WorldWideScience

Sample records for catalytic enantioselective reductions

  1. The Catalytic Enantioselective Total Synthesis of (+)‐Liphagal

    DEFF Research Database (Denmark)

    Day, Joshua J.; McFadden, Ryan M.; Virgil, Scott C.

    2011-01-01

    Ring a ding: The first catalytic enantioselective total synthesis of the meroterpenoid natural product (+)-liphagal is disclosed. The approach showcases a variety of technology including enantioselective enolate alkylation, a photochemical alkyne-alkene [2+2] reaction, microwaveassisted metal...

  2. Catalytic enantioselective Reformatsky reaction with ketones

    NARCIS (Netherlands)

    Fernandez-Ibanez, M. Angeles; Macia, Beatriz; Minnaard, Adriaan J.; Feringa, Ben L.

    2008-01-01

    Chiral tertiary alcohols were obtained with good yields and enantioselectivities via a catalytic Reformatsky reaction with ketones, including the challenging diaryl ketones, using chiral BINOL derivatives.

  3. Catalytic Enantioselective Alkylation of β-Keto Esters with Xanthydrol in the Presence of Chiral Palladium Complex

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyu Yeon; Kim, Dae Young [Soonchunhyang Univ., Asan (Korea, Republic of)

    2016-01-15

    Our research interest has been directed toward the development of synthetic methods for the enantioselective construction of stereogenic carbon centers. Recently, we explored the catalytic enantioselective functionalization of active methines in the presence of chiral palladium(II) complexes. In conclusion, we have accomplished the efficient catalytic enantioselective alkylation of β-keto esters 1 with xanthydrol 2 with high yields and excellent enantioselectivity (up to 98% ee). It should be noted that this alkyaltion reaction proceeds well using air- and moisture-stable chiral palladium com- plexes with low loading (1 mol%)

  4. Combining silver- and organocatalysis: an enantioselective sequential catalytic approach towards pyrano-annulated pyrazoles.

    Science.gov (United States)

    Hack, Daniel; Chauhan, Pankaj; Deckers, Kristina; Mizutani, Yusuke; Raabe, Gerhard; Enders, Dieter

    2015-02-11

    A one-pot asymmetric Michael addition/hydroalkoxylation sequence, catalyzed by a sequential catalytic system consisting of a squaramide and a silver salt, provides a new series of chiral pyrano-annulated pyrazole derivatives in excellent yields (up to 95%) and high enantioselectivities (up to 97% ee).

  5. Predicting CYP2C19 Catalytic Parameters for Enantioselective Oxidations Using Artificial Neural Networks and a Chirality Code

    Science.gov (United States)

    Hartman, Jessica H.; Cothren, Steven D.; Park, Sun-Ha; Yun, Chul-Ho; Darsey, Jerry A.; Miller, Grover P.

    2013-01-01

    Cytochromes P450 (CYP for isoforms) play a central role in biological processes especially metabolism of chiral molecules; thus, development of computational methods to predict parameters for chiral reactions is important for advancing this field. In this study, we identified the most optimal artificial neural networks using conformation-independent chirality codes to predict CYP2C19 catalytic parameters for enantioselective reactions. Optimization of the neural networks required identifying the most suitable representation of structure among a diverse array of training substrates, normalizing distribution of the corresponding catalytic parameters (kcat, Km, and kcat/Km), and determining the best topology for networks to make predictions. Among different structural descriptors, the use of partial atomic charges according to the CHelpG scheme and inclusion of hydrogens yielded the most optimal artificial neural networks. Their training also required resolution of poorly distributed output catalytic parameters using a Box-Cox transformation. End point leave-one-out cross correlations of the best neural networks revealed that predictions for individual catalytic parameters (kcat and Km) were more consistent with experimental values than those for catalytic efficiency (kcat/Km). Lastly, neural networks predicted correctly enantioselectivity and comparable catalytic parameters measured in this study for previously uncharacterized CYP2C19 substrates, R- and S-propranolol. Taken together, these seminal computational studies for CYP2C19 are the first to predict all catalytic parameters for enantioselective reactions using artificial neural networks and thus provide a foundation for expanding the prediction of cytochrome P450 reactions to chiral drugs, pollutants, and other biologically active compounds. PMID:23673224

  6. Diastereoselective and enantioselective reduction of tetralin-1,4-dione

    Directory of Open Access Journals (Sweden)

    2008-10-01

    Full Text Available BackgroundThe chemistry of tetralin-1,4-dione, the stable tautomer of 1,4-dihydroxynaphthalene, has not been explored previously. It is readily accessible and offers interesting opportunities for synthesis.ResultsThe title reactions were explored. L-Selectride reduced the diketone to give preferentially the cis-diol (d.r. 84 : 16. Red-Al gave preferentially the trans-diol (d.r. 13 : 87. NaBH4, LiAlH4, and BH3 gave lower diastereoselectivities (yields: 76–98%. Fractional crystallization allowed isolation of the cis-diol and the trans-diol (55% and 66% yield, respectively. Borane was used to cleanly give the mono-reduction product. Highly enantioselective CBS reductions afforded the trans-diol (72% yield, 99% ee and the mono-reduction product (81%, 95% ee.ConclusionDiastereoselective and enantioselective reductions of the unexplored tetralin-1,4-dione provides a very convenient entry into a number of synthetically highly attractive 1,4-tetralindiols and 4-hydroxy-1-tetralone.

  7. Diastereoselective and enantioselective reduction of tetralin-1,4-dione.

    Science.gov (United States)

    Kündig, E Peter; Enriquez-Garcia, Alvaro

    2008-01-01

    The chemistry of tetralin-1,4-dione, the stable tautomer of 1,4-dihydroxynaphthalene, has not been explored previously. It is readily accessible and offers interesting opportunities for synthesis. The title reactions were explored. L-Selectride reduced the diketone to give preferentially the cis-diol (d.r. 84 : 16). Red-Al gave preferentially the trans-diol (d.r. 13 : 87). NaBH(4), LiAlH(4), and BH(3) gave lower diastereoselectivities (yields: 76-98%). Fractional crystallization allowed isolation of the cis-diol and the trans-diol (55% and 66% yield, respectively). Borane was used to cleanly give the mono-reduction product. Highly enantioselective CBS reductions afforded the trans-diol (72% yield, 99% ee) and the mono-reduction product (81%, 95% ee). Diastereoselective and enantioselective reductions of the unexplored tetralin-1,4-dione provides a very convenient entry into a number of synthetically highly attractive 1,4-tetralindiols and 4-hydroxy-1-tetralone.

  8. A catalytic reactor for the organocatalyzed enantioselective continuous flow alkylation of aldehydes.

    Science.gov (United States)

    Porta, Riccardo; Benaglia, Maurizio; Puglisi, Alessandra; Mandoli, Alessandro; Gualandi, Andrea; Cozzi, Pier Giorgio

    2014-12-01

    The use of immobilized metal-free catalysts offers the unique possibility to develop sustainable processes in flow mode. The challenging intermolecular organocatalyzed enantioselective alkylation of aldehydes was performed for the first time under continuous flow conditions. By using a packed-bed reactor filled with readily available supported enantiopure imidazolidinone, different aldehydes were treated with three distinct cationic electrophiles. In the organocatalyzed α-alkylation of aldehydes with 1,3-benzodithiolylium tetrafluoroborate, excellent enantioselectivities, in some cases even better than those obtained in the flask process (up to 95% ee at 25 °C), and high productivity (more than 3800 h(-1) ) were obtained, which thus shows that a catalytic reactor may continuously produce enantiomerically enriched compounds. Treatment of the alkylated products with Raney-nickel furnished enantiomerically enriched α-methyl derivatives, key intermediates for active pharmaceutical ingredients and natural products. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Boosting Chemical Stability, Catalytic Activity, and Enantioselectivity of Metal-Organic Frameworks for Batch and Flow Reactions.

    Science.gov (United States)

    Chen, Xu; Jiang, Hong; Hou, Bang; Gong, Wei; Liu, Yan; Cui, Yong

    2017-09-27

    A key challenge in heterogeneous catalysis is the design and synthesis of heterogeneous catalysts featuring high catalytic activity, selectivity, and recyclability. Here we demonstrate that high-performance heterogeneous asymmetric catalysts can be engineered from a metal-organic framework (MOF) platform by using a ligand design strategy. Three porous chiral MOFs with the framework formula [Mn 2 L(H 2 O) 2 ] are prepared from enantiopure phosphono-carboxylate ligands of 1,1'-biphenol that are functionalized with 3,5-bis(trifluoromethyl)-, bismethyl-, and bisfluoro-phenyl substituents at the 3,3'-position. For the first time, we show that not only chemical stability but also catalytic activity and stereoselectivity of the MOFs can be tuned by modifying the ligand structures. Particularly, the MOF incorporated with -CF 3 groups on the pore walls exhibits enhanced tolerance to water, weak acid, and base compared with the MOFs with -F and -Me groups. Under both batch and flow reaction systems, the CF 3 -containing MOF demonstrated excellent reactivity, selectivity, and recyclability, affording high yields and enantioselectivities for alkylations of indoles and pyrrole with a range of ketoesters or nitroalkenes. In contrast, the corresponding homogeneous catalysts gave low enantioselectivity in catalyzing the tested reactions.

  10. Nickel-catalyzed regio- and enantioselective aminolysis of 3,4-epoxy alcohols.

    Science.gov (United States)

    Wang, Chuan; Yamamoto, Hisashi

    2015-04-08

    The first catalytic regio- and enantioselective aminolysis of 3,4-epoxy alcohols has been accomplished. Under the catalysis of Ni(ClO4)2·6H2O, the C4 selective ring opening of various 3,4-epoxy alcohols proceeded in a stereospecific manner with high regioselectivities. Furthermore, with the Ni-BINAM catalytic system the enantioselective ring opening of 3,4-epoxy alcohols furnished various γ-hydroxy-δ-amino alcohols as products with complete regiocontrol and high enantioselectivities (up to 94% ee).

  11. DNA-based catalytic enantioselective intermolecular oxa-Michael addition reactions

    NARCIS (Netherlands)

    Megens, Rik P.; Roelfes, Gerard

    2012-01-01

    Using the DNA-based catalysis concept, a novel Cu(II) catalyzed enantioselective oxa-Michael addition of alcohols to enones is reported. Enantioselectivities of up to 86% were obtained. The presence of water is important for the reactivity, possibly by reverting unwanted side reactions such as

  12. Preparative and mechanistic studies toward the rational development of catalytic, enantioselective selenoetherification reactions.

    Science.gov (United States)

    Denmark, Scott E; Kalyani, Dipannita; Collins, William R

    2010-11-10

    A systematic investigation into the Lewis base catalyzed, asymmetric, intramolecular selenoetherification of olefins is described. A critical challenge for the development of this process was the identification and suppression of racemization pathways available to arylseleniranium ion intermediates. This report details a thorough study of the influences of the steric and electronic modulation of the arylselenenyl group on the configurational stability of enantioenriched seleniranium ions. These studies show that the 2-nitrophenyl group attached to the selenium atom significantly attenuates the racemization of seleniranium ions. A variety of achiral Lewis bases catalyze the intramolecular selenoetherification of alkenes using N-(2-nitrophenylselenenyl)succinimide as the electrophile along with a Brønsted acid. Preliminary mechanistic studies suggest the intermediacy of ionic Lewis base-selenium(II) adducts. Most importantly, a broad survey of chiral Lewis bases revealed that 1,1'-binaphthalene-2,2'-diamine (BINAM)-derived thiophosphoramides catalyze the cyclization of unsaturated alcohols in the presence of N-(2-nitrophenylselenenyl)succinimide and methanesulfonic acid. A variety of cyclic seleno ethers were produced in good chemical yields and in moderate to good enantioselectivities, which constitutes the first catalytic, enantioselective selenofunctionalization of unactivated olefins.

  13. Enantioselective Evans-Tishchenko Reduction of b-Hydroxyketone Catalyzed by Lithium Binaphtholate

    Directory of Open Access Journals (Sweden)

    Makoto Nakajima

    2011-06-01

    Full Text Available Lithium diphenylbinaphtholate catalyzed the enantioselective Evans-Tishchenko reduction of achiral b-hydroxyketones to afford monoacyl-protected 1,3-diols with high stereoselectivities. In the reaction of racemic b-hydroxyketones, kinetic optical resolution occurred in a highly stereoselective manner.

  14. Combining the catalytic enantioselective reaction of visible-light-generated radicals with a by-product utilization system.

    Science.gov (United States)

    Huang, Xiaoqiang; Luo, Shipeng; Burghaus, Olaf; Webster, Richard D; Harms, Klaus; Meggers, Eric

    2017-10-01

    We report an unusual reaction design in which a chiral bis-cyclometalated rhodium(iii) complex enables the stereocontrolled chemistry of photo-generated carbon-centered radicals and at the same time catalyzes an enantioselective sulfonyl radical addition to an alkene. Specifically, employing inexpensive and readily available Hantzsch esters as the photoredox mediator, Rh-coordinated prochiral radicals generated by a selective photoinduced single electron reduction are trapped by allyl sulfones in a highly stereocontrolled fashion, providing radical allylation products with up to 97% ee. The hereby formed fragmented sulfonyl radicals are utilized via an enantioselective radical addition to form chiral sulfones, which minimizes waste generation.

  15. The Catalytic Enantioselective Total Synthesis of (+)-Liphagal

    KAUST Repository

    Day, Joshua J.; McFadden, Ryan M.; Virgil, Scott C.; Kolding, Helene; Alleva, Jennifer L.; Stoltz, Brian M.

    2011-01-01

    Ring a ding: The meroterpenoid natural product (+)-liphagal has been synthesized enantioselectively in 19 steps from commercially available materials. The trans-homodecalin system was achieved by ring expansion followed by stereoselective hydrogenation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The Catalytic Enantioselective Total Synthesis of (+)-Liphagal

    KAUST Repository

    Day, Joshua J.

    2011-06-10

    Ring a ding: The meroterpenoid natural product (+)-liphagal has been synthesized enantioselectively in 19 steps from commercially available materials. The trans-homodecalin system was achieved by ring expansion followed by stereoselective hydrogenation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Calcium(ii)-catalyzed enantioselective conjugate additions of amines.

    Science.gov (United States)

    Uno, Brice E; Dicken, Rachel D; Redfern, Louis R; Stern, Charlotte M; Krzywicki, Greg G; Scheidt, Karl A

    2018-02-14

    The direct enantioselective chiral calcium(ii)·phosphate complex (Ca[CPA] 2 )-catalyzed conjugate addition of unprotected alkyl amines to maleimides was developed. This mild catalytic system represents a significant advance towards the general convergent asymmetric amination of α,β-unsaturated electrophiles, providing medicinally relevant chiral aminosuccinimide products in high yields and enantioselectivities. Furthermore, the catalyst can be reused directly from a previously chromatographed reaction and still maintain both high yield and selectivity.

  18. Enantioselective Copper-Catalyzed Oxy-Alkynylation of Diazo Compounds.

    Science.gov (United States)

    Hari, Durga Prasad; Waser, Jerome

    2017-06-28

    Enantioselective catalytic methods allowing the addition of both a nucleophile and an electrophile onto diazo compounds give a fast access into important building blocks. Herein, we report the highly enantioselective oxyalkynylation of diazo compounds using ethynylbenziodoxol-(on)e reagents and a simple copper bisoxazoline catalyst. The obtained α-benzoyloxy propargylic esters are useful building blocks, which are difficult to synthesize in enantiopure form using other methods. The obtained products could be efficiently transformed into vicinal diols and α-hydroxy propargylic esters without loss in enantiopurity.

  19. A combined continuous microflow photochemistry and asymmetric organocatalysis approach for the enantioselective synthesis of tetrahydroquinolines

    Directory of Open Access Journals (Sweden)

    Erli Sugiono

    2013-11-01

    Full Text Available A continuous-flow asymmetric organocatalytic photocyclization–transfer hydrogenation cascade reaction has been developed. The new protocol allows the synthesis of tetrahydroquinolines from readily available 2-aminochalcones using a combination of photochemistry and asymmetric Brønsted acid catalysis. The photocylization and subsequent reduction was performed with catalytic amount of chiral BINOL derived phosphoric acid diester and Hantzsch dihydropyridine as hydrogen source providing the desired products in good yields and with excellent enantioselectivities.

  20. Asymmetric NHC-catalyzed aza-Diels-Alder reactions: Highly enantioselective route to α-amino acid derivatives and DFT calculations

    KAUST Repository

    Yang, Limin; Wang, Fei; Lee, Richmond; Lv, Yunbo; Huang, Kuo-Wei; Zhong, Guofu

    2014-01-01

    A facile N-heterocyclic carbene catalytic enantioselective aza-Diels-Alder reaction of oxodiazenes with α-chloroaldehydes as dienophile precursors is reported, with excellent enantioselectivity (ee > 99%) and excellent yield (up to 93%). DFT study

  1. Enantioselective synthesis of almorexant via iridium-catalysed intramolecular allylic amidation

    NARCIS (Netherlands)

    Fananas Mastral, Martin; Teichert, Johannes F.; Fernandez-Salas, Jose Antonio; Heijnen, Dorus; Feringa, Ben L.

    2013-01-01

    An enantioselective synthesis of almorexant, a potent antagonist of human orexin receptors, is presented. The chiral tetrahydroisoquinoline core structure was prepared via iridium-catalysed asymmetric intramolecular allylic amidation. Further key catalytic steps of the synthesis include an oxidative

  2. Catalytic enantioselective alkene aminohalogenation/cyclization involving atom transfer.

    Science.gov (United States)

    Bovino, Michael T; Chemler, Sherry R

    2012-04-16

    Problem solved: the title reaction was used for the synthesis of chiral 2-bromo, chloro, and iodomethyl indolines and 2-iodomethyl pyrrolidines. Stereocenter formation is believed to occur by enantioselective cis aminocupration and C-X bond formation is believed to occur by atom transfer. The ultility of the products as versatile synthetic intermediates was demonstrated, as was a radical cascade cyclization sequence. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Enantioselective γ-Alkylation of α,β-Unsaturated Malonates and Ketoesters by a Sequential Ir-Catalyzed Asymmetric Allylic Alkylation/Cope Rearrangement

    OpenAIRE

    Liu, Wen-Bo; Okamoto, Noriko; Alexy, Eric J.; Hong, Allen Y.; Tran, Kristy; Stoltz, Brian M.

    2016-01-01

    A catalytic, enantioselective ? -alkylation of ?,?-unsaturated malonates and ketoesters is reported. This strategy entails a highly regio- and enantioselective iridium-catalyzed ?-alkylation of an extended enolate, and a subsequent translocation of chirality to the ?-position via a Cope rearrangement.

  4. Copper(II)/amine synergistically catalyzed enantioselective alkylation of cyclic N-acyl hemiaminals with aldehydes.

    Science.gov (United States)

    Sun, Shutao; Mao, Ying; Lou, Hongxiang; Liu, Lei

    2015-07-07

    The first catalytic asymmetric alkylation of N-acyl quinoliniums with aldehydes has been described. A copper/amine synergistic catalytic system has been developed, allowing the addition of functionalized aldehydes to a wide range of electronically varied N-acyl quinoliniums in good yields with excellent enantiocontrol. The synergistic catalytic system was also effective for N-acyl dihydroisoquinoliniums and β-caboliniums, demonstrating the general applicability of the protocol in the enantioselective alkylation of diverse cyclic N-acyl hemiaminals.

  5. A DFT exploration of the enantioselective rearrangement of cyclohexene oxide to cyclohexenol

    DEFF Research Database (Denmark)

    Brandt, Peter; Norrby, Per-Ola; Andersson, Pher G.

    2003-01-01

    In this paper, we present computational results for the (1S,3R,4R)-3-(pyrrolidinyl)-methyl-2-azabicyclo[2.2.1]heptane mediated rearrangement of cyclohexene oxide. The results nicely explain the differences in enantioselectivities between catalytic and stoichiometric mode between different ligands...

  6. Asymmetric NHC-catalyzed aza-Diels-Alder reactions: Highly enantioselective route to α-amino acid derivatives and DFT calculations

    KAUST Repository

    Yang, Limin

    2014-08-01

    A facile N-heterocyclic carbene catalytic enantioselective aza-Diels-Alder reaction of oxodiazenes with α-chloroaldehydes as dienophile precursors is reported, with excellent enantioselectivity (ee > 99%) and excellent yield (up to 93%). DFT study showed that cis-TSa, formed from a top face approach of oxodiazene to cis-IIa, is the most favorable transition state and is consistent with the experimental observations. © 2014 American Chemical Society.

  7. Catalytic Aminohalogenation of Alkenes and Alkynes.

    Science.gov (United States)

    Chemler, Sherry R; Bovino, Michael T

    2013-06-07

    Catalytic aminohalogenation methods enable the regio- and stereoselective vicinal difunctionalization of alkynes, allenes and alkenes with amine and halogen moieties. A range of protocols and reaction mechanisms including organometallic, Lewis base, Lewis acid and Brønsted acid catalysis have been disclosed, enabling the regio- and stereoselective synthesis of halogen-functionalized acyclic amines and nitrogen heterocycles. Recent advances including aminofluorination and catalytic enantioselective aminohalogenation reactions are summarized in this review.

  8. Catalytic Enantioselective Synthesis of 3,4-Unsubstituted Thiochromenes through Sulfa-Michael/Julia-Kocienski Olefination Cascade Reaction.

    Science.gov (United States)

    Simlandy, Amit Kumar; Mukherjee, Santanu

    2017-05-05

    A highly enantioselective cascade sulfa-Michael/Julia-Kocienski olefination reaction between 2-mercaptobenzaldehydes and β-substituted vinyl PT-sulfones has been realized for the synthesis of 3,4-unsubstituted 2H-thiochromenes. This reaction, catalyzed by diphenylprolinol TMS ether, proceeds through an aromatic iminium intermediate and furnishes a wide range of 2-substiuted 2H-thiochromenes with excellent enantioselectivities (up to 99:1 er).

  9. Catalytic asymmetric synthesis of the alkaloid (+)-myrtine

    NARCIS (Netherlands)

    Pizzuti, Maria Gabriefla; Minnaard, Adriaan J.; Feringa, Ben L.

    2008-01-01

    A new protocol for the asymmetric synthesis of trans-2,6-disubstituted-4-piperidones has been developed using a catalytic enantioselective conjugate addition reaction in combination with a diastereoselective lithiation-substitution sequence; an efficient synthesis of (+)-myrtine has been achieved

  10. Tuning and Switching Enantioselectivity of Asymmetric Carboligation in an Enzyme through Mutational Analysis of a Single Hot Spot.

    Science.gov (United States)

    Wechsler, Cindy; Meyer, Danilo; Loschonsky, Sabrina; Funk, Lisa-Marie; Neumann, Piotr; Ficner, Ralf; Brodhun, Florian; Müller, Michael; Tittmann, Kai

    2015-12-01

    Enantioselective bond making and breaking is a hallmark of enzyme action, yet switching the enantioselectivity of the reaction is a difficult undertaking, and typically requires extensive screening of mutant libraries and multiple mutations. Here, we demonstrate that mutational diversification of a single catalytic hot spot in the enzyme pyruvate decarboxylase gives access to both enantiomers of acyloins acetoin and phenylacetylcarbinol, important pharmaceutical precursors, in the case of acetoin even starting from the unselective wild-type protein. Protein crystallography was used to rationalize these findings and to propose a mechanistic model of how enantioselectivity is controlled. In a broader context, our studies highlight the efficiency of mechanism-inspired and structure-guided rational protein design for enhancing and switching enantioselectivity of enzymatic reactions, by systematically exploring the biocatalytic potential of a single hot spot. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Enantioselective [3+3] atroposelective annulation catalyzed by N-heterocyclic carbenes

    KAUST Repository

    Zhao, Changgui

    2018-02-05

    Axially chiral molecules are among the most valuable substrates in organic synthesis. They are typically used as chiral ligands or catalysts in asymmetric reactions. Recent progress for the construction of these chiral molecules is mainly focused on the transition-metal-catalyzed transformations. Here, we report the enantioselective NHC-catalyzed (NHC: N-heterocyclic carbenes) atroposelective annulation of cyclic 1,3-diones with ynals. In the presence of NHC precatalyst, base, Lewis acid and oxidant, a catalytic C–C bond formation occurs, providing axially chiral α-pyrone−aryls in moderate to good yields and with high enantioselectivities. Control experiments indicated that alkynyl acyl azoliums, acting as active intermediates, are employed to atroposelectively assemble chiral biaryls and such a methodology may be creatively applied to other useful NHC-catalyzed asymmetric transformations.

  12. Ultrasound-Assisted Enantioselective Esterification of Ibuprofen Catalyzed by a Flower-Like Nanobioreactor

    Directory of Open Access Journals (Sweden)

    Baiyi An

    2016-04-01

    Full Text Available A flower-like nanobioreactor was prepared for resolution of ibuprofen in organic solvents. Ultrasound irradiation has been used to improve the enzyme performance of APE1547 (a thermophilic esterase from the archaeon Aeropyrum pernix K1 in the enantioselective esterification. Under optimum reaction conditions (ultrasound power, 225 W; temperature, 45 °C; water activity, 0.21, the immobilized APE1547 showed an excellent catalytic performance (enzyme activity, 13.26 μmol/h/mg; E value, 147.1. After ten repeated reaction batches, the nanobioreactor retained almost 100% of its initial enzyme activity and enantioselectivity. These results indicated that the combination of the immobilization method and ultrasound irradiation can enhance the enzyme performance dramatically.

  13. DNA-Accelerated Copper Catalysis of Friedel-Crafts Conjugate Addition/Enantioselective Protonation Reactions in Water

    NARCIS (Netherlands)

    García-Fernández, Almudena; Megens, Rik P.; Villarino, Lara; Roelfes, Gerard

    2016-01-01

    DNA-induced rate acceleration has been identified as one of the key elements for the success of the DNA-based catalysis concept. Here we report on a novel DNA-based catalytic Friedel-Crafts conjugate addition/enantioselective protonation reaction in water, which represents the first example of a

  14. Enantioselective Copper-Catalyzed Carboetherification of Unactivated Alkenes**

    Science.gov (United States)

    Bovino, Michael T.; Liwosz, Timothy W.; Kendel, Nicole E.; Miller, Yan; Tyminska, Nina

    2014-01-01

    Chiral saturated oxygen heterocycles are important components of bioactive compounds. Cyclization of alcohols onto pendant alkenes is a direct route to their synthesis, but few catalytic enantioselective methods enabling cyclization onto unactivated alkenes exist. Herein is reported a highly efficient copper-catalyzed cyclization of γ-unsaturated pentenols that terminates in C-C bond formation, a net alkene carboetherification. Both intra- and intermolecular C-C bond formations are demonstrated, yielding functionalized chiral tetrahydrofurans as well as fused-ring and bridged-ring oxabicyclic products. Transition state calculations support a cis-oxycupration stereochemistry-determining step. PMID:24798697

  15. Asymmetric Synthesis of Optically Active Spirocyclic Indoline Scaffolds through an Enantioselective Reduction of Indoles

    KAUST Repository

    Borrmann, Ruediger

    2016-11-30

    An enantioselective synthesis of spirocyclic indoline scaffolds was achieved by applying an asymmetric iridium-catalyzed hydrogenation of 3H-indoles. Low catalyst loadings and mild reaction conditions provide a broad range of differently substituted products with excellent yields and enantioselectivities. The developed methodology allows an efficient synthesis of this important spirocyclic structural motif, which is present in numerous biologically active molecules and privileged structures in medicinal chemistry.

  16. Catalytic Kinetic Resolution of Biaryl Compounds.

    Science.gov (United States)

    Ma, Gaoyuan; Sibi, Mukund P

    2015-08-10

    Biaryl compounds with axial chirality are very common in synthetic chemistry, especially in catalysis. Axially chiral biaryls are important due to their biological activities and extensive applications in asymmetric catalysis. Thus the development of efficient enantioselective methods for their synthesis has attracted considerable attention. This Minireview discusses the progress made in catalytic kinetic resolution of biaryl compounds and chronicles significant advances made recently in catalytic kinetic resolution of biaryl scaffolds. © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Application of Phosphine-Phosphite Ligands in the Iridium Catalyzed Enantioselective Hydrogenation of 2-Methylquinoline

    Directory of Open Access Journals (Sweden)

    Miguel Rubio

    2010-10-01

    Full Text Available The hydrogenation of 2-methylquinoline with Ir catalysts based on chiral phosphine-phosphites has been investigated. It has been observed that the reaction is very sensitive to the nature of the ligand. Optimization of the catalyst, allowed by the highly modular structure of these phosphine-phosphites, has improved the enantioselectivity of the reaction up to 73% ee. The influence of additives in this reaction has also been investigated. Contrary to the beneficial influence observed in related catalytic systems, iodine has a deleterious effect in the present case. Otherwise, aryl phosphoric acids produce a positive impact on catalyst activity without a decrease on enantioselectivity.

  18. INDUSTRIAL BOILER RETROFIT FOR NOX CONTROL: COMBINED SELECTIVE NONCATALYTIC REDUCTION AND SELECTIVE CATALYTIC REDUCTION

    Science.gov (United States)

    The paper describes retrofitting and testing a 590 kW (2 MBtu/hr), oil-fired, three-pass, fire-tube package boiler with a combined selective noncatalytic reduction (SNCR) and selective catalytic reduction (SCR) system. The system demonstrated 85% nitrogen oxides (NOx) reduction w...

  19. An iron/amine-catalyzed cascade process for the enantioselective functionalization of allylic alcohols.

    Science.gov (United States)

    Quintard, Adrien; Constantieux, Thierry; Rodriguez, Jean

    2013-12-02

    Three is a lucky number: An enantioselective transformation of allylic alcohols into β-chiral saturated alcohols has been developed by combining two distinct metal- and organocatalyzed catalytic cycles. This waste-free triple cascade process merges an iron-catalyzed borrowing-hydrogen step with an aminocatalyzed nucleophilic addition reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Catalytic allylic oxidation of internal alkenes to a multifunctional chiral building block

    Science.gov (United States)

    Bayeh, Liela; Le, Phong Q.; Tambar, Uttam K.

    2017-07-01

    The stereoselective oxidation of hydrocarbons is one of the most notable advances in synthetic chemistry over the past fifty years. Inspired by nature, enantioselective dihydroxylations, epoxidations and other oxidations of unsaturated hydrocarbons have been developed. More recently, the catalytic enantioselective allylic carbon-hydrogen oxidation of alkenes has streamlined the production of pharmaceuticals, natural products, fine chemicals and other functional materials. Allylic functionalization provides a direct path to chiral building blocks with a newly formed stereocentre from petrochemical feedstocks while preserving the olefin functionality as a handle for further chemical elaboration. Various metal-based catalysts have been discovered for the enantioselective allylic carbon-hydrogen oxidation of simple alkenes with cyclic or terminal double bonds. However, a general and selective allylic oxidation using the more common internal alkenes remains elusive. Here we report the enantioselective, regioselective and E/Z-selective allylic oxidation of unactivated internal alkenes via a catalytic hetero-ene reaction with a chalcogen-based oxidant. Our method enables non-symmetric internal alkenes to be selectively converted into allylic functionalized products with high stereoselectivity and regioselectivity. Stereospecific transformations of the resulting multifunctional chiral building blocks highlight the potential for rapidly converting internal alkenes into a broad range of enantioenriched structures that can be used in the synthesis of complex target molecules.

  1. Bicyclic Guanidine Catalyzed Asymmetric Tandem Isomerization Intramolecular-Diels-Alder Reaction: The First Catalytic Enantioselective Total Synthesis of (+)-alpha-Yohimbine.

    Science.gov (United States)

    Feng, Wei; Jiang, Danfeng; Kee, Choon-Wee; Liu, Hongjun; Tan, Choon-Hong

    2016-02-04

    Hydroisoquinoline derivatives were prepared in moderate to good enantioselectivities via a bicyclic guanidine-catalyzed tandem isomerization intramolecular-Diels-Alder (IMDA) reaction of alkynes. With this synthetic method, the first enantioselective synthesis of (+)-alpha-yohimbine was completed in 9 steps from the IMDA products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Catalytic membrane in reduction of aqueous nitrates: operational principles and catalytic performance

    NARCIS (Netherlands)

    Ilinitch, O.M.; Cuperus, F.P.; Nosova, L.V.; Gribov, E.N.

    2000-01-01

    The catalytic membrane with palladium-copper active component supported over the macroporous ceramic membrane, and a series of γ-Al 2O 3 supported Pd-Cu catalysts were prepared and investigated. In reduction of nitrate ions by hydrogen in water at ambient temperature, pronounced internal diffusion

  3. Multi-stage selective catalytic reduction of NOx in lean burn engine exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Penetrante, B.M.; Hsaio, M.C.; Merritt, B.T.; Vogtlin, G.E. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    Many studies suggest that the conversion of NO to NO{sub 2} is an important intermediate step in the selective catalytic reduction (SCR) of NO{sub x} to N{sub 2}. Some effort has been devoted to separating the oxidative and reductive functions of the catalyst in a multi-stage system. This method works fine for systems that require hydrocarbon addition. The hydrocarbon has to be injected between the NO oxidation catalyst and the NO{sub 2} reduction catalyst; otherwise, the first-stage oxidation catalyst will also oxidize the hydrocarbon and decrease its effectiveness as a reductant. The multi-stage catalytic scheme is appropriate for diesel engine exhausts since they contain insufficient hydrocarbons for SCR, and the hydrocarbons can be added at the desired location. For lean-burn gasoline engine exhausts, the hydrocarbons already present in the exhausts will make it necessary to find an oxidation catalyst that can oxidize NO to NO{sub 2} but not oxidize the hydrocarbon. A plasma can also be used to oxidize NO to NO{sub 2}. Plasma oxidation has several advantages over catalytic oxidation. Plasma-assisted catalysis can work well for both diesel engine and lean-burn gasoline engine exhausts. This is because the plasma can oxidize NO in the presence of hydrocarbons without degrading the effectiveness of the hydrocarbon as a reductant for SCR. In the plasma, the hydrocarbon enhances the oxidation of NO, minimizes the electrical energy requirement, and prevents the oxidation of SO{sub 2}. This paper discusses the use of multi-stage systems for selective catalytic reduction of NO{sub x}. The multi-stage catalytic scheme is compared to the plasma-assisted catalytic scheme.

  4. Structural basis for high substrate-binding affinity and enantioselectivity of 3-quinuclidinone reductase AtQR

    International Nuclear Information System (INIS)

    Hou, Feng; Miyakawa, Takuya; Kataoka, Michihiko; Takeshita, Daijiro; Kumashiro, Shoko; Uzura, Atsuko; Urano, Nobuyuki; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2014-01-01

    Highlights: • Crystal structure of AtQR has been determined at 1.72 Å. • NADH binding induces the formation of substrate binding site. • AtQR possesses a conserved hydrophobic wall for stereospecific binding of substrate. • Additional Glu197 residue is critical to the high binding affinity. - Abstract: (R)-3-Quinuclidinol, a useful compound for the synthesis of various pharmaceuticals, can be enantioselectively produced from 3-quinuclidinone by 3-quinuclidinone reductase. Recently, a novel NADH-dependent 3-quinuclidionone reductase (AtQR) was isolated from Agrobacterium tumefaciens, and showed much higher substrate-binding affinity (>100 fold) than the reported 3-quinuclidionone reductase (RrQR) from Rhodotorula rubra. Here, we report the crystal structure of AtQR at 1.72 Å. Three NADH-bound protomers and one NADH-free protomer form a tetrameric structure in an asymmetric unit of crystals. NADH not only acts as a proton donor, but also contributes to the stability of the α7 helix. This helix is a unique and functionally significant part of AtQR and is related to form a deep catalytic cavity. AtQR has all three catalytic residues of the short-chain dehydrogenases/reductases family and the hydrophobic wall for the enantioselective reduction of 3-quinuclidinone as well as RrQR. An additional residue on the α7 helix, Glu197, exists near the active site of AtQR. This acidic residue is considered to form a direct interaction with the amine part of 3-quinuclidinone, which contributes to substrate orientation and enhancement of substrate-binding affinity. Mutational analyses also support that Glu197 is an indispensable residue for the activity

  5. Structural basis for high substrate-binding affinity and enantioselectivity of 3-quinuclidinone reductase AtQR

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Feng; Miyakawa, Takuya [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Kataoka, Michihiko [Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 559-8531 (Japan); Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Takeshita, Daijiro [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Kumashiro, Shoko [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Uzura, Atsuko [Research and Development Center, Nagase and Co., Ltd., 2-2-3 Muratani, Nishi-ku, Kobe 651-2241 (Japan); Urano, Nobuyuki [Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 559-8531 (Japan); Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Nagata, Koji [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan); Shimizu, Sakayu [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502 (Japan); Faculty of Bioenvironmental Science, Kyoto Gakuen University, Sogabe-cho, Kameoka 621-8555 (Japan); Tanokura, Masaru, E-mail: amtanok@mail.ecc.u-tokyo.ac.jp [Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657 (Japan)

    2014-04-18

    Highlights: • Crystal structure of AtQR has been determined at 1.72 Å. • NADH binding induces the formation of substrate binding site. • AtQR possesses a conserved hydrophobic wall for stereospecific binding of substrate. • Additional Glu197 residue is critical to the high binding affinity. - Abstract: (R)-3-Quinuclidinol, a useful compound for the synthesis of various pharmaceuticals, can be enantioselectively produced from 3-quinuclidinone by 3-quinuclidinone reductase. Recently, a novel NADH-dependent 3-quinuclidionone reductase (AtQR) was isolated from Agrobacterium tumefaciens, and showed much higher substrate-binding affinity (>100 fold) than the reported 3-quinuclidionone reductase (RrQR) from Rhodotorula rubra. Here, we report the crystal structure of AtQR at 1.72 Å. Three NADH-bound protomers and one NADH-free protomer form a tetrameric structure in an asymmetric unit of crystals. NADH not only acts as a proton donor, but also contributes to the stability of the α7 helix. This helix is a unique and functionally significant part of AtQR and is related to form a deep catalytic cavity. AtQR has all three catalytic residues of the short-chain dehydrogenases/reductases family and the hydrophobic wall for the enantioselective reduction of 3-quinuclidinone as well as RrQR. An additional residue on the α7 helix, Glu197, exists near the active site of AtQR. This acidic residue is considered to form a direct interaction with the amine part of 3-quinuclidinone, which contributes to substrate orientation and enhancement of substrate-binding affinity. Mutational analyses also support that Glu197 is an indispensable residue for the activity.

  6. Multi-Stage Selective Catalytic Reduction of NOx in Lean-Burn Engine Exhaust

    National Research Council Canada - National Science Library

    Penetrante, B

    1997-01-01

    .... A plasma can also be used to oxidize NO to NO2. This paper compares the multi-stage catalytic scheme with the plasma-assisted catalytic scheme for reduction of NOx in lean-burn engine exhausts. The advantages of plasma oxidation over catalytic oxidation are presented.

  7. Physical chemistry of catalytic reduction of nitroarenes using various nanocatalytic systems: past, present, and future

    International Nuclear Information System (INIS)

    Begum, Robina; Rehan, Rida; Farooqi, Zahoor H.; Butt, Zonarah; Ashraf, Sania

    2016-01-01

    The catalytic reduction of nitroarenes under various catalytic systems has been widely reported in the flood of publications during last twenty years. This reaction has become a benchmark for testing catalytic activity of inorganic nanoparticles stabilized in various systems. This tutorial review presents design and classification of inorganic nanocatalysts along with their stabilizing agents used for catalytic reduction of nitroarenes. The techniques used for characterization of catalysts have been highlighted in this review. The mechanism of catalytic reduction has been described in a tutorial way. Factors affecting the rate of reduction of nitroarenes in the presence of metal nanoparticles stabilized in polyelectrolyte brushes, polyionic liquids, micelles, dendrimers, and microgels have been discussed for further development in this area.Graphical abstract

  8. Physical chemistry of catalytic reduction of nitroarenes using various nanocatalytic systems: past, present, and future

    Energy Technology Data Exchange (ETDEWEB)

    Begum, Robina [University of the Punjab, Centre for Undergraduate Studies (Pakistan); Rehan, Rida; Farooqi, Zahoor H., E-mail: zhfarooqi@gmail.com; Butt, Zonarah; Ashraf, Sania [University of the Punjab, Institute of Chemistry (Pakistan)

    2016-08-15

    The catalytic reduction of nitroarenes under various catalytic systems has been widely reported in the flood of publications during last twenty years. This reaction has become a benchmark for testing catalytic activity of inorganic nanoparticles stabilized in various systems. This tutorial review presents design and classification of inorganic nanocatalysts along with their stabilizing agents used for catalytic reduction of nitroarenes. The techniques used for characterization of catalysts have been highlighted in this review. The mechanism of catalytic reduction has been described in a tutorial way. Factors affecting the rate of reduction of nitroarenes in the presence of metal nanoparticles stabilized in polyelectrolyte brushes, polyionic liquids, micelles, dendrimers, and microgels have been discussed for further development in this area.Graphical abstract.

  9. Enantioselective functionalization of allylic C-H bonds following a strategy of functionalization and diversification.

    Science.gov (United States)

    Sharma, Ankit; Hartwig, John F

    2013-11-27

    We report the enantioselective functionalization of allylic C-H bonds in terminal alkenes by a strategy involving the installation of a temporary functional group at the terminal carbon atom by C-H bond functionalization, followed by the catalytic diversification of this intermediate with a broad scope of reagents. The method consists of a one-pot sequence of palladium-catalyzed allylic C-H bond oxidation under neutral conditions to form linear allyl benzoates, followed by iridium-catalyzed allylic substitution. This overall transformation forms a variety of chiral products containing a new C-N, C-O, C-S, or C-C bond at the allylic position in good yield with a high branched-to-linear selectivity and excellent enantioselectivity (ee ≤97%). The broad scope of the overall process results from separating the oxidation and functionalization steps; by doing so, the scope of nucleophile encompasses those sensitive to direct oxidative functionalization. The high enantioselectivity of the overall process is achieved by developing an allylic oxidation that occurs without acid to form the linear isomer with high selectivity. These allylic functionalization processes are amenable to an iterative sequence leading to (1,n)-functionalized products with catalyst-controlled diastereo- and enantioselectivity. The utility of the method in the synthesis of biologically active molecules has been demonstrated.

  10. Enantioselective copper-catalyzed carboetherification of unactivated alkenes.

    Science.gov (United States)

    Bovino, Michael T; Liwosz, Timothy W; Kendel, Nicole E; Miller, Yan; Tyminska, Nina; Zurek, Eva; Chemler, Sherry R

    2014-06-16

    Chiral saturated oxygen heterocycles are important components of bioactive compounds. Cyclization of alcohols onto pendant alkenes is a direct route to their synthesis, but few catalytic enantioselective methods enabling cyclization onto unactivated alkenes exist. Herein reported is a highly efficient copper-catalyzed cyclization of γ-unsaturated pentenols which terminates in C-C bond formation, a net alkene carboetherification. Both intra- and intermolecular C-C bond formations are demonstrated, thus yielding functionalized chiral tetrahydrofurans as well as fused-ring and bridged-ring oxabicyclic products. Transition-state calculations support a cis-oxycupration stereochemistry-determining step. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: A mechanistic study

    KAUST Repository

    Ahmed, Syud M.

    2013-12-18

    The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands. © 2013 American Chemical Society.

  12. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: A mechanistic study

    KAUST Repository

    Ahmed, Syud M.; Poater, Albert; Childers, M. Ian; Widger, Peter C B; Lapointe, Anne M.; Lobkovsky, Emil B.; Coates, Geoffrey W.; Cavallo, Luigi

    2013-01-01

    The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands. © 2013 American Chemical Society.

  13. Enantioselective catalytic fluorinative aza-semipinacol rearrangement.

    Science.gov (United States)

    Romanov-Michailidis, Fedor; Pupier, Marion; Besnard, Céline; Bürgi, Thomas; Alexakis, Alexandre

    2014-10-03

    An efficient and highly stereoselective fluorinative aza-semipinacol rearrangement is described. The catalytic reaction requires use of Selectfluor in combination with the chiral, enantiopure phosphate anion derived from acid L3. Under optimized conditions, cyclopropylamines A were transformed into β-fluoro cyclobutylimines B in good yields and high levels of diastereo- and enantiocontrol. Furthermore, the optically active cyclobutylimines were reduced diastereoselectively with L-Selectride in the corresponding fluorinated amines C, compounds of significant interest in the pharmacological industry.

  14. Experimental investigation on emission reduction in neem oil biodiesel using selective catalytic reduction and catalytic converter techniques.

    Science.gov (United States)

    Viswanathan, Karthickeyan

    2018-05-01

    In the present study, non-edible seed oil namely raw neem oil was converted into biodiesel using transesterification process. In the experimentation, two biodiesel blends were prepared namely B25 (25% neem oil methyl ester with 75% of diesel) and B50 (50% neem oil methyl ester with 50% diesel). Urea-based selective catalytic reduction (SCR) technique with catalytic converter (CC) was fixed in the exhaust tail pipe of the engine for the reduction of engine exhaust emissions. Initially, the engine was operated with diesel as a working fluid and followed by refilling of biodiesel blends B25 and B50 to obtain the baseline readings without SCR and CC. Then, the same procedure was repeated with SCR and CC technique for emission reduction measurement in diesel, B25 and B50 sample. The experimental results revealed that the B25 blend showed higher break thermal efficiency (BTE) and exhaust gas temperature (EGT) with lower break-specific fuel consumption (BSFC) than B50 blend at all loads. On comparing with biodiesel blends, diesel experiences increased BTE of 31.9% with reduced BSFC of 0.29 kg/kWh at full load. A notable emission reduction was noticed for all test fuels in SCR and CC setup. At full load, B25 showed lower carbon monoxide (CO) of 0.09% volume, hydrocarbon (HC) of 24 ppm, and smoke of 14 HSU and oxides of nitrogen (NOx) of 735 ppm than diesel and B50 in SCR and CC setup. On the whole, the engine with SCR and CC setup showed better performance and emission characteristics than standard engine operation.

  15. Catalytic stereoselective synthesis of highly substituted indanones via tandem Nazarov cyclization and electrophilic fluorination trapping.

    Science.gov (United States)

    Nie, Jing; Zhu, Hong-Wei; Cui, Han-Feng; Hua, Ming-Qing; Ma, Jun-An

    2007-08-02

    A new catalytic stereoselective tandem transformation via Nazarov cyclization/electrophilic fluorination has been accomplished. This sequence is efficiently catalyzed by a Cu(II) complex to afford fluorine-containing 1-indanone derivatives with two new stereocenters with high diastereoselectivity (trans/cis up to 49/1). Three examples of catalytic enantioselective tandem transformation are presented.

  16. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  17. Highly efficient catalytic reductive degradation of various organic ...

    Indian Academy of Sciences (India)

    aDepartment of Applied Sciences (Chemical Science Division), GUIST, Gauhati University, ... Highly improved catalytic reductive degradation of different organic dyes, in the ... was prepared by a facile co-precipitation method using ultra-high dilute aqueous solutions. ...... face chemical-modification for engineering the intrin-.

  18. Enantioselective desymmetrization of prochiral cyclohexanones by organocatalytic intramolecular Michael additions to α,β-unsaturated esters.

    Science.gov (United States)

    Gammack Yamagata, Adam D; Datta, Swarup; Jackson, Kelvin E; Stegbauer, Linus; Paton, Robert S; Dixon, Darren J

    2015-04-13

    A new catalytic asymmetric desymmetrization reaction for the synthesis of enantioenriched derivatives of 2-azabicyclo[3.3.1]nonane, a key motif common to many alkaloids, has been developed. Employing a cyclohexanediamine-derived primary amine organocatalyst, a range of prochiral cyclohexanone derivatives possessing an α,β-unsaturated ester moiety linked to the 4-position afforded the bicyclic products, which possess three stereogenic centers, as single diastereoisomers in high enantioselectivity (83-99% ee) and in good yields (60-90%). Calculations revealed that stepwise C-C bond formation and proton transfer via a chair-shaped transition state dictate the exclusive endo selectivity and enabled the development of a highly enantioselective primary amine catalyst. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Development of a chronocoulometric method for uranium traces determination with basis on nitrate catalytic reduction

    International Nuclear Information System (INIS)

    Cantagallo, M.I.C.; Gutz, I.G.R.

    1990-01-01

    The application of chronocoulometric technique with catalytic reduction of uranium/nitrate with catalytic reduction of uranium/nitrate system is described to give a detection limits on the sub-nanomolar region of uranium. (author)

  20. Synthesis of 3-fluoro-3-aryl oxindoles: Direct enantioselective α arylation of amides

    KAUST Repository

    Wu, Linglin; Falivene, Laura; Drinkel, Emma E.; Grant, Sharday; Linden, Anthony; Cavallo, Luigi; Dorta, Reto

    2012-01-01

    Modus operandi: Catalytic access to the title compounds through a new asymmetric α-arylation protocol is reported (see scheme). These products are formed in good yields and excellent enantioselectivities by using a new and easily synthesized chiral N-heterocyclic carbene (NHC) ligand. Advanced DFT calculations reveal the properties of the NHC ligand and the mode of operation of the catalyst. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis of 3-fluoro-3-aryl oxindoles: Direct enantioselective α arylation of amides

    KAUST Repository

    Wu, Linglin

    2012-02-06

    Modus operandi: Catalytic access to the title compounds through a new asymmetric α-arylation protocol is reported (see scheme). These products are formed in good yields and excellent enantioselectivities by using a new and easily synthesized chiral N-heterocyclic carbene (NHC) ligand. Advanced DFT calculations reveal the properties of the NHC ligand and the mode of operation of the catalyst. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Catalytic reduction of hexaminecobalt(III) by pitch-based spherical activated carbon (PBSAC)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu; Mao, Yan-Peng; Zhu, Hai-Song; Cheng, Jing-Yi; Long, Xiang-Li; Yuan, Wei-Kang [State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai (China)

    2010-07-15

    The wet ammonia (NH{sub 3}) desulfurization process can be retrofitted to remove nitric oxide (NO) and sulfur dioxide (SO{sub 2}) simultaneously by adding soluble cobalt(II) salt into the aqueous ammonia solution. Activated carbon is used as a catalyst to regenerate hexaminecobalt(II), Co(NH{sub 3}){sub 6}{sup 2+}, so that NO removal efficiency can be maintained at a high level for a long time. In this study, the catalytic performance of pitch-based spherical activated carbon (PBSAC) in the simultaneous removal of NO and SO{sub 2} with this wet ammonia scrubbing process has been studied systematically. Experiments have been performed in a batch stirred cell to test the catalytic characteristics of PBSAC in the catalytic reduction of hexaminecobalt(III), Co(NH{sub 3}){sub 6}{sup 3+}. The experimental results show that PBSAC is a much better catalyst in the catalytic reduction of Co(NH{sub 3}){sub 6}{sup 3+} than palm shell activated carbon (PSAC). The Co(NH{sub 3}){sub 6}{sup 3+} reduction reaction rate increases with PBSAC when the PBSAC dose is below 7.5 g/L. The Co(NH{sub 3}){sub 6}{sup 3+} reduction rate increases with its initial concentration. Best Co(NH{sub 3}){sub 6}{sup 3+} conversion is gained at a pH range of 2.0-6.0. A high temperature is favorable to such reaction. The intrinsic activation energy of 51.00 kJ/mol for the Co(NH{sub 3}){sub 6}{sup 3+} reduction catalyzed by PBSAC has been obtained. The experiments manifest that the simultaneous elimination of NO and SO{sub 2} by the hexaminecobalt solution coupled with catalytic regeneration of hexaminecobalt(II) can maintain a NO removal efficiency of 90% for a long time. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  3. Uniformity index measurement technology using thermocouples to improve performance in urea-selective catalytic reduction systems

    Science.gov (United States)

    Park, Sangki; Oh, Jungmo

    2018-05-01

    The current commonly used nitrogen oxides (NOx) emission reduction techniques employ hydrocarbons (HCs), urea solutions, and exhaust gas emissions as the reductants. Two of the primary denitrification NOx (DeNOx) catalyst systems are the HC-lean NOx trap (HC-LNT) catalyst and urea-selective catalytic reduction (urea-SCR) catalyst. The secondary injection method depends on the type of injector, injection pressure, atomization, and spraying technique. In addition, the catalyst reaction efficiency is directly affected by the distribution of injectors; hence, the uniformity index (UI) of the reductant is very important and is the basis for system optimization. The UI of the reductant is an indicator of the NOx conversion efficiency (NCE), and good UI values can reduce the need for a catalyst. Therefore, improving the UI can reduce the cost of producing a catalytic converter, which are expensive due to the high prices of the precious metals contained therein. Accordingly, measurement of the UI is an important process in the development of catalytic systems. Two of the commonly used methods for measuring the reductant UI are (i) measuring the exhaust emissions at many points located upstream/downstream of the catalytic converter and (ii) acquisition of a reductant distribution image on a section of the exhaust pipe upstream of the catalytic converter. The purpose of this study is to develop a system and measurement algorithms to measure the exothermic response distribution in the exhaust gas as the reductant passes through the catalytic converter of the SCR catalyst system using a set of thermocouples downstream of the SCR catalyst. The system is used to measure the reductant UI, which is applied in real-time to the actual SCR system, and the results are compared for various types of mixtures for various engine operating conditions and mixer types in terms of NCE.

  4. Catalytic and inhibitory effects of thechnetium on reduction processes

    International Nuclear Information System (INIS)

    Grases, F.; Genestar, C.; March, J.G.; March, P.

    1986-01-01

    Interactions between technetium and some anthraquinones and tartrazin in the presence of tin(II) are described. It was found that whereas the reductive process between Sn(II) and 1-amino-4-hydroxyanthraquinone is catalyzed by technetium, the reduction of tartrazin is inhibited by this element. Study of such process seems to indicate that the catalytic effect of technetium on the reduction processes is due to Tc(V) action whereas the inhibitory effect is due to the Tc(IV) species. (author)

  5. Direct, enantioselective α-alkylation of aldehydes using simple olefins.

    Science.gov (United States)

    Capacci, Andrew G; Malinowski, Justin T; McAlpine, Neil J; Kuhne, Jerome; MacMillan, David W C

    2017-11-01

    Although the α-alkylation of ketones has already been established, the analogous reaction using aldehyde substrates has proven surprisingly elusive. Despite the structural similarities between the two classes of compounds, the sensitivity and unique reactivity of the aldehyde functionality has typically required activated substrates or specialized additives. Here, we show that the synergistic merger of three catalytic processes-photoredox, enamine and hydrogen-atom transfer (HAT) catalysis-enables an enantioselective α-aldehyde alkylation reaction that employs simple olefins as coupling partners. Chiral imidazolidinones or prolinols, in combination with a thiophenol, iridium photoredox catalyst and visible light, have been successfully used in a triple catalytic process that is temporally sequenced to deliver a new hydrogen and electron-borrowing mechanism. This multicatalytic process enables both intra- and intermolecular aldehyde α-methylene coupling with olefins to construct both cyclic and acyclic products, respectively. With respect to atom and step-economy ideals, this stereoselective process allows the production of high-value molecules from feedstock chemicals in one step while consuming only photons.

  6. Combined experimental and theoretical study of the mechanism and enantioselectivity of palladium-catalyzed intermolecular Heck coupling

    DEFF Research Database (Denmark)

    Henriksen, Signe Teuber; Norrby, Per-Ola; Kaukoranta, Päivi

    2008-01-01

    . The steric interactions in this transition state fully account for the enantioselectivity observed with the ligands studied. The calculations also predict relative reactivity and nonlinear mixing effects for the investigated ligands; these predictions are fully validated by experimental testing. Finally......The asymmetric Heck reaction using P,N-ligands has been studied by a combination of theoretical and experimental methods. The reaction follows Halpern-style selectivity; that is, the major isomer is produced from the least favored form of the pre-insertion intermediate. The initially formed Ph......, the low conversion observed with some catalysts was found to be caused by inactivation due to weak binding of the ligand to Pd(0). Adding monodentate PPh3 alleviated the precipitation problem without deteriorating the enantioselectivity and led to one of the most effective catalytic systems to date....

  7. Asymmetric Synthesis of Optically Active Spirocyclic Indoline Scaffolds through an Enantioselective Reduction of Indoles

    KAUST Repository

    Borrmann, Ruediger; Knop, Nils; Rueping, Magnus

    2016-01-01

    An enantioselective synthesis of spirocyclic indoline scaffolds was achieved by applying an asymmetric iridium-catalyzed hydrogenation of 3H-indoles. Low catalyst loadings and mild reaction conditions provide a broad range of differently substituted

  8. Catalytic reduction of NO by methane using a Pt/C/polybenzimidazole/Pt/C fuel cell

    DEFF Research Database (Denmark)

    Petrushina, Irina; Cleemann, Lars Nilausen; Refshauge, Rasmus

    2007-01-01

    with participation of H+ or electrochemically produced hydrogen. When added, methane partially suppresses the electrochemical reduction of NO. Methane outlet concentration monitoring has shown the CH4 participation in the chemical catalytic reduction, i.e., methane co-adsorption with NO inhibited the electrochemical...... NO reduction and introduced a dominant chemical path of the NO reduction. The products of the NO reduction with methane were N2, C2H4, and water. The catalytic NO reduction by methane was promoted when the catalyst was negatively polarized (−0.2 V). Repeated negative polarization of the catalyst increased...

  9. Exploiting nanospace for asymmetric catalysis: confinement of immobilized, single-site chiral catalysts enhances enantioselectivity.

    Science.gov (United States)

    Thomas, John Meurig; Raja, Robert

    2008-06-01

    In the mid-1990s, it became possible to prepare high-area silicas having pore diameters controllably adjustable in the range ca. 20-200 Å. Moreover, the inner walls of these nanoporous solids could be functionalized to yield single-site, chiral, catalytically active organometallic centers, the precise structures of which could be determined using in situ X-ray absorption and FTIR and multinuclear magic angle spinning (MAS) NMR spectroscopy. This approach opened up the prospect of performing heterogeneous enantioselective conversions in a novel manner, under the spatial restrictions imposed by the nanocavities within which the reactions occur. In particular, it suggested an alternative method for preparing pharmaceutically and agrochemically useful asymmetric products by capitalizing on the notion, initially tentatively perceived, that spatial confinement of prochiral reactants (and transition states formed at the chiral active center) would provide an altogether new method of boosting the enantioselectivity of the anchored chiral catalyst. Initially, we anchored chiral single-site heterogeneous catalysts to nanopores covalently via a ligand attached to Pd(II) or Rh(I) centers. Later, we employed a more convenient and cheaper electrostatic method, relying in part on strong hydrogen bonding. This Account provides many examples of these processes, encompassing hydrogenations, oxidations, and aminations. Of particular note is the facile synthesis from methyl benzoylformate of methyl mandelate, which is a precursor in the synthesis of pemoline, a stimulant of the central nervous system; our procedure offers several viable methods for reducing ketocarboxylic acids. In addition to relying on earlier (synchrotron-based) in situ techniques for characterizing catalysts, we have constructed experimental procedures involving robotically controlled catalytic reactors that allow the kinetics of conversion and enantioselectivity to be monitored continually, and we have access to

  10. A Simple Primary Amine Catalyst for Enantioselective α-Hydroxylations and α-Fluorinations of Branched Aldehydes

    OpenAIRE

    Witten, Michael R.; Jacobsen, Eric N.

    2015-01-01

    A new primary amine catalyst for the asymmetric α-hydroxylation and α-fluorination of α-branched aldehydes is described. The products of the title transformations are generated in excellent yields and with high enantioselectivities. Both processes can be performed within short reaction times and on gram scale. The similarity in the results obtained in both reactions, combined with computational evidence, implies a common basis for stereoinduction and the possibility of a general catalytic mec...

  11. alpha,beta-unsaturated 2-acyl imidazoles as a practical class of dienophiles for the DNA-Based catalytic asymmetric diels-alder reaction in water

    NARCIS (Netherlands)

    Boersma, A.J.; Feringa, B.L.; Roelfes, G.

    2007-01-01

    alpha,beta-Unsaturated 2-acyl imidazoles are a novel and practical class of dienophiles for the DNA-based catalytic asymmetric Diels-Alder reaction in water. The Diels-Alder products are obtained with very high diastereoselectivities and enantioselectivities in the range of 83-98%. The catalytic

  12. Enantioselective Direct α-Amination of Aldehydes via a Photoredox Mechanism: A Strategy for Asymmetric Amine Fragment Coupling

    OpenAIRE

    Cecere, Giuseppe; Koenig, Christian M.; Alleva, Jennifer L.; MacMillan, David W. C.

    2013-01-01

    The direct, asymmetric α-amination of aldehydes has been accomplished via a combination of photoredox and organocatalysis. Photon-generated, nitrogen-centered radicals undergo enantioselective α-addition to catalytically formed chiral enamines to directly produce stable α-amino aldehyde adducts bearing synthetically useful amine substitution patterns. Incorporation of a photolabile group on the amine precursor obviates the need to employ a photoredox catalyst in this transformation. Important...

  13. Catalytic briquettes from low-rank coal for NO reduction

    Energy Technology Data Exchange (ETDEWEB)

    A. Boyano; M.E. Galvez; R. Moliner; M.J. Lazaro [Instituto de Carboquimica, CSIC, Zaragoza (Spain)

    2007-07-01

    The briquetting is one of the most ancient and widespread techniques of coal agglomeration which is nowadays becoming useless for combustion home applications. However, the social increasing interest in environmental protection opens new applications to this technique, especially in developed countries. In this work, a series of catalytic briquettes were prepared from low-rank Spanish coal and commercial pitch by means of a pressure agglomeration method. After that, they were cured in air and doped by equilibrium impregnation with vanadium compounds. Preparation conditions (especially those of activation and oxidizing process) were changed to study their effects on catalytic behaviour. Catalytic briquettes showed a relative high NO conversion at low temperatures in all cases, however, a strong relation between the preparation process and the reached NO conversion was observed. Preparation procedure has an effect not only on the NO reduction efficiency but also on the mechanical strength of the briquettes as a consequence of the structural and chemical changes carried out during the activation and oxidation procedures. Generally speaking mechanical resistance is enhanced by an optimal porous volume and the creation of new carboxyl groups on surface. Just on the contrary, NO reduction is promoted by high microporous structures and higher amounts of surface oxygen groups. Both facts force to find an optimum point in the preparation produce which will depend on the application. 24 refs., 4 figs., 3 tabs.

  14. Enantioselective biotransformations of nitriles in organic synthesis.

    Science.gov (United States)

    Wang, Mei-Xiang

    2015-03-17

    The hydration and hydrolysis of nitriles are valuable synthetic methods used to prepare carboxamides and carboxylic acids. However, chemical hydration and hydrolysis of nitriles involve harsh reaction conditions, have low selectivity, and generate large amounts of waste. Therefore, researchers have confined the scope of these reactions to simple nitrile substrates. However, biological transformations of nitriles are highly efficient, chemoselective, and environmentally benign, which has led synthetic organic chemists and biotechologists to study these reactions in detail over the last two decades. In nature, biological systems degrade nitriles via two distinct pathways: nitrilases catalyze the direct hydrolysis of nitriles to afford carboxylic acids with release of ammonia, and nitrile hydratases catalyze the conversion of nitriles into carboxamides, which then furnish carboxylic acids via hydrolysis in the presence of amidases. Researchers have subsequently developed biocatalytic methods into useful industrial processes for the manufacture of commodity chemicals, including acrylamide. Since the late 1990s, research by my group and others has led to enormous progress in the understanding and application of enantioselective biotransformations of nitriles in organic synthesis. In this Account, I summarize the important advances in enantioselective biotransformations of nitriles and amides, with a primary focus on research from my laboratory. I describe microbial whole-cell-catalyzed kinetic resolution of various functionalized nitriles, amino- and hydroxynitriles, and nitriles that contain small rings and the desymmetrization of prochiral and meso dinitriles and diamides. I also demonstrate how we can apply the biocatalytic protocol to synthesize natural products and bioactive compounds. These nitrile biotransformations offer an attractive and unique protocol for the enantioselective synthesis of polyfunctionalized organic compounds that are not readily obtainable by

  15. Metal-Free Catalytic Enantioselective C–B Bond Formation: (Pinacolato)boron Conjugate Additions to α,β-Unsaturated Ketones, Esters, Weinreb Amides and Aldehydes Promoted by Chiral N-Heterocyclic Carbenes

    Science.gov (United States)

    Wu, Hao; Radomkit, Suttipol; O’Brien, Jeannette M.; Hoveyda, Amir H.

    2012-01-01

    The first broadly applicable metal-free enantioselective method for boron conjugate addition (BCA) to α,β-unsaturated carbonyls is presented. The C–B bond forming reactions are promoted in the presence of 2.5–7.5 mol % of a readily accessible C1-symmetric chiral imidazolinium salt, which is converted, in situ, to the catalytically active diastereo- and enantiomerically pure N-heterocyclic carbene (NHC) by the common organic base 1,8-diazabicyclo[5.4.0]undec-7-ene (dbu). In addition to the commercially available bis(pinacolato)diboron [B2(pin)2], and in contrast to reactions with the less sterically demanding achiral NHCs, the presence of MeOH is required for high efficiency. Acyclic and cyclic α,β-unsaturated ketones, as well as acyclic esters, Weinreb amides and aldehydes can serve as suitable substrates; the desired β-boryl carbonyls are isolated in up to 94% yield and >98:2 enantiomer ratio (er). Transformations are often carried out at ambient temperature. In certain cases, such as when the relatively less reactive unsaturated amides are used, elevated temperatures are required (50–66 °C); nonetheless, reactions remain highly enantioselective. The utility of the NHC-catalyzed method is demonstrated through comparison with the alternative Cu-catalyzed protocols; in cases involving a polyfunctional substrate, unique profiles in chemoselectivity are exhibited by the metal-free approach (e.g., conjugate addition vs reaction with an alkyne, allene or aldehyde). PMID:22559866

  16. Exploring asymmetric catalytic transformations

    NARCIS (Netherlands)

    Guduguntla, Sureshbabu

    2017-01-01

    In Chapter 2, we report a highly enantioselective synthesis of β-alkyl-substituted alcohols through a one-pot Cu- catalyzed asymmetric allylic alkylation with organolithium reagents followed by reductive ozonolysis. The synthesis of γ-alkyl-substituted alcohols was also achieved through Cu-catalyzed

  17. Enantioselectivity in environmental risk assessment of modern chiral pesticides

    International Nuclear Information System (INIS)

    Ye Jing; Zhao Meirong; Liu Jing; Liu Weiping

    2010-01-01

    Chiral pesticides comprise a new and important class of environmental pollutants nowadays. With the development of industry, more and more chiral pesticides will be introduced into the market. But their enantioselective ecotoxicology is not clear. Currently used synthetic pyrethroids, organophosphates, acylanilides, phenoxypropanoic acids and imidazolinones often behave enantioselectively in agriculture use and they always pose unpredictable enantioselective ecological risks on non-target organisms or human. It is necessary to explore the enantioselective toxicology and ecological fate of these chiral pesticides in environmental risk assessment. The enantioselective toxicology and the fate of these currently widely used pesticides have been discussed in this review article. - Chiral pesticides could pose unpredictable enantioselective toxicity on non-target organisms.

  18. SNCR technology for NO sub x reduction in the cement industry. [Selective non-catalytic reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kupper, D; Brentrup, L [Krupp Polysius AG, Beckum (Germany)

    1992-03-01

    This article discusses the selective non-catalytic (SNCR) process for reducing nitrogen oxides in exhaust gases from cement plants. Topics covered include operating experience, injection of additives, selection of the additive, operating costs, reduction efficiency of SNCR, capital expenditure, secondary emissions and cycles of ammonium. (UK).

  19. Adaptive Model Predictive Control of Diesel Engine Selective Catalytic Reduction (SCR) Systems

    Science.gov (United States)

    McKinley, Thomas L.

    2009-01-01

    Selective catalytic reduction or SCR is coming into worldwide use for diesel engine emissions reduction for on- and off-highway vehicles. These applications are characterized by broad operating range as well as rapid and unpredictable changes in operating conditions. Significant nonlinearity, input and output constraints, and stringent performance…

  20. HYBRID SELECTIVE NON-CATALYTIC REDUCTION (SNCR)/SELECTIVE CATALYTIC REDUCTION (SCR) DEMONSTRATION FOR THE REMOVAL OF NOx FROM BOILER FLUE GASES

    Energy Technology Data Exchange (ETDEWEB)

    Jerry B. Urbas

    1999-05-01

    The U. S. Department of Energy (DOE), Electric Power Research Institute (EPRI), Pennsylvania Electric Energy Research Council, (PEERC), New York State Electric and Gas and GPU Generation, Inc. jointly funded a demonstration to determine the capabilities for Hybrid SNCR/SCR (Selective Non-Catalytic Reduction/Selective Catalytic Reduction) technology. The demonstration site was GPU Generation's Seward Unit No.5 (147MW) located in Seward Pennsylvania. The demonstration began in October of 1997 and ended in December 1998. DOE funding was provided through Grant No. DE-FG22-96PC96256 with T. J. Feeley as the Project Manager. EPRI funding was provided through agreements TC4599-001-26999 and TC4599-002-26999 with E. Hughes as the Project Manager. This project demonstrated the operation of the Hybrid SNCR/SCR NO{sub x} control process on a full-scale coal fired utility boiler. The hybrid technology was expected to provide a cost-effective method of reducing NO{sub x} while balancing capital and operation costs. An existing urea based SNCR system was modified with an expanded-duct catalyst to provide increased NO{sub x} reduction efficiency from the SNCR while producing increased ammonia slip levels to the catalyst. The catalyst was sized to reduce the ammonia slip to the air heaters to less than 2 ppm while providing equivalent NO{sub x} reductions. The project goals were to demonstrate hybrid technology is capable of achieving at least a 55% reduction in NO{sub x} emissions while maintaining less than 2ppm ammonia slip to the air heaters, maintain flyash marketability, verify the cost benefit and applicability of Hybrid post combustion technology, and reduce forced outages due to ammonium bisulfate (ABS) fouling of the air heaters. Early system limitations, due to gas temperature stratification, restricted the Hybrid NO{sub x} reduction capabilities to 48% with an ammonia slip of 6.1 mg/Nm{sup 3} (8 ppm) at the catalyst inlet. After resolving the stratification

  1. Significant Improvement of Catalytic Efficiencies in Ionic Liquids

    International Nuclear Information System (INIS)

    Song, Choong Eui; Yoon, Mi Young; Choi, Doo Seong

    2005-01-01

    The use of ionic liquids as reaction media can confer many advantages upon catalytic reactions over reactions in organic solvents. In ionic liquids, catalysts having polar or ionic character can easily be immobilized without additional structural modification and thus the ionic solutions containing the catalyst can easily be separated from the reagents and reaction products, and then, be reused. More interestingly, switching from an organic solvent to an ionic liquid often results in a significant improvement in catalytic performance (e.g., rate acceleration, (enantio)selectivity improvement and an increase in catalyst stability). In this review, some recent interesting results which can nicely demonstrate these positive 'ionic liquid effect' on catalysis are discussed

  2. Modelling substrate specificity and enantioselectivity for lipases and esterases by substrate-imprinted docking

    Directory of Open Access Journals (Sweden)

    Tyagi Sadhna

    2009-06-01

    Full Text Available Abstract Background Previously, ways to adapt docking programs that were developed for modelling inhibitor-receptor interaction have been explored. Two main issues were discussed. First, when trying to model catalysis a reaction intermediate of the substrate is expected to provide more valid information than the ground state of the substrate. Second, the incorporation of protein flexibility is essential for reliable predictions. Results Here we present a predictive and robust method to model substrate specificity and enantioselectivity of lipases and esterases that uses reaction intermediates and incorporates protein flexibility. Substrate-imprinted docking starts with covalent docking of reaction intermediates, followed by geometry optimisation of the resulting enzyme-substrate complex. After a second round of docking the same substrate into the geometry-optimised structures, productive poses are identified by geometric filter criteria and ranked by their docking scores. Substrate-imprinted docking was applied in order to model (i enantioselectivity of Candida antarctica lipase B and a W104A mutant, (ii enantioselectivity and substrate specificity of Candida rugosa lipase and Burkholderia cepacia lipase, and (iii substrate specificity of an acetyl- and a butyrylcholine esterase toward the substrates acetyl- and butyrylcholine. Conclusion The experimentally observed differences in selectivity and specificity of the enzymes were reproduced with an accuracy of 81%. The method was robust toward small differences in initial structures (different crystallisation conditions or a co-crystallised ligand, although large displacements of catalytic residues often resulted in substrate poses that did not pass the geometric filter criteria.

  3. I.C. Engine emission reduction by copper oxide catalytic converter

    Science.gov (United States)

    Venkatesan, S. P.; Shubham Uday, Desai; Karan Hemant, Borana; Rajarshi Kushwanth Goud, Kagita; Lakshmana Kumar, G.; Pavan Kumar, K.

    2017-05-01

    The toxic gases emitted from diesel engines are more than petrol engines. Predicting the use of diesel engines, even more in future, this system is developed and can be used to minimize the harmful gases. Toxic gases include NOX, CO, HC and Smoke which are harmful to the atmosphere as well as to the human beings. The main aim of this work is to fabricate system, where the level of intensity of toxic gases is controlled through chemical reaction to more agreeable level. This system acts itself as an exhaust system; hence there is no needs to fit separate the silencer. The whole assembly is fitted in the exhaust pipe from engine. In this work, catalytic converter with copper oxide as a catalyst, by replacing noble catalysts such as platinum, palladium and rhodium is fabricated and fitted in the engine exhaust. With and without catalytic converter, the experimentations are carried out at different loads such as 0%, 25%, 50%, 75%, and 100% of maximum rated load. From the experimental results it is found that the maximum reduction is 32%, 61% and 21% for HC, NOx and CO respectively at 100% of maximum rated load when compared to that of without catalytic converter. This catalytic converter system is cash effective and more economical than the existing catalytic converter.

  4. Catalytic silica particles via template-directed molecular imprinting

    Energy Technology Data Exchange (ETDEWEB)

    Markowitz, M.A.; Kust, P.R.; Deng, G.; Schoen, P.E.; Dordick, J.S.; Clark, D.S.; Gaber, B.P.

    2000-02-22

    The surfaces of silica particle were molecularly imprinted with an {alpha}-chymotrypsin transition-state analogue (TSA) by utilizing the technique of template-directed synthesis of mineralized materials. The resulting catalytic particles hydrolyzed amides in an enantioselective manner. A mixture of a nonionic surfactant and the acylated chymotrysin TSA, with the TSA acting as the headgroup at the surfactant-water interface, was used to form a microemulsion for silica particle formation. Incorporation of amine-, dihydroimidazole-, and carboxylate-terminated trialkoxysilanes into the particles during imprinting resulted in enhancement of the rates of amide hydrolysis. Acylated imprint molecules formed more effective imprints in the presence of the functionalized silanes than nonacylated imprint molecules. Particles surface-imprinted with the chymotrypsin TSA were selective for the trypsin substrate, and particles surface-imprinted with the L-isomer of the enzyme TSA were enantioselective for the D-isomer of the substrate.

  5. The enantioselective total synthesis of (+)-clusianone.

    Science.gov (United States)

    Horeischi, Fiene; Guttroff, Claudia; Plietker, Bernd

    2015-02-11

    (+)-Clusianone, an exo-type B PPAP with reported anti-HIV and chemoprotective activities, was synthesized in eleven steps with 97% ee starting from acetylacetone. An enantioselective decarboxylative Tsuji-Trost-allylation and a Ru-catalyzed ring-closing metathesis-decarboxylative allylation were used to control both diastereo- and enantioselectivity.

  6. Enantioselective pharmacokinetics of sibutramine in rat.

    Science.gov (United States)

    Noh, Keumhan; Bae, Kyoungjin; Min, Bokyoung; Kim, Eunyoung; Kwon, Kwang-il; Jeong, Taecheon; Kang, Wonku

    2010-02-01

    Racemic sibutramine is widely used to treat obesity owing to its inhibition of serotonin and noradrenaline reuptake in synapses. Although the enantioselective effects of sibutramine and its two active desmethyl-metabolites, monodesmethylsibutramine (MDS) and didesmethylsibutramine (DDS), on anorexia and energy expenditure have been elucidated, the enantioselective pharmacokinetics of sibutramine are still unclear. Therefore, we aimed to characterize the enantioselective pharmacokinetics of sibutramine and its metabolites in plasma and urine following an intravenous and a single oral administration of sibutramine in rats. The absolute bioavailability of sibutramine was only about 7%. The pharmacologically less effective S-isomer of DDS was predominant in the plasma: the C ( max ) and the AUC ( inf ) were 28 and 30 times higher than those of the R-isomer, respectively (psibutramine metabolites MDS and DDS were present at lower concentrations, owing to their rapid biotransformation to hydroxylated and/or carbamoylglucuronized forms and their faster excretion in the urine. The present study is the first to elucidate the enantioselective pharmacokinetics of sibutramine in rats.

  7. HYBRID SELECTIVE NON-CATALYTIC REDUCTION (SNCR)/SELECTIVE CATALYTIC REDUCTION (SCR) DEMONSTRATION FOR THE REMOVAL OF NOx FROM BOILER FLUE GASES; FINAL

    International Nuclear Information System (INIS)

    Jerry B. Urbas

    1999-01-01

    The U. S. Department of Energy (DOE), Electric Power Research Institute (EPRI), Pennsylvania Electric Energy Research Council, (PEERC), New York State Electric and Gas and GPU Generation, Inc. jointly funded a demonstration to determine the capabilities for Hybrid SNCR/SCR (Selective Non-Catalytic Reduction/Selective Catalytic Reduction) technology. The demonstration site was GPU Generation's Seward Unit No.5 (147MW) located in Seward Pennsylvania. The demonstration began in October of 1997 and ended in December 1998. DOE funding was provided through Grant No. DE-FG22-96PC96256 with T. J. Feeley as the Project Manager. EPRI funding was provided through agreements TC4599-001-26999 and TC4599-002-26999 with E. Hughes as the Project Manager. This project demonstrated the operation of the Hybrid SNCR/SCR NO(sub x) control process on a full-scale coal fired utility boiler. The hybrid technology was expected to provide a cost-effective method of reducing NO(sub x) while balancing capital and operation costs. An existing urea based SNCR system was modified with an expanded-duct catalyst to provide increased NO(sub x) reduction efficiency from the SNCR while producing increased ammonia slip levels to the catalyst. The catalyst was sized to reduce the ammonia slip to the air heaters to less than 2 ppm while providing equivalent NO(sub x) reductions. The project goals were to demonstrate hybrid technology is capable of achieving at least a 55% reduction in NO(sub x) emissions while maintaining less than 2ppm ammonia slip to the air heaters, maintain flyash marketability, verify the cost benefit and applicability of Hybrid post combustion technology, and reduce forced outages due to ammonium bisulfate (ABS) fouling of the air heaters. Early system limitations, due to gas temperature stratification, restricted the Hybrid NO(sub x) reduction capabilities to 48% with an ammonia slip of 6.1 mg/Nm(sup 3) (8 ppm) at the catalyst inlet. After resolving the stratification problem

  8. COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS

    Science.gov (United States)

    The report provides a methodology for estimating budgetary costs associated with retrofit applications of selective catalytic reduction (SCR) technology on coal-fired boilers. SCR is a postcombustion nitrogen oxides (NOx) control technology capable of providing NOx reductions >90...

  9. NOx Selective Catalytic Reduction (SCR) on Self-Supported V-W-doped TiO2 Nanofibers

    DEFF Research Database (Denmark)

    Marani, Debora; Silva, Rafael Hubert; Dankeaw, Apiwat

    2017-01-01

    Electrospun V–W–TiO2 catalysts, resulting in a solid solution of V and W in the anatase phase, are prepared as nonwoven nanofibers for NOx selective catalytic reduction (SCR). Preliminary catalytic characterization indicates their superior NOx conversion efficiency to the-state-of-the-art materia...

  10. Preparation of silver nanoparticles/polydopamine functionalized polyacrylonitrile fiber paper and its catalytic activity for the reduction 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shixiang, E-mail: shixianglu@bit.edu.cn [School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 – IEMN, Lille F-59000 (France); Yu, Jianying; Cheng, Yuanyuan [School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Wang, Qian; Barras, Alexandre [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 – IEMN, Lille F-59000 (France); Xu, Wenguo [School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Szunerits, Sabine [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 – IEMN, Lille F-59000 (France); Cornu, David [Institut Européen des Membranes, UMR 5635, Ecole Nationale Supérieure de Chimie de Montpellier (ENSCM), CNRS, Université Montpellier 2, 276 rue de la Galéra, Montpellier 34000 (France); Boukherroub, Rabah, E-mail: rabah.boukherroub@iemn.univ-lille1.fr [Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 – IEMN, Lille F-59000 (France)

    2017-07-31

    Graphical abstract: Illustration of the preparation of Ag nanoparticles coated paper and its catalytic application for 4-nitrophenol reduction into the corresponding 4-aminophenol. - Highlights: • Polyacrylonitrile paper was functionalized with polydopamine and Ag nanoparticles. • Polydopamine coating layer played both reductive and adhesive roles. • The composite material displayed good catalytic activity for 4-nitrophenol reduction. • The process was environmentally benign and facile. - Abstract: The study reports on the preparation of polyacrylonitrile fiber paper (PANFP) functionalized with polydopamine (PD) and silver nanoparticles (Ag NPs), named as Ag NPs/PD/PANFP. The composite material was obtained via a simple two-step chemical process. First, a thin polydopamine layer was coated onto the PANFP surface through immersion into an alkaline dopamine (pH 8.5) aqueous solution at room temperature. The reductive properties of polydopamine were further exploited for the deposition of Ag NPs. The morphology and chemical composition of the composite material were characterized using scanning electron microscopy (SEM), X-ray diffraction pattern (XRD) and X-ray photoelectron spectroscopy (XPS). The catalytic activity of the nanocomposite was evaluated for the reduction of 4-nitrophenol using sodium borohydride (NaBH{sub 4}) at room temperature. The Ag NPs/PD/PANFP displayed good catalytic performance with a full reduction of 4-nitrophenol into the corresponding 4-aminophenol within 30 min. Moreover, the composite material exhibited a good stability up to 4 cycles without a significant loss of its catalytic activity.

  11. Enhanced Activity of Nanocrystalline Zeolites for Selective Catalytic Reduction of NOx

    International Nuclear Information System (INIS)

    Sarah C. Larson; Vicki H. Grassian

    2006-01-01

    Nanocrystalline zeolites with discrete crystal sizes of less than 100 nm have different properties relative to zeolites with larger crystal sizes. Nanocrystalline zeolites have improved mass transfer properties and very large internal and external surface areas that can be exploited for many different applications. The additional external surface active sites and the improved mass transfer properties of nanocrystalline zeolites offer significant advantages for selective catalytic reduction (SCR) catalysis with ammonia as a reductant in coal-fired power plants relative to current zeolite based SCR catalysts. Nanocrystalline NaY was synthesized with a crystal size of 15-20 nm and was thoroughly characterized using x-ray diffraction, electron paramagnetic resonance spectroscopy, nitrogen adsorption isotherms and Fourier Transform Infrared (FT-IR) spectroscopy. Copper ions were exchanged into nanocrystalline NaY to increase the catalytic activity. The reactions of nitrogen dioxides (NO x ) and ammonia (NH 3 ) on nanocrystalline NaY and CuY were investigated using FT-IR spectroscopy. Significant conversion of NO 2 was observed at room temperature in the presence of NH 3 as monitored by FT-IR spectroscopy. Copper-exchanged nanocrystalline NaY was more active for NO 2 reduction with NH 3 relative to nanocrystalline NaY

  12. Metal-Free Catalytic Asymmetric Fluorination of Keto Esters Using a Combination of Hydrogen Fluoride (HF) and Oxidant: Experiment and Computation

    KAUST Repository

    Pluta, Roman

    2018-02-09

    A chiral iodoarene organocatalyst for the catalytic asymmetric fluorination has been developed. The catalyst was used in the asymmetric fluorination of carbonyl compounds, providing the products with a quaternary stereocenter with high enantioselectivities. Chiral hypervalent iodine difluoride intermediates were generated in situ by treatment of the catalyst with an oxidant and hydrogen fluoride as fluoride source. As such, the α-fluorination of a carbonyl compound was achieved with a nucleophilic fluorine source. A combined computational and experimental approach provided insight into the reaction mechanism and the origin of enantioselectivity.

  13. Metal-Free Catalytic Asymmetric Fluorination of Keto Esters Using a Combination of Hydrogen Fluoride (HF) and Oxidant: Experiment and Computation

    KAUST Repository

    Pluta, Roman; Krach, Patricia E.; Cavallo, Luigi; Falivene, Laura; Rueping, Magnus

    2018-01-01

    A chiral iodoarene organocatalyst for the catalytic asymmetric fluorination has been developed. The catalyst was used in the asymmetric fluorination of carbonyl compounds, providing the products with a quaternary stereocenter with high enantioselectivities. Chiral hypervalent iodine difluoride intermediates were generated in situ by treatment of the catalyst with an oxidant and hydrogen fluoride as fluoride source. As such, the α-fluorination of a carbonyl compound was achieved with a nucleophilic fluorine source. A combined computational and experimental approach provided insight into the reaction mechanism and the origin of enantioselectivity.

  14. Tin-free enantioselective radical reactions using silanes.

    Science.gov (United States)

    Sibi, Mukund P; Yang, Yong-Hua; Lee, Sunggi

    2008-12-04

    Readily available hexyl silane is an excellent choice as a H-atom donor and a chain carrier in Lewis acid mediated enantioselective radical reactions. Conjugate radical additions to alpha,beta-unsaturated imides at room temperature proceed in good yields and excellent enantioselectivities.

  15. Low Temperature Selective Catalytic Reduction of Nitrogen Oxides in Production of Nitric Acid by the Use of Liquid

    Directory of Open Access Journals (Sweden)

    Kabljanac, Ž.

    2011-11-01

    Full Text Available This paper presents the application of low-temperature selective catalytic reduction of nitrous oxides in the tail gas of the dual-pressure process of nitric acid production. The process of selective catalytic reduction is carried out using the TiO2/WO3 heterogeneous catalyst applied on a ceramic honeycomb structure with a high geometric surface area per volume. The process design parameters for nitric acid production by the dual-pressure procedure in a capacity range from 75 to 100 % in comparison with designed capacity for one production line is shown in the Table 1. Shown is the effectiveness of selective catalytic reduction in the temperature range of the tail gas from 180 to 230 °C with direct application of liquid ammonia, without prior evaporation to gaseous state. The results of inlet and outlet concentrations of nitrous oxides in the tail gas of the nitric acid production process are shown in Figures 1 and 2. Figure 3 shows the temperature dependence of the selective catalytic reduction of nitrous oxides expressed as NO2in the tail gas of nitric acid production with the application of a constant mass flow of liquid ammonia of 13,0 kg h-1 and average inlet mass concentration of the nitrous oxides expressed as NO2of 800,0 mgm-3 during 100 % production capacity. The specially designed liquid-ammonia direct-dosing system along with the effective homogenization of the tail gas resulted in emission levels of nitrous oxides expressed as NO2 in tail gas ranging from 100,0 to 185,0 mg m-3. The applied low-temperature selective catalytic reduction of the nitrous oxides in the tail gases by direct use of liquid ammonia is shown in Figure 4. It is shown that low-temperature selective catalytic reduction with direct application of liquid ammonia opens a new opportunity in the reduction of nitrous oxide emissions during nitric acid production without the risk of dangerous ammonium nitrate occurring in the process of subsequent energy utilization of

  16. GENERIC VERIFICATION PROTOCOL FOR DETERMINATION OF EMISSIONS REDUCTIONS FROM SELECTIVE CATALYTIC REDUCTIONS CONTROL TECHNOLOGIES FOR HIGHWAY, NONROAD, AND STATIONARY USE DIESEL ENGINES

    Science.gov (United States)

    The protocol describes the Environmental Technology Verification (ETV) Program's considerations and requirements for verification of emissions reduction provided by selective catalytic reduction (SCR) technologies. The basis of the ETV will be comparison of the emissions and perf...

  17. Catalytic activity of lanthanum oxide for the reduction of cyclohexanone

    International Nuclear Information System (INIS)

    Sugunan, S.; Sherly, K.B.

    1994-01-01

    Lanthanum oxides, La 2 O 3 has been found to be an effective catalyst for the liquid phase reduction of cyclohexanone. The catalytic activities of La 2 O 3 activated at 300, 500 and 800 degC and its mixed oxides with alumina for the reduction of cylcohexanone with 2-propanol have been determined and the data parallel that of the electron donating properties of the catalysts. The electron donating properties of the catalysts have been determined from the adsorption of electron acceptors of different electron affinities on the surface of these oxides. (author). 15 refs., 2 figs., 1 tab

  18. Green and facile synthesis of fibrous Ag/cotton composites and their catalytic properties for 4-nitrophenol reduction

    Science.gov (United States)

    Li, Ziyu; Jia, Zhigang; Ni, Tao; Li, Shengbiao

    2017-12-01

    Natural cotton, featuring abundant oxygen-containing functional groups, has been utilized as a reductant to synthesize Ag nanoparticles on its surface. Through the facile and environment-friendly reduction process, the fibrous Ag/cotton composite (FAC) was conveniently synthesized. Various characterization techniques including XRD, XPS, TEM, SEM, EDS and FT-IR had been utilized to study the material microstructure and surface properties. The resulting FAC exhibited favorable activity on the catalytic reduction of 4-nitrophenol with high reaction rate. Moreover, the fibrous Ag/cotton composites were capable to form a desirable catalytic mat for catalyzing and simultaneous product separation. Reactants passing through the mat could be catalytically transformed to product, which is of great significance for water treatment. Such catalyst (FAC) was thus expected to have the potential as a highly efficient, cost-effective and eco-friendly catalyst for industrial applications. More importantly, this newly developed synthetic methodology could serve as a general tool to design and synthesize other metal/biomass composites catalysts for a wider range of catalytic applications.

  19. An efficient catalytic reductive amination: A facile one-pot access to ...

    Indian Academy of Sciences (India)

    An efficient catalytic reductive amination: A facile one-pot access to ... itors and in the manufacture of detergents and plastics.1 ... ammoniaborane/Ti(OiPr)4,5e ... demonstrated the first method for synthesis of 1,2- ... and column chromatography (Silica gel, n-hexane/ethyl .... supporting information at www.ias.ac.in/chemsci.

  20. Continuous-flow enantioselective α-aminoxylation of aldehydes catalyzed by a polystyrene-immobilized hydroxyproline

    Directory of Open Access Journals (Sweden)

    Xacobe C. Cambeiro

    2011-10-01

    Full Text Available The application of polystyrene-immobilized proline-based catalysts in packed-bed reactors for the continuous-flow, direct, enantioselective α-aminoxylation of aldehydes is described. The system allows the easy preparation of a series of β-aminoxy alcohols (after a reductive workup with excellent optical purity and with an effective catalyst loading of ca. 2.5% (four-fold reduction compared to the batch process working at residence times of ca. 5 min.

  1. Selective catalytic reduction of sulfur dioxide to elemental sulfur. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.; Flytzani-Stephanopoulos, M.; Sarofim, A.F.

    1995-06-01

    This project has investigated new metal oxide catalysts for the single stage selective reduction of SO{sub 2} to elemental sulfur by a reductant, such as CO. Significant progress in catalyst development has been made during the course of the project. We have found that fluorite oxides, CeO{sub 2} and ZrO{sub 2}, and rare earth zirconates such as Gd{sub 2}Zr{sub 2}O{sub 7} are active and stable catalysts for reduction Of SO{sub 2} by CO. More than 95% sulfur yield was achieved at reaction temperatures about 450{degrees}C or higher with the feed gas of stoichiometric composition. Reaction of SO{sub 2} and CO over these catalysts demonstrated a strong correlation of catalytic activity with the catalyst oxygen mobility. Furthermore, the catalytic activity and resistance to H{sub 2}O and CO{sub 2} poisoning of these catalysts were significantly enhanced by adding small amounts of transition metals, such as Co, Ni, Co, etc. The resulting transition metal-fluorite oxide composite catalyst has superior activity and stability, and shows promise in long use for the development of a greatly simplified single-step sulfur recovery process to treat variable and dilute SO{sub 2} concentration gas streams. Among various active composite catalyst systems the Cu-CeO{sub 2} system has been extensively studied. XRD, XPS, and STEM analyses of the used Cu-CeO{sub 2} catalyst found that the fluorite crystal structure of ceria was stable at the present reaction conditions, small amounts of copper was dispersed and stabilized on the ceria matrix, and excess copper oxide particles formed copper sulfide crystals of little contribution to catalytic activity. A working catalyst consisted of partially sulfated cerium oxide surface and partially sulfided copper clusters. The overall reaction kinetics were approximately represented by a first order equation.

  2. Catalytic reduction of nitric oxide with ammonia over transition metal ion-exchanged Y zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Sciyama, T; Arakawa, T; Matsuda, T; Yamazoe, N; Takita, Y

    1975-01-01

    The catalytic reduction of nitric oxide with ammonia was studied over transition metal ion-exchanged Y zeolite (Me-Y) catalysts. The reaction products are nitrogen, nitrous oxide, and water in all cases. Selectivities to N/sub 2/ are 60 to 80% on all the cation exchanged zeolite catalysts exhibiting a relatively minor variation with the cationic species exchanged. The copper (II)-Y catalyst exhibits low temperature activity and has an unusual catalytic activity-temperature profile with a maximum at 120/sup 0/C. The catalytic activity is enhanced considerably when a second cation, especially cobalt (II) or iron (III) is coexchanged together with Cu (II) in Y zeolite.

  3. Novel, Regenerable Microlith Catalytic Reactor for CO2 Reduction via Bosch Process, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Precision Combustion, Inc. (PCI) proposes to develop an extremely compact, lightweight and regenerable MicrolithREG catalytic CO2 reduction reactor, capable of...

  4. Chiral amides via copper-catalysed enantioselective conjugate addition

    NARCIS (Netherlands)

    Schoonen, Anne K.; Fernández-Ibáñez, M. Ángeles; Fañanás-Mastral, Martín; Teichert, Johannes F.; Feringa, Bernard

    2014-01-01

    A highly enantioselective one pot procedure for the synthesis of beta-substituted amides was developed starting from the corresponding alpha,beta-unsaturated esters. This new methodology is based on the copper-catalysed enantioselective conjugate addition of Grignard reagents to

  5. Development of tartaric acid derived chiral guanidines and their application to catalytic enantioselective α-hydroxylation of β-dicarbonyl compounds.

    Science.gov (United States)

    Zou, Liwei; Wang, Baomin; Mu, Hongfang; Zhang, Huanrui; Song, Yuming; Qu, Jingping

    2013-06-21

    A novel library of chiral guanidines featuring a tartaric acid skeleton was developed from diethyl l-tartrate. These guanidines are easily accessed with tunable steric and electronic properties. The utilities of the guanidines were highlighted by their ability to catalyze the α-hydroxylation of β-ketoesters and β-diketones with remarkable efficiency and excellent enantioselectivity.

  6. Selective catalytic reduction of nitrogen oxides from industrial gases by hydrogen or methane

    International Nuclear Information System (INIS)

    Engelmann Pirez, M.

    2004-12-01

    This work deals with the selective catalytic reduction of nitrogen oxides (NO x ), contained in the effluents of industrial plants, by hydrogen or methane. The aim is to replace ammonia, used as reducing agent, in the conventional process. The use of others reducing agents such as hydrogen or methane is interesting for different reasons: practical, economical and ecological. The catalyst has to convert selectively NO into N 2 , in presence of an excess of oxygen, steam and sulfur dioxide. The developed catalyst is constituted by a support such as perovskites, particularly LaCoO 3 , on which are dispersed noble metals (palladium, platinum). The interaction between the noble metal and the support, generated during the activation of the catalyst, allows to minimize the water and sulfur dioxide inhibitor phenomena on the catalytic performances, particularly in the reduction of NO by hydrogen. (O.M.)

  7. Selective catalytic reduction of NO{sub x} by olefins

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, F

    1997-12-31

    The removal of nitrogen oxides from the exhaust of lean-burn gasoline fuelled and diesel-fuelled engines, operating under net oxidizing conditions, has recently attracted considerable attention. In this work, three different catalytic systems (Al{sub 2}O{sub 3}, Cu/Al{sub 2}O{sub 3} and Cu/ZSM-5) are investigated for their suitability as catalysts for the selective reduction of nitrogen oxides by hydrocarbons in excess oxygen. Special emphasis is given to the formation of potentially harmful byproducts such as hydrogen cyanide (HCN), cyanic acid (HNCO), ammonia (NH{sub 3}) and nitrous oxide (N{sub 2}O). The effect of reaction temperature, nitrogen oxide (NO, NO{sub 2}), hydrocarbon (ethene, propene) and water on activity and the formation of byproducts is investigated. In situ FTIR spectroscopy and temperature-programmed surface reactions (TPSR) of absorbed species in different atmospheres were used to investigate the nature and reactivity of adsorbates formed under reaction conditions. The catalytic activity was strongly influenced by the presence of water in the feed. The effects of the other parameters were suppressed and the performance generally decreased, except when propene was used for the reduction of NO{sub x} over Cu/ZSM-5. Over Cu/ZSM-5 clearly higher conversion was obtained, when ethene was used as reducing agent, while there was no significant difference when starting from NO or NO{sub 2}. In contrast, with {gamma}-Al{sub 2}O{sub 3} NO{sub 2} was reduced more efficiently than NO with both reductants. The impregnation of {gamma}-Al{sub 2}O{sub 3} with copper led to an extensive loss of this performance. For dry feeds and with increasing CuO loading, the catalysts reached maximum activity at lower temperature and the maximum yield of nitrogen slightly decreased. (author) figs., tabs., refs.

  8. A general enantioselective route to the chamigrene natural product family

    KAUST Repository

    White, David E.; Stewart, Ian C.; Seashore-Ludlow, Brinton A.; Grubbs, Robert H.; Stoltz, Brian M.

    2010-01-01

    Described in this report is an enantioselective route toward the chamigrene natural product family. The key disconnections in our synthetic approach include sequential enantioselective decarboxylative allylation and ring-closing olefin metathesis to form the all-carbon quaternary stereocenter and spirocyclic core present in all members of this class of compounds. The generality of this strategy is demonstrated by the first total syntheses of elatol and the proposed structure of laurencenone B, as well as the first enantioselective total syntheses of laurencenone C and α-chamigrene. A brief exploration of the substrate scope of the enantioselective decarboxylative allylation/ring-closing metathesis sequence with fully substituted vinyl chlorides is also presented.

  9. A general enantioselective route to the chamigrene natural product family

    KAUST Repository

    White, David E.

    2010-06-01

    Described in this report is an enantioselective route toward the chamigrene natural product family. The key disconnections in our synthetic approach include sequential enantioselective decarboxylative allylation and ring-closing olefin metathesis to form the all-carbon quaternary stereocenter and spirocyclic core present in all members of this class of compounds. The generality of this strategy is demonstrated by the first total syntheses of elatol and the proposed structure of laurencenone B, as well as the first enantioselective total syntheses of laurencenone C and α-chamigrene. A brief exploration of the substrate scope of the enantioselective decarboxylative allylation/ring-closing metathesis sequence with fully substituted vinyl chlorides is also presented.

  10. Catalytic reduction of NOx in gasoline engine exhaust over copper- and nickel-exchanged X-zeolite catalysts

    International Nuclear Information System (INIS)

    Bhattacharyya, S.; Das, R.K.

    2001-01-01

    Catalytic removal of NO x in engine exhaust gases can be accomplished by non-selective reduction, selective reduction and decomposition. Noble metals are extensively used for non-selective reduction of NO x and up to 90% of engine NO x emissions can be reduced in a stoichiometric exhaust. This requirement of having the stoichiometric fuel-air ratio acts against efficiency improvement of engines. Selective NO x reduction in the presence of different reductants such as, NH 3 , urea or hydrocarbons, requires close control of the amount of reductant being injected which otherwise may be emitted as a pollutant. Catalytic decomposition is the best option for NO x removal. Nevertheless, catalysts which are durable, economic and active for NO x reduction at normal engine exhaust temperature ranges are still being investigated. Three catalysts based on X-zeolite have been developed by exchanging the Na+ ion with copper, nickel and copper-nickel metal ions and applied to the exhaust of a stationary gasoline engine to explore their potential for catalytic reduction of NO x under a wide range of engine and exhaust conditions. Some encouraging results have been obtained. The catalyst Cu-X exhibits much better NO x reduction performance at any temperature in comparison to Cu-Ni-X and Ni-X; while Cu-Ni-X catalyst exhibits slightly better performance than Ni-X catalyst. Maximum NO x efficiency achieved with Cu-X catalyst is 59.2% at a space velocity (sv) of 31 000 h -1 ; while for Cu-Ni-X and Ni-X catalysts the equivalent numbers are 60.4% and 56% respectively at a sv of 22 000 h -1 . Unlike noble metals, the doped X-zeolite catalysts exhibit significant NO x reduction capability for a wide range of air/fuel ratio and with a slower rate of decline as well with increase in air/fuel ratio. (author)

  11. Asymmetric Reduction of Substituted 2-Tetralones by Thermoanaerobacter pseudoethanolicus Secondary Alcohol Dehydrogenase

    KAUST Repository

    Bsharat, Odey; Musa, Musa M.; Vieille, Claire; Oladepo, Sulayman; Takahashi, Masateru; Hamdan, Samir

    2017-01-01

    Ketones bearing two bulky substituents, named bulky-bulky ketones, were successfully reduced to their corresponding optically enriched alcohols by using various mutants of Thermoanaerobacter pseudoethanolicus secondary alcohol dehydrogenase (TeSADH). Substituted 2-tetralones, in particular, were reduced to 2-tetralols with high conversion and high enantioselectivity. The pharmacological importance of substituted 2-tetralols as key drug-building blocks makes our biocatalytic reduction method a highly essential tool. We showed that changing the position of the substituent on the aromatic ring of 2-tetralones impacts their binding affinity and the reaction maximum catalytic rate. Docking studies with several TeSADH mutants explain how the position of the substituent on the tetralone influences the binding orientation of substituted 2-tetralones and their reaction stereoselectivity.

  12. Asymmetric Reduction of Substituted 2-Tetralones by Thermoanaerobacter pseudoethanolicus Secondary Alcohol Dehydrogenase

    KAUST Repository

    Bsharat, Odey

    2017-01-30

    Ketones bearing two bulky substituents, named bulky-bulky ketones, were successfully reduced to their corresponding optically enriched alcohols by using various mutants of Thermoanaerobacter pseudoethanolicus secondary alcohol dehydrogenase (TeSADH). Substituted 2-tetralones, in particular, were reduced to 2-tetralols with high conversion and high enantioselectivity. The pharmacological importance of substituted 2-tetralols as key drug-building blocks makes our biocatalytic reduction method a highly essential tool. We showed that changing the position of the substituent on the aromatic ring of 2-tetralones impacts their binding affinity and the reaction maximum catalytic rate. Docking studies with several TeSADH mutants explain how the position of the substituent on the tetralone influences the binding orientation of substituted 2-tetralones and their reaction stereoselectivity.

  13. Spin-Center Shift-Enabled Direct Enantioselective α-Benzylation of Aldehydes with Alcohols.

    Science.gov (United States)

    Nacsa, Eric D; MacMillan, David W C

    2018-03-07

    Nature routinely engages alcohols as leaving groups, as DNA biosynthesis relies on the removal of water from ribonucleoside diphosphates by a radical-mediated "spin-center shift" (SCS) mechanism. Alcohols, however, remain underused as alkylating agents in synthetic chemistry due to their low reactivity in two-electron pathways. We report herein an enantioselective α-benzylation of aldehydes using alcohols as alkylating agents based on the mechanistic principle of spin-center shift. This strategy harnesses the dual activation modes of photoredox and organocatalysis, engaging the alcohol by SCS and capturing the resulting benzylic radical with a catalytically generated enamine. Mechanistic studies provide evidence for SCS as a key elementary step, identify the origins of competing reactions, and enable improvements in chemoselectivity by rational photocatalyst design.

  14. Flowthrough Reductive Catalytic Fractionation of Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Eric M.; Stone, Michael L.; Katahira, Rui; Reed, Michelle; Beckham, Gregg T.; Román-Leshkov, Yuriy

    2017-11-01

    Reductive catalytic fractionation (RCF) has emerged as a leading biomass fractionation and lignin valorization strategy. Here, flowthrough reactors were used to investigate RCF of poplar. Most RCF studies to date have been conducted in batch, but a flow-based process enables the acquisition of intrinsic kinetic and mechanistic data essential to accelerate the design, optimization, and scale-up of RCF processes. Time-resolved product distributions and yields obtained from experiments with different catalyst loadings were used to identify and deconvolute events during solvolysis and hydrogenolysis. Multi-bed RCF experiments provided unique insights into catalyst deactivation, showing that leaching, sintering, and surface poisoning are causes for decreased catalyst performance. The onset of catalyst deactivation resulted in higher concentrations of unsaturated lignin intermediates and increased occurrence of repolymerization reactions, producing high-molecular-weight species. Overall, this study demonstrates the concept of flowthrough RCF, which will be vital for realistic scale-up of this promising approach.

  15. Defect-meditated efficient catalytic activity toward p-nitrophenol reduction: A case study of nitrogen doped calcium niobate system

    International Nuclear Information System (INIS)

    Su, Yiguo; Huang, Shushu; Wang, Tingting; Peng, Liman; Wang, Xiaojing

    2015-01-01

    Graphical abstract: A series of nitrogen doped Ca 2 Nb 2 O 7 was successfully prepared via ion-exchange method, which was found to be an efficient and green noble-metal-free catalyst toward catalytic reduction of p-nitrophenol. - Highlights: • Nitrogen doped Ca 2 Nb 2 O 7 was found to be an efficient and green noble-metal-free catalyst toward catalytic reduction of p-nitrophenol. • Defective nitrogen and oxygen species were found to play synergetic roles in the reduction of p-nitrophenol. • Nitrogen doped Ca 2 Nb 2 O 7 showed photo-synergistic promotion effects toward p-nitrophenol reduction under UV light irradiation. - Abstract: This work reported on the synthesis of a series of nitrogen doped Ca 2 Nb 2 O 7 with tunable nitrogen content that were found to be efficient and green noble-metal-free catalysts toward catalytic reduction of p-nitrophenol. XPS and ESR results indicated that the introduction of nitrogen in Ca 2 Nb 2 O 7 gave rise to a large number of defective nitrogen and oxygen species. Defective nitrogen and oxygen species were found to play synergetic roles in the reduction of p-nitrophenol. The underlying mechanism is completely different from those reported for metallic nanoparticles. Moreover, the more negative conduction band edge potential enabled nitrogen doped Ca 2 Nb 2 O 7 to show photo-synergistic effects that could accelerate the reduction rate toward p-nitrophenol under UV light irradiation. This work may provide a strategy for tuning the catalytic performance by modulating the chemical composition, electronic structure as well as surface defect chemistry

  16. Higher-order human telomeric G-quadruplex DNA metalloenzymes enhance enantioselectivity in the Diels-Alder reaction.

    Science.gov (United States)

    Li, Yinghao; Jia, Guoqing; Wang, Changhao; Cheng, Mingpan; Li, Can

    2015-03-02

    Short human telomeric (HT) DNA sequences form single G-quadruplex (G4 ) units and exhibit structure-based stereocontrol for a series of reactions. However, for more biologically relevant higher-order HT G4 -DNAs (beyond a single G4 unit), the catalytic performances are unknown. Here, we found that higher-order HT G4 -DNA copper metalloenzymes (two or three G4 units) afford remarkably higher enantioselectivity (>90 % ee) and a five- to sixfold rate increase, compared to a single G4 unit, for the Diels-Alder reaction. Electron paramagnetic resonance (EPR) and enzymatic kinetic studies revealed that the distinct catalytic function between single and higher-order G4 -DNA copper metalloenzymes can be attributed to different Cu(II) coordination environments and substrate specificity. Our finding suggests that, like protein enzymes and ribozymes, higher-order structural organization is crucial for G4 -DNA-based catalysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Enantioselective addition of nitrones to activated cyclopropanes.

    Science.gov (United States)

    Sibi, Mukund P; Ma, Zhihua; Jasperse, Craig P

    2005-04-27

    In this paper, we demonstrate the first examples of chiral Lewis acid catalysis in the formation of tetrahydro-1,2-oxazines with very high enantioselectivity starting with diactivated cyclopropanes and nitrones (>90% yields and ee). Reactions with racemic substituted cyclopropanes provide approximately 1:1 diastereomeric tetrahydro-1,2-oxazine products with high enantioselectivity. Mechanistic information for the formation of the tetrahydro-1,2-oxazines is also detailed.

  18. Enantioselective Biotransformation of Chiral Persistent Organic Pollutants.

    Science.gov (United States)

    Zhang, Ying; Ye, Jing; Liu, Min

    2017-01-01

    Enantiomers of chiral compounds commonly undergo enantioselective transformation in most biologically mediated processes. As chiral persistent organic pollutants (POPs) are extensively distributed in the environment, differences between enantiomers in biotransformation should be carefully considered to obtain exact enrichment and specific health risks. This review provides an overview of in vivo biotransformation of chiral POPs currently indicated in the Stockholm Convention and their chiral metabolites. Peer-reviewed journal articles focused on the research question were thoroughly searched. A set of inclusion and exclusion criteria were developed to identify relevant studies. We mainly compared the results from different animal models under controlled laboratory conditions to show the difference between enantiomers in terms of distinct transformation potential. Interactions with enzymes involved in enantioselective biotransformation, especially cytochrome P450 (CYP), were discussed. Further research areas regarding this issue were proposed. Limited evidence for a few POPs has been found in 30 studies. Enantioselective biotransformation of α-hexachlorocyclohexane (α-HCH), chlordane, dichlorodiphenyltrichloroethane (DDT), heptachlor, hexabromocyclododecane (HBCD), polychlorinated biphenyls (PCBs), and toxaphene, has been investigated using laboratory mammal, fish, bird, and worm models. Tissue and excreta distributions, as well as bioaccumulation and elimination kinetics after administration of racemate and pure enantiomers, have been analyzed in these studies. Changes in enantiomeric fractions have been considered as an indicator of enantioselective biotransformation of chiral POPs in most studies. Results of different laboratory animal models revealed that chiral POP biotransformation is seriously affected by chirality. Pronounced results of species-, tissue-, gender-, and individual-dependent differences are observed in in vivo biotransformation of chiral POPs

  19. Ring-Contraction Strategy for the Practical, Scalable, Catalytic Asymmetric Synthesis of Versatile γ-Quaternary Acylcyclopentenes

    KAUST Repository

    Hong, Allen Y.

    2011-02-24

    Contraction action! A simple protocol for the catalytic asymmetric synthesis of highly functionalized γ-quaternary acylcyclopentenes (see schematic) in up to 91 % overall yield and 92 % ee has been developed. The reaction sequence employs a palladium-catalyzed enantioselective alkylation reaction and exploits the unusual stability of β-hydroxy cycloheptanones to achieve a general and robust method for performing two-carbon ring contractions.

  20. Ring-Contraction Strategy for the Practical, Scalable, Catalytic Asymmetric Synthesis of Versatile γ-Quaternary Acylcyclopentenes

    KAUST Repository

    Hong, Allen Y.; Krout, Michael R.; Jensen, Thomas; Bennett, Nathan B.; Harned, Andrew M.; Stoltz, Brian M.

    2011-01-01

    Contraction action! A simple protocol for the catalytic asymmetric synthesis of highly functionalized γ-quaternary acylcyclopentenes (see schematic) in up to 91 % overall yield and 92 % ee has been developed. The reaction sequence employs a palladium-catalyzed enantioselective alkylation reaction and exploits the unusual stability of β-hydroxy cycloheptanones to achieve a general and robust method for performing two-carbon ring contractions.

  1. Enantioselective ProPhenol-catalyzed addition of 1,3-diynes to aldehydes to generate synthetically versatile building blocks and diyne natural products.

    Science.gov (United States)

    Trost, Barry M; Chan, Vincent S; Yamamoto, Daisuke

    2010-04-14

    A highly enantioselective method for the catalytic addition of terminal 1,3-diynes to aldehydes was developed using our dinuclear zinc ProPhenol (1) system. Furthermore, triphenylphosphine oxide was found to interact synergistically with the catalyst to substantially enhance the chiral recognition. The generality of this catalytic transformation was demonstrated with aryl, alpha,beta-unsaturated and saturated aldehydes, of which the latter were previously limited in alkynyl zinc additions. The chiral diynol products are also versatile building blocks that can be readily elaborated; this was illustrated through highly selective trans-hydrosilylations, which enabled the synthesis of a beta-hydroxyketone and enyne. Additionally, the development of this method allowed for the rapid total syntheses of several biologically important diynol-containing natural products.

  2. Enantioselective cyclizations and cyclization cascades of samarium ketyl radicals

    Science.gov (United States)

    Kern, Nicolas; Plesniak, Mateusz P.; McDouall, Joseph J. W.; Procter, David J.

    2017-12-01

    The rapid generation of molecular complexity from simple starting materials is a key challenge in synthesis. Enantioselective radical cyclization cascades have the potential to deliver complex, densely packed, polycyclic architectures, with control of three-dimensional shape, in one step. Unfortunately, carrying out reactions with radicals in an enantiocontrolled fashion remains challenging due to their high reactivity. This is particularly the case for reactions of radicals generated using the classical reagent, SmI2. Here, we demonstrate that enantioselective SmI2-mediated radical cyclizations and cascades that exploit a simple, recyclable chiral ligand can convert symmetrical ketoesters to complex carbocyclic products bearing multiple stereocentres with high enantio- and diastereocontrol. A computational study has been used to probe the origin of the enantioselectivity. Our studies suggest that many processes that rely on SmI2 can be rendered enantioselective by the design of suitable ligands.

  3. Graphene-based hybrid for enantioselective sensing applications.

    Science.gov (United States)

    Zor, Erhan; Morales-Narváez, Eden; Alpaydin, Sabri; Bingol, Haluk; Ersoz, Mustafa; Merkoçi, Arben

    2017-01-15

    Chirality is a major field of research of chemical biology and is essential in pharmacology. Accordingly, approaches for distinguishing between different chiral forms of a compound are of great interest. We report on an efficient and generic enantioselective sensor that is achieved by coupling reduced graphene oxide with γ-cyclodextrin (rGO/γ-CD). The enantioselective sensing capability of the resulting structure was operated in both electrical and optical mode for of tryptophan enantiomers (D-/L-Trp). In this sense, voltammetric and photoluminescence measurements were conducted and the experimental results were compared to molecular docking method. We gain insight into the occurring recognition mechanism with selectivity toward D- and L-Trp as shown in voltammetric, photoluminescence and molecular docking responses. As an enantioselective solid phase on an electrochemical transducer, thanks to the different dimensional interaction of enantiomers with hybrid material, a discrepancy occurs in the Gibbs free energy leading to a difference in oxidation peak potential as observed in electrochemical measurements. The optical sensing principle is based on the energy transfer phenomenon that occurs between photoexcited D-/L-Trp enantiomers and rGO/γ-CD giving rise to an enantioselective photoluminescence quenching due to the tendency of chiral enantiomers to form complexes with γ-CD in different molecular orientations as demonstrated by molecular docking studies. The approach, which is the first demonstration of applicability of molecular docking to show both enantioselective electrochemical and photoluminescence quenching capabilities of a graphene-related hybrid material, is truly new and may have broad interest in combination of experimental and computational methods for enantiosensing of chiral molecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Infrared-thermographic screening of the activity and enantioselectivity of enzymes.

    Science.gov (United States)

    Reetz, M T; Hermes, M; Becker, M H

    2001-05-01

    The infrared radiation caused by the heat of reaction of an enantioselective enzyme-catalyzed transformation can be detected by modern photovoltaic infrared (IR)-thermographic cameras equipped with focal-plane array detectors. Specifically, in the lipase-catalyzed enantioselective acylation of racemic 1-phenylethanol, the (R)- and (S)-substrates are allowed to react separately in the wells of microtiter plates, the (R)-alcohol showing hot spots in the IR-thermographic images. Thus, highly enantioselective enzymes can be identified at kinetic resolution.

  5. Ultra-fast catalytic reduction of dyes by ionic liquid recoverable and reusable mefenamic acid derived gold nanoparticles

    International Nuclear Information System (INIS)

    Hassan, Syeda Sara; Sirajuddin; Solangi, Amber Rehana; Agheem, Mohammad Hassan; Junejo, Yasmeen; Kalwar, Nazar Hussain; Tagar, Zulfiqar Ali

    2011-01-01

    Highlights: → Gold nanoparticles (AuNps) have been fabricated by a simple chemical method. → AuNps were capped successfully in one step by mefenamic acid (MA). → MA capped AuNps catalytically reduced the mixture of 3 dyes in just 15 s. → AuNps were recovered by ionic liquid and reused for dye(s) reduction effectively. - Abstract: We synthesized mefenamic acid (MA) derived gold nanoparticles (MA-AuNps) in aqueous solution (MA-Au sol). Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) of the sol at 1, 5, 15 and 60 min showed changes in size and shape of formed AuNps. Fourier Transform Infrared (FTIR) Spectroscopy revealed the interaction between AuNps and MA. Each Au sol exhibited exceptional catalytic activity for the reduction of Methylene Blue (MB), Rose Bengal (RB) and Eosin B (EB) dye individually as well as collectively. However, complete reduction of dye(s) was accomplished by Au sol of 5 min in just 15 s. The catalytic performance of Ma-Au sol was far superior to that adsorbed on glass. AuNps were recovered with the help of water insoluble room temperature ionic liquid and reused with enhanced catalytic potential. This finding is a novel, rapid and highly economical alternative for environmental safety against pollution by dyes and extendable for control of other reducible contaminants as well.

  6. Ultra-fast catalytic reduction of dyes by ionic liquid recoverable and reusable mefenamic acid derived gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Syeda Sara [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Sirajuddin, E-mail: drsiraj03@yahoo.com [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Solangi, Amber Rehana [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan); Agheem, Mohammad Hassan [Center for Pure and Applied Geology, University of Sindh, Jamshoro 76080 (Pakistan); Junejo, Yasmeen; Kalwar, Nazar Hussain; Tagar, Zulfiqar Ali [National Center of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080 (Pakistan)

    2011-06-15

    Highlights: {yields} Gold nanoparticles (AuNps) have been fabricated by a simple chemical method. {yields} AuNps were capped successfully in one step by mefenamic acid (MA). {yields} MA capped AuNps catalytically reduced the mixture of 3 dyes in just 15 s. {yields} AuNps were recovered by ionic liquid and reused for dye(s) reduction effectively. - Abstract: We synthesized mefenamic acid (MA) derived gold nanoparticles (MA-AuNps) in aqueous solution (MA-Au sol). Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) of the sol at 1, 5, 15 and 60 min showed changes in size and shape of formed AuNps. Fourier Transform Infrared (FTIR) Spectroscopy revealed the interaction between AuNps and MA. Each Au sol exhibited exceptional catalytic activity for the reduction of Methylene Blue (MB), Rose Bengal (RB) and Eosin B (EB) dye individually as well as collectively. However, complete reduction of dye(s) was accomplished by Au sol of 5 min in just 15 s. The catalytic performance of Ma-Au sol was far superior to that adsorbed on glass. AuNps were recovered with the help of water insoluble room temperature ionic liquid and reused with enhanced catalytic potential. This finding is a novel, rapid and highly economical alternative for environmental safety against pollution by dyes and extendable for control of other reducible contaminants as well.

  7. Natural clinoptilolite exchanged with iron: characterization and catalytic activity in nitrogen monoxide reduction

    Directory of Open Access Journals (Sweden)

    Daria Tito-Ferro

    2016-12-01

    Full Text Available The aim of this work was to characterize the natural clinoptilolite from Tasajeras deposit, Cuba, modified by hydrothermal ion-exchange with solutions of iron (II sulfate and iron (III nitrate in acid medium. Besides this, its catalytic activity to reduce nitrogen monoxide with carbon monoxide/propene in the presence of oxygen was evaluated. The characterization was performed by Mössbauer and UV-Vis diffuse reflectance spectroscopies and adsorption measurements. The obtained results lead to conclude that in exchanged samples, incorporated divalent and trivalent irons are found in octahedral coordination. Both irons should be mainly in cationic extra-framework positions inside clinoptilolite channels as charge compensating cations, and also as iron oxy-hydroxides resulting from limited hydrolysis of these cations. The iron (III exchanged samples has a larger amount of iron oxy-hydroxides agglomerates. The iron (II exchanged samples have additionally iron (II sulfate adsorbed. The catalytic activity in the nitrogen monoxide reduction is higher in the exchanged zeolites than starting. Among all samples, those exchanged of iron (II has the higher catalytic activity. This lead to outline that, main catalytically active centers are associated with divalent iron.

  8. Development of Environment-Friendly Insecticides Based on Enantioselectivity: Bifenthrin as a Case.

    Science.gov (United States)

    Qian, Yi; Zhou, Peixue; Zhang, Quan

    2017-01-01

    Chiral insecticides significantly contribute to the environmental pollutions recently. As the development of industry and agriculture, increasing number of chiral insecticides are to be introduced into the market. However, their enantioselective toxicology to ecosystem still remains uncertain. In this review, we embarked on a structured search of bibliographic databases for peer-reviewed articles regarding the enantioselective effects of bifenthrin, a typical chiral insecticide, on both target and non-target species. With this enantioselective property of chiral insecticides, they often exhibit adverse effects on non-target species enantioselectively. Specifically, the enantioselective effects of bifenthrin on target and non-target organisms were discussed. In target species, R-bifenthrin exerts more significant activities in deinsectization, compared with S-bifenthrin. On the other hand, Sbifenthrin is more toxic to non-target species than R-bifenthrin, which suggests that the application of sole enantiomer is more efficient and environment-friendly than that of racemate. This review confirms the choice of environment-friendly insecticides from the perspective of the enantioselectivity of chiral insecticides. To make insecticides more efficient to target species and less toxic to non-target species, further research should be done to investigated the potential effects of targetactive enantiomers on non-target organisms as well as the enantioselective fate of enantiomers in multiple environmental matrix.

  9. Rhodium(II)-catalyzed enantioselective synthesis of troponoids.

    Science.gov (United States)

    Murarka, Sandip; Jia, Zhi-Jun; Merten, Christian; Daniliuc, Constantin-G; Antonchick, Andrey P; Waldmann, Herbert

    2015-06-22

    We report a rhodium(II)-catalyzed highly enantioselective 1,3-dipolar cycloaddition reaction between the carbonyl moiety of tropone and carbonyl ylides to afford troponoids in good to high yields with excellent enantioselectivity. We demonstrate that α-diazoketone-derived carbonyl ylides, in contrast to carbonyl ylides derived from diazodiketoesters, undergo [6+3] cycloaddition reactions with tropone to yield the corresponding bridged heterocycles with excellent stereoselectivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Molecular Design of a Chiral Brønsted Acid with Two Different Acidic Sites: Regio-, Diastereo-, and Enantioselective Hetero-Diels-Alder Reaction of Azopyridinecarboxylate with Amidodienes Catalyzed by Chiral Carboxylic Acid-Monophosphoric Acid.

    Science.gov (United States)

    Momiyama, Norie; Tabuse, Hideaki; Noda, Hirofumi; Yamanaka, Masahiro; Fujinami, Takeshi; Yamanishi, Katsunori; Izumiseki, Atsuto; Funayama, Kosuke; Egawa, Fuyuki; Okada, Shino; Adachi, Hiroaki; Terada, Masahiro

    2016-09-07

    A chiral Brønsted acid containing two different acidic sites, chiral carboxylic acid-monophosphoric acid 1a, was designed to be a new and effective concept in catalytic asymmetric hetero-Diels-Alder reactions of azopyridinecarboxylate with amidodienes. The multipoint hydrogen-bonding interactions among the carboxylic acid, monophosphoric acid, azopyridinecarboxylate, and amidodiene achieved high catalytic and chiral efficiency, producing substituted 1,2,3,6-tetrahydropyridazines with excellent stereocontrol in a single step. This constitutes the first example of regio-, diastereo-, and enantioselective azo-hetero-Diels-Alder reactions by chiral Brønsted acid catalysis.

  11. Catalytic Reduction of NO and NOx Content in Tobacco Smoke

    Directory of Open Access Journals (Sweden)

    Cvetkovic N

    2014-12-01

    Full Text Available In order to reduce the nitric oxide (NO and nitrogen oxides (NO content in mainstream tobacco smoke, a new class of catalyst based on Cu-ZSM-5 zeolite has been synthesized. The effectiveness of the new catalyst (degree of reduction and specific catalytic ability was tested both by adding Cu-ZSM-5 zeolite directly to the tobacco blend and by addition to the filter. We have determined that adding the catalyst to the tobacco blend does not cause any changes in the physical, chemical or organoleptic properties of the cigarette blend. But, the addition reduces the yield of nitrogen oxides while having no influence on nicotine and “tar” content in the tobacco smoke of the modified blend. The catalyst addition increases the static burning rate (SBR. The changes in the quantity of NO and NOmay be explained by changes in burning conditions due to the increase of Oobtained from catalytic degradation of NO and NO, and adsorptive and diffusive properties of the catalyst. The changes in mainstream smoke analytes are also given on a puff-by-puff basis.

  12. Enantioselective synthesis of α-oxy amides via Umpolung amide synthesis.

    Science.gov (United States)

    Leighty, Matthew W; Shen, Bo; Johnston, Jeffrey N

    2012-09-19

    α-Oxy amides are prepared through enantioselective synthesis using a sequence beginning with a Henry addition of bromonitromethane to aldehydes and finishing with Umpolung Amide Synthesis (UmAS). Key to high enantioselection is the finding that ortho-iodo benzoic acid salts of the chiral copper(II) bis(oxazoline) catalyst deliver both diastereomers of the Henry adduct with high enantiomeric excess, homochiral at the oxygen-bearing carbon. Overall, this approach to α-oxy amides provides an innovative complement to alternatives that focus almost entirely on the enantioselective synthesis of α-oxy carboxylic acids.

  13. Copper(II)-catalyzed exo and enantioselective cycloadditions of azomethine imines.

    Science.gov (United States)

    Sibi, Mukund P; Rane, Digamber; Stanley, Levi M; Soeta, Takahiro

    2008-07-17

    A strategy for exo and enantioselective 1,3-dipolar cycloaddition of azomethine imines to 2-acryloyl-3-pyrazolidinone is described. The corresponding cycloadducts are isolated with high diastereoselectivities (up to >96:4 exo/endo) and enantioselectivities (up to 98% ee).

  14. Chemiluminescence analyzer of NOx as a high-throughput screening tool in selective catalytic reduction of NO

    International Nuclear Information System (INIS)

    Oh, Kwang Seok; Woo, Seong Ihl

    2011-01-01

    A chemiluminescence-based analyzer of NO x gas species has been applied for high-throughput screening of a library of catalytic materials. The applicability of the commercial NO x analyzer as a rapid screening tool was evaluated using selective catalytic reduction of NO gas. A library of 60 binary alloys composed of Pt and Co, Zr, La, Ce, Fe or W on Al 2 O 3 substrate was tested for the efficiency of NO x removal using a home-built 64-channel parallel and sequential tubular reactor. The NO x concentrations measured by the NO x analyzer agreed well with the results obtained using micro gas chromatography for a reference catalyst consisting of 1 wt% Pt on γ-Al 2 O 3 . Most alloys showed high efficiency at 275 °C, which is typical of Pt-based catalysts for selective catalytic reduction of NO. The screening with NO x analyzer allowed to select Pt-Ce (X) (X=1–3) and Pt–Fe (2) as the optimal catalysts for NO x removal: 73% NO x conversion was achieved with the Pt–Fe (2) alloy, which was much better than the results for the reference catalyst and the other library alloys. This study demonstrates a sequential high-throughput method of practical evaluation of catalysts for the selective reduction of NO.

  15. Photo catalytic reduction of benzophenone on TiO2: Effect of preparation method and reaction conditions

    International Nuclear Information System (INIS)

    Albiter E, E.; Valenzuela Z, M. A.; Alfaro H, S.; Flores V, S. O.; Rios B, O.; Gonzalez A, V. J.; Cordova R, I.

    2010-01-01

    The photo catalytic reduction of benzophenone was studied focussing on improving the yield to benzhydrol. TiO 2 was synthesized by means of a hydrothermal technique. TiO 2 (Degussa TiO 2 -P25) was used as a reference. Catalysts were characterized by X-ray diffraction and nitrogen physisorption. The photo catalytic reduction was carried out in a batch reactor at 25 C under nitrogen atmosphere, acetonitrile as solvent and isopropanol as electron donor. A 200 W Xe-Hg lamp (λ= 360 nm) was employed as irradiation source. The chemical composition of the reaction system was determined by HPLC. Structural and textural properties of the synthesized TiO 2 depended on the type of acid used during sol formation step. Using HCl, a higher specific surface area and narrower pore size distribution of TiO 2 was obtained in comparison with acetic acid. As expected, the photochemical reduction of benzophenone yielded benzopinacol as main product, whereas, benzhydrol is only produced in presence of TiO 2 (i.e. photo catalytic route). In general, the hydrothermally synthesized catalysts were less active and with a lower yield to benzhydrol. The optimal reaction conditions to highest values of benzhydrol yield (70-80%) were found at 2 g/L (catalyst loading) and 0.5 m M of initial concentration of benzophenone, using commercial TiO 2 -P25. (Author)

  16. Communication: Towards catalytic nitric oxide reduction via oligomerization on boron doped graphene

    Energy Technology Data Exchange (ETDEWEB)

    Cantatore, Valentina, E-mail: valcan@chalmers.se; Panas, Itai [Department of Chemistry and Chemical Engineering, Energy & Materials, Chalmers University of Technology, Gothenburg (Sweden)

    2016-04-21

    We use density functional theory to describe a novel way for metal free catalytic reduction of nitric oxide NO utilizing boron doped graphene. The present study is based on the observation that boron doped graphene and O—N=N—O{sup −} act as Lewis acid-base pair allowing the graphene surface to act as a catalyst. The process implies electron assisted N=N bond formation prior to N—O dissociation. Two N{sub 2} + O{sub 2} product channels, one of which favoring N{sub 2}O formation, are envisaged as outcome of the catalytic process. Besides, we show also that the N{sub 2} + O{sub 2} formation pathways are contrasted by a side reaction that brings to N{sub 3}O{sub 3}{sup −} formation and decomposition into N{sub 2}O + NO{sub 2}{sup −}.

  17. Fluxional additives: a second generation control in enantioselective catalysis.

    Science.gov (United States)

    Sibi, Mukund P; Manyem, Shankar; Palencia, Hector

    2006-10-25

    The concept of "fluxional additives", additives that can adopt enantiomeric conformations depending on the chiral information in the ligand, is demonstrated in enantioselective Diels-Alder and nitrone cycloaddition reactions. The additive design is modular, and diverse structures are accessible in three steps. Chiral Lewis acids from main group and transition metals show enhancements in enantioselectivity in the presence of these additives.

  18. Catalytic Asymmetric Piancatelli Rearrangement: Brønsted Acid Catalyzed 4π Electrocyclization for the Synthesis of Multisubstituted Cyclopentenones

    KAUST Repository

    Cai, Yunfei

    2016-10-13

    The first catalytic asymmetric Piancatelli reaction is reported. Catalyzed by a chiral Brønsted acid, the rearrangement of a wide range of furylcarbinols with a series of aniline derivatives provides valuable aminocyclopentenones in high yields as well as excellent enantioselectivities and diastereoselectivities. The high value of the aza-Piancatelli rearrangement was demonstrated by the synthesis of a cyclopentane-based hNK1 antagonist analogue.

  19. Catalytic Asymmetric Total Synthesis of (+)- and (-)-Paeoveitol via a Hetero-Diels-Alder Reaction.

    Science.gov (United States)

    Li, Tian-Ze; Geng, Chang-An; Yin, Xiu-Juan; Yang, Tong-Hua; Chen, Xing-Long; Huang, Xiao-Yan; Ma, Yun-Bao; Zhang, Xue-Mei; Chen, Ji-Jun

    2017-02-03

    The first catalytic asymmetric total synthesis of (+)- and (-)-paeoveitol has been accomplished in 42% overall yield via a biomimetic hetero-Diels-Alder reaction. The chiral phosphoric acid catalyzed hetero-Diels-Alder reaction showed excellent diastereo- and enantioselectivity (>99:1 dr and 90% ee); two rings and three stereocenters were constructed in a single step to produce (-)-paeoveitol on a scale of 452 mg. This strategy enabled us to selectively synthesize both paeoveitol enantiomers from the same substrates by simply changing the enantiomer of the catalyst.

  20. Catalytically supported reduction of emissions from small-scale biomass furnace systems

    International Nuclear Information System (INIS)

    Hartmann, Ingo; Lenz, Volker; Schenker, Marian; Thiel, Christian; Kraus, Markus; Matthes, Mirjam; Roland, Ulf; Bindig, Rene; Einicke, Wolf-Dietrich

    2011-01-01

    The increased use of solid biomass in small combustion for generating heat from renewable energy sources is unfortunately associated with increased emissions of airborne pollutants. The reduction is possible on the one hand by the use of high-quality modern furnaces to the latest state of the art. On the other hand, several promising approaches method for retrofitting small-scale furnaces are currently being developed that will allow an effective emission reduction by the subsequent treatment of the exhaust gas. The overview of current available emission control technologies for small-scale biomass combustion plants shows that there is still considerable need for research on the sustainable production of heat from solid biofuels. The amendment to the 1st BImSchV provides a necessary drastic reduction of discharged pollutants from small-scale biomass furnaces. When using the fuel wood in modern central heating boilers the required limits can be met at full load. However, dynamic load changes can cause brief dramatic emission increases even with wood central heating boilers. Firebox and control optimization must contribute in the future to a further reduction of emissions. The typical simple single-room fireplaces like hand-fed wood stoves are suitable under type test conditions to comply the limit values. By contrast, in practical operation, the harmful gas emissions be exceeded without secondary measures normally. The performed experimental investigations show that a reduction of both CO and of organic compounds by catalytic combustion is possible. In addition to developing specially adapted catalysts, it is necessary to provide additional dust separation by combined processes, since conventional catalysts are not suitable for deposition and retention of particulate matter or would lose their activity due to dust accumulation on the active surface, when the catalyst would act as a filter at the same time. To enable sufficiently high reaction temperatures and thus a

  1. Ultra-fast catalytic reduction of dyes by ionic liquid recoverable and reusable mefenamic acid derived gold nanoparticles.

    Science.gov (United States)

    Hassan, Syeda Sara; Sirajuddin; Solangi, Amber Rehana; Agheem, Mohammad Hassan; Junejo, Yasmeen; Kalwar, Nazar Hussain; Tagar, Zulfiqar Ali

    2011-06-15

    We synthesized mefenamic acid (MA) derived gold nanoparticles (MA-AuNps) in aqueous solution (MA-Au sol). Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) of the sol at 1, 5, 15 and 60 min showed changes in size and shape of formed AuNps. Fourier Transform Infrared (FTIR) Spectroscopy revealed the interaction between AuNps and MA. Each Au sol exhibited exceptional catalytic activity for the reduction of Methylene Blue (MB), Rose Bengal (RB) and Eosin B (EB) dye individually as well as collectively. However, complete reduction of dye(s) was accomplished by Au sol of 5 min in just 15s. The catalytic performance of Ma-Au sol was far superior to that adsorbed on glass. AuNps were recovered with the help of water insoluble room temperature ionic liquid and reused with enhanced catalytic potential. This finding is a novel, rapid and highly economical alternative for environmental safety against pollution by dyes and extendable for control of other reducible contaminants as well. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Validation of the catalytic properties of Cu-Os/13X using single fixed bed reactor in selective catalytic reduction of NO

    International Nuclear Information System (INIS)

    Oh, Kwang Seok; Woo, Seong Ihl

    2007-01-01

    Catalytic decomposition of NO over Cu-Os/13X has been carried out in a tubular fixed bed reactor at atmospheric pressure and the results were compared with literature data performed by high-throughput screening (HTS). The activity and durability of Cu-Os/13X prepared by conventional ion-exchange method have been investigated in the presence of H 2 O and SO 2 . It was found that Cu-Os/13X prepared by ion-exchange shows a high activity in a wide temperature range in selective catalytic reduction (SCR) of NO with C 3 H 6 compared to Cu/13X, proving the existence of more NO adsorption site on Cu-Os/13X. However, Cu-Os/13X exhibited low activity in the presence of water, and was quite different from the result reported in literature. SO 2 resistance is also low and does not recover its original activity when the SO 2 was blocked in the feed gas stream. This result suggested that catalytic activity between combinatorial screening and conventional testing should be compared to confirm the validity of high-throughput screening

  3. IN SITU DESTRUCTION OF CHLORINATED HYDROCARBON COMPOUNDS IN GROUNDWATER USING CATALYTIC REDUCTIVE REDUCTIVE DEHALOGENATION IN A REACTIVE WELL: TESTING AND OPERATIONAL EXPERIENCES. (R825421)

    Science.gov (United States)

    A groundwater treatment technology based on catalytic reductive dehalogenation has been developed to efficiently destroy chlorinated hydrocarbons in situ using a reactive well approach. The treatment process utilizes dissolved H2 as an electron donor, in...

  4. Surface coverage of Pt atoms on PtCo nanoparticles and catalytic kinetics for oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Rongzhong, E-mail: rongzhong.jiang@us.army.mi [Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1197 (United States); Rong, Charles; Chu, Deryn [Sensors and Electron Devices Directorate, U.S. Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783-1197 (United States)

    2011-02-01

    The surface coverage of Pt atoms on PtCo nanoparticles and its effect on catalytic kinetics for oxygen reduction were investigated. The PtCo nanoparticles with different surface coverage of Pt atoms were synthesized with various methods, including normal chemical method, microemulsion synthesis, and ultrasound-assisted microemulsion. A model of Pt atoms filling into a spherical nanoparticle was proposed to explain the relationship of surface metal atoms and nanoparticle size. The catalytic activity of the PtCo nano-particles is highly dependent on the synthetic methods, even if they have the same chemical composition. The PtCo nano-particles synthesized with ultrasound-assisted microemulsion showed the highest activity, which is attributed to an increase of active surface coverage of Pt atoms on the metal nanoparticles. The rate of oxygen reduction at 0.5 V (vs. SCE) catalyzed by the PtCo synthesized with ultrasound-assisted micro-emulsion was about four times higher than that of the PtCo synthesized with normal chemical method. As demonstrated with rotating-ring disk electrode measurement, the PtCo nano-particles can catalyze oxygen 4-electron reduction to water without intermediate H{sub 2}O{sub 2} detected.

  5. Catalytic Destruction of a Surrogate Organic Hazardous Air Pollutant as a Potential Co-benefit for Coal-fired Selective Catalyst Reduction Systems

    Science.gov (United States)

    Catalytic destruction of benzene (C6H6), a surrogate for organic hazardous air pollutants (HAPs) produced from coal combustion, was investigated using a commercial selective catalytic reduction (SCR) catalyst for evaluating the potential co-benefit of the SCR technology for reduc...

  6. COMPARISON OF WEST GERMAN AND U.S. FLUE GAS DESULFURIZATION AND SELECTIVE CATALYTIC REDUCTION COSTS

    Science.gov (United States)

    The report documents a comparison of the actual cost retrofitting flue gas desulfurization (FGD) and selective catalytic reduction (SCR) on Federal Republic of German (FRG) boilers to cost estimating procedures used in the U.S. to estimate the retrofit of these controls on U.S. b...

  7. Catalytic and peroxidase-like activity of carbon based-AuPd bimetallic nanocomposite produced using carbon dots as the reductant

    International Nuclear Information System (INIS)

    Yang, Liuqing; Liu, Xiaoying; Lu, Qiujun; Huang, Na; Liu, Meiling; Zhang, Youyu; Yao, Shouzhuo

    2016-01-01

    In this report, carbon-based AuPd bimetallic nanocomposite (AuPd/C NC) was synthesized using carbon dots (C-dots) as the reducing agent and stabilizer by a simple green sequential reduction strategy, without adding other agents. The as synthesized AuPd/C NC showed good catalytic activity and peroxidase-like property. The structure and morphology of these nanoparticles were clearly characterized by UV–Vis spectroscopy, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The AuPd/C NC catalyst exhibits noticeably higher catalytic activity than Pd and Au nanoparticles in catalysis reduction of 4-nitrophenol (4-NP). Moreover, based on the high peroxidase-like property of AuPd/C NC, a new colorimetric detection method for hydrogen peroxide (H 2 O 2 ) has been designed using 3,3′,5,5′-tetramethyl-benzidine (TMB) as the substrate, which provides a simple and sensitive means to detect H 2 O 2 in wide linear range of 5 μM–500 μM and 500 μM–4 mM with low detection limit of 1.6 μM (S/N = 3). Therefore, the facile synthesis strategy for bimetallic nanoparticles by the mild reductant of carbon dot will provide some new thoughts for preparing of carbon-based metal nanomaterials and expand their application in catalysis and analytical chemistry areas. - Highlights: • Carbon-based AuPd bimetallic nanocomposite was synthesized using carbon dots. • The green sequential reduction strategy synthesis method is simple, green, convenient and effective. • The as synthesized AuPd/C NC showed good catalytic activity and peroxidase-like activity. • The AuPd/C NC exhibits noticeably higher catalytic activity in reduction of 4-nitrophenol. • A new colorimetric detection method for hydrogen peroxide based on AuPd/C NC was proposed.

  8. Catalytic and peroxidase-like activity of carbon based-AuPd bimetallic nanocomposite produced using carbon dots as the reductant

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liuqing [Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China); Liu, Xiaoying [College of Science, Science and Technological Innovation Platform, Hunan Agricultural University, Hunan, Changsha 410128 (China); Lu, Qiujun; Huang, Na [Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China); Liu, Meiling, E-mail: liumeilingww@126.com [Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China); Zhang, Youyu; Yao, Shouzhuo [Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China)

    2016-08-03

    In this report, carbon-based AuPd bimetallic nanocomposite (AuPd/C NC) was synthesized using carbon dots (C-dots) as the reducing agent and stabilizer by a simple green sequential reduction strategy, without adding other agents. The as synthesized AuPd/C NC showed good catalytic activity and peroxidase-like property. The structure and morphology of these nanoparticles were clearly characterized by UV–Vis spectroscopy, X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The AuPd/C NC catalyst exhibits noticeably higher catalytic activity than Pd and Au nanoparticles in catalysis reduction of 4-nitrophenol (4-NP). Moreover, based on the high peroxidase-like property of AuPd/C NC, a new colorimetric detection method for hydrogen peroxide (H{sub 2}O{sub 2}) has been designed using 3,3′,5,5′-tetramethyl-benzidine (TMB) as the substrate, which provides a simple and sensitive means to detect H{sub 2}O{sub 2} in wide linear range of 5 μM–500 μM and 500 μM–4 mM with low detection limit of 1.6 μM (S/N = 3). Therefore, the facile synthesis strategy for bimetallic nanoparticles by the mild reductant of carbon dot will provide some new thoughts for preparing of carbon-based metal nanomaterials and expand their application in catalysis and analytical chemistry areas. - Highlights: • Carbon-based AuPd bimetallic nanocomposite was synthesized using carbon dots. • The green sequential reduction strategy synthesis method is simple, green, convenient and effective. • The as synthesized AuPd/C NC showed good catalytic activity and peroxidase-like activity. • The AuPd/C NC exhibits noticeably higher catalytic activity in reduction of 4-nitrophenol. • A new colorimetric detection method for hydrogen peroxide based on AuPd/C NC was proposed.

  9. Semi-catalytic reduction of secondary amides to imines and aldehydes.

    Science.gov (United States)

    Lee, Sun-Hwa; Nikonov, Georgii I

    2014-06-21

    Secondary amides can be reduced by silane HSiMe2Ph into imines and aldehydes by a two-stage process involving prior conversion of amides into iminoyl chlorides followed by catalytic reduction mediated by the ruthenium complex [Cp(i-Pr3P)Ru(NCCH3)2]PF6 (1). Alkyl and aryl amides bearing halogen, ketone, and ester groups were converted with moderate to good yields under mild reaction conditions to the corresponding imines and aldehydes. This procedure does not work for substrates bearing the nitro-group and fails for heteroaromatic amides. In the case of cyano substituted amides, the cyano group is reduced to imine.

  10. Cyclopalladated complexes in enantioselective catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Dunina, Valeria V; Gorunova, Olga N; Zykov, P A; Kochetkov, Konstantin A

    2011-01-31

    The results of the use of optically active palladacycles in enantioselective catalysis of [3,3]-sigmatropic rearrangements, aldol condensation, the Michael reaction and cross-coupling are analyzed. Reactions with allylic substrates or reagents and some other transformations are considered.

  11. Integrative assessment of enantioselectivity in endocrine disruption and immunotoxicity of synthetic pyrethroids

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Meirong [Research Center of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Chen Fang [College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018 (China); Wang Cui; Zhang Quan [Research Center of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Gan Jianying [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States); Liu Weiping, E-mail: wliu@zjut.edu.c [Research Center of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China)

    2010-05-15

    The increasing release of chiral chemicals into the environment dictates attention to a better understanding of enantioselectivity in their human and ecotoxicological effects. Although enantioselectivity has been considered in many recent studies, there is little effort for discerning the connection between different processes, and as such, our current knowledge about chiral contaminants is rather scattered and incoherent. In this study, we simultaneously evaluated enantioselectivity of two chiral pesticides, lambda-cyhalothrin (LCT) and (Z)-cis-bifenthrin (cis-BF), in immunotoxicity to macrophage cells (RAW264.7), and endocrine disruption activity in human breast carcinoma cell line MCF-7. Analysis of cell proliferation, cell viability, apoptosis, and receptor gene expression showed significant differences between the enantiomers of LCT or cis-BF in estrogenic potential and immunocytotoxicity. The selectivity in these effects consistently followed the same direction, with (-)-LCT or 1S-cis-BF displaying a greater activity than its counterpart. The consistency was attributed to interplaying mechanisms in the closely interacting immune and endocrine systems. The underlying interplays suggest that other chiral xenobiotics may also show a directional enantioselectivity in immunotoxicity and endocrine toxicity. Given that many biological processes are inter-related, enantioselectivity may follow specific patterns that can be revealed via integrative assessments as demonstrated in this study. - Chiral contaminants should consider multiple effects and relate directions of enantioselectivity to their interplaying processes.

  12. Integrative assessment of enantioselectivity in endocrine disruption and immunotoxicity of synthetic pyrethroids

    International Nuclear Information System (INIS)

    Zhao Meirong; Chen Fang; Wang Cui; Zhang Quan; Gan Jianying; Liu Weiping

    2010-01-01

    The increasing release of chiral chemicals into the environment dictates attention to a better understanding of enantioselectivity in their human and ecotoxicological effects. Although enantioselectivity has been considered in many recent studies, there is little effort for discerning the connection between different processes, and as such, our current knowledge about chiral contaminants is rather scattered and incoherent. In this study, we simultaneously evaluated enantioselectivity of two chiral pesticides, lambda-cyhalothrin (LCT) and (Z)-cis-bifenthrin (cis-BF), in immunotoxicity to macrophage cells (RAW264.7), and endocrine disruption activity in human breast carcinoma cell line MCF-7. Analysis of cell proliferation, cell viability, apoptosis, and receptor gene expression showed significant differences between the enantiomers of LCT or cis-BF in estrogenic potential and immunocytotoxicity. The selectivity in these effects consistently followed the same direction, with (-)-LCT or 1S-cis-BF displaying a greater activity than its counterpart. The consistency was attributed to interplaying mechanisms in the closely interacting immune and endocrine systems. The underlying interplays suggest that other chiral xenobiotics may also show a directional enantioselectivity in immunotoxicity and endocrine toxicity. Given that many biological processes are inter-related, enantioselectivity may follow specific patterns that can be revealed via integrative assessments as demonstrated in this study. - Chiral contaminants should consider multiple effects and relate directions of enantioselectivity to their interplaying processes.

  13. Catalytic reduction of NO{sub x} in gasoline engine exhaust over copper- and nickel-exchanged X-zeolite catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, S. [Indian Inst. of Technology, Kharagpur (India). Dept. of Mechanical Engineering; Das, R.K. [Indian School of Mines, Dhanbad (India). Dept. of Engineering and Mining Machinery

    2001-10-11

    Catalytic removal of NO{sub x} in engine exhaust gases can be accomplished by non-selective reduction, selective reduction and decomposition. Noble metals are extensively used for non-selective reduction of NO{sub x} and up to 90% of engine NO{sub x} emissions can be reduced in a stoichiometric exhaust. This requirement of having the stoichiometric fuel-air ratio acts against efficiency improvement of engines. Selective NO{sub x} reduction in the presence of different reductants such as, NH{sub 3}, urea or hydrocarbons, requires close control of the amount of reductant being injected which otherwise may be emitted as a pollutant. Catalytic decomposition is the best option for NO{sub x} removal. Nevertheless, catalysts which are durable, economic and active for NO{sub x} reduction at normal engine exhaust temperature ranges are still being investigated. Three catalysts based on X-zeolite have been developed by exchanging the Na+ ion with copper, nickel and copper-nickel metal ions and applied to the exhaust of a stationary gasoline engine to explore their potential for catalytic reduction of NO{sub x} under a wide range of engine and exhaust conditions. Some encouraging results have been obtained. The catalyst Cu-X exhibits much better NO{sub x} reduction performance at any temperature in comparison to Cu-Ni-X and Ni-X; while Cu-Ni-X catalyst exhibits slightly better performance than Ni-X catalyst. Maximum NO{sub x} efficiency achieved with Cu-X catalyst is 59.2% at a space velocity (sv) of 31 000 h{sup -1}; while for Cu-Ni-X and Ni-X catalysts the equivalent numbers are 60.4% and 56% respectively at a sv of 22 000 h{sup -1}. Unlike noble metals, the doped X-zeolite catalysts exhibit significant NO{sub x} reduction capability for a wide range of air/fuel ratio and with a slower rate of decline as well with increase in air/fuel ratio. (author)

  14. Enantioselective Cytotoxicity Profile of o,p’-DDT in PC 12 Cells

    Science.gov (United States)

    Zhang, Chunlong; Wen, Yuezhong; Liu, Weiping

    2012-01-01

    Background The continued uses of dichlordiphenyltrichloroethane (DDT) for indoor vector control in some developing countries have recently fueled intensive debates toward the global ban of this persistent legacy contaminant. Current approaches for ecological and health risk assessment has ignored the chiral nature of DDT. In this study by employing an array of cytotoxicity related endpoints, we investigated the enantioselective cytotoxicity of o,p’-DDT. Principal Findings we demonstrated for the first time that R-(−)-o,p’-DDT caused more neuron cell death by inducing more severe oxidative stress, which selectively imbalanced the transcription of stress-related genes (SOD1, SOD2, HSP70) and enzyme (superoxide dismutase and lactate dehydrogenase) activities, and greater cellular apoptosis compared to its enantiomer S-(+)-o,p’-DDT at the level comparable to malaria area exposure (parts per million). We further elucidated enantioselective modes of action using microarray combined with enzyme-linked immunosorbent assay. The enantioselective apoptosis might involve three signaling pathways via caspase 3, tumor protein 53 (p53) and NFkB. Conclusions Based on DDT stereochemistry and results reported for other chiral pesticides, our results pointed to the same directional enantioselectivity of chiral DDT toward mammalian cells. We proposed that risk assessment on DDT should consider the enantiomer ratio and enantioselectivities. PMID:22937105

  15. Enantioselective carbenoid insertion into C(sp3–H bonds

    Directory of Open Access Journals (Sweden)

    J. V. Santiago

    2016-05-01

    Full Text Available The enantioselective carbenoid insertion into C(sp3–H bonds is an important tool for the synthesis of complex molecules due to the high control of enantioselectivity in the formation of stereogenic centers. This paper presents a brief review of the early issues, related mechanistic studies and recent applications on this chemistry area.

  16. A novel green synthesis and characterization of Ag NPs with its ultra-rapid catalytic reduction of methyl green dye

    International Nuclear Information System (INIS)

    Junejo, Y.; Sirajuddin; Baykal, A.; Safdar, M.; Balouch, A.

    2014-01-01

    Ampicillin derived silver nanoparticles were synthesized in an aqueous medium. Particle size and shape were determined by Transmission electron microscopy which showed the monodispersed morphology. The Fourier transform infrared spectra were represented the interaction of Ampicillin with surface of Ampicillin derived silver nanoparticles. X-ray powder diffraction study gave crystalline nature of the Ampicillin derived silver nanoparticles which exhibited exceptional catalytic activity for the reduction of Methylene Green dye. However, complete reduction of dye was accomplished by Ampicillin derived silver nanoparticles within 4 min only. The catalytic performance of these nanoparticles was adsorbed on glass. They were recovered easily from reaction medium and reused with enhanced catalytic potential. Based upon these results it has been concluded that Ampicillin derived silver nanoparticles are novel, rapid and highly economical alternative for environmental safety against pollution by dyes and extendable for control of other reducible contaminants as well.

  17. Long-time experience in catalytic flue gas cleaning and catalytic NO{sub x} reduction in biofueled boilers

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen, M [Tampella Power Inc., Tampere (Finland)

    1997-12-31

    NO emissions are reduced by primary or secondary methods. Primary methods are based on NO reduction in the combustion zone and secondary methods on flue gas cleaning. The most effective NO reduction method is selective catalytic reduction (SCR). It is based on NO reduction by ammonia on the surface of a catalyst. Reaction products are water and nitrogen. A titanium-dioxide-based catalyst is very durable and selective in coal-fired power plants. It is not poisoned by sulphur dioxide and side reactions with ammonia and sulphur dioxide hardly occur. The long time experience and suitability of a titanium-dioxide-based catalyst for NO reduction in biofuel-fired power plants was studied. The biofuels were: peat, wood and bark. It was noticed that deactivation varied very much due to the type of fuel and content of alkalinities in fuel ash. The deactivation in peat firing was moderate, close to the deactivation noticed in coal firing. Wood firing generally had a greater deactivation effect than peat firing. Fuel and fly ash were analyzed to get more information on the flue gas properties. The accumulation of alkali and alkaline earth metals and sulphates was examined together with changes in the physical composition of the catalysts. In the cases where the deactivation was the greatest, the amount of alkali and alkaline earth metals in fuels and fly ashes and their accumulation were very significant. (author) (3 refs.)

  18. Long-time experience in catalytic flue gas cleaning and catalytic NO{sub x} reduction in biofueled boilers

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen, M. [Tampella Power Inc., Tampere (Finland)

    1996-12-31

    NO emissions are reduced by primary or secondary methods. Primary methods are based on NO reduction in the combustion zone and secondary methods on flue gas cleaning. The most effective NO reduction method is selective catalytic reduction (SCR). It is based on NO reduction by ammonia on the surface of a catalyst. Reaction products are water and nitrogen. A titanium-dioxide-based catalyst is very durable and selective in coal-fired power plants. It is not poisoned by sulphur dioxide and side reactions with ammonia and sulphur dioxide hardly occur. The long time experience and suitability of a titanium-dioxide-based catalyst for NO reduction in biofuel-fired power plants was studied. The biofuels were: peat, wood and bark. It was noticed that deactivation varied very much due to the type of fuel and content of alkalinities in fuel ash. The deactivation in peat firing was moderate, close to the deactivation noticed in coal firing. Wood firing generally had a greater deactivation effect than peat firing. Fuel and fly ash were analyzed to get more information on the flue gas properties. The accumulation of alkali and alkaline earth metals and sulphates was examined together with changes in the physical composition of the catalysts. In the cases where the deactivation was the greatest, the amount of alkali and alkaline earth metals in fuels and fly ashes and their accumulation were very significant. (author) (3 refs.)

  19. Selective catalytic reduction system and process using a pre-sulfated zirconia binder

    Science.gov (United States)

    Sobolevskiy, Anatoly; Rossin, Joseph A.

    2010-06-29

    A selective catalytic reduction (SCR) process with a palladium catalyst for reducing NOx in a gas, using hydrogen as a reducing agent is provided. The process comprises contacting the gas stream with a catalyst system, the catalyst system comprising (ZrO.sub.2)SO.sub.4, palladium, and a pre-sulfated zirconia binder. The inclusion of a pre-sulfated zirconia binder substantially increases the durability of a Pd-based SCR catalyst system. A system for implementing the disclosed process is further provided.

  20. Ni0 encapsulated in N-doped carbon nanotubes for catalytic reduction of highly toxic hexavalent chromium

    Science.gov (United States)

    Yao, Yunjin; Zhang, Jie; Chen, Hao; Yu, Maojing; Gao, Mengxue; Hu, Yi; Wang, Shaobin

    2018-05-01

    N-doped carbon nanotubes encapsulating Ni0 nanoparticles (Ni@N-C) were fabricated via thermal reduction of dicyandiamide and NiCl2·6H2O, and used to remove CrVI in polluted water. The resultant products present an excellent catalytic activity for CrVI reduction using formic acid under relatively mild conditions. The CrVI reduction efficiency of Ni@N-C was significantly affected by the preparation conditions including the mass of nickel salt and synthesis temperatures. The impacts of several reaction parameters, such as initial concentrations of CrVI and formic acid, solution pH and temperatures, as well as inorganic anions in solution on CrVI reduction efficiency were also evaluated in view of scalable industrial applications. Owing to the synergistic effects amongst tubes-coated Ni0, doped nitrogen, oxygen containing groups, and the configuration of carbon nanotubes, Ni@N-C catalysts exhibit excellent catalytic activity and recyclable capability for CrVI reduction. Carbon shell can efficiently protect inner Ni0 core and N species from corrosion and subsequent leaching, while Ni0 endows the Ni@N-C catalysts with ferromagnetism, so that the composites can be easily separated via a permanent magnet. This study opens up an avenue for design of N-doped carbon nanotubes encapsulating Ni0 nanoparticles with high CrVI removal efficiency and magnetic recyclability as low-cost catalysts for industrial applications.

  1. Selective catalytic reduction of nitric oxide by ammonia over Cu-exchanged Cuban natural zeolites

    International Nuclear Information System (INIS)

    Moreno-Tost, Ramon; Santamaria-Gonzalez, Jose; Rodriguez-Castellon, Enrique; Jimenez-Lopez, Antonio; Autie, Miguel A.; Glacial, Marisol Carreras; Gonzalez, Edel; Pozas, Carlos De las

    2004-01-01

    The catalytic selective reduction of NO over Cu-exchanged natural zeolites (mordenite (MP) and clinoptilolite (HC)) from Cuba using NH 3 as reducing agent and in the presence of excess oxygen was studied. Cu(II)-exchanged zeolites are very active catalysts, with conversions of NO of 95%, a high selectivity to N 2 at low temperatures, and exhibiting good water tolerance. The chemical state of the Cu(II) in exchanged zeolites was characterized by H 2 -TPR and XPS. Cu(II)-exchanged clinoptilolite underwent a severe deactivation in the presence of SO 2 . However, Cu(II)-exchanged mordenite not only maintained its catalytic activity, but even showed a slight improvement after 20h of reaction in the presence of 100ppm of SO 2

  2. Pentanidium-catalyzed enantioselective phase-transfer conjugate addition reactions

    KAUST Repository

    Ma, Ting

    2011-03-09

    A new chiral entity, pentanidium, has been shown to be an excellent chiral phase-transfer catalyst. The enantioselective Michael addition reactions of tert-butyl glycinate-benzophenone Schiff base with various α,β- unsaturated acceptors provide adducts with high enantioselectivities. A successful gram-scale experiment at a low catalyst loading of 0.05 mol % indicates the potential for practical applications of this methodology. Phosphoglycine ester analogues can also be utilized as the Michael donor, affording enantioenriched α-aminophosphonic acid derivatives and phosphonic analogues of (S)-proline. © 2011 American Chemical Society.

  3. Synthesis of New Chiral Ligands Based on Thiophene Derivatives for Use in Catalytic Asymmetric Oxidation of Sulfides

    International Nuclear Information System (INIS)

    Jeong, Yong Chul; Ahn, Dae Jun; Lee, Woo Sun; Lee, Seung Han; Ahn, Kwang Hyun

    2011-01-01

    We discovered that the vanadium complexes of new Schiff base ligands and prepared from thiophene derivatives efficiently catalyze the asymmetric oxidation of sulfides by hydrogen peroxide to provide sulfoxides with enantioselectivities up to 79% ee and in yields up to 89%. Notably, Schiff base showed better or similar enantioselectivity than the well-studied Schiff base. These results suggest possible applications of Schiff bases derived from and in other catalytic asymmetric reactions. Chiral sulfoxides are important functional groups for various applications. For example, the biological activities of sulfoxide containing drugs such as omeprazole are strongly related to the chirality of the sulfoxide group; for this reason, esomeprazole, the enantiomerically pure form of omeprazole, was later developed. There are several chiral sulfoxide based drugs that have been introduced by the pharmaceutical industry including armodafinil, aprikalim, oxisurane, and ustiloxin. Chiral sulfoxides have also been utilized as chiral auxiliaries in asymmetric syntheses of chiral intermediates

  4. Enhanced catalytic activity over MIL-100(Fe) loaded ceria catalysts for the selective catalytic reduction of NOx with NH₃ at low temperature.

    Science.gov (United States)

    Wang, Peng; Sun, Hong; Quan, Xie; Chen, Shuo

    2016-01-15

    The development of catalysts for selective catalytic reduction (SCR) reactions that are highly active at low temperatures and show good resistance to SO2 and H2O is still a challenge. In this study, we have designed and developed a high-performance SCR catalyst based on nano-sized ceria encapsulated inside the pores of MIL-100(Fe) that combines excellent catalytic power with a metal organic framework architecture synthesized by the impregnation method (IM). Transmission electron microscopy (TEM) revealed the encapsulation of ceria in the cavities of MIL-100(Fe). The prepared IM-CeO2/MIL-100(Fe) catalyst shows improved catalytic activity both at low temperatures and throughout a wide temperature window. The temperature window for 90% NOx conversion ranges from 196 to 300°C. X-ray photoelectron spectroscopy (XPS) and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) analysis indicated that the nano-sized ceria encapsulated inside MIL-100(Fe) promotes the production of chemisorbed oxygen on the catalyst surface, which greatly enhances the formation of the NO2 species responsible for fast SCR reactions. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The role of achiral pyrazolidinone templates in enantioselective Diels-Alder reactions: scope, limitations, and conformational insights.

    Science.gov (United States)

    Sibi, Mukund P; Stanley, Levi M; Nie, Xiaoping; Venkatraman, Lakshmanan; Liu, Mei; Jasperse, Craig P

    2007-01-17

    We have evaluated the role of achiral pyrazolidinone templates in conjunction with chiral Lewis acids in room temperature, enantioselective Diels-Alder cycloadditions. The role of the fluxional N(1) substituent was examined, with the bulky 1-naphthylmethyl group providing enantioselectivities up to 99% ee, while templates with smaller fluxional groups gave lower selectivities. High selectivities were also observed in reactions of 7d with chiral Lewis acids derived from relatively small chiral ligands, suggesting the pyrazolidinone templates are capable of relaying stereochemical information from the ligand to the reaction center. Lewis acids capable of adapting square planar geometries, such as Cu(OTf)2, Cu(ClO4)2, and Pd(ClO4)2, were found to be particularly effective at providing high selectivities. Additionally, substitution at the C-5 position of the pyrazolidinone templates has been shown to be critical for optimal selectivity. Reactions of the optimal pyrazolidinone appended with a number of common dienophiles and various dienes demonstrate the utility of this achiral template. Furthermore, catalytic loadings could be lowered to 2.5 mol % with essentially no loss in selectivity. Pi-Pi interactions were evaluated as a means to explain the unusually high selectivity observed at room temperature. Finally, non-C2-symmetric ligands were employed as a test to determine if chiral relay was operative.

  6. Evaluation of achiral templates with fluxional Brønsted basic substituents in enantioselective conjugate additions.

    Science.gov (United States)

    Adachi, Shinya; Takeda, Norihiko; Sibi, Mukund P

    2014-12-19

    Enantioselective conjugate addition of malononitrile to pyrazolidinone-derived enoates proceeds in excellent yields and high enantioselectivities. A comparison of fluxional substituents with and without a Brønsted basic site and their impact on selectivity is detailed. Molecular sieves as an additive were found to be essential to achieve high enantioselectivity.

  7. Application of enantioselective radical reactions: synthesis of (+)-ricciocarpins A and B.

    Science.gov (United States)

    Sibi, Mukund P; He, Liwen

    2004-05-27

    Enantioselective synthesis of (+)-ricciocarpins A and B has been achieved in 41 and 45% overall yields, respectively, starting from a beta-substituted oxazolidinone. The key steps in the strategy are an enantioselective conjugate radical addition and the addition of a furyl organometallic to a key aldehyde intermediate. [reaction--see text

  8. Flexible Enantioselectivity of Tryptophanase Attributable to Benzene Ring in Heterocyclic Moiety of D-Tryptophan

    Directory of Open Access Journals (Sweden)

    Akihiko Shimada

    2012-05-01

    Full Text Available The invariance principle of enzyme enantioselectivity must be absolute because it is absolutely essential to the homochiral biological world. Most enzymes are strictly enantioselective, and tryptophanase is one of the enzymes with extreme absolute enantioselectivity for L-tryptophan. Contrary to conventional knowledge about the principle, tryptophanase becomes flexible to catalyze D-tryptophan in the presence of diammonium hydrogenphosphate. Since D-amino acids are ordinarily inert or function as inhibitors even though they are bound to the active site, the inhibition behavior of D-tryptophan and several inhibitors involved in this process was examined in terms of kinetics to explain the reason for this flexible enantioselectivity in the presence of diammonium hydrogenphosphate. Diammonium hydrogenphosphate gave tryptophanase a small conformational change so that D-tryptophan could work as a substrate. As opposed to other D-amino acids, D-tryptophan is a very bulky amino acid with a benzene ring in its heterocyclic moiety, and so we suggest that this structural feature makes the catalysis of D-tryptophan degradation possible, consequently leading to the flexible enantioselectivity. The present results not only help to understand the mechanism of enzyme enantioselectivity, but also shed light on the origin of homochirality.

  9. Gold Decorated Graphene for Rapid Dye Reduction and Efficient Electro Catalytic Oxidation of Ethanol

    Science.gov (United States)

    Siddhardha, R. S.; Kumar v, Lakshman; Kaniyoor, A.; Podila, R.; Kumar, V. S.; Venkataramaniah, K.; Ramaprabhu, S.; Rao, A.; Ramamurthy, S. S.; Clemson University Team; Sri Sathya Sai Institute of Higher Learning Team; IITMadras Team

    2013-03-01

    A well known disadvantage in fabrication of metal-graphene composite is the use of surfactants that strongly adsorb on the surface and reduce the performance of the catalyst. Here, we demonstrate a novel one pot synthesis of gold nanoparticles (AuNPs) by laser ablation of gold strip and simultaneous decoration of these on functionalized graphene derivatives. Not only the impregnation of AuNPs was linker free, but also the synthesis by itself was surfactant free. This resulted in in-situ decoration of pristine AuNPs on functionalized graphene derivatives. These materials were well characterized and tested for catalytic applications pertaining to dye reduction and electrooxidation. The catalytic reduction rates are 1.4 x 102 and 9.4x102 times faster for Rhodamine B and Methylene Blue dyes respectively, compared to earlier reports. The enhanced rate involves synergistic interplay of electronic relay between AuNPs and the dye, also charge transfer between the graphene system and dye. In addition, the onset potential for ethanol oxidation was found to be more negative ~ 100 mV, an indication of its promising application in direct ethanol fuel cells.

  10. Photo catalytic reduction of benzophenone on TiO{sub 2}: Effect of preparation method and reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Albiter E, E.; Valenzuela Z, M. A.; Alfaro H, S.; Flores V, S. O.; Rios B, O.; Gonzalez A, V. J.; Cordova R, I., E-mail: mavalenz@ipn.m [IPN, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Laboratorio de Catalisis y Materiales, Zacatenco, 07738 Mexico D. F. (Mexico)

    2010-07-01

    The photo catalytic reduction of benzophenone was studied focussing on improving the yield to benzhydrol. TiO{sub 2} was synthesized by means of a hydrothermal technique. TiO{sub 2} (Degussa TiO{sub 2}-P25) was used as a reference. Catalysts were characterized by X-ray diffraction and nitrogen physisorption. The photo catalytic reduction was carried out in a batch reactor at 25 C under nitrogen atmosphere, acetonitrile as solvent and isopropanol as electron donor. A 200 W Xe-Hg lamp ({lambda}= 360 nm) was employed as irradiation source. The chemical composition of the reaction system was determined by HPLC. Structural and textural properties of the synthesized TiO{sub 2} depended on the type of acid used during sol formation step. Using HCl, a higher specific surface area and narrower pore size distribution of TiO{sub 2} was obtained in comparison with acetic acid. As expected, the photochemical reduction of benzophenone yielded benzopinacol as main product, whereas, benzhydrol is only produced in presence of TiO{sub 2} (i.e. photo catalytic route). In general, the hydrothermally synthesized catalysts were less active and with a lower yield to benzhydrol. The optimal reaction conditions to highest values of benzhydrol yield (70-80%) were found at 2 g/L (catalyst loading) and 0.5 m M of initial concentration of benzophenone, using commercial TiO{sub 2}-P25. (Author)

  11. Enantioselective H-atom transfer reaction: a strategy to synthesize formaldehyde aldol products.

    Science.gov (United States)

    Sibi, Mukund P; Patil, Kalyani

    2005-04-14

    [reaction: see text] Enantioselective radical alkylation of Baylis-Hillman adducts furnished aldol products in good yield and selectivity. The results illustrate that the selectivity in the hydrogen atom transfer is dependent on the size of the ester substituent, with smaller substituents providing better enantioselectivity.

  12. Comparative study involving the uranium determination through catalytic reduction of nitrates and nitrides by using decoupled plasma nitridation (DPN)

    International Nuclear Information System (INIS)

    Aguiar, Marco Antonio Souza; Gutz, Ivano G. Rolf

    1999-01-01

    This paper reports a comparative study on the determination of uranium through the catalytic reduction of nitrate and nitride using the decoupled plasma nitridation. The uranyl ions are a good catalyst for the reduction of NO - 3 and NO - 2 ions on the surface of a hanging drop mercury electrode (HDME). The presence of NO - in a solution with p H = 3 presented a catalytic signal more intense than the signal obtained with NO - 3 (concentration ten times higher). A detection limit of 1x10 9 M was obtained using the technique of decoupled plasma nitridation (DPN), suggesting the development of a sensitive way for the determination of uranium in different matrixes

  13. Azeotropic distillation assisted fabrication of silver nanocages and their catalytic property for reduction of 4-nitrophenol.

    Science.gov (United States)

    Min, Jianzhong; Wang, Fei; Cai, Yunliang; Liang, Shuai; Zhang, Zhenwei; Jiang, Xingmao

    2015-01-14

    Monodisperse silver nanocages (AgNCs) with specific interiors were successfully synthesized by an azeotropic distillation (AD) assisted method and exhibited excellent catalytic activities for reduction of 4-nitrophenol (4-NP) into 4-aminophenol (4-AP) due to the unique hollow morphology and small thickness of the silver shell.

  14. Theophylline-assisted, eco-friendly synthesis of PtAu nanospheres at reduced graphene oxide with enhanced catalytic activity towards Cr(VI) reduction.

    Science.gov (United States)

    Hu, Ling-Ya; Chen, Li-Xian; Liu, Meng-Ting; Wang, Ai-Jun; Wu, Lan-Ju; Feng, Jiu-Ju

    2017-05-01

    Theophylline as a naturally alkaloid is commonly employed to treat asthma and chronic obstructive pulmonary disorder. Herein, a facile theophylline-assisted green approach was firstly developed for synthesis of PtAu nanospheres/reduced graphene oxide (PtAu NSs/rGO), without any surfactant, polymer, or seed involved. The obtained nanocomposites were applied for the catalytic reduction and removal of highly toxic chromium (VI) using formic acid as a model reductant at 50°C, showing the significantly enhanced catalytic activity and improved recyclability when compared with commercial Pt/C (50%) and home-made Au nanocrystals supported rGO (Au NCs/rGO). It demonstrates great potential applications of the catalyst in wastewater treatment and environmental protection. The eco-friendly route provides a new platform to fabricate other catalysts with enhanced catalytic activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Efficient Catalytic Reduction of Hexavalent Chromium With Pd-decorated Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Dang; Choi, Hyun Chul [Chonnam National University, Gwangju (Korea, Republic of)

    2016-05-15

    Heavy metal pollution is currently a serious environmental issue. Chromium (Cr) and chromium compounds are commonly found in wastewater discharged by various industries such as wood preservation, leather tanning, electroplating, metal finishing, and the production of chemicals. Pd nanoparticles can easily be introduced into CNTs by performing DCC-activated amidation. Our TEM and XRD results indicate that well-dispersed metallic Pd nanoparticles are anchored on the surface of the amidated CNTs. The XPS results suggest that the Pd content of the sample is approximately 9.8 atomic %. In comparison with the commercial Pd catalyst, the prepared Pd-CNTs were demonstrated to exhibit good catalytic activity in the reduction of 4-NP by NaBH4. Moreover, the Pd-CNT catalyst can easily be separated by performing a simple filtration and reused over at least 10 cycles. This Pd-CNT catalyst is therefore believed to have significant potential for use as a reusable catalyst in the reduction of Cr(Vi)

  16. Green synthesis of gold nanoparticles using aspartame and their catalytic activity for p-nitrophenol reduction

    Science.gov (United States)

    Wu, Shufen; Yan, Songjing; Qi, Wei; Huang, Renliang; Cui, Jing; Su, Rongxin; He, Zhimin

    2015-05-01

    We demonstrated a facile and environmental-friendly approach to form gold nanoparticles through the reduction of HAuCl4 by aspartame. The single-crystalline structure was illustrated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The energy-dispersive X-ray spectroscopy (EDS) and Fourier transform infrared (FTIR) results indicated that aspartame played a pivotal role in the reduction and stabilization of the gold crystals. The crystals were stabilized through the successive hydrogen-bonding network constructed between the water and aspartame molecules. Additionally, gold nanoparticles synthesized through aspartame were shown to have good catalytic activity for the reduction of p-nitrophenol to p-aminophenol in the presence of NaBH4.

  17. Vancomycin Molecular Interactions: Antibiotic and Enantioselective Mechanisms

    Science.gov (United States)

    Ward, Timothy J.; Gilmore, Aprile; Ward, Karen; Vowell, Courtney

    Medical studies established that vancomycin and other related macrocyclic antibiotics have an enhanced antimicrobial activity when they are associated as dimers. The carbohydrate units attached to the vancomycin basket have an essential role in the dimerization reaction. Covalently synthesized dimers were found active against vancomycin-resistant bacterial strains. A great similarity between antibiotic potential and enantioselectivity was established. A covalent vancomycin dimer was studied in capillary electrophoresis producing excellent chiral separation of dansyl amino acids. Balhimycin is a macrocyclic glycopeptide structurally similar to vancomycin. The small differences are, however, responsible for drastic differences in enantioselectivity in the same experimental conditions. Contributions from studies examining vancomycin's mechanism for antimicrobial activity have substantially aided our understanding of its mechanism in chiral recognition.

  18. Enhanced catalysis and enantioselective resolution of racemic naproxen methyl ester by lipase encapsulated within iron oxide nanoparticles coated with calix[8]arene valeric acid complexes.

    Science.gov (United States)

    Sayin, Serkan; Akoz, Enise; Yilmaz, Mustafa

    2014-09-14

    In this study, two types of nanoparticles have been used as additives for the encapsulation of Candida rugosa lipase via the sol-gel method. In one case, the nanoparticles were covalently linked with a new synthesized calix[8]arene octa valeric acid derivative (C[8]-C4-COOH) to produce new calix[8]arene-adorned magnetite nanoparticles (NP-C[8]-C4-COOH), and then NP-C[8]-C4-COOH was used as an additive in the sol-gel encapsulation process. In the other case, iron oxide nanoparticles were directly added into the sol-gel encapsulation process in order to interact electrostatically with both C[8]-C4-COOH and Candida rugosa lipase. The catalytic activities and enantioselectivities of two novel encapsulated lipases (Enc-NP-C[8]-C4-COOH and Enc-C[8]-C4-COOH@Fe3O4) in the hydrolysis reaction of racemic naproxen methyl ester were evaluated. The results showed that the activity and enantioselectivity of the lipase were improved when the lipase was encapsulated in the presence of calixarene-based additives. Indeed, the encapsulated lipases have an excellent rate of enantioselectivity, with E = 371 and 265, respectively, as compared to the free enzyme (E = 137). The lipases encapsulated with C[8]-C4-COOH and iron oxide nanoparticles (Enc-C[8]-C4-COOH@Fe3O4) retained more than 86% of their initial activities after 5 repeated uses and 92% with NP-C[8]-C4-COOH.

  19. Enantioselective synthesis of tetrafluorinated ribose and fructose.

    Science.gov (United States)

    Linclau, Bruno; Boydell, A James; Timofte, Roxana S; Brown, Kylie J; Vinader, Victoria; Weymouth-Wilson, Alexander C

    2009-02-21

    A perfluoroalkylidene lithium mediated cyclisation approach for the enantioselective synthesis of a tetrafluorinated aldose (ribose) and of a tetrafluorinated ketose (fructose), both in the furanose and in the pyranose form, is described.

  20. Poly(N-isopropylacrylamide-co-methacrylic acid microgel stabilized copper nanoparticles for catalytic reduction of nitrobenzene

    Directory of Open Access Journals (Sweden)

    Farooqi Zahoor H.

    2015-09-01

    Full Text Available Poly(N-isopropylacrylamide-co-methacrylic acid microgels [p(NIPAM-co-MAAc] were synthesized by precipitation polymerization of N-isopropylacrylamide and methacrylic acid in aqueous medium. These microgels were characterized by dynamic light scattering and Fourier transform infrared spectroscopy. These microgels were used as micro-reactors for in situ synthesis of copper nanoparticles using sodium borohydride (NaBH4 as reducing agent. The hybrid microgels were used as catalysts for the reduction of nitrobenzene in aqueous media. The reaction was performed with different concentrations of cat­alyst and reducing agent. A linear relationship was found between apparent rate constant (kapp and amount of catalyst. When the amount of catalyst was increased from 0.13 to 0.76 mg/mL then kapp was increased from 0.03 to 0.14 min-1. Activation parameters were also determined by performing reaction at two different temperatures. The catalytic process has been discussed in terms of energy of activation, enthalpy of activation and entropy of activation. The synthesized particles were found to be stable even after 14 weeks and showed catalytic activity for the reduction of nitrobenzene.

  1. Anodically-grown TiO_2 nanotubes: Effect of the crystallization on the catalytic activity toward the oxygen reduction reaction

    International Nuclear Information System (INIS)

    Sacco, Adriano; Garino, Nadia; Lamberti, Andrea; Pirri, Candido Fabrizio; Quaglio, Marzia

    2017-01-01

    Highlights: • Anodically-grown TiO_2 nanotubes as catalysts for the oxygen reduction reaction. • Amorphous NTs compared to thermal- and vapor-treated crystalline nanostructures. • The selection of the crystallization conditions leads to performance similar to Pt. - Abstract: In this work we investigated the behavior of TiO_2 nanotube (NT) arrays, grown by anodic oxidation of Ti foil, as catalysts for the oxygen reduction reaction (ORR) in alkaline water solution. In particular, as-grown amorphous NTs were compared to crystalline anatase nanostructures, obtained following two different procedures, namely thermal and vapor-induced crystallizations. The catalytic activity of these materials toward the ORR was evaluated by cyclic voltammetry measurements. ORR polarization curves, combined with the rotating disk technique, indicated a predominant four-electrons reduction path, especially for crystalline samples. The effect of the structural characteristics of the investigated materials on the catalytic activity was analyzed in details by electrochemical impedance spectroscopy. The catalytic performance of the crystalline NTs is only slightly lower with respect to the reference material for fuel cell applications, namely platinum, but is in line with other cost-effective catalysts recently proposed in the literature. However, if compared to the larger part of these low-cost catalysts, anodically-grown TiO_2 NTs are characterized by a synthesis route which is highly reproducible and easily up-scalable.

  2. Electrochemical characterization of praseodymia doped zircon. Catalytic effect on the electrochemical reduction of molecular oxygen in polar organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Domenech, Antonio, E-mail: antonio.domenech@uv.es [Departament de Quimica Analitica, Universitat de Valencia, Dr. Moliner, 50, 46100 Burjassot, Valencia (Spain); Montoya, Noemi; Alarcon, Javier [Departament de Quimica Inorganica, Universitat de Valencia, Dr. Moliner, 50, 46100 Burjassot, Valencia (Spain)

    2011-08-01

    Highlights: > Electrochemical characterization of Pr centers in praseodymia-doped zircon. > Study of the catalytic effect on the reduction of peroxide radical anion in nonaqueous solvents. > Assessment of non-uniform distribution of Pr centers in the zircon grains. - Abstract: The voltammetry of microparticles and scanning electrochemical microscopy methodologies are applied to characterize praseodymium centers in praseodymia-doped zircon (Pr{sub x}Zr{sub (1-y)}Si{sub (1-z)}O{sub 4}; y + z = x; 0.02 < x < 0.10) specimens prepared via sol-gel synthetic routes. In contact with aqueous electrolytes, two overlapping Pr-centered cathodic processes, attributable to the Pr (IV) to Pr (III) reduction of Pr centers in different sites are obtained. In water-containing, air-saturated acetone and DMSO solutions as solvent, Pr{sub x}Zr{sub (1-y)}Si{sub (1-z)}O{sub 4} materials produce a significant catalytic effect on the electrochemical reduction of peroxide radical anion electrochemically generated. These electrochemical features denote that most of the Pr centers are originally in its 4+ oxidation state in the parent Pr{sub x}Zr{sub (1-y)}Si{sub (1-z)}O{sub 4} specimens. The variation of the catalytic performance of such specimens with potential scan rate, water concentration and Pr loading suggests that Pr is not uniformly distributed within the zircon grains, being concentrated in the outer region of such grains.

  3. Kinetic investigation on enantioselective hydrolytic resolution of ...

    African Journals Online (AJOL)

    Kinetic investigation on enantioselective hydrolytic resolution of epichlorohydrin by crude epoxide hydrolase from domestic duck liver. X Ling, D Lu, J Wang, J Chen, L Ding, J Chen, H Chai, P Ouyang ...

  4. Catalytic conversion of CO, NO and SO2 on supported sulfide catalysts. Part 2. Catalytic reduction of NO and SO2 by CO

    International Nuclear Information System (INIS)

    Zhuang, S.-X.; Yamazaki, M.; Omata, K.; Takahashi, Y.; Yamada, M.

    2001-01-01

    To investigate the possibility of simultaneous catalytic reduction of NO and SO 2 by CO, reactions of NO, NO-CO, and NO-SO 2 -CO were performed on γ-alumina-supported sulfides of transition metals including Co, Mo, CoMo and FeMo. NO was decomposed into N 2 O and N 2 accompanied with the formation of SO 2 ; this serious oxidation of lattice sulfur resulted in the deactivation of the catalysts. The addition of CO to the NO stream suppressed SO 2 formation and yielded COS instead. A stoichiometric conversion of NO and CO to N 2 and CO 2 was observed above 350C on the CoMo and the FeMo catalysts. Although the CO addition lengthened catalyst life, it was not enough to maintain activity. After the NO-CO reaction, an XPS analysis showed the growth of Mo 6+ and SO 4 2- peaks, especially for the sulfided FeMo/Al 2 O 3 ; the FeMo catalyst underwent strong oxidation in the NO-CO reaction. The NO and the NO-CO reactions proceeded non-catalytically, consuming catalyst lattice sulfur to yield SO 2 or COS. The addition of SO 2 in the NO-CO system enabled in situ regeneration of the catalysts; the catalysts oxidized through abstraction of lattice sulfur experienced anew reduction and sulfurization through the SO 2 -CO reaction at higher temperature. NO and SO 2 were completely and catalytically converted at 400C on the sulfided CoMo/Al 2 O 3 . By contrast, the sulfided FeMo/Al 2 O 3 was easily oxidized by NO and hardly re-sulfided under the test conditions. Oxidation states of the metals before and after the reactions were determined. Silica and titania-supported CoMo catalysts were also evaluated to study support effects

  5. Catalytic reduction of 4-nitrophenol over Ni-Pd nanodimers supported on nitrogen-doped reduced graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lijun, E-mail: liulj@wtu.edu.cn [College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, People' s Republic of China (China); Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Chen, Ruifen; Liu, Weikai [College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, People' s Republic of China (China); Wu, Jiamin [Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Gao, Di, E-mail: gaod@pitt.edu [Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2016-12-15

    Catalytic reduction of toxic 4-nitrophenol to 4-aminophenol over magnetically recoverable nanocatalysts has attracted much attention. Herein, we report a Ni-Pd/NrGO catalyst through the growth of Ni-Pd nanodimers (NDs) on nitrogen-doped reduced graphene oxide (NrGO). The Ni-Pd NDs show a heterogeneous nanostructure with Ni and Pd subparts contacting with each other, remarkably different from the frequently-observed core/shell nanoparticles (NPs) or nanoalloy. The formation of Ni-Pd NDs follows an initial deposition of Pd NPs on the graphene and in-situ catalytic generation of Ni subparts over the newly-generated Pd NPs. The resulting Ni-Pd/NrGO exhibits a superior catalytic activity towards the reduction of 4-nitrophenol at room temperature with a high rate constant (3400 s{sup -1} g{sup -1}) and a low activated energy (29.1 kJ mol{sup -1}) as compared to unsupported Ni-Pd NDs and supported monometallic catalysts. The conversion rate of 4-NP is calculated to be 99.5% and the percent yield (%) of 4-AP is as high as 99.1%. A synergistic catalysis mechanism is rationally proposed, which is ascribed to the electronic modification of Ni-Pd metals due to the strong metal/support interaction (SMSI) effect as well as the electron transfer between Ni and Pd. The hybrid catalyst shows soft ferromagnetic properties and can be magnetically separated and recycled without obvious loss of activity.

  6. Enantioselective 1,3-dipolar cycloadditions of diazoacetates with electron-deficient olefins.

    Science.gov (United States)

    Sibi, Mukund P; Stanley, Levi M; Soeta, Takahiro

    2007-04-12

    [reaction: see text] A general strategy for highly enantioselective 1,3-dipolar cycloaddition of diazoesters to beta-substituted, alpha-substituted, and alpha,beta-disubstituted alpha,beta-unsaturated pyrazolidinone imides is described. Cycloadditions utilizing less reactive alpha,beta-disubstituted dipolarophiles require elevated reaction temperatures, but still provide the corresponding pyrazolines with excellent enantioselectivities. Finally, an efficient synthesis of (-)-manzacidin A employing this cycloaddition methodology as a key step is illustrated.

  7. Enantiomerization and enantioselective bioaccumulation of metalaxyl in Tenebrio molitor larvae.

    Science.gov (United States)

    Gao, Yongxin; Wang, Huili; Qin, Fang; Xu, Peng; Lv, Xiaotian; Li, Jianzhong; Guo, Baoyuan

    2014-02-01

    The enantiomerization and enantioselective bioaccumulation of metalaxyl by a single dose of exposure to Tenebrio molitor larvae under laboratory condition were studied by high-performance liquid chromatography tandem mass spectroscopy (HPLC-MS/MS) based on a ChiralcelOD-3R [cellulosetris-tris-(3, 5-dichlorophenyl-carbamate)] column. Exposure of enantiopure R-metalaxyl and S-metalaxyl in Tenebrio molitor larvae exhibited significant enantiomerization, with formation of the R enantiomers from the S enantiomers, and vice versa, which might be attributed to the chiral pesticide catalyzed by a certain enzyme in Tenebrio molitor larvae. Enantiomerization was not observed in wheat bran during the period of 21 d. In addition, bioaccumulation of rac-metalaxyl in Tenebrio molitor larvae was enantioselective with a preferential accumulation of S-metalaxyl. These results showed that enantioselectivity was caused not only by actual degradation and metabolism but also by enantiomerization, which was an important process in the environmental fate and behavior of metalaxyl enantiomers. Copyright © 2013 Wiley Periodicals, Inc.

  8. Quinine-Promoted, Enantioselective Boron-Tethered Diels-Alder Reaction by Anomeric Control of Transition State Conformation.

    Science.gov (United States)

    Scholl, Katie; Dillashaw, John; Timpy, Evan; Lam, Yu-Hong; DeRatt, Lindsey; Benton, Tyler R; Powell, Jacqueline P; Houk, Kendall N; Morgan, Jeremy B

    2018-05-01

    Diels-Alder reactions of tethered vinyl-metal species offer the opportunity to fashion highly functionalized diol intermediates for synthesis. We have developed the first enantioselective boron-tethered Diels-Alder reaction using quinine as a chiral promoter. Quinine recovery, enantioselectivity enhancement, and manipulation of the cyclohexene core are also investigated. DFT modeling calculations confirm the role of quinine as a bidentate ligand enhancing reaction rates. The enantioselectivity of the cycloaddition is proposed to originate from a boron-centered anomeric effect.

  9. Catalytic selective reduction of NO with ethylene over a series of copper catalysts on amorphous silicas

    International Nuclear Information System (INIS)

    Carniti, P.; Gervasini, A.; Modica, V.H.; Ravasio, N.

    2000-01-01

    Catalytic selective reduction of NO to N 2 was studied comparing a series of Cu-based catalysts (ca. 8wt.%) supported over amorphous pure and modified silicas: SiO 2 , SiO 2 -Al 2 O 3 , SiO 2 -TiO 2 , SiO 2 -ZrO 2 . The catalysts were prepared by the chemisorption-hydrolysis method which ensured the formation of a unique copper phase well dispersed over all supports, as confirmed by scanning electron micrographs (SEMs). Temperature-programmed reduction (TPR) analyses confirmed the presence of dispersed copper species which underwent complete reduction at a temperature of about 220C, independently of the support. It was found that the support affects the extent of NO reduction as well as the selectivity to N 2 formation. Maximum N 2 yield was found in the range 275-300C. The catalyst prepared over SiO 2 -Al 2 O 3 was the most active and selective with respect to the other silicas. Competitiveness factors (c.f.'s) as high as 13-20% in the temperature range 200-250C could be calculated. For all catalysts, the temperature of the N 2 peak maximum did not correspond to that of the maximum C 2 H 4 oxidation to CO 2 , suggesting the presence of two different sites for the oxidation and the reduction activity. On the catalyst prepared on SiO 2 -Al 2 O 3 , a kinetic interpretation of catalytic data collected at different contact times and temperatures permitted evaluating the ratio between kinetic coefficients as well as the difference between activation energies of NO reduction by C 2 H 4 and C 2 H 4 oxidation by O 2

  10. Enantioselective N-demethylation and hydroxylation of sibutramine in human liver microsomes and recombinant cytochrome p-450 isoforms.

    Science.gov (United States)

    Shinde, Dhananjay D; Kim, Min-Jung; Jeong, Eun-Sook; Kim, Yang-Weon; Lee, Ji-Woo; Shin, Jae-Gook; Kim, Dong-Hyun

    2014-01-01

    The enantioselective metabolism of sibutramine was examined using human liver microsomes (HLM) and recombinant cytochrome P-450 (CYP) isoforms. This drug is metabolized to N-mono-desmethyl- (M1) and N,N-di-desmethylsibutramine (M2), and subsequent hydroxylation results in hydroxyl M1 (HM1) and hydroxyl M2 (HM2). No significant difference was noted in formation of M1from sibutramine between R- and S-sibutramine in HLM. However, S-enantiomers of M1 and M2 were preferentially metabolized to M2, HM1, and HM2compared to R-enantiomers in HLM, and intrinsic clearance (Clint) ratios of S-enantiomers/R-enantiomers were 1.97, 4.83, and 9.94 for M2, HM1, and HM2, respectively. CYP3A4 and CYP3A5 were only involved in the formation of M1, whereas CYP2B6 and CYP2C19 were responsible for all metabolic reactions of sibutramine. CYP2C19 and CYP3A5 displayed catalytic preference for S-sibutramine to S-M1, whereas CYP2B6 and CYP3A4 showed little or no stereoselectivity in metabolism of sibutramine to M1. In the case of M2 formation, CYP2B6 metabolized S-M1 more rapidly than R-M1 with a Clint ratio of 2.14. However, CYP2C19 catalyzed less S-M1 than R-M1 and the Clint ratio of S-M1 to R-M1 was 0.65. The most significant enantioselectivity was observed in formation of HM1 from M1, and HM2 from M2. CYP2B6 and CYP2C19 exhibited preferential catalysis of formation of hydroxyl metabolites from S-enantiomers rather than R-enantiomers. These results indicate that S-sibutramine was more rapidly metabolized by CYP isoforms than R-sibutramine, and that enantioselective metabolism needs to be considered in drug interactions involving sibutramine and co-administered drugs.

  11. Exo selective enantioselective nitrone cycloadditions.

    Science.gov (United States)

    Sibi, Mukund P; Ma, Zhihua; Jasperse, Craig P

    2004-01-28

    We have developed a novel method for accessing exo adducts with high enantioselectivity in nitrone cycloadditions to enoates. Pyrazolidinones proved to be effective achiral templates in the cycloadditions, providing exo adducts typically in >15:1 selectivity and 90-98% ee. The use of Lewis acids that form square planar complexes, such as copper triflate, was important for obtaining high exo selectivity.

  12. Enantioselective Analysis in instruments onboard ROSETTA/PHILAE and ExoMars

    Science.gov (United States)

    Hendrik Bredehöft, Jan; Thiemann, Wolfram; Meierhenrich, Uwe; Goesmann, Fred

    It has been suggested a number of times in the past, to look for chirality as a biomarker. So far, for lack of appropriate instrumentation, space missions have never included enantioselective analysis. The distinction between enantiomers is of crucial importance to the question of the origin of the very first (pre)biotic molecules. If molecules detected in situ on another celestial body were found to exhibit a chiral bias, this would mean that at least partial asymmetric synthesis could take place abiotically. If this chiral bias should be found to be near 100For the currently flying ESA mission ROSETTA an enantioselective instrument was built, to try for the first time to detect and separate chiral molecules in situ. This instrument is COSAC, the Cometary Sampling and Acquisition Experiment, an enantioselective GCMS device[1,2], which is included in the lander PHLIAE that will eventually in 2014 land on the nucleus of comet 67P/Churyumov-Gerasimenko. A similar but even more powerful type of enantioselective GC-MS is in preparation for ESA's ExoMars mission. This instrument is part of MOMA, the Mars Organic Molecules Analyser. It has the objective of identifying and quantifying chiral organic molecules in surface and subsurface samples of Mars. Currently ExoMars is scheduled for 2018. The newly developed enantioselective technique utilized by both COSAC and MOMA will be described, including sample acquisition, derivatization, and separation in space-resistant chiral stationary capillary columns with time-of-flight mass spectrometric detection. Results of enantioselective analyses of representative test samples with special emphasis on amino acids[3], the building blocks of protein polymers, will be presented and we will discuss potential results of space missions Rosetta and ExoMars. [1] Thiemann W.H.-P., Meierhenrich U.: ESA Mission ROSETTA Will Probe for Chirality of Cometary Amino Acids. Origins of Life and Evolution of Biospheres 31 (2001), 199-210. [2

  13. Oxygen Reduction Reaction for Generating H2 O2 through a Piezo-Catalytic Process over Bismuth Oxychloride.

    Science.gov (United States)

    Shao, Dengkui; Zhang, Ling; Sun, Songmei; Wang, Wenzhong

    2018-02-09

    Oxygen reduction reaction (ORR) for generating H 2 O 2 through green pathways have gained much attention in recent years. Herein, we introduce a piezo-catalytic approach to obtain H 2 O 2 over bismuth oxychloride (BiOCl) through an ORR pathway. The piezoelectric response of BiOCl was directly characterized by piezoresponse force microscopy (PFM). The BiOCl exhibits efficient catalytic performance for generating H 2 O 2 (28 μmol h -1 ) only from O 2 and H 2 O, which is above the average level of H 2 O 2 produced by solar-to-chemical processes. A piezo-catalytic mechanism was proposed: with ultrasonic waves, an alternating electric field will be generated over BiOCl, which can drive charge carriers (electrons) to interact with O 2 and H 2 O, then to form H 2 O 2 . © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A consistent reaction scheme for the selective catalytic reduction of nitrogen oxides with ammonia

    DEFF Research Database (Denmark)

    Janssens, Ton V.W.; Falsig, Hanne; Lundegaard, Lars Fahl

    2015-01-01

    For the first time, the standard and fast selective catalytic reduction of NO by NH3 are described in a complete catalytic cycle, that is able to produce the correct stoichiometry, while only allowing adsorption and desorption of stable molecules. The standard SCR reaction is a coupling of the ac...... for standard SCR. Finally, the role of a nitrate/nitrite equilibrium and the possible in uence of Cu dimers and Brønsted sites are discussed, and an explanation is offered as to how a catalyst can be effective for SCR, while being a poor catalyst for NO oxidation to NO2....... spectroscopy (FTIR). A consequence of the reaction scheme is that all intermediates in fast SCR are also part of the standard SCR cycle. The calculated activation energy by density functional theory (DFT) indicates that the oxidation of an NO molecule by O2 to a bidentate nitrate ligand is rate determining...

  15. Mean field approximation for the kinetics of the selective catalytic reduction of NO by ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Santos, M.; Bodanese, J.P. [Centro de Ensino Sao Jose, Universidade do Vale do Itajai (Brazil); S. Grandi, B.C. da [Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis (Brazil)

    2007-04-15

    In this work we study a catalytic reaction model among three monomers in order to understand the chemical kinetics of the selective catalytic reduction of nitrogen oxide by ammonia (4NO+4NH{sub 3}+O{sub 2}{yields}4N{sub 2}+6H{sub 2}O). Our model takes into account the formation of the intermediate species in the global scheme of the reaction. In order to determine the dynamical behaviour of the model we used single site approximation method. In this approach we have observed that, depending on the values of the control parameters, the model presents an active or an inactive phase. In fact, the dynamical phase diagram of the model exhibits a first order line separating these two phases. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Selective catalytic reduction system and process for control of NO.sub.x emissions in a sulfur-containing gas stream

    Science.gov (United States)

    Sobolevskiy, Anatoly

    2015-08-11

    An exhaust gas treatment process, apparatus, and system for reducing the concentration of NOx, CO and hydrocarbons in a gas stream, such as an exhaust stream (29), via selective catalytic reduction with ammonia is provided. The process, apparatus and system include a catalytic bed (32) having a reducing only catalyst portion (34) and a downstream reducing-plus-oxidizing portion (36). Each portion (34, 36) includes an amount of tungsten. The reducing-plus-oxidizing catalyst portion (36) advantageously includes a greater amount of tungsten than the reducing catalyst portion (36) to markedly limit ammonia salt formation.

  17. Enantioselective rhodium/ruthenium photoredox catalysis en route to chiral 1,2-aminoalcohols.

    Science.gov (United States)

    Ma, Jiajia; Harms, Klaus; Meggers, Eric

    2016-08-09

    A rhodium-based chiral Lewis acid catalyst combined with [Ru(bpy)3](PF6)2 as a photoredox sensitizer allows for the visible-light-activated redox coupling of α-silylamines with 2-acyl imidazoles to afford, after desilylation, 1,2-amino-alcohols in yields of 69-88% and with high enantioselectivity (54-99% ee). The reaction is proposed to proceed via an electron exchange between the α-silylamine (electron donor) and the rhodium-chelated 2-acyl imidazole (electron acceptor), followed by a stereocontrolled radical-radical reaction. Substrate scope and control experiments reveal that the trimethylsilyl group plays a crucial role in this reductive umpolung of the carbonyl group.

  18. Anodically-grown TiO{sub 2} nanotubes: Effect of the crystallization on the catalytic activity toward the oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Sacco, Adriano, E-mail: adriano.sacco@iit.it [Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino (Italy); Garino, Nadia [Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino (Italy); Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino (Italy); Lamberti, Andrea, E-mail: andrea.lamberti@polito.it [Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino (Italy); Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino (Italy); Pirri, Candido Fabrizio [Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino (Italy); Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino (Italy); Quaglio, Marzia [Center for Sustainable Future Technologies @Polito, Istituto Italiano di Tecnologia, Corso Trento 21, 10129, Torino (Italy)

    2017-08-01

    Highlights: • Anodically-grown TiO{sub 2} nanotubes as catalysts for the oxygen reduction reaction. • Amorphous NTs compared to thermal- and vapor-treated crystalline nanostructures. • The selection of the crystallization conditions leads to performance similar to Pt. - Abstract: In this work we investigated the behavior of TiO{sub 2} nanotube (NT) arrays, grown by anodic oxidation of Ti foil, as catalysts for the oxygen reduction reaction (ORR) in alkaline water solution. In particular, as-grown amorphous NTs were compared to crystalline anatase nanostructures, obtained following two different procedures, namely thermal and vapor-induced crystallizations. The catalytic activity of these materials toward the ORR was evaluated by cyclic voltammetry measurements. ORR polarization curves, combined with the rotating disk technique, indicated a predominant four-electrons reduction path, especially for crystalline samples. The effect of the structural characteristics of the investigated materials on the catalytic activity was analyzed in details by electrochemical impedance spectroscopy. The catalytic performance of the crystalline NTs is only slightly lower with respect to the reference material for fuel cell applications, namely platinum, but is in line with other cost-effective catalysts recently proposed in the literature. However, if compared to the larger part of these low-cost catalysts, anodically-grown TiO{sub 2} NTs are characterized by a synthesis route which is highly reproducible and easily up-scalable.

  19. Catalytic reduction of NO and N20 for CO on Co-ZSM-5

    International Nuclear Information System (INIS)

    Rios, Luis Alberto; Aristizabal, Gladys Liliana; Ruiz, Julio Fernando; Montes Consuelo

    1996-01-01

    Several catalysts with the help of ZSM-5 with Co were tested in the catalytic reduction of NO and N2O using CO like agent reducer and in presence of variable quantities of O2 The cobalt incorporated in the zeolite ZSM-5 for the methods of ionic exchange, impregnation and substitution. ZSM-5 exchanged with Co presented the highest conversions of NO (80% to 5OO oC), in presence of 3000 ppm of O2; When adding 25.700 ppm of O2 the conversion it diminished notably, that which shows an effect inhibitor of the O2. The substituted catalysts and impregnated they were less active for the reduction of the NO. With all the catalysts conversions of 70-90% were achieved for the N2O; Additionally, marked deactivation of the catalyst was not presented with the time

  20. Highly Enantioselective Rhodium-Catalyzed Addition of Arylboroxines to Simple Aryl Ketones: Efficient Synthesis of Escitalopram.

    Science.gov (United States)

    Huang, Linwei; Zhu, Jinbin; Jiao, Guangjun; Wang, Zheng; Yu, Xingxin; Deng, Wei-Ping; Tang, Wenjun

    2016-03-24

    Highly enantioselective additions of arylboroxines to simple aryl ketones have been achieved for the first time with a Rh/(R,R,R,R)-WingPhos catalyst, thus providing a range of chiral diaryl alkyl carbinols with excellent ee values and yields. (R,R,R,R)-WingPhos has been proven to be crucial for the high reactivity and enantioselectivity. The method has enabled a new, concise, and enantioselective synthesis of the antidepressant drug escitalopram. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Palladium-Catalyzed Enantioselective C-H Olefination of Diaryl Sulfoxides through Parallel Kinetic Resolution and Desymmetrization.

    Science.gov (United States)

    Zhu, Yu-Chao; Li, Yan; Zhang, Bo-Chao; Zhang, Feng-Xu; Yang, Yi-Nuo; Wang, Xi-Sheng

    2018-03-07

    The first example of Pd II -catalyzed enantioselective C-H olefination with non-chiral or racemic sulfoxides as directing groups was developed. A variety of chiral diaryl sulfoxides were synthesized with high enantioselectivity (up to 99 %) through both desymmetrization and parallel kinetic resolution (PKR). This is the first report of Pd II -catalyzed enantioselective C(sp 2 )-H functionalization through PKR, and it represents a novel strategy to construct sulfur chiral centers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Enantioselective Alkylation of 2-Oxindoles Catalyzed by a Bifunctional Phase-Transfer Catalyst: Synthesis of (-)-Debromoflustramine B.

    Science.gov (United States)

    Craig, Ryan; Sorrentino, Emiliano; Connon, Stephen J

    2018-03-26

    A new bifunctional phase-transfer catalyst that employs hydrogen bonding as a control element was developed to promote efficient enantioselective S N 2 reactions for the construction all-carbon quaternary stereocenters in high yield and excellent enantioselectivity (up to 97 % ee) utilizing the alkylation of a malleable oxindole substrate. The utility of the methodology was demonstrated through a concise and highly enantioselective synthesis of (-)-debromoflustramine B. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Mesoporous Fe-containing ZSM-5 zeolite single crystal catalysts for selective catalytic reduction of nitric oxide by ammonia

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Egeblad, Kresten; Kustova, Marina

    2007-01-01

    Mesoporous and conventional Fe-containing ZSM-5 catalysts (0.5–8 wt% Fe) were prepared using a simple impregnationmethod and tested in NO selective catalytic reduction (SCR) with NH3. It was found that mesoporous Fe-ZSM-5 catalysts exhibit higher SCR activities than comparable conventional cataly...

  4. An enantioselective synthesis of S-γ-[(4-trifluoromethyl)phenoxy]benzenepropanamine-[3-14C] hydrochloride, an important metabolite of fluoxetine hydrochloride

    International Nuclear Information System (INIS)

    Wheeler, W.J.

    1992-01-01

    The S-enantiomer of γ-[(4-trifluoromethyl)phenoxy]benzenepropanamine-[3- 14 C] hydrochloride has been prepared in eight steps from acetophenone-[carbonyl- 14 C]. The key step in the synthesis involved the enantioselective reduction of R-2-chloroacetophenone-[1- 14 C]with (-)-diisopinocampheyl-chloroborane in an 86.5% yield. The chlorohydrin was converted to R-phenyloxirane-[1- 14 C], which was subsequently converted to the corresponding R-cyanohydrin by reaction with TMS-CN/CaO. Borane reduction and arylation, followed by salt formation yielded S-γ-[(4-trifluoromethyl)phenoxy]benzenepropanamine-[3- 14 C] hydrochloride. (author)

  5. Catalytic reduction of emissions from small-scale combustion of biomass

    International Nuclear Information System (INIS)

    Berg, Magnus; Gustavsson, Patrik; Berge, Niklas

    1998-01-01

    This report covers a study on the prospect of using catalytic techniques for the abatement of emissions from small-scale combustion of biomass. The results show that there is a great potential for catalytic techniques and that the emissions of primarily CO and unburned hydrocarbons can be reduced but also that indirectly the emissions of NO x can be reduced. The aim of the project was to methodically indicate the requirement that both the catalyst and the stove must meet to enable the development of low emission stoves utilising this technique. The project should also aim at the development of catalysts that meet these requirements and apply the technique on small-scale stoves. By experimental work these appliances have been evaluated and conclusions drawn on the optimisation of the technique. The project has been performed in close collaboration between TPS Termiska Processer AB, Department of Chemical Technology at KTH, Perstorp AB and CTC-PARCA AB. The development of new catalysts have been conduc ted by KTH in collaboration with Perstorp while the work performed by TPS have been directed towards the integration of the monolithic catalysts in two different stoves that have been supplied by CTC. In one of these stoves a net based catalyst developed by KATATOR have also been tested. Within the project it has been verified experimentally that in a wood fired stove a reduction of the CO-emissions of 60% can be achieved for the monolithic catalysts. This reduction could be achieved even without any optimisation of the design. Experiments in a smaller scale and under well controlled conditions have shown that almost 100% reduction of CO can be achieved. The parameters that limits the conversion over the catalyst, and thereby prevents that the targeted low emissions can be reached, have been identified as: * Short residence time, * Mass transport limitations caused by the large channel width, * Uneven temperature profile over the catalyst, and * Insufficient mixing

  6. Influence of gasoline inhalation on the enantioselective pharmacokinetics of fluoxetine in rats.

    Science.gov (United States)

    Cardoso, Juciane Lauren Cavalcanti; Lanchote, Vera Lucia; Pereira, Maria Paula Marques; Capela, Jorge Manuel Vieira; Lepera, José Salvador

    2013-03-01

    Fluoxetine is used clinically as a racemic mixture of (+)-(S) and (-)-(R) enantiomers for the treatment of depression. CYP2D6 catalyzes the metabolism of both fluoxetine enantiomers. We aimed to evaluate whether exposure to gasoline results in CYP2D inhibition. Male Wistar rats exposed to filtered air (n = 36; control group) or to 600 ppm of gasoline (n = 36) in a nose-only inhalation exposure chamber for 6 weeks (6 h/day, 5 days/week) received a single oral 10-mg/kg dose of racemic fluoxetine. Fluoxetine enantiomers in plasma samples were analyzed by a validated analytical method using LC-MS/MS. The separation of fluoxetine enantiomers was performed in a Chirobiotic V column using as the mobile phase a mixture of ethanol:ammonium acetate 15 mM. Higher plasma concentrations of the (+)-(S)-fluoxetine enantiomer were found in the control group (enantiomeric ratio AUC((+)-(S)/(-)-(R)) = 1.68). In animals exposed to gasoline, we observed an increase in AUC(0-∞) for both enantiomers, with a sharper increase seen for the (-)-(R)-fluoxetine enantiomer (enantiomeric ratio AUC((+)-(S)/(-)-(R)) = 1.07), resulting in a loss of enantioselectivity. Exposure to gasoline was found to result in the loss of enantioselectivity of fluoxetine, with the predominant reduction occurring in the clearance of the (-)-(R)-fluoxetine enantiomer (55% vs. 30%). Copyright © 2013 Wiley Periodicals, Inc.

  7. Alkali resistivity of Cu based selective catalytic reduction catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Jensen, Anker Degn; Riisager, Anders

    2012-01-01

    The deactivation of V2O5–WO3–TiO2, Cu–HZSM5 and Cu–HMOR plate type monolithic catalysts was investigated when exposed to KCl aerosols in a bench-scale reactor. Fresh and exposed catalysts were characterized by selective catalytic reduction (SCR) activity measurements, scanning electron microscope......–energy dispersive X-ray spectroscopy (SEM–EDX) and NH3-temperature programmed desorption (NH3-TPD). 95% deactivation was observed for the V2O5–WO3–TiO2 catalyst, while the Cu–HZSM5 and Cu–HMOR catalysts deactivated only 58% and 48%, respectively, after 1200 h KCl exposure. SEM analysis of the KCl aerosol exposed...... catalysts revealed that the potassium salt not only deposited on the catalyst surface, but also penetrated into the catalyst wall. Thus, the K/M ratio (M = V or Cu) was high on V2O5–WO3–TiO2 catalyst and comparatively less on Cu–HZSM5 and Cu–HMOR catalysts. NH3-TPD revealed that the KCl exposed Cu–HZSM5...

  8. Enantioselective conjugate addition of diethylzinc to chalcone catalyzed by Co(acac)2 and chiral amino alcohols

    NARCIS (Netherlands)

    Vries, André H.M. de; Feringa, Bernard

    1997-01-01

    Co(acac)2 in the presence of chiral ligands has been employed as catalyst for the enantioselective conjugate addition of diethylzinc to chalcone. With chiral amino alcohols derived from (+)-camphor, enantioselectivities up to 83% were achieved.

  9. Highly enantioselective catalytic cross-dehydrogenative coupling of N-carbamoyl tetrahydroisoquinolines and terminal alkynes.

    Science.gov (United States)

    Sun, Shutao; Li, Chengkun; Floreancig, Paul E; Lou, Hongxiang; Liu, Lei

    2015-04-03

    The first catalytic asymmetric cross-dehydrogenative coupling of cyclic carbamates and terminal alkynes has been established. The reaction features high enantiocontrol and excellent functional group tolerance and displays a wide range of structurally and electronically diverse carbamates as well as terminal alkynes. N-Acyl hemiaminals were identified as the reactive intermediates through preliminary control experiments. Employing readily removable carbamates as substrates rather than traditionally adopted N-aryl amines allows applications in complex molecule synthesis and therefore advances the C-H functionalization strategy to a synthetically useful level.

  10. Catalytic Enantioselective Synthesis of Naturally Occurring Butenolides via Hetero-Allylic Alkylation and Ring Closing Metathesis

    NARCIS (Netherlands)

    Mao, Bin; Geurts, Koen; Fañanás-Mastral, Martín; Zijl, Anthoni W. van; Fletcher, Stephen P.; Minnaard, Adriaan J.; Feringa, Bernard

    2011-01-01

    An efficient catalytic asymmetric synthesis of chiral γ-butenolides was developed based on the hetero-allylic asymmetric alkylation (h-AAA) in combination with ring closing metathesis (RCM). The synthetic potential of the h-AAA-RCM protocol was illustrated with the facile synthesis of (-)-whiskey

  11. Modelling of catalytic oxidation of NH3 and reduction of NO on limestone during sulphur capture

    DEFF Research Database (Denmark)

    Kiil, Søren; Bhatia, Suresh K.; Dam-Johansen, Kim

    1996-01-01

    activity with respect to each species involved. An existing particle model, the Grain-Micrograin Model, which simulates sulphur capture on limestone under oxidizing conditions is considered in the modelling. Simulation results in good qualitative agreement with experimental data are obtained here......A theoretical study of the complex transient system of simultaneous sulphur capture and catalytic reactions of N-containing compounds taking place on a single limestone particle is conducted. The numerical technique developed previously by the authors (Kiil et al. 1994) based on collocation...... for the catalytic chemistry of NH3 during simultaneous sulphur capture on a Stevns Chalk particle. The reduction of NO by NH3 over CaSO4 (which is the product of the reaction between SO2, O2 and limestone) was found to be important because this reaction could explain the change in selectivity with increased solid...

  12. Guanidine-catalyzed enantioselective desymmetrization of meso-aziridines

    KAUST Repository

    Zhang, Yan

    2011-01-01

    An amino-indanol derived chiral guanidine was developed as an efficient Brønsted base catalyst for the desymmetrization of meso-aziridines with both thiols and carbamodithioic acids as nucleophiles, which provided 1,2-difunctionalized ring-opened products in high yields and enantioselectivities. © The Royal Society of Chemistry.

  13. Enantioselective Epoxide Polymerization Using a Bimetallic Cobalt Catalyst

    KAUST Repository

    Thomas, Renee M.

    2010-11-24

    A highly active enantiopure bimetallic cobalt complex was explored for the enantioselective polymerization of a variety of monosubstituted epoxides. The polymerizations were optimized for high rates and stereoselectivity, with s-factors (kfast/kslow) for most epoxides exceeding 50 and some exceeding 300, well above the threshold for preparative utility of enantiopure epoxides and isotactic polyethers. Values for mm triads of the resulting polymers are typically greater than 95%, with some even surpassing 98%. In addition, the use of a racemic catalyst allowed the preparation of isotactic polyethers in quantitative yields. The thermal properties of these isotactic polyethers are presented, with many polymers exhibiting high T m values. This is the first report of the rapid synthesis of a broad range of highly isotactic polyethers via the enantioselective polymerization of racemic epoxides. © 2010 American Chemical Society.

  14. Enantioselective Epoxide Polymerization Using a Bimetallic Cobalt Catalyst

    KAUST Repository

    Thomas, Renee M.; Widger, Peter C. B.; Ahmed, Syud M.; Jeske, Ryan C.; Hirahata, Wataru; Lobkovsky, Emil B.; Coates, Geoffrey W.

    2010-01-01

    A highly active enantiopure bimetallic cobalt complex was explored for the enantioselective polymerization of a variety of monosubstituted epoxides. The polymerizations were optimized for high rates and stereoselectivity, with s-factors (kfast/kslow) for most epoxides exceeding 50 and some exceeding 300, well above the threshold for preparative utility of enantiopure epoxides and isotactic polyethers. Values for mm triads of the resulting polymers are typically greater than 95%, with some even surpassing 98%. In addition, the use of a racemic catalyst allowed the preparation of isotactic polyethers in quantitative yields. The thermal properties of these isotactic polyethers are presented, with many polymers exhibiting high T m values. This is the first report of the rapid synthesis of a broad range of highly isotactic polyethers via the enantioselective polymerization of racemic epoxides. © 2010 American Chemical Society.

  15. Electrochemical preparation of iron cuboid nanoparticles and their catalytic properties for nitrite reduction

    International Nuclear Information System (INIS)

    Chen Yanxin; Chen Shengpei; Chen Qingsong; Zhou Zhiyou; Sun Shigang

    2008-01-01

    Iron cuboid nanoparticles supported on glassy carbon (denoted nm-Fe/GC) were prepared by electrochemical deposition under cyclic voltammetric (CV) conditions. The structure and composition of the Fe nanomaterials were characterized by scanning electron microscopy (SEM), selected area electron diffraction (SAED), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDX). The results demonstrated that the Fe cuboid nanoparticles are dispersed discretely on GC substrate with an average size ca. 171 nm, and confirmed that the electrochemical synthesized nanocubes are single crystals of pure Fe. The catalytic properties of the Fe cuboid nanoparticles towards nitrite electroreduction were investigated, and enhanced electrocatalytic activity of the Fe nanocubes has been determined. In comparison with the data obtained on a bulk-Fe electrode, the onset potential of nitrite reduction on nm-Fe/GC is positively sifted by 100 mV, and the steady reduction current density is enhanced about 2.4-3.2 times

  16. Enantioselective conjugate addition of diethylzinc to chalcone catalyzed by Co(acac)(2) and chiral amino alcohols

    NARCIS (Netherlands)

    de Vries, A.H.M.; Feringa, B.L.

    1997-01-01

    Co(acac)(2) in the presence of chiral ligands has been employed as catalyst for the enantioselective conjugate addition of diethylzinc to chalcone. With chiral amino alcohols derived from (+)-camphor, enantioselectivities up to 83% were achieved. (C) 1997 Elsevier Science Ltd.

  17. Influence of biochar on the enantioselective behavior of the chiral fungicide metalaxyl in soil

    Science.gov (United States)

    Gámiz, Beatriz; Pignatello, Joseph J.; Hermosín, María Carmen; Cox, Lucía; Celis, Rafael

    2015-04-01

    Chiral pesticides comprise an emerging and important class of organic pollutants currently, accounting for more than a quarter of used pesticides. Consequently, the contamination problems caused by chiral pesticides are concern matter and factors affecting enantioselective processes of chiral pesticides in soil need to be understood. For example, certain soil management practices, such as the use of organic amendments, can affect the enantioselective behavior of chiral pesticides in soils. Recently, biochar (BC), i.e. organic matter subjected to pyrolysis, has been proposed as organic amendment due to beneficial properties such as its high stability against decay in soil environments and its apparent ability to influence the availability of nutrients. BC is considered to be more biologically inert as compared to otherforms of organic carbon. However, its side-effects on the enantioselectivity of processes affecting the fate of chiral pesticides is unknown. The aim of this study was to assess the effect of biochar (BC) on the enantioselectivity of sorption, degradation, and leaching of the chiral fungicide metalaxyl in an agricultural soil. Amending the soil with BC (2% w/w) resulted in 3 times higher sorption of metalaxyl enantiomers compared to unamended soil, but no enantioselectivity in the process was observed. Moreover, both enantiomers showed some resistance to be desorbed in BC-amended soil compared to unamended soil. Dissipation studies revealed that the degradation of metalaxylwas more enantioselective in the unamended soil than in BC-amended soil. In unamended soil, R-metalaxyl(biologically active) and S- metalaxyl had half-lives (t1/2) of 3 and 34 days, respectively. BC enhanced the persistence of both enantiomers in the soil, with R-metalaxyl being degraded faster (t1/2=43 days) than S-metalaxyl (t1/2= 100 days). The leaching of both S-and R-metalaxyl was almost suppressed after amending the soil with BC; less than 10% of the fungicide applied to soil

  18. Catalytic modification of cellulose and hemicellulose - Sugarefine

    Energy Technology Data Exchange (ETDEWEB)

    Repo, T. [Helsinki Univ. (Finland),Laboratory of Inorganic Chemistry], email: timo.repo@helsinki.fi

    2012-07-01

    The main goal of the project is to develop catalytic methods for the modification of lignocellulose-based saccharides in the biorefineries. The products of these reactions could be used for example as biofuel components, raw materials for the chemical industry, solvents and precursors for biopolymers. The catalyst development aims at creating efficient, selective and green catalytic methods for profitable use in biorefineries. The project is divided in three work packages: In WP1 (Catalytic dehydration of cellulose) the aim is at developing non-toxic, efficient methods for the catalytic dehydration of cellulose the target molecule being here 5-hydroxymethylfurfural (5-HMF). 5-HMF is an interesting platform chemical for the production of fuel additives, solvents and polymers. In WP2 (Catalytic reduction), the objective of the catalytic reduction studies is to produce commercially interesting monofunctional chemicals, such as 1-butanol or 2-methyltetrahydrofuran (2-MeTHF). In WP3 (Catalytic oxidation), the research focuses on developing a green and efficient oxidation method for producing acids. Whereas acetic and formic acids are bulk chemicals, diacids such as glucaric and xylaric acids are valuable specialty chemicals for detergent, polymer and food production.

  19. Enantioselective Rhodium Enolate Protonations. A New Methodology for the Synthesis of β2-Amino Acids

    Science.gov (United States)

    Sibi, Mukund P.; Tatamidani, Hiroto; Patil, Kalyani

    2008-01-01

    Rhodium catalyzed conjugate addition of an aryl boronic acid to α-methylamino acrylates followed by enantioselective protonation of the oxa-π-allylrhodium intermediate provides access to aryl substituted β2-amino acids. The impact of the different variables of the reaction on the levels of enantioselectivity has been assessed. PMID:15957893

  20. Evaluation of reversible interconversion in comprehensive two-dimensional gas chromatography using enantioselective columns in first and second dimensions.

    Science.gov (United States)

    Kröger, Sabrina; Wong, Yong Foo; Chin, Sung-Tong; Grant, Jacob; Lupton, David; Marriott, Philip J

    2015-07-24

    The reversible molecular interconversion behaviour of a synthesised oxime (2-phenylpropanaldehyde oxime; (C6H5)CH(CH3)CHN(OH)) was investigated by both, single dimensional gas chromatography (1D GC) and comprehensive two-dimensional gas chromatography (GC×GC). Previous studies on small molecular weight oximes were extended to this larger aromatic oxime (molar mass 149.19gmol(-1)) with interest in the extent of interconversion, enantioselective resolution, and retention time. On a polyethylene glycol (PEG; wax-type) column, a characteristic interconversion zone between two antipodes of E and Z isomers was formed by molecules which have undergone isomerisation on the column (E⇌Z). The extent of interconversion was investigated by varying chromatographic conditions (oven temperature and carrier flow rate) to understand the nature of the behaviour observed. The extent of interconversion was negligible in both enantioselective and methyl-phenylpolysiloxane phase-columns, correlating with the low polarity of the stationary phase. In order to obtain isomerisation along with enantio-resolution, a wax-type and an enantioselective column were coupled in either enantioselective-wax or wax-enantioselective order. The most appropriate column arrangement was selected for study by using a GC×GC experiment with either a wax-phase or phenyl-methylpolysiloxane phase as (2)D column. In addition to evaluation of these fast elution columns, a long narrow-bore enantioselective column (10m) was introduced as (2)D, providing an enantioselective-PEG (coupled-column ensemble: (1)D1+(1)D2)×enantioselective ((2)D) column combination. In this instance, the (1)D1 enantioselective column provides enantiomeric separation of the corresponding enantiomers ((R) and (S)) of (E)- and (Z)-2-phenylpropanaldehyde oxime, followed by E/Z isomerisation in the coupled (1)D2 PEG (reactor) column. The resulting chromatographic interconversion region was modulated and separated into either E/Z isomers

  1. Enantioselective rhodium enolate protonations. A new methodology for the synthesis of beta2-amino acids.

    Science.gov (United States)

    Sibi, Mukund P; Tatamidani, Hiroto; Patil, Kalyani

    2005-06-23

    [reaction: see text] Rhodium-catalyzed conjugate addition of an aryl boronic acid to alpha-methylamino acrylates followed by enantioselective protonation of the oxa-pi-allylrhodium intermediate provides access to aryl-substituted beta(2)-amino acids. The impact of the different variables of the reaction on the levels of enantioselectivity has been assessed.

  2. Fabrication and characterisation of gold nano-particle modified polymer monoliths for flow-through catalytic reactions and their application in the reduction of hexacyanoferrate

    International Nuclear Information System (INIS)

    Floris, Patrick; Twamley, Brendan; Nesterenko, Pavel N.; Paull, Brett; Connolly, Damian

    2014-01-01

    Polymer monoliths in capillary (100 μm i.d.) and polypropylene pipette tip formats (vol: 20 μL) were modified with gold nano-particles (AuNP) and subsequently used for flow-through catalytic reactions. Specifically, methacrylate monoliths were modified with amine-reactive monomers using a two-step photografting method and then reacted with ethylenediamine to provide amine attachment sites for the subsequent immobilisation of 4 nm, 7 nm or 16 nm AuNP. This was achieved by flushing colloidal suspensions of gold nano-particles through each aminated polymer monolith which resulted in a multi-point covalent attachment of gold via the lone pair of electrons on the nitrogen of the free amine groups. Field emission scanning electron microscopy and scanning capacitively coupled conductivity detection was used to characterise the surface coverage of AuNP on the monoliths. The catalytic activity of AuNP immobilised on the polymer monoliths in both formats was then demonstrated using the reduction of Fe(III) to Fe(II) by sodium borohydride as a model reaction by monitoring the reduction in absorbance of the hexacyanoferrate (III) complex at 420 nm. Catalytic activity was significantly enhanced on monoliths modified with smaller AuNP with almost complete reduction (95 %) observed when using monoliths agglomerated with 7 nm AuNPs. (author)

  3. Hydrogen cyanide formation in selective catalytic reduction of nitrogen oxides over Cu/ZSM-5

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, F; Koeppel, R; Baiker, A [Department of Chemical Engineering and Industrial Chemistry, Swiss Federal Institute of Technology, Zurich, (Switzerland)

    1994-01-06

    Hydrogen cyanide is formed over Cu/ZSM-5 during the selective catalytic reduction of NO[sub x] by either propylene or ethylene in the temperature range 450-600 K. Under the reaction conditions used (reactant feed: 973 ppm NO, 907 ppm propene or 1448 ppm ethylene, 2% oxygen, W/F=0.1 g s cm[sup -3]), the concentration of hydrogen cyanide reaches 20, respectively, 30 ppm, depending on whether ethylene or propene are used as hydrocarbons. In addition, significant N[sub 2]O formation is observed at temperatures lower than 700 K, independent of the hydrocarbon used

  4. Efficient selective catalytic reduction of NO by novel carbon-doped metal catalysts made from electroplating sludge.

    Science.gov (United States)

    Zhang, Jia; Zhang, Jingyi; Xu, Yunfeng; Su, Huimin; Li, Xiaoman; Zhou, Ji Zhi; Qian, Guangren; Li, Li; Xu, Zhi Ping

    2014-10-07

    Electroplating sludges, once regarded as industrial wastes, are precious resources of various transition metals. This research has thus investigated the recycling of an electroplating sludge as a novel carbon-doped metal (Fe, Ni, Mg, Cu, and Zn) catalyst, which was different from a traditional carbon-supported metal catalyst, for effective NO selective catalytic reduction (SCR). This catalyst removed >99.7% NO at a temperature as low as 300 °C. It also removed NO steadily (>99%) with a maximum specific accumulative reduced amount (MSARA) of 3.4 mmol/g. Gas species analyses showed that NO removal was accompanied by evolving N2 and CO2. Moreover, in a wide temperature window, the sludge catalyst showed a higher CO2 selectivity (>99%) than an activated carbon-supported metal catalyst. Structure characterizations revealed that carbon-doped metal was transformed to metal oxide in the sludge catalyst after the catalytic test, with most carbon (2.33 wt %) being consumed. These observations suggest that NO removal over the sludge catalyst is a typical SCR where metals/metal oxides act as the catalytic center and carbon as the reducing reagent. Therefore, our report probably provides an opportunity for high value-added utilizations of heavy-metal wastes in mitigating atmospheric pollutions.

  5. Enantioselective radical addition/trapping reactions with alpha,beta-disubstituted unsaturated imides. Synthesis of anti-propionate aldols.

    Science.gov (United States)

    Sibi, Mukund P; Petrovic, Goran; Zimmerman, Jake

    2005-03-02

    This manuscript describes a highly diastereo- and enantioselective intermolecular radical addition/hydrogen atom transfer to alpha,beta-disubstituted enoates. Additionally, we show that anti-propionate aldol-like products can be easily prepared from alpha-methyl-beta-acyloxyenoates in good yields and high diastereo- and enantioselectivities.

  6. Enantioselective properties of induced lipases from Geotrichum

    Czech Academy of Sciences Publication Activity Database

    Zarevúcka, Marie; Kejík, Z.; Šaman, David; Wimmer, Zdeněk; Demnerová, K.

    2005-01-01

    Roč. 37, - (2005), s. 481-486 ISSN 0141-0229 R&D Projects: GA MŠk(CZ) OC D30.001; GA MŠk(CZ) OC D13.10 Institutional research plan: CEZ:AV0Z40550506 Keywords : Geotrichum * lipase * enantioselectivity Subject RIV: CC - Organic Chemistry Impact factor: 1.705, year: 2005

  7. Lanthanide Lewis acid-mediated enantioselective conjugate radical additions.

    Science.gov (United States)

    Sibi, Mukund P; Manyem, Shankar

    2002-08-22

    [reaction: see text] Lanthanide triflates along with proline-derived ligands have been found to be efficient catalysts for enantioselective conjugate addition of nucleophilic radicals to enoates. N-Acyl oxazolidinones, when used as achiral additives, gave meaningful enhancements in the ees for the product.

  8. Selective catalytic reduction of nitric oxide with acetaldehyde over NaY zeolite catalyst in lean exhaust feed

    International Nuclear Information System (INIS)

    Schmieg, Steven J.; Cho, Byong K.; Oh, Se H.

    2004-01-01

    Steady-state selective catalytic reduction (SCR) of nitric oxide (NO) was investigated under simulated lean-burn conditions using acetaldehyde (CH 3 CHO) as the reductant. This work describes the influence of catalyst space velocity and the impact of nitric oxide, acetaldehyde, oxygen, sulfur dioxide, and water on NO x reduction activity over NaY zeolite catalyst. Results indicate that with sufficient catalyst volume 90% NO x conversion can be achieved at temperatures relevant to light-duty diesel exhaust (150-350C). Nitric oxide and acetaldehyde react to form N 2 , HCN, and CO 2 . Oxygen is necessary in the exhaust feed stream to oxidize NO to NO 2 over the catalyst prior to reduction, and water is required to prevent catalyst deactivation. Under conditions of excess acetaldehyde (C 1 :N>6:1) and low temperature ( x conversion is apparently very high; however, the NO x conversion steadily declines with time due to catalytic oxidation of some of the stored (adsorbed) NO to NO 2 , which can have a significant impact on steady-state NO x conversion. With 250ppm NO in the exhaust feed stream, maximum NO x conversion at 200C can be achieved with =400ppm of acetaldehyde, with higher acetaldehyde concentrations resulting in production of acetic acid and breakthrough of NO 2 causing lower NO x conversion levels. Less acetaldehyde is necessary at lower NO concentrations, while more acetaldehyde is required at higher temperatures. Sulfur in the exhaust feed stream as SO 2 can cause slow deactivation of the catalyst by poisoning the adsorption and subsequent reaction of nitric oxide and acetaldehyde, particularly at low temperature

  9. Catalytic exhaust control

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H

    1973-09-01

    Recent achievements and problems in the development of exhaust control devices in the USA are reviewed. To meet the 1976 emission standards, catalytic systems for the oxidation of carbon monoxide and hydrocarbons and for the reduction of nitrogen oxides to nitrogen and water are needed. While oxidizing catalysts using platinum, palladium, copper, vanadium, and chromium appplied on alumina or ceramic materials are more or less effective in emission control, there are no catalytic devices for the reduction of nitrogen oxides with the required useful life of 25,000 to 50,000 miles as yet available. In the case of platinum catalysts on monolithic supports, the operating temperature of 650 to 750/sup 0/C as required for the oxidation process may cause inactivation of the catalysts and fusion of the support material. The oxidation of CO and hydrocarbons is inhibited by high concentrations of CO, nitric oxide, and hydrocarbons. The use of catalytic converters requires the use of lead-free or low-lead gasoline. The nitrogen oxides conversion efficiency is considerably influenced by the oxygen-to-CO ratio of the exhaust gas, which makes limitation of this ratio necessary.

  10. Reaction mechanisms of CO2 activation and catalytic reduction

    International Nuclear Information System (INIS)

    Wolff, Niklas von

    2016-01-01

    The use of CO 2 as a C1 chemical feedstock for the fine chemical industry is interesting both economically and ecologically, as CO 2 is non-toxic, abundant and cheap. Nevertheless, transformations of CO 2 into value-added products is hampered by its high thermodynamic stability and its inertness toward reduction. In order to design new catalysts able to overcome this kinetic challenge, a profound understanding of the reaction mechanisms at play in CO 2 reduction is needed. Using novel N/Si+ frustrated Lewis pairs (FLPs), the influence of CO 2 adducts and different hydro-borane reducing agents on the reaction mechanism in the catalytic hydroboration of CO 2 were investigated, both by DFT calculations and experiments. In a second step, the reaction mechanism of a novel reaction for the creation of C-C bonds from CO 2 and pyridyl-silanes (C 5 H 4 N-SiMe 3 ) was analyzed by DFT calculations. It was shown that CO 2 plays a double role in this transformation, acting both as a catalyst and a C1-building block. The fine understanding of this transformation then led to the development of a novel approach for the synthesis of sulfones and sulfonamides. Starting from SO 2 and aromatic silanes/amine silanes, these products were obtained in a single step under metal-free conditions. Noteworthy, sulfones and sulfonamides are common motifs in organic chemistry and found in a variety of highly important drugs. Finally, this concept was extended to aromatic halides as coupling partners, and it was thus shown for the first time that a sulfonylative Hiyama reaction is a possible approach to the synthesis of sulfones. (author) [fr

  11. A New Mn–Salen Micellar Nanoreactor for Enantioselective Epoxidation of Alkenes in Water

    Directory of Open Access Journals (Sweden)

    Francesco P. Ballistreri

    2018-03-01

    Full Text Available A new chiral Mn–salen catalyst, functionalized with a long aliphatic chain and a choline group, able to act as surfactant catalyst for green epoxidation in water, is here described. This catalyst was employed with a commercial surfactant (CTABr leading to a nanoreactor for the enantioselective epoxidation of some selected alkenes in water, using NaClO as oxidant. This is the first example of a nanoreactor for enantioselective epoxidation of non-functionalized alkenes in water.

  12. An enantioselective synthesis of S-[gamma]-[(4-trifluoromethyl)phenoxy]benzenepropanamine-[3-[sup 14]C] hydrochloride, an important metabolite of fluoxetine hydrochloride

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, W.J. (Lilly (Eli) and Co., Indianapolis, IN (United States). Lilly Research Labs.)

    1992-06-01

    The S-enantiomer of [gamma]-[(4-trifluoromethyl)phenoxy]benzenepropanamine-[3-[sup 14]C] hydrochloride has been prepared in eight steps from acetophenone-[carbonyl-[sup 14]C]. The key step in the synthesis involved the enantioselective reduction of R-2-chloroacetophenone-[1-[sup 14]C]with (-)-diisopinocampheyl-chloroborane in an 86.5% yield. The chlorohydrin was converted to R-phenyloxirane-[1-[sup 14]C], which was subsequently converted to the corresponding R-cyanohydrin by reaction with TMS-CN/CaO. Borane reduction and arylation, followed by salt formation yielded S-[gamma]-[(4-trifluoromethyl)phenoxy]benzenepropanamine-[3-[sup 14]C] hydrochloride. (author).

  13. AuPd Bimetallic Nanocrystals Embedded in Magnetic Halloysite Nanotubes: Facile Synthesis and Catalytic Reduction of Nitroaromatic Compounds

    Directory of Open Access Journals (Sweden)

    Lei Jia

    2017-10-01

    Full Text Available In this research, a facile and effective approach was developed for the preparation of well-designed AuPd alloyed catalysts supported on magnetic halloysite nanotubes (HNTs@Fe3O4@AuPd. The microstructure and the magnetic properties of HNTs@Fe3O4@AuPd were confirmed by transmission electron microscopy (TEM, high resolution TEM (HRTEM, energy-dispersive X-ray spectroscopy (EDS, and vibrating sample magnetometry (VSM analyses. The catalysts, fabricated by a cheap, environmentally friendly, and simple surfactant-free formation process, exhibited high activities during the reduction of 4-nitrophenol and various other nitroaromatic compounds. Moreover, the catalytic activities of the HNTs@Fe3O4@AuPd nanocatalysts were tunable via adjusting the atomic ratio of AuPd during the synthesis. As compared with the monometallic nanocatalysts (HNTs@Fe3O4@Au and HNTs@Fe3O4@Pd, the bimetallic alloyed HNTs@Fe3O4@AuPd nanocatalysts exhibited excellent catalytic activities toward the reduction of 4-nitrophenol (4-NP to 4-aminophenol. Furthermore, the as-obtained HNTs@Fe3O4@AuPd can be recycled several times, while retaining its functionality due to the stability and magnetic separation property.

  14. Enantioselective cycloadditions with alpha,beta-disubstituted acrylimides.

    Science.gov (United States)

    Sibi, Mukund P; Ma, Zhihua; Itoh, Kennosuke; Prabagaran, Narayanasamy; Jasperse, Craig P

    2005-06-09

    [reaction: see text] The use of N-H imide templates provides a solution to the problem of rotamer control in Lewis acid catalyzed reactions of alpha,beta-disubstituted acryloyl imides. Reactions proceed through the s-cis rotamer and with improved reactivity because A(1,3) strain is avoided. Enantioselective nitrone, nitrile oxide, and Diels-Alder cycloadditions demonstrate the principle.

  15. Catalytic reduction of nitrate and nitrite ions by hydrogen : investigation of the reaction mechanism over Pd and Pd-Cu catalysts

    NARCIS (Netherlands)

    Ilinitch, OM; Nosova, LV; Gorodetskii, VV; Ivanov, VP; Trukhan, SN; Gribov, EN; Bogdanov, SV; Cuperus, FP

    2000-01-01

    The catalytic behavior of mono- and bimetallic catalysts with Pd and/or Cu supported over gamma-Al2O3 in the reduction of aqueous nitrate and nitrite ions by hydrogen was investigated. The composition of the supported metal catalysts was analysed using secondary ion mass spectroscopy (SIMS) and

  16. Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China

    Science.gov (United States)

    Li, Zhen; Jiang, Jingkun; Ma, Zizhen; Wang, Shuxiao; Duan, Lei

    2015-11-01

    Nitrogen oxides (NOx) emission abatement of coal-fired power plants (CFPPs) requires large-scaled installation of selective catalytic reduction (SCR), which would reduce secondary fine particulate matter (PM2.5) (by reducing nitrate aerosol) in the atmosphere. However, our field measurement of two CFPPs equipped with SCR indicates a significant increase of SO42- and NH4+ emission in primary PM2.5, due to catalytic enhancement of SO2 oxidation to SO3 and introducing of NH3 as reducing agent. The subsequent formation of (NH4)2SO4 or NH4HSO4 aerosol is commonly concentrated in sub-micrometer particulate matter (PM1) with a bimodal pattern. The measurement at the inlet of stack also showed doubled primary PM2.5 emission by SCR operation. This effect should therefore be considered when updating emission inventory of CFPPs. By rough estimation, the enhanced primary PM2.5 emission from CFPPs by SCR operation would offset 12% of the ambient PM2.5 concentration reduction in cities as the benefit of national NOx emission abatement, which should draw attention of policy-makers for air pollution control.

  17. Diesel Engine Emission Reduction Using Catalytic Nanoparticles: An Experimental Investigation

    Directory of Open Access Journals (Sweden)

    Ajin C. Sajeevan

    2013-01-01

    Full Text Available Cerium oxide being a rare earth metal with dual valance state existence has exceptional catalytic activity due to its oxygen buffering capability, especially in the nanosized form. Hence when used as an additive in the diesel fuel it leads to simultaneous reduction and oxidation of nitrogen dioxide and hydrocarbon emissions, respectively, from diesel engine. The present work investigates the effect of cerium oxide nanoparticles on performance and emissions of diesel engine. Cerium oxide nanoparticles were synthesized by chemical method and techniques such as TEM, EDS, and XRD have been used for the characterization. Cerium oxide was mixed in diesel by means of standard ultrasonic shaker to obtain stable suspension, in a two-step process. The influence of nanoparticles on various physicochemical properties of diesel fuel has also been investigated through extensive experimentation by means of ASTM standard testing methods. Load test was done in the diesel engine to investigate the effect of nanoparticles on the efficiency and the emissions from the engine. Comparisons of fuel properties with and without additives are also presented.

  18. Enantioselective Effects of Metalaxyl Enantiomers on Breast Cancer Cells Metabolic Profiling Using HPLC-QTOF-Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Ping Zhang

    2017-01-01

    Full Text Available In this study, an integrative high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF based metabolomics approach was performed to evaluate the enantioselective metabolic perturbations in MCF-7 cells after treatment with R-metalaxyl and S-metalaxyl, respectively. Untargeted metabolomics profile, multivariate pattern recognition, metabolites identification, and pathway analysis were determined after metalaxyl enantiomer exposure. Principal component analysis (PCA and partitial least-squares discriminant analysis (PLS-DA directly reflected the enantioselective metabolic perturbations induced by metalaxyl enantiomers. On the basis of multivariate statistical results, a total of 49 metabolites including carbohydrates, amino acids, nucleotides, fatty acids, organic acids, phospholipids, indoles, derivatives, etc. were found to be the most significantly changed metabolites and metabolic fluctuations caused by the same concentration of R-metalaxyl and S-metalaxyl were enantioselective. Pathway analysis indicated that R-metalaxyl and S-metalaxyl mainly affected the 7 and 10 pathways in MCF-7 cells, respectively, implying the perturbed pathways induced by metalaxyl enantiomers were also enantioselective. Furthermore, the significantly perturbed metabolic pathways were highly related to energy metabolism, amino acid metabolism, lipid metabolism, and antioxidant defense. Such results provide more specific insights into the enantioselective metabolic effects of chiral pesticides in breast cancer progression, reveal the underlying mechanisms, and provide available data for the health risk assessments of chiral environmental pollutants at the molecular level.

  19. Highly Enantioselective Production of (R-Halohydrins with Whole Cells of Rhodotorula rubra KCh 82 Culture

    Directory of Open Access Journals (Sweden)

    Tomasz Janeczko

    2014-12-01

    Full Text Available Biotransformation of ten α-haloacetophenones in the growing culture of the strain Rhodotorula rubra KCh 82 has been carried out. Nine of the substrates underwent an effective enantioselective reduction to the respective (R-alcohols according to Prelog’s rule, with the exception of 2-chloro-1,2-diphenylethan-1-one that was not transformed by this strain. The expected reduction proceeded without dehalogenation, leading to the respective (R-halohydrins in high yields. The use of this biocatalyst yielded (R-2-bromo-1-phenyl-ethan-1-ol (enantiomeric excess (ee = 97% and its derivatives: 4'-Bromo- (ee = 99%; 4'-Chloro- (ee > 99%; 4'-Methoxy- (ee = 96%; 3'-Methoxy- (ee = 93%; 2'-Methoxy- (ee = 98%. There were also obtained and characterized 2,4'-dichloro-, 2,2',4'-trichloro- and 2-chloro-4'-fluoro-phenyetan-1-ol with >99% of enantiomeric excesses.

  20. Highly enantioselective production of (R)-halohydrins with whole cells of Rhodotorula rubra KCh 82 culture.

    Science.gov (United States)

    Janeczko, Tomasz; Dymarska, Monika; Kostrzewa-Susłow, Edyta

    2014-12-04

    Biotransformation of ten α-haloacetophenones in the growing culture of the strain Rhodotorula rubra KCh 82 has been carried out. Nine of the substrates underwent an effective enantioselective reduction to the respective (R)-alcohols according to Prelog's rule, with the exception of 2-chloro-1,2-diphenylethan-1-one that was not transformed by this strain. The expected reduction proceeded without dehalogenation, leading to the respective (R)-halohydrins in high yields. The use of this biocatalyst yielded (R)-2-bromo-1-phenyl-ethan-1-ol (enantiomeric excess (ee) = 97%) and its derivatives: 4'-Bromo- (ee = 99%); 4'-Chloro- (ee > 99%); 4'-Methoxy- (ee = 96%); 3'-Methoxy- (ee = 93%); 2'-Methoxy- (ee = 98%). There were also obtained and characterized 2,4'-dichloro-, 2,2',4'-trichloro- and 2-chloro-4'-fluoro-phenyetan-1-ol with >99% of enantiomeric excesses.

  1. Pt skin coated hollow Ag-Pt bimetallic nanoparticles with high catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Fu, Tao; Huang, Jianxing; Lai, Shaobo; Zhang, Size; Fang, Jun; Zhao, Jinbao

    2017-10-01

    The catalytic activity and stability of electrocatalyst is critical for the commercialization of fuel cells, and recent reports reveal the great potential of the hollow structures with Pt skin coat for developing high-powered electrocatalysts due to their highly efficient utilization of the Pt atoms. Here, we provide a novel strategy to prepare the Pt skin coated hollow Ag-Pt structure (Ag-Pt@Pt) of ∼8 nm size at room temperature. As loaded on the graphene, the Ag-Pt@Pt exhibits a remarkable mass activity of 0.864 A/mgPt (at 0.9 V, vs. reversible hydrogen electrode (RHE)) towards oxygen reduction reaction (ORR), which is 5.30 times of the commercial Pt/C catalyst, and the Ag-Pt@Pt also shows a better stability during the ORR catalytic process. The mechanism of this significant enhancement can be attributed to the higher Pt utilization and the unique Pt on Ag-Pt surface structure, which is confirmed by the density functional theory (DFT) calculations and other characterization methods. In conclusion, this original work offers a low-cost and environment-friendly method to prepare a high active electrocatalyst with cheaper price, and this work also discloses the correlation between surface structures and ORR catalytic activity for the hollow structures with Pt skin coat, which can be instructive for designing novel advanced electrocatalysts for fuel cells.

  2. Direct enantioselective conjugate addition of carboxylic acids with chiral lithium amides as traceless auxiliaries.

    Science.gov (United States)

    Lu, Ping; Jackson, Jeffrey J; Eickhoff, John A; Zakarian, Armen

    2015-01-21

    Michael addition is a premier synthetic method for carbon-carbon and carbon-heteroatom bond formation. Using chiral dilithium amides as traceless auxiliaries, we report the direct enantioselective Michael addition of carboxylic acids. A free carboxyl group in the product provides versatility for further functionalization, and the chiral reagent can be readily recovered by extraction with aqueous acid. The method has been applied in the enantioselective total synthesis of the purported structure of pulveraven B.

  3. Two-stage Catalytic Reduction of NOx with Hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Umit S. Ozkan; Erik M. Holmgreen; Matthew M. Yung; Jonathan Halter; Joel Hiltner

    2005-12-21

    A two-stage system for the catalytic reduction of NO from lean-burn natural gas reciprocating engine exhaust is investigated. Each of the two stages uses a distinct catalyst. The first stage is oxidation of NO to NO{sub 2} and the second stage is reduction of NO{sub 2} to N{sub 2} with a hydrocarbon. The central idea is that since NO{sub 2} is a more easily reduced species than NO, it should be better able to compete with oxygen for the combustion reaction of hydrocarbon, which is a challenge in lean conditions. Early work focused on demonstrating that the N{sub 2} yield obtained when NO{sub 2} was reduced was greater than when NO was reduced. NO{sub 2} reduction catalysts were designed and silver supported on alumina (Ag/Al{sub 2}O{sub 3}) was found to be quite active, able to achieve 95% N{sub 2} yield in 10% O{sub 2} using propane as the reducing agent. The design of a catalyst for NO oxidation was also investigated, and a Co/TiO{sub 2} catalyst prepared by sol-gel was shown to have high activity for the reaction, able to reach equilibrium conversion of 80% at 300 C at GHSV of 50,000h{sup -1}. After it was shown that NO{sub 2} could be more easily reduced to N{sub 2} than NO, the focus shifted on developing a catalyst that could use methane as the reducing agent. The Ag/Al{sub 2}O{sub 3} catalyst was tested and found to be inactive for NOx reduction with methane. Through iterative catalyst design, a palladium-based catalyst on a sulfated-zirconia support (Pd/SZ) was synthesized and shown to be able to selectively reduce NO{sub 2} in lean conditions using methane. Development of catalysts for the oxidation reaction also continued and higher activity, as well as stability in 10% water, was observed on a Co/ZrO{sub 2} catalyst, which reached equilibrium conversion of 94% at 250 C at the same GHSV. The Co/ZrO{sub 2} catalyst was also found to be extremely active for oxidation of CO, ethane, and propane, which could potential eliminate the need for any separate

  4. L-Threonine-derived novel bifunctional phosphine-sulfonamide catalyst-promoted enantioselective aza-morita-Baylis-Hillman reaction

    KAUST Repository

    Zhong, Fangrui

    2011-03-18

    A series of novel bifunctional phosphine-sulfonamide organic catalysts were designed and readily prepared from natural amino acids, and they were utilized to promote enantioselective aza-Morita-Baylis-Hillman (MBH) reactions. l-Threonine-derived phosphine-sulfonamide 9b was found to be the most efficient catalyst, affording the desired aza-MBH adducts in high yields and with excellent enantioselectivities. © 2011 American Chemical Society.

  5. A microwave assisted one-pot route synthesis of bimetallic PtPd alloy cubic nanocomposites and their catalytic reduction for 4-nitrophenol

    Science.gov (United States)

    Zhang, Jian; Gan, Wei; Fu, Xucheng; Hao, Hequn

    2017-10-01

    We herein report a simple, rapid, and eco-friendly chemical route to the one-pot synthesis of bimetallic PtPd alloy cubic nanocomposites under microwave irradiation. During this process, water was employed as an environmentally benign solvent, while dimethylformamide served as a mild reducing agent, and polyvinylpyrrolidone was used as both a dispersant and a stabilizer. The structure, morphology, and composition of the resulting alloy nanocomposites were examined by x-ray diffraction, transmission electron microscopy, and energy dispersive x-ray spectroscopy. A detailed study was then carried out into the catalytic activity of the PtPd nanocomposites with a Pt:Pd molar ratio of 50:50 in the reduction of 4-nitrophenol (4-NP) by sodium borohydride as a model reaction. Compared with pristine Pt and Pd monometallic nanoparticles (PtNPs and PdNPs), the bimetallic PtPd alloy nanocomposites exhibited enhanced catalytic activities and were readily recyclable in the reduction of 4-NP due to synergistic effects.

  6. Selective catalytic reduction system and process for treating NOx emissions using a palladium and rhodium or ruthenium catalyst

    Science.gov (United States)

    Sobolevskiy, Anatoly [Orlando, FL; Rossin, Joseph A [Columbus, OH; Knapke, Michael J [Columbus, OH

    2011-07-12

    A process for the catalytic reduction of nitrogen oxides (NOx) in a gas stream (29) in the presence of H.sub.2 is provided. The process comprises contacting the gas stream with a catalyst system (38) comprising zirconia-silica washcoat particles (41), a pre-sulfated zirconia binder (44), and a catalyst combination (40) comprising palladium and at least one of rhodium, ruthenium, or a mixture of ruthenium and rhodium.

  7. Effects of metals on enantioselective toxicity and biotransformation of cis-bifenthrin in zebrafish.

    Science.gov (United States)

    Yang, Ye; Ji, Dapeng; Huang, Xin; Zhang, Jianyun; Liu, Jing

    2017-08-01

    Co-occurrence of pyrethroids and metals in watersheds previously has been reported to pose great risk to aquatic species. Pyrethroids are a class of chiral insecticides that have been shown to have enantioselective toxicity and biotransformation. However, the influence of metals on enantioselectivity of pyrethroids has not yet been evaluated. In the present study, the effects of cadmium (Cd), copper (Cu), and lead (Pb) on the enantioselective toxicity and metabolism of cis-bifenthrin (cis-BF) were investigated in zebrafish at environmentally relevant concentrations. The addition of Cd, Cu, or Pb significantly increased the mortality of zebrafish in racemate and R-enantiomer of cis-BF-treated groups. In rac-cis-BF- or 1R-cis-BF-treated groups, the addition of Cd, Cu, or Pb caused a decrease in enantiomeric fraction (EF) and an increased ratio of R-enantiomer residues in zebrafish. In 1S-cis-BF-treated groups, coexposure to Cd led to a lower EF and decreased residue levels of S-enantiomer. In addition, coexposure to the 3 metals resulted in different biodegradation characteristics of each enantiomer accompanied with differential changes in the expression of cytochrome P450 (CYP)1, CYP2, and CYP3 genes, which might be responsible for the enantioselective biodegradation of cis-BF in zebrafish. These results suggest that the influence of coexistent metals should be considered in the ecological risk assessment of chiral pyrethroids in aquatic environments. Environ Toxicol Chem 2017;36:2139-2146. © 2017 SETAC. © 2017 SETAC.

  8. Catalytic Wittig and aza-Wittig reactions

    Directory of Open Access Journals (Sweden)

    Zhiqi Lao

    2016-11-01

    Full Text Available This review surveys the literature regarding the development of catalytic versions of the Wittig and aza-Wittig reactions. The first section summarizes how arsenic and tellurium-based catalytic Wittig-type reaction systems were developed first due to the relatively easy reduction of the oxides involved. This is followed by a presentation of the current state of the art regarding phosphine-catalyzed Wittig reactions. The second section covers the field of related catalytic aza-Wittig reactions that are catalyzed by both phosphine oxides and phosphines.

  9. Asymmetric Hydrogenation of Seven-Membered C=N-containing Heterocycles and Rationalization of the Enantioselectivity.

    Science.gov (United States)

    Balakrishna, Bugga; Bauzá, Antonio; Frontera, Antonio; Vidal-Ferran, Anton

    2016-07-18

    Iridium(I) complexes with phosphine-phosphite ligands efficiently catalyze the enantioselective hydrogenation of diverse seven-membered C=N-containing heterocyclic compounds (eleven examples; up to 97 % ee). The P-OP ligand L3, which incorporates an ortho-diphenyl substituted octahydrobinol phosphite fragment, provided the highest enantioselectivities in the hydrogenation of most of the heterocyclic compounds studied. The observed stereoselection was rationalized by means of DFT calculations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Direct Enantioselective Conjugate Addition of Carboxylic Acids with Chiral Lithium Amides as Traceless Auxiliaries

    Science.gov (United States)

    2016-01-01

    Michael addition is a premier synthetic method for carbon–carbon and carbon–heteroatom bond formation. Using chiral dilithium amides as traceless auxiliaries, we report the direct enantioselective Michael addition of carboxylic acids. A free carboxyl group in the product provides versatility for further functionalization, and the chiral reagent can be readily recovered by extraction with aqueous acid. The method has been applied in the enantioselective total synthesis of the purported structure of pulveraven B. PMID:25562717

  11. Enantioselective Decarboxylative Alkylation Reactions: Catalyst Development, Substrate Scope, and Mechanistic Studies

    Science.gov (United States)

    Behenna, Douglas C.; Mohr, Justin T.; Sherden, Nathaniel H.; Marinescu, Smaranda C.; Harned, Andrew M.; Tani, Kousuke; Seto, Masaki; Ma, Sandy; Novák, Zoltán; Krout, Michael R.; McFadden, Ryan M.; Roizen, Jennifer L.; Enquist, John A.; White, David E.; Levine, Samantha R.; Petrova, Krastina V.; Iwashita, Akihiko; Virgil, Scott C.; Stoltz, Brian M.

    2012-01-01

    α-Quaternary ketones are accessed through novel enantioselective alkylations of allyl and propargyl electrophiles by unstabilized prochiral enolate nucleophiles in the presence of palladium complexes with various phosphinooxazoline (PHOX) ligands. Excellent yields and high enantiomeric excesses are obtained from three classes of enolate precursors: enol carbonates, enol silanes, and racemic β-ketoesters. Each of these substrate classes functions with nearly identical efficiency in terms of yield and enantioselectivity. Catalyst discovery and development, the optimization of reaction conditions, the exploration of reaction scope, and applications in target-directed synthesis are reported. Experimental observations suggest that these alkylation reactions occur through an unusual inner-sphere mechanism involving binding of the prochiral enolate nucleophile directly to the palladium center. PMID:22083969

  12. Enantioselective Decarboxylative Alkylation Reactions: Catalyst Development, Substrate Scope, and Mechanistic Studies

    KAUST Repository

    Behenna, Douglas C.; Mohr, Justin T.; Sherden, Nathaniel H.; Marinescu, Smaranda C.; Harned, Andrew M.; Tani, Kousuke; Seto, Masaki; Ma, Sandy; Nová k, Zoltá n; Krout, Michael R.; McFadden, Ryan M.; Roizen, Jennifer L.; Enquist, John A.; White, David E.; Levine, Samantha R.; Petrova, Krastina V.; Iwashita, Akihiko; Virgil, Scott C.; Stoltz, Brian M.

    2011-01-01

    α-Quaternary ketones are accessed through novel enantioselective alkylations of allyl and propargyl electrophiles by unstabilized prochiral enolate nucleophiles in the presence of palladium complexes with various phosphinooxazoline (PHOX) ligands. Excellent yields and high enantiomeric excesses are obtained from three classes of enolate precursor: enol carbonates, enol silanes, and racemic β-ketoesters. Each of these substrate classes functions with nearly identical efficiency in terms of yield and enantioselectivity. Catalyst discovery and development, the optimization of reaction conditions, the exploration of reaction scope, and applications in target-directed synthesis are reported. Experimental observations suggest that these alkylation reactions occur through an unusual inner-sphere mechanism involving binding of the prochiral enolate nucleophile directly to the palladium center.

  13. Enantioselective Decarboxylative Alkylation Reactions: Catalyst Development, Substrate Scope, and Mechanistic Studies

    KAUST Repository

    Behenna, Douglas C.

    2011-11-14

    α-Quaternary ketones are accessed through novel enantioselective alkylations of allyl and propargyl electrophiles by unstabilized prochiral enolate nucleophiles in the presence of palladium complexes with various phosphinooxazoline (PHOX) ligands. Excellent yields and high enantiomeric excesses are obtained from three classes of enolate precursor: enol carbonates, enol silanes, and racemic β-ketoesters. Each of these substrate classes functions with nearly identical efficiency in terms of yield and enantioselectivity. Catalyst discovery and development, the optimization of reaction conditions, the exploration of reaction scope, and applications in target-directed synthesis are reported. Experimental observations suggest that these alkylation reactions occur through an unusual inner-sphere mechanism involving binding of the prochiral enolate nucleophile directly to the palladium center.

  14. Effect of process parameters and injector position on the efficiency of NOx reduction by selective non catalytic reduction technique

    International Nuclear Information System (INIS)

    Hamid, A.; Mehmood, M.A.; Irfan, N.; Javed, M.T.; Waheed, K.

    2009-01-01

    An experimental investigation has been performed to study the effect of atomizer pressure dilution of the reducing reagent and the injector position on the efficiency or the NOx reduction by a selective non-catalytic reduction technique using urea as a reducing agent. Experiments were performed with a flow reactor in which flue gas was generated by the combustion of methane in air at stoichiometric amount of oxygen and the desired levels of initial NOx (400-450 ppm) were achieved by doping the flame with ammonia. The work was directed to investigate the effect of atomizer pressure, dilution of urea reagent and the injector position. The atomizer pressure was varied from 1 to 3bar and 20-25% increase in efficiency was observed by decreasing the pressure. Effect of dilution of urea solution was investigated by varying the strength of the solution from the 8 to 32% and 40-45% increase in the efficiency was observed. Effects of injector position was investigated by injecting the urea solution both in co current and counter current direction of the flue gases and 20-25% increase in the efficiency was observed in counter current direction. (author)

  15. Hydroxynitrile Lyases with α/β-Hydrolase Fold: Two Enzymes with Almost Identical 3D Structures but Opposite Enantioselectivities and Different Reaction Mechanisms

    Science.gov (United States)

    Andexer, Jennifer N; Staunig, Nicole; Eggert, Thorsten; Kratky, Christoph; Pohl, Martina; Gruber, Karl

    2012-01-01

    Hydroxynitrile lyases (HNLs) catalyze the cleavage of cyanohydrins to yield hydrocyanic acid (HCN) and the respective carbonyl compound and are key enzymes in the process of cyanogenesis in plants. In organic syntheses, HNLs are used as biocatalysts for the formation of enantiopure cyanohydrins. We determined the structure of the recently identified, R-selective HNL from Arabidopsis thaliana (AtHNL) at a crystallographic resolution of 2.5 Å. The structure exhibits an α/β-hydrolase fold, very similar to the homologous, but S-selective, HNL from Hevea brasiliensis (HbHNL). The similarities also extend to the active sites of these enzymes, with a Ser-His-Asp catalytic triad present in all three cases. In order to elucidate the mode of substrate binding and to understand the unexpected opposite enantioselectivity of AtHNL, complexes of the enzyme with both (R)- and (S)-mandelonitrile were modeled using molecular docking simulations. Compared to the complex of HbHNL with (S)-mandelonitrile, the calculations produced an approximate mirror image binding mode of the substrate with the phenyl rings located at very similar positions, but with the cyano groups pointing in opposite directions. A catalytic mechanism for AtHNL is proposed, in which His236 from the catalytic triad acts as a general base and the emerging negative charge on the cyano group is stabilized by main-chain amide groups and an α-helix dipole very similar to α/β-hydrolases. This mechanistic proposal is additionally supported by mutagenesis studies. PMID:22851196

  16. Synthesis of Superparamagnetic Core-Shell Structure Supported Pd Nanocatalysts for Catalytic Nitrite Reduction with Enhanced Activity, No Detection of Undesirable Product of Ammonium, and Easy Magnetic Separation Capability.

    Science.gov (United States)

    Sun, Wuzhu; Yang, Weiyi; Xu, Zhengchao; Li, Qi; Shang, Jian Ku

    2016-01-27

    Superparamagnetic nanocatalysts could minimize both the external and internal mass transport limitations and neutralize OH(-) produced in the reaction more effectively to enhance the catalytic nitrite reduction efficiency with the depressed product selectivity to undesirable ammonium, while possess an easy magnetic separation capability. However, commonly used qusi-monodispersed superparamagnetic Fe3O4 nanosphere is not suitable as catalyst support for nitrite reduction because it could reduce the catalytic reaction efficiency and the product selectivity to N2, and the iron leakage could bring secondary contamination to the treated water. In this study, protective shells of SiO2, polymethylacrylic acid, and carbon were introduced to synthesize Fe3O4@SiO2/Pd, Fe3O4@PMAA/Pd, and Fe3O4@C/Pd catalysts for catalytic nitrite reduction. It was found that SiO2 shell could provide the complete protection to Fe3O4 nanosphere core among these shells. Because of its good dispersion, dense structure, and complete protection to Fe3O4, the Fe3O4@SiO2/Pd catalyst demonstrated the highest catalytic nitrite reduction activity without the detection of NH4(+) produced. Due to this unique structure, the activity of Fe3O4@SiO2/Pd catalysts for nitrite reduction was found to be independent of the Pd nanoparticle size or shape, and their product selectivity was independent of the Pd nanoparticle size, shape, and content. Furthermore, their superparamagnetic nature and high saturation magnetization allowed their easy magnetic separation from treated water, and they also demonstrated a good stability during the subsequent recycling experiment.

  17. Enantioselective Construction of 3-Hydroxypiperidine Scaffolds by Sequential Action of Light and Rhodium upon N-Allylglyoxylamides.

    Science.gov (United States)

    Ishida, Naoki; Nečas, David; Masuda, Yusuke; Murakami, Masahiro

    2015-06-15

    3-Hydroxypiperidine scaffolds were enantioselectively constructed in an atom-economical way by sequential action of light and rhodium upon N-allylglyoxylamides. In a formal sense, the allylic C-H bond was selectively cleaved and enantioselectively added across the ketonic carbonyl group with migration of the double bond (carbonyl-ene-type reaction). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Graphene oxide nanoplatforms to enhance catalytic performance of iron phthalocyanine for oxygen reduction reaction in bioelectrochemical systems

    Science.gov (United States)

    Costa de Oliveira, Maida Aysla; Mecheri, Barbara; D'Epifanio, Alessandra; Placidi, Ernesto; Arciprete, Fabrizio; Valentini, Federica; Perandini, Alessando; Valentini, Veronica; Licoccia, Silvia

    2017-07-01

    We report the development of electrocatalysts based on iron phthalocyanine (FePc) supported on graphene oxide (GO), obtained by electrochemical oxidation of graphite in aqueous solution of LiCl, LiClO4, and NaClO4. Structure, surface chemistry, morphology, and thermal stability of the prepared materials were investigated by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, atomic force microscopy (AFM), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS). The catalytic activity toward oxygen reduction reaction (ORR) at neutral pH was evaluated by cyclic voltammetry. The experimental results demonstrate that the oxidation degree of GO supports affects the overall catalytic activity of FePc/GO, due to a modulation effect of the interaction between FePc and the basal plane of GO. On the basis of electrochemical, spectroscopic, and morphological investigations, FePc/GO_LiCl was selected to be assembled at the cathode side of a microbial fuel cell prototype, demonstrating a good electrochemical performance in terms of voltage and power generation.

  19. Cyclic aldimines as superior electrophiles for Cu-catalyzed decarboxylative Mannich reaction of β-ketoacids with a broad scope and high enantioselectivity.

    Science.gov (United States)

    Zhang, Heng-Xia; Nie, Jing; Cai, Hua; Ma, Jun-An

    2014-05-02

    A novel Cu-catalyzed enantioselective decarboxylative Mannich reaction of cyclic aldimines with β-ketoacids is described. The cyclic structure of these aldimines, in which the C═N bond is constrained in the Z geometry, appears to be important, allowing Mannich condensation to proceed in high yields with excellent enantioselectivities. A chiral chroman-4-amine was synthesized from the decarboxylative Mannich product in several steps without loss of enantioselectivity.

  20. Formal total syntheses of classic natural product target molecules via palladium-catalyzed enantioselective alkylation

    Directory of Open Access Journals (Sweden)

    Yiyang Liu

    2014-10-01

    Full Text Available Pd-catalyzed enantioselective alkylation in conjunction with further synthetic elaboration enables the formal total syntheses of a number of “classic” natural product target molecules. This publication highlights recent methods for setting quaternary and tetrasubstituted tertiary carbon stereocenters to address the synthetic hurdles encountered over many decades across multiple compound classes spanning carbohydrate derivatives, terpenes, and alkaloids. These enantioselective methods will impact both academic and industrial settings, where the synthesis of stereogenic quaternary carbons is a continuing challenge.

  1. Enantioselective degradation and enantiomerization of indoxacarb in soil.

    Science.gov (United States)

    Sun, Dali; Pang, Junxiao; Qiu, Jing; Li, Li; Liu, Chenglan; Jiao, Bining

    2013-11-27

    In this study, the enantioselective degradation and enantiomerizaton of indoxacarb were investigated in two soils under nonsterilized and sterilized conditions using a chiral OD-RH column on a reversed-phase HPLC. Under nonsterilized conditions, the degradation of indoxacarb in two soils was enantioselective. In acidic soil, the half-lives of R-(-)- and S-(+)-indoxacarb were 10.43 and 14.00 days, respectively. Acidic soil was preferential to the degradation of R-(-)-indoxacarb. In alkaline soil, the half-lives of R-(-)- and S-(+)-indoxacarb were 12.14 and 4.88 days, respectively. S-(+)-Indoxacarb was preferentially degraded. Under sterilized conditions, approximately 5-10% of the initial concentration degraded after 75 days of incubation in acidic soil, whereas in alkaline soil, approximately half of the initial concentration degraded due to chemical hydrolysis under alkaline conditions. Enantiomerization was also discovered in acidic and alkaline soils. The results showed that mutual transformation existed between two enantiomers and that S-(+)-indoxacarb had a significantly higher inversion rate to R-(-)-indoxacarb than its antipode.

  2. Selective catalytic reduction (SCR) NOx control for small natural gas-fired prime movers

    International Nuclear Information System (INIS)

    Shareef, G.S.; Stone, D.K.; Ferry, K.R.; Johnson, K.L.; Locke, K.S.

    1992-01-01

    The application of selective catalytic reduction (SCR) to small natural gas-fired prime movers at cogeneration facilities and compressor stations could possibly increase due to regulatory forces to limit NO x from such sources. The natural gas industry is presently without a current database with which to evaluate the cost and operating characteristics of SCR under the conditions anticipated for small prime movers. This paper presents the results from a two-phase study undertaken to document SCR applications with emphasis on SCR system performance and costs. The database of small natural gas-fired prime mover SCR experience, focusing on prime mover characterization, SCR system performance, and SCR system costs will be described. Result from analysis of performance and cost data will be discussed, including analytical tools developed to project SCR system performance and costs

  3. Chiral Nickel(II) Complex Catalyzed Enantioselective Doyle-Kirmse Reaction of α-Diazo Pyrazoleamides.

    Science.gov (United States)

    Lin, Xiaobin; Tang, Yu; Yang, Wei; Tan, Fei; Lin, Lili; Liu, Xiaohua; Feng, Xiaoming

    2018-03-07

    Although high enantioselectivity of [2,3]-sigmatropic rearrangement of sulfonium ylides (Doyle-Kirmse reaction) has proven surprisingly elusive using classic chiral Rh(II) and Cu(I) catalysts, in principle it is due to the difficulty in fine discrimination of the heterotopic lone pairs of sulfur and chirality inversion at sulfur of sulfonium ylides. Here, we show that the synergistic merger of new α-diazo pyrazoleamides and a chiral N, N'-dioxide-nickel(II) complex catalyst enables a highly enantioselective Doyle-Kirmse reaction. The pyrazoleamide substituent serves as both an activating and a directing group for the ready formation of a metal-carbene- and Lewis-acid-bonded ylide intermediate in the assistance of a dual-tasking nickel(II) complex. An alternative chiral Lewis-acid-bonded ylide pathway greatly improves the product enantiopurity even for the reaction of a symmetric diallylsulfane. The majority of transformations over a series of aryl- or vinyl-substituted α-diazo pyrazoleamindes and sulfides proceed rapidly (within 5-20 min in most cases) with excellent results (up to 99% yield and 96% ee), providing a breakthrough in enantioselective Doyle-Kirmse reaction.

  4. Enantioselective syntheses and biological studies of aeruginosin 298-A and its analogs: application of catalytic asymmetric phase-transfer reaction.

    Science.gov (United States)

    Fukuta, Yuhei; Ohshima, Takashi; Gnanadesikan, Vijay; Shibuguchi, Tomoyuki; Nemoto, Tetsuhiro; Kisugi, Takaya; Okino, Tatsufumi; Shibasaki, Masakatsu

    2004-04-13

    Aeruginosin 298-A was isolated from the freshwater cyanobacterium Microcystis aeruginosa (NIES-298) and is an equipotent thrombin and trypsin inhibitor. A variety of analogs were synthesized to gain insight into the structure-activity relations. We developed a versatile synthetic process for aeruginosin 298-A as well as several attractive analogs, in which all stereocenters were controlled by catalytic asymmetric phase-transfer reaction promoted by two-center asymmetric catalysts and catalytic asymmetric epoxidation promoted by a lanthanide-BINOL complex. Furthermore, serine protease inhibitory activities of aeruginosin 298-A and its analogs were examined.

  5. Kinetic mechanism and enantioselectivity of halohydrin dehalogenase from Agrobacterium radiobacter

    NARCIS (Netherlands)

    Tang, Lixia; Lutje Spelberg, Jeffrey H.; Fraaije, Marco W.; Janssen, DB

    2003-01-01

    Halohydrin dehalogenase (HheC) from Agrobacterium radiobacter AD1 catalyzes the reversible intramolecular nucleophilic displacement of a halogen by a hydroxyl group in vicinal haloalcohols, producing the corresponding epoxides. The enzyme displays high enantioselectivity toward some aromatic

  6. Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of Aspergillus sp. WL-Au

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wenli; Qu, Yuanyuan, E-mail: qyy@dlut.edu.cn; Pei, Xiaofang; Li, Shuzhen; You, Shengnan; Wang, Jingwei; Zhang, Zhaojing; Zhou, Jiti

    2017-01-05

    Highlights: • A green process for AuNPs synthesis was achieved by fungus Aspergillus. • Uniform spherical AuNPs with well dispersity and stability were biosynthesized. • The biogenic AuNPs possessed remarkable catalytic activities for 4-NP reduction. - Abstract: A facile one-pot eco-friendly process for synthesis of gold nanoparticles (AuNPs) with high catalytic activity was achieved using cell-free extracts of Aspergillus sp. WL-Au as reducing, capping and stabilizing agents. The surface plasmon resonance band of UV–vis spectrum at 532 nm confirmed the presence of AuNPs. Transmission electron microscopy images showed that quite uniform spherical AuNPs were synthesized and the average size of nanoparticles increased from 4 nm to 29 nm with reaction time. X-ray diffraction analysis verified the formation of nano-crystalline gold particles. Fourier transform infrared spectra showed the presence of functional groups on the surface of biosynthesized AuNPs, such as O−H, N−H, C=O, C−H, C−OH and C−O−C groups, which increased the stability of AuNPs. The biogenic AuNPs could serve as a highly efficient catalyst for 4-nitrophenol reduction. The reaction rate constant was linearly correlated with the concentration of AuNPs, which increased from 0.59 min{sup −1} to 1.51 min{sup −1} with the amount of AuNPs increasing form 1.46 × 10{sup −6} to 17.47 × 10{sup −6} mmol. Moreover, the as-synthesized AuNPs exhibited a remarkable normalized catalytic activity (4.04 × 10{sup 5} min{sup −1} mol{sup −1}), which was much higher than that observed for AuNPs synthesized by other biological and conventional chemical methods.

  7. Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of Aspergillus sp. WL-Au

    International Nuclear Information System (INIS)

    Shen, Wenli; Qu, Yuanyuan; Pei, Xiaofang; Li, Shuzhen; You, Shengnan; Wang, Jingwei; Zhang, Zhaojing; Zhou, Jiti

    2017-01-01

    Highlights: • A green process for AuNPs synthesis was achieved by fungus Aspergillus. • Uniform spherical AuNPs with well dispersity and stability were biosynthesized. • The biogenic AuNPs possessed remarkable catalytic activities for 4-NP reduction. - Abstract: A facile one-pot eco-friendly process for synthesis of gold nanoparticles (AuNPs) with high catalytic activity was achieved using cell-free extracts of Aspergillus sp. WL-Au as reducing, capping and stabilizing agents. The surface plasmon resonance band of UV–vis spectrum at 532 nm confirmed the presence of AuNPs. Transmission electron microscopy images showed that quite uniform spherical AuNPs were synthesized and the average size of nanoparticles increased from 4 nm to 29 nm with reaction time. X-ray diffraction analysis verified the formation of nano-crystalline gold particles. Fourier transform infrared spectra showed the presence of functional groups on the surface of biosynthesized AuNPs, such as O−H, N−H, C=O, C−H, C−OH and C−O−C groups, which increased the stability of AuNPs. The biogenic AuNPs could serve as a highly efficient catalyst for 4-nitrophenol reduction. The reaction rate constant was linearly correlated with the concentration of AuNPs, which increased from 0.59 min −1 to 1.51 min −1 with the amount of AuNPs increasing form 1.46 × 10 −6 to 17.47 × 10 −6 mmol. Moreover, the as-synthesized AuNPs exhibited a remarkable normalized catalytic activity (4.04 × 10 5 min −1 mol −1 ), which was much higher than that observed for AuNPs synthesized by other biological and conventional chemical methods.

  8. The development of catalytic nucleophilic additions of terminal alkynes in water.

    Science.gov (United States)

    Li, Chao-Jun

    2010-04-20

    One of the major research endeavors in synthetic chemistry over the past two decades is the exploration of synthetic methods that work under ambient atmosphere with benign solvents, that maximize atom utilization, and that directly transform natural resources, such as renewable biomass, from their native states into useful chemical products, thus avoiding the need for protecting groups. The nucleophilic addition of terminal alkynes to various unsaturated electrophiles is a classical (textbook) reaction in organic chemistry, allowing the formation of a C-C bond while simultaneously introducing the alkyne functionality. A prerequisite of this classical reaction is the stoichiometric generation of highly reactive metal acetylides. Over the past decade, our laboratory and others have been exploring an alternative, the catalytic and direct nucleophilic addition of terminal alkynes to unsaturated electrophiles in water. We found that various terminal alkynes can react efficiently with a wide range of such electrophiles in water (or organic solvent) in the presence of simple and readily available catalysts, such as copper, silver, gold, iron, palladium, and others. In this Account, we describe the development of these synthetic methods, focusing primarily on results from our laboratory. Our studies include the following: (i) catalytic reaction of terminal alkynes with acid chloride, (ii) catalytic addition of terminal alkynes to aldehydes and ketones, (iii) catalytic addition of alkynes to C=N bonds, and (iv) catalytic conjugate additions. Most importantly, these reactions can tolerate various functional groups and, in many cases, perform better in water than in organic solvents, clearly defying classical reactivities predicated on the relative acidities of water, alcohols, and terminal alkynes. We further discuss multicomponent and enantioselective reactions that were developed. These methods provide an alternative to the traditional requirement of separate steps in

  9. Enantioselective conjugate radical addition to alpha'-hydroxy enones.

    Science.gov (United States)

    Lee, Sunggi; Lim, Chae Jo; Kim, Sunggak; Subramaniam, Rajesh; Zimmerman, Jake; Sibi, Mukund P

    2006-09-14

    Enantioselective conjugate radical addition to alpha'-hydroxy alpha,beta-unsaturated ketones, compounds containing bidentate donors, has been investigated. It has been found that radical additions to alpha'-hydroxy alpha,beta-unsaturated ketones in the presence of Mg(NTf2)2 and bisoxazoline ligand 5a proceeded cleanly, yielding the addition products in high chemical yields and good enantiomeric excesses.

  10. Enantioselective [3+3] atroposelective annulation catalyzed by N-heterocyclic carbenes

    KAUST Repository

    Zhao, Changgui; Guo, Donghui; Munkerup, Kristin; Huang, Kuo-Wei; Li, Fangyi; Wang, Jian

    2018-01-01

    on the transition-metal-catalyzed transformations. Here, we report the enantioselective NHC-catalyzed (NHC: N-heterocyclic carbenes) atroposelective annulation of cyclic 1,3-diones with ynals. In the presence of NHC precatalyst, base, Lewis acid and oxidant, a

  11. Cu(I)-Catalyzed Enantioselective Friedel-Crafts Alkylation of Indoles with 2-Aryl-N-sulfonylaziridines as Alkylating Agents.

    Science.gov (United States)

    Ge, Chen; Liu, Ren-Rong; Gao, Jian-Rong; Jia, Yi-Xia

    2016-07-01

    A highly enantioselective Friedel-Crafts alkylation of indoles with N-sulfonylaziridines as alkylating agents has been developed by utilizing the complex of Cu(CH3CN)4BF4/(S)-Segphos as a catalyst. A range of optically active tryptamine derivatives are obtained in good to excellent yields and enantioselectivities (up to >99% ee) via a kinetic resolution process.

  12. A fuzzy logic urea dosage controller design for two-cell selective catalytic reduction systems.

    Science.gov (United States)

    You, Kun; Wei, Lijiang; Jiang, Kai

    2017-12-22

    Diesel engines have dominated in the heavy-duty vehicular and marine power source. However, the induced air pollution is a big problem. As people's awareness of environmental protection increasing, the emission regulations of diesel-engine are becoming more stringent. In order to achieve the emission regulations, the after-treatment system is a necessary choice. Specifically, the selective catalytic reduction (SCR) system has been widely applied to reduce the NO X emissions of diesel engine. Different from single-cell SCR systems, the two-cell systems have various benefits from the modeling and control perspective. In this paper, the urea dosage controller design for two-cell SCR systems was investigated. Firstly, the two-cell SCR modeling was introduced. Based on the developed model, the design procedure for the fuzzy logic urea dosage controller was well addressed. Secondly, simulations and comparisons were employed via an experimental verification of the whole vehicle simulator. And the results showed that the designed controller simultaneously achieved high NO X reduction rate and low tail-pipe ammonia slip. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  13. System and method for selective catalytic reduction of nitrogen oxides in combustion exhaust gases

    Science.gov (United States)

    Sobolevskiy, Anatoly; Rossin, Joseph A

    2014-04-08

    A multi-stage selective catalytic reduction (SCR) unit (32) provides efficient reduction of NOx and other pollutants from about 50-550.degree. C. in a power plant (19). Hydrogen (24) and ammonia (29) are variably supplied to the SCR unit depending on temperature. An upstream portion (34) of the SCR unit catalyzes NOx+NH.sub.3 reactions above about 200.degree. C. A downstream portion (36) catalyzes NOx+H.sub.2 reactions below about 260.degree. C., and catalyzes oxidation of NH.sub.3, CO, and VOCs with oxygen in the exhaust above about 200.degree. C., efficiently removing NOx and other pollutants over a range of conditions with low slippage of NH.sub.3. An ammonia synthesis unit (28) may be connected to the SCR unit to provide NH.sub.3 as needed, avoiding transport and storage of ammonia or urea at the site. A carbonaceous gasification plant (18) on site may supply hydrogen and nitrogen to the ammonia synthesis unit, and hydrogen to the SCR unit.

  14. Development of a choronocoulometric method for determining traces of uranium using the catalytic nitrate reduction

    International Nuclear Information System (INIS)

    Cantagallo, M.I.C.; Gutz, I.G.R.

    1990-01-01

    With the aim of improving the sensitivity of the electroanalytical determination of uranium at trace levels. The uranium catalyzed reduction of nitrate on mercury electrode and the technique of chronocoulometry were used. Several experimental parameters were investigated (electrolyte composition, potential program, integration time, blank correction, temperature, previous separation) and adequate conditions were selected for the analytical determination. Under these conditions it was possible to exceed the best reported sensitivity for the catalytic determination, extending the detection limit to 3.10 -10 M. Exploratory study of the combination of this procedure with pre-concentration of uranium ions on the electrode revealed a detection limit ten limes lower. (author) [pt

  15. Effects of a TiC substrate on the catalytic activity of Pt for NO reduction.

    Science.gov (United States)

    Chu, Xingli; Fu, Zhaoming; Li, Shasha; Zhang, Xilin; Yang, Zongxian

    2016-05-11

    Density functional theory calculations are used to elucidate the catalytic properties of a Pt monolayer supported on a TiC(001) substrate (Pt/TiC) toward NO reduction. It is found that the compound system of Pt/TiC has a good stability due to the strong Pt-TiC interaction. The diverse dissociation paths (namely the direct dissociation mechanism and the dimeric mechanism) are investigated. The transition state searching calculations suggest that NO has strong diffusion ability and small activation energy for dissociation on the Pt/TiC. For NO reduction on the Pt/TiC surface, we have found that the direct dissociation mechanisms (NO + N + O → NO2 + N and NO + N + O → N2 + O + O) are easier with a smaller dissociation barrier than those on the Pt(111) surface; and the dimeric process (NO + NO → (NO)2 → N2O + O → N2 + O + O) is considered to be dominant or significant with even a lower energy barrier than that of the direct dissociation. The results show that Pt/TiC can serve as an efficient catalyst for NO reduction.

  16. Liquid-phase pulsed laser ablation synthesis of graphitized carbon-encapsulated palladium core–shell nanospheres for catalytic reduction of nitrobenzene to aniline

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu-jin; Ma, Rory; Reddy, D. Amaranatha; Kim, Tae Kyu, E-mail: tkkim@pusan.ac.kr

    2015-12-01

    Graphical abstract: - Highlights: • Graphitized carbon-encapsulated palladium core–shell nanospheres fabricated by laser ablation. • Physical characterizations of synthesized Pd@C nanospheres. • Assessments of catalytic performance of Pd@C nanospheres for the reduction of nitrobenzene to aniline. • Significant improvement of the catalytic activity due to the graphitized carbon-layered structure and the high specific surface area. - Abstract: Graphitized carbon-encapsulated palladium (Pd) core–shell nanospheres were produced via pulsed laser ablation of a solid Pd foil target submerged in acetonitrile. The microstructural features and optical properties of these nanospheres were characterized via high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. Microstructural analysis indicated that the core–shell nanostructures consisted of single-crystalline cubic metallic Pd spheres that serve as the core material, over which graphitized carbon was anchored as a heterogeneous shell. The absorbance spectrum of the synthesized nanostructures exhibited a broad (absorption) band at ∼264 nm; this band corresponded to the typical inter-band transition of a metallic system and resulted possibly from the absorbance of the ionic Pd{sup 2+}. The catalytic properties of the Pd and Pd@C core–shell nanostructures were investigated using the reduction of nitrobenzene to aniline by an excess amount of NaBH{sub 4} in an aqueous solution at room temperature, as a model reaction. Owing to the graphitized carbon-layered structure and the high specific surface area, the resulting Pd@C nanostructures exhibited higher conversion efficiencies than their bare Pd counterparts. In fact, the layered structure provided access to the surface of the Pd nanostructures for the hydrogenation reaction, owing to the synergistic effect between graphitized carbon and the nanostructures. Their

  17. Liquid-phase pulsed laser ablation synthesis of graphitized carbon-encapsulated palladium core–shell nanospheres for catalytic reduction of nitrobenzene to aniline

    International Nuclear Information System (INIS)

    Kim, Yu-jin; Ma, Rory; Reddy, D. Amaranatha; Kim, Tae Kyu

    2015-01-01

    Graphical abstract: - Highlights: • Graphitized carbon-encapsulated palladium core–shell nanospheres fabricated by laser ablation. • Physical characterizations of synthesized Pd@C nanospheres. • Assessments of catalytic performance of Pd@C nanospheres for the reduction of nitrobenzene to aniline. • Significant improvement of the catalytic activity due to the graphitized carbon-layered structure and the high specific surface area. - Abstract: Graphitized carbon-encapsulated palladium (Pd) core–shell nanospheres were produced via pulsed laser ablation of a solid Pd foil target submerged in acetonitrile. The microstructural features and optical properties of these nanospheres were characterized via high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. Microstructural analysis indicated that the core–shell nanostructures consisted of single-crystalline cubic metallic Pd spheres that serve as the core material, over which graphitized carbon was anchored as a heterogeneous shell. The absorbance spectrum of the synthesized nanostructures exhibited a broad (absorption) band at ∼264 nm; this band corresponded to the typical inter-band transition of a metallic system and resulted possibly from the absorbance of the ionic Pd 2+ . The catalytic properties of the Pd and Pd@C core–shell nanostructures were investigated using the reduction of nitrobenzene to aniline by an excess amount of NaBH 4 in an aqueous solution at room temperature, as a model reaction. Owing to the graphitized carbon-layered structure and the high specific surface area, the resulting Pd@C nanostructures exhibited higher conversion efficiencies than their bare Pd counterparts. In fact, the layered structure provided access to the surface of the Pd nanostructures for the hydrogenation reaction, owing to the synergistic effect between graphitized carbon and the nanostructures. Their unique

  18. A Catalytic, Asymmetric Formal Synthesis of (+)-Hamigeran B

    KAUST Repository

    Mukherjee, Herschel

    2011-03-04

    A concise asymmetric, formal synthesis of (+)-hamigeran B is reported. A Pd-catalyzed, decarboxylative allylic alkylation, employing a trifluoromethylated derivative of t-BuPHOX, is utilized as the enantioselective step to form the critical quaternary carbon center in excellent yield and enantioselectivity. The product is converted in three steps to a late-stage intermediate previously used in the synthesis of hamigeran B.

  19. A Catalytic, Asymmetric Formal Synthesis of (+)-Hamigeran B

    KAUST Repository

    Mukherjee, Herschel; McDougal, Nolan T.; Virgil, Scott C.; Stoltz, Brian M.

    2011-01-01

    A concise asymmetric, formal synthesis of (+)-hamigeran B is reported. A Pd-catalyzed, decarboxylative allylic alkylation, employing a trifluoromethylated derivative of t-BuPHOX, is utilized as the enantioselective step to form the critical quaternary carbon center in excellent yield and enantioselectivity. The product is converted in three steps to a late-stage intermediate previously used in the synthesis of hamigeran B.

  20. Enantioselective Addition of Allyltin Reagents to Amino Aldehydes Catalyzed with Bis(oxazolinylphenylrhodium(III Aqua Complexes

    Directory of Open Access Journals (Sweden)

    Hisao Nishiyama

    2011-06-01

    Full Text Available Bis(oxazolinylphenylrhodium(III aqua complexes, (PheboxRhX2(H2O [X = Cl, Br], were found to be efficient Lewis acid catalysts for the enantioselective addition of allyl- and methallyltributyltin reagents to amino aldehydes. The reactions proceed smoothly in the presence of 5–10 mol % of (PheboxRhX2(H2O complex at ambient temperature to give the corresponding amino alcohols with modest to good enantioselectivity (up to 94% ee.

  1. Dynamic structural change of the self-assembled lanthanum complex induced by lithium triflate for direct catalytic asymmetric aldol-Tishchenko reaction.

    Science.gov (United States)

    Horiuchi, Yoshihiro; Gnanadesikan, Vijay; Ohshima, Takashi; Masu, Hyuma; Katagiri, Kosuke; Sei, Yoshihisa; Yamaguchi, Kentaro; Shibasaki, Masakatsu

    2005-09-05

    The development of a direct catalytic asymmetric aldol-Tishchenko reaction and the nature of its catalyst are described. An aldol-Tishchenko reaction of various propiophenone derivatives with aromatic aldehydes was promoted by [LaLi3(binol)3] (LLB), and reactivity and enantioselectivity were dramatically enhanced by the addition of lithium trifluoromethanesulfonate (LiOTf). First, we observed a dynamic structural change of LLB by the addition of LiOTf using 13C NMR spectroscopy, electronspray ionization mass spectrometry (ESI-MS), and cold-spray ionization mass spectrometry (CSI-MS). X-ray crystallography revealed that the structure of the newly generated self-assembled complex was a binuclear [La2Li4(binaphthoxide)5] complex 6. A reverse structural change of complex 6 to LLB by the addition of one equivalent of Li2(binol) was also confirmed by ESI-MS and experimental results. The drastic concentration effects on the direct catalytic asymmetric aldol-Tishchenko reaction suggested that the addition of LiOTf to LLB generated an active oligomeric catalyst species.

  2. Enantioselective synthesis of chiral 3-aryl-1-indanones through rhodium-catalyzed asymmetric intramolecular 1,4-addition.

    Science.gov (United States)

    Yu, Yue-Na; Xu, Ming-Hua

    2013-03-15

    Enantioselective synthesis of potentially useful chiral 3-aryl-1-indanones was achieved through a rhodium-catalyzed asymmetric intramolecular 1,4-addition of pinacolborane chalcone derivatives using extraordinary simple MonoPhos as chiral ligand under relatively mild conditions. This novel protocol offers an easy access to a wide variety of enantioenriched 3-aryl-1-indanone derivatives in high yields (up to 95%) with excellent enantioselectivities (up to 95% ee).

  3. Silica-Supported Catalyst for Enantioselective Arylation of Aldehydes under Batch and Continuous-Flow Conditions.

    Science.gov (United States)

    Watanabe, Satoshi; Nakaya, Naoyuki; Akai, Junichiro; Kanaori, Kenji; Harada, Toshiro

    2018-05-04

    A silica-supported 3-aryl H 8 -BINOL-derived titanium catalyst exhibited high performance in the enantioselective arylation of aromatic aldehydes using Grignard and organolithium reagents not only under batch conditions but also under continuous-flow conditions. Even with a simple pipet reactor packed with the heterogeneous catalyst, the enantioselective production of chiral diarylmethanols could be achieved through a continuous introduction of aldehydes and mixed titanium reagents generated from the organometallic precursors. The pipet reactor could be used repeatedly in different reactions without appreciable deterioration of the activity.

  4. Abroma augusta Linn bark extract-mediated green synthesis of gold nanoparticles and its application in catalytic reduction

    Science.gov (United States)

    Das, Subhajit; Bag, Braja Gopal; Basu, Ranadhir

    2015-10-01

    The bark extract of Abroma augusta Linn is rich in medicinally important phytochemicals including antioxidants and polyphenols. First one step green synthesis of gold nanoparticles (AuNPs) has been described utilizing the bark extract of Abroma augusta L. and chloroauric acid under very mild reaction conditions. The phytochemicals present in the bark extract acted both as a reducing as well as a stabilizing agent, and no additional stabilizing and capping agents were needed. Detailed characterizations of the stabilized AuNPs were carried out by surface plasmon resonance spectroscopy, high resolution transmission electron microscopy, and X-ray diffraction studies. The catalytic activity of the freshly synthesized gold nanoparticles has been demonstrated for the sodium borohydride reduction of 4-nitrophenol to 4-aminophenol, and the kinetics of the reduction reaction have been studied spectrophotometrically.

  5. Enantioselective developmental toxicity and immunotoxicity of pyraclofos toward zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Shulin, E-mail: shulin@zju.edu.cn [Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058 (China); Zhang, Zhisheng [Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhang, Wenjing; Bao, Lingling [Institute of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058 (China); Xu, Chao, E-mail: chaoxu@zjut.edu.cn [Research Center of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Zhang, Hu [Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 210021 (China)

    2015-02-15

    Highlights: • Pyraclofos has significant enantioselective aquatic toxicities to zebrafish. • Pyraclofos induces time- and concentration-dependent developmental toxicity and immunotoxicity. • The mRNA level of IL-1β gene was significantly up-regulated by pyraclofos. • Pyraclofos binds potently to IL-1β, potentially affecting IL-1β-dependent proinflammatory signal transduction. • Our in vitro and in silico studies help to understand the molecular basis for aquatic toxicity of pyraclofos. - Abstract: Pyraclofos, a relatively new organophosphorus pesticide, has shown potential ecotoxicities, however, its aquatic toxicity, especially enantioselective aquatic toxicity, remains largely unknown. Using zebrafish (Danio rerio) as a preeminent vertebrate aquatic model, the enantioselective differences in the developmental toxicity and immunotoxicity of pyraclofos were evaluated. Following 96-h exposure, pyraclofos enantiomers exhibited acute toxicity and showed lethal concentration 50 of 2.23 and 3.99 mg/L for (R)-Pyraclofos and (S)-Pyraclofos, respectively. Exposure to pyraclofos caused time- and concentration-dependent malformations such as pericardial edema, yolk sac edema, crooked bodies and hatching during the embryonic development, with markedly higher percentages of malformation at higher concentrations. The concentration-dependent immunotoxicity to zebrafish embryo exposed to low level pyraclofos was induced with significant up-regulation of mRNA levels of immune-related interleukin-1β (IL-1β) gene. (R)-Pyraclofos was consistently more toxic than (S)-Pyraclofos for the acute toxicity, developmental toxicity and immunotoxicity to zebrafish. Molecular dynamics simulations revealed that at the atomic level, (R)-Pyraclofos binds more potently to IL-1β protein than (S)-Pyraclofos. This enantioselective binding is mainly contributed by the distinct binding mode of pyraclofos enantiomers and their electrostatic interactions with IL-1β, which potentially

  6. Enantioselective developmental toxicity and immunotoxicity of pyraclofos toward zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    Zhuang, Shulin; Zhang, Zhisheng; Zhang, Wenjing; Bao, Lingling; Xu, Chao; Zhang, Hu

    2015-01-01

    Highlights: • Pyraclofos has significant enantioselective aquatic toxicities to zebrafish. • Pyraclofos induces time- and concentration-dependent developmental toxicity and immunotoxicity. • The mRNA level of IL-1β gene was significantly up-regulated by pyraclofos. • Pyraclofos binds potently to IL-1β, potentially affecting IL-1β-dependent proinflammatory signal transduction. • Our in vitro and in silico studies help to understand the molecular basis for aquatic toxicity of pyraclofos. - Abstract: Pyraclofos, a relatively new organophosphorus pesticide, has shown potential ecotoxicities, however, its aquatic toxicity, especially enantioselective aquatic toxicity, remains largely unknown. Using zebrafish (Danio rerio) as a preeminent vertebrate aquatic model, the enantioselective differences in the developmental toxicity and immunotoxicity of pyraclofos were evaluated. Following 96-h exposure, pyraclofos enantiomers exhibited acute toxicity and showed lethal concentration 50 of 2.23 and 3.99 mg/L for (R)-Pyraclofos and (S)-Pyraclofos, respectively. Exposure to pyraclofos caused time- and concentration-dependent malformations such as pericardial edema, yolk sac edema, crooked bodies and hatching during the embryonic development, with markedly higher percentages of malformation at higher concentrations. The concentration-dependent immunotoxicity to zebrafish embryo exposed to low level pyraclofos was induced with significant up-regulation of mRNA levels of immune-related interleukin-1β (IL-1β) gene. (R)-Pyraclofos was consistently more toxic than (S)-Pyraclofos for the acute toxicity, developmental toxicity and immunotoxicity to zebrafish. Molecular dynamics simulations revealed that at the atomic level, (R)-Pyraclofos binds more potently to IL-1β protein than (S)-Pyraclofos. This enantioselective binding is mainly contributed by the distinct binding mode of pyraclofos enantiomers and their electrostatic interactions with IL-1β, which potentially

  7. The origin of enantioselectivity in the l-threonine-derived phosphine-sulfonamide catalyzed aza-Morita-Baylis-Hillman reaction: Effects of the intramolecular hydrogen bonding

    KAUST Repository

    Lee, Richmond

    2013-01-01

    l-Threonine-derived phosphine-sulfonamide 4 was identified as the most efficient catalyst to promote enantioselective aza-Morita-Baylis-Hillman (MBH) reactions, affording the desired aza-MBH adducts with excellent enantioselectivities. Density functional theory (DFT) studies were carried out to elucidate the origin of the observed enantioselectivity. The importance of the intramolecular N-H⋯O hydrogen-bonding interaction between the sulfonamide and enolate groups was identified to be crucial in inducing a high degree of stereochemical control in both the enolate addition to imine and the subsequent proton transfer step, affording aza-MBH reactions with excellent enantioselectivity. © 2013 The Royal Society of Chemistry.

  8. Enhanced catalytic activity over MIL-100(Fe) loaded ceria catalysts for the selective catalytic reduction of NO{sub x} with NH{sub 3} at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng [School of Environmental Science and Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), Dalian 116024 (China); Sun, Hong [School of Environmental & Chemical Engineering, Dalian Jiaotong University, Dalian 116028 (China); Quan, Xie, E-mail: quanxie@dlut.edu.cn [School of Environmental Science and Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), Dalian 116024 (China); Chen, Shuo [School of Environmental Science and Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), Dalian 116024 (China)

    2016-01-15

    Highlights: • Nano-ceria was successfully encapsulated into MIL-100(Fe) for the SCR of NO{sub x}. • The incorporated ceria in MIL-100(Fe) showed high content of chemisorbed oxygen. • The added ceria into MIL-100(Fe) improved the formation of adsorbed NO{sub 2} species. • The addition of ceria into MIL-100(Fe) enhanced SCR activity at low temperature. - Abstract: The development of catalysts for selective catalytic reduction (SCR) reactions that are highly active at low temperatures and show good resistance to SO{sub 2} and H{sub 2}O is still a challenge. In this study, we have designed and developed a high-performance SCR catalyst based on nano-sized ceria encapsulated inside the pores of MIL-100(Fe) that combines excellent catalytic power with a metal organic framework architecture synthesized by the impregnation method (IM). Transmission electron microscopy (TEM) revealed the encapsulation of ceria in the cavities of MIL-100(Fe). The prepared IM-CeO{sub 2}/MIL-100(Fe) catalyst shows improved catalytic activity both at low temperatures and throughout a wide temperature window. The temperature window for 90% NO{sub x} conversion ranges from 196 to 300 °C. X-ray photoelectron spectroscopy (XPS) and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) analysis indicated that the nano-sized ceria encapsulated inside MIL-100(Fe) promotes the production of chemisorbed oxygen on the catalyst surface, which greatly enhances the formation of the NO{sub 2} species responsible for fast SCR reactions.

  9. Asymmetric Chemoenzymatic Reductive Acylation of Ketones by a Combined Iron-Catalyzed Hydrogenation-Racemization and Enzymatic Resolution Cascade

    KAUST Repository

    El-Sepelgy, Osama; Brzozowska, Aleksandra; Rueping, Magnus

    2017-01-01

    . By merging the iron-catalyzed redox reactions with enantioselective enzymatic acylations a wide range of benzylic, aliphatic and (hetero)aromatic ketones, as well as diketones, were reductively acylated. The corresponding products were isolated with high

  10. Exploiting the enantioselectivity of Baeyer-Villiger monooxygenases via boron oxidation

    NARCIS (Netherlands)

    Brondani, Patricia B.; Dudek, Hanna; Reis, Joel S.; Fraaije, Marco W.; Andrade, Leandro H.

    2012-01-01

    The enantioselective carbon-boron bond oxidation of several chiral boron-containing compounds by Baeyer-Villiger monooxygenases was evaluated. PAMO and M446G PAMO conveniently oxidized 1-phenylethyl boronate into the corresponding 1-(phenyl)ethanol (ee = 82-91%). Cyclopropyl boronic esters were also

  11. Selective catalytic reduction of nitrogen oxides from industrial gases by hydrogen or methane; Reduction catalytique selective des oxydes d'azote (NO{sub x}) provenant d'effluents gazeux industriels par l'hydrogene ou le methane

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann Pirez, M

    2004-12-15

    This work deals with the selective catalytic reduction of nitrogen oxides (NO{sub x}), contained in the effluents of industrial plants, by hydrogen or methane. The aim is to replace ammonia, used as reducing agent, in the conventional process. The use of others reducing agents such as hydrogen or methane is interesting for different reasons: practical, economical and ecological. The catalyst has to convert selectively NO into N{sub 2}, in presence of an excess of oxygen, steam and sulfur dioxide. The developed catalyst is constituted by a support such as perovskites, particularly LaCoO{sub 3}, on which are dispersed noble metals (palladium, platinum). The interaction between the noble metal and the support, generated during the activation of the catalyst, allows to minimize the water and sulfur dioxide inhibitor phenomena on the catalytic performances, particularly in the reduction of NO by hydrogen. (O.M.)

  12. Synthesis of l-threitol-based crown ethers and their application as enantioselective phase transfer catalyst in Michael additions.

    Science.gov (United States)

    Rapi, Zsolt; Nemcsok, Tamás; Pálvölgyi, Ádám; Keglevich, György; Grün, Alajos; Bakó, Péter

    2017-06-01

    A few new l-threitol-based lariat ethers incorporating a monoaza-15-crown-5 unit were synthesized starting from diethyl l-tartrate. These macrocycles were used as phase transfer catalysts in asymmetric Michael addition reactions under mild conditions to afford the adducts in a few cases in good to excellent enantioselectivities. The addition of 2-nitropropane to trans-chalcone, and the reaction of diethyl acetamidomalonate with β-nitrostyrene resulted in the chiral Michael adducts in good enantioselectivities (90% and 95%, respectively). The substituents of chalcone had a significant impact on the yield and enantioselectivity in the reaction of diethyl acetoxymalonate. The highest enantiomeric excess (ee) values (99% ee) were measured in the case of 4-chloro- and 4-methoxychalcone. The phase transfer catalyzed cyclopropanation reaction of chalcone and benzylidene-malononitriles using diethyl bromomalonate as the nucleophile (MIRC reaction) was also developed. The corresponding chiral cyclopropane diesters were obtained in moderate to good (up to 99%) enantioselectivities in the presence of the threitol-based crown ethers. © 2017 Wiley Periodicals, Inc.

  13. System and method for controlling an engine based on ammonia storage in multiple selective catalytic reduction catalysts

    Science.gov (United States)

    Sun, MIn; Perry, Kevin L.

    2015-11-20

    A system according to the principles of the present disclosure includes a storage estimation module and an air/fuel ratio control module. The storage estimation module estimates a first amount of ammonia stored in a first selective catalytic reduction (SCR) catalyst and estimates a second amount of ammonia stored in a second SCR catalyst. The air/fuel ratio control module controls an air/fuel ratio of an engine based on the first amount, the second amount, and a temperature of a substrate disposed in the second SCR catalyst.

  14. Catalytic pyrolysis of LDPE leads to valuable resource recovery and reduction of waste problems

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Jasmin [Institute of Chemical Sciences, University of Peshawar, N.W.F.P. (Pakistan); Jan, M. Rasul [University of Malakand, Chakdara, N.W.F.P. (Pakistan); Mabood, Fazal [Department of Chemistry, University of Malakand, Chakdara, N.W.F.P. (Pakistan); Jabeen, Farah [Department of Chemistry, Sarhad University, N.W.F.P. (Pakistan)

    2010-12-15

    . This was further confirmed by Bromine number tests. The values of which lie in the range of 0.1-12.8 g/ml, which fall in the range for olefin mixture. Phenol and carbonyl contents were quantified using UV/Visible spectroscopy and the values lie in the range of 1-8920 {mu}g/ml and 5-169 {mu}g/ml for both phenols and carbonyls respectively. The components of different hydrocarbons in the oil mixture were separated by using column chromatography and fractional distillation followed by characterization with FT-IR spectroscopy. The interpretation of FT-IR spectra shows that catalytic pyrolysis of LDPE leads to the formation of a complex mixture of alkanes, alkenes, carbonyl group containing compounds like aldehydes, ketones, aromatic compounds and substituted aromatic compounds like phenols. It could be concluded, that catalytic pyrolysis of LDPE leads to valuable resource recovery and reduction of waste problem. (author)

  15. Pyrones to pyrans: enantioselective radical additions to acyloxy pyrones.

    Science.gov (United States)

    Sibi, Mukund P; Zimmerman, Jake

    2006-10-18

    This paper describes a highly site-, diastereo-, and enantioselective intermolecular radical addition/hydrogen atom transfer to hydroxypyrone pyromeconic and kojic acids. The methodology can be extended to the formation of chiral quaternary centers. The products obtained are densely functionalized pyran moieties. The products contain structural features amenable for the introduction of additional substituents.

  16. Catalytic reduction of organic dyes at gold nanoparticles impregnated silica materials: influence of functional groups and surfactants

    International Nuclear Information System (INIS)

    Azad, Uday Pratap; Ganesan, Vellaichamy; Pal, Manas

    2011-01-01

    Gold nanoparticles (Au NPs) in three different silica based sol–gel matrixes with and without surfactants are prepared. They are characterized by UV–vis absorbance and transmission electron microscopic (TEM) studies. The size and shape of Au NPs varied with the organo-functional group present in the sol–gel matrix. In the presence of mercaptopropyl functionalized organo-silica, large sized (200–280 nm) spherical Au NPs are formed whereas in the presence of aminopropyl functionalized organo-silica small sized (5–15 nm) Au NPs are formed inside the tube like organo-silica. Further, it is found that Au NPs act as efficient catalyst for the reduction of organic dyes. The catalytic rate constant is evaluated from the decrease in absorbance of the dye molecules. Presence of cationic or anionic surfactants greatly influences the catalytic reaction. The other factors like hydrophobicity of the organic dyes, complex formation of the dyes with anionic surfactants, repulsion between dyes and cationic surfactant, adsorption of dyes on the Au NPs also play important role on the reaction rate.

  17. Catalytic reduction of organic dyes at gold nanoparticles impregnated silica materials: influence of functional groups and surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Azad, Uday Pratap; Ganesan, Vellaichamy, E-mail: velganesh@yahoo.com; Pal, Manas [Banaras Hindu University, Department of Chemistry, Faculty of Science (India)

    2011-09-15

    Gold nanoparticles (Au NPs) in three different silica based sol-gel matrixes with and without surfactants are prepared. They are characterized by UV-vis absorbance and transmission electron microscopic (TEM) studies. The size and shape of Au NPs varied with the organo-functional group present in the sol-gel matrix. In the presence of mercaptopropyl functionalized organo-silica, large sized (200-280 nm) spherical Au NPs are formed whereas in the presence of aminopropyl functionalized organo-silica small sized (5-15 nm) Au NPs are formed inside the tube like organo-silica. Further, it is found that Au NPs act as efficient catalyst for the reduction of organic dyes. The catalytic rate constant is evaluated from the decrease in absorbance of the dye molecules. Presence of cationic or anionic surfactants greatly influences the catalytic reaction. The other factors like hydrophobicity of the organic dyes, complex formation of the dyes with anionic surfactants, repulsion between dyes and cationic surfactant, adsorption of dyes on the Au NPs also play important role on the reaction rate.

  18. On the Pt(+) and Rh(+) Catalytic Activity in the Nitrous Oxide Reduction by Carbon Monoxide.

    Science.gov (United States)

    Rondinelli, F; Russo, N; Toscano, M

    2008-11-11

    Nitrous oxide activation by CO in the presence of platinum and rhodium monocations was elucidated by density functional methods for ground and first excited states. Platinum and rhodium cations fulfill the thermodynamic request for the oxygen-atom transport that allows the catalytic cycle to be completed, but actually, just the first one meaningfully improves the kinetics of the process. For both catalysts, the reaction pathways show the only activation barrier in correspondence of nitrogen release and monoxide cation formation. The kinetic analysis of the potential energy profile, in agreement with ICP/SIFT MS experimental data, indicates that platinum performs more in the reduction, while the whole process is not sufficiently fast in the case of rhodium ionic catalyst.

  19. Pd(II)-Catalyzed Enantioselective C-H Olefination of Diphenylacetic Acids

    Science.gov (United States)

    Shi, Bing-Feng; Zhang, Yang-Hui; Lam, Jonathan K.; Wang, Dong-Hui; Yu, Jin-Quan

    2009-01-01

    Pd(II)-catalyzed enantioselective C-H olefination of diphenylacetic acid substrates has been achieved through the use of mono-protected chiral amino acid ligands. The absolute configuration of the resulting olefinated products is consistent with that of a proposed C-H insertion intermediate. PMID:20017549

  20. Enantioselective cytotoxicity of the insecticide bifenthrin on a human amnion epithelial (FL) cell line

    International Nuclear Information System (INIS)

    Liu Huigang; Zhao Meirong; Zhang Cong; Ma Yun; Liu Weiping

    2008-01-01

    Synthetic pyrethroids (SPs) are used in preference to organochlorines and organophosphates due to their high efficiency, low toxicity to mammals, and ready biodegradability. Previous studies reported that enantioselective toxicity of SPs occurs in aquatic toxicity. Several studies have indicated that SPs could lead to oxidative damage in humans or animals which was associated with their toxic effects. Little is known about the differences in the effects of chronic toxicity induced by individual stereoisomers of chiral SPs. The present study was therefore undertaken to evaluate the enantioselectivity in cytotoxicity, genotoxicity caused by bifenthrin (BF) on human amnion epithelial (FL) cell lines and pesticidal activity on target organism. The cell proliferation and cytoflow analysis indicated that 1S-cis-BF presented more toxic effects than 1R-cis-BF above the concentration of 7.5 mg L -1 (p > 0.05). FL cells incubated with 1S-cis-BF exhibited a dose-dependent accumulation of intracellular reactive oxygen species (ROS). In the comet assay, the number of cells with damaged DNA incubated with 1S-cis-BF was more than that with 1R-cis-BF (p 50 values of enantiomer to the target pest on Pieris rapae L. show that 1R-cis-BF was 300 times more active than 1S-cis-BF. These results indicate that the enantioselective toxicity and activity of BF between non-target organism and target organism was reversal. These implications together suggest that assessment of the environmental safety and new pesticides development with chiral centers should consider enantioselectivity

  1. EMISSION REDUCTION FROM A DIESEL ENGINE FUELED BY CERIUM OXIDE NANO-ADDITIVES USING SCR WITH DIFFERENT METAL OXIDES COATED CATALYTIC CONVERTER

    Directory of Open Access Journals (Sweden)

    B. JOTHI THIRUMAL

    2015-11-01

    Full Text Available This paper reports the results of experimental investigations on the influence of the addition of cerium oxide in nanoparticle form on the major physiochemical properties and the performance of diesel. The fuel is modified by dispersing the catalytic nanoparticle by ultrasonic agitation. The physiochemical properties of sole diesel fuel and modified fuel are tested with ASTM standard procedures. The effects of the additive nanoparticles on the individual fuel properties, the engine performance, and emissions are studied, and the dosing level of the additive is optimized. Cerium oxide acts as an oxygen-donating catalyst and provides oxygen for the oxidation of CO during combustion. The active energy of cerium oxide acts to burn off carbon deposits within the engine cylinder at the wall temperature and prevents the deposition of non-polar compounds on the cylinder wall which results in reduction in HC emission by 56.5%. Furthermore, a low-cost metal oxide coated SCR (selective catalyst reduction, using urea as a reducing agent, along with different types of CC (catalytic converter, has been implemented in the exhaust pipe to reduce NOx. It was observed that a reduction in NOx emission is 50–60%. The tests revealed that cerium oxide nanoparticles can be used as an additive in diesel to improve complete combustion of the fuel and reduce the exhaust emissions significantly.

  2. PARAMETRIC EVALUATION OF VOC CONVERSION VIA CATALYTIC INCINERATION

    Directory of Open Access Journals (Sweden)

    Kaskantzis Neto G.

    1997-01-01

    Full Text Available Abstract - A pilot-scale catalytic incineration system was used to investigate the effectiveness of catalytic incineration as a means of reducing volatile organic compound (VOC air pollutants. The objectives of the study were: 1 to investigate the effects of operating and design variables on the reduction efficiency of VOCs; and 2 to evaluate reduction efficiencies for specific compounds in different chemical classes. The study results verified that the following factors affect the catalyst performance: inlet temperature, space velocity, compound type, and compound inlet concentration. Tests showed that reduction efficiencies exceeding 98% were possible, given sufficiently high inlet gas temperatures for the following classes of compounds: alcohols, acetates, ketones, hydrocarbons, and aromatics

  3. Nickel(0)-catalyzed enantioselective annulations of alkynes and arylenoates enabled by a chiral NHC ligand: efficient access to cyclopentenones.

    Science.gov (United States)

    Ahlin, Joachim S E; Donets, Pavel A; Cramer, Nicolai

    2014-11-24

    Cyclopentenones are versatile structural motifs of natural products as well as reactive synthetic intermediates. The nickel-catalyzed reductive [3+2] cycloaddition of α,β-unsaturated aromatic esters and alkynes constitutes an efficient method for their synthesis. Here, nickel(0) catalysts comprising a chiral bulky C1-symmetric N-heterocyclic carbene ligand were shown to enable an efficient asymmetric synthesis of cyclopentenones from mesityl enoates and internal alkynes under mild conditions. The bulky NHC ligand provided the cyclopentenone products in very high enantioselectivity and led to a regioselective incorporation of unsymmetrically substituted alkynes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Phytotoxicity of chiral herbicide bromacil: Enantioselectivity of photosynthesis in Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zunwei; Zou, Yuqin; Wang, Jia [MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China); Li, Meichao [Research Center of Analysis and Measurement, Zhejiang University of Technology, Hangzhou 310032 (China); Wen, Yuezhong, E-mail: wenyuezhong@zju.edu.cn [MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058 (China)

    2016-04-01

    With the wide application of chiral herbicides and the frequent detection of photosystem II (PSII) herbicides, it is of great importance to assess the direct effects of PSII herbicides on photosynthesis in an enantiomeric level. In the present study, the enantioselective phytotoxicity of bromacil (BRO), typical photosynthesis inhibition herbicide, on Arabidopsis thaliana was investigated. The results showed that S-BRO exhibited a greater inhibition of electron transmission in photosystem I (PSI) of A. thaliana than R-BRO by inhibiting the transcription of fnr 1. S-BRO also changed the chlorophyll fluorescence parameters Y (II), Y (NO), and Y (NPQ) to a greater extent than R-Bro. Transcription of genes psbO2, Lhcb3 and Lhcb6 was down-regulated in an enantioselective rhythm and S-BRO caused more serious influence, indicating that S-BRO did worse damage to the photosystem II (PSII) of A. thaliana than R-BRO. This study suggested that S-BRO disturbed the photosynthesis of plants to a larger extent than R-BRO and provided a new sight to evaluate the phytotoxicity of chiral herbicides. - Highlights: • It is necessary to assess the direct effects of PSII herbicides on photosynthesis. • Phytotoxicity of bromacil is investigated in an enantiomeric level. • Bromacil disturbed enantioselectively the photosystem II of Arabidopsis thaliana. • S-bromacil caused severer damage to photosynthesis of Arabidopsis than R-bromacil. • Photosynthesis should be considered for phytotoxicity assessment of herbicides.

  5. Phytotoxicity of chiral herbicide bromacil: Enantioselectivity of photosynthesis in Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Chen, Zunwei; Zou, Yuqin; Wang, Jia; Li, Meichao; Wen, Yuezhong

    2016-01-01

    With the wide application of chiral herbicides and the frequent detection of photosystem II (PSII) herbicides, it is of great importance to assess the direct effects of PSII herbicides on photosynthesis in an enantiomeric level. In the present study, the enantioselective phytotoxicity of bromacil (BRO), typical photosynthesis inhibition herbicide, on Arabidopsis thaliana was investigated. The results showed that S-BRO exhibited a greater inhibition of electron transmission in photosystem I (PSI) of A. thaliana than R-BRO by inhibiting the transcription of fnr 1. S-BRO also changed the chlorophyll fluorescence parameters Y (II), Y (NO), and Y (NPQ) to a greater extent than R-Bro. Transcription of genes psbO2, Lhcb3 and Lhcb6 was down-regulated in an enantioselective rhythm and S-BRO caused more serious influence, indicating that S-BRO did worse damage to the photosystem II (PSII) of A. thaliana than R-BRO. This study suggested that S-BRO disturbed the photosynthesis of plants to a larger extent than R-BRO and provided a new sight to evaluate the phytotoxicity of chiral herbicides. - Highlights: • It is necessary to assess the direct effects of PSII herbicides on photosynthesis. • Phytotoxicity of bromacil is investigated in an enantiomeric level. • Bromacil disturbed enantioselectively the photosystem II of Arabidopsis thaliana. • S-bromacil caused severer damage to photosynthesis of Arabidopsis than R-bromacil. • Photosynthesis should be considered for phytotoxicity assessment of herbicides.

  6. BIOACCUMULATION AND ENANTIOSELECTIVE BIOTRANSFORMATION OF FIPRONIL BY RAINBOW TROUT (ONCORHYNCHUS MYKISS)

    Science.gov (United States)

    Dietary accumulation and enantioselective biotransformation was determined for rainbow trout (Oncorhynchus mykiss) exposed to fipronil, a widely used chiral pesticide. Measurement of the fish carcass tissue (whole fish minus GI tract and liver) showed a rapid accumulation of fip...

  7. Conformation and Catalytic Properties Studies of Candida rugosa Lip7 via Enantioselective Esterification of Ibuprofen in Organic Solvents and Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2013-01-01

    Full Text Available Enantioselective esterification of ibuprofen was conducted to evaluate the enzyme activity and ees of lipase from Candida rugosa (CRL7 in ten conventional organic solvents and three ionic liquids. Different alcohols were tested for selecting the most suitable acyl acceptor due to the fact that the structure of alcohols (branch and length of carbon chains; location of –OH functional group could affect the enzyme activity and ees. The results of alcohol and solvent selection revealed that 1-isooctanol and isooctane were the best substrate and reaction medium, respectively, because of the highest enzyme activity and ees. Compared with the control, conformational studies via FT-IR indicate that the variations of CRL7’s secondary structure elements are probably responsible for the differences of enzyme activity and ees in the organic solvents and ionic liquids. Moreover, the effects of reaction parameters, such as molar ratio, water content, temperature, and reaction time, in the selected reaction medium, were also examined.

  8. Chiral ligands derived from monoterpenes: application in the synthesis of optically pure secondary alcohols via asymmetric catalysis.

    Science.gov (United States)

    El Alami, Mohammed Samir Ibn; El Amrani, Mohamed Amin; Agbossou-Niedercorn, Francine; Suisse, Isabelle; Mortreux, André

    2015-01-19

    The preparation of optically pure secondary alcohols in the presence of catalysts based on chiral ligands derived from monoterpenes, such as pinenes, limonenes and carenes, is reviewed. A wide variety of these ligands has been synthesized and used in several catalytic reactions, including hydrogen transfer, C-C bond formation via addition of organozinc compounds to aldehydes, hydrosilylation, and oxazaborolidine reduction, leading to high activities and enantioselectivities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The Catalytic Bias of 2-Oxoacid:ferredoxin Oxidoreductase in CO_2: evolution and reduction through a ferredoxin-mediated electrocatalytic assay

    International Nuclear Information System (INIS)

    Li, Bin; Elliott, Sean J.

    2016-01-01

    Enzymes from the 2-oxoacid: ferredoxin oxidoreductase (OFOR) family engage in both CO_2 evolution and reduction in nature, depending on their physiological roles. Two enzymes and their redox partner ferredoxins (Fds) from Hydrogenobacter thermophilus and Desulfovibrio africanus were examined to investigate the basis of the catalytic bias. The Fd1 from H. thermophilus demonstrated a potential of ∼ −485 mV at room temperature, the lowest for known single [4Fe-4S] cluster Fds. It suggests a low potential electron donor may be the key factor in overcoming the large thermodynamic barrier of CO_2 reduction. The Fd-mediated electrocatalytic experiments further demonstrated the impact of Fd’s potential on the direction of the OFOR reaction: as OFOR enzymes could essentially catalyze both CO_2 evolution and reduction in vitro, the difference in their physiological roles is associated with the reduction potential of the redox partner Fd. The electrocatalytic assay could study both CO_2 evolution and reduction in one setup and is a good tool to probe Fds’ reactivity that arise from their reduction potentials.

  10. Kinetic and dynamic kinetic resolution of secondary alcohols with ionic-surfactant-coated Burkholderia cepacia lipase: substrate scope and enantioselectivity.

    Science.gov (United States)

    Kim, Cheolwoo; Lee, Jusuk; Cho, Jeonghun; Oh, Yeonock; Choi, Yoon Kyung; Choi, Eunjeong; Park, Jaiwook; Kim, Mahn-Joo

    2013-03-15

    Forty-four different secondary alcohols, which can be classified into several types (II-IX), were tested as the substrates of ionic surfactant-coated Burkholderia cepacia lipase (ISCBCL) to see its substrate scope and enantioselectivity in kinetic and dynamic kinetic resolution (KR and DKR). They include 6 boron-containing alcohols, 24 chiral propargyl alcohols, and 14 diarylmethanols. The results from the studies on KR indicate that ISCBCL accepted most of them with high enantioselectivity at ambient temperature and with useful to high enantioselectivity at elevated temperatures. In particular, ISCBCL displayed high enantioselectivity toward sterically demanding secondary alcohols (types VIII and IX) which have two bulky substituents at the hydroxymethine center. DKR reactions were performed by the combination of ISCBCL with a ruthenium-based racemization catalyst at 25-60 °C. Forty-one secondary alcohols were tested for DKR. About half of them were transformed into their acetates of high enantiopurity (>90% ee) with good yields (>80%). It is concluded that ISCBCL appears to be a superb enzyme for the KR and DKR of secondary alcohols.

  11. Bidirectional enantioselective effects of the GABAB receptor agonist baclofen in two mouse models of excessive ethanol consumption.

    Science.gov (United States)

    Kasten, Chelsea R; Blasingame, Shelby N; Boehm, Stephen L

    2015-02-01

    The GABAB receptor agonist baclofen has been studied extensively in preclinical models of alcohol-use disorders, yet results on its efficacy have been uncertain. Racemic baclofen, which is used clinically, can be broken down into separate enantiomers of the drug. Baclofen has been shown to produce enantioselective effects in behavioral assays, including those modeling reflexive and sexual behavior. The current studies sought to characterize the enantioselective effects of baclofen in two separate models of ethanol consumption. The first was a Drinking-in-the-Dark procedure that provides "binge-like" ethanol access to mice by restricting access to a 2-h period, 3 h into the dark cycle. The second was a two-bottle choice procedure that utilized selectively bred High Alcohol Preferring 1 (HAP1) mice to model chronic ethanol access. HAP1 mice are selectively bred to consume pharmacologically relevant amounts of ethanol in a 24-h two-bottle choice paradigm. The results showed that baclofen yields enantioselective effects on ethanol intake in both models, and that these effects are bidirectional. Total ethanol intake was decreased by R(+)-baclofen, while total intake was increased by S(-)-baclofen in the binge-like and chronic drinking models. Whereas overall binge-like saccharin intake was significantly reduced by R(+)-baclofen, chronic intake was not significantly altered. S(-)-baclofen did not significantly alter saccharin intake. Neither enantiomer significantly affected locomotion during binge-like reinforcer consumption. Collectively, these results demonstrate that baclofen produces enantioselective effects on ethanol consumption. More importantly, the modulation of consumption is bidirectional. The opposing enantioselective effects may explain some of the variance seen in published baclofen literature. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Dual Enantioselective Control using D-phenylglycine-L-proline-derived Catalysts for the Enantioselective Addition of Diethylzinc to Aldehyde

    International Nuclear Information System (INIS)

    Kang, Seock Yong; Park, Yong Sun

    2016-01-01

    Dipeptide-derived catalysts are of great interest in various asymmetric transformations because of their short and simple preparation and easy modification of their modular structure by using different α-amino acids. We recently reported the first example of dipeptide-catalyzed enantioselective addition of dialkylzinc to aldehydes. We have developed a novel D-Phg-L-Pro dipeptide-derived catalyst for the addition of diethylzinc to aromatic aldehydes. We also disclosed an effective chiral switching by simply modifying nonchiral part of D-Phg-L-Pro dipeptide.

  13. Preparation of FeO(OH Modified with Polyethylene Glycol and Its Catalytic Activity on the Reduction of Nitrobenzene with Hydrazine Hydrate

    Directory of Open Access Journals (Sweden)

    Ke Ying Cai

    2016-10-01

    Full Text Available Iron oxyhydroxide was prepared by dropping ammonia water to Fe(NO33.9H2O dispersed in polyethylene glycol (PEG 1000. The catalyst was characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy and laser particle size analyzer. The results showed the catalyst modified with polyethylene glycol was amorphous. The addition of PEG during the preparation make the particle size of the catalyst was smaller and more uniform. The catalytic performance was tested in the reduction of nitroarenes to corresponding amines with hydrazine hydrate, and the catalyst showed excellent activity and stability. Copyright © 2016 BCREC GROUP. All rights reserved Received: 2nd February 2016; Revised: 26th April 2016; Accepted: 7th June 2016 How to Cite: Cai, K.Y., Liu, Y.S., Song, M., Zhou, Y.M., Liu, Q., Wang, X.H. (2016. Preparation of FeO(OH Modified with Polyethylene Glycol and Its Catalytic Activity on the Reduction of Nitrobenzene with Hydrazine Hydrate. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (3: 363-368 (doi:10.9767/bcrec.11.3.576.363-368 Permalink/DOI: http://doi.org/10.9767/bcrec.11.3.576.363-368

  14. An Approach to Preparation of trans-DHQs via Ring-Opening of meso-N-Sulfonylaziridines

    DEFF Research Database (Denmark)

    Nolsøe, Jens Mortansson Jelstrup; Riegert, David; Müller, Paul

    2011-01-01

    As an approach to the enantioselective synthesis of trans-decahydroquinolines (DHQs), desymmetrization of meso-aziridine (5) with various carbon nucleophiles under catalytic conditions was investigated. By applying TMSCN in the presence of YbCl3 and chiral nonracemic ligands, nitrile 13 was obtai......As an approach to the enantioselective synthesis of trans-decahydroquinolines (DHQs), desymmetrization of meso-aziridine (5) with various carbon nucleophiles under catalytic conditions was investigated. By applying TMSCN in the presence of YbCl3 and chiral nonracemic ligands, nitrile 13...

  15. The Brønsted Acid-Catalyzed, Enantioselective Aza-Diels-Alder Reaction for the Direct Synthesis of Chiral Piperidones.

    Science.gov (United States)

    Weilbeer, Claudia; Sickert, Marcel; Naumov, Sergei; Schneider, Christoph

    2017-01-12

    We disclose herein the first enantioselective aza-Diels-Alder reaction of β-alkyl-substituted vinylketene silyl-O,O-acetals and imines furnishing a broad range of optically highly enriched 4-alkyl-substituted 2-piperidones. As a catalyst for this one-pot reaction we employed a chiral phosphoric acid which effects a vinylogous Mannich reaction directly followed by ring-closure to the lactam. Subsequent fully diastereoselective transformations including hydrogenation, enolate alkylation, and lactam alkylation/reduction processes converted the cycloadducts into various highly substituted piperidines of great utility for the synthesis of natural products and medicinally active compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A Mild and Convenient Method for the Reduction of Carbonyl Compounds with NaBH4 in the Presence of Catalytic Amounts of MoCl5

    International Nuclear Information System (INIS)

    Zeynizadeh, Behzad; Yahyaei, Saiedeh

    2003-01-01

    NaBH 4 with catalytic amounts of MoCl 5 can readily reduce a variety of carbonyl compounds such as aldehydes, ketones, acyloins, α-diketones and conjugated enones to their corresponding alcohols in good to excellent yields. Reduction reactions were performed under aprotic condition in CH 3 CN at room temperature or reflux. In addition, the chemoselective reduction of aldehydes over ketones was accomplished successfully with this reducing system

  17. Ruthenium Catalyzed Diastereo- and Enantioselective Coupling of Propargyl Ethers with Alcohols: Siloxy-Crotylation via Hydride Shift Enabled Conversion of Alkynes to π-Allyls.

    Science.gov (United States)

    Liang, Tao; Zhang, Wandi; Chen, Te-Yu; Nguyen, Khoa D; Krische, Michael J

    2015-10-14

    The first enantioselective carbonyl crotylations through direct use of alkynes as chiral allylmetal equivalents are described. Chiral ruthenium(II) complexes modified by Josiphos (SL-J009-1) catalyze the C-C coupling of TIPS-protected propargyl ether 1a with primary alcohols 2a-2o to form products of carbonyl siloxy-crotylation 3a-3o, which upon silyl deprotection-reduction deliver 1,4-diols 5a-5o with excellent control of regio-, anti-diastereo-, and enantioselectivity. Structurally related propargyl ethers 1b and 1c bearing ethyl- and phenyl-substituents engage in diastereo- and enantioselective coupling, as illustrated in the formation of adducts 5p and 5q, respectively. Selective mono-tosylation of diols 5a, 5c, 5e, 5f, 5k, and 5m is accompanied by spontaneous cyclization to deliver the trans-2,3-disubstituted furans 6a, 6c, 6e, 6f, 6k, and 6m, respectively. Primary alcohols 2a, 2l, and 2p were converted to the siloxy-crotylation products 3a, 3l, and 3p, which upon silyl deprotection-lactol oxidation were transformed to the trans-4,5-disubstituted γ-butyrolactones 7a, 7l, and 7p. The formation of 7p represents a total synthesis of (+)-trans-whisky lactone. Unlike closely related ruthenium catalyzed alkyne-alcohol C-C couplings, deuterium labeling studies provide clear evidence of a novel 1,2-hydride shift mechanism that converts metal-bound alkynes to π-allyls in the absence of intervening allenes.

  18. Environmental and economic evaluation of selective non-catalytic reduction of nitrogen oxides

    Science.gov (United States)

    Parchevskii, V. M.; Shchederkina, T. E.; Proshina, A. O.

    2017-11-01

    There are two groups of atmosphere protecting measures: technology (primary) and treatment (secondary). When burning high-calorie low-volatile brands of coals in the furnaces with liquid slag removal to achieve emission standards required joint use of these two methods, for example, staged combustion and selective non-catalytic reduction recovery (SNCR). For the economically intelligent combination of these two methods it is necessary to have information not only about the environmental performance of each method, but also the operating costs per unit of reduced emission. The authors of this report are made an environmental-economic analysis of SNCR on boiler Π-50P Kashirskaya power station. The obtained results about the dependence of costs from the load of the boiler and the mass emissions of nitrogen oxides then approximates into empirical formulas, is named as environmental and economic characteristics, which is suitable for downloading into controllers and other control devices for subsequent implementation of optimal control of emissions to ensure compliance with environmental regulations at the lowest cost at any load of the boiler.

  19. Engineering an enantioselective amine oxidase for the synthesis of pharmaceutical building blocks and alkaloid natural products.

    Science.gov (United States)

    Ghislieri, Diego; Green, Anthony P; Pontini, Marta; Willies, Simon C; Rowles, Ian; Frank, Annika; Grogan, Gideon; Turner, Nicholas J

    2013-07-24

    The development of cost-effective and sustainable catalytic methods for the production of enantiomerically pure chiral amines is a key challenge facing the pharmaceutical and fine chemical industries. This challenge is highlighted by the estimate that 40-45% of drug candidates contain a chiral amine, fueling a demand for broadly applicable synthetic methods that deliver target structures in high yield and enantiomeric excess. Herein we describe the development and application of a "toolbox" of monoamine oxidase variants from Aspergillus niger (MAO-N) which display remarkable substrate scope and tolerance for sterically demanding motifs, including a new variant, which exhibits high activity and enantioselectivity toward substrates containing the aminodiphenylmethane (benzhydrylamine) template. By combining rational structure-guided engineering with high-throughput screening, it has been possible to expand the substrate scope of MAO-N to accommodate amine substrates containing bulky aryl substituents. These engineered MAO-N biocatalysts have been applied in deracemization reactions for the efficient asymmetric synthesis of the generic active pharmaceutical ingredients Solifenacin and Levocetirizine as well as the natural products (R)-coniine, (R)-eleagnine, and (R)-leptaflorine. We also report a novel MAO-N mediated asymmetric oxidative Pictet-Spengler approach to the synthesis of (R)-harmicine.

  20. Identification of catalytic sites in cobalt-nitrogen-carbon materials for the oxygen reduction reaction.

    Science.gov (United States)

    Zitolo, Andrea; Ranjbar-Sahraie, Nastaran; Mineva, Tzonka; Li, Jingkun; Jia, Qingying; Stamatin, Serban; Harrington, George F; Lyth, Stephen Mathew; Krtil, Petr; Mukerjee, Sanjeev; Fonda, Emiliano; Jaouen, Frédéric

    2017-10-16

    Single-atom catalysts with full utilization of metal centers can bridge the gap between molecular and solid-state catalysis. Metal-nitrogen-carbon materials prepared via pyrolysis are promising single-atom catalysts but often also comprise metallic particles. Here, we pyrolytically synthesize a Co-N-C material only comprising atomically dispersed cobalt ions and identify with X-ray absorption spectroscopy, magnetic susceptibility measurements and density functional theory the structure and electronic state of three porphyrinic moieties, CoN 4 C 12 , CoN 3 C 10,porp and CoN 2 C 5 . The O 2 electro-reduction and operando X-ray absorption response are measured in acidic medium on Co-N-C and compared to those of a Fe-N-C catalyst prepared similarly. We show that cobalt moieties are unmodified from 0.0 to 1.0 V versus a reversible hydrogen electrode, while Fe-based moieties experience structural and electronic-state changes. On the basis of density functional theory analysis and established relationships between redox potential and O 2 -adsorption strength, we conclude that cobalt-based moieties bind O 2 too weakly for efficient O 2 reduction.Nitrogen-doped carbon materials with atomically dispersed iron or cobalt are promising for catalytic use. Here, the authors show that cobalt moieties have a higher redox potential, bind oxygen more weakly and are less active toward oxygen reduction than their iron counterpart, despite similar coordination.

  1. Catalytic/non-catalytic combination process for nitrogen oxides reduction

    International Nuclear Information System (INIS)

    Luftglass, B.K.; Sun, W.H.; Hofmann, J.E.

    1992-01-01

    This patent describes a process for the reduction of nitrogen oxides in the effluent from the combustion of a carbonaceous fuel. It comprises introducing a nitrogenous treatment agent comprising urea, one or more of the hydrolysis products of urea, ammonia, compounds which produce ammonia as a by-product, ammonium salts of organic acids, 5- or 6-membered heterocyclic hydrocarbons having at least one cyclic nitrogen, hydroxy amino hydrocarbons, or mixtures thereof into the effluent at an effluent temperature between about 1200 degrees F and about 2100 degrees F; and contacting the treated effluent under conditions effective to reduce the nitrogen oxides in the effluent with a catalyst effective for the reduction of nitrogen oxides in the presence of ammonia

  2. Catalytic activity of dual catalysts system based on nano-manganese oxide and cobalt octacyanophthalocyanine toward four-electron reduction of oxygen in alkaline media

    International Nuclear Information System (INIS)

    Zhang, Dun; Chi, Dahe; Okajima, Takeyoshi; Ohsaka, Takeo

    2007-01-01

    The electrocatalysis of the dual functional catalysts system composed of electrolytic nano-manganese oxide (nano-MnOx) and cobalt octacyanophthalocyanine (CoPcCN) toward 4-electron reduction of oxygen (O 2 ) in alkaline media was studied. Nano-MnOx electrodeposited on the CoPcCN monolayer-modified glassy carbon (GC) electrode was clarified as the nano-rods with ca. 10-20 nm diameter by scanning electron microscopy. The peak current for O 2 reduction at the dual catalysts-modified GC electrode increases largely and the peak potential shifts by ca. 160 mV to the positive direction in cyclic voltammograms compared with those obtained at the bare GC electrode. The Koutecky-Levich plots indicate that the O 2 reduction at the dual catalysts-modified GC electrode is an apparent 4-electron process. Collection efficiencies obtained at the dual catalysts-modified GC electrode are much lower than those at the GC electrode and are almost similar to those at the Pt nano-particles modified GC electrode. The obtained results demonstrate that the dual catalysts system possesses a bifuctional catalytic activity for redox-mediating 2-electron reduction of O 2 to HO 2 - by CoPcCN as well as catalyzing the disproportionation of HO 2 - to OH - and O 2 by nano-MnOx, and enables an apparent 4-electron reduction of O 2 at a relatively low overpotential in alkaline media. In addition, it has been found that the cleaning of the dual catalysts-modified electrode by soaking in 0.1 M sulfuric acid solution enhances its catalytic activity toward the reduction of O 2

  3. Enantioselective synthesis of alpha,beta-disubstituted-beta-amino acids.

    Science.gov (United States)

    Sibi, Mukund P; Prabagaran, Narayanasamy; Ghorpade, Sandeep G; Jasperse, Craig P

    2003-10-01

    Highly diastereoselective and enantioselective addition of N-benzylhydroxylamine to imides 17 and 20-30 produces alpha,beta-trans-disubstituted N-benzylisoxazolidinones 19 and 31-41. These reactions proceed in 60-96% ee with 93-99% de's using 5 mol % of Mg(NTf2)2 and ligand 18. The product isoxazolidinones can be hydrogenolyzed directly to provide alpha,beta-disubstituted-beta-amino acids.

  4. Oxidation of mercury across selective catalytic reduction catalysts in coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Constance L. Senior [Reaction Engineering International, Salt Lake City, UT (United States)

    2006-01-15

    A kinetic model for predicting the amount of mercury (Hg) oxidation across selective catalytic reduction (SCR) systems in coal-fired power plants was developed and tested. The model incorporated the effects of diffusion within the porous SCR catalyst and the competition between ammonia and Hg for active sites on the catalyst. Laboratory data on Hg oxidation in simulated flue gas and slipstream data on Hg oxidation in flue gas from power plants were modeled. The model provided good fits to the data for eight different catalysts, both plate and monolith, across a temperature range of 280-420{sup o}C, with space velocities varying from 1900 to 5000 hr{sup -1}. Space velocity, temperature, hydrochloric acid content of the flue gas, ratio of ammonia to nitric oxide, and catalyst design all affected Hg oxidation across the SCR catalyst. The model can be used to predict the impact of coal properties, catalyst design, and operating conditions on Hg oxidation across SCRs. 20 refs., 9 figs., 2 tabs.

  5. Asymmetric Chemoenzymatic Reductive Acylation of Ketones by a Combined Iron-Catalyzed Hydrogenation-Racemization and Enzymatic Resolution Cascade

    KAUST Repository

    El-Sepelgy, Osama

    2017-02-28

    A general and practical process for the conversion of prochiral ketones into the corresponding chiral acetates has been realized. An iron carbonyl complex is reported to catalyze the hydrogenation-dehydrogenation-hydrogenation of prochiral ketones. By merging the iron-catalyzed redox reactions with enantioselective enzymatic acylations a wide range of benzylic, aliphatic and (hetero)aromatic ketones, as well as diketones, were reductively acylated. The corresponding products were isolated with high yields and enantioselectivities. The use of an iron catalyst together with molecular hydrogen as the hydrogen donor and readily available ethyl acetate as acyl donor make this cascade process highly interesting in terms of both economic value and environmental credentials.

  6. Rhodium-catalyzed enantioselective intramolecular C-H silylation for the syntheses of planar-chiral metallocene siloles.

    Science.gov (United States)

    Zhang, Qing-Wei; An, Kun; Liu, Li-Chuan; Yue, Yuan; He, Wei

    2015-06-01

    Reported herein is the rhodium-catalyzed enantioselective C-H bond silylation of the cyclopentadiene rings in Fe and Ru metallocenes. Thus, in the presence of (S)-TMS-Segphos, the reactions took place under very mild conditions to afford metallocene-fused siloles in good to excellent yields and with ee values of up to 97%. During this study it was observed that the steric hindrance of chiral ligands had a profound influence on the reactivity and enantioselectivity of the reaction, and might hold the key to accomplishing conventionally challenging asymmetric C-H silylations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. An enantioselective approach toward 3,4-dihydroisocoumarin through the bromocyclization of styrene-type carboxylic acids.

    Science.gov (United States)

    Chen, Jie; Zhou, Ling; Tan, Chong Kiat; Yeung, Ying-Yeung

    2012-01-20

    A facile and enantioselective approach toward 3,4-dihydroisocoumarin was developed. The method involved an amino-thiocarbamate catalyzed enantioselective bromocyclization of styrene-type carboxylic acids, yielding 3-bromo-3,4-dihydroisocoumarins with good yields and ee's. 3-Bromo-3,4-dihydroisocoumarins are versatile building blocks for various dihydroisocoumarin derivatives in which the Br group can readily be modified to achieve biologically important 4-O-type and 4-N-type 3,4-dihydroisocoumarin systems. In addition, studies indicated that, by refining some parameters, the synthetically useful 5-exo phthalide products could be achieved with good yields and ee's.

  8. A Green, Enantioselective Synthesis of Warfarin for the Undergraduate Organic Laboratory

    Science.gov (United States)

    Wong, Terence C.; Sultana, Camille M.; Vosburg, David A.

    2010-01-01

    The enantioselective synthesis of drugs is of fundamental importance in the pharmaceutical industry. In this experiment, students synthesize either enantiomer of warfarin, a widely used anticoagulant, in a single step from inexpensive starting materials. Stereoselectivity is induced by a commercial organocatalyst, ("R","R")- or…

  9. Rhodium-Catalyzed Enantioselective Cyclopropanation of Olefins with N-Sulfonyl 1,2,3-Triazoles

    Science.gov (United States)

    Chuprakov, Stepan; Kwok, Sen Wai; Zhang, Li; Lercher, Lukas; Fokin, Valery V.

    2009-01-01

    N-Sulfonyl 1,2,3-triazoles readily form rhodium(II) azavinyl carbenes, which react with olefins to produce cyclopropanes with excellent diastereo- and enantioselectivity and in high yield. PMID:19928917

  10. Catalytic reduction of ruthenium tetroxide

    International Nuclear Information System (INIS)

    Nakhutin, I.E.; Polyakov, A.S.; Ananyan, O.S.; Blinnikov, S.A.; Kulakov, A.I.; Takmazyan, A.S.

    1978-01-01

    RuO 4 removal from the gaseous phase by reduction to solid RuO 2 with carbon oxide has been investigated. The reaction has been shown to be autocatalytic. A catalyst (RuO 2 on Al 2 O 3 ) for the reduction has been developed. There have been determined the region of reaction RuO 4 +CO on the catalyst containing RuO 2 , the temperature dependence of the decontamination factor and the reaction order in RuO 4 . The feasibility of RuO 4 thermal decomposition on the catalyst has been shown. A number of other metal oxides that can catalyze the process is listed

  11. A comparative evaluation on the emission characteristics of ceramic and metallic catalytic converter in internal combustion engine

    Science.gov (United States)

    Leman, A. M.; Jajuli, Afiqah; Rahman, Fakhrurrazi; Feriyanto, Dafit; Zakaria, Supaat

    2017-09-01

    Enforcement of a stricter regulation on exhaust emission by many countries has led to utilization of catalytic converter to reduce the harmful pollutant emission. Ceramic and metallic catalytic converters are the most common type of catalytic converter used. The purpose of this study is to evaluate the performance of the ceramic and metallic catalytic converter on its conversion efficiency using experimental measurement. Both catalysts were placed on a modified exhaust system equipped with a Mitshubishi 4G93 single cylinder petrol engine that was tested on an eddy current dynamometer under steady state conditions for several engine speeds. The experimental results show that the metallic catalytic converter reduced a higher percentage of CO up to 98.6% reduction emissions while ceramic catalytic converter had a better reduction efficiency of HC up to 85.4% and 87.2% reduction of NOx.

  12. Optimisation of stabilised carboxylesterase NP for enantioselective hydrolysis of naproxen methyl ester

    CSIR Research Space (South Africa)

    Steenkamp, Lucia H

    2008-12-01

    Full Text Available Although the enantioselective kinetic resolution of ester racemates of the non-steroidal antiinflammatory drug naproxen ([2-(6-methoxy-2-naphthyl) propionic acid]) is a common demonstration for biocatalysis, the enantiomeric excess of the reactions...

  13. Combinatorial library based engineering of Candida antarctica lipase A for enantioselective transacylation of sec-alcohols in organic solvent.

    Science.gov (United States)

    Wikmark, Ylva; Svedendahl Humble, Maria; Bäckvall, Jan-E

    2015-03-27

    A method for determining lipase enantioselectivity in the transacylation of sec-alcohols in organic solvent was developed. The method was applied to a model library of Candida antarctica lipase A (CalA) variants for improved enantioselectivity (E values) in the kinetic resolution of 1-phenylethanol in isooctane. A focused combinatorial gene library simultaneously targeting seven positions in the enzyme active site was designed. Enzyme variants were immobilized on nickel-coated 96-well microtiter plates through a histidine tag (His6-tag), screened for transacylation of 1-phenylethanol in isooctane, and analyzed by GC. The highest enantioselectivity was shown by the double mutant Y93L/L367I. This enzyme variant gave an E value of 100 (R), which is a dramatic improvement on the wild-type CalA (E=3). This variant also showed high to excellent enantioselectivity for other secondary alcohols tested. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  14. Selective catalytic reduction of nitrogen oxides from industrial gases by hydrogen or methane; Reduction catalytique selective des oxydes d'azote (NO{sub x}) provenant d'effluents gazeux industriels par l'hydrogene ou le methane

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann Pirez, M

    2004-12-15

    This work deals with the selective catalytic reduction of nitrogen oxides (NO{sub x}), contained in the effluents of industrial plants, by hydrogen or methane. The aim is to replace ammonia, used as reducing agent, in the conventional process. The use of others reducing agents such as hydrogen or methane is interesting for different reasons: practical, economical and ecological. The catalyst has to convert selectively NO into N{sub 2}, in presence of an excess of oxygen, steam and sulfur dioxide. The developed catalyst is constituted by a support such as perovskites, particularly LaCoO{sub 3}, on which are dispersed noble metals (palladium, platinum). The interaction between the noble metal and the support, generated during the activation of the catalyst, allows to minimize the water and sulfur dioxide inhibitor phenomena on the catalytic performances, particularly in the reduction of NO by hydrogen. (O.M.)

  15. Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion

    International Nuclear Information System (INIS)

    Pozan, Gulin Selda

    2012-01-01

    Highlights: ► α-Al 2 O 3 , obtained from Bohmite, as a support for enhancing of the activity. ► The support material for catalytic oxidation. ► The manganese state and oxygen species effect on the catalytic combustion reaction. - Abstract: The aim of this work was to study combustion of toluene (1000 ppm) over MnO 2 modified with different supports. α-Al 2 O 3 and γ-Al 2 O 3 obtained from Boehmite, γ-Al 2 O 3 (commercial), SiO 2 , TiO 2 and ZrO 2 were used as commercial support materials. In view of potential interest of this process, the influence of support material on the catalytic performance was discussed. The deposition of 9.5MnO 2 was performed by impregnation over support. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction and oxidation (TPR/TPO) and thermogravimetric analysis (TGA). The catalytic tests were carried out at atmospheric pressure in a fixed-bed flow reactor. 9.5MnO 2 /α-Al 2 O 3 (B) (synthesized from Boehmite) catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of 289 °C. Considering all the characterization and reaction data reported in this study, it was concluded that the manganese state and oxygen species played an important role in the catalytic activity.

  16. DNA-based asymmetric catalysis : Sequence-dependent rate acceleration and enantioselectivity

    NARCIS (Netherlands)

    Boersma, Arnold J.; Klijn, Jaap E.; Feringa, Ben L.; Roelfes, Gerard

    2008-01-01

    This study shows that the role of DNA in the DNA-based enantioselective Diels-Alder reaction of azachalcone with cyclopentadiene is not limited to that of a chiral scaffold. DNA in combination with the copper complex of 4,4'-dimethyl-2,2'-bipyridine (Cu-L1) gives rise to a rate acceleration of up to

  17. Reductive Catalytic Fractionation of Corn Stover Lignin

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Eric M.; Katahira, Rui; Reed, Michelle; Resch, Michael G.; Karp, Eric M.; Beckham, Gregg T.; Román-Leshkov, Yuriy

    2016-12-05

    Reductive catalytic fractionation (RCF) has emerged as an effective biomass pretreatment strategy to depolymerize lignin into tractable fragments in high yields. We investigate the RCF of corn stover, a highly abundant herbaceous feedstock, using carbon-supported Ru and Ni catalysts at 200 and 250 degrees C in methanol and, in the presence or absence of an acid cocatalyst (H3PO4 or an acidified carbon support). Three key performance variables were studied: (1) the effectiveness of lignin extraction as measured by the yield of lignin oil, (2) the yield of monomers in the lignin oil, and (3) the carbohydrate retention in the residual solids after RCF. The monomers included methyl coumarate/ferulate, propyl guaiacol/syringol, and ethyl guaiacol/syringol. The Ru and Ni catalysts performed similarly in terms of product distribution and monomer yields. The monomer yields increased monotonically as a function of time for both temperatures. At 6 h, monomer yields of 27.2 and 28.3% were obtained at 250 and 200 degrees C, respectively, with Ni/C. The addition of an acid cocatalysts to the Ni/C system increased monomer yields to 32% for acidified carbon and 38% for phosphoric acid at 200 degrees C. The monomer product distribution was dominated by methyl coumarate regardless of the use of the acid cocatalysts. The use of phosphoric acid at 200 degrees C or the high temperature condition without acid resulted in complete lignin extraction and partial sugar solubilization (up to 50%) thereby generating lignin oil yields that exceeded the theoretical limit. In contrast, using either Ni/C or Ni on acidified carbon at 200 degrees C resulted in moderate lignin oil yields of ca. 55%, with sugar retention values >90%. Notably, these sugars were amenable to enzymatic digestion, reaching conversions >90% at 96 h. Characterization studies on the lignin oils using two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance and gel permeation chromatrography revealed

  18. A catalytic wet oxidation process for mixed waste volume reduction/recycling

    International Nuclear Information System (INIS)

    Dhooge, Patrick M.

    1992-01-01

    Mixed wastes have presented a challenge to treatment and destruction technologies. A recently developed catalytic wet oxidation method has promising characteristics for volume reduction and recycling of mixed wastes. The process utilizes iron (III) as an oxidant in the presence of homogeneous cocatalysts which increase organics' oxidation rates and the rate of oxidation of iron (II) by oxygen. The reaction is conducted in an aqueous mineral acid solution at temperatures of 373 - 573 deg K. The mineral acid should solvate a number of heavy metals, including U and Pu. Studies of reaction rates show that the process can oxidize a wide range of organic compounds including aromatics and chlorinated hydrocarbons. Rate constants in the range of 10 -7 to 10 -4 sec -1 , depending on the cocatalyst, acidity, type of anions, type of organic, temperature, and time. Activation energies ranged from 25. to 32. KJ/mole. Preliminary measurements of the extent of oxidation which could be obtained ranged from 80% for trichloroethylene to 99.8% for 1,2,4-trimethylbenzene; evidence was obtained that absorption by the fluorocarbon liners of the reaction bombs allowed some of the organics to escape exposure to the catalyst solution. The results indicate that complete oxidation of the organics used here, and presumably many others, can be achieved. (author)

  19. Application of chronocoulomentry for trace levels uranium determination using catalytic nitrate reduction on mercury electrode

    International Nuclear Information System (INIS)

    Cantagallo, M.I.C.

    1988-01-01

    With the aim of improving the sensitivity of the electro-analytical determination of uranium at trace levels, the uranium catalyzed reduction of nitrate on mercury electrodes was used and the technique of chronocoulometry was compared with other voltammetric techniques. The catalytic process offers high sensitivity in comparison with uranyl reduction in absence of nitrate. The chronocoulometry, virtually unexplored for analytical applications, was found to be specially well suited for determinations based on this kind of electrode process, when using current integration times in the range of several seconds. Under these conditions the interference from diffusion controlled faradaic processes is reduced to a minimum. Several experimental parameters were investigated (eletrolyte composition, potential program, integration time, blank correction, temperature, previous separation) and adequate conditions were selected for the analytical determination of pure and real samples. The proposed method was applied and evaluated with real and, when necessary, an adapted liquid-liquid extraction procedure was used. Reference materials with complex matrices like rocks were first solubilized by hot digestion under pressure. The obtained results are in good agreement with the values obtained with other techniques such as X-ray fluorescence, mass spectrometry-isotope dilution and epithermal netron activation analysis. (author) [pt

  20. Asymmetric transfer hydrogenation by synthetic catalysts in cancer cells

    Science.gov (United States)

    Coverdale, James P. C.; Romero-Canelón, Isolda; Sanchez-Cano, Carlos; Clarkson, Guy J.; Habtemariam, Abraha; Wills, Martin; Sadler, Peter J.

    2018-03-01

    Catalytic anticancer metallodrugs active at low doses could minimize side-effects, introduce novel mechanisms of action that combat resistance and widen the spectrum of anticancer-drug activity. Here we use highly stable chiral half-sandwich organometallic Os(II) arene sulfonyl diamine complexes, [Os(arene)(TsDPEN)] (TsDPEN, N-(p-toluenesulfonyl)-1,2-diphenylethylenediamine), to achieve a highly enantioselective reduction of pyruvate, a key intermediate in metabolic pathways. Reduction is shown both in aqueous model systems and in human cancer cells, with non-toxic concentrations of sodium formate used as a hydride source. The catalytic mechanism generates selectivity towards ovarian cancer cells versus non-cancerous fibroblasts (both ovarian and lung), which are commonly used as models of healthy proliferating cells. The formate precursor N-formylmethionine was explored as an alternative to formate in PC3 prostate cancer cells, which are known to overexpress a deformylase enzyme. Transfer-hydrogenation catalysts that generate reductive stress in cancer cells offer a new approach to cancer therapy.

  1. Enantioselective Characteristics and Montmorillonite-Mediated Removal Effects of α-Hexachlorocyclohexane in Laying Hens.

    Science.gov (United States)

    Liu, Xueke; Shen, Zhigang; Wang, Peng; Liu, Chang; Yao, Guojun; Zhou, Zhiqiang; Liu, Donghui

    2016-06-07

    α-Hexachlorocyclohexane (α-HCH) is a chiral organochlorine pesticide that is often ubiquitously detected in various environmental matrices and may be absorbed by the human body via food consumption, with serious detriments to human health. In this study, enantioselective degradation kinetics and residues of α-HCH in laying hens were investigated after a single dose of exposure to the pesticide, whereas enantioselectivity and residues of α-HCH in eggs, droppings, and various tissues were investigated after long-term exposure. Meanwhile, montmorillonite (MMT), a feed additive with high capacity of adsorption, was investigated for its ability to remove α-HCH from laying hens. Most non-brain tissues enantioselectively accumulated (-)-α-HCH, while (+)-α-HCH was preferentially accumulated in the brain. The enantiomer fractions (EFs) in most tissues gradually decreased, implying continuous depletion of (+)-α-HCH in laying hens. After 30 days of exposure and 31 days of elimination, the concentration of α-HCH in eggs and tissues of laying hens with MMT-containing feed was lower than that with MMT-free feed, indicating the removal effects of MMT for α-HCH in laying hens. The findings presented herein suggest that modified MMT may potentially be useful in reducing the enrichment of α-HCH in laying hens and eggs, thus lowering the risk of human intake of α-HCH.

  2. Enhancing the potential of enantioselective organocatalysis with light

    Science.gov (United States)

    Silvi, Mattia; Melchiorre, Paolo

    2018-02-01

    Organocatalysis—catalysis mediated by small chiral organic molecules—is a powerful technology for enantioselective synthesis, and has extensive applications in traditional ionic, two-electron-pair reactivity domains. Recently, organocatalysis has been successfully combined with photochemical reactivity to unlock previously inaccessible reaction pathways, thereby creating new synthetic opportunities. Here we describe the historical context, scientific reasoning and landmark discoveries that were essential in expanding the functions of organocatalysis to include one-electron-mediated chemistry and excited-state reactivity.

  3. Highly recyclable and ultra-rapid catalytic reduction of organic pollutants on Ag-Cu@ZnO bimetal nanocomposite synthesized via green technology

    Science.gov (United States)

    Gangarapu, Manjari; Sarangapany, Saran; Suja, Devipriya P.; Arava, Vijaya Bhaskara Rao

    2018-04-01

    In this study, synthesis of Ag-Cu alloy bimetal nanoparticles anchored on high surface and porous ZnO using a facile, greener and low-cost aqeous bark extract of Aglaia roxburghiana for highly active, ultra-rapid and stable catalyst is performed. The nanocomposite was scrupulously characterized using UV-Vis spectrophotometer, X-ray diffraction, Raman spectrophotometer, high-resolution transmission electron microscope, selected area (electron) diffraction, scanning electron microscope with energy dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. The catalytic activity of the green synthesized Ag-Cu bimetal nanocomposite was evaluated in the reduction of 4-nitrophenol (4-NP), methylene blue (MB) and rhodamine B (Rh B) dyes. The different types of dye exhibited very high and effective catalytic activity within few seconds. The theoretical investigations reveal that the unique synergistic effect of Ag-Cu nanoparticles and immobilization over ZnO assists in the reduction of 4-NP, MB and Rh B. Loading and leaching of metal nanoparticles were obtained using inductively coupled plasma atomic emission spectroscopy. Moreover, the stable and efficient recyclability of nanocomposite by centrifugation after completion of the reaction was demonstrated. The results lead to the design different possible bimetal on ZnO with boosting and an effective catalyst for the environmental applications.

  4. Improvement of enantioselectivity by immobilized imprinting of epoxide hydrolase from Rhodotorula glutinis

    NARCIS (Netherlands)

    Kronenburg, N.A.E.; Bont, de J.A.M.; Fischer, L.

    2001-01-01

    The yeast Rhodotorula glutinis contains an enantioselective, membrane-associated epoxide hydrolase (EH). Partially purified EH was immobilized in a two-step procedure. In the first step, the proteins were derivatized with itaconic anhydride. In the second step, the derivatized proteins were

  5. Impact of selective catalytic reduction systems on the operation of coal and oil fired boilers and downstream equipment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The history of the development of selective catalytic reduction (SCR) technology has clearly demonstrated that whenever the technology arrives in a new region of the world new challenges are met. This paper discusses some of these historical challenges and their particular solutions in some detail. The paper shows that the design of successful SCR systems is extremely site-specific, but that the technology continues to evolve to meet these continuously changing demands. Most recently the increased power of CFD technology has enabled SCR to meet the more stringent North American emissions criteria through optimal fluid dynamic design. 4 figs.

  6. The Enantioselectivity of Odor Sensation: Some Examples for Undergraduate Chemistry Courses

    Science.gov (United States)

    Kraft, Philip; Mannschreck, Albrecht

    2010-01-01

    This article discusses seven chiral odorants that demonstrate the enantioselectivity of odor sensation: carvone, Celery Ketone, camphor, Florhydral, 3-methyl-3-sulfanylhexan-1-ol, muscone, and methyl jasmonate. After a general introduction of the odorant-receptor interaction and the combinatorial code of olfaction, the olfactory properties of the…

  7. Enhanced catalytic four-electron dioxygen (O2) and two-electron hydrogen peroxide (H2O2) reduction with a copper(II) complex possessing a pendant ligand pivalamido group.

    Science.gov (United States)

    Kakuda, Saya; Peterson, Ryan L; Ohkubo, Kei; Karlin, Kenneth D; Fukuzumi, Shunichi

    2013-05-01

    A copper complex, [(PV-tmpa)Cu(II)](ClO4)2 (1) [PV-tmpa = bis(pyrid-2-ylmethyl){[6-(pivalamido)pyrid-2-yl]methyl}amine], acts as a more efficient catalyst for the four-electron reduction of O2 by decamethylferrocene (Fc*) in the presence of trifluoroacetic acid (CF3COOH) in acetone as compared with the corresponding copper complex without a pivalamido group, [(tmpa)Cu(II)](ClO4)2 (2) (tmpa = tris(2-pyridylmethyl)amine). The rate constant (k(obs)) of formation of decamethylferrocenium ion (Fc*(+)) in the catalytic four-electron reduction of O2 by Fc* in the presence of a large excess CF3COOH and O2 obeyed first-order kinetics. The k(obs) value was proportional to the concentration of catalyst 1 or 2, whereas the k(obs) value remained constant irrespective of the concentration of CF3COOH or O2. This indicates that electron transfer from Fc* to 1 or 2 is the rate-determining step in the catalytic cycle of the four-electron reduction of O2 by Fc* in the presence of CF3COOH. The second-order catalytic rate constant (k(cat)) for 1 is 4 times larger than the corresponding value determined for 2. With the pivalamido group in 1 compared to 2, the Cu(II)/Cu(I) potentials are -0.23 and -0.05 V vs SCE, respectively. However, during catalytic turnover, the CF3COO(-) anion present readily binds to 2 shifting the resulting complex's redox potential to -0.35 V. The pivalamido group in 1 is found to inhibit anion binding. The overall effect is to make 1 easier to reduce (relative to 2) during catalysis, accounting for the relative k(cat) values observed. 1 is also an excellent catalyst for the two-electron two-proton reduction of H2O2 to water and is also more efficient than is 2. For both complexes, reaction rates are greater than for the overall four-electron O2-reduction to water, an important asset in the design of catalysts for the latter.

  8. The role of the achiral template in enantioselective transformations. Radical conjugate additions to alpha-methacrylates followed by hydrogen atom transfer.

    Science.gov (United States)

    Sibi, Mukund P; Sausker, Justin B

    2002-02-13

    We have evaluated various achiral templates (1a-g, 10, and 16) in conjunction with chiral Lewis acids in the conjugate addition of nucleophilic radicals to alpha-methacrylates followed by enantioselective H-atom transfer. Of these, a novel naphthosultam template (10) gave high enantioselectivity in the H-atom-transfer reactions with ee's up to 90%. A chiral Lewis acid derived from MgBr(2) and bisoxazoline (2) gave the highest selectivity in the enantioselective hydrogen-atom-transfer reactions. Non-C(2) symmetric oxazolines (20-25) have also been examined as ligands, and of these, compound 25 gave optimal results (87% yield and 80% ee). Insights into rotamer control in alpha-substituted acrylates and the critical role of the tetrahedral sulfone moiety in realizing high selectivity are discussed.

  9. Enantioselective small molecule synthesis by carbon dioxide fixation using a dual Brønsted acid/base organocatalyst.

    Science.gov (United States)

    Vara, Brandon A; Struble, Thomas J; Wang, Weiwei; Dobish, Mark C; Johnston, Jeffrey N

    2015-06-17

    Carbon dioxide exhibits many of the qualities of an ideal reagent: it is nontoxic, plentiful, and inexpensive. Unlike other gaseous reagents, however, it has found limited use in enantioselective synthesis. Moreover, unprecedented is a tool that merges one of the simplest biological approaches to catalysis-Brønsted acid/base activation-with this abundant reagent. We describe a metal-free small molecule catalyst that achieves the three component reaction between a homoallylic alcohol, carbon dioxide, and an electrophilic source of iodine. Cyclic carbonates are formed enantioselectively.

  10. Regio-, Diastereo-, and Enantioselective Nitroso-Diels-Alder Reaction of 1,3-Diene-1-carbamates Catalyzed by Chiral Phosphoric Acids.

    Science.gov (United States)

    Pous, Jonathan; Courant, Thibaut; Bernadat, Guillaume; Iorga, Bogdan I; Blanchard, Florent; Masson, Géraldine

    2015-09-23

    Chiral phosphoric acid-catalyzed asymmetric nitroso-Diels-Alder reaction of nitrosoarenes with carbamate-dienes afforded cis-3,6-disubstituted dihydro-1,2-oxazines in high yields with excellent regio-, diastereo-, and enantioselectivities. Interestingly, we observed that the catalyst is able not only to control the enantioselectivity but also to reverse the regioselectivity of the noncatalyzed nitroso-Diels-Alder reaction. The regiochemistry reversal and asynchronous concerted mechanism were confirmed by DFT calculations.

  11. Enantioselective organocatalyzed Oxa-Michael-Aldol cascade reactions: Construction of chiral 4H-chromenes with a trifluoromethylated tetrasubstituted carbon stereocenter

    KAUST Repository

    Zhang, Jing

    2015-03-13

    The first organocatalytic asymmetric synthesis of 4H-chromenes bearing a trifluoromethylated tetrasubstituted carbon center is presented. Chiral secondary amines promote the oxa-Michael-aldol cascade reaction between alkynals and 2-trifluoroacetylphenols via iminium-allenamine activation to produce pharmaceutically important heterocycles with excellent enantioselectivities. The proposed reaction can be scaled-up easily with maintenance of the excellent enantioselectivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Hydrophilic Pt nanoflowers: synthesis, crystallographic analysis and catalytic performance.

    Science.gov (United States)

    Mourdikoudis, Stefanos; Altantzis, Thomas; Liz-Marzán, Luis M; Bals, Sara; Pastoriza-Santos, Isabel; Pérez-Juste, Jorge

    2016-05-21

    Water-soluble Pt nanoflowers (NFs) were prepared by diethylene glycol-mediated reduction of Pt acetylacetonate (Pt(acac) 2 ) in the presence of polyethylenimine. Advanced electron microscopy analysis showed that the NFs consist of multiple branches with a truncated cubic morphology and different crystallographic orientations. We demonstrate that the nature of the solvent strongly influences the resulting morphology. The catalytic performance of the Pt NFs in 4-nitrophenol reduction was found to be superior to that of other nanoparticle-based catalysts. Additionally, the Pt NFs display good catalytic reusability with no loss of activity after five consecutive cycles.

  13. Purification and characterisation of a novel enantioselective epoxide hydrolase from Aspergillus niger M200

    Czech Academy of Sciences Publication Activity Database

    Kotík, Michael; Kyslík, Pavel

    2006-01-01

    Roč. 1760, - (2006), s. 245-252 ISSN 0006-3002 Institutional research plan: CEZ:AV0Z50200510 Keywords : epoxide hydrolase * enantioselectivity * aspergillus niger Subject RIV: EE - Microbiology, Virology

  14. Enantioselective syntheses of aeruginosin 298-A and its analogues using a catalytic asymmetric phase-transfer reaction and epoxidation.

    Science.gov (United States)

    Ohshima, Takashi; Gnanadesikan, Vijay; Shibuguchi, Tomoyuki; Fukuta, Yuhei; Nemoto, Tetsuhiro; Shibasaki, Masakatsu

    2003-09-17

    We developed a versatile synthetic process for aeruginosin 298-A as well as several attractive analogues, in which all stereocenters were controlled by a catalytic asymmetric phase-transfer reaction and epoxidation. Furthermore, drastic counteranion effects in phase-transfer catalysis were observed for the first time, making it possible to three-dimensionally fine-tune the catalyst (ketal part, aromatic part, and counteranion).

  15. Comparison of liquid and supercritical fluid chromatography mobile phases for enantioselective separations on polysaccharide stationary phases.

    Science.gov (United States)

    Khater, Syame; Lozac'h, Marie-Anne; Adam, Isabelle; Francotte, Eric; West, Caroline

    2016-10-07

    Analysis and production of enantiomerically pure compounds is a major topic of interest when active pharmaceutical ingredients are concerned. Enantioselective chromatography has become a favourite both at the analytical and preparative scales. High-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC) are dominating the scene and are often seen as complementary techniques. Nowadays, for economic and ecologic reasons, SFC may be preferred over normal-phase HPLC (NPLC) as it allows significant reductions in solvent consumption. However, the transfer of NPLC methods to SFC is not always straightforward. In this study, we compare the retention of achiral molecules and separation of enantiomers under supercritical fluid (carbon dioxide with ethanol or isopropanol) and liquid normal-phase (heptane with ethanol or isopropanol) elution modes with polysaccharide stationary phases in order to explore the differences between the retention and enantioseparation properties between the two modes. Chemometric methods (namely quantitative structure-retention relationships and discriminant analysis) are employed to compare the results obtained on a large set of analytes (171 achiral probes and 97 racemates) and gain some understanding on the retention and separation mechanisms. The results indicate that, contrary to popular belief, carbon dioxide - solvent SFC mobile phases are often weaker eluents than liquid mobile phases. It appears that SFC and NPLC elution modes provide different retention mechanisms. While some enantioseparations are unaffected, facilitating the transfer between the two elution modes, other enantioseparations may be drastically different due to different types and strength of interactions contributing to enantioselectivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Alilação e crotilação catalítica e enantiosseletiva de aldeídos

    Directory of Open Access Journals (Sweden)

    Ângelo de Fátima

    2006-10-01

    Full Text Available The field of chiral catalysis has experienced explosive growth over the last two decades. By now, many of the classical reactions in organic synthesis can be carried out efficiently in asymmetric manner. As one of the fundamental and powerful C-C bond-forming reactions, enantioselective catalytic allylation (ECA and crotylation (ECC of aldehydes has attracted considerable attention. In this article, we present an overview about the importance of chiral Lewis acids and bases in catalytic enantioselective addition of allyl- and crotyl metals to aldehydes and the application of this methodology in the total synthesis of natural and non-natural products.

  17. Alilação e crotilação catalítica e enantiosseletiva de aldeídos

    Directory of Open Access Journals (Sweden)

    Fátima Ângelo de

    2006-01-01

    Full Text Available The field of chiral catalysis has experienced explosive growth over the last two decades. By now, many of the classical reactions in organic synthesis can be carried out efficiently in asymmetric manner. As one of the fundamental and powerful C-C bond-forming reactions, enantioselective catalytic allylation (ECA and crotylation (ECC of aldehydes has attracted considerable attention. In this article, we present an overview about the importance of chiral Lewis acids and bases in catalytic enantioselective addition of allyl- and crotyl metals to aldehydes and the application of this methodology in the total synthesis of natural and non-natural products.

  18. Enantioselective apoptosis induced by individual isomers of bifenthrin in Hep G2 cells.

    Science.gov (United States)

    Liu, Huigang; Li, Juan

    2015-03-01

    Bifenthrin (BF) has been used in racemate for agricultural purposes against soil insects, leading to increased inputs into soil environments. However, most of the studies about the toxicology research on BF were performed in its racemic form. The aim of the present study was to evaluate the enantiomer-specific cis-BF-induced apoptosis and intracellular reactive oxygen species (ROS) generation on human hepatocarcinoma cells (Hep G2). The results of cell viability assay and cytoflow assay indicated an obvious enantioselective hepatocyte toxicity of 1S-cis-BF in Hep G2 cells. 1S-cis-BF also induced ROS production, up-regulated Bax protein expression and down-regulated Bcl-2 expression levels. The present study suggested that enantioselective toxicity should be evaluated on currently used chiral pesticides, such as synthetic pyrethroids. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Computer-Assisted Design and Synthetic Applications of Chiral Enol Borinates: Novel, Highly Enantioselective Aldol Reagents

    Directory of Open Access Journals (Sweden)

    Gennari Cesare

    1998-01-01

    Full Text Available We have recently described the development of a quantitative transition state model for the prediction of stereoselectivity in the boron-mediated aldol reaction. This model provides qualitative insights into the factors contributing to the stereochemical outcome of a variety of reactions of synthetic importance. The force field model was used to assist the design and preparation of new chiral boron ligands derived from menthone. The chiral boron enolates were employed in various stereoselective processes, including the addition to chiral aldehydes and the reagent-controlled total synthesis of (3S,4S-statine. The chiral enolates derived from alpha-halo and alpha-oxysubstituted thioacetates were added to aldehydes and imines. Addition to imines leads to the enantioselective synthesis of chiral aziridines, a formal total synthesis of (+-thiamphenicol, and a new highly efficient synthesis of the paclitaxel (taxol® C-13 side-chain and taxol semisynthesis from baccatin III. The stereochemical outcome of the addition to imines was rationalised with the aid of computational studies. Enantioselective addition reactions of the chiral boron enolate derived from thioacetate have successfully been applied to solid phase bound aldehydes to give aldol products in comparable yields and enantioselectivities to the usual solution conditions.

  20. A Mild and Convenient Method for the Reduction of Carbonyl Compounds with NaBH{sub 4} in the Presence of Catalytic Amounts of MoCl{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Zeynizadeh, Behzad; Yahyaei, Saiedeh [Urmia University, Urmia (Iran, Islamic Republic of)

    2003-11-15

    NaBH{sub 4} with catalytic amounts of MoCl{sub 5} can readily reduce a variety of carbonyl compounds such as aldehydes, ketones, acyloins, α-diketones and conjugated enones to their corresponding alcohols in good to excellent yields. Reduction reactions were performed under aprotic condition in CH{sub 3}CN at room temperature or reflux. In addition, the chemoselective reduction of aldehydes over ketones was accomplished successfully with this reducing system.

  1. Oscillatory behaviour of catalytic properties, structure and temperature during the catalytic partial oxidation of methane on Pd/Al2O3

    DEFF Research Database (Denmark)

    Kimmerle, B.; Baiker, A.; Grunwaldt, Jan-Dierk

    2010-01-01

    Pd/Al2O3 catalysts showed an oscillatory behaviour during the catalytic partial oxidation (CPO) of methane, which was investigated simultaneously by IR-thermography, X-ray absorption spectroscopy, and online mass-spectrometry to correlate the temperature, state of the catalyst and catalytic...... to self-reduction leading to extinction of the process. The latter was the key driver for the oscillations and thus gave additional insight into the mechanism of partial methane oxidation....

  2. Boosting catalytic activity of metal nanoparticles for 4-nitrophenol reduction: Modification of metal naoparticles with poly(diallyldimethylammonium chloride)

    Energy Technology Data Exchange (ETDEWEB)

    You, Jyun-Guo; Shanmugam, Chandirasekar [Department of Chemistry, National Sun Yat-sen University, Taiwan (China); Liu, Yao-Wen; Yu, Cheng-Ju [Department of Applied Physics and Chemistry, University of Taipei, Taiwan (China); Tseng, Wei-Lung, E-mail: tsengwl@mail.nsysu.edu.tw [Department of Chemistry, National Sun Yat-sen University, Taiwan (China); School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Taiwan (China); Center for Nanoscience and Nanotechnology, National Sun Yat-sen University, Taiwan (China)

    2017-02-15

    Highlights: • The choice of capping ligand determines catalytic activity of metal nanocatalysts. • PDDA-capped metal nanoparticles electrostatically interact with 4-NP and BH4{sup −}. • PDDA-capped metal nanoparticles have good recyclability and large scalability. • PDDA-capped Pd nanoparticles show the highest rate constant and activity parameter. - Abstract: Most of the previously reported studies have focused on the change in the size, morphology, and composition of metal nanocatalysts for improving their catalytic activity. Herein, we report poly(diallyldimethylammonium chloride) [PDDA]-stabilized nanoparticles (NPs) of platinum (Pt) and palladium (Pd) as highly active and efficient catalysts for hydrogenation of 4-nitrophenol (4-NP) in the presence of NaBH4. PDDA-stabilized Pt and Pd NPs possessed similar particle size and same facet with citrate-capped Pt and Pd NPs, making this study to investigate the inter-relationship between catalytic activity and surface ligand without the consideration of the effects of particle size and facet. Compared to citrate-capped Pt and Pd NPs, PDDA-stabilized Pt and Pd NPs exhibited excellent pH and salt stability. PDDA could serve as an electron acceptor for metal NPs to produce the net positive charges on the metal surface, which provide strong electrostatic attraction with negatively charged nitrophenolate and borohydride ions. The activity parameter and rate constant of PDDA-stabilized metal NPs were higher than those of citrate-capped metal NPs. Compared to the previously reported Pd nanomaterials for the catalysis of NaBH4-mediated reduction of 4-NP, PDDA-stabilized Pd NPs exhibited the extremely high activity parameter (195 s{sup −1} g{sup −1}) and provided excellent scalability and reusability.

  3. Enantioselective effect of bifenthrin on antioxidant enzyme gene expression and stress protein response in PC12 cells.

    Science.gov (United States)

    Lu, Xianting

    2013-07-01

    Enantioselectivity in toxicology and the health risk of chiral xenobiotics have become frontier topics interfacing chemistry and toxicology. Our previous results showed that cis-bifenthrin (cis-BF) induced cytotoxicity and apoptosis in vitro in an enantioselective manner. However, the exact molecular mechanisms of synthetic pyrethroid-induced enantioselective apoptosis and cytotoxicity have so far received limited research attention. In the present study, the expression patterns of different genes encoding heat shock protein and antioxidant enzymes were investigated by real-time quantitative PCR in rat adrenal pheochromocytoma (PC12) cells after exposure to cis-BF and its enantiomers. The results showed that exposure to 1S-cis-BF resulted in increased transcription of HSP90, HSP70, HSP60, Cu-Zn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione-s-transferase at a concentration of 5 µm and above, while exposure to 1R-cis-BF and rac-cis-BF exhibited these effects to lesser degrees. In addition, induction of antioxidant enzyme gene expression produced by 1S-cis-BF might occur, at least in part, through activation of p38 mitogen-activated protein kinases (MAPK) and extracellular regulated kinases, while increase in stress protein response produced by 1S-cis-BF might occur through the p38 MAPK signaling pathway. The results not only suggest that enantioselectivity should be considered in evaluating the ecotoxicological effects and health risk of chiral contaminants, but also will improve the understanding of molecular mechanism for chiral chemical-induced cytotoxicity. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Effect of support on the catalytic activity of manganese oxide catalyts for toluene combustion.

    Science.gov (United States)

    Pozan, Gulin Selda

    2012-06-30

    The aim of this work was to study combustion of toluene (1000ppm) over MnO(2) modified with different supports. α-Al(2)O(3) and γ-Al(2)O(3) obtained from Boehmite, γ-Al(2)O(3) (commercial), SiO(2), TiO(2) and ZrO(2) were used as commercial support materials. In view of potential interest of this process, the influence of support material on the catalytic performance was discussed. The deposition of 9.5MnO(2) was performed by impregnation over support. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction and oxidation (TPR/TPO) and thermogravimetric analysis (TGA). The catalytic tests were carried out at atmospheric pressure in a fixed-bed flow reactor. 9.5MnO(2)/α-Al(2)O(3)(B) (synthesized from Boehmite) catalyst exhibits the highest catalytic activity, over which the toluene conversion was up to 90% at a temperature of 289°C. Considering all the characterization and reaction data reported in this study, it was concluded that the manganese state and oxygen species played an important role in the catalytic activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Enantioselective Effects of o,p'-DDT on Cell Invasion and Adhesion of Breast Cancer Cells: Chirality in Cancer Development.

    Science.gov (United States)

    He, Xiangming; Dong, Xiaowu; Zou, Dehong; Yu, Yang; Fang, Qunying; Zhang, Quan; Zhao, Meirong

    2015-08-18

    The o,p'-dichlorodiphenyltrichloroethane (DDT) with a chiral center possesses enantioselective estrogenic activity, in which R-(-)-o,p'-DDT exerts a more potent estrogenic effect than S-(+)-o,p'-DDT. Although concern regarding DDT exposure and breast cancer has increased in recent decades, the mode of enantioselective action of o,p'-DDT in breast cancer development is still unknown. Herein, we conducted a systematic study of the effect of o,p'-DDT on stereoselective breast tumor cell progression in a widely used in vitro breast tumor cell model, MCF-7 cells. We demonstrated that R-(-)-o,p'-DDT promoted more cancer cell invasion mediated by the human estrogen receptor (ER) by inducing invasion-promoted genes (matrix metalloproteinase-2 and -9 and human telomerase reverse transcriptase) and inhibiting invasion-inhibited genes (tissue inhibitor of metalloproteinase-1 and -4). Molecular docking verified that the binding affinity between R-(-)-o,p'-DDT and human ER was stronger than that of S-(+)-o,p'-DDT. The enantioselective-induced decrease in cell-to-cell adhesion may involve the downregulation of adhesion-promoted genes (E-cadherin and β-catenin). For the first time, these results reveal that estrogenic-like chiral compounds are of significant concern in the progression of human cancers and that human health risk assessment of chiral chemicals should consider enantioselectivity.

  6. SambVca 2. A Web Tool for Analyzing Catalytic Pockets with Topographic Steric Maps

    KAUST Repository

    Falivene, Laura; Credendino, Raffaele; Poater, Albert; Petta, Andrea; Serra, Luigi; Oliva, Romina; Scarano, Vittorio; Cavallo, Luigi

    2016-01-01

    Developing more efficient catalysts remains one of the primary targets of organometallic chemists. To accelerate reaching this goal, effective molecular descriptors and visualization tools can represent a remarkable aid. Here, we present a Web application for analyzing the catalytic pocket of metal complexes using topographic steric maps as a general and unbiased descriptor that is suitable for every class of catalysts. To show the broad applicability of our approach, we first compared the steric map of a series of transition metal complexes presenting popular mono-, di-, and tetracoordinated ligands and three classic zirconocenes. This comparative analysis highlighted similarities and differences between totally unrelated ligands. Then, we focused on a recently developed Fe(II) catalyst that is active in the asymmetric transfer hydrogenation of ketones and imines. Finally, we expand the scope of these tools to rationalize the inversion of enantioselectivity in enzymatic catalysis, achieved by point mutation of three amino acids of mononuclear p-hydroxymandelate synthase.

  7. SambVca 2. A Web Tool for Analyzing Catalytic Pockets with Topographic Steric Maps

    KAUST Repository

    Falivene, Laura

    2016-06-27

    Developing more efficient catalysts remains one of the primary targets of organometallic chemists. To accelerate reaching this goal, effective molecular descriptors and visualization tools can represent a remarkable aid. Here, we present a Web application for analyzing the catalytic pocket of metal complexes using topographic steric maps as a general and unbiased descriptor that is suitable for every class of catalysts. To show the broad applicability of our approach, we first compared the steric map of a series of transition metal complexes presenting popular mono-, di-, and tetracoordinated ligands and three classic zirconocenes. This comparative analysis highlighted similarities and differences between totally unrelated ligands. Then, we focused on a recently developed Fe(II) catalyst that is active in the asymmetric transfer hydrogenation of ketones and imines. Finally, we expand the scope of these tools to rationalize the inversion of enantioselectivity in enzymatic catalysis, achieved by point mutation of three amino acids of mononuclear p-hydroxymandelate synthase.

  8. Exploration of Cocatalyst Effects on a Bimetallic Cobalt Catalyst System: Enhanced Activity and Enantioselectivity in Epoxide Polymerization

    KAUST Repository

    Widger, Peter C. B.; Ahmed, Syud M.; Coates, Geoffrey W.

    2011-01-01

    Organic ionic compounds were synthesized and investigated as cocatalysts with a bimetallic cobalt complex for enantioselective epoxide polymerization. The identities of both the cation and the anion were systematically varied, and the subsequent reactivity was studied. The nature of the ionic cocatalyst dramatically impacted the rate and enantioselectivity of the catalyst system. The ionic cocatalyst [P(N=P(N(CH2)4)3) 4 +][tBuCO2 -] in combination with a bimetallic cobalt complex produced a catalyst system that exhibited the greatest activity and selectivity for a variety of monosubstituted epoxides. © 2011 American Chemical Society.

  9. Exploration of Cocatalyst Effects on a Bimetallic Cobalt Catalyst System: Enhanced Activity and Enantioselectivity in Epoxide Polymerization

    KAUST Repository

    Widger, Peter C. B.

    2011-07-26

    Organic ionic compounds were synthesized and investigated as cocatalysts with a bimetallic cobalt complex for enantioselective epoxide polymerization. The identities of both the cation and the anion were systematically varied, and the subsequent reactivity was studied. The nature of the ionic cocatalyst dramatically impacted the rate and enantioselectivity of the catalyst system. The ionic cocatalyst [P(N=P(N(CH2)4)3) 4 +][tBuCO2 -] in combination with a bimetallic cobalt complex produced a catalyst system that exhibited the greatest activity and selectivity for a variety of monosubstituted epoxides. © 2011 American Chemical Society.

  10. Design, Synthesis and Biological Activity of Novel Reversible Peptidyl FVIIa Inhibitors Rh-Catalyzed Enantioselective Synthesis of Diaryl Amines

    DEFF Research Database (Denmark)

    Storgaard, Morten

    functional group tolerance. Unfortunately, these -aryl tetramic acids were too unreactive and ring opening toward the synthesis of the building block did not succeed. However, -aryl tetramic acids are still interesting compounds due to their potential biological activity. The building block 3.15 (P1......-catalyzed enantioselective synthesis of diaryl amines, which is an important class of compounds (Chapter 4). For example it is found in the third generation anti-histaminic agent levocetirizine. Development of efficient synthetic routes is therefore of considerably interest. The rhodium-catalyzed enantioselective synthesis...

  11. Solar photo catalytic treatment of simulated dyestuff effluents

    Energy Technology Data Exchange (ETDEWEB)

    Kositzi, M.; Antoniadis, A.; Poulios, I.; Kiridies, I.; Malato, S.

    2003-07-01

    The photo catalytic organic content reduction of two selected synthetic wastewater from the textile dyeing industry, by the use heterogeneous and homogeneous photo catalytic methods under solar irradiation, has been studied at a pilot plant scale at the Plataforma Solar de Almeria. the effect of two different TiO{sub 2} modifications with oxidants such as H{sub 2}O{sub 2} and Na{sub 2}S{sub 2}O{sub 8}, on the decolorisation and the organic content reduction (DOC) of the wastewater was examined. the TiO{sub 2}/H{sub 2}O{sub 2} system seems to be more efficient in comparison to the synergetic action which appears when using persulfate and TiO{sub 2} in these specific wastewaters. By an accumulation energy of 50 KJ L''-1 the synergetic effect of TiO{sub 2} P-25 with H{sub 2}O{sub 2} and Na{sub 2}S{sub 2}O{sub 8} leads to a 70% and 57% DOC reduction, respectively, in the case of cotton synthetic wastewater, while the decolorisation was almost complete. The photo catalytic decolorisation, as well as the DOC reduction in the case of naylon simulated wastewater is a slower process and by an accumulation energy of 50 KJ L''-1 leads to 54% mineralization in both cases. The Photo-Fenton process in both cases was more efficient for this type of wastewater in comparison to the TiO{sub 2}/oxidant system. An accumulation of energy of 50 KJ L''-1 leads to 90% reduction of the organic content. (Author) 13 refs.

  12. Asymmetric reduction of ketones and β-keto esters by (S)-1-phenylethanol dehydrogenase from denitrifying bacterium Aromatoleum aromaticum.

    Science.gov (United States)

    Dudzik, A; Snoch, W; Borowiecki, P; Opalinska-Piskorz, J; Witko, M; Heider, J; Szaleniec, M

    2015-06-01

    Enzyme-catalyzed enantioselective reductions of ketones and keto esters have become popular for the production of homochiral building blocks which are valuable synthons for the preparation of biologically active compounds at industrial scale. Among many kinds of biocatalysts, dehydrogenases/reductases from various microorganisms have been used to prepare optically pure enantiomers from carbonyl compounds. (S)-1-phenylethanol dehydrogenase (PEDH) was found in the denitrifying bacterium Aromatoleum aromaticum (strain EbN1) and belongs to the short-chain dehydrogenase/reductase family. It catalyzes the stereospecific oxidation of (S)-1-phenylethanol to acetophenone during anaerobic ethylbenzene mineralization, but also the reverse reaction, i.e., NADH-dependent enantioselective reduction of acetophenone to (S)-1-phenylethanol. In this work, we present the application of PEDH for asymmetric reduction of 42 prochiral ketones and 11 β-keto esters to enantiopure secondary alcohols. The high enantioselectivity of the reaction is explained by docking experiments and analysis of the interaction and binding energies of the theoretical enzyme-substrate complexes leading to the respective (S)- or (R)-alcohols. The conversions were carried out in a batch reactor using Escherichia coli cells with heterologously produced PEDH as whole-cell catalysts and isopropanol as reaction solvent and cosubstrate for NADH recovery. Ketones were converted to the respective secondary alcohols with excellent enantiomeric excesses and high productivities. Moreover, the progress of product formation was studied for nine para-substituted acetophenone derivatives and described by neural network models, which allow to predict reactor behavior and provides insight on enzyme reactivity. Finally, equilibrium constants for conversion of these substrates were derived from the progress curves of the reactions. The obtained values matched very well with theoretical predictions.

  13. Stereospecific nickel-catalyzed cross-coupling reactions of alkyl ethers: enantioselective synthesis of diarylethanes.

    Science.gov (United States)

    Taylor, Buck L H; Swift, Elizabeth C; Waetzig, Joshua D; Jarvo, Elizabeth R

    2011-01-26

    Secondary benzylic ethers undergo stereospecific substitution reactions with Grignard reagents in the presence of nickel catalysts. Reactions proceed with inversion of configuration and high stereochemical fidelity. This reaction allows for facile enantioselective synthesis of biologically active diarylethanes from readily available optically enriched carbinols.

  14. Numerical simulation of urea based selective non-catalytic reduction deNOx process for industrial applications

    International Nuclear Information System (INIS)

    Baleta, Jakov; Mikulčić, Hrvoje; Vujanović, Milan; Petranović, Zvonimir; Duić, Neven

    2016-01-01

    Highlights: • SNCR is a simple method for the NOx reduction from large industrial facilities. • Capabilities of the developed mathematical framework for SNCR simulation were shown. • Model was used on the geometry of experimental reactor and municipal incinerator. • Results indicate suitability of the developed model for real industrial cases. - Abstract: Industrial processes emit large amounts of diverse pollutants into the atmosphere, among which NOx takes a significant portion. Selective non-catalytic reduction (SNCR) is a relatively simple method for the NOx reduction in large industrial facilities such as power plants, cement plants and waste incinerator plants. It consists of injecting the urea-water solution in the hot flue gas stream and its reaction with the NOx. During this process flue gas enthalpy is used for the urea-water droplet heating and for the evaporation of water content. After water evaporates, thermolysis of urea occurs, during which ammonia, a known NO_x reductant, and isocyanic acid are generated. In order to cope with the ever stringent environmental norms, equipment manufacturers need to develop energy efficient products that are at the same time benign to environment. This is becoming increasingly complicated and costly, and one way to reduce production costs together with the maintaining the same competitiveness level is to employ computational fluid dynamics (CFD) as a tool, in a process today commonly known under the term “virtual prototyping”. The aim of this paper is to show capabilities of the developed mathematical framework implemented in the commercial CFD code AVL FIRE®, to simulate physical processes of all relevant phenomena occurring during the SNCR process. First, mathematical models for description of SNCR process are presented and afterwards, models are used on the 3D geometry of an industrial reactor and a real industrial case to predict SNCR efficiency, temperature and velocity field. Influence of the main

  15. Research and proposal on selective catalytic reduction reactor optimization for industrial boiler.

    Science.gov (United States)

    Yang, Yiming; Li, Jian; He, Hong

    2017-08-24

    The advanced computational fluid dynamics (CFD) software STAR-CCM+ was used to simulate a denitrification (De-NOx) project for a boiler in this paper, and the simulation result was verified based on a physical model. Two selective catalytic reduction (SCR) reactors were developed: reactor 1 was optimized and reactor 2 was developed based on reactor 1. Various indicators, including gas flow field, ammonia concentration distribution, temperature distribution, gas incident angle, and system pressure drop were analyzed. The analysis indicated that reactor 2 was of outstanding performance and could simplify developing greatly. Ammonia injection grid (AIG), the core component of the reactor, was studied; three AIGs were developed and their performances were compared and analyzed. The result indicated that AIG 3 was of the best performance. The technical indicators were proposed for SCR reactor based on the study. Flow filed distribution, gas incident angle, and temperature distribution are subjected to SCR reactor shape to a great extent, and reactor 2 proposed in this paper was of outstanding performance; ammonia concentration distribution is subjected to ammonia injection grid (AIG) shape, and AIG 3 could meet the technical indicator of ammonia concentration without mounting ammonia mixer. The developments above on the reactor and the AIG are both of great application value and social efficiency.

  16. Effect of Catalytic Layer Thickness on Diameter of Vertically Aligned Individual Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Hyun Kyung Jung

    2014-01-01

    Full Text Available The effect of catalytic thin film thickness on the diameter control of individual carbon nanotubes grown by plasma enhanced chemical vapor deposition was investigated. Individual carbon nanotubes were grown on catalytic nanodot arrays, which were fabricated by e-beam lithography and e-beam evaporation. During e-beam evaporation of the nanodot pattern, more catalytic metal was deposited at the edge of the nanodots than the desired catalyst thickness. Because of this phenomenon, carbon atoms diffused faster near the center of the dots than at the edge of the dots. The carbon atoms, which were gathered at the interface between the catalytic nanodot and the diffusion barrier, accumulated near the center of the dot and lifted the catalyst off. From the experiments, an individual carbon nanotube with the same diameter as that of the catalytic nanodot was obtained from a 5 nm thick catalytic nanodot; however, an individual carbon nanotube with a smaller diameter (~40% reduction was obtained from a 50 nm thick nanodot. We found that the thicker the catalytic layer, the greater the reduction in diameter of the carbon nanotubes. The diameter-controlled carbon nanotubes could have applications in bio- and nanomaterial scanning and as a contrast medium for magnetic resonance imaging.

  17. The Effect of Acidic and Redox Properties of V2O5/CeO2-ZrO2 Catalysts in Selective Catalytic Reduction of NO by NH3

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Riisager, Anders; Fehrmann, Rasmus

    2009-01-01

    V2O5 supported ZrO2 and CeO2–ZrO2 catalysts were prepared and characterized by N2 physisorption, XRPD, TPR, and NH3-TPD methods. The influence of calcination temperature from 400 to 600 °C on crystallinity, acidic and redox properties were studied and compared with the catalytic activity...... in the selective catalytic reduction (SCR) of NO with ammonia. The surface area of the catalysts decreased gradually with increasing calcination temperature. The SCR activity of V2O5/ZrO2 catalysts was found to be related with the support crystallinity, whereas V2O5/CeO2–ZrO2 catalysts were also dependent...... on acidic and redox properties of the catalyst. The V2O5/CeO2–ZrO2 catalysts showed high activity and selectivity for reduction of NO with NH3....

  18. Facile synthesis of SiO{sub 2}@Cu{sub x}O@TiO{sub 2} heterostructures for catalytic reductions of 4-nitrophenol and 2-nitroaniline organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Zelekew, Osman Ahmed; Kuo, Dong-Hau, E-mail: dhkuo@mail.ntust.edu.tw

    2017-01-30

    Highlights: • The synthesis of SiO{sub 2}@Cu{sub x}O@TiO{sub 2}catalystwasillustrated (*). • The p-n junction between p-type Cu{sub x}O and n-type TiO{sub 2} built electric field. • The electric field results in avoiding the recombination of electron and hole. • The n-type TiO{sub 2} rich in electron outward facilitates the reduction. - Abstract: Herein, we designed the p-type Cu{sub x}O (x = 1 or 2) nanoparticles deposited on SiO{sub 2} spherical particle inside and coated with thin layered n-type TiO{sub 2} semiconductors outside for reduction purpose. The composite material, abbreviated as SiO{sub 2}@Cu{sub x}O@TiO{sub 2}, was characterized. The catalytic performance of the composite was tested for the reductions of 4-nitrophenol (4-NP) and 2-nitroaniline (2-NA). Complete reductions of 4-NP and 2-NA took, 210 and 150 s, respectively. The catalytic efficiency of the composite material may be associated with electron and hole separation resulted from the p-n junction formation between p-type Cu{sub x}O and n-type TiO{sub 2} and the built-in electric field. Moreover, the hydride ion and electrons released from NaBH{sub 4} together with outward electrons from n-type TiO{sub 2}, synergistically, are also responsible for the reduction of nitro aromatic compounds. Our design of composite material from low-priced metal oxides was successful towards reduction of nitro-aromatic compounds.

  19. Chemo- and Enantioselective Intramolecular Silver-Catalyzed Aziridinations.

    Science.gov (United States)

    Ju, Minsoo; Weatherly, Cale D; Guzei, Ilia A; Schomaker, Jennifer M

    2017-08-07

    Asymmetric nitrene-transfer reactions are a powerful tool for the preparation of enantioenriched amine building blocks. Reported herein are chemo- and enantioselective silver-catalyzed aminations which transform di- and trisubstituted homoallylic carbamates into [4.1.0]-carbamate-tethered aziridines in good yields and with ee values of up to 92 %. The effects of the substrate, silver counteranion, ligand, solvent, and temperature on both the chemoselectivity and ee value were explored. Stereochemical models were proposed to rationalize the observed absolute stereochemistry of the aziridines, which undergo nucleophilic ring opening to yield enantioenriched amines with no erosion in stereochemical integrity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Chiral separation and enantioselective degradation of vinclozolin in soils.

    Science.gov (United States)

    Liu, Hui; Liu, Donghui; Shen, Zhigang; Sun, Mingjing; Zhou, Zhiqiang; Wang, Peng

    2014-03-01

    Vinclozolin is a chiral fungicide with potential environmental problems. The chiral separation of the enantiomers and enantioselective degradation in soil were investigated in this work. The enantiomers were separated by high-performance liquid chromatography (HPLC) on Chiralpak IA, IB, and AZ-H chiral columns under normal phase and the influence of the mobile phase composition on the separation was also studied. Complete resolutions were obtained on all three chiral columns under optimized conditions with the same elution order of (+)/(-). The residual analysis of the enantiomers in soil was conducted using accelerate solvent extraction followed by HPLC determination. The recoveries of the enantiomers ranged from 85.7-105.7% with relative standard deviation (SD) of 0.12-3.83%, and the limit of detection (LOD) of the method was 0.013 µg/g. The results showed that the degradations of vinclozolin enantiomers in the soils followed first-order kinetics. Preferential degradation of the (-)-enantiomer was observed only in one soil with the largest |ES| value of 0.047, and no obvious enantioselective degradation was observed in other soils. It was found that the persistence of vinclozolin in soil was related to pH values based on the half-lives. The two enantiomers disappeared about 8 times faster in basic soils than that in neutral or acidic soils. © 2014 Wiley Periodicals, Inc.

  1. A new enantioselective CE method for determination of oxcarbazepine and licarbazepine after fungal biotransformation.

    Science.gov (United States)

    Bocato, Mariana Zuccherato; Bortoleto, Marcela Armelim; Pupo, Mônica Tallarico; de Oliveira, Anderson Rodrigo Moraes

    2014-10-01

    The present work describes, for the first time, the simultaneous separation of oxcarbazepine (OXC) and its active metabolite 10-hydroxy-10,11-dihydrocarbamazepine (licarbazepine, Lic) by chiral CE. The developed method was employed to monitor the enantioselective biotransformation of OXC into its active metabolite by fungi. The electrophoretic separations were performed using 10 mmol/L of a Tris-phosphate buffer solution (pH 2.5) containing 1% w/v of β-CD phosphate sodium salt (P-β-CD) as running electrolyte, -20 kV of applied voltage and a 15°C capillary temperature. The method was linear over the concentration range of 1000-30 000 ng/mL for OXC and 75-900 ng/mL for each Lic enantiomer (r ≥ 0.9952). Within-day precision and accuracy evaluated by RSD and relative errors, respectively, were lower than 15% for all analytes. The validated method was used to evaluate the enantioselective biotransformation of OXC, mediated by fungi, into its active metabolite Lic. This study showed that the fungi Glomerella cingulata (VA1) and Beuveria bassiana were able to enantioselectively metabolize the OXC into Lic after 360 h of incubation. Biotransformation by the fungus Beuveria bassiana showed 79% enantiomeric excess for (S)-(+)-Lic, while VA1 gave an enantiomeric excess of 100% for (S)-(+)-Lic. This study opens a new route to the drug (S)-(+)-licarbazepine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The selective catalytic reduction of NO with NH3 over a novel Ce-Sn-Ti mixed oxides catalyst: Promotional effect of SnO2

    Science.gov (United States)

    Yu, Ming'e.; Li, Caiting; Zeng, Guangming; Zhou, Yang; Zhang, Xunan; Xie, Yin'e.

    2015-07-01

    A series of novel catalysts (CexSny) for the selective catalytic reduction of NO by NH3 were prepared by the inverse co-precipitation method. The aim of this novel design was to improve the NO removal efficiency of CeTi by the introduction of SnO2. It was found that the Ce-Sn-Ti catalyst was much more active than Ce-Ti and the best Ce:Sn molar ratio was 2:1. Ce2Sn1 possessed a satisfied NO removal efficiency at low temperature (160-280 °C), while over 90% NO removal efficiency maintained in the temperature range of 280-400 °C at the gas hourly space velocity (GHSV) of 50,000 h-1. Besides, Ce2Sn1 kept a stable NO removal efficiency within a wide range of GHSV and a long period of reacting time. Meanwhile, Ce2Sn1 exhibited remarkable resistance to both respectively and simultaneously H2O and SO2 poisoning due to the introduction of SnO2. The promotional effect of SnO2 was studied by N2 adsorption-desorption, X-ray diffraction (XRD), Raman spectra, X-ray photoelectron spectroscopy (XPS) and H2 temperature programmed reduction (H2-TPR) for detail information. The characterization results revealed that the excellent catalytic performance of Ce2Sn1 was associated with the higher specific surface area, larger pore volume and poorer crystallization. Besides, the introduction of SnO2 could result in not only greater conversion of Ce4+ to Ce3+ but also the increase amount of chemisorbed oxygen, which are beneficial to improve the SCR activity. More importantly, a novel peak appearing at lower temperatures through the new redox equilibrium of 2Ce4+ + Sn2+ ↔ 2Ce3+ + Sn4+ and higher total H2 consumption can be obtained by the addition of SnO2. Finally, the possible reaction mechanism of the selective catalytic reduction over Ce2Sn1 was also proposed.

  3. Uncovering Key Structural Features of an Enantioselective Peptide-Catalyzed Acylation Utilizing Advanced NMR Techniques

    Czech Academy of Sciences Publication Activity Database

    Procházková, Eliška; Kolmer, A.; Ilgen, J.; Schwab, M.; Kaltschnee, L.; Fredersdorf, M.; Schmidts, V.; Wende, R. C.; Schreiner, P. R.; Thiele, C. M.

    2016-01-01

    Roč. 55, č. 51 (2016), s. 15754-15759 ISSN 1433-7851 Institutional support: RVO:61388963 Keywords : conformational analysis * enantioselective acylations * NMR spectroscopy * pure shift NMR * RDCs Subject RIV: CC - Organic Chemistry Impact factor: 11.994, year: 2016

  4. Optimisation of the enantioselective biocatalytic hydrolysis of naproxen ethyl ester using ChiroCLEC-CR

    CSIR Research Space (South Africa)

    Brady, D

    2004-03-04

    Full Text Available In a biocatalytic reaction the immobilized lipase ChiroCLEC-CR enantioselectively hydrolysed a naproxen ethyl ester racemate, yielding (S)-naproxen with an enantiomeric excess of more than 98%, an enantiomeric ratio (E) of more than 100...

  5. Enhanced hydrothermal stability of Cu-ZSM-5 catalyst via surface modification in the selective catalytic reduction of NO with NH_3

    International Nuclear Information System (INIS)

    Zhang, Tao; Shi, Juan; Liu, Jian; Wang, Daxi; Zhao, Zhen; Cheng, Kai; Li, Jianmei

    2016-01-01

    Highlights: • The hydrothermal stability of Cu-ZSM-5 catalyst was enhanced after surface modification. • An inert silica layer was deposited on the surface of Cu-ZSM-5 and formed a protective layer. • The contact between Si and Cu and Al atoms could form Si-O-Al and Si- O−Cu bonds. • The redox and acidity properties of Cu-ZSM-5-CLD-Aged catalyst were largely retained. • The adsorption and activation of NO and NH_3 was almost unchanged over Cu-ZSM-5-CLD catalyst before and after hydrothermal treatment. - Abstract: The surface of Cu-ZSM-5 catalyst was modified by chemical liquid deposition (CLD) of tetraethoxysilane (TEOS) for enhancing its hydrothermal stability in the selective catalytic reduction of NO with NH_3. After hydrothermal aging at 750 °C for 13 h, the catalytic performance of Cu-ZSM-5-Aged catalyst was significantly reduced for NO reduction in the entire temperature range, while that of Cu-ZSM-5-CLD-Aged catalyst was affected very little. The characterization results indicated that an inert silica layer was deposited on the surface of Cu-ZSM-5 and formed a protective layer, which prevents the detachment of Cu"2"+ from ZSM-5 ion-exchange positions and the dealumination of zeolite during the hydrothermal aging process. Based on the data it is hypothesized to be the primary reason for the high hydrothermal stability of Cu-ZSM-5-CLD catalyst.

  6. Characterization of an enantioselective odorant receptor in the yellow fever mosquito Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Jonathan D Bohbot

    2009-09-01

    Full Text Available Enantiomers differ only in the left or right handedness (chirality of their orientations and exhibit identical chemical and physical properties. In chemical communication systems, enantiomers can be differentially active at the physiological and behavioral levels. Only recently were enantioselective odorant receptors demonstrated in mammals while their existence in insects has remained hypothetical. Using the two-microelectrode voltage clamp of Xenopus oocytes, we show that the yellow fever mosquito, Aedes aegypti, odorant receptor 8 (AaOR8 acts as a chiral selective receptor for the (R-(--enantiomer of 1-octen-3-ol, which in the presence of other kairomones is an attractant used by blood-sucking insects to locate their hosts. In addition to steric constraints, chain length and degree of unsaturation play important roles in this recognition process. This is the first characterization of an enantioselective odorant receptor in insects and the results demonstrate that an OR alone, without helper proteins, can account for chiral specificity exhibited by olfactory sensory neurons (OSNs.

  7. The Poisoning Effect of Na Doping over Mn-Ce/TiO2 Catalyst for Low-Temperature Selective Catalytic Reduction of NO by NH3

    Directory of Open Access Journals (Sweden)

    Liu Yang

    2014-01-01

    Full Text Available Sodium carbonate (Na2CO3, sodium nitrate (NaNO3, and sodium chloride (NaCl were chosen as the precursors to prepare the Na salts deposited Mn-Ce/TiO2 catalysts through an impregnation method. The influence of Na on the performance of the Mn-Ce/TiO2 catalyst for low-temperature selective catalytic reduction of NOx by NH3 was investigated. Experimental results showed that Na salts had negative effects on the activity of Mn-Ce/TiO2 and the precursors of Na salts also affected the catalytic activity. The precursor Na2CO3 had a greater impact on the catalytic activity, while NaNO3 had minimal effect. The characterization results indicated that the significant changes in physical and chemical properties of Mn-Ce/TiO2 were observed after Na was doped on the catalysts. The significant decreases in surface areas and NH3 adsorption amounts were observed after Na was doped on the catalysts, which could be considered as the main reasons for the deactivation of Na deposited Mn-Ce/TiO2.

  8. Mn/TiO2 and Mn–Fe/TiO2 catalysts synthesized by deposition precipitation—promising for selective catalytic reduction of NO with NH3 at low temperatures

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Schill, Leonhard; Jensen, Anker Degn

    2015-01-01

    Mn/TiO2and Mn–Fe/TiO2catalysts have been prepared by impregnation (IMP) and deposition-precipitation (DP) techniques and characterized by N2 physisorption, XRPD, NH3-TPD, H2-TPR, XPS and TGA. 25 wt% Mn0.75Fe0.25Ti-DP catalyst, prepared by deposition precipitation with ammonium carbamate (AC......) as a precipitating agent, showed superior low-temperature SCR (selective catalytic reduction) of NO with NH3. The superior catalytic activity of the 25 wt% Mn0.75Fe0.25Ti-DP catalyst is probably due to the presence of amorphous phases of manganese oxide, iron oxide, high surface area, high total acidity......, acidstrength and ease of reduction of manganese oxide and iron oxide on TiO2in addition to formation of an SCR active MnOx phase with high content of chemisorbed oxygen (Oα). The optimum catalyst might beused as tail-end SCR catalysts in, e.g., biomass-fired power plants and waste incineration plants....

  9. Kinetic Resolution of sec-Thiols by Enantioselective Oxidation with Rationally Engineered 5-(Hydroxymethyl)furfural Oxidase.

    Science.gov (United States)

    Pickl, Mathias; Swoboda, Alexander; Romero, Elvira; Winkler, Christoph K; Binda, Claudia; Mattevi, Andrea; Faber, Kurt; Fraaije, Marco W

    2018-03-05

    Various flavoprotein oxidases were recently shown to oxidize primary thiols. Herein, this reactivity is extended to sec-thiols by using structure-guided engineering of 5-(hydroxymethyl)furfural oxidase (HMFO). The variants obtained were employed for the oxidative kinetic resolution of racemic sec-thiols, thus yielding the corresponding thioketones and nonreacted R-configured thiols with excellent enantioselectivities (E≥200). The engineering strategy applied went beyond the classic approach of replacing bulky amino acid residues with smaller ones, as the active site was additionally enlarged by a newly introduced Thr residue. This residue established a hydrogen-bonding interaction with the substrates, as verified in the crystal structure of the variant. These strategies unlocked HMFO variants for the enantioselective oxidation of a range of sec-thiols. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Emerging catalytic technologies related to the denoxing of waste gases from thermal power stations

    International Nuclear Information System (INIS)

    Busca, G.

    2002-01-01

    The emerging catalytic technologies related to the DeNOxing of waste gases from thermal power stations are briefly discussed. In the case of the Selective Catalytic Reduction of NO x with hydrocarbons new zeolite-based or metal oxide catalytic systems are under development, whose stability and performances approach more and more those needed for a commercial process. The processes for the low temperature Selective Catalytic Reduction of NO x with ammonia are apparently promising allowing a possible application in a tail-end process configuration, at least after a total abatement of SO x . The processes of combined abatement of NO x and dioxins are already applied industrially. Also the Selective Oxidation of ammonia slip to nitrogen is already proposed as commercial process. In both last cases, however, few information is available in the open literature [it

  11. Experimental investigation of N2O formation in selective non-catalytic NOx reduction processes performed in stoker boiler

    Directory of Open Access Journals (Sweden)

    Krawczyk Piotr

    2016-12-01

    Full Text Available Stoker fired boiler plants are common throughout Eastern Europe. Increasingly strict emission standards will require application of secondary NOx abatement systems on such boilers. Yet operation of such systems, in addition to reducing NOx emissions, may also lead to emission of undesirable substances, for example N2O. This paper presents results of experimental tests concerning N2O formation in the selective non-catalytic NOx emission reduction process (SNCR in a stoker boiler (WR 25 type. Obtained results lead to an unambiguous conclusion that there is a dependency between the NOx and N2O concentrations in the exhaust gas when SNCR process is carried out in a coal-fired stoker boiler. Fulfilling new emission standards in the analysed equipment will require 40–50% reduction of NOx concentration. It should be expected that in such a case the N2O emission will be approximately 55–60 mg/m3, with the NOx to N2O conversion factor of about 40%.

  12. Carbothermal reduction of Ti-modified IRMOF-3: an adaptable synthetic method to support catalytic nanoparticles on carbon.

    Science.gov (United States)

    Kim, Jongsik; McNamara, Nicholas D; Her, Theresa H; Hicks, Jason C

    2013-11-13

    This work describes a novel method for the preparation of titanium oxide nanoparticles supported on amorphous carbon with nanoporosity (Ti/NC) via the post-synthetic modification of a Zn-based MOF with an amine functionality, IRMOF-3, with titanium isopropoxide followed by its carbothermal pyrolysis. This material exhibited high purity, high surface area (>1000 m(2)/g), and a high dispersion of metal oxide nanoparticles while maintaining a small particle size (~4 nm). The material was shown to be a promising catalyst for oxidative desulfurization of diesel using dibenzothiophene as a model compound as it exhibited enhanced catalytic activity as compared with titanium oxide supported on activated carbon via the conventional incipient wetness impregnation method. The formation mechanism of Ti/NC was also proposed based on results obtained when the carbothermal reduction temperature was varied.

  13. Enantioselective recognition of mandelic acid by a 3,6-dithiophen-2-yl-9H-carbazole-based chiral fluorescent bisboronic acid sensor.

    Science.gov (United States)

    Wu, Yubo; Guo, Huimin; James, Tony D; Zhao, Jianzhang

    2011-07-15

    We have prepared chiral fluorescent bisboronic acid sensors with 3,6-dithiophen-2-yl-9H-carbazole as the fluorophore. The thiophene moiety was used to extend the π-conjugation framework of the fluorophore in order to red-shift the fluorescence emission and, at the same time, to enhance the novel process where the fluorophore serves as the electron donor of the photoinduced electron transfer process (d-PET) of the boronic acid sensors; i.e., the background fluorescence of the sensor 1 at acidic pH is weaker compared to that at neutral or basic pH, in stark contrast to the typical a-PET boronic acid sensors (where the fluorophore serves as the electron acceptor of the photoinduced electron transfer process). The benefit of the d-PET boronic acid sensors is that the recognition of the hydroxylic acids can be achieved at acidic pH. We found that the thiophene moiety is an efficient π-conjugation linker and electron donor; as a result, the d-PET contrast ratio of the sensors upon variation of the pH is improved 10-fold when compared to the previously reported d-PET sensors without the thiophene moiety. Enantioselective recognition of tartaric acid was achieved at acid pH, and the enantioselectivity (total response K(D)I(F)(D)/K(L)I(F)(L)) is 3.3. The fluorescence enhancement (I(F)(Sample)/I(F)(Blank)) of sensor 1 upon binding with tartaric acid is 3.5-fold at pH 3.0. With the fluorescent bisboronic acid sensor 1, enantioselective recognition of mandelic acid was achieved for the first time. To the best of our knowledge, this is the first time that the mandelic acid has been enantioselectively recognized using a chiral fluorescent boronic acid sensor. Chiral monoboronic acid sensor 2 and bisboronic acid sensor 3 without the thiophene moiety failed to enantioselectively recognize mandelic acid. Our findings with the thiophene-incorporated boronic acid sensors will be important for the design of d-PET fluorescent sensors for the enantioselective recognition of

  14. A dual Lewis base activation strategy for enantioselective carbene-catalyzed annulations.

    Science.gov (United States)

    Izquierdo, Javier; Orue, Ane; Scheidt, Karl A

    2013-07-24

    A dual activation strategy integrating N-heterocyclic carbene (NHC) catalysis and a second Lewis base has been developed. NHC-bound homoenolate equivalents derived from α,β-unsaturated aldehydes combine with transient reactive o-quinone methides in an enantioselective formal [4 + 3] fashion to access 2-benzoxopinones. The overall approach provides a general blueprint for the integration of carbene catalysis with additional Lewis base activation modes.

  15. Fabrication of magnetically recyclable Fe3O4@Cu nanocomposites with high catalytic performance for the reduction of organic dyes and 4-nitrophenol

    International Nuclear Information System (INIS)

    Tang, Mingyi; Zhang, Sai; Li, Xianxian; Pang, Xiaobo; Qiu, Haixia

    2014-01-01

    A facile and efficient approach to synthesize Fe 3 O 4 @Cu nanocomposites using L-Lysine as a linker was developed. The morphology, composition and crystallinity of the Fe 3 O 4 @Cu nanocomposites were characterized by Fourier Transform infrared spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and powder X-ray diffraction. In addition, the magnetic properties were determined with vibrating sample magnetometer. The surface of the Fe 3 O 4 contained many small Cu nanoparticles with sizes of about 3 nm. It was found that the Fe 3 O 4 @Cu nanocomposites could catalyze the degradation of organic dyes. The catalytic activities of the Fe 3 O 4 @Cu nanocomposites for the reduction of nitrophenol were also studied. The Fe 3 O 4 @Cu nanocomposites are more efficient catalysts compared with Cu nanoparticles and can easily be recovered from the reaction mixture with magnet. The cost effective and recyclable Fe 3 O 4 @Cu nanocomposites provide an exciting new material for environmental protection applications. - Highlights: • Cu nanoparticles as small as 3 nm are synthesized. • Low cost Fe 3 O 4 @Cu magnetical nanoparticles show catalytic activity for organic dyes and 4-nitrophenol. • The Fe 3 O 4 @Cu display high catalytic activity after 13 cycles

  16. Aziridino Alcohols as Catalysts for the Enantioselective Addition of Diethylzinc to Aldehydes

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Kornø, Hanne Tøfting; Guijarro, David

    1998-01-01

    The chiral aziridino alcohols 1 -3 have been prepared either from amino acids (1a from serine; 1b - 1i and 3 from threonine; 2a - 2e from allo-threonine) or via asymmetric synthesis (1j, 1k, 1l and 2f from methyl cinnamate). These easily available ligands act as catalysts for the enantioselective...

  17. Lewis base activation of Lewis acids: catalytic, enantioselective addition of glycolate-derived silyl ketene acetals to aldehydes.

    Science.gov (United States)

    Denmark, Scott E; Chung, Won-Jin

    2008-06-20

    A catalytic system involving silicon tetrachloride and a chiral, Lewis basic bisphosphoramide catalyst is effective for the addition of glycolate-derived silyl ketene acetals to aldehydes. It was found that the sense of diastereoselectivity could be modulated by changing the size of the substituents on the silyl ketene acetals. In general, the trimethylsilyl ketene acetals derived from methyl glycolates with a large protecting group on the alpha-oxygen provide enantiomerically enriched alpha,beta-dihydroxy esters with high syn-diastereoselectivity, whereas the tert-butyldimethylsilyl ketene acetals derived from bulky esters of alpha-methoxyacetic acid provide enantiomerically enriched alpha,beta-dihydroxy esters with high anti-diastereoselecitvity.

  18. Total syntheses of mitragynine, paynantheine and speciogynine via an enantioselective thiourea-catalysed Pictet-Spengler reaction

    NARCIS (Netherlands)

    Kerschgens, I. P.; Claveau, E.; Wanner, M.J.; Ingemann, S.; van Maarseveen, J.H.; Hiemstra, H.

    2012-01-01

    The pharmacologically interesting indole alkaloids (-)-mitragynine, (+)-paynantheine and (+)-speciogynine were synthesised in nine steps from 4-methoxytryptamine by a route featuring (i) an enantioselective thiourea-catalysed Pictet-Spengler reaction, providing the tetrahydro-β-carboline ring and

  19. Different effects of clopidogrel and clarithromycin on the enantioselective pharmacokinetics of sibutramine and its active metabolites in healthy subjects.

    Science.gov (United States)

    Shinde, Dhananjay D; Kim, Ho-Sook; Choi, Jae-Seok; Pan, Wei; Bae, Soo Kyung; Yeo, Chang-Woo; Shon, Ji-Hong; Kim, Dong-Hyun; Shin, Jae Gook

    2013-05-01

    In this study, we assessed the effects of clopidogrel and clarithromycin, known CYP2B6 and CYP3A inhibitors, respectively, on the enantioselective disposition of racemic sibutramine in conjunction with CYP2B6 polymorphisms in humans. Sibutramine showed enantioselective plasma profiles with consistently higher concentrations of R-enantiomers. Clopidogrel and clarithromycin significantly increased the sibutramine plasma concentration, but their effects differed between enantiomers; a 2.2-fold versus 4.1-fold increase in the AUC in S-enantiomer and 1.8-fold versus 2.0-fold for the R-enantiomer, respectively. The AUCs of S- and R-desmethyl metabolites changed significantly during the clopidogrel phase (P sibutramine was higher in subjects with the CYP2B6*6/*6 genotype, but no statistical difference was observed among the CYP2B6 genotypes. These results suggest that the enantioselective disposition of sibutramine and its active metabolites are influenced by the altered genetic and environmental factors of CYP2B6 and CYP3A activity in vivo. © The Author(s) 2013.

  20. Enantioselective construction of quaternary N-heterocycles by palladium-catalysed decarboxylative allylic alkylation of lactams

    KAUST Repository

    Behenna, Douglas C.

    2011-12-18

    The enantioselective synthesis of nitrogen-containing heterocycles (N-heterocycles) represents a substantial chemical research effort and resonates across numerous disciplines, including the total synthesis of natural products and medicinal chemistry. In this Article, we describe the highly enantioselective palladium-catalysed decarboxylative allylic alkylation of readily available lactams to form 3,3-disubstituted pyrrolidinones, piperidinones, caprolactams and structurally related lactams. Given the prevalence of quaternary N-heterocycles in biologically active alkaloids and pharmaceutical agents, we envisage that our method will provide a synthetic entry into the de novo asymmetric synthesis of such structures. As an entry for these investigations we demonstrate how the described catalysis affords enantiopure quaternary lactams that intercept synthetic intermediates previously used in the synthesis of the Aspidosperma alkaloids quebrachamine and rhazinilam, but that were previously only available by chiral auxiliary approaches or as racemic mixtures. © 2012 Macmillan Publishers Limited. All rights reserved.

  1. Enantioselective Collision-Activated Dissociation of Gas-Phase Tryptophan Induced by Chiral Recognition of Protonated l-Alanine Peptides

    Science.gov (United States)

    Fujihara, Akimasa; Matsuyama, Hiroki; Tajiri, Michiko; Wada, Yoshinao; Hayakawa, Shigeo

    2017-06-01

    Enantioselective dissociation in the gas phase is important for enantiomeric enrichment and chiral transmission processes in molecular clouds regarding the origin of homochirality in biomolecules. Enantioselective collision-activated dissociation (CAD) of tryptophan (Trp) and the chiral recognition ability of l-alanine peptides ( l-Ala n ; n = 2-4) were examined using a linear ion trap mass spectrometer. CAD spectra of gas-phase heterochiral H+( d-Trp)( l-Ala n ) and homochiral H+( l-Trp)( l-Ala n ) noncovalent complexes were obtained as a function of the peptide size n. The H2O-elimination product was observed in CAD spectra of both heterochiral and homochiral complexes for n = 2 and 4, and in homochiral H+( l-Trp)( l-Ala3), indicating that the proton is attached to the l-alanine peptide, and H2O loss occurs from H+( l-Ala n ) in the noncovalent complexes. H2O loss did not occur in heterochiral H+( d-Trp)( l-Ala3), where NH3 loss and (H2O + CO) loss were the primary dissociation pathways. In heterochiral H+( d-Trp)( l-Ala3), the protonation site is the amino group of d-Trp, and NH3 loss and (H2O + CO) loss occur from H+( d-Trp). l-Ala peptides recognize d-Trp through protonation of the amino group for peptide size n = 3. NH3 loss and (H2O + CO) loss from H+( d-Trp) proceeds via enantioselective CAD in gas-phase heterochiral H+( d-Trp)( l-Ala3) at room temperature, whereas l-Trp dissociation was not observed in homochiral H+( l-Trp)( l-Ala3). These results suggest that enantioselective dissociation induced by chiral recognition of l-Ala peptides through protonation could play an important role in enantiomeric enrichment and chiral transmission processes of amino acids.

  2. Reduction of α,β-Unsaturated Ketones by Old Yellow Enzymes: Mechanistic Insights from Quantum Mechanics/Molecular Mechanics Calculations.

    Science.gov (United States)

    Lonsdale, Richard; Reetz, Manfred T

    2015-11-25

    Enoate reductases catalyze the reduction of activated C═C bonds with high enantioselectivity. The oxidative half-reaction, which involves the addition of a hydride and a proton to opposite faces of the C═C bond, has been studied for the first time by hybrid quantum mechanics/molecular mechanics (QM/MM). The reduction of 2-cyclohexen-1-one by YqjM from Bacillus subtilis was selected as the model system. Two-dimensional QM/MM (B3LYP-D/OPLS2005) reaction pathways suggest that the hydride and proton are added as distinct steps, with the former step preceding the latter. Furthermore, we present interesting insights into the reactivity of this enzyme, including the weak binding of the substrate in the active site, the role of the two active site histidine residues for polarization of the substrate C═O bond, structural details of the transition states to hydride and proton transfer, and the role of Tyr196 as proton donor. The information presented here will be useful for the future design of enantioselective YqjM mutants for other substrates.

  3. Preparation, Characterization and Catalytic Activity of Nickel Molybdate (NiMoO4 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hicham Oudghiri-Hassani

    2018-01-01

    Full Text Available Nickel molybdate (NiMoO4 nanoparticles were synthesized via calcination of an oxalate complex in static air at 500 °C. The oxalate complex was analyzed by thermal gravimetric analysis (TGA and Fourier transform infrared spectroscopy (FTIR. The as-synthesized nickel molybdate was characterized by Brunauer–Emmett–Teller technique (BET, X-ray diffraction (XRD, and transmission electron microscopy (TEM and its catalytic efficiency was tested in the reduction reaction of the three-nitrophenol isomers. The nickel molybdate displays a very high activity in the catalytic reduction of the nitro functional group to an amino. The reduction progress was controlled using Ultraviolet-Visible (UV-Vis absorption.

  4. Simple Aziridino Alcohols as Chiral Ligands. Enantioselective Additions of Diethylzinc to N-Diphenylphosphinoylimines

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Andersson, Pher G.; Guijarro, David

    1996-01-01

    Simple chiral aziridino alcohols 2-5, easily available from L-serine, L-threonine or L-allo-threonine, have been used as ligands to promote the addition of Et(2)Zn to the diphenylphosphinoylimine 1 (Ar=Ph). Enantioselectivities of up to 94% could be obtained by proper choice of the substituents...

  5. Comparative catalytic reduction of 4-nitrophenol by polyacrylamide-gold nanocomposite synthesized by hydrothermal autoclaving and conventional heating routes

    Science.gov (United States)

    Salaheldin, Hosam I.

    2017-12-01

    Gold nanoparticles (AuNPs) in polymeric polyacrylamide (PAAm) matrix were synthesized using conventional heating and autoclaving thermal techniques. The synthesized Au/PAAm nanocomposite was characterized using UV-vis spectroscopy and high-resolution transmission electron microscopy. The size of the synthesized particles was approximately 6.37 nm and 8.19 nm with the conventional heating and autoclaving thermal techniques, respectively. Electron diffraction x-ray spectroscopy and the Fourier transformation infrared spectroscopy were used for the composition and elemental studies, which confirmed that the Au metallic atoms were synthesized and embedded within a PAAm matrix via a coordination bond between the carbonyl (-CONH2) group and the metallic NPs. X-ray diffraction confirmed the crystalline nature of the fabricated AuNPs with face centered cubic of nanocrystals. The catalytic activity of the as-prepared Au/PAAm nanocomposite for the reduction of 4-nitrophenol to 4-aminophenol was studied in the presence of sodium borohydrate. The synthesized AuNPs had an effective catalytic activity; the smaller NPs synthesized NPs with the conventional heating technique had a higher reaction kinetic rate in comparation with those synthesized with the autoclaving technique. Therefore, the Au/PAAm nanocomposite can be widely used as an eco-friendly, non-toxic, a fast and cost-effective product to remove versatile organic pollutants such as aromatic nitro compounds.

  6. A facile approach to fabricate Au nanoparticles loaded SiO2 microspheres for catalytic reduction of 4-nitrophenol

    International Nuclear Information System (INIS)

    Tang, Mingyi; Huang, Guanbo; Li, Xianxian; Pang, Xiaobo; Qiu, Haixia

    2015-01-01

    Hydrophilic and biocompatible macromolecules were used to improve and simplify the process for the fabrication of core/shell SiO 2 @Au composite particles. The influence of polymers on the morphology of SiO 2 @Au particles with different size of SiO 2 cores was analyzed by transmission electron microscopy and scanning electron microscopy. The optical property of the SiO 2 @Au particles was studied with UV–Vis spectroscopy. The results indicate that the structure and composition of macromolecules affect the morphology of Au layers on SiO 2 microspheres. The SiO 2 @Au particles prepared in the presence of polyvinyl alcohol (PVA) or polyvinylpyrrolidone (PVP) have thin and complete Au nanoshells owing to their inducing act in preferential growth of Au nanoparticles along the surface of SiO 2 microspheres. SiO 2 @Au particles can be also prepared from SiO 2 microspheres modified with 3-aminopropyltrimethoxysilane in the presence of PVA or PVP. This offers a simple way to fabricate a Au layer on SiO 2 or other microspheres. The SiO 2 @Au particles demonstrated high catalytic activity in the reduction of 4-nitrophenol. - Highlights: • Facile direct deposition method for Au nanoparticles on silica microspheres. • Influence of different types of macromolecule on the formation of Au shell. • High catalytic performance of Au nanoparticles on silica microspheres

  7. System and method for controlling ammonia levels in a selective catalytic reduction catalyst using a nitrogen oxide sensor

    Science.gov (United States)

    None

    2017-07-25

    A system according to the principles of the present disclosure includes an air/fuel ratio determination module and an emission level determination module. The air/fuel ratio determination module determines an air/fuel ratio based on input from an air/fuel ratio sensor positioned downstream from a three-way catalyst that is positioned upstream from a selective catalytic reduction (SCR) catalyst. The emission level determination module selects one of a predetermined value and an input based on the air/fuel ratio. The input is received from a nitrogen oxide sensor positioned downstream from the three-way catalyst. The emission level determination module determines an ammonia level based on the one of the predetermined value and the input received from the nitrogen oxide sensor.

  8. In-silico driven engineering of enantioselectivity of a penicillin G acylase towards active pharmaceutical ingredients

    Czech Academy of Sciences Publication Activity Database

    Grulich, Michal; Brezovský, J.; Štěpánek, Václav; Palyzová, Andrea; Marešová, Helena; Zahradník, Jiří; Kyslíková, Eva; Kyslík, Pavel

    2016-01-01

    Roč. 133, Supplement 1 (2016), s. 53-59 ISSN 1381-1177 Institutional support: RVO:61388971 Keywords : Docking experiments * Enantioselectivity * Penicillin G acylase Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 2.269, year: 2016

  9. Stereoselective reactions. XXXII. Enantioselective deprotonation of 4-tert-butylcyclohexanone by fluorine-containing chiral lithium amides derived from 1-phenylethylamine and 1-(1-naphthyl)ethylamine.

    Science.gov (United States)

    Aoki, K; Koga, K

    2000-04-01

    Enantioselective deprotonation of 4-tert-butylcyclohexanone was examined using 1-phenylethylamine- and 1-(1-naphthyl)ethylamine-derived chiral lithium amides having an alkyl or a fluoroalkyl substituent at the amide nitrogen. The lithium amides having a 2,2,2-trifluoroethyl group on the amide nitrogen are easily accessible in both enantiomeric forms, and were found to induce good enantioselectivity in the present reaction.

  10. Efficient and highly enantioselective formation of the all-carbon quaternary stereocentre of lyngbyatoxin A

    DEFF Research Database (Denmark)

    Vital, Paulo J.V.; Tanner, David

    2006-01-01

    Indole 25, an advanced intermediate in a projected enantioselective total synthesis of lyngbyatoxin A 1, was prepared from allylic alcohol 11 in 9 steps and >95% ee, key transformations being the enantiospecific rearrangement of vinyl epoxide 14 and the Hemetsberger-Knittel reaction of azide 24....

  11. Enantioselective analysis of proteinogenic amino acids in cerebrospinal fluid by capillary electrophoresis–mass spectrometry

    NARCIS (Netherlands)

    Prior, Amir; Sánchez-Hernández, Laura; Sastre-Toraño, Javier; Marina, Maria Luisa; de Jong, Gerhardus J.; Somsen, Govert W.

    2016-01-01

    d-Amino acids (AAs) are increasingly being recognized as essential molecules in biological systems. Enantioselective analysis of proteinogenic AAs in biological samples was accomplished by CE–MS employing β-CD as chiral selector and ESI via sheath-liquid (SL) interfacing. Prior to analysis, AAs were

  12. Electronic coupling induced high performance of N, S-codoped graphene supported CoS2 nanoparticles for catalytic reduction and evolution of oxygen

    Science.gov (United States)

    Chen, Bohong; Jiang, Zhongqing; Zhou, Lingshan; Deng, Binglu; Jiang, Zhong-Jie; Huang, Jianlin; Liu, Meilin

    2018-06-01

    A simple synthetic method is developed for the synthesis of CoS2/N, S-codoped graphene. The result shows the existence of a strong electronic coupling between CoS2 and N, S-codoped graphene. The pyrrolic and pyridinic type nitrogen and S in the form of C-S-C in N, S-codoped graphene are found to be the anchoring sites of the CoS2 nanoparticles. As a bifunctional catalyst, the CoS2/N, S-codoped graphene exhibits an oxygen reduction onset potential of 0.963 V vs. RHE and delivers an oxygen evolution overpotential of 393 mV at the current density of 10 mA cm-2. Its oxygen reduction and evolution catalytic activities are comparable to those of the Pt/C and the state-of-art RuO2/C, respectively. Most impressively, the CoS2/N, S-codoped graphene exhibits a potential gap of 771 mV. This value is lower than those of most bifuntional catalysts reported, clearly indicating its potential use as the bifunctional catalyst to replace the noble-metal based catalysts for practical applications. Additionally, our results also suggest a great importance to prepare a single pure phase CoS2 in improving the catalytic bifunctionality of the CoS2/N, S-codoped graphene. The primary Zn-air battery with CoS2/N, S-codoped graphene shows a higher discharge peak power density than that with Pt/C.

  13. Enhanced hydrothermal stability of Cu-ZSM-5 catalyst via surface modification in the selective catalytic reduction of NO with NH{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tao; Shi, Juan; Liu, Jian, E-mail: liujian@cup.edu.cn; Wang, Daxi; Zhao, Zhen, E-mail: zhenzhao@cup.edu.cn; Cheng, Kai; Li, Jianmei

    2016-07-01

    Highlights: • The hydrothermal stability of Cu-ZSM-5 catalyst was enhanced after surface modification. • An inert silica layer was deposited on the surface of Cu-ZSM-5 and formed a protective layer. • The contact between Si and Cu and Al atoms could form Si-O-Al and Si- O−Cu bonds. • The redox and acidity properties of Cu-ZSM-5-CLD-Aged catalyst were largely retained. • The adsorption and activation of NO and NH{sub 3} was almost unchanged over Cu-ZSM-5-CLD catalyst before and after hydrothermal treatment. - Abstract: The surface of Cu-ZSM-5 catalyst was modified by chemical liquid deposition (CLD) of tetraethoxysilane (TEOS) for enhancing its hydrothermal stability in the selective catalytic reduction of NO with NH{sub 3}. After hydrothermal aging at 750 °C for 13 h, the catalytic performance of Cu-ZSM-5-Aged catalyst was significantly reduced for NO reduction in the entire temperature range, while that of Cu-ZSM-5-CLD-Aged catalyst was affected very little. The characterization results indicated that an inert silica layer was deposited on the surface of Cu-ZSM-5 and formed a protective layer, which prevents the detachment of Cu{sup 2+} from ZSM-5 ion-exchange positions and the dealumination of zeolite during the hydrothermal aging process. Based on the data it is hypothesized to be the primary reason for the high hydrothermal stability of Cu-ZSM-5-CLD catalyst.

  14. Catalytic oxidative pyrolysis of spent organic ion exchange resins from nuclear power plants

    International Nuclear Information System (INIS)

    Sathi Sasidharan, N.; Deshingkar, D.S.; Wattal, P.K.; Shirsat, A.N.; Bharadwaj, S.R.

    2005-08-01

    The spent IX resins from nuclear power reactors are highly active solid wastes generated during operations of nuclear reactors. Catalytic oxidative pyrolysis of these resins can lead to high volume reduction of these wastes. Low temperature pyrolysis of transition metal ion loaded IX resins in presence of nitrogen was carried out in order to optimize catalyst composition to achieve maximum weight reduction. Thermo gravimetric analysis of the pyrolysis residues was carried out in presence of air in order to compare the oxidative characteristics of transition metal oxide catalysts. Copper along with iron, chromium and nickel present in the spent IX resins gave the most efficient catalyst combination for catalytic and oxidative pyrolysis of the residues. During low temperature catalytic pyrolysis, 137 Cesium volatility was estimated to be around 0.01% from cationic resins and around 0.1% from anionic resins. During oxidative pyrolysis at 700 degC, nearly 10 to 40% of 137 Cesium was found to be released to off gases depending upon type of resin and catalyst loaded on to it. The oxidation of pyrolytic residues at 700 degC gave weight reduction of 15% for cationic resins and 93% for anionic resins. Catalytic oxidative pyrolysis is attractive for reducing weight and volume of spent cationic resins from PHWRs and VVERs. (author)

  15. Enantioselective bioaccumulation of diniconazole in Tenebrio molitor larvae.

    Science.gov (United States)

    Liu, Chen; LV, Xiao Tian; Zhu, Wen Xue; QU, Hao Yang; Gao, Yong Xin; Guo, Bao Yuan; Wang, Hui Li

    2013-12-01

    The enantioselective bioaccumulation of diniconazole in Tenebrio molitor Linne larva was investigated with liquid chromatography tandem mass spectrometry based on the ChiralcelOD-3R[cellulose tri-(3,5-dimethylphenyl carbamate)] column. In this study we documented the effects of dietary supplementation with wheat bran contaminated by racemic diniconazole at two dose levels of 20 mg kg(-1) and 2 mg kg(-1) (dry weight) in Tenebrio molitor. The results showed that both doses of diniconazole were taken up by Tenebrio molitor rapidly in the first few days, the concentrations of R-enantiomer and S-enantiomer at high doses reached the highest level of 0.55 mg kg(-1) and 0.48 mg kg(-1) , respectively, on the 1(st) d, and the concentrations of them obtained a maxima of 0.129 mg kg(-1) and 0.128 mg kg(-1) at low dose, respectively, on the 3(rd) d, which means that the concentration of diniconazole was proportional to the time of achieving the highest accumulated level. It afterwards attained equilibrium after a sharp decline at both 20 mg kg(-1) and 2 mg kg(-1) of diniconazole. The determination results from the feces of Tenebrio molitor demonstrated that the extraction recovery (ER) values of the high dose group were higher than that of the low dose group and the values were all above 1; therefore, it could be inferred that enantiomerization existed in Tenebrio molitor. Additionally, the biota accumulation factor was used to evaluate the bioaccumulation of diniconazole enantiomers, showing that the bioaccumulation of diniconazole in Tenebrio molitor was enantioselective with preferential accumulation of S-enantiomer. © 2013 Wiley Periodicals, Inc.

  16. Application of Zeolitic Additives in the Fluid Catalytic Cracking (FCC

    Directory of Open Access Journals (Sweden)

    A. Nemati Kharat

    2013-06-01

    Full Text Available Current article describes application of zeolites in fluid catalytic cracking (FCC. The use of several zeolitic additives for the production light olefins and reduction of pollutants is described. Application of zeolites as fluid catalytic cracking (FCC catalysts and additives due to the presence of active acid sites in the zeolite framework  increase the formation of desired cracking products (i.e., olefin and branched products  in the FCC unit.

  17. Enantioseparation and determination of the chiral phenylpyrazole insecticide ethiprole in agricultural and environmental samples and its enantioselective degradation in soil

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qing; Shi, Haiyan; Gao, Beibei; Tian, Mingming; Hua, Xiude; Wang, Minghua, E-mail: wangmha@njau.edu.cn

    2016-01-15

    An effective method for the enantioselective determination of ethiprole enantiomers in agricultural and environmental samples was developed. The effects of solvent extraction, mobile phase and thermodynamic parameters for chiral recognition were fully investigated. Complete enantioseparation of the ethiprole enantiomers was achieved on a Lux Cellulose-2 column. The stereochemical structures of ethiprole enantiomers were also determined, and (R)-(+)-ethiprole was first eluted. The average recoveries were 82.7–104.9% with intra-day RSD of 1.7–8.2% in soil, cucumber, spinach, tomato, apple and peach under optimal conditions. Good linearity (R{sup 2} ≥ 0.9991) was obtained for all the matrix calibration curves within a range of 0.1 to 10 mg L{sup −1}. The limits of detection for both enantiomers were estimated to be 0.008 mg kg{sup −1} in soil, cucumber, spinach and tomato and 0.012 mg kg{sup −1} in apple and peach, which were lower than the maximum residue levels established in Japan. The results indicate that the proposed method is convenient and reliable for the enantioselective detection of ethiprole in agricultural and environmental samples. The behavior of ethiprole in soil was studied under field conditions and the enantioselective degradation was observed with enantiomer fraction values varying from 0.494 to 0.884 during the experiment. The (R)-(+)-ethiprole (t{sub 1/2} = 11.6 d) degraded faster than (S)-(−)-ethiprole (t{sub 1/2} = 34.7 d). This report is the first describe a chiral analytical method and enantioselective behavior of ethiprole, and these results should be extremely useful for the risk evaluation of ethiprole in food and environmental safety. - Highlights: • The ethiprole enantiomers were completely separated. • A novel method for enantioselective determination of ethiprole was developed. • The absolute configurations of ethiprole enantiomers were firstly determined. • The (R)-(+)-ethiprole was preferentially degraded in

  18. ADVANCED BYPRODUCT RECOVERY: DIRECT CATALYTIC REDUCTION OF SO2 TO ELEMENTAL SULFUR

    Energy Technology Data Exchange (ETDEWEB)

    Robert S. Weber

    1999-05-01

    Arthur D. Little, Inc., together with its commercialization partner, Engelhard Corporation, and its university partner Tufts, investigated a single-step process for direct, catalytic reduction of sulfur dioxide from regenerable flue gas desulfurization processes to the more valuable elemental sulfur by-product. This development built on recently demonstrated SO{sub 2}-reduction catalyst performance at Tufts University on a DOE-sponsored program and is, in principle, applicable to processing of regenerator off-gases from all regenerable SO{sub 2}-control processes. In this program, laboratory-scale catalyst optimization work at Tufts was combined with supported catalyst formulation work at Engelhard, bench-scale supported catalyst testing at Arthur D. Little and market assessments, also by Arthur D. Little. Objectives included identification and performance evaluation of a catalyst which is robust and flexible with regard to choice of reducing gas. The catalyst formulation was improved significantly over the course of this work owing to the identification of a number of underlying phenomena that tended to reduce catalyst selectivity. The most promising catalysts discovered in the bench-scale tests at Tufts were transformed into monolith-supported catalysts at Engelhard. These catalyst samples were tested at larger scale at Arthur D. Little, where the laboratory-scale results were confirmed, namely that the catalysts do effectively reduce sulfur dioxide to elemental sulfur when operated under appropriate levels of conversion and in conditions that do not contain too much water or hydrogen. Ways to overcome those limitations were suggested by the laboratory results. Nonetheless, at the end of Phase I, the catalysts did not exhibit the very stringent levels of activity or selectivity that would have permitted ready scale-up to pilot or commercial operation. Therefore, we chose not to pursue Phase II of this work which would have included further bench-scale testing

  19. Selective catalytic reduction of NO{sub x} to nitrogen over Co-Pt/ZSM-5: Part A. Characterization and kinetic studies

    Energy Technology Data Exchange (ETDEWEB)

    Maisuls, S.E.; Seshan, K.; Feast, S.; Lercher, J.A. [Laboratory for Catalytic Processes and Materials, Faculty of Chemical Technology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2001-01-01

    The selective catalytic reduction of NO by propene in the presence of excess oxygen has been studied over catalysts based on Co-Pt supported on ZSM-5. Pure Pt based catalysts are highly active, but produce large amounts of N{sub 2}O. Bimetallic Co-Pt/ZSM-5 catalysts with low Pt contents (0.1wt.%) show a synergistic effect by combining high stability and activity of Pt catalysts with the high N{sub 2} selectivity of Co catalysts. The lower selectivity to N{sub 2}O is attributed to its selective conversion over Co. The catalysts also showed high water and sulfur tolerance above 350C.

  20. Resolution of alpha/beta-amino acids by enantioselective penicillin G acylase from Achromobacter sp

    Czech Academy of Sciences Publication Activity Database

    Grulich, Michal; Brezovský, J.; Štěpánek, Václav; Palyzová, Andrea; Kyslíková, Eva; Kyslík, Pavel

    2015-01-01

    Roč. 122, DEC 2015 (2015), s. 240-247 ISSN 1381-1177 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : Penicillin G acylase * Enantioselectivity * Homologous model Subject RIV: CE - Biochemistry Impact factor: 2.189, year: 2015

  1. Polymer and Membrane Design for Low Temperature Catalytic Reactions

    KAUST Repository

    Villalobos, Luis Francisco; Xie, Yihui; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2016-01-01

    Catalytically active asymmetric membranes have been developed with high loadings of palladium nanoparticles located solely in the membrane's ultrathin skin layer. The manufacturing of these membranes requires polymers with functional groups, which can form insoluble complexes with palladium ions. Three polymers have been synthesized for this purpose and a complexation/nonsolvent induced phase separation followed by a palladium reduction step is carried out to prepare such membranes. Parameters to optimize the skin layer thickness and porosity, the palladium loading in this layer, and the palladium nanoparticles size are determined. The catalytic activity of the membranes is verified with the reduction of a nitro-compound and with a liquid phase Suzuki-Miyaura coupling reaction. Very low reaction times are observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Polymer and Membrane Design for Low Temperature Catalytic Reactions

    KAUST Repository

    Villalobos, Luis Francisco

    2016-02-29

    Catalytically active asymmetric membranes have been developed with high loadings of palladium nanoparticles located solely in the membrane\\'s ultrathin skin layer. The manufacturing of these membranes requires polymers with functional groups, which can form insoluble complexes with palladium ions. Three polymers have been synthesized for this purpose and a complexation/nonsolvent induced phase separation followed by a palladium reduction step is carried out to prepare such membranes. Parameters to optimize the skin layer thickness and porosity, the palladium loading in this layer, and the palladium nanoparticles size are determined. The catalytic activity of the membranes is verified with the reduction of a nitro-compound and with a liquid phase Suzuki-Miyaura coupling reaction. Very low reaction times are observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Charge transfer-resistance in nitrogen-doped/undoped graphene: Its influence on the electro-catalytic reduction of H2O2

    International Nuclear Information System (INIS)

    Magerusan, Lidia; Pogacean, Florina; Socaci, Crina; Coros, Maria; Rosu, Marcela-Corina; Pruneanu, Stela

    2016-01-01

    Nitrogen doped (N-Gr) and undoped (TRGO) graphene were chemically synthesized and characterized by TEM, STEM-EDX and XPS. The electrochemical reduction of H 2 O 2 was investigated with bare glassy carbon (GC) electrode and with GC modified with each graphene sample. The active area of TRGO/GC and N-Gr/GC modified electrodes were found to be 0.75 and 0.295 cm 2 , respectively. Both were considerably larger than that of bare GC (0.07 cm 2 ). We carefully looked at the kinetic of interfacial electron transfer process and found that the charge-transfer resistance (R ct ) of TRGO/GC electrode (7.83 × 10 6 Ω) was significantly lower than that of N-Gr/GC electrode (4.81 × 10 7 Ω) or bare GC (1.74 × 10 9 Ω). Interestingly, although TRGO/GC electrode had the largest active area and the smallest charge transfer resistance, it did not promote the H 2 O 2 electrochemical reduction. In contrast, N-Gr/GC modified electrode exhibited an enhanced electro-catalytic activity towards H 2 O 2 reduction, which was related to the presence of heterogeneous atoms into the sp 2 carbon network.

  4. An ylide transformation of rhodium(I) carbene: enantioselective three-component reaction through trapping of rhodium(I)-associated ammonium ylides by β-nitroacrylates.

    Science.gov (United States)

    Ma, Xiaochu; Jiang, Jun; Lv, Siying; Yao, Wenfeng; Yang, Yang; Liu, Shunying; Xia, Fei; Hu, Wenhao

    2014-11-24

    The chiral Rh(I)-diene-catalyzed asymmetric three-component reaction of aryldiazoacetates, aromatic amines, and β-nitroacrylates was achieved to obtain γ-nitro-α-amino-succinates in good yields and with high diastereo- and enantioselectivity. This reaction is proposed to proceed through the enantioselective trapping of Rh(I)-associated ammonium ylides by nitroacrylates. This new transformation represents the first example of Rh(I)-carbene-induced ylide transformation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Enantioselective organo-photocatalysis mediated by atropisomeric thiourea derivatives.

    Science.gov (United States)

    Vallavoju, Nandini; Selvakumar, Sermadurai; Jockusch, Steffen; Sibi, Mukund P; Sivaguru, Jayaraman

    2014-05-26

    Can photocatalysis be performed without electron or energy transfer? To address this, organo-photocatalysts that are based on atropisomeric thioureas and display lower excited-state energies than the reactive substrates have been developed. These photocatalysts were found to be efficient in promoting the [2+2] photocycloaddition of 4-alkenyl-substituted coumarins, which led to the corresponding products with high enantioselectivity (77-96% ee) at low catalyst loading (1-10 mol%). The photocatalytic cycle proceeds by energy sharing via the formation of both static and dynamic complexes (exciplex formation), which is aided by hydrogen bonding. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Enantioselective N-Heterocyclic Carbene Catalysis via the Dienyl Acyl Azolium.

    Science.gov (United States)

    Gillard, Rachel M; Fernando, Jared E M; Lupton, David W

    2018-04-16

    Herein we report the enantioselective N-heterocyclic carbene catalyzed (4+2) annulation of the dienyl acyl azolium with enolates. The reaction exploits readily accessible acyl fluorides and TMS enol ethers to give a range of highly enantio- and diastereo-enriched cyclohexenes (most >97:3 er and >20:1 dr). The reaction was found to require high nucleophilicity NHC catalysts with mechanistic studies supporting a stepwise 1,6-addition/β-lactonization. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Metabolism of styrene in the human liver in vitro: interindividual variation and enantioselectivity

    NARCIS (Netherlands)

    Wenker, M. A.; Kezić, S.; Monster, A. C.; de Wolff, F. A.

    2001-01-01

    1. The interindividual variation and enantioselectivity of the in vitro styrene oxidation by cytochrome P450 have been investigated in 20 human microsomal liver samples. Liver samples were genotyped for the CYP2E1*6 and CYP2E1*5B alleles. 2. Kinetic analysis indicated the presence of at least two

  8. One pot 'click' reactions : tandem enantioselective biocatalytic epoxide ring opening and [3+2] azide alkyne cycloaddition

    NARCIS (Netherlands)

    Campbell-Verduyn, Lachlan S.; Szymanski, Wiktor; Postema, Christiaan P.; Dierckx, Rudi A.; Elsinga, Philip H.; Janssen, Dick B.; Feringa, Ben L.

    2010-01-01

    Halohydrin dehalogenase (HheC) can perform enantioselective azidolysis of aromatic epoxides to 1,2-azido alcohols which are subsequently ligated to alkynes producing chiral hydroxy triazoles in a one-pot procedure with excellent enantiomeric excess.

  9. Enantioselective analysis of citalopram and escitalopram in postmortem blood together with genotyping for CYP2D6 and CYP2C19.

    Science.gov (United States)

    Carlsson, Björn; Holmgren, Anita; Ahlner, Johan; Bengtsson, Finn

    2009-03-01

    Citalopram is marketed as a racemate (50:50) mixture of the S(+)-enantiomer and R(-)-enantiomer and the active S(+)-enantiomer (escitalopram) that possess inhibitory effects. Citalopram was introduced in Sweden in 1992 and is the most frequently used antidepressant to date in Sweden. In 2002, escitalopram was introduced onto the Swedish market for treatment of depression and anxiety disorders. The main objective of this study was to investigate S(+)-citalopram [i.e., the racemic drug (citalopram) or the enantiomer (escitalopram)] present in forensic autopsy cases positive for the presence of citalopram in routine screening using a non-enantioselective bioanalytical method. Fifty out of the 270 samples found positive by gas chromatography-nitrogen-phosphorus detection were further analyzed using enantioselective high-performance liquid chromatography. The 50 cases were genotyped for CYP2D6 and CYP2C19, as these isoenzymes are implicated in the metabolism of citalopram and escitalopram. In samples positive for racemic citalopram using the screening method for forensic autopsy cases, up to 20% would have been misinterpreted in the absence of an enantioselective method. An enantioselective method is thus necessary for correct interpretation of autopsy cases, after the enantiomer has been introduced onto the market. The percentage of poor metabolizers was 6% for CYP2D6 and 8% for CYP2C19.

  10. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.

    Science.gov (United States)

    Andrade, Leandro H; Barcellos, Thiago

    2009-07-16

    The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained.

  11. Simple one-pot synthesis of platinum-palladium nanoflowers with enhanced catalytic activity and methanol-tolerance for oxygen reduction in acid media

    International Nuclear Information System (INIS)

    Zheng, Jie-Ning; He, Li-Li; Chen, Fang-Yi; Wang, Ai-Jun; Xue, Meng-Wei; Feng, Jiu-Ju

    2014-01-01

    Graphical abstract: PtPd nanoflowers were fabricated by one-pot solvothermal co-reduction method in oleylamine system, which exhibited the improved electrocatalytic activity and higher methanol tolerance for oxygen reduction, compared with commercial Pt and Pd black catalysts. - Highlights: • Bimetallic alloyed PtPd nanoflowers are prepared by a simple one-pot solvothermal co-reduction method. • PtPd nanoflowers display high catalytic performance for ORR dominated by a four-electron pathway. • PtPd nanoflowers show good methanol tolerance for ORR. - Abstract: In this work, bimetallic alloyed platinum-palladium (PtPd) nanoflowers are fabricated by one-pot solvothermal co-reduction of Pt (II) acetylacetonate and Pd (II) acetylacetonate in oleylamine system. The as-prepared nanostructures show the enhanced electrocatalytic activity for oxygen reduction reaction (ORR), dominated by a four-electron pathway based on the Koutecky-Levich plots, mainly owing to the inhibition of the formation of Pt–OH ad via the downshift of d-band center for Pt. Meanwhile, PtPd nanoflowers display good methanol tolerance and improved stability for ORR. The chronoamperometry test reveals that the current of PtPd nanoflowers remains 45.9% of its original value within 6000 s, much higher than those of commercial Pt (36.7%) and Pd (32.2%) black catalysts. Therefore, PtPd nanoflowers with unique interconnected structures can be used as a promising cathode catalyst in direct methanol fuel cells

  12. Gold nanocatalyst-based immunosensing strategy accompanying catalytic reduction of 4-nitrophenol for sensitive monitoring of chloramphenicol residue.

    Science.gov (United States)

    Que, Xiaohua; Tang, Dianyong; Xia, Biyun; Lu, Minghua; Tang, Dianping

    2014-06-09

    A new competitive-type immunosensing system based on gold nanoparticles toward catalytic reduction of 4-nitrophenol (4-NP) was developed for sensitive monitoring of antibiotic residue (chloramphenicol, CAP, used in this case) by using ultraviolet-visible (UV-vis) spectrometry. Gold nanoparticle (AuNP) with 16 nm in diameter was initially synthesized and functionalized with CAP-bovine serum albumin (CAP-BSA) conjugate, which were used as the competitor on monoclonal anti-CAP antibody-coated polystyrene microtiter plate (MTP). In the presence of target CAP, the labeled CAP-BSA on the AuNP competed with target CAP for the immobilized antibody on the MTP. The conjugated amount of CAP-BSA-AuNP on the MTP decreased with the increase of target CAP in the sample. Upon addition of 4-NP and NaBH4 into the MTP, the carried AuNP could catalytically reduce 4-NP to 4-aminophenol (4-AP), and the as-produced 4-AP could be monitored by using UV-vis absorption spectroscopy. Experimental results indicated that the absorbance at 403 nm increased with the increment of target CAP concentration in the sample, and exhibited a dynamic range from 0.1 to 100 ng mL(-1) with a detection limit (LOD) of 0.03 ng mL(-1) at the 3s(blank) level. Intra- and inter-assay coefficients of variation were lower than 5.5% and 8.0%, respectively. In addition, the methodology was evaluated for CAP spiked honey and milk samples, respectively. The recovery was 92-112%. Copyright © 2014. Published by Elsevier B.V.

  13. Tunable preparation of ruthenium nanoparticles with superior size-dependent catalytic hydrogenation properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuan; Luo, Yaodong; Yang, Xuan; Yang, Yaxin; Song, Qijun, E-mail: qsong@jiangnan.edu.cn

    2017-06-15

    Highlights: • A facile and efficient strategy is firstly developed for the synthesis of Ru NPs. • Ru NPs are stable and uniform with the controllable sizes from 2.6 to 51.5 nm. • Ru NPs exhibit size-dependent and superior catalytic hydrogenation activity. - Abstract: Ruthenium (Ru) featured with an unusual catalytic behavior is of great significance in several heterogeneous and electro-catalytic reactions. The preparation of tractable Ru nanocatalysts and the building of highly active catalytic system at ambient temperature remains a grand challenge. Herein, a facile strategy is developed for the controllable preparation of Ru nanoparticles (NPs) with the sizes ranging from 2.6 to 51.5 nm. Ru NPs show superior size-dependent catalytic performance with the best kinetic rate constant as high as −1.52 min{sup −1}, which could far surpass the other traditional noble metals. Ru NPs exert exceedingly efficient low-temperature catalytic activity and good recyclability in the catalytic reduction of nitroaromatic compounds (NACs) and azo dyes. The developed catalytic system provides a distinguishing insight for the artificial preparation of Ru NPs with desired sizes, and allows for the development of rational design rules for exploring catalysts with superior catalytic performances, potentially broadening the applications of metallic NP-enabled catalytic analysis.

  14. Biocatalytic anti-Prelog reduction of prochiral ketones with whole cells of Acetobacter pasteurianus GIM1.158.

    Science.gov (United States)

    Du, Peng-Xuan; Wei, Ping; Lou, Wen-Yong; Zong, Min-Hua

    2014-06-10

    Enantiomerically pure alcohols are important building blocks for production of chiral pharmaceuticals, flavors, agrochemicals and functional materials and appropriate whole-cell biocatalysts offer a highly enantioselective, minimally polluting route to these valuable compounds. At present, most of these biocatalysts follow Prelog's rule, and thus the (S)-alcohols are usually obtained when the smaller substituent of the ketone has the lower CIP priority. Only a few anti-Prelog (R)-specific whole cell biocatalysts have been reported. In this paper, the biocatalytic anti-Prelog reduction of 2-octanone to (R)-2-octanol was successfully conducted with high enantioselectivity using whole cells of Acetobacter pasteurianus GIM1.158. Compared with other microorganisms investigated, Acetobacter pasteurianus GIM1.158 was shown to be more effective for the reduction reaction, affording much higher yield, product enantiomeric excess (e.e.) and initial reaction rate. The optimal temperature, buffer pH, co-substrate and its concentration, substrate concentration, cell concentration and shaking rate were 35°C, 5.0, 500 mmol/L isopropanol, 40 mmol/L, 25 mg/mL and 120 r/min, respectively. Under the optimized conditions, the maximum yield and the product e.e. were 89.5% and >99.9%, respectively, in 70 minutes. Compared with the best available data in aqueous system (yield of 55%), the yield of (R)-2-octanol was greatly increased. Additionally, the efficient whole-cell biocatalytic process was feasible on a 200-mL preparative scale and the chemical yield increased to 95.0% with the product e.e. being >99.9%. Moreover, Acetobacter pasteurianus GIM1.158 cells were proved to be capable of catalyzing the anti-Prelog bioreduction of other prochiral carbonyl compounds with high efficiency. Via an effective increase in the maximum yield and the product e.e. with Acetobacter pasteurianus GIM1.158 cells, these results open the way to use of whole cells of this microorganism for

  15. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    Energy Technology Data Exchange (ETDEWEB)

    Son, Jung Ik; Kim, Aram; Noh, Hui Bog; Lee, Hyun Ju; Shim, Yoon Bo; Park, Kang Hyun [Pusan National University, Busan (Korea, Republic of)

    2012-01-15

    The ruthenium(II) complex [Ru(bpy){sub 2}-(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus.

  16. Synthesis and Catalytic Hydrogen Transfer Reaction of Ruthenium(II) Complex

    International Nuclear Information System (INIS)

    Son, Jung Ik; Kim, Aram; Noh, Hui Bog; Lee, Hyun Ju; Shim, Yoon Bo; Park, Kang Hyun

    2012-01-01

    The ruthenium(II) complex [Ru(bpy) 2 -(PhenTPy)] was synthesized, and used for the transfer hydrogenation of ketones and the desired products were obtained in good yield. Based on the presented results, transition-metal complexes can be used as catalysts for a wide range of organic transformations. The relationship between the electro-reduction current density and temperature are being examined in this laboratory. Attempts to improve the catalytic activity and determine the transfer hydrogenation mechanism are currently in progress. The catalytic hydrogenation of a ketone is a basic and critical process for making many types of alcohols used as the final products and precursors in the pharmaceutical, agrochemical, flavor, fragrance, materials, and fine chemicals industries. The catalytic hydrogenation process developed by Noyori is a very attractive process. Formic acid and 2-propanol have been used extensively as hydrogenation sources. The advantage of using 2-propanol as a hydrogen source is that the only side product will be acetone, which can be removed easily during the workup process. Hydrogen transfer (HT) catalysis, which generates alcohols through the reduction of ketones, is an attractive protocol that is used widely. Ruthenium(II) complexes are the most useful catalysts for the hydrogen transfer (HT) of ketones. In this method, a highly active catalytic system employs a transition metal as a catalyst to synthesize alcohols, and is a replacement for the hydrogen-using hydrogenation process. The most active system is based on Ru, Rh and Ir, which includes a nitrogen ligand that facilitates the formation of a catalytically active hydride and phosphorus

  17. Regioconvergent and Enantioselective Rhodium-Catalyzed Hydroamination of Internal and Terminal Alkynes: A Highly Flexible Access to Chiral Pyrazoles.

    Science.gov (United States)

    Haydl, Alexander M; Hilpert, Lukas J; Breit, Bernhard

    2016-05-04

    The rhodium-catalyzed asymmetric N-selective coupling of pyrazole derivatives with internal and terminal alkynes features an utmost chemo-, regio-, and enantioselective access to enantiopure allylic pyrazoles, readily available for incorporation in small-molecule pharmaceuticals. This methodology is distinguished by a broad substrate scope, resulting in a remarkable compatability with a variety of different functional groups. It furthermore exhibits an intriguing case of regio-, position-, and enantioselectivity in just one step, underscoring the sole synthesis of just one out of up to six possible products in a highly flexible approach to allylated pyrazoles by emanating from various internal and terminal alkynes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Metal-free, mild, nonepimerizing, chemo- and enantio- or diastereoselective N-alkylation of amines by alcohols via oxidation/imine-iminium formation/reductive amination: a pragmatic synthesis of octahydropyrazinopyridoindoles and higher ring analogues.

    Science.gov (United States)

    Khan, Imran A; Saxena, Anil K

    2013-12-06

    A mild step and atom-economical nonepimerizing chemo- and enantioselective N-alkylating procedure has been developed via oxidation/imine-iminium formation/reduction cascade using TEMPO-BAIB-HEH-Brønsted acid catalysis in DMPU as solvent and a stoichiometric amount of amine. The optimized conditions were further extended for the nonenzymatic kinetic resolution of the chiral amine thus formed under nonenzymatic in situ hydrogen-transfer conditions using VAPOL-derived phosphoric acid (VAPOL-PA) as the Brønsted acid catalyst. The enantioselective cascade of the presented reaction was successfully utilized in the synthesis of octahydropyrazinopyridoindole and its higher ring analogues.

  19. Copper(II)-catalyzed enantioselective hydrosilylation of halo-substituted alkyl aryl and heteroaryl ketones: asymmetric synthesis of (R)-fluoxetine and (S)-duloxetine.

    Science.gov (United States)

    Zhou, Ji-Ning; Fang, Qiang; Hu, Yi-Hu; Yang, Li-Yao; Wu, Fei-Fei; Xie, Lin-Jie; Wu, Jing; Li, Shijun

    2014-02-14

    A set of reaction conditions has been established to facilitate the non-precious copper-catalyzed enantioselective hydrosilylation of a number of structurally diverse β-, γ- or ε-halo-substituted alkyl aryl ketones and α-, β- or γ-halo-substituted alkyl heteroaryl ketones under air to afford a broad spectrum of halo alcohols in high yields and good to excellent enantioselectivities (up to 99% ee). The developed procedure has been successfully applied to the asymmetric synthesis of antidepressant drugs (R)-fluoxetine and (S)-duloxetine, which highlighted its synthetic utility.

  20. Rhodium-Catalyzed Asymmetric N-H Functionalization of Quinazolinones with Allenes and Allylic Carbonates: The First Enantioselective Formal Total Synthesis of (-)-Chaetominine.

    Science.gov (United States)

    Zhou, Yirong; Breit, Bernhard

    2017-12-22

    An unprecedented asymmetric N-H functionalization of quinazolinones with allenes and allylic carbonates was successfully achieved by rhodium catalysis with the assistance of chiral bidentate diphosphine ligands. The high efficiency and practicality of this method was demonstrated by a low catalyst loading of 1 mol % as well as excellent chemo-, regio-, and enantioselectivities with broad functional group compatibility. Furthermore, this newly developed strategy was applied as key step in the first enantioselective formal total synthesis of (-)-chaetominine. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Microwave catalytic NOx and SO{sub 2} removal using FeCu/zeolite as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Z.S. Wei; G.H. Zeng; Z.R. Xie; C.Y. Ma; X.H. Liu; J.L. Sun; L.H. Liu [Sun Yat-sen University, Guangzhou (China). School of Environmental Science and Engineering

    2011-04-15

    Non-thermal plasma technology is a promising process for flue gas treatment. Microwave catalytic NOx and SO{sub 2} removal simultaneously has been investigated using FeCu/zeolite as catalyst. The experimental results showed that a microwave reactor with FeCu/zeolite only could be used to microwave catalytic oxidative 91.7% NOx to nitrates and 79.6% SO{sub 2} to sulfate; the reaction efficiencies of microwave catalytic reduction of NOx and SO{sub 2} in a microwave reactor with FeCu/zeolite and ammonium bicarbonate (NH{sub 4}HCO{sub 3}) as a reducing agent could be up to 95.8% and 93.4% respectively. Microwave irradiation accentuates catalytic reduction of SO{sub 2} and NOx treatment, and microwave addition can increases SO{sub 2} removal efficiency from 14.5% to 18.7%, and NOx removal efficiency from 13.4% to 18.7%, separately. FeCu/zeolite catalyst was characterized by X-ray diffraction (XRD), X-ray photoelectron spectrum analysis (XPS), scanning electron microscopy (SEM) and the Brunauer Emmett Teller (BET) method. Microwave catalytic NOx and SO{sub 2} removal follows Langmuir-Hinshelwood (L-H) kinetics. 25 refs., 7 figs., 1 tab.

  2. Dissipation and enantioselective degradation of plant growth retardants paclobutrazol and uniconazole in open field, greenhouse, and laboratory soils.

    Science.gov (United States)

    Wu, Chengwang; Sun, Jianqiang; Zhang, Anping; Liu, Weiping

    2013-01-15

    Greenhouses are increasingly important in human food supply. Pesticides used in greenhouses play important roles in horticulture; however, little is known about their behavior in greenhouse environments. This work investigates the dissipation and enantioselctive degradation of plant growth retardants including paclobutrazol and uniconazole in soils under three conditions (i.e., open field, greenhouse, and laboratory). The dissipation and enantioselective degradation of paclobutrazol and uniconazole in greenhouse were different from those in open field; they were more persistent in greenhouse than in open field soil. Leaching produced by rainfall is responsible for the difference in dissipation. Thus, local environmental impacts may occur more easily inside greenhouses, while groundwater may be more contaminated in open field. Spike concentrations of 5, 10, and 20 times the concentrations of native residues were tested for the enantioselective dissipation of the two pesticides; the most potent enantioselective degradation of paclobutrazol and uniconazole occurred at the 10 times that of the native residues in the greenhouse environments and at 20 times native residues in open field environments. The higher soil activity in greenhouses than in open fields was thought to be responsible for such a difference. The environmental risk and regulation of paclobutrazol and uniconazole should be considered at the enantiomeric level.

  3. An entry to a chiral dihydropyrazole scaffold: enantioselective [3 + 2] cycloaddition of nitrile imines.

    Science.gov (United States)

    Sibi, Mukund P; Stanley, Levi M; Jasperse, Craig P

    2005-06-15

    We have developed a versatile strategy to access dihydropyrazoles in highly enantioenriched form. Dipolar cycloaddition of electron-deficient acceptors and in situ-generated nitrile imines proceeds with high regio- and enantioselectivity using 10 mol % chiral Lewis acid catalyst. A variety of dihydropyrazoles that incorporate functionality for further manipulation have been prepared.

  4. Catalytic reduction of emissions from small scale wood combustion. State of the art

    Energy Technology Data Exchange (ETDEWEB)

    Hargitai, T.; Silversand, F.A. [Katator AB, Lund (Sweden)

    1998-12-31

    Small-scale combustion of big-fuel often results in excessive emissions of volatile organic compounds (VOC), polyaromatic compounds (PAM) and carbon monoxide (CO). These compounds have a negative impact on human health and urban air quality. The predominant volatile organic compounds present in flue gases from big-fuel combustion are propylene, ethylene, butadiene, methanol, ethanol, methane, phenol and benzene. The poor combustion performance of some wood stoves has in certain cases led to legislation against small-scale combustion of big-fuel in urban areas. Catalytic cleaning is one very efficient way of decreasing the environmental impacts of big-fuel combustion. Several studies concerning catalytic purification of flue gases from big-fuel combustion have been presented over the years. Several problems must be addressed when designing a catalyst for this application: Clogging problems from deposition of ashes and particulates in the catalyst; Catalyst poisoning by sulphur, phosphorus, alkali metals etc.; Catalyst fouling due to deposition of ashes and particulates; Catalyst overheating at high flue-gas temperatures and Poor catalyst performance during start-up Most studies have been focused on monolith-type catalysts and- the conversion of CO, VOC and PAH typically is above 80 %. The observed problems are associated with increased pressure drop due to catalyst clogging and decreased catalyst performance due to fouling and poisoning. In most cases precious metals, preferably Pt. have been used as active combustion catalyst. Precious metals have a high activity for the combustion of CO and hydrocarbons and a fair stability against poisoning with compounds present in flue gases from big-fuel, e.g. sulphur and alkali metals. The majority of the studies on precious metals have been focused on Pt. Rh and Pd, which are especially active in catalytic combustion. Some metal oxides are used in catalytic combustion, especially at low temperatures (e.g. in VOC abatement

  5. Hydrogen removal from LWR containments by catalytic-coated thermal insulation elements (THINCAT)

    International Nuclear Information System (INIS)

    Fischer, K.; Broeckerhoff, P.; Ahlers, G.; Gustavsson, V.; Herranz, L.; Polo, J.; Dominguez, T.; Royl, P.

    2003-01-01

    In the THINCAT project, an alternative concept for hydrogen mitigation in a light water reactor (LWR) containment is being developed. Based on catalytic coated thermal insulation elements of the main coolant loop components, it could be considered either as an alternative to backfitting passive autocatalytic recombiner devices, or as a reinforcement of their preventive effect. The present paper summarises the results achieved at about project mid-term. Potential advantages of catalytic thermal insulation studied in the project are:-reduced risk of unintended ignition,;-no work space obstruction in the containment,;-no need for seismic qualification of additional equipment,;-improved start-up behaviour of recombination reaction. Efforts to develop a suitable catalytic layer resulted in the identification of a coating procedure that ensures high chemical reactivity and mechanical stability. Test samples for use in forthcoming experiments with this coating were produced. Models to predict the catalytic rates were developed, validated and applied in a safety analysis study. Results show that an overall hydrogen concentration reduction can be achieved which is comparable to the reduction obtained using conventional recombiners. Existing experimental information supports the argument of a reduced ignition risk

  6. Anisotropic electrical conduction and reduction in dangling-bond density for polycrystalline Si films prepared by catalytic chemical vapor deposition

    Science.gov (United States)

    Niikura, Chisato; Masuda, Atsushi; Matsumura, Hideki

    1999-07-01

    Polycrystalline Si (poly-Si) films with high crystalline fraction and low dangling-bond density were prepared by catalytic chemical vapor deposition (Cat-CVD), often called hot-wire CVD. Directional anisotropy in electrical conduction, probably due to structural anisotropy, was observed for Cat-CVD poly-Si films. A novel method to separately characterize both crystalline and amorphous phases in poly-Si films using anisotropic electrical conduction was proposed. On the basis of results obtained by the proposed method and electron spin resonance measurements, reduction in dangling-bond density for Cat-CVD poly-Si films was achieved using the condition to make the quality of the included amorphous phase high. The properties of Cat-CVD poly-Si films are found to be promising in solar-cell applications.

  7. Crystallization and preliminary X-ray analysis of an enantioselective halohydrin dehalogenase from Agrobacterium radiobacter AD1

    NARCIS (Netherlands)

    Jong, René M. de; Rozeboom, Henriëtte J.; Kalk, Kor H.; Tang, Lixia; Janssen, Dick B.; Dijkstra, Bauke W.

    2002-01-01

    Halohydrin dehalogenases are key enzymes in the bacterial degradation of vicinal halopropanols and structurally related nematocides. Crystals of the enantioselective halohydrin dehalogenase HheC from Agrobacterium radiobacter AD1 have been obtained at room temperature from hanging-drop

  8. Crystallization and preliminary X-ray analysis of an enantioselective halohydrin dehalogenase from Agrobacterium radiobacter AD1

    NARCIS (Netherlands)

    de Jong, RM; Rozeboom, HJ; Kalk, KH; Tang, Lixia; Janssen, DB; Dijkstra, BW

    Halohydrin dehalogenases are key enzymes in the bacterial degradation of vicinal halopropanols and structurally related nematocides. Crystals of the enantioselective halohydrin dehalogenase HheC from Agrobacterium radiobacter AD1 have been obtained at room temperature from hanging-drop

  9. Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction

    Science.gov (United States)

    Park, Jisu; Cha, Song-Hyun; Cho, Seonho; Park, Youmie

    2016-06-01

    In the present report, gallic acid was used as both a reducing and stabilizing agent to synthesize gold and silver nanoparticles. The synthesized gold and silver nanoparticles exhibited characteristic surface plasmon resonance bands at 536 and 392 nm, respectively. Nanoparticles that were approximately spherical in shape were observed in high-resolution transmission electron microscopy and atomic force microscopy images. The hydrodynamic radius was determined to be 54.4 nm for gold nanoparticles and 33.7 nm for silver nanoparticles in aqueous medium. X-ray diffraction analyses confirmed that the synthesized nanoparticles possessed a face-centered cubic structure. FT-IR spectra demonstrated that the carboxylic acid functional groups of gallic acid contributed to the electrostatic binding onto the surface of the nanoparticles. Zeta potential values of -41.98 mV for the gold nanoparticles and -53.47 mV for the silver nanoparticles indicated that the synthesized nanoparticles possess excellent stability. On-the-shelf stability for 4 weeks also confirmed that the synthesized nanoparticles were quite stable without significant changes in their UV-visible spectra. The synthesized nanoparticles exhibited catalytic activity toward the reduction reaction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. The rate constant of the silver nanoparticles was higher than that of the gold nanoparticles in the catalytic reaction. Furthermore, the conversion yield (%) of 4-nitrophenol to 4-aminophenol was determined using reversed-phase high-performance liquid chromatography with UV detection at 254 nm. The silver nanoparticles exhibited an excellent conversion yield (96.7-99.9 %), suggesting that the synthesized silver nanoparticles are highly efficient catalysts for the 4-nitrophenol reduction reaction.

  10. Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jisu [Inje University, College of Pharmacy (Korea, Republic of); Cha, Song-Hyun; Cho, Seonho [Seoul National University, Department of Naval Architecture and Ocean Engineering (Korea, Republic of); Park, Youmie, E-mail: youmiep@inje.ac.kr [Inje University, College of Pharmacy (Korea, Republic of)

    2016-06-15

    In the present report, gallic acid was used as both a reducing and stabilizing agent to synthesize gold and silver nanoparticles. The synthesized gold and silver nanoparticles exhibited characteristic surface plasmon resonance bands at 536 and 392 nm, respectively. Nanoparticles that were approximately spherical in shape were observed in high-resolution transmission electron microscopy and atomic force microscopy images. The hydrodynamic radius was determined to be 54.4 nm for gold nanoparticles and 33.7 nm for silver nanoparticles in aqueous medium. X-ray diffraction analyses confirmed that the synthesized nanoparticles possessed a face-centered cubic structure. FT-IR spectra demonstrated that the carboxylic acid functional groups of gallic acid contributed to the electrostatic binding onto the surface of the nanoparticles. Zeta potential values of −41.98 mV for the gold nanoparticles and −53.47 mV for the silver nanoparticles indicated that the synthesized nanoparticles possess excellent stability. On-the-shelf stability for 4 weeks also confirmed that the synthesized nanoparticles were quite stable without significant changes in their UV–visible spectra. The synthesized nanoparticles exhibited catalytic activity toward the reduction reaction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. The rate constant of the silver nanoparticles was higher than that of the gold nanoparticles in the catalytic reaction. Furthermore, the conversion yield (%) of 4-nitrophenol to 4-aminophenol was determined using reversed-phase high-performance liquid chromatography with UV detection at 254 nm. The silver nanoparticles exhibited an excellent conversion yield (96.7–99.9 %), suggesting that the synthesized silver nanoparticles are highly efficient catalysts for the 4-nitrophenol reduction reaction.

  11. Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction

    International Nuclear Information System (INIS)

    Park, Jisu; Cha, Song-Hyun; Cho, Seonho; Park, Youmie

    2016-01-01

    In the present report, gallic acid was used as both a reducing and stabilizing agent to synthesize gold and silver nanoparticles. The synthesized gold and silver nanoparticles exhibited characteristic surface plasmon resonance bands at 536 and 392 nm, respectively. Nanoparticles that were approximately spherical in shape were observed in high-resolution transmission electron microscopy and atomic force microscopy images. The hydrodynamic radius was determined to be 54.4 nm for gold nanoparticles and 33.7 nm for silver nanoparticles in aqueous medium. X-ray diffraction analyses confirmed that the synthesized nanoparticles possessed a face-centered cubic structure. FT-IR spectra demonstrated that the carboxylic acid functional groups of gallic acid contributed to the electrostatic binding onto the surface of the nanoparticles. Zeta potential values of −41.98 mV for the gold nanoparticles and −53.47 mV for the silver nanoparticles indicated that the synthesized nanoparticles possess excellent stability. On-the-shelf stability for 4 weeks also confirmed that the synthesized nanoparticles were quite stable without significant changes in their UV–visible spectra. The synthesized nanoparticles exhibited catalytic activity toward the reduction reaction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride. The rate constant of the silver nanoparticles was higher than that of the gold nanoparticles in the catalytic reaction. Furthermore, the conversion yield (%) of 4-nitrophenol to 4-aminophenol was determined using reversed-phase high-performance liquid chromatography with UV detection at 254 nm. The silver nanoparticles exhibited an excellent conversion yield (96.7–99.9 %), suggesting that the synthesized silver nanoparticles are highly efficient catalysts for the 4-nitrophenol reduction reaction.

  12. Organocatalytic Enantioselective Pictet-Spengler Approach to Biologically Relevant 1-Benzyl-1,2,3,4-Tetrahydroisoquinoline Alkaloids

    NARCIS (Netherlands)

    Ruiz-Olalla, A.; Würdemann, M.A.; Wanner, M.J.; Ingemann, S.; van Maarseveen, J.H.; Hiemstra, H.

    2015-01-01

    A general procedure for the synthesis of 1-benzyl-1,2,3,4-tetrahydroisoquinolines was developed, based on organocatalytic, regio- and enantioselective Pictet-Spengler reactions (86-92% ee) of N-(o-nitrophenylsulfenyl)-2-arylethyl-amines with arylacetaldehydes. The presence of the

  13. Iridium-Catalyzed Asymmetric Intramolecular Allylic Amidation : Enantioselective Synthesis of Chiral Tetrahydroisoquinolines and Saturated Nitrogen Heterocycles

    NARCIS (Netherlands)

    Teichert, Johannes F.; Fañanás-Mastral, Martín; Feringa, Bernard

    2011-01-01

    For the first time iridium catalysis has been used for the synthesis of chiral tetrahydroisoquinolines with excellent yields and high enantioselectivities (see scheme; cod=1,5-cyclooctadiene, DBU=1,8-diazabicyclo[5.4.0]undec-7-ene). These products are important chiral building blocks for the

  14. Enantioselective Synthesis of (-)-Vallesine: Late-Stage C17-Oxidation via Complex Indole Boronation.

    Science.gov (United States)

    Antropow, Alyssa H; Garcia, Nicholas R; White, Kolby L; Movassaghi, Mohammad

    2018-06-04

    The first enantioselective total synthesis of (-)-vallesine via a strategy that features a late-stage regioselective C17-oxidation followed by a highly stereoselective transannular cyclization is reported. The versatility of this approach is highlighted by the divergent synthesis of the archetypal alkaloid of this family, (+)-aspidospermidine, and an A-ring-oxygenated derivative, (+)-deacetylaspidospermine, the precursor to (-)-vallesine, from a common intermediate.

  15. New self-assembled material based on Ru nanoparticles and 4-sulfocalix[4]arene as an efficient and recyclable catalyst for reduction of brilliant yellow azo dye in water: a new model catalytic reaction

    Energy Technology Data Exchange (ETDEWEB)

    Rambabu, Darsi; Pradeep, Chullikkattil P.; Dhir, Abhimanew, E-mail: abhimanew@iitmandi.ac.in [Indian Institute of Technology (India)

    2016-12-15

    New self-assembled material (Ru@SC) with ruthenium nanoparticles (Ru NPs) and 4-sulfocalix[4]arene (SC) is synthesized in water at room temperature. Ru@SC is characterized by thermal gravimetric analysis, FT-IR, powder x-ray diffraction, TEM and SEM analysis. The size of Ru nanoparticles in the self-assembly is approximately 5 nm. The self-assembled material Ru@SC shows an efficient catalytic reduction of toxic ‘brilliant yellow’ (BY) azo dye. The reduced amine products were successfully separated and confirmed by single-crystal XRD, NMR and UV-Vis spectroscopy. Ru@SC showed a better catalytic activity in comparison with commercial catalysts Ru/C (ruthenium on charcoal 5 %) and Pd/C (palladium on charcoal 5 and 10 %). The catalyst also showed a promising recyclability and heterogeneous nature as a catalyst for reduction of ‘BY’ azo dye.

  16. Enantioselective epoxidation with chiral MN(III)(salen) catalysts: kinetic resolution of aryl-substituted allylic alcohols.

    Science.gov (United States)

    Adam, W; Humpf, H U; Roschmann, K J; Saha-Möller, C R

    2001-08-24

    A set of aryl-substituted allylic alcohols rac-2 has been epoxidized by chiral Mn(salen*) complexes 1 as the catalyst and iodosyl benzene (PhIO) as the oxygen source. Whereas one enantiomer of the allylic alcohol 2 is preferentially epoxidized to give the threo- or cis-epoxy alcohol 3 (up to 80% ee) as the main product (dr up to >95:5), the other enantiomer of 2 is enriched (up to 53% ee). In the case of 1,1-dimethyl-1,2-dihydronaphthalen-2-ol (2c), the CH oxidation to the enone 4c proceeds enantioselectively and competes with the epoxidation. The absolute configurations of the allylic alcohols 2 and their epoxides 3 have been determined by chemical correlation or CD spectroscopy. The observed diastereo- and enantioselectivities in the epoxidation reactions are rationalized in terms of a beneficial interplay between the hydroxy-directing effect and the attack along the Katsuki trajectory.

  17. Application of 7-azaisatins in enantioselective Morita–Baylis–Hillman reaction

    Directory of Open Access Journals (Sweden)

    Qing He

    2016-02-01

    Full Text Available 7-Azaisatin and 7-azaoxindole skeletons are valuable building blocks in diverse biologically active substances. Here 7-azaisatins turned out to be more efficient electrophiles than the analogous isatins in the enantioselective Morita–Baylis–Hillman (MBH reactions with maleimides using a bifunctional tertiary amine, β-isocupreidine (β-ICD, as the catalyst. This route allows a convenient approach to access multifunctional 3-hydroxy-7-aza-2-oxindoles with high enantiopurity (up to 94% ee. Other types of activated alkenes, such as acrylates and acrolein, could also be efficiently utilized.

  18. Size Control of Iron Oxide Nanoparticles Using Reverse Microemulsion Method: Morphology, Reduction, and Catalytic Activity in CO Hydrogenation

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Housaindokht

    2013-01-01

    Full Text Available Iron oxide nanoparticles were prepared by microemulsion method and evaluated in Fischer-Tropsch synthesis. The precipitation process was performed in a single-phase microemulsion operating region. Different HLB values of surfactant were prepared by mixing of sodium dodecyl sulfate (SDS and Triton X-100. Transmission electron microscopy (TEM, surface area, pore volume, average pore diameter, pore size distribution, and XRD patterns were used to analyze size distribution, shape, and structure of precipitated hematite nanoparticles. Furthermore, temperature programmed reduction (TPR and catalytic activity in CO hydrogenation were implemented to assess the performance of the samples. It was found that methane and CO2 selectivity and also the syngas conversion increased as the HLB value of surfactant decreased. In addition, the selectivity to heavy hydrocarbons and chain growth probability (α decreased by decreasing the catalyst crystal size.

  19. On the nanostructuring and catalytic promotion of intermediate temperature solid oxide fuel cell (IT-SOFC) cathodes

    Science.gov (United States)

    Serra, José M.; Buchkremer, Hans-Peter

    Solid oxide fuel cells (SOFCs) are highly efficient energy converters for both stationary and mobile purposes. However, their market introduction still demands the reduction of manufacture costs and one possible way to reach this goal is the decrease of the operating temperatures, which entails the improvement of the cathode electrocatalytic properties. An ideal cathode material may have mixed ionic and electronic conductivity as well as proper catalytic properties. Nanostructuring and catalytic promotion of mixed conducting perovskites (e.g. La 0.58Sr 0.4Fe 0.8Co 0.2O 3- δ) seem to be promising approaches to overcoming cathode polarization problems and are briefly illustrated here. The preparation of nanostructured cathodes with relatively high surface area and enough thermal stability enables to improve the oxygen exchange rate and therefore the overall SOFC performance. A similar effect was obtained by catalytic promoting the perovskite surface, allowing decoupling the catalytic and ionic-transport properties in the cathode design. Noble metal incorporation may improve the reversibility of the reduction cycles involved in the oxygen reduction. Under the cathode oxidizing conditions, Pd seems to be partially dissolved in the perovskite structure and as a result very well dispersed.

  20. Asymmetric Construction of Benzindoloquinolizidine: Application of An Organocatalytic Enantioselective Conjugate Addition-Cyclization Cascade Reaction

    International Nuclear Information System (INIS)

    Kim, Cheolwoong; Seo, Seung Woo; Lee, Yona; Kim, Sunggon

    2014-01-01

    We have developed the synthetic methodology of enantioenriched benzindoloquinolizidines based on the organocatalytic enantioselective conjugate addition-cyclization cascade reaction of o-N-(3-indoleacetyl)amino-cinnamaldehydes with malonates followed by an acid-catalyzed intramolecular Pictet-Spengler type cyclization. The asymmetric reaction using diphenylprolinol TMS ether as an organocatalyst produces the desired products with good to excellent yields and high enantioselectivities (up to 98% ee). The evaluation of the applications of this synthetic methodology for generating enantioenriched benzindolo-quinolizidines and studies on the biological activity of these compounds against human prostate cancer in particular are now in progress. Results of these studies will be presented in due course. Many new types of chemical reactions have been developed to facilitate easier synthesis of complex compounds. Among the strategies, domino reactions, which have been utilized for the efficient and stereoselective construction of complex molecules from simple precursors in a single process, are widely used due to their high synthetic efficiency by reducing both the number of synthetic operation required and the quantities of chemicals and solvents used

  1. Rhodium/chiral diene-catalyzed asymmetric 1,4-addition of arylboronic acids to chromones: a highly enantioselective pathway for accessing chiral flavanones.

    Science.gov (United States)

    He, Qijie; So, Chau Ming; Bian, Zhaoxiang; Hayashi, Tamio; Wang, Jun

    2015-03-01

    Chromone has been noted to be one of the most challenging substrates in the asymmetric 1,4-addition of α,β-unsaturated carbonyl compounds. By employing the rhodium complex associated with a chiral diene ligand, (R,R)-Ph-bod*, the 1,4-addition of a variety of arylboronic acids was realized to give high yields of the corresponding flavanones with excellent enantioselectivities (≥97% ee, 99% ee for most substrates). Ring-opening side products, which would lead to erosion of product enantioselectivity, were not observed under the stated reaction conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Poly(propylene carbonate): Insight into the Microstructure and Enantioselective Ring-Opening Mechanism

    KAUST Repository

    Salmeia, Khalifah A.

    2012-11-13

    Different poly(propylene carbonate) (PPC) microstructures have been synthesized from the alternating copolymerization of CO 2 with both racemic propylene oxide (PO) and various mixtures of PO enantiomers using chiral salen catalysts. The microstructures of the obtained copolymers as a function of polymerization time have been analyzed by a combination of chiral GC and high-resolution NMR spectroscopy. The 13C NMR spectra of selected poly(propylene carbonate) samples were recorded using a 900 MHz ( 1H) spectrometer, showing a previously unreported fine splitting of the carbonate resonances. This allowed a detailed assignment of signals for various copolymer microstructures taking into account the specifics in their stereo- and regioirregularities. For example, the enantioselectivity preference of the (R,R-salen)Co catalyst for (S)-PO at the beginning of the copolymerization leads predominantly to (S)-PO insertion, with any (R)-PO misinsertion being followed by incorporation of (S)-PO, so that the microstructure features isolated stereoerrors. K rel calculations for the copolymerization showed around 5-fold enantioselectivity for (S)-PO over (R)-PO at short reaction time. Analysis of the copolymer microstructures obtained under various reaction conditions appears to be an additional approach to differentiate the occurrence of bimetallic and bifunctional copolymerization mechanisms that are widely discussed in the literature. © 2012 American Chemical Society.

  3. Poly(propylene carbonate): Insight into the Microstructure and Enantioselective Ring-Opening Mechanism

    KAUST Repository

    Salmeia, Khalifah A.; Vagin, Sergei; Anderson, Carly E.; Rieger, Bernhard

    2012-01-01

    Different poly(propylene carbonate) (PPC) microstructures have been synthesized from the alternating copolymerization of CO 2 with both racemic propylene oxide (PO) and various mixtures of PO enantiomers using chiral salen catalysts. The microstructures of the obtained copolymers as a function of polymerization time have been analyzed by a combination of chiral GC and high-resolution NMR spectroscopy. The 13C NMR spectra of selected poly(propylene carbonate) samples were recorded using a 900 MHz ( 1H) spectrometer, showing a previously unreported fine splitting of the carbonate resonances. This allowed a detailed assignment of signals for various copolymer microstructures taking into account the specifics in their stereo- and regioirregularities. For example, the enantioselectivity preference of the (R,R-salen)Co catalyst for (S)-PO at the beginning of the copolymerization leads predominantly to (S)-PO insertion, with any (R)-PO misinsertion being followed by incorporation of (S)-PO, so that the microstructure features isolated stereoerrors. K rel calculations for the copolymerization showed around 5-fold enantioselectivity for (S)-PO over (R)-PO at short reaction time. Analysis of the copolymer microstructures obtained under various reaction conditions appears to be an additional approach to differentiate the occurrence of bimetallic and bifunctional copolymerization mechanisms that are widely discussed in the literature. © 2012 American Chemical Society.

  4. Chiral separation of substituted phenylalanine analogues using chiral palladium phosphine complexes with enantioselective liquid-liquid extraction

    NARCIS (Netherlands)

    Verkuijl, B.J.V.; Schuur, B.; Minnaard, A.J.; Vries, de J.G.; Feringa, B.L.

    2010-01-01

    Chiral palladium phosphine complexes have been employed in the chiral separation of amino acids and phenylalanine analogues in particular. The use of (S)-xylyl-BINAP as a ligand for the palladium complex in enantioselective liquid–liquid extraction allowed the separation of the phenylalanine

  5. Catalytic Decomposition of Hydroxylammonium Nitrate Ionic Liquid: Enhancement of NO Formation

    Science.gov (United States)

    2017-04-24

    decomposition due to reduction in the acidity (i.e., [HNO3]) in the mixture. Reaction 2 has an activation barrier of Ea = 105 kJ/mol and is dominant at low...Propellants. Appl . Catal., B 2006, 62, 217−225. (15) Amariei, D.; Courtheóux, L.; Rossignol, S.; Kappenstein, C. Catalytic and Thermal Decomposition...Monopropellants: Thermal and Catalytic Decom- position Processes. Appl . Catal., B 2012, 127, 121−128. (19) Amrousse, R.; Katsumi, T.; Itouyama, N.; Azuma

  6. Enantioselective Intramolecular CH-Insertions upon Cu-Catalyzed Decomposition of Phenyliodonium Ylides

    Directory of Open Access Journals (Sweden)

    Christelle Boléa

    2001-02-01

    Full Text Available The Cu-catalyzed intramolecular CH insertion of phenyliodonium ylide 5b has been investigated at 0° C in the presence of several chiral ligands. Enantioselectivities vary in the range of 38–72 %, and are higher than those resulting from reaction of the diazo compound 5c at 65° C. The results are consistent with a carbenoid mechanism for Cu-catalyzed decomposition of phenyliodonium ylides.

  7. Hybrid selective noncatalytic reduction (SNCR)/selective catalytic reduction (SCR) for NOx removal using low-temperature SCR with Mn-V2O5/TiO2 catalyst.

    Science.gov (United States)

    Choi, Sung-Woo; Choi, Sang-Ki; Bae, Hun-Kyun

    2015-04-01

    A hybrid selective noncatalytic reduction/selective catalytic reduction (SNCR/SCR) system that uses two types of technology, low-temperature SCR process and SNCR process, was designed to develop nitrogen oxide (NOx) reduction technology. SCR was conducted with space velocity (SV)=2400 hr(-1) and hybrid SNCR/SCR with SV=6000 hr(-1), since the study focused on reducing the amount of catalyst and both achieved 98% NOx reduction efficiency. Characteristics of NOx reduction by NH3 were studied for low-temperature SCR system at 150 °C using Mn-V2O5/TiO2 catalyst. Mn-added V2O5/TiO2 catalyst was produced, and selective catalyst reduction of NOx by NH3 was experimented. NOx reduction rate according to added Mn content in Mn-V2O5/TiO2 catalyst was studied with varying conditions of reaction temperature, normalized stoichiometric ratio (NSR), SV, and O2 concentration. In the catalyst experiment according to V2O5 concentration, 1 wt.% V2O5 catalyst showed the highest NOx reduction rate: 98% reduction at temperature window of 200~250 °C. As a promoter of the V2O5 catalyst, 5 wt.% Mn was added, and the catalyst showed 47~90% higher efficiency even with low temperatures, 100~200 °C. Mn-V2O5/TiO2 catalyst, prepared by adding 5 wt.% Mn in V2O5/TiO2 catalyst, showed increments of catalyst activation at 150 °C as well as NOx reduction. Mn-V2O5/TiO2 catalyst showed 8% higher rate for NOx reduction compared with V2O5/TiO2 catalyst in 150 °C SCR. Thus, (5 wt.%)Mn-(1 wt.%)V2O5/TiO2 catalyst was applied in SCR of hybrid SNCR/SCR system of low temperature at 150 °C. Low-temperature SCR hybrid SNCR/SCR (150 °C) system and hybrid SNCR/SCR (350 °C) showed 91~95% total reduction rate with conditions of SV=2400~6000 hr(-1) SCR and 850~1050 °C SNCR, NSR=1.5~2.0, and 5% O2. Hybrid SNCR/SCR (150 °C) system proved to be more effective than the hybrid SNCR/SCR (350 °C) system at low temperature. NOx control is very important, since they are the part of greenhouse gases as well as the

  8. Preparation of zeolite supported TiO{sub 2}, ZnO and ZrO{sub 2} and the study on their catalytic activity in NO{sub x} reduction and 1-pentanol dehydration

    Energy Technology Data Exchange (ETDEWEB)

    Fatimah, Is [Chemistry Department, Islamic University of Indonesia Kampus Terpadu UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta (Indonesia)

    2016-03-29

    Preparation of zeolite supported TiO{sub 2}, ZnO and ZrO{sub 2} and their catalytic activity was studied. Activated natural zeolite from Indonesia was utilized for the preparation and catalytic activity test on NO{sub x} reduction by NH{sub 3} and also 1-pentanol dehydration were examined. Physicochemical characterization of materials was studied by x-ray diffraction (XRD) measurement, scanning electron microscope, solid acidity determination and also gas sorption analysis. The results confirmed that the preparation gives some improvements on physicochemical characters suitable for catalysis mechanism in those reactions. Solid acidity and specific surface area contributed significantly to the activity.

  9. ADVANCED BYPRODUCT RECOVERY: DIRECT CATALYTIC REDUCTION OF SO2 TO ELEMENTAL SULFUR; FINAL

    International Nuclear Information System (INIS)

    Robert S. Weber

    1999-01-01

    Arthur D. Little, Inc., together with its commercialization partner, Engelhard Corporation, and its university partner Tufts, investigated a single-step process for direct, catalytic reduction of sulfur dioxide from regenerable flue gas desulfurization processes to the more valuable elemental sulfur by-product. This development built on recently demonstrated SO(sub 2)-reduction catalyst performance at Tufts University on a DOE-sponsored program and is, in principle, applicable to processing of regenerator off-gases from all regenerable SO(sub 2)-control processes. In this program, laboratory-scale catalyst optimization work at Tufts was combined with supported catalyst formulation work at Engelhard, bench-scale supported catalyst testing at Arthur D. Little and market assessments, also by Arthur D. Little. Objectives included identification and performance evaluation of a catalyst which is robust and flexible with regard to choice of reducing gas. The catalyst formulation was improved significantly over the course of this work owing to the identification of a number of underlying phenomena that tended to reduce catalyst selectivity. The most promising catalysts discovered in the bench-scale tests at Tufts were transformed into monolith-supported catalysts at Engelhard. These catalyst samples were tested at larger scale at Arthur D. Little, where the laboratory-scale results were confirmed, namely that the catalysts do effectively reduce sulfur dioxide to elemental sulfur when operated under appropriate levels of conversion and in conditions that do not contain too much water or hydrogen. Ways to overcome those limitations were suggested by the laboratory results. Nonetheless, at the end of Phase I, the catalysts did not exhibit the very stringent levels of activity or selectivity that would have permitted ready scale-up to pilot or commercial operation. Therefore, we chose not to pursue Phase II of this work which would have included further bench-scale testing

  10. Remarkable promoting effect of rhodium on the catalytic performance of Ag/Al2O3 for the selective reduction of NO with decane

    International Nuclear Information System (INIS)

    Sato, Kazuhito; Yoshinari, Tomohiro; Kintaichi, Yoshiaki; Haneda, Masaaki; Hamada, Hideaki

    2003-01-01

    The addition of small amounts of rhodium enhanced the activity of Ag/Al 2 O 3 catalyst for the selective reduction of NO with decane at low temperatures. The Rh-promoted Ag/Al 2 O 3 showed its high performance even in the presence of low concentrations of SO 2 . Based on the catalytic activity for elementary reactions, it was suggested that the role of added rhodium is to enhance the reaction between NO x and decane-derived species, leading to NO reduction. Catalyst characterization by UV-Vis spectroscopy indicated that the major silver species on Rh-promoted Ag/Al 2 O 3 is Ag nn δ+ clusters, which would be responsible for the high activity. FT-IR measurements revealed that the formation rate of isocyanate species, which is a major reaction intermediate, is higher on Rh-promoted Ag/Al 2 O 3

  11. Equilibrium Studies on Enantioselective Liquid-Liquid Amino Acid Extraction Using a Cinchona Alkaloid Extractant

    NARCIS (Netherlands)

    Schuur, Boelo; Winkelman, Jozef G. M.; Heeres, Hero J.

    2008-01-01

    The enantioselective extraction of aqueous 3,5-dinitrobenzoyl-R,S-leucine (A(R,S)) by a cinchona alkaloid extractant (C) in 1,2-dichloroethane was studied at room temperature (294 K) in a batch system for a range of intake concentrations (10(-4)-10(-3) mol/L) and pH values (3.8-6.6). The

  12. Catalytic role of Cu(II) in the reduction of Cr(VI) by citric acid under an irradiation of simulated solar light.

    Science.gov (United States)

    Li, Ying; Chen, Cheng; Zhang, Jing; Lan, Yeqing

    2015-05-01

    The catalytic role of Cu(II) in the reduction of Cr(VI) by citric acid with simulated solar light was investigated. The results demonstrated that Cu(II) could significantly accelerate Cr(VI) reduction and the reaction obeyed to pseudo zero-order kinetics with respect to Cr(VI). The removal of Cr(VI) was related to the initial concentrations of Cu(II), citric acid, and the types of organic acids. The optimal removal of Cr(VI) was achieved at pH 4, and the rates of Cu(II) photocatalytic reduction of Cr(VI) by organic acids were in the order: tartaric acid (two α-OH groups, two -COOH groups)>citric acid (one α-OH group, three -COOH groups)>malic acid (one α-OH group, two -COOH groups)>lactic acid (one α-OH group, one -COOH group)≫succinic acid (two -COOH groups), suggesting that the number of α-OH was the key factor for the reaction, followed by the number of -COOH. The formation of Cu(II)-citric acid complex could generate Cu(I) and radicals through a pathway of metal-ligand-electron transfer, promoting the reduction of Cr(VI). This study is helpful to fully understanding the conversion of Cr(VI) in the existence of both organic acids and Cu(II) with solar light in aquatic environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Photolytic AND Catalytic Destruction of Organic Waste Water Pollutants

    Science.gov (United States)

    Torosyan, V. F.; Torosyan, E. S.; Kryuchkova, S. O.; Gromov, V. E.

    2017-01-01

    The system: water supply source - potable and industrial water - wastewater - sewage treatment - water supply source is necessary for water supply and efficient utilization of water resources. Up-to-date technologies of waste water biological treatment require for special microorganisms, which are technologically complex and expensive but unable to solve all the problems. Application of photolytic and catalytically-oxidizing destruction is quite promising. However, the most reagents are strong oxidizers in catalytic oxidation of organic substances and can initiate toxic substance generation. Methodic and scientific approaches to assess bread making industry influence on the environment have been developed in this paper in order to support forecasting and taking technological decisions concerning reduction of this influence. Destructive methods have been tested: ultra violet irradiation and catalytic oxidation for extraction of organic compounds from waste water by natural reagents.

  14. Enantioselective analysis of drugs: contributions of high-performance liquid chromatography and capillary electrophoresis

    OpenAIRE

    Bonato, Pierina Sueli; Jabor, Valquíria Aparecida Polisel; Gaitani, Cristiane Masetto de

    2005-01-01

    The demand for analytical methods suitable for accurate and reproducible determination of drug enantiomers has increased significantly in the last years. High-performance liquid chromatography (HPLC) using chiral stationary phases and capillary electrophoresis (CE) are the most important techniques used for this purpose. In this paper, the fundamental aspects of chiral separations using both techniques are presented. Some important aspects for the development of enantioselective methods, part...

  15. Lewis base catalyzed enantioselective allylic hydroxylation of Morita-Baylis-Hillman carbonates with water

    KAUST Repository

    Zhu, Bo

    2011-08-19

    A Lewis base catalyzed allylic hydroxylation of Morita-Baylis-Hillman (MBH) carbonates has been developed. Various chiral MBH alcohols can be synthesized in high yields (up to 99%) and excellent enantioselectivities (up to 94% ee). This is the first report using water as a nucleophile in asymmetric organocatalysis. The nucleophilic role of water has been verified using 18O-labeling experiments. © 2011 American Chemical Society.

  16. Catalytic abatement of nitrous oxide from nitric and production

    NARCIS (Netherlands)

    Oonk, J.

    1998-01-01

    Nitric acid production is identified as a main source of nitrous oxide. Options for emission reduction however are not available. TNO and Hydro Agri studied the technological and economic feasibility of catalytic decomposition of nitrous oxide in nitric acid tail-gases. Although in literature

  17. Microwave-irradiated preparation of reduced graphene oxide-Ni nanostructures and their enhanced performance for catalytic reduction of 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Hanxun, E-mail: hxqiu@usst.edu.cn; Qiu, Feilong; Han, Xuebin; Li, Jing; Yang, Junhe, E-mail: jhyang@usst.edu.cn

    2017-06-15

    Highlights: • Nickel nanoparticle-decorated reduced graphene-oxide nanostructures were prepared by an environmentally friendly, one-pot strategy via an efficient microwave irradiation approach. • Upon microwave irradiation, the composites could be prepared within only a few hundred seconds, much faster than using the widely used traditional hydrothermal methods that may take tens of hours generally. • The nanostructure exhibits superior catalytic activity and selectivity towards transforming the highly toxic nitroaromatic compounds to industrially useful intermediates • The corresponding kinetic reaction rate constant (κ) is even four-fold compared to pure Ni nanoparticles. - Abstract: Here we report an environmentally friendly, one-pot strategy toward preparation of nickel nanoparticle-decorated reduced graphene-oxide (Ni-RGO) nanostructures, by employing Ni(AC){sub 2} as nickel source and ethylene glycol as both solvent and reducing agent via a facile microwave irradiation heating approach. The results show that Ni nanoparticles with an average diameter of around 40 nm are homogeneously anchored onto the surface of RGO sheets. As compared to the pure Ni nanoparticles and RGO sheets, Ni-RGO composites with over 64 wt% loading of Ni nanoparticles possess superior catalytic activities and selectivity toward the reduction of 4-nitrophenol. The corresponding kinetic reaction rate constant (defined as κ) is even four-fold compared to pure Ni nanoparticles. Such promising composites show great potential for friendly treatment of industrial waste containing nitrophenol in a simple, sustainable and green way.

  18. A facile approach to fabricate Au nanoparticles loaded SiO{sub 2} microspheres for catalytic reduction of 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Mingyi, E-mail: mingyitjucu@163.com [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Huang, Guanbo, E-mail: gbhuang2007@hotmail.com [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Li, Xianxian; Pang, Xiaobo [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Qiu, Haixia [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China)

    2015-07-15

    Hydrophilic and biocompatible macromolecules were used to improve and simplify the process for the fabrication of core/shell SiO{sub 2}@Au composite particles. The influence of polymers on the morphology of SiO{sub 2}@Au particles with different size of SiO{sub 2} cores was analyzed by transmission electron microscopy and scanning electron microscopy. The optical property of the SiO{sub 2}@Au particles was studied with UV–Vis spectroscopy. The results indicate that the structure and composition of macromolecules affect the morphology of Au layers on SiO{sub 2} microspheres. The SiO{sub 2}@Au particles prepared in the presence of polyvinyl alcohol (PVA) or polyvinylpyrrolidone (PVP) have thin and complete Au nanoshells owing to their inducing act in preferential growth of Au nanoparticles along the surface of SiO{sub 2} microspheres. SiO{sub 2}@Au particles can be also prepared from SiO{sub 2} microspheres modified with 3-aminopropyltrimethoxysilane in the presence of PVA or PVP. This offers a simple way to fabricate a Au layer on SiO{sub 2} or other microspheres. The SiO{sub 2}@Au particles demonstrated high catalytic activity in the reduction of 4-nitrophenol. - Highlights: • Facile direct deposition method for Au nanoparticles on silica microspheres. • Influence of different types of macromolecule on the formation of Au shell. • High catalytic performance of Au nanoparticles on silica microspheres.

  19. Microwave-irradiated preparation of reduced graphene oxide-Ni nanostructures and their enhanced performance for catalytic reduction of 4-nitrophenol

    International Nuclear Information System (INIS)

    Qiu, Hanxun; Qiu, Feilong; Han, Xuebin; Li, Jing; Yang, Junhe

    2017-01-01

    Highlights: • Nickel nanoparticle-decorated reduced graphene-oxide nanostructures were prepared by an environmentally friendly, one-pot strategy via an efficient microwave irradiation approach. • Upon microwave irradiation, the composites could be prepared within only a few hundred seconds, much faster than using the widely used traditional hydrothermal methods that may take tens of hours generally. • The nanostructure exhibits superior catalytic activity and selectivity towards transforming the highly toxic nitroaromatic compounds to industrially useful intermediates • The corresponding kinetic reaction rate constant (κ) is even four-fold compared to pure Ni nanoparticles. - Abstract: Here we report an environmentally friendly, one-pot strategy toward preparation of nickel nanoparticle-decorated reduced graphene-oxide (Ni-RGO) nanostructures, by employing Ni(AC) 2 as nickel source and ethylene glycol as both solvent and reducing agent via a facile microwave irradiation heating approach. The results show that Ni nanoparticles with an average diameter of around 40 nm are homogeneously anchored onto the surface of RGO sheets. As compared to the pure Ni nanoparticles and RGO sheets, Ni-RGO composites with over 64 wt% loading of Ni nanoparticles possess superior catalytic activities and selectivity toward the reduction of 4-nitrophenol. The corresponding kinetic reaction rate constant (defined as κ) is even four-fold compared to pure Ni nanoparticles. Such promising composites show great potential for friendly treatment of industrial waste containing nitrophenol in a simple, sustainable and green way.

  20. Enantioselective Synthesis of α-Mercapto-β-amino Esters via Rh(II)/Chiral Phosphoric Acid-Cocatalyzed Three-Component Reaction of Diazo Compounds, Thiols, and Imines.

    Science.gov (United States)

    Xiao, Guolan; Ma, Chaoqun; Xing, Dong; Hu, Wenhao

    2016-12-02

    An enantioselective method for the synthesis of α-mercapto-β-amino esters has been developed via a rhodium(II)/chiral phosphoric acid-cocatalyzed three-component reaction of diazo compounds, thiols, and imines. This transformation is proposed to proceed through enantioselective trapping of the sulfonium ylide intermediate generated in situ from the diazo compound and thiol by the phosphoric acid-activated imine. With this method, a series of α-mercapto-β-amino esters were obtained in good yields with moderate to good stereoselectivities.

  1. Silver nanowires as catalytic cathodes for stabilizing lithium-oxygen batteries

    Science.gov (United States)

    Kwak, Won-Jin; Jung, Hun-Gi; Lee, Seon-Hwa; Park, Jin-Bum; Aurbach, Doron; Sun, Yang-Kook

    2016-04-01

    Silver nanowires have been investigated as a catalytic cathode material for lithium-oxygen batteries. Their high aspect ratio contributes to the formation of a corn-shaped layer structure of the poorly crystalline lithium peroxide (Li2O2) nanoparticles produced by oxygen reduction in poly-ether based electrolyte solutions. The nanowire morphology seems to provide the necessary large contact area and facile electron supply for a very effective oxygen reduction reaction. The unique morphology and structure of the Li2O2 deposits and the catalytic nature of the silver nano-wires promote decomposition of Li2O2 at low potentials (below 3.4 V) upon the oxygen evolution. This situation avoids decomposition of the solution species and oxidation of the electrodes during the anodic (charge) reactions, leading to high electrical efficiently of lithium-oxygen batteries.

  2. The influence of a silica pillar in lamellar tetratitanate for selective catalytic reduction of NOx using NH3

    International Nuclear Information System (INIS)

    Nogueira da Cunha, Beatriz; Gonçalves, Alécia Maria; Gomes da Silveira, Rafael; Urquieta-González, Ernesto A.; Magalhães Nunes, Liliane

    2015-01-01

    Highlights: • Potassium ions significantly affected the SCR. • The introduction of silica in the catalyst promotes the NH 3 -SCR reaction. • The catalysts activities were not significantly influenced by SO 2 addition. - Abstract: Silica-pillared layered titanate (SiO 2 –Ti 4 O 9 ) was prepared by intercalating organosilanes into the interlayers of a layered K 2 Ti 4 O 9 followed by calcination at 500 °C. The lamellar titanates produced were used as a support to prepare vanadium catalysts (1 and 2 wt%) through wet impregnation for selective catalytic reduction (SCR) of NO. The catalysts were characterized using nitrogen adsorption (BET), X-ray diffraction (XRD), temperature programmed reduction (H 2 -TPR), nuclear magnetic resonance ( 29 Si NMR), and infrared spectroscopy (FT-IR). Reduction of NO by NH 3 was studied in a fixed-bed reactor packed with the catalysts and fed a mixture comprising 1% NH 3 , 1% NO, 10% O 2 , and 34 ppm SO 2 (when used) in helium. The results demonstrate that activity is correlated with the support, i.e., with acidic strength of catalysts. The potassium in the support, K 2 Ti 4 O 9 , significantly affected the reaction and level of vanadium species reduction. The catalyst (1VSiT) with 1 wt% vanadium impregnated on the SiO 2 –Ti 4 O 9 support reduced ∼80% of the NO. Approximately the same conversion rate was generated on the catalyst (2VSiT) with 2 wt% vanadium using the same support. The increased NH 3 adsorption demonstrate that introduction of silica in the catalyst promotes the NH 3 -SCR reaction. More importantly, 2VSiT and 1VSiT were strongly resistant to SO 2 poisoning

  3. Modeling the active site of [FeFe]-hydrogenase: Electro-catalytic ...

    Indian Academy of Sciences (India)

    The mechanistic aspects of relevant electro–catalytic proton reductions have been discussed in detail. ... in the presence of a weak acid.4 This prompted us to investigate whether .... shifted to lower magnetic field strengths than those in parent ...

  4. Application of a Heterogeneous Chiral Titanium Catalyst Derived from Silica-Supported 3-Aryl H8-BINOL to Enantioselective Alkylation and Arylation of Aldehydes.

    Science.gov (United States)

    Akai, Junichiro; Watanabe, Satoshi; Michikawa, Kumiko; Harada, Toshiro

    2017-07-07

    A 3-aryl H 8 -BINOL was grafted on the surface of silica gel using a hydrosilane derivative as a precursor, and the resulting silica-supported ligand (6 mol %) was employed in the enantioselective alkylation and arylation of aldehydes in the presence of Ti(O i Pr) 4 . The reactions using Et 2 Zn, Et 3 B, and aryl Grignard reagents all afforded the corresponding adducts in high enantioselectivities and yields. The silica-immobilized titanium catalyst could be reused up to 14 times without appreciable deterioration of the activity.

  5. A Readily Accessible Class of Chiral Cp Ligands and their Application in RuII -Catalyzed Enantioselective Syntheses of Dihydrobenzoindoles.

    Science.gov (United States)

    Wang, Shou-Guo; Park, Sung Hwan; Cramer, Nicolai

    2018-05-04

    Chiral cyclopentadienyl (Cp x ) ligands have a large application potential in enantioselective transition-metal catalysis. However, the development of concise and practical routes to such ligands remains in its infancy. We present a convenient and efficient two-step synthesis of a novel class of chiral Cp x ligands with tunable steric properties that can be readily used for complexation, giving Cp x Rh I , Cp x Ir I , and Cp x Ru II complexes. The potential of this ligand class is demonstrated with the latter in the enantioselective cyclization of azabenzonorbornadienes with alkynes, affording dihydrobenzoindoles in up to 98:2 e.r., significantly outperforming existing binaphthyl-derived Cp x ligands. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Fabrication of magnetically recyclable Fe{sub 3}O{sub 4}@Cu nanocomposites with high catalytic performance for the reduction of organic dyes and 4-nitrophenol

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Mingyi, E-mail: mingyitjucu@163.com [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Zhang, Sai; Li, Xianxian; Pang, Xiaobo [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Qiu, Haixia [School of Science, Tianjin University, Tianjin 300072 (China)

    2014-12-15

    A facile and efficient approach to synthesize Fe{sub 3}O{sub 4}@Cu nanocomposites using L-Lysine as a linker was developed. The morphology, composition and crystallinity of the Fe{sub 3}O{sub 4}@Cu nanocomposites were characterized by Fourier Transform infrared spectroscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and powder X-ray diffraction. In addition, the magnetic properties were determined with vibrating sample magnetometer. The surface of the Fe{sub 3}O{sub 4} contained many small Cu nanoparticles with sizes of about 3 nm. It was found that the Fe{sub 3}O{sub 4}@Cu nanocomposites could catalyze the degradation of organic dyes. The catalytic activities of the Fe{sub 3}O{sub 4}@Cu nanocomposites for the reduction of nitrophenol were also studied. The Fe{sub 3}O{sub 4}@Cu nanocomposites are more efficient catalysts compared with Cu nanoparticles and can easily be recovered from the reaction mixture with magnet. The cost effective and recyclable Fe{sub 3}O{sub 4}@Cu nanocomposites provide an exciting new material for environmental protection applications. - Highlights: • Cu nanoparticles as small as 3 nm are synthesized. • Low cost Fe{sub 3}O{sub 4}@Cu magnetical nanoparticles show catalytic activity for organic dyes and 4-nitrophenol. • The Fe{sub 3}O{sub 4}@Cu display high catalytic activity after 13 cycles.

  7. Rhodium-catalyzed chemo-, regio-, and enantioselective addition of 2-pyridones to terminal allenes.

    Science.gov (United States)

    Li, Changkun; Kähny, Matthias; Breit, Bernhard

    2014-12-08

    A rhodium-catalyzed chemo-, regio-, and enantioselective addition of 2-pyridones to terminal allenes to give branched N-allyl 2-pyridones is reported. Preliminary mechanistic studies support the hypothesis that the reaction was initiated from the more acidic 2-hydroxypyridine form, and the initial kinetic O-allylation product was finally converted into the thermodynamically more stable N-allyl 2-pyridones. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Simulated solarlight catalytic reduction of Cr(VI) on microwave–ultrasonication synthesized flower-like CuO in the presence of tartaric acid

    International Nuclear Information System (INIS)

    Xu, Zhihui; Yu, Yaqun; Fang, Di; Liang, Jianru; Zhou, Lixiang

    2016-01-01

    In this study, flower-like CuO was successfully synthesized by a microwave–ultrasound assisted method and well characterized by X-ray diffractions, Fourier transform infrared spectrum, scanning electron microscopy, transmission electron microscopy, specific surface area, UV–vis diffused reflection spectra, X-ray photoelectron spectroscopy and point of zero charge. The photocatalytic performance of the as-prepared CuO was examined on the Cr(VI) reduction in the presence of tartaric acid under simulated solarlight irradiation. The results show that the developed CuO catalyst exhibited good photocatalytic activity with 100% reduction of Cr(VI) after irradiation of 30 min under the test condition of c(Cr(VI)) = 100 μM, catalyst loading = 400 mg/L, c(tartaric acid) = 4 mM and initial pH = 3. The reaction mechanism was proposed. The effects of test parameters, such as catalyst loading, tartaric acid concentration and initial pH, on Cr(VI) reduction efficiency were also investigated. It is worth mentioning that the developed catalyst can work at a relatively wide range of pH with quite high catalytic performance. - Highlights: • Flower-like CuO microstructure was prepared by MW-US assisted method. • The prepared CuO can catalyze the reduction Cr(VI) by tartaric acid under simulated solarlight. • The formation of ≡Cu(II)-tartaric acid complex play a key role in the reduction of Cr(VI). • The catalyst can operate effectively at a relatively wide range of pH.

  9. Enantioselective Degradation and Chiral Stability of Metalaxyl-M in Tomato Fruits.

    Science.gov (United States)

    Jing, Xu; Yao, Guojun; Wang, Peng; Liu, Donghui; Qi, Yanli; Zhou, Zhiqiang

    2016-05-01

    Metalaxyl is an important chiral acetanilide fungicide, and the activity almost entirely originates from the R-enantiomer. Racemic metalaxyl has been gradually replaced by the enantiopure R-enantiomer (metalaxyl-M). In this study a chiral residue analysis method for metalaxyl and the metabolite metalaxyl acid was set up based on high-performance liquid chromatography tandem mass spectroscopy (HPLC-MS/MS). The enantioselective degradation and chiral stability of metalaxyl-M in tomato fruits in two geographically distinct regions of China (Heilongjiang and Hunan Province) were evaluated and the enantioselectivity of metalaxyl acid was also investigated. Tomato plants grew under field conditions with a one-time spray application of metalaxyl-M wettable powder. It was found that R-metalaxyl was not chirally stable and the inactive S-metalaxyl was detected in tomato fruits. At day 40, S-metalaxyl derived from R-metalaxyl accounted for 32% and 26% of the total amount of metalaxyl, respectively. The metabolites R-metalaxyl acid and S-metalaxyl acid were both observed in tomato, and the ratio of S-metalaxyl acid to the sum of S- and R-metalaxyl acid was 36% and 28% at day 40, respectively. For both metalaxyl and metalaxyl acid, the half-life of the S-enantiomer was longer than the R-enantiomer. The results indicated that the enantiomeric conversion should be considered in the bioactivity evaluation and environmental pollution assessment. Chirality 28:382-386, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Modeling N2O Reduction and Decomposition in a Circulating Fluidized bed Boiler

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Åmand, Lars-Erik; Dam-Johansen, Kim

    1996-01-01

    The N2O concentration was measured in a circulating fluidized bed boiler of commercial size. Kinetics for N2O reduction by char and catalytic reduction and decomposition over bed material from the combustor were determined in a laboratory fixed bed reactor. The destruction rate of N2O in the comb......The N2O concentration was measured in a circulating fluidized bed boiler of commercial size. Kinetics for N2O reduction by char and catalytic reduction and decomposition over bed material from the combustor were determined in a laboratory fixed bed reactor. The destruction rate of N2O...... in the combustion chamber and the cyclone was calculated taking three mechanisms into account: Reduction by char, catalytic decomposition over bed material and thermal decomposition. The calculated destruction rate was in good agreement with the measured destruction of N2O injected at different levels in the boiler...

  11. Paralogous gene analysis reveals a highly enantioselective 1,2-O-isopropylideneglycerol caprylate esterase of Bacillus subtilis

    NARCIS (Netherlands)

    Droge, MJ; Bos, R; Quax, WJ

    Carboxylesterase NP of Bacillus subtilis Thai 1-8, characterized in 1992 as a very enantioselective (S)-naproxen esterase, was found to show no enantiopreference towards (S)-1,2-O-isopropylideneglycerol (IPG) esters. The ybfK gene was identified by the B. subtilis genome project as an unknown gene

  12. Microwave-irradiated preparation of reduced graphene oxide-Ni nanostructures and their enhanced performance for catalytic reduction of 4-nitrophenol

    Science.gov (United States)

    Qiu, Hanxun; Qiu, Feilong; Han, Xuebin; Li, Jing; Yang, Junhe

    2017-06-01

    Here we report an environmentally friendly, one-pot strategy toward preparation of nickel nanoparticle-decorated reduced graphene-oxide (Ni-RGO) nanostructures, by employing Ni(AC)2 as nickel source and ethylene glycol as both solvent and reducing agent via a facile microwave irradiation heating approach. The results show that Ni nanoparticles with an average diameter of around 40 nm are homogeneously anchored onto the surface of RGO sheets. As compared to the pure Ni nanoparticles and RGO sheets, Ni-RGO composites with over 64 wt% loading of Ni nanoparticles possess superior catalytic activities and selectivity toward the reduction of 4-nitrophenol. The corresponding kinetic reaction rate constant (defined as κ) is even four-fold compared to pure Ni nanoparticles. Such promising composites show great potential for friendly treatment of industrial waste containing nitrophenol in a simple, sustainable and green way.

  13. Hydrothermal synthesis, crystal structures, and enantioselective adsorption property of bis(L-histidinato)nickel(II) monohydrate

    Science.gov (United States)

    Ramos, Christian Paul L.; Conato, Marlon T.

    2018-05-01

    Despite the numerous researches in metal-organic frameworks (MOFs), there are only few reports on biologically important amino acids, histidine in particular, on its use as bridging ligand in the construction of open-framework architectures. In this work, hydrothermal synthesis was used to prepare a compound based on Ni2+ and histidine. The coordination assembly of imidazole side chain of histidine with divalent nickel ions in aqueous condition yielded purple prismatic solids. Single crystal X-ray diffraction (XRD) analysis of the product revealed structure for Ni(C6H8N3O2)2 • H2O that has a monoclinic (C2) structure with lattice parameters, a = 29.41, b = 8.27, c = 6.31 Å, β = 90.01 ˚. Circular dichroism - optical rotatory dispersion (CD-ORD), Powder X-ray diffraction (PXRD) and Fourier transform - infrared spectroscopy (FT-IR) analyses are conducted to further characterize the crystals. Enantioselective adsorption analysis using racemic mixture of 2-butanol confirmed bis(L-histidinato)nickel(II) monohydrate MOF crystal's enantioselective property preferentially favoring the adsorption of (S)-2-butanol isomer.

  14. Enantioselective potential of polysaccharide-based chiral stationary phases in supercritical fluid chromatography.

    Science.gov (United States)

    Kucerova, Gabriela; Kalikova, Kveta; Tesarova, Eva

    2017-06-01

    The enantioselective potential of two polysaccharide-based chiral stationary phases for analysis of chiral structurally diverse biologically active compounds was evaluated in supercritical fluid chromatography using a set of 52 analytes. The chiral selectors immobilized on 2.5 μm silica particles were tris-(3,5-dimethylphenylcarmabate) derivatives of cellulose or amylose. The influence of the polysaccharide backbone, different organic modifiers, and different mobile phase additives on retention and enantioseparation was monitored. Conditions for fast baseline enantioseparation were found for the majority of the compounds. The success rate of baseline and partial enantioseparation with cellulose-based chiral stationary phase was 51.9% and 15.4%, respectively. Using amylose-based chiral stationary phase we obtained 76.9% of baseline enantioseparations and 9.6% of partial enantioseparations of the tested compounds. The best results on cellulose-based chiral stationary phase were achieved particularly with propane-2-ol and a mixture of isopropylamine and trifluoroacetic acid as organic modifier and additive to CO 2 , respectively. Methanol and basic additive isopropylamine were preferred on amylose-based chiral stationary phase. The complementary enantioselectivity of the cellulose- and amylose-based chiral stationary phases allows separation of the majority of the tested structurally different compounds. Separation systems were found to be directly applicable for analyses of biologically active compounds of interest. © 2017 Wiley Periodicals, Inc.

  15. Regio- and Enantioselective N-Allylations of Imidazole, Benzimidazole, and Purine Heterocycles Catalyzed by Single-Component Metallacyclic Iridium Complexes

    Science.gov (United States)

    Stanley, Levi M.

    2010-01-01

    Highly regio- and enantioselective iridium-catalyzed N-allylations of benzimidazoles, imidazoles, and purines have been developed. N-Allylated benzimidazoles and imidazoles were isolated in high yields (up to 97%) with high branched-to-linear selectivity (up to 99:1) and enantioselectivity (up to 98% ee) from the reactions of benzimidazole and imidazole nucleophiles with unsymmetrical allylic carbonates in the presence of single component, ethylene-bound, metallacyclic iridium catalysts. N-Allylated purines were also obtained in high yields (up to 91%) with high N9:N7 selectivity (up to 96:4), high branched-to-linear selectivity (98:2), and high enantioselectivity (up to 98% ee) under similar conditions. The reactions encompass a range of benzimidazole, imidazole, and purine nucleophiles, as well as a variety of unsymmetrical aryl, heteroaryl, and aliphatic allylic carbonates. Competition experiments between common amine nucleophiles and the heterocyclic nitrogen nucleophiles studied in this work illustrate the effect of nucleophile pKa on the rate of iridium-catalyzed N-allylation reactions. Kinetic studies on the allylation of benzimidazole catalyzed by metallacyclic iridium-phosphoramidite complexes, in combination with studies on the deactivation of these catalysts in the presence of heterocyclic nucleophiles, provide insight into the effects of the structure of the phosphoramidite ligands on the stability of the metallacyclic catalysts. The data obtained from these studies has led to the development of N-allylations of benzimidazoles and imidazoles in the absence of an exogenous base. PMID:19480431

  16. Catalytic Organometallic Reactions of Ammonia

    Science.gov (United States)

    Klinkenberg, Jessica L.

    2012-01-01

    Until recently, ammonia had rarely succumbed to catalytic transformations with homogeneous catalysts, and the development of such reactions that are selective for the formation of single products under mild conditions has encountered numerous challenges. However, recently developed catalysts have allowed several classes of reactions to create products with nitrogen-containing functional groups from ammonia. These reactions include hydroaminomethylation, reductive amination, alkylation, allylic substitution, hydroamination, and cross-coupling. This Minireview describes examples of these processes and the factors that control catalyst activity and selectivity. PMID:20857466

  17. Synergetic Effects of Alcohol/Water Mixing on the Catalytic Reductive Fractionation of Poplar Wood

    Energy Technology Data Exchange (ETDEWEB)

    Renders, Tom; Van den Bosch, Sander; Vangeel, Thijs; Ennaert, Thijs; Koelewijn, Steven-Friso; Van den Bossche, Gil; Courtin, Christophe M.; Schutyser, Wouter; Sels, Bert F.

    2016-12-05

    One of the foremost challenges in lignocellulose conversion encompasses the integration of effective lignin valorization in current carbohydrate-oriented biorefinery schemes. Catalytic reductive fractionation (CRF) of lignocellulose offers a technology to simultaneously produce lignin-derived platform chemicals and a carbohydrate-enriched pulp via the combined action of lignin solvolysis and metal-catalyzed hydrogenolysis. Herein, the solvent (composition) plays a crucial role. In this contribution, we study the influence of alcohol/water mixtures by processing poplar sawdust in varying MeOH/water and EtOH/water blends. The results show particular effects that strongly depend on the applied water concentration. Low water concentrations enhance the removal of lignin from the biomass, while the majority of the carbohydrates are left untouched (scenario A). Contrarily, high water concentrations favor the solubilization of both hemicellulose and lignin, resulting in a more pure cellulosic residue (scenario B). For both scenarios, an evaluation was made to determine the most optimal solvent composition, based on two earlier introduced empirical efficiency descriptors (denoted LFDE and LFFE). According to these measures, 30 (A) and 70 vol % water (B) showed to be the optimal balance for both MeOH/water and EtOH/water mixtures. This successful implementation of alcohol/water mixtures allows operation under milder processing conditions in comparison to pure alcohol solvents, which is advantageous from an industrial point of view.

  18. Photochemical reduction of CO{sub 2} to fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    DuBois, D. [National Renewable Energy Lab., Golden, CO (United States); Eisenberg, R. [Univ. of Rochester, NY (United States); Fujita, E. [Brookhaven National Lab., Upton, NY (United States)

    1996-09-01

    Photochemical reduction of CO{sub 2} represents a potentially useful approach to developing a sustainable source of carbon-based chemicals, fuels, and materials. In this report the present status of photochemical CO{sub 2} reduction is assessed, areas that need to be better understood for advancement are identified, and approaches to overcoming barriers are suggested. Because of the interdisciplinary nature of this field, assessments of three closely interrelated areas are given including integrated photochemical systems for catalytic CO{sub 2} reduction, thermal catalytic CO{sub 2} reactions, and electrochemical CO{sub 2} reduction. The report concludes with a summary and assessment of potential impacts of this area on chemical and energy technologies.

  19. From biomass to advanced bio-fuel by catalytic pyrolysis/hydro-processing: hydrodeoxygenation of bio-oil derived from biomass catalytic pyrolysis.

    Science.gov (United States)

    Wang, Yuxin; He, Tao; Liu, Kaituo; Wu, Jinhu; Fang, Yunming

    2012-03-01

    Compared hydrodeoxygenation experimental studies of both model compounds and real bio-oil derived from biomass fast pyrolysis and catalytic pyrolysis was carried out over two different supported Pt catalysts. For the model compounds, the deoxygenation degree of dibenzofuran was higher than that of cresol and guaiacol over both Pt/Al(2)O(3) and the newly developed Pt supported on mesoporous zeolite (Pt/MZ-5) catalyst, and the deoxygenation degree of cresol over Pt/MZ-5 was higher than that over Pt/Al(2)O(3). The results indicated that hydrodeoxygenation become much easier upon oxygen reduction. Similar to model compounds study, the hydrodeoxygenation of the real bio-oil derived from catalytic pyrolysis was much easier than that from fast pyrolysis over both Pt catalysts, and the Pt/MZ-5 again shows much higher deoxygenation ability than Pt/Al(2)O(3). Clearly synergy between catalytic pyrolysis and bio-oil hydro-processing was found in this paper and this finding will lead an advanced biofuel production pathway in the future. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Real-world exhaust temperature profiles of on-road heavy-duty diesel vehicles equipped with selective catalytic reduction.

    Science.gov (United States)

    Boriboonsomsin, Kanok; Durbin, Thomas; Scora, George; Johnson, Kent; Sandez, Daniel; Vu, Alexander; Jiang, Yu; Burnette, Andrew; Yoon, Seungju; Collins, John; Dai, Zhen; Fulper, Carl; Kishan, Sandeep; Sabisch, Michael; Jackson, Doug

    2018-09-01

    On-road heavy-duty diesel vehicles are a major contributor of oxides of nitrogen (NO x ) emissions. In the US, many heavy-duty diesel vehicles employ selective catalytic reduction (SCR) technology to meet the 2010 emission standard for NO x . Typically, SCR needs to be at least 200°C before a significant level of NO x reduction is achieved. However, this SCR temperature requirement may not be met under some real-world operating conditions, such as during cold starts, long idling, or low speed/low engine load driving activities. The frequency of vehicle operation with low SCR temperature varies partly by the vehicle's vocational use. In this study, detailed vehicle and engine activity data were collected from 90 heavy-duty vehicles involved in a range of vocations, including line haul, drayage, construction, agricultural, food distribution, beverage distribution, refuse, public work, and utility repair. The data were used to create real-world SCR temperature and engine load profiles and identify the fraction of vehicle operating time that SCR may not be as effective for NO x control. It is found that the vehicles participated in this study operate with SCR temperature lower than 200°C for 11-70% of the time depending on their vocation type. This implies that real-world NO x control efficiency could deviate from the control efficiency observed during engine certification. Copyright © 2018 Elsevier B.V. All rights reserved.