)

    Kitanosono, Taku; Xu, Pengyu; Kobayashi, Shū

    2014-01-01

    We have developed Cu(II)-catalyzed enantioselective conjugate-addition reactions of boron to α,β-unsaturated carbonyl compounds and α,β,γ,δ-unsaturated carbonyl compounds in water. In contrast to the previously reported Cu(I) catalysis that required organic solvents, chiral Cu(II) catalysis was found to proceed efficiently in water. Three catalyst systems have been exploited: cat. 1: Cu(OH)2 with chiral ligand L1; cat. 2: Cu(OH)2 and acetic acid with ligand L1; and cat. 3: Cu(OAc)2 with ligand L1. Whereas cat. 1 is a heterogeneous system, cat. 2 and cat. 3 are homogeneous systems. We tested 27 α,β-unsaturated carbonyl compounds and an α,β-unsaturated nitrile compound, including acyclic and cyclic α,β-unsaturated ketones, acyclic and cyclic β,β-disubstituted enones, acyclic and cyclic α,β-unsaturated esters (including their β,β-disubstituted forms), and acyclic α,β-unsaturated amides (including their β,β-disubstituted forms). We found that cat. 2 and cat. 3 showed high yields and enantioselectivities for almost all substrates. Notably, no catalysts that can tolerate all of these substrates with high yields and high enantioselectivities have been reported for the conjugate addition of boron. Heterogeneous cat. 1 also gave high yields and enantioselectivities with some substrates and also gave the highest TOF (43,200 h(-1) ) for an asymmetric conjugate-addition reaction of boron. In addition, the catalyst systems were also applicable to the conjugate addition of boron to α,β,γ,δ-unsaturated carbonyl compounds, although such reactions have previously been very limited in the literature, even in organic solvents. 1,4-Addition products were obtained in high yields and enantioselectivities in the reactions of acyclic α,β,γ,δ-unsaturated carbonyl compounds with diboron 2 by using cat. 1, cat. 2, or cat. 3. On the other hand, in the reactions of cyclic α,β,γ,δ-unsaturated carbonyl compounds with compound 2, whereas 1,4-addition products

  12. Highly Enantioselective Formation of α-Allyl-α-Arylcyclopentanones via Pd-Catalysed Decarboxylative Asymmetric Allylic Alkylation.

    Science.gov (United States)

    Akula, Ramulu; Doran, Robert; Guiry, Patrick J

    2016-07-11

    A highly enantioselective Pd-catalysed decarboxylative asymmetric allylic alkylation of cyclopentanone derived α-aryl-β-keto esters employing the (R,R)-ANDEN-phenyl Trost ligand has been developed. The product (S)-α-allyl-α-arylcyclopentanones were obtained in excellent yields and enantioselectivities (up to >99.9 % ee). This represents one of the most highly enantioselective formations of an all-carbon quaternary stereogenic center reported to date. This reaction was demonstrated on a 4.0 mmol scale without any deterioration of enantioselectivity and was exploited as the key enantioselective transformation in an asymmetric formal synthesis of the natural product (+)-tanikolide. PMID:27191198

  13. Electrophilic Activation of α,β-Unsaturated Amides: Catalytic Asymmetric Vinylogous Conjugate Addition of Unsaturated γ-Butyrolactones.

    Science.gov (United States)

    Zhang, Ming; Kumagai, Naoya; Shibasaki, Masakatsu

    2016-04-11

    Although catalytic asymmetric conjugate addition reactions have remarkably advanced over the last two decades, the application of less electrophilic α,β-unsaturated carboxylic acid derivatives in this useful reaction manifold remains challenging. Herein, we report that α,β-unsaturated 7-azaindoline amides act as reactive electrophiles to participate in catalytic diastereo- and enantioselective vinylogous conjugate addition of γ-butyrolactones in the presence of a cooperative catalyst comprising of a soft Lewis acid and a Brønsted base. Reactions mostly reached completion with as little as 1 mol % of catalyst loading to give the desired conjugate adducts in a highly stereoselective manner. PMID:26970428

  14. 富氧条件下Co/MOR催化剂上甲烷选择催化还原NO%Selective catalytic reduction of NO by methane over the Co/MOR catalysts in the presence of oxygen

    Institute of Scientific and Technical Information of China (English)

    王虹; 李滨; 卢学斌; 李翠清; 丁福臣; 宋永吉

    2015-01-01

    A series of Co/MOR catalysts were prepared by impregnation method and used in the selective catalytic reduction of nitric oxide with methane ( CH4-SCR) . These catalysts were characterized by XRD, BET, TG-MS, H2-TPR, NH3-TPD and NO-TPD; their performance in the CH4-SCR of NO was investigated. The results showed that cobalt species exist as Co3 O4 spinal in the Co/MOR catalysts;the acidity and redox and NO absorption/desorption ability of the Co/MOR catalysts are changed after the incorporation of cobalt in MOR zeolite, in comparison with pure MOR zeolite. The catalytic performance of Co/MOR is closely related to its redox and NO adsorption/desorption ability, which are dependent on the cobalt loading. The Co ( 10 )/MOR catalyst with a cobalt loading of 10% exhibits high activity in the CH4-SCR of NO; over it the conversion of nitric oxide reaches 54 . 2% at 330℃.%采用浸渍法制备了一系列用于甲烷选择催化还原( CH4-SCR)氮氧化物的 Co/MOR 催化剂。采用 XRD、BET、TG-MS、H2-TPR、NH3-TPD和NO-TPD等手段对催化剂进行表征,并对其在甲烷选择催化还原氮氧化物反应中的活性进行评价。结果表明,钴物种以Co3 O4尖晶石形态存在于Co/MOR催化剂中;与MOR载体相比,引入钴物种后,催化剂的酸性、氧化还原能力和对NO的吸脱附能力均发生了变化。在甲烷选择催化还原氮氧化物反应中,Co/MOR的催化活性与其氧化还原性能和对NO的吸脱附性能直接相关;其中, Co 负载量为10%的 Co (10)/MOR 催化剂的 CH4-SCR 脱硝活性最好,在330℃下NO的转化率达54.2%。

  15. Ti or Sn doping as a way to increase activity and sulfur tolerance of Mn/CeO2 catalyst for low temperature NH3 selective catalytic reduction of NO

    Science.gov (United States)

    Xiong, Yan; Tang, Changjin; Dong, Lin

    2015-04-01

    Mn/CeO2 catalysts modified by doping of Ti or Sn were investigated for low temperature selective catalytic reduction (SCR) of NO by NH3 with the aim of studying the effects of Ti, Sn doping on the catalytic performance. Ceria-based solid solutions (Ce0.8Ti0.2O2 and Ce0.8Sn0.2O2) were synthesized via inverse co-precipitation, and used as supports to prepare MnOx/Ce0.8M0.2O2 (M =Ti4+, Sn4+) catalysts through wetness impregnation method. The results showed that doping of Ti or Sn to the CeO2 support increase the NO removal efficiency. A NO conversion of more than 90 % was obtained over the Mn/CeTi catalyst at the temperature window of 175 ~ 300 °C under a gas hourly space velocity (GHSV) of 60,000 mL•g-1•h-1. Catalysts modified by Ti and Sn were also found to obtain higher SO2 resistance than Mn/CeO2 catalyst. More than 90% NO conversion and 95% N2 selectivity could be provided by Mn/CeTi catalyst in the presence of 100 ppm SO2 at 250 °C for 10 h. A series of characterization techniques, namely XRD, BET, H2-TPR, XPS, NH3-TPD and in situ DRIFTS were used to elucidate the structure and surface properties of the obtained supports and catalysts. The results indicate that doping of Ti or Sn brings about catalysts with favorable properties such as higher BET surface area, better oxygen storage capacity and stronger surface acidity. The relative amount of Mn4+, Ce3+, adsorbed oxygen species and oxygen vacancies on the surface of catalysts are in the order of Mn/CeTi>Mn/CeSn>Mn/CeO2, which is thought to make positive a contribution to the low-temperature SCR activity. The promoted SCR activity is considered as well to be related to the dual redox cycles in Mn/CeTi (Mn4+ + Ce3+ ↔ Mn3+ + Ce4+, Ce4+ + Ti3+ ↔ Ce3+ + Ti4+) and Mn/CeSn (Mn4+ + Ce3+ ↔ Mn3+ + Ce4+, Ce4+ + Sn2+ ↔ Ce3+ + Sn4+ ) catalysts.

  16. 石墨烯负载Pt催化剂的制备及催化氧还原性能%Preparation of Pt/Graphene Catalyst and Its Catalytic Performance for Oxygen Reduction

    Institute of Scientific and Technical Information of China (English)

    李云霞; 魏子栋; 赵巧玲; 丁炜; 张骞; 陈四国

    2011-01-01

    Graphene (Gr) is synthesized by the direct reduction of tetrachloroethylene with sodium in paraffin oil rather than by the intermediate steps of oxidized graphite (GO) and oxidized graphene (GrO).Gr is used as support for the subsequent deposition of Pt nanoparticles and the catalytic behavior during oxygen reduction (OR) on the as-prepared Pt/Gr is studied. The structure, morphology, composition, and surface properties of the as-prepared Pt/Gr catalysts were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), and electrochemical measurements. We found that the Pt nanoparticles with a mean particle size of 3.1 nm were well-dispersed on the Gr. The onset potential of the oxygen reduction on the Pt/Gr electrode shifted to the positive direction by 24 mV compared with the electrode made from commercial Pt/C catalysts (Johnson-Matthey Co. JM-Pt/C). The exchange current density of the OR on the Pt/Gr electrode was found to be 1 ×10-3 mA·cm-2, which is 2.5 times as that of the electrode made from the JM-Pt/C catalysts.%采用直接化学还原法,以金属钠为还原剂,四氯乙烯为碳源,在石蜡油中不经氧化石墨(GO)和氧化石墨烯(GrO)而直接制备石墨烯(Gr),然后将Pt纳米粒子担载在Gr基体上,得到Pt/Gr催化剂,并对其催化氧还原(OR)性能进行了研究.通过X射线衍射(XRD),透射电镜(TEM)和电化学测试对合成催化剂的结构、形貌和电化学性质进行了表征.实验结果表明:所制备的Pt/Gr催化剂具有较好的分散性,平均粒径为3.1 nm;氧还原起始电位比商业JM-Pt/C催化电极正移了24mV;交换电流密度达到1×10-mA·cm-2,是商业JM-Pt/C催化电极的2.5倍.

  17. Progress of Research on Selective Catalytic Reduction Technology for Vehicle Diesel Engine%车用柴油机选择性催化还原技术研究进展

    Institute of Scientific and Technical Information of China (English)

    楼狄明; 张正兴; 谭丕强; 马滨

    2009-01-01

    Selective Catalyst Reduction Technology (SCR) is at present the unique technology which can improve the emission and reduce oil consumption simultaneously. And SCR technology using NH_3 as reductant (NH_3-SCR) is most maturely developed and has the brightest foreground In this paper, the chemical reaction mechanism of Selective Catalytic Reduction technology was expatiated,and the effect of temperature on NO_x conversion rate was analyzed: the function of main parts of SCR system was introduced, as well as the specifications of AdBlue: a summarization of open loop and closed loop control strategies was made, and the advantages and disadvantages of each were analyzed; then the two different modes for the integration of SCR and DPF in diesel aftertreatment system were referred and contrasted: finally, the problems which block the popularization ofSCR was put forward.%选择性催化还原技术(SCR)是目前唯一可以同时改善柴油机排放和燃油经济性的氮氧化物(NO_x)净化技术,而以NH_2作为还原剂的SCR技术(NH_3-SCR)又是目前最成熟,最具推广前景的SCR技术.文章详细阐述了用于车用柴油机的NH_3-SCR技术的反应机理,介绍了温度对SCR反应的影响;列举了典型SCR系统的主要部件并介绍了各部分的功能,以及法规中对车用尿素水溶液(AdBiue)主要指标的规定;总结了目前应用较多的开环、闭环两种控制策略的工作流程及特点,并且分析了各自的优缺点;在柴油机后处理系统集成的角度对SCR与颗粒捕集器(DPF)的两种整合方案进行了分析,对比了两种方案的优缺点;最后分析了SCR技术目前存在的几个问题.

  18. Bifunctional catalytic electrode

    Science.gov (United States)

    Cisar, Alan (Inventor); Murphy, Oliver J. (Inventor); Clarke, Eric (Inventor)

    2005-01-01

    The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.

  19. Baker’s Yeast Mediated Reduction of 2-Acetyl-3-methyl Sulfolane

    Directory of Open Access Journals (Sweden)

    Rebecca E. Deasy

    2014-06-01

    Full Text Available The baker’s yeast mediated reduction of 2-acetyl-3-methyl sulfolane 1 to provide the corresponding alcohol 2 is described. Excellent efficiency and enantioselectivity (>98% ee has been achieved under these mild environmentally benign reaction conditions. In direct contrast, the chemical reduction of 1 proceeds with poor yield (≤25% and diastereocontrol.

  20. Permanent microporosity and enantioselective sorption in a chiral open framework.

    Science.gov (United States)

    Bradshaw, Darren; Prior, Timothy J; Cussen, Edmund J; Claridge, John B; Rosseinsky, Matthew J

    2004-05-19

    A homochiral microporous material is presented. The phase has 47% permanently porous void volume and is shown to have >1 nm diameter pores with three-dimensional channels using probe molecule sorption. Enantioselective guest sorption is strongly dependent on guest size. The homochiral microporous phase was identified by reactive selection from a first-generation chiral but nonporous framework. Chiral permanent porosity is established by directional noncovalent interactions between framework-forming and nonframework forming components of the stable second-generation material, which become stronger upon loss of the guests from the pore system. PMID:15137776

  1. PCN pincer palladium(II) complex catalyzed enantioselective hydrophosphination of enones: synthesis of pyridine-functionalized chiral phosphine oxides as NC(sp(3))O pincer preligands.

    Science.gov (United States)

    Hao, Xin-Qi; Huang, Juan-Juan; Wang, Tao; Lv, Jing; Gong, Jun-Fang; Song, Mao-Ping

    2014-10-17

    A series of chiral PCN pincer Pd(II) complexes VI-XIII with aryl-based aminophosphine-imidazoline or phosphinite-imidazoline ligands were synthesized and characterized. They were examined as enantioselective catalysts for the hydrophosphination of enones. Among them, complex IX, which features a Ph2PO donor as well as an imidazoline donor with (4S)-phenyl and N-Tol-p groups, was found to be the optimal catalyst. Thus, in the presence of 2-5 mol % of complex IX a wide variety of enones reacted smoothly with diarylphosphines to give the corresponding chiral phosphine derivatives in high yields with enantioselectivities of up to 98% ee. In particular, heteroaryl species such as 2-thienyl-, 2-furyl-, and 2-pyridinyl-containing enones that have a strong coordination ability to the Pd center were also appropriate substrates for the current catalytic system. For example, hydrophosphination of 2-alkenoylpyridines with diphenylphosphine followed by oxidation with H2O2 afforded the corresponding pyridine-functionalized chiral phosphine oxides in good yields with good to excellent enantioselectivities (10 examples, up to 95% ee). Furthermore, it had been demonstrated that the obtained pyridine-containing phosphine oxide acted as a tridentate ligand in the reaction with PdCl2 to form an intriguing NCsp(3)O pincer Pd(II) complex via Csp(3)-H bond activation, which to our knowledge is the first example of a chiral DCsp(3)D' Pd pincer (D ≠ D'; D and D' denote donor atoms such as P, N, etc.).

  2. Catalytic Radical Domino Reactions in Organic Synthesis

    Science.gov (United States)

    Sebren, Leanne J.; Devery, James J.; Stephenson, Corey R.J.

    2014-01-01

    Catalytic radical-based domino reactions represent important advances in synthetic organic chemistry. Their development benefits synthesis by providing atom- and step-economical methods to complex molecules. Intricate combinations of radical, cationic, anionic, oxidative/reductive, and transition metal mechanistic steps result in cyclizations, additions, fragmentations, ring-expansions, and rearrangements. This Perspective summarizes recent developments in the field of catalytic domino processes. PMID:24587964

  3. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Volume 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO.) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO. to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal- fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: 1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels. 2) performance of the technology and effects on the balance-of- plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. 3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacturer under typical high-sulfur coal-fired utility operating conditions. These uncertainties were explored by operating nine small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. In addition, the test facility operating experience provided a basis for an economic study investigating the implementation of SCR technology.

  4. Final Report of a CRADA Between Pacific Northwest National Laboratory and the General Motors Company (CRADA No. PNNL/271): “Degradation Mechanisms of Urea Selective Catalytic Reduction Technology”

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do Heui; Lee, Jong H.; Peden, Charles HF; Howden, Ken; Kim, Chang H.; Oh, Se H.; Schmieg, Steven J.; Wiebenga, Michelle H.

    2011-12-13

    Diesel engines can offer substantially higher fuel efficiency, good driving performance characteristics, and reduced carbon dioxide (CO2) emission compared to stoichiometric gasoline engines. Despite the increasing public demand for higher fuel economy and reduced dependency on imported oil, however, meeting the stringent emission standards with affordable methods has been a major challenge for the wide application of these fuel-efficient engines in the US market. The selective catalytic reduction of NOx by urea (urea-SCR) is one of the most promising technologies for NOx emission control for diesel engine exhausts. To ensure successful NOx emission control in the urea-SCR technology, both a diesel oxidation catalyst (DOC) and a urea-SCR catalyst with high activity and durability are critical for the emission control system. Because the use of this technology for light-duty diesel vehicle applications is new, the relative lack of experience makes it especially challenging to satisfy the durability requirements. Of particular concern is being able to realistically simulate actual field aging of the catalyst systems under laboratory conditions, which is necessary both as a rapid assessment tool for verifying improved performance and certifiability of new catalyst formulations. In addition, it is imperative to develop a good understanding of deactivation mechanisms to help develop improved catalyst materials. In this CRADA program, General Motors Company and PNNL have investigated fresh, laboratory- and vehicle-aged DOC and SCR catalysts. The studies have led to a better understanding of various aging factors that impact the long-term performance of catalysts used in the urea-SCR technology, and have improved the correlation between laboratory and vehicle aging for reduced development time and cost. This Final Report briefly highlights many of the technical accomplishments and documents the productivity of the program in terms of peer-reviewed scientific publications

  5. 添加剂对选择性非催化还原脱硝过程影响的研究进展%Research Progress of the Effects of Additives on Selective Non-Catalytic Reduction Denitrification Process

    Institute of Scientific and Technical Information of China (English)

    周文安; 黄月英; 陈志明; 唐丽; 黄喜寿; 莫招育

    2015-01-01

    The reaction mechanisms and the primary influencing factors of selective non-catalytic reduction (SNCR)denitrification are introduced.Research progress of the effects of various additives on SNCR denitrifi-cation process are reviewed.Although different additives has different mechanism to SNCR denitrification process,all additives can broaden the width of temperature window,lower the temperature window and increase the denitrification rate in the low-temperature phas of SNCR.Through analyzing the mechanism of the additives affecting SNCR denitrification process,theoretical basis for exploring better additives in the future is provided, so as to achieve higher denitrification rate and reduce the secondary pollution.%简介了选择性非催化还原(SNCR)脱硝的反应机理和主要影响因素,综述了各种添加剂对 SNCR 脱硝过程影响的研究进展。不同添加剂对 SNCR 脱硝过程影响的作用机理不同,但都能有效扩宽反应的温度窗口,使其往低温方向移动,提高 SNCR 在低温段的脱硝率。通过分析添加剂的作用机理,为研究脱硝效果更好的添加剂提供理论依据,以提高脱硝率、减少二次污染。

  6. Residue Val237 is critical for the enantioselectivity of Penicillium expansum lipase.

    Science.gov (United States)

    Tang, Lianghua; Su, Min; Chi, Liying; Zhang, Junling; Zhang, Huihui; Zhu, Ling

    2014-03-01

    The shape of the hydrophobic tunnel leading to the active site of Penicillium expansum lipase (PEL) was redesigned by single-point mutations, in order to better understand enzyme enantioselectivity towards naproxen. A variant with a valine-to-glycine substitution at residue 237 exhibited almost no enantioselectivity (E = 1.1) compared with that (E = 104) of wild-type PEL. The function of the residue, Val237, in the hydrophobic tunnel was further analyzed by site-directed mutagenesis. For each of these variants a significant decrease of enantioselectivity (E lipase. PMID:24338160

  7. Enantioselective and Regiodivergent Functionalization of N-Allylcarbamates by Mechanistically Divergent Multicatalysis.

    Science.gov (United States)

    Richmond, Edward; Khan, Ismat Ullah; Moran, Joseph

    2016-08-22

    A pair of mechanistically divergent multicatalytic reaction sequences has been developed consisting of nickel-catalyzed isomerization of N-allylcarbamates and subsequent phosphoric-acid-catalyzed enantioselective functionalization of the resulting intermediates. By appropriate selection of reaction partners, in situ generated imines and ene-carbamates are mechanistically partitioned to yield opposing functionalized products. Formal α-functionalization to give protected α-arylamines is achieved upon enantioselective Friedel-Crafts reaction with arene nucleophiles, whereas formal β-functionalization is achieved upon reaction with diarylimine electrophiles in an enantioselective Povarov-[4+2] cycloaddition. PMID:27461524

  8. Preparation of amorphous Ni-B/graphene composites for catalytic hydrogenation of pinene%非晶态镍硼/石墨烯复合材料的制备及其蒎烯催化加氢活性

    Institute of Scientific and Technical Information of China (English)

    张家华; 蒋丽红; 伍水生; 王红琴; 王亚明

    2016-01-01

    Graphite oxide was prepared from flake graphite by Hummers method and dispersed by ultrasonic treatment. The amorphous Ni-B/rGO composite catalysts were prepared by one-step chemical reduction with NaBH4 as reducing agent, and tested in the catalytic hydrogenation of pinene as the probing reaction. It shows that the as-prepared catalysts exhibit high catalytic activity and relatively high enantioselectivity of 96.5% for cis-pinane, which is better than the traditional Raney nickel and even noble metal catalysts. The catalyst possessed good stability, evidenced by that after 8-times testing cycles, both the conversion of pinene and the enantioselectivity tocis-pinane remained at a good level. The structure and properties of amorphous Ni-B/rGO composite catalysts were measured by XRD, XPS, TEM techniques, and the relationship between the catalytic performance and the structure was explored. The higher activity of the Ni-B/rGO amorphous catalyst could be attributed to the highly uniform dispersion of the Ni-B active species with unique electronic structure, and the interaction between Ni-B active species and the rGO in the composite catalysts.%以鳞片石墨为原料,采用Hummers法制得氧化石墨,经超声分散后制得稳定的氧化石墨烯(GO)分散液。以化学还原法一步制得非晶态Ni-B/rGO复合催化剂,并以蒎烯加氢为探针反应考察了催化剂的性能。结果表明,该催化剂对蒎烯加氢反应具有较高的催化活性,对生成顺式蒎烷具有较高对映选择性,达到96.5%以上,性能优于大多数传统的镍系催化剂甚至贵金属催化剂。该催化剂亦具有较好的稳定性,重复使用8次后,其转化率及对映选择性依然保持在较高水平。采用 XRD、XPS、TEM 等技术手段,研究了复合催化剂材料的结构与性质,初步探讨了非晶态Ni-B/rGO催化剂的构效关系。

  9. Enantioselective toxic effects of cyproconazole enantiomers against Chlorella pyrenoidosa.

    Science.gov (United States)

    Zhang, Wenjun; Cheng, Cheng; Chen, Li; Di, Shanshan; Liu, Chunxiao; Diao, Jinling; Zhou, Zhiqiang

    2016-09-01

    Enantioselectivity in ecotoxicity, digestion and uptake of chiral pesticide cyproconazole to Chlorella pyrenoidosa was studied. The 96h-EC50 values of rac- and the four enantiomers were 9.005, 6.616, 8.311, 4.290 and 9.410 mg/L, respectively. At the concentrations of 8 mg/L and 14 mg/L, the contents of pigments exposed in rac-, enantiomer-2 and 4 were higher than that exposed in enantiomer-1 and 3. The superoxide dismutase (SOD) and catalase (CAT) activity of algae exposed to enantiomer-1 and 3 was higher than that exposed to the rac-, enantiomer-2 and 4 at three levels. In addition, the malondialdehyde (MDA) concentrations in algae disposed with enantiomer-1 and 3 were increased remarkably at three levels. For the digestion experiment, the half-lives of four enantiomers in algae suspension were 28.06, 19.10, 21.13, 15.17 days, respectively. During the uptake experiment, the order of the concentrations of cyproconazole in algae cells was enantiomer-4, 2, 3 and 1. Based on these data, we concluded that ecotoxicity, digestion and uptake of chiral pesticide cyproconazole to C. pyrenoidosa were enantioselective, and such enantiomeric differences must be taken into consideration when assessing the risk of cyproconazole to environment. PMID:27268794

  10. WO3对碳载EMD催化氧还原活性的影响%Effect of WO3 to catalytic activity of carbon supported EMD for oxygen reduction

    Institute of Scientific and Technical Information of China (English)

    黄幼菊; 林育丽; 莫烨强; 李伟善

    2012-01-01

    研究了助催化剂三氧化钨(WO3)对电解二氧化锰(EMD)催化性能的影响.通过球磨制备5种WO3含量的EMD复合催化剂,进行XRD、SEM和电化学性能测试.WO3影响了EMD的孔隙率,添加适量的WO3可改善EMD的催化性能.添加WO3催化剂的氧还原电位较未添加WO3催化剂提前0.02 V.当电压为-0.15 V时,EMD、( MnO2)33( WO3)0.7、(MnO2)33(WO3)1、( MnO2)33 (WO3)1.3及(MnO2 )33( WO3 )1.5的氧还原电流分别为:-0.21 mA、-0.35 mA、-0.85 mA、-0.53 mA和-0.08 mA,表明随着WO3添加量的增加,EMD的催化性能先提高,后下降.EMD、( MnO2)33( WO3 )0.7、( MnO2 )33( WO3)1、(MnO2)33 (WO3)1.3及(MnO2)33 (WO3)1.5制备的电池,放电平台分别为1.05 V、1.08 V、1.21 V、1.14 V和0.98 V;催化活性顺序为:(MnO2)33(WO3)1> (MnO2)33(WO3)1.3>(MnO2)33(WO3)0.7>EMD> (MnO2)33(WO3)1.5.%Effect of tungsten trioxide( WO3) additive to the electrolytic manganese dioxide (EMD) catalyze oxygen reduction activity was studied. EMD composite catalysts with 5 kinds of WO3 content were prepared by ball-milling. XRD, SEM and linear voltage scanning and galvanostatic discharge tests were taken. Adding proper W03 could improve the catalytic activity of EMD, the porosity of EMD was affected by WO3. Compared with the catalyst without adding WO3 ,the oxygen reduction potential of catalyst added WO3 was 0.02 V in advance. When the voltage was - 0.15 V,oxygen reduction current of EMD, (MnO2)33( WO3)0.7, (MnO2)33(WO3)1,(MnO2)33(WO3)1.3 and (MnO2)33(WO3)1.5 was -0.21 mA, -0.35 mA, -0.85 mA, -0.53 mA and - 0.08 mA,respectively,indicated that with the increasing of WO3 adding amount,the oxygen reduction current increased firstly, then decreased. The discharge platform of cell prepared with EMD,(MnO2)33( WO3)o.7,(MnO2)33( WO3)MnO2)33(WO3)1.3 and (MnO2)33(WO3)1.5 was 1.05 V, 1.08 V, 1.21 V, 1.14 V and 0.98 V, respectively.The catalytic activity was in the following order:(MnO2)33(WO3)1 > (MnO2)33(WO3)1.3 > (MnO2)33(WO3)0.7 > EMD > (Mn

  11. Continuous-flow stereoselective organocatalyzed Diels-Alder reactions in a chiral catalytic "homemade" HPLC column.

    Science.gov (United States)

    Chiroli, Valerio; Benaglia, Maurizio; Cozzi, Franco; Puglisi, Alessandra; Annunziata, Rita; Celentano, Giuseppe

    2013-07-19

    Continuous-flow organocatalyzed Diels-Alder reactions have been performed with excellent enantioselectivity for the first time in a chiral "homemade" HPLC column, packed with silica on which a MacMillan catalyst has been supported by a straightforward immobilization procedure. The versatility of the system was also proven by running with the same column continuous-flow stereoselective reactions with three different substrates, showing that the catalytic reactor may efficiently work in continuo for more than 150 h; the regeneration of the HPLC column was also demonstrated, allowing to further extend the activity of the reactor to more than 300 operating hours. PMID:23808663

  12. Enantioselective synthesis of benzazepinoindoles bearing trifluoromethylated quaternary stereocenters catalyzed by chiral spirocyclic phosphoric acids.

    Science.gov (United States)

    Li, Xuejian; Chen, Di; Gu, Haorui; Lin, Xufeng

    2014-07-18

    The first highly enantioselective iso-Pictet-Spengler reaction of C-2-linked o-aminobenzylindoles with trifluoromethyl ketones was developed using chiral spirocyclic phosphoric acids as organocatalysts, which afforded optically active benzazepinoindoles bearing trifluoromethylated quaternary stereocenters. PMID:24890313

  13. Enantioselective accumulation of (--)-pinoresinol through O-demethylation of (+/-)-eudesmin by Aspergillus niger.

    Science.gov (United States)

    Kasahara, H; Miyazawa, M; Kameoka, H

    1997-04-01

    Microbial transformation of (+/-)-eudesmin by Aspergillus niger was investigated. Enantioselective accumulation of (--)-pinoresinol was shown through O-demethylation of (+/-)-eudesmin. This fungus O- demethylated both enantiomers of eudesmin, but the conversion rates for each enantiomer were clearly different.

  14. Asymmetric Synthesis of N-(Diphenylphosphinyl)furfurylamine by the Enantioselective Alkylation of Furfurylimine

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Optically active N-(diphenylphosphinyl)furfurylamines 2 with good ee values were obtained by the enantioselective addition of dialkylzincs to furfuryl imine 1 in the presence of chiral aminoalcohol derivatives and oxazolines.

  15. Using Natural Cinchona Alkaloids to Promote the Enantioselective Addition of Dialkylzinc to N-Diphenylphosphinylimines

    Institute of Scientific and Technical Information of China (English)

    张海乐; 方春梅; 李昕; 龚流柱; 宓爱巧; 崔欣; 蒋耀忠

    2003-01-01

    Cinchona alkaloids are utilized as chiral ligands to promote the enantioselective addition of dialkylzinc to N-diphenyiphosphinylirnlnes affording enantiomerically enriched N-diphenyiphosphinylamines in up to 91% ee.

  16. Synthesis of Metal-Organic Zeolites with Homochirality and High Porosity for Enantioselective Separation.

    Science.gov (United States)

    Xu, Zhong-Xuan; Liu, Liyang; Zhang, Jian

    2016-07-01

    Using lactic acid derivatives as chiral ligands, a pair of unprecedented homochiral metal-organic zeolites have been synthesized that feature zeotype CAN topology and have high porosity for enantioselective separation of racemates.

  17. ENANTIOSELECTIVE TRANSFORMATION OF CHIRAL PCBS AND THE INSECTICIDE FIPRONIL IN NATURAL ANOXIC SEDIMENTS

    Science.gov (United States)

    In this study, we examined the microbial transformation of two chiral PCB congeners and the insecticide fipronil in natural sediment microcosms. The specific goals of the study were to identify biotransformation pathways and determine if enantioselective microbial transformation ...

  18. Organocatalytic enantioselective Michael addition reactions of fluoromalonates with α,β-unsaturated aldehydes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A new organocatalytic enantioselective Michael addition of α-fluoromalonate to enals has been developed.The process is efficiently catalyzed by readily available chiral diphenylpyrolinol TES ether under mild reaction conditions to afford versatile highly enantioenriched fluorinated aldehydes.

  19. Enantioselective Rh-Catalyzed Hydroacylation of Olefins: From Serendipitous Discovery to Rational Design

    Science.gov (United States)

    Murphy, Stephen K.

    2015-01-01

    Rh-catalysed hydroacylation allows the construction of chiral ketones from olefins and aldehydes. Since James' and Young's serendipitous discovery of the enantioselective 4-pentenal cyclisation, both intra and intermolecular variants have emerged that enable broader applications. PMID:25277153

  20. Synthesis of chiral N-phosphoryl aziridines through enantioselective aziridination of alkenes with phosphoryl azide via Co(II-based metalloradical catalysis

    Directory of Open Access Journals (Sweden)

    Jingran Tao

    2014-06-01

    Full Text Available The Co(II complex of a new D2-symmetric chiral porphyrin 3,5-DiMes-QingPhyrin, [Co(P6], can catalyze asymmetric aziridination of alkenes with bis(2,2,2-trichloroethylphosphoryl azide (TcepN3 as a nitrene source. This new Co(II-based metalloradical aziridination is suitable for different aromatic olefins, producing the corresponding N-phosphorylaziridines in good to excellent yields (up to 99% with moderate to high enantioselectivities (up to 85% ee. In addition to mild reaction conditions and generation of N2 as the only byproduct, this new metalloradical catalytic system is highlighted with a practical protocol that operates under neutral and non-oxidative conditions.