WorldWideScience

Sample records for catalytic combustors

  1. Industrial Gas Turbine Engine Catalytic Pilot Combustor-Prototype Testing

    Energy Technology Data Exchange (ETDEWEB)

    Etemad, Shahrokh [Precision Combustion, Inc., North Haven, CT (United States); Baird, Benjamin [Precision Combustion, Inc., North Haven, CT (United States); Alavandi, Sandeep [Precision Combustion, Inc., North Haven, CT (United States); Pfefferle, William [Precision Combustion, Inc., North Haven, CT (United States)

    2010-04-01

    PCI has developed and demonstrated its Rich Catalytic Lean-burn (RCL®) technology for industrial and utility gas turbines to meet DOE's goals of low single digit emissions. The technology offers stable combustion with extended turndown allowing ultra-low emissions without the cost of exhaust after-treatment and further increasing overall efficiency (avoidance of after-treatment losses). The objective of the work was to develop and demonstrate emission benefits of the catalytic technology to meet strict emissions regulations. Two different applications of the RCL® concept were demonstrated: RCL® catalytic pilot and Full RCL®. The RCL® catalytic pilot was designed to replace the existing pilot (a typical source of high NOx production) in the existing Dry Low NOx (DLN) injector, providing benefit of catalytic combustion while minimizing engine modification. This report discusses the development and single injector and engine testing of a set of T70 injectors equipped with RCL® pilots for natural gas applications. The overall (catalytic pilot plus main injector) program NOx target of less than 5 ppm (corrected to 15% oxygen) was achieved in the T70 engine for the complete set of conditions with engine CO emissions less than 10 ppm. Combustor acoustics were low (at or below 0.1 psi RMS) during testing. The RCL® catalytic pilot supported engine startup and shutdown process without major modification of existing engine controls. During high pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over a wide range of flame temperatures. In applications where lower NOx production is required (i.e. less than 3 ppm), in parallel, a Full RCL® combustor was developed that replaces the existing DLN injector providing potential for maximum emissions reduction. This concept was tested at industrial gas turbine conditions in a Solar Turbines, Incorporated high-pressure (17 atm.) combustion rig and in a modified Solar

  2. Fuel Flexible, Low Emission Catalytic Combustor for Opportunity Fuel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Eteman, Shahrokh

    2013-06-30

    Limited fuel resources, increasing energy demand and stringent emission regulations are drivers to evaluate process off-gases or process waste streams as fuels for power generation. Often these process waste streams have low energy content and/or highly reactive components. Operability of low energy content fuels in gas turbines leads to issues such as unstable and incomplete combustion. On the other hand, fuels containing higher-order hydrocarbons lead to flashback and auto-ignition issues. Due to above reasons, these fuels cannot be used directly without modifications or efficiency penalties in gas turbine engines. To enable the use of these wide variety of fuels in gas turbine engines a rich catalytic lean burn (RCL®) combustion system was developed and tested in a subscale high pressure (10 atm.) rig. The RCL® injector provided stability and extended turndown to low Btu fuels due to catalytic pre-reaction. Previous work has shown promise with fuels such as blast furnace gas (BFG) with LHV of 85 Btu/ft3 successfully combusted. This program extends on this work by further modifying the combustor to achieve greater catalytic stability enhancement. Fuels containing low energy content such as weak natural gas with a Lower Heating Value (LHV) of 6.5 MJ/m3 (180 Btu/ft3 to natural gas fuels containing higher hydrocarbon (e.g ethane) with LHV of 37.6 MJ/m3 (1010 Btu/ft3) were demonstrated with improved combustion stability; an extended turndown (defined as the difference between catalytic and non-catalytic lean blow out) of greater than 250oF was achieved with CO and NOx emissions lower than 5 ppm corrected to 15% O2. In addition, for highly reactive fuels the catalytic region preferentially pre-reacted the higher order hydrocarbons with no events of flashback or auto-ignition allowing a stable and safe operation with low NOx and CO emissions.

  3. Combustion of hydrogen-air in micro combustors with catalytic Pt layer

    International Nuclear Information System (INIS)

    Micro power generators have high power density. However, their key components micro combustors have low stability. In this experiment, catalyst is applied to improve the stability. The catalytic micro combustor is made from an alumina ceramic tube. It has inner diameter of 1 mm, outer diameter of 2.02 mm and length of 24.5 mm. It is prepared through impregnation of aqueous solution of H2PtCl6. The flammability limits and surface temperatures under different operation conditions are measured. The flow rates range from 0.08 to 0.4 L/min. According to the experimental results, catalyst is effective to inhibit extinction. For example, At 0.8 L/min, the stability limit is 0.193-14.9 in the non-catalytic combustor. After applying catalyst, the lean limit is near 0, and the rich limit is 29.3. But catalyst is less effective to inhibit blow out. Increasing flow rates also inhibits extinction. In the non-catalytic combustor, while the flow rates increase from 0.08 to 0.2 L/min, the lean stability limit decreases from 0.193 to 0.125. The experimental results indicate that catalyst induces shift downstream in the stoichiometric and rich cases. The numeric simulation verifies that the heterogeneous reaction weakens the homogeneous reaction through consuming fuels. Thus, the insufficient heat recirculation makes the reaction region shift downstream. However, lean mixture has intense reaction in the catalytic combustor. It is attributed to the high mass diffusion and low thermal diffusion of lean mixture.

  4. Efficiency enhancement of wood stove integrated with catalytic combustor and modified chimney

    Directory of Open Access Journals (Sweden)

    G. Murali

    2014-12-01

    Full Text Available Domestic wood combustion produces smoke that is harmful to human health and increases fine particle level in the atmosphere. Some necessary changes in the design are essential in the domestic wood stove in order to improve the performance and scale down the emission. In this work, an improved wood stove integrated with the catalytic combustor and modified chimney that uses wood as fuel has been experimentally evaluated. Water boiling test, cooking test and emission test have been conducted to evaluate the performance of the stove. It was observed that emission has been considerably controlled because of the incorporation of catalytic combustor. The heat losses through the walls of stove decresed by providing ceramic insulation. The thermal efficiency value of an improved wood stove obtained was 41.18% and this is 31.52% higher than traditional stove. The improved wood stove results better performance than a traditional wood stove.

  5. CHARACTERIZATION OF CATALYTIC COMBUSTOR TURBULENCE AND ITS INFLUENCE ON VANE AND ENDWALL HEAT TRANSFER AND ENDWALL FILM COOLING

    Energy Technology Data Exchange (ETDEWEB)

    Forrest E. Ames

    2002-10-01

    Endwall heat transfer distributions taken in a large-scale low speed linear cascade facility are documented for mock catalytic and dry low NOx (DLN) combustion systems. Inlet turbulence levels range from about 1.0 percent for the mock Catalytic combustor condition to 14 percent for the mock dry low NOx combustor system. Stanton number contours are presented at both turbulence conditions for Reynolds numbers based on true chord length and exit conditions ranging from 500,000 to 2,000,000. Catalytic combustor endwall heat transfer shows the influence of the complex three-dimensional flow field, while the effects of individual vortex systems are less evident for the mock dry low NOx cases. Turbulence scales have been documented for both cases. Inlet boundary layers are relatively thin for the mock catalytic combustor case while inlet flow approximates a channel flow with high turbulence for the mock DLN combustor case. Inlet boundary layer parameters are presented across the inlet passage for the three Reynolds numbers and both the mock catalytic and DLN combustor inlet cases. Both midspan and 95 percent span pressure contours are included. This research provides a well-documented database taken across a range of Reynolds numbers and turbulence conditions for assessment of endwall heat transfer predictive capabilities.

  6. The application of a low temperature selective catalytic reduction system for municipal and hazardous waste combustors

    Energy Technology Data Exchange (ETDEWEB)

    Hartenstein, H.U. [L. and C. Steinmueller GmbH, Gummersbach (Germany); Licata, A. [Licata Energy and Environmental Consultants, Inc., Yonkers, NY (United States)

    1996-09-01

    In Central Europe during the late 1980`s and through the early 1990`s, emission regulations on municipal and hazardous waste combustors (MWCs and HWCs) were tightened drastically. Among other pollutants, NO{sub x} emissions had to be limited to an extent that required the installation of special NO{sub x} control technologies and 70 mg NO{sub x}/Nm{sup 3} (56 ppmdv) (corrected to 11% O{sub 2} if the measured value exceeded 11% O{sub 2}). This became a commonly accepted value for most permitting agencies in Germany, Holland, Austria and Switzerland. The Selective Catalytic Reduction (SCR) technology became the preferred NO{sub x} control technology for retrofitting existing MWCs and HWCs, as well as for new facilities. This paper presents the Low Temperature SCR technology (LTSCR) as a major new development in SCR technology adapted to MWCs and HWCs. LTSCR`s can be operated at temperatures as low as 150 C (302 F) while SCR`s operate at temperatures above 280 C (536 F). The paper outlines the specific needs and restrictions of LTSCR, as well as its advantages. A detailed description of the correlation between required volume of catalyst, temperature, and specific catalytic activity is given. The application of LTSCR is shown for MWCs and HWCs, and for each case, one retrofit and one new facility are introduced. Finally, the paper reports on some two and a half years of operating experience with LTSCR and gives an outlook on further applications.

  7. Study of biomass combustion characteristics for the development of a catalytic combustor/gasifier

    OpenAIRE

    Dody, Joseph W.

    1985-01-01

    The research reported here explored, a "new" approach to biomass energy conversion for small-scale process heat-applications. The conversion process uses close-coupled catalytic. combustion to burn combustibles in effluent generated by primary combustion or gasification of biomass fuels. Computer control of primary and secondary air flow rates allow control of the devices output power while maintaining fuel-lean or stoichiometric conditions in the effluent entering the catalytic combustion...

  8. CATALYTIC COMBUSTION OF METHANE OVER Pt/γ-Al2O3 IN MICRO-COMBUSTOR WITH DETAILED CHEMICAL KINETIC MECHANISMS

    Directory of Open Access Journals (Sweden)

    JUNJIE CHEN

    2014-11-01

    Full Text Available Micro-scale catalytic combustion characteristics and heat transfer processes of preheated methane-air mixtures (φ = 0.4 in the plane channel were investigated numerically with detailed chemical kinetic mechanisms. The plane channel of length L = 10.0 mm, height H =1.0 mm and wall thickness δ = 0.1 mm, which inner horizontal surfaces contained Pt/γ-Al2O3 catalyst washcoat. The computational results indicate that the presence of the gas phase reactions extends mildly the micro-combustion stability limits at low and moderate inlet velocities due to the strong flames establishment, and have a more profound effect on extending the high-velocity blowout limits by allowing for additional heat release originating mainly from the incomplete CH4 gas phase oxidation in the plane channel. When the same mass flow rate (ρin × Vin is considered, the micro-combustion stability limits at p: 0.1 MPa are much narrower than at p: 0.6 MPa due to both gas phase and catalytic reaction activities decline with decreasing pressure. Catalytic micro-combustor can achieve stable combustion at low solid thermal conductivity ks < 0.1 W∙m-1•K-1, while the micro-combustion extinction limits reach their larger extent for the higher thermal conductivity ks = 20.0-100.0 W∙m-1•K-1. The existence of surface radiation heat transfers significantly effects on the micro-combustion stability limits and micro-combustors energy balance. Finally, gas phase combustion in catalytic micro-combustors can be sustained at the sub-millimeter scale (plane channel height of 0.25 mm.

  9. Gas turbine combustor

    Science.gov (United States)

    Burd, Steven W. (Inventor); Cheung, Albert K. (Inventor); Dempsey, Dae K. (Inventor); Hoke, James B. (Inventor); Kramer, Stephen K. (Inventor); Ols, John T. (Inventor); Smith, Reid Dyer Curtis (Inventor); Sowa, William A. (Inventor)

    2011-01-01

    A gas turbine engine has a combustor module including an annular combustor having a liner assembly that defines an annular combustion chamber having a length, L. The liner assembly includes a radially inner liner, a radially outer liner that circumscribes the inner liner, and a bulkhead, having a height, H1, which extends between the respective forward ends of the inner liner and the outer liner. The combustor has an exit height, H3, at the respective aft ends of the inner liner and the outer liner interior. The annular combustor has a ratio H1/H3 having a value less than or equal to 1.7. The annular combustor may also have a ration L/H3 having a value less than or equal to 6.0.

  10. Development of methane oxidation catalysts for different gas turbine combustor concepts

    OpenAIRE

    Eriksson, Sara

    2005-01-01

    Due to continuously stricter regulations regarding emissions from power generation processes, development of existing gas turbine combustors is essential. A promising alternative to conventional flame combustion in gas turbines is catalytic combustion, which can result in ultra low emission levels of NOx, CO and unburned hydrocarbons. The work presented in this thesis concerns the development of methane oxidation catalysts for gas turbine combustors. The application of catalytic combustion to...

  11. Development of catalysts for natural gas-fired gas turbine combustors

    OpenAIRE

    Eriksson, Sara

    2006-01-01

    Due to continuously stricter regulations regarding emissions from power generation processes, further development of existing gas turbine combustors is essential. A promising alternative to conventional flame combustion in gas turbines is catalytic combustion, which can result in ultralow emission levels of NOx, CO and unburned hydrocarbons. The work presented in this thesis concerns the development of methane oxidation catalysts for gas turbine combustors. The application of catalytic combus...

  12. Vortex combustor for low NOX emissions when burning lean premixed high hydrogen content fuel

    Science.gov (United States)

    Steele, Robert C; Edmonds, Ryan G; Williams, Joseph T; Baldwin, Stephen P

    2012-11-20

    A trapped vortex combustor. The trapped vortex combustor is configured for receiving a lean premixed gaseous fuel and oxidant stream, where the fuel includes hydrogen gas. The trapped vortex combustor is configured to receive the lean premixed fuel and oxidant stream at a velocity which significantly exceeds combustion flame speed in a selected lean premixed fuel and oxidant mixture. The combustor is configured to operate at relatively high bulk fluid velocities while maintaining stable combustion, and low NOx emissions. The combustor is useful in gas turbines in a process of burning synfuels, as it offers the opportunity to avoid use of diluent gas to reduce combustion temperatures. The combustor also offers the possibility of avoiding the use of selected catalytic reaction units for removal of oxides of nitrogen from combustion gases exiting a gas turbine.

  13. Combustor and method for purging a combustor

    Science.gov (United States)

    Berry, Jonathan Dwight; Hughes, Michael John

    2015-06-09

    A combustor includes an end cap. The end cap includes a first surface and a second surface downstream from the first surface, a shroud that circumferentially surrounds at least a portion of the first and second surfaces, a plate that extends radially within the shroud, a plurality of tubes that extend through the plate and the first and second surfaces, and a first purge port that extends through one or more of the plurality of tubes, wherein the purge port is axially aligned with the plate.

  14. Catalytic Combustion Characteristics of H2/n-CaH10/Air Mixtures in Swiss-Roll Combustor%H2/n-C4H10/Air预混气在Swiss—roll燃烧器中的催化燃烧特性

    Institute of Scientific and Technical Information of China (English)

    杨帆; 钟北京

    2012-01-01

    In micro catalytic combustion, due to the competitive adsorption between fuel and oxygen molecular on the catalyst surface, the lower combustion limits are at the fuel rich condition. To enhance the utilization of fuel and enlarge the flammable range, hydrogen was added into the n-butane/air mixtures. Then catalytic combustion characteristics of H2/n-C4H10/air mixtures in Swiss-roll combustor were studied. Experimental results indicate that the addition of hydrogen and enlarge the flammable range of n-butane and the lower limits is fuel lean. Thus the utilization of fuel is high. The steady state combustion experiments show that the highest temperature of combustor is at fuel rich.%在微尺度催化燃烧中,由于燃料和氧气对于催化剂表面活性位的竞争,导致了可燃下限为富燃的情况。为了提高燃料利用率,拓宽可燃范围,本文在正丁烷/空气的混合气中加入一定量的氢气,在Swiss—roll燃烧器内研究了氯气/正丁烷/空气预混气的燃烧特性。结果表明,氢气能够有效拓宽正丁烷的可燃范围,可燃下限能够低于1,以贫燃的条件实现高燃料利用率。对于稳定燃烧温度的实验结果表明,燃烧器最高温度出现在富燃料一侧。

  15. Combustor burner vanelets

    Energy Technology Data Exchange (ETDEWEB)

    Lacy, Benjamin (Greer, SC); Varatharajan, Balachandar (Loveland, OH); Kraemer, Gilbert Otto (Greer, SC); Yilmaz, Ertan (Albany, NY); Zuo, Baifang (Simpsonville, SC)

    2012-02-14

    The present application provides a burner for use with a combustor of a gas turbine engine. The burner may include a center hub, a shroud, a pair of fuel vanes extending from the center hub to the shroud, and a vanelet extending from the center hub and/or the shroud and positioned between the pair of fuel vanes.

  16. Use catalytic combustion for LHV gases

    Energy Technology Data Exchange (ETDEWEB)

    Tucci, E.R.

    1982-03-01

    This paper shows how low heating value (LHV) waste gases can be combusted to recover energy even when the gases won't burn in a normal manner. Significant energy and economic savings can result by adopting this process. Catalytic combustion is a heterogeneous surface-catalyzed air oxidation of fuel, gaseous or liquid, to generate thermal energy in a flameless mode. The catalytic combustion process is quite complex since it involves numerous catalytic surface and gas-phase chemical reactions. During low temperature surface-catalyzed combustion, as in start-up, the combustion stage is under kinetically controlled conditions. The discussion covers the following topics - combustor substrates; combustor washcoating and catalyzing; combustor operational modes (turbine or tabular modes); applications in coal gasification and in-situ gasification; waste process gases. 16 refs.

  17. Low NOx heavy fuel combustor concept program. Phase 1: Combustion technology generation

    Science.gov (United States)

    Lew, H. G.; Carl, D. R.; Vermes, G.; Dezubay, E. A.; Schwab, J. A.; Prothroe, D.

    1981-01-01

    The viability of low emission nitrogen oxide (NOx) gas turbine combustors for industrial and utility application. Thirteen different concepts were evolved and most were tested. Acceptable performance was demonstrated for four of the combustors using ERBS fuel and ultralow NOx emissions were obtained for lean catalytic combustion. Residual oil and coal derived liquids containing fuel bound nitrogen (FBN) were also used at test fuels, and it was shown that staged rich/lean combustion was effective in minimizing the conversion of FBN to NOx. The rich/lean concept was tested with both modular and integral combustors. While the ceramic lined modular configuration produced the best results, the advantages of the all metal integral burners make them candidates for future development. An example of scaling the laboratory sized combustor to a 100 MW size engine is included in the report as are recommendations for future work.

  18. Micro-mixer/combustor

    KAUST Repository

    Badra, Jihad Ahmad

    2014-09-18

    A micro-mixer/combustor to mix fuel and oxidant streams into combustible mixtures where flames resulting from combustion of the mixture can be sustained inside its combustion chamber is provided. The present design is particularly suitable for diffusion flames. In various aspects the present design mixes the fuel and oxidant streams prior to entering a combustion chamber. The combustion chamber is designed to prevent excess pressure to build up within the combustion chamber, which build up can cause instabilities in the flame. A restriction in the inlet to the combustion chamber from the mixing chamber forces the incoming streams to converge while introducing minor pressure drop. In one or more aspects, heat from combustion products exhausted from the combustion chamber may be used to provide heat to at least one of fuel passing through the fuel inlet channel, oxidant passing through the oxidant inlet channel, the mixing chamber, or the combustion chamber. In one or more aspects, an ignition strip may be positioned in the combustion chamber to sustain a flame without preheating.

  19. Combustor and method for distributing fuel in the combustor

    Energy Technology Data Exchange (ETDEWEB)

    Uhm, Jong Ho; Ziminsky, Willy Steve; Johnson, Thomas Edward; York, William David

    2016-04-26

    A combustor includes a tube bundle that extends radially across at least a portion of the combustor. The tube bundle includes an upstream surface axially separated from a downstream surface. A plurality of tubes extends from the upstream surface through the downstream surface, and each tube provides fluid communication through the tube bundle. A baffle extends axially inside the tube bundle between adjacent tubes. A method for distributing fuel in a combustor includes flowing a fuel into a fuel plenum defined at least in part by an upstream surface, a downstream surface, a shroud, and a plurality of tubes that extend from the upstream surface to the downstream surface. The method further includes impinging the fuel against a baffle that extends axially inside the fuel plenum between adjacent tubes.

  20. Methanol tailgas combustor control method

    Science.gov (United States)

    Hart-Predmore, David J.; Pettit, William H.

    2002-01-01

    A method for controlling the power and temperature and fuel source of a combustor in a fuel cell apparatus to supply heat to a fuel processor where the combustor has dual fuel inlet streams including a first fuel stream, and a second fuel stream of anode effluent from the fuel cell and reformate from the fuel processor. In all operating modes, an enthalpy balance is determined by regulating the amount of the first and/or second fuel streams and the quantity of the first air flow stream to support fuel processor power requirements.

  1. Assessment of Combustor Working Environments

    Directory of Open Access Journals (Sweden)

    Leiyong Jiang

    2012-01-01

    Full Text Available In order to assess the remaining life of gas turbine critical components, it is vital to accurately define the aerothermodynamic working environments and service histories. As a part of a major multidisciplinary collaboration program, a benchmark modeling on a practical gas turbine combustor is successfully carried out, and the two-phase, steady, turbulent, compressible, reacting flow fields at both cruise and takeoff are obtained. The results show the complicated flow features inside the combustor. The airflow over each flow element of the combustor can or liner is not evenly distributed, and considerable variations, ±25%, around the average values, are observed. It is more important to note that the temperatures at the combustor can and cooling wiggle strips vary significantly, which can significantly affect fatigue life of engine critical components. The present study suggests that to develop an adequate aerothermodynamics tool, it is necessary to carry out a further systematic study, including validation of numerical results, simulations at typical engine operating conditions, and development of simple correlations between engine operating conditions and component working environments. As an ultimate goal, the cost and time of gas turbine engine fleet management must be significantly reduced.

  2. Low NOx heavy fuel combustor concept program, phase 1

    Science.gov (United States)

    Cutrone, M. B.

    1981-01-01

    Combustion tests were completed with seven concepts, including three rich/lean concepts, three lean/lean concepts, and one catalytic combustor concept. Testing was conducted with ERBS petroleum distillate, petroleum residual, and SRC-II coal-derived liquid fuels over a range of operating conditions for the 12:1 pressure ratio General Electric MS7001E heavy-duty turbine. Blends of ERBS and SRC-II fuels were used to vary fuel properties over a wide range. In addition, pyridine was added to the ERBS and residual fuels to vary nitrogen level while holding other fuel properties constant. Test results indicate that low levels of NOx and fuel-bound nitrogen conversion can be achieved with the rich/lean combustor concepts for fuels with nitrogen contents up to 1.0% by weight. Multinozzle rich/lean Concept 2 demonstrated dry low Nox emissions within 10-15% of the EPA New Source Performance Standards goals for SRC-II fuel, with yields of approximately 15%, while meeting program goals for combustion efficiency, pressure drop, and exhaust gas temperature profile. Similar, if not superior, potential was demonstrated by Concept 3, which is a promising rich/lean combustor design.

  3. Numerical Modelling of Scramjet Combustor

    Directory of Open Access Journals (Sweden)

    M. Deepu

    2007-07-01

    Full Text Available Numerical modelling of turbulent-reacting flow field of supersonic combustion ramjet(scramjet combustors are presented. The developed numerical procedure is based on the implicittreatment of chemical source terms by preconditioning and solved along with unstedy turbulentNavier-Stokes equations explicitly. Reaction is modelled using an eight-step hydrogen-airchemistry. Code is validated against a standard wall jet experimental data and is successfullyused to model the turbulent-reacting flow field resulting due to the combustion of hydrogeninjected from diamond-shaped strut and also in the wake region of wedge-shaped strut placedin the heated supersonic airstream. The analysis could demonstrate the effect of interaction ofoblique shock wave with a supersonic stream of hydrogen  in its (fuel-air mixing and reactionfor strut-based scramjet combustors.

  4. Component Development to Accelerate Commercial Implementation of Ultra-Low Emissions Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, Jon; Berry, Brian; Lundberg, Kare; Anson, Orris

    2003-03-31

    This final report describes a 2000-2003 program for the development of components and processes to enhance the commercialization of ultra-low emissions catalytic combustion in industrial gas turbines. The range of project tasks includes: development of more durable, lower-cost catalysts and catalytic combustor components; development and design of a catalytic pre-burner and a catalytic pilot burner for gas turbines, and on-site fuel conversion processing for utilization of liquid fuel.

  5. Analytical fuel property effects--small combustors

    Science.gov (United States)

    Sutton, R. D.; Troth, D. L.; Miles, G. A.

    1984-01-01

    The consequences of using broad-property fuels in both conventional and advanced state-of-the-art small gas turbine combustors are assessed. Eight combustor concepts were selected for initial screening, of these, four final combustor concepts were chosen for further detailed analysis. These included the dual orifice injector baseline combustor (a current production 250-C30 engine combustor) two baseline airblast injected modifications, short and piloted prechamber combustors, and an advanced airblast injected, variable geometry air staged combustor. Final predictions employed the use of the STAC-I computer code. This quasi 2-D model includes real fuel properties, effects of injector type on atomization, detailed droplet dynamics, and multistep chemical kinetics. In general, fuel property effects on various combustor concepts can be classified as chemical or physical in nature. Predictions indicate that fuel chemistry has a significant effect on flame radiation, liner wall temperature, and smoke emission. Fuel physical properties that govern atomization quality and evaporation rates are predicted to affect ignition and lean-blowout limits, combustion efficiency, unburned hydrocarbon, and carbon monoxide emissions.

  6. Low NOx Advanced Vortex Combustor

    Energy Technology Data Exchange (ETDEWEB)

    Ryan G. Edmonds; Joseph T. Williams; Robert C. Steele; Douglas L. Straub; Kent H. Casleton; Avtar Bining

    2008-05-01

    A lean-premixed advanced vortex combustor (AVC) has been developed and tested. The natural gas fueled AVC was tested at the U.S. Department of Energy’s National Energy Technology Laboratory in Morgantown, WV. All testing was performed at elevated pressures and inlet temperatures and at lean fuel-air ratios representative of industrial gas turbines. The improved AVC design exhibited simultaneous NOx /CO/unburned hydrocarbon (UHC) emissions of 4/4/0 ppmv (all emissions corrected to 15% O2 dry). The design also achieved less than 3 ppmv NOx with combustion efficiencies in excess of 99.5%. The design demonstrated marked acoustic dynamic stability over a wide range of operating conditions, which potentially makes this approach significantly more attractive than other lean-premixed combustion approaches. In addition, the measured 1.75% pressure drop is significantly lower than conventional gas turbine combustors, which could translate into an overall gas turbine cycle efficiency improvement. The relatively high velocities and low pressure drop achievable with this technology make the AVC approach an attractive alternative for syngas fuel applications.

  7. Combustor bulkhead heat shield assembly

    Energy Technology Data Exchange (ETDEWEB)

    Zeisser, M.H.

    1990-06-19

    This paper describes a gas turbine engine having an annular combustion chamber defined by an annular, inner liner, a concentric outer liner, and an upstream annular combustor head, wherein the head includes a radially extending bulkhead having circumferentially distributed openings for each receiving an individual fuel nozzle therethrough. It comprises: a segmented heat shield assembly, disposed between the combustion chamber interior and the bulkhead, including generally planar, sector shaped heat shields, each shield abutting circumferentially with two next adjacent shields and extending radially from proximate the inner liner to proximate the outer liner, the plurality of shields collectively defining an annular protective barrier, and wherein each sector shaped shield further includes an opening, corresponding to one of the bulkhead nozzle openings for likewise receiving the corresponding nozzle therethrough, the shield opening further including an annular lip extending toward the bulkhead and being received within the bulkhead opening, raised ridges on the shield backside, the ridges contacting the facing bulkhead surface and defining a flow path for a flow of cooling air issuing from a sized supply opening disposed in the bulkhead, the flow path running ultimately from adjacent the annular lip to the edges of each shield segment, wherein the raised edges extend fully along the lateral, circumferentially spaced edges of each shield segment and about the adjacent shield segments wherein the raised ridges further extend circumferentially between the annular lip and the abutting edge ridges.

  8. Catalytic microreactors for portable power generation

    Energy Technology Data Exchange (ETDEWEB)

    Karagiannidis, Symeon [Paul Scherer Institute, Villigen (Switzerland)

    2011-07-01

    ''Catalytic Microreactors for Portable Power Generation'' addresses a problem of high relevance and increased complexity in energy technology. This thesis outlines an investigation into catalytic and gas-phase combustion characteristics in channel-flow, platinum-coated microreactors. The emphasis of the study is on microreactor/microturbine concepts for portable power generation and the fuels of interest are methane and propane. The author carefully describes numerical and experimental techniques, providing a new insight into the complex interactions between chemical kinetics and molecular transport processes, as well as giving the first detailed report of hetero-/homogeneous chemical reaction mechanisms for catalytic propane combustion. The outcome of this work will be widely applied to the industrial design of micro- and mesoscale combustors. (orig.)

  9. System and method for controlling a combustor assembly

    Science.gov (United States)

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Stevenson, Christian Xavier

    2013-03-05

    A system and method for controlling a combustor assembly are disclosed. The system includes a combustor assembly. The combustor assembly includes a combustor and a fuel nozzle assembly. The combustor includes a casing. The fuel nozzle assembly is positioned at least partially within the casing and includes a fuel nozzle. The fuel nozzle assembly further defines a head end. The system further includes a viewing device configured for capturing an image of at least a portion of the head end, and a processor communicatively coupled to the viewing device, the processor configured to compare the image to a standard image for the head end.

  10. Active Control of High-Frequency Combustor Instability Demonstrated

    Science.gov (United States)

    DeLaat, John C.; Chang, Clarence T.

    2003-01-01

    To reduce the environmental impact of aerospace propulsion systems, extensive research is being done in the development of lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle. However, these lean-burning combustors have an increased susceptibility to thermoacoustic instabilities-high-pressure oscillations much like sound waves that can cause severe high-frequency vibrations in the combustor. These pressure waves can fatigue the combustor components and even the downstream turbine blades. This can significantly decrease the combustor and turbine safe operating life. Thus, suppression of the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors. Under the Propulsion and Power Program, the NASA Glenn Research Center in partnership with Pratt & Whitney, United Technologies Research Center, and Georgia Institute of Technology is developing technologies for the active control of combustion instabilities.

  11. Flashback Arrestor for LPP, Low NOx Combustors

    Science.gov (United States)

    Kraemer, Gil; Lee, Chi-Ming

    1998-01-01

    Lean premixed, prevaporized (LPP) high temperature combustor designs as explored for the Advanced Subsonic Transport (AST) and High Speed Civil Transport (HSCT) combustors can achieve low NO(x), emission levels. An enabling device is needed to arrest flashback and inhibit preignition at high power conditions and during transients (surge and rapid spool down). A novel flashback arrestor design has demonstrated the ability to arrest flashback and inhibit preignition in a 4.6 cm diameter tubular reactor at full power inlet temperatures (725 C) using Jet-A fuel at 0.4 less than or equal To phi less than or equal to 3.5. Several low pressure loss (0.2 to 0.4% at 30 m/s) flashback arrestor designs were developed which arrested flashback at all of the test conditions. Flame holding was also inhibited off the flash arrestor face or within the downstream tube even velocities (less than or equal to 3 to 6 m/s), thus protecting the flashback arrestor and combustor components. Upstream flow conditions influence the specific configuration based on using either a 45% or 76% upstream geometric blockage. Stationary, lean premixed dry low NO(x) gas turbine combustors would also benefit from this low pressure drop flashback arrestor design which can be easily integrated into new and existing designs.

  12. Advanced Low NOx Combustors for Aircraft Gas Turbines

    Science.gov (United States)

    Roberts, P. B.; White, D. J.; Shekleton, J. R.; Butze, H. F.

    1976-01-01

    A test rig program was conducted with the objective of evaluating and minimizing the exhaust emissions, in particular NOx, of two advanced aircraft combustor concepts at a simulated high-altitude cruise condition. The two pre-mixed, lean-reaction designs are known as the Jet Induced Circulation (JIC) combustor and the Vortex Air Blast (VAB) combustor and were rig tested in the form of reverse flow can combustors in the 0.13 ni (5.0 in. ) size range. Various configuration modifications were applied to the JIC and VAB combustor designs in an effort to reduce the emissions levels. The VAB combustor demonstrated a NOx level of 1.11 gm NO2/kg fuel with essentially 100 percent combustion efficiency at the simulated cruise combustor condition of 507 kPa (5 atm), 833 K (1500 R), inlet pressure and temperature respectively, and 1778 K (3200 R) outlet temperature on Jet-Al fuel. These configuration screening tests were carried out on essentially reaction zones only, in order to simplify the construction and modification of the combustors and to uncouple any possible effects on the emissions produced by the dilution flow. Tests were also conducted however at typical engine idle conditions on both combustors equipped with dilution ports in order to better define the problem areas involved in the operation of such concepts over a complete engine operational envelope. Versions of variable-geometry, JIC and VAB annular combustors are proposed.

  13. Fuel property effects in stirred combustors

    Science.gov (United States)

    1980-01-01

    Soot formation in strongly backmixed combustion was investigated using the jet-stirred combustor (JSC). This device provided a combustion volume in which temperature and combustion were uniform. It simulated the recirculating characteristics of the gas turbine primary zone; it was in this zone where mixture conditions were sufficiently rich to produce soot. Results indicate that the JSC allows study of soot formation in an aerodynamic situation revelant to gas turbines.

  14. Low NOx Fuel Flexible Combustor Integration Project Overview

    Science.gov (United States)

    Walton, Joanne C.; Chang, Clarence T.; Lee, Chi-Ming; Kramer, Stephen

    2015-01-01

    The Integrated Technology Demonstration (ITD) 40A Low NOx Fuel Flexible Combustor Integration development is being conducted as part of the NASA Environmentally Responsible Aviation (ERA) Project. Phase 2 of this effort began in 2012 and will end in 2015. This document describes the ERA goals, how the fuel flexible combustor integration development fulfills the ERA combustor goals, and outlines the work to be conducted during project execution.

  15. Low Emissions RQL Flametube Combustor Test Results

    Science.gov (United States)

    Chang, Clarence T.; Holdeman, James D.

    2001-01-01

    The overall objective of this test program was to demonstrate and evaluate the capability of the Rich-burn/Quick-mix/Lean-burn (RQL) combustor concept for HSR applications. This test program was in support of the Pratt & Whitney and GE Aircraft Engines HSR low-NOx Combustor Program. Collaborative programs with Parker Hannifin Corporation and Textron Fuel Systems resulted in the development and testing of the high-flow low-NOx rich-burn zone fuel-to-air ratio research fuel nozzles used in this test program. Based on the results obtained in this test program, several conclusions can be made: (1) The RQL tests gave low NOx and CO emissions results at conditions corresponding to HSR cruise. (2) The Textron fuel nozzle design with optimal multiple partitioning of fuel and air circuits shows potential of providing an acceptable uniform local fuel-rich region in the rich burner. (3) For the parameters studied in this test series, the tests have shown T3 is the dominant factor in the NOx formation for RQL combustors. As T3 increases from 600 to 1100 F, EI(NOx) increases approximately three fold. (4) Factors which appear to have secondary influence on NOx formation are P4, T4, infinity(sub rb), V(sub ref,ov). (5) Low smoke numbers were measured for infinity(sub rb) of 2.0 at P4 of 120 psia.

  16. Numerical modeling of fluidized-bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Sha, W T; Soo, S L

    1977-11-01

    Optimum design of fluidized-bed combustor requires high carbon burn-up, good sulfur retention, minimized sorbent (Ca) utilization, efficient feed distribution and mechanical layout. These parameters are strongly affected by the dynamics of the fluidized bed. The dynamic behavior of fluidized combustor is formulated in terms of multidomain - multiphase mechanics. Fluidization, bubble mechanics, coal combustion, sorbent sulfation, oxidation, solids movement and elutriation, and heat transfer are explicitly taken into account in the proposed numerical model. The model solves conservation equations of mass, momentum and energy coupled with chemical reactions as boundary value problem in space and initial value problem in time. Multi-fluid model and modified implicit multi-field numerical scheme are employed. The objective of this numerical model is for use in engineering design and scaling. Progress to date shows that all necessary relations can be incorporated within the framework of an overall multidomain - multiphase model for deterministic computation. Provisions are made for subsequent refinements of submodels of individual mechanism and improvements of the existing numerical model. These refinements and improvements can be achieved as better understanding of physical phenomena and more experimental data become available. The numerical model outlined in this report is specifically designed for the fluidized-bed combustor; however, it can readily be extended to various coal gasification systems.

  17. Simulation of Combustor-Turbine Interaction in a Jet Engine

    OpenAIRE

    Klapdor, Eva Verena

    2011-01-01

    In the present work, “Simulation of Combustor-Turbine Interaction in a Jet Engine”, the theory and the simulation of combustor-turbine interaction in a jet engine are presented. The objective of this thesis was the extension of a given incompressible CFD-code for the calculation of the compressible, reactive flow inside the combustor and the adjacent stator of a jet engine. The extended solver shall be used to investigate possible interaction between combustor and turbine of a jet engine....

  18. Variable volume combustor with pre-nozzle fuel injection system

    Energy Technology Data Exchange (ETDEWEB)

    Keener, Christopher Paul; Johnson, Thomas Edward; McConnaughhay, Johnie Franklin; Ostebee, Heath Michael

    2016-09-06

    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of fuel nozzles, a pre-nozzle fuel injection system supporting the fuel nozzles, and a linear actuator to maneuver the fuel nozzles and the pre-nozzle fuel injection system.

  19. Pulse Combustor Design, A DOE Assessment

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2003-07-31

    The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage. This document serves as a DOE post-project assessment (PPA) of a project selected in CCT Round IV, the Pulse Combustor Design Qualification Test, as described in a Report to Congress (U.S. Department of Energy 1992). Pulse combustion is a method intended to increase the heat-transfer rate in a fired heater. The desire to demonstrate the use of pulse combustion as a source of heat for the gasification of coal, thus avoiding the need for an oxygen plant, prompted ThermoChem, Inc. (TCI), to submit a proposal for this project. In October 1992, TCI entered into a cooperative agreement with DOE to conduct this project. In 1998, the project was restructured and scaled down, and in September 1998, a new cooperative agreement was signed. The site of the revised project was TCI's facilities in Baltimore, Maryland. The original purpose of this CCT project was to demonstrate a unit that would employ ten identical 253-resonance tube combustors in a coal gasification unit. The objective of the scaled-down project was to test a single 253-resonance-tube combustor in a fluidized sand bed, with gasification being studied in a process development unit (PDU). DOE provided 50 percent of the total project funding of $8.6 million. The design for the demonstration unit was completed in February 1999, and construction was completed in November 2000. Operations were conducted in March 2001.

  20. Active Control of Combustor Instability Shown to Help Lower Emissions

    Science.gov (United States)

    DeLaat, John C.; Chang, Clarence T.

    2002-01-01

    In a quest to reduce the environmental impact of aerospace propulsion systems, extensive research is being done in the development of lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle. However, these lean-burning combustors have an increased susceptibility to thermoacoustic instabilities, or high-pressure oscillations much like sound waves, that can cause severe high-frequency vibrations in the combustor. These pressure waves can fatigue the combustor components and even the downstream turbine blades. This can significantly decrease the safe operating life of the combustor and turbine. Thus, suppression of the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors. Under the Aerospace Propulsion and Power Base Research and Technology Program, the NASA Glenn Research Center, in partnership with Pratt & Whitney and United Technologies Research Center, is developing technologies for the active control of combustion instabilities. With active combustion control, the fuel is pulsed to put pressure oscillations into the system. This cancels out the pressure oscillations being produced by the instabilities. Thus, the engine can have lower pollutant emissions and long life.The use of active combustion instability control to reduce thermo-acoustic-driven combustor pressure oscillations was demonstrated on a single-nozzle combustor rig at United Technologies. This rig has many of the complexities of a real engine combustor (i.e., an actual fuel nozzle and swirler, dilution cooling, etc.). Control was demonstrated through modeling, developing, and testing a fuel-delivery system able to the 280-Hz instability frequency. The preceding figure shows the capability of this system to provide high-frequency fuel modulations. Because of the high-shear contrarotating airflow in the fuel injector, there was some concern that the fuel pulses would be attenuated to the point where they would

  1. Parameters controlling nitric oxide emissions from gas turbine combustors

    Science.gov (United States)

    Heywood, J. B.; Mikus, T.

    1973-01-01

    Nitric oxide forms in the primary zone of gas turbine combustors where the burnt gas composition is close to stoichiometric and gas temperatures are highest. It was found that combustor air inlet conditions, mean primary zone fuel-air ratio, residence time, and the uniformity of the primary zone are the most important variables affecting nitric oxide emissions. Relatively simple models of the flow in a gas turbine combustor, coupled with a rate equation for nitric oxide formation via the Zeldovich mechanism are shown to correlate the variation in measured NOx emissions. Data from a number of different combustor concepts are analyzed and shown to be in reasonable agreement with predictions. The NOx formation model is used to assess the extent to which an advanced combustor concept, the NASA swirl can, has produced a lean well-mixed primary zone generally believed to be the best low NOx emissions burner type.

  2. Experimental evaluation of combustor concepts for burning broad property fuels

    Science.gov (United States)

    Kasper, J. M.; Ekstedt, E. E.; Dodds, W. J.; Shayeson, M. W.

    1980-01-01

    A baseline CF6-50 combustor and three advanced combustor designs were evaluated to determine the effects of combustor design on operational characteristics using broad property fuels. Three fuels were used in each test: Jet A, a broad property 13% hydrogen fuel, and a 12% hydrogen fuel blend. Testing was performed in a sector rig at true cruise and simulated takeoff conditions for the CF6-50 engine cycle. The advanced combustors (all double annular, lean dome designs) generally exhibited lower metal temperatures, exhaust emissions, and carbon buildup than the baseline CF6-50 combustor. The sensitivities of emissions and metal temperatures to fuel hydrogen content were also generally lower for the advanced designs. The most promising advanced design used premixing tubes in the main stage. This design was chosen for additional testing in which fuel/air ratio, reference velocity, and fuel flow split were varied.

  3. Lean stability augmentation for premixing, prevaporizing combustors

    Science.gov (United States)

    Mcvey, J. B.; Kennedy, J. B.

    1979-01-01

    An experimental program was conducted to investigate techniques for improving the lean combustion limits of premixing, prevaporizing combustors applicable to gas turbine engine main burners. Augmented flameholders employing recessed perforated plates, catalyzed tube bundles, and configurations in which pilot fuel was injected into the wakes of V-gutters or perforated plates were designed and tested. Stable operation of the piloted designs was achieved at equivalence ratios as low as 0.25; NOx emissions of less than 1.0 g/kg at simulated turbine engine cruise conditions were obtained. A piloted perforated plate employing four percent pilot fuel flow produced the best performance while meeting severe NOx constraints.

  4. 40 CFR 60.53b - Standards for municipal waste combustor operating practices.

    Science.gov (United States)

    2010-07-01

    ... Modular excess air 50 4 Refuse-derived fuel stoker 150 24 Bubbling fluidized bed combustor 100 4 Circulating fluidized bed combustor 100 4 Pulverized coal/refuse-derived fuel mixed fuel-fired combustor 150 4 Spreader stoker coal/refuse-derived fuel mixed fuel-fired combustor 150 24 a Measured at the...

  5. Analytical fuel property effects: Small combustors

    Science.gov (United States)

    Cohen, J. D.

    1984-01-01

    The study performed in Phase 1 of this program applies only to a T700/CT7 engine family type combustor functioning in the engine as defined and does not necessarily apply to other cycles or combustors of differing stoichiometry. The study was not extended to any of the fuel delivery accessories such as pumps or control systems, nor was there any investigation of potential systems problems which might arise as a consequence of abnormal properties such as density which might affect delivery schedules or aromatics content which might affect fuel system seals. The T700/CT7 engine is a front drive turboshaft or turboprop engine in the 1500-1800 shp (1120-1340 kW) class as currently configured with highpower core flows of about 10 lb/sec (4.5 kg/sec). It employs a straight-through annular combustion system less than 5 in. (12.5 cm) in length utilizing a machined ring film cooled construction and twelve low-pressure air blast fuel injectors. Commercial and Naval versions employ two 0.5 Joule capacitive discharge surface gap ignitors.

  6. Azimuthally forced flames in an annular combustor

    Science.gov (United States)

    Worth, Nicholas; Dawson, James; Mastorakos, Epaminondas

    2015-11-01

    Thermoacoustic instabilities are more likely to occur in lean burn combustion systems, making their adoption both difficult and costly. At present, our knowledge of such phenomena is insufficient to produce an inherently stable combustor by design, and therefore an improved understanding of these instabilities has become the focus of a significant research effort. Recent experimental and numerical studies have demonstrated that the symmetry of annular chambers permit a range of self-excited azimuthal modes to be generated in annular geometry, which can make the study of isolated modes difficult. While acoustic forcing is common in single flame experiments, no equivalent for forced azimuthal modes in an annular chamber have been demonstrated. The present investigation focuses on the novel application of acoustic forcing to a laboratory scale annular combustor, in order to generate azimuthal standing wave modes at a prescribed frequency and amplitude. The results focus on the ability of the method to isolate the mode of oscillation using experimental pressure and high speed OH* measurements. The successful excitation of azimuthal modes demonstrated represents an important step towards improving our fundamental understanding of this phenomena in practically relevant geometry.

  7. Numerical study of methanol–steam reforming and methanol–air catalytic combustion in annulus reactors for hydrogen production

    International Nuclear Information System (INIS)

    Highlights: ► Performance of mini-scale integrated annulus reactors for hydrogen production. ► Flow rates fed to combustor and reformer control the reactor performance. ► Optimum performance is found from balance of flow rates to combustor and reformer. ► Better performance can be found when shell side is designed as combustor. -- Abstract: This study presents the numerical simulation on the performance of mini-scale reactors for hydrogen production coupled with liquid methanol/water vaporizer, methanol/steam reformer, and methanol/air catalytic combustor. These reactors are designed similar to tube-and-shell heat exchangers. The combustor for heat supply is arranged as the tube or shell side. Based on the obtained results, the methanol/air flow rate through the combustor (in terms of gas hourly space velocity of combustor, GHSV-C) and the methanol/water feed rate to the reformer (in terms of gas hourly space velocity of reformer, GHSV-R) control the reactor performance. With higher GHSV-C and lower GHSV-R, higher methanol conversion can be achieved because of higher reaction temperature. However, hydrogen yield is reduced and the carbon monoxide concentration is increased due to the reversed water gas shift reaction. Optimum reactor performance is found using the balance between GHSV-C and GHSV-R. Because of more effective heat transfer characteristics in the vaporizer, it is found that the reactor with combustor arranged as the shell side has better performance compared with the reactor design having the combustor as the tube side under the same operating conditions.

  8. Flow visualization studies of a toroidal low NOx combustor

    Science.gov (United States)

    McBeath, Giorgio Marco

    1999-11-01

    Rapid mixing of jet fuel and air was simulated in a toroidal combustor for low nitric oxide (NOx) applications. Flow visualization results and laser doppler velocimetry (LDV) measurements showed agreement with the computational fluid dynamics (CFD) results which were obtained using FLUENT code. The combustor consisted of Multiple-Combustion Zones separated by baffles. The mixing effectiveness was estimated by the degree of uniformity of the temperature distribution at the combustor exit. A theoretical method for determining nitric oxide emissions from a non-premixed combustor under nonequilibrium conditions was developed. This method was compared with published theoretical results and experimental data. The method allows for parametric examination of combustion parameters to minimize nitric oxide emissions. The effects of design parameters such as combustion geometry, baffle arrangement and fuel injection techniques were also determined using FLUENT code. Several design modifications and variations are proposed for mixing enhancement and NOx reduction. An examination of combustor liner and shell materials using a heat loss computer program gave useful insight into the practical design of a high speed civil transport (HSCT) jet combustor---e.g., thickness, heat loss, slip stream velocity, material type and position, and surface temperature. A HSCT combustor lined with ceramic composites must withstand 18,000 hours (2 years) at a 3,000 F operating temperature.

  9. Non-linear dynamics in pulse combustor: A review

    Indian Academy of Sciences (India)

    Sirshendu Mondal; Achintya Kukhopadhyay; Swarnendu Sen

    2015-03-01

    The state of the art of non-linear dynamics applied to pulse combustor theoretically and experimentally is reviewed. Pulse combustors are a class of air-breathing engines in which pulsations in combustion are utilized to improve the performance. As no analytical solution can be obtained for most of the nonlinear systems, the whole set of solutions can be investigated with the help of dynamical system theory. Many studies have been carried out on pulse combustors whose dynamics include limit cycle behaviour, Hopf bifurcation and period-doubling bifurcation. The dynamic signature has also been used for early prediction of extinction.

  10. Exhaust emissions of a double annular combustor: Parametric study

    Science.gov (United States)

    Schultz, D. F.

    1974-01-01

    A full scale double-annular ram-induction combustor designed for Mach 3.0 cruise operation was tested. Emissions of oxides of nitrogen, carbon monoxide, unburned hydrocarbons, and smoke were measured over a range of combustor operating variables including reference velocity, inlet air temperature and pressure, and exit average temperature. ASTM Jet-A fuel was used for these tests. An equation is provided relating oxides of nitrogen emissions as a function of the combustor, operating variables. A small effect of radial fuel staging on reducing exhaust emissions (which were originally quite low) is demonstrated.

  11. Low NOx heavy fuel combustor concept program

    Science.gov (United States)

    White, D. J.; Kubasco, A. J.

    1982-01-01

    Three simulated coal gas fuels based on hydrogen and carbon monoxide were tested during an experimental evaluation with a rich lean can combustor: these were a simulated Winkler gas, Lurgi gas and Blue Water gas. All three were simulated by mixing together the necessary pure component species, to levels typical of fuel gases produced from coal. The Lurgi gas was also evaluated with ammonia addition. Fuel burning in a rich lean mode was emphasized. Only the Blue Water gas, however, could be operated in such fashion. This showed that the expected NOx signature form could be obtained, although the absolute values of NOx were above the 75 ppm goals for most operating conditions. Lean combustion produced very low NOx well below 75 ppm with the Winkler and Lurgi gases. In addition, these low levels were not significantly impacted by changes in operating conditions.

  12. Ash management in circulating fluidized bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    K. Redemann; E.-U. Hartge; J. Werther [Hamburg University of Technology, Hamburg (Germany). Institute of Solids Process Engineering and Particle Technology

    2008-12-15

    Ash management in fluidized bed combustion systems means keeping the particle size distribution of the bed inventory in a given range. A dynamic particle population balancing model was developed for this purpose. It was successfully applied to a refuse-derived fuel fired combustor and a coal-fired circulating fluidized bed combustor. Both were large-scale commercial units. The model uses the concept of the attrited ash particle size distribution which represents the particle size distribution of the attrited ash including the generated fines and replaces the consideration of the particle attrition in the model calculations. The model offers the possibility to gain additional information about the particle size distributions and the solids mass flows at any location of the fluidized bed system. In addition, the model provides information about the dynamic behavior of the plant and about mean residence times of particle size classes in the plant. Uncertainties about the ash formation characteristics of fuels make the management of the bed inventory a very important issue. In this context the population balancing model is used to predict the plant behavior under various operating conditions. The results of the calculations carried out give useful information about the possibilities to manage the ash inventory of such a plant. It could be shown that the recirculation of a fine fraction of the bottom drain solids is a very effective method to manage the particle size distribution of the bed inventory. The calculation results further reveal that the mean residence time of particles is strongly dependent on their size. 21 refs., 19 figs., 4 tabs.

  13. A variable geometry combustor for broadened properties fuels

    Science.gov (United States)

    Dodds, W. J.; Fear, J. S.

    1987-01-01

    A program was conducted to design and develop a variable geometry combustor, sized for the cycle and envelope of a large commercial turbofan engine. The combustor uses a variable area swirl cup to control stoichiometry in the primary combustion zone. Potential advantages of this design include improved capability to burn non-standard fuels, short system length, and increased operating temperature range for advanced high performance engine cycles. After considerable development, key program emissons and performance goals were met with the variable geometry combustor. Primary development efforts were to evolve improved variable swirl cup configurations. In particular, air leakage through the variable area swirl cup had a strong effect on low power emissions and performance, while smoke level at high power was affected by features for improved mixing of the fuel and swirler air flow. Additional design and development is still needed to evolve a practical variable geometry combustor.

  14. Investigation of a low NOx full-scale annular combustor

    Science.gov (United States)

    1982-01-01

    An atmospheric test program was conducted to evaluate a low NOx annular combustor concept suitable for a supersonic, high-altitude aircraft application. The lean premixed combustor, known as the vortex air blast (VAB) concept, was tested as a 22.0-cm diameter model in the early development phases to arrive at basic design and performance criteria. Final demonstration testing was carried out on a full scale combustor of 0.66-m diameter. Variable geometry dilution ports were incorporated to allow operation of the combustor across the range of conditions between idle (T(in) = 422 K, T(out) = 917 K) and cruise (T(in) = 833 K, T(out) - 1778 K). Test results show that the design could meet the program NOx goal of 1.0 g NO2/kg fuel at a one-atmospheric simulated cruise condition.

  15. Catalytic hydrogen recombination for nuclear containments

    International Nuclear Information System (INIS)

    Catalytic recombiners appear to be a credible option for hydrogen mitigation in nuclear containments. The passive operation, versatility and ease of back fitting are appealing for existing stations and new designs. Recently, a generation of wet-proofed catalyst materials have been developed at AECL which are highly specific to H2-O2, are active at ambient temperatures and are being evaluated for containment applications. Two types of catalytic recombiners were evaluated for hydrogen removal in containments based on the AECL catalyst. The first is a catalytic combustor for application in existing air streams such as provided by fans or ventilation systems. The second is an autocatalytic recombiner which uses the enthalpy of reaction to produce natural convective flow over the catalyst elements. Intermediate-scale results obtained in 6 m3 and 10 m3 spherical and cylindrical vessels are given to demonstrate self-starting limits, operating limits, removal capacity, scaling parameters, flow resistance, mixing behaviour in the vicinity of an operating recombiner and sensitivity to poisoning, fouling and radiation. (author). 13 refs., 10 figs

  16. Ignition sequence of an annular multi-injector combustor

    OpenAIRE

    Philip, Maxime; Boileau, Matthieu; Vicquelin, Ronan; Schmitt, Thomas; Durox, Daniel; Bourgoin, Jean-François; Candel, Sébastien

    2013-01-01

    Ignition is a critical process in combustion systems. In aeronautical combustors, altitude relight capacities are required in case of accidental extinction of the chamber. A simultaneous study of light-round ignition in an annular multi-injector combustor has been performed on the experimental and numerical sides. This effort allows a unique comparison to assess the reliability of Large-Eddy Simulation (LES) in such a configuration. Results are presented in fluid dynamics videos.

  17. Combustion of Syngas Fuel in Gas Turbine Can Combustor

    OpenAIRE

    Chaouki Ghenai

    2010-01-01

    Numerical investigation of the combustion of syngas fuel mixture in gas turbine can combustor is presented in this paper. The objective is to understand the impact of the variability in the alternative fuel composition and heating value on combustion performance and emissions. The gas turbine can combustor is designed to burn the fuel efficiently, reduce the emissions, and lower the wall temperature. Syngas mixtures with different fuel compositions are produced through different coal and biom...

  18. Aerotrace. Measurement of particulates from an engine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, C.D. [DRA, Farnborough (United Kingdom)

    1997-12-31

    The effect of gas turbine operating conditions, inlet temperature, pressure and overall air fuel ratio, on particulate number density has been measured. Particulate number density was found to be proportional to combustor inlet pressure and decrease with increasing combustor inlet temperature. The relationship with air fuel ratio is more complex. The mechanism of particulate loss down sample lines has been elucidated and equations are presented to predict particulate losses for stainless steel and PTFE sample lines. (author) 3 refs.

  19. Nanotemplated High-Temperature Materials for Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Elm Svensson, Erik

    2008-06-15

    Catalytic combustion is a promising technology for heat and power applications, especially gas turbines. By using catalytic combustion ultra low emissions of nitrogen oxides (NO{sub x}), carbon monoxide (CO) and unburned hydrocarbons (UHC) can be reached simultaneously, which is very difficult with conventional combustion technologies. Besides achieving low emission levels, catalytic combustion can stabilize the combustion and thereby be used to obtain stable combustion with low heating-value gases. This thesis is focused on the high-temperature part of the catalytic combustor. The level of performance demanded on this part has proven hard to achieve. In order to make the catalytic combustor an alternative to the conventional flame combustor, more stable catalysts with higher activity have to be developed. The objective of this work was to develop catalysts with higher activity and stability, suitable for the high-temperature part of a catalytic combustor fueled by natural gas. Two template-based preparation methods were developed for this purpose. One method was based on soft templates (microemulsion) and the other on hard templates (carbon). Supports known for their stability, magnesia and hexaaluminate, were prepared using the developed methods. Catalytically active materials, perovskite (LaMnO{sub 3}) and ceria (CeO{sub 2}), were added to the supports in order to obtain catalysts with high activities and stabilities. The supports were impregnated with active materials by using a conventional technique as well as by using the microemulsion technique. It was shown that the microemulsion method can be used to prepare catalysts with higher activity compared to the conventional methods. Furthermore, by using a microemulsion to apply active materials onto the support a significantly higher activity was obtained than when using the conventional impregnation technique. Since the catalysts will operate in the catalytic combustor for extended periods of time under harsh

  20. CFD Analysis of Emissions for a Candidate N+3 Combustor

    Science.gov (United States)

    Ajmani, Kumud

    2015-01-01

    An effort was undertaken to analyze the performance of a model Lean-Direct Injection (LDI) combustor designed to meet emissions and performance goals for NASA's N+3 program. Computational predictions of Emissions Index (EINOx) and combustor exit temperature were obtained for operation at typical power conditions expected of a small-core, high pressure-ratio (greater than 50), high T3 inlet temperature (greater than 950K) N+3 combustor. Reacting-flow computations were performed with the National Combustion Code (NCC) for a model N+3 LDI combustor, which consisted of a nine-element LDI flame-tube derived from a previous generation (N+2) thirteen-element LDI design. A consistent approach to mesh-optimization, spray-modeling and kinetics-modeling was used, in order to leverage the lessons learned from previous N+2 flame-tube analysis with the NCC. The NCC predictions for the current, non-optimized N+3 combustor operating indicated a 74% increase in NOx emissions as compared to that of the emissions-optimized, parent N+2 LDI combustor.

  1. Low NOx, Lean Direct Wall Injection Combustor Concept Developed

    Science.gov (United States)

    Tacina, Robert R.; Wey, Changlie; Choi, Kyung J.

    2003-01-01

    The low-emissions combustor development at the NASA Glenn Research Center is directed toward advanced high-pressure aircraft gas turbine applications. The emphasis of this research is to reduce nitrogen oxides (NOx) at high-power conditions and to maintain carbon monoxide and unburned hydrocarbons at their current low levels at low-power conditions. Low-NOx combustors can be classified into rich burn and lean burn concepts. Lean burn combustors can be further classified into lean-premixed-prevaporized (LPP) and lean direct injection (LDI) combustors. In both concepts, all the combustor air, except for liner cooling flow, enters through the combustor dome so that the combustion occurs at the lowest possible flame temperature. The LPP concept has been shown to have the lowest NOx emissions, but for advanced high-pressure-ratio engines, the possibly of autoignition or flashback precludes its use. LDI differs from LPP in that the fuel is injected directly into the flame zone and, thus, does not have the potential for autoignition or flashback and should have greater stability. However, since it is not premixed and prevaporized, the key is good atomization and mixing of the fuel quickly and uniformly so that flame temperatures are low and NOx formation levels are comparable to those of LPP.

  2. Thermodynamics of premixed combustion in a heat recirculating micro combustor

    International Nuclear Information System (INIS)

    A thermodynamic model has been developed to evaluate exergy transfer and its destruction in the process of premixed combustion in a heat recirculating micro combustor. Exergy destruction caused by process irreversibilities is characterized by entropy generation in the process. The entropy transport equation along with the solution of temperature and species concentration fields in the wake of flame sheet assumptions have been used to determine the different components of entropy generation. The role of thermal conductivity and thickness of combustor wall, and Peclet number on transfer and destruction rate of exergy is depicted in the process of flame stabilization via heat recirculation. The entropy generations due to gas phase heat conduction and chemical reaction are identified as the major sources of exergy destruction. The total irreversibility in pre-flame region is confined only within a small distance upstream of the flame. It has been observed that the local volumetric entropy generation is higher near the axis than that near the combustor wall. The second law efficiency is almost invariant with heat loss from the combustor, Peclet number, and thermal conductivity and thickness of combustor wall. - Highlights: • Irreversibility in the combustor is mainly due to conduction and chemical reaction. • Entropy generation near the axis is higher compared to that near the wall. • Heat recirculation and process irreversibility decrease with heat loss. • The second law efficiency is almost independent of Peclet number. • Second law efficiency is almost independent of wall thermal conductivity

  3. Pollution technology program, can-annular combustor engines

    Science.gov (United States)

    Roberts, R.; Fiorentino, A. J.; Greene, W.

    1976-01-01

    A Pollution Reduction Technology Program to develop and demonstrate the combustor technology necessary to reduce exhaust emissions for aircraft engines using can-annular combustors is described. The program consisted of design, fabrication, experimental rig testing and assessment of results and was conducted in three program elements. The combustor configurations of each program element represented increasing potential for meeting the 1979 Environmental Protection Agency (EPA) emission standards, while also representing increasing complexity and difficulty of development and adaptation to an operational engine. Experimental test rig results indicate that significant reductions were made to the emission levels of the baseline JT8D-17 combustor by concepts in all three program elements. One of the Element I single-stage combustors reduced carbon monoxide to a level near, and total unburned hydrocarbons (THC) and smoke to levels below the 1979 EPA standards with little or no improvement in oxides of nitrogen. The Element II two-stage advanced Vorbix (vortex burning and mixing) concept met the standard for THC and achieved significant reductions in CO and NOx relative to the baseline. Although the Element III prevaporized-premixed concept reduced high power NOx below the Element II results, there was no improvement to the integrated EPA parameter relative to the Vorbix combustor.

  4. Flow conditioner for fuel injector for combustor and method for low-NO.sub.x combustor

    Science.gov (United States)

    Dutta, Partha; Smith, Kenneth O.; Ritz, Frank J.

    2013-09-10

    An injector for a gas turbine combustor including a catalyst coated surface forming a passage for feed gas flow and a channel for oxidant gas flow establishing an axial gas flow through a flow conditioner disposed at least partially within an inner wall of the injector. The flow conditioner includes a length with an interior passage opening into upstream and downstream ends for passage of the axial gas flow. An interior diameter of the interior passage smoothly reduces and then increases from upstream to downstream ends.

  5. CFD simulation of hydrodynamic characteristics on pulse combustor

    Science.gov (United States)

    Rahmatika, Annie Mufyda; Salihat, Efaning; Tikasari, Rachma; Widiyastuti, W.; Winardi, Sugeng

    2016-02-01

    The purpose of this research is to study the simulation of the combustion characteristics and performances in pulse combustor using different excess air composition and different pulse combustor geometry using CFD (Computational Fluid Dynamics) software Ansys FLUENT 15.0. The distribution of temperature, pressure, and fluid velocity using 2D axisymmetric with k-ɛ turbulence models. Two kind geometries of pulse combustors were selected and compared their performance. The first combustor, called geometry A has expanded tail-pipe with diameter 10 mm expanded to 20 mm with length 86 mm. The second combustor, called geometry B has cylinder tailpipe which 10 mm in diameter and 200 mm in length. Air and propane were selected as oxidizer and fuel, respectively, at temperature 27°C and pressure 1 atm with varied excess air of 0%, 23%, 200%, and 500%. The simulation result shows that the average temperature of outflow gas combustion decreased with increasing the excess air. On the other hand, the pressure amplitude increased with increasing the excess air. Amplitude of presure for excess air of 0%, 23%, 200% and 500% were 14,976.03 Pa; 26,100.19 Pa; 41,529.02 Pa; and 85,019.01 Pa, respectively. The geometry of pulse combustor affected the performance of gas combustion produced. Geometry A showed that the energy produced in the combustion cycle amounts to 538,639 to 958,639 J/kg. On the other hand, geometry B showed that the generated energy was in the range 864,502 to 1,280,814 J/kg. Combustor with geometry B provided more effective combustion performance rather than B caused by its larger heat transfer area sectional area.

  6. Core Noise: Overview of Upcoming LDI Combustor Test

    Science.gov (United States)

    Hultgren, Lennart S.

    2012-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Fixed Wing Project. The presentation covers: the emerging importance of core noise due to turbofan design trends and its relevance to the NASA N+3 noise-reduction goal; the core noise components and the rationale for the current emphasis on combustor noise; and the current and planned research activities in the combustor-noise area. Two NASA-sponsored research programs, with particular emphasis on indirect combustor noise, "Acoustic Database for Core Noise Sources", Honeywell Aerospace (NNC11TA40T) and "Measurement and Modeling of Entropic Noise Sources in a Single-Stage Low-Pressure Turbine", U. Illinois/U. Notre Dame (NNX11AI74A) are briefly described. Recent progress in the development of CMC-based acoustic liners for broadband noise reduction suitable for turbofan-core application is outlined. Combustor-design trends and the potential impacts on combustor acoustics are discussed. A NASA GRC developed nine-point lean-direct-injection (LDI) fuel injector is briefly described. The modification of an upcoming thermo-acoustic instability evaluation of the GRC injector in a combustor rig to also provide acoustic information relevant to community noise is presented. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. The Quiet Performance Research Theme of the Fixed Wing Project aims to develop concepts and technologies to dramatically reduce the perceived community noise attributable to aircraft with minimal impact on weight and performance.

  7. Combustion modeling in a model combustor

    Institute of Scientific and Technical Information of China (English)

    L.Y.Jiang; I.Campbell; K.Su

    2007-01-01

    The flow-field of a propane-air diffusion flame combustor with interior and exterior conjugate heat transfers was numerically studied.Results obtained from four combustion models,combined with the re-normalization group (RNG) k-ε turbulence model,discrete ordinates radiation model and enhanced wall treatment are presented and discussed.The results are compared with a comprehensive database obtained from a series of experimental measurements.The flow patterns and the recirculation zone length in the combustion chamber are accurately predicted,and the mean axial velocities are in fairly good agreement with the experimental data,particularly at downstream sections for all four combustion models.The mean temperature profiles are captured fairly well by the eddy dissipation (EDS),probability density function (PDF),and laminar flamelet combustion models.However,the EDS-finite-rate combustion model fails to provide an acceptable temperature field.In general,the flamelet model illustrates little superiority over the PDF model,and to some extent the PDF model shows better performance than the EDS model.

  8. Alternate-Fueled Combustor-Sector Emissions

    Science.gov (United States)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2013-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This report analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP-8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0, 50, and 100 percent. The data show that SPK fuel (an FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  9. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders

    2003-04-01

    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  10. Analysis of combustion efficiency in CFB coal combustors

    Energy Technology Data Exchange (ETDEWEB)

    Afsin Gungor [Nigde University, Nigde (Turkey). Department of Mechanical Engineering, Faculty of Engineering and Architecture

    2008-06-15

    Fluidized bed technology is well known for its high combustion efficiency and is widely used in coal combustion. In this study, the combustor efficiency has been defined and investigated for CFB coal combustor based on the losses using a dynamic 2D model. The model is shown to agree well with the published data. The effect of operating parameters such as excess air ratio, bed operational velocity, coal particle diameter and combustor load and the effect of design variables such as bed height and bed diameter on the mean bed temperature, the overall CO emission and the combustion efficiency are analyzed for the small-scale of CFBC in the presently developed model. As a result of this analysis, it is observed that the combustion efficiency decreases with increasing excess air value. The combustion efficiency increases with the bed operational velocity. Increasing coal particle size results in higher combustion efficiency values. The coal feed rate has negative effect on the combustion efficiency. The combustor efficiency considerably increases with increasing combustor height and diameter if other parameters are kept unchanged. 46 refs., 16 figs., 6 tabs.

  11. 40 CFR Table 3 to Subpart Fff of... - Municipal Waste Combustor Operating Requirements

    Science.gov (United States)

    2010-07-01

    ... 4 Refuse-derived fuel stoker 200 24 Fluidized bed, mixed fuel (wood/refuse-derived fuel) 200 c 24 Bubbling fluidized bed combustor 100 4 Circulating fluidized bed combustor 100 4 Pulverized coal/refuse-derived fuel mixed fuel-fired combustor 150 4 Spreader stoker coal/refuse-derived fuel mixed...

  12. 40 CFR 60.36b - Emission guidelines for municipal waste combustor fugitive ash emissions.

    Science.gov (United States)

    2010-07-01

    ... combustor fugitive ash emissions. 60.36b Section 60.36b Protection of Environment ENVIRONMENTAL PROTECTION... September 20, 1994 § 60.36b Emission guidelines for municipal waste combustor fugitive ash emissions. For approval, a State plan shall include requirements for municipal waste combustor fugitive ash emissions...

  13. Gas turbine engine combustor can with trapped vortex cavity

    Energy Technology Data Exchange (ETDEWEB)

    Burrus, David Louis; Joshi, Narendra Digamber; Haynes, Joel Meier; Feitelberg, Alan S.

    2005-10-04

    A gas turbine engine combustor can downstream of a pre-mixer has a pre-mixer flowpath therein and circumferentially spaced apart swirling vanes disposed across the pre-mixer flowpath. A primary fuel injector is positioned for injecting fuel into the pre-mixer flowpath. A combustion chamber surrounded by an annular combustor liner disposed in supply flow communication with the pre-mixer. An annular trapped dual vortex cavity located at an upstream end of the combustor liner is defined between an annular aft wall, an annular forward wall, and a circular radially outer wall formed therebetween. A cavity opening at a radially inner end of the cavity is spaced apart from the radially outer wall. Air injection first holes are disposed through the forward wall and air injection second holes are disposed through the aft wall. Fuel injection holes are disposed through at least one of the forward and aft walls.

  14. Analytical fuel property effects: Small combustors, phase 2

    Science.gov (United States)

    Hill, T. G.; Monty, J. D.; Morton, H. L.

    1985-01-01

    The effects of non-standard aviation fuels on a typical small gas turbine combustor were studied and the effectiveness of design changes intended to counter the effects of these fuels was evaluated. The T700/CT7 turboprop engine family was chosen as being representative of the class of aircraft power plants desired for this study. Fuel properties, as specified by NASA, are characterized by low hydrogen content and high aromatics levels. No. 2 diesel fuel was also evaluated in this program. Results demonstrated the anticipated higher than normal smoke output and flame radiation intensity with resulting increased metal temperatures on the baseline T700 combustor. Three new designs were evaluated using the non standard fuels. The three designs incorporated enhanced cooling features and smoke reduction features. All three designs, when burning the broad specification fuels, exhibited metal temperatures at or below the baseline combustor temperatures on JP-5. Smoke levels were acceptable but higher than predicted.

  15. Municipal solid waste combustor ash demonstration program `the boathouse`

    Energy Technology Data Exchange (ETDEWEB)

    Roethel, F.J.; Breslin, V.T.

    1995-08-01

    The report presents the results of a research program designed to examine the engineering and environmental acceptability of using municipal solid waste (MSW) combustor ash as an aggregate substitute in the manufacture of construction quality cement blocks. 350 tons of MSW combustor ash was combined with Portland and Cement to form standard hollow masonary blocks. These stabilized combustor ash (SCA) blocks were used to construct a boathouse on the campus of the University at Stony Brook. Air samples collected within the boathouse were examined and compared to ambient air samples for the presence and concentrations of suspended particulate, and vapor phase PCDD/PCDF, volatile and semi-volatile organic compounds and volatile mercury. Rainwater samples following contact with the boathouse walls were collected and analyzed for the presence of trace elements. Soil samples were collected prior to and following the construction of the boathouse.

  16. Experimental Study of Ethylene Combustion in a Scramjet Combustor

    Institute of Scientific and Technical Information of China (English)

    XIAO Yin-li; SONG Wen-yan; LE Jia-ling

    2008-01-01

    In this paper the ignition characteristics of gaseous ethylene hydrocarbon fuel is investigated in the supersonic clean airstreams experimental facility with a resistance heater. The generic cavity flame holder is used to create recirculation and promote the fuel/air mixing at the lower wall of the combustor. Three different injection concepts are considered in this research: (1) ethylene injection upstream of the cavity; (2) ethylene and hydrogen injection upstream of the cavity simultaneously; (3) ethylene injection preceded by pilot hydrogen injection. The pilot injection showed to be a supportive tool for holding the flame of the main normal ethylene fuel injection. Therefore, using pilot hydrogen injection and cavity configuration necessitates optimizing the combustor length to ensure the complete combustion and the full liberation of the chemical energy stored in the fuel before exiting the combustor. The present study proved the possibility of igniting the ethylene and maintaining its flame in the supersonic airstreams.

  17. Variable volume combustor with center hub fuel staging

    Energy Technology Data Exchange (ETDEWEB)

    Ostebee, Heath Michael; McConnaughhay, Johnie Franklin; Stewart, Jason Thurman; Keener, Christopher Paul

    2016-08-23

    The present application and the resultant patent provide a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a center hub for providing the flow of fuel therethrough. The center hub may include a first supply circuit for a first micro-mixer fuel nozzle and a second supply circuit for a second micro-mixer fuel nozzle.

  18. Numerical Simulations of Static Tested Ramjet Dump Combustor

    Science.gov (United States)

    Javed, Afroz; Chakraborty, Debasis

    2016-06-01

    The flow field of a Liquid Fuel Ram Jet engine side dump combustor with kerosene fuel is numerically simulated using commercial CFD code CFX-11. Reynolds Averaged 3-D Navier-Stokes equations are solved alongwith SST turbulence model. Single step infinitely fast reaction is assumed for kerosene combustion. The combustion efficiency is evaluated in terms of the unburnt kerosene vapour leaving the combustor. The comparison of measured pressures with computed values show that the computation underpredicts (~5 %) pressures for non reacting cases but overpredicts (9-7 %) for reacting cases.

  19. Dual Use Catalytically Initiated Combustor (CIC) for Rocket Engine Ignition and Thruster Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal responds to subtopic O2.02 "Propulsion Technologies" and the stated need to develop component technologies that will lead to future propulsion systems...

  20. Thermally Stable Catalytic Combustors for Very High Altitude Airbreathing Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerospace vehicles operating at high altitudes have the potential to be less expensive and more versatile alternatives to space based systems for earth/space...

  1. The Instituto de Investigaciones Electricas fluidized bed combustor; El combustor de lecho fluidizado del Instituto de Investigaciones Electricas

    Energy Technology Data Exchange (ETDEWEB)

    Milan Foressi, Julio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    After synthesizing the most important aspects of the combustion technology in fluidized bed, the experimental combustor developed at the Instituto de Investigaciones Electricas (IIE) is described, as well as the test results of the experiences carried out with coal from Rio Escondido, Coahuila. [Espanol] Tras sintetizar los aspectos mas importantes de la tecnologia de combustion en lecho fluidizado, se describe el combustor experimental desarrollado en el Instituto de Investigaciones Electricas (IIE), asi como los resultados de las experiencias realizadas con carbon proveniente de Rio Escondido, Coahuila.

  2. Non-reacting flow visualization of supersonic combustor based on cavity and cavity-strut flameholder

    Science.gov (United States)

    Zhao, Yanhui; Liang, Jianhan; Zhao, Yuxin

    2016-04-01

    Nano-particle planer laser scattering and particle image velocimetry technology are employed to observe the flow field of scramjet combustors based on cavity and cavity-strut flameholder. Density field and velocity distribution inside combustors are obtained. Mainstream fluid enters into cavity nearby side wall in experimental observation because side wall shock waves interact with bottom wall boundary layer. Cavity fluid is entrained into mainstream in the middle of combustor meanwhile. Flow past cavity displays obvious three dimensional characteristics in both combustors. But cavity-strut combustor displays asymmetrical flow field because of strut configuration. Mass exchange between mainstream and cavity fluid is evaluated by statistic mass flow rate into cavity. Mass flow rate near side wall is raised to 6.62 times of the value in the middle of cavity combustor while it is 5.1 times in cavity-strut combustor. Further study is needed to injection strategies and realistic flow characteristics on condition of combustion.

  3. CFD analysis of jet mixing in low NOx flametube combustors

    Science.gov (United States)

    Talpallikar, M. V.; Smith, C. E.; Lai, M. C.; Holdeman, J. D.

    1991-01-01

    The Rich-burn/Quick-mix/Lean-burn (RQL) combustor was identified as a potential gas turbine combustor concept to reduce NO(x) emissions in High Speed Civil Transport (HSCT) aircraft. To demonstrate reduced NO(x) levels, cylindrical flametube versions of RQL combustors are being tested at NASA Lewis Research Center. A critical technology needed for the RQL combustor is a method of quickly mixing by-pass combustion air with rich-burn gases. Jet mixing in a cylindrical quick-mix section was numerically analyzed. The quick-mix configuration was five inches in diameter and employed twelve radial-inflow slots. The numerical analyses were performed with an advanced, validated 3-D Computational Fluid Dynamics (CFD) code named REFLEQS. Parametric variation of jet-to-mainstream momentum flux ratio (J) and slot aspect ratio was investigated. Both non-reacting and reacting analyses were performed. Results showed mixing and NO(x) emissions to be highly sensitive to J and slot aspect ratio. Lowest NO(x) emissions occurred when the dilution jet penetrated to approximately mid-radius. The viability of using 3-D CFD analyses for optimizing jet mixing was demonstrated.

  4. Transient/structural analysis of a combustor under explosive loads

    Science.gov (United States)

    Gregory, Peyton B.; Holland, Anne D.

    1992-01-01

    The 8-Foot High Temperature Tunnel (HTT) at NASA Langley Research Center is a combustion-driven blow-down wind tunnel. A major potential failure mode that was considered during the combustor redesign was the possibility of a deflagration and/or detonation in the combustor. If a main burner flame-out were to occur, then unburned fuel gases could accumulate and, if reignited, an explosion could occur. An analysis has been performed to determine the safe operating limits of the combustor under transient explosive loads. The failure criteria was defined and the failure mechanisms were determined for both peak pressures and differential pressure loadings. An overview of the gas dynamics analysis was given. A finite element model was constructed to evaluate 13 transient load cases. The sensitivity of the structure to the frequency content of the transient loading was assessed. In addition, two closed form dynamic analyses were conducted to verify the finite element analysis. It was determined that the differential pressure load or thrust load was the critical load mechanism and that the nozzle is the weak link in the combustor system.

  5. MHD coal combustor technology. Final report, phase II

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    The design, performance, and testing of a 20-MW coal combustor for scaleup to 50 MW for use in an MHD generator are described. The design incorporates the following key features: (1) a two-stage combustor with an intermediate slag separator to remove slag at a low temperture, thus minimizing enthalpy losses required for heating and vaporizing the slag; (2) a first-stage pentad (four air streams impinging on one coal stream) injector design with demonstrated efficient mixing, promoting high carbon burnout; (3) a two-section first-stage combustion chamber; the first stage using a thin slag-protected refractory layer and the second section using a thick refractory layer, both to minimize heat losses; (4) a refractory lining in the slag separator to minimize heat losses; (5) a second-stage combustor, which provided both de-swirl of the combustion products exiting from the slag separator and simple mixing of the vitiated secondary air and seed; (6) a dense-phase coal feed system to minimize cold carrier gas entering the first-stage combustors; (7) a dry seed injection system using pulverized K/sub 2/CO/sub 3/ with a 1% amorphous, fumed silicon dioxide additive to enhance flowability, resulting in rapid vaporization and ionization and ensuring maximum performance; and (8) a performance evaluation module (PEM) of rugged design based on an existing, successfully-fired unit. (WHK)

  6. One dimensional numerical simulation of small scale CFB combustors

    Energy Technology Data Exchange (ETDEWEB)

    Gungor, Afsin [Department of Mechanical Engineering, Faculty of Engineering and Architecture, Nigde University, 51100 Nigde (Turkey)

    2009-03-15

    In this study, a one-dimensional model which includes volatilization, attrition and combustion of char particles for a circulating fluidized bed (CFB) combustor has been developed. In the modeling, the CFB combustor is analyzed in two regions: bottom zone considering as a bubbling fluidized bed in turbulent fluidization regime and upper zone core-annulus solids flow structure is established. In the bottom zone, a single-phase back-flow cell model is used to represent the solid mixing. Solids exchange, between the bubble phase and emulsion phase is a function of the bubble diameter and varies along the axis of the combustor. In the upper zone, particles move upward in the core and downward in the annulus. Thickness of the annulus varies according to the combustor height. Using the developed simulation program, the effects of operational parameters which are the particle diameter, superficial velocity and air-to-fuel ratio on net solids flux, oxygen and carbon dioxide mole ratios along the bed height and carbon content and bed temperature on the top of the riser are investigated. Simulation results are compared with test results obtained from the 50 kW Gazi University Heat Power Laboratory pilot scale unit and good agreement is observed. (author)

  7. Use of bioethanol in a gas turbine combustor

    International Nuclear Information System (INIS)

    A study of a gas turbine combustor that considers two conventional fuels and one biofuel is presented. The kind of fuel supplied to the combustor can impact in the Turbine Inlet Temperature (TIT) provoking significant changes in the power output and efficiency. Moreover, it can cause some damage in the initial steps of the gas turbine due to the migration of the hot streak. Natural gas, Diesel and Bioethanol are considered in the combustor in order to compare the performance of the power plant. The use of biofuel in a gas turbine combustor presents some benefits; a) better behavior in the distribution of the TIT, b) slightly higher power output and c) less impact of NOx and CO2 emissions. The analysis was based in the Computational Fluid Dynamics (CFD) and thermodynamics. The results indicate that it is necessary to increase the mass flow rate of bioethanol to maintain the power output of the turbine, due to a significant reduction of the TIT was observed. On the other hand, the use of bioethanol permits an important reduction of NOx emissions when they are compared with the conventional fuels (natural gas or diesel). Also, a noble benefit is obtained due to the biofuel comes from biomass-derived material, resulting in a reduction of CO2 global warming. -- Highlights: • We apply numerical and thermodynamic analysis to study the effect of the biofuel in gas turbine combustor. • We apply different air distribution to check experimental measurements of NOx emissions using conventional fuels and biofuel. • Two different conditions to study the power output, efficiency and Turbine Inlet Temperature (TIT), were applied

  8. Investigation of combustion and thermodynamic performance of a lean burn catalytic combustion gas turbine system

    International Nuclear Information System (INIS)

    The goals of this research were to investigate the combustion and thermodynamic performance of a lean burn catalytic combustion gas turbine. The characteristics of lean burn catalytic combustion were investigated by utilising 1D heterogeneous plug flow model which was validated by experiments. The effects of operating parameters on catalytic combustion were numerically analysed. The system models were built in ASPEN Plus and three independent design variables, i.e. compressor pressure ratio (PR), regenerator effectiveness (RE) and turbine inlet temperature (TIT) were selected to analyse the thermodynamic performance of the thermal cycle. The main results show that: simulations from 1D heterogeneous plug flow model can capture the trend of catalytic combustion and describe the behavior of the catalytic monolith in detail. Inlet temperature is the most significant parameter that impacts operation of the catalytic combustor. When TIT and RE are constant, the increase of PR results in lowering the inlet temperature of the catalytic combustor, which results in decreasing methane conversion. The peak thermal efficiency and the optimal PR at a constant TIT increase with the increase of TIT; and at the constant PR, the thermal efficiency increases with the increase of TIT. However, with lower TIT conditions, the optimal PR and the peak efficiency at a constant TIT of the LBCCGT cycle are relative low to that of the conventional cycle. When TIT and PR are constant, the decrease of RE may result in lower methane conversion. The influences of RE on the methane conversion and the thermal efficiency are more significant at higher PRs. The higher thermal efficiency for the lower RE is achieved at lower PR.

  9. Catalytic cracking process

    Science.gov (United States)

    Lokhandwala, Kaaeid A.; Baker, Richard W.

    2001-01-01

    Processes and apparatus for providing improved catalytic cracking, specifically improved recovery of olefins, LPG or hydrogen from catalytic crackers. The improvement is achieved by passing part of the wet gas stream across membranes selective in favor of light hydrocarbons over hydrogen.

  10. Catalytic distillation structure

    Science.gov (United States)

    Smith, Jr., Lawrence A.

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  11. An Adaptive Instability Suppression Controls Method for Aircraft Gas Turbine Engine Combustors

    Science.gov (United States)

    Kopasakis, George; DeLaat, John C.; Chang, Clarence T.

    2008-01-01

    An adaptive controls method for instability suppression in gas turbine engine combustors has been developed and successfully tested with a realistic aircraft engine combustor rig. This testing was part of a program that demonstrated, for the first time, successful active combustor instability control in an aircraft gas turbine engine-like environment. The controls method is called Adaptive Sliding Phasor Averaged Control. Testing of the control method has been conducted in an experimental rig with different configurations designed to simulate combustors with instabilities of about 530 and 315 Hz. Results demonstrate the effectiveness of this method in suppressing combustor instabilities. In addition, a dramatic improvement in suppression of the instability was achieved by focusing control on the second harmonic of the instability. This is believed to be due to a phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling. These results may have implications for future research in combustor instability control.

  12. Effects of Immersed Surfaces on the Combustor Efficiency of Small-Scale Fluidized Beds

    Directory of Open Access Journals (Sweden)

    Nurdil Eskin

    2005-09-01

    Full Text Available In this study, effects of the different types of heat exchanger surfaces on the second law efficiency of a small-scale circulating fluidized bed (CFB combustor are analyzed and the results are compared with the bubbling fluidized bed coal combustor effectiveness values. Using a previously developed simulation program, combustor efficiency and entropy generation values are obtained at different operation velocities at different height and volume ratios of the immersed surfaces, both for circulating and bubbling fluidized bed combustors. Besides that, the influence of the immersed surface types on the combustor efficiency was compared for different fluidized bed combustors. Through this analysis, the dimensions, arrangement and type of the immersed surfaces which achieve maximum efficiency are obtained.

  13. Systems and methods for preventing flashback in a combustor assembly

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Stevenson, Christian Xavier

    2016-04-05

    Embodiments of the present application include a combustor assembly. The combustor assembly may include a combustion chamber, a first plenum, a second plenum, and one or more elongate air/fuel premixing injection tubes. Each of the elongate air/fuel premixing injection tubes may include a first length at least partially disposed within the first plenum and configured to receive a first fluid from the first plenum. Moreover, each of the elongate air/fuel premixing injection tubes may include a second length disposed downstream of the first length and at least partially disposed within the second plenum. The second length may be formed of a porous wall configured to allow a second fluid from the second plenum to enter the second length and create a boundary layer about the porous wall.

  14. Analytical fuel property effects, small combustors, phase 1

    Science.gov (United States)

    Cohen, J. D.

    1983-01-01

    The effects of nonstandard aviation fuels on a typical small gas turbine combustor was analyzed. The T700/CT7 engine family was chosen as being representative of the class of aircraft power plants desired. Fuel properties, as specified by NASA, are characterized by low hydrogen content and high aromatics levels. Higher than normal smoke output and flame radiation intensity for the current T700 combustor which serves as a baseline were anticipated. It is, therefore, predicted that out of specification smoke visibility and higher than normal shell temperatures will exist when using NASA ERBS fuels with a consequence of severe reduction in cyclic life. Three new designs are proposed to compensate for the deficiencies expected with the existing design. They have emerged as the best of the eight originally proposed redesigns or combinations thereof. After the five choices that were originally made by NASA on the basis of competing performance factors, General Electric narrowed the field to the three proposed.

  15. PGT cuts emissions with dry low NOx combustors

    International Nuclear Information System (INIS)

    This paper reviews the installation and development of dry, low NOx combustors on the Pacific Gas Transmission Co. (PGT), distribution system. Because of increasingly stringent pollution control measures required in the permitting process, PGT found itself forced to develop innovative techniques for emission control in order to repermit and/or gain new permits for pipeline construction. This paper describes the process used by PGT to enter into agreements with two manufacturers to participate in the development of test programs on two different versions of a dry, low NOx combustor for pipeline gas turbine service. It also reviews the regulatory and permitting procedures that PGT had to go through to get approval of this concept

  16. Numerical Study of Cofiring Biomass with Coal in Cyclone Combustor

    Science.gov (United States)

    Zulkepli, I. I.; Hasini, H.; Ikram, A. M.; Yusoff, M. Z.; Abd Rahman, A.; Shamsuddin, A. H.

    2013-06-01

    This paper investigates the flow and temperature distribution inside a cyclone combustor during combustion of coal and coal blend. The combustion under study is based on the actual cyclone combustor experiment rig used to test the performance of combustion when it be different coal-biomass blend is used. Experiment investigation on 100% coal combustion was also carried out and serves as a basis for the subsequent test for co-firing of different coal or biomass blend. Validation of temperature magnitude along cyclone furnace at 100% coal combustion condition shows good agreement between the measured and CFD results. Subsequent simulation of coal and biomass blend shows very good impact as it gave less error compared to experiment

  17. Experimental study on the heavy-duty gas turbine combustor

    International Nuclear Information System (INIS)

    The results of stand and field testing of a combustion chamber for a heavy-duty 150 MW gas turbine are discussed. The model represented one of 14 identical segments of a tubular multican combustor constructed in the scale 1:1. The model experiments were executed at a pressure smaller than in the real gas turbine. The combustion efficiency, pressure loss factor, pattern factor, liner wall temperature, flame radiation, fluctuating pressure, and NOx emission were measured at partial and full load for both model and on-site testing. The comparison of these items of information, received on similar modes in the stand and field tests, has allowed the development of a method of calculation and the improvement of gas turbine combustors

  18. Experimental results from a reverse flow annual combustor

    Science.gov (United States)

    Joubert, F. M.; Hattingh, H. V.

    Computer-predicted temperature distributions in the wall liners of a combustion chamber were compared to the experimentally obtained values from combustion tests carried out in a small, full-scale reverse-flow annular combustor at sea level take-off conditionns. The largest discrepancies between the measured and predicted linear temperatures occured in the primary zone, with most of the predictions falling above the measured values, and with neither of the two computer programs satisfying the accuracy of 4 percent (of the experimental values) needed for making estimates on the life of a combustor. On the other hand, the correlation between the measured and predicted liner pressure drop was satisfactory. The validity and usefulnes of simple computer models as aids in the design of gas turbine combustion chambers are discussed.

  19. Pneumatic and Hydraulic Systems in Coal Fluidized Bed Combustor

    OpenAIRE

    Z. O. Opafunso; I. I. Ozigis; I.A. Adetunde

    2009-01-01

    Problem statement: This study designed the pneumatic and hydraulic systems in coal fluidized bed combustor. These are fluidization of silica sand bed material, Air distributor, centrifugal fan, electric motor power drive and surface heat exchanger. Approach: The effects of increased gas velocity on silica sand and the resultant drag force formed the basic equations in fluidization. Air distributor was introduced to achieve pressure drop across the beds. Results: The constructed centrifugal fa...

  20. Emissions from a gas-burning pulse combustor

    OpenAIRE

    David, Jiri

    1993-01-01

    The pulse combustor has a number of attractive features for heating applications. These include simplicity of construction, compactness for a given heat input rate, enhanced exhaust gas heat transfer and most importantly low CO and NOx emissions. With more stringent air quality and emissions standards soon to be in force in many countries, the latter has received much attention among the producers of gas appliances. This study investigates the performance of and emissions from a Helrnholtz...

  1. Numerical Modeling of a Ducted Rocket Combustor With Experimental Validation

    OpenAIRE

    Hewitt, Patrick

    2008-01-01

    The present work was conducted with the intent of developing a high-fidelity numerical model of a unique combustion flow problem combining multi-phase fuel injection with substantial momentum and temperature into a highly complex turbulent flow. This important problem is very different from typical and more widely known liquid fuel combustion problems and is found in practice in pulverized coal combustors and ducted rocket ramjets. As the ducted rocket engine cycle is only now finding wides...

  2. Experimental investigation of the low NOx vortex airblast annular combustor

    Science.gov (United States)

    Johnson, S. M.; Biaglow, J. A.; Smith, J. M.

    1984-01-01

    A low oxides of nitrogen vortex airblast annular combustor was evaluated which has attained the goal of 1 gm NO2/kg fuel or less during operation. The experimental combustor test conditions were a nominal inlet-air temperature of 703 K, inlet total pressures between 0.52 to 0.83 MPa, and a constant inlet Mach number of 0.26. Exit temperature pattern factors for all test points were between 0.16 and 0.20 and exit swirl flow angles were 47 degrees at isothermal conditions and 23 degrees during combustion. Oxides of nitrogen did not exceed 1.05 gm NO2/kg fuel at the highest inlet pressure and exhaust temperature tested. Previous correlations have related NOx proportionally to the combustor inlet pressure raised to some exponent. In this experiment, a band of exponents between 0.5 and 1.0 resulted for fuel-air ratios from 0.023 to 0.027 and inlet pressures from 0.52 to 0.83 MPa. Previously announced in STAR as N84-22567

  3. Experimental study of entrainment phenomenon in a trapped vortex combustor

    Institute of Scientific and Technical Information of China (English)

    Zhang Rongchun; Fan Weijun

    2013-01-01

    Trapped vortex combustor (TVC) is an advanced low-pollution gas turbine combustor,with the adoption of staged combustion technique.To achieve low-pollutant emission and better combustion performance,the proportion of the air flow in each combustion zone should be precisely determined in the design of the combustor.Due to the presence of entrainment phenomenon,the total air flow in the cavity zone is difficult to estimate.To overcome the measurement difficulty,this study adopts the indirect measurement approach in the experimental research of entrainment phenomenon in the cavity.In accordance with the measurement principle,a TVC model fueled by methane is designed.Under two experimental conditions,i.e.with and without direct air intake in the cavity,the influence of the mainstream air flow velocity,the air intake velocity in the cavity,the height of inlet channel,the structure of holder and the structural proportion of the cavity on entrainment in the cavity is studied,respectively,through experiment at atmospheric temperature and pressure.The results suggest that the air flow velocity of mainstream,the air intake velocity of the cavity and the structure of the holder exert significant influence on the air entrainment,while the influence of structural proportion of the cavity is comparatively insignificant.The square root of momentum ratio of cavity air to mainstream air could be used to analyze the correlation of the entrainment data.

  4. Combustion of oil palm solid wastes in fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Shamsuddin, A.H. [Univ. Kebangsaan Malaysia, Bangi (Malaysia). Faculty of Engineering; Sopian, K. [Univ. of Miami, Coral Gables, FL (United States). College of Engineering

    1995-12-31

    The palm oil industry of Malaysia is the largest in the world producing about 55% of the world production. The industry has approximately 270 mills throughout the country with processing sizes ranging from 10 tonnes/hour to 120 tonnes/hour. All mills produce solid wastes, about 50% of the fresh fruit bunches in terms of weight. The solid wastes produced are in the form of empty fruit bunches, fibers and shells. These wastes have high energy value, ranging from 14 to 18 MJ/kg. The industry is currently self-sufficient in terms of energy. Fibers and shell wastes are being used as boiler fuel to raise steam for electrical power production and process steam. However, the combustion technology currently being employed is obsolete with low efficiency and polluting. A fluidized bed combustor pilot plant is designed and constructed at Combustion Research Laboratory, Universiti Kebangsaan Malaysia. The combustor is made up of 600 mm {times} 900 mm rectangular bed filled with sand up to 400 mm height, static. A bank of heat transfer tubes is imbedded in the bed, designed to absorb 50% of heat released by the fuel in the bed. The remaining heat is transferred in tubes placed on the wall of the freeboard area. Experimental studies were carried out in the pilot plant using palm oil solid wastes. The combustion temperatures were maintained in the range 800--900 C. The performance of the combustor was evaluated in terms of combustion and boiler efficiencies and flue gas emissions monitored.

  5. Flame dynamics of a meso-scale heat recirculating combustor

    Energy Technology Data Exchange (ETDEWEB)

    Vijayan, V.; Gupta, A.K. [Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 (United States)

    2010-12-15

    The dynamics of premixed propane-air flame in a meso-scale ceramic combustor has been examined here. The flame characteristics in the combustor were examined by measuring the acoustic emissions and preheat temperatures together with high-speed cinematography. For the small-scale combustor, the volume to surface area ratio is small and hence the walls have significant effect on the global flame structure, flame location and flame dynamics. In addition to the flame-wall thermal coupling there is a coupling between flame and acoustics in the case of confined flames. Flame-wall thermal interactions lead to low frequency flame fluctuations ({proportional_to}100 Hz) depending upon the thermal response of the wall. However, the flame-acoustic interactions can result in a wide range of flame fluctuations ranging from few hundred Hz to few kHz. Wall temperature distribution is one of the factors that control the amount of reactant preheating which in turn effects the location of flame stabilization. Acoustic emission signals and high-speed flame imaging confirmed that for the present case flame-acoustic interactions have more significant effect on flame dynamics. Based on the acoustic emissions, five different flame regimes have been identified; whistling/harmonic mode, rich instability mode, lean instability mode, silent mode and pulsating flame mode. (author)

  6. Enhanced heat transfer rocket combustor technology component hot-fire test results

    Science.gov (United States)

    Brown, William S.

    1990-01-01

    The evaluation of a method for enhancing combustor hot-gas wall heat extraction by using hot-fire tests of a rocket engine combustor calorimeter with hot-gas wall ribs is presented. The capability for enhanced heat extraction is required to increase available turbine drive energy for high chamber pressure operation, and therefore higher overall expander cycle engine performance. Determination of the rib effectiveness for incorporation into the design of a high-performance combustor for an advanced expander cycle combustor intended for use in an orbital transfer vehicle or advanced space engine, was the objective of these tests.

  7. Catalytic Synthesis Lactobionic Acid

    Directory of Open Access Journals (Sweden)

    V.G. Borodina

    2014-07-01

    Full Text Available Gold nanoparticles are obtained, characterized and deposited on the carrier. Conducted catalytic synthesis of lactobionic acid from lactose. Received lactobionic acid identify on the IR spectrum.

  8. Catalytic distillation process

    Science.gov (United States)

    Smith, Jr., Lawrence A.

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  9. Catalytic Coanda combustion

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, J.D.; Smith, A.G.; Kopmels, M.

    1992-09-16

    A catalytic reaction is enhanced by the use of the Coanda effect to maximise contact between reactant and catalyst. A device utilising this principle comprises a Coanda surface which directs the flow of fuel from a slot to form a primary jet which entrains the surrounding ambient air and forms a combustible mixture for reaction on a catalytic surface. The Coanda surface may have an internal or external nozzle which may be axi-symmetric or two-dimensional. (author)

  10. Catalytic ignition of light hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    K. L. Hohn; C.-C. Huang; C. Cao

    2009-01-01

    Catalytic ignition refers to phenomenon where sufficient energy is released from a catalytic reaction to maintain further reaction without additional extemai heating. This phenomenon is important in the development of catalytic combustion and catalytic partial oxidation processes, both of which have received extensive attention in recent years. In addition, catalytic ignition studies provide experimental data which can be used to test theoretical hydrocarbon oxidation models. For these reasons, catalytic ignition has been frequently studied. This review summarizes the experimental methods used to study catalytic ignition of light hydrocarbons and describes the experimental and theoretical results obtained related to catalytic ignition. The role of catalyst metal, fuel and fuel concentration, and catalyst state in catalytic ignition are examined, and some conclusions are drawn on the mechanism of catalytic ignition.

  11. Single annular combustor: Experimental investigations of aerodynamics, dynamics and emissions

    Science.gov (United States)

    Mohammad, Bassam Sabry

    The present work investigates the aerodynamics, dynamics and emissions of a Single Cup Combustor Sector. The Combustor resembles a real Gas Turbine Combustor with primary, secondary and dilution zones (also known as fuel rich dome combustor). The research is initiated by studying the effect of the combustor front end geometry on the flow field. Two different exit configurations (one causes a sudden expansion to the swirling flow while the other causes a gradual expansion), installed in a dump combustor, are tested using LDV. The results reveal that the expanding surface reduces the turbulence activities, eliminates the corner recirculation zone and increases the length of the CRZ appreciably. An asymmetry in the flow field is observed due to the asymmetry of the expanding surface. To study the effect of chamber geometry on the flow field, the dome configuration is tested in the combustor sector with the primary dilution jets blocked. The size of the CRZ is reduced significantly (40% reduction in the height). With active primary jets, the CRZ is reconstructed in 3D by conducting several PIV measurements off-center. The confinement appears to significantly influence the shape of the CRZ such that the area ratio is similar for both the confinement and the CRZ (approximately 85%). The primary jets considerably contribute to the heat release process at high power conditions. Also, the primary jets drastically impact the flow field structure. Therefore, the parameters influencing the primary jets are studied using PIV (pressure drop, jets size, off-centering, interaction with convective cooling air, jet blockage and fuel injection). This study is referred to as a jet sensitivity study. The results indicate that the primary jets can be used effectively in controlling the flow field structure. A pressure drop of 4.3% and 7.6% result in similar flows with no noticeable effect on the size of the CRZ and the four jets wake regions. On the other hand, the results show that the

  12. 40 CFR Table 3 to Subpart Cb of... - Municipal Waste Combustor Operating Guidelines

    Science.gov (United States)

    2010-07-01

    ... conversion 250 c 24 Spreader stoker fixed floor refuse-derived fuel-fired combustor/100 percent coal capable... (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines... Operating Guidelines Municipal waste combustor technology Carbon monoxide emissions levels (parts...

  13. 40 CFR 60.52a - Standard for municipal waste combustor metals.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for municipal waste combustor metals. 60.52a Section 60.52a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... September 20, 1994 § 60.52a Standard for municipal waste combustor metals. (a) On and after the date...

  14. Analysis of the combustion oscillation in a silo-type gas turbine combustor and its suppression

    International Nuclear Information System (INIS)

    The characteristics of combustion oscillation of a silo-type 79.5 MW gas turbine combustor in commercial operation and its suppression have been investigated. The oscillation of the lean premixed gas turbine combustor resulting from the combustion instability occurred at near full load operation. An FFT analysis of the combustion dynamics showed that the dominant frequency of the oscillation would be that of the 1st longitudinal acoustic resonance mode of the combustor. To suppress the combustion oscillation, a passive control technique for reducing the combustion instability was employed: that is, the fuel to the combustor was redistributed by adjusting the operational schedule of one of six fuel control valves, which would lead the increase of the local operational equivalence ratio near the central recirculation zone of the combustor. By doing so, the oscillation was successfully reduced to the permissible level while the amount of NOx emission met proper regulatory level set by the local government

  15. The 3-D CFD modeling of gas turbine combustor-integral bleed flow interaction

    Science.gov (United States)

    Chen, D. Y.; Reynolds, R. S.

    1993-01-01

    An advanced 3-D Computational Fluid Dynamics (CFD) model was developed to analyze the flow interaction between a gas turbine combustor and an integral bleed plenum. In this model, the elliptic governing equations of continuity, momentum and the k-e turbulence model were solved on a boundary-fitted, curvilinear, orthogonal grid system. The model was first validated against test data from public literature and then applied to a gas turbine combustor with integral bleed. The model predictions agreed well with data from combustor rig testing. The model predictions also indicated strong flow interaction between the combustor and the integral bleed. Integral bleed flow distribution was found to have a great effect on the pressure distribution around the gas turbine combustor.

  16. Fuel properties effect on the performance of a small high temperature rise combustor

    Science.gov (United States)

    Acosta, Waldo A.; Beckel, Stephen A.

    1989-01-01

    The performance of an advanced small high temperature rise combustor was experimentally determined at NASA-Lewis. The combustor was designed to meet the requirements of advanced high temperature, high pressure ratio turboshaft engines. The combustor featured an advanced fuel injector and an advanced segmented liner design. The full size combustor was evaluated at power conditions ranging from idle to maximum power. The effect of broad fuel properties was studied by evaluating the combustor with three different fuels. The fuels used were JP-5, a blend of Diesel Fuel Marine/Home Heating Oil, and a blend of Suntec C/Home Heating Oil. The fuel properties effect on the performance of the combustion in terms of pattern factor, liner temperatures, and exhaust emissions are documented.

  17. Investigation of low NOx staged combustor concept in high-speed civil transport engines

    Science.gov (United States)

    Nguyen, Hung Lee; Bittker, David A.; Niedzwiecki, Richard W.

    1989-01-01

    Levels of exhaust emissions due to high temperatures in the main combustor of high-speed civil transport (HSCT) engines during supersonic cruise are predicted. These predictions are based on a new combustor design approach: a rich burn/quick quench/lean burn combustor. A two-stage stirred reactor model is used to calculate the combustion efficiency and exhaust emissions of this novel combustor. A propane-air chemical kinetics model is used to simulate the fuel-rich combustion of jet fuel. Predicted engine exhaust emissions are compared with available experimental test data. The effect of HSCT engine operating conditions on the levels of exhaust emissions is also presented. The work described in this paper is a part of the NASA Lewis Research Center High-Speed Civil Transport Low NO(x) Combustor program.

  18. A Numerical and an Experimental Study for Optimization of a Small Annular Combustor

    Science.gov (United States)

    Iki, Norihiko; Gruber, Andrea; Yoshida, Hiro

    The small annular combustor of a micro gas turbine fueled with methane is investigated experimentally and numerically in order to improve the overall efficiency of the small engine. The CFD analysis of the tiny combustor relies on a low Reynolds number turbulence model coupled to the Eddy Dissipation Concept (EDC) and provides important insight about the turbulent flow pattern, flame shape, position and optimal flame anchoring. For the experimental observation, a model combustor, representing 120 degrees of the original annular combustor, is fabricated, which enables us to visualize internal flow. The burning area in the combustion chamber moves to downstream with increase of air flow rate. At full-load, some fuel remains at the combustion chamber exit. Moreover, temperatures are measured and compared with the numerical simulations. The results shown here will form the basis for future optimization of the micro gas turbine with minimal or no increase in combustor pressure loss.

  19. The pollution reduction technology program for can-annular combustor engines - Description and results

    Science.gov (United States)

    Roberts, R.; Fiorentino, A. J.; Diehl, L.

    1976-01-01

    Pollutant reduction and performance characteristics were determined for three successively more advanced combustor concepts. Program Element I consisted of minor modifications to the current production JT8D combustor and fuel system to evaluate means of improved fuel preparation and changes to the basic airflow distribution. Element II addressed versions of the two-staged Vorbix (vortex burning and mixing) combustor and represented a moderate increase in hardware complexity and difficulty of development. The concept selected for Element III employed vaporized fuel as a means of achieving minimum emission levels and represented the greatest difficulty of development and adaptation to the JT8D engine. Test results indicate that the Element I single-stage combustors were capable of dramatic improvement in idle pollutants. The multistage combustors evaluated in Program Elements II and III simultaneously reduced CO, THC and NOx emissions, but were unable to satisfy the current 1979 EPA standards.

  20. Design of a multipurpose laboratory scale analytical combustor

    International Nuclear Information System (INIS)

    The current method of digestion in order to determine the content of heavy metals and other elements in Municipal Solid Waste (MSW) is either too long or dangerous due to the usage of concentrated acids. As such, a Multi Purpose Portable Lab Scale Combustor was developed. It could also be used as a test rig under the various combustion conditions i.e. excess air combustion, gasification and pyrolysis. Another future of this rig, is to trap and analyse the combustion gasses produced from the different types of combustion processes. The rig can also be used to monitor weight loss against time during a combustion process. (Author)

  1. Refractory experience in circulating fluidized bed combustors, Task 7

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, R.Q.

    1989-11-01

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE's Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  2. Device for improved air and fuel distribution to a combustor

    Energy Technology Data Exchange (ETDEWEB)

    Laster, Walter R.; Schilp, Reinhard

    2016-05-31

    A flow conditioning device (30, 50, 70, 100, 150) for a can annular gas turbine engine, including a plurality of flow elements (32, 34, 52, 54, 72, 74, 102) disposed in a compressed air flow path (42, 60, 80, 114, 122) leading to a combustor (12), configured such that relative adjustment of at least one flow directing element (32, 52, 72, 110) with respect to an adjacent flow directing element (34, 54, 74, 112, 120) during operation of the gas turbine engine is effective to adjust a level of choking of the compressed air flow path (42, 60, 80, 114, 122).

  3. Dynamic analysis of a flameless combustion model combustor

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Flameless combustion is a new technology with the following advantages:1)Ultra-low emissions of both NOX and CO;2)fuel flexibility,from liquid fuels,natural gas to hydrogen-rich syngas;3)lower possibility of flashback and thermoacoustic oscillations.In this paper,we focus on the dynamic characteristics of a flameless model combustor.Experimental results show that flameless combustion can lower emissions while maintaining combustion stability.However,combining a pilot flame with flameless combustion may excite thermoacoustic instability.

  4. Modeling of Sulfur Retention in Circulating Fluidized Bed Coal Combustors

    Institute of Scientific and Technical Information of China (English)

    乔锐; 吕俊复; 刘青; 吴学安; 岳光溪

    2001-01-01

    A comprehensive model for predicting the sulfur retention performance in circulating fluidized bedcombustors was developed which involves the different residence times, the wide particle size distribution andthe different forms of sulfur in the coal. In addition, the reductive decomposition of CaSO4 is highlighted. Thesimulation results from the model show that the sulfur contents, the bed temperature, the sorbent particle sizedistribution and the sorbent activity or the maximum conversion rate can significantly influence the sulfuretention performance in circulating fluidized bed (CFB) combustors.``

  5. Catalytic coherence transformations

    Science.gov (United States)

    Bu, Kaifeng; Singh, Uttam; Wu, Junde

    2016-04-01

    Catalytic coherence transformations allow the otherwise impossible state transformations using only incoherent operations with the aid of an auxiliary system with finite coherence that is not being consumed in any way. Here we find the necessary and sufficient conditions for the deterministic and stochastic catalytic coherence transformations between a pair of pure quantum states. In particular, we show that the simultaneous decrease of a family of Rényi entropies of the diagonal parts of the states under consideration is a necessary and sufficient condition for the deterministic catalytic coherence transformations. Similarly, for stochastic catalytic coherence transformations we find the necessary and sufficient conditions for achieving a higher optimal probability of conversion. We thus completely characterize the coherence transformations among pure quantum states under incoherent operations. We give numerous examples to elaborate our results. We also explore the possibility of the same system acting as a catalyst for itself and find that indeed self-catalysis is possible. Further, for the cases where no catalytic coherence transformation is possible we provide entanglement-assisted coherence transformations and find the necessary and sufficient conditions for such transformations.

  6. Active Combustion Control for Aircraft Gas-Turbine Engines-Experimental Results for an Advanced, Low-Emissions Combustor Prototype

    Science.gov (United States)

    DeLaat, John C.; Kopasakis, George; Saus, Joseph R.; Chang, Clarence T.; Wey, Changlie

    2012-01-01

    Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to

  7. Pneumatic and Hydraulic Systems in Coal Fluidized Bed Combustor

    Directory of Open Access Journals (Sweden)

    Z. O. Opafunso

    2009-01-01

    Full Text Available Problem statement: This study designed the pneumatic and hydraulic systems in coal fluidized bed combustor. These are fluidization of silica sand bed material, Air distributor, centrifugal fan, electric motor power drive and surface heat exchanger. Approach: The effects of increased gas velocity on silica sand and the resultant drag force formed the basic equations in fluidization. Air distributor was introduced to achieve pressure drop across the beds. Results: The constructed centrifugal fan was driven by selected electric motor based on pressure and temperature changes in the reactor. The dimensions of the heat transfer tube were calculated from fluid flow and energy balance equations. The values obtained were as the follows: Fluidization velocity (1.54 m sec-­1, gas velocity through orifice (29.52 m sec-1, the fan electric motor (2 KW, 3 ph at 1500 pm, the steam temperature obtained was 160°C from water ambient temperature of 30°C and tube length 22 m was coiled into levels in the combustor. Conclusion/Recommendation: Precise specifications of pneumatic and hydraulic systems will adequately address the environment concern of coal fired power supply as a method to address epileptic power supply in Nigeria.

  8. Detecting deterministic nature of pressure measurements from a turbulent combustor

    Science.gov (United States)

    Tony, J.; Gopalakrishnan, E. A.; Sreelekha, E.; Sujith, R. I.

    2015-12-01

    Identifying nonlinear structures in a time series, acquired from real-world systems, is essential to characterize the dynamics of the system under study. A single time series alone might be available in most experimental situations. In addition to this, conventional techniques such as power spectral analysis might not be sufficient to characterize a time series if it is acquired from a complex system such as a thermoacoustic system. In this study, we analyze the unsteady pressure signal acquired from a turbulent combustor with bluff-body and swirler as flame holding devices. The fractal features in the unsteady pressure signal are identified using the singularity spectrum. Further, we employ surrogate methods, with translational error and permutation entropy as discriminating statistics, to test for determinism visible in the observed time series. In addition to this, permutation spectrum test could prove to be a robust technique to characterize the dynamical nature of the pressure time series acquired from experiments. Further, measures such as correlation dimension and correlation entropy are adopted to qualitatively detect noise contamination in the pressure measurements acquired during the state of combustion noise. These ensemble of measures is necessary to identify the features of a time series acquired from a system as complex as a turbulent combustor. Using these measures, we show that the pressure fluctuations during combustion noise has the features of a high-dimensional chaotic data contaminated with white and colored noise.

  9. Flow and Emissions Characteristics of Multi-Swirler Combustor

    Science.gov (United States)

    Gutmark, Ephraim; Li, Guoqiang

    2003-11-01

    Modern industrial gas-turbine spray combustors feature multiple swirlers and distributed fuel injection for rapid mixing and stabilization. The flow field of this combustor, the related combustion characteristics and their control are discussed. The velocity flow field downstream of a Triple Annular Research Swirler (TARS) was characterized. Multiple combinations of swirlers were tested in cold flow under atmospheric conditions with and without confining combustion chamber. The experiments showed that a central recirculation zone (CTRZ), an annular jet with internal and external shear layers dominated the flow field downstream of TARS. Compared to unconfined case, flow with confined tube showed an enlarged CTRZ region and a recirculation region in the expansion corner with reduced concentration of turbulence intensity in the jet region. TARS also produced low emissions of NOx and CO. Measurements were performed to study the effects of several factors, including swirler combinations, exhaust nozzle size, air assist for fuel atomization and mixing length on NOx and CO emissions and combustion instability. The data showed that emissions and stability depend on the combination of several of these factors.

  10. Thermal performance of a meso-scale liquid-fuel combustor

    International Nuclear Information System (INIS)

    Research highlights: → Demonstrated successful combustion of liquid fuel-air mixtures in a novel meso-scale combustor. → Flame quenching was eliminated using heat recirculation in a swiss roll type combustor that also extended the flammability limits. → Liquid fuel was rapidly vaporized with the use of hot narrow channel walls that eliminated the need of a fuel atomizer. → Maximum power density of the combustor was estimated to be about 8.5 GW/m3 and heat load in the range of 50-280W. → Overall efficiency of the combustor was estimated in the range of 12 to 20%. - Abstract: Combustion in small scale devices poses significant challenges due to the quenching of reactions from wall heat losses as well as the significantly reduced time available for mixing and combustion. In the case of liquid fuels there are additional challenges related to atomization, vaporization and mixing with the oxidant in the very short time-scale liquid-fuel combustor. The liquid fuel employed here is methanol with air as the oxidizer. The combustor was designed based on the heat recirculating concept wherein the incoming reactants are preheated by the combustion products through heat exchange occurring via combustor walls. The combustor was fabricated from Zirconium phosphate, a ceramic with very low thermal conductivity (0.8 W m-1 K-1). The combustor had rectangular shaped double spiral geometry with combustion chamber in the center of the spiral formed by inlet and exhaust channels. Methanol and air were introduced immediately upstream at inlet of the combustor. The preheated walls of the inlet channel also act as a pre-vaporizer for liquid fuel which vaporizes the liquid fuel and then mixes with air prior to the fuel-air mixture reaching the combustion chamber. Rapid pre-vaporization of the liquid fuel by the hot narrow channel walls eliminated the necessity for a fuel atomizer. Self-sustained combustion of methanol-air was achieved in a chamber volume as small as 32.6 mm3. The

  11. Catalytic methanol dissociation

    International Nuclear Information System (INIS)

    Results of the methanol dissociation study on copper/potassium catalyst with alumina support at various temperatures are presented. The following gaseous and liquid products at. The catalytic methanol dissociation is obtained: hydrogen, carbon monoxide, carbon dioxide, methane, and dimethyl ether. Formation rates of these products are discussed. Activation energies of corresponding reactions are calculated

  12. Catalytic Phosphination and Arsination

    Institute of Scientific and Technical Information of China (English)

    Kwong Fuk Yee; Chan Kin Shing

    2004-01-01

    The catalytic, user-friendly phosphination and arsination of aryl halides and triflates by triphenylphosphine and triphenylarsine using palladium catalysts have provided a facile synthesis of functionalized aryl phosphines and arsines in neutral media. Modification of the cynaoarisne yielded optically active N, As ligands which will be screened in various asymmetric catalysis.

  13. Monolithic catalytic igniters

    Science.gov (United States)

    La Ferla, R.; Tuffias, R. H.; Jang, Q.

    1993-01-01

    Catalytic igniters offer the potential for excellent reliability and simplicity for use with the diergolic bipropellant oxygen/hydrogen as well as with the monopropellant hydrazine. State-of-the-art catalyst beds - noble metal/granular pellet carriers - currently used in hydrazine engines are limited by carrier stability, which limits the hot-fire temperature, and by poor thermal response due to the large thermal mass. Moreover, questions remain with regard to longevity and reliability of these catalysts. In this work, Ultramet investigated the feasibility of fabricating monolithic catalyst beds that overcome the limitations of current catalytic igniters via a combination of chemical vapor deposition (CVD) iridium coatings and chemical vapor infiltration (CVI) refractory ceramic foams. It was found that under all flow conditions and O2:H2 mass ratios tested, a high surface area monolithic bed outperformed a Shell 405 bed. Additionally, it was found that monolithic catalytic igniters, specifically porous ceramic foams fabricated by CVD/CVI processing, can be fabricated whose catalytic performance is better than Shell 405 and with significantly lower flow restriction, from materials that can operate at 2000 C or higher.

  14. Development of a new method for improving load turndown in fluidized bed combustors: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.

    1988-12-01

    The objective of this research was to investigate a new concept in fluidized bed design that improves load turndown capability. This improvement is accomplished by independently controlling heat transfer and combustion in the combustor. The design consists of two fluidized beds, one central and one annular. The central bed serves as the combustion bed. The annular bed is fluidized separately from the combustion bed and its level of fluidization determine the overall heat transfer rate from the combustion bed to the surrounding water jacket. Early theoretical considerations suggested a load turndown exceeding ten was possible for this design. This research consisted of three major phases: development of a computational model to predict heat transfer in the two-bed combustor, heat transfer measurements in hot-and-cold flow models of the combustor, and combustion tests in an optimally designed combustor. The computation model was useful in selecting the design of the combustor. Annular bed width and particle sizes were chosen with the aid of the model. The heat transfer tests were performed to determine if the existing correlations for fluidized bed heat transfer coefficients were sufficiently accurate for high aspect ratio fluidized beds (such as the annular bed in the combustor). Combustion tests were performed in an optimally designed combustor. Three fuel forms were used: double screened, crushed coal, coal-water-limestone mixtures (CWLM), and coal-limestone briquettes. 18 refs., 30 figs., 8 tabs.

  15. Wide range operation of advanced low NOx combustors for supersonic high-altitude aircraft gas turbines

    Science.gov (United States)

    Roberts, P. B.; Fiorito, R. J.

    1977-01-01

    An initial rig program tested the Jet Induced Circulation (JIC) and Vortex Air Blast (VAB) systems in small can combustor configurations for NOx emissions at a simulated high altitude, supersonic cruise condition. The VAB combustor demonstrated the capability of meeting the NOx goal of 1.0 g NO2/kg fuel at the cruise condition. In addition, the program served to demonstrate the limited low-emissions range available from the lean, premixed combustor. A follow-on effort was concerned with the problem of operating these lean, premixed combustors with acceptable emissions at simulated engine idle conditions. Various techniques have been demonstrated that allow satisfactory operation on both the JIC and VAB combustors at idle with CO emissions below 20 g/kg fuel. The VAB combustor was limited by flashback/autoignition phenomena at the cruise conditions to a pressure of 8 atmospheres. The JIC combustor was operated up to the full design cruise pressure of 14 atmospheres without encountering an autoignition limitation although the NOx levels, in the 2-3 g NO2/kg fuel range, exceeded the program goal.

  16. Experimental Study on Effects of Fuel Injection on Scramjet Combustor Performance

    Institute of Scientific and Technical Information of China (English)

    Wu Xianyu; Li Xiaoshan; Ding Meng; Liu Weidong; Wang Zhenguo

    2007-01-01

    In order to investigate the effects of fuel injection distribution on the scramjet combustor performance, there are conducted three sets of test on a hydrocarbon fueled direct-connect scramjet test facility. The results of Test A; whose fuel injection is carried out with injectors located on the top-wall and the bottom-wall, show that the fuel injection with an appropriate close-front and centralized distribution would be of much help to optimize combustor performances. The results of Test B, whose fuel injection is performed at the optimal injection locations found in Test A, with a given equivalence ratio and different injection proportions for each injector, show that this injection mode is of little benefit to improve combustor performances. The results of Test C with a circumferential fuel injection distribution displaies the possibility of ameliorating combustor performance. By analyzing the effects of injection location parameters on combustor performances on the base of the data of Test C, it is clear that the injector location has strong coupled influences on combustor performances. In addition, an inner-force synthesis specific impulse is used to reduce the errors caused by the disturbance of fuel supply and working state of air heater while assessing combustor performances.

  17. Orbit transfer rocket engine technology program enhanced heat transfer combustor technology

    Science.gov (United States)

    Brown, William S.

    1991-01-01

    In order to increase the performance of a high performance, advanced expander-cycle engine combustor, higher chamber pressures are required. In order to increase chamber pressure, more heat energy is required to be transferred to the combustor coolant circuit fluid which drives the turbomachinery. This requirement was fulfilled by increasing the area exposed to the hot-gas by using combustor ribs. A previous technology task conducted 2-d hot air and cold flow tests to determine an optimum rib height and configuration. In task C.5 a combustor calorimeter was fabricated with the optimum rib configuration, 0.040 in. high ribs, in order to determine their enhancing capability. A secondary objective was to determine the effects of mixture ratio changers on the enhancement during hot-fire testing. The program used the Rocketdyne Integrated Component Evaluator (ICE) reconfigured into a thrust chamber only mode. The test results were extrapolated to give a projected enhancement from the ribs for a 16 in. long cylindrical combustor at 15 Klb nominal thrust level. The hot-gas wall ribs resulted in a 58 percent increase in heat transfer. When projected to a full size 15K combustor, it becomes a 46 percent increase. The results of those tests, a comparison with previous 2-d results, the effects of mixture ratio and combustion gas flow on the ribs and the potential ramifications for expander cycle combustors are detailed.

  18. Combustion Dynamics in Multi-Nozzle Combustors Operating on High-Hydrogen Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Santavicca, Dom; Lieuwen, Tim

    2013-09-30

    Actual gas turbine combustors for power generation applications employ multi-nozzle combustor configurations. Researchers at Penn State and Georgia Tech have extended previous work on the flame response in single-nozzle combustors to the more realistic case of multi-nozzle combustors. Research at Georgia Tech has shown that asymmetry of both the flow field and the acoustic forcing can have a significant effect on flame response and that such behavior is important in multi-flame configurations. As a result, the structure of the flame and its response to forcing is three-dimensional. Research at Penn State has led to the development of a three-dimensional chemiluminescence flame imaging technique that can be used to characterize the unforced (steady) and forced (unsteady) flame structure of multi-nozzle combustors. Important aspects of the flame response in multi-nozzle combustors which are being studied include flame-flame and flame-wall interactions. Research at Penn State using the recently developed three-dimensional flame imaging technique has shown that spatial variations in local flame confinement must be accounted for to accurately predict global flame response in a multi-nozzle can combustor.

  19. Experimental and Computational Study of Trapped Vortex Combustor Sector Rig with High-Speed Diffuser Flow

    Directory of Open Access Journals (Sweden)

    R. C. Hendricks

    2001-01-01

    Full Text Available The Trapped Vortex Combustor (TVC potentially offers numerous operational advantages over current production gas turbine engine combustors. These include lower weight, lower pollutant emissions, effective flame stabilization, high combustion efficiency, excellent high altitude relight capability, and operation in the lean burn or RQL modes of combustion. The present work describes the operational principles of the TVC, and extends diffuser velocities toward choked flow and provides system performance data. Performance data include EINOx results for various fuel-air ratios and combustor residence times, combustion efficiency as a function of combustor residence time, and combustor lean blow-out (LBO performance. Computational fluid dynamics (CFD simulations using liquid spray droplet evaporation and combustion modeling are performed and related to flow structures observed in photographs of the combustor. The CFD results are used to understand the aerodynamics and combustion features under different fueling conditions. Performance data acquired to date are favorable compared to conventional gas turbine combustors. Further testing over a wider range of fuel-air ratios, fuel flow splits, and pressure ratios is in progress to explore the TVC performance. In addition, alternate configurations for the upstream pressure feed, including bi-pass diffusion schemes, as well as variations on the fuel injection patterns, are currently in test and evaluation phases.

  20. NONEQUILIBRIUM SULFUR CAPTURE & RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR

    Energy Technology Data Exchange (ETDEWEB)

    Bert Zauderer

    2003-04-21

    Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. The reacted particles impact and melt in the liquid slag layer on the combustor wall by the centrifugal force of the swirling combustion gases. Due to the low solubility of sulfur in slag, it must be rapidly drained from the combustor to limit sulfur gas re-evolution. Prior analyses and laboratory scale data indicated that for Coal Tech's 20 MMBtu/hour, air-cooled, slagging coal combustor slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to validate this sulfur-in-slag model in a group of combustor tests. A total of 36 days of testing on the combustor were completed during the period of performance of this project. This was more that double the 16 test days that were required in the original work statement. The extra tests were made possible by cost saving innovations that were made in the operation of the combustor test facility and in additional investment of Coal Tech resources in the test effort. The original project plan called for two groups of tests. The first group of tests involved the injection of calcium sulfate particles in the form of gypsum or plaster of Paris with the coal into the 20 MMBtu/hour-combustor. The second group of tests consisted of the entire two-step process, in which lime or limestone is co-injected with coal and reacts with the sulfur gas released during combustion to form calcium sulfate particles that impact and dissolve in the slag layer. Since this sulfur capture process has been validated in numerous prior tests in this combustor, the primary effort in the present project was on achieving the high slag flow rates needed to retain the sulfur in the slag.

  1. CFD Investigation of Pollutant Emission in Can-Type Combustor Firing Natural Gas, LNG and Syngas

    Science.gov (United States)

    Hasini, H.; Fadhil, SSA; Mat Zian, N.; Om, NI

    2016-03-01

    CFD investigation of flow, combustion process and pollutant emission using natural gas, liquefied natural gas and syngas of different composition is carried out. The combustor is a can-type combustor commonly used in thermal power plant gas turbine. The investigation emphasis on the comparison of pollutant emission such in particular CO2, and NOx between different fuels. The numerical calculation for basic flow and combustion process is done using the framework of ANSYS Fluent with appropriate model assumptions. Prediction of pollutant species concentration at combustor exit shows significant reduction of CO2 and NOx for syngas combustion compared to conventional natural gas and LNG combustion.

  2. A simulation for prediction of nitrogen oxide emissions in lean premixed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Do Yong; Park, Jung Kyu; Jin, Jae Min [Konkuk University, Seoul (Korea, Republic of); Lee, Min Chul [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2011-07-15

    Chemical reactor networks (CRN) models were developed for lean premixed gas turbine combustor to predict the NOx emissions. In this study, CRN models are constructed based on the computational fluid dynamics (CFD) for both non-pilot and pilot flame cases. Predictions of NOx emissions in combustor with the developed models were made by using CHEMKIN code and full GRI 3.0 chemical kinetic mechanism in the CRN. The predicted results agree reasonably well with the experimental data obtained from a simplified test combustor for the GE7FA gas turbine. The effects of overall equivalence ratio, swirl angle and pilot fuel ratio on the NOx emissions were investigated.

  3. A simulation for prediction of nitrogen oxide emissions in lean premixed combustor

    International Nuclear Information System (INIS)

    Chemical reactor networks (CRN) models were developed for lean premixed gas turbine combustor to predict the NOx emissions. In this study, CRN models are constructed based on the computational fluid dynamics (CFD) for both non-pilot and pilot flame cases. Predictions of NOx emissions in combustor with the developed models were made by using CHEMKIN code and full GRI 3.0 chemical kinetic mechanism in the CRN. The predicted results agree reasonably well with the experimental data obtained from a simplified test combustor for the GE7FA gas turbine. The effects of overall equivalence ratio, swirl angle and pilot fuel ratio on the NOx emissions were investigated

  4. Development of an analytical model to assess fuel property effects on combustor performance

    Science.gov (United States)

    Sutton, R. D.; Troth, D. L.; Miles, G. A.; Riddlebaugh, S. M.

    1987-01-01

    A generalized first-order computer model has been developed in order to analytically evaluate the potential effect of alternative fuels' effects on gas turbine combustors. The model assesses the size, configuration, combustion reliability, and durability of the combustors required to meet performance and emission standards while operating on a broad range of fuels. Predictions predicated on combustor flow-field determinations by the model indicate that fuel chemistry, as defined by hydrogen content, exerts a significant influence on flame retardation, liner wall temperature, and smoke emission.

  5. Optimisation of a two-head lean pre-vaporized premixed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Guin, Ch. [Office National d' Etudes et de Recherches Aerospatiales (ONERA/DEFA), Dept. Chemin de la Huniere, 91 - Palaiseau (France); Trichet, P. [Office National d' Etudes et de Recherches Aerospatiales (ONERA/DMAE), 31 - Toulouse (France)

    2004-01-01

    As part of the European Brite Euram Low Emission Combustor Technology programme, a two-head combustor sector, designed by SNECMA and ONERA, that includes an LPP (lean pre-vaporizing pre mixing) main zone and an RQL (rich-quick quench-lean) pilot zone within the same volume, was tested at ONERA. A significant 50% reduction in NO{sub x} emissions was recorded for a pressure, air inlet temperature and fuel air ratio of 7 bar, 750 K, and 2.4%, respectively. The optimisation of each combustor component allowed to understand the phenomena and to identify solutions to the main difficulties associated with this new concept. (authors)

  6. Ignition and Flame Stabilization of a Strut-Jet RBCC Combustor with Small Rocket Exhaust

    OpenAIRE

    Jichao Hu; Juntao Chang; Wen Bao

    2014-01-01

    A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505 K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of the combustor. The wall of the combustor is flush, without any reward step or cavity, so the strut-je...

  7. A Simplified Model for Detonation Based Pressure-Gain Combustors

    Science.gov (United States)

    Paxson, Daniel E.

    2010-01-01

    A time-dependent model is presented which simulates the essential physics of a detonative or otherwise constant volume, pressure-gain combustor for gas turbine applications. The model utilizes simple, global thermodynamic relations to determine an assumed instantaneous and uniform post-combustion state in one of many envisioned tubes comprising the device. A simple, second order, non-upwinding computational fluid dynamic algorithm is then used to compute the (continuous) flowfield properties during the blowdown and refill stages of the periodic cycle which each tube undergoes. The exhausted flow is averaged to provide mixed total pressure and enthalpy which may be used as a cycle performance metric for benefits analysis. The simplicity of the model allows for nearly instantaneous results when implemented on a personal computer. The results compare favorably with higher resolution numerical codes which are more difficult to configure, and more time consuming to operate.

  8. Role of fuel chemical properties on combustor radiative heat load

    Science.gov (United States)

    Rosfjord, T. J.

    1984-01-01

    In an attempt to rigorously study the fuel chemical property influence on combustor radiative heat load, UTRC has conducted an experimental program using 25 test fuels. The burner was a 12.7-cm dia cylindrical device fueled by a single pressure-atomizing injector. Fuel physical properties were de-emphasized by selecting injectors which produced highly-atomized, and hence rapidly-vaporizing sprays. The fuels were specified to cover the following wide ranges of chemical properties: hydrogen, 9.1 to 15- (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. They included standard fuels, specialty products and fuel blends. Fuel naphthalene content exhibited the strongest influence on radiation of the chemical properties investigated. Smoke point was a good global indicator of radiation severity.

  9. Gas turbine combustor exit piece with hinged connections

    Energy Technology Data Exchange (ETDEWEB)

    Charron, Richard C.; Pankey, William W.

    2016-04-26

    An exit piece (66) with an inlet throat (67) that conducts a combustion gas flow (36A) in a path (82) from a combustor (63) to an annular chamber (68) that feeds the first blade section (37) of a gas turbine (26). The exit piece further includes an outlet portion (69) that forms a circumferential segment of the annular chamber. The outlet portion interconnects with adjacent outlet portions by hinges (78A, 78B, 80A, 80B). Each hinge may have a hinge axis (82A, 82B) parallel to a centerline (21) of the turbine. Respective gas flows (36A) are configured by an assembly (60) of the exit pieces to converge on the feed chamber (68) into a uniform helical flow that drives the first blade section with minimal circumferential variations in force.

  10. Advanced atomization concept for CWF burning in small combustors

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, H.; McHale, E.

    1991-01-01

    The present project involves the second phase of research on a new concept in coal-water fuel (CWF) atomization that is applicable to burning in small combustors. It is intended to address the most important problem associated with CWF combustion; i.e., production of small spray droplets in an efficient manner by an atomization device. Phase 1 of this work was successfully completed with the development of an opposed-jet atomizer that met the goals of the first contract. Performance as a function of operating conditions was measured, and the technical feasibility of the device established in the Atlantic Research Atomization Test Facility employing a Malvern Particle Size Analyzer. Testing then proceeded to a combustion stage in a test furnace at a firing rate of 0.5 to 1.5 MMBtu/H.

  11. Parametric Study of NOx Emissions in Circulating Fluidized Bed Combustor

    International Nuclear Information System (INIS)

    Fluidized bed combustion behavior of coal and biomass is of practical interest due to its significant involvement in heating systems and power plant operations. This combustion behavior has been studied by many experimental techniques. . Use of biomass in coal-fired power plants results in high efficiencies and fuel diversity. Co-combustion experiments were carried out in a pilot scale test facility of circulating fluidized bed combustor (70KW). Effect of operating parameters on the NOx emissions is studied while burning coal with wheat straw. Relation between NOx emissions and operating parameters like bed temperature, excess air ratio, air staging, Ca/S molar ratio and fluidizing air velocity have been studied and discussed. (author)

  12. Combustion of hydrogen in an experimental trapped vortex combustor

    Science.gov (United States)

    Wu, Hui; Chen, Qin; Shao, Weiwei; Zhang, Yongliang; Wang, Yue; Xiao, Yunhan

    2009-09-01

    Combustion performances of pure hydrogen in an experimental trapped vortex combustor have been tested under different operating conditions. Pressure fluctuations, NOx emissions, OH distributions, and LBO (Lean Blow Out) were measured in the tests. Results indicate that the TVC test rig has successfully realized a double vortex construction in the cavity zone in a wide range of flow conditions. Hydrogen combustion in the test rig has achieved an excellent LBO performance and relatively low NOx emissions. Through comparison of dynamic pressure data, OH fluctuation images, and NOx emissions, the optimal operating condition has been found out to be Φp =0.4, fuel split =0.4, and primary air/fuel premixed.

  13. Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors

    Energy Technology Data Exchange (ETDEWEB)

    Heinz Pitsch

    2010-05-31

    The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high-fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation, a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet tranformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.

  14. Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors

    Energy Technology Data Exchange (ETDEWEB)

    Pitsch, Heinz

    2010-05-31

    The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation; a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet transformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.

  15. Catalytic thermal barrier coatings

    Science.gov (United States)

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  16. System and method for reducing combustion dynamics and NO.sub.x in a combustor

    Science.gov (United States)

    Uhm, Jong H.; Johnson, Thomas Edward

    2015-11-20

    A system for reducing combustion dynamics and NO.sub.x in a combustor includes a tube bundle that extends radially across at least a portion of the combustor, wherein the tube bundle comprises an upstream surface axially separated from a downstream surface. A shroud circumferentially surrounds the upstream and downstream surfaces. A plurality of tubes extends through the tube bundle from the upstream surface through the downstream surface, wherein the downstream surface is stepped to produce tubes having different lengths through the tube bundle. A method for reducing combustion dynamics and NO.sub.x in a combustor includes flowing a working fluid through a plurality of tubes radially arranged between an upstream surface and a downstream surface of an end cap that extends radially across at least a portion of the combustor, wherein the downstream surface is stepped.

  17. Assessment of thermoacoustic instabilities in a partially premixed model combustor using URANS approach

    NARCIS (Netherlands)

    Shahi, Mina; Kok, Jim B.W.; Roman Casado, J.C.; Pozarlik, Artur K.

    2014-01-01

    The paper presents a numerical study of the mechanisms driving thermoacoustic instabilities in a lean partially premixed combustor in conditions representative of gas turbine combustion systems. Various combustion models and modeling approaches able to predict the onset of thermoacoustic instabiliti

  18. Robust High Fidelity Large Eddy Simulation Tool for Gas Turbine Combustors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective is to develop and demonstrate the use of Large Eddy Simulation (LES) for computations of gas turbine combustor flow and transport processes, using the...

  19. Exposure of Ceramics and Ceramic Matrix Composites in Simulated and Actual Combustor Environments

    Energy Technology Data Exchange (ETDEWEB)

    Brentnall, W.D.; Ferber, M.K.; Keiser, j.R.; Miriyala, N.; More, K.L.; Price, J.R.; Tortorelli, P.F.; Walker, L.R.

    1999-06-07

    A high-temperature, high-pressure, tube furnace has been used to evaluate the long term stability of different monolithic ceramic and ceramic matrix composite materials in a simulated combustor environment. All of the tests have been run at 150 psia, 1204 degrees C, and 15% steam in incremental 500 h runs. The major advantage of this system is the high sample throughput; >20 samples can be exposed in each tube at the same time under similar exposure conditions. Microstructural evaluations of the samples were conducted after each 500 h exposure to characterize the extent of surface damage, to calculate surface recession rates, and to determine degradation mechanisms for the different materials. The validity of this exposure rig for simulating real combustor environments was established by comparing materials exposed in the test rig and combustor liner materials exposed for similar times in an actual gas turbine combustor under commercial operating conditions.

  20. Effects of Burning Alternative Fuel in a 5-Cup Combustor Sector

    Science.gov (United States)

    Tacina, K. M.; Chang, C. T.; Lee, C.-M.; He, Z.; Herbon, J.

    2015-01-01

    A goal of NASA's Environmentally Responsible Aviation (ERA) program is to develop a combustor that will reduce the NOx emissions and that can burn both standard and alternative fuels. To meet this goal, NASA partnered with General Electric Aviation to develop a 5-cup combustor sector; this sector was tested in NASA Glenn's Advanced Subsonic Combustion Rig (ASCR). To verify that the combustor sector was fuel-flexible, it was tested with a 50-50 blend of JP-8 and a biofuel made from the camelina sativa plant. Results from this test were compared to results from tests where the fuel was neat JP-8. Testing was done at three combustor inlet conditions: cruise, 30% power, and 7% power. When compared to burning JP-8, burning the 50-50 blend did not significantly affect emissions of NOx, CO, or total hydrocarbons. Furthermore, it did not significantly affect the magnitude and frequency of the dynamic pressure fluctuations.

  1. An investigation of the effects of fuel composition on combustion characteristics in a T-63 combustor

    OpenAIRE

    DuBeau, Robert William; Hickey, P J; Krug, Andrew Clarence; Lohman, Alan L.; Weller, J. P.; Netzer, David W.

    1985-01-01

    A T63 combustor was instrumented to allow measurement ofcenterline distributions of temperature and soot size and concentration using water-cooled probes. Three-wavelength light transmission measurements were also made at two locations to determine the mean soot size and NOx concentrations were measured in the exhaust duct. Five fuels of varying composition were used in the combustor and initial tests were conducted using two smoke-suppressant fuel additives. The data indicated that the aft r...

  2. CFD Study of NOx Emissions in a Model Commercial Aircraft Engine Combustor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Man; FU Zhenbo; LIN Yuzhen; LI Jibao

    2012-01-01

    Air worthiness requirements of the aircraft engine emission bring new challenges to the combustor research and design.With the motivation to design high performance and clean combustor,computational fluid dynamics (CFD) is utilized as the powerful design approach.In this paper,Reynolds averaged Navier-Stokes (RANS) equations of reactive two-phase flow in an experimental low emission combustor is performed.The numerical approach uses an implicit compressible gas solver together with a Lagrangian liquid-phase tracking method and the extended coherent flamelet model for turbulence-combustion interaction.The NOx formation is modeled by the concept of post-processing,which resolves the NOx transport equation with the assumption of frozen temperature distribution.Both turbulence-combustion interaction model and NOx formation model are firstly evaluated by the comparison of experimental data published in open literature of a lean direct injection (LDI) combustor.The test rig studied in this paper is called low emission stirred swirl (LESS) combustor,which is a two-stage model combustor,fueled with liquid kerosene (RP-3) and designed by Beihang University (BUAA).The main stage of LESS combustor employs the principle of lean prevaporized and premixed (LPP) concept to reduce pollutant,and the pilot stage depends on a diffusion flame for flame stabilization.Detailed numerical results including species distribution,turbulence performance and burning performance are qualitatively and quantitatively evaluated.Numerical prediction of NOx emission shows a good agreement with test data at both idle condition and full power condition of LESS combustor.Preliminary results of the flame structure are shown in this paper.The flame stabilization mechanism and NOx reduction effort are also discussed with in-depth analysis.

  3. Combustor having mixing tube bundle with baffle arrangement for directing fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Michael John; McConnaughhay, Johnie Franklin

    2016-08-23

    A combustor includes a tube bundle that extends radially across at least a portion of the combustor. The tube bundle includes an upstream surface axially separated from a downstream surface, and a plurality of tubes extend from the upstream surface through the downstream surface to provide fluid communication through the tube bundle. A barrier extends radially inside the tube bundle between the upstream and downstream surfaces, and a baffle extends axially inside the tube bundle between the upstream surface and the barrier.

  4. Effects of broadened property fuels on radiant heat flux to gas turbine combustor liners

    Science.gov (United States)

    Haggard, J. B., Jr.

    1983-01-01

    The effects of fuel type, inlet air pressure, inlet air temperature, and fuel/air ratio on the combustor radiation were investigated. Combustor liner radiant heat flux measurements were made in the spectral region between 0.14 and 6.5 microns at three locations in a modified commercial aviation can combustor. Two fuels, Jet A and a heavier distillate research fuel called ERBS were used. The use of ERBS fuel as opposed to Jet A under similar operating conditions resulted in increased radiation to the combustor liner and hence increased backside liner temperature. This increased radiation resulted in liner temperature increases always less than 73 C. The increased radiation is shown by way of calculations to be the result of increased soot concentrations in the combustor. The increased liner temperatures indicated can substantially affect engine maintenance costs by reducing combustor liner life up to 1/3 because of the rapid decay in liner material properties when operated beyond their design conditions.

  5. Unstructured LES of Reacting Multiphase Flows in Realistic Gas Turbine Combustors

    Science.gov (United States)

    Ham, Frank; Apte, Sourabh; Iaccarino, Gianluca; Wu, Xiao-Hua; Herrmann, Marcus; Constantinescu, George; Mahesh, Krishnan; Moin, Parviz

    2003-01-01

    As part of the Accelerated Strategic Computing Initiative (ASCI) program, an accurate and robust simulation tool is being developed to perform high-fidelity LES studies of multiphase, multiscale turbulent reacting flows in aircraft gas turbine combustor configurations using hybrid unstructured grids. In the combustor, pressurized gas from the upstream compressor is reacted with atomized liquid fuel to produce the combustion products that drive the downstream turbine. The Large Eddy Simulation (LES) approach is used to simulate the combustor because of its demonstrated superiority over RANS in predicting turbulent mixing, which is central to combustion. This paper summarizes the accomplishments of the combustor group over the past year, concentrating mainly on the two major milestones achieved this year: 1) Large scale simulation: A major rewrite and redesign of the flagship unstructured LES code has allowed the group to perform large eddy simulations of the complete combustor geometry (all 18 injectors) with over 100 million control volumes; 2) Multi-physics simulation in complex geometry: The first multi-physics simulations including fuel spray breakup, coalescence, evaporation, and combustion are now being performed in a single periodic sector (1/18th) of an actual Pratt & Whitney combustor geometry.

  6. Non-reacting Flow Analysis from Combustor Inlet to Outlet using Computational Fluid Dynamics Code

    Directory of Open Access Journals (Sweden)

    G. Ananda Reddy

    2004-10-01

    Full Text Available This paper describes non-reacting flow analysis of a gas turbine combustion system. The method is based on the solution of Navier-Strokes equations using generalised non-orthogonal coordinate system. The turbulence effects are modelled through the renormalisation group k-E model. The method has been applied to a practical gas turbine combustor. The combustionsystem includes swirler vane passages, fuel nozzles, rotor bleed, customer bleed, air-blast atomiser, swirl cone, and all holes in primary , dilution , dome, flare, and cooling ring. Thetotal geometry has been created using the pre-processors GAMBIT and CATIA, and the meshing has been done using GAMBIT, and the analysis carried out in a FLUENT solver. The interaction between the diffuser and the combustor external flows plays a key role in controlling the pressure loss, air flow distribution around the combustor liner, durability, and stability. The aero gas turbine combustor designs are generally guided by experimental methods and past experience; however, experimental methods are inherently slow, costly, especially at hightemperature engine-operating conditions. These drawbacks and the growing need to understand the complex flow-field phenomenon involved, have led to the development of a numericalmodel for predicting flow in the gas turbine combustor. These models are used to optimise the design of the combustor and its subcomponents, and reduce cost, time, and the number ofexperiments.

  7. Note on the feasibility of a dual solid fuel supersonic combustor

    Energy Technology Data Exchange (ETDEWEB)

    Sosa, Jose Luis [Comission Nacional de Investigaciones e Desarollo Aeroespacial, Lima (Peru); Villa-Nova, Helcio Francisco; Bastos-Netto, Demetrio [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    1998-07-01

    This paper investigates an air fed supersonic combustor of dual type using a solid fuel which is burned in a secondary combustor chamber under oxidizer starving conditions, with a small fraction of the main feeding air stream decelerated to subsonic conditions. These combustion products, consisting of a mixture of combustible gases and active radicals, are then accelerated back to sonic conditions and injected in the primary combustor chamber where it is mixed with the main supersonic air stream and burned under supersonic conditions. The solid fuel is a polyester enriched with a small fraction of ammonium perchlorate. The secondary chamber was designed as a subsonic solid fuel ramjet combustor and the primary combustion chamber design followed a simple and well know model which assumes a one dimensional, steady state flow with Crocco's relation to describe the pressure field and uses the Reynolds'Analogy to describe the coupling between the heat flux and the wall friction. Experiments with five different combustor configurations were performed using a vitiated air, connected, kerosene-fed testing facility for scramjet combustors. (author)

  8. Challenges to Laser-Based Imaging Techniques in Gas Turbine Combustor Systems for Aerospace Applications

    Science.gov (United States)

    Locke, Randy J.; Anderson, Robert C.; Zaller, Michelle M.; Hicks, Yolanda R.

    1998-01-01

    Increasingly severe constraints on emissions, noise and fuel efficiency must be met by the next generation of commercial aircraft powerplants. At NASA Lewis Research Center (LeRC) a cooperative research effort with industry is underway to design and test combustors that will meet these requirements. To accomplish these tasks, it is necessary to gain both a detailed understanding of the combustion processes and a precise knowledge of combustor and combustor sub-component performance at close to actual conditions. To that end, researchers at LeRC are engaged in a comprehensive diagnostic investigation of high pressure reacting flowfields that duplicate conditions expected within the actual engine combustors. Unique, optically accessible flame-tubes and sector rig combustors, designed especially for these tests. afford the opportunity to probe these flowfields with the most advanced, laser-based optical diagnostic techniques. However, these same techniques, tested and proven on comparatively simple bench-top gaseous flame burners, encounter numerous restrictions and challenges when applied in these facilities. These include high pressures and temperatures, large flow rates, liquid fuels, remote testing, and carbon or other material deposits on combustor windows. Results are shown that document the success and versatility of these nonintrusive optical diagnostics despite the challenges to their implementation in realistic systems.

  9. Catalytic reforming process

    Energy Technology Data Exchange (ETDEWEB)

    Absil, R.P.; Huss, A. Jr.; McHale, W.D.; Partridge, R.D.

    1989-06-13

    This patent describes a catalytic reforming process which comprises contacting a naphtha range feed with a low acidity extrudate comprising an intermediate and/or a large pore acidic zeolite bound with a low acidity refractory oxide under reforming conditions to provide a reaction product of increased aromatic content, the extrudate having been prepared with at least an extrusion-facilitating amount of a low acidity refractory oxide in colloidal form and containing at least one metal species selected from the platinum group metals.

  10. Residence time measurement of an isothermal combustor flow field

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Liangta; Spencer, Adrian [Loughborough University, Department of Aero and Auto Engineering, Loughborough (United Kingdom)

    2012-03-15

    Residence times of combustors have commonly been used to help understand NO{sub x} emissions and flame blowout. Both the time mean velocity and turbulence fields are important to the residence time, but determining the residence time via analysis of a measured velocity field is difficult due to the inherent unsteadiness and the three-dimensional nature of a high-Re swirling flow. A more direct approach to measure residence time is reported here that examines the dynamic response of fuel concentration to a sudden cutoff in the fuel injection. Residence time measurement was mainly taken using a time-resolved planar laser-induced fluorescence (PLIF) technique, but a second camera for particle image velocimetry (PIV) was added to check that the step change does not alter the velocity field and the spectral content of the coherent structures. Characteristic timescales evaluated from the measurements are referred to as convection and half-life times: The former describes the time delay from a fuel injector exit reference point to a downstream point of interest, and the latter describes the rate of decay once the effect of the reduced scalar concentration at the injection source has been transported to the point of interest. Residence time is often defined as the time taken for a conserved scalar to reduce to half its initial value after injection is stopped: this equivalent to the sum of the convection time and the half-life values. The technique was applied to a high-swirl fuel injector typical of that found in combustor applications. Two test cases have been studied: with central jet (with-jet) and without central jet (no-jet). It was found that the relatively unstable central recirculation zone of the no-jet case resulted in increased transport of fuel into the central region that is dominated by a precessing vortex core, where long half-life times are also found. Based on this, it was inferred that the no-jet case may be more prone to NO{sub x} production. The

  11. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  12. Atmospheric fluidized bed combustor development program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, R.A.; Melick, T.A.; Plessinger, D.A.; Sommer, T.M. [Energy and Environmental Research Corp., Orville, OH (United States); Keener, H.M. [Ohio State Univ., Columbus, OH (United States). Ohio Agricultural Research and Development Center; Webner, R.L. [Will-Burt, Orrville, OH (United States)

    1995-12-01

    The objective of this project was to demonstrate and promote the commercialization of a coal-fired atmospheric fluidized bed combustion (AFBC) system, with limestone addition for SO{sub 2} emissions control and a baghouse for particulate emissions control. This AFBC system was targeted for small scale industrial-commercial-institutional space and process heat applications in the 1 x 10{sup 6} to 10 x 10{sup 6} Btu/hr capacity range. A cost effective and environmentally acceptable AFBC technology in this size range would displace a considerable amount of gas/oil with coal while resulting in significant total cost savings to the owner/operators. The project itself was separated into three levels: (1) feasibility, (2--3) subsystem development and integration, and (4) proof-of-concept. In Level (1), the technical and economic feasibility of a 1 million Btu/hr coal-fired AFBC air heater was evaluated. In Level (2--3), the complete EER fluidized bed combustor (1.5 million Btu/hr) system was developed and tested. The goal or reducing SO{sub 2} emissions to 1.2 lb/10{sup 6} Btu, from high sulfur Ohio coal, was achieved by adding limestone with a Ca/S (coal) ratio of {approximately} 3.0. Finally, in Level (4), the proof-of-concept system, a 2.2 million Btu/hr unit was installed and successfully operated at Cedar Lane Farms, a commercial nursery in Ohio.

  13. Performance of a high efficiency advanced coal combustor

    Energy Technology Data Exchange (ETDEWEB)

    Toqan, M.A.; Paloposki, T.; Yu, T.; Teare, J.D.; Beer, J.M. (Massachusetts Inst. of Tech., Cambridge, MA (United States))

    1989-12-01

    Under contract from DOE-PETC, Combustion Engineering, Inc. undertook the lead-role in a multi-task R D program aimed at development of a new burner system for coal-based fuels; the goal was that this burner system should be capable of being retrofitted in oil- or gas-fired industrial boilers, or usable in new units. In the first phase of this program a high efficiency advanced coal combustor was designed jointly by CE and MIT. Its burner is of the multiannular design with a fixed shrouded swirler in the center immediately surrounding the atomizer gun to provide the primary act,'' and three further annuli for the supply of the secondary air.'' The degree of rotation (swirl) in the secondary air is variable. The split of the combustion air into primary and secondary air flows serves the purpose of flame stabilization and combustion staging, the latter to reduce NO{sub x} formation.

  14. Evolution of random catalytic networks

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, S.M. [Santa Fe Inst., NM (United States); Reidys, C.M. [Santa Fe Inst., NM (United States)]|[Los Alamos National Lab., NM (United States)

    1997-06-01

    In this paper the authors investigate the evolution of populations of sequences on a random catalytic network. Sequences are mapped into structures, between which are catalytic interactions that determine their instantaneous fitness. The catalytic network is constructed as a random directed graph. They prove that at certain parameter values, the probability of some relevant subgraphs of this graph, for example cycles without outgoing edges, is maximized. Populations evolving under point mutations realize a comparatively small induced subgraph of the complete catalytic network. They present results which show that populations reliably discover and persist on directed cycles in the catalytic graph, though these may be lost because of stochastic effects, and study the effect of population size on this behavior.

  15. Bifunctional catalytic electrode

    Science.gov (United States)

    Cisar, Alan (Inventor); Murphy, Oliver J. (Inventor); Clarke, Eric (Inventor)

    2005-01-01

    The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.

  16. Fuel property effects on USAF gas turbine engine combustors and afterburners

    Science.gov (United States)

    Reeves, C. M.

    1984-01-01

    Since the early 1970s, the cost and availability of aircraft fuel have changed drastically. These problems prompted a program to evaluate the effects of broadened specification fuels on current and future aircraft engine combustors employed by the USAF. Phase 1 of this program was to test a set of fuels having a broad range of chemical and physical properties in a select group of gas turbine engine combustors currently in use by the USAF. The fuels ranged from JP4 to Diesel Fuel number two (DF2) with hydrogen content ranging from 14.5 percent down to 12 percent by weight, density ranging from 752 kg/sq m to 837 kg/sq m, and viscosity ranging from 0.830 sq mm/s to 3.245 sq mm/s. In addition, there was a broad range of aromatic content and physical properties attained by using Gulf Mineral Seal Oil, Xylene Bottoms, and 2040 Solvent as blending agents in JP4, JP5, JP8, and DF2. The objective of Phase 2 was to develop simple correlations and models of fuel effects on combustor performance and durability. The major variables of concern were fuel chemical and physical properties, combustor design factors, and combustor operating conditions.

  17. Factors that limit control effectiveness in self-excited noise driven combustors

    Science.gov (United States)

    Crawford, Jackie H., III

    This thesis considers what limits control effectiveness in self-excited, noise driven, combustors using a full Strouhal number thermo-acoustic model with the ultimate aim of learning how to design combustors to be responsive to feedback control of combustion instabilities. The inclusion of time delays in the volumetric heat release perturbation models create unique behavioral characteristics which are not properly reproduced within current low Strouhal number thermo-acoustic models used for feedback control. New analysis tools using probability density functions are introduced in this thesis which enable exact expressions for the statistics of a time delayed system. Additionally, preexisting tools from applied mathematics and control theory for spectral analysis of time delay systems are introduced to the combustion community. These new analysis tools can be used to extend sensitivity function analysis used in control theory to explain limits to control effectiveness in self-excited combustors. The control effectiveness of self-excited combustors with actuator constraints are found to be most sensitive to the location of non-minimum phase zeros. Modeling the non-minimum phase zeros correctly require accurate volumetric heat release perturbation models. Designs that removes non-minimum phase zeros are more likely to have poles in the right hand complex plane. As a result, unstable combustors are inherently more responsive to feedback control.

  18. Combustor Operability and Performance Verification for HIFiRE Flight 2

    Science.gov (United States)

    Storch, Andrea M.; Bynum, Michael; Liu, Jiwen; Gruber, Mark

    2011-01-01

    As part of the Hypersonic International Flight Research Experimentation (HIFiRE) Direct-Connect Rig (HDCR) test and analysis activity, three-dimensional computational fluid dynamics (CFD) simulations were performed using two Reynolds-Averaged Navier Stokes solvers. Measurements obtained from ground testing in the NASA Langley Arc-Heated Scramjet Test Facility (AHSTF) were used to specify inflow conditions for the simulations and combustor data from four representative tests were used as benchmarks. Test cases at simulated flight enthalpies of Mach 5.84, 6.5, 7.5, and 8.0 were analyzed. Modeling parameters (e.g., turbulent Schmidt number and compressibility treatment) were tuned such that the CFD results closely matched the experimental results. The tuned modeling parameters were used to establish a standard practice in HIFiRE combustor analysis. Combustor performance and operating mode were examined and were found to meet or exceed the objectives of the HIFiRE Flight 2 experiment. In addition, the calibrated CFD tools were then applied to make predictions of combustor operation and performance for the flight configuration and to aid in understanding the impacts of ground and flight uncertainties on combustor operation.

  19. Parametric Modeling Investigation of a Radially-Staged Low-Emission Aviation Combustor

    Science.gov (United States)

    Heath, Christopher M.

    2016-01-01

    Aviation gas-turbine combustion demands high efficiency, wide operability and minimal trace gas emissions. Performance critical design parameters include injector geometry, combustor layout, fuel-air mixing and engine cycle conditions. The present investigation explores these factors and their impact on a radially staged low-emission aviation combustor sized for a next-generation 24,000-lbf-thrust engine. By coupling multi-fidelity computational tools, a design exploration was performed using a parameterized annular combustor sector at projected 100% takeoff power conditions. Design objectives included nitrogen oxide emission indices and overall combustor pressure loss. From the design space, an optimal configuration was selected and simulated at 7.1, 30 and 85% part-power operation, corresponding to landing-takeoff cycle idle, approach and climb segments. All results were obtained by solution of the steady-state Reynolds-averaged Navier-Stokes equations. Species concentrations were solved directly using a reduced 19-step reaction mechanism for Jet-A. Turbulence closure was obtained using a nonlinear K-epsilon model. This research demonstrates revolutionary combustor design exploration enabled by multi-fidelity physics-based simulation.

  20. Emission Characteristics of A P and W Axially Staged Sector Combustor

    Science.gov (United States)

    He, Zhuohui J.; Wey, Changlie; Chang, Clarence T.; Lee, Chi Ming; Surgenor, Angela D.; Kopp-Vaughan, Kristin; Cheung, Albert

    2016-01-01

    Emission characteristics of a three-cup P and W Axially Controlled Stoichiometry (ACS) sector combustor are reported in this article. Multiple injection points and fuel staging strategies are used in this combustor design. Pilot-stage injectors are located on the front dome plate of the combustor, and main-stage injectors are positioned on the top and bottom of the combustor liners downstream. Low power configuration uses only pilot-stage injectors. Main-stage injectors are added to high power configuration to help distribute fuel more evenly and achieve overall lean burn yielding very low NOx emissions. Combustion efficiencies at four ICAO LTO conditions were all above 99%. Three EINOx emissions correlation equations were developed based on the experimental data to describe the NOx emission trends of this combustor concept. For the 7% and 30% engine power conditions, NOx emissions are obtained with the low power configuration, and the EINOx values are 6.16 and 6.81. The high power configuration was used to assess 85% and 100% engine power NOx emissions, with measured EINOx values of 4.58 and 7.45, respectively. The overall landing-takeoff cycle NOx emissions are about 12% relative to ICAO CAEP/6 level.

  1. The Mechanisms of Flame Stabilization and Low NOx Emission in an Eccentric Jet Pulverized Coal Combustor

    Institute of Scientific and Technical Information of China (English)

    SunWenchao; SunYezhu; 等

    1992-01-01

    The mechanisms of flame stabilization and low NOx emission features of an accentric jet pulverzed coal combustor were studied through numerical modelling and experimental investigation.The results show that the formation of the unique flowfield structure is closely related to the interaction among combustor configuration.the primary jet and the control Jet.and that certain rules should be follwed in orber to obtain the optimum condition for flame stabilization.The distributions of temperature and concentration of NO,O2,CO and CO2 inside the combustor were experimentally measured.The effects of strustural and operational parameters on combustion and NO formation were studied.It was found that reduction of primary air,suitable use of control jet and reasonable uptilt angle of the primary jet all contributed to the reduction of NOx at the combustor exit.A new hypothesis,that reasonable separation of oxygen and fuel within the fuel-rich zone is beneficial to further reduction of NOx emission,is given,The study showed that good compatibility existed between the capability of flame stabilization and low NOX emission for this type of combustor.

  2. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik

    2003-09-01

    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  3. Unsteady catalytic processes and sorption-catalytic technologies

    International Nuclear Information System (INIS)

    Catalytic processes that occur under conditions of the targeted unsteady state of the catalyst are considered. The highest efficiency of catalytic processes was found to be ensured by a controlled combination of thermal non-stationarity and unsteady composition of the catalyst surface. The processes based on this principle are analysed, in particular, catalytic selective reduction of nitrogen oxides, deep oxidation of volatile organic impurities, production of sulfur by the Claus process and by hydrogen sulfide decomposition, oxidation of sulfur dioxide, methane steam reforming and anaerobic combustion, selective oxidation of hydrocarbons, etc.

  4. Remediation of ash problems in fluidised-bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Vuthaluru, H.B.; Zhang, D.K. [Curtin University of Technology, Perth, WA (Australia). School of Chemical Engineering

    2001-03-01

    The paper reports the control methods for mitigating particle agglomeration and bed defluidisation during fluidised-bed combustion of low-rank coals. A laboratory scale spouted-bed combustion system is used to study the effectiveness of several control methods including the use of alternative bed materials, mineral additives, pretreatment of coal and coal blending. Sillimanite, bauxite, calcite and magnesite were used as alternative bed materials whereas mineral additives viz. clay, kaosil and bauxite were injected into the combustion system while burning South Australian low-rank coal at 800{degree}C. Samples of the same coal subjected to water-washing, Al pretreatment and Ca pretreatment are also tested in the spouted-bed combustor. In addition, experiments were conducted with several coal blends prepared at ratios of 50:50 and 90:10 from two lignites and one sub-bituminous coal. Experiments showed that all the control methods are effective to different extends in reducing ash problems and resulted in extended combustion operation. Tests with alternative bed materials and mineral additives showed trouble free-operation for longer periods (7-12 h at 800{degree}C) than with sand runs at the same bed temperature. Wet pretreatment and coal blending were also found to be effective and resulted in extended combustion operation (9-12 h at 800{degree}C). Chemical analyses indicated that formation of low temperature eutectics was suppressed by Al/Ca/Mg-rich phases in ash coating of bed particles. This was identified as the main mechanism for prevention of ash problems observed with the use of alternative bed materials, mineral additives, pretreated coals and coal blends. 23 refs., 9 figs., 7 tabs.

  5. Flame structure in a swirl stabilized combustor inferred by radiant emission measurements

    Science.gov (United States)

    Beyler, C. L.; Gouldin, F. C.

    1981-01-01

    Results of measurements of time-averaged chemiluminescent emissions from CH, OH, and CO2 and of Na tracer emissions along lateral lines-of-sight through a cylindrical premixed, swirl-stabilized combustor are reported. Assuming axial symmetry and small optical depth, raw data are inverted to obtain local emission levels from these species as a function of radius. The chemiluminescent emissions are interpreted as signatures of chemical reaction and used in determining the regions of reactions and heat release in the combustor. The data are compared with composition and velocity data obtained in the combustor for identical operating conditions. The results demonstrate that reaction occurs in a relatively narrow, turbulent flame-like combustion zone which begins upstream of the time-averaged location of the swirl-induced recirculation zone and propagates around and laterally away from the recirculation zone into the unburned gas.

  6. Wide range operation of advanced low NOx aircraft gas turbine combustors

    Science.gov (United States)

    Roberts, P. B.; Fiorito, R. J.; Butze, H. F.

    1978-01-01

    The paper summarizes the results of an experimental test rig program designed to define and demonstrates techniques which would allow the jet-induced circulation and vortex air blast combustors to operate stably with acceptable emissions at simulated engine idle without compromise to the low NOx emissions under the high-altitude supersonic cruise condition. The discussion focuses on the test results of the key combustor modifications for both the simulated engine idle and cruise conditions. Several range-augmentation techniques are demonstrated that allow the lean-reaction premixed aircraft gas turbine combustor to operate with low NOx emissons at engine cruise and acceptable CO and UHC levels at engine idle. These techniques involve several combinations, including variable geometry and fuel switching designs.

  7. An emissions audit of a biomass combustor burning treated wood waste

    International Nuclear Information System (INIS)

    This report describes the Emissions Audit carried out on a Biomass Combustor burning treated wood waste at the premises of a furniture manufacturer. The Biomass Combustor was tested in two firing modes; continuous fire and modulating fire. Combustion chamber temperatures and gas residence times were not measured. Boiler efficiencies were very good at greater than 75% in both tests. However, analysis of the flue gases indicated that improved efficiencies are possible. The average concentrations of CO (512mgm-3) and THC (34mgm-3) for Test 1 were high, indicating that combustion was poor. The combustor clearly does not meet the requirements of the Guidance Note for the Combustion of Wood Waste. CO2 and O2 concentrations were quite variable showing that combustion conditions were fairly unstable. Improved control of combustion should lead to acceptable emission concentrations. (Author)

  8. Emissions of nitrogen oxides from an experimental hydrogen-fueled gas turbine combustor

    Science.gov (United States)

    Norgren, C. T.; Ingebo, R. D.

    1974-01-01

    The effect of operating variables of a hydrogen fueled combustor on exhaust concentrations of total oxides of nitrogen was determined at inlet-air temperature levels up to 810 K, pressure of 414,000N/sa m, and reference velocity of 21.3 m/sec. The combustor, which was originally designed for hydrocarbon fuel produced a NO(x) concentration of 380 ppm with hydrogen at 810 K inlet-air temperature. A reduction in NO(x) of about 30 % was obtained by modification to a lean or rich primary zone. The lowest NO(x) levels obtained with hydrogen were equivalent to those of the reference combustor burning hydrocarbon fuels.

  9. Numerical simulation of the reactive flow in advanced (HSR) combustors using KIVA-2

    Science.gov (United States)

    Winowich, Nicholas S.

    1991-01-01

    Recent work has been done with the goal of establishing ultralow emission aircraft gas turbine combustors. A significant portion of the effort is the development of three dimensional computational combustor models. The KIVA-II computer code which is based on the Implicit Continuous Eulerian Difference mesh Arbitrary Lagrangian Eulerian (ICED-ALE) numerical scheme is one of the codes selected by NASA to achieve these goals. This report involves a simulation of jet injection through slanted slots within the Rich burn/Quick quench/Lean burn (RQL) baseline experimental rig. The RQL combustor distinguishes three regions of combustion. This work specifically focuses on modeling the quick quench mixer region in which secondary injection air is introduced radially through 12 equally spaced slots around the mixer circumference. Steady state solutions are achieved with modifications to the KIVA-II program. Work currently underway will evaluate thermal mixing as a function of injection air velocity and angle of inclination of the slots.

  10. Catalytic production of biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Theilgaard Madsen, A.

    2011-07-01

    The focus of this thesis is the catalytic production of diesel from biomass, especially emphasising catalytic conversion of waste vegetable oils and fats. In chapter 1 an introduction to biofuels and a review on different catalytic methods for diesel production from biomass is given. Two of these methods have been used industrially for a number of years already, namely the transesterification (and esterification) of oils and fats with methanol to form fatty acid methyl esters (FAME), and the hydrodeoxygenation (HDO) of fats and oils to form straight-chain alkanes. Other possible routes to diesel include upgrading and deoxygenation of pyrolysis oils or aqueous sludge wastes, condensations and reductions of sugars in aqueous phase (aqueous-phase reforming, APR) for monofunctional hydrocarbons, and gasification of any type of biomass followed by Fischer-Tropsch-synthesis for alkane biofuels. These methods have not yet been industrialised, but may be more promising due to the larger abundance of their potential feedstocks, especially waste feedstocks. Chapter 2 deals with formation of FAME from waste fats and oils. A range of acidic catalysts were tested in a model fat mixture of methanol, lauric acid and trioctanoin. Sulphonic acid-functionalised ionic liquids showed extremely fast convertion of lauric acid to methyl laurate, and trioctanoate was converted to methyl octanoate within 24 h. A catalyst based on a sulphonated carbon-matrix made by pyrolysing (or carbonising) carbohydrates, so-called sulphonated pyrolysed sucrose (SPS), was optimised further. No systematic dependency on pyrolysis and sulphonation conditions could be obtained, however, with respect to esterification activity, but high activity was obtained in the model fat mixture. SPS impregnated on opel-cell Al{sub 2}O{sub 3} and microporous SiO{sub 2} (ISPS) was much less active in the esterification than the original SPS powder due to low loading and thereby low number of strongly acidic sites on the

  11. Combustion Control and Diagnostics Sensor Testing in a Thermal Barrier Coated Combustor

    Energy Technology Data Exchange (ETDEWEB)

    Chorpening, B.T.; Dukes, M.G.; Robey, E.H.; Thornton, J.D.

    2007-05-01

    The combustion control and diagnostics sensor (CCADS) continues to be developed as an in-situ combustion sensor, with immediate application to natural gas fired turbines. In-situ combustion monitoring is also expected to benefit advanced power plants of the future, fueled by coal-derived syngas, liquified natural gas (LNG), hydrogen, or hydrogen blend fuels. The in-situ monitoring that CCADS provides can enable the optimal operation of advanced, fuel-flexible turbines for minimal pollutant emissions and maximum efficiency over the full operating range of an advanced turbine. Previous work has demonstrated CCADS as a useful sensor for in-situ monitoring of natural gas combustion, including detection of important combustion events such as flashback and lean blowoff, in experimental combustors without thermal barrier coatings (TBC). Since typical TBC materials are electrical insulators at room temperature, and CCADS operation requires conduction of electrical current to the walls of the combustor, a TBC on the combustion liner was identified as a potential barrier to CCADS operation in commercial application. This paper reports on CCADS experiments in a turbulent lean premixed combustor with a yttria-stabilized zirconia (YSZ) thermal barrier coating on the combustor wall. The tests were conducted at 0.1 MPa (1 atm), with a 15V excitation voltage on the CCADS electrodes. The results confirm that for a typical thermal barrier coating, CCADS operates properly, and the total measured average resistance is close to that of an uncoated combustor. This result is consistent with previous materials studies that found the electrical resistance of typical TBC materials considerably decreases at combustor operating temperatures.

  12. Mercury Oxidation via Catalytic Barrier Filters Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

    2007-09-30

    In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

  13. System for reducing combustion dynamics and NO.sub.x in a combustor

    Energy Technology Data Exchange (ETDEWEB)

    Uhm, Jong Ho; Ziminsky, Willy Steve; Johnson, Thomas Edward; Hughes, Michael John; York, William David

    2016-05-31

    A combustor includes an end cap that extends radially across at least a portion of the combustor. The end cap includes an upstream surface axially separated from a downstream surface. A plurality of tubes extend from the upstream surface through the downstream surface of the end cap to provide fluid communication through the end cap. Each tube in a first set of the plurality of tubes has an inlet proximate to the upstream surface and an outlet downstream from the downstream surface. Each outlet has a first portion that extends a different axial distance from the inlet than a second portion.

  14. Chemical reactions in a scramjet combustor and two-dimensional nozzles

    Science.gov (United States)

    Yeung, Moon-Tai

    Finite-rate chemistry of hydrogen-air combustion is to be investigated numerically in a one-dimensional constant pressure SCRAMJET combustor and two-dimensional nozzles. Detailed reaction mechanisms and temperature dependent thermodynamics are to be used in the models. The aspects of interest include the combustion characteristics at different fuel-air ratios, pressures and initial temperatures in the combustor. Methods for enhancing the combustion rate in the combustor is to be studied also. The effect of expansion rate on the hydrogen-air reactions is the prime focus of the nozzle calculation. The results from different inlet conditions and wall geometries are to be analyzed. A computer model for a one-dimensional (channel-flow) combustor is constructed based on the chemical kinetics subroutine library CHEMKIN. Subsequent calculations show that the initial temperature is the most important parameter in the combustor. It is further discovered that certain reaction steps are responsible for the initial delay exhibited in all hydrogen-air combustion processes. Low temperature behavior is studied extensively and augmentation methods are developed. The introduction of a small percentage of the hydrogen radical into the initial mixture is found to be the most effective in reducing the reaction delay. The combustor pressure enters the overall reaction process in a linear manner. The calculations over five combustor pressures show that the initial delay in hydrogen-air reaction and the following period of explosion are proportional to the combustor pressure raised to certain powers. The nozzle model is two-dimensional, steady and inviscid with no conductivity and diffusivity. Two schemes are developed to handle the boundary conditions. One is based on pure numerical interpolation/extrapolation methods while the other imposes analytical supersonic characteristic equations. The former scheme is found to be more efficient while the latter is more accurate. In analysing the

  15. Simulations of NOx Emissions from Low Emissions Discrete Jet Injector Combustor Tests

    Science.gov (United States)

    Ajmani, Kumud; Breisacher, Kevin

    2014-01-01

    An experimental and computational study was conducted to evaluate the performance and emissions characteristics of a candidate Lean Direct Injection (LDI) combustor configuration with a mix of simplex and airblast injectors. The National Combustion Code (NCC) was used to predict the experimentally measured EINOx emissions for test conditions representing low power, medium power, and high-power engine cycle conditions. Of the six cases modeled with the NCC using a reduced-kinetics finite-rate mechanism and lagrangian spray modeling, reasonable predictions of combustor exit temperature and EINOx were obtained at two high-power cycle conditions.

  16. Development of an advanced high efficiency coal combustor for boiler retrofit

    Energy Technology Data Exchange (ETDEWEB)

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.; Beer, J.M.; Toqan, M.A.

    1990-04-01

    The objective of the program was to develop an advanced coal combustion system for firing beneficiated coal fuels (BCFs) capable of being retrofitted to industrial boilers originally designed for firing natural gas. The High Efficiency Advanced Coal Combustor system is capable of firing microfine coal-water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system were that it be simple to operate and offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal-fired combustor technology. (VC)

  17. Development of an advanced high efficiency coal combustor for boiler retrofit. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.; Beer, J.M.; Toqan, M.A.

    1990-04-01

    The objective of the program was to develop an advanced coal combustion system for firing beneficiated coal fuels (BCFs) capable of being retrofitted to industrial boilers originally designed for firing natural gas. The High Efficiency Advanced Coal Combustor system is capable of firing microfine coal-water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system were that it be simple to operate and offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal-fired combustor technology. (VC)

  18. Techno-economic assessment of a hybrid solar receiver and combustor

    Science.gov (United States)

    Lim, Jin Han; Nathan, Graham; Dally, Bassam; Chinnici, Alfonso

    2016-05-01

    A techno-economic analysis is performed to compare two different configurations of hybrid solar thermal systems with fossil fuel backup to provide continuous electricity output. The assessment compares a Hybrid Solar Receiver Combustor (HSRC), in which the functions of a solar cavity receiver and a combustor are integrated into a single device with a reference conventional solar thermal system using a regular solar cavity receiver with a backup boiler, termed the Solar Gas Hybrid (SGH). The benefits of the integration is assessed by varying the size of the storage capacity and heliostat field while maintaining the same overall thermal input to the power block.

  19. On the acoustics of rocket combustors equipped with quarter wave absorbers

    Science.gov (United States)

    Oschwald, M.; Marpert, M.

    2011-10-01

    The acoustic resonance spectrum and the dissipation of specific modes in combustors equipped with absorbers have been investigated experimentally and numerically. It is found that the application of absorber rings to a combustor changes its resonance behavior significantly. Based on the acoustic fields obtained by three-dimensional (3D) modal analysis, the damping behavior for modes is predicted and compared to measurements. There is a good agreement between prediction and experimental data with respect to the general trend of the dependence of damping on the absorber length. However, the experimentally determined dissipation rates are significantly larger than the predicted values.

  20. Immigration process in catalytic medium

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The longtime behavior of the immigration process associated with a catalytic super-Brownian motion is studied. A large number law is proved in dimension d≤3 and a central limit theorem is proved for dimension d=3.

  1. Catalytic DNA with phosphatase activity

    OpenAIRE

    Chandrasekar, Jagadeeswaran; Silverman, Scott K.

    2013-01-01

    Catalytic DNA sequences (deoxyribozymes, DNA enzymes, or DNAzymes) have been identified by in vitro selection for various catalytic activities. Expanding the limits of DNA catalysis is an important fundamental objective and may facilitate practical utility of catalysts that can be obtained from entirely unbiased (random) sequence populations. In this study, we show that DNA can catalyze Zn2+-dependent phosphomonoester hydrolysis of tyrosine and serine side chains (i.e., exhibit phosphatase ac...

  2. COMBUSTOR STUDY OF THE DEACTIVATION OF A THREE-WAY CATALYST BY LEAD AND MANGANESE

    Science.gov (United States)

    The activity and durability of a platinum-rhodium automotive three-way catalyst were investigated as a function of lead and manganese fuel levels using a pulse-flame combustor. Total hydrocarbons, carbon monoxide, and nitric oxide conversions and three-way (HC/CO/NO) conversion e...

  3. Genetic algorithm to optimize the design of main combustor and gas generator in liquid rocket engines

    Science.gov (United States)

    Son, Min; Ko, Sangho; Koo, Jaye

    2014-06-01

    A genetic algorithm was used to develop optimal design methods for the regenerative cooled combustor and fuel-rich gas generator of a liquid rocket engine. For the combustor design, a chemical equilibrium analysis was applied, and the profile was calculated using Rao's method. One-dimensional heat transfer was assumed along the profile, and cooling channels were designed. For the gas-generator design, non-equilibrium properties were derived from a counterflow analysis, and a vaporization model for the fuel droplet was adopted to calculate residence time. Finally, a genetic algorithm was adopted to optimize the designs. The combustor and gas generator were optimally designed for 30-tonf, 75-tonf, and 150-tonf engines. The optimized combustors demonstrated superior design characteristics when compared with previous non-optimized results. Wall temperatures at the nozzle throat were optimized to satisfy the requirement of 800 K, and specific impulses were maximized. In addition, the target turbine power and a burned-gas temperature of 1000 K were obtained from the optimized gas-generator design.

  4. Experimental and numerical studies of a lean-burn internally-staged combustor

    Institute of Scientific and Technical Information of China (English)

    Fu Zhenbo; Lin Yuzhen; Li Lin; Zhang Chi

    2014-01-01

    A lean-burn internally-staged combustor for low emissions that can be used in civil avi-ation gas turbines is introduced in this paper. The main stage is designed and optimized in terms of fuel evaporation ratio, fuel/air pre-mixture uniformity, and particle residence time using commer-cial computational fluid dynamics (CFD) software. A single-module rectangular combustor is adopted in performance tests including lean ignition, lean blowout, combustion efficiency, emis-sions, and combustion oscillation using aviation kerosene. Furthermore, nitrogen oxides (NOx) emission is also predicted using CFD simulation to compare with test results. Under normal inlet temperature, this combustor can be ignited easily with normal and negative inlet pressures. The lean blowout fuel/air ratio (LBO FAR) at the idle condition is 0.0049. The fuel split proportions between the pilot and main stages are determined through balancing emissions, combustion efficiency, and combustion oscillation. Within the landing and take-off (LTO) cycle, this combustor enables 42%NOx reduction of the standard set by the 6th Committee on Aviation Environmental Protection (CAEP/6) with high combustion efficiency. The maximum board-band pressure oscillations of inlet air and fuel are below 1%of total pressure during steady-state operations at the LTO cycle specific conditions.

  5. Co-combustor: the solid waste thermal treatment plant in MINT

    International Nuclear Information System (INIS)

    MINT has geared up into the field of solid waste thermal treatment processing back in 1999 when a new unit known as MIREC was established. Since then, a fast progress has taken place including the design and construction of a pilot scale incinerator, named as the Co-Combustor. The Co-combustor was designed and developed based on the gasification principles, which employs combustion in starved air condition. In year 2001, this plant was commissioned. To date, it has been running quite well according to its design values. Several test runs were also performed in order to collect and gather data, which serve as a background or backtrack record for upgrading purposes and optimizing its performance in future. On going research is also conducted on this plant especially on the study of the waste's behaviors under combustion. Besides the typical RND activities, the Co-combustor is also currently being used to burn waste paper especially to dispose restricted and confidential documents. This paper will highlight on the design, performance, application and usage of the co-combustor. The direction for research and development activities for this plant is also discussed in this paper so as to strengthen the knowledge and build up expertise in the field of incineration

  6. Improved Robust Adaptive Control of a Fluidized Bed Combustor for Sewage Sludge

    Institute of Scientific and Technical Information of China (English)

    MENGHong-Xia; JIAYing-Min

    2005-01-01

    This paper presents a robust model reference adaptive control scheme to deal with uncertain time delay in the dynamical model of a fluidized bed combustor for sewage sludge. The theoretical analysis and simulation results show that the proposed scheme can guarantee not only stability and robustness, but also the adaptive decoupling performance of the system.

  7. Effect of Spray Cone Angle on Flame Stability in an Annular Gas Turbine Combustor

    Science.gov (United States)

    Mishra, R. K.; Kumar, S. Kishore; Chandel, Sunil

    2016-04-01

    Effect of fuel spray cone angle in an aerogas turbine combustor has been studied using computational fluid dynamics (CFD) and full-scale combustor testing. For CFD analysis, a 22.5° sector of an annular combustor is modeled and the governing equations are solved using the eddy dissipation combustion model in ANSYS CFX computational package. The analysis has been carried out at 125 kPa and 303 K inlet conditions for spray cone angles from 60° to 140°. The lean blowout limits are established by studying the behavior of combustion zone during transient engine operation from an initial steady-state condition. The computational study has been followed by testing the practical full-scale annular combustor in an aerothermal test facility. The experimental result is in a good agreement with the computational predictions. The lean blowout fuel-air ratio increases as the spray cone angle is decreased at constant operating pressure and temperature. At higher spray cone angle, the flame and high-temperature zone moves upstream close to atomizer face and a uniform flame is sustained over a wide region causing better flame stability.

  8. Experimental and numerical studies of a lean-burn internally-staged combustor

    Directory of Open Access Journals (Sweden)

    Fu Zhenbo

    2014-06-01

    Full Text Available A lean-burn internally-staged combustor for low emissions that can be used in civil aviation gas turbines is introduced in this paper. The main stage is designed and optimized in terms of fuel evaporation ratio, fuel/air pre-mixture uniformity, and particle residence time using commercial computational fluid dynamics (CFD software. A single-module rectangular combustor is adopted in performance tests including lean ignition, lean blowout, combustion efficiency, emissions, and combustion oscillation using aviation kerosene. Furthermore, nitrogen oxides (NOx emission is also predicted using CFD simulation to compare with test results. Under normal inlet temperature, this combustor can be ignited easily with normal and negative inlet pressures. The lean blowout fuel/air ratio (LBO FAR at the idle condition is 0.0049. The fuel split proportions between the pilot and main stages are determined through balancing emissions, combustion efficiency, and combustion oscillation. Within the landing and take-off (LTO cycle, this combustor enables 42% NOx reduction of the standard set by the 6th Committee on Aviation Environmental Protection (CAEP/6 with high combustion efficiency. The maximum board-band pressure oscillations of inlet air and fuel are below 1% of total pressure during steady-state operations at the LTO cycle specific conditions.

  9. INTERIM REPORT ON PIC (PRODUCTS OF INCOMPLETE COMBUSTION) MINIMIZATION IN A RESEARCH COMBUSTOR

    Science.gov (United States)

    A series of five organic compounds (1,1,2,2-tetrachloroethane, trichloroethylene, Freon-113, carbon tetrachloride and chlorobenzene) were burned in heptane in a 100,000 Btu/hour water-jacketed research combustor in order to determine what, if any, PICs (Products of Incomplete Com...

  10. Mechanical properties and corrosion behavior of materials exposed to an experimental, atmospheric fluidized-bed combustor

    International Nuclear Information System (INIS)

    A joint materials test program developed by the Institute for Mining and Minerals Research (IMMR) and the Tennessee Valley Authority (TVA) involved the postexposure mechanical properties and corrosion behavior of candidate structural materials in an experimental, atmospheric fluidized-bed combustor (AFBC). This combustor was operated by Accurex Corporation at Research Triangle Park, North Carolina, under the direction of TVA. The materials studied were Type 304, Type 310, and INCOLOY alloy 800 in the form of disc coupons with and without crevice configurations. Type 304 was also used for mechanical property measurements. The alloys were exposed to the combustor environment at about8400C for approximately 330 hours. The ranking in terms of decreasing weight loss was: (1) Type 304, (2) Type 310, and (3) INCOLOY alloy 800. The presence of tight crevices did not enhance the corrosion rate. In addition, the corrosion rates, based on the weight loss (typically 1 to 6 mpy), indicated that the alloys performed reasonably well when considering materials wastage. However, optical microscopy observations showed intergranular corrosion penetration in INCOLOY alloy 800 and Type 304. The mechanical properties of Type 304 were inferior to the unexposed alloy. A comparison of the data obtained from the combustor-exposed 304ss tensile samples with data from control samples exposed in vacuum to a similar thermal history indicated that the chemistry of the AFBC environment did not play a major role in the observed degradation of the mechanical properties

  11. Bioethanol combustion in an industrial gas turbine combustor: simulations and experiments

    NARCIS (Netherlands)

    Sallevelt, J.L.H.P.; Pozarlik, A.K.; Beran, Martin; Axelsson, L.; Brem, G.

    2014-01-01

    Combustion tests with bioethanol and diesel as a reference have been performed in OPRA's 2 MWe class OP16 gas turbine combustor. The main purposes of this work are to investigate the combustion quality of ethanol with respect to diesel and to validate the developed CFD model for ethanol spray combus

  12. Bed agglomeration in fluidized combustor fueled by wood and rice straw blends

    NARCIS (Netherlands)

    Thy, P.; Jenkins, B.M.; Williams, R.B.; Lesher, C.E.; Bakker, R.R.

    2010-01-01

    Petrographic techniques have been used to examine bed materials from fluidized bed combustion experiments that utilized wood and rice straw fuel blends. The experiments were conducted using a laboratory-scale combustor with mullite sand beds, firing temperatures of 840 to 1030 °C, and run durations

  13. 40 CFR 62.14106 - Emission limits for municipal waste combustor fugitive ash emissions.

    Science.gov (United States)

    2010-07-01

    ... minutes per 3-hour period), as determined by EPA Reference Method 22 observations as specified in 40 CFR... combustor fugitive ash emissions. 62.14106 Section 62.14106 Protection of Environment ENVIRONMENTAL... ash emissions. (a) The owner or operator of an affected facility must not cause to be discharged...

  14. 40 CFR 60.55b - Standards for municipal waste combustor fugitive ash emissions.

    Science.gov (United States)

    2010-07-01

    ... fugitive ash emissions. 60.55b Section 60.55b Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... municipal waste combustor fugitive ash emissions. (a) On and after the date on which the initial performance... combustion ash from an ash conveying system (including conveyor transfer points) in excess of 5 percent...

  15. EMISSION TEST REPORT- FIELD TEST OF CARBON INJECTION FOR MERCURY CONTROL, CAMDEN COUNTY MUNICIPAL WASTE COMBUSTOR

    Science.gov (United States)

    The report gives results of parametric test to evaluate the injection powdered activated carbon to control volatile pollutants in municipal waste combustor (MWC) flue gas. he tests were conducted at a spray dryer absorber/electrostatic precipitator (SD/ESP)-equipped MWC in Camden...

  16. Remediation of oil-contaminated gravel using a fluidized bed combustor

    International Nuclear Information System (INIS)

    Laboratory tests were conducted using a fluidized bed combustor to remediate gravel contaminated with crude oil, such as would be encountered in an oil spill. The objectives of the tests were to characterize the composition of the oil-contaminated gravel; to incinerate three different batches of gravel contaminated by fresh crude, weathered crude, and emulsified crude; and to characterize the stack emissions. In all tests, the outlet gravel samples were found to be completely clean of oil. The CO and O2 concentrations in the combustor stack gases were within the national guidelines for hazardous waste incineration facilities. Problems were encountered with the feed system and the propane heating system used to preheat the combustor and as a supplementary fuel. These problems will have to be resolved before a field unit can be considered. A solids removal system and an air distributor system would have to be designed for the field unit to prevent the accumulation of larger gravel pieces in the fluidized bed combustor. 4 refs., 1 fig., 3 tabs

  17. Effect of dilution holes on the performance of a triple swirler combustor

    Institute of Scientific and Technical Information of China (English)

    Ding Guoyu; He Xiaomin; Zhao Ziqiang; An Bokun; Song Yaoyu; Zhu Yixiao

    2014-01-01

    A triple swirler combustor is considered to be a promising solution for future high temperature rise combustors. The present paper aims to study dilution holes including primary dilu-tion holes and secondary dilution holes on the performance of a triple swirler combustor. Experi-mental investigations are conducted at different inlet airflow velocities (40–70 m/s) and combustor overall fuel–air ratio with fixed inlet airflow temperature (473 K) and atmospheric pressure. The experimental results show that the ignition is very difficult with specific performance of high ignition fuel–air ratio when the primary dilution holes are located 0.6H (where H is the liner dome height)downstream the dome, while the other four cases have almost the same ignition performance. The position of primary dilution holes has an effect on lean blowout stability and has a large influence on combustion efficiency. The combustion efficiency is the highest when the primary dilution holes are placed 0.9H downstream the dome among the five different locations. For the secondary dilution holes, the pattern factor of Design A is better than that of Design B.

  18. Basic thermodynamics of FLOXCOM, the low-NOx gas turbines adiabatic combustor

    International Nuclear Information System (INIS)

    The FLOXCOM Project is aimed to develop technology for clean and efficient gas turbines, operating at high temperatures. It is based on the technologically innovative combustion solution--flameless oxidation. The investigation is directed towards the validation of engineering feasibility of the flameless oxidation technology for the production of operating pilot combustors that will demonstrate, advantages including among others, improved performance relating to low NOx levels, maintaining uniform combustor wall temperatures, uniform fuel stream injection and more, resulting in an increased mean time between failure (MTBF) and reliability of the gas turbine. Combustion chambers for gas turbines and jet engines differ from conventional industrial furnace design by being 'adiabatic' (without heat extraction inside the combustor) and by operating at elevated pressures. Consequently, the aero-thermodynamics of the internal flow requires a different approach. The present paper is concerned with the thermodynamic relationships of gas turbine flameless oxidation. A detailed analysis of the different operational scheme options is described. It is shown that the thermodynamic process and operational parameters within the present low-NOx gas turbine combustor are principally different to those of industrial furnace operating in the flameless oxidation mode of combustion

  19. Thermal characteristics of various biomass fuels in a small-scale biomass combustor

    International Nuclear Information System (INIS)

    Biomass combustion is a mature and reliable technology, which has been used for heating and cooking. In the UK, biomass currently qualifies for financial incentives such as the Renewable Heat Incentive (RHI). Therefore, it is vital to select the right type of fuel for a small-scale combustor to address different types of heat energy needs. In this paper, the authors attempt to investigate the performance of a small-scale biomass combustor for heating, and the impact of burning different biomass fuels on useful output energy from the combustor. The test results of moisture content, calorific value and combustion products of various biomass samples were presented. Results from this study are in general agreement with published data as far as the calorific values and moisture contents are concerned. Six commonly available biomass fuels were tested in a small-scale combustion system, and the factors that affect the performance of the system were analysed. In addition, the study has extended to examine the magnitude and proportion of useful heat, dissipated by convection and radiation while burning different biomass fuels in the small-scale combustor. It is concluded that some crucial factors have to be carefully considered before selecting biomass fuels for any particular heating application. - Highlights: • Six biomass materials combustion performance in a small combustor was examined. • Fuel combustion rate and amount of heat release has varied between materials. • Heat release by radiation, convection and flue gasses varied between materials. • Study helps engineers and users of biomass systems to select right materials

  20. Analytical and experimental evaluations of the effect of broad property fuels on combustors for commercial aircraft gas turbine engines

    Science.gov (United States)

    Smith, A. L.

    1980-01-01

    The impacts of broad property fuels on the design, performance, durability, emissions, and operational characteristics of current and advanced combustors for commercial aircraft gas turbine engines were studied. The effect of fuel thermal stability on engine and airframe fuel system was evaluated. Tradeoffs between fuel properties, exhaust emissions, and combustor life were also investigated. Results indicate major impacts of broad property fuels on allowable metal temperatures in fuel manifolds and injector support, combustor cyclic durability, and somewhat lesser impacts on starting characteristics, lightoff, emissions, and smoke.

  1. Catalytic activity of Au nanoparticles

    DEFF Research Database (Denmark)

    Larsen, Britt Hvolbæk; Janssens, Ton V.W.; Clausen, Bjerne;

    2007-01-01

    Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change with par......Au is usually viewed as an inert metal, but surprisingly it has been found that Au nanoparticles less than 3–5 nm in diameter are catalytically active for several chemical reactions. We discuss the origin of this effect, focusing on the way in which the chemical activity of Au may change...... with particle size. We find that the fraction of low-coordinated Au atoms scales approximately with the catalytic activity, suggesting that atoms on the corners and edges of Au nanoparticles are the active sites. This effect is explained using density functional calculations....

  2. Catalytic distillation water recovery subsystem

    Science.gov (United States)

    Budininkas, P.; Rasouli, F.

    1985-01-01

    An integrated engineering breadboard subsystem for the recovery of potable water from untreated urine based on the vapor phase catalytic ammonia removal was designed, fabricated and tested. Unlike other evaporative methods, this process catalytically oxidizes ammonia and volatile hydrocarbons vaporizing with water to innocuous products; therefore, no pretreatment of urine is required. Since the subsystem is fabricated from commercially available components, its volume, weight and power requirements are not optimized; however, it is suitable for zero-g operation. The testing program consists of parametric tests, one month of daily tests and a continuous test of 168 hours duration. The recovered water is clear, odorless, low in ammonia and organic carbon, and requires only an adjustment of its pH to meet potable water standards. The obtained data indicate that the vapor phase catalytic ammonia removal process, if further developed, would also be competitive with other water recovery systems in weight, volume and power requirements.

  3. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Vivek V Ranade

    2014-03-01

    Catalytic reactions are ubiquitous in chemical and allied industries. A homogeneous or heterogeneous catalyst which provides an alternative route of reaction with lower activation energy and better control on selectivity can make substantial impact on process viability and economics. Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is discussed. Some examples where performance enhancement was realized by catalyst design, appropriate choice of reactor, better injection and dispersion strategies and recent advances in process intensification/ multifunctional reactors are discussed to illustrate the approach.

  4. Evaluation of Kerosene Fuelled Scramjet Combustor using a Combination of Cooled and Uncooled Struts

    Directory of Open Access Journals (Sweden)

    C. Chandrasekhar

    2014-01-01

    Full Text Available The scramjet combustor a vital component of scramjet engine has been designed by employing fuel injection struts. Several experimental studies have been carried out to evaluate the propulsive performance and structural integrity of the in-stream fuel injection struts in the connect-pipe test facility. As the mission objective of hypersonic demonstrator is to flight test the scramjet engine for 20 s duration, in-stream fuel injection struts which are designed as heat sink devices encounter hostile flow field conditions especially in terms of high thermal and high convective loads in the scramjet combustor. To circumvent these adverse conditions, materials like Niobium C-103 and W-Ni-Fe alloys have been used for the construction of struts and a number of tests have been carried out to evaluate the survivability of the in-stream fuel injection struts in the scramjet combustor. The results thus obtained show that the erosion of leading edges of the Stage-II fuel injection struts in the initial phase and subsequently puncturing of the fuel injection manifold after 10-12 s of the test are noticed, while the other stages of the struts are found to be intact. This deteriorating leading edges of Stage-II struts with respect to time, affect the overall propulsive performance of the combustor. To mitigate this situation, Stage-II struts have been designed as cooled structure and other Stages of struts are designed as un-cooled structure. Material of construction of struts used is Nimonic C-263 alloy. This paper highlights the results of the static test of the scramjet combustor, which has been carried out at a combustor entry Mach number of 2.0, total temperature of 2000 K, with an overall kerosene fuel equivalence ratio of 1.0 and for the supersonic combustion duration of 20 s. Low back pressure has been created at the exit of the scramjet combustor using ejector system to avoid flow separation.Visual inspection of the fuel injection struts after the test

  5. Catalytic properties of niobium compounds

    International Nuclear Information System (INIS)

    The catalytic activity and selectivity of niobium compounds including oxides, salts, organometallic compounds and others are outlined. The application of these compounds as catalysts to diversified reactions is reported. The nature and action of niobium catalysts are characteristic and sometimes anomalous, suggesting the necessity of basic research and the potential use as catalysts for important processes in the chemical industry. (Author)

  6. An Experimental Study on Axial Temperature Distribution of Combustion of Dewatered Poultry Sludge in Fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Abbas A.H.

    2016-01-01

    Full Text Available A laboratory scale bubbling fluidized bed combustor was designed and fabricated to study the combustion of dewatered poultry sludge at different operational parameters. This paper present a study on the influence of equivalent ratio, secondary to primary air ratio and the fuel feed rate on the temperature distribution along the combustor. The equivalent ratio has been changed between 0.8 to 1.4% under poultry sludge feed rate of 10 kg/h and from 0.8 to 1 under poultry sludge feed rate of 15 kg/h. The secondary to primary air ratio was varied from 0.1 to 0.5 at 0.65 m injection height and 1.25 equivalent ratio. The results showed that these factors had a significant influence on the combustion characteristics of poultry sludge. The temperature distribution along the combustor was found to be strongly dependent on the fuel feed rate and the equivalent ratio and it increased when these two factors increased. However, the secondary air ratio increased the temperature in the lower region of the combustor while no significant effect was observed at the upper region of the combustor. The results suggested that the poultry sludge can be used as a fuel with high thermal combustor efficiency.

  7. The development of a three-dimensional partially elliptic flow computer program for combustor research

    Science.gov (United States)

    Pan, Y. S.

    1978-01-01

    A three dimensional, partially elliptic, computer program was developed. Without requiring three dimensional computer storage locations for all flow variables, the partially elliptic program is capable of predicting three dimensional combustor flow fields with large downstream effects. The program requires only slight increase of computer storage over the parabolic flow program from which it was developed. A finite difference formulation for a three dimensional, fully elliptic, turbulent, reacting, flow field was derived. Because of the negligible diffusion effects in the main flow direction in a supersonic combustor, the set of finite-difference equations can be reduced to a partially elliptic form. Only the pressure field was governed by an elliptic equation and requires three dimensional storage; all other dependent variables are governed by parabolic equations. A numerical procedure which combines a marching integration scheme with an iterative scheme for solving the elliptic pressure was adopted.

  8. Large Eddy Simulations and Experimental Investigation of Flow in a Swirl Stabilized Combustor

    KAUST Repository

    Kewlani, Gaurav

    2012-01-09

    Swirling flows are the preferred mode of flame stabilization in lean premixed gas turbine engine combustors. Developing a fundamental understanding of combustion dynamics and flame stability in such systems requires a detailed investigation of the complex interactions between fluid mechanics and combustion. The turbulent reacting flow in a sudden expansion swirl combustor is studied using compressible large eddy simulations (LES) and compared with experimental data measured using PIV. Different vortex breakdown structures are observed, as the mixture equivalence ratio is reduced, that progressively diminish the stability of the flame. Sub-grid scale combustion models such as the artificially thickened flame method and the partially stirred reactor approach, along with appropriate chemical schemes, are implemented to describe the flame. The numerical predictions for average velocity correspond well with experimental results, and higher accuracy is obtained using the more detailed reaction mechanism. Copyright © 2012 American Institute of Aeronautics and Astronautics, Inc.

  9. Numerical Simulation of Combustion and Rotor-Stator Interaction in a Turbine Combustor

    Directory of Open Access Journals (Sweden)

    Dragos D. Isvoranu

    2003-01-01

    Full Text Available This article presents the development of a numerical algorithm for the computation of flow and combustion in a turbine combustor. The flow and combustion are modeled by the Reynolds-averaged Navier-Stokes equations coupled with the species-conservation equations. The chemistry model used herein is a two-step, global, finite-rate combustion model for methane and combustion gases. The governing equations are written in the strong conservation form and solved using a fully implicit, finite-difference approximation. The gas dynamics and chemistry equations are fully decoupled. A correction technique has been developed to enforce the conservation of mass fractions. The numerical algorithm developed herein has been used to investigate the flow and combustion in a one-stage turbine combustor.

  10. Computational analysis of mixing and transport of air and fuel co-fired combustor

    International Nuclear Information System (INIS)

    Computational analysis for air fuel mixing and transport in a combustor used for co fired burner has been done by RANS (Reynolds-Averaged Navier-Stokes) model comparing with 3D (Three Dimensional) LES (Large Eddy Simulation). To investigate the better turbulence level and mixing within co fired combustor using the solid fuel biomass with coal is main purpose of this research work. The results show the difference in flow predicted by the two models, LES give better results than the RANS. For compressible flow the LES results show more swirling effect, The velocity decays along axial and radial distance for both swirling and non-swirling jet. Because of no slip condition near boundary the near the wall velocity is about zero. (author)

  11. Co-combustion of agricultural residues with coal in a fluidized bed combustor.

    Science.gov (United States)

    Ghani, W A W A K; Alias, A B; Savory, R M; Cliffe, K R

    2009-02-01

    Power generation from biomass is an attractive technology that utilizes agricultural residual waste. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from agricultural residues (rice husk and palm kernel) were co-fired with coal in a 0.15m diameter and 2.3m high fluidized bed combustor. The combustion efficiency and carbon monoxide emissions were studied and compared with those for pure coal combustion. Co-combustion of a mixture of biomass with coal in a fluidized bed combustor designed for coal combustion increased combustion efficiency up to 20% depending upon excess air levels. Observed carbon monoxide levels fluctuated between 200 and 900 ppm with the addition of coal. It is evident from this research that efficient co-firing of biomass with coal can be achieved with minimal modifications to existing coal-fired boilers. PMID:18614348

  12. A DRD finite element formulation for computing turbulent reacting flows in gas turbine combustors

    Science.gov (United States)

    Corsini, A.; Iossa, C.; Rispoli, F.; Tezduyar, T. E.

    2009-11-01

    An effective multiscale treatment of turbulent reacting flows is presented with the use of a stabilized finite element formulation. The method proposed is developed based on the streamline-upwind/Petrov-Galerkin (SUPG) formulation, and includes discontinuity capturing in the form of a new generation “DRD” method, namely the “DRDJ” technique. The stabilized formulation is applied to finite-rate chemistry modelling based on mixture-fraction approaches with the so-called presumed-PDF technique. The turbulent combustion process is simulated for an aero-engine combustor configuration of RQL concept in non-premixed flame regime. The comparative analysis of the temperature and velocity fields demonstrate that the proposed SUPG+DRDJ formulation outperforms the stand-alone SUPG method. The improved accuracy is demonstrated in terms of the combustor overall performance, and the mechanisms involved in the distribution of the numerical diffusivity are also discussed.

  13. Ultra low injection angle fuel holes in a combustor fuel nozzle

    Science.gov (United States)

    York, William David

    2012-10-23

    A fuel nozzle for a combustor includes a mixing passage through which fluid is directed toward a combustion area and a plurality of swirler vanes disposed in the mixing passage. Each swirler vane of the plurality of swirler vanes includes at least one fuel hole through which fuel enters the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes thereby decreasing a flameholding tendency of the fuel nozzle. A method of operating a fuel nozzle for a combustor includes flowing a fluid through a mixing passage past a plurality of swirler vanes and injecting a fuel into the mixing passage in an injection direction substantially parallel to an outer surface of the plurality of swirler vanes.

  14. Computational Analysis of Mixing and Transport of Air and Fuel in Co-Fired Combustor

    Directory of Open Access Journals (Sweden)

    Javaid Iqbal

    2015-01-01

    Full Text Available Computational analysis for air fuel mixing and transport in a combustor used for co fired burner has been done by RANS (Reynolds-Averaged Navier?Stokes model comparing with 3D (Three Dimensional LES (Large Eddy Simulation. To investigate the better turbulence level and mixing within co fired combustor using the solid fuel biomass with coal is main purpose of this research work. The results show the difference in flow predicted by the two models, LES give better results than the RANS. For compressible flow the LES results show more swirling effect, The velocity decays along axial and radial distance for both swirling and non-swirling jet. Because of no slip condition near boundary the near the wall velocity is about zero

  15. An experimental study of turbulent flow in attachment jet combustors by LDV

    Science.gov (United States)

    Li, Jun; Wu, Cheng-Kang

    1993-12-01

    Flame stabilization in attachment jet combustors is based on the existence of the high temperature recirculation zone, provided by the Coanda effect of an attachment jet. The single attachment jet in a rectangular channel is a fundamental form of this type of flow. In this paper, the detailed characteristics of turbulent flow of a single attachment jet were experimentally studied by using a 2-D LDV. The flowfield consists of a forward flow and two reverse flows. The forward one is composed of a curved and a straight section. The curved section resembles a bent turbulent free jet, and the straight part is basically a section of turbulent wall jet. A turbulent counter-gradient transport region exists at the curved section. According to the results, this kind of combustor should have a large sudden enlargement ratio and not too narrow in width.

  16. LES of combustion dynamics near blowout in a realistic gas-turbine combustor

    Science.gov (United States)

    Esclapez, Lucas; Nik, Medhi B.; Ma, Peter C.; O'Brien, Jeff; Carbajal, Serena; Ihme, Matthias

    2015-11-01

    Driven by increasingly stringent emission regulations, modern gas turbines operate at lean conditions to reduce combustion chamber temperature and NOx emissions. However, as the combustor operates closer to the lean blow-out (LBO) limit, flame stabilization mechanisms are weakened, which increases the risk for complete flame blowout. To better understand the LBO-process, large-eddy simulations of the combustion dynamics near blowout are performed in a realistic two-phase flow combustor. An unstructured incompressible Navier-Stokes solver is used in combination with a Lagrangian dispersed phase formulation. Flame dynamics near and at LBO conditions are studied to identify the role of the liquid fuel composition, spray evaporation, and complex flow pattern on the LBO limit.

  17. Combustion of biomass-derived, low caloric value, fuel gas in a gasturbine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Andries, J.; Hoppesteyn, P.D.J.; Hein, K.R.G. [Technische Univ. Delf (Netherlands)

    1998-09-01

    The use of biomass and biomass/coal mixtures to produce electricity and heat reduces the net emissions of CO{sub 2}, contributes to the restructuring of the agricultural sector, helps to reduce the waste problem and saves finite fossil fuel reserves. Pressurised fluidised bed gasification followed by an adequate gas cleaning system, a gas turbine and a steam turbine, is a potential attractive way to convert biomass and biomass/coal mixtures. To develop and validate mathematical models, which can be used to design and operate Biomass-fired Integrated Gasification Combined Cycle (BIGCC) systems, a Process Development Unit (PPDU) with a maximum thermal capacity of 1.5 MW{sub th}, located at the Laboratory for Thermal Power Engineering of the Delft University of Technology in The Netherlands is being used. The combustor forms an integral part of this facility. Recirculated flue gas is used to cool the wall of the combustor. (orig.)

  18. Numerical Simulation of Combustion and Rotor-Stator Interaction in a Turbine Combustor

    OpenAIRE

    Isvoranu, Dragos D.; Cizmas, Paul G. A.

    2003-01-01

    This article presents the development of a numerical algorithm for the computation of flow and combustion in a turbine combustor. The flow and combustion are modeled by the Reynolds-averaged Navier-Stokes equations coupled with the species-conservation equations. The chemistry model used herein is a two-step, global, finite-rate combustion model for methane and combustion gases. The governing equations are written in the strong conservation form and solved using a fully implicit, finite-diffe...

  19. Flow structures in a lean-premixed swirl-stabilized combustor with microjet air injection

    KAUST Repository

    LaBry, Zachary A.

    2011-01-01

    The major challenge facing the development of low-emission combustors is combustion instability. By lowering flame temperatures, lean-premixed combustion has the potential to nearly eliminate emissions of thermally generated nitric oxides, but the chamber acoustics and heat release rate are highly susceptible to coupling in ways that lead to sustained, high-amplitude pressure oscillations, known as combustion instability. At different operating conditions, different modes of instability are observed, corresponding to particular flame shapes and resonant acoustic modes. Here we show that in a swirl-stabilized combustor, these instability modes also correspond to particular interactions between the flame and the inner recirculation zone. Two stable and two unstable modes are examined. At lean equivalence ratios, a stable conical flame anchors on the upstream edge of the inner recirculation zone and extends several diameters downstream along the wall. At higher equivalence ratios, with the injection of counter-swirling microjet air flow, another stable flame is observed. This flame is anchored along the upstream edge of a stronger recirculation zone, extending less than one diameter downstream along the wall. Without the microjets, a stationary instability coupled to the 1/4 wave mode of the combustor shows weak velocity oscillations and a stable configuration of the inner and outer recirculation zones. Another instability, coupled to the 3/4 wave mode of the combustor, exhibits periodic vortex breakdown in which the core flow alternates between a columnar mode and a vortex breakdown mode. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  20. Hygroscopic properties of jet engine combustor particles during the partemis campaign

    Energy Technology Data Exchange (ETDEWEB)

    Gysel, M.; Nyeki, S.; Weingartner, E.; Baltensperger, U.; Petzold, A. [Deutsche Luft- und Raumfahrt, Oberpfaffenhofen (Germany); Wilson, C.W.

    2002-03-01

    The influence of fuel sulphur content (FSC) on particle properties from a jet engine combustor test rig was investigated during the EC-project PartEmis. Hygroscopic growth factors were measured using a Hygroscopicity Tandem Differential Mobility Analyser (H-TDMA). While particles were hydrophobic at low FSC, hygroscopic growth factors increased significantly with increasing FSC. Under similar conditions small particles were more hygroscopic than large particles. (author)

  1. Large Eddy Simulation of ignition in an annular multi-injector combustor

    Science.gov (United States)

    Vicquelin, Ronan; Philip, Maxime; Boileau, Matthieu; Schmitt, Thomas; Bourgoin, Jean-François; Durox, Daniel; Candel, Sébastien

    2013-11-01

    The present work deals with validating the LES methodology for transient ignition simulations, and in particular elucidating the mechanisms that control the light round sequence in a laboratory annular combustor, representative of many practical industrial systems. The simulation benefits from the unique experimental database built at EM2C on a fully transparent annular chamber equipped with 16 premixed swirled injectors. The F-TACLES combustion model is used for its ability to properly represent the flame propagation.

  2. SiC Recession Due to SiO2 Scale Volatility Under Combustor Conditions

    Science.gov (United States)

    Robinson, Raymond Craig

    1997-01-01

    One of today's most important and challenging technological problems is the development of advanced materials and processes required to design and build a fleet of supersonic High Speed Civil Transport (HSCT) airliners, a follow-up to the Concorde SST. The innovative combustor designs required for HSCT engines will need high-temperature materials with long-term environmental stability. Higher combustor liner temperatures than today's engines and the need for lightweight materials will require the use of advanced ceramic-matrix composites (CMC's) in hot-section components. The HSCT is just one example being used to demonstrate the need for such materials. This thesis evaluates silicon carbide (SiC) as a potential base material for HSCT and other similar applications. Key issues are the environmental durability for the materials of interest. One of the leading combustor design schemes leads to an environment which will contain both oxidizing and reducing gas mixtures. The concern is that these environments may affect the stability of the silica (SiO2) scale on which SiC depends for environmental protection. A unique High Pressure Burner Rig (HPBR) was developed to simulate the combustor conditions of future gas turbine engines, and a series of tests were conducted on commercially available SiC material. These tests are intended as a feasibility study for the use of these materials in applications such as the HSCT. Linear weight loss and surface recession of the SiC is observed as a result of SiO2 volatility for both fuel-lean and fuel-rich gas mixtures. These observations are compared and agree well with thermogravimetric analysis (TGA) experiments. A strong Arrhenius-type temperature dependence exists. In addition, the secondary dependencies of pressure and gas velocity are defined. As a result, a model is developed to enable extrapolation to points outside the experimental space of the burner rig, and in particular, to potential gas turbine engine conditions.

  3. Large-eddy simulation of ow and combustion dynamics in a lean partially premixed swirling combustor

    OpenAIRE

    Li, Shaoshuai; Zheng, Yunzhe; Zhu, Min; Mira, Daniel; Jiang, Xi

    2015-01-01

    A lean partially premixed swirling combustor was studied by resolving the complete flow path from the swirl vanes to the chamber outlet with large-eddy simulation (LES). The flow and combustion dynamics for non-reacting and reacting situations was analysed, where the intrinsic effects of swirl vanes and counter flows on the vortex formation, vorticity distribution for non-reacting cases were examined. A modified flame index was introduced to identify the flame regime during the partially prem...

  4. Effect of secondary air injection on the combustion efficiency of sawdust in a fluidized bed combustor

    OpenAIRE

    K. V. N. Srinivasa Rao; G. Venkat Reddy

    2008-01-01

    Agricultural wastes like bagasse, paddy husks, sawdust and groundnut shells can be effectively used as fuels for fluidized bed combustion; otherwise these biomass fuels are difficult to handle due to high moisture and fines content. In the present work the possibility of using sawdust in the fluidized bed combustor, related combustion efficiencies and problems encountered in the combustion process are discussed. The temperature profiles for sawdust with an increase in fluidizing velocity alon...

  5. Design and testing of a combustor for a turbo-ramjet for UAV and missile applications

    OpenAIRE

    Piper, Ross H.

    2003-01-01

    Approved for public release, distribution unlimited An existing freejet facility was upgraded and its range of operation extended into the high subsonic regime for operation as a test rig for the development of a combined-cycle, turbo-ramjet engine. A combustor was designed, developed, and tested as the afterburner for the turbo-ramjet engine. At subsonic speeds with the afterburner running, an increase in thrust of 40% was measured over the baseline turbojet running at 80% spool speed. A ...

  6. Cold flow behavior study in novel cyclonic fluidized bed combustor (ψ-FBC)

    International Nuclear Information System (INIS)

    Remarkable cyclonic and fluidized combustion regimes have prompted the integration of these two distinct combustion processes into a unique combustor. The possibility of combining these two air-solid phase flow hydrodynamics was investigated by performing experiments with a non-reactive combustor model, named a cyclonic fluidized bed combustor (ψ-FBC). Air-rice husk flow visualization within a ψ-FBC clearly indicated vortex flow when air and rice husk descended along the model wall, while the air-rice husk movement within the entire space underneath the upper vortex ring was characterized by fluidization. The vortex rings and an intensive air curtain generated by the swirling flow of primary air with a high swirl number were the key parameters to promote fluidization, form a solid suspension layer and prevent solids from escaping from the cold ψ-FBC model. The visual observations of swirling and recirculation solid flows agreed well with the results of parallel experiments with non-reacting air flow patterns

  7. The development of an ultra-low-emission gas-fired combustor for space heaters

    International Nuclear Information System (INIS)

    An ultra-low-emission as-fired combustor has been developed for relatively low-temperature direct-air heating applications. High-lean premixed cyclonic combustion with a flame stabilizer is employed to achieve ultra-low emissions and high turndown operation. On the basis of analytical studies and cold modeling a 350-kW test combustor was designed and successfully tested. Experimental results obtained using natural gas and ambient air demonstrated that the test combustor can operate steadily at high excess air up to 80% to 100% over a large turndown range up to 40:1. At design operating conditions, NOx emissions as low as 0.6 vppm and CO and total hydrocarbon (THC) emissions below 3 vppm were achieved. Over the full operating range, NOx emissions from 0.3 to 1.0 vppm and CO and THC emissions below 4 vppm were demonstrated. In all tests, concentrations of NO2 were less than 40% of the total NO2 emissions from combustion processes required for good indoor air quality (0.5 vppm). This paper presents the concept of high-lean premixed ultra-low-emission cyclonic combustion, design specifications for the combustion system, and the major experimental results, including flame stability, emissions, and turndown performance. 15 refs., 10 figs., 1 tab

  8. The development of an ultra-low-emission gas-fired cyclonic combustor

    International Nuclear Information System (INIS)

    A gas-fired cyclonic combustor has been developed for relatively low-temperature direct-air heating applications that require ultra-low pollutant emissions. High-lean premixed combustion with a flame stabilizer is adopted to achieve ultra-low emissions and high turndown operation. On the basis of analytical studies and cold modeling, a 350-kW test combustor was designed and successfully tested. Experimental results obtained using natural gas and ambient air demonstrated that the test combustor can operate steadily at high excess air up to 80% to 100% over a large turndown range up to 40:1. At design operating conditions, NOx emissions as low as 0.6 vppm and CO and total hydrocarbon (THC) emissions below 3 vppm were achieved. Over the full operating range, NOx emissions from 0.3 to 1.0 vppm and CO and THC emissions below 4 vppm were demonstrated. In all tests, concentrations of NO2 were less than 40% of the total NOx emissions -- lower than the level of NO2 emissions from combustion processes required for good indoor air quality (0.5 vppm). This paper presents the concept of high-lean premixed ultra-low-emission cyclonic combustion, design specifications for the combustion system, and the major experimental results, including flame stability, emissions, and turndown performance. 13 refs., 12 figs., 1 tab

  9. Performance Evaluation of Hybrid Gas Turbine Engine Embedded with Pulse Detonation Combustor

    Science.gov (United States)

    Deng, Jun-Xiang; Yan, Chuan-Jun; Zheng, Long-Xi; Huang, Xi-Qiao

    2011-09-01

    The numerical investigations of performance evaluation of a hybrid gas turbine engine embedded with a pulse detonation combustor (PDC) were performed to examine the improvement of the performance of the hybrid propulsion system. The calculation model and method were described. The architecture, configuration and size of detonation tubes were investigated in the calculation. Two models of detonation tube exit temperature were utilized. Eight configuration choices for the PDC based on the calculation model were designed. Specific fuel consumption of a hybrid gas turbine engine was compared with that of the baseline engine at the condition of the same engine net thrust. The experimental research of a PDC interacted with a radial flow turbine of a turbocharger was conducted. The numerical results show that if the net thrust of hybrid PDC engine is matched to that of baseline engine, specific fuel consumption of hybrid PDC engine is 20-25% less than that of baseline engine. The total volume of the hybrid engine combustor is reduced. The incorporation of PDC into gas turbine engine can improve the performance of hybrid PDC engine, decrease the combustor weight, and increase the thrust-weight ratio. The experimental results show that the fully developed detonation waves are achieved in the experimental apparatus.

  10. Microjet Injection Strategies for Mitigating Dynamics in a Lean Premixed Swirl-Stabilized Combustor

    KAUST Repository

    LaBry, Zachary

    2011-01-04

    Combustion dynamics remain a challenge in the development of low-emission, air-breathing combustors for power generation and aircraft propulsion. In this paper, we presenta parametric study on the use of microjet injectors for suppressing or mitigating the combustion dynamics that energize the thermoacoustic instability in a swirl-stabilized, premixed combustor. Microjet injectors consist of small inlet ports intended to inject flow with high momentum at relatively low mass flow rates into the flame-anchoring region. The microjets were configured to inject flow either axially, into the outer recirculation zone, or radially into the inner recirculation zone. Additionally, different injectors were tested with different relative senses of swirl (signs of angular momentum)with respect to the main flow: co-swirling, not swirling, or counter-swirling. We observed that injecting air or premixed fuel/air into the inner recirculation zone via counter-swirling radial microjets, we were able to reduce the overall sound pressure level in the combustor by over 20 dB in the lean end of the operating range. Other injector configurations were not observed to positively influence the combust or stability. Detailed PIV measurements are used to examine possible mechanisms of how the microjets impact the combustion dynamics, and the technology implications of our experiments are discussed.

  11. Control methods for remediation of ash-related problems in fluidized-bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Vuthaluru, H.B.; Zhang, D.

    1999-07-01

    The paper reports on investigations into control methodologies for mitigating ash-related problems such as particle agglomeration and bed defluidization during fluidized-bed combustion of low-rank coals. A laboratory scale spouted bed combustor is used to study the effectiveness of control methodologies. In the present work, two control methods are investigated viz., the use of alternative bed materials and pretreatment of coal. Bauxite and calcined sillimanite are used as alternative bed materials in the spouted bed combustor while burning South Australian low-rank coal. Samples of the same coal subjected to Al pretreatment, water washing and acid washing are also tested in the spouted bed combustor. Experiments showed that both methods are effective to different extents in reducing ash-related problems. Tests with calcined sillimanite and bauxite (as the bed material) showed trouble free operation for longer periods (7--12 hr at 800 C and 3--5 hr at 850 C) than with sand runs at the same bed temperatures. Al pretreatment and water-washing were also found to be effective and resulted in extended combustion operation. Al enrichment in ash coating of bed particles has been identified as the main mechanism for prevention of agglomeration and defluidization by these control methodologies. For water-washing, the principal reason behind agglomeration and defluidization control is the reduction in sodium levels.

  12. Flow-acoustic Characterisation of a Cavity-based Combustor Configuration

    Directory of Open Access Journals (Sweden)

    Krishna Kant Agarwal

    2011-10-01

    Full Text Available This study concerns the flow-acoustic characterisation of a cavity-based combustor configuration. A well-validated numerical tool has been used to simulate the unsteady, two-dimensional reacting flow. Initially, a conventional flow over a cavity with dimensions and conditions corresponding to a compact cavity combustor was studied. Cavity mass injections in the form of fuel and air injections required for trapped vortex formation were then employed and the resonance features of this configuration were studied. The results indicate that the cavity depth mode resonance mechanism is dominant at the conditions studied in this work and that the oscillation frequencies do not change with cavity air injection. This observation is important since it implies that the only important variable which can alter resonant frequencies is the cavity depth. With combustion, the pressure oscillation amplitude was observed to increases significantly due to periodic entrainment of the cavity air jet and fluctuation of fuel-air mixture composition to produce highly fluctuating heat-release rates. The underlying mechanisms of the unsteady flow in the cavity combustor identified in this study indicate the strong dependence of the acoustics on the cavity injection strategies.Defence Science Journal, 2011, 61(6, pp.523-528, DOI:http://dx.doi.org/10.14429/dsj.61.870

  13. Dual-Pump CARS Temperature and Species Concentration Measurements in a Supersonic Combustor

    Science.gov (United States)

    O'Byrne, S.; Danehy, P. M.; Tedder, S. A.; Cutler, A. D.

    2007-01-01

    The dual-pump coherent anti-Stokes Raman scattering (CARS) method was used to measure temperature and the mole fractions of N2 and O2 in a supersonic combustor. Experiments were conducted in NASA Langley Research Center s Direct Connect Supersonic Combustion Test Facility. In this facility, H2 and oxygen-enriched air burn to increase the enthalpy of the simulated air test gas. This gas is expanded through a Mach 2 nozzle and into a combustor model consisting of a short constant-area section followed by a small rearward-facing step and another constant-area section. At the end of this straight section, H2 fuel is injected at Mach 2 and at a 30 angle with respect to the freestream. One wall of the duct then expands at a 3 angle for over 1 meter. The ensuing combustion is probed optically through ports in the side of the combustor. Dual-pump CARS measurements were performed at the facility nozzle exit and at four planes downstream of fuel injection. Maps are presented of the mean temperature, as well as N2 and O2 mean mole fraction fields. Correlations between fluctuations of the different measured parameters are also presented.

  14. An integrated approach for optimal design of micro gas turbine combustors

    Science.gov (United States)

    Fuligno, Luca; Micheli, Diego; Poloni, Carlo

    2009-06-01

    The present work presents an approach for the optimized design of small gas turbine combustors, that integrates a 0-D code, CFD analyses and an advanced game theory multi-objective optimization algorithm. The output of the 0-D code is a baseline design of the combustor, given the required fuel characteristics, the basic geometry (tubular or annular) and the combustion concept (i.e. lean premixed primary zone or diffusive processes). For the optimization of the baseline design a simplified parametric CAD/mesher model is then defined and submitted to a CFD code. Free parameters of the optimization process are position and size of the liner hole arrays, their total area and the shape of the exit duct, while different objectives are the minimization of NOx emissions, pressure losses and combustor exit Pattern Factor. A 3D simulation of the optimized geometry completes the design procedure. As a first demonstrative example, the integrated design process was applied to a tubular combustion chamber with a lean premixed primary zone for a recuperative methane-fuelled small gas turbine of the 100 kW class.

  15. Analysis of oxy-fuel combustion power cycle utilizing a pressurized coal combustor

    International Nuclear Information System (INIS)

    Growing concerns over greenhouse gas emissions have driven extensive research into new power generation cycles that enable carbon dioxide capture and sequestration. In this regard, oxy-fuel combustion is a promising new technology in which fuels are burned in an environment of oxygen and recycled combustion gases. In this paper, an oxy-fuel combustion power cycle that utilizes a pressurized coal combustor is analyzed. We show that this approach recovers more thermal energy from the flue gases because the elevated flue gas pressure raises the dew point and the available latent enthalpy in the flue gases. The high-pressure water-condensing flue gas thermal energy recovery system reduces steam bleeding which is typically used in conventional steam cycles and enables the cycle to achieve higher efficiency. The pressurized combustion process provides the purification and compression unit with a concentrated carbon dioxide stream. For the purpose of our analysis, a flue gas purification and compression process including de-SOx, de-NOx, and low temperature flash unit is examined. We compare a case in which the combustor operates at 1.1 bars with a base case in which the combustor operates at 10 bars. Results show nearly 3% point increase in the net efficiency for the latter case.

  16. Ignition and Flame Stabilization of a Strut-Jet RBCC Combustor with Small Rocket Exhaust

    Directory of Open Access Journals (Sweden)

    Jichao Hu

    2014-01-01

    Full Text Available A Rocket Based Combined Cycle combustor model is tested at a ground direct connected rig to investigate the flame holding characteristics with a small rocket exhaust using liquid kerosene. The total temperature and the Mach number of the vitiated air flow, at exit of the nozzle are 1505 K and 2.6, respectively. The rocket base is embedded in a fuel injecting strut and mounted in the center of the combustor. The wall of the combustor is flush, without any reward step or cavity, so the strut-jet is used to make sure of the flame stabilization of the second combustion. Mass flow rate of the kerosene and oxygen injected into the rocket is set to be a small value, below 10% of the total fuel when the equivalence ratio of the second combustion is 1. The experiment has generated two different kinds of rocket exhaust: fuel rich and pure oxygen. Experiment result has shown that, with a relative small total mass flow rate of the rocket, the fuel rich rocket plume is not suitable for ignition and flame stabilization, while an oxygen plume condition is suitable. Then the paper conducts a series of experiments to investigate the combustion characteristics under this oxygen pilot method and found that the flame stabilization characteristics are different at different combustion modes.

  17. Ignition of Hydrogen-Oxygen Rocket Combustor with Chlorine Trifluoride and Triethylaluminum

    Science.gov (United States)

    Gregory, John W.; Straight, David M.

    1961-01-01

    Ignition of a nominal-125-pound-thrust cold (2000 R) gaseous-hydrogen - liquid-oxygen rocket combustor with chlorine trifluoride (hypergolic with hydrogen) and triethylaluminum (hypergolic with oxygen) resulted in consistently smooth starting transients for a wide range of combustor operating conditions. The combustor exhaust nozzle discharged into air at ambient conditions. Each starting transient consisted of the following sequence of events: injection of the lead main propellant, injection of the igniter chemical, ignition of these two chemicals, injection of the second main propellant, ignition of the two main propellants, increase in chamber pressure to its terminal value, and cutoff of igniter-chemical flow. Smooth ignition was obtained with an ignition delay of less than 100 milliseconds for the reaction of the lead propellant with the igniter chemical using approximately 0.5 cubic inch (0-038 lb) of chlorine trifluoride or 1.0 cubic inch (0-031 lb) of triethylaluminum. These quantities of igniter chemical were sufficient to ignite a 20-percent-fuel hydrogen-oxygen mixture with a delay time of less than 15 milliseconds. Test results indicated that a simple, light weight chemical ignition system for hydrogen-oxygen rocket engines may be possible.

  18. Testing of DLR C/C-SiC for HIFiRE 8 Scramjet Combustor

    Science.gov (United States)

    Glass, David E.; Capriotti, Diego P.; Reimer, Thomas; Kutemeyer, Marius; Smart, Michael

    2013-01-01

    Ceramic Matrix Composites (CMCs) have been proposed for hot structures in scramjet combustors. Previous studies have calculated significant weight savings by utilizing CMCs (active and passive) versus actively cooled metallic scramjet structures. Both a C/C and a C/C-SiC material system fabricated by DLR (Stuttgart, Germany) are being considered for use in a passively cooled combustor design for HIFiRE 8, a joint Australia / AFRL hypersonic flight program, expected to fly at Mach 7 for approximately 30 sec, at a dynamic pressure of 55 kPa. Flat panels of the DLR C/C and the C/C-SiC were tested in the NASA Langley Direct Connect Rig (DCR) at Mach 5 and Mach 6 enthalpy for several minutes. Gaseous hydrogen fuel was used to fuel the scramjet combustor. The test panels were instrumented with embedded Type K and Type S thermocouples. Zirconia felt insulation was used in some of the tests to increase the surface temperature of the C/C-SiC panel for approximately 350degF. The final C/C-SiC panel was tested for 3 cycles totaling over 135 sec at Mach 6 enthalpy. Slightly more erosion was observed on the C/C panel than the C/C-SiC panels, but both material systems demonstrated acceptable recession performance for the HIFiRE 8 flight.

  19. The combustion of low calorific value fuels (oil shale) by using fluidized bed combustor

    International Nuclear Information System (INIS)

    The present work reports an experimental data for combustion of oil-shale in a fluidized bed combustor. The experimental set up was designed for the combustion of low calorific value fuel such as oil-shale to facilitate the variation of many parameters over a wide operating range. A cold run was firstly conducted to study the fluidization parameters. Fluidization experiment were made with different sized quartiz particles. Minimum fluidization velocities and other fluidization characteristics were determined at room temperature. Secondary a hot run was started, first studying the combustion of 'LPG' in a fluidized bed as a starting process, then studying the combustion if oil-shale with different flow rates. The experimetal results are promising and give rise to hopes that this valuable deposit can be used as a fuel source and can be burned sucessfully in a fluidized bed combustor. This study had prooved that utilization of oil-shale a fuel source is no more a complicated technical problem, this opens the way for power generation using fluidized bed combustors. (author). 17 refs., 32 figs., 3 tabs

  20. The development of an ultra-low-emission gas-fired combustor for space heaters

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Tian-yu; Khinkis, M.J. (Institute of Gas Technology, Chicago, IL (United States)); Coppin, W.P. (Maxon Corp., Muncie, IN (United States))

    1991-01-01

    An ultra-low-emission as-fired combustor has been developed for relatively low-temperature direct-air heating applications. High-lean premixed cyclonic combustion with a flame stabilizer is employed to achieve ultra-low emissions and high turndown operation. On the basis of analytical studies and cold modeling a 350-kW test combustor was designed and successfully tested. Experimental results obtained using natural gas and ambient air demonstrated that the test combustor can operate steadily at high excess air up to 80% to 100% over a large turndown range up to 40:1. At design operating conditions, NO{sub x} emissions as low as 0.6 vppm and CO and total hydrocarbon (THC) emissions below 3 vppm were achieved. Over the full operating range, NO{sub x} emissions from 0.3 to 1.0 vppm and CO and THC emissions below 4 vppm were demonstrated. In all tests, concentrations of NO{sub 2} were less than 40% of the total NO{sub 2} emissions from combustion processes required for good indoor air quality (0.5 vppm). This paper presents the concept of high-lean premixed ultra-low-emission cyclonic combustion, design specifications for the combustion system, and the major experimental results, including flame stability, emissions, and turndown performance. 15 refs., 10 figs., 1 tab.

  1. Operability of an Ejector Enhanced Pulse Combustor in a Gas Turbine Environment

    Science.gov (United States)

    Paxson, Daniel E.; Dougherty, Kevin

    2008-01-01

    A pressure-gain combustor comprised of a mechanically valved, liquid fueled pulsejet, an ejector, and an enclosing shroud, was coupled to a small automotive turbocharger to form a self-aspirating, thrust producing gas turbine engine. The system was constructed in order to investigate issues associated with the interaction of pulsed combustion devices and turbomachinery. Installed instrumentation allowed for sensing of distributed low frequency pressure and temperature, high frequency pressure in the shroud, fuel flow rate, rotational speed, thrust, and laboratory noise. The engine ran successfully and reliably, achieving a sustained thrust of 5 to 6 lbf, and maintaining a rotor speed of approximately 90,000 rpm, with a combustor pressure gain of approximately 4 percent. Numerical simulations of the system without pressure-gain combustion indicated that the turbocharger would not operate. Thus, the new combustor represented a substantial improvement in system performance. Acoustic measurements in the shroud and laboratory indicated turbine stage sound pressure level attenuation of 20 dB. This is consistent with published results from detonative combustion experiments. As expected, the mechanical reed valves suffered considerable damage under the higher pressure and thermal loading characteristics of this system. This result underscores the need for development of more robust valve systems for this application. The efficiency of the turbomachinery components did not appear to be significantly affected by unsteadiness associated with pulsed combustion, though the steady component efficiencies were already low, and thus not expected to be particularly sensitive.

  2. Gasifier-combustor using chips of eucalyptus firewood in drying pulped coffee; Gasificador/combustor a cavacos de lenha na secagem de cafe despolpado

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Jadir Nogueira da; Saiki, Emilio Takashi; Vilarinho, Mauricio Coelho; Cardoso Sobrinho, Jose [Vicosa Univ., MG (Brazil). Dept. de Engenharia Agricola

    2000-07-01

    This study aimed to determine the viability of the of a gasifier/combustor using chip of eucalyptus firewood as fuel, in drying pulped coffee. The gasifier used was designed by Silva (1988) with modifications in the gasification chamber, being the area of the grate reduced from 0,21 to 0,06m{sup 2}. An addition of a coating involving the gasifier was done and a damper was placed in the exit of the combustion chamber. The air heated up in the combustor was sent to dryer developed by Campos (1998) that possessed four movable metallic chambers with movement and hoisted by a pulleys system. It was dried coffee with initial moisture of 54,5% w.b. up to 11,1{+-}1,6% w.b. The moisture of the coffee was determined by equipment of the universal type, EDABO and stove. The temperature of the drying air was of 60 deg C, static pressure of the air in the exit of the fan of 9 mm ca with speed of 46,3m{sup 3}.min{sup -1}. It was ended that the gasifier using chips of eucalyptus firewood as fuel consumed among 15,3 and 18,8 kg/hour of the biomass and that the equipment is viable for the drying of pulped coffee, not impregnating it with smoke or other particles, usually generated in the direct fired furnaces. (author)

  3. Catalytic Fast Pyrolysis: A Review

    Directory of Open Access Journals (Sweden)

    Theodore Dickerson

    2013-01-01

    Full Text Available Catalytic pyrolysis is a promising thermochemical conversion route for lignocellulosic biomass that produces chemicals and fuels compatible with current, petrochemical infrastructure. Catalytic modifications to pyrolysis bio-oils are geared towards the elimination and substitution of oxygen and oxygen-containing functionalities in addition to increasing the hydrogen to carbon ratio of the final products. Recent progress has focused on both hydrodeoxygenation and hydrogenation of bio-oil using a variety of metal catalysts and the production of aromatics from bio-oil using cracking zeolites. Research is currently focused on developing multi-functional catalysts used in situ that benefit from the advantages of both hydrodeoxygenation and zeolite cracking. Development of robust, highly selective catalysts will help achieve the goal of producing drop-in fuels and petrochemical commodities from wood and other lignocellulosic biomass streams. The current paper will examine these developments by means of a review of existing literature.

  4. Stochastic modelling of turbulent combustion for design optimization of gas turbine combustors

    Science.gov (United States)

    Mehanna Ismail, Mohammed Ali

    The present work covers the development and the implementation of an efficient algorithm for the design optimization of gas turbine combustors. The purpose is to explore the possibilities and indicate constructive suggestions for optimization techniques as alternative methods for designing gas turbine combustors. The algorithm is general to the extent that no constraints are imposed on the combustion phenomena or on the combustor configuration. The optimization problem is broken down into two elementary problems: the first is the optimum search algorithm, and the second is the turbulent combustion model used to determine the combustor performance parameters. These performance parameters constitute the objective and physical constraints in the optimization problem formulation. The examination of both turbulent combustion phenomena and the gas turbine design process suggests that the turbulent combustion model represents a crucial part of the optimization algorithm. The basic requirements needed for a turbulent combustion model to be successfully used in a practical optimization algorithm are discussed. In principle, the combustion model should comply with the conflicting requirements of high fidelity, robustness and computational efficiency. To that end, the problem of turbulent combustion is discussed and the current state of the art of turbulent combustion modelling is reviewed. According to this review, turbulent combustion models based on the composition PDF transport equation are found to be good candidates for application in the present context. However, these models are computationally expensive. To overcome this difficulty, two different models based on the composition PDF transport equation were developed: an improved Lagrangian Monte Carlo composition PDF algorithm and the generalized stochastic reactor model. Improvements in the Lagrangian Monte Carlo composition PDF model performance and its computational efficiency were achieved through the

  5. Development of the control and ignition systems on a high pressure gas turbine combustor

    Science.gov (United States)

    Valdez, Carlos Alejandro

    The ignition and control systems of a laboratory scale high-pressure gas turbine combustor were developed in the present work. This work provides a detailed description of the design, development and testing of the remote control system developed for a High Pressure Gas Turbine Combustor (HPTC). The combustor has the capability to operate at pressures up to 1.5 MPa and temperatures up to 2400 K. It is also designed for a maximum air and fuel flow rates of 81.93 g/s and 35.77 g/s respectively. The fuel used will be CH4 for the early experiments but it is designed to operate using a mixture of H2-CO with a hydrogen fuel composition variation of up to 30 percent. The HPTC also has optical accessibility capabilities in its combustion chamber with a converging nozzle that restricts the exhaust flow. It also has three circular ports that can be used as instrumentation ports to obtain real time data from the combustion chamber. LabVIEW was used as the controlling interface for the user. A detailed outline of the LabVIEW programming is also described. LabVIEW controlled the proportional valves (ball valves), and solenoid valves; it also provided the user with data from mass flow meters as well as pressure transducers. Both proportional and solenoid valves are 1.91 cm and can withstand pressures of up to 1551 kPa. Thermal mass flow meters were used to obtain the flow in the lines with a range from 200-1000 L/min with an accuracy of 1.5 percent. Pressure transducers with a range from 0 to 2068 kPa were also positioned on the lines in order to know the line pressures. The ignition system design, development and testing is also described with its integration to the High Pressure Gas Turbine Combustor. A modified spark plug was used to provide the igniter with an ignition source. A diffusion flame was used to ignite the main line using methane as the fuel that utilizes the air in the combustion chamber as the oxidizer. Testing included a functional test of the equipment, and

  6. Experimental and Numerical Studies of Vitiated Air Effects on Hydrogen-fueled Supersonic Combustor Performance

    Institute of Scientific and Technical Information of China (English)

    LUO Feiteng; SONG Wenyan; ZHANG Zhiqiang; LI Weiqiang; LI Jianping

    2012-01-01

    This paper deals with the vitiation effects of test air on the scramjet performance in the ground combustion heated facilities.The primary goal is to evaluate the effects of H2O and CO2,the two major vitiated species generated by combustion heater,on hydrogen-fueled supersonic combustor performance with experimental and numerical approaches.The comparative experiments in the clean air and vitiated air are conducted by using the resistance heated direct-connected facility,with the typical Mach 4 flight conditions simulated.The H2O and CO2 species with accurately controlled contents are added to the high enthalpy clean air from resistance heater,to synthesize the vitiated air of a combustion-type heater.Typically,the contents of H2O species can be varied within the range of 3.5%-30o% by mole,and 3.0%-10% for CO2 species.The total temperature,total pressure,Mach number and O2 mole fraction at the combustor entrance are well-matched between the clean air and vitiated air.The combustion experiments are completed at the fuel equivalence ratios of 0.53 and 0.42 respectively.Furthermore,three-dimensional (3D) reacting flow simulations of combustor towpath are performed to provide insight into flow field structures and combustion chemistry details that cannot resolved by experimental instruments available.Finally,the experimental data,combined with computational results,are employed to analyze the effects of H2O and CO2 vitiated air on supersonic combustion characteristics and performance.It is concluded that H2O and CO2 contaminants can significantly inhibit the combustion induced pressure rise measured from combustor wall,and the pressure profile decreases with the increasing H2O and CO2 contents in nonlinear trend;simulation results agree well with experimental data and the overall vitiation effects are captured; direct extrapolation of the results from vitiated air to predict the performance of actual flight conditions could result in over-fueling the combustor

  7. Combined catalytic converter and afterburner

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T.T.-H.

    1994-11-30

    This patent describes the combined use of a catalytic converter and afterburner. An afterburner chamber and a catalyst matrix are disposed in series within a casing. A combustible premixed charge is ignited in the afterburner chamber before it enters the catalyst matrix. This invention overcomes the problem encountered in previous designs of some of the premixed charge passing unreacted through the device unless a very long afterburner chamber is used. (UK)

  8. Investigations for designing catalytic recombiners

    International Nuclear Information System (INIS)

    In case of a severe accident in pressurised water reactors (PWR) a high amount of hydrogen up to about 20,000 m3 might be generated and released into the containments. The mixture consisting of hydrogen and oxygen may either burn or detonate, if ignited. In case of detonation the generated shock wave may endanger the components of the plant or the plant itself. Consequently, effective removal of hydrogen is required. The fact that hydrogen and oxygen react exo-thermally on catalytically acting surfaces already at low temperatures generating steam and heat is made use of in catalytic recombiners. They consist of substrates coated with catalyst (mainly platinum or palladium) which are arranged inside a casing. Being passively acting measures, recombiners do not need any additional energy supply. Experimental investigations on catalytic hydrogen recombination are conducted at FZJ (Forschungszentrum Juelich) using three test facilities. The results yield insight in the development potential of contemporary recombiner systems as well as of innovative systems. Detailed investigations on a recombiner section show strong temperature gradients over the surface of a catalytically coated sample. Dependent on the flow velocity, ignition temperature may be reached at the leading edge already at an inlet hydrogen concentration of about 5 vol.-%. The thermal strain of the substrate leads to considerable detachment of catalyst particles probably causing unintended ignition of the flammable mixture. Temperature peaks can be prevented effectively by leaving the first part of the plate uncoated. In order to avoid overheating of the catalyst elements of a recombiner even at high hydrogen concentrations a modular system of porous substrates is proposed. The metallic substrates are coated with platinum at low catalyst densities thus limiting the activity of the single specimen. A modular arrangement of these elements provides high recombination rates over a large hydrogen concentration

  9. Effects of Combustion-Induced Vortex Breakdown on Flashback Limits of Syngas-Fueled Gas Turbine Combustors

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan Choudhuri

    2011-03-31

    Turbine combustors of advanced power systems have goals to achieve very low pollutants emissions, fuel variability, and fuel flexibility. Future generation gas turbine combustors should tolerate fuel compositions ranging from natural gas to a broad range of syngas without sacrificing operational advantages and low emission characteristics. Additionally, current designs of advanced turbine combustors use various degrees of swirl and lean premixing for stabilizing flames and controlling high temperature NOx formation zones. However, issues of fuel variability and NOx control through premixing also bring a number of concerns, especially combustor flashback and flame blowout. Flashback is a combustion condition at which the flame propagates upstream against the gas stream into the burner tube. Flashback is a critical issue for premixed combustor designs, because it not only causes serious hardware damages but also increases pollutant emissions. In swirl stabilized lean premixed turbine combustors onset of flashback may occur due to (i) boundary layer flame propagation (critical velocity gradient), (ii) turbulent flame propagation in core flow, (iii) combustion instabilities, and (iv) upstream flame propagation induced by combustion induced vortex breakdown (CIVB). Flashback due to first two foregoing mechanisms is a topic of classical interest and has been studied extensively. Generally, analytical theories and experimental determinations of laminar and turbulent burning velocities model these mechanisms with sufficient precision for design usages. However, the swirling flow complicates the flashback processes in premixed combustions and the first two mechanisms inadequately describe the flashback propensity of most practical combustor designs. The presence of hydrogen in syngas significantly increases the potential for flashback. Due to high laminar burning velocity and low lean flammability limit, hydrogen tends to shift the combustor operating conditions towards

  10. Experimental and Modeling Investigation of the Effect of Air Preheat on the Formation of NOx in an RQL Combustor

    Science.gov (United States)

    Samuelsen, G. S.; Brouwer, J.; Vardakas, M. A.; Holderman, J. D.

    2012-01-01

    The Rich-burn/Quick-mix/Lean-burn (RQL) combustor concept has been proposed to minimize the formation of oxides of nitrogen (NOx) in gas turbine systems. The success of this low-NOx combustor strategy is dependent upon the links between the formation of NOx, inlet air preheat temperature, and the mixing of the jet air and fuel-rich streams. Chemical equilibrium and kinetics modeling calculations and experiments were performed to further understand NOx emissions in an RQL combustor. The results indicate that as the temperature at the inlet to the mixing zone increases (due to preheating and/or operating conditions) the fuel-rich zone equivalence ratio must be increased to achieve minimum NOx formation in the primary zone of the combustor. The chemical kinetics model illustrates that there is sufficient residence time to produce NOx at concentrations that agree well with the NOx measurements. Air preheat was found to have very little effect on mixing, but preheating the air did increase NOx emissions significantly. By understanding the mechanisms governing NOx formation and the temperature dependence of key reactions in the RQL combustor, a strategy can be devised to further reduce NOx emissions using the RQL concept.

  11. Kinetics of heterogeneous catalytic reactions

    CERN Document Server

    Boudart, Michel

    2014-01-01

    This book is a critical account of the principles of the kinetics of heterogeneous catalytic reactions in the light of recent developments in surface science and catalysis science. Originally published in 1984. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase acc

  12. Molecular catalytic coal liquid conversion

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.; Yang, Shiyong [Univ. of Chicago, IL (United States)

    1995-12-31

    This research, which is relevant to the development of new catalytic systems for the improvement of the quality of coal liquids by the addition of dihydrogen, is divided into two tasks. Task 1 centers on the activation of dihydrogen by molecular basic reagents such as hydroxide ion to convert it into a reactive adduct (OH{center_dot}H{sub 2}){sup {minus}} that can reduce organic molecules. Such species should be robust withstanding severe conditions and chemical poisons. Task 2 is focused on an entirely different approach that exploits molecular catalysts, derived from organometallic compounds that are capable of reducing monocyclic aromatic compounds under very mild conditions. Accomplishments and conclusions are discussed.

  13. Studies of Catalytic Model Systems

    DEFF Research Database (Denmark)

    Holse, Christian

    the Cu/ZnO nanoparticles is highly relevant to industrial methanol synthesis for which the direct interaction of Cu and ZnO nanocrystals synergistically boost the catalytic activity. The dynamical behavior of the nanoparticles under reducing and oxidizing environments were studied by means of ex situ...... observed by XPS as the nanoparticles are reduced. The Cu/ZnO nanoparticles are tested on a  µ-reactor platform and prove to be active towards methanol synthesis, making it an excellent model system for further investigations into activity depended morphology changes....

  14. Catalytic Spectrophotometric Determination of Chromium

    OpenAIRE

    STOYANOVA, Angelina Miltcheva

    2005-01-01

    The catalytic effect of chromium(III) and chromium(VI) on the oxidation of sulfanilic acid by hydrogen peroxide was studied. The reaction was followed spectrophotometrically by measuring the absorbance of the reaction product at 360 nm. Under the optimum conditions 2 calibration graphs (for chromium(III) up to 100 ng mL-1, and for chromium(VI) up to 200 ng mL-1) were obtained, using the ``fixed time'' method with detection limits of 4.9 ng mL-1 and 3.8 ng mL-1, respectively...

  15. Catalytic Combustion of Ethyl Acetate

    OpenAIRE

    ÖZÇELİK, Tuğba GÜRMEN; ATALAY, Süheyda; ALPAY, Erden

    2007-01-01

    The catalytic combustion of ethyl acetate over prepared metal oxide catalysts was investigated. CeO, Co2O3, Mn2O3, Cr2O3, and CeO-Co2O3 catalysts were prepared on monolith supports and they were tested. Before conducting the catalyst experiments, we searched for the homogeneous gas phase combustion reaction of ethyl acetate. According to the homogeneous phase experimental results, 45% of ethyl acetate was converted at the maximum reactor temperature tested (350 °C). All the prepare...

  16. Estimating the temperature of a catalytic converter

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T.T.-H.

    1994-11-02

    A method is described for estimating the temperature in a catalytic converter used in the exhaust system of an internal combustion engine. Pressure sensors monitor the flow resistance across the catalytic converter to provide an indication of the temperature inside. This feedback system allows heating devices to be switched off and thus avoid overheating, while maintaining the catalytic converter's efficiency by assuring that it does not operate below its light off temperature. (UK)

  17. Estimating the temperature of a catalytic converter

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T.T.-H.

    1994-11-02

    A method of estimating the temperature of a catalytic converter used in the exhaust system of an internal combustion engine is described. Heated exhaust gas oxygen (HEGO) sensors are placed upstream and downstream of the catalytic converter. The temperature of the catalytic converter shortly after start-up is measured by monitoring the resistance of the HEGO sensor's heating element. The downstream sensor is used for mixture control and to double check results of the upstream sensor. (UK)

  18. Design and fabrication of a meso-scale stirling engine and combustor.

    Energy Technology Data Exchange (ETDEWEB)

    Echekki, Tarek (Sandia National Laboratories, Livermore, CA); Haroldsen, Brent L. (Sandia National Laboratories, Livermore, CA); Krafcik, Karen L. (Sandia National Laboratories, Livermore, CA); Morales, Alfredo Martin (Sandia National Laboratories, Livermore, CA); Mills, Bernice E. (Sandia National Laboratories, Livermore, CA); Liu, Shiling (Sandia National Laboratories, Livermore, CA); Lee, Jeremiah C. (Sandia National Laboratories, Livermore, CA); Karpetis, Adionos N. (Sandia National Laboratories, Livermore, CA); Chen, Jacqueline H. (Sandia National Laboratories, Livermore, CA); Ceremuga, Joseph T. (Sandia National Laboratories, Livermore, CA); Raber, Thomas N. (Sandia National Laboratories, Livermore, CA); Hekmuuaty, Michelle A. (Sandia National Laboratories, Livermore, CA)

    2005-05-01

    Power sources capable of supplying tens of watts are needed for a wide variety of applications including portable electronics, sensors, micro aerial vehicles, and mini-robotics systems. The utility of these devices is often limited by the energy and power density capabilities of batteries. A small combustion engine using liquid hydrocarbon fuel could potentially increase both power and energy density by an order of magnitude or more. This report describes initial development work on a meso-scale external combustion engine based on the Stirling cycle. Although other engine designs perform better at macro-scales, we believe the Stirling engine cycle is better suited to small-scale applications. The ideal Stirling cycle requires efficient heat transfer. Consequently, unlike other thermodynamic cycles, the high heat transfer rates that are inherent with miniature devices are an advantage for the Stirling cycle. Furthermore, since the Stirling engine uses external combustion, the combustor and engine can be scaled and optimized semi-independently. Continuous combustion minimizes issues with flame initiation and propagation. It also allows consideration of a variety of techniques to promote combustion that would be difficult in a miniature internal combustion engine. The project included design and fabrication of both the engine and the combustor. Two engine designs were developed. The first used a cylindrical piston design fabricated with conventional machining processes. The second design, based on the Wankel rotor geometry, was fabricated by through-mold electroforming of nickel in SU8 and LIGA micromolds. These technologies provided the requisite precision and tight tolerances needed for efficient micro-engine operation. Electroformed nickel is ideal for micro-engine applications because of its high strength and ductility. A rotary geometry was chosen because its planar geometry was more compatible with the fabrication process. SU8 lithography provided rapid

  19. Experimental study of a high-efficiency low-emission surface combustor-heater

    International Nuclear Information System (INIS)

    The surface combustor-heater is a combined combustion/heat-transfer device in which the heat-exchange surfaces are embedded in a stationary bed of refractory material where gaseous fuel is burned. Because of intensive heat radiation from the hot solid particles and enhanced heat convection from the gas flow to the heat-exchange tubes, heat transfer is significantly intensified. Removing heat simultaneously with the combustion process has the benefit of reducing the combustion temperature, which suppresses NOx formation. A basic experimental study was conducted on a 60-kW bench-scale surface combustor-heater with two rows of water-cooled tube coils to evaluate its performance and explore the mechanism of combined convective-radiative heat transfer and its interaction with combustion in the porous matrix. Combustion stability in the porous matrix, heat-transfer rates, emissions, and pressure drop through the unit have been investigated for the variable parameters of operation and unit configurations. Experimental results have demonstrated that high combustion intensity (up to 2.5 MW/m2), high heat-transfer rates (up to 310 kW/m2), high density of energy conversion (up to 8 MW/m3), as well as ultra-low emissions (NOx and CO as low as 15 vppm*) have been achieved. The excellent performance of the test unit and the extensive data obtained from the present experimental study provide the basis for further development of high-efficiency and ultra low-emission water heaters, boilers, and process heaters based on the surface combustor-heater concept. 4 refs., 16 figs

  20. Numerical Investigation of Dual-Mode Scramjet Combustor with Large Upstream Interaction

    Science.gov (United States)

    Mohieldin, T. O.; Tiwari, S. N.; Reubush, David E. (Technical Monitor)

    2004-01-01

    Dual-mode scramjet combustor configuration with significant upstream interaction is investigated numerically, The possibility of scaling the domain to accelerate the convergence and reduce the computational time is explored. The supersonic combustor configuration was selected to provide an understanding of key features of upstream interaction and to identify physical and numerical issues relating to modeling of dual-mode configurations. The numerical analysis was performed with vitiated air at freestream Math number of 2.5 using hydrogen as the sonic injectant. Results are presented for two-dimensional models and a three-dimensional jet-to-jet symmetric geometry. Comparisons are made with experimental results. Two-dimensional and three-dimensional results show substantial oblique shock train reaching upstream of the fuel injectors. Flow characteristics slow numerical convergence, while the upstream interaction slowly increases with further iterations. As the flow field develops, the symmetric assumption breaks down. A large separation zone develops and extends further upstream of the step. This asymmetric flow structure is not seen in the experimental data. Results obtained using a sub-scale domain (both two-dimensional and three-dimensional) qualitatively recover the flow physics obtained from full-scale simulations. All results show that numerical modeling using a scaled geometry provides good agreement with full-scale numerical results and experimental results for this configuration. This study supports the argument that numerical scaling is useful in simulating dual-mode scramjet combustor flowfields and could provide an excellent convergence acceleration technique for dual-mode simulations.

  1. Influence of stabilizer jets on combustion characteristics and NOx emission in a jet-stabilized combustor

    International Nuclear Information System (INIS)

    Highlights: ► Influence of stabilizer jets number and location in a combustor is studied. ► Numerical simulation shows reasonable agreement with experiments. ► Increase of stabilizer jets number leads to increase of temperature and NO formation. ► Uniformity of temperature profiles decreases with increase of stabilizer jets number. ► With increase of distance between stabilizer jets and injector NO emission decreases. -- Abstract: The main purpose of the present work is to investigate numerically the effects of number and location of stabilizer jets on the combustion characteristics and NOx emission in a jet-stabilized combustor (JSC). A Finite Volume staggered grid approach is employed to solve the governing equations. The eddy dissipation-finite rate model is adopted for the heat release simulation and the Realizable k − ε turbulence model is taken on for the flow predictions. An Eulerian–Lagrangian formulation is used for the two-phase (gas-droplet) flow. The Discrete Ordinates method, adopting its S4 approximation is applied for thermal radiation modeling of the gas phase. It is demonstrated that an increase in axial distance of stabilizer jets from fuel injector results in NOx emission to decrease significantly and conversely it results in thermal power of combustor to enhance slightly. Also, an increase in number of jet holes (with invariable entrance air velocity) causes both the thermal power and NOx emission to enhance. NOx formation is shown to be more sensitive to location of stabilizer jet holes rather than its number. As the distance between stabilizer jets and fuel injector increases from 40 mm to 60 mm and then 80 mm, uniformity of temperature profile is improved which could lead to better conditions at the combustor’s downstream section. This situation is valid for smaller number of stabilizer jets. An increase of stabilizer jets number from 4 to 6 and then 8 leads to an enhanced non-uniformity of temperature distribution towards

  2. Rayleigh/Raman/LIF measurements in a turbulent lean premixed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Nandula, S.P.; Pitz, R.W. [Vanderbilt Univ., Nashville, TN (United States); Barlow, R.S. [Sandia National Labs., Livermore, CA (United States)] [and others

    1995-10-01

    Much of the industrial electrical generation capability being added worldwide is gas-turbine engine based and is fueled by natural gas. These gas-turbine engines use lean premixed (LP) combustion to meet the strict NO{sub x} emission standards, while maintaining acceptable levels of CO. In conventional, diffusion flame gas turbine combustors, large amount of NO{sub x} forms in the hot stoichiometric zones via the Zeldovich (thermal) mechanism. Hence, lean premixed combustors are rapidly becoming the norm, since they are specifically designed to avoid these hot stoichiometric zones and the associated thermal NO, However, considerable research and development are still required to reduce the NO{sub x} levels (25-40 ppmvd adjusted to 15% O{sub 2} with the current technology), to the projected goal of under 10 ppmvd by the turn of the century. Achieving this objective would require extensive experiments in LP natural gas (or CH{sub 4}) flames for understanding the combustion phenomena underlying the formation of the exhaust pollutants. Although LP combustion is an effective way to control NO{sub x}, the downside is that it increases the CO emissions. The formation and destruction of the pollutants (NO{sub x} and CO) are strongly affected by the fluid mechanics, the finite-rate chemistry, and their (turbulence-chemistry) interactions. Hence, a thorough understanding of these interactions is vital for controlling and reducing the pollutant emissions. The present research is contributing to this goal by providing a detailed nonintrusive laser based data set with good spatial and temporal resolutions of the pollutants (NO and CO) along with the major species, temperature, and OH. The measurements reported in this work, along with the existing velocity data on a turbulent LP combustor burning CH{sub 4}, would provide insight into the turbulence-chemistry interactions and their effect on pollutant formation.

  3. Study of thermal throat of RBCC combustor based on one-dimensional analysis

    Science.gov (United States)

    Wang, Ya-jun; Li, Jiang; Qin, Fei; He, Guo-qiang; Shi, Lei

    2015-12-01

    An analysis model was developed to better understand the formation mechanism and variation law of the thermal throat in a rocket-based combined-cycle (RBCC) combustor. This analysis model is based on one-dimensional flow equations and consideration of the variation in factors such as the area, exothermic distribution, and the fuel-rich jet of the rocket. The influence law for the thermal throat under the interaction of the exothermic distribution and the variation of the area is consistent with the heat release models for a gaseous jet and liquid kerosene. The effective cross-sectional area of the jet was calculated and incorporated into the model. The results calculated using the one-dimensional model were found to be consistent with those obtained from a three-dimensional numerical simulation. The position of the thermal throat was predicted with an error of 0.36%. The maximum relative errors of the static pressure among the corresponding points were 7.4% and 9.3% for the static temperature and total pressure, respectively. The one-dimensional model and three-dimensional numerical simulation were validated using experimental data obtained in direct-connect testing. Except for the cavity region, the maximum relative error of the corresponding points between the simulation results and test results was less than 8.9%, and that between the model results and test results was 10.4%. Compared to the fuel equivalence ratio, the expansion ratio, injection location, and exothermic rate have a significant impact on the position of the thermal throat. An optimization study of the RBCC combustor for the ramjet mode was conducted by adjusting the thermal throat. The thrust performance improved by 31.6% at Ma3 after optimization. These results indicate the important role that the one-dimensional model can play in analyzing the thermal throat and guiding the preliminary design of an RBCC combustor.

  4. Rayleigh/Raman/LIF measurements in a turbulent lean premixed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Nandula, S.P.; Pitz, R.W. [Vanderbilt Univ., Nashville, TN (United States); Barlow, R.S. [Sandia National Labs., Livermore, CA (United States)] [and others

    1995-10-01

    Much of the industrial electrical generation capability being added worldwide is gas-turbine engine based and is fueled by natural gas. These gas-turbine engines use lean premixed (LP) combustion to meet the strict NO{sub x} emission standards, while maintaining acceptable levels of CO. In conventional, diffusion flame gas turbine combustors, large amount of NO{sub x} forms in the hot stoichiometric zones via the Zeldovich (thermal) mechanism. Hence, lean premixed combustors are rapidly becoming the norm, since they are specifically designed to avoid these hot stoichiometric zones and the associated thermal NO, However, considerable research and development are still required to reduce the NO{sub x} levels (25-40 ppmvd adjusted to 15% O{sub 2} with the current technology), to the projected goal of under 10 ppmvd by the turn of the century. Achieving this objective would require extensive experiments in LP natural gas (or CH{sub 4}) flames for understanding the combustion phenomena underlying the formation of the exhaust pollutants. Although LP combustion is an effective way to control NO{sub x}, the downside is that it increases the CO emissions. The formation and destruction of the pollutants (NO{sub x} and CO) are strongly affected by the fluid mechanics, the finite-rate chemistry, and their (turbulence-chemistry) interactions. Hence, a thorough understanding of these interactions is vital for controlling and reducing the pollutant emissions. The present research is contributing to this goal by providing a detailed nonintrusive laser based data set with good spatial and temporal resolutions of the pollutants (NO and CO) along with the major species, temperature, and OH. The measurements reported in this work, along with the existing velocity data on a turbulent LP combustor burning CH{sub 4}, would provide insight into the turbulence-chemistry interactions and their effect on pollutant formation.

  5. Nanostructured Catalytic Reactors for Air Purification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II project proposes the development of lightweight compact nanostructured catalytic reactors for air purification from toxic gaseous organic...

  6. Nanostructured Catalytic Reactors for Air Purification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project proposes the development of lightweight compact nanostructured catalytic reactors for air purification from toxic gaseous organic...

  7. Experimental Assessment of the Emissions Control Potential of a Rich/Quench/Lean Combustor for High Speed Civil Transport Aircraft Engines

    Science.gov (United States)

    Rosfjord, T. J.; Padget, F. C.; Tacina, Robert R. (Technical Monitor)

    2001-01-01

    In support of Pratt & Whitney efforts to define the Rich burn/Quick mix/Lean burn (RQL) combustor for the High Speed Civil Transport (HSCT) aircraft engine, UTRC conducted a flametube-scale study of the RQL concept. Extensive combustor testing was performed at the Supersonic Cruise (SSC) condition of a HSCT engine cycle, Data obtained from probe traverses near the exit of the mixing section confirmed that the mixing section was the critical component in controlling combustor emissions. Circular-hole configurations, which produced rapidly-, highly-penetrating jets, were most effective in limiting NOx. The spatial profiles of NOx and CO at the mixer exit were not directly interpretable using a simple flow model based on jet penetration, and a greater understanding of the flow and chemical processes in this section are required to optimize it. Neither the rich-combustor equivalence ratio nor its residence time was a direct contributor to the exit NOx. Based on this study, it was also concluded that (1) While NOx formation in both the mixing section and the lean combustor contribute to the overall emission, the NOx formation in the mixing section dominates. The gas composition exiting the rich combustor can be reasonably represented by the equilibrium composition corresponding to the rich combustor operating condition. Negligible NOx exits the rich combustor. (2) At the SSC condition, the oxidation processes occurring in the mixing section consume 99 percent of the CO exiting the rich combustor. Soot formed in the rich combustor is also highly oxidized, with combustor exit SAE Smoke Number emissions control at SSC also performed better at part-power conditions. Data from mixer exit traverses reflected the expected mixing behavior for off-design jet to crossflow momentum-flux ratios. (4) Low power operating conditions require that the RQL combustor operate as a lean-lean combustor to achieve low CO and high efficiency. (5) A RQL combustor can achieve the emissions goal

  8. Experimental Investigations of Extracted Rapeseed Combustion Emissions in a Small Scale Stationary Fluidized Bed Combustor

    OpenAIRE

    Dieter Steinbrecht; Tristan Vincent; Nguyen Dinh Tung

    2009-01-01

    The objective of this study was to observe the combustion process of extracted rapeseed (ER) grist in a stationary fluidized bed combustor (SFBC) and evaluate the chemical compositions of the flue gas emissions. The experimental tests of ER combustion in the 90 to 200 kW (Kilowatt) SFB combustion test facility show that the optimal ER combustion temperature is within the range from 850 to 880° C. Temperature and the concentration of exhausted emissions (e.g. O 2 , CO, CO 2 , NO, NO 2 , SO 2 ...

  9. CO-COMBUSTION OF REFUSE DERIVED FUEL WITH COAL IN A FLUIDISED BED COMBUSTOR

    OpenAIRE

    W. A. Wan Ab Karim Ghani; Alias, A. B.; K.R.CLIFFE

    2009-01-01

    Power generation from biomass is an attractive technology which utilizes municipal solid waste-based refused derived fuel. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from refuse derived fuel was co-fired with coal in a 0.15 m diameter and 2.3 m high fluidized bed combustor. The combustion efficiency and carbon monoxide emissions were studied and compared with those from pure coal combustion. This study proved that the blending effect had incre...

  10. Fuel distribution measurements in a model low NOx double annular combustor using laser induced fluorescence

    OpenAIRE

    Lockett, R. D.; Greenhalgh, D.A.

    2010-01-01

    Planar laser induced fluorescence (PLIF) was employed in a three sector, low NOx double annular combustor in order to characterise the combusting fuel spray. Naphthalene was employed as a fluorescent agent in odourless kerosene in order to determine the behavior of the light fractions in the fuel vapour, and the light to medium fractions in the fuel spray, while 2,5 di-phenyl oxizol (ppo) was employed to determine the behavior of the heavy fractions in the fuel spray. Counter-swirl air blast ...

  11. Evaluation of contaminant release from solidified/stabilized municipal waste combustor residues for disposal and utilization

    International Nuclear Information System (INIS)

    Solidification/stabilization of municipal waste combustor residues is being considered for treatment of municipal waste combustion residues prior to disposal or utilization. Traditionally, contaminant release has been evaluated based on regulatory leach tests such as EP Toxicity or TCLP. Five S/S. processes, applied to bottom ash, combined ash and APC residues, each were evaluated using five different leaching procedures. The set of leaching procedures selected was designed to provide an understanding of contaminant release under differing potential management scenarios. This paper will discuss testing results and implications for evaluation of MWC residue utilization

  12. Refractory experience in circulating fluidized bed combustors, Task 7. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, R.Q.

    1989-11-01

    This report describes the results of an investigation into the status of the design and selection of refractory materials for coal-fueled circulating fluidized-bed combustors. The survey concentrated on operating units in the United States manufactured by six different boiler vendors: Babcock and Wilcox, Combustion Engineering, Foster Wheeler, Keeler Dorr-Oliver, Pyropower, and Riley Stoker. Information was obtained from the boiler vendors, refractory suppliers and installers, and the owners/operators of over forty units. This work is in support of DOE`s Clean Coal Technology program, which includes circulating fluidized-bed technology as one of the selected concepts being evaluated.

  13. Stability analysis of thermo-acoustic nonlinear eigenproblems in annular combustors. Part II. Uncertainty quantification

    CERN Document Server

    Magri, Luca; Nicoud, Franck; Juniper, Matthew

    2016-01-01

    Monte Carlo and Active Subspace Identification methods are combined with first- and second-order adjoint sensitivities to perform (forward) uncertainty quantification analysis of the thermo-acoustic stability of two annular combustor configurations. This method is applied to evaluate the risk factor, i.e., the probability for the system to be unstable. It is shown that the adjoint approach reduces the number of nonlinear-eigenproblem calculations by up to $\\sim\\mathcal{O}(M)$, as many as the Monte Carlo samples.

  14. Bed agglomeration in fluidized combustor fueled by wood and rice straw blends

    DEFF Research Database (Denmark)

    Thy, Peter; Jenkins, Brian; Williams, R.B.;

    2010-01-01

    Abstract Petrographic techniques have been used to examine bed materials from fluidized bed combustion experiments that utilized wood and rice straw fuel blends. The experiments were conducted using a laboratory-scale combustor with mullite sand beds, firing temperatures of 840 to 1030 °C, and run...... particle surfaces by accumulation of liquid droplets preferentially in areas sheltered from turbulence and mechanical interaction. The composition of the film suggests melting of locally accumulated dust or aerosol mixture of ash particles and mullite. The film only locally enlarged bed particles. Large...... straw ash particles appear to have mostly been passively incorporated into the adhesive melt without melting or reaction....

  15. Advanced atomization concept for CWF burning in small combustors: Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, H.; McHale, E.

    1991-01-01

    The present project involves the second phase of research on a new concept in coal-water fuel (CWF) atomization that is applicable to burning in small combustors. It is intended to address the single most important problem associated with CWF combustion; i.e., production of small spray droplets in an efficient manner by an atomization device. Phase 1 of this work was successfully completed with the development of a prototype opposed-jet atomizer that met the goals of the first contract.

  16. Kinetics of char burnout and ash vaporization in coal-fired MHD combustors

    Energy Technology Data Exchange (ETDEWEB)

    Shuck, R.; Hastings, T.; Mims, C.; Sarofim, A.

    1979-01-01

    A computer model which simulates coal combustion in a simple MHD combustor was assembled. Data from parallel experimental work on devolatilization, char oxidation, and ash vaporization at MHD conditions provide input parameters to the model and provide checks on some of the assumptions therein. Trade-offs between ash vaporization and char utilization predicted by the model are shown. The importance of CO/sub 2/, H/sub 2/O, O/sub 2/, O, and OH to char oxidation is indicated from both theoretical and experimental considerations.

  17. Turbomachine combustor nozzle including a monolithic nozzle component and method of forming the same

    Energy Technology Data Exchange (ETDEWEB)

    Stoia, Lucas John; Melton, Patrick Benedict; Johnson, Thomas Edward; Stevenson, Christian Xavier; Vanselow, John Drake; Westmoreland, James Harold

    2016-02-23

    A turbomachine combustor nozzle includes a monolithic nozzle component having a plate element and a plurality of nozzle elements. Each of the plurality of nozzle elements includes a first end extending from the plate element to a second end. The plate element and plurality of nozzle elements are formed as a unitary component. A plate member is joined with the nozzle component. The plate member includes an outer edge that defines first and second surfaces and a plurality of openings extending between the first and second surfaces. The plurality of openings are configured and disposed to register with and receive the second end of corresponding ones of the plurality of nozzle elements.

  18. Application of Chimera Grid Scheme to Combustor Flowfields at all Speeds

    Science.gov (United States)

    Yungster, Shaye; Chen, Kuo-Huey

    1997-01-01

    A CFD method for solving combustor flowfields at all speeds on complex configurations is presented. The approach is based on the ALLSPD-3D code which uses the compressible formulation of the flow equations including real gas effects, nonequilibrium chemistry and spray combustion. To facilitate the analysis of complex geometries, the chimera grid method is utilized. To the best of our knowledge, this is the first application of the chimera scheme to reacting flows. In order to evaluate the effectiveness of this numerical approach, several benchmark calculations of subsonic flows are presented. These include steady and unsteady flows, and bluff-body stabilized spray and premixed combustion flames.

  19. Thermo-hydrodynamic design of fluidized bed combustors estimating metal wastage

    CERN Document Server

    Lyczkowski, Robert W; Bouillard, Jacques X; Folga, Stephen M

    2012-01-01

    Thermo-Hydrodynamic Design of Fluidized Bed Combustors: Estimating Metal Wastage is a unique volume that finds that the most sensitive parameters affecting metal wastage are superficial fluidizing velocity, particle diameter, and particle sphericity.  Gross consistencies between disparate data sources using different techniques were found when the erosion rates are compared on the same basis using the concept of renormalization.  The simplified mechanistic models and correlations, when validated, can be used to renormalize any experimental data so they can be compared on a consistent basis using a master equation.

  20. Effects of nozzle lip geometry on spray atomization and emissions advanced gas turbine combustors

    Science.gov (United States)

    Micklow, Gerald J.; Roychoudhury, Subir; Nguyen, H. L.

    1991-01-01

    A parametric study is conducted to investigate the effect of nozzle lip geometry on nozzle fuel distribution, emissions and temperature distribution for a rich burn section of a rich burn/quick quench/lean burn combustor. It is seen that the nozzle lip geometry greatly affects the fuel distribution, emissions and temperature distribution. It is determined that at an equivalence ratio of 1.6 the NO concentration could be lowered by a factor greater than three by changing the nozzle lip geometry.

  1. Radial flow fuel nozzle for a combustor of a gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Means, Gregory Scott; Boardman, Gregory Allen; Berry, Jonathan Dwight

    2016-07-05

    A combustor for a gas turbine generally includes a radial flow fuel nozzle having a fuel distribution manifold, and a fuel injection manifold axially separated from the fuel distribution manifold. The fuel injection manifold generally includes an inner side portion, an outer side portion, and a plurality of circumferentially spaced fuel ports that extend through the outer side portion. A plurality of tubes provides axial separation between the fuel distribution manifold and the fuel injection manifold. Each tube defines a fluid communication path between the fuel distribution manifold and the fuel injection manifold.

  2. A preliminary study of the effect of equivalence ratio on a low emissions gas turbine combustor using KIVA-2

    Science.gov (United States)

    Yang, S. L.; Chen, R.; Cline, M. C.

    The staged turbine combustor (STC) concept has drawn more and more attention since the late 70's because of its potential in reducing pollutant emissions where a high power output is required. A numerical study is performed to investigate the chemically reactive flow with sprays inside a STC combustor using a modified version of the KIVA-II code. This STC combustor consists of a fuel nozzle (FN), a rich-burn (RB) zone, a converging connecting section, a quick-quench (QQ) zone, a diverging connecting section, and a lean-combustion (LC) zone. An advanced airblast fuel nozzle, which has two fuel injection passages and four air flow passages for providing swirl, is used in this study. The effect of the equivalence ratio phi on the performance of the STC combustor is reported in this paper for phi range of 1.2 to 2.0. Preliminary results reveal some major features of the flow and temperature fields inside the STC combustor. Distributions of velocity, temperature, and some critical species information inside the FN/RB zone illustrate the effect of phi on the flame temperature and the NO(x) formation in rich burning. The co- and counter-rotating bulk flow, and the sandwiched-ring-shape temperature field in the QQ/LC zone, typical of the confined inclined jet-in-cross flow, are clearly shown from the computation. The predicted mass-weighted standard deviation and the pattern factor of temperature show that the mixing performance of the STC combustor is very good. The temperature of the fluid leaving the LC zone is very uniform. As expected. lower value of the emission index of NO can be achieved with larger value of phi. Prediction of the NO(x) emission shows that there is no excessive thermal NO(x) produced in the QQ/LC zone for all the cases studied.

  3. Catalytic conversion of light alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  4. Catalytic converters in the fireplace

    International Nuclear Information System (INIS)

    In addition to selecting the appropriate means of heating and using dry fuel, the amount of harmful emissions contained by flue gases produced by fireplaces can be reduced by technical means. One such option is to use an oxidising catalytic converter. Tests at TTS Institute's Heating Studies Experimental Station have focused on two such converters (dense and coarse) mounted in light-weight iron heating stoves. The ability of the dense catalytic converter to oxidise carbon monoxide gases proved to be good. The concentration of carbon monoxide in the flue gases was reduced by as much as 90 %. Measurements conducted by VTT (Technical Research Centre of Finland) showed that the conversion of other gases, e.g. of methane, was good. The exhaust resistance caused by the dense converter was so great as to necessitate the mounting of a fluegas evacuation fan in the chimney for the purpose of creating sufficient draught. When relying on natural draught, the dense converter requires a chimney of at least 7 metres and a by-pass connection while the fire is being lit. In addition, the converter will have to be constructed to be less dense and this will mean that it's capability to oxidise non-combusted gases will be reduced. The coarse converter did not impair the draught but it's oxidising property was insufficient. With the tests over, the converter was not observed to have become blocked up by impurities

  5. Catalytic reforming feed characterisation technique

    Energy Technology Data Exchange (ETDEWEB)

    Larraz Mora, R.; Arvelo Alvarez, R. [Univ. of La Laguna, Chemical Engineering Dept., La Laguna (Spain)

    2002-09-01

    The catalytic reforming of naphtha is one of the major refinery processes, designed to increase the octane number of naphtha or to produce aromatics. The naphtha used as catalytic reformer feedstock usually contains a mixture of paraffins, naphthenes, and aromatics in the carbon number range C{sub 6} to C{sub 10}. The detailed chemical composition of the feed is necessary to predict the aromatics and hydrogen production as well as the operation severity. The analysis of feed naphtha is usually reported in terms of its ASTM distillation curve and API or specific gravity. Since reforming reactions are described in terms of lumped chemical species (paraffins, naphthenes and aromatics), a feed characterisation technique should be useful in order to predict reforming operating conditions and detect feed quality changes. Unfortunately online analyzer applications as cromatography or recently introduced naphtha NMR [1] are scarce in most of refineries. This work proposes an algorithmic characterisation method focusing on its main steps description. The method could help on the subjects previously described, finally a calculation example is shown. (orig.)

  6. Acoustics of automotive catalytic converter assemblies

    Science.gov (United States)

    Dickey, Nolan S.; Selamet, Ahmet; Parks, Steve J.; Tallio, Kevin V.; Miazgowicz, Keith D.; Radavich, Paul M.

    2003-10-01

    In an automotive exhaust system, the purpose of the catalytic converter is to reduce pollutant emissions. However, catalytic converters also affect the engine and exhaust system breathing characteristics; they increase backpressure, affect exhaust system acoustic characteristics, and contribute to exhaust manifold tuning. Thus, radiated sound models should include catalytic converters since they can affect both the source characteristics and the exhaust system acoustic behavior. A typical catalytic converter assembly employs a ceramic substrate to carry the catalytically active noble metals. The substrate has numerous parallel tubes and is mounted in a housing with swelling mat or wire mesh around its periphery. Seals at the ends of the substrate can be used to help force flow through the substrate and/or protect the mat material. Typically, catalytic converter studies only consider sound propagation in the small capillary tubes of the substrate. Investigations of the acoustic characteristics of entire catalytic converter assemblies (housing, substrate, seals, and mat) do not appear to be available. This work experimentally investigates the acoustic behavior of catalytic converter assemblies and the contributions of the separate components to sound attenuation. Experimental findings are interpreted with respect to available techniques for modeling sound propagation in ceramic substrates.

  7. Understanding catalytic biomass conversion through data mining

    NARCIS (Netherlands)

    E.J. Ras; B. McKay; G. Rothenberg

    2010-01-01

    Catalytic conversion of biomass is a key challenge that we chemists face in the twenty-first century. Worldwide, research is conducted into obtaining bulk chemicals, polymers and fuels. Our project centres on glucose valorisation via furfural derivatives using catalytic hydrogenation. We present her

  8. A techno-economic analysis of the application of continuous staged-combustion and flameless oxidation to the combustor design in gas turbines

    International Nuclear Information System (INIS)

    The impact of NOx reduction technologies upon a gas turbine power station has been investigated using the ECLIPSE process simulator. Technical, environmental and economic assessments were performed, based upon a model of the simple cycle gas turbine, fuelled by natural gas. The technologies assessed were: a) selective catalytic reduction (SCR); b) continuous staged air combustion (COSTAIR); and c) flameless oxidation method (FLOX). The SCR method produced a 90% reduction of NOx emissions, at an additional penalty to the electricity cost of 0.19-0.20 p/kWh, over the base case of simple cycle with standard combustor. The COSTAIR method reduced 80.4% of NOx emissions, at an additional electricity cost of 0.03-0.04 p/kWh, over the base case; but 0.16-0.17 p/kWh less than the SCR method at a slightly higher level of NOx emissions. The FLOX method generated 92.3% less of NOx emissions, at an additional electricity cost of 0.08-0.11 p/kWh, over the base case; but 0.09-0.11 p/kWh less than the SCR method at a lower level of NOx emissions. A sensitivity analysis of the Break-Even Selling Price (BESP) of electricity and the Specific Investment (SI) versus the cost of different burner systems shows that the SCR system had the highest values for BESP and SI; and the COSTAIR system had the lowest. The results show that the use of these non-standard burners could offer an effective method of reducing NOx emissions considerably for simple cycle gas turbine power plants with minimal effect on system capital cost and electricity selling price, and were also cheaper than using SCR. (author)

  9. Low-Emission Hydrogen Combustors for Gas Turbines Using Lean Direct Injection

    Science.gov (United States)

    Marek, C. John; Smith, Timothy D.; Kundu, Krishna

    2007-01-01

    One of the key technology challenges for the use of hydrogen in gas turbine engines is the performance of the combustion system, in particular the fuel injectors. To investigate the combustion performance of gaseous hydrogen fuel injectors flame tube combustor experiments were performed. Tests were conducted to measure the nitrogen oxide (NO(x)) emissions and combustion performance at inlet conditions of 588 to 811 K, 0.4 to 1.4 MPa, and equivalence ratios up to 0.48. All the injectors were based on Lean Direct Injection (LDI) technology with multiple injection points and quick mixing. One challenge to hydrogen-based premixing combustion systems is flashback since hydrogen has a reaction rate over 7 times that of Jet-A. To reduce the risk, design mixing times were kept short and velocities high to minimize flashback. Five fuel injector designs were tested in 6.35- and 8.9-cm-diameter flame tubes with non-vitiated heated air and gaseous hydrogen. Data is presented on measurements of NO(x) emissions and combustion efficiency for the hydrogen injectors at 2.540, 7.937, and 13.652 cm from the injector face. Results show that for some configurations, NO(x) emissions are comparable to that of state of the art Jet-A LDI combustor concepts.

  10. Experimental Investigations of Extracted Rapeseed Combustion Emissions in a Small Scale Stationary Fluidized Bed Combustor

    Directory of Open Access Journals (Sweden)

    Dieter Steinbrecht

    2009-02-01

    Full Text Available The objective of this study was to observe the combustion process of extracted rapeseed (ER grist in a stationary fluidized bed combustor (SFBC and evaluate the chemical compositions of the flue gas emissions. The experimental tests of ER combustion in the 90 to 200 kW (Kilowatt SFB combustion test facility show that the optimal ER combustion temperature is within the range from 850 to 880° C. Temperature and the concentration of exhausted emissions (e.g. O2, CO, CO2, NO, NO2, SO2, Corg were measured with dedicated sensors distributed within the combustor, along its height and in the flue gas duct. The experimental results showed that with respect to German emission limits the concentration of SO2 and NOx in the flue gas were high whereas that of CO was low. This study furthermore is applicable for the abundant biomass residue resources in Vietnam (rice husk, rice straw, bagasse, cassava residues, coconut shell etc., which have similar chemical compositions to ER.

  11. Lean blowout limits of a gas turbine combustor operated with aviation fuel and methane

    Science.gov (United States)

    Xiao, Wei; Huang, Yong

    2016-05-01

    Lean blowout (LBO) limits is critical to the operational performance of combustion systems in propulsion and power generation. The swirl cup plays an important role in flame stability and has been widely used in aviation engines. Therefore, the effects of swirl cup geometry and flow dynamics on LBO limits are significant. An experiment was conducted for studying the lean blowout limits of a single dome rectangular model combustor with swirl cups. Three types of swirl cup (dual-axial swirl cup, axial-radial swirl cup, dual-radial swirl cup) were employed in the experiment which was operated with aviation fuel (Jet A-1) and methane under the idle condition. Experimental results showed that, with using both Jet A-1 and methane, the LBO limits increase with the air flow of primary swirler for dual-radial swirl cup, while LBO limits decrease with the air flow of primary swirler for dual-axial swirl cup. In addition, LBO limits increase with the swirl intensity for three swirl cups. The experimental results also showed that the flow dynamics instead of atomization poses a significant influence on LBO limits. An improved semi-empirical correlation of experimental data was derived to predict the LBO limits for gas turbine combustors.

  12. High temperature degradation by erosion-corrosion in bubbling fluidized bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Peggy Y.; MacAdam, S.; Niu, Y.; Stringer, J.

    2003-04-22

    Heat-exchanger tubes in fluidized bed combustors (FBCs) often suffer material loss due to combined corrosion and erosion. Most severe damage is believed to be caused by the impact of dense packets of bed material on the lower parts of the tubes. In order to understand this phenomenon, a unique laboratory test rig at Berkeley was designed to simulate the particle hammering interactions between in-bed particles and tubes in bubbling fluidized bed combustors. In this design, a rod shaped specimen is actuated a short distance within a partially fluidized bed. The downward specimen motion is controlled to produce similar frequencies, velocities and impact forces as those experienced by the impacting particle aggregates in practical systems. Room temperature studies have shown that the degradation mechanism is a three-body abrasion process. This paper describes the characteristics of this test rig, reviews results at elevated temperatures and compares them to field experience. At higher temperatures, deposits of the bed material on tube surfaces can act as a protective layer. The deposition depended strongly on the type of bed material, the degree of tube surface oxidation and the tube and bed temperatures. With HCl present in the bed, wastage was increased due to enhanced oxidation and reduced oxide scale adherence.

  13. Low NOx heavy fuel combustor concept program addendum: Low/mid heating value gaseous fuel evaluation

    Science.gov (United States)

    Novick, A. S.; Troth, D. L.

    1982-01-01

    The combustion performance of a rich/quench/lean (RQL) combustor was evaluated when operated on low and mid heating value gaseous fuels. Two synthesized fuels were prepared having lower heating values of 10.2 MJ/cu m. (274 Btu/scf) and 6.6 MJ/cu m (176 Btu/scf). These fuels were configured to be representative of actual fuels, being composed primarily of nitrogen, hydrogen, carbon monoxide, and carbon dioxide. A liquid fuel air assist fuel nozzle was modified to inject both of the gaseous fuels. The RQL combustor liner was not changed from the configuration used when the liquid fuels were tested. Both gaseous fuels were tested over a range of power levels from 50 percent load to maximum rated power of the DDN Model 570-K industrial gas turbine engine. Exhaust emissions were recorded for four power level at several rich zone equivalence ratios to determine NOx sensitivity to the rich zone operating point. For the mid Btu heating value gas, ammonia was added to the fuel to simulate a fuel bound nitrogen type gaseous fuel. Results at the testing showed that for the low heating value fuel NOx emissions were all below 20 ppmc and smoke was below a 10 smoke number. For the mid heating value fuel, NOx emissions were in the 50 to 70 ppmc range with the smoke below a 10 smoke number.

  14. Instability Suppression in a Swirl-Stabilized Combustor Using Microjet Air Injection

    KAUST Repository

    LaBry, Zachary

    2010-01-04

    In this study, we examine the effectiveness of microjet air injection as a means of suppressing thermoacoustic instabilities in a swirl-stabilized, lean-premixed propane/air combustor. High-speed stereo PIV measurements, taken to explore the mechanism of combustion instability, reveal that the inner recirculation zone plays a dominant role in the coupling of acoustics and heat release that leads to combustion instability. Six microjet injector configurations were designed to modify the inner and outer recirculation zones with the intent of decoupling the mechanism leading to instability. Microjets that injected air into the inner recirculation zone, swirling in the opposite sense to the primary swirl were effective in suppressing combustion instability, reducing the overall sound pressure level by up to 17 dB within a certain window of operating conditions. Stabilization was achieved near an equivalence ratio of 0.65, corresponding to the region where the combustor transitions from a 40 Hz instability mode to a 110 Hz instability mode. PIV measurements made of the stabilized flow revealed significant modification of the inner recirculation zone and substantial weakening of the outer recirculation zone.

  15. Unsteady heat transfer in turbine blade ducts - Focus on combustor sources

    Science.gov (United States)

    Baumeister, K. J.; Huff, R.

    1988-01-01

    Thermal waves generated by either turbine rotor blades cutting through nonuniform combustor temperature fields or unsteady burning could lead to thermal fatigue cracking in the blades. To determine the magnitude of the thermal oscillation in blades with complex shapes and material compositions, a finite element Galerkin formulation has been developed to study combustor generated thermal wave propagation in a model two-dimensional duct with a uniform plug flow profile. The reflection and transmission of the thermal waves at the entrance and exit boundaries are determined by coupling the finite element solutions at the entrance and exit to the eigenfunctions of an infinitely long adiabatic duct. Example solutions are presented. In general, thermal wave propagation from an air passage into a metallic blade wall is small and not a problem. However, if a thermal barrier coating is applied to a metallic surface under conditions of a high heat transfer, a good impedance match is obtained and a significant portion of the thermal wave can pass into the blade material.

  16. Unsteady heat transfer in turbine blade ducts: focus on combustor sources

    Energy Technology Data Exchange (ETDEWEB)

    Baumeister, K.J.; Huff, R.

    1988-01-01

    Thermal waves generated by either turbine rotor blades cutting through nonuniform combustor temperature fields or unsteady burning could lead to thermal fatigue cracking in the blades. To determine the magnitude of the thermal oscillation in blades with complex shapes and material compositions, a finite element Galerkin formulation has been developed to study combustor generated thermal wave propagation in a model two-dimensional duct with a uniform plug flow profile. The reflection and transmission of the thermal waves at the entrance and exit boundaries are determined by coupling the finite element solutions at the entrance and exit to the eigenfunctions of an infinitely long adiabatic duct. Example solutions are presented. In general, thermal wave propagation from an air passage into a metallic blade wall is small and not a problem. However, if a thermal barrier coating is applied to a metallic surface under conditions of a high heat transfer, a good impedance match is obtained and a significant portion of the thermal wave can pass into the blade material.

  17. Measurement of nitrogen species NO{sub y} at the exhaust of an aircraft engine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Ristori, A. [Office National d`Etudes et de Recherches Aerospatiales (ONERA), Palaiseau (France); Baudoin, C. [Societe Nationale d`Etude et de Construction de Moteurs d`Aviation (SNECMA), Villaroche (France)

    1997-12-31

    A research programme named AEROTRACE was supported by the EC (CEC contract AERA-CT94-0003) in order to investigate trace species measurements at the exhaust of aero-engines. Within this project, NO{sub y}, NO, HNO{sub 3} and HONO were measured at the exhaust of aircraft engine combustors. Major species (NO{sub y},NO) were measured by using a chemiluminescence instrument. Minor species (HNO{sub 3},HONO) were measured by using filter packs. Two combustors were tested under various running conditions; the first one at ONERA (Task 2) and the second one at DRA (Task 5). Results show that EI{sub NOy} < 50 g/kg, EI{sub HNO3} < 0.2 g/kg and EI{sub HONO} < 0.55 g/kg. Regarding ratios, (HNO{sub 3})/(NO{sub y}) < 0.5%, (HONO)/(NO{sub y}) < 8%, (HONO)/(NO{sub 2}) {approx} 19.2%, and (HNO{sub 3})/(NO{sub 2}) {approx} 0.8% was found. (author) 9 refs.

  18. The Two-Dimensional Supersonic Flow and Mixing with a Perpendicular Injection in a Scramjet Combustor

    Institute of Scientific and Technical Information of China (English)

    Mohammad Ali; S.Ahmed; A.K.M.Sadrul Islam

    2003-01-01

    A numerical investigation has been performed on supersonic mixing of hydrogen with air in a Scramjet(Supersonic Combustion Ramjet) combustor and its flame holding capability by solving Two-Dimensional full Navier-Stokes equations. The main flow is air entering through a finite width of inlet and gaseous hydrogen is injected perpendicularly from the side wall. An explicit Harten-Yee Non-MUSCL Modified-flux-type TVD scheme has been used to solve the system of equations, and a zero-equation algebraic turbulence model to calculate the eddy viscosity coefficient. In this study the enhancement of mixing and good flame holding capability of a supersonic combustor have been investigated by varying the distance of injector position from left boundary keeping constant the backward-facing step height and other calculation parameters. The results show that the configuration for small distance of injector position has high mixing efficiency but the upstream recirculation can not evolved properly which is an important factor for flame holding capability. On the other hand, the configuration for very long distance has lower mixing efficiency due to lower gradient of hydrogen mass concentration on the top of injector caused by the expansion of side jet in both upstream and downstream of injector. For moderate distance of injector position, large and elongated upstream recirculation can evolve which might be activated as a good flame holder.

  19. Effect of flue gas recirculation on heat transfer in a supercritical circulating fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Błaszczuk Artur

    2015-09-01

    Full Text Available This paper focuses on assessment of the effect of flue gas recirculation (FGR on heat transfer behavior in 1296t/h supercritical coal-fired circulating fluidized bed (CFB combustor. The performance test in supercritical CFB combustor with capacity 966 MWth was performed with the low level of flue gas recirculation rate 6.9% into furnace chamber, for 80% unit load at the bed pressure of 7.7 kPa and the ratio of secondary air to the primary air SA/PA = 0.33. Heat transfer behavior in a supercritical CFB furnace between the active heat transfer surfaces (membrane wall and superheater and bed material has been analyzed for Geldart B particle with Sauter mean diameters of 0.219 and 0.246 mm. Bed material used in the heat transfer experiments had particle density of 2700 kg/m3. A mechanistic heat transfer model based on cluster renewal approach was used in this work. A heat transfer analysis of CFB combustion system with detailed consideration of bed-to-wall heat transfer coefficient distributions along furnace height is investigated. Heat transfer data for FGR test were compared with the data obtained for representative conditions without recycled flue gases back to the furnace through star-up burners.

  20. Numerical study of innovative scramjet inlets coupled to combustors using hydrocarbon-air mixture

    Science.gov (United States)

    Malo-Molina, Faure Joel

    The research objective is to use high-fidelity multi-physics Computational Fluid Dynamics (CFD) analysis to characterize 3-D scramjet flowfields in two novel streamline traced circular configurations without axisymmetric profiles. This work builds on a body of research conducted over the past several years. In addition, this research provides the modeling and simulation support, prior to ground (wind tunnel) and flight experiment programs. Two innovative inlets, Jaws and Scoop, are analyzed and compared to a Baseline inlet, a current state of the art rectangular inlet used as a baseline for on/off-design conditions. The flight trajectory conditions selected were Mach 6 and a dynamic pressure of 1,500 psf (71.82 kPa), corresponding to a static pressure of 43.7 psf (2.09 kPa) and temperature of 400.8 R° (222.67 C°). All inlets are designed for equal flight conditions, equal contraction ratios and exit cross-sectional areas, thus facilitating their comparison and integration to a common combustor design. Analysis of these hypersonic inlets was performed to investigate distortion effects downstream in common generic combustors. These combustors include a single cavity acting as flame holder and strategically positioned fuel injection ports. This research not only seeks to identify the most successful integrated scramjet inlet/combustor design, but also investigates the flow physics and quantifies the integrated performance impact of the two novel scramjet inlet designs. It contributes to the hypersonic air-breathing community by providing analysis and predictions on directly-coupled combustor numerical experiments for developing pioneering inlets or nozzles for scramjets. Several validations and verifications of General Propulsion Analysis Chemical-kinetic and Two-phase (GPACT), the CFD tool, were conducted throughout the research. In addition, this study uses 13 gaseous species and 20 reactions for an Ethylene/air finite-rate chemical model. The key conclusions of

  1. Performance Investigation of TG-180 Combustor: I - Instrumentation, Altitude Operational Limits and Combustion Efficiency

    Science.gov (United States)

    Zettle, Eugene V.; Cook, William P.

    1947-01-01

    A brief investigation has been made of the performance of a single combustor of the TG-180 turboJet engine to determine (a) the altitude operational limits of the engine for two fuels (AN-F-32 and AN-F-28), (b) combustion efficiencies at various simulated conditions of altitude and engine speeds, (c) combustion-outlet temperature distribution for several altitudes at constant engine speed, and (d) the combustor total pressure drop The limits with AN-83-F-32 fuel were found to be approximately 60,000 feet for an engine speed of 6000 rpm and approximately 38,000 feet for an engine speed of 1000 rpm. The results indicated that the altitude operational limits with AN-F-32 fuel are higher over the largest part of the engine-speed range than with AN-F-28 fuel, A combination efficiency of 22 percent was obtained at rated engine speed (7600 rpm) and an altitude of 20,000 feet with AN-F-32 fuel. A change in altitude from 20,000 tm 60,000 feet showed a 20-percent decrease in combustion efficiency while the engine was operating at 760G rpm whereas, at an engine speed of 4000 rpm a change of altitude from 10,000 to 40,000 feet showed a 52-percent decrease in combustion efficiency .

  2. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Corman; Krishan Luthra; Jill Jonkowski; Joseph Mavec; Paul Bakke; Debbie Haught; Merrill Smith

    2011-01-07

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000 hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.

  3. Method for control of NOx emission from combustors using fuel dilution

    Science.gov (United States)

    Schefer, Robert W.; Keller, Jay O

    2007-01-16

    A method of controlling NOx emission from combustors. The method involves the controlled addition of a diluent such as nitrogen or water vapor, to a base fuel to reduce the flame temperature, thereby reducing NOx production. At the same time, a gas capable of enhancing flame stability and improving low temperature combustion characteristics, such as hydrogen, is added to the fuel mixture. The base fuel can be natural gas for use in industrial and power generation gas turbines and other burners. However, the method described herein is equally applicable to other common fuels such as coal gas, biomass-derived fuels and other common hydrocarbon fuels. The unique combustion characteristics associated with the use of hydrogen, particularly faster flame speed, higher reaction rates, and increased resistance to fluid-mechanical strain, alter the burner combustion characteristics sufficiently to allow operation at the desired lower temperature conditions resulting from diluent addition, without the onset of unstable combustion that can arise at lower combustor operating temperatures.

  4. Investigation of combustion dynamics in a cavity-based combustor with high-speed laser diagnostics

    Science.gov (United States)

    Xavier, Pradip; Vandel, Alexis; Godard, Gilles; Renou, Bruno; Grisch, Frédéric; Cabot, Gilles; Boukhalfa, Mourad A.; Cazalens, Michel

    2016-04-01

    The dynamics of the flame/flow interaction produced in an optically accessible, premixed, and staged cavity-based combustor was investigated with high-speed particle image velocimetry (PIV) and OH-planar laser-induced fluorescence (OH-PLIF) . The combined PIV and OH-PLIF images were recorded at 2.5 kHz to assess stabilization mechanisms occurring between the cavity and the mainstream. Dynamic pressure and global heat-release rate fluctuations were complementary measured. Important characteristics were identified for two operating conditions, differing from the ratio of momentum J (taken between the mainstream and the cavity jet): a high ratio of momentum (J = 7.1) produced a "stable" flow, whereas a lower one (J = 2.8) displayed "unstable" conditions. Analysis of the "unstable" case revealed an intense flow instability, primarily due to premixed flow rate fluctuations inside the cavity. This effect is confirmed from a proper orthogonal decomposition analysis of PIV data, which illustrates the prominent role of large-scale flow oscillations in the whole combustor. Furthermore, the simultaneous analysis of flow velocities and gas state (either unburned or burned) displayed important fluctuations inside the shear layer, reducing effective flame-holding capabilities. By contrast, the increase in the ratio of momentum in the "stable" case reduces significantly the penetration of the cavity flow into the mainstream and consequently produces stable properties of the shear layer, being valuable to considerably improve flame stabilization.

  5. Silver nanocluster catalytic microreactors for water purification

    Science.gov (United States)

    Da Silva, B.; Habibi, M.; Ognier, S.; Schelcher, G.; Mostafavi-Amjad, J.; Khalesifard, H. R. M.; Tatoulian, M.; Bonn, D.

    2016-07-01

    A new method for the elaboration of a novel type of catalytic microsystem with a high specific area catalyst is developed. A silver nanocluster catalytic microreactor was elaborated by doping a soda-lime glass with a silver salt. By applying a high power laser beam to the glass, silver nanoclusters are obtained at one of the surfaces which were characterized by BET measurements and AFM. A microfluidic chip was obtained by sealing the silver coated glass with a NOA 81 microchannel. The catalytic activity of the silver nanoclusters was then tested for the efficiency of water purification by using catalytic ozonation to oxidize an organic pollutant. The silver nanoclusters were found to be very stable in the microreactor and efficiently oxidized the pollutant, in spite of the very short residence times in the microchannel. This opens the way to study catalytic reactions in microchannels without the need of introducing the catalyst as a powder or manufacturing complex packed bed microreactors.

  6. Selective catalytic oxidation of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T. [VTT Energy, Espoo (Finland)

    1996-12-31

    In the combustion of fossil fuels, the principal source of nitrogen oxides is nitrogen bound in the fuel structure. In gasification, a large part of fuel nitrogen forms NH{sub 3}, which may form nitrogen oxides during gas combustion. If NH{sub 3} and other nitrogen species could be removed from hot gas, the NO emission could be considerably reduced. However, relatively little attention has been paid to finding new means of removing nitrogen compounds from the hot gasification gas. The possibility of selectively oxidizing NH{sub 3} to N{sub 2} in the hot gasification has been studied at VTT Energy. The largest NH{sub 3} reductions have been achieved by catalytic oxidation on aluminium oxides. (author) (4 refs.)

  7. Catalytic hydrogenation of carbon monoxide

    International Nuclear Information System (INIS)

    Focus of this project is on developing new approaches for hydrogenation of carbon monoxide to produce organic oxygenates at mild conditions. The strategies to accomplish CO reduction are based on favorable thermodynamics manifested by rhodium macrocycles for producing a series of intermediates implicated in the catalytic hydrogenation of CO. Metalloformyl complexes from reactions of H2 and CO, and CO reductive coupling to form metallo α-diketone species provide alternate routes to organic oxygenates that utilize these species as intermediates. Thermodynamic and kinetic-mechanistic studies are used in guiding the design of new metallospecies to improve the thermodynamic and kinetic factors for individual steps in the overall process. Electronic and steric effects associated with the ligand arrays along with the influences of the reaction medium provide the chemical tools for tuning these factors. Non-macrocyclic ligand complexes that emulate the favorable thermodynamic features associated with rhodium macrocycles, but that also manifest improved reaction kinetics are promising candidates for future development

  8. Catalytic Graphitization of Phenolic Resin

    Institute of Scientific and Technical Information of China (English)

    Mu Zhao; Huaihe Song

    2011-01-01

    The catalytic graphitization of thermal plastic phenolic-formaldehyde resin with the aid of ferric nitrate (FN) was studied in detail. The morphologies and structural features of the products including onion-like carbon nanoparticles and bamboo-shaped carbon nanotubes were investigated by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction and Raman spectroscopy measurements. It was found that with the changes of loading content of FN and residence time at 1000℃, the products exhibited various morphologies. The TEM images showed that bamboo-shaped carbon nanotube consisted of tens of bamboo sticks and onion-like carbon nanoparticle was made up of quasi-spherically concentrically closed carbon nanocages.

  9. Reducing catalytic converter pressure loss

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    This article examines why approximately 30--40% of total exhaust-system pressure loss occurs in the catalytic converter and what can be done to reduce pressure loss. High exhaust-system backpressure is of concern in the design of power trains for passenger cars and trucks because it penalizes fuel economy and limits peak power. Pressure losses occur due to fluid shear and turning during turbulent flow in the converter headers and in entry separation and developing laminar-flow boundary layers within the substrate flow passages. Some of the loss mechanisms are coupled. For example, losses in the inlet header are influenced by the presence of the flow resistance of a downstream substrate. Conversely, the flow maldistribution and pressure loss of the substrate(s) depend on the design of the inlet header.

  10. Non-catalytic recuperative reformer

    Energy Technology Data Exchange (ETDEWEB)

    Khinkis, Mark J.; Kozlov, Aleksandr P.; Kurek, Harry

    2015-12-22

    A non-catalytic recuperative reformer has a flue gas flow path for conducting hot flue gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is embedded in the flue gas flow path to permit heat transfer from the hot flue gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorific fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, extended surfaces of metal material such as stainless steel or metal alloy that are high in nickel content are included within at least a portion of the reforming mixture flow path.

  11. Fluctuations in catalytic surface reactions

    CERN Document Server

    Imbihl, R

    2003-01-01

    The internal reaction-induced fluctuations which occur in catalytic CO oxidation on a Pt field emitter tip have been studied using field electron microscopy (FEM) as a spatially resolving method. The structurally heterogeneous Pt tip consists of facets of different orientations with nanoscale dimensions. The FEM resolution of roughly 2 nm corresponds to a few hundred reacting adsorbed particles whose variations in the density are imaged as brightness fluctuations. In the bistable range of the reaction one finds fluctuation-induced transitions between the two stable branches of the reaction kinetics. The fluctuations exhibit a behaviour similar to that of an equilibrium phase transition, i.e. the amplitude diverges upon approaching the bifurcation point terminating the bistable range of the reaction. Simulations with a hybrid Monte Carlo/mean-field model reproduce the experimental observations. Fluctuations on different facets are typically uncorrelated but within a single facet a high degree of spatial cohere...

  12. Catalytic, enantioselective, vinylogous aldol reactions.

    Science.gov (United States)

    Denmark, Scott E; Heemstra, John R; Beutner, Gregory L

    2005-07-25

    In 1935, R. C. Fuson formulated the principle of vinylogy to explain how the influence of a functional group may be felt at a distant point in the molecule when this position is connected by conjugated double-bond linkages to the group. In polar reactions, this concept allows the extension of the electrophilic or nucleophilic character of a functional group through the pi system of a carbon-carbon double bond. This vinylogous extension has been applied to the aldol reaction by employing "extended" dienol ethers derived from gamma-enolizable alpha,beta-unsaturated carbonyl compounds. Since 1994, several methods for the catalytic, enantioselective, vinylogous aldol reaction have appeared, with which varying degrees of regio- (site), enantio-, and diastereoselectivity can be attained. In this Review, the current scope and limitations of this transformation, as well as its application in natural product synthesis, are discussed. PMID:15940727

  13. Electrochemical promotion of catalytic reactions

    Science.gov (United States)

    Imbihl, R.

    2010-05-01

    The electrochemical promotion of heterogeneously catalyzed reactions (EPOC) became feasible through the use of porous metal electrodes interfaced to a solid electrolyte. With the O 2- conducting yttrium stabilized zirconia (YSZ), the Na + conducting β″-Al 2O 3 (β-alumina), and several other types of solid electrolytes the EPOC effect has been demonstrated for about 100 reaction systems in studies conducted mainly in the mbar range. Surface science investigations showed that the physical basis for the EPOC effect lies in the electrochemically induced spillover of oxygen and alkali metal, respectively, onto the surface of the metal electrodes. For the catalytic promotion effect general concepts and mechanistic schemes were proposed but these concepts and schemes are largely speculative. Applying surface analytical tools to EPOC systems the proposed mechanistic schemes can be verified or invalidated. This report summarizes the progress which has been achieved in the mechanistic understanding of the EPOC effect.

  14. Catalytic converter with thermoelectric generator

    Energy Technology Data Exchange (ETDEWEB)

    Parise, R.J.

    1998-07-01

    The unique design of an electrically heated catalyst (EHC) and the inclusion of an ECO valve in the exhaust of an internal combustion engine will meet the strict new emission requirements, especially at vehicle cold start, adopted by several states in this country as well as in Europe and Japan. The catalytic converter (CC) has been a most useful tool in pollution abatement for the automobile. But the emission requirements are becoming more stringent and, along with other improvements, the CC must be improved to meet these new standards. Coupled with the ECO valve, the EHC can meet these new emission limits. In an internal combustion engine vehicle (ICEV), approximately 80% of the energy consumed leaves the vehicle as waste heat: out the tail pipe, through the radiator, or convected/radiated off the engine. Included with the waste heat out the tail pipe are the products of combustion which must meet strict emission requirements. The design of a new CC is presented here. This is an automobile CC that has the capability of producing electrical power and reducing the quantity of emissions at vehicle cold start, the Thermoelectric Catalytic Power Generator. The CC utilizes the energy of the exothermic reactions that take place in the catalysis substrate to produce electrical energy with a thermoelectric generator. On vehicle cold start, the thermoelectric generator is used as a heat pump to heat the catalyst substrate to reduce the time to catalyst light-off. Thus an electrically heated catalyst (EHC) will be used to augment the abatement of tail pipe emissions. Included with the EHC in the exhaust stream of the automobile is the ECO valve. This valve restricts the flow of pollutants out the tail pipe of the vehicle for a specified amount of time until the EHC comes up to operating temperature. Then the ECO valve opens and allows the full exhaust, now treated by the EHC, to leave the vehicle.

  15. The evolution of catalytic function

    Science.gov (United States)

    Maurel, Marie-Christine; Ricard, Jacques

    2006-03-01

    It is very likely that the main driving force of enzyme evolution is the requirement to improve catalytic and regulatory efficiency which results from the intrinsic performance as well as from the spatial and functional organization of enzymes in living cells. Kinetic co-operativity may occur in simple monomeric proteins if they display “slow” conformational transitions, at the cost of catalytic efficiency. Oligomeric enzymes on the other hand can be both efficient and co-operative. We speculate that the main reason for the emergence of co-operative oligomeric enzymes is the need for catalysts that are both cooperative and efficient. As it is not useful for an enzyme to respond to a change of substrate concentration in a complex kinetic way, the emergence of symmetry has its probable origin in a requirement for “functional simplicity”. In a living cell, enzyme are associated with other macromolecules and membranes. The fine tuning of their activity may also be reached through mutations of the microenvironment. Our hypothesis is that these mutations are related to the vectorial transport of molecules, to achieve the hysteresis loops of enzyme reactions generated by the coupling of reaction and diffusion, through the co-operativity brought about by electric interactions between a charged substrate and a membrane, and last but not least, through oscillations. As the physical origins of these effects are very simple and do not require complex molecular devices, it is very likely that the functional advantage generated by the spatial and functional organization of enzyme molecules within the cell have appeared in prebiotic catalysis or very early during the primeval stages of biological evolution. We shall began this paper by presenting the nature of the probable earliest catalysts in the RNA world.

  16. Revolutionary systems for catalytic combustion and diesel catalytic particulate traps.

    Energy Technology Data Exchange (ETDEWEB)

    Stuecker, John Nicholas; Witze, Peter O.; Ferrizz, Robert Matthew; Cesarano, Joseph, III; Miller, James Edward

    2004-12-01

    This report is a summary of an LDRD project completed for the development of materials and structures conducive to advancing the state of the art for catalyst supports and diesel particulate traps. An ancillary development for bio-medical bone scaffolding was also realized. Traditionally, a low-pressure drop catalyst support, such as a ceramic honeycomb monolith, is used for catalytic reactions that require high flow rates of gases at high-temperatures. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. ''Robocasting'' is a unique process developed at Sandia National Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low-pressure drops. These alternative 3-dimensional geometries may also provide a foundation for the development of self-regenerating supports capable of trapping and combusting soot particles from a diesel engine exhaust stream. This report describes the structures developed and characterizes the improved catalytic performance that can result. The results show that, relative to honeycomb monolith supports, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a trade-off between enhanced mass transfer and increased pressure drop, which can be optimized depending on the particular demands of a given application. Practical applications include the combustion of natural gas for power generation, production of syngas, and hydrogen reforming reactions. The robocast lattice structures also show practicality for diesel particulate trapping. Preliminary results for trapping efficiency are reported as well as the development of electrically resistive lattices that can regenerate the structure

  17. Laser Doppler velocimeter measurements and laser sheet imaging in an annular combustor model. M.S. Thesis, Final Report

    Science.gov (United States)

    Dwenger, Richard Dale

    1995-01-01

    An experimental study was conducted in annular combustor model to provide a better understanding of the flowfield. Combustor model configurations consisting of primary jets only, annular jets only, and a combination of annular and primary jets were investigated. The purpose of this research was to provide a better understanding of combustor flows and to provide a data base for comparison with computational models. The first part of this research used a laser Doppler velocimeter to measure mean velocity and statistically calculate root-mean-square velocity in two coordinate directions. From this data, one Reynolds shear stress component and a two-dimensional turbulent kinetic energy term was determined. Major features of the flowfield included recirculating flow, primary and annular jet interaction, and high turbulence. The most pronounced result from this data was the effect the primary jets had on the flowfield. The primary jets were seen to reduce flow asymmetries, create larger recirculation zones, and higher turbulence levels. The second part of this research used a technique called marker nephelometry to provide mean concentration values in the combustor. Results showed the flow to be very turbulent and unsteady. All configurations investigated were highly sensitive to alignment of the primary and annular jets in the model and inlet conditions. Any imbalance between primary jets or misalignment of the annular jets caused severe flow asymmetries.

  18. RDF-pulverized coal co-firing in a slag combustor. Combustion tests at the Coal Tech facility

    Energy Technology Data Exchange (ETDEWEB)

    Bonfanti, L.; Cioni, M.; De Robertis, U.; Riccardi, J.; Rossi, C.; Schiavetti, M.; Zauderer, B. (ENEL SAP-CRTN, Pisa (Italy))

    1993-01-01

    Some tests have been carried out on a slag combustor; lodged in a conventional boiler, to evaluate the environmental and plant compatibility of this technology. The tests were carried out in 1990 on a 7 MWt combustor designed and constructed by Coal Tech Corp., Williamsport PA, USA. They included tests with different RDF/coal ratios and baseline tests with coal only. The carbon conversion was higher than 88% even if the combustor was running at 50% of maximum reachable load. The ash retention efficiency was found in the range 80-40% in dependence of the RDF percentage and the overall combustor load. The quantity of most of the inorganic micropollutants retained by the slag is higher than the one expected for a pulverized coal combustion, while their level in the flue gas is lower. The leaching test carried out on the slag shows a good retention for inorganic micropollutants: Only Cu is over the limit value, according to the Italian regulation. 8 refs., 4 figs., 4 tabs.

  19. Experimental study of unsteady heat release in an unstable single element Lean Direct Injection (LDI) gas turbine combustor

    Science.gov (United States)

    Lakshmanan, Varun S.

    In an effort to curb emissions from gas turbine engines, many low emission engine concepts have been developed. Among the most promising of these is the LDI (Lean Direct Injection). These systems operate at relatively low equivalence ratios close to blowout and are prone to instabilities. Combustion instabilities can reduce the life of the combustor by causing large pressure fluctuations and enhanced heat release to the walls of the combustor and reduce the efficiency of the engines. The understanding of combustion instabilities is vital to the implementation of such systems. Combustion instabilities are studied in an self-excited single element gas turbine combustor that uses an LDI element for fuel injection at elevetaed chamber pressures. The LDI combustor uses a swirler to ensure mixing of the air and the fuel and expansion of the swirl through a pressure swirl venturi to create a swirl stabilized flame. This project aims to study the heat release modes that occur in the combustor through measurement of light emissions from the flame using photodiodes that are sensitive to wavelengths of light produced by the flame. These are used along with high frequency pressure transducers. The focus is on the flame behavior in the diverging section of the venturi where the swirl is expanded and the flame starts since optic access cannot be obtained in this section. The use of photodiodes also facilitates the study of hydrodynamic modes that occur in the combustor alongside the thermoacoustics. A section which could accommodate the photodiodes was designed and installed on the LDI test rig in the Gas Turbine Cell at Maurice J Zucrow Propulsion Labs at Purdue University. The combustor was tested with this section and dynamic data was obtained from the pressure transducers and the photodiodes for a range of inlet air temperatures and range of equivalence ratios for each inlet air temperature. The dominant instability modes in both sets of data were analyzed and are presented

  20. Computational fluid dynamic studies of certain ducted bluff-body flowfields relevant to turbojet combustors. Volume 2: Time-averaged flowfield predictions for a proposed centerbody combustor

    Science.gov (United States)

    Raju, M. S.; Krishnamurthy, L.

    1986-07-01

    The near-wake region in a ducted bluff-body combustor was investigated by finite-difference computations. The numerical predictions are based upon the time-independent, Reynolds-averaged Navier-Stokes equations and the k-epsilon turbulence model. The steady-state calculations address both nonreacting and reacting flowfields in a novel configuration to more realistically simulate some of the essential features of the primary zone of a gas turbine combustion chamber. This configuration is characterized by turbulent mixing and combustion in the recirculating near-wake region downstream of an axisymmetric bluff body due to two annular air streams--an outer swirl-free flow and an inner swirling flow--and a central fuel jet. The latter contains propane for reacting flows and carbon dioxide for nonreacting flows. In view of the large number of geometrical and flow parameters involved, the reported results are concerned with only a limited parametric examination with the major emphasis being on nonreacting flows. Questions addressed for a particular set of geometric parameters include the effects of variation of mass flow rates in all three streams and the influence of swirl in the middle stream. Reacting computations investigate the influence of swirl on combustion, as well as that of combustion on the flowfield.

  1. Structure-based identification of catalytic residues.

    Science.gov (United States)

    Yahalom, Ran; Reshef, Dan; Wiener, Ayana; Frankel, Sagiv; Kalisman, Nir; Lerner, Boaz; Keasar, Chen

    2011-06-01

    The identification of catalytic residues is an essential step in functional characterization of enzymes. We present a purely structural approach to this problem, which is motivated by the difficulty of evolution-based methods to annotate structural genomics targets that have few or no homologs in the databases. Our approach combines a state-of-the-art support vector machine (SVM) classifier with novel structural features that augment structural clues by spatial averaging and Z scoring. Special attention is paid to the class imbalance problem that stems from the overwhelming number of non-catalytic residues in enzymes compared to catalytic residues. This problem is tackled by: (1) optimizing the classifier to maximize a performance criterion that considers both Type I and Type II errors in the classification of catalytic and non-catalytic residues; (2) under-sampling non-catalytic residues before SVM training; and (3) during SVM training, penalizing errors in learning catalytic residues more than errors in learning non-catalytic residues. Tested on four enzyme datasets, one specifically designed by us to mimic the structural genomics scenario and three previously evaluated datasets, our structure-based classifier is never inferior to similar structure-based classifiers and comparable to classifiers that use both structural and evolutionary features. In addition to the evaluation of the performance of catalytic residue identification, we also present detailed case studies on three proteins. This analysis suggests that many false positive predictions may correspond to binding sites and other functional residues. A web server that implements the method, our own-designed database, and the source code of the programs are publicly available at http://www.cs.bgu.ac.il/∼meshi/functionPrediction. PMID:21491495

  2. Development of Catalytic Cooking Plates

    Energy Technology Data Exchange (ETDEWEB)

    Hjelm, Anna-Karin; Silversand, Fredrik [CATATOR AB, Lund (Sweden); Tena, Emmanuel; Berger, Marc [Gaz de France (France)

    2004-04-01

    Gas catalytic combustion for gas stoves or cooking plates (closed catalytic burner system with ceramic plates) is a very promising technique in terms of ease of cleaning, power modulation and emissions. Previous investigations show that wire mesh catalysts, prepared and supplied by Catator AB (CAT), seem to be very well suited for such applications. Beside significantly reducing the NOx-emissions, these catalysts offer important advantages such as good design flexibility, low pressure drop and high heat transfer capacity, where the latter leads to a quick thermal response. Prior to this project, Gaz de France (GdF) made a series of measurements with CAT's wire mesh catalysts in their gas cooking plates and compared the measured performance with similar results obtained with theirs cordierite monolith catalysts. Compared to the monolith catalyst, the wire mesh catalyst was found to enable very promising results with respect to both emission levels (<10 mg NO{sub x} /kWh, <5 mg CO/kWh) and life-time (>8000 h vs. 700 h at 200 kW/m{sup 2}). It was however established that the radiation and hence, the thermal efficiency of the cooking plate, was significantly less than is usually measured in combination with the monolith (15 % vs. 32 %). It was believed that the latter could be improved by developing new burner designs based on CAT's wire mesh concept. As a consequence, a collaboration project between GdF, CAT and the Swedish Gas Technology AB was created. This study reports on the design, the construction and the evaluation of new catalytic burners, based on CAT's wire mesh catalysts, used for the combustion of natural gas in gas cooking stoves. The evaluation of the burners was performed with respect to key factors such as thermal efficiency, emission quality and pressure drop, etc, by the use of theoretical simulations and experimental tests. Impacts of parameters such as the the wire mesh number, the wire mesh structure (planar or folded), the

  3. Catalytic reaction in confined flow channel

    Energy Technology Data Exchange (ETDEWEB)

    Van Hassel, Bart A.

    2016-03-29

    A chemical reactor comprises a flow channel, a source, and a destination. The flow channel is configured to house at least one catalytic reaction converting at least a portion of a first nanofluid entering the channel into a second nanofluid exiting the channel. The flow channel includes at least one turbulating flow channel element disposed axially along at least a portion of the flow channel. A plurality of catalytic nanoparticles is dispersed in the first nanofluid and configured to catalytically react the at least one first chemical reactant into the at least one second chemical reaction product in the flow channel.

  4. Catalytic Chemistry on Oxide Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Asthagiri, Aravind; Dixon, David A.; Dohnalek, Zdenek; Kay, Bruce D.; Rodriquez, Jose A.; Rousseau, Roger J.; Stacchiola, Dario; Weaver, Jason F.

    2016-05-29

    Metal oxides represent one of the most important and widely employed materials in catalysis. Extreme variability of their chemistry provides a unique opportunity to tune their properties and to utilize them for the design of highly active and selective catalysts. For bulk oxides, this can be achieved by varying their stoichiometry, phase, exposed surface facets, defect, dopant densities and numerous other ways. Further, distinct properties from those of bulk oxides can be attained by restricting the oxide dimensionality and preparing them in the form of ultrathin films and nanoclusters as discussed throughout this book. In this chapter we focus on demonstrating such unique catalytic properties brought by the oxide nanoscaling. In the highlighted studies planar models are carefully designed to achieve minimal dispersion of structural motifs and to attain detailed mechanistic understanding of targeted chemical transformations. Detailed level of morphological and structural characterization necessary to achieve this goal is accomplished by employing both high-resolution imaging via scanning probe methods and ensemble-averaged surface sensitive spectroscopic methods. Three prototypical examples illustrating different properties of nanoscaled oxides in different classes of reactions are selected.

  5. Halogen Chemistry on Catalytic Surfaces.

    Science.gov (United States)

    Moser, Maximilian; Pérez-Ramírez, Javier

    2016-01-01

    Halogens are key building blocks for the manufacture of high-value products such as chemicals, plastics, and pharmaceuticals. The catalytic oxidation of HCl and HBr is an attractive route to recover chlorine and bromine in order to ensure the sustainability of the production processes. Very few materials withstand the high corrosiveness and the strong exothermicity of the reactions and among them RuO2 and CeO2-based catalysts have been successfully applied in HCl oxidation. The search for efficient systems for HBr oxidation was initiated by extrapolating the results of HCl oxidation based on the chemical similarity of these reactions. Interestingly, despite its inactivity in HCl oxidation, TiO2 was found to be an outstanding HBr oxidation catalyst, which highlighted that the latter reaction is more complex than previously assumed. Herein, we discuss the results of recent comparative studies of HCl and HBr oxidation on both rutile-type (RuO2, IrO2, and TiO2) and ceria-based catalysts using a combination of advanced experimental and theoretical methods to provide deeper molecular-level understanding of the reactions. This knowledge aids the design of the next-generation catalysts for halogen recycling. PMID:27131113

  6. Vacuum-insulated catalytic converter

    Energy Technology Data Exchange (ETDEWEB)

    Benson, David K. (Golden, CO)

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  7. System for supporting a bundled tube fuel injector within a combustor

    Energy Technology Data Exchange (ETDEWEB)

    LeBegue, Jeffrey Scott; Melton, Patrick Benedict; Westmoreland, III, James Harold; Flanagan, James Scott

    2016-06-21

    A combustor includes an end cover having an outer side and an inner side, an outer barrel having a forward end that is adjacent to the inner side of the end cover and an aft end that is axially spaced from the forward end. An inner barrel is at least partially disposed concentrically within the outer barrel and is fixedly connected to the outer barrel. A fluid conduit extends downstream from the end cover. A first bundled tube fuel injector segment is disposed concentrically within the inner barrel. The bundled tube fuel injector segment includes a fuel plenum that is in fluid communication with the fluid conduit and a plurality of parallel tubes that extend axially through the fuel plenum. The bundled tube fuel injector segment is fixedly connected to the inner barrel.

  8. The use of activated char for flue gas polishing in municipal and hazardous waste combustors

    Energy Technology Data Exchange (ETDEWEB)

    Hartenstein, H.U. [L & C Steinmueller GmbH, Gummersbach (Germany)

    1996-12-31

    During the late 1980`s and the early 1990`s legislation on emissions from waste combustors were tightened drastically. Also emission limits on new pollutants like dioxins and furans were introduced. Since the flue gas cleaning equipment commonly used before was not designed to meet these emission limits, new technologies had to be developed. Most of these new technologies rely on the use of activated carbon or char for the adsorption of the pollutants. Due to the fact that the amount of activated char used is directly proportional to the mass flow rate of pollutants entering the adsorber, the bulk part of the pollutants has been removed in the preceding gas cleaning stages. Thus the activated char adsorption reactor is employed as a flue gas polishing stage at the end of the APC-train.

  9. Effect of fuel properties on performance of a single aircraft turbojet combustor

    Science.gov (United States)

    Butze, H. F.; Ehlers, R. C.

    1975-01-01

    The performance of a single-can JT8D combustor was investigated with a number of fuels exhibiting wide variations in chemical composition and volatility. Performance parameters investigated were combustion efficiency, emissions of CO, unburned hydrocarbons and NOx, as well as liner temperatures and smoke. At the simulated idle condition no significant differences in performance were observed. At cruise, liner temperatures and smoke increased sharply with decreasing hydrogen content of the fuel. No significant differences were observed in the performance of an oil-shale derived JP-5 and a petroleum-based Jet A fuel except for emissions of NOx which were higher with the oil-shale JP-5. The difference is attributed to the higher concentration of fuel-bound nitrogen in the oil-shale JP-5.

  10. Investigation of LPP combustors under elevated pressure conditions; Untersuchungen zu LPP-Flugtriebwerksbrennkammern unter erhoehtem Druck

    Energy Technology Data Exchange (ETDEWEB)

    Fink, R.

    2001-05-01

    The development of new combustor concepts for aero engines to meet future emissions regulations in based on a detailed knowledge of the combustion process and the velocity field. In the presented thesis, non intrusive measurements were performed in a model combustion chamber under almost realistic pressure and temperature conditions. The species OH, NO, unburned hydrocarbons and fuel droplets were detected in 2 dimensions with the Laser Induced Fluorescence (LIF). The velocity field was measured with the Particle Image Velocimetry technique (PIV). [German] Die Weiterentwicklung neuer Brennkammerkonzepte zur Erfuellung zukuenftiger Schadstoffemissionsrichtlinien erfordert genaue Kenntnisse der ablaufenden Verbrennungs- und Stroemungsvorgaenge in der Brennkammer. Bei den in der Arbeit vorgestellten Untersuchungen wurden in einer LPP-Modellbrennkammer unter annaehernd realistischen Eintrittsbedingungen die Spezies OH, NO, unverbrannte Kohlenwasserstoffe sowie noch fluessiger Brennstoff zweidimensional anhand der Laserinduzierten Fluoreszenz (LIF) nachgewiesen. Das Stroemungsfeld wurde mit Hilfe der Particle Image Velocimetry (PIV) gemessen.

  11. CO-COMBUSTION OF REFUSE DERIVED FUEL WITH COAL IN A FLUIDISED BED COMBUSTOR

    Directory of Open Access Journals (Sweden)

    W. A. WAN AB KARIM GHANI

    2009-03-01

    Full Text Available Power generation from biomass is an attractive technology which utilizes municipal solid waste-based refused derived fuel. In order to explain the behavior of biomass-fired fluidized bed incinerator, biomass sources from refuse derived fuel was co-fired with coal in a 0.15 m diameter and 2.3 m high fluidized bed combustor. The combustion efficiency and carbon monoxide emissions were studied and compared with those from pure coal combustion. This study proved that the blending effect had increased the carbon combustion efficiency up to 12% as compared to single MSW-based RDF. Carbon monoxide levels fluctuated between 200-1600 ppm were observed when coal is added. It is evident from this research that efficient co-firing of biomass with coal can be achieved with minimum modification of existing coal-fired boilers.

  12. Vortex-acoustic lock-on in bluff-body and backward-facing step combustors

    Indian Academy of Sciences (India)

    S R Chakravarthy; R Sivakumar; O J Shreenivasan

    2007-02-01

    Experimental data on acoustic pressure measurements obtained over a wide range of conditions is reported for two simple geometries that are commonly studied for their combustion dynamics behaviour. These geometries are the confined bluff-body and the confined backward-facing steps. The data indicate regimes of flow-acoustic lock-on that signifies the onset of combustion instability, marked by the excitation of high-amplitude discrete tones of sound in the combustor. The highspeed chemiluminescence imaging of the combustion zone indicates heat-release-rate fluctuations occurring at the same frequencies as observed in the acoustic spectra. Attention is then devoted to the data obtained under cold-flow conditions to illustrate distinctly different behaviour than when combustion instability occurs, contrary to the commonly held view that the combustion process does not alter the underlying fluid mechanical processes under low-Mach number conditions.

  13. Measurement of Turbulent Pressure and Temperature Fluctuations in a Gas Turbine Combustor

    Science.gov (United States)

    Povinelli, Louis (Technical Monitor); LaGraff, John E.; Bramanti, Cristina; Pldfield, Martin; Passaro, Andrea; Biagioni, Leonardo

    2004-01-01

    The report summarizes the results of the redesign efforts directed towards the gas-turbine combustor rapid-injector flow diagnostic probe developed under sponsorship of NASA-GRC and earlier reported in NASA-CR-2003-212540. Lessons learned during the theoretical development, developmental testing and field-testing in the previous phase of this research were applied to redesign of both the probe sensing elements and of the rapid injection device. This redesigned probe (referred to herein as Turboprobe) has been fabricated and is ready, along with the new rapid injector, for field-testing. The probe is now designed to capture both time-resolved and mean total temperatures, total pressures and, indirectly, one component of turbulent fluctuations.

  14. Stability analysis of thermo-acoustic nonlinear eigenproblems in annular combustors. Part I. Sensitivity

    CERN Document Server

    Magri, Luca; Juniper, Matthew

    2016-01-01

    We present an adjoint-based method for the calculation of eigenvalue perturbations in nonlinear, degenerate and non self-adjoint eigenproblems. This method is applied to a thermo-acoustic annular combustor network, the stability of which is governed by a nonlinear eigenproblem. We calculate the first- and second-order sensitivities of the growth rate and frequency to geometric, flow and flame parameters. Three different configurations are analysed. The benchmark sensitivities are obtained by finite difference, which involves solving the nonlinear eigenproblem at least as many times as the number of parameters. By solving only one adjoint eigenproblem, we obtain the sensitivities to any thermo-acoustic parameter, which match the finite-difference solutions at much lower computational cost.

  15. Effect of Surface Impulsive Thermal Loads on Fatigue Behavior of Constant Volume Propulsion Engine Combustor Materials

    Science.gov (United States)

    Zhu, Dongming; Fox, Dennis S.; Miller, Robert A.; Ghosn, Louis J.; Kalluri, Sreeramesh

    2004-01-01

    The development of advanced high performance constant-volume-combustion-cycle engines (CVCCE) requires robust design of the engine components that are capable of enduring harsh combustion environments under high frequency thermal and mechanical fatigue conditions. In this study, a simulated engine test rig has been established to evaluate thermal fatigue behavior of a candidate engine combustor material, Haynes 188, under superimposed CO2 laser surface impulsive thermal loads (30 to 100 Hz) in conjunction with the mechanical fatigue loads (10 Hz). The mechanical high cycle fatigue (HCF) testing of some laser pre-exposed specimens has also been conducted under a frequency of 100 Hz to determine the laser surface damage effect. The test results have indicated that material surface oxidation and creep-enhanced fatigue is an important mechanism for the surface crack initiation and propagation under the simulated CVCCE engine conditions.

  16. Clustering of chaotic dynamics of a lean gas-turbine combustor

    Energy Technology Data Exchange (ETDEWEB)

    Fichera, A.; Pagano, A. [Universita di Catania, Ist. di Fisica Tecnica, Catania (Italy); Losenno, C. [Edinburgh Univ., School of Mechanical Engineering, Edinburgh (United Kingdom)

    2001-06-01

    This work deals with the dynamic behaviour of a lean premixed gas turbine combustor. The study aims to achieve a classification of experimental burner dynamic behaviour and is based on the geometrical properties of the attractors of the system variables. Several experiments were performed varying the flame stoichiometric ratio {lambda} and the pilot fuel percentage PFP. The dynamics of the experimental time series of the flame from heat release were described by using vectors collecting information on the topological distribution of the attractors. Therefore, unsupervised Kohonen associative memories were trained to create clusters of operating conditions characterised by similar dynamical behaviours. Kohonen associative memories were able to divide the experimental operating conditions into different clusters according to the different values of the flame stoichiometric ratio. The results of the clustering underline the possibility of being able to define an algorithm for combustion-instability pattern recognition that takes into account the highly non-linear effects which govern combustion processes. (Author)

  17. Investigations of a Combustor Using a 9-Point Swirl-Venturi Fuel Injector: Recent Experimental Results

    Science.gov (United States)

    Hicks, Yolanda R.; Heath, Christopher M.; Anderson, Robert C.; Tacina, Kathleen M.

    2012-01-01

    This paper explores recent results obtained during testing in an optically-accessible, JP8-fueled, flame tube combustor using baseline Lean Direct Injection (LDI) research hardware. The baseline LDI geometry has nine fuel/air mixers arranged in a 3 x 3 array. Results from this nine-element array include images of fuel and OH speciation via Planar Laser-Induced Fluorescence (PLIF), which describe fuel spray pattern and reaction zones. Preliminary combustion temperatures derived from Stokes/Anti-Stokes Spontaneous Raman Spectroscopy are also presented. Other results using chemiluminescence from major combustion radicals such as CH* and C2* serve to identify the primary reaction zone, while OH PLIF shows the extent of reaction further downstream. Air and fuel velocities and fuel drop size results are also reported.

  18. Optical Measurements in a Combustor Using a 9-Point Swirl-Venturi Fuel Injector

    Science.gov (United States)

    Hicks, Yolanda R.; Anderson, Robert C.; Locke, Randy J.

    2007-01-01

    This paper highlights the use of two-dimensional data to characterize a multipoint swirl-venturi injector. The injector is based on a NASA-conceived lean direct injection concept. Using a variety of advanced optical diagnostic techniques, we examine the flows resultant from multipoint, lean-direct injectors that have nine injection sites arranged in a 3 x 3 grid. The measurements are made within an optically-accessible, jet-A-fueled, 76-mm by 76-mm flame tube combustor. Combustion species mapping and velocity measurements are obtained using planar laser-induced fluorescence of OH and fuel, planar laser scatter of liquid fuel, chemiluminescence from CH*, NO*, and OH*, and particle image velocimetry of seeded air (non-fueled). These measurements are used to study fuel injection, mixedness, and combustion processes and are part of a database of measurements that will be used for validating computational combustion models.

  19. Performance of a high efficiency advanced coal combustor. Task 2, Pilot scale combustion tests: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Toqan, M.A.; Paloposki, T.; Yu, T.; Teare, J.D.; Beer, J.M. [Massachusetts Inst. of Tech., Cambridge, MA (United States)

    1989-12-01

    Under contract from DOE-PETC, Combustion Engineering, Inc. undertook the lead-role in a multi-task R&D program aimed at development of a new burner system for coal-based fuels; the goal was that this burner system should be capable of being retrofitted in oil- or gas-fired industrial boilers, or usable in new units. In the first phase of this program a high efficiency advanced coal combustor was designed jointly by CE and MIT. Its burner is of the multiannular design with a fixed shrouded swirler in the center immediately surrounding the atomizer gun to provide the ``primary act,`` and three further annuli for the supply of the ``secondary air.`` The degree of rotation (swirl) in the secondary air is variable. The split of the combustion air into primary and secondary air flows serves the purpose of flame stabilization and combustion staging, the latter to reduce NO{sub x} formation.

  20. Catalytic models developed through social work

    DEFF Research Database (Denmark)

    Jensen, Mogens

    2015-01-01

    The article develops the concept of catalytic processes in relation to social work with adolescents in an attempt to both reach a more nuanced understanding of social work and at the same time to develop the concept of catalytic processes in psychology. The social work is pedagogical treatment of...... adolescents placed in out-of-home care and is characterised using three situated cases as empirical data. Afterwards the concept of catalytic processes is briefly presented and then applied in an analysis of pedagogical treatment in the three cases. The result is a different conceptualisation of the social...... work with new possibilities of development of the work, but also suggestions for development of the concept of catalytic processes....

  1. Catalytic converters as a source of platinum

    Directory of Open Access Journals (Sweden)

    A. Fornalczyk

    2011-10-01

    Full Text Available The increase of Platinum Group Metals demand in automotive industry is connected with growing amount of cars equipped with the catalytic converters. The paper presents the review of available technologies during recycling process. The possibility of removing platinum from the used catalytic converters applying pyrometallurgical and hyrdometallurgical methods were also investigated. Metals such as Cu, Pb, Ca, Mg, Cd were used in the pyrometallurgical research (catalytic converter was melted with Cu, Pb and Ca or Mg and Cd vapours were blown through the whole carrier. In hydrometallurgical research catalytic converters was dissolved in aqua regia. Analysis of Pt contents in the carrier before and after the process was performed by means of atomic absorption spectroscopy. Obtained result were discussed.

  2. Studies and development of high-temperature catalytic materials for application in gas turbine combustion chamber

    Energy Technology Data Exchange (ETDEWEB)

    Papadias, Dennis; Thevenin, Philippe [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    2000-04-01

    -based garnets and aluminium titanate. The NZP materials (NaZr{sub 2}(PO{sub 4}){sub 3}) have an ultra-low thermal expansion which gives them the desired properties to stand thermal shocks. However their catalytic activity needs to be improved as they have a T{sub 50} above 520 deg C. The iron containing garnets (YIG) with the following formula Y{sub 3}Fe{sub 5}O{sub 12}, as well as the MgAl{sub 2}O{sub 4} spinel, show promising results with an activity close to the hexaaluminates. Different fuels could be considered for application in gas turbine combustion chambers. Ethanol appears to be a promising alternative fuel for mobile gas turbines, methane and gasified biomass for stationary utilisation. The experimental work in this project has been done using ethanol as fuel. The coming work will be oriented towards gasified biomass as well. Specific attention will be given to fuel-NO{sub x} formation from the ammonia present in the feed. The work was carried out in co-operation with Volvo Aero Corporation, which was involved in the European project AGATA where the objective was to develop a ceramic gas turbine for hybrid car applications. Furthermore, another project within catalytic combustion for gas turbine is conducted in co-operation with the Division of Heat and Power Technology at KTH (Nutek project P7057, Catalytic Combustion of Gasified Biomass). In this projects a fully catalytic system has been chosen. However a solution to overcome the problem given by the high temperature present in the last section of the combustor is a hybrid system described in the literature. A first catalyst segment with low temperature catalytic activity ignites part of the fuel at 300-400 deg C. The rest of the fuel is then burned homogeneously between 1000 - 1400 deg C. This design avoid the use of catalytic material at temperature above 1000 deg C. Different projects are running both in the US (Catalytica Combustion Systems Inc., Precision Combustion) and Japan (Osaka Gas Company) to develop a

  3. Kinetic catalytic studies of scorpion's hemocyanin

    International Nuclear Information System (INIS)

    Hemocyanins are copper proteins which function as oxygen carriers in the haemolymph of Molluscs and Arthropods. They possess enzymatic properties: peroxidatic and catalatic activities, although they have neither iron nor porphyrin ring at the active site. The kinetics of the catalytic reaction is described. The reaction of superoxide anion with hemocyanin has been studied using pulse radiolysis at pH 9. The catalytic rate constant is 3.5 X 107 mol-1.l.s-1

  4. Characterization of Aqueous Peroxomolybdates with Catalytic Applicability

    OpenAIRE

    Taube, Fabian

    2003-01-01

    Abstract This thesis is a summary of five papers, containing equilibrium and structure studies of aqueous molybdate and peroxomolybdate species. Some of the peroxomolybdate species have also been studied in terms of their dynamic and catalytic properties. The primary objective was to characterize species with potential catalytic activity, with emphasis on thebleach process of kraft pulp. For this, potentiometry, EXAFS and 17O, 31P, 1H and 95 Mo NMR have been used. The molybdate speciation in ...

  5. MOBILE COMPLEX FOR CATALYTIC THERMAL WASTE TREATMENT

    OpenAIRE

    Vedi V.E.; Rovenskii A.I.

    2012-01-01

    The design and purpose of the basic units of the mobile waste processing complex “MPK” are described. Experimental data of catalytic purification of exhaust gases are presented. Experimental data on catalytic clearing of final gases of a designed mobile incinerator plant are shown. It is defined, that concentrating of parasitic bridging in waste gases of the complex are considerably smaller, rather than allowed by normative documents.

  6. MOBILE COMPLEX FOR CATALYTIC THERMAL WASTE TREATMENT

    Directory of Open Access Journals (Sweden)

    Vedi V.E.

    2012-12-01

    Full Text Available The design and purpose of the basic units of the mobile waste processing complex “MPK” are described. Experimental data of catalytic purification of exhaust gases are presented. Experimental data on catalytic clearing of final gases of a designed mobile incinerator plant are shown. It is defined, that concentrating of parasitic bridging in waste gases of the complex are considerably smaller, rather than allowed by normative documents.

  7. Temperature Modulation of a Catalytic Gas Sensor

    OpenAIRE

    Eike Brauns; Eva Morsbach; Sebastian Kunz; Marcus Baeumer; Walter Lang

    2014-01-01

    The use of catalytic gas sensors usually offers low selectivity, only based on their different sensitivities for various gases due to their different heats of reaction. Furthermore, the identification of the gas present is not possible, which leads to possible misinterpretation of the sensor signals. The use of micro-machined catalytic gas sensors offers great advantages regarding the response time, which allows advanced analysis of the sensor response. By using temperature modulation, additi...

  8. Catalytic ammonia oxidation to nitrogen (I) oxide

    OpenAIRE

    MASALITINA NATALIYA YUREVNA; SAVENKOV ANATOLIY SERGEEVICH

    2015-01-01

    The process of synthesis of nitrous oxide by low-temperature catalytical oxidation of NH has been investigated for organic synthesis. The investigation has been carried out by the stage separation approach with NH oxidation occurring in several reaction zones, which characterized by different catalytic conditions. The selectivity for N₂O was 92–92,5 % at the ammonia conversion of 98–99.5 % in the optimal temperature range.

  9. Preparation and Catalytic Oxidation Activity on 2-mercaptoethanol of a Novel Catalytic Cellulose Fibres

    Institute of Scientific and Technical Information of China (English)

    YAO Yu-yuan; LI Ying-jie; CHEN Wen-xing; Lü Wang-yang; Lü Su-fang; XU Min-hong; LIU Fan

    2007-01-01

    Cobalt tetra(N-carbonylacylic) aminophthalocyanine was supported on cellulose fibres by graft reaction to obtain a novel polymer catalyst, catalytic cellulose fibres (CCF),and the optimal supporting conditions were pH = 6, 80℃,t = 120 min. The catalytic oxidation activity of CCF towards oxidation of 2-mereaptoethanol (MEA) in aqueous solution was investigated. The experimental results demonstrated that CCF had good catalytic oxidation activity on MEA at room temperature, causing no secondary pollution and remaining efficient for the repetitive tests with no obvious decrease of catalytic activity.

  10. Low efficiency deasphalting and catalytic cracking

    International Nuclear Information System (INIS)

    This patent describes a process for converting an asphaltene and metals containing heavy hydrocarbon feed to lighter, more valuable products the metals comprising Ni and V. It comprises: demetallizing the feed by deasphalting the feed in a solvent deasphalting means operating at solvent deasphalting conditions including a solvent: feed volume ratio of about 1:1 to 4:1, using a solvent selected from the group of C4 to 400 degrees F. hydrocarbons and mixtures thereof; recovering from the solvent rich fraction a demetallized oil intermediate product, having a boiling range and containing at least 10 wt.% of the asphaltenes, and 5 to 30% of the Ni and V, and at least 10 wt.% of the solvent present in the solvent rich phase produced in the deasphalting means; catalytically cracking the demetallized oil intermediate product in a catalytic cracking means operating at catalytic cracking conditions to produce a catalytically cracked product vapor fraction having a lower boiling range than the boiling range of the demetallized oil intermediate product; and fractionating the catalytically cracked product in a fractionation means to produce catalytically cracked product fractions

  11. Catalytic and surface oxidation processes on transition metal surfaces

    OpenAIRE

    Jaatinen, Sampsa

    2007-01-01

    Transition metals are technologically important catalytic materials. The transition metal catalysts are used for example in petroleum and fertilizer industry. In the car industry the catalytic materials are used in the catalytic converters. Because of the industrial importance the catalytic metals have been widely studied throughout the past decades. Nonetheless, the oxidation mechanisms of small molecules and the effect of alloying to catalytic properties of metals are not fully understood. ...

  12. On the Structural Context and Identification of Enzyme Catalytic Residues

    OpenAIRE

    Yu-Tung Chien; Shao-Wei Huang

    2013-01-01

    Enzymes play important roles in most of the biological processes. Although only a small fraction of residues are directly involved in catalytic reactions, these catalytic residues are the most crucial parts in enzymes. The study of the fundamental and unique features of catalytic residues benefits the understanding of enzyme functions and catalytic mechanisms. In this work, we analyze the structural context of catalytic residues based on theoretical and experimental structure flexibility. The...

  13. Combustion Temperature Measurement by Spontaneous Raman Scattering in a Jet-A Fueled Gas Turbine Combustor Sector

    Science.gov (United States)

    Hicks, Yolanda R.; DeGroot, Wilhelmus A.; Locke, Randy J.; Anderson, Robert C.

    2002-01-01

    Spontaneous vibrational Raman scattering was used to measure temperature in an aviation combustor sector burning jet fuel. The inlet temperature ranged from 670 K (750 F) to 756 K (900 F) and pressures from 13 to 55 bar. With the exception of a discrepancy that we attribute to soot, good agreement was seen between the Raman-derived temperatures and the theoretical temperatures calculated from the inlet conditions. The technique used to obtain the temperature uses the relationship between the N2 anti-Stokes and Stokes signals, within a given Raman spectrum. The test was performed using a NASA-concept fuel injector and Jet-A fuel over a range of fuel/air ratios. This work represents the first such measurements in a high-pressure, research aero-combustor facility.

  14. Fuel nozzle assembly for use as structural support for a duct structure in a combustor of a gas turbine engine

    Science.gov (United States)

    Wiebe, David J; Fox, Timothy A

    2015-03-31

    A fuel nozzle assembly for use in a combustor apparatus of a gas turbine engine. An outer housing of the fuel nozzle assembly includes an inner volume and provides a direct structural connection between a duct structure and a fuel manifold. The duct structure defines a flow passage for combustion gases flowing within the combustor apparatus. The fuel manifold defines a fuel supply channel therein in fluid communication with a source of fuel. A fuel injector of the fuel nozzle assembly is provided in the inner volume of the outer housing and defines a fuel passage therein. The fuel passage is in fluid communication with the fuel supply channel of the fuel manifold for distributing the fuel from the fuel supply channel into the flow passage of the duct structure.

  15. Numerical Investigation on Hydrogen-Fueled Scramjet Combustor with Parallel Strut Fuel Injector at a Flight Mach Number of 6

    Directory of Open Access Journals (Sweden)

    Krishna Pandey

    2016-01-01

    Full Text Available A numerical analysis of the inlet-combustor interaction and flow structure through a scramjet engine at a flight Mach number M = 6 with parallel injection (Strut with circular inlet is presented in the present research article. Three different angles of attack (α=-4°, α=0°, α=4° have been studied for parallel injection. The scramjet configuration used here is a modified version of DLR scramjet model. Fuel is injected at supersonic speed (M=2 through a parallel strut injector. For parallel injection, the shape of the strut is chosen in a way to produce strong stream wise vorticity and thus to enhance the hydrogen/air mixing inside the combustor. These numerical simulations are aimed to study the flow structure, supersonic mixing, and combustion phenomena for the three different types of geometries along with circular shaped strut configuration.

  16. Application of Multi-Port Mixing for Passive Suppression of Thermo-Acoustic Instabilities in Premixed Combustors

    OpenAIRE

    Farina, Jordan T

    2013-01-01

    The utilization of lean premixed combustors has become attractive to designers of industrial gas turbines as a means of meeting strict emissions standards without compromising efficiency.  Mixing the fuel and air prior to combustion allows for lower temperature flame zones, creating the potential for drastically reduced nitrous oxide emissions.  While effective, these systems are commonly plagued by combustion driven instabilities.  These instabilities produce large pressure and heat release ...

  17. Testing of DLR C/C-SiC and C/C for HIFiRE 8 Scramjet Combustor

    Science.gov (United States)

    Glass, David E.; Capriotti, Diego P.; Reimer, Thomas; Kutemeyer, Marius; Smart, Michael K.

    2014-01-01

    Ceramic Matrix Composites (CMCs) have been proposed for use as lightweight hot structures in scramjet combustors. Previous studies have calculated significant weight savings by utilizing CMCs (active and passive) versus actively cooled metallic scramjet structures. Both a carbon/carbon (C/C) and a carbon/carbon-silicon carbide (C/C-SiC) material fabricated by DLR (Stuttgart, Germany) are being considered for use in a passively cooled combustor design for Hypersonic International Flight Research Experimentation (HIFiRE) 8, a joint Australia / Air Force Research Laboratory hypersonic flight program, expected to fly at Mach 7 for approximately 30 sec, at a dynamic pressure of 55 kilopascals. Flat panels of the DLR C/C and C/C-SiC materials were installed downstream of a hydrogen-fueled, dual-mode scramjet combustor and tested for several minutes at conditions simulating flight at Mach 5 and Mach 6. Gaseous hydrogen fuel was used to fuel the scramjet combustor. The test panels were instrumented with embedded Type K and Type S thermocouples. Zirconia felt insulation was used during some of the tests to reduce heat loss from the back surface and thus increase the heated surface temperature of the C/C-SiC panel approximately 177 C (350 F). The final C/C-SiC panel was tested for three cycles totaling over 135 sec at Mach 6 enthalpy. Slightly more erosion was observed on the C/C panel than the C/C-SiC panels, but both material systems demonstrated acceptable recession performance for the HIFiRE 8 flight.

  18. Optical Characterization of a Multipoint Lean Direct Injector for Gas Turbine Combustors: Velocity and Fuel Drop Size Measurements

    Science.gov (United States)

    Heath, Christopher M.; Anderson, Robert C.; Locke, Randy J.; Hicks, Yolanda R.

    2010-01-01

    Performance of a multipoint, lean direct injection (MP-LDI) strategy for low emission aero-propulsion systems has been tested in a Jet-A fueled, lean flame tube combustion rig. Operating conditions for the series of tests included inlet air temperatures between 672 and 828 K, pressures between 1034 and 1379 kPa and total equivalence ratios between 0.41 and 0.45, resulting in equilibrium flame temperatures approaching 1800 K. Ranges of operation were selected to represent the spectrum of subsonic and supersonic flight conditions projected for the next-generation of commercial aircraft. This document reports laser-based measurements of in situ fuel velocities and fuel drop sizes for the NASA 9-point LDI hardware arranged in a 3 3 square grid configuration. Data obtained represent a region of the flame tube combustor with optical access that extends 38.1-mm downstream of the fuel injection site. All data were obtained within reacting flows, without particle seeding. Two diagnostic methods were employed to evaluate the resulting flow path. Three-component velocity fields have been captured using phase Doppler interferometry (PDI), and two-component velocity distributions using planar particle image velocimetry (PIV). Data from these techniques have also offered insight into fuel drop size and distribution, fuel injector spray angle and pattern, turbulence intensity, degree of vaporization and extent of reaction. This research serves to characterize operation of the baseline NASA 9- point LDI strategy for potential use in future gas-turbine combustor applications. An additional motive is the compilation of a comprehensive database to facilitate understanding of combustor fuel injector aerodynamics and fuel vaporization processes, which in turn may be used to validate computational fluid dynamics codes, such as the National Combustor Code (NCC), among others.

  19. Experimental Evaluation of the Density Ratio Effects on the Cooling Performance of a Combined Slot/Effusion Combustor Cooling System

    OpenAIRE

    Lorenzo Tarchi; Bruno Facchini; Gianluca Caciolli; Antonio Andreini

    2013-01-01

    The purpose of this study is to investigate the effects of coolant-to-mainstream density ratio on a real engine cooling scheme of a combustor liner composed of a slot injection and an effusion array with a central dilution hole. Measurements of heat transfer coefficient and adiabatic effectiveness were performed by means of steady-state thermochromic liquid crystals technique; experimental results were used to estimate, through a 1D thermal procedure, the Net Heat Flux Reduction and the overa...

  20. A novel liquid system of catalytic hydrogenation

    Institute of Scientific and Technical Information of China (English)

    LI; XiaoNian; XIANG; YiZhi

    2007-01-01

    On the basis that endothermic aqueous-phase reforming of oxygenated hydrocarbons for H2 production and exothermic liquid phase hydrogenation of organic compounds are carried out under extremely close conditions of temperature and pressure over the same type of catalyst, a novel liquid system of catalytic hydrogenation has been proposed, in which hydrogen produced from aqueous-phase reforming of oxygenated hydrocarbons is in situ used for liquid phase hydrogenation of organic compounds. The usage of active hydrogen generated from aqueous-phase reforming of oxygenated hydrocarbons for liquid catalytic hydrogenation of organic compounds could lead to increasing the selectivity to H2 in the aqueous-phase reforming due to the prompt removal of hydrogen on the active centers of the catalyst. Meanwhile, this novel liquid system of catalytic hydrogenation might be a potential method to improve the selectivity to the desired product in liquid phase catalytic hydrogenation of organic compounds. On the other hand, for this novel liquid system of catalytic hydrogenation, some special facilities for H2 generation, storage and transportation in traditional liquid phase hydrogenation industry process are yet not needed. Thus, it would simplify the working process of liquid phase hydrogenation and increase the energy usage and hydrogen productivity.

  1. Thermal Barrier and Protective Coatings to Improve the Durability of a Combustor Under a Pulse Detonation Engine Environment

    Science.gov (United States)

    Ghosn, Louis J.; Zhu, Dongming

    2008-01-01

    Pulse detonation engine (PDE) concepts are receiving increasing attention for future aeronautic propulsion applications, due to their potential thermodynamic cycle efficiency and higher thrust to density ratio that lead to the decrease in fuel consumption. But the resulting high gas temperature and pressure fluctuation distributions at high frequency generated with every detonation are viewed to be detrimental to the combustor liner material. Experimental studies on a typical metal combustion material exposed to a laser simulated pulse heating showed extensive surface cracking. Coating of the combustor materials with low thermal conductivity ceramics is shown to protect the metal substrate, reduce the thermal stresses, and hence increase the durability of the PDE combustor liner material. Furthermore, the temperature fluctuation and depth of penetration is observed to decrease with increasing the detonation frequency. A crack propagation rate in the coating is deduced by monitoring the variation of the coating apparent thermal conductivity with time that can be utilized as a health monitoring technique for the coating system under a rapid fluctuating heat flux.

  2. Investigation of combustion control in a dump combustor using the feedback free fluidic oscillator

    Science.gov (United States)

    Meier, Eric J.

    The feedback free fluidic oscillator uses the unsteady nature of two colliding jets to create a single oscillating outlet jet with a wide sweep angle. These devices have the potential to provide additional combustion control, boundary layer control, thrust vectoring, and industrial flow deflection. Two-dimensional computational fluid dynamics, CFD, was used to analyze the jet oscillation frequency over a range of operating conditions and to determine the effect that geometric changes in the oscillator design have on the frequency. Results presented illustrate the changes in jet oscillation frequency with gas type, gas temperature, operating pressure, pressure ratio across the oscillator, aspect ratio of the oscillator, and the frequency trends with various changes to the oscillator geometry. A fluidic oscillator was designed and integrated into single element rocket combustor with the goal of suppressing longitudinal combustion instabilities. An array of nine fluidic oscillators was tested to mimic modulated secondary oxidizer injection into the dump plane using 15% of the oxidizer flow. The combustor has a coaxial injector that uses gaseous methane and decomposed hydrogen peroxide at an O/F of 11.66. A sonic choke plate on an actuator arm allows for continuous adjustment of the oxidizer post acoustics for studying a variety of instability magnitudes. The fluidic oscillator unsteady outlet jet performance is compared with equivalent steady jet injection and a baseline design with no secondary oxidizer injection. At the most unstable operating conditions, the unsteady outlet jet saw a 60% reduction in the instability pressure oscillation magnitude when compared to the steady jet and baseline data. The results indicate open loop propellant modulation for combustion control can be achieved through fluidic devices that require no moving parts or electrical power to operate. Three-dimensional computational fluid dynamics, 3-D CFD, was conducted to determine the

  3. 单、双环腔燃烧室燃烧性能的对比%Combustion Captibility Comparison of Single Annular Combustor and Dual Annular Combustor

    Institute of Scientific and Technical Information of China (English)

    李锋; 程明; 李龙贤; 彭浪青; 尚守堂

    2011-01-01

    In order to change a Single Annular Combustor(SAC) into a Dual Annular Combustor(DAC), the authors kept the diffuser,outer case and atomize of the SAC unchanged,redesigned the combustor from a single annular structure into a dual annular structure,and designed six different structure DAC. Taking the same physical models(including the turbulence, radiation, spray and emission models), simulations of three dimensional two-phase reacting turbulent flow in both the SAC and DAC were developed in the Fluent Code. The total-pressure recovery coefficient, temperature distribution and exhaust emission levels were given. Finally,by comparing the simulation results,the feasibility of displacing the SAC into DAC structure was certified.%保持单环腔主燃烧室的扩压器,外机匣最大直径尺寸以及喷口不变的前提下,将其火焰筒结构重新设计为并联式双环腔结构,设计了6种不同旋流器组合的双环腔结构燃烧室.采用相同的物理模型(包括湍流模型、辐射模型、喷雾模型及污染排放模型等),对单、双环腔主燃烧室分别进行全流程的三维计算.给出了燃烧室的总压恢复系数、燃烧效率、燃烧室出口温度分布系数、污染排放指标等燃烧室性能参数.对比分析了单、双环腔燃烧室的计算结果.结果表明,双环腔燃烧室置换单环腔燃烧室是可行的,该研究可为大飞机低污染大法动机的设计提供技术支持.

  4. Laser High-Cycle Thermal Fatigue of Pulse Detonation Engine Combustor Materials Tested

    Science.gov (United States)

    Zhu, Dong-Ming; Fox, Dennis S.; Miller, Robert A.

    2001-01-01

    Pulse detonation engines (PDE's) have received increasing attention for future aerospace propulsion applications. Because the PDE is designed for a high-frequency, intermittent detonation combustion process, extremely high gas temperatures and pressures can be realized under the nearly constant-volume combustion environment. The PDE's can potentially achieve higher thermodynamic cycle efficiency and thrust density in comparison to traditional constant-pressure combustion gas turbine engines (ref. 1). However, the development of these engines requires robust design of the engine components that must endure harsh detonation environments. In particular, the detonation combustor chamber, which is designed to sustain and confine the detonation combustion process, will experience high pressure and temperature pulses with very short durations (refs. 2 and 3). Therefore, it is of great importance to evaluate PDE combustor materials and components under simulated engine temperatures and stress conditions in the laboratory. In this study, a high-cycle thermal fatigue test rig was established at the NASA Glenn Research Center using a 1.5-kW CO2 laser. The high-power laser, operating in the pulsed mode, can be controlled at various pulse energy levels and waveform distributions. The enhanced laser pulses can be used to mimic the time-dependent temperature and pressure waves encountered in a pulsed detonation engine. Under the enhanced laser pulse condition, a maximum 7.5-kW peak power with a duration of approximately 0.1 to 0.2 msec (a spike) can be achieved, followed by a plateau region that has about one-fifth of the maximum power level with several milliseconds duration. The laser thermal fatigue rig has also been developed to adopt flat and rotating tubular specimen configurations for the simulated engine tests. More sophisticated laser optic systems can be used to simulate the spatial distributions of the temperature and shock waves in the engine. Pulse laser high

  5. Characterization of Ceramic Matrix Composite Combustor Components: Pre and Post Exposure

    Science.gov (United States)

    Ojard, G.; Linsey, G.; Brennan, J.; Naik, R.; Cairo, R.; Stephan, R.; Hornick, J.; Brewer, D.

    2001-01-01

    The pursuit of lower emissions and higher performance from gas turbine engines requires the development of innovative concepts and the use of advanced materials for key engine components. One key engine component is the combustor, where innovative design and material improvements have the potential to lower emissions. Efforts to develop a High Speed Civil Transport with low emissions were focused on the evaluation of combustor concepts with liners fabricated from a ceramic matrix composite of silicon carbide fibers in a silicon carbide matrix (SiC/SiC). The evaluation of SiC/SiC composites progressed from simple coupons (to establish a first-order database and identify operant failure mechanisms and damage accumulation processes), to feature-based subelements (to assess fabricability and in situ material response), to actual components (to assess structural integrity, dimensional, and compositional fidelity) tested under simulated engine conditions. As in the case of all evolutionary material and process work, a key element to resolving fabrication issues is the evaluation of witness areas taken from fabricated components before testing the actual component. The witness material from these components allowed microstructural and mechanical testing to be performed and compared to the ideal, flat panel, conditions and data that are typical of basic characterization. This also allowed samples of similar design to be taken from components after 115 hours of combustion exposure. Testing consisted of tensile, double notch shear, ring burst, and thermal conductivity that sampled various regions of the components. The evaluation of the witness material allowed an understanding of the fabrication process, highlighting critical issues, in an early phase of the learning curve development of these configuration and material unique parts. Residual property testing, after exposure, showed if degradation of the material under actual service conditions was occurring. This paper

  6. Highly Dense Isolated Metal Atom Catalytic Sites

    DEFF Research Database (Denmark)

    Chen, Yaxin; Kasama, Takeshi; Huang, Zhiwei; Hu, Pingping; Chen, Jianmin; Liu, Xi; Tang, Xingfu

    2015-01-01

    Atomically dispersed noble-metal catalysts with highly dense active sites are promising materials with which to maximise metal efficiency and to enhance catalytic performance; however, their fabrication remains challenging because metal atoms are prone to sintering, especially at a high metal...... loading. A dynamic process of formation of isolated metal atom catalytic sites on the surface of the support, which was achieved starting from silver nanoparticles by using a thermal surface-mediated diffusion method, was observed directly by using in situ electron microscopy and in situ synchrotron X......-ray diffraction. A combination of electron microscopy images with X-ray absorption spectra demonstrated that the silver atoms were anchored on five-fold oxygen-terminated cavities on the surface of the support to form highly dense isolated metal active sites, leading to excellent reactivity in catalytic oxidation...

  7. ADAR proteins: structure and catalytic mechanism.

    Science.gov (United States)

    Goodman, Rena A; Macbeth, Mark R; Beal, Peter A

    2012-01-01

    Since the discovery of the adenosine deaminase (ADA) acting on RNA (ADAR) family of proteins in 1988 (Bass and Weintraub, Cell 55:1089-1098, 1988) (Wagner et al. Proc Natl Acad Sci U S A 86:2647-2651, 1989), we have learned much about their structure and catalytic mechanism. However, much about these enzymes is still unknown, particularly regarding the selective recognition and processing of specific adenosines within substrate RNAs. While a crystal structure of the catalytic domain of human ADAR2 has been solved, we still lack structural data for an ADAR catalytic domain bound to RNA, and we lack any structural data for other ADARs. However, by analyzing the structural data that is available along with similarities to other deaminases, mutagenesis and other biochemical experiments, we have been able to advance the understanding of how these fascinating enzymes function. PMID:21769729

  8. Catalytic nanoarchitectonics for environmentally compatible energy generation

    Directory of Open Access Journals (Sweden)

    Hideki Abe

    2016-01-01

    Full Text Available Environmentally compatible energy management is one of the biggest challenges of the 21st century. Low-temperature conversion of chemical to electrical energy is of particular importance to minimize the impact to the environment while sustaining the consumptive economy. In this review, we shed light on one of the most versatile energy-conversion technologies: heterogeneous catalysts. We establish the integrity of structural tailoring in heterogeneous catalysts at different scales in the context of an emerging paradigm in materials science: catalytic nanoarchitectonics. Fundamental backgrounds of energy-conversion catalysis are first provided together with a perspective through state-of-the-art energy-conversion catalysis including catalytic exhaust remediation, fuel-cell electrocatalysis and photosynthesis of solar fuels. Finally, the future evolution of catalytic nanoarchitectonics is overviewed: possible combinations of heterogeneous catalysts, organic molecules and even enzymes to realize reaction-selective, highly efficient and long-life energy conversion technologies which will meet the challenge we face.

  9. Xylan-Degrading Catalytic Flagellar Nanorods.

    Science.gov (United States)

    Klein, Ágnes; Szabó, Veronika; Kovács, Mátyás; Patkó, Dániel; Tóth, Balázs; Vonderviszt, Ferenc

    2015-09-01

    Flagellin, the main component of flagellar filaments, is a protein possessing polymerization ability. In this work, a novel fusion construct of xylanase A from B. subtilis and Salmonella flagellin was created which is applicable to build xylan-degrading catalytic nanorods of high stability. The FliC-XynA chimera when overexpressed in a flagellin deficient Salmonella host strain was secreted into the culture medium by the flagellum-specific export machinery allowing easy purification. Filamentous assemblies displaying high surface density of catalytic sites were produced by ammonium sulfate-induced polymerization. FliC-XynA nanorods were resistant to proteolytic degradation and preserved their enzymatic activity for a long period of time. Furnishing enzymes with self-assembling ability to build catalytic nanorods offers a promising alternative approach to enzyme immobilization onto nanostructured synthetic scaffolds. PMID:25966869

  10. Flow parameters of IC engine catalytic converters

    Energy Technology Data Exchange (ETDEWEB)

    Zmudka, Z.; Postrzednik, S. [Silesian Univ. of Tech., Gliwice (Poland)

    2007-07-01

    Conversion rate of harmful substances is the principal parameter of catalyst work in respect of ecology. However, resistance of exhaust gas flow through the catalytic converter is also essential problem, apart from its chemical efficiency because fitting the catalyst in exhaust system alters flow characteristic of this system significantly. Catalytic converter can be treated as local or linear resistance element of exhaust system. The first model, in which flow resistance generated by a catalyst is treated as local resistance, is more simplified. Resistance number of the converter was calculated using Darcy model. In the second case, exhaust gas flow resistance through catalyst is treated as linear resistance with energy dissipation (linear frictional resistance) distributed linearly along way of exhaust gas flow. Friction number for the tested converter was calculated and analysed. The problem has been illustrated by results of experimental researches of three-way catalytic converter installed in exhaust system of spark ignition engine and its basic analysis. (orig.)

  11. Electro Catalytic Oxidation (ECO) Operation

    Energy Technology Data Exchange (ETDEWEB)

    Morgan Jones

    2011-03-31

    The power industry in the United States is faced with meeting many new regulations to reduce a number of air pollutants including sulfur dioxide, nitrogen oxides, fine particulate matter, and mercury. With over 1,000 power plants in the US, this is a daunting task. In some cases, traditional pollution control technologies such as wet scrubbers and SCRs are not feasible. Powerspan's Electro-Catalytic Oxidation, or ECO{reg_sign} process combines four pollution control devices into a single integrated system that can be installed after a power plant's particulate control device. Besides achieving major reductions in emissions of sulfur dioxide (SO{sub 2}), nitrogen oxides (NOx), fine particulate matter (PM2.5) and mercury (Hg), ECO produces a highly marketable fertilizer, which can help offset the operating costs of the process system. Powerspan has been operating a 50-MW ECO commercial demonstration unit (CDU) at FirstEnergy Corp.'s R.E. Burger Plant near Shadyside, Ohio, since February 2004. In addition to the CDU, a test loop has been constructed beside the CDU to demonstrate higher NOx removal rates and test various scrubber packing types and wet ESP configurations. Furthermore, Powerspan has developed the ECO{reg_sign}{sub 2} technology, a regenerative process that uses a proprietary solvent to capture CO{sub 2} from flue gas. The CO{sub 2} capture takes place after the capture of NOx, SO{sub 2}, mercury, and fine particulate matter. Once the CO{sub 2} is captured, the proprietary solution is regenerated to release CO{sub 2} in a form that is ready for geological storage or beneficial use. Pilot scale testing of ECO{sub 2} began in early 2009 at FirstEnergy's Burger Plant. The ECO{sub 2} pilot unit is designed to process a 1-MW flue gas stream and produce 20 tons of CO{sub 2} per day, achieving a 90% CO{sub 2} capture rate. The ECO{sub 2} pilot program provided the opportunity to confirm process design and cost estimates, and prepare for large

  12. A catalytic surface for amyloid fibril formation

    Energy Technology Data Exchange (ETDEWEB)

    Hammarstroem, P; Ali, M M; Mishra, R; Tengvall, P; Lundstroem, I [Department of Physics, Biology and Chemistry, Linkoeping University, SE-581 83 Linkoeping (Sweden); Svensson, S [Astra Zeneca R and D, SE-151 85 Soedertaelje (Sweden)], E-mail: ingemar@ifm.liu.se

    2008-03-15

    A hydrophobic surface incubated in a solution of protein molecules (insulin monomers) was made into a catalytic surface for amyloid fibril formation by repeatedly incubate, rinse and dry the surface. The present contribution describes how this unexpected transformation occurred and its relation to rapid fibrillation of insulin solutions in contact with the surface. A tentative model of the properties of the catalytic surface is given, corroborated by ellipsometric measurements of the thickness of the organic layer on the surface and by atomic force microscopy. The surfaces used were spontaneously oxidized silicon made hydrophobic through treatment in dichlorodimethylsilane.

  13. Thermal and catalytic pyrolysis of plastic waste

    Directory of Open Access Journals (Sweden)

    Débora Almeida

    2016-02-01

    Full Text Available Abstract The amount of plastic waste is growing every year and with that comes an environmental concern regarding this problem. Pyrolysis as a tertiary recycling process is presented as a solution. Pyrolysis can be thermal or catalytical and can be performed under different experimental conditions. These conditions affect the type and amount of product obtained. With the pyrolysis process, products can be obtained with high added value, such as fuel oils and feedstock for new products. Zeolites can be used as catalysts in catalytic pyrolysis and influence the final products obtained.

  14. Catalytic Enantioselective Functionalization of Unactivated Terminal Alkenes.

    Science.gov (United States)

    Coombs, John R; Morken, James P

    2016-02-01

    Terminal alkenes are readily available functional groups which appear in α-olefins produced by the chemical industry, and they appear in the products of many contemporary synthetic reactions. While the organic transformations that apply to alkenes are amongst the most studied reactions in all of chemical synthesis, the number of reactions that apply to nonactivated terminal alkenes in a catalytic enantioselective fashion is small in number. This Minireview highlights the cases where stereocontrol in catalytic reactions of 1-alkenes is high enough to be useful for asymmetric synthesis. PMID:26764019

  15. Catalytic gasification of oil-shales

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.; Avakyan, T. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation); Strizhakova, Yu. [Samara State Univ. (Russian Federation)

    2012-07-01

    Nowadays, the problem of complex usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. A one of possible solutions of the problem is their gasification with further processing of gaseous and liquid products. In this work we have investigated the process of thermal and catalytic gasification of Baltic and Kashpir oil-shales. We have shown that, as compared with non-catalytic process, using of nickel catalyst in the reaction increases the yield of gas, as well as hydrogen content in it, and decreases the amount of liquid products. (orig.)

  16. Heterogeneous Catalytic Ozonization of Sulfosalicylic Acid

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper describes the potential of heterogeneous catalytic ozonization of sulfo-salicylic acid (SSal). It was found that catalytic ozonization in the presence of Mn-Zr-O (a modified manganese dioxide supported on silica gel) had significantly enhanced the removal rate (72%) of total organic carbon (TOC) compared with that of ozonization alone (19%). The efficient removal rate of TOC was probably due to increasing the adsorption ability of catalyst and accelerating decomposition of ozone to produce more powerful oxidants than ozone.

  17. Spatially distributed flame transfer functions for predicting combustion dynamics in lean premixed gas turbine combustors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.T.; Lee, J.G.; Quay, B.D.; Santavicca, D.A. [Center for Advanced Power Generation, Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA (United States)

    2010-09-15

    The present paper describes a methodology to improve the accuracy of prediction of the eigenfrequencies and growth rates of self-induced instabilities and demonstrates its application to a laboratory-scale, swirl-stabilized, lean-premixed, gas turbine combustor. The influence of the spatial heat release distribution is accounted for using local flame transfer function (FTF) measurements. The two-microphone technique and CH{sup *} chemiluminescence intensity measurements are used to determine the input (inlet velocity perturbation) and the output functions (heat release oscillation), respectively, for the local flame transfer functions. The experimentally determined local flame transfer functions are superposed using the flame transfer function superposition principle, and the result is incorporated into an analytic thermoacoustic model, in order to predict the linear stability characteristics of a given system. Results show that when the flame length is not acoustically compact the model prediction calculated using the local flame transfer functions is better than the prediction made using the global flame transfer function. In the case of a flame in the compact flame regime, accurate predictions of eigenfrequencies and growth rates can be obtained using the global flame transfer function. It was also found that the general response characteristics of the local FTF (gain and phase) are qualitatively the same as those of the global FTF. (author)

  18. Focused Schlieren flow visualization studies of multiple venturi fuel injectors in a high pressure combustor

    Science.gov (United States)

    Chun, K. S.; Locke, R. J.; Lee, C. M.; Ratvasky, W. J.

    1994-01-01

    Multiple venturi fuel injectors were used to obtain uniform fuel distributions, better atomization and vaporization in the premixing/prevaporizing section of a lean premixed/prevaporized flame tube combustor. A focused Schlieren system was used to investigate the fuel/air mixing effectiveness of various fuel injection configurations. The Schlieren system was focused to a plane within the flow field of a test section equipped with optical windows. The focused image plane was parallel to the axial direction of the flow and normal to the optical axis. Images from that focused plane, formed by refracted light due to density gradients within the flow field, were filmed with a high-speed movie camera at framing rates of 8,000 frames per second (fps). Three fuel injection concepts were investigated by taking high-speed movies of the mixture flows at various operating conditions. The inlet air temperature was varied from 600 F to 1000 F, and inlet pressures from 80 psia to 150 psia. Jet-A fuel was used typically at an equivalence ratio of 0.5. The intensity variations of the digitized Schlieren images were analytically correlated to spatial density gradients of the mixture flows. Qualitative measurements for degree of mixedness, intensity of mixing, and mixing completion time are shown. Various mixing performance patterns are presented with different configurations of fuel injection points and operating conditions.

  19. Experimental investigations on the power extraction of a turbine driven by a pulse detonation combustor

    Institute of Scientific and Technical Information of China (English)

    Li Xiaofeng; Zheng Longxi; Qiu Hua; Chen Jingbin

    2013-01-01

    In order to grasp the interaction mechanism between the pulse detonation combustor (PDC) and the turbine, the experimental work in this paper investigates the key factors on the power extraction of a turbocharger turbine driven by a PDC. A PDC consisting of an unvalved tube is integrated with a turbocharger turbine which has a nominal mass flow rate of 0.6 kg/s and 50000 r/min. The PDC-turbine hybrid engine is operated on gasoline-air mixtures and runs for 6+min to achieve a thermal steady state, and then the engine performance is evaluated under dif-ferent operating conditions. Results show that the momentum difference per unit area between the turbine inlet and outlet plays an important role in the power extraction, while the pressure peak of the detonation has little effect. The equivalence ratio of fuel and air mixture and the transition structure between PDC and turbine are also important to the power extraction of the turbine. The present work is promising as it suggests that the performance benefit of a PDC-turbine hybrid engine can be realized by increasing the momentum difference per unit area through the optimal design of transition section between the PDC and turbine.

  20. The use of activated char for flue gas polishing in municipal and hazardous waste combustors

    Energy Technology Data Exchange (ETDEWEB)

    Hartenstein, H.U.; Steinmueller, L.C.

    1996-10-01

    In the year of 1989/1990 stringent new emission requirements were introduced for municipal (MWC`s) and hazardous waste combustors (HWC`s) in Central Europe. These laws reducing not only the former emission values of most pollutants by a factor of 20 or more, also introduced new pollutants to be regulated such as dioxins (PCDD`s) and furans (PCDF`s). In order to meet these new laws a new generation of air pollution control (APC) equipment had to developed. Most of the new techniques are based on the use of some kind of activated carbon which allows for the low emission values required. This paper describes the ACR (activated char reactor) technology developed by the L. & C. Steinmutler GmbH, Gummersbach through its 100% subsidiary Hugo Petersen GmbH & Co. KG, Wiesbaden Germany. The ACR technology utilizes the excellent adsorption capabilities of activated char for a wide variety of air pollutants at the tail end and of the APC-train for flue gas polishing. The paper details the design as well as the removal capabilities of the technique. It outlines several full scale applications in Europe an provides data from various installations.

  1. Development of combustion response functions in a subscale high-pressure transverse combustor

    Science.gov (United States)

    Wierman, M.; Pomeroy, B.; Anderson, W.

    2016-07-01

    Combustion response functions describe the magnitude and time lag behavior of a flame in response to unsteady pressure and velocity. By understanding the feedback between unsteady flowfields and heat release, the growth and decay of combustion instability can be better predicted. An automated data isolation and reduction method has been developed to generate meaningful graphical combustion response functions from a combination of pressure amplitude and various image analysis metrics. It was developed and tested using pressure measurements and high-speed imaging of combustion light taken from a single element at the midspan of an unstable high-pressure subscale transverse combustor. The code was used to isolate time slices of near stationary pressure amplitude and to process the corresponding images into combustion response approximated by aggregate intensity, intensity weighted spatial center, Proper Orthogonal Decomposition (POD), and Dynamic Mode Decomposition (DMD). Overall, the generated combustion response functions generally agreed with expected behavior of an element located at a first width (1W) velocity antinode and second width (2W) pressure antinode. Results from both POD and DMD successfully isolated the prominent spatial and temporal light emission behavior.

  2. Development of natural gas injection technology for NOx reduction from municipal waste combustors

    International Nuclear Information System (INIS)

    Natural gas injection (NGI) technology for reducing NOx emissions from municipal waste combustors (MWCs) is being developed. The approach developed (termed METHANE de-NOx) is based on extensive, full-scale, MWC in-furnace characterization followed by pilot-scale testing using simulated combustion products that would result from the firing of 1.7 x 106 Btu/h (0.5 MWth) municipal solid wastes (MSW). A full-scale natural gas injection system has been designed and retrofitted to a 100-ton/day Riley/Takuma mass burn system at the Olmsted County Waste-to-Energy facility. The system was designed to provide variation in the key parameters to not only optimize the process for the Olmsted unit, but also to acquire design data for MWCs of other sizes and designs. Extensive testing was conducted in December 1990 and January 1991 to evaluate the effectiveness of NGI. This paper concentrates on the METHANE de-NOx system retrofit and testing. The results show simultaneous reductions of 60% in NOx, 50% in CO, and 40% in excess air requirement with natural gas injection

  3. An Integrated Approach for Optimal Design of Micro Gas Turbine Combustors

    Institute of Scientific and Technical Information of China (English)

    Luca Fuligno; Diego Micheli; Carlo Poloni

    2009-01-01

    The present work presents an approach for the optimized design of small gas turbine combustors, that integrates a 0-D code, CFD analyses and an advanced game theory multi-objective optimization algorithm. The output of the 0-D code is a baseline design of the comhustor, given the required fuel characteristics, the basic geometry (tubular or annular) and the combustion concept (i.e. lean premixed primary zone or diffusive processes). For the optimi-zation of the baseline design a simplified parametric CAD/mesher model is then defined and submitted to a CFD code. Free parameters of the optimization process are position and size of the liner hole arrays, their total area and the shape of the exit duct, while different objectives are the minimization of NO, emissions, pressure losses and comhustor exit Pattern Factor. A 3D simulation of the optimized geometry completes the design procedure. As a first demonstrative example, the integrated design process was applied to a tubular combustion chamber with a lean premixed primary zone for a recuperative methane-fuelled small gas turbine of the 100 kW class.

  4. Development of a micro gas turbine combustor with T-type vaporizers

    Institute of Scientific and Technical Information of China (English)

    XU Quan-hong; LIU Jun; XU Jian; LIN Yu-zhen; LIU Gao-en

    2007-01-01

    The study includes the experimental investigation of the evaporation performance of T-type vaporizer, mainly studied the relationship of the inlet air temperature and vaporizer wall temperature with the evaporation ratio. Then, it studied the LBO(lean blow out) and combustion efficiency of the micro aero-engine combustor with T-type vaporizer on the normal pressure test rig. The inlet air condition is environmental pressure and temperature. The gas analysis method is used to study the combustion efficiency, and the inlet air temperature is 300 K, 400 K and 500 K.It could be concluded that the evaporation performance is improved with the increasing of the inlet air temperature and vaporizer wall temperature;the average LBO is 0.003;the combustion efficiency rises with the inlet air temperature, and it remain constant when the fuel/air ratio changed in the range from 0.008 to 0.02. The vaporization ratio is the key factor to determine the combustion performance.

  5. Advanced atomization concept for CWF burning in small combustors, Phase 2

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, H.; McHale, E.

    1991-01-01

    The present project involves the second phase of research on a new concept in coal-water fuel (CWF) atomization that is applicable to burning in small combustors. It is intended to address the single most important problem associated with CWF combustion; i.e., production of small spray droplets in an efficient manner by an atomization device. Phase 1 of this work was successfully completed with the development of a opposed-jet atomizer (described below) that met the goals of the first contract. Progress was made on Tasks 1, 2, 3 and 7, involving set-up of the prototype atomizer and preliminary testing; designing and ordering the PETC atomizer; identifying and ordering the Parker-Hannifin atomizer; and producing the bituminous CWF (Fuel A), respectively. Work on Tasks 4, 5 and 6 is expected to begin next quarter. There has been a delay in acquiring two items for the program -- the Parker-Hannifin atomizer and the western bituminous coal for Fuel B. 1 fig.

  6. A comparative analysis of two solid mixing models suitable for coal fluidized bed combustors and gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, J.C.; Atares, S.; Grasa, G.

    1999-07-01

    Rapid solid mixing is important to avoid undesirable temperature profiles in fluidized beds combustors and gasifiers. In this work, two alternative mathematical models for solid axial mixing are compared and their suitability for coal based fluidized beds is discussed. The two models: the Dispersion Model (May (1959)) and the Countercurrent Backmixing Model (van Deemter (1967)) were postulated early in the development of fluidized beds and both have been applied successfully despite their fundamental differences in conception. A numerical analysis investigating the convergence in the predictions of both models under practical conditions has been carried out. There is a wide area of practical interest in which both models are close (relative to typical experimental errors). Reasonable values for the bubble/slug parameters in the CCBM model are able to fit data where the dispersion model has been previously successful. This result has been confirmed with both their experimental data and other published works. The conclusion from this analysis is that the CCBM model is more reliable idealization in describing and scaling up solid mixing in coal based fluidized beds.

  7. Energy recovery from heavy ASR by co-incineration in a fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, Isabel; Caneghem, Jo van; Block, Chantal; Vandecasteele, Carlo [University of Leuven, Department of Chemical Engineering, Leuven (Belgium); Brecht, Andres van; Wauters, Guido [Indaver NV, Mechelen (Belgium)

    2012-10-15

    Automotive shredder residue (ASR) is a heterogeneous waste stream with varying particle size and elemental composition. Owing to its complexity and hazardous characteristics, landfilling of ASR is still a common practice. Nevertheless, incineration with energy recovery of certain ASR fractions (Waste-to-Energy, WtE) emerges as an interesting alternative. In a full scale experiment, a waste mix of 25 % heavy ASR, 25 % refuse derived fuel (RDF), and 50 % waste water treatment (WWT) sludge was incinerated in the SLECO fluidized bed combustor (FBC) at the Indaver site in Antwerp, Belgium. Input and output streams were sampled and analyzed to make an inventory of the most important pollutants and toxics. The inventory was further used to determine the environmental impact. Results are compared to those of two other scenarios: incineration of the usual waste feed (70 % RDF and 30 % WWT sludge) and co-incineration of 39 % ASR with 61 % WWT sludge. It can be concluded that co-incineration of heavy ASR in an existing FBC is a valid and clean technology to increase current reuse and recovery rates. In the considered FBC, 27 % of the energetic value of ASR can be recovered, while all emissions remain well below regulatory limits and only 12.6 % of the heavy ASR needs to be landfilled. The proportion of ASR in the input waste mix is however limited by the heavy metal concentration in the ASR and the generated ashes. (orig.)

  8. Effect of secondary air injection on the combustion efficiency of sawdust in a fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    K. V. N. Srinivasa Rao

    2008-03-01

    Full Text Available Agricultural wastes like bagasse, paddy husks, sawdust and groundnut shells can be effectively used as fuels for fluidized bed combustion; otherwise these biomass fuels are difficult to handle due to high moisture and fines content. In the present work the possibility of using sawdust in the fluidized bed combustor, related combustion efficiencies and problems encountered in the combustion process are discussed. The temperature profiles for sawdust with an increase in fluidizing velocity along the vertical height above the distributor plate indicate that considerable burning of fuel particles is taking place in the freeboard zone rather than complete burning within the bed. Therefore, an enlarged disengagement section is provided to improve the combustion of fines. The temperature profiles along the bed height are observed at different feed rates. The feed rate of sawdust corresponding to the maximum possible temperature was observed to be 10.2 kg/h. It is observed that 50-60% excess air is optimal for reducing carbon loss during the burning of sawdust. The maximum possible combustion efficiency with sawdust is 99.2% and is observed with 65% excess air.

  9. Flame Tube NOx Emissions Using a Lean-Direct-Wall-Injection Combustor Concept

    Science.gov (United States)

    Tacina, Robert R.; Wey, Changlie; Choi, Kyung J.

    2001-01-01

    A low-NOx emissions combustor concept has been demonstrated in flame tube tests. A lean-direct injection concept was used where the fuel is injected directly into the flame zone and the overall fuel-air mixture is lean. In this concept the air is swirled upstream of a venturi section and the fuel is injected radially inward into the air stream from the throat section using a plain-orifice injector. Configurations have two-, four-, or six-wall fuel injectors and in some cases fuel is also injected from an axially located simplex pressure atomizer. Various orifice sizes of the plain-orifice injector were evaluated for the effect on NOx. Test conditions were inlet temperatures up to 8 1 OK, inlet pressures up to 2760 kPa, and flame temperatures up to 2100 K. A correlation is developed relating the NOx emissions to inlet temperature, inlet pressure, fuel-air ratio and pressure drop. Assuming that 15 percent of the combustion air would be used for liner cooling and using an advanced engine cycle, for the best configuration, the NOx emissions using the correlation is estimated to be <75 percent of the 1996 ICAO standard.

  10. Analytical model for freeboard and in-bed limestone sulfation in fluidized-bed coal combustors

    Energy Technology Data Exchange (ETDEWEB)

    Fee, D.C.; Myles, K.M.; Marroquin, G.; Fan, L.S.

    1984-01-01

    A new model, which combines in-bed and freeboard sulfation, significantly improves the ability to predict sulfur capture by limestone sorbents in fluidized-bed coal combustors. In this model, the in-bed hydrodynamics are described in terms of a bubble phase and an emulsion phase while the freeboard region has only a diluted emulsion phase. The solids, which are in the emulsion phases, are considered to be completely back-mixed; the gaseous bubble phase travels in plug-flow but exchanges with the emulsion phase. The sulfation reaction occurs principally in the emulsion phase and the reaction rate is a direct function of the sulfur dioxide concentration, the extent of the calcium oxide conversion (as measured by a thermogravimetric analyzer), and the amount of limestone present in the bed and in the freeboard. The amount present, or holdup, in the free-board is calculated from empirical correlations for elutriation and from particle-time trajectories as predicted from equations of motion. 19 references, 4 figures.

  11. Forest biomass waste combustion in a pilot-scale bubbling fluidised bed combustor

    International Nuclear Information System (INIS)

    Combustion experiments of forest biomass waste in a pilot-scale bubbling fluidised bed combustor were performed under the following conditions: i) bed temperature in the range 750-800 oC, ii) excess air in the range 10-100%, and iii) air staging (80% primary air and 20% secondary air). Longitudinal pressure, temperature and gas composition profiles along the reactor were obtained. The combustion progress along the reactor, here defined as the biomass carbon conversion to CO2, was calculated based on the measured CO2 concentration at several locations. It was found that 75-80% of the biomass carbon was converted to CO2 in the region located below the freeboard first centimetres, that is, the region that includes the bed and the splash zone. Based on the CO2 and NO concentrations in the exit flue gas, it was found that the overall biomass carbon conversion to CO2 was in the range 97.2-99.3%, indicating high combustion efficiency, whereas the biomass nitrogen conversion to NO was lower than 8%. Concerning the Portuguese regulation about gaseous emissions from industrial biomass combustion, namely, the accomplishment of CO, NO and volatile organic compounds (VOC) (expressed as carbon) emission limits, the set of adequate operating conditions includes bed temperatures in the range 750oC-800 oC, excess air levels in the range 20%-60%, and air staging with secondary air accounting for 20% of total combustion air.

  12. Fatigue Life of Haynes 188 Superalloy in Direct Connect Combustor Durability Rig

    Science.gov (United States)

    Gabb, TIm; Gayda, John; Webster, Henry; Ribeiro, Greg

    2007-01-01

    The Direct Connect Combustor Durability Rig (DCR) will provide NASA a flexible and efficient test bed to demonstrate the durability of actively cooled scramjet engine structure, static and dynamic sealing technologies, and thermal management techniques. The DCR shall be hydrogen fueled and cooled, and test hydrogen coolded structural panels at Mach 5 and 7. Actively cooled Haynes 188 superalloy DCR structural panels exposed to the combustion environment shall have electrodischarge machined (EDM) internal cooling holes with flowing liquid hydrogen. Hydrogen combustion could therefore produce severe thermal conditions that could challenge low cycle fatigue durability of this material. The objective of this study was to assess low cycle fatigue capability of Haynes 188 for DCR application. Tests were performed at 25 and 650 C, in hydrogen and helium environments, using specimens with low stress ground (LSG) and electro-discharge machined (EDM) surface finish. Initial fatigue tests in helium and hydrogen indicate the low cycle fatigue life capability of Haynes 188 in hydrogen appears quite satisfactory for the DCR application. Fatigue capability did not decrease with increasing test temperature. Fatigue capability also did not decrease with EDM surface finish. Failure evaluations indicate retention of ductility in all conditions. Additional tests are planned to reconfirm these positive trends.

  13. Toward a catalytic site in DNA

    DEFF Research Database (Denmark)

    Jakobsen, Ulla; Rohr, Katja; Vogel, Stefan

    2007-01-01

    A number of functionalized polyaza crown ether building blocks have been incorporated into DNA-conjugates as catalytic Cu(2+) binding sites. The effect of the DNA-conjugate catalyst on the stereochemical outcome of a Cu(2+)-catalyzed Diels-Alder reaction will be presented....

  14. SELECTIVE CATALYTIC REDUCTION MERCURY FIELD SAMPLING PROJECT

    Science.gov (United States)

    A lack of data still exists as to the effect of selective catalytic reduction (SCR), selective noncatalytic reduction (SNCR), and flue gas conditioning on the speciation and removal of mercury (Hg) at power plants. This project investigates the impact that SCR, SNCR, and flue gas...

  15. Toward Facilitative Mentoring and Catalytic Interventions

    Science.gov (United States)

    Smith, Melissa K.; Lewis, Marilyn

    2015-01-01

    In TESOL teacher mentoring, giving advice can be conceptualized as a continuum, ranging from directive to facilitative feedback. The goal, over time, is to lead toward the facilitative end of the continuum and specifically to catalytic interventions that encourage self-reflection and autonomous learning. This study begins by examining research on…

  16. Catalytic reaction dynamics in inhomogeneous networks.

    Science.gov (United States)

    Watanabe, Akitomo; Yakubo, Kousuke

    2014-05-01

    Biochemical reactions in a cell can be modeled by a catalytic reaction network (CRN). It has been reported that catalytic chain reactions occur intermittently in the CRN with a homogeneous random-graph topology and its avalanche-size distribution obeys a power law with the exponent 4/3 [A. Awazu and K. Kaneko, Phys. Rev. E 80, 010902(R) (2009)]. This fact indicates that the catalytic reaction dynamics in homogeneous CRNs exhibits self-organized criticality (SOC). Structures of actual CRNs are, however, known to be highly inhomogeneous. We study the influence of various types of inhomogeneities found in real-world metabolic networks on the universality class of SOC. Our numerical results clarify that SOC keeps its universality class even for networks possessing structural inhomogeneities such as the scale-free property, community structures, and degree correlations. In contrast, if the CRN has inhomogeneous catalytic functionality, the universality class of SOC depends on how widely distributed the number of reaction paths catalyzed by a single chemical species is. PMID:25353843

  17. Novel Metal Nanomaterials and Their Catalytic Applications.

    Science.gov (United States)

    Wang, Jiaqing; Gu, Hongwei

    2015-01-01

    In the rapidly developing areas of nanotechnology, nano-scale materials as heterogeneous catalysts in the synthesis of organic molecules have gotten more and more attention. In this review, we will summarize the synthesis of several new types of noble metal nanostructures (FePt@Cu nanowires, Pt@Fe₂O₃ nanowires and bimetallic Pt@Ir nanocomplexes; Pt-Au heterostructures, Au-Pt bimetallic nanocomplexes and Pt/Pd bimetallic nanodendrites; Au nanowires, CuO@Ag nanowires and a series of Pd nanocatalysts) and their new catalytic applications in our group, to establish heterogeneous catalytic system in "green" environments. Further study shows that these materials have a higher catalytic activity and selectivity than previously reported nanocrystal catalysts in organic reactions, or show a superior electro-catalytic activity for the oxidation of methanol. The whole process might have a great impact to resolve the energy crisis and the environmental crisis that were caused by traditional chemical engineering. Furthermore, we hope that this article will provide a reference point for the noble metal nanomaterials' development that leads to new opportunities in nanocatalysis. PMID:26393550

  18. Catalytic dehydrogenations of ethylbenzene to styrene

    NARCIS (Netherlands)

    Nederlof, C.

    2012-01-01

    This research work on the catalytic dehydrogenation of ethylbenzene (EB) to styrene (ST) had a primary goal of developing improved catalysts for dehydrogenation processes both in CO2 as well as with O2 that can compete with the conventional dehydrogenation process in steam. In order to achieve this

  19. Electrochemical Promotion of Catalytic Reactions Using

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bjerrum, Niels; Cleemann, Lars Nilausen;

    2007-01-01

    This paper presents the results of a study on electrochemical promotion (EP) of catalytic reactions using Pt/C/polybenzimidazole(H3PO4)/Pt/C fuel cell performed by the Energy and Materials Science Group (Technical University of Denmark) during the last 6 years[1-4]. The development of our...

  20. Shungite carbon catalytic effect on coal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Grigorieva, E.N.; Rozhkova, N.N. [Russian Academy of Sciences, Moscow (Russian Federation). Institute for High Temperature

    1999-07-01

    The catalytic ability of shungite carbon in reactions of coal organic matter models appeared to be due to its fullerene structure only. Transition metal sulphides present in shungite carbon are not active in the conditions of coal treatment. Shungite carbon was shown to exhibit an acceleration of thermolysis of coal and organic matter models, mainly dehydrogenation. 5 refs., 1 tabs.

  1. Catalytic oxidation of industrial organic solvent vapors.

    Science.gov (United States)

    Tzortzatou, Katerina; Grigoropoulou, Eleni

    2010-01-01

    In the present study the catalytic oxidation of an industrial organic solvent consisting predominantly of C-9 to C-10 paraffins and napthtenics and derived from low aromatic white spirit on CuO and Pt catalysts was investigated at ambient pressure and temperatures between 330 and 770 K. Catalysts were prepared in the laboratory and compared to commercial ones. Characterization was based on x-ray diffraction (XRD) analysis, x-ray fluorescence (XRF) analysis, scanning electron microscope (SEM) analysis and nitrogen adsorption data. The commercial platinum catalyst was proved highly efficient in the oxidation of the commercial solvent, necessitating lower temperatures for total oxidation. Catalyst loading in active component is clearly not of primordial importance, since its dispersion and crystallinity as well as the presence of other metallic compounds influence also the catalytic activity. In the case of copper catalysts studied, the different support (alumina) characteristics also would contribute to the difference in catalytic activity. Finally, the power law kinetics may successfully be used in order to explain the catalytic oxidation data of the organic solvent, where its constituents are modeled as a single carbon-containing compound. PMID:20390900

  2. Catalytic Converters Maintain Air Quality in Mines

    Science.gov (United States)

    2014-01-01

    At Langley Research Center, engineers developed a tin-oxide based washcoat to prevent oxygen buildup in carbon dioxide lasers used to detect wind shears. Airflow Catalyst Systems Inc. of Rochester, New York, licensed the technology and then adapted the washcoat for use as a catalytic converter to treat the exhaust from diesel mining equipment.

  3. Novel Metal Nanomaterials and Their Catalytic Applications

    Directory of Open Access Journals (Sweden)

    Jiaqing Wang

    2015-09-01

    Full Text Available In the rapidly developing areas of nanotechnology, nano-scale materials as heterogeneous catalysts in the synthesis of organic molecules have gotten more and more attention. In this review, we will summarize the synthesis of several new types of noble metal nanostructures (FePt@Cu nanowires, Pt@Fe2O3 nanowires and bimetallic Pt@Ir nanocomplexes; Pt-Au heterostructures, Au-Pt bimetallic nanocomplexes and Pt/Pd bimetallic nanodendrites; Au nanowires, CuO@Ag nanowires and a series of Pd nanocatalysts and their new catalytic applications in our group, to establish heterogeneous catalytic system in “green” environments. Further study shows that these materials have a higher catalytic activity and selectivity than previously reported nanocrystal catalysts in organic reactions, or show a superior electro-catalytic activity for the oxidation of methanol. The whole process might have a great impact to resolve the energy crisis and the environmental crisis that were caused by traditional chemical engineering. Furthermore, we hope that this article will provide a reference point for the noble metal nanomaterials’ development that leads to new opportunities in nanocatalysis.

  4. Performance characterization of a hydrogen catalytic heater.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry Alan; Kanouff, Michael P.

    2010-04-01

    This report describes the performance of a high efficiency, compact heater that uses the catalytic oxidation of hydrogen to provide heat to the GM Hydrogen Storage Demonstration System. The heater was designed to transfer up to 30 kW of heat from the catalytic reaction to a circulating heat transfer fluid. The fluid then transfers the heat to one or more of the four hydrogen storage modules that make up the Demonstration System to drive off the chemically bound hydrogen. The heater consists of three main parts: (1) the reactor, (2) the gas heat recuperator, and (3) oil and gas flow distribution manifolds. The reactor and recuperator are integrated, compact, finned-plate heat exchangers to maximize heat transfer efficiency and minimize mass and volume. Detailed, three-dimensional, multi-physics computational models were used to design and optimize the system. At full power the heater was able to catalytically combust a 10% hydrogen/air mixture flowing at over 80 cubic feet per minute and transfer 30 kW of heat to a 30 gallon per minute flow of oil over a temperature range from 100 C to 220 C. The total efficiency of the catalytic heater, defined as the heat transferred to the oil divided by the inlet hydrogen chemical energy, was characterized and methods for improvement were investigated.

  5. Exact Results for Kinetics of Catalytic Reactions

    OpenAIRE

    Frachebourg, L.; Krapivsky, P. L.

    1995-01-01

    The kinetics of an irreversible catalytic reaction on substrate of arbitrary dimension is examined. In the limit of infinitesimal reaction rate (reaction-controlled limit), we solve the dimer-dimer surface reaction model (or voter model) exactly in arbitrary dimension $D$. The density of reactive interfaces is found to exhibit a power law decay for $D

  6. Catalytic asymmetric synthesis of mycocerosic acid

    NARCIS (Netherlands)

    ter Horst, B.; Feringa, B.L.; J. Minnaard, A.

    2007-01-01

    The first catalytic asymmetric total synthesis of mycocerosic acid was achieved via the application of iterative enantioselective 1,4-addition reactions and allows for the efficient construction of 1,3-polymethyl arrays with full stereocontrol; further exemplified by the synthesis of tetramethyl-dec

  7. Electrochemical promotion of sulfur dioxide catalytic oxidation

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bandur, Viktor; Cappeln, Frederik Vilhelm;

    2000-01-01

    The effect of electrochemical polarization on the catalytic SO2 oxidation in the molten V2O5-K2S2O7 system has been studied using a gold working electrode in the temperature range 400-460 degrees C. A similar experiment has been performed with the industrial catalyst VK-58. The aim of the present...

  8. Catalytic site interactions in yeast OMP synthase

    DEFF Research Database (Denmark)

    Hansen, Michael Riis; Barr, Eric W.; Jensen, Kaj Frank; Willemoës, Martin; Grubmeyer, Charles; Winther, Jakob R.

    2014-01-01

    45 (2006) 5330-5342]. This behavior was investigated in the yeast enzyme by mutations in the conserved catalytic loop and 5-phosphoribosyl-1-diphosphate (PRPP) binding motif. Although the reaction is mechanistically sequential, the wild-type (WT) enzyme shows parallel lines in double reciprocal...

  9. Catalytic treatment of diesel engines, NOx emissions

    International Nuclear Information System (INIS)

    Some aspects of the operation of diesel engines are revised together with the pollutant emissions they produce, as well as the available catalytic technologies for the treatment of diesel emissions. Furthermore the performance of a catalyst developed in the environmental catalysis group for NOx reduction using synthetic gas mixtures simulating the emissions from diesel engines is presented

  10. EXPERIMENTAL STUDIES ON SWIRLING ANDRECIRCULATING TWO-PHASE FLOW FIELD IN A COLD MODEL OF DUAL-INLET SUDDEN-EXPANSION COMBUSTOR

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The dual-inlet liquid-spray-fuelled sudden-expansion combustors are frequently adopted in ramjet engines. The original combustors with swirlers in the inlet tubes frequently suffer from poor ignition, low flame stabilization and poor combustion performance due to insufficient sizes of recirculation zones in the head part of the combustor. There are only very small recirculation zones behind the swirlers. To improve the performance of the combustors, a new configuration is proposed by the authors, in which a small central tube instead of the original swirler is mounted in the inlet tube of the combustor with a tangential angle for creating swirling flows and enlarging the recirculation zones. So, it is expected to know the gas-droplet flow behavior after mounting the central tube. The turbulent swirling and recirculating gas-droplet flows in a dual-inlet sudden-expansion combustor are very complex. In the head part of the combustor there are recirculating flows. In the whole combustor there are swirling flows with a Rankine-vortex structure (solid-body rotation plus free vortex) of tangential velocity profiles. There should be obvious velocity slip between the gas and droplet phases due to the differences in inertia and centrifugal forces. The recirculating and swirling gas-particle flows were previously measured using LDV or PDPA[1~3]. In this paper the experimental studies on two-phase flows were carried out in a cold model of the combustor, and the motion of solid particles is used to simulate that of liquid droplets. The gas and particle (simulating the droplets) velocities were measured using a 2-D LDV system and the particle (simulating the droplet) concentration distribution is measured using a laser optic fiber system and a sampling probe. The purpose of this experimental study is not to simulate the real combustion regime, but to understand the features of the improved two-phase flow field using a central tube in the inlet tube and to provide the data

  11. Asymmetric Catalytic Reactions Catalyzed by Chiral Titanium Complexes

    Institute of Scientific and Technical Information of China (English)

    FENG; XiaoMing

    2001-01-01

    Chiral titanium complexes is very importance catalyst to asymmetric catalytic reactions. A series of catalytic systems based on titanium-chiral ligands complexes has been reported. This presentation will discuss some of our recent progress on asymmetric catalytic reactions catalyzed by chiral titanium complexes.  ……

  12. Asymmetric Catalytic Reactions Catalyzed by Chiral Titanium Complexes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Chiral titanium complexes is very importance catalyst to asymmetric catalytic reactions. A series of catalytic systems based on titanium-chiral ligands complexes has been reported. This presentation will discuss some of our recent progress on asymmetric catalytic reactions catalyzed by chiral titanium complexes.

  13. Mixing enhancement in a scramjet combustor using fuel jet injection swirl

    Science.gov (United States)

    Flesberg, Sonja M.

    The scramjet engine has proven to be a viable means of powering a hypersonic vehicle, especially after successful flights of the X-51 WaveRider and various Hy-SHOT test vehicles. The major challenge associated with operating a scramjet engine is the short residence time of the fuel and oxidizer in the combustor. The fuel and oxidizer have only milliseconds to mix, ignite and combust in the combustion chamber. Combustion cannot occur until the fuel and oxidizer are mixed on a molecular level. Therefore the improvement of mixing is of utmost interest since this can increase combustion efficiency. This study investigated mixing enhancement of fuel and oxidizer within the combustion chamber of a scramjet by introducing swirl to the fuel jet. The investigation was accomplished with numerical simulations using STAR-CCM+ computational fluid dynamic software. The geometry of the University of Virginia Supersonic Combustion Facility was used to model the isolator, combustor and nozzle of a scramjet engine for simulation purposes. Experimental data from previous research at the facility was used to verify the simulation model before investigating the effect of fuel jet swirl on mixing. The model used coaxial fuel jet with a swirling annular jet. Single coaxial fuel jet and dual coaxial fuel jet configurations were simulated for the investigation. The coaxial fuel jets were modelled with a swirling annular jet and non-swirling core jet. Numerical analysis showed that fuel jet swirl not only increased mixing and entrainment of the fuel with the oxidizer but the mixing occurred further upstream than without fuel jet swirl. The burning efficiency was calculated for the all the configurations. An increase in burning efficiency indicated an increase in the mixing of H2 with O2. In the case of the single fuel jet models, the maximum burning efficiency increase due to fuel injection jet swirl was 23.3%. The research also investigated the possibility that interaction between two

  14. Shrinkage characteristics of Casuarina wood during devolatilization in a fluidized bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R.Renu; Kolar, Ajit Kumar [Heat Transfer and Thermal Power Lab, Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu (India); Leckner, Bo [Department of Energy Conversion, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)

    2006-02-15

    The shrinkage characteristics of Casuarina wood in terms of the effect of fuel particle shape and size on the longitudinal, transverse, and volumetric shrinkage during devolatilization in a laboratory scale bubbling fluidized bed combustor are presented. Shrinkage of single fuel particles was measured in the longitudinal and transverse directions (with respect to the wood fibre) for various fuel particle shapes-like disc (l/d=0.2-0.67), cylinder (l/d{sup 1}) and rod (l/d=2-10). The fuel particle dimensions ranged from 5 to 100mm. The effect of the bed temperature on the shrinkage was studied by varying the bed temperature in the range of 650-850{sup o}C. Fuel particle shape and size were found to influence the shrinkage in the two mutually perpendicular directions. The variation in the fuel particle heating rates for various shapes and sizes was found to be the cause of the variation in the shrinkage values. For all the shapes and sizes considered, the longitudinal shrinkage was found to be in the range of 6.5-24%, the transverse shrinkage from 14% to 29%, and the volumetric shrinkage from 35% to 58%. The average volumetric shrinkage was estimated to be 47% with a standard deviation of +/-3.8%. Shrinkage increased negligibly with the increase in bed temperature. Increase in fuel particle density led to a decrease in volumetric shrinkage, however, this effect was not conclusive because of the effect of other factors-like chemical composition and wood type. Correlations for estimating the shrinkage coefficients in the two principal directions are presented. (author)

  15. Mode Transition and Intermittency in an Acoustically Uncoupled Lean Premixed Swirl-Stabilized Combustor

    KAUST Repository

    LaBry, Zachary A.

    2014-06-16

    The prediction of dynamic instability remains an open and important issue in the development of gas turbine systems, particularly those constrained by emissions limitations. The existence and characteristics of dynamic instability are known to be functions of combustor geometry, flow conditions, and combustion parameters, but the form of dependence is not well understood. By modifying the acoustic boundary conditions, changes in flame and flow structure due to inlet parameters can be studied independent of the acoustic modes with which they couple. This paper examines the effect of equivalence ratio on the flame macrostructure — the relationship between the turbulent flame brush and the dominant flow structures — in an acoustically uncoupled environment. The flame brush is measured using CH* chemiluminescence, and the flow is interrogated using two-dimensional particle image velocimetry. We examine a range of equivalence ratios spanning three distinct macrostructures. The first macrostructure (ϕ = 0.550) is characterized by a diffuse flame brush confined to the interior of the inner recirculation zone. We observe a conical flame in the inner shear layer, continuing along the wall shear layer in the second macrostructure (ϕ = 0.600). The third macrostructure exhibits the same flame brush as the second, with an additional flame brush in the outer shear layer (ϕ = 0.650). Between the second and third macrostructures, we observe a regime in which the flame brush transitions intermittently between the two structures. We use dynamic mode decomposition on the PIV data to show that this transition event, which we call flickering, is linked to vorticity generated by the intermittent expansion of the outer recirculation zone as the flame jumps in and out of the outer shear layer. In a companion paper, we show how the macrostructures described in this paper are linked with dynamic instability [1].

  16. Behaviour of meat and bonemeal/peat pellets in a bench scale fluidised bed combustor

    Energy Technology Data Exchange (ETDEWEB)

    McDonnell, K.; Desmond, J.; Leahy, J.J.; Howard-Hildige, R.; Ward, S. [University College Dublin, Dublin (Ireland). Agriculture and Food Engineering Department

    2001-01-01

    As a result of the recent Bovine Spongiform Encephalopathy crisis in the European beef industry, safe animal by-product disposal is currently being addressed. One such disposal option is the combustion of by-product material such as meat and bone meal (MBM) in a fluidised bed combustor (FBC) for the purpose of energy recovery. Two short series of combustion tests were conducted on a FBC at the University of Twente, the Netherlands. In the first series, pellets (10 mm in diameter and approximately 10 mm in length) were made from a mixture of MBM and milled peat, at MBM inclusion rates of 0%, 30%, 50%, 70% and 100%. In the second series of tests, the pellets were commercially made and were 4.8 mm in diameter and between 12 and 15 mm long. These pellets had a weight of about 0.3 g and contained 0%, 25%, 35%, 50% and 100% MBM inclusion with the peat. Both sets of pellets were combusted at 800{degree}C. The residence times in the FBC varied from 300 s (25% MBM inclusion) to 120 s (100% MBM inclusion) for the first series of pellets. Increasing compaction pressure increased the residence time. For the second series of pellets, the residence time varied from about 300 s (25% MBM inclusion) to 100 s (100% MBM inclusion). MBM was found to be a volatile product (about 65%) and co-firing it with milled peat in a pelleted feed format reduces its volatile intensity. Pellets made from 100% bone based meal remained intact within the bed and are thought to have undergone a process of calcination during combustion. A maximum MBM inclusion rate of 35% with milled peat in a pellet is recommended.

  17. Study of Biodiesel Emissions and Carbon Mitigation in Gas Turbine Combustor

    Directory of Open Access Journals (Sweden)

    Mohamed Alalim Altaher

    2014-11-01

    Full Text Available The energy security and reduction of carbon emissions have accelerated the R&D of the alternative fuels in the transport, heating and power generation sectors in last decade. The heating and power generation sectors are two of the major contributors to carbon dioxide emissions, which are due to the combustion of petroleum fuels. A gas turbine combustor test rig was used to study the combustion and emission characteristics of waste cooking oil methyl ester (WME biodiesel. A 140mm diameter atmospheric pressure premixed combustion test rig was used at 600K inlet air temperature and Mach number 0.017. The tests were conducted using pure WME and blend with kerosene. The central fuel injection was used for liquid fuels and wall injection was used for NG (Natural Gas. The exhaust samples for smoke and gaseous emissions (NOx, UHC, CO and CO₂ have been analysed on dry basis and corrected to 15% O₂ over range of different fuel rate. The results showed that the biodiesel had lower CO, UHC emissions and higher NOx emissions than the kerosene. The blend B20 had lowest NOx emissions comparing with pure biodiesel (B100 and B50. The optimum conditions for WME with lowest emissions were identified. The carbon dioxide emissions per 100 megawatts of heat generated for each fuel were calculated. The relative carbon emissions and mitigations by biodiesel were compared. The results can be used to estimate pollutant emissions and carbon reductions by biodiesel in power generation industry and other sectors where gas turbine engines are used.

  18. Dual-Fuel Fluidized Bed Combustor Prototype for Residential Heating: Steady-State and Dynamic Behavior

    Science.gov (United States)

    Cammarota, Antonio; Chirone, Riccardo; Miccio, Michele; Sollmene, Roberto; Urcluohr, Massimo

    Fluidized bed combustion of biogenic fuels can be recognized as an attractive option for an ecologically sustainable use of biofuels in residential applications. Nevertheless, biomass combustion in fluidized bed reactors presents some drawbacks that are mainly related to mixing/segregation of fuel particles/volatile matter during devolatilization inside the bed and in the freeboard or to bed agglomeration. A prototype of a 30-50 kWth fluidized bed boiler for residential heating has been designed to burn either a gaseous combustible or a solid biomass fuel or both fuels at the same time. The prototype has been equipped with a gas burner located in the wind-box to optimize the start-up stage of the boiler and with a fluidized bed characterized by a conical geometry ("Gulf Stream" circulation) to improve the mixing of the fuel particles during both devolatilization and char burn-out. The operation of the combustor adopting wood pellets as fuel has been investigated to evaluate their use in residential combustion applications. Steady-state thermally stable regimes of operation have been recognized analyzing both boiler temperatures and gaseous emissions. The optimization of the steady-state operation of the boiler in terms of gaseous emissions has been achieved by varying the nominal thermal power and air excess. An ad-hoc experimental campaign has been carried out to analyze the dynamic performance of the prototype as a response to changes of the demanded thermal power. On the basis of the experimental data, an interpretation of the dynamic behavior of the fluidized bed boiler has been proposed.

  19. Coating and melt induced agglomeration in a poultry litter fired fluidized bed combustor

    International Nuclear Information System (INIS)

    The combustion of poultry litter, which is rich in phosphorus, in a fluidized bed combustor (FBC) is associated with agglomeration problems, which can lead to bed defluidization and consequent shutdown of the installation. Whereas earlier research indicated coating induced agglomeration as the dominant mechanism for bed material agglomeration, it is shown experimentally in this paper that both coating and melt induced agglomeration occur. Coating induced agglomeration mainly takes place at the walls of the FBC, in the freeboard above the fluidized bed, where at the prevailing temperature the bed particles are partially molten and hence agglomerate. In the ash, P2O5 forms together with CaO thermodynamically stable Ca3(PO4)2, thus reducing the amount of calcium silicates in the ash. This results in K/Ca silicate mixtures with lower melting points. On the other hand, in-bed agglomeration is caused by thermodynamically unstable, low melting HPO42− and H2PO4− salts present in the fuel. In the hot FBC these salts may melt, may cause bed particles to stick together and may subsequently react with Ca salts from the bed ash, forming a solid bridge of the stable Ca3(PO4)2 between multiple particles. - Highlights: • Coating induced agglomeration not due to K phosphates, but due to K silicates. • Melt induced agglomeration due to H2PO4− and HPO42− salts in the fuel. • Wall agglomeration corresponds to coating induced mechanism. • In-bed agglomeration corresponds to melt induced mechanism

  20. Investigation of operational parameters for an industrial CFB combustor of coal, biomass and sludge

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The combustion of coal and/or biomass (sludge, wood waste, RDF, etc.) in a circulating fluidized bed has been a commercial topper for over 20 years, and references to principles and applications are numerous and widespread although few data are presented concerning the operation of large scale CFB-units. The authors studied the CFB-combustion at UPM-Kymmene (Ayr), a major paper mill relying for its steam production upon the combustion of coal (80-85%), wood bark (5-10%) and wastewater treatment sludge (5-10%). The maximum capacity of the CFB is 58 MWth.A complete diagnostic of the operation was made, and additional tests were performed to assess the operating mode. The plant schematics,relevant dimensions and process data are given. To assess the operation of the UPM-CFB, it is important to review essential design parameters and principles of CFB combustors, which will be discussed in detail to include required data, heat balance and flowrates, operating versus transport velocity, kinetics and conversion (including the possible effect of the Bouduard reaction if carbon is present).Since the residence time in the riser and the cyclone efficiency determine the burnout of circulating fuel-particles, the UPM-CFB was subjected to a stimulus response technique using nickel oxide as tracer. Results illustrate the efficiency of the cyclone separation and the number of recycle loops for particles of a given size. Results will also be used to assess the cyclone operation and efficiency and to comment upon expected and measured carbon conversion.

  1. Numerical and experimental study on flame structure characteristics in a supersonic combustor with dual-cavity

    Science.gov (United States)

    Yang, Yixin; Wang, Zhenguo; Sun, Mingbo; Wang, Hongbo; Li, Li

    2015-12-01

    Combined numerical and experimental approaches have been implemented to investigate the quasi-steady flame characteristics of supersonic combustion in tandem and parallel dual-cavity. In simulation, a hybrid Large Eddy Simulation (LES)/assumed sub-grid Probability Density Function (PDF) closure model was carried out. Comparison of calculation and experiment as well as comparison of the two configurations are qualitatively and quantitatively performed regarding the flame structure and other flowfield features. Simulation shows a good level of agreement with experimental observation and measurement in terms of instantaneous and time-averaged results. Given the same fuel equivalence ratio, the parallel dual-cavity with the two opposite injections gathers the major combustion around the cavities, thus leading to the concentrated heat release, the greatly extended recirculation zones and the converging-diverging core flow path. Only intermittent stray flame packets can be found in the downstream region. Flame in the combustor with tandem dual-cavity appears to be stabilized by the upstream cavity shear layer and grows gradually to the second cavity, peaking its most intensity in the middle section between the two cavities. For both dual-cavity configurations, the strongest reaction takes place in near chemistry stoichiometric region around the flame edge, and is mainly confined in the supersonic region supported by the inner subsonic combustion. The coexistence of three parts plays a vital role in flame stabilization in the parallel and tandem dual-cavity: a reacting reservoir transferring hot products and activated radicals within the cavity recirculation zone, the hydrogen-rich premixed flame in the jet mixing region, and the downstream diffusion flames supported by the upstream premixed combustion region. In addition, for the parallel dual-cavity under the given condition, significant reaction are present near jet exit upstream the cavity leading edge.

  2. Reforming of methane in tubes with a catalytic active wall

    International Nuclear Information System (INIS)

    The heterogeneous steam reforming process in tubes with catalytic active inner surface is studied. The purpose of this ivestigation is to find a method of predicting the reaction rate of the catalytic conversion of methane by steam. The dependency of the reaction rate upon the temperature, pressure, gas composition, Reynolds number, geometrical sizes of tubes and catalytic behaviour of the catalytic active inner wall of these tubes has been examined. It was found that the reaction rate mainly depends on the temperature. The reaction rate is limited by the catalytic behaviour and the heat resisting properties of the materials used. (author)

  3. Effect of fuel properties on performance of single aircraft turbojet combustor at simulated idle, cruise, and takeoff conditions

    Science.gov (United States)

    Butze, H. F.; Smith, A. L.

    1977-01-01

    The performance of a single-can JT8D combustor was investigated with a number of fuels exhibiting wide variations in chemical composition and volatility. Performance parameters investigated were combustion efficiency, emissions of CO, unburned hydrocarbons and nitrogen oxides, as well as liner temperatures and smoke. The most pronounced effects of changes in fuel composition were observed at simulated cruise and takeoff conditions where smoke and liner temperatures increased significantly as the hydrogen content of the fuel decreased. At the simulated idle condition, emissions of CO and unburned hydrocarbons increased slightly and, accordingly, combustion efficiencies decreased slightly as the hydrogen content of the fuels decreased.

  4. Experimental and numerical analysis for high intensity swirl based ultra-low emission flameless combustor operating with liquid fuels

    KAUST Repository

    Vanteru, Mahendra Reddy

    2014-06-21

    Flameless combustion offers many advantages over conventional combustion, particularly uniform temperature distribution and lower emissions. In this paper, a new strategy is proposed and adopted to scale up a burner operating in flameless combustion mode from a heat release density of 5.4-21 MW/m(3) (thermal input 21.5-84.7 kW) with kerosene fuel. A swirl flow based configuration was adopted for air injection and pressure swirl type nozzle with an SMD 35-37 lm was used to inject the fuel. Initially, flameless combustion was stabilized for a thermal input of 21.5 kW ((Q) over dot \\'\\'\\'= 5.37 MW/m(3)). Attempts were made to scale this combustor to higher intensities i.e. 10.2, 16.3 and 21.1 MW/m(3). However, an increase in fuel flow rate led to incomplete combustion and accumulation of unburned fuel in the combustor. Two major difficulties were identified as possible reasons for unsustainable flameless combustion at the higher intensities. (i) A constant spray cone angle and SMD increases the droplet number density. (ii) Reactants dilution ratio (R-dil) decreased with increased thermal input. To solve these issues, a modified combustor configuration, aided by numerical computations was adopted, providing a chamfer near the outlet to increase the R-dil. Detailed experimental investigations showed that flameless combustion mode was achieved at high intensities with an evenly distributed reaction zone and temperature in the combustor at all heat intensities. The emissions of CO, NOx and HC for all heat intensities (Phi = 1-0.6) varied between 11-41, 6-19 and 0-9 ppm, respectively. These emissions are well within the range of emissions from other flameless combustion systems reported in the literature. The acoustic emission levels were also observed to be reduced by 8-9 dB at all conditions. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  5. The effect of ambient conditions on carbon monoxide emissions from an idling gas turbine combustor. M.S. Thesis

    Science.gov (United States)

    Subramanian, A. K.

    1977-01-01

    A test program employing a gas turbine combustor is outlined; the results of which quantize the effects of changes in ambient temperature and humidity on carbon monoxide emissions at simulated idle operating conditions. A comparison of the experimental results with analytical results generated by a kinetic model of the combustion process, and reflecting changing ambient conditions, is given. It is demonstrated that for a complete range of possible ambient variations, significant changes do occur in the amount of carbon monoxide emitted by a gas turbine at idle, and that the analytical model is reasonably successful in predicting changes.

  6. Effect of swirler-mounted mixing venturi on emissions of flame-tube combustor using jet A fuel

    Science.gov (United States)

    Ercegovic, D. B.

    1979-01-01

    Six headplate modules in a flame-tube combustor were evaluated. Unburned hydrocarbons, carbon monoxide, and oxides of nitrogen were measured for three types of fuel injectors both with and without a mixing venturi. Tests were conducted using jet A fuel at an inlet pressure of 0.69 megapascal, an inlet temperature of 478 K, and an isothermal static pressure drop of 3 percent. Oxides of nitrogen were reduced by over 50 percent with a mixing venturi with no performance penalties in either other gaseous emissions or pressure drop.

  7. Analysis of hapten binding and catalytic determinants in a family of catalytic antibodies.

    Science.gov (United States)

    Ulrich, H D; Schultz, P G

    1998-01-01

    We report here the cloning and kinetic analysis of a family of catalytic antibodies raised against a common transition state (TS) analog hapten, which accelerate a unimolecular oxy-Cope rearrangement. Sequence analysis revealed close homologies among the heavy chains of the catalytically active members of this set of antibodies, which derive mainly from a single germline gene, whereas the light chains can be traced back to several different, but related germline genes. The requirements for hapten binding and catalytic activity were determined by the construction of hybrid antibodies. Characterization of the latter antibodies again indicates a strong conservation of binding site structure among the catalytically active clones. The heavy chain was found to be the determining factor for catalytic efficiency, while the light chain exerted a smaller modulating effect that depended on light chain gene usage and somatic mutations. Within the heavy chain, the catalytic activity of a clone, but not hapten binding affinity, depended on the sequence of the third complementarity determining region (CDR). No correlation between high affinity for the hapten and high rate enhancement was found in the oxy-Cope system, a result that stands in contrast to the expectations from transition state theory. A mechanistic explanation for this observation is provided based on the three-dimensional crystal structure of the most active antibody, AZ-28, in complex with the hapten. This study demonstrates the utility of catalytic antibodies in examining the relationship between binding energy and catalysis in the evolution of biological catalysis, as well as expanding our understanding of the molecular basis of an immune response. PMID:9451442

  8. Janus droplet as a catalytic micromotor

    CERN Document Server

    Shklyaev, Sergey

    2015-01-01

    Self-propulsion of a Janus droplet in a solution of surfactant, which reacts on a half of a drop surface, is studied theoretically. The droplet acts as a catalytic motor creating a concentration gradient, which generates its surface-tension-driven motion; the self-propulsion speed is rather high, $60\\; {\\rm \\mu m/s}$ and more. This catalytic motor has several advantages over other micromotors: simple manufacturing, easily attained neutral buoyancy. In contrast to a single-fluid droplet, which demonstrates a self-propulsion as a result of symmetry breaking instability, for Janus one no stability threshold exists; hence, the droplet radius can be scaled down to micrometers. The paper was finalized and submitted by Denis S. Goldobin after Sergey Sklyaev had sadly passed away on June 2, 2014.

  9. From Catalytic Reaction Networks to Protocells

    Science.gov (United States)

    Kaneko, Kunihiko

    2013-12-01

    In spite of recent advances, there still remains a large gape between a set of chemical reactions and a biological cell. Here we discuss several theoretical efforts to fill in the gap. The topics cover (i) slow relaxation to equilibrium due to glassy behavior in catalytic reaction networks (ii) consistency between molecule replication and cell growth, as well as energy metabolism (iii) control of a system by minority molecules in mutually catalytic system, which work as a carrier of genetic information, and leading to evolvability (iv) generation of a compartmentalized structure as a cluster of molecules centered around the minority molecule, and division of the cluster accompanied by the replication of minority molecule (v) sequential, logical process over several states from concurrent reaction dynamics, by taking advantage of discreteness in molecule number.

  10. Catalytic extraction processing of contaminated scrap metal

    International Nuclear Information System (INIS)

    Molten Metal Technology was awarded a contract to demonstrate the applicability of the Catalytic Extraction Process, a proprietary process that could be applied to US DOE's inventory of low level mixed waste. This paper is a description of that technology, and included within this document are discussions of: (1) Program objectives, (2) Overall technology review, (3) Organic feed conversion to synthetic gas, (4) Metal, halogen, and transuranic recovery, (5) Demonstrations, (6) Design of the prototype facility, and (7) Results

  11. Thermal and catalytic pyrolysis of plastic waste

    OpenAIRE

    Débora Almeida; Maria de Fátima Marques

    2016-01-01

    Abstract The amount of plastic waste is growing every year and with that comes an environmental concern regarding this problem. Pyrolysis as a tertiary recycling process is presented as a solution. Pyrolysis can be thermal or catalytical and can be performed under different experimental conditions. These conditions affect the type and amount of product obtained. With the pyrolysis process, products can be obtained with high added value, such as fuel oils and feedstock for new products. Zeolit...

  12. Materials for High-Temperature Catalytic Combustion

    OpenAIRE

    Ersson, Anders

    2003-01-01

    Catalytic combustion is an environmentally friendlytechnique to combust fuels in e.g. gas turbines. Introducing acatalyst into the combustion chamber of a gas turbine allowscombustion outside the normal flammability limits. Hence, theadiabatic flame temperature may be lowered below the thresholdtemperature for thermal NOXformation while maintaining a stable combustion.However, several challenges are connected to the application ofcatalytic combustion in gas turbines. The first part of thisthe...

  13. Catalytic fast pyrolysis of lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Changjun; Wang, Huamin; Karim, Ayman M.; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  14. Computer Aided Enzyme Design and Catalytic Concepts

    OpenAIRE

    Frushicheva, Maria P.; Mills, Matthew J. L.; Schopf, Patrick; Singh, Manoj K.; Warshel, Arieh

    2014-01-01

    Gaining a deeper understanding of enzyme catalysis is of great practical and fundamental importance. Over the years it has become clear that despite advances made in experimental mutational studies, a quantitative understanding of enzyme catalysis will not be possible without the use of computer modeling approaches. While we believe that electrostatic preorganization is by far the most important catalytic factor, convincing the wider scientific community of this may require the demonstration ...

  15. Ubiquitous "glassy" relaxation in catalytic reaction networks

    OpenAIRE

    Awazu, Akinori; Kaneko, Kunihiko

    2009-01-01

    Study of reversible catalytic reaction networks is important not only as an issue for chemical thermodynamics but also for protocells. From extensive numerical simulations and theoretical analysis, slow relaxation dynamics to sustain nonequlibrium states are commonly observed. These dynamics show two types of salient behaviors that are reminiscent of glassy behavior: slow relaxation along with the logarithmic time dependence of the correlation function and the emergence of plateaus in the rel...

  16. Preliminary study of NO{sub x}, CO, and lean blowoff in a piloted-lean premixed combustor. Part 1: Experimental

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, J.C.; Mello, J.P.; Mellor, A.M. [Vanderbilt Univ., Nashville, TN (United States). Combustion and Propulsion Group; Malte, P.C. [Univ. of Washington, Seattle, WA (United States). Dept. of Mechanical Engineering

    1996-05-01

    In order to validate the models for NO{sub x}, CO, and lean blowoff discussed in part 2 of this paper, the development of an experimental datum base was initiated. Experimental data were collected from an industrial, piloted-lean premixed, natural gas fired, can combustor rig. The experiments were designed in order to minimize testing cost and time. Independent variations of inlet pressure (8 to 14 atm), inlet temperature (550 to 750 K), and residence time (13 and 23 ms) were performed in order to gain insight into the sensitivity of the emissions levels to changes in combustor operating conditions.

  17. Combustion efficiency and altitude operational limits of three liquid hydrocarbon fuels having high volumetric energy content in a J33 single combustor

    Science.gov (United States)

    Stricker, Edward G

    1950-01-01

    Combustion efficiency and altitude operational limits were determined in a J33 single combustor for AN-F-58 fuel and three liquid hydrocarbon fuels having high volumetric energy content (decalin, tetralin, and monomethylnaphthalene) at simulated altitude and combustor inlet-air conditions. At the conditions investigated, the combustion efficiency for the four fuels generally decreased with an increase in volumetric energy content. The altitude operational limits for decalin and tetralin fuels were higher than for AN-F-58 fuel; monomethylnaphthalene fuel gave the lowest altitude operational limit.

  18. Probing catalytic rate enhancement during intramembrane proteolysis.

    Science.gov (United States)

    Arutyunova, Elena; Smithers, Cameron C; Corradi, Valentina; Espiritu, Adam C; Young, Howard S; Tieleman, D Peter; Lemieux, M Joanne

    2016-09-01

    Rhomboids are ubiquitous intramembrane serine proteases involved in various signaling pathways. While the high-resolution structures of the Escherichia coli rhomboid GlpG with various inhibitors revealed an active site comprised of a serine-histidine dyad and an extensive oxyanion hole, the molecular details of rhomboid catalysis were unclear because substrates are unknown for most of the family members. Here we used the only known physiological pair of AarA rhomboid with its psTatA substrate to decipher the contribution of catalytically important residues to the reaction rate enhancement. An MD-refined homology model of AarA was used to identify residues important for catalysis. We demonstrated that the AarA active site geometry is strict and intolerant to alterations. We probed the roles of H83 and N87 oxyanion hole residues and determined that substitution of H83 either abolished AarA activity or reduced the transition state stabilization energy (ΔΔG‡) by 3.1 kcal/mol; substitution of N87 decreased ΔΔG‡ by 1.6-3.9 kcal/mol. Substitution M154, a residue conserved in most rhomboids that stabilizes the catalytic general base, to tyrosine, provided insight into the mechanism of nucleophile generation for the catalytic dyad. This study provides a quantitative evaluation of the role of several residues important for hydrolytic efficiency and oxyanion stabilization during intramembrane proteolysis. PMID:27071148

  19. Catalytic pyrolysis of olive mill wastewater sludge

    Science.gov (United States)

    Abdellaoui, Hamza

    From 2008 to 2013, an average of 2,821.4 kilotons/year of olive oil were produced around the world. The waste product of the olive mill industry consists of solid residue (pomace) and wastewater (OMW). Annually, around 30 million m3 of OMW are produced in the Mediterranean area, 700,000 m3 year?1 in Tunisia alone. OMW is an aqueous effluent characterized by an offensive smell and high organic matter content, including high molecular weight phenolic compounds and long-chain fatty acids. These compounds are highly toxic to micro-organisms and plants, which makes the OMW a serious threat to the environment if not managed properly. The OMW is disposed of in open air evaporation ponds. After evaporation of most of the water, OMWS is left in the bottom of the ponds. In this thesis, the effort has been made to evaluate the catalytic pyrolysis process as a technology to valorize the OMWS. The first section of this research showed that 41.12 wt. % of the OMWS is mostly lipids, which are a good source of energy. The second section proved that catalytic pyrolysis of the OMWS over red mud and HZSM-5 can produce green diesel, and 450 °C is the optimal reaction temperature to maximize the organic yields. The last section revealed that the HSF was behind the good fuel-like properties of the OMWS catalytic oils, whereas the SR hindered the bio-oil yields and quality.

  20. Modeling the Complete Catalytic Cycle of Aspartoacylase.

    Science.gov (United States)

    Kots, Ekaterina D; Khrenova, Maria G; Lushchekina, Sofya V; Varfolomeev, Sergei D; Grigorenko, Bella L; Nemukhin, Alexander V

    2016-05-12

    The complete catalytic cycle of aspartoacylase (ASPA), a zinc-dependent enzyme responsible for cleavage of N-acetyl-l-aspartate, is characterized by the methods of molecular modeling. The reaction energy profile connecting the enzyme-substrate (ES) and the enzyme-product (EP) complexes is constructed by the quantum mechanics/molecular mechanics (QM/MM) method assisted by the molecular dynamics (MD) simulations with the QM/MM potentials. Starting from the crystal structure of ASPA complexed with the intermediate analogue, the minimum-energy geometry configurations and the corresponding transition states are located. The stages of substrate binding to the enzyme active site and release of the products are modeled by MD calculations with the replica-exchange umbrella sampling technique. It is shown that the first reaction steps, nucleophilic attack of a zinc-bound nucleophilic water molecule at the carbonyl carbon and the amide bond cleavage, are consistent with the glutamate-assisted mechanism hypothesized for the zinc-dependent hydrolases. The stages of formation of the products, acetate and l-aspartate, and regeneration of the enzyme are characterized for the first time. The constructed free energy diagram from the reactants to the products suggests that the enzyme regeneration, but not the nucleophilic attack of the catalytic water molecule, corresponds to the rate-determining stage of the full catalytic cycle of ASPA. PMID:27089954

  1. Catalytic applications of bio-inspired nanomaterials

    Science.gov (United States)

    Pacardo, Dennis Kien Balaong

    The biomimetic synthesis of Pd nanoparticles was presented using the Pd4 peptide, TSNAVHPTLRHL, isolated from combinatorial phage display library. Using this approach, nearly monodisperse and spherical Pd nanoparticles were generated with an average diameter of 1.9 +/- 0.4 nm. The peptide-based nanocatalyst were employed in the Stille coupling reaction under energy-efficient and environmentally friendly reaction conditions of aqueous solvent, room temperature and very low catalyst loading. To this end, the Pd nanocatalyst generated high turnover frequency (TOF) value and quantitative yields using ≥ 0.005 mol% Pd as well as catalytic activities with different aryl halides containing electron-withdrawing and electron-donating groups. The Pd4-capped Pd nanoparticles followed the atom-leaching mechanism and were found to be selective with respect to substrate identity. On the other hand, the naturally-occurring R5 peptide (SSKKSGSYSGSKGSKRRIL) was employed in the synthesis of biotemplated Pd nanomaterials which showed morphological changes as a function of Pd:peptide ratio. TOF analysis for hydrogenation of olefinic alcohols showed similar catalytic activity regardless of nanomorphology. Determination of catalytic properties of these bio-inspired nanomaterials are important as they serve as model system for alternative green catalyst with applications in industrially important transformations.

  2. IFP solutions for revamping catalytic reforming units

    Energy Technology Data Exchange (ETDEWEB)

    Gendler, J.L. [HRI, Inc., Princeton, NJ (United States); Domergue, B.; Mank, L. [Inst. Francais du Petrole, Rueil Malmaison (France)

    1996-12-01

    The decision-making process for the refiner considering a revamp of a catalytic reforming unit comprises many factors. These may be grouped in two broad areas: technical and economic. This paper presents the results of a study performed by IFP that illustrates catalytic reforming unit revamp options. Three IFP processes are described and operating conditions, expected yields, and economic data are presented. The following options are discussed: base case Conventional, fixed-bed, semi-regenerative catalytic reformer; Case 1--revamp using IFP Dualforming technology; Case 2--revamp using IFP Dualforming Plus technology; and Case 3--revamp to IFP Octanizing technology. The study illustrates various options for the refiner to balance unit performance improvements with equipment, site, and economic constraints. The study was performed assuming design feedrate of 98.2 tons/hour (20,000 BPSD) in all cases. Because of the increased need for octane in many refineries, the study assumed that operating severity was set at a design value of 100 research octane number clear (RON). In all of the cases in this study, it was assumed that the existing recycle compressor was reused. Operating pressure differences between the cases is discussed separately. Also, in all cases, a booster compressor was included in order to return export hydrogen pressure to that of the conventional unit.

  3. Electrochemical catalytic treatment of phenol wastewater

    International Nuclear Information System (INIS)

    The slurry bed catalytic treatment of contaminated water appears to be a promising alternative for the oxidation of aqueous organic pollutants. In this paper, the electrochemical oxidation of phenol in synthetic wastewater catalyzed by ferric sulfate and potassium permanganate adsorbed onto active bentonite in slurry bed electrolytic reactor with graphite electrode has been investigated. In order to determine the optimum operating condition, the orthogonal experiments were devised and the results revealed that the system of ferric sulfate, potassium permanganate and active bentonite showed a high catalytic efficiency on the process of electrochemical oxidation phenol in initial pH 5. When the initial concentration of phenol was 0.52 g/L (the initial COD 1214 mg/L), up to 99% chemical oxygen demand (COD) removal was obtained in 40 min. According to the experimental results, a possible mechanism of catalytic degradation of phenol was proposed. Environmental estimation was also done and the results showed that the treated wastewater have little impact on plant growth and could totally be applied to irrigation.

  4. Study on Catalytic Combustion of Premixed Hydrogen and Oxygen in the Micro-scale%微尺度下氢氧预混合气催化燃烧的研究

    Institute of Scientific and Technical Information of China (English)

    潘剑锋; 范宝伟; 吴庆瑞; 李晓春; 唐爱坤; 薛宏

    2011-01-01

    Catalytic combustion of hydrogen and oxygen mixture inside a sub-millimeter micro combustor is numerically investigated by using the commercial computational fluid dynamics (CFD) code which based detailed gas phase and surface catalytic chemical reaction mechanisms. Combustion characteristics for different reaction models and the influence of wall materials and inlet velocity on catalytic combustion reaction are discussed on the basis of experimental verification. The computational results show that the surface catalytic combustion restrains the gas phase combustion by reducing the mass fraction of OH at adjacent position. Combustion efficiency can reach maximum value when coupling the surface catalytic combustion and the gas phase combustion. Inlet velocity will take more influence onto the temperature of ouelet exhaust than the temperature of outerwall, and the too higher velocity will lead to the reducing of combustion efficiency. Wall materials also have important influence on catalytic combustion of hydrogen and oxygen, there are large temperature gradient and temperature value in the outer wall of combustor when materials with small heat conductivity are used. The high temperature combustion zone moves to the entrance side because of the increase of the heat exchange form the combustor wall to the mixed gas near the entrance when materials with large heat conductivity are used.%基于空间气相和表面催化的详细化学反应机理,应用计算流体动力学软件对亚毫米燃烧器内的氧氧预混合燃烧进行模拟,在对催化燃烧模型进行试验验证的基础上,讨论不同反应模型的燃烧特性以及壁面材料和进口流速等对催化燃烧反应的影响.模拟结果显示,表面催化反应会使壁面相邻位置空间气体内的OH质量分数降低,对该催化壁面临近区域的气相反应有所抑制;壁面催化反应与空间气相反应耦合进行时,燃烧效率可达到最大值;进口速度对出口排气

  5. Parametric performance analysis of steam-injected gas turbine with a thermionic-energy-converter-lined combustor

    Science.gov (United States)

    Choo, Y. K.; Burns, R. K.

    1982-01-01

    The performance of steam-injected gas turbines having combustors lined with thermionic energy converters (STIG/TEC systems) was analyzed and compared with that of two baseline systems; a steam-injected gas turbine (without a TEC-lined combustor) and a conventional combined gas turbine/steam turbine cycle. Common gas turbine parameters were assumed for all of the systems. Two configurations of the STIG/TEC system were investigated. In both cases, steam produced in an exhaust-heat-recovery boiler cools the TEC collectors. It is then injected into the gas combustion stream and expanded through the gas turbine. The STIG/TEC system combines the advantage of gas turbine steam injection with the conversion of high-temperature combustion heat by TEC's. The addition of TEC's to the baseline steam-injected gas turbine improves both its efficiency and specific power. Depending on system configuration and design parameters, the STIG/TEC system can also achieve higher efficiency and specific power than the baseline combined cycle.

  6. A Priori Analysis of a Compressible Flamelet Model using RANS Data for a Dual-Mode Scramjet Combustor

    Science.gov (United States)

    Quinlan, Jesse R.; Drozda, Tomasz G.; McDaniel, James C.; Lacaze, Guilhem; Oefelein, Joseph

    2015-01-01

    In an effort to make large eddy simulation of hydrocarbon-fueled scramjet combustors more computationally accessible using realistic chemical reaction mechanisms, a compressible flamelet/progress variable (FPV) model was proposed that extends current FPV model formulations to high-speed, compressible flows. Development of this model relied on observations garnered from an a priori analysis of the Reynolds-Averaged Navier-Stokes (RANS) data obtained for the Hypersonic International Flight Research and Experimentation (HI-FiRE) dual-mode scramjet combustor. The RANS data were obtained using a reduced chemical mechanism for the combustion of a JP-7 surrogate and were validated using avail- able experimental data. These RANS data were then post-processed to obtain, in an a priori fashion, the scalar fields corresponding to an FPV-based modeling approach. In the current work, in addition to the proposed compressible flamelet model, a standard incompressible FPV model was also considered. Several candidate progress variables were investigated for their ability to recover static temperature and major and minor product species. The effects of pressure and temperature on the tabulated progress variable source term were characterized, and model coupling terms embedded in the Reynolds- averaged Navier-Stokes equations were studied. Finally, results for the novel compressible flamelet/progress variable model were presented to demonstrate the improvement attained by modeling the effects of pressure and flamelet boundary conditions on the combustion.

  7. Conversion of Fuel-N to N2O and NOx during Coal Combustion in Combustors of Different Scale

    Institute of Scientific and Technical Information of China (English)

    周昊; 黄燕; 莫桂源; 廖子昱; 岑可法

    2013-01-01

    With focus on investigating the effect of combustor scale on the conversion of fuel-N to NOx and N2O, experiments are carried out in three combustors, including single coal particle combustion test rig, laboratory scale circulating fluidized-bed boiler (CFB) and full scale CFB in this work. For single coal particle combustion, the ma-jority of fuel-N (65%-82%) is released as NOx, while only a little (less than 8%) fuel-N yields N2O. But in labora-tory scale CFB, the conversion of fuel-N to N2O is increases, but the conversion of fuel-N to NOx is quite less than that of single coal particle combustion. This is because much char in CFB can promote the NOx reduction by in-creasing N2O formation. In full scale CFB, both of the conversion of fuel-N to NOx and the conversion of fuel-N to N2O are smaller than laboratory scale CFB.

  8. A new unsteady mixing model to predict NO(x) production during rapid mixing in a dual-stage combustor

    Science.gov (United States)

    Menon, Suresh

    1992-01-01

    An advanced gas turbine engine to power supersonic transport aircraft is currently under study. In addition to high combustion efficiency requirements, environmental concerns have placed stringent restrictions on the pollutant emissions from these engines. A combustor design with the potential for minimizing pollutants such as NO(x) emissions is undergoing experimental evaluation. A major technical issue in the design of this combustor is how to rapidly mix the hot, fuel-rich primary zone product with the secondary diluent air to obtain a fuel-lean mixture for combustion in the second stage. Numerical predictions using steady-state methods cannot account for the unsteady phenomena in the mixing region. Therefore, to evaluate the effect of unsteady mixing and combustion processes, a novel unsteady mixing model is demonstrated here. This model has been used to study multispecies mixing as well as propane-air and hydrogen-air jet nonpremixed flames, and has been used to predict NO(x) production in the mixing region. Comparison with available experimental data show good agreement, thereby providing validation of the mixing model. With this demonstration, this mixing model is ready to be implemented in conjunction with steady-state prediction methods and provide an improved engineering design analysis tool.

  9. High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor

    Science.gov (United States)

    Boxx, Isaac; Arndt, Christoph M.; Carter, Campbell D.; Meier, Wolfgang

    2012-03-01

    A series of measurements was taken on two technically premixed, swirl-stabilized methane-air flames (at overall equivalence ratios of ϕ = 0.73 and 0.83) in an optically accessible gas turbine model combustor. The primary diagnostics used were combined planar laser-induced fluorescence of the OH radical and stereoscopic particle image velocimetry (PIV) with simultaneous repetition rates of 10 kHz and a measurement duration of 0.8 s. Also measured were acoustic pulsations and OH chemiluminescence. Analysis revealed strong local periodicity in the thermoacoustically self-excited (or ` noisy') flame (ϕ = 0.73) in the regions of the flow corresponding to the inner shear layer and the jet-inflow. This periodicity appears to be the result of a helical precessing vortex core (PVC) present in that region of the combustor. The PVC has a precession frequency double (at 570 Hz) that of the thermo-acoustic pulsation (at 288 Hz). A comparison of the various data sets and analysis techniques applied to each flame suggests a strong coupling between the PVC and the thermo-acoustic pulsation in the noisy flame. Measurements of the stable (` quiet') flame (ϕ = 0.83) revealed a global fluctuation in both velocity and heat-release around 364 Hz, but no clear evidence of a PVC.

  10. Major gaseous and PAH emissions from a fluidized-bed combustor firing rice husk with high combustion efficiency

    International Nuclear Information System (INIS)

    This experimental work investigated major gaseous (CO and NOx) and PAH emissions from a 400 kWth fluidized-bed combustor with a cone-shaped bed (referred to as 'conical FBC') firing rice husk with high, over 99%, combustion efficiency. Experimental tests were carried out at the fuel feed rate of 80 kg/h for different values of excess air (EA). As revealed by the experimental results, EA had substantial effects on the axial CO and NOx concentration profiles and corresponding emissions from the combustor. The concentration (mg/kg-ash) and specific emission (μg/kW h) of twelve polycyclic aromatic hydrocarbons (PAHs), acenaphthylene, fluorene, phenanthrene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene and indeno[1,2,3-cd]pyrene, were quantified in this work for different size fractions of ash emitted from the conical FBC firing rice husk at EA = 20.9%. The total PAHs emission was found to be predominant for the coarsest ash particles, due to the effects of a highly developed internal surface in a particle volume. The highest emission was shown by acenaphthylene, 4.1 μg/kW h, when the total yield of PAHs via fly ash was about 10 μg/kW h. (author)

  11. Gas sampling method for determining pollutant concentrations in the flame zone of two swirl-can combustor modules

    Science.gov (United States)

    Duerr, R. A.

    1975-01-01

    A gas sampling probe and traversing mechanism were developed to obtain detailed measurements of gaseous pollutant concentrations in the primary and mixing regions of combustors in order to better understand how pollutants are formed. The gas sampling probe was actuated by a three-degree-of-freedom traversing mechanism and the samples obtained were analyzed by an on-line gas analysis system. The pollutants in the flame zone of two different swirl-can combustor modules were measured at an inlet-air temperature of 590 K, pressure of 6 atmospheres, and reference velocities of 23 and 30 meters per second at a fuel-air ratio of 0.02. Typical results show large spatial gradients in the gaseous pollutant concentration close to the swirl-can module. Average concentrations of unburned hydrocarbons and carbon monoxide decrease rapidly in the downstream wake regions of each module. By careful and detailed probing, the effect of various module design features on pollutant formation can be assessed. The techniques presently developed seem adequate to obtain the desired information.

  12. DEVELOPMENT AND DEMONSTRATION OF AN ULTRA LOW NOx COMBUSTOR FOR GAS TURBINES

    Energy Technology Data Exchange (ETDEWEB)

    NEIL K. MCDOUGALD

    2005-04-30

    Alzeta Corporation has developed surface-stabilized fuel injectors for use with lean premixed combustors which provide extended turndown and ultra-low NOX emission performance. These injectors use a patented technique to form interacting radiant and blue-flame zones immediately above a selectively-perforated porous metal surface. This allows stable operation at low reaction temperatures. This technology is being commercialized under the product name nanoSTAR. Initial tests demonstrated low NOX emissions but, were limited by flashback failure of the injectors. The weld seams required to form cylindrical injectors from flat sheet material were identified as the cause of the failures. The approach for this project was to first develop new fabrication methods to produce injectors without weld seams, verify similar emissions performance to the original flat sheet material and then develop products for microturbines and small gas turbines along parallel development paths. A 37 month project was completed to develop and test a surface stabilized combustion system for gas turbine applications. New fabrication techniques developed removed a technological barrier to the success of the product by elimination of conductive weld seams from the injector surface. The injectors demonstrated ultra low emissions in rig tests conducted under gas turbine operating conditions. The ability for injectors to share a common combustion chamber allowing for deployment in annular combustion liner was also demonstrated. Some further development is required to resolve integration issues related to specific engine constraints, but the nanoSTAR technology has clearly demonstrated its low emissions potential. The overall project conclusions can be summarized: (1) A wet-laid casting method successfully eliminated weld seams from the injector surface without degrading performance. (2) Gas turbine cycle analysis identified several injector designs and control schemes to start and load engines using

  13. The effect of variable fuel composition on a swirl-stabilised producer gas combustor

    International Nuclear Information System (INIS)

    Highlights: ► We perform combustion experiments on two similar burners on different scales. ► We monitor and model the variation in producer composition from a biomass gasifier. ► The effect that this variation has on combustion properties is assessed. ► Gas CV and AFR are steady, flame speed is shown to vary greatly. ► The potential to simulate the combustion of producer gas with diluted natural gas is investigated. - Abstract: Producer gas is a form of synthesis gas formed from the gasification of biomass. Its composition varies largely depending on the gasifier type, up-draft, down-draft and entrained flow to name a few, and oxidiser, typically air, steam or pure oxygen. The producer gas in question is derived from an air fed down-draft gasifier containing Grade-A wood waste, and as such has comparatively low calorific value and hydrogen content of around 6 MJ/N m3 and 11% respectively. The viability of producing thermal energy on an industrial scale was proved via the swirl-stabilised combustion of forementioned producer gas in a 1.5 MW rated swirl burner, directly attached to a proprietary gasification plant. A largely stable combustion was achieved; however, a few instances of flame extinction did occur which were attributed to varying fluctuations in gasifier throat temperature. A relationship between throat temperature and fuel composition is believed to be the cause of these extinctions. Although these fluctuations were shown to have little effect on the producer gases stoichiometric air-to-fuel ratio and calorific value, there was particular variance in hydrogen content. Simulation using CHEMKIN showed that this variable hydrogen content had a significant effect on flame speed, with an increase from 5% to 15% hydrogen increasing laminar flame speed from 8.01 cm/s to 17.70 cm/s. Industrial-scale data was also compared to that taken with a 100 kW laboratory-scale combustor in an attempt to establish whether burner optimisation could be effectively

  14. Emission characteristics and combustion instabilities in an oxy-fuel swirl-stabilized combustor

    Institute of Scientific and Technical Information of China (English)

    Guo-neng LI; Hao ZHOU; Ke-fa CEN

    2008-01-01

    This paper presents an experimental study on the emission characteristics and combustion instabilities of oxy-fuel combustions in a swirl-stabilized combustor.Different oxygen concentrations(Xoxy=25%-45%,where Xoxy is oxygen concentra-tion by volume),equivalence ratios(=0.75~1.15)and combustion powers(CP=1.08~2.02kW)were investigated in the oxy-fuel (CH4/CO2/O2)combustions,and reference cases(Xoxy=25%~35%,Cha/N2/O2 flames)were covered.The results show that the oxygen concentration in the oxidant stream significantly affects the combustion delay in the oxy-fuel flames,and the equivalence ratio has a slight effect,whereas the combustion power shows no impact.The temperature levels of the oxy-fuel flames inside the combustion chamber are much higher(up to 38.7%)than those of the reference cases.Carbon monoxide was vastly producedwhen Xoxy>35% or >0.95 in the oxy-fuel flames,while no nitric oxide was found in the exhaust gases because no N2 participates in the combustion process.The combustion instability of the oxy-fuel combustion is very different from those of the reference cases with similar oxygen content.Oxy-fuel combustions excite strong oscillations in all cases studied Xoxy=25%~45%.However,no pressure fluctuations were detected in the reference cases when Xoxy>28.6% accomplished by heavily sooting flames which were not found in the oxy-fuel combustions.Spectrum analysis shows that the frequency of dynamic pressure oscillations exhibits randomness in the range of 50~250 Hz,therefore resulting in a very small resultant amplitude.Temporal oscillations are very strong with amplitudes larger than 200 Pa,even short time fast Fourier transform(FFT)analysis(0.08 s)shows that the pressure amplitude can be larger than 40 Pa.

  15. Improved Modeling of Finite-Rate Turbulent Combustion Processes in Research Combustors

    Science.gov (United States)

    VanOverbeke, Thomas J.

    1998-01-01

    The objective of this thesis is to further develop and test a stochastic model of turbulent combustion in recirculating flows. There is a requirement to increase the accuracy of multi-dimensional combustion predictions. As turbulence affects reaction rates, this interaction must be more accurately evaluated. In this work a more physically correct way of handling the interaction of turbulence on combustion is further developed and tested. As turbulence involves randomness, stochastic modeling is used. Averaged values such as temperature and species concentration are found by integrating the probability density function (pdf) over the range of the scalar. The model in this work does not assume the pdf type, but solves for the evolution of the pdf using the Monte Carlo solution technique. The model is further developed by including a more robust reaction solver, by using accurate thermodynamics and by more accurate transport elements. The stochastic method is used with Semi-Implicit Method for Pressure-Linked Equations. The SIMPLE method is used to solve for velocity, pressure, turbulent kinetic energy and dissipation. The pdf solver solves for temperature and species concentration. Thus, the method is partially familiar to combustor engineers. The method is compared to benchmark experimental data and baseline calculations. The baseline method was tested on isothermal flows, evaporating sprays and combusting sprays. Pdf and baseline predictions were performed for three diffusion flames and one premixed flame. The pdf method predicted lower combustion rates than the baseline method in agreement with the data, except for the premixed flame. The baseline and stochastic predictions bounded the experimental data for the premixed flame. The use of a continuous mixing model or relax to mean mixing model had little effect on the prediction of average temperature. Two grids were used in a hydrogen diffusion flame simulation. Grid density did not effect the predictions except

  16. Distinguishing harmonic behavior of longitudinal resonant combustion in a variable geometry model rocket combustor

    Science.gov (United States)

    Hester, Sarah

    Throughout the study of high frequency combustion instability in a single element Continuously Variable Resonance Combustor (CVRC), the excitation of the fundamental longitudinal mode is closely followed by the excitation of higher harmonic modes. In an attempt to establish a heuristic relationship between the appearances of the fundamental mode and its harmonics, several unstable fixed geometry and variable geometry tests from the CVRC are analyzed through traditional Fourier-based methods and alternative signal processing methods such as wavelet analysis and Instantaneous Frequency (IF) Analysis from PC Signal Analysis. Early results led to the conclusion that traditional Fourier-based analysis provides believable and consistent results for the first three modes. However, Fourier analysis is sensitive to effects from non-sinusoidal waveforms. Further work using manufactured signals with both sinusoidal and steepfronted waveforms established that it is unclear which parts of the calculated harmonic signals are data artifacts and which are true signal. Supplementary assessment of IF Analysis and the traditional Fourier-based analysis explored the applicability of each method, the inherent data artifacts, and distinguishing behavior between the experimental data and those data artifacts. The results obtained from the IF Analysis provide good agreement with the traditional Fourier-based analysis, though one uses FIR filters and the other uses IIR filters. The validity of the results is sensitive to the settings chosen for these filters. It is shown that harmonic modal content exists in the CVRC, but it is also shown that the current results include indistinguishable Fourier artifacts. Both methods are sensitive to the sinusoidal assumption and cannot correctly interpret steep-fronted waveforms. This supplementary assessment has shown that IF Analysis is no worse than traditional Fourier-based analysis, but it fails to provide additional useful information

  17. Heterogeneous catalytic materials solid state chemistry, surface chemistry and catalytic behaviour

    CERN Document Server

    Busca, Guido

    2014-01-01

    Heterogeneous Catalytic Materials discusses experimental methods and the latest developments in three areas of research: heterogeneous catalysis; surface chemistry; and the chemistry of catalysts. Catalytic materials are those solids that allow the chemical reaction to occur efficiently and cost-effectively. This book provides you with all necessary information to synthesize, characterize, and relate the properties of a catalyst to its behavior, enabling you to select the appropriate catalyst for the process and reactor system. Oxides (used both as catalysts and as supports for cata

  18. Engineering Metallic Nanoparticles for Enhancing and Probing Catalytic Reactions.

    Science.gov (United States)

    Collins, Gillian; Holmes, Justin D

    2016-07-01

    Recent developments in tailoring the structural and chemical properties of colloidal metal nanoparticles (NPs) have led to significant enhancements in catalyst performance. Controllable colloidal synthesis has also allowed tailor-made NPs to serve as mechanistic probes for catalytic processes. The innovative use of colloidal NPs to gain fundamental insights into catalytic function will be highlighted across a variety of catalytic and electrocatalytic applications. The engineering of future heterogenous catalysts is also moving beyond size, shape and composition considerations. Advancements in understanding structure-property relationships have enabled incorporation of complex features such as tuning surface strain to influence the behavior of catalytic NPs. Exploiting plasmonic properties and altering colloidal surface chemistry through functionalization are also emerging as important areas for rational design of catalytic NPs. This news article will highlight the key developments and challenges to the future design of catalytic NPs. PMID:26823380

  19. Catalytic bioscavengers in nerve agent poisoning: A promising approach?

    Science.gov (United States)

    Worek, Franz; Thiermann, Horst; Wille, Timo

    2016-02-26

    The repeated use of the nerve agent sarin against civilians in Syria in 2013 emphasizes the continuing threat by chemical warfare agents. Multiple studies demonstrated a limited efficacy of standard atropine-oxime treatment in nerve agent poisoning and called for the development of alternative and more effective treatment strategies. A novel approach is the use of stoichiometric or catalytic bioscavengers for detoxification of nerve agents in the systemic circulation prior to distribution into target tissues. Recent progress in the design of enzyme mutants with reversed stereo selectivity resulting in improved catalytic activity and their use in in vivo studies supports the concept of catalytic bioscavengers. Yet, further research is necessary to improve the catalytic activity, substrate spectrum and in vivo biological stability of enzyme mutants. The pros and cons of catalytic bioscavengers will be discussed in detail and future requirements for the development of catalytic bioscavengers will be proposed. PMID:26200600

  20. Evaluation of the Impact of Chlorine on Mercury Oxidation in a Pilot-Scale Coal Combustor--The Effect of Coal Blending

    Science.gov (United States)

    A study has been undertaken to investigate the effect of blending PRB coal with an Eastern bituminous coal on the speciation of Hg across an SCR catalyst. In this project, a pilot-scale (1.2 MWt) coal combustor equipped with an SCR reactor for NOx control was used for evaluating ...

  1. Co-firing of eucalyptus bark and rubberwood sawdust in a swirling fluidized-bed combustor using an axial flow swirler.

    Science.gov (United States)

    Chakritthakul, Songpol; Kuprianov, Vladimir I

    2011-09-01

    Co-combustion of eucalyptus bark (as shredded fuel) and rubberwood sawdust was conducted in a swirling fluidized-bed combustor using a 22-vane axial flow swirler. During the co-firing tests, the fuel blend feed rate was maintained at about 60 kg/h, while the mass/energy fraction of the blended fuels was variable. Excess air supply ranged from 20% to 80% for each fuel option via variation of primary air, while secondary air was injected tangentially into the bed splash zone at a constant flowrate. For comparison, tests with pure rubberwood sawdust at similar operating conditions were performed as well. Temperature and concentrations of O(2), CO and NO were measured along radial and axial directions in the combustor as well as at stack. For all fuel firing options, the radial and axial temperature profiles in the reactor were found to be weakly dependent on operating conditions. However, the gas concentration profiles exhibited apparent effects of fuel properties, excess air and secondary air injection, which resulted in variable emission characteristics of the combustor. For the sawdust energy fraction in the fuel blend of about 0.85, CO and NO emissions can be controlled at acceptable levels (both complying with the national emission limits) by maintaining excess air between 50% and 55%. Under such conditions, the co-combustion of high-moisture eucalyptus bark and rubberwood sawdust in the proposed combustor occurs in a stable regime with high, 99.6%, combustion efficiency. PMID:21729824

  2. Fluid catalytic cracking of biomass pyrolysis vapors

    Energy Technology Data Exchange (ETDEWEB)

    Mante, Ofei Daku [Virginia Polytechnic Institute and State University, Biological Systems Engineering, Blacksburg, VA (United States); Agblevor, Foster A. [Utah State University, Biological Engineering, Logan, UT (United States); McClung, Ron [BASF Inc, Florham, NJ (United States)

    2011-12-15

    Catalytic cracking of pyrolysis oils/vapors offers the opportunity of producing bio-oils which can potentially be coprocessed with petroleum feedstocks in today's oil refinery to produce transportation fuel and chemicals. Catalyst properties and process conditions are critical in producing and maximizing desired product. In our studies, catalyst matrix (kaolin) and two commercial fluid catalytic cracking (FCC) catalysts, FCC-H and FCC-L, with different Y-zeolite contents were investigated. The catalytic cracking of hybrid poplar wood was conducted in a 50-mm bench-scale bubbling fluidized-bed pyrolysis reactor at 465 C with a weight hourly space velocity of 1.5 h{sup -1}. The results showed that the yields and quality of the bio-oils was a function of the Y-zeolite content of the catalyst. The char/coke yield was highest for the higher Y-zeolite catalyst. The organic liquid yields decreased inversely with increase in zeolite content of the catalyst whereas the water and gas yields increased. Analysis of the oils by both Fourier-transform infrared and {sup 13}C-nuclear magnetic resonance indicated that the catalyst with higher zeolite content (FCC-H) was efficient in the removal of compounds like levoglucosan, carboxylic acids and the conversion of methoxylated phenols to substituted phenols and benzenediols. The cracking of pyrolysis products by kaolin suggests that the activity of the FCC catalyst on biomass pyrolysis vapors can be attributed to both Y-zeolite and matrix. The FCC-H catalyst produced much more improved oil. The oil was low in oxygen (22.67 wt.%), high in energy (29.79 MJ/kg) and relatively stable over a 12-month storage period. (orig.)

  3. Catalytic Mechanism of Human Alpha-galactosidase

    Energy Technology Data Exchange (ETDEWEB)

    Guce, A.; Clark, N; Salgado, E; Ivanen, D; Kulinskaya, A; Brumer, H; Garman, S

    2010-01-01

    The enzyme {alpha}-galactosidase ({alpha}-GAL, also known as {alpha}-GAL A; E.C. 3.2.1.22) is responsible for the breakdown of {alpha}-galactosides in the lysosome. Defects in human {alpha}-GAL lead to the development of Fabry disease, a lysosomal storage disorder characterized by the buildup of {alpha}-galactosylated substrates in the tissues. {alpha}-GAL is an active target of clinical research: there are currently two treatment options for Fabry disease, recombinant enzyme replacement therapy (approved in the United States in 2003) and pharmacological chaperone therapy (currently in clinical trials). Previously, we have reported the structure of human {alpha}-GAL, which revealed the overall structure of the enzyme and established the locations of hundreds of mutations that lead to the development of Fabry disease. Here, we describe the catalytic mechanism of the enzyme derived from x-ray crystal structures of each of the four stages of the double displacement reaction mechanism. Use of a difluoro-{alpha}-galactopyranoside allowed trapping of a covalent intermediate. The ensemble of structures reveals distortion of the ligand into a {sup 1}S{sub 3} skew (or twist) boat conformation in the middle of the reaction cycle. The high resolution structures of each step in the catalytic cycle will allow for improved drug design efforts on {alpha}-GAL and other glycoside hydrolase family 27 enzymes by developing ligands that specifically target different states of the catalytic cycle. Additionally, the structures revealed a second ligand-binding site suitable for targeting by novel pharmacological chaperones.

  4. De novo design of catalytic proteins

    OpenAIRE

    Kaplan, J; DeGrado, W. F.

    2004-01-01

    The de novo design of catalytic proteins provides a stringent test of our understanding of enzyme function, while simultaneously laying the groundwork for the design of novel catalysts. Here we describe the design of an O2-dependent phenol oxidase whose structure, sequence, and activity are designed from first principles. The protein catalyzes the two-electron oxidation of 4-aminophenol (kcat/KM = 1,500 M·1·min·1) to the corresponding quinone monoimine by using a diiron cofactor. The catalyti...

  5. Transport in a Microfluidic Catalytic Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, H G; Chung, J; Grigoropoulos, C P; Greif, R; Havstad, M; Morse, J D

    2003-04-30

    A study of the heat and mass transfer, flow, and thermodynamics of the reacting flow in a catalytic microreactor is presented. Methanol reforming is utilized in the fuel processing system driving a micro-scale proton exchange membrane fuel cell. Understanding the flow and thermal transport phenomena as well as the reaction mechanisms is essential for improving the efficiency of the reforming process as well as the quality of the processed fuel. Numerical studies have been carried out to characterize the transport in a silicon microfabricated reactor system. On the basis of these results, optimized conditions for fuel processing are determined.

  6. Asymmetric catalytic aziridination of cyclic enones.

    Science.gov (United States)

    De Vincentiis, Francesco; Bencivenni, Giorgio; Pesciaioli, Fabio; Mazzanti, Andrea; Bartoli, Giuseppe; Galzerano, Patrizia; Melchiorre, Paolo

    2010-07-01

    The first catalytic method for the asymmetric aziridination of cyclic enones is described. The presented organocatalytic strategy is based on the use of an easily available organocatalyst that is able to convert a wide range of cyclic enones into the desired aziridines with very high enantiomeric purity and good chemical yield. Such a method may very well open up new opportunities to stereoselectively prepare complex chiral molecules that possess an indane moiety, a framework that is found in a large number of bioactive and pharmaceutically important molecules. PMID:20512797

  7. Catalytic Pyrolysis of Olive Mill Wastewater Sludge

    OpenAIRE

    Abdellaoui, Hamza

    2015-01-01

    Olive mill wastewater sludge (OMWS) is the solid residue that remains in the evaporation ponds after evaporation of the majority of water in the olive mill wastewater (OMW). OMWS is a major environmental pollutant in the olive oil producing regions. Approximately 41.16 wt. % of the OMWS was soluble in hexanes (HSF). The fatty acids in this fraction consist mainly of oleic and palmitic acid. Catalytic pyrolysis of the OMWS over red mud and HZSM-5 has been demonstrated to be an effective techno...

  8. Electrospun Catalytic Support Prepared by Electrospinning Technique

    Czech Academy of Sciences Publication Activity Database

    Soukup, Karel; Topka, Pavel; Petráš, D.; Klusoň, Petr; Šolcová, Olga

    Praha : Orgit, 2012, C4.1. ISBN 978-80-905035-1-9. [International Congress of Chemical and Process Engineering CHISA 2012 and 15th Conference PRES 2012 /20./. Prague (CZ), 25.08.2012-29.08.2012] R&D Projects: GA ČR GPP106/11/P459; GA ČR(CZ) GAP204/11/1206 Institutional support: RVO:67985858 Keywords : catalytic tests * electrospun * gas transport properties Subject RIV: CI - Industrial Chemistry, Chemical Engineering www.chisa.cz/2012

  9. Tritium stripping by a catalytic exchange stripper

    International Nuclear Information System (INIS)

    A catalytic exchange process for stripping elemental tritium from gas streams has been demonstrated. The process uses a catalyzed isotopic exchange reaction between tritium in the gas phase and protium or deuterium in the solid phase on alumina. The reaction is catalyzed by platinum deposited on the alumina. The process has been tested with both tritium and deuterium. Decontamination factors (ration of inlet and outlet tritium concentrations) as high as 1000 have been achieved, depending on inlet concentration. The test results and some demonstrated applications are presented

  10. Catalytic Synthesis Methods for Triazolopyrimidine Derivatives

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A new method for catalyzed synthesis of triazolopyrimidine derivatives is reported. Aikylamine reaction with dialkyl cyanodithioiminocarbonate was catalyzed by quaternary ammonium salts at room temperature to yield 3-alkylamine-5-amino-1,2,4-triazole in good quality and high yields. After imidization and reaction with an α,β-unsaturated acid derivative, the reaction intermediate was hydrolyzed in the presence of a Lewis acid to obtain the target product. This novel catalytic method for triazolopyrimidine derivatives can be carried out under inexpen-sive and mild conditions, and is safe and environmentally friendly. IH NMR results for all intermediates are re-ported.

  11. Thin film porous membranes for catalytic sensors

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, R.C.; Boyle, T.J.; Gardner, T.J. [and others

    1997-06-01

    This paper reports on new and surprising experimental data for catalytic film gas sensing resistors coated with nanoporous sol-gel films to impart selectivity and durability to the sensor structure. This work is the result of attempts to build selectivity and reactivity to the surface of a sensor by modifying it with a series of sol-gel layers. The initial sol-gel SiO{sub 2} layer applied to the sensor surprisingly showed enhanced O{sub 2} interaction with H{sub 2} and reduced susceptibility to poisons such as H{sub 2}S.

  12. Temperature control of a catalytic converter

    Energy Technology Data Exchange (ETDEWEB)

    Ma, T.T.-H.

    1994-06-08

    In an ic engine having a catalytic convertor, the catalyst heater is controlled in dependence upon an estimate of the temperature of the catalyst so that there is no need for a sensor in the hostile environment of the exhaust. A valve indicative of the catalyst temperature is stored and modified in accordance with a model of the catalyst temperature. The model can be a mathematical mood carried out by a signal processor or an electrical model with the catalyst temperature being represented by the charge stored on a capacitor. (Author)

  13. Catalytic asymmetric formal synthesis of beraprost

    Science.gov (United States)

    Kobayashi, Yusuke; Kuramoto, Ryuta

    2015-01-01

    Summary The first catalytic asymmetric synthesis of the key intermediate for beraprost has been achieved through an enantioselective intramolecular oxa-Michael reaction of an α,β-unsaturated amide mediated by a newly developed benzothiadiazine catalyst. The Weinreb amide moiety and bromo substituent of the Michael adduct were utilized for the C–C bond formations to construct the scaffold. All four contiguous stereocenters of the tricyclic core were controlled via Rh-catalyzed stereoselective C–H insertion and the subsequent reduction from the convex face. PMID:26734111

  14. Catalytic deallylation of allyl- and diallylmalonates.

    Science.gov (United States)

    Necas, David; Turský, Matyás; Kotora, Martin

    2004-08-25

    Substituted allylmalonates undergo the selective C-C bond cleavage in the presence of triethylaluminum and a catalytic amount of nickel and ruthenium phosphine complexes, resulting in the loss of the allyl moiety and formation of monosubstituted malonates. Comparison of reactivity of the nickel and ruthenium complexes showed that the use of the former is general with respect to the structure of the substituted allylmalonates, and the activity of the latter depended on the substitution pattern of the double bond of the allylic moiety. The smooth deallylation may encourage the use of the allyl group as a protective group for the acidic hydrogen in malonates. PMID:15315416

  15. Catalytic multi-stage liquefaction (CMSL)

    Energy Technology Data Exchange (ETDEWEB)

    Comolli, A.G.; Ganguli, P.; Karolkiewicz, W.F.; Lee, T.L.K.; Pradhan, V.R.; Popper, G.A.; Smith, T.; Stalzer, R.

    1996-11-01

    Under contract with the U.S. Department of Energy, Hydrocarbon Technologies, Inc. has conducted a series of eleven catalytic, multi-stage, liquefaction (CMSL) bench scale runs between February, 1991, and September, 1995. The purpose of these runs was to investigate novel approaches to liquefaction relating to feedstocks, hydrogen source, improved catalysts as well as processing variables, all of which are designed to lower the cost of producing coal-derived liquid products. This report summarizes the technical assessment of these runs, and in particular the evaluation of the economic impact of the results.

  16. Biomimetic, Catalytic Oxidation in Organic Synthesis

    Institute of Scientific and Technical Information of China (English)

    Shun-lchi Murahashi

    2005-01-01

    @@ 1Introduction Oxidation is one of the most fundamental reactions in organic synthesis. Owing to the current need to develop forward-looking technology that is environmentally acceptable with respect many aspects. The most attractive approaches are biomimetic oxidation reactions that are closely related to the metabolism of living things. The metabolisms are governed by a variety of enzymes such as cytochrome P-450 and flavoenzyme.Simulation of the function of these enzymes with simple transition metal complex catalyst or organic catalysts led to the discovery of biomimetic, catalytic oxidations with peroxides[1]. We extended such biomimetic methods to the oxidation with molecular oxygen under mild conditions.

  17. Heterogeneous Photooxidation of Phenol by Catalytic Membranes

    Institute of Scientific and Technical Information of China (English)

    Enrica Fontananova; Enrico Drioli; Laura Donato; Marcella Bonchio; Mauro Carraro; Gianfranco Scorrano

    2006-01-01

    In this work the heterogenization in polymeric membranes of decatungstate, a photocatalyst for oxidation reactions,was reported. Solid state characterization techniques confirmed that the catalyst structure was preserved within the polymeric membranes. The catalytic membranes were successfully applied in the aerobic photo-oxidation of phenol, one of the main organic pollutants in wastewater, providing stable and recyclable photocatalytic systems. The dependence of the phenol degradation rate by the catalyst loading and transmembrane pressure was shown. By comparison with homogeneous reaction,the catalyst heterogenized in membrane appears to be more efficient concerning the rate of phenol photodegradation and mineralization.

  18. Submicron Polyethylene Particles from Catalytic Emulsion Polymerization

    OpenAIRE

    Bauers, Florian Martin; Thomann, Ralf; Mecking, Stefan

    2003-01-01

    Particles of linear polyethylene (Mn = (2-3)X 10000 g mol-1; Mw/Mn = 2-4) obtained by catalytic emulsion polymerization of ethylene possess a nonspherical, lentil-like shape with an average aspect ratio of ca. 10 and diameters from 30 to > 300 nm, as determined by TEM and AFM. The particle structure results from a stacking of the lamellae along the one shorter axis of the lentils (i.e., their height, by contrast to the diameter). In addition to these multilamellae particles, remarkably, a con...

  19. Catalytic conversion of sulfur dioxide and trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Solov' eva, E.L.; Shenfel' d, B.E.; Kuznetsova, S.M.; Khludenev, A.G.

    1987-11-10

    The reclamation and utilization of sulfur-containing wastes from the flue gas of fossil-fuel power plants and the subsequent reduction in sulfur emission is addressed in this paper. The authors approach this problem from the standpoint of the catalytic oxidation of sulfur dioxide on solid poison-resistant catalysts with subsequent sorption of the sulfur trioxide and its incorporation into the manufacture of sulfuric acid. The catalyst they propose is a polymetallic dust-like waste from the copper-smelting industry comprised mainly of iron and copper oxides. Experiments with this catalyst were carried out using multifactorial experiment planning.

  20. The catalytic residues of Tn3 resolvase

    OpenAIRE

    Olorunniji, F.J.; Stark, W M

    2009-01-01

    To characterize the residues that participate in the catalysis of DNA cleavage and rejoining by the site-specific recombinase Tn3 resolvase, we mutated conserved polar or charged residues in the catalytic domain of an activated resolvase variant. We analysed the effects of mutations at 14 residues on proficiency in binding to the recombination site ('site I'), formation of a synaptic complex between two site Is, DNA cleavage and recombination. Mutations of Y6, R8, S10, D36, R68 and R71 result...