WorldWideScience

Sample records for catalytic coal liquid

  1. Molecular catalytic coal liquid conversion

    Energy Technology Data Exchange (ETDEWEB)

    Stock, L.M.; Yang, Shiyong [Univ. of Chicago, IL (United States)

    1995-12-31

    This research, which is relevant to the development of new catalytic systems for the improvement of the quality of coal liquids by the addition of dihydrogen, is divided into two tasks. Task 1 centers on the activation of dihydrogen by molecular basic reagents such as hydroxide ion to convert it into a reactive adduct (OH{center_dot}H{sub 2}){sup {minus}} that can reduce organic molecules. Such species should be robust withstanding severe conditions and chemical poisons. Task 2 is focused on an entirely different approach that exploits molecular catalysts, derived from organometallic compounds that are capable of reducing monocyclic aromatic compounds under very mild conditions. Accomplishments and conclusions are discussed.

  2. Molecular catalytic hydrogenation of aromatic hydrocarbons and hydrotreating of coal liquids.

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Shiyong; Stock, L.M.

    1996-05-01

    This report presents the results of research on the development of new catalytic pathways for the hydrogenation of multiring aromatic hydrocarbons and the hydrotreating of coal liquids at The University of Chicago under DOE Contract No. DE-AC22-91PC91056. The work, which is described in three parts, is primarily concerned with the research on the development of new catalytic systems for the hydrogenation of aromatic hydrocarbons and for the improvement of the quality of coal liquids by the addition of dihydrogen. Part A discusses the activation of dihydrogen by very basic molecular reagents to form adducts that can facilitate the reduction of multiring aromatic hydrocarbons. Part B examines the hydrotreating of coal liquids catalyzed by the same base-activated dihydrogen complexes. Part C concerns studies of molecular organometallic catalysts for the hydrogenation of monocyclic aromatic hydrocarbons under mild conditions.

  3. Chemistry and catalysis of coal liquefaction: catalytic and thermal upgrading of coal liquid and hydrogenation of CO to produce fuels. Quarterly progress report, January-March 1980

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, W.H.

    1980-08-01

    Analysis of a group of coal liquids produced by catalytic hydrogenation of Utah coals with ZnCl/sub 2/ catalyst was begun. Carbon-13 nuclear magnetic resonance and liquid chromatography techniques will be used to correlate chemical properties with hydrogenation reactivity. Equipment previously used for downflow measurements of heat and momentum transfer in a gas-coal suspension was modified for upflow measurements. The catalytic hydrodeoxygenation of methyl benzoate has been studied to elucidate the reactions of ester during upgrading of coal-derived liquids. The kinetics of hydrogenation of phenanthrene have also been determined. The catalytic cracking mechanism of octahydroanthracene is reported in detail. Studies of the hydrodesulfurization of thiophene indicate that some thiophene is strongly adsorbed as a hydrogen-deficient polymer on cobalt-molybdate catalyst. Part of the polymer can be desorbed as thiophene by hydrogenation. Poisoning of the catalyst inhibits the hydrosulfurization activity to a greater degree than the hydrogenation activity. Iron-manganese catalysts for carbon monoxide hydrogenation is studied to determine the role of iron carbide formation on selectivity. Pure iron catalyst forms a Hagg iron carbide phase under reaction conditions.

  4. Incorporation of catalytic dehydrogenation into Fischer-Tropsch synthesis of liquid fuels from coal to minimize carbon dioxide emissions

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman [University of Kentucky, Lexington, KY (United States). Consortium for Fossil Fuel Science and Department of Chemical & Materials Engineering

    2011-08-15

    Synthesis gas (syngas) produced from coal typically has hydrogen to carbon monoxide ratios in the range of approximately 0.7-1.1, depending on the gasification method. In order to produce liquid fuels from this syngas by Fischer-Tropsch synthesis (FTS), these ratios must be raised to 2.0 or higher. If this is accomplished by the water-gas shift reaction, the traditional method, large emissions of carbon dioxide are produced. In this paper, it is shown that catalytic dehydrogenation (CDH) of the gaseous C1-C4 products of FT synthesis and recycling of the resulting hydrogen to the syngas feed-stream can increase the H{sub 2}/CO ratio to the desired values with little or no production of carbon dioxide. All carbon from the CDH reaction is in the form of a potentially valuable by-product, multi-walled carbon nanotubes (MWCNT). The amounts of hydrogen and MWCNT produced, carbon dioxide emissions avoided, and water saved are calculated for a 50,000 bbl/day FTS-CDH plant and it is demonstrated that the energy balance for the process is favorable. Methods of utilizing the large quantity of MWCNT produced are discussed. 50 refs., 6 figs., 3 tabs.

  5. Kinetics and mechanism of catalytic hydroprocessing of components of coal-derived liquids. Seventh quarterly report, November 16, 1980-February 15, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Gates, B.C.; Katzer, J.R.; Kwart, H.; Olson, J.H.; Schuit, G.C.A.; Stiles, A.B.; Petrakis, L.

    1981-10-21

    An asphaltene-containing SRC-II coal liquid derived from Powhatan No. 5 coal and produced in the Ft. Lewis demonstration plant was selected for study of catalytic hydroprocessing reactions. Separation by liquid chromatography has been carried out to produce nine distinct fractions. Experiments have begun to determine the reactivities of these fractions in high-pressure catalytic hydroprocessing. Hydroprocessing experiments with aromatic hydrocarbons under industrially relevant conditions have shown that the reaction networks involve reversible hydrogenation and isomerization, and significant concentrations of hydroaromatic (hydrogen-donor) species are attainable under practical conditions. The least reactive class of aromatic hydrocarbons consists of substituted benzenes. Biphenyl has been selected for thorough study, and quantitative kinetics of the biphenyl hydrogenation to give cyclohexylbenzene has been determined. Kinetics of hydrodenitrogenation of indole was studied in an autoclave between 321 and 400/sup 0/C and 16.3 to 69 atm, using American Cyanamid HDS-9A catalyst. A reaction network with kinetics parameters was developed for the calculation of product distribution and nitrogen removal. Lumping of components in a reaction network simplifies the kinetics determination of fuel feedstocks. Component lumping simulations involving first-order kinetics were successfully carried out for certain schemes in the quinoline network. This network can be represented by the reactant, the hydrogenated intermediate (lumps), and the denitrogenated product.

  6. Shungite carbon catalytic effect on coal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Grigorieva, E.N.; Rozhkova, N.N. [Russian Academy of Sciences, Moscow (Russian Federation). Institute for High Temperature

    1999-07-01

    The catalytic ability of shungite carbon in reactions of coal organic matter models appeared to be due to its fullerene structure only. Transition metal sulphides present in shungite carbon are not active in the conditions of coal treatment. Shungite carbon was shown to exhibit an acceleration of thermolysis of coal and organic matter models, mainly dehydrogenation. 5 refs., 1 tabs.

  7. Catalytic coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Weller, S W

    1981-01-01

    Monolith catalysts of MoO/sub 3/-CoO-Al/sub 2/O/sub 3/ were prepared and tested for coal liquefaction in a stirred autoclave. In general, the monolith catalysts were not as good as particulate catalysts prepared on Corning alumina supports. Measurement of O/sub 2/ chemisorption and BET surface area has been made on a series of Co/Mo/Al/sub 2/O/sub 3/ catalysts obtained from PETC. The catalysts were derived from Cyanamid 1442A and had been tested for coal liquefaction in batch autoclaves and continuous flow units. MoO/sub 3/-Al/sub 2/O/sub 3/ catalysts over the loading range 3.9 to 14.9 wt % MoO/sub 3/ have been studied with respect to BET surface (before and after reduction), O/sub 2/ chemisorption at -78/sup 0/C, redox behavior at 500/sup 0/C, and activity for cyclohexane dehydrogenation at 500/sup 0/C. In connection with the fate of tin catalysts during coal liquefaction, calculations have been made of the relative thermodynamic stability of SnCl/sub 2/, Sn, SnO/sub 2/, and SnS in the presence of H/sub 2/, HCl, H/sub 2/S and H/sub 2/O. Ferrous sulfate dispersed in methylnaphthalene has been shown to be reduced to ferrous sulfide under typical coal hydroliquefaction conditions (1 hour, 450/sup 0/C, 1000 psi initial p/sub H/sub 2//). This suggests that ferrous sulfide may be the common catalytic ingredient when either (a) ferrous sulfate impregnated on powdered coal, or (b) finely divided iron pyrite is used as the catalyst. Old research on impregnated ferrous sulfate, impregnated ferrous halides, and pyrite is consistent with this assumption. Eight Co/Mo/Al/sub 2/O/sub 3/ catalysts from commercial suppliers, along with SnCl/sub 2/, have been studied for the hydrotreating of 1-methylnaphthalene (1-MN) in a stirred autoclave at 450 and 500/sup 0/C.

  8. Hydrotreating of coal-derived liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lott, S.E.; Stohl, F.V.; Diegert, K.V. [Sandia National Lab., Albuquerque, NM (United States)] [and others

    1995-12-31

    To develop a database relating hydrotreating parameters to feed and product quality by experimentally evaluating options for hydrotreating whole coal liquids, distillate cuts of coal liquids, petroleum, and blends of coal liquids with petroleum.

  9. A novel liquid system of catalytic hydrogenation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    On the basis that endothermic aqueous-phase reforming of oxygenated hydrocarbons for H2 production and exothermic liquid phase hydrogenation of organic compounds are carried out under extremely close conditions of temperature and pressure over the same type of catalyst, a novel liquid system of catalytic hydrogenation has been proposed, in which hydrogen produced from aqueous-phase reforming of oxygenated hydrocarbons is in situ used for liquid phase hydrogenation of organic compounds. The usage of active hydrogen generated from aqueous-phase reforming of oxygenated hydrocarbons for liquid catalytic hydrogenation of organic compounds could lead to increasing the selectivity to H2 in the aqueous-phase reforming due to the prompt removal of hydrogen on the active centers of the catalyst. Meanwhile, this novel liquid system of catalytic hydrogenation might be a potential method to improve the selectivity to the desired product in liquid phase catalytic hydrogenation of organic compounds. On the other hand, for this novel liquid system of catalytic hydrogenation, some special facilities for H2 generation, storage and transportation in traditional liquid phase hydrogenation industry process are yet not needed. Thus, it would simplify the working process of liquid phase hydrogenation and increase the energy usage and hydrogen productivity.

  10. Refining and end use study of coal liquids

    International Nuclear Information System (INIS)

    Two direct coal liquids were evaluated by linear programming analysis to determine their value as petroleum refinery feedstock. The first liquid, DL1, was produced from bitiuminous coal using the Hydrocarbon Technologies, Inc.(HTI) two-stage hydrogenation process in Proof of Concept Run No.1, POC-1. The second liquid, DL2,was produced from sub-bituminous coal using a three-stage HTI process in Proof of Concept Run No. 2, POC-2; the third stage being a severe hydrogenation process. A linear programming (LP) model was developed which simulates a generic 150,000 barrel per day refinery in the Midwest U.S. Data from upgrading tests conducted on the coal liquids and related petroleum fractions in the pilot plant testing phase of the Refining and End Use Study was inputed into the model. The coal liquids were compared against a generic petroleum crude feedstock. under two scenarios. In the first scenario, it was assumed that the refinery capacity and product slate/volumes were fixed. The coal liquids would be used to replace a portion of the generic crude. The LP results showed that the DL1 material had essentially the same value as the generic crude. Due to its higher quality, the DL2 material had a value of approximately 0.60 $/barrel higher than the petroleum crude. In the second scenario, it was assumed that a market opportunity exists to increase production by one-third. This requires a refinery expansion. The feedstock for this scenario could be either 100% petroleum crude or a combination of petroleum crude and the direct coal liquids. Linear programming analysis showed that the capital cost of the refinery expansion was significantly less when coal liquids are utilized. In addition, the pilot plant testing showed that both of the direct coal liquids demonstrated superior catalytic cracking and naphtha reforming yields. Depending on the coal liquid flow rate, the value of the DL1 material was 2.5-4.0 $/barrel greater than the base petroleum crude, while the DL2

  11. High temperature ceramic membrane reactors for coal liquid upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T. (University of Southern California, Los Angeles, CA (United States). Dept. of Chemical Engineering); Liu, P.K.T. (Aluminum Co. of America, Pittsburgh, PA (United States)); Webster, I.A. (Unocal Corp., Los Angeles, CA (United States))

    1992-01-01

    Membrane reactors are today finding extensive applications for gas and vapor phase catalytic reactions (see discussion in the introduction and recent reviews by Armor [92], Hsieh [93] and Tsotsis et al. [941]). There have not been any published reports, however, of their use in high pressure and temperature liquid-phase applications. The idea to apply membrane reactor technology to coal liquid upgrading has resulted from a series of experimental investigations by our group of petroleum and coal asphaltene transport through model membranes. Coal liquids contain polycyclic aromatic compounds, which not only present potential difficulties in upgrading, storage and coprocessing, but are also bioactive. Direct coal liquefaction is perceived today as a two-stage process, which involves a first stage of thermal (or catalytic) dissolution of coal, followed by a second stage, in which the resulting products of the first stage are catalytically upgraded. Even in the presence of hydrogen, the oil products of the second stage are thought to equilibrate with the heavier (asphaltenic and preasphaltenic) components found in the feedstream. The possibility exists for this smaller molecular fraction to recondense with the unreacted heavy components and form even heavier undesirable components like char and coke. One way to diminish these regressive reactions is to selectively remove these smaller molecular weight fractions once they are formed and prior to recondensation. This can, at least in principle, be accomplished through the use of high temperature membrane reactors, using ceramic membranes which are permselective for the desired products of the coal liquid upgrading process. An additional incentive to do so is in order to eliminate the further hydrogenation and hydrocracking of liquid products to undesirable light gases.

  12. Catalytic multi-stage liquefaction of coal at HTI: Bench-scale studies in coal/waste plastics coprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, V.R.; Lee, L.K.; Stalzer, R.H. [Hydrocarbon Technologies, Inc., Lawrenceville, NJ (United States)] [and others

    1995-12-31

    The development of Catalytic Multi-Stage Liquefaction (CMSL) at HTI has focused on both bituminous and sub-bituminous coals using laboratory, bench and PDU scale operations. The crude oil equivalent cost of liquid fuels from coal has been curtailed to about $30 per barrel, thus achieving over 30% reduction in the price that was evaluated for the liquefaction technologies demonstrated in the late seventies and early eighties. Contrary to the common belief, the new generation of catalytic multistage coal liquefaction process is environmentally very benign and can produce clean, premium distillates with a very low (<10ppm) heteroatoms content. The HTI Staff has been involved over the years in process development and has made significant improvements in the CMSL processing of coals. A 24 month program (extended to September 30, 1995) to study novel concepts, using a continuous bench scale Catalytic Multi-Stage unit (30kg coal/day), has been initiated since December, 1992. This program consists of ten bench-scale operations supported by Laboratory Studies, Modelling, Process Simulation and Economic Assessments. The Catalytic Multi-Stage Liquefaction is a continuation of the second generation yields using a low/high temperature approach. This paper covers work performed between October 1994- August 1995, especially results obtained from the microautoclave support activities and the bench-scale operations for runs CMSL-08 and CMSL-09, during which, coal and the plastic components for municipal solid wastes (MSW) such as high density polyethylene (HDPE)m, polypropylene (PP), polystyrene (PS), and polythylene terphthlate (PET) were coprocessed.

  13. Assessment of coal liquids as refinery feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, P.

    1992-02-01

    The R D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650[degrees]F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  14. Assessment of coal liquids as refinery feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, P.

    1992-02-01

    The R&D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650{degrees}F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  15. Biological upgrading of coal liquids. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    A large number of bacterial enrichments have been developed for their ability to utilize nitrogen and sulfur in coal liquids and the model compound naphtha. These bacteria include the original aerobic bacteria isolated from natural sources which utilize heteroatom compounds in the presence of rich media, aerobic nitrogen-utilizing bacteria and denitrifying bacteria. The most promising isolates include Mix M, a mixture of aerobic bacteria; ER15, a pyridine-utilizing isolate; ERI6, an aniline-utilizing isolate and a sewage sludge isolate. Culture optimization experiments have led to these bacteria being able to remove up to 40 percent of the sulfur and nitrogen in naphtha and coal liquids in batch culture. Continuous culture experiments showed that the coal liquid is too toxic to the bacteria to be fed without dilution or extraction. Thus either semi-batch operation must be employed with continuous gas sparging into a batch of liquid, or acid extracted coal liquid must be employed in continuous reactor studies with continuous liquid flow. Isolate EN-1, a chemical waste isolate, removed 27 percent of the sulfur and 19 percent of the nitrogen in fed batch experiments. Isolate ERI5 removed 28 percent of the nitrogen in coal liquid in 10 days in fed batch culture. The sewage sludge isolate removed 22.5 percent of the sulfur and 6.5 percent of the nitrogen from extracted coal liquid in continuous culture, and Mix M removed 17.5 percent of the nitrogen from medium containing extracted coal liquid. An economic evaluation has been prepared for the removal of nitrogen heteroatom compounds from Wilsonville coal liquid using acid extraction followed by fermentation. Similar technology can be developed for sulfur removal. The evaluation indicates that the nitrogen heteroatom compounds can be removed for $0.09/lb of coal liquid treated.

  16. Some aspects of catalytic activity of pyrolyzed coals

    Energy Technology Data Exchange (ETDEWEB)

    Zubkova, Valentina [Institute of Chemistry, Jan Kochanowski University, Swietokrzyska Str.15G, 25-406 Kielce (Poland); Grigoreva, Evgenija [Institute of High Temperature, The Russian Academy of Science, 13/19 Izhorskaja Street, Moscow (Russian Federation); Strojwas, Andrzej, E-mail: andrzej.strojwas@wp.pl [Institute of Chemistry, Jan Kochanowski University, Swietokrzyska Str.15G, 25-406 Kielce (Poland); Czaplicka, Marianna [Institute of Non-Ferrous Metals, J. Sowińskiego Str. 5, 44-100 Gliwice (Poland); Prezhdo, Victor; Pruszkowska, Jolanta [Institute of Chemistry, Jan Kochanowski University, Swietokrzyska Str.15G, 25-406 Kielce (Poland)

    2013-10-10

    Graphical abstract: - Highlights: • The pyrolysates of coal were investigated using XRD, SEM, FT–IR and GC–MS. • The pyrolyzed coal in the m.s.g. increases the destruction rate constant by 16.7 times. • In the m.s.g. some substances have catalytic influence on breakage of ether bonding. - Abstract: The influence of additives of initial coal and selected pyrolysates of this coal on the reaction rate constant was investigated during the test reaction of breakage of ether bonding. It was stated that pyrolyzed coal at the stage of maximally swollen grains increases the destruction rate constant by 16.7 times. The pyrolysates were investigated using X-ray diffraction, electron scanning microscopy (SEM), and FT–IR spectroscopy. The resistivity values were measured for the coal and its pyrolysates. Dichloromethane extracts of the pyrolyzed coals were analyzed by gas chromatography. It was proved that the composition and structure of substances in the layer of maximally swollen grains differ substantially from those of substances in the nearby layers. The authors suggest that in the maximally swollen grains some substances can be formed which have catalytic influence on the reaction of breakage of ether bonding.

  17. Catalytic spectrophotometric determination of iodine in coal by pyrohydrolysis decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu Daishe [School of Environmental Science and Engineering, Nanchang University, Nanchang 330031 (China); Institute of Geographic Sciences and Resources Research, CAS, Beijing 100101 (China)], E-mail: dswu@ncu.edu.cn; Deng Haiwen [School of Environmental Science and Engineering, Nanchang University, Nanchang 330031 (China); Wang Wuyi [Institute of Geographic Sciences and Resources Research, CAS, Beijing 100101 (China); Xiao Huayun [School of Environmental Science and Engineering, Nanchang University, Nanchang 330031 (China)

    2007-10-10

    A method for the determination of iodine in coal using pyrohydrolysis for sample decomposition was proposed. A pyrohydrolysis apparatus system was constructed, and the procedure was designed to burn and hydrolyse coal steadily and completely. The parameters of pyrohydrolysis were optimized through the orthogonal experimental design. Iodine in the absorption solution was evaluated by the catalytic spectrophotometric method, and the absorbance at 420 nm was measured by a double-beam UV-visible spectrophotometer. The limit of detection and quantification of the proposed method were 0.09 {mu}g g{sup -1} and 0.29 {mu}g g{sup -1}, respectively. After analysing some Chinese soil reference materials (SRMs), a reasonable agreement was found between the measured values and the certified values. The accuracy of this approach was confirmed by the analysis of eight coals spiked with SRMs with an indexed recovery from 94.97 to 109.56%, whose mean value was 102.58%. Six repeated tests were conducted for eight coal samples, including high sulfur coal and high fluorine coal. A good repeatability was obtained with a relative standard deviation value from 2.88 to 9.52%, averaging 5.87%. With such benefits as simplicity, precision, accuracy and economy, this approach can meet the requirements of the limits of detection and quantification for analysing iodine in coal, and hence it is highly suitable for routine analysis.

  18. Catalytic spectrophotometric determination of iodine in coal by pyrohydrolysis decomposition.

    Science.gov (United States)

    Wu, Daishe; Deng, Haiwen; Wang, Wuyi; Xiao, Huayun

    2007-10-10

    A method for the determination of iodine in coal using pyrohydrolysis for sample decomposition was proposed. A pyrohydrolysis apparatus system was constructed, and the procedure was designed to burn and hydrolyse coal steadily and completely. The parameters of pyrohydrolysis were optimized through the orthogonal experimental design. Iodine in the absorption solution was evaluated by the catalytic spectrophotometric method, and the absorbance at 420 nm was measured by a double-beam UV-visible spectrophotometer. The limit of detection and quantification of the proposed method were 0.09 microg g(-1) and 0.29 microg g(-1), respectively. After analysing some Chinese soil reference materials (SRMs), a reasonable agreement was found between the measured values and the certified values. The accuracy of this approach was confirmed by the analysis of eight coals spiked with SRMs with an indexed recovery from 94.97 to 109.56%, whose mean value was 102.58%. Six repeated tests were conducted for eight coal samples, including high sulfur coal and high fluorine coal. A good repeatability was obtained with a relative standard deviation value from 2.88 to 9.52%, averaging 5.87%. With such benefits as simplicity, precision, accuracy and economy, this approach can meet the requirements of the limits of detection and quantification for analysing iodine in coal, and hence it is highly suitable for routine analysis. PMID:17920390

  19. Hydrotreating of coal-derived liquids

    Energy Technology Data Exchange (ETDEWEB)

    Stohl, F.V.; Lott, S.E.; Diegert, K.V.; Goodnow, D.C.; Oelfke, J.B.

    1995-06-01

    The objective of Sandia`s refining of coal-derived liquids project is to determine the relationship between hydrotreating conditions and Product characteristics. The coal-derived liquids used in this work were produced In HTI`s first proof-of-concept run using Illinois No. 8 coal. Samples of the whole coal liquid product, distillate fractions of this liquid, and Criterion HDN-60 catalyst were obtained from Southwest Research Inc. Hydrotreating experiments were performed using a continuous operation, unattended, microflow reactor system. A factorial experimental design with three variables (temperature, (310{degrees}C to 388{degrees}C), liquid hourly space velocity (1 to 3 g/h/cm{sup 3}(cat)), pressure (500 to 1000 psig H{sub 2}) is being used in this project. Sulfur and nitrogen contents of the hydrotreated products were monitored during the hydrotreating experiments to ensure that activity was lined out at each set of reaction conditions. Results of hydrotreating the whole coal liquid showed that nitrogen values in the products ranged from 549 ppM at 320{degrees}C, 3 g/h/cm{sup 3}(cat), 500 psig H{sub 2} to <15 ppM at 400{degrees}C, 1 g/h/ cm{sup 3}(cat), 1000 psig H{sub 2}.

  20. CATALYTIC GASIFICATION OF COAL USING EUTECTIC SALT MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Yaw D. Yeboah; Dr. Yong Xu; Dr. Atul Sheth; Dr. Pradeep Agrawal

    2001-12-01

    The Gas Research Institute (GRI) estimates that by the year 2010, 40% or more of U.S. gas supply will be provided by supplements including substitute natural gas (SNG) from coal. These supplements must be cost competitive with other energy sources. The first generation technologies for coal gasification e.g. the Lurgi Pressure Gasification Process and the relatively newer technologies e.g. the KBW (Westinghouse) Ash Agglomerating Fluidized-Bed, U-Gas Ash Agglomerating Fluidized-Bed, British Gas Corporation/Lurgi Slagging Gasifier, Texaco Moving-Bed Gasifier, and Dow and Shell Gasification Processes, have several disadvantages. These disadvantages include high severities of gasification conditions, low methane production, high oxygen consumption, inability to handle caking coals, and unattractive economics. Another problem encountered in catalytic coal gasification is deactivation of hydroxide forms of alkali and alkaline earth metal catalysts by oxides of carbon (CO{sub x}). To seek solutions to these problems, a team consisting of Clark Atlanta University (CAU, a Historically Black College and University, HBCU), the University of Tennessee Space Institute (UTSI) and Georgia Institute of Technology (Georgia Tech) proposed to identify suitable low melting eutectic salt mixtures for improved coal gasification. The research objectives of this project were to: Identify appropriate eutectic salt mixture catalysts for coal gasification; Assess agglomeration tendency of catalyzed coal; Evaluate various catalyst impregnation techniques to improve initial catalyst dispersion; Determine catalyst dispersion at high carbon conversion levels; Evaluate effects of major process variables (such as temperature, system pressure, etc.) on coal gasification; Evaluate the recovery, regeneration and recycle of the spent catalysts; and Conduct an analysis and modeling of the gasification process to provide better understanding of the fundamental mechanisms and kinetics of the process.

  1. Catalytic hydroliquefaction of coal: about the methodology in batch experiments

    Energy Technology Data Exchange (ETDEWEB)

    Besson, M.; Bacaud, R.; Charcosset, H.; Cebolla-Burillo, V.; Oberson, M.

    1986-03-01

    The results of catalytic hydroliquefaction under batch conditions depend on a large number of variables. The present results concern a few of these variables, in particular the influence of the catalyst concentration, of the mode of sulfidation or (and) of introduction of the catalyst in the coal/solvent mixture, and of the nature of the model compound solvent. The results indicate that increasing the concentration of catalyst increase the conversion of coal into toluene soluble products and the hydrogen consumption but has a small effect on oil formation. An inhibition of the figst fractions of a NiMo/Al/sub 2/O/sub 3/ catalyst added is shown. Strong effects of the sulfiding mode of an iron oxide catalyst, and of the temperature of introduction of the iron oxide into the autoclave are observed relative to the hydrogenation activity of the iron catalyst, when at the same time there is no influence on coal conversions. The replacement of tetralin by a non-donor solvent, 1-methylnaphthalene, suggests that the direct hydrogen transfer process from molecular hydrogen to coal fragment radicals on the catalyst surface may be important. 9 tabs., 4 firs., 16 refs.

  2. Coal + Biomass → Liquids + Electricity (with CCS)

    Science.gov (United States)

    In this presentation, Matt Aitken applies the MARKet ALlocation energy system model to evaluate the market potential for a class of technologies that convert coal and biomass to liquid fuels and electricity (CBtLE), paired with carbon capture and storage (CCS). The technology is ...

  3. HINDERED DIFFUSION OF COAL LIQUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Theodore T. Tsotsis; Muhammad Sahimi; Ian A. Webster

    1996-01-01

    It was the purpose of the project described here to carry out careful and detailed investigations of petroleum and coal asphaltene transport through model porous systems under a broad range of temperature conditions. The experimental studies were to be coupled with detailed, in-depth statistical and molecular dynamics models intended to provide a fundamental understanding of the overall transport mechanisms and a more accurate concept of the asphaltene structure. The following discussion describes some of our accomplishments.

  4. Enzymantic Conversion of Coal to Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Richard Troiano

    2011-01-31

    The work in this project focused on the conversion of bituminous coal to liquid hydrocarbons. The major steps in this process include mechanical pretreatment, chemical pretreatment, and finally solubilization and conversion of coal to liquid hydrocarbons. Two different types of mechanical pretreatment were considered for the process: hammer mill grinding and jet mill grinding. After research and experimentation, it was decided to use jet mill grinding, which allows for coal to be ground down to particle sizes of 5 {mu}m or less. A Fluid Energy Model 0101 JET-O-MIZER-630 size reduction mill was purchased for this purpose. This machine was completed and final testing was performed on the machine at the Fluid Energy facilities in Telford, PA. The test results from the machine show that it can indeed perform to the required specifications and is able to grind coal down to a mean particle size that is ideal for experimentation. Solubilization and conversion experiments were performed on various pretreated coal samples using 3 different approaches: (1) enzymatic - using extracellular Laccase and Manganese Peroxidase (MnP), (2) chemical - using Ammonium Tartrate and Manganese Peroxidase, and (3) enzymatic - using the live organisms Phanerochaete chrysosporium. Spectral analysis was used to determine how effective each of these methods were in decomposing bituminous coal. After analysis of the results and other considerations, such as cost and environmental impacts, it was determined that the enzymatic approaches, as opposed to the chemical approaches using chelators, were more effective in decomposing coal. The results from the laccase/MnP experiments and Phanerochaete chrysosporium experiments are presented and compared in this final report. Spectra from both enzymatic methods show absorption peaks in the 240nm to 300nm region. These peaks correspond to aromatic intermediates formed when breaking down the coal structure. The peaks then decrease in absorbance over time

  5. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Saini, A.; Huang, L.; Wenzel, K.; Hatcher, P.G.; Schobert, H.H.

    1992-01-01

    Low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals in the subsequent liquefaction. This report describes the progress of our work during the first quarterly period. Substantial progress has been made in the spectroscopic characterization of fresh and THF-extracted samples of two subbituminous coals and fresh samples of three bituminous coals using cross-polarization magic angle spinning (CPMAS) solid state {sup 13}C NMR and pyrolysis-GC-MS techniques. CPMAS {sup 13}C NMR and pyrolysis-GC-MS provided important information on carbon distribution/functionality and molecular components/structural units, respectively, for these coal samples. Pyrolysis-GC-MS revealed that there are remarkable structural differences in structural units between the subbituminous coals and the bituminous coals. Furthermore, significant progress has been made in the pretreatments and spectroscopic characterization of catalytically and thermally pretreated as well as physically treated Wyodak subbituminous coal, and temperature-staged and temperature-programmed thermal and catalytic liquefaction of a Montana subbituminous coal.

  6. Liquid-phase alkylation of Assam (Baragolai) coal

    Energy Technology Data Exchange (ETDEWEB)

    Kalra, R.L.; Choudhury, R.; Sarkar, M.K.

    1982-12-01

    Liquid paraffin which consists of a large number of alkylated aliphatics and aromatics seems to be acting as an alkyl group transfer medium to receptive complexes like coal. The alkyl group receptive spots could be created in the coal complex by treatment with molten alkalis like sodium or potassium hydroxide. By repeating extractions of fresh coal with the same volume of liquid paraffin on a laboratory scale it was found that a stage was reached when liquid paraffin became rich enough in alkyl groups to become an alkyl group donor. This suggests a method for liquid phase alkylation of coal. (3 refs.)

  7. COST OF SELECTIVE CATALYTIC REDUCTION (SCR) APPLICATION FOR NOX CONTROL ON COAL-FIRED BOILERS

    Science.gov (United States)

    The report provides a methodology for estimating budgetary costs associated with retrofit applications of selective catalytic reduction (SCR) technology on coal-fired boilers. SCR is a postcombustion nitrogen oxides (NOx) control technology capable of providing NOx reductions >90...

  8. Catalytic Alkene Metathesis in Ionic Liquids

    Science.gov (United States)

    Fischmeister, Cédric

    Olefin metathesis has found a tremendous number of application in the past 25 years. Immobilisation of olefin metathesis (pre)catalysts in room temperature ionic liquids (RTILs) offers the opportunity to recover and reuse the catalyst and also to reduce the level of ruthenium (Ru) contaminants in the products.

  9. Catalytic coal liquefaction with treated solvent and SRC recycle

    Science.gov (United States)

    Garg, Diwakar; Givens, Edwin N.; Schweighardt, Frank K.

    1986-01-01

    A process for the solvent refining of coal to distillable, pentane soluble products using a dephenolated and denitrogenated recycle solvent and a recycled, pentane-insoluble, solvent-refined coal material, which process provides enhanced oil-make in the conversion of coal.

  10. Study of catalytic effects of mineral matter level on coal reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Mazzocco, Nestor J.; Klunder, Edgar B.; Krastman, Donald

    1981-03-01

    Coal liquefaction experiments using a 400-lb/day bubble-column reactor tested the catalytic effects of added mineral matter level on coal conversion, desulfurization, and distillate yields in continuous operation under recycle conditions, with specific emphasis on the use of a disposable pyrite catalyst indigenous to the feed coal. Western Kentucky No. 11 run-of-mine (ROM) and washed coals were used as feedstocks to determine the effects of levels of mineral matter, specifically iron compounds. Liquefaction reactivity as characterized by total distillate yield was lower for washed coal, which contained less mineral matter. Liquefaction reactivity was regained when pyrite concentrate was added as a disposable catalyst to the washed coal feed in sufficient quantity to match the feed iron concentration of the run-of-mine coal liquefaction test run.

  11. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Huang, L.; Wenzel, K.; Saini, A.K.; Burgess, C.; Hatcher, P.G.; Schobert, H.H.

    1992-12-01

    During this quarterly period progress has been made in the following three subjects related to the effects of low-temperature thermal and catalytic pretreatments on coal structure and reactivity in liquefaction. First, the liquefaction behavior of three bituminous coals with a carbon content ranging from 77% to 85% was evaluated spectroscopically by [sup 13]C NMR and pyrolysis/gas chromatography/mass spectrometry to delineate the structural changes that occur in the coal during liquefaction. Complementary data includes ultimate and proximate analysis, along with optical microscopy for maceral determinations. Even though these are all bituminous coals they exhibit quite different physical and chemical characteristics. The coals vary in rank, ranging from HvC b to HvA b, in petrographic composition, different maceral percentages, and in chemical nature, percent of carbon and of volatiles. It is these variations that govern the products, their distribution, and conversion percentages. Some of the products formed can be traced to a specific maceral group. Second, pyrolysis-GC-MS and FTIR techniques were used to characterize Wyodak coal before and after drying in vacuum and in air and the residues from its thermal and catalytic liquefactions. The analysis of the air-dried coal shows a decrease in the phenolic type structures in the coal network and increase in the carbonyl structures as the oxidative drying proceeds. An enhanced decrease in the carbonyl structure is observed in the liquefaction residues from the raw coal as compared to that of the vacuum dried coal. The analyses of the liquefaction residues of the air-dried coal show an increase in the ether linkages which may have a negative impact on liquefaction. The extent of the solvent adduction also increases during liquefaction with the extent of oxidation of the coal. Finally, the effects of reaction conditions were investigated on conversion of low-rank coals using a Texas subbituminous coal.

  12. Exxon catalytic coal-gasification process development program. Quarterly technical progress report, October-December 1979

    Energy Technology Data Exchange (ETDEWEB)

    Euker, Jr, C. A.

    1980-03-01

    Work continued on the catalyst recovery screening studies to evaluate the economic impacts of alternative processing approaches and solid-liquid separation techniques. Equipment specifications have been completed for two cases with countercurrent water washing using rotary-drum filters for the solid-liquid separations. Material and energy balances have been completed for an alternative methane recovery process configuration using low pressure stripping which requires 26% less horsepower than the Study Design system. A study has been initiated to identify trace components which might be present in the CCG gas loop and to assess their potential impacts on the CCG process. This information will be used to assist in planning an appropriate series of analyses for the PDU gasifier effluent. A study has been initiated to evaluate the use of a small conventional steam reformer operating in parallel with a preheat furnace for heat input to the catalytic gasifier which avoids the potential problem of carbon laydown. Preliminary replies from ten manufacturers are being evaluated as part of a study to determine the types and performance of coal crushing equipment appropriate for commercial CCG plants. A material and energy balance computer model for the CCG reactor system has been completed. The new model will provide accurate, consistent and cost-efficient material and energy balances for the extensive laboratory guidance and process definition studies planned under the current program. Other activities are described briefly.

  13. Upgrading low-rank coals using the liquids from coal (LFC) process

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, R.E.; Hoften, S.A. van

    1993-12-31

    Three unmistakable trends characterize national and international coal markets today that help to explain coal`s continuing and, in some cases, increasing share of the world`s energy mix: the downward trend in coal prices is primarily influenced by an excess of increasing supply relative to increasing demand. Associated with this trend are the availability of capital to expand coal supplies when prices become firm and the role of coal exports in international trade, especially for developing nations; the global trend toward reducing the transportation cost component relative to the market, preserves or enhances the producer`s profit margins in the face of lower prices. The strong influence of transportation costs is due to the geographic relationships between coal producers and coal users. The trend toward upgrading low grade coals, including subbituminous and lignite coals, that have favorable environmental characteristics, such as low sulfur, compensates in some measure for decreasing coal prices and helps to reduce transportation costs. The upgrading of low grade coal includes a variety of precombustion clean coal technologies, such as deep coal cleaning. Also included in this grouping are the coal drying and mild pyrolysis (or mild gasification) technologies that remove most of the moisture and a substantial portion of the volatile matter, including organic sulfur, while producing two or more saleable coproducts with considerable added value. SGI International`s Liquids From Coal (LFC) process falls into this category. In the following sections, the LFC process is described and the coproducts of the mild pyrolysis are characterized. Since the process can be applied widely to low rank coals all around the world, the characteristics of coproducts from three different regions around the Pacific Rim-the Powder River Basin of Wyoming, the Beluga Field in Alaska near the Cook Inlet, and the Bukit Asam region in south Sumatra, Indonesia - are compared.

  14. High temperature ceramic membrane reactors for coal liquid upgrading. Final report, September 21, 1989--November 20, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T. [University of Southern California, Los Angeles, CA (United States). Dept. of Chemical Engineering; Liu, P.K.T. [Aluminum Co. of America, Pittsburgh, PA (United States); Webster, I.A. [Unocal Corp., Los Angeles, CA (United States)

    1992-12-31

    Membrane reactors are today finding extensive applications for gas and vapor phase catalytic reactions (see discussion in the introduction and recent reviews by Armor [92], Hsieh [93] and Tsotsis et al. [941]). There have not been any published reports, however, of their use in high pressure and temperature liquid-phase applications. The idea to apply membrane reactor technology to coal liquid upgrading has resulted from a series of experimental investigations by our group of petroleum and coal asphaltene transport through model membranes. Coal liquids contain polycyclic aromatic compounds, which not only present potential difficulties in upgrading, storage and coprocessing, but are also bioactive. Direct coal liquefaction is perceived today as a two-stage process, which involves a first stage of thermal (or catalytic) dissolution of coal, followed by a second stage, in which the resulting products of the first stage are catalytically upgraded. Even in the presence of hydrogen, the oil products of the second stage are thought to equilibrate with the heavier (asphaltenic and preasphaltenic) components found in the feedstream. The possibility exists for this smaller molecular fraction to recondense with the unreacted heavy components and form even heavier undesirable components like char and coke. One way to diminish these regressive reactions is to selectively remove these smaller molecular weight fractions once they are formed and prior to recondensation. This can, at least in principle, be accomplished through the use of high temperature membrane reactors, using ceramic membranes which are permselective for the desired products of the coal liquid upgrading process. An additional incentive to do so is in order to eliminate the further hydrogenation and hydrocracking of liquid products to undesirable light gases.

  15. A review of liquid-phase catalytic hydrodechlorination

    Directory of Open Access Journals (Sweden)

    Alba Nelly Ardila Arias

    2010-04-01

    Full Text Available This survey was aimed at introducing the effect of light organochlorinated compound emissions on the envi-ronment, particularly on water, air, soil, biota and human beings. The characteristics and advantages of liquid phase catalytic hydrodechlorination as a technology for degrading these chlorinated compounds is also outlined and the main catalysts used in the hydrodechlorination process are described. Special emphasis is placed on palladium catalysts, their activity, the nature of active species and deactivation. The effect of several parameters is introduced, such as HCl, solvent, base addition and type of reducing agent used. The main results of kinetic studies, reactors used and the most important survey conclusions are presented.

  16. Preparation of Pt-Ru hydrophobic catalysts and catalytic activities for liquid phase catalytic exchange reaction

    International Nuclear Information System (INIS)

    Pt/C and Pt-Ru/C catalysts with different ratios of Pt to Ru were synthesized, using ethylene glycol as both the dispersant and reducing agent at 1-2 MPa by microwave-assisted method. The catalysts were characterized by XRD, TEM and XPS. The mean particle sizes of the Pt/C and Pt-Ru/C catalysts were 1.9-2.0 nm. Pt and Ru existed as Pt(0), Pt(II), Pt(IV), Ru(0) and Ru(IV) for Pt-Ru/C catalysts, respectively. The face-centered cubic structure of the active mental particles would be changed upon the addition of Ru gradually. Then polytetrafluoroethylene and carbon-supported Pt and Pt-Ru catalysts were supported on foamed nickel to obtain hydrophobic catalysts. The catalytic activity was increased for liquid phase catalytic exchange (LPCE) when uniform Pt based hydrophobic catalysts was mixed into appropriate Ru. Hydrogen isotope exchange reaction occurs between hydration layer(H2O)nH+(ads)(n≥2) and D atoms due to intact water molecules being on Pt surface for LPCE. Water molecules have a tendency to dissociate to OH(ads) and H(ads) on metal Ru surface, and there is the other reaction path for Pt-Ru binary catalysts, which is probably the main reason of the increase of the catalytic activity of the hydrophobic Pt-Ru catalyst. (authors)

  17. Minimizing corrosion in coal liquid distillation

    Science.gov (United States)

    Baumert, Kenneth L.; Sagues, Alberto A.; Davis, Burtron H.

    1985-01-01

    In an atmospheric distillation tower of a coal liquefaction process, tower materials corrosion is reduced or eliminated by introduction of boiling point differentiated streams to boiling point differentiated tower regions.

  18. Preparation of nitric humic acid by catalytic oxidation from Guizhou coal with catalysts

    Institute of Scientific and Technical Information of China (English)

    Yang Zhiyuan; Gong Liang; Ran Pan

    2012-01-01

    Nitric humic acid was prepared by catalytic oxidation between nitric acid and Guizhou coal,with added catalysts.We investigated catalytic oxidation processes and the factors that affect the reactions.The effects of different catalysts,including NiSO4 support on active carbon (AC-NiSO4),NiSO4 support on silicon dioxide (SiO2-NiSO4),composites of SO42-/Fe2O3,Zr-iron and vanadium-iron composite were studied.As well.we investigated nitric humic acid yields and the chemical structure of products by element analysis,FT-IR and E4/E6 (an absorbance ratio at wavelengths of 465 and 665 nm of humic acid alkaline extraction solutions).The results show that the catalytic oxidation reaction with added catalysts can increase humic acid yields by 18.7%,16.36%,12.94%,5.61% and 8.59%,respectively.The highest yield of humic acid,i.e.,36.0%,was obtained with AC-NiSO4 as the catalyst.The amounts of C and H decreased with the amount of nitrogen.The increase in the E4/E6 ratio in catalytic oxidation of (Guizhou) coal shows that small molecular weights and high yields of nitric humic acid can be obtained by catalytic oxidation reactions.

  19. Catalytic pyrolysis of cellulose in ionic liquid [bmim]OTf.

    Science.gov (United States)

    Qu, Guangfei; He, Weiwei; Cai, Yingying; Huang, Xi; Ning, Ping

    2016-09-01

    This study discussed the catalytic cracking process of cellulose in ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([bmim]OTF) under 180°C, 240°C and 340°C, found that [bmim]OTF is an effective catalyst which can effectively reduce the pyrolysis temperature(nearly 200°C) of the cellulose. FRIR, XRD and SEM were used to analyze the structure characterization of fiber before and after the cracking; GC-MS was used for liquid phase products analysis; GC was used to analyze gas phase products. The results showed that the cellulose pyrolysis in [bmim]OTf mainly generated CO2, CO and H2, also generated 2-furfuryl alcohol, 2,5-dimethyl-1,5-diallyl-3-alcohol, 1,4-butyrolactone, 5-methyl furfural, 4-hydroxy butyric acid, vinyl propionate, 1-acetoxyl group-2-butanone, furan formate tetrahydrofuran methyl ester liquid product, and thus simulated the evolution mechanism of cellulose pyrolysis products based on the basic model of cellulose monomer. PMID:27185153

  20. Recovery of alkali metal constituents from catalytic coal conversion residues

    Science.gov (United States)

    Soung, W.Y.

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  1. Catalytic activity of pyrite for coal liquefaction reaction; Tennen pyrite no shokubai seino ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, K.; Kozu, M.; Okada, T.; Kobayashi, M. [Nippon Coal Oil Co. Ltd., Tokyo (Japan)

    1996-10-28

    Since natural pyrite is easy to obtain and cheap as coal liquefaction catalyst, it is to be used for the 150 t/d scale NEDOL process bituminous coal liquefaction pilot plant. NEDO and NCOL have investigated the improvement of catalytic activity of pulverized natural pyrite for enhancing performance and economy of the NEDOL process. In this study, coal liquefaction tests were conducted using natural pyrite catalyst pulverized by dry-type bowl mill under nitrogen atmosphere. Mechanism of catalytic reaction of the natural pyrite was discussed from relations between properties of the catalyst and liquefaction product. The natural pyrite provided an activity to transfer gaseous hydrogen into the liquefaction product. It was considered that pulverized pyrite promotes the hydrogenation reaction of asphaltene because pulverization increases its contact rate with reactant and the amount of active points on its surface. It was inferred that catalytic activity of pyrite is affected greatly by the chemical state of Fe and S on its surface. 3 refs., 4 figs., 1 tab.

  2. The Investigation of Reducing PAHs Emission from Coal Pyrolysis by Gaseous Catalytic Cracking

    Directory of Open Access Journals (Sweden)

    Yulong Wang

    2014-01-01

    Full Text Available The catalytic cracking method of PAHs for the pyrolysis gaseous products is proposed to control their pollution to the environment. In this study, the Py-GC-MS is used to investigate in situ the catalytic effect of CaO and Fe2O3 on the 16 PAHs from Pingshuo coal pyrolysis under different catalytic temperatures and catalyst particle sizes. The results demonstrate that Fe2O3 is effective than that of CaO for catalytic cracking of 16 PAHs and that their catalytic temperature corresponding to the maximum PAHs cracking rates is different. The PAHs cracking rate is up to 60.59% for Fe2O3 at 600°C and is 52.88% at 700°C for CaO. The catalytic temperature and particle size of the catalysts have a significant effect on PAHs cracking rate and CaO will lose the capability of decreasing 16 PAHs when the temperature is higher than 900°C. The possible cracking process of 16 PAHs is deduced by elaborately analyzing the cracking effect of the two catalysts on 16 different species of PAHs.

  3. Low grade coal upgrading: application of liquids from coal (LFC) technology to low grade coals in the Pacific Rim

    Energy Technology Data Exchange (ETDEWEB)

    Castro, J.C.; Horne, D.A.; Nickell, R.; van Hoften, S. [Anatech Applications, San Diego, CA (United States)

    1994-12-31

    The Liquids From Coal (LFC) process was originally tried on low-rank subbituminous coal from the Powder River Basin, USA. This process produced a clean solid fuel, and a petroleum substitute. Transport costs were greatly reduced, and the products complied with the US Clean Air Act amendments. The advantages shown in the subsequent demonstration programme of this light gasification technology led to its consideration for use in the Pacific Rim coal trade. A number of coals from the Pacific Rim countries were evaluated. The most extensive to date has been the testing of Indonesian coals. Indonesia has large coal reserves and will become an important exporter in future. It also has a rapidly growing stock of coal fired power plants. LFC processing was found to be useful for processing coal to meet Japanese, Taiwanese and Hong Kong specifications. An LFC refinery in South Sumatra or Kalimantan could be economic. A solid fuel could be exported, the evolved gas used for process heating, and electric power sold to the Indonesian grid. 4 refs., 5 figs., 6 tabs.

  4. Liquid CO{sub 2}/Coal Slurry for Feeding Low Rank Coal to Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Marasigan, Jose; Goldstein, Harvey; Dooher, John

    2013-09-30

    This study investigates the practicality of using a liquid CO{sub 2}/coal slurry preparation and feed system for the E-Gas™ gasifier in an integrated gasification combined cycle (IGCC) electric power generation plant configuration. Liquid CO{sub 2} has several property differences from water that make it attractive for the coal slurries used in coal gasification-based power plants. First, the viscosity of liquid CO{sub 2} is much lower than water. This means it should take less energy to pump liquid CO{sub 2} through a pipe compared to water. This also means that a higher solids concentration can be fed to the gasifier, which should decrease the heat requirement needed to vaporize the slurry. Second, the heat of vaporization of liquid CO{sub 2} is about 80% lower than water. This means that less heat from the gasification reactions is needed to vaporize the slurry. This should result in less oxygen needed to achieve a given gasifier temperature. And third, the surface tension of liquid CO{sub 2} is about 2 orders of magnitude lower than water, which should result in finer atomization of the liquid CO{sub 2} slurry, faster reaction times between the oxygen and coal particles, and better carbon conversion at the same gasifier temperature. EPRI and others have recognized the potential that liquid CO{sub 2} has in improving the performance of an IGCC plant and have previously conducted systemslevel analyses to evaluate this concept. These past studies have shown that a significant increase in IGCC performance can be achieved with liquid CO{sub 2} over water with certain gasifiers. Although these previous analyses had produced some positive results, they were still based on various assumptions for liquid CO{sub 2}/coal slurry properties. This low-rank coal study extends the existing knowledge base to evaluate the liquid CO{sub 2}/coal slurry concept on an E-Gas™-based IGCC plant with full 90% CO{sub 2} capture. The overall objective is to determine if this

  5. Deashing of coal liquids with ceramic membrane microfiltration and diafiltration

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, B.; Goldsmith, R. [CeraMem Corp., Waltham, MA (United States)

    1995-12-31

    Removal of mineral matter from liquid hydrocarbons derived from the direct liquefaction of coal is required for product acceptability. Current methods include critical solvent deashing (Rose{sup {reg_sign}} process from Kerr-McGee) and filtration (U.S. Filter leaf filter as used by British Coal). These methods produce ash reject streams containing up to 15% of the liquid hydrocarbon product. Consequently, CeraMem proposed the use of low cost, ceramic crossflow membranes for the filtration of coal liquids bottoms to remove mineral matter and subsequent diafiltration (analogous to cake washing in dead-ended filtration) for the removal of coal liquid from the solids stream. The use of these ceramic crossflow membranes overcomes the limitations of traditional polymeric crossflow membranes by having the ability to operate at elevated temperature and to withstand prolonged exposure to hydrocarbon and solvent media. In addition, CeraMem`s membrane filters are significantly less expensive than competitive ceramic membranes due to their unique construction. With these ceramic membrane filters, it may be possible to reduce the product losses associated with traditional deashing processes at an economically attractive cost. The performance of these ceramic membrane microfilters is discussed.

  6. Fundamental studies of catalytic processing of synthetic liquids. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Watson, P.R.

    1994-06-15

    Liquids derived from coal contain relatively high amounts of oxygenated organic compounds, mainly in the form of phenols and furans that are deleterious to the stability and quality of these liquids as fuels. Hydrodeoxygenation (HDO) using Mo/W sulfide catalysts is a promising method to accomplish this removal, but our understanding of the reactions occurring on the catalyst surface during HDO is very limited. Rather than attempting to examine the complexities of real liquids and catalysts we have adopted an approach here using model systems amenable to surface-sensitive techniques that enable us to probe in detail the fundamental processes occurring during HDO at the surfaces of well-defined model catalysts. The results of this work may lead to the development of more efficient, selective and stable catalysts. Above a S/Mo ratio of about 0.5 ML, furan does not adsorb on sulfided Mo surfaces; as the sulfur coverage is lowered increasing amounts of furan can be adsorbed. Temperature-programmed reaction spectroscopy (TPRS) reveals that C-H, C-C and C-O bond scission occurs on these surfaces. Auger spectra show characteristic changes in the nature and amount of surface carbon. Comparisons with experiments carried out with CO, H{sub 2} and alkenes show that reaction pathways include -- direct abstraction of CO at low temperatures; cracking and release of hydrogen below its normal desorption temperature; dehydrogenatin of adsorbed hydrocarbon fragments; recombination of C and O atoms and dissolution of carbon into the bulk at high temperatures. Performing the adsorption or thermal reaction in 10{sup {minus}5} torr of hydrogen does not change the mode of reaction significantly.

  7. Catalytic gasification of char from co-pyrolysis of coal and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Wenkui [State key Laboratory of Multi-phase Complex system, the Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080 (China); Graduate University, Chinese Academy of Sciences, Beijing 100080 (China); Song, Wenli; Lin, Weigang [State key Laboratory of Multi-phase Complex system, the Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080 (China)

    2008-09-15

    The catalytic gasification of char from co-pyrolysis of coal and wheat straw was studied. Alkali metal salts, especially potassium salts, are considered as effective catalysts for carbon gasification by steam and CO{sub 2}, while too expensive for industry application. The herbaceous type of biomass, which has a high content of potassium, may be used as an inexpensive source of catalyst by co-processing with coal. The reactivity of chars from co-pyrolysis of coal and straw was experimentally examined. The chars were prepared in a spout-entrained reactor with different ratios of coal to straw. The gasification characteristics of chars were measured by thermogravimetric analysis (TGA). The co-pyrolysis chars revealed higher gasification reactivity than that of char from coal, especially at high level of carbon conversion. The influence of the alkali in the char and the pyrolysis temperature on the reactivity of co-pyrolysis char was investigated. The experimental results show that the co-pyrolysis char prepared at 750 C have the highest alkali concentration and reactivity. (author)

  8. Hydrophobic catalysts for liquid phase catalytic exchange: a review of preparation methods and influencing factors of catalytic activities

    International Nuclear Information System (INIS)

    Liquid phase catalytic exchange (LPCE) between liquid water and gaseous hydro- gen has been developed for various applications, such as tritium recovery, water upgrade and heavy-water production. Good wetproofing properties of the hydrophobic catalysts can make the reaction to proceed smoothly. In this article, the preparation methods of the hydrophobic catalysts and the factors affecting the catalytic activities are reviewed. In particular, progress on the hydrophobic Pt/C/inert carrier catalysts is introduced, including the selection of inert carrier and active metal carrier, and the preparation methods of carbon- supported Pt based catalysts. Basic research activities on controllable fabrication of hydro- phobic catalysts are discussed, including the LPCE reaction mechanism, and the relation between the microstructure of active metal and the catalytic activity, etc. Finally, questions remaining to be answered and future directions in the field of hydrophobic catalysts are discussed. (authors)

  9. Liquid CO{sub 2}/Coal Slurry for Feeding Low Rank Coal to Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Marasigan, Jose; Goldstein, Harvey; Dooher, John

    2013-09-30

    This study investigates the practicality of using a liquid CO{sub 2}/coal slurry preparation and feed system for the E-Gas™ gasifier in an integrated gasification combined cycle (IGCC) electric power generation plant configuration. Liquid CO{sub 2} has several property differences from water that make it attractive for the coal slurries used in coal gasification-based power plants. First, the viscosity of liquid CO{sub 2} is much lower than water. This means it should take less energy to pump liquid CO{sub 2} through a pipe compared to water. This also means that a higher solids concentration can be fed to the gasifier, which should decrease the heat requirement needed to vaporize the slurry. Second, the heat of vaporization of liquid CO{sub 2} is about 80% lower than water. This means that less heat from the gasification reactions is needed to vaporize the slurry. This should result in less oxygen needed to achieve a given gasifier temperature. And third, the surface tension of liquid CO{sub 2} is about 2 orders of magnitude lower than water, which should result in finer atomization of the liquid CO{sub 2} slurry, faster reaction times between the oxygen and coal particles, and better carbon conversion at the same gasifier temperature. EPRI and others have recognized the potential that liquid CO{sub 2} has in improving the performance of an IGCC plant and have previously conducted systemslevel analyses to evaluate this concept. These past studies have shown that a significant increase in IGCC performance can be achieved with liquid CO{sub 2} over water with certain gasifiers. Although these previous analyses had produced some positive results, they were still based on various assumptions for liquid CO{sub 2}/coal slurry properties. This low-rank coal study extends the existing knowledge base to evaluate the liquid CO{sub 2}/coal slurry concept on an E-Gas™-based IGCC plant with full 90% CO{sub 2} capture. The overall objective is to determine if this

  10. Symbiotic Nuclear—Coal Systems for Production of Liquid Fuels

    Science.gov (United States)

    Taczanowski, S.

    The notion of safety is not confined to the technological or non-proliferation aspects. It covers also the elements of energy policy: irrational reactions of societies, emotions, egoistic interests of more or less powerful pressure of economical and external political factors. One should be conscious that the country's privilege of being equipped by the Nature with rich resources of oil or gas is not solely economical, but even more a political one. Simultaneously, the gradual depletion of world hydrocarbons that draws behind irrevocable price increase has to be expected within the time scale of exploitation of power plants (now amounted to ~60 years). Therefore consequences of energy policy last much longer than the perspectives the political or economical decision makers are planning and acting within and the public is expecting successes and finally evaluating them. The world oil and gas resources are geopolitically very non-uniformly distributed, in contrast to coal and uranium. Since the level of energy self-sufficiency of the EU is highest for coal, the old idea of synfuels production from coal is recalled. Yet, in view of limits to the CO2 emissions in the EU another method has to be used here than the conventional coal liquefaction just applied in China. Simultaneously, an interesting evolution of energy prices was be observed, namely an increase in that of motor fuels in contrast to that of electricity remaining well stable. This fact suggests that the use of electricity (mainly the off-peak load), generated without emissions of CO2 for production of liquid fuels can prove reasonable. Thus, the essence of the presented idea of coal-nuclear symbiosis lies in the supply of energy in the form of H2, necessary for this process, from a nuclear reactor. Particularly, in the present option H2 is obtained by electrolytic water splitting supplying also O2 as a precious by-product in well mature and commercially available already since decades, Light Water Reactors

  11. Characterization of catalytically hydrogenated and pyrolysis coal products. A comparative study of several analytical procedures

    Energy Technology Data Exchange (ETDEWEB)

    Delpuech, J.J.; Nicole, D.; Cagniant, D.; Cleon, P.; Foucheres, M.C.; Dumay, D.; Aune, J.P.; Genard, A.

    1986-03-01

    Liquids and residues obtained from coal by hydroliquefaction and pyrolysis are extremely complex mixtures. They consist mainly of saturated and aromatic polycyclic hydrocarbons. O, S and N heterocycles and polar compounds are also present. Depending on the type of information desired for the sample(s), different separation, fractionation and identification schemes can be chosen. The methods described here were developed for a comparative study of samples obtained under various conditions for hydroliquefaction. Some of these methods were applied to tars and pitches of coal carbonization at low and high temperatures. 22 figs., 5 tabs., 43 refs.

  12. Catalytic Two-Stage Liquefaction (CTSL{trademark}) process bench studies and PDU scale-up with sub-bituminous coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.T.; Stalzer, R.H.; Smith, T.O.

    1993-03-01

    Reported are the details and results of Laboratory and Bench-Scale experiments using sub-bituminous coal conducted at Hydrocarbon Research, Inc., under DOE Contract No. DE-AC22-88PC88818 during the period October 1, 1988 to December 31, 1992. The work described is primarily concerned with testing of the baseline Catalytic Two-Stage Liquefaction (CTSL{trademark}) process with comparisons with other two stage process configurations, catalyst evaluations and unit operations such as solid separation, pretreatments, on-line hydrotreating, and an examination of new concepts. In the overall program, three coals were evaluated, bituminous Illinois No. 6, Burning Star and sub-bituminous Wyoming Black Thunder and New Mexico McKinley Mine seams. The results from a total of 16 bench-scale runs are reported and analyzed in detail. The runs (experiments) concern process variables, variable reactor volumes, catalysts (both supported, dispersed and rejuvenated), coal cleaned by agglomeration, hot slurry treatments, reactor sequence, on-line hydrotreating, dispersed catalyst with pretreatment reactors and CO{sub 2}/coal effects. The tests involving the Wyoming and New Mexico Coals are reported herein, and the tests involving the Illinois coal are described in Topical Report No. 2. On a laboratory scale, microautoclave tests evaluating coal, start-up oils, catalysts, thermal treatment, CO{sub 2} addition and sulfur compound effects were conducted and reported in Topical Report No. 3. Other microautoclave tests are described in the Bench Run sections to which they refer such as: rejuvenated catalyst, coker liquids and cleaned coals. The microautoclave tests conducted for modelling the CTSL{trademark} process are described in the CTSL{trademark} Modelling section of Topical Report No. 3 under this contract.

  13. Study on Effect and Catalytic Mechanism of the Catalysts for Coal Oxidation in Alkaline Medium%Study on Effect and Catalytic Mechanism of the Catalysts for Coal Oxidation in Alkaline Medium

    Institute of Scientific and Technical Information of China (English)

    刘怀有; 吕经康; 赵永刚; 周尉; 印仁和

    2011-01-01

    Coal electro-oxidation in sodium hydroxide solution with catalysts, K3Fe(CN)6, sodium hypochlorite and sup- ported FeS, were investigated, respectively. Gas produced from electro-analysis of coal slurry was collected by drainage-method and l-t curves were recorded to testify the catalysis of each catalyst for coal oxidation. The results show that the three kinds of catalysts can obviously improve the coal oxidation current. Furthermore, K3Fe(CN)6 and sodium hypochlorite played an indirect oxidation role in the electrolysis process. Catalysts bridge the coal par- ticles and the solid electrode surface, thus increase the coal oxidation rates. The changes of catalyst content during the electrolysis were further determined by quantitative titration to discuss the catalytic Mechanism. The dynamic transition of K3Fe(CN)6/K4Fe(CN)6 and ClO^-/Cl^- are proposed by iodometric method.

  14. Refining and end use study of coal liquids. Quarterly report, January--March 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    Bechtel, with Southwest Research Institute, Amoco Oil R&D, and the M. W. Kellogg Co. as subcontractors, initiated a study on November 1, 1993, for the US Department of Energy`s (DOE`s) Pittsburgh Energy Technology Center (PETC) to determine the most cost effective and suitable combination of existing petroleum refinery processes needed to make specification transportation fuels or blending stocks, from direct and indirect coal liquefaction product liquids. A key objective is to determine the most desirable ways of integrating coal liquefaction liquids into existing petroleum refineries to produce transportation fuels meeting current and future, e.g. year 2000, Clean Air Act Amendment (CAAA) standards. An integral part of the above objectives is to test the fuels or blends produced and compare them with established ASTM fuels. The comparison will include engine tests to ascertain compliance of the fuels produced with CAAA and other applicable fuel quality and performance standards. The final part of the project includes a detailed economic evaluation of the cost of processing the coal liquids to their optimum products. The cost analyses is for the incremental processing cost; in other words, the feed is priced at zero dollars. The study reflects costs for operations using state of the art refinery technology; no capital costs for building new refineries is considered. Some modifications to the existing refinery may be required. Economy of scale dictates the minimum amount of feedstock that should be processed. The major efforts conducted during the first quarter of 1996 were in the areas of: DL2 light distillate hydrotreating; and DL2 heave distillate catalytic cracking.

  15. System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Shahrokh Etemad; Lance Smith; Kevin Burns

    2004-12-01

    Rich Catalytic/Lean burn (RCL{reg_sign}) technology has been successfully developed to provide improvement in Dry Low Emission gas turbine technology for coal derived syngas and natural gas delivering near zero NOx emissions, improved efficiency, extending component lifetime and the ability to have fuel flexibility. The present report shows substantial net cost saving using RCL{reg_sign} technology as compared to other technologies both for new and retrofit applications, thus eliminating the need for Selective Catalytic Reduction (SCR) in combined or simple cycle for Integrated Gasification Combined Cycle (IGCC) and natural gas fired combustion turbines.

  16. One-Pot Catalytic Conversion of Cellulose and of Woody Biomass Solids to Liquid Fuels

    NARCIS (Netherlands)

    Matson, Theodore D.; Barta, Katalin; Iretskii, Alexei V.; Ford, Peter C.

    2011-01-01

    Efficient methodologies for converting biomass solids to liquid fuels have the potential to reduce dependence on imported petroleum while easing the atmospheric carbon dioxide burden. Here, we report quantitative catalytic conversions of wood and cellulosic solids to liquid and gaseous products in a

  17. Refining and end use study of coal liquids II - linear programming analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, C.; Tam, S.

    1995-12-31

    A DOE-funded study is underway to determine the optimum refinery processing schemes for producing transportation fuels that will meet CAAA regulations from direct and indirect coal liquids. The study consists of three major parts: pilot plant testing of critical upgrading processes, linear programming analysis of different processing schemes, and engine emission testing of final products. Currently, fractions of a direct coal liquid produced form bituminous coal are being tested in sequence of pilot plant upgrading processes. This work is discussed in a separate paper. The linear programming model, which is the subject of this paper, has been completed for the petroleum refinery and is being modified to handle coal liquids based on the pilot plant test results. Preliminary coal liquid evaluation studies indicate that, if a refinery expansion scenario is adopted, then the marginal value of the coal liquid (over the base petroleum crude) is $3-4/bbl.

  18. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    K. C. Kwon

    2007-09-30

    CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 130-156 seconds at 120-140 C to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases, evaluate removal capabilities of hydrogen sulfide and COS from coal gases with formulated catalysts, and develop an economic regeneration method of deactivated catalysts. Simulated coal gas mixtures consist of 3,300-3,800-ppmv hydrogen sulfide, 1,600-1,900 ppmv sulfur dioxide, 18-21 v% hydrogen, 29-34 v% CO, 8-10 v% CO{sub 2}, 5-18 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 114-132 SCCM. The temperature of the reactor is controlled in an oven at 120-140 C. The pressure of the reactor

  19. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    K. C. Kwon

    2007-09-30

    CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 130-156 seconds at 120-140 C to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases, evaluate removal capabilities of hydrogen sulfide and COS from coal gases with formulated catalysts, and develop an economic regeneration method of deactivated catalysts. Simulated coal gas mixtures consist of 3,300-3,800-ppmv hydrogen sulfide, 1,600-1,900 ppmv sulfur dioxide, 18-21 v% hydrogen, 29-34 v% CO, 8-10 v% CO{sub 2}, 5-18 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 114-132 SCCM. The temperature of the reactor is controlled in an oven at 120-140 C. The pressure of the reactor

  20. MERCURY OXIDATION PROMOTED BY A SELECTIVE CATALYTIC REDUCTION CATALYST UNDER SIMULATED POWDER RIVER BASIN COAL COMBUSTION CONDITIONS

    Science.gov (United States)

    A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury oxidation under SCR conditions. A low sulfur Power River Basin (PRB) coal combustion ...

  1. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    K.C. Kwon

    2009-09-30

    CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash coat, and catalytic metals, to develop a regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor. The task of developing kinetic rate equations and modeling the direct oxidation process to assist in the design of large-scale plants will be abandoned since formulation of catalysts suitable for the removal of H{sub 2}S and COS is being in progress. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 46-570 seconds under reaction conditions to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases and evaluate their capabilities in reducing hydrogen sulfide and COS in coal gases. Simulated coal gas mixtures consist of 3,200-4,000-ppmv hydrogen sulfide, 1,600-20,000-ppmv sulfur dioxide, 18-27 v% hydrogen, 29-41 v% CO, 8-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of simulated coal gas mixtures to the reactor are 30 - 180 cm{sup 3}/min at 1 atm and 25 C (SCCM). The temperature of the reactor is

  2. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    K.C. Kwon

    2009-09-30

    CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash coat, and catalytic metals, to develop a regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor. The task of developing kinetic rate equations and modeling the direct oxidation process to assist in the design of large-scale plants will be abandoned since formulation of catalysts suitable for the removal of H{sub 2}S and COS is being in progress. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 46-570 seconds under reaction conditions to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases and evaluate their capabilities in reducing hydrogen sulfide and COS in coal gases. Simulated coal gas mixtures consist of 3,200-4,000-ppmv hydrogen sulfide, 1,600-20,000-ppmv sulfur dioxide, 18-27 v% hydrogen, 29-41 v% CO, 8-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of simulated coal gas mixtures to the reactor are 30 - 180 cm{sup 3}/min at 1 atm and 25 C (SCCM). The temperature of the reactor is

  3. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    K. C. Kwon

    2006-09-30

    CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives using a monolithic catalyst reactor, experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 40-560 seconds at 120-150 C to evaluate effects of reaction temperatures, total pressure, space time, and catalyst regeneration on conversion of hydrogen sulfide into elemental sulfur and formation of COS. Simulated coal gas mixtures consist of 3,600-4,000-ppmv hydrogen sulfide, 1,800-2,000 ppmv sulfur dioxide, 23-27 v% hydrogen, 36-41 v% CO, 10-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 30-180 SCCM. The temperature of the reactor is controlled in an oven at 120-150 C. The pressure of the reactor

  4. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    K. C. Kwon

    2006-09-30

    CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives using a monolithic catalyst reactor, experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 40-560 seconds at 120-150 C to evaluate effects of reaction temperatures, total pressure, space time, and catalyst regeneration on conversion of hydrogen sulfide into elemental sulfur and formation of COS. Simulated coal gas mixtures consist of 3,600-4,000-ppmv hydrogen sulfide, 1,800-2,000 ppmv sulfur dioxide, 23-27 v% hydrogen, 36-41 v% CO, 10-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 30-180 SCCM. The temperature of the reactor is controlled in an oven at 120-150 C. The pressure of the reactor

  5. Low-severity catalytic two-stage liquefaction process: Illinois coal conceptual commercial plant design and economics

    Energy Technology Data Exchange (ETDEWEB)

    Abrams, L.M.; Comolli, A.G.; Popper, G.A.; Wang, C.; Wilson, G.

    1988-09-01

    Hydrocarbon Research, Inc. (HRI) is conducting a program for the United States Department of Energy (DOE) to evaluate a Catalytic Two-Stage Liquefaction (CTSL) Process. This program which runs through 1987, is a continuation of an earlier DOE sponsored program (1983--1985) at HRI to develop a new technology concept for CTSL. The earlier program included bench-scale testing of improved operating conditions for the CTSL Process on Illinois No. 6 bituminous coal and Wyoming sub-bituminous coal, and engineering screening studies to identify the economic incentive for CTSL over the single-stage H-Coal/reg sign/ Process for Illinois No. 6 coal. In the current program these engineering screening studies are extended to deep-cleaned Illinois coal and use of heavy recycle. The results from this comparison will be used as a guide for future experiments with respect to selection of coal feedstocks and areas for further process optimization. A preliminary design for CTSL of Illinois deep-cleaned coal was developed based on demonstrated bench-scale performance in Run No. 227-47(I-27), and from HRI's design experience on the Breckinridge Project and H-Coal/reg sign/ Process pilot plant operations at Catlettsburg. Complete conceptual commercial plant designs were developed for a grassroots facility using HRI's Process Planning Model. Product costs were calculated and economic sensitivities analyzed. 14 refs., 11 figs., 49 tabs.

  6. Slow catalytic pyrolysis of rapeseed cake: Product yield and characterization of the pyrolysis liquid

    OpenAIRE

    Smets, Koen; Roukaerts, A.; Czech, Jan; REGGERS, Guy; Schreurs, Sonja; Carleer, Robert; Yperman, Jan

    2013-01-01

    The performance of three catalysts during slow catalytic pyrolysis of rapeseed cake from 150 to 550 degrees C over a time period of 20 min followed by an isothermal period of 30 min at 550 degrees C was investigated. Na2CO3 was premixed with the rapeseed cake, while gamma-Al2O3 and HZSM-5 were tested without direct biomass contact. Catalytic experiments resulted in lower liquid and higher gas yields. The total amount of organic compounds in the pyrolysis liquid was considerably reduced by the...

  7. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Technical progress report, October 1991--December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Saini, A.; Huang, L.; Wenzel, K.; Hatcher, P.G.; Schobert, H.H.

    1992-01-01

    Low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals in the subsequent liquefaction. This report describes the progress of our work during the first quarterly period. Substantial progress has been made in the spectroscopic characterization of fresh and THF-extracted samples of two subbituminous coals and fresh samples of three bituminous coals using cross-polarization magic angle spinning (CPMAS) solid state {sup 13}C NMR and pyrolysis-GC-MS techniques. CPMAS {sup 13}C NMR and pyrolysis-GC-MS provided important information on carbon distribution/functionality and molecular components/structural units, respectively, for these coal samples. Pyrolysis-GC-MS revealed that there are remarkable structural differences in structural units between the subbituminous coals and the bituminous coals. Furthermore, significant progress has been made in the pretreatments and spectroscopic characterization of catalytically and thermally pretreated as well as physically treated Wyodak subbituminous coal, and temperature-staged and temperature-programmed thermal and catalytic liquefaction of a Montana subbituminous coal.

  8. The Influence Of Mass Fraction Of Dressed Coal On Ignition Conditions Of Composite Liquid Fuel Droplet

    OpenAIRE

    Shlegel Nikita E.; Kats Mark D.; Glushkov Dmitriy O.

    2015-01-01

    The laws of condition modification of inert heat and ignition in an oxidant flow of composite liquid fuel droplet were studied by the developed experimental setup. Investigations were for composite liquid fuel composition based on the waste of bituminous and nonbaking coal processing, appropriate carbon dust, water, used motor oil. The characteristics of boundary layer inertia heat of composite liquid fuel droplet, thermal decomposition of coal organic part, the yield of volatiles and evapora...

  9. Thermodynamic and rheological properties of solid-liquid systems in coal processing. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Kabadi, V.N.

    1995-06-30

    The work on this project was initiated on September 1, 1991. The project consisted of two different tasks: (1) Development of a model to compute viscosities of coal derived liquids, and (2) Investigate new models for estimation of thermodynamic properties of solid and liquid compounds of the type that exist in coal, or are encountered during coal processing. As for task 1, a model for viscosity computation of coal model compound liquids and coal derived liquids has been developed. The detailed model is presented in this report. Two papers, the first describing the pure liquid model and the second one discussing the application to coal derived liquids, are expected to be published in Energy & Fuels shortly. Marginal progress is reported on task 2. Literature review for this work included compilation of a number of data sets, critical investigation of data measurement techniques available in the literature, investigation of models for liquid and solid phase thermodynamic computations. During the preliminary stages it was discovered that for development of a liquid or solid state equation of state, accurate predictive models for a number of saturation properties, such as, liquid and solid vapor pressures, saturated liquid and solid volumes, heat capacities of liquids and solids at saturation, etc. Most the remaining time on this task was spent in developing predictive correlations for vapor pressures and saturated liquid volumes of organic liquids in general and coal model liquids in particular. All these developments are discussed in this report. Some recommendations for future direction of research in this area are also listed.

  10. Ionic liquids increase the catalytic efficiency of a lipase (Lip1) from an antarctic thermophilic bacterium.

    Science.gov (United States)

    Muñoz, Patricio A; Correa-Llantén, Daniela N; Blamey, Jenny M

    2015-01-01

    Lipases catalyze the hydrolysis and synthesis of triglycerides and their reactions are widely used in industry. The use of ionic liquids has been explored in order to improve their catalytic properties. However, the effect of these compounds on kinetic parameters of lipases has been poorly understood. A study of the kinetic parameters of Lip1, the most thermostable lipase from the supernatant of the strain ID17, a thermophilic bacterium isolated from Deception Island, Antarctica, and a member of the genus Geobacillus is presented. Kinetic parameters of Lip1 were modulated by the use of ionic liquids BmimPF6 and BmimBF4. The maximum reaction rate of Lip1 was improved in the presence of both salts. The highest effect was observed when BmimPF6 was added in the reaction mix, resulting in a higher hydrolytic activity and in a modulation of the catalytic efficiency of the enzyme. However, the catalytic efficiency did not change in the presence of BmimBF4. The increase of the reaction rates of Lip1 promoted by these ionic liquids could be related to possible changes in the Lip1 structure. This effect was measured by quenching of tryptophan fluorescence of the enzyme, when it was incubated with each liquid salt. In conclusion, the hydrolytic activity of Lip1 is modulated by the ionic liquids BmimBF4 and BmimPF6, improving the reaction rate and the catalytic efficiency of this enzyme when BmimPF6 was used. This effect is probably due to changes in the structure of Lip1 induced by the presence of these ionic liquids, stimulating its catalytic activity.

  11. Ionic liquids increase the catalytic efficiency of a lipase (Lip1) from an antarctic thermophilic bacterium.

    Science.gov (United States)

    Muñoz, Patricio A; Correa-Llantén, Daniela N; Blamey, Jenny M

    2015-01-01

    Lipases catalyze the hydrolysis and synthesis of triglycerides and their reactions are widely used in industry. The use of ionic liquids has been explored in order to improve their catalytic properties. However, the effect of these compounds on kinetic parameters of lipases has been poorly understood. A study of the kinetic parameters of Lip1, the most thermostable lipase from the supernatant of the strain ID17, a thermophilic bacterium isolated from Deception Island, Antarctica, and a member of the genus Geobacillus is presented. Kinetic parameters of Lip1 were modulated by the use of ionic liquids BmimPF6 and BmimBF4. The maximum reaction rate of Lip1 was improved in the presence of both salts. The highest effect was observed when BmimPF6 was added in the reaction mix, resulting in a higher hydrolytic activity and in a modulation of the catalytic efficiency of the enzyme. However, the catalytic efficiency did not change in the presence of BmimBF4. The increase of the reaction rates of Lip1 promoted by these ionic liquids could be related to possible changes in the Lip1 structure. This effect was measured by quenching of tryptophan fluorescence of the enzyme, when it was incubated with each liquid salt. In conclusion, the hydrolytic activity of Lip1 is modulated by the ionic liquids BmimBF4 and BmimPF6, improving the reaction rate and the catalytic efficiency of this enzyme when BmimPF6 was used. This effect is probably due to changes in the structure of Lip1 induced by the presence of these ionic liquids, stimulating its catalytic activity. PMID:25425150

  12. From coal gas to liquid product. The Topsoe TIGAS technology

    Energy Technology Data Exchange (ETDEWEB)

    P.E. Hoejlund Nielsen; Finn Joensen; John Boegild Hansen [Haldor Topsoee A/S, Lyngby (Denmark)

    2009-07-01

    Conversion of coal gas into liquid products is a multistep process which involves numerous unit processes. Compared with similar processes using natural gas as feedstock, there are challenges, particularly with the gas purification. There are, however, also advantages when using a carbon-monoxide-rich gas which ultimately may result in a greatly simplified process. This paper discusses the challenges when converting a gas from an entrained coal gasifier into a liquid product and the paper presents the various options available. The following issues will be touched upon: sour gas shift and adjustment of the H{sub 2}/CO ratio; acid Gas Removal (AGR) - when and how; syngas purification; methanol and combined methanol/DME synthesis; gasoline synthesis; future integrated processes. Here, various options are available depending on the gasifier; not only dry or slurry feed but also the question of quench as well as the selected scrubbing temperature are relevant. The WGS reaction is carried out along with the COS hydrolysis. The choice of AGR technology is rather complex. Various technologies are available such as Rectisol, Selexol and MDEA. The pros and cons will be discussed especially with respect to the choice of syngas purification technology. Syngas purification usually happens when cleaning masses are placed between the AGR and the synthesis reactors. The selection of cleaning masses required for obtaining the desired syngas quality will be discussed. The methanol and DME synthesis and the respective advantages will be discussed and results from the combined synthesis will be given. It will be shown that very high conversions are possible even at moderate conditions. Results from our previous demonstration in Houston in the eighties along with recent results will be discussed. The possibilities of cost savings using further process integration will be discussed. 5 figs., 1 tab.

  13. Dual-Bed Catalytic System for Direct Conversion of Methane to Liquid Hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    N.A.S.Amin; Sriraj Ammasi

    2006-01-01

    A dual-bed catalytic system is proposed for the direct conversion of methane to liquid hydrocarbons. In this system, methane is converted in the first stage to oxidative coupling of methane (OCM) products by selective catalytic oxidation with oxygen over La-supported MgO catalyst. The second bed, comprising of the HZSM-5 zeolite catalyst, is used for the oligomerization of OCM light hydrocarbon products to liquid hydrocarbons. The effects of temperature (650-800 ℃), methane to oxygen ratio (4-10), and SiO2/Al2O3 ratio of the HZSM-5 zeolite catalyst on the process are studied. At higher reaction temperatures, there is considerable dealumination of HZSM-5, and thus its catalytic performance is reduced. The acidity of HZSM-5 in the second bed is responsible for the oligomerization reaction that leads to the formation of liquid hydrocarbons. The activities of the oligomerization sites were unequivocally affected by the SiO2/Al2O3 ratio. The relation between the acidity and the activity of HZSM-5 is studied by means of TPD-NH3 techniques. The rise in oxygen concentration is not beneficial for the C5+ selectivity, where the combustion reaction of intermediate hydrocarbon products that leads to the formation of carbon oxide (CO+CO2) products is more dominant than the oligomerization reaction. The dual-bed catalytic system is highly potential for directly converting methane to liquid fuels.

  14. Catalytic Alkylation of 2-Methylfuran with Formalin Using Supported Acidic Ionic Liquids

    DEFF Research Database (Denmark)

    Li, Hu; Shunmugavel, Saravanamurugan; Yang, Song;

    2015-01-01

    Biphasic alkylation of 2-methylfuran (2-MF) with formalin was carried out with a series of SBA-15 supported acidic ionic liquid catalysts (acidic SILCs) under mild reaction conditions. Acidic SILC with sulfonic acid groups (SO3H) and long alkyl chains was observed to have higher catalytic activity...

  15. Improving the Enzyme Catalytic Efficiency Using Ionic Liquids with Kosmotropic Anions

    Institute of Scientific and Technical Information of China (English)

    ZHAO, Hua; CAMPBELL, Sophia; SOLOMON, Jonathan; SONG, Zhi-Yan; OLUBAJO, Olarongbe

    2006-01-01

    The kosmotropicity of cations and anions in ionic liquids has a strong influence on the enzyme catalytic efficiency in aqueous environments. The kosmotropic anion CF3COO- seemed to activate the protease, and the chaotropic anions tended to destabilize the enzyme.

  16. Exxon catalytic coal gasification process development program. Quarterly technical progress report, January 1-March 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-01

    This report covers the activites for the Exxon Catalytic Coal Gasification Development Program during the quarter January 1-March 31, 1979. Construction of a bench apparatus to study reactions of product and recycle gas in furnace and heat exchanger tubes was completed and checkout of the apparatus was begun. A Startup and Initial Operation Schedule, a Checkout Test Plan, and an Initial Startup Plan were developed for the Process Develoment Unit (PDU). The PDU will be started up in a sequential manner, with the gasification system being started up on a once-through basis first. The gas separation system will be started up next, followed by the catalyst recovery system. The programmable controller, which handles valve sequencing, alarming, and other miscellaneous functions on the PDU, was programmed and checkout was completed on the coal feed, gas feed, and filter systems. Work continued on defining the cause of the breakdown of char and lime during digestion in the prototype catalyst recovery unit. It was concluded that both the lime and char particles are fragile and will break down to fines if handled roughly. Removal of the potassium from the char by water washing does not cause the char particles to disintegrate. The perferred processing sequence for catalyst recovery in the PDU has been identified. Bench scale tests confirmed that the change in catalyst from K/sub 2/CO/sub 3/ to KOH was not responsible for the differences in fluidized bed densities between the present and the predevelopment operations of the FBG. Work was completed on a revised offsites facilities definition and cost estimate to update the CCG Commercial Plant Study Design prepared during the predevelopment program.

  17. Catalytic Enhancement of Carbon Black and Coal-Fueled Hybrid Direct Carbon Fuel Cells

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent

    2015-01-01

    , Ce1-xREExO2-δ (REE = Pr, Sm)) and metal oxides (LiMn2O4, Ag2O). Materials showing the highest activity in carbon black (Mn2O3, CeO2, Ce0.6Pr0.4O2-δ, Ag2O) were subsequently tested for catalytic activity toward bituminous coal, as revealed by both I-V-P curves and electrochemical impedance......Hybrid direct carbon fuel cells (HDCFCs) consisting of a solid carbon (carbon black)-molten carbonate ((62–38 wt% Li-K)2CO3) mixtures in the anode chamber of an anode-supported solid oxide fuel cell type full-cell are tested for their electrochemical performance between 700 and 800°C. Performance...... was investigated using current-voltage-power density curves. In the anode chamber, catalysts are mixed with the carbon-carbonate mixture. These catalysts include various manganese oxides (MnO2, Mn2O3, Mn3O4, MnO), metal carbonates (Ag2CO3, MnCO3, Ce2(CO3)3), metals (Ag, Ce, Ni), doped-ceria (CeO2, Ce1-xGdxO2-x/2...

  18. Catalytic Destruction of a Surrogate Organic Hazardous Air Pollutant as a Potential Co-benefit for Coal-fired Selective Catalyst Reduction Systems

    Science.gov (United States)

    Catalytic destruction of benzene (C6H6), a surrogate for organic hazardous air pollutants (HAPs) produced from coal combustion, was investigated using a commercial selective catalytic reduction (SCR) catalyst for evaluating the potential co-benefit of the SCR technology for reduc...

  19. PILOT-SCALE STUDY OF THE EFFECT OF SELECTIVE CATALYTIC REDUCTION CATALYST ON MERCURY SPECIATION IN ILLINOIS AND POWDER RIVER BASIN COAL COMBUSTION FLUE GASES

    Science.gov (United States)

    A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur and chlorine) and one Po...

  20. Data acquisition and quantitative analysis of stable hydrogen isotope in liquid and gas in the liquid phase catalytic exchange process

    International Nuclear Information System (INIS)

    A pilot plant for the Liquid Phase Catalytic Exchange process was built and has been operating to test the hydrophobic catalyst developed to remove the tritium generated at the CANDU nuclear power plants. The methods of quantitative analysis of hydrogen stable isotope were compared. Infrared spectroscopy was used for the liquid samples, and gas chromatography with hydrogen carrier gas showed the best result for gas samples. Also, a data acquisition system was developed to record the operation parameters. This record was very useful to investigate the causes of the system trip

  1. Prospects for production of synthetic liquid fuel from low-grade coal

    Science.gov (United States)

    Shevyrev, Sergei; Bogomolov, Aleksandr; Alekssev, Maksim

    2015-01-01

    In the paper, we compare the energy costs of steam and steam-oxygen gasification technologies for production of synthetic liquid fuel. Results of mathematic simulation and experimental studies on gasification of low-grade coal are presented.

  2. Catalytic conversion of carboxylic acids in bio-oil for liquid hydrocarbons production

    International Nuclear Information System (INIS)

    Bio-oil must be upgraded to be suitable for use as a high-grade transport fuel. Crude bio-oil has a high content of carboxylic acids which can cause corrosion, and the high oxygen content of these acids also reduces the oil’s heating value. In this paper, acetic acid and propanoic acid were chosen as the model carboxylic acids in bio-oil. Their behavior in the production of liquid hydrocarbons during a catalytic conversion process was investigated in a micro-fixed bed reactor. The liquid organic phase from this catalytic conversion process mainly consisted of liquid hydrocarbons and phenol derivatives. Under the condition of low Liquid Hourly Space Velocity (LHSV), the liquid organic phase from acetic acid cracking had a selectivity of 22% for liquid hydrocarbons and a selectivity of 65% for phenol derivatives. The composition of the organic products changed considerably with the LHSV increasing to 3 h−1. The selectivity for liquid hydrocarbons increased up to 52% while that for phenol derivatives decreased to 32%. Propanoic acid performed much better in producing liquid hydrocarbons than acetic acid. Its selectivity for liquid hydrocarbons was as high as 80% at LHSV = 3 h−1. A mechanism for this catalytic conversion process was proposed according to the analysis of the components in the liquid organic phases. The pathways of the main compounds formation in the liquid organic phases were proposed, and the reason why liquid hydrocarbons were more effectively produced when using propanoic acid rather than acetic acid was also successfully explained. In addition, BET and SEM characterization were used to analyze the catalyst coke deposition. -- Graphical abstract: Display Omitted Highlights: ► High content of carboxylic acids in bio-oil causes its corrosiveness. ► Acetic acid and propanoic acid are two dominant acids in bio-oil. ► Liquid hydrocarbons were produced by cracking of these two dominant acids. ► A mechanism model was proposed to explain the

  3. The Influence Of Mass Fraction Of Dressed Coal On Ignition Conditions Of Composite Liquid Fuel Droplet

    Directory of Open Access Journals (Sweden)

    Shlegel Nikita E.

    2015-01-01

    Full Text Available The laws of condition modification of inert heat and ignition in an oxidant flow of composite liquid fuel droplet were studied by the developed experimental setup. Investigations were for composite liquid fuel composition based on the waste of bituminous and nonbaking coal processing, appropriate carbon dust, water, used motor oil. The characteristics of boundary layer inertia heat of composite liquid fuel droplet, thermal decomposition of coal organic part, the yield of volatiles and evaporation of liquid combustion component, ignition of the gas mixture and coke residue were defined.

  4. Electro-catalytic oxidative cleavage of lignin in a protic ionic liquid.

    Science.gov (United States)

    Reichert, Elena; Wintringer, Reiner; Volmer, Dietrich A; Hempelmann, Rolf

    2012-04-21

    Lignin is a component of lignocellulosic biomass and a promising matrix for recovering important renewable aromatic compounds. We present a new approach of electro-oxidative cleavage of lignin, dissolved in a special protic ionic liquid, using an anode with particular electro-catalytic activity. As appropriate ionic liquid triethylammonium methanesulfonate was identified, synthesised, explored for dissolution of alkali-lignin and used for electrolysis of 5 wt.% lignin solutions. As appropriate anode material, oxidation-stable ruthenium-vanadium-titanium mixed oxide electrodes were prepared and explored for their electro-catalytic activity. The electrolysis was performed at several potentials in the range from 1.0 V to 1.5 V (vs. an Ag pseudo reference electrode). A wide range of aromatic fragments was identified as cleavage products by means of GC-MS and HPLC measurements. PMID:22398694

  5. DEVELOPMENT OF HIGH ACTIVITY, COAL-DERIVED, PROMOTED CATALYTIC SYSTEMS FOR NOx REDUCTION AT LOW TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Joseph M. Calo

    2000-07-21

    This project is directed at an investigation of catalytic NO{sub x} reduction mechanisms on coal-derived, activated carbon supports at low temperatures. Promoted carbon systems offer some potentially significant advantages for heterogeneous NO{sub x} reduction. These include: low cost; high activity at low temperatures, which minimizes carbon loss; oxygen resistance; and a support material which can be engineered with respect to porosity, transport and catalyst dispersion characteristics. During the reporting period, the following has been accomplished: (1) Steady-state reactivity studies in the packed bed reactor were extended to the NO/CO-carbon reaction system as a function of temperature and NO and CO concentrations. It was found that the NO reaction rate increased in the presence of CO, and the apparent activation energy decreased to about 75 {+-} 8 kJ/mol. In addition, the influence of mass transfer limitations were noted at low NO and CO concentrations. (2) The packed bed reactor/gas flow system has been applied to performing post-reaction temperature programmed desorption (TPD) studies of intermediate surface complexes following steady-state reaction. It was found that the amount of CO-evolving intermediate surface complexes exceeded that of the N{sub 2}-evolving surface complexes, and that both increased with reaction temperature. The TPD spectra indicates that both types of complexes desorb late, suggesting that they have high desorption activation energies. Plans for the next reporting period include extending the temperature programmed desorption studies in the packed bed reactor system to the NO/CO reaction system, including exposure to just CO, as well as NO/CO mixtures.

  6. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer.

    Science.gov (United States)

    Sun, Tonghua; Shen, Yafei; Jia, Jinping

    2014-02-18

    This paper proposes a novel self-developed JTS-01 desulfurizer and JZC-80 alkaline adsorbent for H2S removal and gas cleaning of the COREX coal gas in small-scale and commercial desulfurizing devices. JTS-01 desulfurizer was loaded with metal oxide (i.e., ferric oxides) catalysts on the surface of activated carbons (AC), and the catalyst capacity was improved dramatically by means of ultrasonically assisted impregnation. Consequently, the sulfur saturation capacity and sulfur capacity breakthrough increased by 30.3% and 27.9%, respectively. The whole desulfurizing process combined selective adsorption with catalytic oxidation. Moreover, JZC-80 adsorbent can effectively remove impurities such as HCl, HF, HCN, and ash in the COREX coal gas, stabilizing the system pressure drop. The JTS-01 desulfurizer and JZC-80 adsorbent have been successfully applied for the COREX coal gas cleaning in the commercial plant at Baosteel, Shanghai. The sulfur capacity of JTS-01 desulfurizer can reach more than 50% in industrial applications. Compared with the conventional dry desulfurization process, the modified AC desulfurizers have more merit, especially in terms of the JTS-01 desulfurizer with higher sulfur capacity and low pressure drop. Thus, this sorption enhanced catalytic desulfurization has promising prospects for H2S removal and other gas cleaning. PMID:24456468

  7. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer.

    Science.gov (United States)

    Sun, Tonghua; Shen, Yafei; Jia, Jinping

    2014-02-18

    This paper proposes a novel self-developed JTS-01 desulfurizer and JZC-80 alkaline adsorbent for H2S removal and gas cleaning of the COREX coal gas in small-scale and commercial desulfurizing devices. JTS-01 desulfurizer was loaded with metal oxide (i.e., ferric oxides) catalysts on the surface of activated carbons (AC), and the catalyst capacity was improved dramatically by means of ultrasonically assisted impregnation. Consequently, the sulfur saturation capacity and sulfur capacity breakthrough increased by 30.3% and 27.9%, respectively. The whole desulfurizing process combined selective adsorption with catalytic oxidation. Moreover, JZC-80 adsorbent can effectively remove impurities such as HCl, HF, HCN, and ash in the COREX coal gas, stabilizing the system pressure drop. The JTS-01 desulfurizer and JZC-80 adsorbent have been successfully applied for the COREX coal gas cleaning in the commercial plant at Baosteel, Shanghai. The sulfur capacity of JTS-01 desulfurizer can reach more than 50% in industrial applications. Compared with the conventional dry desulfurization process, the modified AC desulfurizers have more merit, especially in terms of the JTS-01 desulfurizer with higher sulfur capacity and low pressure drop. Thus, this sorption enhanced catalytic desulfurization has promising prospects for H2S removal and other gas cleaning.

  8. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Technical progress report, August 1992--November 1992

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Huang, L.; Wenzel, K.; Saini, A.K.; Burgess, C.; Hatcher, P.G.; Schobert, H.H.

    1992-12-01

    During this quarterly period progress has been made in the following three subjects related to the effects of low-temperature thermal and catalytic pretreatments on coal structure and reactivity in liquefaction. First, the liquefaction behavior of three bituminous coals with a carbon content ranging from 77% to 85% was evaluated spectroscopically by {sup 13}C NMR and pyrolysis/gas chromatography/mass spectrometry to delineate the structural changes that occur in the coal during liquefaction. Complementary data includes ultimate and proximate analysis, along with optical microscopy for maceral determinations. Even though these are all bituminous coals they exhibit quite different physical and chemical characteristics. The coals vary in rank, ranging from HvC b to HvA b, in petrographic composition, different maceral percentages, and in chemical nature, percent of carbon and of volatiles. It is these variations that govern the products, their distribution, and conversion percentages. Some of the products formed can be traced to a specific maceral group. Second, pyrolysis-GC-MS and FTIR techniques were used to characterize Wyodak coal before and after drying in vacuum and in air and the residues from its thermal and catalytic liquefactions. The analysis of the air-dried coal shows a decrease in the phenolic type structures in the coal network and increase in the carbonyl structures as the oxidative drying proceeds. An enhanced decrease in the carbonyl structure is observed in the liquefaction residues from the raw coal as compared to that of the vacuum dried coal. The analyses of the liquefaction residues of the air-dried coal show an increase in the ether linkages which may have a negative impact on liquefaction. The extent of the solvent adduction also increases during liquefaction with the extent of oxidation of the coal. Finally, the effects of reaction conditions were investigated on conversion of low-rank coals using a Texas subbituminous coal.

  9. HTGR-INTEGRATED COAL TO LIQUIDS PRODUCTION ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Anastasia M Gandrik; Rick A Wood

    2010-10-01

    As part of the DOE’s Idaho National Laboratory (INL) nuclear energy development mission, the INL is leading a program to develop and design a high temperature gas-cooled reactor (HTGR), which has been selected as the base design for the Next Generation Nuclear Plant. Because an HTGR operates at a higher temperature, it can provide higher temperature process heat, more closely matched to chemical process temperatures, than a conventional light water reactor. Integrating HTGRs into conventional industrial processes would increase U.S. energy security and potentially reduce greenhouse gas emissions (GHG), particularly CO2. This paper focuses on the integration of HTGRs into a coal to liquids (CTL) process, for the production of synthetic diesel fuel, naphtha, and liquefied petroleum gas (LPG). The plant models for the CTL processes were developed using Aspen Plus. The models were constructed with plant production capacity set at 50,000 barrels per day of liquid products. Analysis of the conventional CTL case indicated a potential need for hydrogen supplementation from high temperature steam electrolysis (HTSE), with heat and power supplied by the HTGR. By supplementing the process with an external hydrogen source, the need to “shift” the syngas using conventional water-gas shift reactors was eliminated. HTGR electrical power generation efficiency was set at 40%, a reactor size of 600 MWth was specified, and it was assumed that heat in the form of hot helium could be delivered at a maximum temperature of 700°C to the processes. Results from the Aspen Plus model were used to perform a preliminary economic analysis and a life cycle emissions assessment. The following conclusions were drawn when evaluating the nuclear assisted CTL process against the conventional process: • 11 HTGRs (600 MWth each) are required to support production of a 50,000 barrel per day CTL facility. When compared to conventional CTL production, nuclear integration decreases coal

  10. Simultaneous probing of bulk liquid phase and catalytic gas-liquid-solid interface under working conditions using attenuated total reflection infrared spectroscopy

    International Nuclear Information System (INIS)

    Design and performance of a reactor set-up for attenuated total reflection infrared (ATR-IR) spectroscopy suitable for simultaneous reaction monitoring of bulk liquid and catalytic solid-liquid-gas interfaces under working conditions are presented. As advancement of in situ spectroscopy an operando methodology for gas-liquid-solid reaction monitoring was developed that simultaneously combines catalytic activity and molecular level detection at the catalytically active site of the same sample. Semi-batch reactor conditions are achieved with the analytical set-up by implementing the ATR-IR flow-through cell in a recycle reactor system and integrating a specifically designed gas feeding system coupled with a bubble trap. By the use of only one spectrometer the design of the new ATR-IR reactor cell allows for simultaneous detection of the bulk liquid and the catalytic interface during the working reaction. Holding two internal reflection elements (IRE) the sample compartments of the horizontally movable cell are consecutively flushed with reaction solution and pneumatically actuated, rapid switching of the cell (<1 s) enables to quasi simultaneously follow the heterogeneously catalysed reaction at the catalytic interface on a catalyst-coated IRE and in the bulk liquid on a blank IRE. For a complex heterogeneous reaction, the asymmetric hydrogenation of 2,2,2-trifluoroacetophenone on chirally modified Pt catalyst the elucidation of catalytic activity/enantioselectivity coupled with simultaneous monitoring of the catalytic solid-liquid-gas interface is shown. Both catalytic activity and enantioselectivity are strongly dependent on the experimental conditions. The opportunity to gain improved understanding by coupling measurements of catalytic performance and spectroscopic detection is presented. In addition, the applicability of modulation excitation spectroscopy and phase-sensitive detection are demonstrated

  11. Liquid Tin Anode Direct Coal Fuel Cell Final Program Report

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Thomas

    2012-01-26

    This SBIR program will result in improved LTA cell technology which is the fundamental building block of the Direct Coal ECL concept. As described below, ECL can make enormous efficiency and cost contributions to utility scale coal power. This program will improve LTA cells for small scale power generation. As described in the Commercialization section, there are important intermediate military and commercial markets for LTA generators that will provide an important bridge to the coal power application. The specific technical information from this program relating to YSZ electrolyte durability will be broadly applicable SOFC developers working on coal based SOFC generally. This is an area about which very little is currently known and will be critical for successfully applying fuel cells to coal power generation.

  12. Catalytic conversion of inulin and fructose into 5-hydroxymethylfurfural by lignosulfonic acid in ionic liquids.

    Science.gov (United States)

    Xie, Haibo; Zhao, Zongbao K; Wang, Qian

    2012-05-01

    In this work, we found that lignosulfonic acid (LS), which is a waste byproduct from the paper industry, in ionic liquids (ILs) can catalyze the dehydration of fructose and inulin into 5-hydroxymethylfurfural (HMF) efficiently, which is a promising potential substitute for petroleum-based building blocks. The effects of reaction time, temperature, catalyst loading, and reusability of the catalytic system were studied. It was found that a 94.3% yield of HMF could be achieved in only 10 min at 100 °C under mild conditions. The reusability study of the LS-IL catalytic system after removal of HMF by ethyl acetate extraction demonstrated that the catalytic activity decreased from 77.4 to 62.9% after five cycles and the catalytic activity could be recovered after simply removing the accumulated humins by filtration after adding ethanol to the LS-ILs. The integrated utilization of a biorenewable feedstock, catalyst, and ILs is an example of an ideal green chemical process. PMID:22517537

  13. Catalytic Process for the Conversion of Coal-derived Syngas to Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    James Spivery; Doug Harrison; John Earle; James Goodwin; David Bruce; Xunhau Mo; Walter Torres; Joe Allison Vis Viswanathan; Rick Sadok; Steve Overbury; Viviana Schwartz

    2011-07-29

    The catalytic conversion of coal-derived syngas to C{sub 2+} alcohols and oxygenates has attracted great attention due to their potential as chemical intermediates and fuel components. This is particularly true of ethanol, which can serve as a transportation fuel blending agent, as well as a hydrogen carrier. A thermodynamic analysis of CO hydrogenation to ethanol that does not allow for byproducts such as methane or methanol shows that the reaction: 2 CO + 4 H{sub 2} {yields} C{sub 2}H{sub 5}OH + H{sub 2}O is thermodynamically favorable at conditions of practical interest (e.g,30 bar, {approx}< 250 C). However, when methane is included in the equilibrium analysis, no ethanol is formed at any conditions even approximating those that would be industrially practical. This means that undesired products (primarily methane and/or CO{sub 2}) must be kinetically limited. This is the job of a catalyst. The mechanism of CO hydrogenation leading to ethanol is complex. The key step is the formation of the initial C-C bond. Catalysts that are selective for EtOH can be divided into four classes: (a) Rh-based catalysts, (b) promoted Cu catalysts, (c) modified Fischer-Tropsch catalysts, or (d) Mo-sulfides and phosphides. This project focuses on Rh- and Cu-based catalysts. The logic was that (a) Rh-based catalysts are clearly the most selective for EtOH (but these catalysts can be costly), and (b) Cu-based catalysts appear to be the most selective of the non-Rh catalysts (and are less costly). In addition, Pd-based catalysts were studied since Pd is known for catalyzing CO hydrogenation to produce methanol, similar to copper. Approach. The overall approach of this project was based on (a) computational catalysis to identify optimum surfaces for the selective conversion of syngas to ethanol; (b) synthesis of surfaces approaching these ideal atomic structures, (c) specialized characterization to determine the extent to which the actual catalyst has these structures, and (d) testing

  14. DEVELOPMENT OF HIGH ACTIVITY, COAL-DERIVED, PROMOTED CATALYTIC SYSTEMS FOR NOx REDUCTION AT LOW TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Joseph M. Calo

    2000-07-24

    This project is directed at an investigation of catalytic NO{sub x} reduction mechanisms on coal-derived, activated carbon supports at low temperatures. Promoted carbon systems offer some potentially significant advantages for heterogeneous NO{sub x} reduction. These include: low cost; high activity at low temperatures, which minimizes carbon loss; oxygen resistance; and a support material which can be engineered with respect to porosity, transport and catalyst dispersion characteristics. During the reporting period, TPD studies were conducted following steady-state reaction in NO/CO mixtures in helium. From these studies, the following points have been concluded: (1) The total amount of CO and N{sub 2} evolved following reaction in NO increases with reaction temperature. The TPD spectra are skewed to high temperatures, indicating more stable surface complexes with high desorption activation energies. (2) The total amount of CO evolved following exposure of the char sample to CO at reaction temperatures decreases with reaction temperature, similar to chemisorption behavior. The CO TPD spectra are shifted to lower temperatures, indicating more labile oxygen surface complexes with lower desorption activation energies. (3) The total amount of CO evolved following reaction in NO/CO mixtures decreases with reaction temperature, while the evolved N{sub 2} still increases with reaction temperature. The CO TPD spectra appear more similar to those obtained following exposure to pure CO, while the N{sub 2} TPD spectra are more similar to those obtained followed reaction in just CO. Based on the preceding observations, a simple mechanism was formulated whereby two different types of surface complexes are formed by NO and CO; the former are more stable, and the latter more labile. This produces two parallel routes for the NO-carbon reaction: (a) the C(O) complexes formed directly by NO desorb as CO; and (b) The C(CO) complexes formed by CO, react with NO to produce CO{sub 2

  15. Catalytic Conversion of Biomass to Fuels and Chemicals Using Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Zheng, Richard; Brown, Heather; Li, Joanne; Holladay, John; Cooper, Alan; Rao, Tony

    2012-04-13

    This project provides critical innovations and fundamental understandings that enable development of an economically-viable process for catalytic conversion of biomass (sugar) to 5-hydroxymethylfurfural (HMF). A low-cost ionic liquid (Cyphos 106) is discovered for fast conversion of fructose into HMF under moderate reaction conditions without any catalyst. HMF yield from fructose is almost 100% on the carbon molar basis. Adsorbent materials and adsorption process are invented and demonstrated for separation of 99% pure HMF product and recovery of the ionic liquid from the reaction mixtures. The adsorbent material appears very stable in repeated adsorption/regeneration cycles. Novel membrane-coated adsorbent particles are made and demonstrated to achieve excellent adsorption separation performances at low pressure drops. This is very important for a practical adsorption process because ionic liquids are known of high viscosity. Nearly 100% conversion (or dissolution) of cellulose in the catalytic ionic liquid into small molecules was observed. It is promising to produce HMF, sugars and other fermentable species directly from cellulose feedstock. However, several gaps were identified and could not be resolved in this project. Reaction and separation tests at larger scales are needed to minimize impacts of incidental errors on the mass balance and to show 99.9% ionic liquid recovery. The cellulose reaction tests were troubled with poor reproducibility. Further studies on cellulose conversion in ionic liquids under better controlled conditions are necessary to delineate reaction products, dissolution kinetics, effects of mass and heat transfer in the reactor on conversion, and separation of final reaction mixtures.

  16. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 1 - effects of solvents, catalysts and temperature conditions on conversion and structural changes of low-rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Lili Huang; Schobert, H.H.; Chunshan Song

    1998-01-01

    The main objectives of this project were to study the effects of low-temperature pretreatments on coal structure and their impacts on subsequent liquefaction. The effects of pretreatment temperatures, catalyst type, coal rank, and influence of solvent were examined. Specific objectives were to identify the basic changes in coal structure induced by catalytic and thermal pretreatments, and to determine the reactivity of the catalytically and thermally treated coals for liquefaction. In the original project management plan it was indicated that six coals would be used for the study. These were to include two each of bituminous, subbituminous, and lignite rank. For convenience in executing the experimental work, two parallel efforts were conducted. The first involved the two lignites and one subbituminous coal; and the second, the two bituminous coals and the remaining subbituminous coal. This Volume presents the results of the first portion of the work, studies on two lignites and one subbituminous coal. The remaining work accomplished under this project will be described and discussed in Volume 2 of this report. The objective of this portion of the project was to determine and compare the effects of solvents, catalysts and reaction conditions on coal liquefaction. Specifically, the improvements of reaction conversion, product distribution, as well as the structural changes in the coals and coal-derived products were examined. This study targeted at promoting hydrogenation of the coal-derived radicals, generated during thermal cleavage of chemical bonds, by using a good hydrogen donor-solvent and an effective catalyst. Attempts were also made in efforts to match the formation and hydrogenation of the free radicals and thus to prevent retrogressive reaction.

  17. Catalytic cracking of the top phase fraction of bio-oil into upgraded liquid oil

    Science.gov (United States)

    Sunarno, Rochmadi, Mulyono, Panut; Budiman, Arief

    2016-06-01

    The energy consumption is increasing, while oil reserves as a primary energy resource are decreasing, so that is the reason seeking alternative energy source is inevitable. Biomass especially oil palm empty fruit bunches (EFB) which is abundant in Indonesia can be processed into bio-oil by pyrolysis process. The potential for direct substitution of bio-oil for petroleum may be limited due to the high viscosity, high oxygen content, low heating value, and corrosiveness. Consequently, upgrading of the bio-oil before use is inevitable to give a wider variety of applications of its liquid product. Furthermore, upgrading process to improve the quality of bio-oil by reduction of oxygenates involves process such as catalytic cracking. The objective of this research is to study the effect of operation temperature on yield and composition of upgraded liquid oil and to determine physical properties. Bio-oil derived from EFB was upgraded through catalytic cracking using series tubular reactor under atmospheric pressure on a silica-alumina catalyst. Results show that increasing temperature from 450 to 600 °C, resulting in decreasing of upgraded liquid oil (ULO) yield, decreasing viscosity and density of ULO, but increasing in calorimetric value of ULO. The increasing temperature of cracking also will increase the concentration of gasoline and kerosene in ULO.

  18. Innovative clean coal technology (ICCT): demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NOx) emission from high-sulfur, coal-fired boilers - economic evaluation of commercial-scale SCR applications for utility boilers

    International Nuclear Information System (INIS)

    This report presents the results of an economic evaluation produced as part of the Innovative Clean Coal Technology project, which demonstrated selective catalytic reduction (SCR) technology for reduction of NOx emissions from utility boilers burning U.S. high-sulfur coal. The document includes a commercial-scale capital and O ampersand M cost evaluation of SCR technology applied to a new facility, coal-fired boiler utilizing high-sulfur U.S. coal. The base case presented herein determines the total capital requirement, fixed and variable operating costs, and levelized costs for a new 250-MW pulverized coal utility boiler operating with a 60-percent NOx removal. Sensitivity evaluations are included to demonstrate the variation in cost due to changes in process variables and assumptions. This report also presents the results of a study completed by SCS to determine the cost and technical feasibility of retrofitting SCR technology to selected coal-fired generating units within the Southern electric system

  19. Non-catalytic transfer hydrogenation in supercritical CO2 for coal liquefaction

    Science.gov (United States)

    Elhussien, Hussien

    This thesis presents the results of the investigation on developing and evaluating a low temperature (products of coal dissolution were non-polar and polar while the supercritical CO2, which enhanced the rates of hydrogenation and dissolution of the non-polar molecules and removal from the reaction site, was non-polar. The polar modifier (PM) for CO2 was added to the freed to aid in the dissolution and removal of the polar components. The addition of a phase transfer agent (PTA) allowed a seamless transport of the ions and by-product between the aqueous and organic phases. DDAB, used as the PTA, is an effective phase transfer catalyst and showed enhancement to the coal dissolution process. COAL + DH- +H 2O → COAL.H2 + DHO-- This process has a great feature due to the fact that the chemicals were obtained without requir-ing to first convert coal to CO and H2 units as in indirect coal liquefaction. The experiments were conducted in a unique reactor set up that can be connected through two lines. one line to feed the reactor with supercritical CO 2 and the other connected to gas chromatograph. The use of the supercritical CO2 enhanced the solvent option due to the chemical extraction, in addition to the low environmental impact and energy cost. In this thesis the experiment were conducted at five different temperatures from atmos-pheric to 140°C, 3000 - 6000 psi with five component of feed mixture, namely water, HTA, PTA, coal, and PM in semi batch vessels reactor system with a volume of 100 mL. The results show that the chemicals were obtained without requiring to first convert coal to CO and H2 units as in indirect coal liquefaction. The results show that the conversion was found to be 91.8% at opti-mum feed mixtures values of 3, 1.0 and 5.4 for water: PM, HTA: coal, water: coal respectively. With the oil price increase and growing in energy demand, the coal liquefaction remain affordable and available energy alternative.

  20. Laboratory Scale of Liquid Coal Fuel Combustion Process and Exhaust Gas Formation

    Directory of Open Access Journals (Sweden)

    Kartika K. Hendratna

    2010-01-01

    Full Text Available Problem statement: Much research of coal has been already undertaken to ascertain the possibilities of coal being used as substitute for heavy fuel oil in the transportation sector. The effects of using coal as transportation fuel to the environment must also be considered. This study will review several aspects of the coal oil combustion process including combustion behavior, flame stability, some emissions from exhaust gas; CO, NOx and the particulate matter in a well insulated laboratory scale furnace for more stable of combustion. Approach: New way for preparation for liquid coal oil steady combustion on a 2.75 m horizontal boiler with four annular segment tubes, a water jacket system and a system for measurement of water temperature inside was archived. Data was gained by applying liquid coal in the experiment. Detailed preparation and setting for steady combustion of coal oil and formation of the exhaust gas were discussed based on data sampling from four sample points in each centre of the angular tube segments. Results: Preparation for coal oil combustion is an important point in the successful of combustion. Heating coal fuel to than 100°C, heating the fuel line to the same temperature and providing enough air pressure for atomization of coal oil until 0.1 MPa allows coal fuel smoothly atomized in the semi gas phase. There was enough of air combustion via a blower with 4500 L min-1 of flow rate and a 24 L min-1 of water flow rate in the water jacket transforms the energy of the fuel to the heat. Uncolored of the exhaust gas and the physical inspection describes the completion of combustion. This result close-relates with the pollutants formation in the exhaust gas. Conclusion: By conducting a deep research process, there is a chance for the substitute of heavy fuel oil with liquid coal fuel with no special treatment needed in combustion process without ignoring the contribution of the combustion results as an environmental problem.

  1. Experimental study on the type change of liquid flow in broken coal samples

    Institute of Scientific and Technical Information of China (English)

    Lu-zhen WANG; Zhan-qing CHEN; Hai-de SHEN

    2013-01-01

    A test system of the permeability of broken coal samples mainly consists of a CMT5305 electronic universal test machine,crushed rock compaction containing cylinder and a self-designed seepage circuit,which is composed of a gear pump,a reversing valve,a relief valve and other components.By using the steady penetration method,the permeability and non-Darcy flow β factor of broken coal samples under five different porosity levels were measured,the grain diameters of the coal samples were selected as 2.5-5 mm,5-10 mm,10-15 mm,15-20 mm,20-25 mm and 2.5-25 mm,respectively.After measuring the permeability under each porosity,the overfall pressure of the relief valve continuously increased until the coal sample was broken down.In this way,the flow type of liquid inside the broken coal samples changed from seepage to pipe flow.The correlation between breakdown pressure gradient (BPG) and porosity was analyzed,and the BPG was compared with the pressure gradient when seepage instability occurred.The results show that,① the non-Darcy flow β factor was negative before broken coal samples with six kinds of diameters were broken down; ② the BPG of coal samples with a grain size of 2.5-25 mm was lower than that of the others; ③ the BPG of coal samples with a single diameter under the same porosity increased as the grain size increased; ④ the BPG could be fitted by an exponential function with porosity,and the exponent decreased as the grain size increased for coal samples with a single diameter; ⑤ the BPG was slightly less than the seepage instability pressure gradient.The change in liquid flow type from seepage to pipe flow could be regarded as the performance of the seepage instability.

  2. Acid Separation, Catalytic Oxidation and Coagulation for ATC Waste Liquid Treatment

    Institute of Scientific and Technical Information of China (English)

    DING Xiaoling; JIA Chunning

    2005-01-01

    It is difficult to treat 2-amino-thiazoline-4-carboxylic acid (ATC) waste liquid effectively at present for its characteristics of high chemical oxygen demand (COD), high salinity and low biodegradability. In order to solve this problem, this paper presents several kinds of physical-chemical treatment unit techniques, including acid separation, catalytic oxidation and coagulation. First of all, acid separation was adopted to precipitate relevant organics at isoelectric point. When the temperature and pH value of acid separation were controlled at about 5 ℃ and 2.2 respectively, the COD removal rate could reach 27.6%. Secondly, oxidation was used to break chemical constitution of refractory organics. The optimal reaction parameters of catalytic oxidation should be 20 ℃, pH adjusted to 5.0 and [Fe2+] 300 mg/L. Then with 5% H 2O 2 added and after one-hour reaction, the COD removal rate could achieve about 52%. Finally, coagulation was adopted to remove a portion of refractory organics, and 15% polymeric molysite flocculant was the best for the coagulation, and the COD removal rate could reach about 15%. Therefore, the proposed feasible process of physical-chemical pretreatment for ATC waste liquid could have about 70% COD removed in total.

  3. Catalytic conversion of carbohydrates to 5-hydroxymethylfurfural from the waste liquid of acid hydrolysis NCC.

    Science.gov (United States)

    Sun, Yonghui; Liu, Pengtao; Liu, Zhong

    2016-05-20

    The principal goal of this work was to reuse the carbohydrates and recycle sulfuric acid in the waste liquid of acid hydrolysis nanocrystalline cellulose (NCC). Therefore, in this work, the optimizations of further hydrolysis of waste liquid of acid hydrolysis NCC and catalytic conversion of L4 to 5-hydroxymethylfurfural (5-HMF) were studied. Sulfuric acid was separated by spiral wound diffusion dialysis (SWDD). The results revealed that cellulose can be hydrolyze to glucose absolutely under the condition of temperature 35 °C, 3 h, and sulfuric acid's concentration 62 wt%. And 78.3% sulfuric acid was recovered by SWDD. The yield of 5-HMF was highest in aqueous solution under the optimal condition was as follows, temperature 160 °C, 3 h, and sulfuric acid's concentration 12 wt%. Then the effect of biphasic solvent systems catalytic conversion and inorganic salt as additives were still examined. The results showed that both of them contributed to prepare 5-HMF. The yield and selectivity of 5-HMF was up to 21.0% and 31.4%, respectively. PMID:26917388

  4. Prospects for production of synthetic liquid fuel from low-grade coal

    Directory of Open Access Journals (Sweden)

    Shevyrev Sergei

    2015-01-01

    Full Text Available In the paper, we compare the energy costs of steam and steam-oxygen gasification technologies for production of synthetic liquid fuel. Results of mathematic simulation and experimental studies on gasification of low-grade coal are presented.

  5. Permeability evolution model and numerical analysis of coupled coal deformation, failure and liquid nitrogen cooling

    Directory of Open Access Journals (Sweden)

    Chunhui ZHANG

    Full Text Available How to quantitatively evaluate the permeability change of coalbed subjected to liquid nitrogen cooling is a key issue of enhanced-permeability technology of coalbed. To analyze the evolution process of permeability of coupled coal deformation, failure and liquid introgen cooling, the coal is supposed as elastic, brittle and plastic material. Its deformation process includes elastic deformation stage, brittle strength degradation stage and residual plastic flow stage. Combined with strength degradation index, dilatancy index of the element and Mohr-Column strength criterion, the element scale constitutive model with the effects of confining pressure on peak-post mechanical behaviors is built. Based on the deformation process of coal rock, there exist two stages of permeability evolution of the element including decrease of permeability due to elastic contraction and increase due to coal rock element's failure. The relationships between the permeability and elastic deformation, shear failure and tension failure for coal are studied. The permeability will be influenced by the change of pore space due to elastic contraction or tension of element. Conjugate shear zones appear during the shear failure of the element, in which the flow follows so-called cubic law between smooth parallel plates. The calculation formulas of the permeability and the aperture of the fractures are given out based on the volumetric strain. When tension failure criterion is satisfied with the rock element fails and two orthogonal fractures appear. The calculation formulas of the permeability and the width of the fractures are given out based on the volumetric strain. Further, combined with the thermal conduction theory the permeability evolution model of coupled coal deformation, failure and liquid nitrogen cooling is presented. Then Fish function method in FLAC is employed to perform the model. The permeability's evolution process for coal bed cryogenically stimulated

  6. Fe-MCM-41 from Coal-Series Kaolin as Catalysts for the Selective Catalytic Reduction of NO with Ammonia

    Science.gov (United States)

    Li, Shuiping; Wu, Qisheng; Lu, Guosen; Zhang, Changsen; Liu, Xueran; Cui, Chong; Yan, Zhiye

    2013-12-01

    Fe-MCM-41, one kind of high-ordered mesoporous materials catalysts, with molar ratio of Fe/Si = 0.01-0.1, was synthesized by hydrothermal method from coal-series kaolin. Fe-MCM-41 catalysts were characterized by Fourier transform infrared spectroscopy, high resolution transmission electron microscopy, N2 adsorption-desorption, x-ray photoelectron spectroscopy, and UV-vis spectroscopy. The results clearly indicated that: (1) all the samples exhibited typical hexagonal arrangement of mesoporous structure; (2) the incorporation of tiny amount of Fe3+ onto the surface and pore channel of MCM-41 mesoporous materials could efficiently promote the deNO x activity of these catalysts. Moreover, the Fe-MCM-41 mesoporous materials were evaluated in the selective catalytic reduction of NO with NH3. The results showed that Fe-MCM-41 catalyst with Fe/Si = 0.05 showed the highest catalytic activity at 350 °C, a gas hourly space velocity of 5000 h-1, n(NH3)/ n(NO) = 1.1, and O2% = 2.5%.

  7. Catalytic spectrophotometric determination of trace vanadium in fly ash and coal gangue by Triton X-100 enhancing effect

    Institute of Scientific and Technical Information of China (English)

    XIA Changbin; HUANG Niandong

    2004-01-01

    Trace V(V) catalyzes mightily the decolorization reaction of arsenazo Ⅲ (AsA Ⅲ) by oxidizing with H2O2 in a pH 4.0 HAc-NaAc buffer solution, and the addition of Triton X-100 can further increase the sensitivity of the reaction and its catalytic extent is linear with the content of V(V). A catalytic spectrophotometric procedure for determining trace V(V)was developed. The results show that the maximun absorption of the color solution is at 560 nm and the detection limit of the method for V(V) is 0.014 mg@L-1 Beer's law is obeyed for V(V) in the range of 0.00-0.20 mg.L-1. The recoveries are 99.0%-104.6%, and the relative standard deviations (RSD) are 2.7%-3.7%. Combined with ion-exchange resin, the method has been applied to the determination of trace vanadium in fly ash and coal gangue with satisfactory results.

  8. Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China

    Science.gov (United States)

    Li, Zhen; Jiang, Jingkun; Ma, Zizhen; Wang, Shuxiao; Duan, Lei

    2015-11-01

    Nitrogen oxides (NOx) emission abatement of coal-fired power plants (CFPPs) requires large-scaled installation of selective catalytic reduction (SCR), which would reduce secondary fine particulate matter (PM2.5) (by reducing nitrate aerosol) in the atmosphere. However, our field measurement of two CFPPs equipped with SCR indicates a significant increase of SO42- and NH4+ emission in primary PM2.5, due to catalytic enhancement of SO2 oxidation to SO3 and introducing of NH3 as reducing agent. The subsequent formation of (NH4)2SO4 or NH4HSO4 aerosol is commonly concentrated in sub-micrometer particulate matter (PM1) with a bimodal pattern. The measurement at the inlet of stack also showed doubled primary PM2.5 emission by SCR operation. This effect should therefore be considered when updating emission inventory of CFPPs. By rough estimation, the enhanced primary PM2.5 emission from CFPPs by SCR operation would offset 12% of the ambient PM2.5 concentration reduction in cities as the benefit of national NOx emission abatement, which should draw attention of policy-makers for air pollution control.

  9. Investigation of Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics and Computational Fluid Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Francine [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Agblevor, Foster [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Klein, Michael [Univ. of Delaware, Newark, DE (United States); Sheikhi, Reza [Northeastern Univ., Boston, MA (United States)

    2015-09-30

    A collaborative effort involving experiments, kinetic modeling, and computational fluid dynamics (CFD) was used to understand co-gasification of coal-biomass mixtures. The overall goal of the work was to determine the key reactive properties for coal-biomass mixed fuels. Sub-bituminous coal was mixed with biomass feedstocks to determine the fluidization and gasification characteristics of hybrid poplar wood, switchgrass and corn stover. It was found that corn stover and poplar wood were the best feedstocks to use with coal. The novel approach of this project was the use of a red mud catalyst to improve gasification and lower gasification temperatures. An important results was the reduction of agglomeration of the biomass using the catalyst. An outcome of this work was the characterization of the chemical kinetics and reaction mechanisms of the co-gasification fuels, and the development of a set of models that can be integrated into other modeling environments. The multiphase flow code, MFIX, was used to simulate and predict the hydrodynamics and co-gasification, and results were validated with the experiments. The reaction kinetics modeling was used to develop a smaller set of reactions for tractable CFD calculations that represented the experiments. Finally, an efficient tool was developed, MCHARS, and coupled with MFIX to efficiently simulate the complex reaction kinetics.

  10. Investigation of Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics and Computational Fluid Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Battaglia, Francine [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Agblevor, Foster [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Klein, Michael [Univ. of Delaware, Newark, DE (United States); Sheikhi, Reza [Northeastern Univ., Boston, MA (United States)

    2015-12-31

    A collaborative effort involving experiments, kinetic modeling, and computational fluid dynamics (CFD) was used to understand co-gasification of coal-biomass mixtures. The overall goal of the work was to determine the key reactive properties for coal-biomass mixed fuels. Sub-bituminous coal was mixed with biomass feedstocks to determine the fluidization and gasification characteristics of hybrid poplar wood, switchgrass and corn stover. It was found that corn stover and poplar wood were the best feedstocks to use with coal. The novel approach of this project was the use of a red mud catalyst to improve gasification and lower gasification temperatures. An important results was the reduction of agglomeration of the biomass using the catalyst. An outcome of this work was the characterization of the chemical kinetics and reaction mechanisms of the co-gasification fuels, and the development of a set of models that can be integrated into other modeling environments. The multiphase flow code, MFIX, was used to simulate and predict the hydrodynamics and co-gasification, and results were validated with the experiments. The reaction kinetics modeling was used to develop a smaller set of reactions for tractable CFD calculations that represented the experiments. Finally, an efficient tool was developed, MCHARS, and coupled with MFIX to efficiently simulate the complex reaction kinetics.

  11. Coal conversion control technology. Volume I. Environmental regulations; liquid effluents. Final report, April 1977-November 1978

    Energy Technology Data Exchange (ETDEWEB)

    Bostwick, L.E.; Smith, M.R.; Moore, D.O.; Webber, D.K.

    1979-10-01

    This volume is the product of an information-gathering effort relating to coal conversion process streams. Available and developing control technology has been evaluated in view of the requirements of present and proposed federal, state, regional, and international environmental standards. The study indicates that it appears possible to evolve technology to reduce each component of each process stream to an environmentally acceptable level. It also indicates that such an approach would be costly and difficult to execute. Because all coal conversion processes are net users of water, liquid effluents need be treated only for recycling within the process, thus achieving essentially zero discharge. With available technology, gaseous emissions can be controlled to meet present environmental standards, particulates can be controlled or eliminated, and disposal of solid wastes can be managed to avoid deleterious environmental effects. This volume (I) focuses on environmental regulations for gaseous, liquid, and solid wastes, and the control technology for liquid effluents.

  12. Direct Catalytic Conversion of Cellulose to 5-Hydroxymethylfurfural Using Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Sanan Eminov

    2016-10-01

    Full Text Available Cellulose is the single largest component of lignocellulosic biomass and is an attractive feedstock for a wide variety of renewable platform chemicals and biofuels, providing an alternative to petrochemicals and petrofuels. This potential is currently limited by the existing methods of transforming this poorly soluble polymer into useful chemical building blocks, such as 5-hydroxymethylfurfural (HMF. Ionic liquids have been used successfully to separate cellulose from the other components of lignocellulosic biomass and so the use of the same medium for the challenging transformation of cellulose into HMF would be highly attractive for the development of the biorefinery concept. In this report, ionic liquids based on 1-butyl-3-methylimidazolium cations [C4C1im]+ with Lewis basic (X = Cl− and Brønsted acidic (X = HSO4− anions were used to investigate the direct catalytic transformation of cellulose to HMF. Variables probed included the composition of the ionic liquid medium, the metal catalyst, and the reaction conditions (temperature, substrate concentration. Lowering the cellulose loading and optimising the temperature achieved a 58% HMF yield after only one hour at 150 °C using a 7 mol % loading of the CrCl3 catalyst. This compares favourably with current literature procedures requiring much longer reactions times or approaches that are difficult to scale such as microwave irradiation.

  13. Mercury oxidation promoted by a selective catalytic reduction catalyst under simulated Powder River Basin coal combustion conditions.

    Science.gov (United States)

    Lee, Chun W; Serre, Shannon D; Zhao, Yongxin; Lee, Sung Jun; Hastings, Thomas W

    2008-04-01

    A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury (Hg(o)) oxidation under SCR conditions. A low sulfur Powder River Basin (PRB) subbituminous coal combustion fly ash was injected into the entrained-flow reactor along with sulfur dioxide (SO2), nitrogen oxides (NOx), hydrogen chloride (HCl), and trace Hg(o). Concentrations of Hg(o) and total mercury (Hg) upstream and downstream of the SCR catalyst were measured using a Hg monitor. The effects of HCl concentration, SCR operating temperature, catalyst space velocity, and feed rate of PRB fly ash on Hg(o) oxidation were evaluated. It was observed that HCl provides the source of chlorine for Hg(o) oxidation under simulated PRB coal-fired SCR conditions. The decrease in Hg mass balance closure across the catalyst with decreasing HCl concentration suggests that transient Hg capture on the SCR catalyst occurred during the short test exposure periods and that the outlet speciation observed may not be representative of steady-state operation at longer exposure times. Increasing the space velocity and operating temperature of the SCR led to less Hg(o) oxidized. Introduction of PRB coal fly ash resulted in slightly decreased outlet oxidized mercury (Hg2+) as a percentage of total inlet Hg and correspondingly resulted in an incremental increase in Hg capture. The injection of ammonia (NH3) for NOx reduction by SCR was found to have a strong effect to decrease Hg oxidation. The observations suggest that Hg(o) oxidation may occur near the exit region of commercial SCR reactors. Passage of flue gas through SCR systems without NH3 injection, such as during the low-ozone season, may also impact Hg speciation and capture in the flue gas. PMID:18422035

  14. Coal-liquid fuel/diesel engine operating compatibility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, J.G.; Martin, F.W.

    1983-09-01

    This work is intended to assess the possibilities of using coal-derived liquids (CDL) represented by a specific type (SRC II) and shale-derived distillate fuel in blends of petroleum-derived fuels in medium-speed, high-output, heavy-duty diesel engines. Conclusions are as follows: (1) Blends of solvent refined coal and diesel fuel may be handled safely by experienced diesel engine mechanics. (2) A serious corrosion problem was found in the fuel pump parts when operating with solvent refined coal blended with petroleum. It is expected that a metallurgy change can overcome this problem. (3) Proper selection of materials for the fuel system is required to permit handling coal-derived liquid fuels. (4) A medium speed, high horsepower, 4-cycle diesel engine can be operated on blends of solvent refined coal and petroleum without serious consequences save the fuel system corrosion previously mentioned. This is based on a single, short durability test. (5) As represented by the product evaluated, 100% shale-derived distillate fuel may be used in a medium speed, high horsepower, 4-cycle diesel engine without significant consequences. (6) The shale product evaluated may be blended with petroleum distillate or petroleum residual materials and used as a fuel for medium speed, high horsepower, 4-cycle diesel engines. 7 references, 24 figures, 20 tables.

  15. Liquid phase catalytic hydrodebromination of tetrabromobisphenol A on supported Pd catalysts

    Science.gov (United States)

    Wu, Ke; Zheng, Mengjia; Han, Yuxiang; Xu, Zhaoyi; Zheng, Shourong

    2016-07-01

    Tetrabromobisphenol A (TBBPA) is a widely used brominated flame retardant and reductive debromination is an effective method for the abatement of TBBPA pollution. In this study, Pd catalysts supported on TiO2, CeO2, Al2O3 and SiO2 were prepared by the impregnation (the resulting catalyst denoted as im-Pd/support), deposition-precipitation (the resulting catalyst denoted as dp-Pd/support), and photo-deposition (the resulting catalyst denoted as pd-Pd/support) methods. The catalysts were characterized by N2 adsorption-desorption isotherm, X-ray diffraction, transmission electron microscopy, measurement of zeta potential, CO chemisorption, and X-ray photoelectron spectroscopy. The results showed that at an identical Pd loading amount (2.0 wt.%) Pd particle size in dp-Pd/TiO2 was much smaller than those in im-Pd/TiO2 and pd-Pd/TiO2. Pd particle size of the dp-Pd/TiO2 catalyst increased with Pd loading amount. Additionally, Pd particles in the dp-Pd/TiO2 catalysts were positively charged due to the strong metal-support interaction, whereas the cationization effect was gradually attenuated with the increase of Pd loading amount. For the liquid phase catalytic hydrodebromination (HDB) of TBBPA, tri-bromobisphenol A (tri-BBPA), di-bromobisphenol A (di-BBPA), and mono-bromobisphenol A (mono-BBPA) were identified as the intermediate products, indicative of a stepwise debromination process. The catalytic HDB of TBBPA followed the Langmuir-Hinshelwood model, reflecting an adsorption enhanced catalysis mechanism. At an identical Pd loading amount, the Pd catalyst supported on TiO2 exhibited a much higher catalytic activity than those on other supports. Furthermore, dp-Pd/TiO2 was found to be more active than im-Pd/TiO2 and pd-Pd/TiO2.

  16. Synthesis and utilization of catalytically cracked cashew nut shell liquid in a diesel engine

    KAUST Repository

    Vedharaj, S.

    2015-09-30

    In this study, CNSL (Cashew nut shell liquid), an economically viable feedstock among the other contemporary resources, has been considered as an appropriate source of alternate fuel. Herein, CNSL was extracted from cashew nut outer shell, a waste product, through a unique approach of steam treatment process followed by mechanical crushing technique. In contrast to the past studies that have attempted to use unprocessed CNSL directly as substitute for diesel, this study has resorted to use processed CNSL by cracking it using zeolite catalyst. Thus, both the extraction of CNSL from cashew nut outer shell and processing of it through catalytic cracking process to help synthesize CC-CNSL (catalytically cracked CNSL) are different, which underscores the significance of the current work. In wake of adopting such distinct methodologies with fuel characterization, the properties of CC-CNSL such as viscosity and calorific value were figured out to be improved. Subsequently, CC-CNSL20 (20% CC-CNSL and 80% diesel) was tested at different fuel injection pressure such as 200 bar, 235 bar, 270 bar and 300 bar so as to optimize its use in a single cylinder diesel engine. From the engine experimental study, CC-CNSL20 was found to evince better engine performance than diesel and the composite emissions of CO (carbon monoxide), HC (hydrocarbon), NOX (oxides of nitrogen) and smoke, computed based on ISO 8178 D2 standard test cycle, were found to be better than diesel and incompliance with the legislative norms for genset.

  17. Facile synthesis of pristine graphene-palladium nanocomposites with extraordinary catalytic activities using swollen liquid crystals.

    Science.gov (United States)

    Vats, T; Dutt, S; Kumar, R; Siril, P F

    2016-01-01

    Amazing conductivity, perfect honeycomb sp(2) arrangement and the high theoretical surface area make pristine graphene as one of the best materials suited for application as catalyst supports. Unfortunately, the low reactivity of the material makes the formation of nanocomposite with inorganic materials difficult. Here we report an easy approach to synthesize nanocomposites of pristine graphene with palladium (Pd-G) using swollen liquid crystals (SLCs) as a soft template. The SLC template gives the control to deposit very small Pd particles of uniform size on G as well as RGO. The synthesized nanocomposite (Pd-G) exhibited exceptionally better catalytic activity compared with Pd-RGO nanocomposite in the hydrogenation of nitrophenols and microwave assisted C-C coupling reactions. The catalytic activity of Pd-G nanocomposite during nitrophenol reduction reaction was sixteen times higher than Pd nanoparticles and more than double than Pd-RGO nanocomposite. The exceptionally high activity of pristine graphene supported catalysts in the organic reactions is explained on the basis of its better pi interacting property compared to partially reduced RGO. The Pd-G nanocomposite showed exceptional stability under the reaction conditions as it could be recycled upto a minimum of 15 cycles for the C-C coupling reactions without any loss in activity. PMID:27619321

  18. Methods for sulfate removal in liquid-phase catalytic hydrothermal gasification of biomass

    Science.gov (United States)

    Elliott, Douglas C; Oyler, James

    2013-12-17

    Processing of wet biomass feedstock by liquid-phase catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a pre-treatment temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent removal of soluble sulfate contaminants, or combinations thereof. Processing further includes reacting the soluble sulfate contaminants with cations present in the feedstock material to yield a sulfate-containing precipitate and separating the inorganic precipitates and/or the sulfate-containing precipitates out of the wet feedstock. Having removed much of the inorganic wastes and the sulfate contaminants that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogenous catalyst for gasification.

  19. Potential for Coal-to-Liquids Conversion in the United States-Fischer-Tropsch Synthesis

    International Nuclear Information System (INIS)

    The United States has the world's largest coal reserves and Montana the highest potential for mega-mine development. Consequently, a large-scale effort to convert coal to liquids (CTL) has been proposed to create a major source of domestic transportation fuels from coal, and some prominent Montanans want to be at the center of that effort. We calculate that the energy efficiency of the best existing Fischer-Tropsch (FT) process applied to average coal in Montana is less than 1/2 of the corresponding efficiency of an average crude oil refining process. The resulting CO2 emissions are 20 times (2000%) higher for CTL than for conventional petroleum products. One barrel of the FT fuel requires roughly 800 kg of coal and 800 kg of water. The minimum energy cost of subsurface CO2 sequestration would be at least 40% of the FT fuel energy, essentially halving energy efficiency of the process. We argue therefore that CTL conversion is not the most valuable use for the coal, nor will it ever be, as long as it is economical to use natural gas for electric power generation. This finding results from the low efficiency inherent in FT synthesis, and is independent of the monumental FT plant construction costs, mine construction costs, acute lack of water, and the associated environmental impacts for Montana

  20. Refining and end use study of coal liquids I - pilot plant studies

    Energy Technology Data Exchange (ETDEWEB)

    Erwin, J.; Moulton, D.S.

    1995-12-31

    The Office of Fossil Energy, Pittsburgh Energy Technology Center is examining the ways in which coal liquids may best be integrated into the refinery of the 2000-2015 time frame and what performance and emission properties will prevail among the slate of fuels produced. The study consists of a Basic Program administered by Bechtel Group, Inc. to build a linear programming refinery model and provide processing and fuel properties data through subcontractors Southwest Research Institute, Amoco Oil R&D, and M.W. Kellogg Company. The model will be used in an Option 1 to devise a slate of test fuels meeting advanced specifications, which will be produced and tested for physical ASTM-type properties, engine performance, and vehicle emissions. Three coal liquids will be included: a direct liquid from bituminous coal, another from subbituminous, and a Fischer-Tropsch indirect liquefaction product. This paper reports the work to date on fractions of the first direct liquid including naphtha hydrotreating, heavy distillate hydrotreating, FCC of the heavy distillate hydrotreater products. Also reported are the first stages of work on the indirect liquefaction wax including feed preparation and FCC tests of blends with petroleum FCC feed.

  1. Refining and end use study of coal liquids

    Energy Technology Data Exchange (ETDEWEB)

    Choi, G.

    1998-05-01

    A conceptual design and ASPEN Plus process flowsheet simulation model was developed for a Battelle biomass-based gasification, Fischer-Tropsch (F-T) liquefaction and combined-cycle power plant. This model was developed in a similar manner to those coal liquefaction models that were developed under DOE contract DE-AC22-91PC90027. As such, this process flowsheet simulation model was designed to be a research guidance tool and not a detailed process design tool. However, it does contain some process design features, such as sizing the F-T synthesis reactors. This model was designed only to predict the effects of various process and operating changes on the overall plant heat and material balances, utilities, capital and operating costs.

  2. Properties and catalytic activity of magnetic and acidic ionic liquids: experimental and molecular simulation.

    Science.gov (United States)

    Zhou, Cunshan; Yu, Xiaojie; Ma, Haile; Huang, Xingyi; Zhang, Henan; Jin, Jian

    2014-05-25

    The exploitation of dual functional magnetic and acidic ionic liquids (MAILs) for hydrolysis of cellulose to platform chemicals can solve some practical challenges through easy separation of products and efficient catalyst recyclability. In this work, seven Cnmim/FeCl4 MAILs were synthesized and investigated with combined experimental and molecular dynamics. The MAILs contained FeCl4(-) anions and exhibited a typical hard magnetic materials behavior with rather strong magnetic susceptibilities. These MAILs were stable up to 250-310°C, the decomposition was started up at 250/310-480-810°C in two steps with the formation of the undecomposed residue. The Gibbs energy for the reaction of glucose/xylose conversion to 5-hydroxymethylfurfural by metal chlorides in the CnmimCl ionic liquid was studied using the density functional theory calculations and the results that C3mim/WCl3 may be the most hopeful catalyst. The MAILs have the potential to open up promising new catalytic systems because of their easy product separation and efficient catalyst recyclability. PMID:24708984

  3. Catalytic performance of acidic ionic liquid-functionalized silica in biodiesel production

    Institute of Scientific and Technical Information of China (English)

    Bin; Zhen; Qingze; Jiao; Qin; Wu; Hansheng; Li

    2014-01-01

    Acidic ionic liquid([BsAIm][OTf]) was immobilized on sulfhydryl-group-modified SiO2(MPS-SiO2) via free radical addition reaction. The[BsAIm][OTf] loading on acidic ionic liquid-functionalized silica([BsAIm][OTf]/SiO2) was controlled through tuning the sulfydryl(SH)content of MPS-SiO2. All the samples were characterized by FT-IR, elemental analysis, N2adsorption-desorption measurements and TGDTA. The catalytic performance of [BsAIm][OTf]/SiO2in the esterification of oleic acid and the transesterification of glycerol trioleate for biodiesel production was investigated. The results showed that with the increase of [BsAIm][OTf] loading on SiO2the specific surface area and pore volume of [BsAIm][OTf]/SiO2decreased, and the pore diameter of [BsAIm][OTf]/SiO2narrowed. In the esterificaiton of oleic acid, the oleic acid conversion increased with the increasing [BsAIm][OTf] loading. In the transesterification of glycerol trioleate, with the increasing[BsAIm][OTf] loading the glycerol trioleate conversion decreased and the selectivities to glycerol monooleate and methyl oleate increased.

  4. Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

    2001-11-06

    The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

  5. Low Temperature Selective Catalytic Reduction of Nitrogen Oxides in Production of Nitric Acid by the Use of Liquid

    Directory of Open Access Journals (Sweden)

    Kabljanac, Ž.

    2011-11-01

    Full Text Available This paper presents the application of low-temperature selective catalytic reduction of nitrous oxides in the tail gas of the dual-pressure process of nitric acid production. The process of selective catalytic reduction is carried out using the TiO2/WO3 heterogeneous catalyst applied on a ceramic honeycomb structure with a high geometric surface area per volume. The process design parameters for nitric acid production by the dual-pressure procedure in a capacity range from 75 to 100 % in comparison with designed capacity for one production line is shown in the Table 1. Shown is the effectiveness of selective catalytic reduction in the temperature range of the tail gas from 180 to 230 °C with direct application of liquid ammonia, without prior evaporation to gaseous state. The results of inlet and outlet concentrations of nitrous oxides in the tail gas of the nitric acid production process are shown in Figures 1 and 2. Figure 3 shows the temperature dependence of the selective catalytic reduction of nitrous oxides expressed as NO2in the tail gas of nitric acid production with the application of a constant mass flow of liquid ammonia of 13,0 kg h-1 and average inlet mass concentration of the nitrous oxides expressed as NO2of 800,0 mgm-3 during 100 % production capacity. The specially designed liquid-ammonia direct-dosing system along with the effective homogenization of the tail gas resulted in emission levels of nitrous oxides expressed as NO2 in tail gas ranging from 100,0 to 185,0 mg m-3. The applied low-temperature selective catalytic reduction of the nitrous oxides in the tail gases by direct use of liquid ammonia is shown in Figure 4. It is shown that low-temperature selective catalytic reduction with direct application of liquid ammonia opens a new opportunity in the reduction of nitrous oxide emissions during nitric acid production without the risk of dangerous ammonium nitrate occurring in the process of subsequent energy utilization of

  6. Coal liquefaction. Quarterly report, January--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-12-01

    Current ERDA work in coal liquefaction is aimed at improved process configurations for both catalytic and non-catalytic processes to provide more attractive processing economics and lower capital investment. Coal liquefaction can now be achieved under more moderate processing conditions and more rapidly than was the case in the 1930's. The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquid fuels also have the potential for use as chemical feedstocks. To determine the most efficient means of utilizing coal resources, ERDA is sponsoring the development of several conversion processes that are currently in the pilot plant stage. Nineteen projects under development are described and progress for each in the quarter is detailed briefly. (LTN)

  7. COAL CLEANING VIA LIQUID-FLUIDIZED CLASSIFICAITON (LFBC) WITH SELECTIVE SOLVENT SWELLING

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Calo

    2000-12-01

    The concept of coal beneficiation due to particle segregation in water-fluidized beds, and its improvement via selective solvent-swelling of organic material-rich coal particles, was investigated in this study. Particle size distributions and their behavior were determined using image analysis techniques, and beneficiation effects were explored via measurements of the ash content of segregated particle samples collected from different height locations in a 5 cm diameter liquid-fluidized bed column (LFBC). Both acetone and phenol were found to be effective swelling agents for both Kentucky No.9 and Illinois No.6 coals, considerably increasing mean particle diameters, and shifting particle size distributions to larger sizes. Acetone was a somewhat more effective swelling solvent than phenol. The use of phenol was investigated, however, to demonstrate that low cost, waste solvents can be effective as well. For unswollen coal particles, the trend of increasing particle size from top to bottom in the LFBC was observed in all cases. Since the organic matter in the coal tends to concentrate in the smaller particles, the larger particles are typically denser. Consequently, the LFBC naturally tends to separate coal particles according to mineral matter content, both due to density and size. The data for small (40-100 {micro}m), solvent-swollen particles clearly showed improved beneficiation with respect to segregation in the water-fluidized bed than was achieved with the corresponding unswollen particles. This size range is quite similar to that used in pulverized coal combustion. The original process concept was amply demonstrated in this project. Additional work remains to be done, however, in order to develop this concept into a full-scale process.

  8. Bioconversion of coal derived synthesis gas to liquid fuels

    Science.gov (United States)

    Jain, M. K.; Worden, R. M.; Grethlein, A.

    1994-07-01

    The overall objective of the project is to develop an integrated two-stage fermentation process for conversion of coal-derived synthesis gas to a mixture of alcohols. This is achieved in two steps. In the first step, Butyribacterium methylotrophicum converts carbon monoxide (CO) to butyric and acetic acids. Subsequent fermentation of the acids by Clostridium acetobutylicum leads to the production of butanol and ethanol. The tasks for this quarter were: development/isolation of superior strains for fermentation of syngas; evaluation of bioreactor configuration for improved mass transfer of syngas; recovery of carbon and electrons from H2-CO2; initiation of pervaporation for recovery of solvents; and selection of solid support material for trickle-bed fermentation. Technical progress included the following: butyrate production was enhanced during H2/CO2 (50/50) batch fermentation; isolation of CO-utilizing anaerobic strains is in progress; pressure (15 psig) fermentation was evaluated as a means of increasing CO availability; polyurethane foam packing material was selected for trickle bed solid support; cell recycle fermentation on syngas operated for 3 months. Acetate was the primary product at pH 6.8; trickle bed and gas lift fermentor designs were modified after initial water testing; and pervaporation system was constructed (No alcohol selectivity was shown with the existing membranes during initial start-up).

  9. Influence of liquid water on coalbed methane adsorption: An experimental research on coal reservoirs in the south of Qinshui Basin

    Institute of Scientific and Technical Information of China (English)

    SANG Shuxun; ZHU Yanming; ZHANG Jing; ZHANG Xiaodong; ZHANG Shiyin

    2005-01-01

    Using Isothermal Adsorption/Desorption System Model IS-100 and Electrohydraulic Servo Rock System Model MTS815 as the main apparatuses and collecting samples from the major coal reservoirs in the south of Qinshui Basin, a hot point region of coalbed methane exploration, the paper carries out systematical comparisons of the isothermal adsorption experimental data for injection water coal sampies, equilibrium moisture samples and dry coal samples,probes and establishes an experimental method of injection water coal sample preparation and isothermal experiment to simulate real reservoir conditions, and then summaries the experimental regulations and discusses the mechanism of liquid water influencing coal methane adsorption. Results of the experiment indicate that: The Langmuir volume of injection water coal samples is notably larger than that of equilibrium moisture samples, as well as larger than or equivalent to that of dry coal samples; the Langmuir pressure of injection water coal samples is the highest, the next is equilibrium moisture samples, while the dry samples is the lowest, of which the experimental results of injection water samples to simulate real reservoir conditions are more close to the fact.Under the conditions of in-position reservoirs, liquid water in coals has evident influence on methane adsorption ability of coal matrix, which can increase the adsorbability of coal and make the adsorption regulation fit to Langmuir model better.Its major reason is the increase of wetting coal matrix adsorbability. The above experimental results overthrow the conventional cognition that liquid water has no influence on coalbed methane adsorption, which may lead to an improvement of the coalbed methane isothermal adsorption experimental method and of the reliability of coalbed methane resource evaluation and prediction.

  10. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Technical progress report, July--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    Song, C.; Saini, A.K.; Huang, L.; Schobert, H.H.; Hatcher, P.G.

    1994-01-01

    In this quarter, progress has been made in the following two aspects: (1) spectroscopic and chemical reaction studies on the effects of drying and mild oxidation of a Wyodak subbituminous coal on its structure and pretreatment/liquefaction at 350{degrees}C; and (2) effects of dispersed catalyst and solvent on conversion and structural changes of a North Dakota lignite. Drying and oxidation of Wyodak subbituminous coal at 100-150{degrees}C have been shown to have significant effects on its structure and on its catalytic and non-catalytic low-severity liquefaction at 350{degrees}C for 30 min under 6.9 MPa H{sub 2}. Spectroscopic analyses using solid-state {sup 13}C NMR, Pyrolysis-GC-MS, and FT-IR revealed that oxidative drying at 100-150{degrees}C causes the transformation of phenolics and catechol into other related structures (presumably via condensation) and high-severity air drying at 150{degrees}C for 20 h leads to disappearance of catechol-like structure. Increasing air drying time or temperature increases oxidation to form more oxygen functional groups at the expense of aliphatic carbons. Such a clearly negative impact of severe oxidation is considered to arise from significantly increased oxygen functionality which enhances the cross-link formation in the early stage of coal liquefaction. Physical, chemical, and surface physicochemical aspects of drying and oxidation and the role of water are also discussed. A North Dakota lignite (DECS-1) coal was studied for its behaviors in non-catalytic and catalytic liquefaction. Reactions were carried out at temperatures between 250 and 450{degrees}C. Regardless the reaction solvents and the catalyst being used, the optimum temperature was found to be 400{degrees}C. The donor solvent has a significant effect over the conversion especially at temperatures higher than 350{degrees}C.

  11. Coal

    International Nuclear Information System (INIS)

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  12. Small-Scale Coal-Biomass to Liquids Production Using Highly Selective Fischer-Tropsch Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gangwal, Santosh K. [Southern Research Institute, Durham, NC (United States); McCabe, Kevin [Southern Research Institute, Durham, NC (United States)

    2015-04-30

    The research project advanced coal-to-liquids (CTL) and coal-biomass to liquids (CBTL) processes by testing and validating Chevron’s highly selective and active cobalt-zeolite hybrid Fischer-Tropsch (FT) catalyst to convert gasifier syngas predominantly to gasoline, jet fuel and diesel range hydrocarbon liquids, thereby eliminating expensive wax upgrading operations The National Carbon Capture Center (NCCC) operated by Southern Company (SC) at Wilsonville, Alabama served as the host site for the gasifier slip-stream testing/demonstration. Southern Research designed, installed and commissioned a bench scale skid mounted FT reactor system (SR-CBTL test rig) that was fully integrated with a slip stream from SC/NCCC’s transport integrated gasifier (TRIGTM). The test-rig was designed to receive up to 5 lb/h raw syngas augmented with bottled syngas to adjust the H2/CO molar ratio to 2, clean it to cobalt FT catalyst specifications, and produce liquid FT products at the design capacity of 2 to 4 L/day. It employed a 2-inch diameter boiling water jacketed fixed-bed heat-exchange FT reactor incorporating Chevron’s catalyst in Intramicron’s high thermal conductivity micro-fibrous entrapped catalyst (MFEC) packing to efficiently remove heat produced by the highly exothermic FT reaction.

  13. Enhancing catalytic performance of Au catalysts by noncovalent functionalized graphene using functional ionic liquids

    International Nuclear Information System (INIS)

    Highlights: • The new catalyst was fabricated by a facile and environment-friendly approach. • The catalyst has excellent activity and reusability due to the synergistic effect. • The approach provides a green way to synthesize low cost Au-based catalysts. - Abstract: New catalyst, prepared through Au nanoparticles anchored on the Ionic Liquid of 3,4,9,10-perylene tetracarboxylic acid-noncovalent functionalized graphene (Au/PDIL-GS), was fabricated using a facile and environment-friendly approach. The information of the morphologies, sizes, dispersion of Au nanoparticles (NPs) and chemical composition for the as-prepared catalysts was verified by systematic characterizations, including transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Raman spectra, X-ray diffraction (XRD) and X-Ray photoelectron spectroscopy (XPS). As a new catalyst, the resulting Au/PDIL-GS exhibited excellent catalytic activity in the reduction of 4-nitrophenol because of the synergistic effect between the PDIL-GS and Au NPs. The facile and environment-friendly approach provides a green way to effectively synthesize low cost Au-based catalysts for 4-NP reduction and is promising for the development of other useful materials

  14. Enhancing catalytic performance of Au catalysts by noncovalent functionalized graphene using functional ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuwen; Guo, Shujing; Yang, Honglei; Gou, Galian; Ren, Ren; Li, Jing; Dong, Zhengping; Jin, Jun; Ma, Jiantai, E-mail: majiantai@lzu.edu.cn

    2014-04-01

    Highlights: • The new catalyst was fabricated by a facile and environment-friendly approach. • The catalyst has excellent activity and reusability due to the synergistic effect. • The approach provides a green way to synthesize low cost Au-based catalysts. - Abstract: New catalyst, prepared through Au nanoparticles anchored on the Ionic Liquid of 3,4,9,10-perylene tetracarboxylic acid-noncovalent functionalized graphene (Au/PDIL-GS), was fabricated using a facile and environment-friendly approach. The information of the morphologies, sizes, dispersion of Au nanoparticles (NPs) and chemical composition for the as-prepared catalysts was verified by systematic characterizations, including transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Raman spectra, X-ray diffraction (XRD) and X-Ray photoelectron spectroscopy (XPS). As a new catalyst, the resulting Au/PDIL-GS exhibited excellent catalytic activity in the reduction of 4-nitrophenol because of the synergistic effect between the PDIL-GS and Au NPs. The facile and environment-friendly approach provides a green way to effectively synthesize low cost Au-based catalysts for 4-NP reduction and is promising for the development of other useful materials.

  15. Effect of Ionic Liquids on Catalytic Characteristics of Horse Liver Alcohol Dehydrogenase

    Institute of Scientific and Technical Information of China (English)

    SHI Xian-Ai; ZONG Min-Hua; LOU Wen-Yong

    2006-01-01

    The catalytic characteristics of horse liver alcohol dehydrogenase (HLADH) in the systems involving ionic liquids (Ils) (BMIm·Cl, BMIm·Br, BMIm·pF6, BMIm·BF4 BMIm·Otf and EMIm·Cl) were examined. HLADH displayed higher oxidation activity towards ethanol in the systems containing BMIm·Cl, BMIm·Br, EMIm·Cl or BMIm·PF6 with proper content than that in the IL-free buffer. An excessive amount of these Ils in the reaction systems resulted in an obvious decline in enzymatic activity. BMIm·BF4 and BMIm·Otf of any content investigated could considerably inhibit the enzyme. The anions of Ils showed significant effect on the activity, kinetic parameters and activation energy of HLADH-mediated ethanol oxidation. Additionally, BMIm·Cl, BMIm·Br,EMIm·Cl and BMIm·pF6 boosted markedly the thermostability of HLADH, while the enzyme was less thermostable in BMIm·BF4 or BMIm·Otf-containing systems. The associated conformational changes in HLADH caused by Ils were examined by UV technique.

  16. The prospects for coal-to-liquid conversion: A general equilibrium analysis

    Energy Technology Data Exchange (ETDEWEB)

    Henry Chen, Y.-H., E-mail: chenyh@colorado.edu [Development Research Group at the World Bank, 1818 H Street NW, Washington, DC 20433 (United States); Reilly, John M., E-mail: jreilly@mit.edu [MIT Joint Program on the Science and Policy of Global Change, Cambridge, MA 02139 (United States); Paltsev, Sergey, E-mail: paltsev@mit.edu [MIT Joint Program on the Science and Policy of Global Change, Cambridge, MA 02139 (United States)

    2011-09-15

    We investigate the economics of coal-to-liquid (CTL) conversion, a polygeneration technology that produces liquid fuels, chemicals, and electricity by coal gasification and Fischer-Tropsch process. CTL is more expensive than extant technologies when producing the same bundle of output. In addition, the significant carbon footprint of CTL may raise environmental concerns. However, as petroleum prices rise, this technology becomes more attractive especially in coal-abundant countries such as the U.S. and China. Furthermore, including a carbon capture and storage (CCS) option could greatly reduce its CO{sub 2} emissions at an added cost. To assess the prospects for CTL, we incorporate the engineering data for CTL from the U.S. Department of Energy (DOE) into the MIT Emissions Prediction and Policy Analysis (EPPA) model, a computable general equilibrium model of the global economy. Based on DOE's plant design that focuses mainly on liquid fuels production, we find that without climate policy, CTL has the potential to account for up to a third of the global liquid fuels supply by 2050 and at that level would supply about 4.6% of global electricity demand. A tight global climate policy, on the other hand, severely limits the potential role of the CTL even with the CCS option, especially if low-carbon biofuels are available. Under such a policy, world demand for petroleum products is greatly reduced, depletion of conventional petroleum is slowed, and so the price increase in crude oil is less, making CTL much less competitive. - Highlights: > We apply an economy-wide model to assess the economics of coal-to-liquid (CTL) conversion. > Our approach allows us to consider how CTL competes with other conversion technologies. > We find that without climate policy, CTL may account for a third of global liquid fuels by 2050. > With climate policy, CTL may not be viable due to high conversion cost and huge carbon footprint. > Although adding CCS reduces CO{sub 2} emissions

  17. Role of the Liquids From Coal process in the world energy picture

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, J.P.; Knottnerus, B.A. [ENCOAL Corp., Gillette, WY (United States)

    1997-12-31

    ENCOAL Corporation, a wholly owned indirect subsidiary of Zeigler Coal Holding Company, has essentially completed the demonstration phase of a 1,000 Tons per day (TPD) Liquids From Coal (LFC{trademark}) plant near Gillette, Wyoming. The plant has been in operation for 4{1/2} years and has delivered 15 unit trains of Process Derived Fuel (PDF{trademark}), the low-sulfur, high-Btu solid product to five major utilities. Recent test burns have indicated the PDF{trademark} can offer the following benefits to utility customers: lower sulfur emissions, lower NO{sub x} emissions, lower utilized fuel costs to power plants, and long term stable fuel supply. More than three million gallons of Coal Derived Liquid (CDL{trademark}) have also been delivered to seven industrial fuel users and one steel mill blast furnace. Additionally, laboratory characteristics of CDL{trademark} and process development efforts have indicated that CDL{trademark} can be readily upgraded into higher value chemical feedstocks and transportation fuels. Commercialization of the LFC{trademark} is also progressing. Permit work for a large scale commercial ENCOAL{reg_sign} plant in Wyoming is now underway and domestic and international commercialization activity is in progress by TEK-KOL, a general partnership between SGI International and a Zeigler subsidiary. This paper covers the historical background of the project, describes the LFC{trademark} process and describes the worldwide outlook for commercialization.

  18. Thermodynamic and rheological properties of solid-liquid systems in coal processing. Quarterly technical report: March 1, 1993 to May 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Kabadi, V.N.; Ilias, S. [North Carolina A and T State Univ., Greensboro, NC (United States). Dept. of Chemical Engineering

    1993-11-01

    The viscosity of coal derived liquids is an important property that is required for the design of the coal liquefaction processes, as well as for understanding the flow characteristics of coal liquids. Coal liquids are complex undefined mixtures and boil over a wide range of temperatures. One method of characterizing coal liquids is to treat coal liquids as a continuous distribution of molecular weights. Upon review of the literature for viscosity correlations, the authors quickly concluded that there is no accurate method available that may be successfully applied to coal liquids. They generally believe that correlations based on molecular structure of materials are superior to those that use solely the characterization parameters such as refractive index, critical properties, density, boiling points etc. A few correlations in the literature do consider molecular structures in viscosity determinations. Using important features in these correlations, they set out to develop a new viscosity correlation that would apply to model coal aromatic compounds, their mixtures and finally to coal derived liquids themselves. The correlation for pure compounds and mixtures has been developed and is discussed below. Attempts are now being made to apply this to coal derived liquids.

  19. Effects of low-temperature catalytic pretreatments on coal structure and reactivity in liquefaction. Final technical report, Volume 2 - hydrogenative and hydrothermal pretreatments and spectroscopic characterization using pyrolysis-GC-MS, CPMAS {sup 13}C NMR and FT-IR

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Hatcher, P.G.; Saini, A.K.; Wenzel, K.A.

    1998-01-01

    It has been indicated by DOE COLIRN panel that low-temperature catalytic pretreatment is a promising approach to the development of an improved liquefaction process. This work is a fundamental study on effects of pretreatments on coal structure and reactivity in liquefaction. The main objectives of this project are to study the coal structural changes induced by low-temperature catalytic and thermal pretreatments by using spectroscopic techniques; and to clarify the pretreatment-induced changes in reactivity or convertibility of coals. As the second volume of the final report, here we summarize our work on spectroscopic characterization of four raw coals including two subbituminous coals and two bituminous coals, tetrahydrofuran (THF)-extracted but unreacted coals, the coals (THF-insoluble parts) that have been thermally pretreated. in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent, and the coals (THF-insoluble parts) that have been catalytically pretreated in the presence of a dispersed Mo sulfide catalyst in the absence of any solvents and in the presence of either a hydrogen-donor solvent or a non-donor solvent.

  20. Synthesis and Characterization of Benzimidazolium Salts as Novel Ionic Liquids and their Catalytic Behavior in the Reaction of Alkylation

    Institute of Scientific and Technical Information of China (English)

    Wei Guo HUANG; Bo CHEN; Yuan Yuan WANG; Li Yi DAI; Yong Kui SHAN

    2005-01-01

    A new series of ionic liquids have been prepared containing benzimidazolium cation (abbreviated as Bim). These salts were characterized by DSC, NMR, elemental analysis and thermogravimetric analysis. They showed different properties compared to imidazolium cation due to the introduction of benzene ring. The alkylation of benzene/diphenyl ether with 1-dodecene was carried in C4eBimBr-AlCl3 ionic liquids showing high catalytic activity when the mole ratio of C4eBimB:AlCl3 was 1:2.

  1. Structural analysis of Catliq® bio-oil produced by catalytic liquid conversion of biomass

    OpenAIRE

    Toor, Saqib Sohail; Rosendahl, Lasse; Nielsen, Mads Pagh; Rudolf, Andreas

    2008-01-01

    The potential offered by biomass for solving some of the world's energy problems is widely recognized. The energy contained in biomass can be utilized either directly as in combustion or by converting the biomass into a liquid fuel for transportation. The Catliq® (catalytic liquid conversion) process is a second generation process for the production of bio-oil from different biomass-based waste materials. The process is carried out at subcritical conditions (280-350 °C and 180-250 bar) and in...

  2. Laboratory test reactor for the investigation of liquid reducing agents in the selective catalytic reduction of NOx

    Science.gov (United States)

    Peitz, D.; Bernhard, A.; Elsener, M.; Kröcher, O.

    2011-08-01

    A test reactor was designed and built for investigating liquid reducing agents in the selective catalytic reduction (SCR) process in the laboratory. The design of the experimental setup is described in detail and its performance was evaluated. Using a glass nebulizer, liquid reducing agents were sprayed directly onto a catalyst positioned in a heated glass reactor with a length of 250 mm and an internal diameter of 20.4 mm or 40 mm. Model exhaust gases were mixed from individual gas components and were heated up to 450 °C in a heat exchanger before entering the reactor. The off-gas was analyzed using two complimentary techniques, a multi-component online FTIR gas analysis and a liquid quench gas absorption setup, to detect higher molecular compounds and aerosols. Due to the versatility of construction, processes not related to SCR, but involving three-phase reactions with gases, liquids and a catalyst, can also be investigated.

  3. Analysis of the organic liquid produced from catalytic cracking of crude palm oil in the presence of alumina supported catalysts

    Science.gov (United States)

    Ramli, Anita; Razak, Rozlina Abdul

    2012-09-01

    Catalytic cracking of crude palm oil (CPO) was studied in the presence of alumina, 1% Pt/Al2O3 and 1% Pd/Al2O3 as catalyst. The CPO to catalyst weight ratio used was 1:0.05. The experiment was carried out in a simple liquid-phase batch reactor at atmospheric pressure where the sample was heated to 300-350 δC. Products formed were organic liquid products (OLP) and gaseous product with the solid residue remains in the reactor. The total conversion of CPO was only between 25 - 31% where the residue is suggested to be mainly of polimerised CPO. The OLP was analysed using a gas chromatography with FID detector. Analyses show that the selectivity to liquid fuel is influence by the catalyst used whereby Al2O3 gives the highest selectivity to gasoline while 1% Pt/Al2O3 has the highest selectivity to diesel. However, 1% Pd/Al2O3 is not a suitable catalyst for catalytic cracking of CPO to liquid fuel where less than 17.5% of OLP produced could be classified as liquid fuel.

  4. Clean coal technology: commercial-scale demonstration of the liquid phase methanol (LPMEOH{trademark}) process

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-01

    The report discusses the demonstration of Air Products and Chemical, Inc.`s Liquid Phase Methanol (LPMEOTH {trademark}) Process which is designed to convert synthesis gas derived from the gasification of coal into methanol for use as a chemical intermediate or as a low-sulfur dioxide and low-nitrogen oxides emitting alternative fuel. The project was selected for funding by the US Clean Coal Technology Program Round III in 1992. Construction of the Demonstration Project at Eastman Chemical Co`s Kingsport complex began in October 1995 and was completed in January 1997. Production rates of over 300 tons per day of methanol have been achieved and availability for the unit has exceeded 96% since startup. The LPMEOH{trademark} Process can enhance integrated gasification combined cycle (IGCC) power generation by converting part of the syngas from the gasifier to methanol which can be solid or used as a peak-sharing fuel. 50 refs., 5 figs., 7 photos.

  5. Coal liquefaction. Quarterly report, October-December 1978

    Energy Technology Data Exchange (ETDEWEB)

    1979-09-01

    DOE's program for the conversion of coal to liquid fuels was begun by two of DOE's predecessor agencies: Office of Coal Research (OCR) in 1962, and ERDA. The Bureau of Mines, US Department of the Interior, had started work in the 1930's. Current work is aimed at improved process configurations for both catalytic and noncatalytic processes to provide more attractive processing economics and lower capital investment. The advantage of coal liquefaction is that the entire range of liquid products, especially boiler fuel, distillate fuel oil, and gasoline, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquids have the potential for use as chemical feedstocks. To provide efficient and practical means of utilizing coal resources, DOE is supporting the development of several conversion processes that are currently in the pilot plant stage. Each of these processes are described briefly.

  6. Quantum chemical study on the catalytic mechanism of Na/K on NO-char heterogeneous reactions during the coal reburning process

    Institute of Scientific and Technical Information of China (English)

    Zheng-cheng WEN; Zhi-hua WANG; Jun-hu ZHOU; Ke-fa CEN

    2009-01-01

    Quantum chemical simulation was used to investigate the catalytic mechanism of Na/K on NO-char heterogeneous reactions during the coal reburning process. Both NO-char and NO-NaYK reactions were considered as three-step processes in this calculation. Based on geometry optimizations made using the UB3LYP/6-31 G(d) method, the activation energies of NO-char and NO-Na/K reactions were calculated using the QC1SD(T)/6-3 i 1G(d, p) method; Results showed that the activation energy of the NO-Na/K reaction (107.9/82.0 kJ/mol) was much lower than that of the NO-char reaction (245.1 kJ/mol). The reactions of NaO/KO and Na2P/K2O reduced by char were also studied, and their thermodynamics were calculated using the UB3LYP/6-31G(d) method; Results showed that both Na and K can be refreshed easily and rapidly by char at high temperature during the coal rebuming process. Based on the calculations and analyses, the catalytic mechanism of Na/K on NO-char het-erogeneous reactions during the coal reburning process was clarified.

  7. Use of a Nuclear High Temperature Gas Reactor in a Coal-To-Liquids Process

    International Nuclear Information System (INIS)

    AREVA's High Temperature Gas Reactor (HTGR) can potentially provide nuclear-generated, high-level heat to chemical process applications. The use of nuclear heat to help convert coal to liquid fuels is particularly attractive because of concerns about the future availability of petroleum for vehicle fuels. This report was commissioned to review the technical and economic aspects of how well this integration might actually work. The objective was to review coal liquefaction processes and propose one or more ways that nuclear process heat could be used to improve the overall process economics and performance. Shell's SCGP process was selected as the gasifier for the base case system. It operates in the range of 1250 to 1600 C to minimize the formation of tars, oil, and methane, while also maximizing the conversion of the coal's carbon to gas. Synthesis gas from this system is cooled, cleaned, reacted to produce the proper ratio of hydrogen to carbon monoxide and fed to a Fischer-Tropsch (FT) reaction and product upgrading system. The design coal-feed rate of 18,800 ton/day produces 26.000 barrels/day of FT products. Thermal energy at approximately 850 C from a HTGR does not directly integrate into this gasification process efficiently. However, it can be used to electrolyze water to make hydrogen and oxygen, both of which can be beneficially used in the gasification/FT process. These additions then allow carbon-containing streams of carbon dioxide and FT tail-gas to be recycled in the gasifier, greatly improving the overall carbon recovery and thereby producing more FT fuel for the same coal input. The final process configuration, scaled to make the same amount of product as the base case, requires only 5,800 ton/day of coal feed. Because it has a carbon utilization of 96.9%, the process produces almost no carbon dioxide byproduct Because the nuclear-assisted process requires six AREVA reactors to supply the heat, the capital cost is high. The conventional plant is

  8. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Volume 1. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO.) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO. to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europe on gas-, oil-, and low-sulfur coal- fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: 1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels. 2) performance of the technology and effects on the balance-of- plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. 3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacturer under typical high-sulfur coal-fired utility operating conditions. These uncertainties were explored by operating nine small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. In addition, the test facility operating experience provided a basis for an economic study investigating the implementation of SCR technology.

  9. SCR氨区的运行维护%Operation and uphold of area of liquid ammonia in Selective Catalytic Reduction

    Institute of Scientific and Technical Information of China (English)

    陈建明

    2014-01-01

    液氨是选择性催化还原脱硝法( SCR)工艺首选的脱硝反应剂,它属于危险化学品。氨区的安全运行是SCR系统安全运行的基础保障。从氨区的运行、维护、人员防护和事故处理等方面阐述了SCR系统运行维护中需要注意的一些关键点。%Liquid ammonia is the first choice of reductant in selective catalytic reduction,it is a sort of dangerous chemical. The safe operation in the area of liquid ammonia is foundation of SCR. lt describes take notice of SCR from the operation,uphold,physical protection and accident handling in the area of liquid ammonia.

  10. Operation and uphold of area of liquid ammonia in Selective Catalytic Reduction%SCR氨区的运行维护

    Institute of Scientific and Technical Information of China (English)

    陈建明

    2014-01-01

    液氨是选择性催化还原脱硝法( SCR)工艺首选的脱硝反应剂,它属于危险化学品。氨区的安全运行是SCR系统安全运行的基础保障。从氨区的运行、维护、人员防护和事故处理等方面阐述了SCR系统运行维护中需要注意的一些关键点。%Liquid ammonia is the first choice of reductant in selective catalytic reduction,it is a sort of dangerous chemical. The safe operation in the area of liquid ammonia is foundation of SCR. lt describes take notice of SCR from the operation,uphold,physical protection and accident handling in the area of liquid ammonia.

  11. Application of zeolitised coal fly ashes to the depuration of liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Emilia Otal; Luis F. Vilches; Natalia Moreno; Xavier Querol; Jose Valea; Constantino Fernandez-Pereira [Universidad de Sevilla, Seville (Spain). Dpto. Ingenieria Quimica y Ambiental, E.S. Ingenieros Industriales

    2005-08-01

    In this study, the application of some zeolitised fly ashes and synthetic zeolites to the decontamination of the leachate produced in a municipal solid waste (MSW) treatment plant and to the liquid waste from a pig farm was analyzed. Thus, the reduction of organic matter (BOD and COD), ammonium and total nitrogen, phosphorus and metals contents after a zeolite treatment was evaluated. Several synthetic zeolites were tested: some commercial zeolites and other synthetic zeolites and zeolitised ashes obtained after a coal fly ash alkaline hydrothermal process. Two forms of contact between the zeolitic material and the liquid waste were tested: in a stirred tank and in a column. In addition, other variables determined were the amount of zeolite and the residence time. The results showed that zeolites, especially zeolitised fly ash, clearly produced a strong reduction in the leachate nitrogen and phosphorus content. 14 refs., 1 fig., 9 tabs.

  12. Fractional distillation as a strategy for reducing the genotoxic potential of SRC-II coal liquids: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Pelroy, R.A.; Wilson, B.W.

    1981-09-01

    This report presents results of studies on the effects of fractional distillation on the genotoxic potential of Solvent Refined Coal (SRC-II) liquids. SRC-II source materials and distilled liquids were provided by Pittsburg and Midway Coal Mining Co. Fractional distillations were conducted on products from the P-99 process development unit operating under conditions approximating those anticipated at the SRC-II demonstration facility. Distillation cuts were subjected to chemical fractionation, in vitro bioassay and initial chemical analysis. Findings are discussed as they relate to the temperature at which various distillate cuts were produced. This document is the first of two status reports scheduled for 1981 describing these studies.

  13. Achieving a production goal of 1 million B/D of coal liquids by 1990. [Impediments and constraints

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Charles; LaRosa, Dr., P. J.; Coles, E. T.; Fein, H. L.; Petros, J. J.; Iyer, R. S.; Merritt, R. T.

    1980-03-01

    Under this contract, Bechtel analyzed the resource requirements and reviewed major obstacles to the daily production of several million barrels of synthetic coal liquids. Further, the study sought to identify the industry infrastructure needed to support the commercial readiness of the coal liquefaction process. A selected list of critical resource items and their domestic/international availability was developed and examined, and the impact of their supply on the various synthetic coal liquids programs was evaluated. The study approach was to develop representative, or generic, direct and indirect coal liquefaction conceptual designs from available technology and costs data. The generic processes were to employ technology that would be considered commercial by the mid- or late-1980s. The size of the generic construction mobilization was considered reasonable at the outset of the program. The product slate was directed toward unrefined liquid fuels rather than diesel oil or gasoline. The generic processes were to use a wide range of coals to permit siting in most coal-producing regions across the country. Because of the dearth of conceptual design data in the literature, Bechtel developed generic plant designs by using in-house design expertise. Bechtel assumed that because it is first generation technology, the indirect process will be used at the outset of the liquids program, and the direct process will be introduced two to four years later as a second generation technology. The products of either of these processes will be limited to boiler fuels and/or other liquid products which require further upgrading. Cost estimates were developed from equipment lists, as well as material and labor estimates, which enabled the determination of an order-of-magnitude cost estimate and target plant construction schedule for both processes.

  14. Coal liquefaction. Quarterly report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    The United States has more energy available in coal than in petroleum, natural gas, oil shale, and tar sands combined. Nationwide energy shortages, together with the availability of abundant coal reserves, make commercial production of synthetic fuels from coal vital to the Nation's total supply of clean energy. In response to this need, the Office of Fossil Energy of the Energy Research and Development Administration (ERDA) is conducting a research and development program to provide technology that will permit rapid commercialization of processes for converting coal to synthetic liquid and gaseous fuels and for improved direct combustion of coal. These fuels must be storable and suitable for power generation, transportation, and residential and industrial uses. ERDA's program for the conversion of coal to liquid fuels was begun by two of ERDA's predecessor agencies: Office of Coal Research (OCR) in 1962, and Bureau of Mines, U.S. Department of the Interior, in the 1930's. Current work in coal liquefaction is aimed at improved process configurations for both catalytic and non-catalytic processes to provide more attractive processing economics and lower capital investment. Coal liquefaction can now be achieved under more moderate processing conditions and more rapidly than was the case in the 1930's. The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquid fuels also have the potential for use as chemical feedstocks. To determine the most efficient means of utilizing coal resources, ERDA is sponsoring the development of several conversion processes that are currently in the pilot plant stage. Nineteen projects under development are described and progress for each in the quarter is detailed briefly

  15. Literature survey of properties of synfuels derived from coal

    Science.gov (United States)

    Reynolds, T. W.; Niedzwiecki, R. W.; Clark, J. S.

    1980-02-01

    A literature survey of the properties of synfuels for ground-based gas turbine applications is presented. Four major concepts for converting coal into liquid fuels are described: solvent extraction, catalytic liquefaction, pyrolysis, and indirect liquefaction. Data on full range syncrudes, various distillate cuts, and upgraded products are presented for fuels derived from various processes, including H-coal, synthoil, solvent-refined coal, donor solvent, zinc chloride hydrocracking, co-steam, and flash pyrolysis. Some typical ranges of data for coal-derived low Btu gases are also presented.

  16. Interrelations of catalytic index of coal ash component%煤中灰成分催化指数的相关性

    Institute of Scientific and Technical Information of China (English)

    梁建华; 史世庄; 张康华; 彭靖; 雷耀辉; 吴琼

    2011-01-01

    According to summarizing different methods of defining catalytic index of ash component of coking coal at home and abroad, do experiments with ten kinds of blended coals, discuss the correlation among the various definitions of catalytic index. The results show that there is a good correlation among MBI, MCI, MMCI, MCIy. The correlation coefficient between MBI and MCI is 0. 9905, MCIy and MBI is 0. 9821, MCIy and MCI is 0.9986. To a certain degree, these four methods are interchangeable.%总结国内外不同方法的煤中灰成分催化指数定义的基础上,对10种配合煤进行了试验,探讨了不同方法的催化指数之间的相关性.结果表明,MBI,MCI,MMCI,MCIy四者之间的相关性良好,MBI和MCI之间相关性系数为0.9905,MCL和MBI之间相关性系数为0.9821,MCIy和MCI之间相关性系数为0.9986.在一定程度上,四者可以互换.

  17. Unique self-assembly behavior of a triblock copolymer and fabrication of catalytically active gold nanoparticle/polymer thin films at the liquid/liquid interface

    International Nuclear Information System (INIS)

    Gold nanoparticle-doped poly(2-vinylpyridine)-block-polystyrene-block-poly(2-vinylpyridine) (P2VP-b-PS-b-P2VP) thin films were prepared at the planar liquid/liquid interface between the chloroform solution of the polymer and aqueous solution of HAuCl4. Transmission electron microscopic (TEM) investigations revealed that foam films composed of microcapsules as well as one-dimensional belts were formed, and numerous Au nanoparticles were incorporated in the walls of the microcapsules and the nanobelts. The walls and the belts have layered structure. The formation mechanism of the foams and the belts was attributed to adsorption of the polymer molecules, combination of the polymer molecules with AuCl4− ions, microphase separation and self-assembly of the composite molecules at the interface. This microstructure is different apparently from those formed in solutions, in casting or spin-coating thin films and at the air/water interface of this triblock copolymer, reflecting unique self-assembly behavior at the liquid/liquid interface. This microstructure is also different from those formed by homo-P2VP and P4VP-b-PS-b-P4VP at the liquid/liquid interface, indicating the effects of molecular structures on the self-assembly behaviors of the polymers. After further treatment by UV-light irradiation and KBH4 aqueous solution, the gold species were reduced completely, as indicated by UV–vis spectra and X-ray photoelectron spectra (XPS). Thermogravimetric analysis indicated that the composite films have high thermal stability, and the content of gold was estimated to be about 9.1%. These composite films exhibited high catalytic activity for the reduction of 4-nitrophenol by KBH4 in aqueous solutions. - Highlights: • P2VP-b-PS-b-P2VP formed microcapsules and nanobelts at the liquid/liquid interface. • Its self-assembly behavior differs from P4VP-b-PS-b-P4VP at the interface. • This behavior also differs from those in solution, in film and at air/water interface.

  18. Catalytic activities of fungal oxidases in hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate-based microemulsion.

    Science.gov (United States)

    Zhou, Gui-Ping; Zhang, Yun; Huang, Xi-Rong; Shi, Chuan-Hong; Liu, Wei-Feng; Li, Yue-Zhong; Qu, Yin-Bo; Gao, Pei-Ji

    2008-10-01

    For hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF(6)]), an H(2)O-in-[BMIM][PF(6)] microemulsion could be formed in the presence of nonionic surfactant Triton X-100 (TX-100). In such a medium, both lignin peroxidase (LiP) and laccase could express their catalytic activity with the optimum molar ratio of H(2)O to TX-100 at 8.0 for LiP and >20 for laccase, and the optimum pH values at 3.2 for LiP and 4.2 for laccase, respectively. As compared with pure or water saturated [BMIM][PF(6)], in which the two oxidases had negligible catalytic activity due to the strong inactivating effect of [BMIM][PF(6)] on both enzymes, the use of the [BMIM][PF(6)]-based microemulsion had some advantages. Not only the catalytic activities of both fungal oxidases greatly enhanced, but also the apparent viscosity of the medium decreased. PMID:18602799

  19. Synthesis of 1-alkyl triazolium triflate room temperature ionic liquids and their catalytic studies in multi-component Biginelli reaction

    Indian Academy of Sciences (India)

    Sankaranarayanan Nagarajan; Tanveer M Shaikh; Elango Kandasamy

    2015-09-01

    Synthesis of three Brønsted acid-based ionic liquids, namely, 1-ethyl-1,2,4-triazolium triflate (1a), 1-propyl-1,2,4-triazolium triflate (1b) and 1-butyl-1,2,4-triazolium triflate (1c), is described. These ionic liquids have been employed as catalysts for convenient and high-yielding one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones and 3,4-dihydropyrimidin-2(1H)-thiones, which are Biginelli reaction products. Advantages of the methodology are operational convenience, short reaction times, avoidance of chromatographic purification and non-production of toxic waste. Further, the catalysts are easily recovered and reused without any noticeable diminution in their catalytic activity.

  20. Extractive de-sulfurization and de-ashing of high sulfur coals by oxidation with ionic liquids

    International Nuclear Information System (INIS)

    Highlights: • Extractive de-sulfurization and de-ashing process for cleaning high sulfur coals. • The process removes inorganic as well as organic sulfur components from high sulfur coals. • The process has less risk to chemists and other surroundings. - Abstract: The environmental consequences of energy production from coals are well known, and are driving the development of desulfurization technologies. In this investigation, ionic liquids were examined for extractive desulfurization and de-ashing in industrially important high sulfur sub-bituminous Indian coals. The ionic liquids, namely, 1-n-butyl-3-methylimidazolium tetrafluoroborate (IL1) and 1-n-butyl 3-methylimidazolium chloride (IL2) were employed for desulfurization of a few Indian coal samples in presence of HCOOH/H2O2 and V2O5. Results show the maximum removal of 50.20% of the total sulfur, 48.00% of the organic sulfur, and 70.37 wt% of the ash in this process. The ionic liquids were recovered and subsequently used for further desulfurization. FT-IR spectra reveal the transformation of organic sulfur functionalities into the sulfoxides (S=O) and sulfones (-SO2) due to the oxidative reactions. The sulfate, pyrite and sulfides (aryls) signals in the near edge X-ray absorption fine structure (NEXAFS) of the oxidized coal samples showed sulfur transformation during the desulfurization process. The study demonstrates the removal of significant amount of inorganic as well as organic sulfur (aryls) components from the original high sulfur coal samples to make them cleaner

  1. Spin liquid in a single crystal of the frustrated diamond lattice antiferromagnet CoAl2O4

    DEFF Research Database (Denmark)

    Zaharko, O.; Christensen, Niels Bech; Cervellino, A.;

    2011-01-01

    We study the evidence for spin liquid in the frustrated diamond lattice antiferromagnet CoAl2O4 by means of single-crystal neutron scattering in zero and applied magnetic fields. The magnetically ordered phase appearing below T-N = 8 K remains nonconventional down to 1.5 K. The magnetic Bragg pea...

  2. Coal liquefaction. Quarterly report, July--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-02-01

    ERDA's program for the conversion of coal to liquid fuels is aimed at improved process configurations for both catalytic and noncatalytic processes to provide more attractive processing economics and lower capital investment. The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquids also have the potential for use as chemical feedstocks. To provide efficient and practical means of utilizing coal resources, ERDA is sponsoring the development of several conversion processes that are currently in the pilot plant stage. Responsibility for the design, construction, and operation of these facilities is given and progress in the quarter is summarized. Several supporting or complementary projects are described similarly. (LTN)

  3. Liquid and Gaseous Fuel from Waste Plastics by Sequential Pyrolysis and Catalytic Reforming Processes over Indonesian Natural Zeolite Catalysts

    Directory of Open Access Journals (Sweden)

    Mochamad Syamsiro

    2014-08-01

    Full Text Available In this study, the performance of several differently treated natural zeolites in a sequential pyrolysis and catalytic reforming of plastic materials i.e. polypropylene (PP and polystyrene (PS were investigated. The experiments were carried out on two stage reactor using semi-batch system. The samples were degraded at 500°C in the pyrolysis reactor and then reformed at 450°C in the catalytic reformer. The results show that the mordenite-type natural zeolites could be used as efficient catalysts for the conversion of PP and PS into liquid and gaseous fuel. The treatment of natural zeolites in HCl solution showed an increase of the surface area and the Si/Al ratio while nickel impregnation increased the activity of catalyst. As a result, liquid product was reduced while gaseous product was increased. For PP, the fraction of gasoline (C5-C12 increased in the presence of catalysts. Natural zeolite catalysts could also be used to decrease the heavy oil fraction (>C20. The gaseous products were found that propene was dominated in all conditions. For PS, propane and propene were the main components of gases in the presence of nickel impregnated natural zeolite catalyst. Propene was dominated in pyrolysis over natural zeolite catalyst. The high quality of gaseous product can be used as a fuel either for driving gas engines or for dual-fuel diesel engine.

  4. Synthesis of p-Hydroxybenzaldehyde by Liquid-phase Catalytic Oxidation of p-Cresol over PVDF Modified Cobalt Pyrophosphate

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yi-bo; WANG De-qiang; MIAO Zhen-zhen; PAN Xi-qiang; ZHANG Zhen-dong; YANG Xiang-guang

    2013-01-01

    The influence of the wettability of a catalyst on the performance of the liquid phase oxidation of p-cresol was investigated.It was found that the surface hydrophobicity of a catalyst,which can be changed by modification with various loadings of polyvinylidene fluoride(PVDF),has a promotion effect on the catalytic performance.At the same time,the reaction parameters such as oxygen pressure,molar ratio of NaOH to p-cresol,reaction temperature and time on the catalytic performance in the liquid-phase oxidation of p-cresol were optimized.As a result,10%(mass fraction) PVDF modified cobalt pyrophosphate gave the highest conversion of 94.2% of p-cresol with a selectivity of 94.4% for p-hydroxybenzaldehyde at 348 K and a molar ratio of 4:1 of NaOH/p-cresol and an oxygen pressure of 1.0 MPa for 3 h.

  5. Isolation of indole from coal-tar fractions by liquid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Zaretskii, M.I.; Chartov, E.M.; Golub, V.B.; Taits, S.Z.

    1981-01-01

    Indole is a valuable intermediate in fine organic synthesis; it is used in the perfumery industry, in the production of plant growth stimulants, notably heteroauxin and in the production of amino acids such as triptophan and its derivatives. In recent years, indole derivatives have also found use in the manufacture of medicinal preparations. The main source of indole in the USSR at present is the coking industry. Coal tars from southern and eastern plants contain 0.22 and 0.50% indole respectively, while the wash-oil fractions contain 1.7 to 2.0 and 3.5 to 4.5%, respectively. Coal tar could yield over 6000 tons/yr. A method has been developed for concentrating and isolating indole from commercial coking-plant fractions by continuous liquid extraction. Conditioned extract fractions have been made under test-rig conditions and have yielded 99% pure indole by rectification in an enlarged laboratory unit. The experimental results form the basis of a proposed processing flowsheet.

  6. A Study on Comparison of Liquid-phase Methanol Synthesis Processes for Coal-Derived Gas

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jang Sik; Lee, Jong Dae [Dept. of Chem. Eng., Chungbuk National University, Cheongju (Korea); Jong, Heon [Energy Conversion Research Team, Korea Institute of Energy Research, Taejon (Korea)

    2001-04-01

    Two liquid-phase methanol synthesis processed, the 'Methyl Formate Intermediate' process(MF process) and the LPMEOH process, were experimentally investigated to find the suitability of the process for the coal-derived syngas. The MF process showed the superior methanol synthesis rate at the same gas hourly space velocity(GHSV) than LPMEOH process. The MF process showed more than 50% conversion of syngas per pass and 3.7%/day of deactivation rate which are far better than 30% conversion per pass and 24%/day deactivation rate of the LPMEOH process. The reaction condition of the MF process is milder than that of the LPMEOH process. The weakness of the MF process, which is the severe poisoning by small amounts of CO{sub 2}, was able to be overcome from the experimental result that the reaction proceeded even with the syngas with 0.5% CO{sub 2}. Overall comparison reveals that MF process is more suitable than the LPMEOH process when the coal-derived syngas is to be used for methanol synthesis. 18 refs., 12 figs., 2 tabs.

  7. Developmental toxicity following oral administration of a high-boiling coal liquid to pregnant rats

    Energy Technology Data Exchange (ETDEWEB)

    Hackett, P.L.; Rommereim, D.N.; Sikov, M.R.

    1984-01-01

    Heavy distillate (HD), the highest-boiling coal liquid from the solvent-refined coal-II process (SRC-II), was administered by intragastric (IG) intubation to pregnant rats. Five dose levels of HD (0.09, 0.14, 0.18, 0.36 and 0.74 g kg/sup -1/), were given daily from 12 to 16 days of gestation and the rats were killed at 20 days of gestation. Maternal body weights and weights of the liver, kidneys, spleen, adrenals, thymus, ovaries and the gravid uterus were obtained. Gravid uteri were evaluated for prenatal mortality. Live fetuses were examined for malformations and weighed; fetal lungs were excised and weighed. Maternal (extragestational) weight gains and thymic weights diminished in all groups that received the SRC material. Adrenal weights were increased in all treated animals, except for those in the lowest-dose group (0.9 g kg/sup -1/). There was significant maternal mortality at 0.74 g kg/sup -1/ and increased intrauterine mortality at doses of 0.37 and 0.74 g kg/sup -1/. Placental weight was depressed, and the incidence of fetal anomalies was increased at 0.14 g kg/sup -1/ and all higher dose levels. 19 references, 1 figure, 5 tables.

  8. Advances and perspectives in catalytic oxidation of hydrocarbons in liquid phase

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This review article summarizes recent advances in catalytic oxidation of hydrocarbons, especially presents two strategies for activation of C-H bonds or molecular oxygen. Based on our own research results, the applications of the two methods in the oxidation of cyclohexane, toluene and ethyl benzene, etc. are introduced, and the perspectives of the two methods are also discussed.

  9. Production of synthetic liquid fuel from run-of-mine oil shales, brown coals and waste of petrochemical and chemical industry

    International Nuclear Information System (INIS)

    Modern and perspective technologies have been developed for processing run-of-mine oil shales into liquid products foreseen for producing motor fuels and chemical feedstock. Baltic run-of-mine oil shales, high-sulfur oil shales of the Volga basin, brown coals of Kansk-Atchinsk basin, as well as heavy crude oils and oil-bearing sands, solid waste of petrochemical and chemical industry may be processed. The proposed high-efficiency technology enables to produce high yields of naphtha (gasoline fraction) and diesel fuel fraction, feedstock for catalytic and hydro cracking processes, electrode coke, different adhesive materials, refractories, anodic mass, phenols, individual hydrocarbons, Ni- and V- concentrates. The process proposed is carried out using oil shales. Their organic matter has unique hydrogen donor properties which enable them to activate the thermal conversion of brown coals, high-boiling waste of petrochemical industry etc. This complex technology is based on the thermochemical conversion process of oil shales in the hydro carbonic solvent at 333-440 deg C, under the pressure of 3-5 MPa, and volumetric rate 3-6 h-1. A paste-forming substance boiling between 200-340 deg C is used as the medium. The process runs with a deficiency (up to 30 %) of regenerated paste-forming substance and therefore respective measures have been worked out to intensify the process. It enabled to close the process with respect to regenerated paste-forming substance and to design new routes for thermochemical processing of oil shales. These procedures have the following essential advantages: 1.There is no need for previous separation of asphaltenes and metals (Ni, V) from heavy petrochemical feedstock as they precipitate on the mineral part of oil shales and are discharged together with liquid products of the process. 2. Thermal cracking is carried out without molecular hydrogen and thermal hydro cracking without catalysts. 3. Raw material is considerably desulfurized.(author)

  10. Occurrence mode and concentration of chlorine in liquid product from co-pyrolysis of waste plastic and coal

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhen; Liu Ze-chang; Zhou Li-xia [Chemical and Environmental Department of Taishan College, Taian (China)

    2009-08-15

    The occurrence mode and concentration of chlorine in liquid product including tar and water from co-pyrolysis of waste plastic (WP) and coal were studied. The effect of temperature, holding time, heating rate and gas flow on chlorine concentration in the liquid product was examined. The result indicates that the addition of WP to coal in co-pyrolysis does not increase the organic chlorine compound in the liquid product. However, the tar yield increases, and the water yield decreases. The chlorine in water mainly exists as inorganic form (NH{sub 4}Cl) and organic amine hydrochloride. There is no obvious C-Cl band in IR spectra of tar is observed. This indicates that the organic chlorine in tar is very little. 10 refs., 6 figs., 2 tabs.

  11. Catalytic conversion of biomass to fuels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Garten, R. L.; Ushiba, K. K.; Cooper, M.; Mahawili, I.

    1978-01-01

    This report presents an assessment and perspective concerning the application of catalytic technologies to the thermochemical conversion of biomass resources to fuels. The major objectives of the study are: to provide a systematic assessment of the role of catalysis in the direct thermochemical conversion of biomass into gaseous and liquid fuels; to establish the relationship between potential biomass conversion processes and catalytic processes currently under development in other areas, with particular emphasis on coal conversion processes; and to identify promising catalytic systems which could be utilized to reduce the overall costs of fuels production from biomass materials. The report is divided into five major parts which address the above objectives. In Part III the physical and chemical properties of biomass and coal are compared, and the implications for catalytic conversion processes are discussed. With respect to chemical properties, biomass is shown to have significant advantages over coal in catalytic conversion processes because of its uniformly high H/C ratio and low concentrations of potential catalyst poisons. The physical properties of biomass can vary widely, however, and preprocessing by grinding is difficult and costly. Conversion technologies that require little preprocessing and accept a wide range of feed geometries, densities, and particle sizes appear desirable. Part IV provides a comprehensive review of existing and emerging thermochemical conversion technologies for biomass and coal. The underlying science and technology for gasification and liquefaction processes are presented.

  12. Liquid-Phase Catalytic Transfer Hydrogenation of Furfural over Homogeneous Lewis Acid-Ru/C Catalysts.

    Science.gov (United States)

    Panagiotopoulou, Paraskevi; Martin, Nickolas; Vlachos, Dionisios G

    2015-06-22

    The catalytic performance of homogeneous Lewis acid catalysts and their interaction with Ru/C catalyst are studied in the catalytic transfer hydrogenation of furfural by using 2-propanol as a solvent and hydrogen donor. We find that Lewis acid catalysts hydrogenate the furfural to furfuryl alcohol, which is then etherified with 2-propanol. The catalytic activity is correlated with an empirical scale of Lewis acid strength and exhibits a volcano behavior. Lanthanides are the most active, with DyCl3 giving complete furfural conversion and a 97 % yield of furfuryl alcohol at 180 °C after 3 h. The combination of Lewis acid and Ru/C catalysts results in synergy for the stronger Lewis acid catalysts, with a significant increase in the furfural conversion and methyl furan yield. Optimum results are obtained by using Ru/C combined with VCl3 , AlCl3 , SnCl4 , YbCl3 , and RuCl3 . Our results indicate that the combination of Lewis acid/metal catalysts is a general strategy for performing tandem reactions in the upgrade of furans.

  13. Synthetic liquid fuels development: assessment of critical factors. Volume III. Coal resource depletion

    Energy Technology Data Exchange (ETDEWEB)

    Dickson, E.M.; Yabroff, I.W.; Kroll, C.A.; White, R.K.; Walton, B.L.; Ivory, M.E.; Fullen, R.E.; Weisbecker, L.W.; Hays, R.L.

    1977-01-01

    While US coal resources are known to be vast, their rate of depletion in a future based predominantly on coal has not been examined analytically heretofore. The Coal Depletion Model inventories the coal resource on a regional basis and calculates the cost of coal extraction by three technologies - strip and underground mining and in-situ combustion. A plausible coal demand scenario extending from 1975 to the year 2050 is used as a basis in applying the model. In the year 2050, plants in operation include 285 syncrude plants, each producing 100,000 B/D; 312 SNG plants, each producing 250 million SCF/D and 722 coal-fired electric power plants, each of 1000 MW capacity. In addition, there is 890 million tons per year of industrial coal consumption. Such a high level of coal use would deplete US coal resources much more rapidly than most people appreciate. Of course, the actual amount of US coal is unknown, and if the coal in the hypothetical reliability category is included, depletion is delayed. Coal in this category, however, has not been mapped; it is only presumed to exist on the basis of geological theory. The coal resource depletion model shows that unilateral imposition of a severance tax by a state tends to shift production to other coal producing regions. Boom and bust cycles are both delayed and reduced in their magnitude. When several states simultaneously impose severance taxes, the effect of each is weakened.Key policy issues that emerge from this analysis concern the need to reduce the uncertainty of the magnitude and geographic distribution of the US coal resource and the need to stimulate interaction among the parties at interest to work out equitable and acceptable coal conversion plant location strategies capable of coping with the challenges of a high-coal future.

  14. Valorization of Waste Lipids through Hydrothermal Catalytic Conversion to Liquid Hydrocarbon Fuels with in Situ Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongwook; Vardon, Derek R.; Murali, Dheeptha; Sharma, Brajendra K.; Strathmann, Timothy J.

    2016-03-07

    We demonstrate hydrothermal (300 degrees C, 10 MPa) catalytic conversion of real waste lipids (e.g., waste vegetable oil, sewer trap grease) to liquid hydrocarbon fuels without net need for external chemical inputs (e.g., H2 gas, methanol). A supported bimetallic catalyst (Pt-Re/C; 5 wt % of each metal) previously shown to catalyze both aqueous phase reforming of glycerol (a triacylglyceride lipid hydrolysis coproduct) to H2 gas and conversion of oleic and stearic acid, model unsaturated and saturated fatty acids, to linear alkanes was applied to process real waste lipid feedstocks in water. For reactions conducted with an initially inert headspace gas (N2), waste vegetable oil (WVO) was fully converted into linear hydrocarbons (C15-C17) and other hydrolyzed byproducts within 4.5 h, and H2 gas production was observed. Addition of H2 to the initial reactor headspace accelerated conversion, but net H2 production was still observed, in agreement with results obtained for aqueous mixtures containing model fatty acids and glycerol. Conversion to liquid hydrocarbons with net H2 production was also observed for a range of other waste lipid feedstocks (animal fat residuals, sewer trap grease, dry distiller's grain oil, coffee oil residual). These findings demonstrate potential for valorization of waste lipids through conversion to hydrocarbons that are more compatible with current petroleum-based liquid fuels than the biodiesel and biogas products of conventional waste lipid processing technologies.

  15. DEVELOPMENT OF CONSTRUCTION OF A CATALYTIC REACTOR FOR METHANE OXIDISING IN VENTILATION AIR IN COAL MINES AND THE RESEARCH ON INTEGRATED “HEAT PIPE” RECUPERATOR

    Directory of Open Access Journals (Sweden)

    Lech Hys

    2013-04-01

    Full Text Available The article presents the analysis whose result is the selection of appropriate design and construction of a monolithic CMR reactor intended for oxidising methane from ventilation air in coal mines. The description of “heat-pipe” recuperator cooperating with the reactor was also presented. The research was mainly aimed at verifying the compliance with the work of autothermity premise obtained by the return of part of heat from catalytic reaction. The result of research was to define the range volumetric fume expense ensuring autothermity and the definition of maximum recuperator efficiency. The range of volumetric expense was 18–25 m3/h and maximum value of efficiency coefficient was η = 0.50 for the volumetric expense of 18 m3/h.

  16. A NEW PATHWAY OF GAS-TO-LIQUID CONVERSION USING CATALYTIC DIELECTRIC-BARRIER DISCHARGE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    IntroductionThe utilianion of methane is very importal to keepthe safe and reliable enemy supply in the new centory.The direct liquid fuel synthesis from methane,however, is thermodynamically not allowed. Theindustrialized synthetic fuel production from methaneclaims a multi-step process. First, the syngas (CasH2)is produced by the steam reforming of methane orpartial oxidation of methane. The liquid fuel is thenproduced from syngas:There exist some difficulties in such utilization ofmethane. First, reactio...

  17. Catalytic activity of hydrophobic Pt/C/PTFE catalysts of different PTFE content for hydrogen-water liquid exchange reaction

    International Nuclear Information System (INIS)

    10%Pt/C catalysts were prepared by liquid reduction method. PTFE and Pt/ C catalysts were adhered to porous metal and hydrophobic Pt/C/PTFE catalysts were prepared. The structure and size of Pt crystal particles of Pt/C catalysts were analyzed by XRD, and their mean size was 3.1 nm. The dispersion state of Pt/C and PTFE was analyzed by SEM, and they had good dispersion mostly, but PTFE membrane could be observed on local parts of Pt/C/PTFE surface. Because of low hydrophobicity, Pt/C/ PTFE catalysts have low activity when the mass ratio of PTFE and Pt/C is 0.5: 1, and their catalytic activity increases markedly when the ratio is 1:1. When the ratio increases again, more Pt active sites would be covered by PTFE and interior diffusion effect would increase, which result in the decrease of catalytic activity of Pt/C/PTFE. By PTFE pretreatment of porous metal carrier, the activity of Pt/C/PTFE catalysts decreases when the mass ratio of PTFE and Pt/C is 0.5:1, and their activity decreases when the mass ratio is 1:1. (authors)

  18. Effects of hydrophobic carrier and packing on the mass transfer capabilities in hydrogen-water liquid phase catalytic exchange bed

    International Nuclear Information System (INIS)

    Hydrogen-water liquid phase catalytic exchange bed was packed with 'sandwich' layers of the catalyst and the packing, and the effects of catalyst carrier, inert packing and their filled ratio on the overall mass transfer coefficient (Kya) were investigated experimentally. The results show that C-PTFE is suitable for hydrophobic catalyst. Kya of the bed with catalyst-stainless steel mini-spiral packing is better than that with stainless steel θ-packing, and the active Al2O3 is not suitable for the exchange bed. Moreover, if the stainless steel mini-spiral packing is etched in aqua regia, the operating flexibility and overall mass transfer capability of exchange bed are improved notably. The preferable packing ratio (catalyst/packing) is 1:4. (authors)

  19. Soft-chemical synthesis and catalytic activity of Ni-Al and Co-Al layered double hydroxides (LDHs intercalated with anions with different charge density

    Directory of Open Access Journals (Sweden)

    Takahiro Takei

    2014-09-01

    Full Text Available Co-Al and Ni-Al layered double hydroxides (LDHs intercalated with three types of anionic molecules, dodecylsulfate (C12H25SO4−, DS, di-2-ethylsulfosuccinate ([COOC2H3EtBu]2C2H3SO3−, D2ES, and polytungstate (H2W12O4210−, HWO were prepared by means of ion-exchange and co-precipitation processes. With the use of DS and D2ES as intercalation agents, high crystallinity was maintained after intercalation into the LDHs. In the case of HWO, the intercalated LDHs could be obtained by ion-exchange as well as co-precipitation with a decline in the crystallinity; however, unreacted LDH was detected in the ion-exchange samples, and some unwanted phases such as hydroxide and pyrochlore were generated by the co-precipitation process. The maximum specific surface area and pore volume of the Ni-Al sample with intercalated HWO, prepared by the ion-exchange process were 74 m2/g and 0.174 mL/g, respectively. The occupancies of DS, D2ES, and HWO within the interlayer space were approximately 0.3–0.4, 0.5–0.6, and 0.1–0.2, respectively, in the Co-Al and Ni-Al LDHs. Analysis of the catalytic activity demonstrated that the DS-intercalated Ni-Al LDH sample exhibited relatively good catalytic activity for conversion of cyclohexanol to cyclohexanone.

  20. Hydrocarbon Liquid Production from Biomass via Hot-Vapor-Filtered Fast Pyrolysis and Catalytic Hydroprocessing of the Bio-oil

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Wang, Huamin; French, Richard; Deutch, Steve; Iisa, Kristiina

    2014-08-14

    Hot-vapor filtered bio-oils were produced from two different biomass feedstocks, oak and switchgrass, and the oils were evaluated in hydroprocessing tests for production of liquid hydrocarbon products. Hot-vapor filtering reduced bio-oil yields and increased gas yields. The yields of fuel carbon as bio-oil were reduced by ten percentage points by hot-vapor filtering for both feedstocks. The unfiltered bio-oils were evaluated alongside the filtered bio-oils using a fixed bed catalytic hydrotreating test. These tests showed good processing results using a two-stage catalytic hydroprocessing strategy. Equal-sized catalyst beds, a sulfided Ru on carbon catalyst bed operated at 220°C and a sulfided CoMo on alumina catalyst bed operated at 400°C were used with the entire reactor at 100 atm operating pressure. The products from the four tests were similar. The light oil phase product was fully hydrotreated so that nitrogen and sulfur were below the level of detection, while the residual oxygen ranged from 0.3 to 2.0%. The density of the products varied from 0.80 g/ml up to 0.86 g/ml over the period of the test with a correlated change of the hydrogen to carbon atomic ratio from 1.79 down to 1.57, suggesting some loss of catalyst activity through the test. These tests provided the data needed to assess the suite of liquid fuel products from the process and the activity of the catalyst in relationship to the existing catalyst lifetime barrier for the technology.

  1. Liquid-Phase Catalytic Hydrogenation of Furfural in Variable Solvent Media

    Institute of Scientific and Technical Information of China (English)

    夏淑倩; 李阳; 商巧燕; 张成武; 马沛生

    2016-01-01

    Water is the most abundant compound inherently existing in bio-oils. Thus understanding the role of water within bio-oils upgrading process is essential for future engineering scale-up design. In this study, furfural was chosen as bio-oils model compound, and the catalytic hydrogenation of furfural over commercial 5%, Ru/C catalyst was firstly investigated in a series of gradient variable water/ethanol mixture solvents. Water had a signifi-cant effect on the distribution of product yields. The dominant reaction pathways varied with the water contents in the water/ethanol mixture solvents. Typically, when ethanol was used as the solvent, the main products were ob-tained by the hydrogenation of carbonyl group or furan ring. When pure water was used as the solvent, the rear-rangement reaction of furfural to cyclopentanone should be selectively promoted theoretically. However, serious polymerization and resinification were observed herein in catalytic hydrogenation system of pure water. The cata-lyst surface was modified by the water-insoluble polymers, and consequently, a relative low yield of cyclopenta-none was obtained. A plausible multiple competitive reaction mechanism between polymerization reaction and the hydrogenation of furfural was suggested in this study. Characterizations(TG,FT-IR,SEM)were employed to analyze and explain our experiments.

  2. Recent developments in the production of liquid fuels via catalytic conversion of microalgae: experiments and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Shi,Fan; Wang, Pin; Duan, Yuhua; Link, Dirk; Morreale, Bryan

    2012-01-01

    Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize ‘‘food versus fuel’’ concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

  3. Novel Fast Pyrolysis/Catalytic Technology for the Production of Stable Upgraded Liquids

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Ted; Agblevor, Foster; Battaglia, Francine; Klein, Michael

    2013-01-18

    The objective of the proposed research is the demonstration and development of a novel biomass pyrolysis technology for the production of a stable bio-oil. The approach is to carry out catalytic hydrodeoxygenation (HDO) and upgrading together with pyrolysis in a single fluidized bed reactor with a unique two-level design that permits the physical separation of the two processes. The hydrogen required for the HDO will be generated in the catalytic section by the water-gas shift reaction employing recycled CO produced from the pyrolysis reaction itself. Thus, the use of a reactive recycle stream is another innovation in this technology. The catalysts will be designed in collaboration with BASF Catalysts LLC (formerly Engelhard Corporation), a leader in the manufacture of attrition-resistant cracking catalysts. The proposed work will include reactor modeling with state-of-the-art computational fluid dynamics in a supercomputer, and advanced kinetic analysis for optimization of bio-oil production. The stability of the bio-oil will be determined by viscosity, oxygen content, and acidity determinations in real and accelerated measurements. A multi-faceted team has been assembled to handle laboratory demonstration studies and computational analysis for optimization and scaleup.

  4. Use catalytic combustion for LHV gases

    Energy Technology Data Exchange (ETDEWEB)

    Tucci, E.R.

    1982-03-01

    This paper shows how low heating value (LHV) waste gases can be combusted to recover energy even when the gases won't burn in a normal manner. Significant energy and economic savings can result by adopting this process. Catalytic combustion is a heterogeneous surface-catalyzed air oxidation of fuel, gaseous or liquid, to generate thermal energy in a flameless mode. The catalytic combustion process is quite complex since it involves numerous catalytic surface and gas-phase chemical reactions. During low temperature surface-catalyzed combustion, as in start-up, the combustion stage is under kinetically controlled conditions. The discussion covers the following topics - combustor substrates; combustor washcoating and catalyzing; combustor operational modes (turbine or tabular modes); applications in coal gasification and in-situ gasification; waste process gases. 16 refs.

  5. Refining and end use study of coal liquids. Second quarter 1995 technical progress report, April--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Bechtel, with Southwest Research Institute, Amoco Oil R&D, and the M.W. Kellogg Co. as subcontractors, initiated a study on November 1, 1993, for the U.S. Department of Energy`s (DOE`s) Pittsburgh Energy Technology Center (PETC) to determine the most cost effective and suitable combination of existing petroleum refinery processes needed to make specification transportation fuels or blending stocks, from direct and indirect coal liquefaction product liquids. This 47-month study, with an approved budget of $4.4 million dollars, is being performed under DOE Contract Number DE-AC22-93PC91029. A key objective is to determine the most desirable ways of integrating coal liquefaction liquids into existing petroleum refineries to produce transportation fuels meeting current and future, e.g. year 2000, Clean Air Act Amendment (CAAA) standards. An integral part of the above objectives is to test the fuels or blends produced and compare them with established ASTM fuels. The comparison will include engine tests to ascertain compliance of the fuels produced with CAAA and other applicable fuel quality and performance standards. The final part of the project includes a detailed economic evaluation of the cost of processing the coal liquids to their optimum products.

  6. Structure of coal: new approaches to characterizing organonitrogen and organosulfur functionalities in coal and coal liquids. Final report. [Finnigan triple quadrupole mass spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Cooks, R.G.

    1983-01-01

    This report describes the application of tandem mass spectrometry (MS/MS) to the analysis of coal-related materials. A Finnigan Triple State Quadrupole mass spectrometer was used for most of the results obtained in this study. Both collision energy (0 to 30 eV) and collision gas pressure (0 to 2.5 mtorr, typically argon) have significant effects on the spectra. Increasing the collision energy or collision pressure results in an increased fragmentation of the selected ion. The analytical utility of different chemical ionization (CI) reagent gases is shown. The MS/MS spectra of a selected ion obtained by isobutane and ammonia CI are identical, which paves the way for development of MS/MS libraries. A library is being developed especially for the analysis of coal-related materials. Three principal MS/MS scan modes (daughter, parent and neutral loss) are utilized in the analysis of coal-related materials. Parent and neutral loss scans characterize the complex mixture for particular chemical moieties (functional groups, structure type), while daughter scans are used for identification of specific components. SRC II was the principal sample studied by CI. Laser desorption methodology for coal analysis was developed. Other fuel-related materials were examined to generalize the analytical methodology being developed for the coal-related materials, including shale oil and diesel exhaust particulates. 35 references, 50 figures, 3 tables.

  7. Heterogeneous Catalytic Conversion of Biobased Chemicals into Liquid Fuels in the Aqueous Phase.

    Science.gov (United States)

    Wu, Kejing; Wu, Yulong; Chen, Yu; Chen, Hao; Wang, Jianlong; Yang, Mingde

    2016-06-22

    Different biobased chemicals are produced during the conversion of biomass into fuels through various feasible technologies (e.g., hydrolysis, hydrothermal liquefaction, and pyrolysis). The challenge of transforming these biobased chemicals with high hydrophilicity is ascribed to the high water content of the feedstock and the inevitable formation of water. Therefore, aqueous-phase processing is an interesting technology for the heterogeneous catalytic conversion of biobased chemicals. Different reactions, such as dehydration, isomerization, aldol condensation, ketonization, and hydrogenation, are applied for the conversion of sugars, furfural/hydroxymethylfurfural, acids, phenolics, and so on over heterogeneous catalysts. The activity, stability, and reusability of the heterogeneous catalysts in water are summarized, and deactivation processes and several strategies are introduced to improve the stability of heterogeneous catalysts in the aqueous phase. PMID:27158985

  8. Effects of complex organic mixtures of coal liquid on cardiovascular function

    International Nuclear Information System (INIS)

    The most common diseases in the US are those involving the cardiovascular system. Exposure to certain environmental chemicals and complex mixtures may be involved in some aspects of cardiovascular disease. They have previously reported that high-boiling coal liquids resulted in several affects related to the cardiovascular system of the rate when exposed via whole-body inhalation to the mixture. The most striking observation was a dose dependent elevation in arterial blood pressure for heavy distillate (HD) exposed rates compared to control animals at 2 weeks. They also noted an increase in heart rate and plasma and blood volume. Additional rats were evaluated 6 weeks after exposure, to determine whether these effects represented permanent changes in cardiovascular function, and the effects appeared to be reversible after this longer period. During the past year they have completed the assays of the studies initiated previously and have addressed some possible factors which could explain the effects that they observed. Electrolytes in plasma of rats exposed to the HD were analyzed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Plasma aldosterone and angiotensin were measured by radioimmunoassays, and plasma cholesterol, triglycerides, and high-density lipoprotein were evaluated with an Abbott VP bichromatic chemistry analyzer. In addition, a comparison of the blood pressure of control rats and rats fed a restricted diet were made, to determine if the anorexia which resulted from HD exposure could be responsible for the changes they observed in cardiovascular function

  9. Liquid-metal MHD energy conversion. Status report, March 1976--September 1977. [Coal combustion products are mixed with liquid copper and act as working fluid

    Energy Technology Data Exchange (ETDEWEB)

    Petrick, M; Dunn, P F; Pierson, E S; Dauzvardis, P V; Pollack, I

    1979-05-01

    A new open-cycle coal-fired liquid-metal MHD concept has been developed, in which the combustion products are mixed directly with liquid copper and the mixture is then passed through the MHD generator. This concept yields a system with an efficiency comparable to that of open-cycle plasma MHD at combustor temperatures as much as 1000 K lower and MHD generator temperatures more than 1000 K lower than is the case for open-cycle plasma MHD. Significantly, the liquid-metal system uses components that are close to or within present-day technology, and it appears that readily available containment materials are compatible with the fluids. The first commercial system studies for the liquid-metal Rankine-cycle concept show that it yields a higher conversion efficiency than conventional steam cycles for lower-temperature heat sources, such as a liquid-metal fast-breeder reactor, a light-water reactor, or solar collectors without any potential for hazardous reactions betweeen liquid metals (e.g., sodium) and water. Fabrication of the high-temperature liquid-metal MHD facility has been completed, and shakedown runs have been performed, using a substitute mixer-generator test section. Data obtained in this test section agreed well with existing single-phase and newly-developed two-phase correlations for the pressure gradient.

  10. Coal liquefaction process streams characterization and evaluation: Application of liquid chromatographic separation methods to THF-soluble portions of integrated two-stage coal liquefaction resids

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.B.; Pearson, C.D.; Young, L.L.; Green, J.A. (National Inst. for Petroleum and Energy Research, Bartlesville, OK (United States))

    1992-05-01

    This study demonstrated the feasibility of using non-aqueous ion exchange liquid chromatography (NIELC) for the examination of the tetrahydrofuran (THF)-soluble distillation resids and THF-soluble whole oils derived from direct coal liquefaction. The technique can be used to separate the material into a number of acid, base, and neutral fractions. Each of the fractions obtained by NIELC was analyzed and then further fractionated by high-performance liquid chromatography (HPLC). The separation and analysis schemes are given in the accompanying report. With this approach, differences can be distinguished among samples obtained from different process streams in the liquefaction plant and among samples obtained at the same sampling location, but produced from different feed coals. HPLC was directly applied to one THF-soluble whole process oil without the NIELC preparation, with limited success. The direct HPLC technique used was directed toward the elution of the acid species into defined classes. The non-retained neutral and basic components of the oil were not analyzable by the direct HPLC method because of solubility limitations. Sample solubility is a major concern in the application of these techniques.

  11. Catalytic coal conversion support: use of laser flash-pyrolysis for structural analysis. Progress report, April 15, 1979-September 30, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Verzino, Jr, W J; Rofer-DePoorter, C K; Hermes, R E

    1982-03-01

    Untreated Fruitland subbituminous coal and Fruitland coal treated with several gasification catalysts were pyrolyzed with both Nd-glass and CO/sub 2/ lasers (1.06-..mu..m and 10.6-..mu..m wavelengths, respectively) to give both gaseous and intermediate-molecular weight products, which were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The catalysts used were AlCl/sub 3/, K/sub 2/H/sub 2/Sb/sub 2/O/sub 7/, CoCl/sub 2/, PbCl/sub 2/, Pb(NO/sub 3/)/sub 2/, Na/sub 2/Pb(OH)/sub 6/, Na/sub 2/MoO/sub 4/, NiCl/sub 2/, K/sub 2/CO/sub 3/, KHCO/sub 3/, Na/sub 2/CO/sub 3/, NaHCO/sub 3/, Na/sub 2/Ti/sub 3/O/sub 7/, NaVO/sub 3/, ZnCl/sub 2/, and NaZn(OH)/sub 3/. Gaseous products were analyzed from the Nd-glass laser pyrolysis; of the various catalysts, ZnCl/sub 2/ was found to affect N/sub 2/ production during pyrolysis most significantly. Intermediate products were analyzed from the CO/sub 2/ laser pyrolysis; product distribution was found to depend upon particle size (and consequent thermal history in pyrolysis) as well as on catalyst and heat treatment. Pyrolysis products could not be correlated in a statistically reliable way with coal or char structure. A supercritical extraction method with a Soxhlet extractor inside a pressure vessel was developed for liquid CO/sub 2/ as extractant. Gases evolved during processing of the coal-catalyst mixtures were analyzed by GC for several of the catalysts.

  12. Advanced bioreactor systems for gaseous substrates: Conversion of synthesis gas to liquid fuels and removal of SO{sub x} and NO{sub x} from coal combustion gases

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, P.T.; Kaufman, E.N.

    1995-06-01

    The purpose of the proposed research program is the development and demonstration of a new generation of gaseous substrate-based bioreactors for the production of liquid fuels from coal synthesis gas and the removal of NO{sub x} and SO{sub x} species from combustion flue gas. Coal is thermochemically converted to synthesis gas consisting of carbon monoxide, hydrogen, and carbon dioxide. Conventional catalytic upgrading of coal synthesis gas into alcohols or other oxychemicals is subject to several processing problems such as interference of the other constituents in the synthesis gases, strict CO/H{sub 2} ratios required to maintain a particular product distribution and yield, and high processing cost due to the operation at high temperatures and pressures. Recently isolated and identified bacterial strains capable of utilizing CO as a carbon source and coverting CO and H{sub 2} into mixed alcohols offer the potential of performing synthesis gas conversion using biocatalysts. Biocatalytic conversion, though slower than the conventional process, has several advantages such as decreased interference of the other constituents in the synthesis gases, no requirement for strict CO/H{sub 2} ratios, and decreased capital and oeprating costs as the biocatalytic reactions occur at ambient temperatures and pressures.

  13. Terrestrial fate of coal-liquid constituents: behavior of alkyl anilines in soil

    Energy Technology Data Exchange (ETDEWEB)

    Felice, L.J.; Zachara, J.M.; Rogers, J.E.

    1982-07-01

    The low molecular weight aromatic amines (anilines) are important water soluble constituents of coal liquids. The impact of anilines released to the terrestrial environment will largely depend on their mobility and persistence. Studies were conducted to investigate those processes governing the mobility and persistence of the alkylanilines, namely, soil sorption and chemical/microbial degradation. Soil sorption measurements were conducted on aniline and several methyl substituted anilines on A and B horizons of a soil profile collected from Davies County, Kentucky. The magnitude of sorption was large in all horizons. Sorption in the B horizons was larger than in the A horizon for many of the anilines studied, indicating the importance of both the mineral matrix and organic carbon content of the soil in determining the magnitude of sorption. Results of these measurements indicate that movement of the anilines through the soil would be significantly attenuated by sorption reactions. Aniline sorption measurement in the A horizon after removal of the organic matter and in the B/sub 22/ horizon after removal of amorphous iron oxides and crystalline iron oxides indicate that organic matter largely controls aniline sorption in the A horizon, while crystalline iron oxides and phyllosilicates are important in the B horizons. The effects of pH on aniline sorption was also examined and shown to have significant effects on the magnitude of sorption in both A and B horizons. Soil degradation studies using /sup 14/C-3-methylaniline as a model for alkyl aniline degradation show that 3-methylaniline is readily metabolized by soil microorganisms during the 32-day period examined.

  14. Detritiation From Heavy Water by H2-H2O Liquid Phase Catalytic Exchange%氢-水液相催化交换法脱氚

    Institute of Scientific and Technical Information of China (English)

    李俊华

    2001-01-01

    对疏水催化剂的设计与制备方法及氢-水液相交换反应过程进行了讨论,并概要评述了以常温氢-水催化交换法进行重水脱氚的液相催化交换(LPCE)及其联合电解的催化交换(CECE)工艺流程。%The design and preparation of the hydrophobic catalyst used forthe hydrogen-water phase catalytic exchange reaction is discussed in the paper.Two kinds of the processes for the detritiation from the heavy water,liquid phase catalytic exchange(LPCE) and combined electrolysis catalytic exchange(CECE)are reviewed briefly.

  15. Determination of sugars by liquid chromatography with postcolumn catalytic derivatization and fluorescence detection

    Energy Technology Data Exchange (ETDEWEB)

    Coquet, A. (Dept. of Inorganic, Analytical and Applied Chemistry, Sciences 2, Geneva Univ. (Switzerland)); Haerdi, W. (Dept. of Inorganic, Analytical and Applied Chemistry, Sciences 2, Geneva Univ. (Switzerland)); Degli Agosti, R. (Dept. of Plant Biochemistry and Physiology, Geneva (Switzerland)); Veuthey, J.L. (Dept. of Pharmaceutical Analytical Chemistry, Geneva Univ. (Switzerland))

    1994-01-01

    A method for the determination of reducing sugars such as fructose and glucose and nonreducing sugar such as surcose by high performance liquid chromatography followed by an acidic hydrolysis and a derivatization with benzamidine has been developed. After separation of sugars on a gel column packe with a polymer-based cation exchange material (Sugar-Pak I, Waters-Millipore), the sucrose is first hydrolysed in a solid phase reactor to convert it into reducing subunits. A post-column fluorigenic reaction with benzamidine under alkaline condition allows the selective determination of both natural and converted reducing carbohydrates. This procedure has proven to be selective (fluorigenic detection) and highly sensitive (allowing detection as little as picomoles amounts), reproducible and linear over a broad range of concentrations: 5x10[sup -4] to 1.0x10[sup -2] M. (orig.)

  16. Engineering support services for the DOE/GRI coal gasification research program. Technical and economic assessment of the Exxon Catalytic Coal-Gasification Process

    Energy Technology Data Exchange (ETDEWEB)

    Bostwick, L.E.; Coyle, D.A.; Laramore, R.W.

    1981-04-01

    In this assessment Kellogg utilized operating experience and data from the Exxon PDU wherever possible: modifications to the coal drying system, the catalyst recovery system and gasifier sizing criteria resulted from PDU observation since the previous (1979) screening evaluation. No data describing operation of the gasifier or the pretreatment unit in the PDU were available, however. This study must therefore be regarded as highly speculative, since substantial uncertainties still exist regarding these crucial segments of the Exxon Process. The principal results of this study are that the revised values for total plant investment and net operating cost are reduced by 9 and 2%, respectively, such that the average gas cost is reduced 4%, all in comparison to results of the screening evaluation. Development of additional data during future PDU operation could lead to major increases in capital and operating costs: Kellogg suggests that optimization studies relating the cost of pretreatment and gasification should be undertaken as a high priority task. The overall result of this study agrees with the main conclusion from the screening evaluation: the Exxon CCG process appears to be somewhat superior to the Lurgi process in terms of gas cost. Costs for individual plant sections, for this study, were obtained by modification of costs from the earlier screening evaluation. In general these modifications tended toward decreasing the gas cost. Further changes in the design basis appear (to Kellogg) to be inevitable, however, and could lead to major increases or decreases in the gas cost. Effects of possible changes cannot presently be predicted.

  17. Incorporation of catalytic dehydrogenation into fischer-tropsch synthesis to significantly reduce carbon dioxide emissions

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, Gerald P.

    2012-11-13

    A new method of producing liquid transportation fuels from coal and other hydrocarbons that significantly reduces carbon dioxide emissions by combining Fischer-Tropsch synthesis with catalytic dehydrogenation is claimed. Catalytic dehydrogenation (CDH) of the gaseous products (C1-C4) of Fischer-Tropsch synthesis (FTS) can produce large quantities of hydrogen while converting the carbon to multi-walled carbon nanotubes (MWCNT). Incorporation of CDH into a FTS-CDH plant converting coal to liquid fuels can eliminate all or most of the CO.sub.2 emissions from the water-gas shift (WGS) reaction that is currently used to elevate the H.sub.2 level of coal-derived syngas for FTS. Additionally, the FTS-CDH process saves large amounts of water used by the WGS reaction and produces a valuable by-product, MWCNT.

  18. Coal liquefaction. Quarterly report, April-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-04-01

    DOE's program for the conversion of coal to liquid fuels was begun by two of DOE's predecessor agencies: Office of Coal Research (OCR) in 1962, and Bureau of Mines, US Department of the Interior, in the 1930's. Current work is aimed at improved process configurations for both catalytic and non-catalytic processes to provide more attractive processing economics and lower capital investment. The advantage of coal liquefaction is that the entire range of liquid products, especially boiler fuel, distillate fuel oil, and gasoline, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquids have the potential for use as chemical feedstocks. To provide efficient and practical means of utilizing coal resources, DOE is supporting the development of several conversion processes that are currently in the pilot plant stage. DOE, together with the Electric Power Research Institue, has contracted with fourteen projects are described brieflly: funding, description, status, history, and progress in the current quarter. (LTN)

  19. Co-Al Mixed Oxides Prepared via LDH Route Using Microwaves or Ultrasound: Application for Catalytic Toluene Total Oxidation

    Directory of Open Access Journals (Sweden)

    Eric Genty

    2015-05-01

    Full Text Available Co6Al2HT hydrotalcite-like compounds were synthesized by three different methods: co-precipitation, microwaves-assisted and ultrasound-assisted methods. The mixed oxides obtained after calcination were studied by several techniques: XRD, TEM, H2-TPR and XPS. They were also tested as catalysts in the reaction of total oxidation of toluene. The physico-chemical studies revealed a modification of the structural characteristics (surface area, morphology as well as of the reducibility of the formed mixed oxides. The solid prepared by microwaves-assisted synthesis was the most active. Furthermore, a relationship between the ratio of Co2+ on the surface, the reducibility of the Co-Al mixed oxide and the T50 in toluene oxidation was demonstrated. This suggests a Mars Van Krevelen mechanism for toluene total oxidation on these catalysts.

  20. Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas.

    Science.gov (United States)

    Jaramillo, Paulina; Griffin, W Michael; Matthews, H Scott

    2008-10-15

    Liquid transportation fuels derived from coal and natural gas could helpthe United States reduce its dependence on petroleum. The fuels could be produced domestically or imported from fossil fuel-rich countries. The goal of this paper is to determine the life-cycle GHG emissions of coal- and natural gas-based Fischer-Tropsch (FT) liquids, as well as to compare production costs. The results show that the use of coal- or natural gas-based FT liquids will likely lead to significant increases in greenhouse gas (GHG) emissions compared to petroleum-based fuels. In a best-case scenario, coal- or natural gas-based FT-liquids have emissions only comparable to petroleum-based fuels. In addition, the economic advantages of gas-to-liquid (GTL) fuels are not obvious: there is a narrow range of petroleum and natural gas prices at which GTL fuels would be competitive with petroleum-based fuels. CTLfuels are generally cheaper than petroleum-based fuels. However, recent reports suggest there is uncertainty about the availability of economically viable coal resources in the United States. If the U.S. has a goal of increasing its energy security, and at the same time significantly reducing its GHG emissions, neither CTL nor GTL consumption seem a reasonable path to follow.

  1. Refining and end use study of coal liquids. Sixth quarterly technical progress report, December 19, 1994--March 26, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    Bechtel, with Southwest Research Institute, Amoco Oil R&D, and the M.W. Kellogg Co. as subcontractors, initiated a study on November 1, 1993, for the U.S. Department of Energy`s (DOE`s) Pittsburgh Energy Technology Center (PETC) to determine the most cost effective and suitable combination of existing petroleum refinery processes needed to make specification transportation fuels or blending stocks, from direct and indirect coal liquefaction product liquids. This 47-month study, with an approved budget of $4.4 million dollars, is being performed under DOE Contract Number DE-AC22-93PC91029. A key objective is to determine the most desirable ways of integrating coal liquefaction liquids into existing petroleum refineries to produce transportation fuels meeting current and future, e.g. year 2000, Clean Air Act Amendment (CAAA) standards. An integral part of the above objectives is to test the fuels or blends produced and compare them with established ASTM fuels. The comparison will include engine tests to ascertain compliance of the fuels produced with CAAA and other applicable fuel quality and performance standards. The final part of the project includes a detailed economic evaluation of the cost of processing the coal liquids to their optimum products. The cost analyses is for the incremental processing cost; in other words, the feed is priced at zero dollars. The study reflects costs for operations using state of the art refinery technology; no capital costs for building new refineries is considered. Some modifications to the existing refinery may be required. Economy of scale dictates the minimum amount of feedstock that should be processed.

  2. Three-phase catalytic system of H2O, ionic liquid, and VOPO4-SiO2 solid acid for conversion of fructose to 5-hydroxymethylfurfural.

    Science.gov (United States)

    Tian, Chengcheng; Zhu, Xiang; Chai, Song-Hai; Wu, Zili; Binder, Andrew; Brown, Suree; Li, Lin; Luo, Huimin; Guo, Yanglong; Dai, Sheng

    2014-06-01

    Efficient transformation of biomass-derived feedstocks to chemicals and fuels remains a daunting challenge in utilizing biomass as alternatives to fossil resources. A three-phase catalytic system, consisting of an aqueous phase, a hydrophobic ionic-liquid phase, and a solid-acid catalyst phase of nanostructured vanadium phosphate and mesostructured cellular foam (VPO-MCF), is developed for efficient conversion of biomass-derived fructose to 5-hydroxymethylfurfural (HMF). HMF is a promising, versatile building block for production of value-added chemicals and transportation fuels. The essence of this three-phase system lies in enabling the isolation of the solid-acid catalyst from the aqueous phase and regulation of its local environment by using a hydrophobic ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Tf2N]). This system significantly inhibits the side reactions of HMF with H2O and leads to 91 mol % selectivity to HMF at 89 % of fructose conversion. The unique three-phase catalytic system opens up an alternative avenue for making solid-acid catalyst systems with controlled and locally regulated microenvironment near catalytically active sites by using a hydrophobic ionic liquid.

  3. Renewable liquid fuels from catalytic reforming of biomass-derived oxygenated hydrocarbons

    Science.gov (United States)

    Barrett, Christopher J.

    Diminishing fossil fuel reserves and growing concerns about global warming require the development of sustainable sources of energy. Fuels for use in the transportation sector must have specific physical properties that allow for efficient distribution, storage, and combustion; these requirements are currently fulfilled by petroleum-derived liquid fuels. The focus of this work has been the development of two new biofuels that have the potential to become widely used transportation fuels from carbohydrate intermediates. Our first biofuel has cetane numbers ranging from 63 to 97 and is comprised of C7 to C15 straight chain alkanes. These alkanes can be blended with diesel like fuels or with P-series biofuel. Production involves a solid base catalyzed aldol condensation with mixed Mg-Al-oxide between furfural or 5-hydroxymethylfurfural (HMF) and acetone, followed by hydrogenation over Pd/Al2O3, and finally hydrogenation/dehydration over Pt/SiO2-Al2O3. Water was the solvent for all process steps, except for the hydrogenation/dehydration stage where hexadecane was co-fed to spontaneously separate out all alkane products and eliminate the need for energy intensive distillation. A later optimization identified Pd/MgO-ZrO2 as a hydrothermally stable bifunctional catalyst to replace Pd/Al2O3 and the hydrothermally unstable Mg-Al-oxide catalysts along with optimizing process parameters, such as temperature and molar ratios of reactants to maximize yields to heavier alkanes. Our second biofuel involved creating an improved process to produce HMF through the acid-catalyzed dehydration of fructose in a biphasic reactor. Additionally, we developed a technique to further convert HMF into 2,5-dimethylfuran (DMF) by hydrogenolysis of C-O bonds over a copper-ruthenium catalyst. DMF has many properties that make it a superior blending agent to ethanol: it has a high research octane number at 119, a 40% higher energy density than ethanol, 20 K higher boiling point, and is insoluble in

  4. SUBTASK 3.12 – GASIFICATION, WARM-GAS CLEANUP, AND LIQUID FUELS PRODUCTION WITH ILLINOIS COAL

    Energy Technology Data Exchange (ETDEWEB)

    Stanislowski, Joshua; Curran, Tyler; Henderson, Ann

    2014-06-30

    The goal of this project was to evaluate the performance of Illinois No. 6 coal blended with biomass in a small-scale entrained-flow gasifier and demonstrate the production of liquid fuels under three scenarios. The first scenario used traditional techniques for cleaning the syngas prior to Fischer–Tropsch (FT) synthesis, including gas sweetening with a physical solvent. In the second scenario, the CO2 was not removed from the gas stream prior to FT synthesis. In the third scenario, only warm-gas cleanup techniques were used, such that the feed gas to the FT unit contained both moisture and CO2. The results of the testing showed that the liquid fuels production from the FT catalyst was significantly hindered by the presence of moisture and CO2 in the syngas. Further testing would be needed to determine if this thermally efficient process is feasible with other FT catalysts. This subtask was funded through the EERC–U.S. Department of Energy (DOE) Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the Illinois Clean Coal Institute.

  5. Dramatically different kinetics and mechanism at solid/liquid and solid/gas interfaces for catalytic isopropanol oxidation over size-controlled platinum nanoparticles.

    Science.gov (United States)

    Wang, Hailiang; Sapi, Andras; Thompson, Christopher M; Liu, Fudong; Zherebetskyy, Danylo; Krier, James M; Carl, Lindsay M; Cai, Xiaojun; Wang, Lin-Wang; Somorjai, Gabor A

    2014-07-23

    We synthesize platinum nanoparticles with controlled average sizes of 2, 4, 6, and 8 nm and use them as model catalysts to study isopropanol oxidation to acetone in both the liquid and gas phases at 60 °C. The reaction at the solid/liquid interface is 2 orders of magnitude slower than that at the solid/gas interface, while catalytic activity increases with the size of platinum nanoparticles for both the liquid-phase and gas-phase reactions. The activation energy of the gas-phase reaction decreases with the platinum nanoparticle size and is in general much higher than that of the liquid-phase reaction which is largely insensitive to the size of catalyst nanoparticles. Water substantially promotes isopropanol oxidation in the liquid phase. However, it inhibits the reaction in the gas phase. The kinetic results suggest different mechanisms between the liquid-phase and gas-phase reactions, correlating well with different orientations of IPA species at the solid/liquid interface vs the solid/gas interface as probed by sum frequency generation vibrational spectroscopy under reaction conditions and simulated by computational calculations.

  6. Comparing the catalytic oxidation of ethanol at the solid-gas and solid-liquid interfaces over size-controlled Pt nanoparticles: striking differences in kinetics and mechanism.

    Science.gov (United States)

    Sapi, Andras; Liu, Fudong; Cai, Xiaojun; Thompson, Christopher M; Wang, Hailiang; An, Kwangjin; Krier, James M; Somorjai, Gabor A

    2014-11-12

    Pt nanoparticles with controlled size (2, 4, and 6 nm) are synthesized and tested in ethanol oxidation by molecular oxygen at 60 °C to acetaldehyde and carbon dioxide both in the gas and liquid phases. The turnover frequency of the reaction is ∼80 times faster, and the activation energy is ∼5 times higher at the gas-solid interface compared to the liquid-solid interface. The catalytic activity is highly dependent on the size of the Pt nanoparticles; however, the selectivity is not size sensitive. Acetaldehyde is the main product in both media, while twice as much carbon dioxide was observed in the gas phase compared to the liquid phase. Added water boosts the reaction in the liquid phase; however, it acts as an inhibitor in the gas phase. The more water vapor was added, the more carbon dioxide was formed in the gas phase, while the selectivity was not affected by the concentration of the water in the liquid phase. The differences in the reaction kinetics of the solid-gas and solid-liquid interfaces can be attributed to the molecular orientation deviation of the ethanol molecules on the Pt surface in the gas and liquid phases as evidenced by sum frequency generation vibrational spectroscopy.

  7. Innovative clean coal technology (ICCT): demonstration of selective catalytic reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emission from high-sulfur, coal-fired boilers - economic evaluation of commercial-scale SCR applications for utility boilers

    Energy Technology Data Exchange (ETDEWEB)

    Healy, E.C.; Maxwell, J.D.; Hinton, W.S.

    1996-09-01

    This report presents the results of an economic evaluation produced as part of the Innovative Clean Coal Technology project, which demonstrated selective catalytic reduction (SCR) technology for reduction of NO{sub x} emissions from utility boilers burning U.S. high-sulfur coal. The document includes a commercial-scale capital and O&M cost evaluation of SCR technology applied to a new facility, coal-fired boiler utilizing high-sulfur U.S. coal. The base case presented herein determines the total capital requirement, fixed and variable operating costs, and levelized costs for a new 250-MW pulverized coal utility boiler operating with a 60-percent NO{sub x} removal. Sensitivity evaluations are included to demonstrate the variation in cost due to changes in process variables and assumptions. This report also presents the results of a study completed by SCS to determine the cost and technical feasibility of retrofitting SCR technology to selected coal-fired generating units within the Southern electric system.

  8. Chemistry and structure of coal derived asphaltenes and preasphaltenes. Quarterly progress report, April-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T. F.

    1980-01-01

    It is the objective of this project to isolate the asphaltene and preasphaltene fractions from coal liquids from a number of liquefaction processes. These processes consist of in general: catalytic hydrogenation, staged pyrolysis and solvent refining. These asphaltene fractions may be further separated by both gradient elution through column chromatography, and molecular size distribution through gel permeation chromatography. Those coal-derived asphaltene and preasphaltene fractions will be investigated by various chemical and physical methods for characterization of their structures. After the parameters are obtained, these parameters will be correlated with the refining and conversion variables which control a given type of liquefaction process. The effects of asphaltene in catalysis, ash or metal removal, desulfurization and denitrification will also be correlated. It is anticipated that understanding the role of asphaltenes in liquefaction processes will enable engineers to both improve existing processes, and to make recommendations for operational changes in planned liquefaction units in the United States. The objective of Phase 1 was to complete the isolation and separation of coal liquid fractions and to initiate their characterization. The objective of Phase 2 is to continue the characterization of coal asphaltenes and other coal liquid fractions by use of physical and instrumental methods. The structural parameters obtained will be used to postulate hypothetical average structures for coal liquid fractions. The objective of Phase 3 is to concentrate on the characterization of the preasphaltene (benzene insoluble fraction) of coal liquid fraction by the available physical and chemical methods to obtain a number of structural parameters.

  9. Chemistry and structure of coal derived asphaltenes and preasphaltenes. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T. F.

    1979-01-01

    It is the objective of this project to isolate the asphaltene and preasphaltene fractions from coal liquids from a number of liquefaction processes. These processes consist of in general: catalytic hydrogenation, staged pyrolysis and solvent refining. The asphaltene fractions may be further separated by both gradient elution through column chromatography, and molecular size distribution through gel permeation chromatography. These coal-derived asphaltene and preashpaltene fractions will then be investigated by various chemical and physical methods for characterization of their structures. After the parameters are obtained, these parameters will be correlated with the refining and conversion variables which control a given type of liquefaction process. The effects of asphaltene in catalysis, ash or metal removal, desulfurization and denitrification will also be correlated. It is anticipated that understanding the role of asphaltenes in liquefaction processes will enable engineers to both improve existing processes, and to make recommendations for operational changes in planned liquefaction units. The objective of Phase 1 was to complete the isolation and separation of coal liquid fractions and to initiate their characterization. The objective of Phase 2 is to continue the characterization of coal asphaltenes and other coal liquid fractions by use of physical and instrumental methods. The structural parameters obtained will be used to postulate hypothetical average structures for coal liquid fractions.The objective of Phase 3 is to concentrate on the characterization of the preasphaltene (benzene insoluble fraction) of coal liquid fraction by the available physical and chemical methods to obtain a number of structural parameters.

  10. Analysis of polynuclear aromatic hydrocarbons in heavy products derived from coal and petroleum by high performance liquid chromatography.

    Science.gov (United States)

    Zhang, Changming; Zhang, Xiaohang; Yang, Jianli; Liu, Zhenyu

    2007-10-12

    A systematic study was made on the identification and quantitative determination of polynuclear aromatic hydrocarbons (PAHs) in heavy products derived from coal and petroleum with high performance liquid chromatography (HPLC). After the separation of PAHs by a high-resolution column, identification was made through four methods: (1) the relative retention time (RRT) method, (2) the stop-flow-UV scanning method, (3) the method of fluorescence characteristic index Phi' and (4) the method of V' index at different UV wavelengths. For the quantitative determination of the components, methods of external standard (E-X), internal standard (I-N) and external standard-response factors (E-F) were compared. The E-F method was recommended by the present paper. For the determination of quantitative response factors (F) two methods were studied, including the HPLC peak-area method (Peak-area method) and the UV absorbance method using a UV spectrometer (absorbance method). The absorbance method was better and is recommended by the present paper. The F values of 30 PAHs from the two different methods are given. The samples analyzed include a coal tar pitch, a thermal cracking residue oil and a residual oil from ethylene production.

  11. Bioconversion of coal-derived synthesis gas to liquid fuels. [Butyribacterium methylotrophicum

    Energy Technology Data Exchange (ETDEWEB)

    Jain, M.K.

    1991-01-01

    The use of coal-derived synthesis gas as an industrial feedstock for production of fuels and chemicals has become an increasingly attractive alternative to present petroleum-based chemicals production. However, one of the major limitations in developing such a process is the required removal of catalyst poisons such as hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), and other trace contaminants from the synthesis gas. Purification steps necessary to remove these are energy intensive and add significantly to the production cost, particularly for coals having a high sulfur content such as Illinois coal. A two-stage, anaerobic bioconversion process requiring little or no sulfur removal is proposed, where in the first stage the carbon monoxide (CO) gas is converted to butyric and acetic acids by the CO strain of Butyribacterium methylotrophicum. In the second stage, these acids along with the hydrogen (H{sub 2}) gas are converted to butanol, ethanol, and acetone by an acid utilizing mutant of Clostridium acetobutylicum. 18 figs., 18 tabs.

  12. Session 6: Water depollution from aniline and phenol by air oxidation and adsorptive-catalytic oxidation in liquid phase

    Energy Technology Data Exchange (ETDEWEB)

    Dobrynkin, N.M.; Batygina, M.V.; Noskov, A.S. [Boreskov Institute of Catalysis of Siberian Branch of Russian Academy of Sciences, Pr. Ak. Lavrentieva (Russian Federation)

    2004-07-01

    This paper is devoted to development of carbon catalysts and application of catalytic wet air oxidation for deep cleaning of polluted waters. The described catalysts and method are solving the problem of development environmentally reliable method for fluids treatment and allow carrying out the adsorption of pollutants on carbon CAPM (catalytically active porous material) with following regeneration of the CAPM without the loss of adsorptive qualities. The experiments have shown a principal capability simultaneously to use carbon CAPM as adsorbent and either as catalyst, or as a catalyst support for oxidation of aniline and phenol in water solutions. (authors)

  13. Liquid and Gaseous Fuel from Waste Plastics by Sequential Pyrolysis and Catalytic Reforming Processes over Indonesian Natural Zeolite Catalysts

    OpenAIRE

    Mochamad Syamsiro; Shuo Cheng; Wu Hu; Harwin Saptoadi; Nosal Nugroho Pratama; Wega Trisunaryanti; Kunio Yoshikawa

    2014-01-01

    In this study, the performance of several differently treated natural zeolites in a sequential pyrolysis and catalytic reforming of plastic materials i.e. polypropylene (PP) and polystyrene (PS) were investigated. The experiments were carried out on two stage reactor using semi-batch system. The samples were degraded at 500°C in the pyrolysis reactor and then reformed at 450°C in the catalytic reformer. The results show that the mordenite-type natural zeolites could be used as efficient catal...

  14. Production of High-Hydrogen Content Coal-Derived Liquids [Part 3 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Bergin

    2011-03-30

    The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal

  15. Production of High-Hydrogen Content Coal-Derived Liquids [Part 1 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Bergin

    2011-03-30

    The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal

  16. Production of High-Hydrogen Content Coal-Derived Liquids [Part 2 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Bergin

    2011-03-30

    The primary goal of this project has been to evaluate and compare the effect of the intrinsic differences between cobalt (Co) and iron (Fe) catalysts for Fischer-Tropsch (FT) synthesis using coal-derived syngas. Crude oil, especially heavy, high-sulfur crude, is no longer the appropriate source for the additional, or marginal, amounts of middle-distillate fuels needed to meet growing US and world demand for diesel and jet fuels. Only about 1/3 of the marginal crude oil barrel can be made into diesel and jet fuels. The remaining 2/3 contributes further to global surpluses of by-products. FT can produce these needed marginal, low-sulfur middle-distillate fuels more efficiently, with less environmental impact, and from abundant US domestic resources. Cobalt FT catalyst is more efficient, and less expensive overall, than iron FT catalyst. Mechanisms of cobalt FT catalyst functioning, and poisoning, have been elucidated. Each of these primary findings is amplified by several secondary findings, and these are presented, and verified in detail. The most effective step the United States can take to begin building toward improved long-term national energy security, and to reduce dependence, over time, on imported crude oil from unfriendly and increasingly unstable areas of the world, is to begin producing additional, or marginal amounts of, middle-distillate-type fuels, such as ultralow sulfur diesel (ULSD) and jet fuel (not gasoline) from US domestic resources other than petroleum. FT synthesis of these middle distillate fuels offers the advantage of being able to use abundant and affordable US coal and biomass as the primary feedstocks. Use of the cobalt FT catalyst system has been shown conclusively to be more effective and less expensive than the use of iron FT catalyst with syngas derived from coal, or from coal and biomass combined. This finding is demonstrated in detail for the initial case of a relatively small FT plant of about 2000 barrels per day based upon coal

  17. Method and apparatus for conversion of carbonaceous materials to liquid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lux, Kenneth W.; Namazian, Mehdi; Kelly, John T.

    2015-12-01

    Embodiments of the invention relates to conversion of hydrocarbon material including but not limited to coal and biomass to a synthetic liquid transportation fuel. The invention includes the integration of a non-catalytic first reaction scheme, which converts carbonaceous materials into a solid product that includes char and ash and a gaseous product; a non-catalytic second reaction scheme, which converts a portion of the gaseous product from the first reaction scheme to light olefins and liquid byproducts; a traditional gas-cleanup operations; and the third reaction scheme to combine the olefins from the second reaction scheme to produce a targeted fuel like liquid transportation fuels.

  18. Chemical characterization and genotoxic potential related to boiling point for fractionally distilled SRC-I coal liquids

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B.W.; Pelroy, R.A.; Mahlum, D.D.

    1982-07-01

    This report summarizes selected research efforts oriented toward ameliorating the genotoxic potential of direct coal liquefaction materials through modification or optimization of process conditions. The studies described were conducted to evaluate the utility of optimized distillation for coal liquids from the SRC-I process. SRC-I process solvent was distilled into 50/sup 0/F-range boiling point (bp) cuts. Analysis of amino-PAH (APAH) showed that mutagenic APAHs containing 3 or more rings were found primarily in fractions boiling above 750/sup 0/F. Three microbial tester strains were used to screen for genetically active agents in the SRC-I distillate bp cuts. Reverse mutation with the Ames tester strain TA98 demonstrated that mutagens were concentrated in the bp cuts boiling above 700/sup 0/F. For this tester strain most of the genetic activity in these distillates was attributable to chemical fractions enriched in APAH having 3 or more rings. Mutagenicity data obtained with TA98 was in good agreement with sk in carcinogenesis results from the mouse-skin initiation/promotion (in vivo) test system. The strongest response in the forward mutation assay did not occur in the most carcinogenically active fractions. Results of initiation/promotion experiments used to measure the relative potency of bp cuts as initiators of mouse skin carcinogenesis again showed that fractions boiling above 750/sup 0/F. Compounds reaching their highest concentrations in the highest boiling and most carcinogenically active cut included known carcinogens such as benzo(a)pyrene and dimethyl benzanthracene. Thus, all biomedical test results indicate that consideration should be given to conducting distillation so as to minimize, in the distillate product, the concentrations of those biologically active compounds found in cuts boiling above 700/sup 0/C.

  19. Mobile phase in coals: its nature and modes of release. Technical progress report, September-November 1985 and December 1985-February 1986

    Energy Technology Data Exchange (ETDEWEB)

    Derbyshire, F.J.

    1986-04-01

    Studies have been continued in probing the molecular phase-network concept of coal structure through the catalytic hydrogenation of coals in the absence of solvent. Experiments have now been conducted using a Spanish lignite and a sample of Illinois No. 6, in addition to three coals examined previously. Earlier findings, that low-rank coals are more reactive than bituminous coals at 350/sup 0/C, have been confirmed. In an attempt to minimize the loss of volatile liquids during product work-up, the temperature used for solvent stripping was lowered from 110/sup 0/C to 50/sup 0/C. This expedient has not proved to be satisfactory as it results in excessive retention of solvent in the products. Two series of coal samples have been prepared by the catalytic hydrogenation of a bituminous and a subbituminous coal, for different times at 400 C and will be examined by Dr. Lynch (CSIRO, Australia) using /sup 1/H NMR. The principal aim of the study is to investigate the change in coal molecular phase content, as determined by pulsed /sup 1/H free induction decay, which is brought about by partial liquefaction. To address the question of whether the molecular phase plays an important role in the early stages of dry catalytic hydrogenation, a number of experiments were performed on coals which had first been extracted in chloroform. The removal of the chloroform-soluble liquids appeared to have little effect upon the initial rate of liquefaction. It is suggested that the MoS/sub 2/ catalyst may be mobile within the coal structure at the reaction temperatures used, which could explain the effectiveness of this catalyst at short reaction times. A preparative scale, high performance liquid chromatography system has been assembled to allow the separation of liquefaction products into different compound classes. The separated fraction will be examined in detail by GC-MS. 7 refs., 2 figs., 16 tabs.

  20. A novel method for oxidative desulfurization of liquid hydrocarbon fuels based on catalytic oxidation using molecular oxygen coupled with selective adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xiaoliang; Song, Chunshan [Clean Fuels and Catalysis Program, The Energy Institute, Department of Energy and Geo-Environmental Engineering, The Pennsylvania State University, 209 Academic Projects Building, University Park, PA 16802 (United States); Zhou, Anning [Clean Fuels and Catalysis Program, The Energy Institute, Department of Energy and Geo-Environmental Engineering, The Pennsylvania State University, 209 Academic Projects Building, University Park, PA 16802 (United States); Department of Chemistry and Chemical Engineering, Xian University of Science and Technology, Xian 710054 (China)

    2007-05-30

    The present study explored a novel oxidative desulfurization (ODS) method of liquid hydrocarbon fuels, which combines a catalytic oxidation step of the sulfur compounds directly in the presence of molecular oxygen and an adsorption step of the oxidation-treated fuel over activated carbon. The ODS of a model jet fuel and a real jet fuel (JP-8) was conducted in a batch system at ambient conditions. It was found that the oxidation in the presence of molecular oxygen with Fe(III) salts was able to convert the thiophenic compounds in the fuel to the corresponding sulfone and/or sulfoxide compounds at 25 C. The oxidation reactivity of the sulfur compounds decreases in the order of 2-methylbenzothiophene > 5-methylbenzothiophene > benzothiophene >> dibenzothiophene. The alkyl benzothiophenes with more alkyl substituents have higher oxidation reactivity. In real JP-8 fuel, 2,3-dimethylbenzothiophene was found to be the most refractory sulfur compound to be oxidized. The catalytic oxidation of the sulfur compounds to form the corresponding sulfones and/or sulfoxides improved significantly the adsorptivity of the sulfur compounds on activated carbon, because the activated carbon has higher adsorptive affinity for the sulfones and sulfoxides than thiophenic compounds due to the higher polarity of the former. The remarkable advantages of the developed ODS method are that the ODS can be run in the presence of O{sub 2} at ambient condition without using peroxides and aqueous solvent and thus without involving the biphasic oil-aqueous-solution system. (author)

  1. Reaction kinetics of upgrading coal-derived liquid. Sekitan ekikayu no upgrading hanno tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Yanase, H.; Kameoka, T. (Catalysts and Chemicals Industries Co. Ltd., Tokyo (Japan)); Sato, T.; Yoshimura, Y.; Shimada, H.; Matsubayashi, N.; Nishijima, A. (National Chemical Laboratory for Industry, Tsukuba (Japan))

    1990-11-29

    It is cosidered effective for upgrading coal-derived oil to conduct a two-stage liquefaction comprizing hydrogenation(HY) and a dehetero reaction as the first stage and hydrocracking(HC) as the second stage. This report describes the results of developing NiMo/Al2O3 and NiW/Al2O3 supported on alumina carrier with a controlled pore structure for the first-stage reaction as belonging to Ni-based catalysts having a higher HY activity between Ni and Co and investigating batch reactions using model compounds and the reaction characteristics of liquefied oil using a circulation type apparatus. The comparison of fundamental performance between NiMo catalyst and NiW catalyst showed that the HY activity is higher in the latter and the HC activity is higher in the former. It turned out that the hydrogenation-denitriding activity depends on HY activity in the low pressure of the circulation process and on HC activity in the high pressure of the batch process. Both catalysts have high hydrogenation capability in the upgrading of liquefied oil. 2 refs., 7 figs.

  2. Photo-stability of a-Si solar cells fabricated by “Liquid-Si printing method” and treated with catalytic generated atomic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, Hiroko, E-mail: murayama.hiroko5@jp.panasonic.com [Device Solutions Center, Panasonic Corporation, 3-1-1 Yagumo-naka-machi, Moriguchi City, Osaka 570-8501 (Japan); Ohyama, Tatsushi; Yoshida, Isao; Terakawa, Akira [Device Solutions Center, Panasonic Corporation, 3-1-1 Yagumo-naka-machi, Moriguchi City, Osaka 570-8501 (Japan); Masuda, Takashi [Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292 (Japan); JST-ERATO Shimoda Nano-Liquid Process Project, 1-1 Asahidai, Nomi City, Ishikawa 923-1292 (Japan); Ohdaira, Keisuke [Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292 (Japan); Shimoda, Tatsuya [Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi City, Ishikawa 923-1292 (Japan); JST-ERATO Shimoda Nano-Liquid Process Project, 1-1 Asahidai, Nomi City, Ishikawa 923-1292 (Japan)

    2015-01-30

    The film properties and solar cell performances of hydrogenated amorphous silicon (a-Si:H) fabricated by a newly developed non-vacuum process “Liquid-Si printing method” were systematically investigated by comparing to the conventional plasma-chemical vapor deposition method. The as-printed a-Si:H films showed relatively high Urbach-tail characteristic energy (E{sub ch}), high [Si–H{sub 2}]/[Si–H], and low photoconductivity (~ 10{sup −7} S/cm). However, the [Si–H{sub 2}]/[Si–H] decreased, and the photoconductivity was improved to the device grade level (~ 10{sup −5} S/cm) after appropriate catalytic-generated atomic hydrogen treatment. It was also found that the light-induced degradation of the photoconductivity and solar cell efficiency of the printed samples were less than half of the conventional a-Si:H case.

  3. Photo-stability of a-Si solar cells fabricated by “Liquid-Si printing method” and treated with catalytic generated atomic hydrogen

    International Nuclear Information System (INIS)

    The film properties and solar cell performances of hydrogenated amorphous silicon (a-Si:H) fabricated by a newly developed non-vacuum process “Liquid-Si printing method” were systematically investigated by comparing to the conventional plasma-chemical vapor deposition method. The as-printed a-Si:H films showed relatively high Urbach-tail characteristic energy (Ech), high [Si–H2]/[Si–H], and low photoconductivity (~ 10−7 S/cm). However, the [Si–H2]/[Si–H] decreased, and the photoconductivity was improved to the device grade level (~ 10−5 S/cm) after appropriate catalytic-generated atomic hydrogen treatment. It was also found that the light-induced degradation of the photoconductivity and solar cell efficiency of the printed samples were less than half of the conventional a-Si:H case

  4. Comparison of in-vitro and in-vivo studies with coal liquids from the SRC-II process

    Energy Technology Data Exchange (ETDEWEB)

    Mahlum, D.D.; Frazier, M.E.; Pelroy, R.A.; Renne, R.A.

    1983-09-01

    Coal liquids obtained from the SRC-II process and fractions prepared from these liquids have been assayed in a number of in vivo and in vitro systems for biological activity. The in vitro systems includes: (1) the standard Ames Salmonella typhimurium reverse mutation assay, (2) the S. typhimurium fluctuation test; (3) forward mutation assay in S. typhimurium (8-Ag) test; (4) prophage induction (INDUCTEST); (5) Syrian hamster ovary (SHE) cell transformation assay; and (6) Chinese hamster ovary (CHO) cell mutation assay. In addition, both initiation/promotion (I/P) and chronic skin-painting assays were used as measures of tumorigenesis. In general, materials shown to be carcinogenic in the chronic skin-painting assay were also positive in the other assays. The failure of the Ames assay to respond to the neutral polycyclic aromatic hydrocarbon (PAH) fraction of SRC-II heavy distillate (HD) was a notable exception. Quantitatively, the Ames assay was more sensitive to nitrogen-containing compounds (particularly primary aromatic amines) and less sensitive to mixtures of PAH. The mammalian systems, both in vitro and in vivo, showed greater responses to the neutral PAH than to the nitrogen-containing compounds. Activity in all biological systems increased with increasing boiling point of the material tested. The I/P assay ranked the materials studied in the same order as did the chronic skin-painting assay; however, the results of the two assays diverged quantitatively, particularly for certain distillate cuts. Despite the lack of quantitative agreement between the in vitro microbial and in vivo skin-painting assays, the in vitro assays remain valuable screening tools for complex mixtures. Sufficient information now exists to qualify the use of the in vitro assays for complex mixtures and to increase their reliability.

  5. Process analysis of pressurized oxy-coal power cycle for carbon capture application integrated with liquid air power generation and binary cycle engines

    International Nuclear Information System (INIS)

    Highlights: • We model a 573 MW pressurized oxy-coal combustion with supercritical steam cycle. • A 126 MW liquid air power plant was integrated to utilize the nitrogen stream. • We used organic Rankine cycle to recover heat from compressors. • The model was analysed for with and without carbon capture consideration. • Efficiency increase of 12–15% was achieved due to integration and heat recovery. - Abstract: In this paper, the thermodynamic advantage of integrating liquid air power generation (LAPG) process and binary cycle waste heat recovery technology to a standalone pressurized oxy-coal combustion supercritical steam power generation cycle is investigated through modeling and simulation using Aspen Plus® simulation software version 8.4. The study shows that the integration of LAPG process and the use of binary cycle heat engine which convert waste heat from compressor exhaust to electricity, in a standalone pressurized oxy-coal combustion supercritical steam power generation cycle improves the thermodynamic efficiency of the pressurized oxy-coal process. The analysis indicates that such integration can give about 12–15% increase in thermodynamic efficiency when compared with a standalone pressurized oxy-coal process with or without CO2 capture. It was also found that in a pressurized oxy-coal process, it is better to pump the liquid oxygen from the cryogenic ASU to a very high pressure prior to vapourization in the cryogenic ASU main heat exchanger and subsequently expand the gaseous oxygen to the required combustor pressure than either compressing the atmospheric gaseous oxygen produced from the cryogenic ASU directly to the combustor pressure or pumping the liquid oxygen to the combustor pressure prior to vapourization in the cryogenic ASU main heat exchanger. The power generated from the compressor heat in the flue gas purification, carbon capture and compression unit using binary cycle heat engine was also found to offset about 65% of the

  6. Direct coal liquefaction using iron-titanium hydride as a hydrogen distribution and catalytic material. Yearly report No. 1, September 1, 1984-August 31, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.E. Jr.

    1985-09-29

    During this year the experimental apparatus was completed after substantial delays by the manufacturer and eight direct coal liquefaction experiments were accomplished. These experiments have produced conversion and selectivity data on samples of Utah coal slurried in tetralin and catalyzed using iron-titanium hydride. Hydrogen loading of the alloy, catalyst particle size, catalyst concentration, coal particle size, operating temperatures for alloy addition and liquefaction without the catalysts present, have all been studied during these experiments. Conversions as high as 61% DAF in 30 min have been recorded at 500/sup 0/F and 500 psia. Product selectivities favor the oil fraction during the initial phase of the reaction, but as the reaction proceeds the heavier fractions are observed to increase at the expense of the oil fraction. We are currently working on a kinetic model in an effort to predict these results. Additionally, proton NMR, fractional distillation, and chromatographic analyses are currently being performed on the recovered product. We have completed the study of Utah coal and are moving on to samples of Kentucky and Alabama coals after a minor modification of the experimental apparatus is completed. Equipment manufacture, delivery, and installation delays, totaling over 6 months, greatly reduced the time available for research, making a 6 month no cost extension necessary. The extended time will permit completion of the proposed research tasks. 10 figs., 8 tabs.

  7. Hydrogen production from co-gasification of coal and biomass in supercritical water by continuous flow thermal-catalytic reaction system

    Institute of Scientific and Technical Information of China (English)

    YAN Qiuhui; GUO Liejin; LIANG Xing; ZHANG Ximin

    2007-01-01

    Hydrogen is a clean energy carrier.Converting abundant coal sources and green biomass energy into hydrogen effectively and without any pollution promotes environmental protection.The co-gasification performance of coal and a model compound of biomass,carboxymethylcellulose (CMC)in supercritical water (SCW),were investigated experimentally.The influences of temperature,pressure and concentration on hydrogen production from co-gasification of coal and CMC in SCW under the given conditions (20-25 MPa,650℃,15-30 s) are discussed in detail.The experimental results show that H2,CO2 and CH4 are the main gas products,and the molar fraction of hydrogen reaches in excess of 60%.The higher pressure and higher CMC content facilitate hydrogen production;production is decreased remarkably given a longer residence time.

  8. Coal desulfurization during the combustion of coal/oil/water emulsions: an economic alternative clean liquid fuel. Interim report, October 1978-November 15, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Dooher, J. P.

    1979-11-15

    The rheological and combustion properties of coal/water/oil mixtures have been investigated. In addition the use of alkaline additives to remove the sulfur oxide gases has been studied. Results on stability and pumpability indicate that mixtures of 50% by weight of coal and stoichiometric concentrations of alkaline absorbents are pumpable. Correlation between viscometer data and pumping data follows a power law behavior for these mixtures. Thermal efficiencies are about the same as for pure oil. Combustion efficiencies are approximately 97%. It is possible to remove in a small scale combustion from 50 to 80% of the sulfur dioxide gases.

  9. Influence of different preparation conditions on catalytic activity of ag /gama-al/sub 2/o/sub 3/ for hydrogenation of coal slime pyrolysis

    International Nuclear Information System (INIS)

    This paper, introducing variable conditional factors with Ag/AL/sub 2/O/sub 3/ as catalyst, selects five variables to investigate the influences of experimental conditions on Ag/Al2O/sub 3/ catalytic activity and define the optimal process conditions. These variables include Ag loading amount, calcinations temperature, calcinations time, reduction temperature, reduction time. X ray diffraction (XRD), hydrogen temperature-programmed reduction (TPR), X ray photoelectron spectrum (XPS) and scanning electron microscopy (SEM) were utilized to characterize the catalytic activity of Ag/-Al/sub 2/O/sub 3/, active center structure and state and those of carrier were emphatically studied, In the meantime the effects of active center and carrier on catalytic activity are studied. The results showed that: (1) In the range of 600 degree C-900 degree C, the catalytic activity of Ag/-Al/sub 2/O/sub 3/ with different loading showed little difference when changing loading amount, in the range of 900 degree C-1100 degree C, when the loading was 5%, the catalytic activity was very high; From the XRD and SEM characterizations, when the loading was 5%, it showed strong intensity diffraction peak of Ag crystal, crystal Ag is the most important activity center to promote hydrogen yield. (2) the catalytic activity of Ag/-Al/sub 2/O/sub 3/ at 450 degree C was considerably higher than that at 400 degree C and 500 degree C. By BET, XRD and SEM characterization, it can be seen, the diffraction peaks intensity of Ag crystal at 450 degree C is higher and sharper than that at 400 degree C and 500 degree C and with the increase of calcinations temperature, the specific surface area of catalysts also increased. (3) In the range of 600 degree C - 1000 degree C, the effects of calcinations time can be negligible, while, with temperature higher than 1000 degree C, 4-hour-calcinations-time catalyst exhibits a more noticeable catalytic activity than 3-hour and 5-hour catalyst do; From the XRD

  10. Illinois coal/RDF coprocessing to produce high quality solids and liquids. [Quarterly] technical report, December 1, 1993--February 28, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hippo, E.J.; Palmer, S.R.; Blankenship, M. [Southern Illinois Univ., Carbondale, IL (United States)

    1994-06-01

    It is the aim of this study to provide information pertinent to the development of a coal/RDF pyrolysis process capable of economically creating valuable products from high sulfur Illinois coal. This project will be carried out in a systematic manner. First, samples will be properly selected prepared, preserved and characterized. Then coals, various plastics, cellulose, and a high quality RDF will be pyrolyzed, steam pyrolyzed, hydro-pyrolyzed, and liquefied at various conditions. Next, blends of coal with various RDF components will be reacted under the same conditions. From this work synergistic effects will be identified and process parametric studies will be conducted on the appropriate mixtures and single components. Product quality and mass balances will be obtained on systems showing promise. Preliminary pyrolysis work will be conducted on a TGA. Over 100 microreactor experiments have been performed and the acquisition of products for analysis has been achieved. Interactions occur between 400--450{degrees}C. The use of higher temperatures should be avoided if liquids are the.desired product. Although, these results are preliminary they are also very encouraging.

  11. Method to produce nitrogen-containing powdered coal as electrode material for electrochemical cells

    Energy Technology Data Exchange (ETDEWEB)

    Luft, G.; Richter, G.; Weidlich, E.

    1977-09-01

    Coal of improved catalytic activity and increased consistency by carbonization of nitrogen-containing organic polymers is produced according to the invention in the following manner: the polymer, preferably polyacryl nitrile, is fully dissolved in a concentrated solution of an ammonium, alkali, zinc or iron halide or thiocyanate. The resulting highly viscous liquid is carbonized in the temperature range of 700-1200/sup 0/C. The product obtained is then ground.

  12. Numerical simulation of catalytic methanation process of producing natural gas using coal%煤制天然气过程催化甲烷化的数值模拟

    Institute of Scientific and Technical Information of China (English)

    王翠苹; 李刚; 李厚洋; 姜旭

    2015-01-01

    两步法煤制天然气的第一步反应主要生产粗煤气CO和 H2,调整CO与 H2的比值后进行甲烷化反应。在计算软件HSC中分别控制反应温度、压力和CO与H2比例,计算了甲烷化产物变化规律,得到第二步甲烷化反应最适条件是1.8 M Pa、700℃;通过在计算软件FL U EN T 中进行一步对催化甲烷化反应的模拟,0.1 M Pa、720℃时的催化甲烷化即可达到无催化高压条件的甲烷摩尔产率,甲烷化产率最高时对应的n(H2)∶ n(C O )比值为1.8。%The main products from the first step reaction of the two‐step coal gasification are CO and H2 ,and the ratio of CO to H2 can be adjusted for the next methanation reaction step .A computing software HSC was used to compute the methanation product changing trend by controlling the reaction temperature , pressure and CO/H2 ratio , and the optimum condition for the second step reaction was derived as 1 .8 MPa and 700 ℃ .The catalytic methanation reaction was simulated using commercial software Fluent ,and the coal gasification and methanation reaction occurred successively in a one‐step reactor .The methanation productivity of catalytic methanation under the condition of 720 ℃ and 0 .1 MPa is comparable to the high pressure production without catalytic reaction .The CO/H2 ratio of is up to 1 .8 w hen the highest methanation yield is achieved .

  13. Catalytic Transformation of Fructose and Sucrose to HMF with Proline-Derived Ionic Liquids under Mild Conditions

    Directory of Open Access Journals (Sweden)

    Hu Li

    2014-01-01

    Full Text Available L-Proline derived ionic liquids (ILs used as both solvent and catalyst were efficient for transformation of fructose and sucrose to 5-hydroxymethylfurfural (HMF in the presence of water. Response surface methodology (RSM was employed to optimize fructose dehydration process, and a maximum HMF yield of 73.6% could be obtained at 90°C after 50 min. The recycling of the IL exhibited an almost constant activity during five successive trials, and a possible reaction mechanism for the dehydration of fructose to HMF was proposed.

  14. Hydrogenation of nitriles on a well-characterized nickel surface: From surface science studies to liquid phase catalytic activity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gardin, D.E.

    1993-12-01

    Nitrile hydrogenation is the most commonly used method for preparing diverse amines. This thesis is aimed at the mechanism and factors affecting the performance of Ni-based catalysts in nitrile hydrogenations. Surface science techniques are used to study bonding of nitriles and amines to a Ni(111) surface and to identify surface intermediates. Liquid-phase hydrogenations of cyclohexene and 1-hexene on a Pt foil were carried out successfully. Finally, knowledge about the surface structure, surface chemical bond, dynamics of surface atoms (diffusion, growth), and reactivity of metal surfaces from solid-gas interface studies, is discussed.

  15. Ultrasound promoted catalytic liquid-phase dehydrogenation of isopropanol for Isopropanol-Acetone-Hydrogen chemical heat pump.

    Science.gov (United States)

    Xu, Min; Xin, Fang; Li, Xunfeng; Huai, Xiulan; Liu, Hui

    2015-03-01

    The apparent kinetic of the ultrasound assisted liquid-phase dehydrogenation of isopropanol over Raney nickel catalyst was determined in the temperature range of 346-353 K. Comparison of the effects of ultrasound and mechanical agitation on the isopropanol dehydrogenation was investigated. The ultrasound assisted dehydrogenation rate was significantly improved when relatively high power density was used. Moreover, the Isopropanol-Acetone-Hydrogen chemical heat pump (IAH-CHP) with ultrasound irradiation, in which the endothermic reaction is exposure to ultrasound, was proposed. A mathematical model was established to evaluate its energy performance in term of the coefficient of performance (COP) and the exergy efficiency, into which the apparent kinetic obtained in this work was incorporated. The operating performances between IAH-CHP with ultrasound and mechanical agitation were compared. The results indicated that the superiority of the IAH-CHP system with ultrasound was present even if more than 50% of the power of the ultrasound equipment was lost.

  16. Coal 99

    International Nuclear Information System (INIS)

    in equipment for burning pellets instead of coal. In Linkoeping waste of rubber is mixed with coal. Also Soederenergi AB has rebuilt their three coal boilers and replaced 100 % of the coal by peat and wood fuels. Coal is a reserve fuel. Several co-generation plants like Linkoeping, Norrkoeping, Uppsala and Oerebro use both coal and forest fuels. The use of coal is then concentrated to the electricity production. The average price of steam coal imported in Sweden in 1998 was 370 SEK/ton or the same as in 1997. For the world, the average import price fell about 6 USD/ton to 32 USD/ton. The price fall was concentrated to the 4th quarter. The prices have continued to fall during 1999 as a result of the crisis in Asia but are now stabilising as a result of increasing oil prices. All Swedish plants meet their emission limits of dust, SO2 and NOx, given by county administrations or concession boards. The co-generation plants have all some sort of SO2-removal system. Mostly used is the wet-dry method. The biggest co-generation plant, in Vaesteraas, has recently invested in a catalytic NOx-cleaning system type SCR, which is reducing the emission level 80-90 %. Most other plants are using low NOx- burners or injection systems type SNCR, based on ammonium or urea, which are reducing the emissions 50-70 %. A positive effect of the recently introduced NOx-duties is a 60 % reduction compared to some years ago, when the duties were introduced. World hard coal production was about 3 700 tons in 1998, a minor decrease compared to 1997. The trade, however, has increased about 3 % to 520 mill tons. The coal demand in the OECD-countries has increased about 1,7 % yearly during the last ten years. The coal share of the energy supply is about 20% in the OECD-countries and 27% in the whole world. Several sources estimate a continuing growth during the next 20 years in spite of an increasing use of natural gas and nuclear power. The reason is a strong demand for electrical power in the Asian

  17. Phase Behaviour of 1-Ethyl-3-methylimidazolium Thiocyanate Ionic Liquid with Catalytic Deactivated Compounds and Water at Several Temperatures: Experiments and Theoretical Predictions

    Directory of Open Access Journals (Sweden)

    Ramalingam Anantharaj

    2011-01-01

    Full Text Available Density, surface tension and refractive index were determined for the binary mixture of catalytic deactivated compounds with 1-ethyl-3-methylimidazolium thiocyanate {[EMIM][SCN]} at temperature of (298.15 to 323.15 K. For all the compounds with ILs, the densities varied linearly in the entire mole fraction with increasing temperature. From the obtained data, the excess molar volume and deviation of surface tension and refractive index have been calculated. A strong interaction was found between similar (cation-thiophene or cation-pyrrole compounds. The interaction of IL with dissimilar compounds such as indoline and quinoline and other multiple ring compounds was found to strongly depend on the composition of IL at any temperatures. For the mixtures, the surface tension decreases in the order of: thiophene > quinoline > pyridine > indoline > pyrrole > water. In general from the excess volume studies, the IL-sulphur/nitrogen mixture has stronger interaction as compared to IL-IL, thiophene-thiophene or pyrrole-pyrrole interaction. The deviation of surface tension was found to be inversely proportional to deviation of refractive index. The quantum chemical based COSMO-RS was used to predict the non-ideal liquid phase activity coefficient for all mixtures. It indicated an inverse relation between activity coefficient and excess molar volumes.

  18. Bronsted imidazolium ionic liquids: Synthesis and comparison of their catalytic activities as pre-catalyst for biodiesel production through two stage process

    Energy Technology Data Exchange (ETDEWEB)

    Elsheikh, Y.A., E-mail: yasirelsheikh@hotmail.co [Universiti Teknologi PETRONAS (UTP), Department of Chemical Engineering, 31750 Tronoh, Perak (Malaysia); Man, Zakaria; Bustam, M.A.; Yusup, Suzana; Wilfred, C.D. [Universiti Teknologi PETRONAS (UTP), Department of Chemical Engineering, 31750 Tronoh, Perak (Malaysia)

    2011-02-15

    In the present work, study was undertaken to prepare biodiesel via a two-step transesterification process. The high free fatty acids (FFA) value contained in the crude palm oil (CPO), which cause several problems with the straight alkaline-catalyzed, were converted to fatty acid methyl esters (FAME) before introducing KOH-catalyzed transesterification step. In order to evaluate their catalytic activities, three Bronsted acidic imidazoliums were investigated. These ionic liquids (ILs) appeared to be promising candidates to replace conventional acidic catalyst for biodiesel production due to their unique properties. Among them, a longer side chains 1-butyl-3-methyl-imidazolium hydrogensulfate (BMIMHSO{sub 4}) was found to be more superior to the other two catalysts. Based on the experimental results, a catalyst (BIMHSO{sub 4}) concentration of 4.5 wt.%, methanol/CPO molar ratio of 12:1, a temperature of 160 {sup o}C, and agitation speed of 600 rpm provided a final CPO acid value lower than 1.0 mg KOH/CPO within 120 min. The second alkali-catalyze step was performed at agitation speed of 600 rpm, 60 {sup o}C, 1.0% KOH for 50 min. The final biodiesel product in 98.4% yield was analyzed by gas chromatography (GC). The determined physicochemical important properties of POME were confirmed with American Standards for Testing Material (ASTM).

  19. Broensted imidazolium ionic liquids: Synthesis and comparison of their catalytic activities as pre-catalyst for biodiesel production through two stage process

    Energy Technology Data Exchange (ETDEWEB)

    Elsheikh, Y.A.; Man, Zakaria; Bustam, M.A.; Yusup, Suzana; Wilfred, C.D. [Universiti Teknologi PETRONAS (UTP), Department of Chemical Engineering, 31750 Tronoh, Perak (Malaysia)

    2011-02-15

    In the present work, study was undertaken to prepare biodiesel via a two-step transesterification process. The high free fatty acids (FFA) value contained in the crude palm oil (CPO), which cause several problems with the straight alkaline-catalyzed, were converted to fatty acid methyl esters (FAME) before introducing KOH-catalyzed transesterification step. In order to evaluate their catalytic activities, three Broensted acidic imidazoliums were investigated. These ionic liquids (ILs) appeared to be promising candidates to replace conventional acidic catalyst for biodiesel production due to their unique properties. Among them, a longer side chains 1-butyl-3-methyl-imidazolium hydrogensulfate (BMIMHSO{sub 4}) was found to be more superior to the other two catalysts. Based on the experimental results, a catalyst (BIMHSO{sub 4}) concentration of 4.5 wt.%, methanol/CPO molar ratio of 12:1, a temperature of 160 C, and agitation speed of 600 rpm provided a final CPO acid value lower than 1.0 mg KOH/CPO within 120 min. The second alkali-catalyze step was performed at agitation speed of 600 rpm, 60 C, 1.0% KOH for 50 min. The final biodiesel product in 98.4% yield was analyzed by gas chromatography (GC). The determined physicochemical important properties of POME were confirmed with American Standards for Testing Material (ASTM). (author)

  20. Study on the catalytic performance of laccase in the hydrophobic ionic liquid-based bicontinuous microemulsion stabilized by polyoxyethylene-type nonionic surfactants.

    Science.gov (United States)

    Yu, Xinxin; Li, Qian; Wang, Miaomiao; Du, Na; Huang, Xirong

    2016-02-14

    To formulate a compatible green medium for the conversion of a hydrophobic substrate by a hydrophilic enzyme, we investigated the phase behavior of pseudo ternary hydrophobic ionic liquid (HIL)/buffer/polyoxyethylene-type nonionic surfactant (CnEm)/n-alcohol system and the effects of the components on the formulation of the HIL-based bicontinuous microemulsion. It is found that small head group of the surfactant, high concentration of n-alcohol (medium/long alkyl chain) and low cohesive energy density of the HIL result in low phase transition temperature. In the CnEm stabilized compatible bicontinuous microemulsion, the kinetics of laccase catalyzed oxidation of 2,6-dimethoxyphenol were also investigated. It is found that in addition to temperature, n-alcohol is the key parameter affecting the catalytic performance of laccase, and the optimum n-alcohol depends on the type of HIL as an oil phase. All the kinetic parameters, such as Km, kcat, kcat/Km, and Ea (apparent activation energy), indicate that the bicontinuous microemulsion consisting of [Omim]NTf2/buffer/CnEm/n-hexanol is a suitable medium for the laccase-catalyzed reaction. To the best of our knowledge, this is the first report on the formulation of HIL-based bicontinuous microemulsion for enzyme catalysis. PMID:26686358

  1. Novel approach for extinguishing large-scale coal fires using gas-liquid foams in open pit mines.

    Science.gov (United States)

    Lu, Xinxiao; Wang, Deming; Qin, Botao; Tian, Fuchao; Shi, Guangyi; Dong, Shuaijun

    2015-12-01

    Coal fires are a serious threat to the workers' security and safe production in open pit mines. The coal fire source is hidden and innumerable, and the large-area cavity is prevalent in the coal seam after the coal burned, causing the conventional extinguishment technology difficult to work. Foams are considered as an efficient means of fire extinguishment in these large-scale workplaces. A noble foam preparation method is introduced, and an original design of cavitation jet device is proposed to add foaming agent stably. The jet cavitation occurs when the water flow rate and pressure ratio reach specified values. Through self-building foaming system, the high performance foams are produced and then infused into the blast drilling holes at a large flow. Without complicated operation, this system is found to be very suitable for extinguishing large-scale coal fires. Field application shows that foam generation adopting the proposed key technology makes a good fire extinguishment effect. The temperature reduction using foams is 6-7 times higher than water, and CO concentration is reduced from 9.43 to 0.092‰ in the drilling hole. The coal fires are controlled successfully in open pit mines, ensuring the normal production as well as the security of personnel and equipment. PMID:26370817

  2. Process analysis for polygeneration of Fischer-Tropsch liquids and power with CO{sub 2} capture based on coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Ge-wen Yu; Yuan-yuan Xu; Xu Hao; Yong-wang Li; Guang-qi Liu [Chinese Academy of Sciences, Taiyuan (China). State Key Laboratory of Coal Conversion

    2010-05-15

    This paper designs four cases to investigate the performances of the polygeneration processes, which depend on the commercially ready technology to convert coal to liquid fuels (CTL) and electricity with CO{sub 2} sequestration. With Excel-Aspen Plus based models, mass and energy conversion are calculated in detail. The simulation shows that the thermal efficiency is down with the synfuels yield decrease though the electricity generation is increased. It also suggests that the largest low heat value (LHV) loss of coal occurs in the gasification unit. From the comparison of the four cases, prominent differences of coal energy transition appear in water-gas shift (WGS) units, Fischer-Tropsch (FT) synthesis and combined cycle processes. CO{sub 2} capture and vent are discussed and the results show that the vent amount of CO{sub 2} increases with the increase of percentage of the syngas going to produce electricity. The results also show that the ratio of carbon captured to total carbon increases from 58% to 93% which is an important contribution to cutting down the greenhouse gas vent. 40 refs., 3 figs., 4 tabs.

  3. Novel process and catalytic materials for converting CO2 and H2 containing mixtures to liquid fuels and chemicals.

    Science.gov (United States)

    Meiri, Nora; Dinburg, Yakov; Amoyal, Meital; Koukouliev, Viatcheslav; Nehemya, Roxana Vidruk; Landau, Miron V; Herskowitz, Moti

    2015-01-01

    Carbon dioxide and water are renewable and the most abundant feedstocks for the production of chemicals and fungible fuels. However, the current technologies for production of hydrogen from water are not competitive. Therefore, reacting carbon dioxide with hydrogen is not economically viable in the near future. Other alternatives include natural gas, biogas or biomass for the production of carbon dioxide, hydrogen and carbon monoxide mixtures that react to yield chemicals and fungible fuels. The latter process requires a high performance catalyst that enhances the reverse water-gas-shift (RWGS) reaction and Fischer-Tropsch synthesis (FTS) to higher hydrocarbons combined with an optimal reactor system. Important aspects of a novel catalyst, based on a Fe spinel and three-reactor system developed for this purpose published in our recent paper and patent, were investigated in this study. Potassium was found to be a key promoter that improves the reaction rates of the RWGS and FTS and increases the selectivity of higher hydrocarbons while producing mostly olefins. It changed the texture of the catalyst, stabilized the Fe-Al-O spinel, thus preventing decomposition into Fe3O4 and Al2O3. Potassium also increased the content of Fe5C2 while shifting Fe in the oxide and carbide phases to a more reduced state. In addition, it increased the relative exposure of carbide iron on the catalysts surface, the CO2 adsorption and the adsorption strength. A detailed kinetic model of the RWGS, FTS and methanation reactions was developed for the Fe spinel catalyst based on extensive experimental data measured over a range of operating conditions. Significant oligomerization activity of the catalyst was found. Testing the pelletized catalyst with CO2, CO and H2 mixtures over a range of operating conditions demonstrated its high productivity to higher hydrocarbons. The composition of the liquid (C5+) was found to be a function of the potassium content and the composition of the feedstock

  4. Influence of catalytic activity and reaction conditions on the product distribution in coal liquefaction; Sekitan ekikayu no seiseibutsu bunpu ni taisuru shokubai kassei oyobi hanno joken no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Hasuo, H.; Sakanishi, K.; Mochida, I. [Kyushu University, Fukuoka (Japan). Institute of Advanced Material Study

    1996-10-28

    The NiMo sulfide supported on Ketjen Black (KB) was more effective and yielded lighter oil products containing light fractions with their boiling point below 300{degree}C during the two stage liquefaction combining low temperature and high temperature hydrogenation the conventional NiMo/alumina catalyst and FeS2 catalyst. Although the NiMo/alumina yielded increased oil products during the two stage liquefaction, the lighter oil fractions did not increase and the heavier fractions increased mainly. This suggests that the hydrogenation of aromatic rings and successive cleavage of the rings are necessary for producing the light oil, which is derived from the sufficient hydrogenation of aromatic rings using catalysts. For the two stage reaction with NiMo/KB catalyst, it was considered that sufficient hydrogen was directly transferred to coal molecules at the first stage of the low temperature reaction, which promoted the solubilization of coal and the successive hydrogenation at the high temperature reaction. Thus, high activity of the catalyst must be obtained. It is expected that further high quality distillates can be produced through the optimization of catalysts and solvents at the two stage reaction. 1 ref., 4 figs., 1 tab.

  5. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas.

    Science.gov (United States)

    Li, Hailong; Wu, Chang-Yu; Li, Ying; Zhang, Junying

    2011-09-01

    CeO(2)-TiO(2) (CeTi) catalysts synthesized by an ultrasound-assisted impregnation method were employed to oxidize elemental mercury (Hg(0)) in simulated low-rank (sub-bituminous and lignite) coal combustion flue gas. The CeTi catalysts with a CeO(2)/TiO(2) weight ratio of 1-2 exhibited high Hg(0) oxidation activity from 150 to 250 °C. The high concentrations of surface cerium and oxygen were responsible for their superior performance. Hg(0) oxidation over CeTi catalysts was proposed to follow the Langmuir-Hinshelwood mechanism whereby reactive species from adsorbed flue gas components react with adjacently adsorbed Hg(0). In the presence of O(2), a promotional effect of HCl, NO, and SO(2) on Hg(0) oxidation was observed. Without O(2), HCl and NO still promoted Hg(0) oxidation due to the surface oxygen, while SO(2) inhibited Hg(0) adsorption and subsequent oxidation. Water vapor also inhibited Hg(0) oxidation. HCl was the most effective flue gas component responsible for Hg(0) oxidation. However, the combination of SO(2) and NO without HCl also resulted in high Hg(0) oxidation efficiency. This superior oxidation capability is advantageous to Hg(0) oxidation in low-rank coal combustion flue gas with low HCl concentration. PMID:21770402

  6. Effect of properties of iron compounds on the catalytic activity in direct coal liquefaction; Tetsu kagobutsu no keitai to sekitan ekika kassei

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, T.; Tazawa, K. [Mitsubishi Chemical Corp., Tokyo (Japan); Shimasaki, K. [Kobe Steel Ltd. (Japan)

    1998-08-20

    When considering merchandising scale of the coal liquefaction process, it is a preliminary condition that metal used for its catalyst is rich in resource volume, cheap in production cost, without pollution, and so forth, and application of cheap iron ore and ferrous compounds to disposable catalyst is desired. As liquefaction activity of the iron ore was hitherto improved by its micro crushing, its mechanical crush had a limit of about 2 {mu}m in mean particle diameter. However, together with recent crushing technique, crushers with high performance were developed, and then micro crushing by sub-micron became possible industri8ally even for iron ore. In this study, three kinds of Australian iron ores such as limonite of ferric hydroxide type iron ore, pyrite of ferrous sulfide type, and hematite of ferric oxide type were micro crushed to examine coal liquefaction activity and hydrogenation reaction activity of 1-methyl naphthalene (1-MN) and also relationship between properties and activity of catalyst for the latter before and after reaction. 11 refs., 8 figs., 5 tabs.

  7. Illinois coal/RDF coprocessing to produce high quality solids and liquids. Technical report, March 1, 1994--May 31, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hippo, E.J.; Palmer, S.R.; Blankenship, M. [Southern Illinois Univ., Carbondale, IL (United States)

    1994-09-01

    It is the aim of this study to provide information pertinent to the development of a coal/RDF pyrolysis process capable of economically creating valuable products from high sulfur Illinois coal. This project will be carried out in a systematic manner. First, samples will be properly selected prepared, preserved and characterized. Then coals, various plastics, cellulose, and a high quality RDF will be pyrolyzed, steam pyrolyzed, hydro-pyrolyzed, and liquefied at various conditions. Next, blends of coal with various RDF components will be reacted under the same conditions. From this work, synergistic effects will be identified and process parametric studies will be conducted on the appropriate mixtures and single components. Product quality and mass balances will be obtained on systems showing promise. Preliminary pyrolysis work will be conducted on a TGA. The majority of reactions will be conducted in microautoclaves. If this research is successful, a new market for high sulfur, high mineral Illinois coal would emerge. Samples needed for this project have been obtained and sample preparation have been completed. A Perkin Elmer TGA-7 was employed to study pyrolysis. significant interactions have been observed. About 200 microreactor experiments have been performed and the acquisition of products for analysis has been achieved. Interactions occur between 400-450{degrees}C. Synergism occurs at short reaction time. High temperature and long reaction times result in higher residue yields and a loss of synergisms. Reactive species may be required to stabilize intermediate products.

  8. Influences of Different Preparation Conditions on Catalytic Activity of Ag2O-Co3O4/γ-Al2O3 for Hydrogenation of Coal Pyrolysis

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2014-01-01

    Full Text Available A series of catalysts of Ag2O-Co3O4/γ-Al2O3 was prepared by equivalent volume impregnation method. The effects of the metal loading, calcination time, and calcination temperatures of Ag and Co, respectively, on the catalytic activity were investigated. The optimum preparing condition of Ag2O-Co3O4/γ-Al2O3 was decided, and then the influence of different preparation conditions on catalytic activity of Ag2O-Co3O4/γ-Al2O3 was analyzed. The results showed the following: (1 at the same preparation condition, when silver loading was 8%, the Ag2O-Co3O4/γ-Al2O3 showed higher catalyst activity, (2 the catalyst activity had obviously improved when the cobalt loading was 8%, while it was weaker at loadings 5% and 10%, (3 the catalyst activity was influenced by different calcination temperatures of silver, but the influences were not marked, (4 the catalyst activity can be influenced by calcination time of silver, (5 different calcination times of cobalt can also influence the catalyst activity of Ag2O-Co3O4/γ-Al2O3, and (6 the best preparation conditions of the Ag2O-Co3O4/γ-Al2O3 were silver loading of 8%, calcination temperature of silver of 450°C, and calcinations time of silver of 4 h, while at the same time the cobalt loading was 8%, the calcination temperature of cobalt was 450°C, and calcination time of cobalt was 4 h.

  9. Reaction kinetics study of coal catalytic gasification in lab scale fixed bed reactor%小型固定床煤催化气化动力学研究

    Institute of Scientific and Technical Information of China (English)

    高攀; 顾松园; 钟思青; 金永明; 曹勇

    2015-01-01

    K2CO3 catalytic gasification of Neimeng brown coal was studied in a fixed bed reactor. The effects of catalyst loading, temperature, gasification agents, such as H2O and H2, and partial pressure of H2O on the carbon conversion and reaction rate were investigated. The results showed that K2CO3 could accelerated the rate of coal-steam gasification obviously, and the carbon conversion reached 70% with the addition of only 10% K2CO3 by mass at 700℃, while H2 inhibited the coal-steam gasification seriously. A kinetic reaction equation was proposed based on an n order and Langmuir-Hinshewood expression by evaluating the carbon conversion behavior. The gasification activity significantly increased with steam partial pressure. In the n order expression, the order nwas 0.87 and the activation energy was 169.2kJ/mol, and, in the L-H expression, the activation energy was 121.9kJ/mol.%以K2CO3和内蒙褐煤为研究对象,在小型固定床上考察了催化剂负载量、温度,氢气以及水蒸气分压对碳转化率和气化反应速率的影响。结果表明,K2CO3对煤焦-水蒸气气化反应有明显的催化作用,700℃,当添加10%的K2CO3,碳的转化率为70%,氢气的含量对煤焦-水蒸气的反应有明显的抑制作用,并采用n级速率方程和Langmuir-Hinshelwood速率方程考察了水蒸气分压的影响,分压提高,煤焦-水蒸气气化反应活性提高,采用n级速率方程得到煤-水蒸气气化反应级数为0.87,活化能为169.2kJ/mol;采用L-H方程得到活化能为121.9kJ/mol。

  10. Design and construction of coal/biomass to liquids (CBTL) process development unit (PDU) at the University of Kentucky Center for Applied Energy Research (CAER)

    Energy Technology Data Exchange (ETDEWEB)

    Placido, Andrew [Univ. of Kentucky, Lexington, KY (United States); Liu, Kunlei [Univ. of Kentucky, Lexington, KY (United States); Challman, Don [Univ. of Kentucky, Lexington, KY (United States); Andrews, Rodney [Univ. of Kentucky, Lexington, KY (United States); Jacques, David [Univ. of Kentucky, Lexington, KY (United States)

    2015-10-30

    This report describes a first phase of a project to design, construct and commission an integrated coal/biomass-to-liquids facility at a capacity of 1 bbl. /day at the University of Kentucky Center for Applied Energy Research (UK-CAER) – specifically for construction of the building and upstream process units for feed handling, gasification, and gas cleaning, conditioning and compression. The deliverables from the operation of this pilot plant [when fully equipped with the downstream process units] will be firstly the liquid FT products and finished fuels which are of interest to UK-CAER’s academic, government and industrial research partners. The facility will produce research quantities of FT liquids and finished fuels for subsequent Fuel Quality Testing, Performance and Acceptability. Moreover, the facility is expected to be employed for a range of research and investigations related to: Feed Preparation, Characteristics and Quality; Coal and Biomass Gasification; Gas Clean-up/ Conditioning; Gas Conversion by FT Synthesis; Product Work-up and Refining; Systems Analysis and Integration; and Scale-up and Demonstration. Environmental Considerations - particularly how to manage and reduce carbon dioxide emissions from CBTL facilities and from use of the fuels - will be a primary research objectives. Such a facility has required significant lead time for environmental review, architectural/building construction, and EPC services. UK, with DOE support, has advanced the facility in several important ways. These include: a formal EA/FONSI, and permits and approvals; construction of a building; selection of a range of technologies and vendors; and completion of the upstream process units. The results of this project are the FEED and detailed engineering studies, the alternate configurations and the as-built plant - its equipment and capabilities for future research and demonstration and its adaptability for re-purposing to meet other needs. These are described in

  11. Illinois coal/RDF coprocessing to produce high quality solids and liquids; [Quarterly] technical report, September 1--November 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hippo, E.J.; Palmer, S.R.

    1994-03-01

    It is the aim of this study to provide information pertinent to the development of a coal/RDF pyrolysis process capable of economically creating valuable products from high sulfur Illinois coal. This project will be carried out in a systematic manner. First, samples will be properly selected prepared, preserved and characterized. Then coals, various plastics, cellulose, and a high quality RDF will be pyrolyzed, steam pyrolyzed, hydro-pyrolyzed, and liquefied at various conditions. Next, blends of coal with various RDF components will be reacted under the same conditions. From this work synergistic effects will be identified and process parametric studies will be conducted on the appropriate mixtures and single components. Product quality and mass balances will be obtained on systems showing promise. Preliminary pyrolysis work will be conducted on a TGA. A Perkin Elmer TGA-7 Thermogravimetric Analyzer was employed to study pyrolysis. Significant interactions have been observed. Very preliminary microreactor experiments have been performed and the acquisition of some products for analysis has been achieved. Although, these results are preliminary they are also very encouraging.

  12. Economic and environmental evaluation of coal-and-biomass-to-liquids-and-electricity plants equipped with carbon capture and storage

    Science.gov (United States)

    Among various clean energy technologies, one innovative option for reducing greenhouse gas (GHG) emissions involves pairing carbon capture and storage (CCS) with the production of synthetic fuels and electricity from co-processed coal and biomass. With a relatively pure CO2 strea...

  13. Iodine-catalyzed coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, J.T.; Duffield, J.E.; Davidson, M.G. (Amoco Oil Company, Naperville, IL (USA). Research and Development Dept.)

    Coals of two different ranks were liquefied in high yields using catalytic quantities of elemental iodine or iodine compounds. Iodine monochloride was found to be especially effective for enhancing both coal conversion and product quality. It appears that enhancement in coal conversion is due to the unique ability of iodine to catalyze radical-induced bond scission and hydrogen addition to the coal macromolecule or coal-derived free radicals. The starting iodine can be fully accounted for in the reaction products as both organic-bound and water-soluble forms. Unconverted coal and the heavy product fractions contain the majority of the organic-bound iodine. The results of iodine-catalyzed coal reactions emphasize the need for efficient hydrogen atom transfer along with bond scission to achieve high conversion and product quality. 22 refs., 12 tabs.

  14. Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, Oleg

    2013-12-31

    Under the cooperative agreement program of DOE and funding from Wyoming State’s Clean Coal Task Force, Western Research Institute and Thermosolv LLC studied the direct conversion of Wyoming coals and coal-lignin mixed feeds into liquid fuels in conditions highly relevant to practice. During the Phase I, catalytic direct liquefaction of sub-bituminous Wyoming coals was investigated. The process conditions and catalysts were identified that lead to a significant increase of desirable oil fraction in the products. The Phase II work focused on systematic study of solvothermal depolymerization (STD) and direct liquefaction (DCL) of carbonaceous feedstocks. The effect of the reaction conditions (the nature of solvent, solvent/lignin ratio, temperature, pressure, heating rate, and residence time) on STD was investigated. The effect of a number of various additives (including lignin, model lignin compounds, lignin-derivable chemicals, and inorganic radical initiators), solvents, and catalysts on DCL has been studied. Although a significant progress has been achieved in developing solvothermal depolymerization, the side reactions – formation of considerable amounts of char and gaseous products – as well as other drawbacks do not render aqueous media as the most appropriate choice for commercial implementation of STD for processing coals and lignins. The trends and effects discovered in DCL point at the specific features of liquefaction mechanism that are currently underutilized yet could be exploited to intensify the process. A judicious choice of catalysts, solvents, and additives might enable practical and economically efficient direct conversion of Wyoming coals into liquid fuels.

  15. Catalytic pyrolysis of Huang Tu Miao coal: TG-FTIR study%应用TG-FTIR技术研究黄土庙煤催化热解特性

    Institute of Scientific and Technical Information of China (English)

    李爽; 陈静升; 冯秀燕; 杨斌; 马晓迅

    2013-01-01

    用浸渍法制备过渡金属氧化物担载型催化剂MOx/USY(M=Co、Mo、Co-Mo),用热重红外联用技术考察了MOx/USY催化剂对黄土庙(HTM)煤热解失重特性和热解产物生成规律的影响.热重实验结果表明,MOx/USY催化剂可使HTM煤热解的二次脱气条件更为温和,热解峰温分别提前14、23和9℃.动力学分析结果表明,MOx/USY催化剂可降低HTM煤样热解的活化能.FT-IR研究表明,MOx/USY催化剂可有效改善HTM煤热解产物的组成和分布,CoOx/USY催化剂能显著提高HTM煤热解产物中高热值气体(CO、CH4)和轻质芳烃以及脂肪烃类化合物的含量;MoOx/USY催化剂没有明显改善HTM煤热解产物组成和分布;MoOx-CoOx/USY催化剂可促进CO、CH4、轻质芳烃和脂肪烃类化合物的生成,却使热解产物的生成向高温区移动,说明USY负载的不同过渡金属氧化物对煤样热解行为和热解产物有较大影响.%MOx/USY catalysts ( M = Co, Mo, Co-Mo) were prepared by incipient wetness impregnation method. Catalytic pyrolysis of Huang Tu Miao (HTM) coal was investigated and the pyrolysis products were examined by TG-FTIR technique. TG results indicate that MOx/USY catalysts are effective in lowering degasifiction temperature (14, 23 and 9℃ respectively) in HTM coal pyrolysis. Kinetic calculations show that MOx/USY catalysts are effective in lowing activation energy of pyrolysis. FT-IR analyses show that the MOX/ USY catalysts are effective in manipulating coal pyrolysis products. CoOx/USY catalyst promote the generation of CH4, CO and aromatic hydrocarbons and aliphatic hydrocarbons in HTM coal pyrolysis. MoOx/USY catalyst show little effect in manipulating pyrolysis products. CoOx-MoOx/USY catalyst is a promising catalyst in giving high yield of volatile products, however the pyrolysis temperature moved to high temperature region. These results indicate that different metal oxides incorporated zeolite USY have different impact on manipulating

  16. 四氯化碳液相催化加氢反应动力学的研究%KINETIC STUDIES ON THE CATALYTIC HYDROGENATION OF CARBON TETRACHLORIDE TO CHLOROFORM IN LIQUID PHASE

    Institute of Scientific and Technical Information of China (English)

    毛建新; 蒋晓原; 陆维敏; 郑小明

    2001-01-01

    Carbon tetrachloride is an ozone-depleting chemical, while chloroform is not. Therefore it is important for the catalytic hydrodechlorination of CCl4 to CHCl3. In this paper, kinetics on the catalytic hydrogenation of carbon tetrachloride to chloroform in liquid phase was studied. A reaction mechanism was proposed. Hydrogen molecular was activated on the surface of catalyst, the activated hydrogen atom then reacted with CCl4 in the solution and produced CHCl3. A definite kinetic equation could be deduced from the reaction mechanism. The reaction rate constant is concerned with the intial concentration of CCl4 in the solution, pressure, reaction temperature and the concentration of active center. All these factors were investigated over Pt-Pd/C catalyst and fit in with the kinetic equation. The activation energy of the reaction is 86?KJ/mol according to the experimental results.

  17. Bioconversion of coal-derived synthesis gas to liquid fuels. Final technical report, September 1, 1990--August 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Jain, M.K.

    1991-12-31

    The use of coal-derived synthesis gas as an industrial feedstock for production of fuels and chemicals has become an increasingly attractive alternative to present petroleum-based chemicals production. However, one of the major limitations in developing such a process is the required removal of catalyst poisons such as hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), and other trace contaminants from the synthesis gas. Purification steps necessary to remove these are energy intensive and add significantly to the production cost, particularly for coals having a high sulfur content such as Illinois coal. A two-stage, anaerobic bioconversion process requiring little or no sulfur removal is proposed, where in the first stage the carbon monoxide (CO) gas is converted to butyric and acetic acids by the CO strain of Butyribacterium methylotrophicum. In the second stage, these acids along with the hydrogen (H{sub 2}) gas are converted to butanol, ethanol, and acetone by an acid utilizing mutant of Clostridium acetobutylicum. 18 figs., 18 tabs.

  18. Coal geopolitics

    International Nuclear Information System (INIS)

    This book divided into seven chapters, describes coal economic cycle. Chapter one: coals definition; the principle characteristics and properties (origin, calorific power, international classification...) Chapter two: the international coal cycle: coal mining, exploration, coal reserves estimation, coal handling coal industry and environmental impacts. Chapter three: the world coal reserves. Chapter four: the consumptions, productions and trade. Chapter five: the international coal market (exporting mining companies; importing companies; distributors and spot market operators) chapter six: the international coal trade chapter seven: the coal price formation. 234 refs.; 94 figs. and tabs

  19. Catalytic Cracking Conversion of Tar Component in High Temperature Coal Gas%高温煤气中焦油组分的催化裂解

    Institute of Scientific and Technical Information of China (English)

    赵国靖; 李海涛; 豆斌林; 沙兴中

    2001-01-01

    在固定床反应器条件下对焦油组分(以1-甲基萘作为焦油的模型化合物)进行了催化裂解研究,选择镍基催化剂、5A分子筛、CaO催化剂、矾土和石英砂等5种催化剂为焦油组分裂解催化剂。研究表明此5种催化剂对1-甲基萘的裂解都具有催化活性,10h反应时间内,5A分子筛和Ni基催化剂对1-甲基萘的转化率为100%,CaO催化剂、矾土和石英砂对1-甲基萘的转化率则较低。同时研究了温度对Ni-3催化剂和5A分子筛的转化率的影响。为了进行比较也测试了Ni-3催化剂对苯的转化率,总包一级反应线性回归出催化剂在250~500℃的裂解活化能为22.17kJ/mol。%The tar decomposition activities of five catalysts including Nibased catalyst, alumina, 5A molecular sieve, CaO catalyst, quartz sand catalysts are compared in a fixed bed catalytic reactor. 1-methylnaphthalene is used as a tar model compound. All these catalysts show to be active and useful for tar cracking reactions, deactivations of Ni based and 5A molecular sieve catalyst are not found within 10 h reaction time with space velocity of 3 000 h-1 at temperature of 550 ℃. Especially, with increasing temperature, the conversion of 1-methylnaphthalene is improved. At same time, Ni-3 catalyst is found to be effective for benzene conversion at 550 ℃ and 650 ℃. Using a simple first-order kinetic model for the overall reaction, an apparent activation energies (22.17 kJ/mol for Ni-3 catalyst) is obtained at 250~500 ℃.

  20. A novel oxidative method for the absorption of Hg{sup 0} from flue gas of coal fired power plants using task specific ionic liquid scrubber

    Energy Technology Data Exchange (ETDEWEB)

    Barnea, Zach, E-mail: zach.barnea@mail.huji.ac.il [Casali Institute of Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel); Sachs, Tatyana; Chidambaram, Mandan; Sasson, Yoel [Casali Institute of Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2013-01-15

    Highlights: ► Ionic liquid used as absorption media due to negligible vapor pressure. ► Formation of a stable complex between the oxidation agent and the absorption liquid prevents its sublimation. ► Remarkable concentration factor of six orders of magnitude of mercury/IL unlike active carbon injection that absorb ppb of Hg from flue. ► Reduced metallic mercury swiftly precipitated from the solution and could be quantitatively separated and collected. -- Abstract: A simple continuous process is described for the removal of mercury from gas streams (such as flue gas of a coal fired power stations) using imidazolium based Task Specific Ionic Liquids [TSILs] with the general structure ([RMIM][XI{sub 2}{sup −}]) where X = Cl, Br or I. The latter are formed by blending dialkylimidazolium halide salts with iodine. When applied in a gas/liquid scrubber, these salts were shown to absorb >99% of elemental mercury originally present in a gas stream in concentration of 75–400 ppb. The mercury abatement is attained by oxidating the mercury to HgI{sub 2} which is bound as a stable IL complex ([RMIM{sup +}][XHgI{sub 2}{sup −}]. The novel absorption system exhibits a remarkable mercury concentration factor of seven orders of magnitude. The final solution obtained contains up to 50% (w/w) mercury in the IL. Upon exposure to sodium formate, directly added to the saturated IL at 45 °C, reduced metallic mercury swiftly precipitated from the solution and could be quantitatively separated and collected. The free IL could be fully recycled.

  1. A novel oxidative method for the absorption of Hg0 from flue gas of coal fired power plants using task specific ionic liquid scrubber

    International Nuclear Information System (INIS)

    Highlights: ► Ionic liquid used as absorption media due to negligible vapor pressure. ► Formation of a stable complex between the oxidation agent and the absorption liquid prevents its sublimation. ► Remarkable concentration factor of six orders of magnitude of mercury/IL unlike active carbon injection that absorb ppb of Hg from flue. ► Reduced metallic mercury swiftly precipitated from the solution and could be quantitatively separated and collected. -- Abstract: A simple continuous process is described for the removal of mercury from gas streams (such as flue gas of a coal fired power stations) using imidazolium based Task Specific Ionic Liquids [TSILs] with the general structure ([RMIM][XI2−]) where X = Cl, Br or I. The latter are formed by blending dialkylimidazolium halide salts with iodine. When applied in a gas/liquid scrubber, these salts were shown to absorb >99% of elemental mercury originally present in a gas stream in concentration of 75–400 ppb. The mercury abatement is attained by oxidating the mercury to HgI2 which is bound as a stable IL complex ([RMIM+][XHgI2−]. The novel absorption system exhibits a remarkable mercury concentration factor of seven orders of magnitude. The final solution obtained contains up to 50% (w/w) mercury in the IL. Upon exposure to sodium formate, directly added to the saturated IL at 45 °C, reduced metallic mercury swiftly precipitated from the solution and could be quantitatively separated and collected. The free IL could be fully recycled

  2. Coal shortage blamed on inadequate transportation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-03-15

    Substantial investment must be made in China's infrastructure if the logistical challenges of moving coal within the country are to be overcome. The railways' monopoly on transporting coal and its poor capability to do so are the two main reasons for the high cost of coal. Foreign investment is nos seen as having prompted improvements in China's ports and its coal mining sector; China is promoting development of a large coal-to-liquids industry.

  3. A novel oxidative method for the absorption of Hg(0) from flue gas of coal fired power plants using task specific ionic liquid scrubber.

    Science.gov (United States)

    Barnea, Zach; Sachs, Tatyana; Chidambaram, Mandan; Sasson, Yoel

    2013-01-15

    A simple continuous process is described for the removal of mercury from gas streams (such as flue gas of a coal fired power stations) using imidazolium based Task Specific Ionic Liquids [TSILs] with the general structure ([RMIM][XI(2)(-)]) where X=Cl, Br or I. The latter are formed by blending dialkylimidazolium halide salts with iodine. When applied in a gas/liquid scrubber, these salts were shown to absorb >99% of elemental mercury originally present in a gas stream in concentration of 75-400 ppb. The mercury abatement is attained by oxidating the mercury to HgI(2) which is bound as a stable IL complex ([RMIM(+)][XHgI(2)(-)]. The novel absorption system exhibits a remarkable mercury concentration factor of seven orders of magnitude. The final solution obtained contains up to 50% (w/w) mercury in the IL. Upon exposure to sodium formate, directly added to the saturated IL at 45 °C, reduced metallic mercury swiftly precipitated from the solution and could be quantitatively separated and collected. The free IL could be fully recycled.

  4. Hydrotreating of distillates from Spanish coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Benito, A.M.; Martinez, M.T.; Cebolla, V.; Fernandez, I.; Miranda, J.L. (Inst. de Carboquimica, CSIC, Zaragoza (Spain))

    1993-02-01

    Distillates obtained from a first-stage Spanish coal liquefaction process have been catalytically hydrotreated in microreactor in two steps. A commercially available Harshaw HT-400 E (Co-Mo/Al[sub 2]O[sub 3]) catalyst, 10 MPa hydrogen pressure and two temperatures (400 and 425deg C) have been used. The results have been evaluated for heteroatoms removal, oils yield, boiling point distribution and aromaticity by several techniques (GC, FT-i.r., [sup 1]H n.m.r., ultrasonic extraction and liquid chromatography). At the first step of hydrotreating, preasphaltenes rather than asphaltenes have been hydrocracked to produce smaller-size polar compounds in the oil fraction but aromaticity has not varied significatively. In the second step, heteroatoms content have been considerably reduced and the product meets refinery specifications for nitrogen but does not meet sulphur refinery specifications for feedstocks. (orig.).

  5. Bioprocessing of lignite coals using reductive microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  6. Industrial coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The effects of the National Energy Act on the use of coal in US industrial and utility power plants are considered. Innovative methods of using coal in an environmentally acceptable way are discussed: furnace types, fluidized-bed combustion, coal-oil-mixtures, coal firing in kilns and combustion of synthetic gas and liquid fuels. Fuel use in various industries is discussed with trends brought about by uncertain availability and price of natural gas and fuel oils: steel, chemical, cement, pulp and paper, glass and bricks. The symposium on Industrial Coal Utilization was sponsored by the US DOE, Pittsburgh Energy Technology Center, April 3 to 4, 1979. Twenty-one papers have been entered individually into the EDB. (LTN)

  7. Kinetics and mechanism of desulfurization and denitrogenation of coal-derived liquids. Tenth quarterly report, September 21-December 20, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Gates, B. C.; Katzer, J. R.; Olson, J. H.; Kwart, H.; Stiles, A. B.

    1978-01-20

    Three high-pressure flow microreactors and two batch autoclave reactors have been used to study the reaction networks and kinetics of: (1) catalytic hydrodesulfurization of dibenzothiophene and methyl-substituted dibenzothiophenes; and (2) catalytic hydrodenitrogenation of quinoline, methyl-substituted quinolines, acridine and carbazole. The catalysts were commercial, sulfided CoO-MoO/sub 3//..gamma..-Al/sub 2/O/sub 3/, NiO-MoO/sub 3//..gamma..-Al/sub 2/O/sub 3/, and NiO-WO/sub 3//..gamma..-Al/sub 2/O/sub 3/. At the typical conditions of 300/sup 0/C and 104 atm, dibenzothiophene reacts to give H/sub 2/S and biphenyl in high yield, but there is some hydrogenation preceding desulfurization. Methyl-substituted dibenzothiophenes react similarly, and each reaction is first-order in the sulfur-containing compound. Two methyl groups near the sulfur atom (in the 4 and 6 positions) reduce the reactivity tenfold, whereas methyl groups in positions further removed from the sulfur atom increase reactivity about twofold. The results are consistent with steric and inductive effects influencing adsorption. The data indicate competitive adsorption among the sulfur-containing compounds. In quinoline hydrodenitrogenation, both rings are saturated before the C-N bond is broken. Similarly, in acridine conversion a large amount of hydrogenation precedes nitrogen removal. Breaking of the carbon-nitrogen bond is evidently one of the slower reactions in the network. The Ni-Mo catalyst is about twice as active as the Co-Mo catalyst for ring hydrogenation, and the two catalysts are about equally active for breaking the carbon-nitrogen bond. Reactivity of carbazole is slightly lower than that of quinoline but higher than that of acridine.

  8. The evolution of model catalytic systems; studies of structure, bonding and dynamics from single crystal metal surfaces to nanoparticles, and from low pressure (10(-3) Torr) to liquid interfaces.

    Science.gov (United States)

    Somorjai, Gabor A; York, Roger L; Butcher, Derek; Park, Jeong Y

    2007-07-21

    The material and pressure gap has been a long standing challenge in the field of heterogeneous catalysis and have transformed surface science and biointerfacial research. In heterogeneous catalysis, the material gap refers to the discontinuity between well-characterized model systems and industrially relevant catalysts. Single crystal metal surfaces have been useful model systems to elucidate the role of surface defects and the mobility of reaction intermediates in catalytic reactivity and selectivity. As nanoscience advances, we have developed nanoparticle catalysts with lithographic techniques and colloidal syntheses. Nanoparticle catalysts on oxide supports allow us to investigate several important ingredients of heterogeneous catalysis such as the metal-oxide interface and the influence of noble metal particle size and surface structure on catalytic selectivity. Monodispersed nanoparticle and nanowire arrays were fabricated for use as model catalysts by lithographic techniques. Platinum and rhodium nanoparticles in the 1-10 nm range were synthesized in colloidal solutions in the presence of polymer capping agents. The most catalytically active systems are employed at high pressure or at solid-liquid interfaces. In order to study the high pressure and liquid interfaces on the molecular level, experimental techniques with which we bridged the pressure gap in catalysis have been developed. These techniques include the ultrahigh vacuum system equipped with high pressure reaction cell, high pressure Sum Frequency Generation (SFG) vibration spectroscopy, High Pressure Scanning Tunneling Microscopy (HP-STM), and High Pressure X-ray Photoemission Spectroscopy (HP-XPS), and Quartz Crystal Microbalance (QCM). In this article, we overview the development of experimental techniques and evolution of the model systems for the research of heterogeneous catalysis and biointerfacial studies that can shed light on the long-standing issues of materials and pressure gaps.

  9. Changing the adsorption capacity of coal-based honeycomb monoliths for pollutant removal from liquid streams by controlling their porosity

    International Nuclear Information System (INIS)

    Coal-based honeycomb monoliths extruded using methods developed for ceramic materials have been used to retain methylene blue and p-nitrophenol from aqueous solutions. The influence of the filters' thermal treatment on their textural properties and performance as adsorbents was examined. Characterization by N2 physisorption, mercury porosimetry and scanning electron microscopy along with adsorption tests under dynamic conditions suggest that, depending on the pollutant and its initial concentration, it can be more convenient to previously submit the monoliths to a simple carbonization or to an additional activation, with or without preoxidation, as a consequence of their different resulting pore structures. Infrared spectroscopy indicates that their different adsorption behaviour seems not to be related to differences in their surface chemical groups. In addition, axial crushing tests show that the monoliths have an acceptable mechanical resistance for the application investigated.

  10. Chemistry and morphology of coal liquefaction. Annual report, October 1, 1980-September 20, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H.

    1981-09-01

    Six tasks are reported: selective synthesis of gasoline range components from synthesis gas; electron microscopic studies of coal during hydrogenation; catalyzed low-temperature hydrogenation of coal; selective hydrogenation, hydrogenolysis, and alkylation of coal and coal liquids by organometallic systems; chemistry of coal solubilization and liquefaction; and coal conversion catalyst deactivation. (DLC)

  11. Valorization of selected biomass and wastes by co-pyrolysis with coal

    Energy Technology Data Exchange (ETDEWEB)

    Moliner, R.; Lazaro, M.J.; Suelves, I.; Blesa, M.J. [Inst. of Carboquimica (CSIC), Zaragoza (Spain)

    2004-07-01

    Implementation of a more sensible energy-environmental policy should include a 'green alliance of biomass and coal to pursue eco-friendly technologies for co-utilizing biomass and other opportunity fuels with coal or natural gas'. This article discusses two parallel cases of copyolysis of coal with biomass or wastes. In the first case, smokeless fuel briquettes are prepared with a low-rank coal and biomass byproducts such as olive stones and sawdust. Additives to improve the mechanical properties and the sulfur retention in ash are used. The briquettes showed good mechanical properties and slow, uniform, smokeless combustion. In the second case, petroleum residua and waste lubrication oils are used to produce chemicals and energy by co-pyrolysis with coal. It has been shown that co-pyrolysis in the presence of coal char selectively promotes transfer of hydrogen from the parent material to the gas and liquid products, concentrating carbon in the remaining char. Split-off hydrogen from carbon is enhanced when the primary co-pyrolysis products are submitted to thermocatalytic decomposition in a subsequent catalytic step. This process represents an attractive route for the production of carbon dioxide free hydrogen from hydrocarbons, whatever their origin. 34 refs., 5 figs., 4 tabs.

  12. Assessment of H-Coal process developments: impact on the performance and economics of a proposed commercial plant

    Energy Technology Data Exchange (ETDEWEB)

    Talib, A.; Gray, D.; Neuworth, M.

    1984-01-01

    This report assesses the performance of the H-Coal process, a catalytic direct liquefaction process, at a process development and large pilot-plant scale of operation. The assessment focused on the evaluation of operating results from selected long-term successful process development unit (PDU) and pilot plant runs made on Illinois No. 6 coal. The pilot plant has largely duplicated the product yield structure obtained during the PDU runs. Also, the quality of products, particularly liquid products, produced during the pilot plant run is quite comparable to that produced during the PDU runs. This confirms the scalability of the H-Coal ebullated-bed reactor system from a PDU-scale, 3 tons of coal per day, to a large pilot scale, 220 tons of coal per day, plant. The minor product yield differences, such as higher yields of C/sub 3/, C/sub 4/, and naphtha fractions, and lower yields of distillate oils obtained during pilot plant runs as compared to the PDU runs, will not impact the projected technical and economic performance of a first-of-a-kind commercial H-Coal plant. Thus, the process yield and operating data collected during the PDU operations provided an adequate basis for projecting the technical and economic performance of the proposed H-Coal commercial plant. 18 references, 9 figures, 56 tables.

  13. The Magnetic Beneficiation of Coal

    OpenAIRE

    Male, S.E.

    1985-01-01

    The magnetic demineralization of coal can produce a fuel containing lower leveIs of sulphur and ash forming minerals. The ability of the magnetic separation technique to process material over a wide range of particle sizes (I-1000 µm) and to operate on either liquid or gaseous feed enables a number of possible coal processing applications. These range from dry desulphurization of power station pulverized fuel to the cleaning of solvent refined coals. This article reviews work on the developme...

  14. The new deal of coal

    International Nuclear Information System (INIS)

    While coal appears as an inescapable resource to answer the energy needs of the 21. century, its highly CO2 emitting combustion represents a major risk with respect to the requirements of the fight against climate change. In the first part of this book, the basic aspects of energy markets are explained and in particular the role that coal is going to play in the world's energy supplies. In the second part, the new coal usages are presented, which, combined with CO2 capture and sequestration techniques, should allow to conciliate a massive use of coal and the respect of environmental constraints. This book is based on the works presented in February 2008 by the French institute of petroleum (IFP) about the new outlets of coal and the risks for climate change. Content: 1 - coal, energy of the 21. century: abundant and well distributed reserves; growing up world production; exponential world demand; international trade: still limited but in full expansion; 2 - Technologies for a CO2-free coal: CO2 capture and sequestration technologies; towards poly-generation; production of coal-derived liquid fuels; 3 - Appendices: coals formation; coal in China: status and perspectives; coal in the USA: status and perspectives; coal in India: status and perspectives; COACH: an ambitious European project; CBM - E-CBM, status and perspectives. (J.S.)

  15. Bioconversion of coal derived synthesis gas to liquid fuels. Quarterly technical progress report, 1 April--30 June 1994

    Energy Technology Data Exchange (ETDEWEB)

    Jain, M.K.; Worden, R.M.; Grethlein, A.

    1994-07-18

    The overall objective of the project is to develop an integrated two-stage fermentation process for conversion of coal-derived synthesis gas to a mixture of alcohols. This is achieved in two steps. In the first step, Butyribacterium methylotrophicum converts carbon monoxide (CO) to butyric and acetic acids. Subsequent fermentation of the acids by Clostridium acetobutylicum leads to the production of butanol and ethanol. The tasks for this quarter were: development/isolation of superior strains for fermentation of syngas; evaluation of bioreactor configuration for improved mass transfer of syngas; recovery of carbon and electrons from H{sub 2}-CO{sub 2}; initiation of pervaporation for recovery of solvents; and selection of solid support material for trickle-bed fermentation. Technical progress included the following. Butyrate production was enhanced during H{sub 2}/CO{sub 2} (50/50) batch fermentation. Isolation of CO-utilizing anaerobic strains is in progress. Pressure (15 psig) fermentation was evaluated as a means of increasing CO availability. Polyurethane foam packing material was selected for trickle bed solid support. Cell recycle fermentation on syngas operated for 3 months. Acetate was the primary product at pH 6.8. Trickle bed and gas lift fermentor designs were modified after initial water testing. Pervaporation system was constructed. No alcohol selectivity was shown with the existing membranes during initial start-up.

  16. The influence of atomizer internal design and liquid physical properties on effervescent atomizing of coal-water slurry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Meng; Duan, Yufeng [Southeast Univ., Nanjing (China). Inst. of Thermal Engineering

    2013-07-01

    This study investigated the dependence of effervescent atomizing of coal-water slurry (CWS) on atomizer internal design and fluid properties. Results demonstrate that internal design of atomizer and fluid properties directly affect the two-phase flow pattern inside the atomizer which consequently affects the spray quality. The influence of mixing chamber length on spray quality is not significant at the ALR of 0.15 except for spray 0.75 glycerol/0.248 water/0.002 xanthan mixture. The same trend also found in the effect of angle of aeration holes at ALR of 0.15. Large diameter of the inclined aeration holes shows small SMD for water. The consistency index of fluids has no effect on the spray quality and Sauter Mean Diameter (SMD) increases when polymer additions were added to the glycerin-water mixture. The radial profile of SMD for spray water are almost flat, however, the largest SMD can be obtained at the edge of spray for three other fluids.

  17. The Charfuel coal refining process

    International Nuclear Information System (INIS)

    The patented Charfuel coal refining process employs fluidized hydrocracking to produce char and liquid products from virtually all types of volatile-containing coals, including low rank coal and lignite. It is not gasification or liquefaction which require the addition of expensive oxygen or hydrogen or the use of extreme heat or pressure. It is not the German pyrolysis process that merely 'cooks' the coal, producing coke and tar-like liquids. Rather, the Charfuel coal refining process involves thermal hydrocracking which results in the rearrangement of hydrogen within the coal molecule to produce a slate of co-products. In the Charfuel process, pulverized coal is rapidly heated in a reducing atmosphere in the presence of internally generated process hydrogen. This hydrogen rearrangement allows refinement of various ranks of coals to produce a pipeline transportable, slurry-type, environmentally clean boiler fuel and a slate of value-added traditional fuel and chemical feedstock co-products. Using coal and oxygen as the only feedstocks, the Charfuel hydrocracking technology economically removes much of the fuel nitrogen, sulfur, and potential air toxics (such as chlorine, mercury, beryllium, etc.) from the coal, resulting in a high heating value, clean burning fuel which can increase power plant efficiency while reducing operating costs. The paper describes the process, its thermal efficiency, its use in power plants, its pipeline transport, co-products, environmental and energy benefits, and economics

  18. Alberta's reserves 2001 and supply/demand outlook 2002-2011 : crude bitumen, crude oil, natural gas and liquids, coal, sulphur

    International Nuclear Information System (INIS)

    This document provides stakeholders with a reliable source of information on the state of reserves, supply and demand for Alberta's energy resources including crude bitumen, crude oil, natural gas, natural gas liquids, sulphur and coal. The report also includes estimates of initial reserves, remaining established reserves, and ultimate potential. A 10-year supply and demand forecast for Alberta's energy resources is also presented. The economic factors that determine the development of Alberta's energy resources depend on resource supply, development costs, energy demand, conservation and environmental and social considerations. Energy development in 2001 was driven in part by changes in energy prices, drilling activity and planned investments of billions of dollars in the oil sands projects. Production of raw bitumen exceeded conventional crude oil for the first time in 2001, with the first commercial steam-assisted gravity drainage (SAGD) production. Several SAGD schemes have been approved and more are under review. Although natural gas production is expected to decline in the second half of the forecast period, interest in coalbed methane development will likely increase. Alberta has the largest oil sands resource in the world, with nearly 50 billion cubic meters that are potentially recoverable. Alberta's remaining established reserves of conventional crude oil was estimated at 278 million cubic metres. 35 tabs., 55 figs., 3 appendices

  19. Bioconversion of coal-derived synthesis gas to liquid fuels. Final report, September 29, 1992--December 27, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Jain, M.K.; Worden, R.M.; Grethlein, H.E.

    1995-01-15

    The proposed research project consists of an integrated, two-stage fermentation and a highly energy-efficient product separation scheme. In the first fermentation, Butyribacterium methylotrophicum converts carbon monoxide (CO) into butyric acid and acetic acids which are then converted into butanol, ethanol, and a small amount of acetone in the second stage fermentation by Clostridium acetobutylicum. An advanced separation system process, based on pervaporation, removes the alcohols from the fermentation broth as they are formed, along with some of the hydrogen sulfide (H{sub 2}S), to minimize possible inhibition of the fermentations. This bioconversion process offers a critical advantage over conventional, catalytic processes for synthesis gas conversion: the microorganisms are several orders of magnitude more sulfur tolerant than metallic catalysts. The catalysts require sulfur removal to the parts per million level, while the microorganisms are unaffected by H{sub 2}S and carbonyl sulfide (COS) at one part per hundred--roughly the composition of sulfur in raw synthesis gas. During the two-year course of this project, the following major objectives have been accomplished: demonstrated long-term cell recycle of continuous fermentation of synthesis gas; demonstrated cell immobilization of Butyribacterium methylotrophicum; identified trickle-bed reactor as a viable alternative fermentation method; modulated metabolic pathways to increase C4 formation during synthesis gas fermentation; recovered carbon and electrons from H{sub 2} and CO{sub 2} with pathway modulation for increased C4 production; developed bacterial strains with improved selectivity for butyrate fermentation; demonstrated two-stage CO to alcohol fermentation; and concentrated alcohol from solventogenic fermentation by pervaporation.

  20. 液氮对煤岩的冷冲击作用机制及试验研究%MECHANISMS AND EXPERIMENTAL STUDY OF THERMAL-SHOCK EFFECT ON COAL-ROCK USING LIQUID NITROGEN

    Institute of Scientific and Technical Information of China (English)

    任韶然; 范志坤; 张亮; 杨勇; 罗炯; 车航

    2013-01-01

    Liquid nitrogen can be used for the fracturing treatment of coal-bed-methane(CBM) wells. In this study,the effects of liquid nitrogen on coal-rock samples are studied via thermal shock experiments and ultrasonic testing. A stress-strain analysis model is established to analyze the thermal effect in terms of the shrinkage of coal matrix and the expansion of freezing water in the pores of coal rocks. Experimental results show that micro-fractures can be induced inside the coal-rock matrix,which might be due to the thermal stresses exceeded the tensile strength of the coal-rock. Water in the pores of the coal-rock can freeze instantly when it contacts with liquid nitrogen,in which additional stress can be produced and it may generate micro-fractures in the coal-rock. After the liquid nitrogen treatment,the micro-fractures generated are found to be orthogonal to the plane of the natural fractures,and the results of ultrasonic testing show that both the sound velocity and amplitude reduced dramatically,indicating that the liquid nitrogen treatment can have a significant effect on the internal structure of the coal-rock samples,which is beneficial for generating a fracture network or new fractures during the fracturing treatment of CBM wells.%在煤层气开发过程中,利用液氮对近井地带煤层进行“冷冲击”能使煤层产生裂纹,同时液氮辅助煤层气压裂具有增能助排、减小地层伤害等优点。分析液氮对煤岩冷冲击的作用机制,建立煤岩基质的冷缩应力的计算模型,并进行不同条件下的冷冲击试验,测试冷处理前、后煤岩的声波传播特性,分析冷冲击对煤岩力学性质的影响。研究结果表明,液氮的超低温作用能使煤岩基质收缩,产生热应力裂缝,同时煤岩天然裂缝中的水结冰膨胀产生的应力超过煤岩的强度,可在煤岩内产生局部裂纹;冷冲击应力产生得裂缝将沿着垂直于面割理裂缝的方向

  1. Performance evaluation of a liquid tin anode solid oxide fuel cell operating under hydrogen, argon and coal

    Science.gov (United States)

    Khurana, Sanchit; LaBarbera, Mark; Fedkin, Mark V.; Lvov, Serguei N.; Abernathy, Harry; Gerdes, Kirk

    2015-01-01

    A liquid tin anode solid oxide fuel cell is constructed and investigated under different operating conditions. Electrochemical Impedance Spectroscopy (EIS) is used to reflect the effect of fuel feed as the EIS spectra changes significantly on switching the fuel from argon to hydrogen. A cathode symmetric cell is used to separate the impedance from the two electrodes, and the results indicate that a major contribution to the charge-transfer and mass-transfer impedance arises from the anode. The OCP of 0.841 V for the cell operating under argon as a metal-air battery indicates the formation of a SnO2 layer at the electrolyte/anode interface. The increase in the OCP to 1.1 V for the hydrogen fueled cell shows that H2 reduces the SnO2 film effectively. The effective diffusion coefficients are calculated using the Warburg element in the equivalent circuit model for the experimental EIS data, and the values of 1.9 10-3 cm2 s-1 at 700 °C, 2.3 10-3 cm2 s-1 at 800 °C and 3.5 10-3 cm2 s-1 at 900 °C indicate the system was influenced by diffusion of hydrogen in the system. Further, the performance degradation over time is attributed to the irreversible conversion of Sn to SnO2 resulting from galvanic polarization.

  2. Synthesis of a nano-crystalline solid acid catalyst from fly ash and its catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Chitralekha Khatri; Ashu Rani [Government P.G. College, Kota (India). Environmental Chemistry Laboratory

    2008-10-15

    The synthesis of nano-crystalline activated fly ash catalyst (AFAC) with crystallite size of 12 nm was carried out by chemical and thermal treatment of fly ash, a waste material generated from coal-burning power plants. Fly ash was chemically activated using sulfuric acid followed by thermal activation at 600{sup o}C. The variation of surface and physico-chemical properties of the fly ash by activation methods resulted in improved acidity and therefore, catalytic activity for acid catalyzed reactions. The AFAC was characterized by X-ray diffraction, FT-IR spectroscopy, N{sub 2}-adsorption-desorption isotherm, scanning electron microscopy, flame atomic absorption spectrophotometry and sulfur content by CHNS/O elemental analysis. It showed amorphous nature due to high silica content (81%) and possessed high BET surface area (120 m{sup 2}/g). The catalyst was found to be highly active solid acid catalyst for liquid phase esterification of salicylic acid with acetic anhydride and methanol giving acetylsalicylic acid and methyl salicylate respectively. A maximum yield of 97% with high purity of acetylsalicylic acid (aspirin) and a very high conversion 87% of salicylic acid to methyl salicylate (oil of wintergreen) was obtained with AFAC. The surface acidity and therefore, catalytic activity in AFAC was originated by increased silica content, hydroxyl content and higher surface area as compared to fly ash. The study shows that coal generated fly ash can be converted into potential solid acid catalyst for acid catalyzed reactions. Furthermore, this catalyst may replace conventional environmentally hazardous homogeneous liquid acids making an ecofriendly; solvent free, atom efficient, solid acid based catalytic process. 27 refs., 5 figs., 2 tabs.

  3. Preconversion catalytic deoxygenation of phenolic functional groups. Quarterly technical progress report, April 1, 1991--June 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, C.P.

    1991-12-31

    The deoxygenation of phenols is a conceptually simple, but unusually difficult chemical transformation to achieve. Aryl carbon-oxygen bond cleavage is a chemical transformation of importance in coal liquefaction and the upgrading of coal liquids as well as in the synthesis of natural products. This proposed research offers the possibility of effecting the selective catalytic deoxygenation of phenolic functional groups using CO. A program of research for the catalytic deoxygenation of phenols, via a low energy mechanistic pathway that is based on the use of the CO/CO{sub 2} couple to remove phenolic oxygen atoms, is underway. We are focusing on systems which have significant promise as catalysts: Ir(triphos)OPh, [Pt(triphos)OPh]{sup +} and Rh(triphos)OPh. Our studies of phenol deoxygenation focus on monitoring the reactions for the elementary processes upon which catalytic activity will depend: CO insertion into M-OPh bonds, CO{sub 2} elimination from aryloxy carbonyls {l_brace}M-C(O)-O-Ph{r_brace}, followed by formation of a coordinated benzyne intermediate.

  4. Research on Emission Characteristics of Diesel Car Fueled with Coal to Liquids%柴油轿车燃用煤制油的排放特性

    Institute of Scientific and Technical Information of China (English)

    胡志远; 程亮; 李文书; 谭丕强; 楼狄明

    2011-01-01

    The emission characteristics of PASSAT diesel car fueled with coal to liquids (CTL)and Shanghai local IV diesel were tested. The results showed that compared with Shanghai local IV diesel, CO, NCx,HC+Nox,PM and CO2 emissions of CTL were reduced by 39.3%, 6.2%, 6.4%, 32.7% and 2.5% respectively. In the GB 18352.3-2005 I testing cycle, the CO emissions in urban driving cycle were higher than that of suburban driving cycle, but the Nox, HC+Nox and PM emissions in urban driving cycle were lower than that of suburban driving cycle, and the CO2 emissions in urban driving cycle was almost the same with that of suburban driving.%对帕萨特柴油轿车分别燃用沪四柴油和煤制油的排放特性进行了试验研究.结果表明,与沪四柴油比较,该柴油轿车燃用CTL的CO、NOx、C+NOx、PM和CO2排放分别降低39.3%、6.2%、6.4%、32.7%和2.5%;GB18352.3-2005 Ⅰ型试验循环中,该柴油轿车城区循环的CO排放较高,在城郊循环的NOx、HC+NOx和PM排放较高,城区循环和城郊循环的CO2排放相当.

  5. Alberta's reserves 2002 and supply/demand outlook 2003-2012 : crude bitumen, crude oil, natural gas and liquids, coal, sulphur

    International Nuclear Information System (INIS)

    In this document, stake holders find reliable information concerning the state of reserves, supply, and demand for Alberta's energy resources such as bitumen, crude oil, natural gas, natural gas liquids, coal, and sulphur. Estimates of initial reserves, remaining established reserves, and ultimate potential were also included in the report, along with a 10-year supply and demand forecast for Alberta's energy resources. The development of Alberta's energy resources depend on factors such as reserve supply, costs of development, energy demands, conservation, and social, economic and environmental considerations. The energy development landscape in 2002 was determined in large part by changes in energy prices, drilling activity, and planned investments in the range of billions of dollars in oil sands projects. For the first time in 2001, conventional crude oil production was surpassed by raw bitumen production, and this growth continued in 2002. During 2002, 48 per cent of the province's crude oil and equivalent production was in the form of non-upgraded bitumen and synthetic crude oil production. This growth can be explained by increased bitumen production from oil sands mining. Levels similar to those of 2001 were achieved for in situ bitumen production. Approval was recently granted for several steam-assisted gravity drainage (SAGD) schemes, and many are currently under review by the Alberta Energy and Utilities Board (EUB). Higher volumes of commercial production are expected from those schemes in future years. Decline in natural gas production in 2002 was due to less drilling activity, but this is expected to increase in 2003. For the remaining forecast period, production is expected to decline. Continued growth in coalbed methane (CBM) development activity is expected for 2002 and for the next few years. In response to this increased activity, the EUB will begin to calculate CBM reserves. 31 tabs., 66 figs., 3 appendices

  6. Research Progress of Technologies for Tar Production during Coal Pyrolysis%煤热解制焦油的工艺研究进展

    Institute of Scientific and Technical Information of China (English)

    贺新福; 杨蕾; 吴红菊; 周安宁

    2014-01-01

    Coal pyrolysis was an important technique for coal conversion.Coal tar , one of the products , was an important raw material for liquid fuels and chemicals.The technologies including pretreatment of coal , change of atmosphere , catalytic pyrolysis and catalytic hydropyrolysis , co -pyrolysis with other material and novel integrated pyrolysis technology were stated that can improve tar yield during coal pyrolysis process , the factors that effected tar yield and the mechanisms were discussed , as well as the advantages and disadvantages of each processes.%煤热解是一种重要的煤炭分质利用技术,中低温热解焦油是制取液体燃料和化学品的重要原料。本文从对煤进行预处理、改变热解气氛、催化热解与催化加氢热解、煤与其它物质共热解、新型耦合热解工艺等方面综述了煤热解制焦油的工艺研究进展,探讨了影响煤热解过程焦油产率的因素及机理,并对各工艺进行了评价。

  7. Coal liquefaction. Quarterly report, October--December 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-05-01

    Progress on seventeen projects related to coal liquefaction or the upgrading of coal liquids and supported by US DOE is reported with emphasis on funding, brief process description history and current progress. (LTN)

  8. Gasification reactivity of various coals at a high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Kenji; Miura, Koichi; Xu, Ji-Jun

    1987-06-20

    Eighteen ranks of coal and twelve ranks of deashed coal were gasified with steam at 1185/sup 0/C by a high-heating rate thermobalance reactor to examine the gasification of coal in the high temperature of 1000/sup 0/C or higher. The minerals have catalytic action on the gasification of low grade coal even at the temperature as high as 1185/sup 0/C, while the minerals contained in high grade coal (C-content: higher than 75%) do not affect it. In the chemical reaction rate-determining gasification process of coal and deashed coal with negligible catalytic action, the gasification rate is lowered with decreasing of the pare surface area of char and with increasing of crystalline size of carbon. Even in the gasification at high temperature, the gasification rate is raised with increasing of the amount of oxygen trapped in the char (by flash desorption method).(25 refs, 10 figs, 1 tab)

  9. Coal liquefaction processes

    Energy Technology Data Exchange (ETDEWEB)

    Baker, N.R.; Blazek, C.F.; Tison, R.R.

    1979-07-01

    Coal liquefaction is an emerging technology receiving great attention as a possible liquid fuel source. Currently, four general methods of converting coal to liquid fuel are under active development: direct hydrogenation; pyrolysis/hydrocarbonization; solvent extraction; and indirect liquefaction. This work is being conducted at the pilot plant stage, usually with a coal feed rate of several tons per day. Several conceptual design studies have been published recently for large (measured in tens of thousands of tons per day coal feed rate) commercial liquefaction plants, and these reports form the data base for this evaluation. Products from a liquefaction facility depend on the particular method and plant design selected, and these products range from synthetic crude oils up through the lighter hydrocarbon gases, and, in some cases, electricity. Various processes are evaluated with respect to product compositions, thermal efficiency, environmental effects, operating and maintenance requirements, and cost. Because of the large plant capacities of current conceptual designs, it is not clear as to how, and on what scale, coal liquefaction may be considered appropriate as an energy source for Integrated Community Energy Systems (CES). Development work, both currently under way and planned for the future, should help to clarify and quantify the question of applicability.

  10. 咪唑类离子液体及其催化有机不对称反应%Imidazolium ionic liquids and catalytic asymmetric reactions of organic

    Institute of Scientific and Technical Information of China (English)

    姜红波

    2011-01-01

    离子液体作为一种新型绿色溶剂,具有许多独特的物理化学性质,近年来逐渐被人们所认知,并发现可用在许多重要领域.本文简单介绍离子液体及其特点,重点介绍在咪唑类离子液体中典型的不对称加氢反应、不对称Michael加成反应、不对称Aldol反应、不对称烯丙基反应和不对称氟化反应.%As a new type of green solvents, ionic liquids has many unique physical and chemical properties.It has been perceived and found in many important areas available in recent years.This article briefly describes the types and characteristics of ionic liquids, focusing on the typical asymmetric hydrogenation reaction, asymmetric Michael addition reaction, asymmetric Aldol reaction, asymmetric allylation reaction and asymmetric fluorination reaction in imidazolium ionic liquids.

  11. COMPONENT CHARACTERISTIC OF PING SHUO COAL DF5 AND SIMILARITY OF STATISTICAL STRUCTURAL PARAMETER OF COAL LIQUID%平朔气煤DF5的组成特性及煤液体统计平均结构参数的相似性

    Institute of Scientific and Technical Information of China (English)

    李香兰; 谢克昌

    2000-01-01

    Two kinds of coal liquid, the distilled fraction (270~340℃) (DF5) of low temperature carbonization tar and the extracts by heptane (PM1) and THF/MET (PM7) from Chinese Pingshuo bituminous coal were studied using GC-MS and 13C-NMR, and were compared with each other. The results show that the compounds in DF5 can be classified as paraffinic compounds and non-paraffinic compounds. The average molecular weight of the paraffinic compounds (MPC=303.03) is as same as that of the extract PM1 (MPM1=298.16), as well as their molecular weight distributions. The statistical average molecular structural parameters of the non-paraffinic compounds, such as aromatic carbon fa and the structure unit number MSP, were similar to that of the extract PM7.

  12. Catalytic cracking of lignites

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, M.; Nowak, S.; Naegler, T.; Zimmermann, J. [Hochschule Merseburg (Germany); Welscher, J.; Schwieger, W. [Erlangen-Nuernberg Univ. (Germany); Hahn, T. [Halle-Wittenberg Univ., Halle (Germany)

    2013-11-01

    A most important factor for the chemical industry is the availability of cheap raw materials. As the oil price of crude oil is rising alternative feedstocks like coal are coming into focus. This work, the catalytic cracking of lignite is part of the alliance ibi (innovative Braunkohlenintegration) to use lignite as a raw material to produce chemicals. With this new one step process without an input of external hydrogen, mostly propylene, butenes and aromatics and char are formed. The product yield depends on manifold process parameters. The use of acid catalysts (zeolites like MFI) shows the highest amount of the desired products. Hydrogen rich lignites with a molar H/C ratio of > 1 are to be favoured. Due to primary cracking and secondary reactions the ratio between catalyst and lignite, temperature and residence time are the most important parameter to control the product distribution. Experiments at 500 C in a discontinuous rotary kiln reactor show yields up to 32 wt-% of hydrocarbons per lignite (maf - moisture and ash free) and 43 wt-% char, which can be gasified. Particularly, the yields of propylene and butenes as main products can be enhanced four times to about 8 wt-% by the use of catalysts while the tar yield decreases. In order to develop this innovative process catalyst systems fixed on beads were developed for an easy separation and regeneration of the used catalyst from the formed char. (orig.)

  13. Conformation and Catalytic Properties Studies of Candida rugosa Lip7 via Enantioselective Esterification of Ibuprofen in Organic Solvents and Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2013-01-01

    Full Text Available Enantioselective esterification of ibuprofen was conducted to evaluate the enzyme activity and ees of lipase from Candida rugosa (CRL7 in ten conventional organic solvents and three ionic liquids. Different alcohols were tested for selecting the most suitable acyl acceptor due to the fact that the structure of alcohols (branch and length of carbon chains; location of –OH functional group could affect the enzyme activity and ees. The results of alcohol and solvent selection revealed that 1-isooctanol and isooctane were the best substrate and reaction medium, respectively, because of the highest enzyme activity and ees. Compared with the control, conformational studies via FT-IR indicate that the variations of CRL7’s secondary structure elements are probably responsible for the differences of enzyme activity and ees in the organic solvents and ionic liquids. Moreover, the effects of reaction parameters, such as molar ratio, water content, temperature, and reaction time, in the selected reaction medium, were also examined.

  14. Catalytic gasification of oil-shales

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.; Avakyan, T. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation); Strizhakova, Yu. [Samara State Univ. (Russian Federation)

    2012-07-01

    Nowadays, the problem of complex usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. A one of possible solutions of the problem is their gasification with further processing of gaseous and liquid products. In this work we have investigated the process of thermal and catalytic gasification of Baltic and Kashpir oil-shales. We have shown that, as compared with non-catalytic process, using of nickel catalyst in the reaction increases the yield of gas, as well as hydrogen content in it, and decreases the amount of liquid products. (orig.)

  15. Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A.; Ruiz, Juan Carlos Serrano; West, Ryan M.

    2015-06-30

    Described is a method to make liquid chemicals. The method includes deconstructing cellulose to yield a product mixture comprising levulinic acid and formic acid, converting the levulinic acid to .gamma.-valerolactone, and converting the .gamma.-valerolactone to pentanoic acid. Alternatively, the .gamma.-valerolactone can be converted to a mixture of n-butenes. The pentanoic acid can be decarboxylated yield 1-butene or ketonized to yield 5-nonanone. The 5-nonanone can be hydrodeoxygenated to yield nonane, or 5-nonanone can be reduced to yield 5-nonanol. The 5-nonanol can be dehydrated to yield nonene, which can be dimerized to yield a mixture of C.sub.9 and C.sub.18 olefins, which can be hydrogenated to yield a mixture of alkanes.

  16. Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A [Verona, WI; Ruiz, Juan Carlos Serrano [Madison, WI; West, Ryan M [Madison, WI

    2014-01-07

    Described is a method to make liquid chemicals. The method includes deconstructing cellulose to yield a product mixture comprising levulinic acid and formic acid, converting the levulinic acid to .gamma.-valerolactone, and converting the .gamma.-valerolactone to pentanoic acid. Alternatively, the .gamma.-valerolactone can be conveted to a mixture of n-butenes. The pentanoic acid can be decarboxylated yield 1-butene or ketonized to yield 5-nonanone. The 5-nonanone can be hydrodeoxygenated to yield nonane, or 5-nonanone can be reduced to yield 5-nonanol. The 5-nonanol can be dehydrated to yield nonene, which can be dimerized to yield a mixture of C.sub.9 and C.sub.18 olefins, which can be hydrogenated to yield a mixture of alkanes.

  17. Advanced bioreactor systems for gaseous substrates: Conversion of synthesis gas to liquid fuels and removal of SO{sub X} and NO{sub X} from coal combustion gases

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, P.T.; Kaufman, E.N.

    1996-06-01

    The purpose of this research program is the development and demonstration of a new generation of gaseous substrate based bioreactors for the production of liquid fuels from coal synthesis gas and the removal of NO{sub x} and SO{sub x} species from combustion flue gas. This R&D program is a joint effort between the staff of the Bioprocessing Research and Development Center (BRDC) of ORNL and the staff of Bioengineering Resources, Inc. (BRI) under a Cooperative Research and Development Agreement (CRADA). The Federal Coordinating Council for Science, Engineering, and Technology report entitled {open_quotes}Biotechnology for the 21st Century{close_quotes} and the recent Energy Policy Act of 1992 emphasizes research, development, and demonstration of the conversion of coal to gaseous and liquid fuels and the control of sulfur and nitrogen oxides in effluent streams. This R&D program presents an innovative approach to the use of bioprocessing concepts that will have utility in both of these identified areas.

  18. Rapid Deployment of Rich Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Richard S. Tuthill

    2004-06-10

    The overall objective of this research under the Turbines Program is the deployment of fuel flexible rich catalytic combustion technology into high-pressure ratio industrial gas turbines. The resulting combustion systems will provide fuel flexibility for gas turbines to burn coal derived synthesis gas or natural gas and achieve NO{sub x} emissions of 2 ppmvd or less (at 15 percent O{sub 2}), cost effectively. This advance will signify a major step towards environmentally friendly electric power generation and coal-based energy independence for the United States. Under Phase 1 of the Program, Pratt & Whitney (P&W) performed a system integration study of rich catalytic combustion in a small high-pressure ratio industrial gas turbine with a silo combustion system that is easily scalable to a larger multi-chamber gas turbine system. An implementation plan for this technology also was studied. The principal achievement of the Phase 1 effort was the sizing of the catalytic module in a manner which allowed a single reactor (rather than multiple reactors) to be used by the combustion system, a conclusion regarding the amount of air that should be allocated to the reaction zone to achieve low emissions, definition of a combustion staging strategy to achieve low emissions, and mechanical integration of a Ceramic Matrix Composite (CMC) combustor liner with the catalytic module.

  19. Development of a hydrophilic interaction liquid chromatography-mass spectrometry method for detection and quantification of urea thermal decomposition by-products in emission from diesel engine employing selective catalytic reduction technology.

    Science.gov (United States)

    Yassine, Mahmoud M; Dabek-Zlotorzynska, Ewa; Celo, Valbona

    2012-03-16

    The use of urea based selective catalytic reduction (SCR) technology for the reduction of NOx from the exhaust of diesel-powered vehicles has the potential to emit at least six thermal decomposition by-products, ammonia, and unreacted urea from the tailpipe. These compounds may include: biuret, dicyandiamine, cyanuric acid, ammelide, ammeline and melamine. In the present study, a simple, sensitive and reliable hydrophilic interaction liquid chromatography (HILIC)-electrospray ionization (ESI)/mass spectrometry (MS) method without complex sample pre-treatment was developed for identification and determination of urea decomposition by-products in diesel exhaust. Gradient separation was performed on a SeQuant ZIC-HILIC column with a highly polar zwitterionic stationary phase, and using a mobile phase consisting of acetonitrile (eluent A) and 15 mM ammonium formate (pH 6; eluent B). Detection and quantification were performed using a quadrupole ESI/MS operated simultaneously in negative and positive mode. With 10 μL injection volume, LODs for all target analytes were in the range of 0.2-3 μg/L. The method showed a good inter-day precision of retention time (RSDfilter (DPF) and urea based SCR technology showed the presence of five target analytes with cyanuric acid and ammelide the most abundant compounds in the exhaust.

  20. 甲苯液相催化氧化制苯甲醛绿色工艺研究进展%RECENT PROGRESSES IN LIQUID PHASE CATALYTIC OXIDATION OF TOLUENE TO BENZALDEHYDE

    Institute of Scientific and Technical Information of China (English)

    杨洋洋; 刘懿; 朱明乔

    2011-01-01

    针对近几年国内外甲苯液相催化氧化制苯甲醛绿色工艺的新进展进行了综述,介绍了甲苯的H2O2氧化工艺及甲苯分子氧氧化工艺,重点介绍了工艺所用催化剂如钴系、锰系和钒系催化剂,指出钴氧化物或锰分子筛负载的纳米金催化剂在甲苯液相催化氧化研究中有潜在的应用前景.%Green process for liquid phase catalytic oxidation of toluene to benzaldehyde has major advantages such as low cost, good operation safety, friendly environment, etc. The research progress in both H2O2 oxidation and molecular oxidation process of toluene was reviewed in the paper with the focus on the catalyst systems, such as cobalt catalysts, manganese catalysts, and vanadium catalysts. It is indicated that nano-gold catalysts supported on cobalt oxide or OMS-2 have potential application in the oxidation of toluene with molecular oxygen.

  1. Catalytic Beckmann Rearrangement of Cyclohexanone Oxime intoε-Caprolactam in Ionic Liquids%离子液体系中催化环己酮肟重排制己内酰胺

    Institute of Scientific and Technical Information of China (English)

    彭家建; 邓友全

    2001-01-01

    发现由室温离子液体1-丁基-3-甲基咪唑三氟乙酸盐、正丁基吡啶氟硼酸盐等和含磷化合物组成的催化体系,可以高效地实现对环己酮肟重排制己内酰胺的反应,具有不再用有机溶剂、反应副产物少等特点;并考察了含磷化合物用量和反应温度对反应的转化率和选择性的影响。%Beckmannrearrangement of cyclohexanone oxime has been studied in catalytic med ium composed of ionic liquids and phosph orous-containing compounds such as phosp horous pentachloride without the presenc e of any other organic solvent.The trans formation was found to proceed very effe ctively under mild conditions.The influe nce of the amount of phosphorous-contain ing compounds and the reaction temperatu re on the reaction was also investigated .

  2. Coal 99; Kol 99

    Energy Technology Data Exchange (ETDEWEB)

    Sparre, C.

    2000-07-01

    in equipment for burning pellets instead of coal. In Linkoeping waste of rubber is mixed with coal. Also Soederenergi AB has rebuilt their three coal boilers and replaced 100 % of the coal by peat and wood fuels. Coal is a reserve fuel. Several co-generation plants like Linkoeping, Norrkoeping, Uppsala and Oerebro use both coal and forest fuels. The use of coal is then concentrated to the electricity production. The average price of steam coal imported in Sweden in 1998 was 370 SEK/ton or the same as in 1997. For the world, the average import price fell about 6 USD/ton to 32 USD/ton. The price fall was concentrated to the 4th quarter. The prices have continued to fall during 1999 as a result of the crisis in Asia but are now stabilising as a result of increasing oil prices. All Swedish plants meet their emission limits of dust, SO{sub 2} and NO{sub x}, given by county administrations or concession boards. The co-generation plants have all some sort of SO{sub 2}-removal system. Mostly used is the wet-dry method. The biggest co-generation plant, in Vaesteraas, has recently invested in a catalytic NO{sub x}-cleaning system type SCR, which is reducing the emission level 80-90 %. Most other plants are using low NO{sub x}- burners or injection systems type SNCR, based on ammonium or urea, which are reducing the emissions 50-70 %. A positive effect of the recently introduced NO{sub x}-duties is a 60 % reduction compared to some years ago, when the duties were introduced. World hard coal production was about 3 700 tons in 1998, a minor decrease compared to 1997. The trade, however, has increased about 3 % to 520 mill tons. The coal demand in the OECD-countries has increased about 1,7 % yearly during the last ten years. The coal share of the energy supply is about 20% in the OECD-countries and 27% in the whole world. Several sources estimate a continuing growth during the next 20 years in spite of an increasing use of natural gas and nuclear power. The reason is a strong

  3. The economic production of alcohol fuels from coal-derived synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Kugler, E.L.; Dadyburjor, D.B.; Yang, R.Y.K. [West Virginia Univ., Morgantown, WV (United States)] [and others

    1995-12-31

    The objectives of this project are to discover, (1) study and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas. Specifically, alternative methods of preparing catalysts are to be investigated, and novel catalysts, including sulfur-tolerant ones, are to be pursued. (Task 1); (2) explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. (Task 1); (3) simulate by computer the most energy efficient and economically efficient process for converting coal to energy, with primary focus on converting syngas to fuel alcohols. (Task 2); (4) develop on the bench scale the best holistic combination of chemistry, catalyst, reactor and total process configuration integrated with the overall coal conversion process to achieve economic optimization for the conversion of syngas to liquid products within the framework of achieving the maximum cost effective transformation of coal to energy equivalents. (Tasks 1 and 2); and (5) evaluate the combustion, emission and performance characteristics of fuel alcohols and blends of alcohols with petroleum-based fuels. (Task 2)

  4. Coal liquefaction process streams characterization and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-03-01

    CONSOL R D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  5. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20141574 Chen Hao(Exploration and Development Research Institute,Daqing Oilfield Company,Daqing 163712,China)High-Resolution Sequences and Coal Accumulating Laws in Nantun Formation of Huhe Lake Sag(Petroleum Geology&Oilfield Development in Daqing,ISSN1000-3754,CN23-1286/TQ,32(4),2013,p.15-19,5 illus.,15 refs.)Key words:coal accumulation regularity,coal

  6. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091159 Gao Yan(No.3 Prospecting Team of Anhui Bureau of Coal Geology,Suzhou 234000,China) Effect of Depositional Environment of Coal-Bearing Stratum on Major Coal Seams in Suntan Coalmine,Anhui Province(Geology of Anhui,ISSN 1005- 6157,CN34-1111/P,18(2),2008,p.114 -117,5 illus.,1 ref.,with English abstract)

  7. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20110359 Feng Lijuan(Graduate School,Southwest Petroleum University,Chengdu 610500,China);Guo Dali Experimental Study on the Stress Sensitivity of Coal and Its Impact on the Filtration of the Fracturing Fluid(Coal Geology & Exploration,ISSN1001-1986,CN61-1155/P,38(2),2010,p.14-17,4 illus.,5 tables,9 refs.)Key words:coal seam,stressIn the paper,the relationship between the stress and permeability in the coal r

  8. 担载离子液体催化体系的构建及性能%Preparation of Supported Ionic Liquids Catalyst and Its Catalytic Performance

    Institute of Scientific and Technical Information of China (English)

    杨本群; 张庆华; 石峰; 邓友全

    2013-01-01

    Some different supported ionic liquids (ILs) catalysts, such as physical adsorption supported ILs catalyst, silica gel confined ILs catalyst and covalently supported ILs catalyst, were introduced, and the characterization techniques for supported ILs catalysts, such as low-temperature nitrogen adsorption-desorption technique(BET), transmission electron microscope(TEM), X-ray diffraction(XRD), differential scanning calorimetry(DSC), thermogravimetric thermal analysis(TGA), Fourier infrared spectroscopy(FT-IR), nuclear magnetic resonance(NMR) and so on. The application of ILs in hydrogenation reaction, selective oxidation, carbonylation and hydroamination reaction, were investigated. Finally, the further research and development of supported ILs catalysts were prospected.%介绍了各种方法制备的担载离子液体催化剂,如物理吸附担载离子液体催化剂、硅胶包载离子液体催化剂、通过共价键担载离子液体催化剂等,并介绍了担载离子液体催化剂的各种表征手段,如比表面(BET)、透射电镜(TEM)、X射线衍射(XRD)、差示扫描量热分析(DSC)、热重分析(TGA)、红外光谱(FT-IR)和核磁共振(NMR)等,综述了离子液体催化剂在催化加氢、选择性氧化、羰化和烯烃氢氨基化等反应中的应用,最后对担载离子液体催化体系的研究发展进行了初步展望。

  9. Coal: Energy for the future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    This report was prepared in response to a request by the US Department of energy (DOE). The principal objectives of the study were to assess the current DOE coal program vis-a-vis the provisions of the Energy Policy Act of 1992 (EPACT), and to recommend the emphasis and priorities that DOE should consider in updating its strategic plan for coal. A strategic plan for research, development, demonstration, and commercialization (RDD and C) activities for coal should be based on assumptions regarding the future supply and price of competing energy sources, the demand for products manufactured from these sources, technological opportunities, and the need to control the environmental impact of waste streams. These factors change with time. Accordingly, the committee generated strategic planning scenarios for three time periods: near-term, 1995--2005; mid-term, 2006--2020; and, long-term, 2021--2040. The report is divided into the following chapters: executive summary; introduction and scope of the study; overview of US DOE programs and planning; trends and issues for future coal use; the strategic planning framework; coal preparation, coal liquid mixtures, and coal bed methane recovery; clean fuels and specialty products from coal; electric power generation; technology demonstration and commercialization; advanced research programs; conclusions and recommendations; appendices; and glossary. 174 refs.

  10. Development of biotechnical processes for purification of liquid waste from coal processing. Final report. Entwicklung biotechnischer Verfahren zur Behandlung von Abwaessern aus der Kohleveredlung. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Jockers, R.; Patalas, N.; Schacht, S.; Rehm, H.J.; Freier, D.

    1988-04-01

    Within the framework of the project special cultures of microorganisms were tested for their efficiency for the degradation of phenol-containing waste waters from coal upgrading plants. Furthermore, different immobilization methods and reactor types for the use of highly polluted waste waters were tested. A biotechnical process was developed which is expected to have excellent chances for practical realization on an industrial scale.

  11. INVESTIGATION OF SELECTIVE CATALYTIC REDUCTION IMPACT ON MERCURY SPECIATION UNDER SIMULATED NOX EMISSION CONTROL CONDITIONS

    Science.gov (United States)

    Selective catalytic reduction (SCR) technology is being increasingly applied for controlling emissions of nitrogen oxides (NOx) from coal-fired boilers. Some recent field and pilot studies suggest that the operation of SCR could affect the chemical form of mercury in the coal com...

  12. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR

    Energy Technology Data Exchange (ETDEWEB)

    K.C. Kwon

    2004-01-01

    The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and the hot-gas desulfurization using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process. The objective of this research is to support the near- and long-term process development efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and a micro bubble reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into liquid elemental sulfur were carried out for the space time range of 1-6 milliseconds at 125-155 C to evaluate effects of reaction temperature, moisture concentration, reaction pressure on conversion of hydrogen sulfide into liquid elemental sulfur. Simulated coal gas mixtures consist of 70 v% hydrogen, 2,500-7,500-ppmv hydrogen sulfide, 1,250-3,750 ppmv sulfur dioxide, and 0-15 vol% moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to a micro bubble reactor are 100 cm{sup 3}/min at room temperature and atmospheric pressure. The temperature of the reactor is controlled in an oven at 125-155 C. The

  13. KINETICS OF DIRECT OXIDATION OF H2S IN COAL GAS TO ELEMENTAL SULFUR

    Energy Technology Data Exchange (ETDEWEB)

    K.C. Kwon

    2005-01-01

    The direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and the hot-gas desulfurization using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process. The objective of this research is to support the near- and long-term process development efforts to commercialize this direct oxidation technology. The objectives of this research are to measure kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and a micro bubble reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives, experiments on conversion of hydrogen sulfide into liquid elemental sulfur were carried out for the space time range of 0.059-0.87 seconds at 125-155 C to evaluate effects of reaction temperature, H{sub 2}S concentration, reaction pressure, and catalyst loading on conversion of hydrogen sulfide into liquid elemental sulfur. Simulated coal gas mixtures consist of 62-78 v% hydrogen, 3,000-7,000-ppmv hydrogen sulfide, 1,500-3,500 ppmv sulfur dioxide, and 10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to a micro bubble reactor are 50 cm{sup 3}/min at room temperature and atmospheric pressure. The temperature of the reactor is controlled in an

  14. Development of a hydrophilic interaction liquid chromatography-mass spectrometry method for detection and quantification of urea thermal decomposition by-products in emission from diesel engine employing selective catalytic reduction technology.

    Science.gov (United States)

    Yassine, Mahmoud M; Dabek-Zlotorzynska, Ewa; Celo, Valbona

    2012-03-16

    The use of urea based selective catalytic reduction (SCR) technology for the reduction of NOx from the exhaust of diesel-powered vehicles has the potential to emit at least six thermal decomposition by-products, ammonia, and unreacted urea from the tailpipe. These compounds may include: biuret, dicyandiamine, cyanuric acid, ammelide, ammeline and melamine. In the present study, a simple, sensitive and reliable hydrophilic interaction liquid chromatography (HILIC)-electrospray ionization (ESI)/mass spectrometry (MS) method without complex sample pre-treatment was developed for identification and determination of urea decomposition by-products in diesel exhaust. Gradient separation was performed on a SeQuant ZIC-HILIC column with a highly polar zwitterionic stationary phase, and using a mobile phase consisting of acetonitrile (eluent A) and 15 mM ammonium formate (pH 6; eluent B). Detection and quantification were performed using a quadrupole ESI/MS operated simultaneously in negative and positive mode. With 10 μL injection volume, LODs for all target analytes were in the range of 0.2-3 μg/L. The method showed a good inter-day precision of retention time (RSD<0.5%) and peak area (RSD<3%). Satisfactory extraction recoveries from spiked blanks ranged between 96 and 98%. Analyses of samples collected during transient chassis dynamometer tests of a bus engine equipped with a diesel particulate filter (DPF) and urea based SCR technology showed the presence of five target analytes with cyanuric acid and ammelide the most abundant compounds in the exhaust. PMID:22318005

  15. Coals and coal requirements for the COREX process

    Energy Technology Data Exchange (ETDEWEB)

    Heckmann, H. [Deutsche Voest-Alpine Industrieanlagenbau GmbH, Duesseldorf (Germany)

    1996-12-31

    The utilization of non met coals for production of liquid hot metal was the motivation for the development of the COREX Process by VAI/DVAI during the 70`s. Like the conventional ironmaking route (coke oven/blast furnace) it is based on coal as source of energy and reduction medium. However, in difference to blast furnace, coal can be used directly without the necessary prestep of cokemaking. Coking ability of coals therefore is no prerequisite of suitability. Meanwhile the COREX Process is on its way to become established in ironmaking industry. COREX Plants at ISCOR, Pretoria/South Africa and POSCO Pohang/Korea, being in operation and those which will be started up during the next years comprise already an annual coal consumption capacity of approx. 5 Mio. tonnes mtr., which is a magnitude attracting the interest of industrial coal suppliers. The increasing importance of COREX as a comparable new technology forms also a demand for information regarding process requirements for raw material, especially coal, which is intended to be met here.

  16. 酸性离子液体中八聚钼酸盐相转移催化氧化脱硫的研究%Phase transfer catalytic oxidative desulfurization of fuels catalyzed by octamolybdate in acidic ionic liquids

    Institute of Scientific and Technical Information of China (English)

    葛建华; 周钰明; 高良敏; 胡友彪

    2013-01-01

    制备了四种八聚钼酸盐催化剂:[(C4H9)4N]4Mo8O26,[(C12H25)N(CH3)3]4Mo8O26,[(C14H29)N (CH3)3]4Mo8O26和[(C16H33)N(CH3)3]4Mo8O26.通过元素分析,TG/DSC,FT-IR和紫外-可见光谱等方法对这四种催化剂的组成和结构进行了相应表征.研究了八聚钼酸季铵盐催化剂在酸性离子液体中相转移催化氧化脱硫活性.同时考察了在不同脱硫体系和催化剂、温度(T)、时间(t)、氧化剂(H2O2)用量、催化剂用量、以及酸性离子液体的种类等因素对脱硫效果的影响.经过对反应条件优化,当在70℃下反应3h,n(H2O2)∶n(DBT)=4∶1,n(DBT)∶n(Catalyst)=10∶1,离子液体[(CH2)3SO3 HMIm] BF4用量为1mL,模拟油品中二苯并噻吩(DBT)脱除率可以达到98.3%,且循环反应6次后催化反应活性没有明显的下降,可以用来进行深度脱硫.最后,对该脱硫体系的脱硫机理进行了讨论.%Four Surfactant-type octamolybdates were synthesized and characterized,and then used as effective catalysts associated with 30% H2O2 as oxidant in the acidic ionic liquid,which has been found suitable for deep removal of organic sulfur in fuels.In this catalytic oxidation desulfurization system,the main factors affecting the desulfurization process include temperature,the reaction time,the dosage of H2O2 and catalyst,as well as the type of acidic ionic liquids.All these factors played significant roles in desulfurization efficiency,under the favorable conditions.The sulfur removal could reach almost 98.3%,which was much better than desulfurization performance by simple extraction with acidic ionic liquid.Moreover,this acidic ionic liquid can be recycled six times by distillation without obviously decrease in activity.Meanwhile,the mechanism of oxidation desulfurization was also elaborated.

  17. Comprehensive Fractal Description of Porosity of Coal of Different Ranks

    OpenAIRE

    Jiangang Ren; Guocheng Zhang; Zhimin Song; Gaofeng Liu; Bing Li

    2014-01-01

    We selected, as the objects of our research, lignite from the Beizao Mine, gas coal from the Caiyuan Mine, coking coal from the Xiqu Mine, and anthracite from the Guhanshan Mine. We used the mercury intrusion method and the low-temperature liquid nitrogen adsorption method to analyze the structure and shape of the coal pores and calculated the fractal dimensions of different aperture segments in the coal. The experimental results show that the fractal dimension of the aperture segment of lign...

  18. Progress in Coal Liquefaction Technologies

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Worldwide primary energy consumption is entering an era of pluralism and high quality under the influence of rapid economic development, increasing energy shortage and strict environmental policies. Although renewable energy technology is developing rapidly, fossil fuels (coal, oil and gas) are still the dominant energy sources in the world. As a country rich in coal but short ofoil and gas, China's oil imports have soared in the past few years. Government, research organizations and enterprises in China are paying more and more attention to the processes of converting coal into clean liquid fuels. Direct and indirect coal liquefaction technologies are compared in this paper based on China's current energy status and technological progress not only in China itself but also in the world.

  19. Coal liquefaction. Quarterly report, January-March 1979. [US DOE supported

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-01

    Progress in DOE-supported coal liquefaction pilot plant projects is reported: company, location, contract, funding, process description, history and progress in the current quarter. Related projects discussed are: coking and gasification of liquefaction plant residues, filtration of coal liquids and refining of coal liquids by hydrogenation. (LTN)

  20. Evidence for fullerene in a coal of Yunnan, Southwestern China

    International Nuclear Information System (INIS)

    In two types of coal from a coal mine in Yunnan Province, Southwestern China, the presence of fullerene is confirmed. The fullerene had been suggested earlier by its characteristic infrared absorption spectrum. The present work reports verification by a high performance liquid chromatograph. A critical step leading to the confirmation is in the process of preparation of the liquid solution from the coal for chromatography and this is described. Possible conditions for the search of natural fullerenes are suggested. (orig.)

  1. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20111830 Cai Hou’an(State Key Laboratory of Coal Resources and Safety Mining,China University of Mining and Technology,Beijing 100083,China);Xu Debin The Discovery of Thrust Nappe Structure in Zhangwu-Heishan Area,Liaoning Province and Its Significance for Coal-Searching(Coal Geology & Exploration,ISSN1001-1986,CN61-1155/P,38(5),2010,p.1-6,5 illus.,31 refs.)Key words:coalfield prediction,nappe structure,Liaoning Province Zhangwu-Heishan area in west Liaoning Province is an important perspective area for alternative resources in the periphery of Fuxin Basin.Based on r

  2. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>20122522 Guo Dongxin ( School of Energy Resource,China University of Geosciences,Bei-jing 100083,China );Tang Shuheng Sequence Strata and the Coal Accumulation of Wunite Coafield,Inner Mongolia ( Coal Geology & Exploration,ISSN1001-1986,CN61-1155 / P,39 ( 6 ), 2011,p.1-5,5illus.,16refs. ) Key words:sequence stratigraphy,coal accumulation regularity,Inner Mongolia Based on the study of the stratigraphy sequence of the Bayanhua Formation of Lower Cretaceous in Wunite coafield ,

  3. Coal-Mine Liquidation as a Strategic Managerial Decision: a Decision-Making Model Based on the Options Approach / Likwidacja Kopalni Jako Strategiczna Decyzja Menedżerska: Model Decyzyjny Z Wykorzystaniem Podejścia Opcyjnego

    Science.gov (United States)

    Jewartowski, Tomasz; Mizerka, Jacek; Mróz, Cezary

    2015-09-01

    The aim of this paper is to determine the optimal time of coal mine liquidation given the necessity of bearing the costs of post-mining reclamation. In order to consider the volatility of parameters important for making a liquidation decision and the entrepreneur's flexibility in the decision-making process, the real options approach was applied. Mine liquidation, which is inextricably linked to post-mining reclamation, is examined as an American put option on the market value of continuing the mine's operation which plays the role of the underlying asset. In turn, the role of the exercise price is played by expenditures for mine liquidation and post-mining reclamation, which can be avoided if the decision to close the mine is taken before all the deposits are exhausted. The liquidation option is exercised when the value of liquidation and reclamation cost savings significantly exceeds the continuation value. Mine liquidation was additionally made conditional on the value of funds accumulated to finance post-mining reclamation. Artykuł dotyczy ustalenia optymalnego momentu likwidacji kopalni w związku z koniecznością ponoszenia kosztów rekultywacji gruntów pokopalnianych. W celu uwzględnienia zmienności wartości parametrów istotnych dla podjęcia decyzji o likwidacji oraz elastyczności w podejmowaniu decyzji przez przedsiębiorcę, wykorzystano podejście opcyjne. Likwidację kopalni, która jest nierozłącznie związana z rekultywacją terenów pokopalnianych, rozpatruje się jako amerykańską opcję sprzedaży (put) wystawioną na rynkową wartość kontynuacji działalności kopalni pełniącą rolę instrumentu bazowego. Z kolei rolę ceny wykonania odgrywają nakłady na likwidację kopalni i rekultywację terenów pokopalnianych, poniesienia których można uniknąć, gdy decyzja o wstrzymaniu eksploatacji zapadnie przed wyczerpaniem się złoża. Opcja likwidacji jest wykonywana, gdy kwota nakładów na likwidację i rekultywację znacz

  4. CoalVal-A coal resource valuation program

    Science.gov (United States)

    Rohrbacher, Timothy J.; McIntosh, Gary E.

    2010-01-01

    ; operating cost per ton; and discounted cash flow cost per ton to mine and process the resources. Costs are calculated as loaded in a unit train, free-on-board the tipple, at a rate of return prescribed by the evaluator. The recoverable resources (in short tons) may be grouped by incremental cost over any range chosen by the user. For example, in the Gillette coalfield evaluation, the discounted cash flow mining cost (at an 8 percent rate of return) and its associated tonnage may be grouped by any applicable increment (for example, $0.10 per ton, $0.20 per ton, and so on) and using any dollar per ton range that is desired (for example, from $4.00 per ton to $15.00 per ton). This grouping ability allows the user to separate the coal reserves from the nonreserve resources and to construct cost curves to determine the effects of coal market fluctuations on the availability of coal for fuel whether for the generation of electricity or for coal-to-liquids processes. Coking coals are not addressed in this report.

  5. Cooperative research program in coal liquefaction. Quarterly report, May 1, 1993--October 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, G.P. [ed.

    1994-07-01

    This report summarizes progress in four areas of research under the general heading of Coal Liquefaction. Results of studies concerning the coliquefaction of coal with waste organic polymers or chemical products of these polymers were reported. Secondly, studies of catalytic systems for the production of clean transportation fuels from coal were discussed. Thirdly, investigations of the chemical composition of coals and their dehydrogenated counterparts were presented. These studies were directed toward elucidation of coal liquefaction processes on the chemical level. Finally, analytical methodologies developed for in situ monitoring of coal liquefaction were reported. Techniques utilizing model reactions and methods based on XAFS, ESR, and GC/MS are discussed.

  6. Catalytic conversion of light alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, J.E.

    1992-06-30

    The second Quarterly Report of 1992 on the Catalytic Conversion of Light Alkanes reviews the work done between April 1, 1992 and June 31, 1992 on the Cooperative Agreement. The mission of this work is to devise a new catalyst which can be used in a simple economic process to convert the light alkanes in natural gas to oxygenate products that can either be used as clean-burning, high octane liquid fuels, as fuel components or as precursors to liquid hydrocarbon uwspomdon fuel. During the past quarter we have continued to design, prepare, characterize and test novel catalysts for the mild selective reaction of light hydrocarbons with air or oxygen to produce alcohols directly. These catalysts are designed to form active metal oxo (MO) species and to be uniquely active for the homolytic cleavage of the carbon-hydrogen bonds in light alkanes producing intermediates which can form alcohols. We continue to investigate three molecular environments for the active catalytic species that we are trying to generate: electron-deficient macrocycles (PHASE I), polyoxometallates (PHASE II), and regular oxidic lattices including zeolites and related structures as well as other molecular surface structures having metal oxo groups (PHASE I).

  7. Component Development to Accelerate Commercial Implementation of Ultra-Low Emissions Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, Jon; Berry, Brian; Lundberg, Kare; Anson, Orris

    2003-03-31

    This final report describes a 2000-2003 program for the development of components and processes to enhance the commercialization of ultra-low emissions catalytic combustion in industrial gas turbines. The range of project tasks includes: development of more durable, lower-cost catalysts and catalytic combustor components; development and design of a catalytic pre-burner and a catalytic pilot burner for gas turbines, and on-site fuel conversion processing for utilization of liquid fuel.

  8. Incorporation of catalytic dehydrogenation into Fischer-Tropsch synthesis to lower carbon dioxide emissions

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, Gerald P

    2012-09-18

    A method for producing liquid fuels includes the steps of gasifying a starting material selected from a group consisting of coal, biomass, carbon nanotubes and mixtures thereof to produce a syngas, subjecting that syngas to Fischer-Tropsch synthesis (FTS) to produce a hyrdrocarbon product stream, separating that hydrocarbon product stream into C1-C4 hydrocarbons and C5+ hydrocarbons to be used as liquid fuels and subjecting the C1-C4 hydrocarbons to catalytic dehydrogenation (CDH) to produce hydrogen and carbon nanotubes. The hydrogen produced by CDH is recycled to be mixed with the syngas incident to the FTS reactor in order to raise the hydrogen to carbon monoxide ratio of the syngas to values of 2 or higher, which is required to produce liquid hydrocarbon fuels. This is accomplished with little or no production of carbon dioxide, a greenhouse gas. The carbon is captured in the form of a potentially valuable by-product, multi-walled carbon nanotubes (MWNT), while huge emissions of carbon dioxide are avoided and very large quantities of water employed for the water-gas shift in traditional FTS systems are saved.

  9. Exploratory Research on Novel Coal

    Energy Technology Data Exchange (ETDEWEB)

    Winschel, R.A.; Brandes, S.D.

    1998-05-01

    The report presents the findings of work performed under DOE Contract No. DE-AC22 -95PC95050, Task 3 - Flow Sheet Development. A novel direct coal liquefaction technology was investigated in a program being conducted by CONSOL Inc. with the University of Kentucky Center for Applied Energy Research and LDP Associates. The process concept explored consists of a first-stage coal dissolution step in which the coal is solubilized by hydride ion donation. In the second stage, the products are catalytically upgraded to refinery feedstocks. Integrated first-stage and solids-separation steps were used to prepare feedstocks for second-stage catalytic upgrading. An engineering and economic evaluation was conducted concurrently with experimental work throughout the program. Parameters were established for a low-cost, low-severity first-stage reaction system. A hydride ion reagent system was used to effect high coal conversions of Black Thunder Mine Wyoming subbituminous coal. An integrated first-stage and filtration step was successfully demonstrated and used to produce product filtrates with extremely low solids contents. High filtration rates previously measured off-line in Task 2 studies were obtained in the integrated system. Resid conversions of first-stage products in the second stage were found to be consistently greater than for conventional two-stage liquefaction resids. In Task 5, elementally balanced material balance data were derived from experimental results and an integrated liquefaction system balance was completed. The economic analysis indicates that the production of refined product (gasoline) via this novel direct liquefaction technology is higher than the cost associated with conventional two-stage liquefaction technologies. However, several approaches to reduce costs for the conceptual commercial plant were recommended. These approaches will be investigated in the next task (Task 4) of the program.

  10. Energy Saving and Pollution Reducing Effects of Coal Combustion Catalysts

    Institute of Scientific and Technical Information of China (English)

    WU Zenghua; YU Zhiwu; ZHU Wentao; ZHOU Rui

    2001-01-01

    Coal catalytic agents (CCS type) have been prepared to improve coal combustion and reduce air pollution.The energy and pollution reductions resulting from the catalysts have been examined with thermal analysis and chromatography.The CCS agents lower the ignition temperature by 30-80℃ and improve the coal combustion efficiency by 10%-25%.The agents also reduce the release of carbon monoxide,sulfur dioxide,and coal particles to environment.The working mechanisms of the catalysts are discussed in terms of their participation in various physico-chemical processes during combustion.

  11. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20132555 Bao Yuan(School of Resources and Geosciences,China University of Mining and Technology,Xuzhou 221008,China);Wei Chongtao Simulation of Geological Evolution History of the Upper Permian Coal Seam No.8in Shuigonghe Syncline,Zhina Coalfield,Guizhou Province(Coal Geology&Exploration,ISSN1001-1986,CN61-1155/P,40(6),2012,p.13-16,23,1illus.,1table,17refs.)

  12. Development of a New Type of Alkali-Free Liquid Accelerator for Wet Shotcrete in Coal Mine and Its Engineering Application

    Directory of Open Access Journals (Sweden)

    Gang Zhou

    2015-01-01

    Full Text Available In order to address issues such as large rebound rate, high dust concentration, and low compressive strength of shotcrete when adding liquid accelerator during wet spraying, the factors influencing the efficiency of liquid accelerator were experimentally analyzed. The single-admixture, combination, and orthogonal tests were conducted on the five fundamental raw materials required to develop the new liquid accelerator. The WT-1 type liquid accelerator, which had better adaptability to different kinds of cement, was developed with the mass concentration ratio of 55% aluminum sulfate octadecahydrate, 4% sodium fluoride, 2.5% triethanolamine, 0.5% polyacrylamide, 5% bentonite, and 33% water. Experimental investigation showed that the initial setting time of the reference cement with 6% mass content of this liquid accelerator was 2 minutes and 15 seconds, and the final setting time was 7 minutes and 5 seconds. The compressive strength after 1 day of curing was 13.6 MPa and the strength ratio after 28 days of curing was 94.8%, which met the first grade product requirements of the China National Standard. Compared with the conventional type liquid accelerator, the proposed type WT-1 accelerator is capable of effectively reducing the rebound rate and dust concentration while significantly increasing the compressive strength of the shotcrete.

  13. Novel Fuel Cells for Coal Based Systems

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Tao

    2011-12-31

    The goal of this project was to acquire experimental data required to assess the feasibility of a Direct Coal power plant based upon an Electrochemical Looping (ECL) of Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC). The objective of Phase 1 was to experimentally characterize the interaction between the tin anode, coal fuel and cell component electrolyte, the fate of coal contaminants in a molten tin reactor (via chemistry) and their impact upon the YSZ electrolyte (via electrochemistry). The results of this work will provided the basis for further study in Phase 2. The objective of Phase 2 was to extend the study of coal impurities impact on fuel cell components other than electrolyte, more specifically to the anode current collector which is made of an electrically conducting ceramic jacket and broad based coal tin reduction. This work provided a basic proof-of-concept feasibility demonstration of the direct coal concept.

  14. Synfuels from coal - an environmentally sound approach

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, J.N. (Sasol Technology Ltd (South Africa))

    1991-01-01

    The Sasol oil from coal process is a two stage process in which indirect liquefaction is used to convert coal to synthesis gas which is then reacted in a second stage to produce hydrocarbon liquids. The process has been used for over 35 years, and has been advanced and modernized to provide almost the same degree of environmental friendliness as some of the new clean coal technologies. A further advantage of the production of transport fuels from coal is that all sulphur is removed prior to processing and the product petrol and diesel fuels are fully sulphur free. Sasol has now diversified into added value products, and today's coal refineries co-produce power, steam, fuel and chemicals from coal. 2 tabs.

  15. Catalytic production of biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Theilgaard Madsen, A.

    2011-07-01

    The focus of this thesis is the catalytic production of diesel from biomass, especially emphasising catalytic conversion of waste vegetable oils and fats. In chapter 1 an introduction to biofuels and a review on different catalytic methods for diesel production from biomass is given. Two of these methods have been used industrially for a number of years already, namely the transesterification (and esterification) of oils and fats with methanol to form fatty acid methyl esters (FAME), and the hydrodeoxygenation (HDO) of fats and oils to form straight-chain alkanes. Other possible routes to diesel include upgrading and deoxygenation of pyrolysis oils or aqueous sludge wastes, condensations and reductions of sugars in aqueous phase (aqueous-phase reforming, APR) for monofunctional hydrocarbons, and gasification of any type of biomass followed by Fischer-Tropsch-synthesis for alkane biofuels. These methods have not yet been industrialised, but may be more promising due to the larger abundance of their potential feedstocks, especially waste feedstocks. Chapter 2 deals with formation of FAME from waste fats and oils. A range of acidic catalysts were tested in a model fat mixture of methanol, lauric acid and trioctanoin. Sulphonic acid-functionalised ionic liquids showed extremely fast convertion of lauric acid to methyl laurate, and trioctanoate was converted to methyl octanoate within 24 h. A catalyst based on a sulphonated carbon-matrix made by pyrolysing (or carbonising) carbohydrates, so-called sulphonated pyrolysed sucrose (SPS), was optimised further. No systematic dependency on pyrolysis and sulphonation conditions could be obtained, however, with respect to esterification activity, but high activity was obtained in the model fat mixture. SPS impregnated on opel-cell Al{sub 2}O{sub 3} and microporous SiO{sub 2} (ISPS) was much less active in the esterification than the original SPS powder due to low loading and thereby low number of strongly acidic sites on the

  16. Iodine in Chinese coals and its geochemistry during coalification

    Energy Technology Data Exchange (ETDEWEB)

    Wu, D.S.; Deng, H.W.; Zheng, B.S.; Wang, W.Y.; Tang, X.Y.; Xiao, H.Y. [Nanchang University, Nanchang (China)

    2008-08-15

    To determine the I distribution in Chinese coals, a nationwide survey was undertaken based on the distribution, periods of formation, rank and production yields of various coal deposits. A total of 305 coal samples were collected and their I contents were determined by catalytic spectrophotometry with pyrohydrolysis. The geochemistry of I during coalification (including both peat diagenesis and coal metamorphism) was assessed. It was found that the I contents of Chinese coals range from 0.04 mg kg{sup -1} to 39.5 mg kg{sup -1} and exhibit a lognormal distribution, with a geometric mean of 1.27 mg kg{sup -1} Statistical correlation analysis and the observation that I contents increase with coal rank indicate that coal 1 is chalcophile in nature, and not generally organically bound. When peat developed into lignite through diagenesis, 95-99.9% of the original I was lost. The composition and structure of clay minerals present in the coal were controlled by the original depositional environment. The higher the I content of coals, the more likely the original sediments were affected by a marine environment. Iodine contents increased front lignite through sub-bituminous and bituminous coals to anthracite. This indicates that coal absorbed excess I from hydrothermal fluids during metamorphism (including geothermal metamorphism and telemagmatic metamorphism). The telemagmatic metamorphism was caused by magmatic activities that depended on the specific geological structure of the region. In China, most high-rank coals were formed by telemagmatic metamorphism.

  17. Iodine in Chinese coals and its geochemistry during coalification

    Energy Technology Data Exchange (ETDEWEB)

    Wu Daishe [School of Environmental Science and Engineering, Nanchang University, 999 Xuefu Avenue, Honggutan New Zone, Nanchang, Jiangxi Province 330031 (China); Institute of Geographic Sciences and Resources Research, CAS, Beijing 100101 (China)], E-mail: dswu@ncu.edu.cn; Deng Haiwen [School of Environmental Science and Engineering, Nanchang University, 999 Xuefu Avenue, Honggutan New Zone, Nanchang, Jiangxi Province 330031 (China); Zheng Baoshan [State Key Lab of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550002 (China); Wang Wuyi [Institute of Geographic Sciences and Resources Research, CAS, Beijing 100101 (China); Tang Xiuyi [Anhui University of Science and Technology, Huainan 232001 (China); Xiao Huayun [School of Environmental Science and Engineering, Nanchang University, 999 Xuefu Avenue, Honggutan New Zone, Nanchang, Jiangxi Province 330031 (China)

    2008-08-15

    To determine the I distribution in Chinese coals, a nationwide survey was undertaken based on the distribution, periods of formation, rank and production yields of various coal deposits. A total of 305 coal samples were collected and their I contents were determined by catalytic spectrophotometry with pyrohydrolysis. The geochemistry of I during coalification (including both peat diagenesis and coal metamorphism) was assessed. It was found that the I contents of Chinese coals range from 0.04 mg kg{sup -1} to 39.5 mg kg{sup -1} and exhibit a lognormal distribution, with a geometric mean of 1.27 mg kg{sup -1}. Statistical correlation analysis and the observation that I contents increase with coal rank indicate that coal I is chalcophile in nature, and not generally organically bound. When peat developed into lignite through diagenesis, 95-99.9% of the original I was lost. The composition and structure of clay minerals present in the coal were controlled by the original depositional environment. The higher the I content of coals, the more likely the original sediments were affected by a marine environment. Iodine contents increased from lignite through sub-bituminous and bituminous coals to anthracite. This indicates that coal absorbed excess I from hydrothermal fluids during metamorphism (including geothermal metamorphism and telemagmatic metamorphism). The telemagmatic metamorphism was caused by magmatic activities that depended on the specific geological structure of the region. In China, most high-rank coals were formed by telemagmatic metamorphism.

  18. Preconversion catalytic deoxygenation of phenolic functional groups. Quarterly technical progress report, April 1, 1992--June 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, C.P.

    1992-11-01

    Aryl carbon-oxygen bond cleavage is a chemical transformation of importance in coal liquefaction and the upgrading of coal liquids as well as in the synthesis of natural products. There have been numerous attempts to discover general methods for the cleavage of aryl carbon-oxygen bonds. All the stoichiometric organic methods for phenol deoxygenation have limited applications and involve expensive reagents. Catalytic method, for the hydrodeoxygenation (HDO) of phenols involve supported transition metal oxides, such as Mo/{gamma}-Al{sub 2}O{sub 3}, Ni-MO/{gamma}-Al{sub 2}O{sub 3}, Co-Mo/{gamma}-Al{sub 2}O{sub 3}, and Fe{sub 2}O{sub 3}/SiO{sub 2}. Typical phenol hydrodeoxygenation conditions involve hydrogen pressures in excess of 100 atm and temperatures in excess of 200{degrees}C. Under these conditions arene ring hydrogenation is generally found to compete with phenol deoxygenation; and the coproduct water is found to impair the activity of the catalysts. This proposed research offers the possibility of effecting the selective catalytic deoxygenation of phenolic functional groups using CO. The deoxygenation of phenols by carbon monoxide mediated by Ir(triphos)OAr has provided us with a catalytic Phenol deoxygenation pathway, through the elimination of CO{sub 2} and formation of a benzyne intermediate. Although the [Pt(triphos)(O-Ph-Me)]PF{sub 6} system is not expected to be as efficient a catalyst as some of the other transition metals systems we are currently exploring, it will provide more information about the deoxygenation mechanism in these triphos complexes. This is due to the presence of the structurally sensitive {sup 3l}P--{sup 195}Pt coupling constant and comparisons to the extensively studied Pt(dppe)(O-Ph){sub 2} systems.

  19. Catalytic distillation structure

    Science.gov (United States)

    Smith, Jr., Lawrence A.

    1984-01-01

    Catalytic distillation structure for use in reaction distillation columns, a providing reaction sites and distillation structure and consisting of a catalyst component and a resilient component intimately associated therewith. The resilient component has at least about 70 volume % open space and being present with the catalyst component in an amount such that the catalytic distillation structure consist of at least 10 volume % open space.

  20. Catalytic combustor for hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mercea, J.; Grecu, E.; Fodor, T.; Kreibik, S.

    1982-01-01

    The performance of catalytic combustors for hydrogen using platinum-supported catalysts is described. Catalytic plates of different sizes were constructed using fibrous and ceramic supports. The temperature distribution as well as the reaction efficiency as a function of the fuel input rate was determined, and a comparison between the performances of different plates is discussed.

  1. EDS coal liquefaction process development: Phase V. Final technical progress report, Volume I

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-02-01

    All objectives in the EDS Cooperative Agreement for Phases III-B through V have been achieved for the RCLU pilot plants. EDS operations have been successfully demonstrated in both the once-through and bottoms recycle modes for coals of rank ranging from bituminous to lignitic. An extensive data base detailing the effects of process variable changes on yields, conversions and product qualities for each coal has been established. Continuous bottoms recycle operations demonstrated increased overall conversion and improved product slate flexibility over once-through operations. The hydrodynamics of the liquefaction reactor in RCLU were characterized through tests using radioactive tracers in the gas and slurry phases. RCLU was shown to have longer liquid residence times than ECLP. Support work during ECLP operations contributed to resolving differences between ECLP conversions and product yields and those of the small pilot plants. Solvent hydrogenation studies during Phases IIIB-V of the EDS program focused on long term activity maintenance of the Ni-MO-10 catalyst. Process variable studies for solvents from various coals (bituminous, subbituminous, and lignitic), catalyst screening evaluations, and support of ECLP solvent hydrogenation operations. Product quality studies indicate that highly cyclic EDS naphthas represent unique and outstanding catalytic reforming feedstocks. High volumes of high octane motor gasoline blendstock are produced while liberating a considerable quantity of high purity hydrogen.

  2. Chemistry and morphology of coal liquefaction. Annual report, October 1, 1979-September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H.

    1980-09-01

    The present annual report summarizes quarterly reports and includes work performed during the last quarter of fiscal 1980. The first year of this project has just been completed and much of the time and effort has been concentrated on equipment building, assembling, testing, and on staffing. This, of course, has been more true in the areas of work with spectroscopic and high pressure equipment than in organic chemical reactions. More experimental results are therefore reported in the areas of hydrogen transfer mechanisms and catalysis and organo-metallic chemistry. A few of the significant results in these and other areas are the evidence for catalysis in hydrogen transfer from tetralin; a novel and possibly very important new synthesis of alkyl aromatics from benzene, carbon monoxide, and hydrogen; the study of coals in the transmission electron microscope identifying coal macerals, minerals and metals, and leading to the possibility of observing location of and catalytic influences on pyrolysis and hydrogenation at elevated temperatures; the finding that scales formed on deactivated cobalt-molybdena-alumina-hydrogenation catalysts contain not only metals from the liquid feedstocks, but also molybdenum sulfide which must derive from migration from the catalyst interior to and beyond the surface. Insights gained in mechanisms of pyrolysis, hydrogenation, hydrogen transfer, and indirect liquefaction of coal promise to lead to improving technology by defining problem areas and showing routes to by-pass problems.

  3. Coal combustion by wet oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Bettinger, J.A.; Lamparter, R.A.; McDowell, D.C.

    1980-11-15

    The combustion of coal by wet oxidation was studied by the Center for Waste Management Programs, of Michigan Technological University. In wet oxidation a combustible material, such as coal, is reacted with oxygen in the presence of liquid water. The reaction is typically carried out in the range of 204/sup 0/C (400/sup 0/F) to 353/sup 0/C (650/sup 0/F) with sufficient pressure to maintain the water present in the liquid state, and provide the partial pressure of oxygen in the gas phase necessary to carry out the reaction. Experimental studies to explore the key reaction parameters of temperature, time, oxidant, catalyst, coal type, and mesh size were conducted by running batch tests in a one-gallon stirred autoclave. The factors exhibiting the greatest effect on the extent of reaction were temperature and residence time. The effect of temperature was studied from 204/sup 0/C (400/sup 0/F) to 260/sup 0/C (500/sup 0/F) with a residence time from 600 to 3600 seconds. From this data, the reaction activation energy of 2.7 x 10/sup 4/ calories per mole was determined for a high-volatile-A-Bituminous type coal. The reaction rate constant may be determined at any temperature from the activation energy using the Arrhenius equation. Additional data were generated on the effect of mesh size and different coal types. A sample of peat was also tested. Two catalysts were evaluated, and their effects on reaction rate presented in the report. In addition to the high temperature combustion, low temperature desulfurization is discussed. Desulfurization can improve low grade coal to be used in conventional combustion methods. It was found that 90% of the sulfur can be removed from the coal by wet oxidation with the carbon untouched. Further desulfurization studies are indicated.

  4. Effects and characterization of an environmentally-friendly, inexpensive composite Iron-Sodium catalyst on coal gasification

    Science.gov (United States)

    Monterroso, Rodolfo

    Coal gasification has been commercially used for more than 60 years in the production of fuels and chemicals. Recently, and due to the lowered environmental impacts and high efficiency derived from integrated gasification combined cycle (IGCC), this process has received increased attention. Furthermore, upcoming strict CO2 emissions regulations by the U.S. Environmental Protection Agency (EPA) will no longer be achievable by traditional means of coal combustion, therefore, growing dependence on different energy sources has drawn attention to clean coal technologies, such as coal-to-liquids processing, and the core of this process is also gasification. Gasification is an energy intensive process that can be substantially improved in terms of efficiency through the use of catalysts. In this study, the effect of the composite catalyst, FeCO3-Na2CO3, on gasification of a low-sulfur sub-bituminous Wyodak coal from the Powder River Basin (PRB) of Wyoming was investigated. The catalytic effects of the composite catalysts were evaluated by comparing their effluent gas compositions and carbon conversion kinetics to those achieved in the presence of either FeCO3 or Na2CO3 catalyst alone or without the presence of any catalyst. All of the evaluation work was conducted in a fixed bed gasifier at atmospheric pressure. Compared to raw coal with no catalyst, the composite catalyst is efficient in increasing the carbon conversion rate constant by as much as two times within the 700-800°C range due to its ability to reduce the activation energy of gasification by about 30-40%. Compared to pure sodium and iron catalysts, the composite catalyst can increase the yields of desired products H2 and CO at 800°C by 15% and 40%, respectively. The composite catalyst can not only synergize the advantages, but also overcome the challenges of pure iron or pure sodium based catalytic coal gasification processes. Moreover, the mechanisms of this particular catalytic coal gasification process

  5. Behavior of shungite carbon in reactions simulating thermal transformations of coal

    Energy Technology Data Exchange (ETDEWEB)

    Grigor' eva, E.N.; Rozhkova, N.N. [Russian Academy of Science, Moscow (Russian Federation)

    2000-07-01

    The catalytic activity of shungite carbon in reactions of model compounds (tetralin and benzyl phenyl ether) simulating thermolysis of coal was studied. The orders, rate constants, and activation energies of reactions were determined.

  6. Catalytic Performance of Supported Liquid Phase Catalyst in Oxidative Gas Phase Carbonylation of Methanol to Dimethyl Carbonate%负载液膜催化剂催化甲醇气相氧化羰基化合成碳酸二甲酯反应的性能

    Institute of Scientific and Technical Information of China (English)

    丁晓墅; 岳川; 王淑芳; 赵新强; 王延吉

    2014-01-01

    制备了新型负载液膜催化剂 PdCl2‐CuCl2‐KOAc‐EG/AC ,并用于甲醇气相氧化羰基化直接合成碳酸二甲酯(DMC),考察了二甘醇、三甘醇和四甘醇及其混合物等不同液膜相,以及制备方法对所制备催化剂在合成DMC反应中催化性能的影响。结果表明,二甘醇作为液膜相,采用高温加压浸渍法制备的催化剂的DMC空时收率比固载型催化剂显著提高。在反应温度160℃、反应压力0.3 MPa、n(CH3 OH)∶ n(CO)∶ n(O2)=3.6∶2.3∶1、原料气体积空速7100 h-1条件下,DMC空时收率最高可达921 g/(Lcat・h),并且催化剂稳定性也有较大提高。高温加压浸渍法有利于液膜相分散于活性炭孔道中,并保持相对稳定。液膜相的黏度和分子大小是影响负载液膜催化剂反应性能的主要因素。%The supported liquid phase catalyst was prepared and used in catalytic synthesized dimethyl carbonate(DMC) from gas‐phase oxidative carbonylation of methanol .Diethylene glycol , triethylene glycol and tetraethylene glycol were used as the liquid phases for the supported liquid phase catalyst PdCl2‐CuCl2‐KOAc‐EG/AC ,and the influences of the catalyst preparation conditions on its catalytic performance in synthesis of DMC were investigated .The results showed that PdCl2‐CuCl2‐KOAc‐EG/AC catalyst had the higher yield of DMC than the supported catalyst when diethylene glycol was used as the liquid phase and prepared with high temperature and pressure impregnation .The yield of DMC was reached 921 g/(Lcat・h) at a reaction temperature of 160℃ , reaction pressure of 0.3 MPa ,n(CH3OH)∶ n(CO)∶ n(O2 )=3.6∶2.3∶1 and gas hourly space velocity of 7100 h-1 ,simultaneously ,the catalytic stability of the catalyst was enhanced .Because the viscosity of the liquid phase decreased and the pressure increased in high temperature and pressure impregnation ,the liquid phase was dispersed evenly in

  7. The Hydrodynamic Characteristics of Cocurrent Downflow and Cocurrent Upflow Gas-Liquid-Solid Catalytic Fixed Bed Reactors: the Effect of Pressure Les caractéristiques hydrodynamiques des réacteurs gaz-liquide-solide à lit de catalyseur fixe à écoulement cocourant montant et descendant : l'influence de la pression

    Directory of Open Access Journals (Sweden)

    Wild G.

    2006-11-01

    Full Text Available While most catalytic fixed bed gas-liquid reactors of the petrol industry work at quite high pressures, the academic scientific work in this field concerned itself almost exclusively with the domain of approximatively atmospheric pressures. The authors present the results of some years of experimental investigations on the hydrodynamic characteristics of trickle bed reactors and lately of cocurrent upflow reactors. During the last years, results were also obtained under pressures up to 8 MPa. The measurements were made in a small scale cold flow equipment (diameter 23 mm. Different aqueous and organic more or less viscous, eventually coalescence inhibiting liquids, four gases and a number of non porous more or less wettable particles were used. The liquid holdup was determined in all cases by measuring liquid phase residence time distribution by different tracers. The following conclusions may be drawn:(a In the high interaction regime, it is the inertia of the gas and the liquid phases which is the main cause of the dissipation of mechanical energy. In this regime, results obtained in cocurrent upflow and downflow are approximately equal. (b Most correlations of literature are unable to predict the effect of pressure on the pressure drop or the liquid holdup. (c The gas viscosity has no influence on the hydrodynamics. It is therefore possible to simulate for example hydrogen under high pressure conditions by another gas of the same density (at a much lower pressures. A critical evaluation of the correlations and/or models of literature is presented, concerning their ability to represent the different characteristics as a function of pressure. Tandis que la plupart des réacteurs industriels gaz-liquide à lit de catalyseur fixe fonctionnent à assez hautes pressions, les travaux scientifiques académiques sont, dans ce domaine, presque exclusivement consacrés aux pressions avoisinant la pression atmosphérique. Les auteurs présentent les r

  8. Impact of Heat and Mass Transfer during the Transport of Nitrogen in Coal Porous Media on Coal Mine Fires

    OpenAIRE

    Bobo Shi; Fubao Zhou

    2014-01-01

    The application of liquid nitrogen injection is an important technique in the field of coal mine fire prevention. However, the mechanism of heat and mass transfer of cryogenic nitrogen in the goaf porous medium has not been well accessed. Hence, the implementation of fire prevention engineering of liquid nitrogen roughly relied on an empirical view. According to the research gap in this respect, an experimental study on the heat and mass transfer of liquid nitrogen in coal porous media was pr...

  9. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091749 Cai Hou’an(College of Energy Geology,China University of Geosciences,Beijing 100083,China);Xu Debin SHRIMP U-Pb Isotope Age of Volcanic Rocks Distributed in the Badaohao Area,Liaoning Province and Its Significance(Coal Geology & Exploration,ISSN1001-1986,CN61-1155/P,36(4),2008,p.17-20,2 illus.,1 table,16 refs.)Key words:coal measures,volcanic rocks,U-Pb dating,LiaoningA set of andesite volcanic rocks distributes in the Badaohao area in Heishan County,Liaoning Province.It’s geological age and stratigraphy sequence relationship between the Lower Cretaceous Badaohao Formation and the volcanic rocks can not make sure till now and is influencing the further prospect for coals.Zircon

  10. 双核离子液体的合成及其对酯化反应的催化活性%Synthesis of Binuclear Ionic Liquids and Their Catalytic Activity for Esterification

    Institute of Scientific and Technical Information of China (English)

    赵地顺; 刘猛帅; 葛京京; 张娟; 任培兵

    2012-01-01

    A series of functional binuclear ionic liquids based on bis-(3-methyl-l-imidazole)butylidene double P-toluene sul-fonic acid salt (Im-PTSA), bis-(3-methyl-l-imidazole)butylidene double bisulfate (Im-HSO4), bis-(l-pyridine)butylidene double p-toluene sulfonic acid salt (Py-PTSA), bis-(l-pyridine)butylidene double bisulfate (Py-HSO4) were synthesized by a two-step proceeding and their structures were characterized by FT-IR and 1H NMR spectra. Their thermal stabilities were characterized by TG. In addition, the acidity and solubility of functional binuclear ionic liquids were also studied. The catalytic activity of the binuclear ionic liquids for the esterification of succinic acid with ethanol was measured. The results show that under the optimized conditions of n(succinic acid) : n(ethanol)= 1 : 3, catalyst used dosage 1.90% (wt), 70 ℃ and 2.5 h, the yield of diethyl succinate reached 93.6% and the selectivity was near up to 100%. Im-PTSA was reused at least 8 times without significant decrease in activity after drying under vacuum. Austenitic stainless steel 316L was used for conducting the corrosion test under the above esterificaion condition, the corrosion rates of the steel plates dipped in the systems with these ionic liquids were less than one tenth of that with sulfuric acid. Fischer esterification of monocarboxylic acids and dicarboxylic acids with different alcohols was observed on using Im-PTSA as catalyst which gave high product yield and selectivity. Use of such a reaction catalyst should be appreciated for its convenient separation.%合成了双-(3-甲基-1-咪唑)亚丁基双对甲苯磺酸盐(Im-PTSA)、双-(3-甲基-1-咪唑)亚丁基双硫酸氢盐(Im-HSO4)、双-(1-吡啶)亚丁基双对甲苯磺酸盐(Py-PTSA)、双-(1-吡啶)亚丁基双硫酸氢盐(Py-HSO4)等4种功能化双核离子液体.分别采用红外光谱(FT-IR)、核磁共振氢谱(1H NMR)对合成的离子液体进行结构分析;采用热重(TG)测试了离子液体的热稳

  11. Influence of coal blending on mineral transformation at high temperatures

    Institute of Scientific and Technical Information of China (English)

    BAI Jin; LI Wen; LI Chun-zhu; BAI Zong-qing; LI Bao-qing

    2009-01-01

    Transformation of mineral matter is important for coal utilization at high temperatures. This is especially true for blended coal. XRD and FTIR were employed together to study the transformation of mineral matter at high temperature in blended coals. It was found that the concentration of catalytic minerals, namely iron oxides, increases with an increasing ratio of Shenfu coal, which could improve coal gasification. The transformation characteristics of the minerals in blended coals are not exactly predictable from the blend ratio. This was proved by comparing the iron oxide content to the blending ratio. The results from FTIR are comparable with those from XRD. FTIR is an effective method for examining variation in mineral matter.

  12. MINIMIZATION OF CARBON LOSS IN COAL REBURNING

    International Nuclear Information System (INIS)

    This project develops Fuel-Flexible Reburning (FFR), which combines conventional reburning and Advanced Reburning (AR) technologies with an innovative method of delivering coal as the reburning fuel. The FFR can be retrofit to existing boilers and can be configured in several ways depending on the boiler, coal characteristics, and NOx control requirements. Fly ash generated by the technology will be a saleable byproduct for use in the cement and construction industries. FFR can also reduce NOx by 60%-70%, achieving an emissions level of 0.15 lb/106 Btu in many coal-fired boilers equipped with Low NOx Burners. Total process cost is expected to be one third to one half of that for Selective Catalytic Reduction (SCR). Activities during reporting period included design, manufacture, assembly, and shake down of the coal gasifier and pilot-scale testing of the efficiency of coal gasification products in FFR. Tests were performed in a 300 kW Boiler Simulator Facility. Several coals with different volatiles content were tested. Data suggested that incremental increase in the efficiency of NOx reduction due to the gasification was more significant for less reactive coals with low volatiles content. Experimental results also suggested that the efficiency of NOx reduction in FFR was higher when air was used as a transport media. Up to 14% increase in the efficiency of NOx reduction in comparison with that of basic reburning was achieved with air transport. Temperature and residence time in the gasification zone also affected the efficiency of NOx reduction

  13. Leaching of vanadium from stone coal with sulfuric acid

    Institute of Scientific and Technical Information of China (English)

    WANG Mingyu; XIAO Liansheng; LI Qinggang; WANG Xuewen; XIANG Xiaoyan

    2009-01-01

    The effects of roasting, mass ratio of H2SO4 to stone coal, leaching temperature, liquid-to-solid ratio, grinding fineness of stone coal, and two-stage counter-current leaching on the vanadium leaching ratio were studied. The results show that the vanadium leaching ratio of roasted stone coal through two-stage counter-current leaching can reach 65.1% at the mass ratio of H2SO4 to stone coal of 20%, leaching temperature for the production of vanadium from stone coal.

  14. Coal Mines Security System

    OpenAIRE

    Ankita Guhe; Shruti Deshmukh; Bhagyashree Borekar; Apoorva Kailaswar; Milind E. Rane

    2012-01-01

    Geological circumstances of mine seem to be extremely complicated and there are many hidden troubles. Coal is wrongly lifted by the musclemen from coal stocks, coal washeries, coal transfer and loading points and also in the transport routes by malfunctioning the weighing of trucks. CIL —Coal India Ltd is under the control of mafia and a large number of irregularities can be contributed to coal mafia. An Intelligent Coal Mine Security System using data acquisition method utilizes sensor, auto...

  15. Effects of coal drying on the pyrolysis and in-situ gasification characteristics of lignite coals

    International Nuclear Information System (INIS)

    Highlights: • Effect of coal drying on lignite pyrolysis was studied by TG-MS and a novel reactor. • Coal type, final temperature and heating method had key effects during pyrolysis. • We developed a new method to study morphological changes during char gasification. • It initially showed shrinking particle mode, and then changed to shrinking core mode. • Insignificant steam deactivation of char was verified by the active sites mechanism. - Abstract: Pyrolysis behaviors of two lignite coals with different drying conditions were determined by a thermogravimetric analyzer coupled with mass spectrometer (TG-MS) and a high-frequency furnace. An in-situ heating stage microscope was adopted to observe the morphological changes during char-CO2 gasification process. It is concluded that the effects of moisture contents in coals on the gaseous release process during coal pyrolysis mainly depend on coal type, final pyrolysis temperature and heating method. The in-situ heating stage experiments indicate that the shrinking particle mode is suitable to illustrate the gasification reaction mechanism in the initial and midterm reaction stages of all the lignite char samples. Although drying conditions have significant effects on coal pyrolysis process under rapid heating, these dewatering conditions result in little noticeable reactivity loss of the char during the subsequent char-CO2 gasification reaction. The measuring results of catalytic active sites can well explain the similar reactivity of lignite coals with different drying conditions

  16. Graphene-based materials in catalytic wet peroxide oxidation

    OpenAIRE

    Gomes, Helder; Ribeiro, Rui; Pastrana-Martínez, Luisa; Figueiredo, José; Faria, Joaquim; Silva, Adrián

    2014-01-01

    In catalytic wet peroxide oxidation (CWPO),an advanced oxidation process, hydrogen peroxide (H2O2) is decomposed catalytically giving rise to hydroxyl radicals (HO•).These radicals, exhibiting high oxidizing potential, serve as effective and non selective species for the degradation of several organic pollutants in liquid phase. Since the report of Lücking et al. [1], carbon materials have been explored as catalysts for CWPO[2]. Recent reports address process intensification issues, br...

  17. Coal plasticity at high heating rates and temperatures. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Gerjarusak, S.; Peters, W.A.; Howard, J.B.

    1995-05-01

    Plastic coals are important feedstocks in coke manufacture, coal liquefaction, gasification, and combustion. During these processes, the thermoplastic behavior of these coals is also important since it may contribute to desirable or undesirable characteristics. For example, during liquefaction, the plastic behavior is desired since it leads to liquid-liquid reactions which are faster than solid-liquid reactions. During gasification, the elastic behavior is undesired since it leads to caking and agglomeration of coal particles which result in bed bogging in fixed or fluidized bed gasifiers. The plastic behavior of different coals was studied using a fast-response plastometer. A modified plastometer was used to measure the torque required to turn at constant angular speed a cone-shaped disk embedded in a thin layer of coal. The coal particles were packed between two metal plates which are heated electrically. Heating rates, final temperatures, pressures, and durations of experiment ranged from 200--800 K/s, 700--1300 K, vacuum-50 atm helium, and 0--40 s, respectively. The apparent viscosity of the molten coal was calculated from the measured torque using the governing equation of the cone-and-plate viscometer. Using a concentrated suspension model, the molten coal`s apparent viscosity was related to the quantity of the liquid metaplast present during pyrolysis. Seven coals from Argonne National Laboratory Premium Coal Sample Bank were studied. Five bituminous coals, from high-volatile to low-volatile bituminous, were found to have very good plastic behavior. Coal type strongly affects the magnitude and duration of plasticity. Hvb coals were most plastic. Mvb and lvb coals, though the maximum plasticity and plastic period were less. Low rank coals such as subbituminous and lignite did not exhibit any plasticity in the present studies. Coal plasticity is moderately well correlated with simple indices of coal type such as the elemental C,O, and H contents.

  18. Catalytic distillation process

    Science.gov (United States)

    Smith, Jr., Lawrence A.

    1982-01-01

    A method for conducting chemical reactions and fractionation of the reaction mixture comprising feeding reactants to a distillation column reactor into a feed zone and concurrently contacting the reactants with a fixed bed catalytic packing to concurrently carry out the reaction and fractionate the reaction mixture. For example, a method for preparing methyl tertiary butyl ether in high purity from a mixed feed stream of isobutene and normal butene comprising feeding the mixed feed stream to a distillation column reactor into a feed zone at the lower end of a distillation reaction zone, and methanol into the upper end of said distillation reaction zone, which is packed with a properly supported cationic ion exchange resin, contacting the C.sub.4 feed and methanol with the catalytic distillation packing to react methanol and isobutene, and concurrently fractionating the ether from the column below the catalytic zone and removing normal butene overhead above the catalytic zone.

  19. Catalytic Functions of Standards

    NARCIS (Netherlands)

    K. Blind (Knut)

    2009-01-01

    textabstractThe three different areas and the examples have illustrated several catalytic functions of standards for innovation. First, the standardisation process reduces the time to market of inventions, research results and innovative technologies. Second, standards themselves promote the diffusi

  20. Bioprocessing of lignite coals using reductive microorganisms. Final technical report, September 30, 1988--March 29, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  1. Solid superacid-catalyzed hydroconversion of an extraction residue from Lingwu bituminous coal

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ming Yue; Xian-Yong Wei; Bing Sun; Ying-Hua Wang; Zhi-Min Zong; Zi-Wu Liu

    2012-01-01

    A solid superacid was prepared as a catalyst.The catalyst was characterized by ammonia temperatureprogrammed desorption,surface property measurement,and analyses with scanning electron microscopy and Fourier transform infrared spectrometry.A extraction residue from Lingwu subbituminous coal was subject to non-catalytic and catalytic hydroconversion using cyclohexane as the solvent under pressurized hydrogen at 300 ℃ for 3h.The results show that the total yield of petroleum ether-extractable arenes from catalytic hydroconversion is much higher than that from non-catalytic hydroconversion.The cleavage of Car-Calk bonds in the residue could significantly proceed during catalytic hydroconversion.

  2. Alcohols as hydrogen-donor solvents for treatment of coal

    Science.gov (United States)

    Ross, David S.; Blessing, James E.

    1981-01-01

    A method for the hydroconversion of coal by solvent treatment at elevated temperatures and pressure wherein an alcohol having an .alpha.-hydrogen atom, particularly a secondary alcohol such as isopropanol, is utilized as a hydrogen donor solvent. In a particular embodiment, a base capable of providing a catalytically effective amount of the corresponding alcoholate anion under the solvent treatment conditions is added to catalyze the alcohol-coal reaction.

  3. Rationale for continuing R&D in indirect coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Gray, D.; Tomlinson, G. [MITRE Corp., McLean, VA (United States)

    1995-12-31

    The objective of this analysis is to use the world energy demand/supply model developed at MITRE to examine future liquid fuels supply scenarios both for the world and for the United States. This analysis has determined the probable extent of future oil resource shortages and the likely time frame in which the shortages will occur. The role that coal liquefaction could play in helping to alleviate this liquid fuels shortfall is also examined. The importance of continuing R&D to improve process performance and reduce the costs of coal-derived transportation fuel is quantified in terms of reducing the time when coal liquids will become competitive with petroleum.

  4. Method for producing catalysis from coal

    Science.gov (United States)

    Farcasiu, Malvina; Derbyshire, Frank; Kaufman, Phillip B.; Jagtoyen, Marit

    1998-01-01

    A method for producing catalysts from coal is provided comprising mixing an aqueous alkali solution with the coal, heating the aqueous mixture to treat the coal, drying the now-heated aqueous mixture, reheating the mixture to form carbonized material, cooling the mixture, removing excess alkali from the carbonized material, and recovering the carbonized material, wherein the entire process is carried out in controlled atmospheres, and the carbonized material is a hydrocracking or hydrodehalogenation catalyst for liquid phase reactions. The invention also provides for a one-step method for producing catalysts from coal comprising mixing an aqueous alkali solution with the coal to create a mixture, heating the aqueous mixture from an ambient temperature to a predetermined temperature at a predetermined rate, cooling the mixture, and washing the mixture to remove excess alkali from the treated and carbonized material, wherein the entire process is carried out in a controlled atmosphere.

  5. Catalytic Conversion of Biomass

    Directory of Open Access Journals (Sweden)

    Rafael Luque

    2016-09-01

    Full Text Available Petroleum, natural gas and coal supply most of the energy consumed worldwide and their massive utilization has allowed our society to reach high levels of development in the past century.[...

  6. Recent trend in coal utilization technology. Coal utilization workshop

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chon Ho; Son, Ja Ek; Lee, In Chul; Jin, Kyung Tae; Kim, Seong Soo [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The 11th Korea-U.S.A. joint workshop on coal utilization technology was held in somerset, Pennsylvania, U.S.A. from october 2 to 3, 1995. In the opening ceremony, Dr.C. Low-el Miller, associate deputy assistant secretary of office of clean coal technology, U.S.DOE, gave congratulatory remarks and Dr. Young Mok Son, president of KIER, made a keynote address. In this workshop, 30 papers were presented in the fields of emission control technology, advanced power generation systems, and advanced coal cleaning and liquid fuels. Especially, from the Korean side, not only KIER but also other private research institutes and major engineering companies including KEPCO, Daewoo Institute of Construction Technology, Jindo Engineering and Construction Co. Daewoo Institute for Advanced Engineering and universities participated in this workshop, reflecting their great interests. Attendants actively discussed about various coal utilization technologies and exchanged scientific and technical information on the state-of-art clean coal technologies under development. (author)

  7. Determination of high-molecular weight polycyclic aromatic hydrocarbons in high performance liquid chromatography fractions of coal tar standard reference material 1597a via solid-phase nanoextraction and laser-excited time-resolved Shpol'skii spectroscopy.

    Science.gov (United States)

    Wilson, Walter B; Alfarhani, Bassam; Moore, Anthony F T; Bisson, Cristina; Wise, Stephen A; Campiglia, Andres D

    2016-02-01

    This article presents an alternative approach for the analysis of high molecular weight - polycyclic aromatic hydrocarbons (HMW-PAHs) with molecular mass 302 Da in complex environmental samples. This is not a trivial task due to the large number of molecular mass 302 Da isomers with very similar chromatographic elution times and similar, possibly even virtually identical, mass fragmentation patterns. The method presented here is based on 4.2K laser-excited time-resolved Shpol'skii spectroscopy, a high resolution spectroscopic technique with the appropriate selectivity for the unambiguous determination of PAHs with the same molecular mass. The potential of this approach is demonstrated here with the analysis of a coal tar standard reference material (SRM) 1597a. Liquid chromatography fractions were submitted to the spectroscopic analysis of five targeted isomers, namely dibenzo[a,l]pyrene, dibenzo[a,e]pyrene, dibenzo[a,i]pyrene, naphtho[2,3-a]pyrene and dibenzo[a,h]pyrene. Prior to analyte determination, the liquid chromatographic fractions were pre-concentrated with gold nanoparticles. Complete analysis was possible with microliters of chromatographic fractions and organic solvents. The limits of detection varied from 0.05 (dibenzo[a,l]pyrene) to 0.24 µg L(-1) (dibenzo[a,e]pyrene). The excellent analytical figures of merit associated to its non-destructive nature, which provides ample opportunity for further analysis with other instrumental methods, makes this approach an attractive alternative for the determination of PAH isomers in complex environmental samples.

  8. Sumpor u ugljenu (Sulphur in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović, A.

    2004-12-01

    Full Text Available The presence of sulphur in coal possesses important environmetal problems in its usage. The sulphur dioxide (S02 emissions produced during coal combustion account for a significant proportion of the total global output of anthropogenic SO2. The extent of sulphur separation depends on several variables such as the form of sulphur in coal, intimacy of contact between minerals and the products of devolatilization. The total sulphur in coal varies in the range of 0.2 - 11 wt %, although in most cases it is beetwen 1 and 3 wt %. Sulphur occurs in a variety of both inorganic and organic forms. Inorganic sulphur is found mainly as iron pyrite, marcasite, pyrrhotite, sphalerite, galena, chalcopirite and as sulphates (rarely exceeds w = 0,1 %. Organic sulphur is found in aromatic rings and aliphatic functionalities usually as mercaptans, aliphatic and aryl sulfides, disulfides and thiophenes. Organic and pyritic sulphur quantities depend on coal rank. Higher rank coals tend to have a high proportion of labile sulphur. All the organic sulphur is bivalent and it is spread throughout the organic coal matrix. Sulphur occurs in all the macerals and most minerals. Vitrinite contains the major part of organic sulphur and metals. Elemental sulphur is produced during coal weathering. The depolymerization methods as pyrolysis and hydrogenation are very drastic methods wich change the structure of the coal and the sulphur groups. In the case of pyrolysis, high levels of desulphurization, in chars and additional production of liquid hydrocarbon can be achieved. Thiophenes and sulphides were the major sulphur components of tars from coal pyrolysis. Hyrdogen sulphide and the lower mercaptans and sulphides were found in the volatile matters. Hydrogen sulphide and thiophenes are practically the only sulphur products of coal hydrogenation. H2S is produced in char hydrodesulphurization. A number of options are available for reducing sulphur emissions including the

  9. Catalytic ignition of light hydrocarbons

    Institute of Scientific and Technical Information of China (English)

    K. L. Hohn; C.-C. Huang; C. Cao

    2009-01-01

    Catalytic ignition refers to phenomenon where sufficient energy is released from a catalytic reaction to maintain further reaction without additional extemai heating. This phenomenon is important in the development of catalytic combustion and catalytic partial oxidation processes, both of which have received extensive attention in recent years. In addition, catalytic ignition studies provide experimental data which can be used to test theoretical hydrocarbon oxidation models. For these reasons, catalytic ignition has been frequently studied. This review summarizes the experimental methods used to study catalytic ignition of light hydrocarbons and describes the experimental and theoretical results obtained related to catalytic ignition. The role of catalyst metal, fuel and fuel concentration, and catalyst state in catalytic ignition are examined, and some conclusions are drawn on the mechanism of catalytic ignition.

  10. Coal industry annual 1997

    International Nuclear Information System (INIS)

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs

  11. Coal industry annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  12. Coal industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  13. Coal Industry Annual 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  14. 草本能源植物培育及催化制备先进液体燃料%Advanced Liquid Fuel Production by Herbage Energy Plant Breeding and Catalytic Transformation

    Institute of Scientific and Technical Information of China (English)

    马隆龙; 刘琪英

    2016-01-01

    obtaining the yield of high phenolic monomers, the cooperative promotion mechanism of lignin decompolymerization by oxidation and liquifaction was investigated under microwave irradiation. (3) For the third key scientific issue, the study focused on the H2 production by decomposed products of biomass, the liquid alkane fuels and oxygen contained fuels from sugar derivatives by catalysis, and the liquid alkane fuels by phenol derivatives. The stimulated process was established based on the principle of Gibbs energy minimization and the hydrothermal gasification model and conversion pathway of glucose aqueous solution. The catalysts contained Ni/CeO2-Al2O3 and Ni/TiO2 were prepared, characterized and their performance was tested in H2 production by glucose aqueous solution, which obtained the H2 yield of more than 90% and good catalytic stability. For the first time,we found that the mdtB gene significantly affects the stress resistance and growth rate of the fungus, and thus influences the H2 production rate. The mass transfer enhanced micro- liquid layer system was developed to achieve high yielded HMF and alditol by one-pot conversion of sugar derivatives and the effective catalysts included functionalized nano-carbon and metal sulfates and phosphates were designed to the selective cracking of bonds in sugar derivatives. To obtain the high yield of liquid alkanes from sorbitol conversion in aqueous phase, the highly active metal supported on micro-/meso-porous zeolite was fabricated and the detailed reaction mechanism and pathway for products formatiion were researched. The pilot scaled apparatus for liquid alkanes production from sugar derivatives has been built up on the basis of scientific investigation in lab. To achieve the simultaneous conversion of cellulose and hemi-cellulose to platform (furfural, HMF and levulinic acid, etc.), the new catalysts were developed and the formation mechanism and product controlling pathway was clarified. The effective duel

  15. REGULATION OF COAL POLYMER DEGRADATION BY FUNGI

    Energy Technology Data Exchange (ETDEWEB)

    John A. Bumpus

    1998-11-30

    A variety of lignin degrading fungi mediate solubilization and subsequent biodegradation of coal macromolecules (a.k.a. coal polymer) from highly oxidized low rank coals such as leonardites. It appears that oxalate or possibly other metal chelators (i.e., certain Krebs Cycle intermediates) mediate solubilization of low rank coals while extracellular oxidases have a role in subsequent oxidation of solubilized coal macromolecule. These processes are under nutritional control. For example, in the case of P. chrysosporium, solubilization of leonardite occurred when the fungi were cultured on most but not all nutrient agars tested and subsequent biodegradation occurred only in nutrient nitrogen limited cultures. Lignin peroxidases mediate oxidation of coal macromolecule in a reaction that is dependent on the presence of veratryl alcohol and hydrogen peroxide. Kinetic evidence suggests that veratryl alcohol is oxidized to the veratryl alcohol cation radical which then mediates oxidation of the coal macromolecule. Results by others suggest that Mn peroxidases mediate formation of reactive Mn{sup 3+} complexes which also mediate oxidation of coal macromolecule. A biomimetic approach was used to study solubilization of a North Dakota leonardite. It was found that a concentration {approximately}75 mM sodium oxalate was optimal for solubilization of this low rank coal. This is important because this is well above the concentration of oxalate produced by fungi in liquid culture. Higher local concentrations probably occur in solid agar cultures and thus may account for the observation that greater solubilization occurs in agar media relative to liquid media. The characteristics of biomimetically solubilized leonardite were similar to those of biologically solubilized leonardite. Perhaps our most interesting observation was that in addition to oxalate, other common Lewis bases (phosphate/hydrogen phosphate/dihydrogen phosphate and bicarbonate/carbonate ions) are able to mediate

  16. Investigation of possible methods for removal of nitrogen from coal-derived and coal-related materials. [Melt-treated coal; benzylamine, 1,2,3,4-tetrahydroisoquinoline

    Energy Technology Data Exchange (ETDEWEB)

    Frey, D.D.; Vermeulen, T.

    1980-09-01

    A preliminary study was conducted to determine the feasibility of removing nitrogen from hydrogenated coal products by oxidation. Solvent-refined coal, melt-treated coal, and nitrogen containing model-compounds were used as substrates. In addition, various zinc containing catalytic systems were screened for their hydrogenation and hydrocracking activity towards quinoline. Results indicate that nitrogen can be removed from some of the model-compounds used. Both iron and cobalt salts effectively catalyzed the oxidation reaction. Very little nitrogen could be removed from the compounds that are the most representative of hydrogenated coal. In addition, very little nitrogen was removed from the hydrogenated coals themselves. None of the zinc salts tested in the hydrogenation portion of the study were effective in catalyzing the rate of hydrogenation of quinoline.

  17. Sequential ultrasonic extraction of a Chinese coal and characterization of nitrogen-containing compounds in the extracts using high-performance liquid chromatography with mass spectrometry.

    Science.gov (United States)

    Xia, Jun-Liu; Fan, Xing; You, Chun-Yan; Wei, Xian-Yong; Zhao, Yun-Peng; Cao, Jing-Pei

    2016-07-01

    Dongming lignite was sequentially extracted with petroleum ether, carbon disulfide, methanol, acetone, and isometric carbon disulfide/acetone mixed solvent at room temperature to afford extracts 1-5, respectively. High-performance liquid chromatography coupled with electrospray ionization time-of-flight mass spectrometry was used to separate and characterize heteroatomic species in the extracts at molecular level. Molecular mass of compounds in the extracts is mainly distributed from 300 to 800 u, and the relative abundance of compounds with molecular mass over 800 u in the carbon disulfide extract is 135 times of that in the petroleum ether extract. The acetone extract has the highest relative abundance for organonitrogen compounds. Double bond equivalence numbers of detected species indicate that most of the organonitrogen compounds contain N-heterocyclic aromatic rings, including pyridine, quinoline and pyrrole. Some organonitrogen isomers in Dongming lignite were separated and identified by high-performance liquid chromatography coupled with electrospray ionization time-of-flight mass spectrometry, and the corresponding structural information was proposed.

  18. Characterization of coal-derived liquids and other fossil-fuel-related materials employing mass spectrometry. Final report, September 30, 1976-September 29, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Scheppele, S E

    1982-05-01

    A document was prepared which assessed the state-of-the art in the mass spectrometric characterization of fossil fuel materials and the relevance of these data to the fossil fuel industry. A Kratos DS50 SM data system was successfully interfaced to a CEC 21-110B mass spectrometer. Communications between the NOVA 3/12 computer in the data system and the OSU central computer were established. A Grant Comparator/Microdensitometer was acquired and made operational. Plans were developed and hardware acquired for interfacing the densitometer to the NOVA 3/12 computer. A quartz direct introduction probe was acquired for the CEC 21-110B. A temperature controller for the probe was acquired and interfaced to the slow speed ADC on the auxillary board in the data system/mass spectrometer interface. The combined FI/EI source was modified to operate in the FD mode and an apparatus was fabricated for conditioning FD emitters. A CSI supergrater 3 was interfaced to the PE 3920 gas chromatograph. The upgraded facility was used to develop mass spectrometric methods for the characterization of fossil fuel materials and to apply methods to the characterization of these materials. Activities included: (1) initial development of field-ionization mass spectrometry for the characterization of saturated hydrocarbons, (2) computerization of the technique of probe microdistillation/mass spectrometry, (3) initation of the development of a new method for the computer assisted assignment of formulas to ion masses, (4) characterization of neutral fractions from a hydrotreated tar-sands oil, and (5) characterization of coal-derived oils and asphaltenes.

  19. Characterization of the impregnated iron based catalyst for direct coal liquefaction by EXAFS

    Institute of Scientific and Technical Information of China (English)

    JianliYang; JishengZhun; 等

    2001-01-01

    Catalyst plays an important role in direct cola liquefaction(DCL)[1],Due to relatively high activity,low cost and environmentally benign for disposal,iron catalysts are regarded as the most attractive catalysts for DCL.To maximize catalytic effect and minimize catalyst usage,ultra-fine size catalysts are preferred.The most effective catalysts are found to be those impregnated onto coal because of their high dispersion on coal surface and intimate contact with coal particles.

  20. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20140318Chen Xinwei(Reserves Evaluation Center of Xinjiang,Urumqi 830000,China);Li Shaohu Analysis on Sequence Stratigraphy Based on Jurassic Outcrop in Kuqa-Bai Coalfield(Xinjiang Geology,ISSN1000-8845,CN65-1092/P,32(1),2013,p.77-82,2illus.,12refs.,with English abstract)Key words:sequence stratigraphy,coal accumulation regularity,Xinjiang

  1. A new South Africa: coal exports in transition

    Energy Technology Data Exchange (ETDEWEB)

    Botha, R.F. [Ministry of Mineral and Energy Affairs (South Africa)

    1995-11-01

    Discusses aspects of the coal industry in South Africa particularly in the light of the recent political changes i.e. the ending of apartheid and the election of the South African Government of National Unity. Areas covered include: increased foreign investment; the Government`s Reconstruction and Development Programme; improved health and safety; production of coal based liquid fuels; coal reserves; power generation; and exports and terminal facilities.

  2. Coal - proximate analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-14

    This Standard establishes a practice for the proximate analysis of coal, that is, the coal is analysed for the content of moisture, ash and volatile matter; fixed carbon is calculated. The standard provides a basis for the comparison of coals.

  3. Coal industry annual 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  4. Catalytic coherence transformations

    Science.gov (United States)

    Bu, Kaifeng; Singh, Uttam; Wu, Junde

    2016-04-01

    Catalytic coherence transformations allow the otherwise impossible state transformations using only incoherent operations with the aid of an auxiliary system with finite coherence that is not being consumed in any way. Here we find the necessary and sufficient conditions for the deterministic and stochastic catalytic coherence transformations between a pair of pure quantum states. In particular, we show that the simultaneous decrease of a family of Rényi entropies of the diagonal parts of the states under consideration is a necessary and sufficient condition for the deterministic catalytic coherence transformations. Similarly, for stochastic catalytic coherence transformations we find the necessary and sufficient conditions for achieving a higher optimal probability of conversion. We thus completely characterize the coherence transformations among pure quantum states under incoherent operations. We give numerous examples to elaborate our results. We also explore the possibility of the same system acting as a catalyst for itself and find that indeed self-catalysis is possible. Further, for the cases where no catalytic coherence transformation is possible we provide entanglement-assisted coherence transformations and find the necessary and sufficient conditions for such transformations.

  5. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 2, appendices. Final technical report, October 1, 1991--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Chander, S. [Pennsylvania State Univ., College Park, PA (United States); Gutterman, C.

    1995-04-01

    Liquefaction experiments were undertaken using subbituminous Black Thunder mine coal to observe the effects of aqueous SO{sub 2} coal beneficiation and the introduction of various coal swelling solvents and catalyst precursors. Aqueous SO{sub 2} beneficiation of Black Thunder coal removed alkali metals and alkaline earth metals, increased the sulfur content and increased the catalytic liquefaction conversion to THF solubles compared to untreated Black Thunder coal. The liquefaction solvent had varying effects on coal conversion, depending upon the type of solvent added. The hydrogen donor solvent, dihydroanthracene, was most effective, while a coal-derived Wilsonville solvent promoted more coal conversion than did relatively inert 1-methylnaphthalene. Swelling of coal with hydrogen bonding solvents tetrahydrofuran (THF), isopropanol, and methanol, prior to reaction resulted in increased noncatalytic conversion of both untreated and SO{sub 2} treated Black Thunder coals, while dimethylsulfoxide (DMSO), which was absorbed more into the coal than any other swelling solvent, was detrimental to coal conversion. Swelling of SO{sub 2} treated coal before liquefaction resulted in the highest coal conversions; however, the untreated coal showed the most improvements in catalytic reactions when swelled in either THF, isopropanol, or methanol prior to liquefaction. The aprotic solvent DMSO was detrimental to coal conversion.

  6. Montana Integrated Carbon to Liquids (ICTL) Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Fiato, Rocco; Sharma, Ramesh; Allen, Mark; Peyton, Brent; Macur, Richard; Cameron, Jemima

    2013-09-30

    Integrated carbon-to-liquids technology (ICTL) incorporates three basic processes for the conversion of a wide range of feedstocks to distillate liquid fuels: (1) Direct Microcatalytic Coal Liquefaction (MCL) is coupled with biomass liquefaction via (2) Catalytic Hydrodeoxygenation and Isomerization (CHI) of fatty acid methyl esters (FAME) or trigylceride fatty acids (TGFA) to produce liquid fuels, with process derived (3) CO{sub 2} Capture and Utilization (CCU) via algae production and use in BioFertilizer for added terrestrial sequestration of CO{sub 2}, or as a feedstock for MCL and/or CHI. This novel approach enables synthetic fuels production while simultaneously meeting EISA 2007 Section 526 targets, minimizing land use and water consumption, and providing cost competitive fuels at current day petroleum prices. ICTL was demonstrated with Montana Crow sub-bituminous coal in MCL pilot scale operations at the Energy and Environmental Research Center at the University of North Dakota (EERC), with related pilot scale CHI studies conducted at the University of Pittsburgh Applied Research Center (PARC). Coal-Biomass to Liquid (CBTL) Fuel samples were evaluated at the US Air Force Research Labs (AFRL) in Dayton and greenhouse tests of algae based BioFertilizer conducted at Montana State University (MSU). Econometric modeling studies were also conducted on the use of algae based BioFertilizer in a wheat-camelina crop rotation cycle. We find that the combined operation is not only able to help boost crop yields, but also to provide added crop yields and associated profits from TGFA (from crop production) for use an ICTL plant feedstock. This program demonstrated the overall viability of ICTL in pilot scale operations. Related work on the Life Cycle Assessment (LCA) of a Montana project indicated that CCU could be employed very effectively to reduce the overall carbon footprint of the MCL/CHI process. Plans are currently being made to conduct larger-scale process

  7. Novel bimetallic dispersed catalysts for temperature-programmed coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chunshan Song; Schobert, H.H.; Parfitt, D.P. [and others

    1997-11-01

    Development of new catalysts is a promising approach to more efficient coal liquefaction. It has been recognized that dispersed catalysts are superior to supported catalysts for primary liquefaction of coals, because the control of initial coal dissolution or depolymerization requires intimate contact between the catalyst and coal. This research is a fundamental and exploratory study on catalytic coal liquefaction, with the emphasis on exploring novel bimetallic dispersed catalysts for coal liquefaction and the effectiveness of temperature-programmed liquefaction using dispersed catalysts. The primary objective of this research was to explore novel bimetallic dispersed catalysts from organometallic molecular precursors, that could be used in low concentrations but exhibit relatively high activity for efficient hydroliquefaction of coals under temperature-programmed conditions. We have synthesized and tested various catalyst precursors in liquefaction of subbituminous and bituminous coals and in model compound studies to examine how do the composition and structure of the catalytic precursors affect their effectiveness for coal liquefaction under different reaction conditions, and how do these factors affect their catalytic functions for hydrogenation of polyaromatic hydrocarbons, for cleavage of C-C bonds in polycyclic systems such as 4-(1-naphthylmethyl)bibenzyl, for hydrogenolysis of C-O bond such as that in dinaphthylether, for hydrodeoxygenation of phenolic compounds and other oxygen-containing compounds such as xanthene, and for hydrodesulfurization of polycyclic sulfur compounds such as dibenzothiophene. The novel bimetallic and monometallic precursors synthesized and tested in this project include various Mo- and Fe-based compounds.

  8. Kinetics of Direct Oxidation of H2S in Coal Gas to Elemental Sulfur

    Energy Technology Data Exchange (ETDEWEB)

    K.C. Kwon

    2005-11-01

    kinetics of direct oxidation of H{sub 2}S to elemental sulfur in the presence of a simulated coal gas mixture containing SO{sub 2}, H{sub 2}, and moisture, using 160-{micro}m C-500-04 alumina catalyst particles and 400 square cells/inch{sup 2}, {gamma}-Al{sub 2}O{sub 3}-wash-coated monolithic catalyst, and various reactors such as a micro packed-bed reactor, a micro bubble reactor, and a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam.

  9. Method for the unmanned winning of thin, flat coal strata

    Energy Technology Data Exchange (ETDEWEB)

    Levkovich, P.Ye.; Bratishcheva, L.L.; Kiselev, Ye.I.; Savich, N.S.; Tverezyy, Yu.F.

    1981-09-05

    The purpose of the invention is to reduce the coal losses in interchamber pillars through their partial liquidation. The formulated purpose is achieved through the fact that the back fill of the rock into the chamber is accomplished by using one branch of drives and the winning of the coal from the interchamber pillars is done simultaneously using the second branch of the drives.

  10. Coal liquefaction and gas conversion: Proceedings. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    Volume I contains papers presented at the following sessions: AR-Coal Liquefaction; Gas to Liquids; and Direct Liquefaction. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  11. Comprehensive Fractal Description of Porosity of Coal of Different Ranks

    Directory of Open Access Journals (Sweden)

    Jiangang Ren

    2014-01-01

    Full Text Available We selected, as the objects of our research, lignite from the Beizao Mine, gas coal from the Caiyuan Mine, coking coal from the Xiqu Mine, and anthracite from the Guhanshan Mine. We used the mercury intrusion method and the low-temperature liquid nitrogen adsorption method to analyze the structure and shape of the coal pores and calculated the fractal dimensions of different aperture segments in the coal. The experimental results show that the fractal dimension of the aperture segment of lignite, gas coal, and coking coal with an aperture of greater than or equal to 10 nm, as well as the fractal dimension of the aperture segment of anthracite with an aperture of greater than or equal to 100 nm, can be calculated using the mercury intrusion method; the fractal dimension of the coal pore, with an aperture range between 2.03 nm and 361.14 nm, can be calculated using the liquid nitrogen adsorption method, of which the fractal dimensions bounded by apertures of 10 nm and 100 nm are different. Based on these findings, we defined and calculated the comprehensive fractal dimensions of the coal pores and achieved the unity of fractal dimensions for full apertures of coal pores, thereby facilitating, overall characterization for the heterogeneity of the coal pore structure.

  12. Comprehensive fractal description of porosity of coal of different ranks.

    Science.gov (United States)

    Ren, Jiangang; Zhang, Guocheng; Song, Zhimin; Liu, Gaofeng; Li, Bing

    2014-01-01

    We selected, as the objects of our research, lignite from the Beizao Mine, gas coal from the Caiyuan Mine, coking coal from the Xiqu Mine, and anthracite from the Guhanshan Mine. We used the mercury intrusion method and the low-temperature liquid nitrogen adsorption method to analyze the structure and shape of the coal pores and calculated the fractal dimensions of different aperture segments in the coal. The experimental results show that the fractal dimension of the aperture segment of lignite, gas coal, and coking coal with an aperture of greater than or equal to 10 nm, as well as the fractal dimension of the aperture segment of anthracite with an aperture of greater than or equal to 100 nm, can be calculated using the mercury intrusion method; the fractal dimension of the coal pore, with an aperture range between 2.03 nm and 361.14 nm, can be calculated using the liquid nitrogen adsorption method, of which the fractal dimensions bounded by apertures of 10 nm and 100 nm are different. Based on these findings, we defined and calculated the comprehensive fractal dimensions of the coal pores and achieved the unity of fractal dimensions for full apertures of coal pores, thereby facilitating, overall characterization for the heterogeneity of the coal pore structure. PMID:24955407

  13. Catalytic Oxidation of Methane into Methanol over Copper-Exchanged Zeolites with Oxygen at Low Temperature

    OpenAIRE

    Narsimhan, Karthik; Iyoki, Kenta; Dinh, Kimberly; Román-Leshkov, Yuriy

    2016-01-01

    The direct catalytic conversion of methane to liquid oxygenated compounds, such as methanol or dimethyl ether, at low temperature using molecular oxygen is a grand challenge in C–H activation that has never been met with synthetic, heterogeneous catalysts. We report the first demonstration of direct, catalytic oxidation of methane into methanol with molecular oxygen over copper-exchanged zeolites at low reaction temperatures (483–498 K). Reaction kinetics studies show sustained catalytic acti...

  14. Desulfurization of coal and petroleum. 1978-June, 1980 (citations from the NTIS data base). Report for 1978-Jun 80

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-06-01

    The two part bibliography covers aspects of coal and petroleum fuel desulfurization relating to coal preparation, coal liquids, the gasification of coal, and crude oil preparation, where the processes specifically accomplish desulfurization before combustion of the fuel. Coal liquefaction and gasification are only included if sulfur removal is stressed. Flue gas desulfurization and other post-combustion sulfur control processes are excluded. (This updated bibliography contains 173 abstracts, 54 of which are new entries to the previous edition.)

  15. New catalysts for coal processing: Metal carbides and nitrides

    Energy Technology Data Exchange (ETDEWEB)

    S. Ted Oyama; David F. Cox

    1999-12-03

    The subject of this research project was to investigate the catalytic properties of a new class of materials, transition metal carbides and nitrides, for treatment of coal liquid and petroleum feedstocks. The main objectives were: (1) preparation of catalysts in unsupported and supported form; (2) characterization of the materials; (3) evaluation of their catalytic properties in HDS and HDN; (4) measurement of the surface properties; and (5) observation of adsorbed species. All of the objectives were substantially carried out and the results will be described in detail below. The catalysts were transition metal carbides and nitrides spanning Groups 4--6 in the Periodic Table. They were chosen for study because initial work had shown they were promising materials for hydrotreating. The basic strategy was first to prepare the materials in unsupported form to identify the most promising catalyst, and then to synthesize a supported form of the material. Already work had been carried out on the synthesis of the Group VI compounds Mo{sub 2}C, Mo{sub 2}N, and WC, and new methods were developed for the Group V compounds VC and NbC. All the catalysts were then evaluated in a hydrotreating test at realistic conditions. It was found that the most active catalyst was Mo{sub 2}C, and further investigations of the material were carried out in supported form. A new technique was employed for the study of the bulk and surface properties of the catalysts, near edge x-ray absorption spectroscopy (NEXAFS), that fingerprinted the electronic structure of the materials. Finally, two new research direction were explored. Bimetallic alloys formed between two transition metals were prepared, resulting in catalysts having even higher activity than Mo{sub 2}C. The performance of the catalysts in hydrodechloration was also investigated.

  16. The NOXSO clean coal project

    Energy Technology Data Exchange (ETDEWEB)

    Black, J.B.; Woods, M.C.; Friedrich, J.J.; Browning, J.P. [NOXSO Corp., Bethel Park, PA (United States)

    1997-12-31

    The NOXSO Clean Coal Project will consist of designing, constructing, and operating a commercial-scale flue-gas cleanup system utilizing the NOXSO Process. The process is a waste-free, dry, post-combustion flue-gas treatment technology which uses a regenerable sorbent to simultaneously adsorb sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) from flue gas from coal-fired boilers. The NOXSO plant will be constructed at Alcoa Generating Corporation`s (AGC) Warrick Power Plant near Evansville, Indiana and will treat all the flue gas from the 150-MW Unit 2 boiler. The NOXSO plant is being designed to remove 98% of the SO{sub 2} and 75% of the NO{sub x} when the boiler is fired with 3.4 weight percent sulfur, southern-Indiana coal. The NOXSO plant by-product will be elemental sulfur. The elemental sulfur will be shipped to Olin Corporation`s Charleston, Tennessee facility for additional processing. As part of the project, a liquid SO{sub 2} plant has been constructed at this facility to convert the sulfur into liquid SO{sub 2}. The project utilizes a unique burn-in-oxygen process in which the elemental sulfur is oxidized to SO{sub 2} in a stream of compressed oxygen. The SO{sub 2} vapor will then be cooled and condensed. The burn-in-oxygen process is simpler and more environmentally friendly than conventional technologies. The liquid SO{sub 2} plant produces 99.99% pure SO{sub 2} for use at Olin`s facilities. The $82.8 million project is co-funded by the US Department of Energy (DOE) under Round III of the Clean Coal Technology program. The DOE manages the project through the Pittsburgh Energy Technology Center (PETC).

  17. Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mills, G [Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology

    1993-05-01

    The manufacture of liquid energy fuels from syngas (a mixture of H{sub 2} and CO, usually containing CO{sub 2}) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

  18. Status and future opportunities for conversion of synthesis gas to liquid energy fuels: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mills, G. (Delaware Univ., Newark, DE (United States). Center for Catalytic Science and Technology)

    1993-05-01

    The manufacture of liquid energy fuels from syngas (a mixture of H[sub 2] and CO, usually containing CO[sub 2]) is of growing importance and enormous potential because: (1) Abundant US supplies of coal, gas, and biomass can be used to provide the needed syngas. (2) The liquid fuels produced, oxygenates or hydrocarbons, can help lessen environmental pollution. Indeed, oxygenates are required to a significant extent by the Clean Air Act Amendments (CAAA) of 1990. (3) Such liquid synfuels make possible high engine efficiencies because they have high octane or cetane ratings. (4) There is new, significantly improved technology for converting syngas to liquid fuels and promising opportunities for further improvements. This is the subject of this report. The purpose of this report is to provide an account and evaluative assessment of advances in the technology for producing liquid energy fuels from syngas and to suggest opportunities for future research deemed promising for practical processes. Much of the improved technology for selective synthesis of desired fuels from syngas has resulted from advances in catalytic chemistry. However, novel process engineering has been particularly important recently, utilizing known catalysts in new configurations to create new catalytic processes. This report is an update of the 1988 study Catalysts for Fuels from Syngas: New Directions for Research (Mills 1988), which is included as Appendix A. Technology for manufacture of syngas is not part of this study. The manufacture of liquid synfuels is capital intensive. Thus, in evaluating advances in fuels technology, focus is on the potential for improved economics, particularly on lowering plant investment costs. A second important criteria is the potential for environmental benefits. The discussion is concerned with two types of hydrocarbon fuels and three types of oxygenate fuels that can be synthesized from syngas. Seven alternative reaction pathways are involved.

  19. Catalytic Conversion of Biofuels

    DEFF Research Database (Denmark)

    Jørgensen, Betina

    This thesis describes the catalytic conversion of bioethanol into higher value chemicals. The motivation has been the unavoidable coming depletion of the fossil resources. The thesis is focused on two ways of utilising ethanol; the steam reforming of ethanol to form hydrogen and the partial oxida...

  20. Catalytic Phosphination and Arsination

    Institute of Scientific and Technical Information of China (English)

    Kwong Fuk Yee; Chan Kin Shing

    2004-01-01

    The catalytic, user-friendly phosphination and arsination of aryl halides and triflates by triphenylphosphine and triphenylarsine using palladium catalysts have provided a facile synthesis of functionalized aryl phosphines and arsines in neutral media. Modification of the cynaoarisne yielded optically active N, As ligands which will be screened in various asymmetric catalysis.

  1. Catalytic efficiency of designed catalytic proteins.

    Science.gov (United States)

    Korendovych, Ivan V; DeGrado, William F

    2014-08-01

    The de novo design of catalysts that mimic the affinity and specificity of natural enzymes remains one of the Holy Grails of chemistry. Despite decades of concerted effort we are still unable to design catalysts as efficient as enzymes. Here we critically evaluate approaches to (re)design of novel catalytic function in proteins using two test cases: Kemp elimination and ester hydrolysis. We show that the degree of success thus far has been modest when the rate enhancements seen for the designed proteins are compared with the rate enhancements by small molecule catalysts in solvents with properties similar to the active site. Nevertheless, there are reasons for optimism: the design methods are ever improving and the resulting catalyst can be efficiently improved using directed evolution.

  2. Refining the art of coal upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, R.

    1993-10-01

    SGI International's Liquids from coal (LFC) Process converts low-rank coals into condensable hydrocarbons, or coal-derived liquid (CDL), a solid product, called process-derived fuels (PDF), non-condensable gases and pyrolysis water. This paper describes the process, which consists of three basic steps (drying, pyrolysis, and finishing or conditioning), the process control system and the characteristics of and markets for the two main coproducts, CDF and PDF. It also describes, the technical feasibility study that SGT International carries out when it wants to determine the applicability of the LFC Process to a particular sub-bituminous or lignite coal. The paper discusses the economics of coal upgrading in general and of the LFC Process in particular. A 1000 short ton-per-day demonstration plant has been completed at the Buckskin Mine in the Powder River Basin, Wyoming. The cost of construction (which was completed in late Spring 1992) and the first two years of operation are being partly funded through the USDOE's Clean Coal Technology Program. 9 refs., 11 figs., 6 tabs.

  3. Granulation of weak rock as a precursor to peperite formation: coal peperite, Coombs Hills, Antarctica

    Science.gov (United States)

    McClintock, M. K.; White, J. D. L.

    2002-05-01

    Peperite formed by mingling of magma with coal, and with fragmented coal plus other country rock, is exposed at Coombs Hills, Antarctica, in rocks of the Mawson Formation, where Ferrar Supergroup basalt encountered the Beacon Supergroup continental sedimentary succession. An internally laminated, 0.5-m-thick coal bed passes gradationally through a coal-fragment-dominated peperite into a glass-rich, basalt-dominated coal fragment-matrix peperite, and then into coherent basalt. Initial interaction of magma with water-saturated coal and host sediments locally brecciated the coal. Subsequent mingling of basalt with a slurry of coal fragments and water, driven by viscosity and density contrasts between the basalt and the slurry and by flow inhomogeneities in intruding magma, led to increasingly complex mingling of the two fluids via bifurcation of fingering viscous flows. This mingling was complicated by the participation of phases with time- and space-dependent thermal properties and viscosity (coal fragments, coal-water slurry, and basaltic magma), and the generation of multiple (?) gas phases through devolatilisation of heated coal. The initial elastic response of the coal fragments to stress resulted in: (a) fluidal mingling of coal and basalt facilitated by softening of coal during heating associated with intrusion; and (b) localised formation of blocky coal clasts during high stress events associated with passage of a liquid, and/or a gas phase(s), through the coal. The presence of fluidal- and blocky-shaped coal fragments in the coal peperite, with both curved and planar surfaces bounding single coal clasts, suggests that clast morphology in the magma-sediment dispersion was controlled at very small scales by the time-, temperature-, and stress-dependent qualities of the coal. Fluidal and blocky clast shapes in the coal peperite, coupled with vesicles in the coal clasts, suggest that transient properties of either the host or intrusion during non-explosive magma

  4. The tritium labelling of ibuprofen by heterogeneous catalytic exchange

    International Nuclear Information System (INIS)

    The tritium labelling of 2-(4-isobutylphenyl) propionic acid (ibuprofen) was performed. The method employed was heterogeneous catalytic exchange between ibuprofen and tritiated water. Prior to labelling, thermic stability of ibuprofen was studied. Purification was accomplished through thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Concentration, purity and specific activity of the labelled compound were determined by ultraviolet, HPLC and liquid scintillation techniques. (author)

  5. Catalytic fast pyrolysis of lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Changjun; Wang, Huamin; Karim, Ayman M.; Sun, Junming; Wang, Yong

    2014-11-21

    Increasing energy demand, especially in the transportation sector, and soaring CO2 emissions necessitate the exploitation of renewable sources of energy. Despite the large variety of new energy Q3 carriers, liquid hydrocarbon still appears to be the most attractive and feasible form of transportation fuel taking into account the energy density, stability and existing infrastructure. Biomass is an abundant, renewable source of energy; however, utilizing it in a cost-effective way is still a substantial challenge. Lignocellulose is composed of three major biopolymers, namely cellulose, hemicellulose and lignin. Fast pyrolysis of biomass is recognized as an efficient and feasible process to selectively convert lignocellulose into a liquid fuel—bio-oil. However bio-oil from fast pyrolysis contains a large amount of oxygen, distributed in hundreds of oxygenates. These oxygenates are the cause of many negative properties, such as low heating values, high corrosiveness, high viscosity, and instability; they also greatly Q4 limit the application of bio-oil particularly as transportation fuel. Hydrocarbons derived from biomass are most attractive because of their high energy density and compatibility with the existing infrastructure. Thus, converting lignocellulose into transportation fuels via catalytic fast pyrolysis has attracted much attention. Many studies related to catalytic fast pyrolysis of biomass have been published. The main challenge of this process is the development of active and stable catalysts that can deal with a large variety of decomposition intermediates from lignocellulose. This review starts with the current understanding of the chemistry in fast pyrolysis of lignocellulose and focuses on the development of catalysts in catalytic fast pyrolysis. Recent progress in the experimental studies on catalytic fast pyrolysis of biomass is also summarized with the emphasis on bio-oil yields and quality.

  6. Fuel production from coal by the Mobil Oil process using nuclear high-temperature process heat

    International Nuclear Information System (INIS)

    Two processes for the production of liquid hydrocarbons are presented: Direct conversion of coal into fuel (coal hydrogenation) and indirect conversion of coal into fuel (syngas production, methanol synthesis, Mobil Oil process). Both processes have several variants in which nuclear process heat may be used; in most cases, the nuclear heat is introduced in the gas production stage. The following gas production processes are compared: LURGI coal gasification process; steam reformer methanation, with and without coal hydrogasification and steam gasification of coal. (orig./EF)

  7. China's First Coal-to-Oil Plant Scheduled on Stream Next Year

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ China's biggest coal company, the Shenhua group, will start production at its first coal-to-liquid project at the end of next year, a scheme that will supply 1 million tons of oil products a year to North China. The project will be the country's first facility producing oil from coal and has great market potential in China, which relies on coal for about 70 percent of its energy needs and aims to cut the import of high-priced oil.

  8. Technology assessment of various coal-fuel options

    International Nuclear Information System (INIS)

    The technology assessment (TA) study of coal-based fuels presented in this report was performed for the Federal Ministry for Research and Technology. Its goal was to support decision-making of the Federal Ministry for Research and Technology in the field of coal conversion. Various technical options of coal liquefaction have been analyzed on the basis of hard coal as well as lignite -- direct liquefaction of coal (hydrogenation) and different possibilities of indirect liquefaction, that is the production of fuels (methanol, gasoline) by processing products of coal gasification. The TA study takes into consideration the entire technology chain from coal mining via coal conversion to the utilization of coal-based fuels in road transport. The analysis focuses on costs of the various options, overall economic effects, which include effects on employment and public budgets, and on environmental consequences compared to the use of liquid fuels derived from oil. Furthermore, requirements of infrastructure and other problems of the introduction of coal-based fuels as well as prospects for the export of technologies of direct and indirect coal liquefaction have been analyzed in the study. 14 figs., 10 tabs

  9. The influence of platinum washing-out time on its recovery from used auto catalytic converters

    Directory of Open Access Journals (Sweden)

    A. Fornalczyk

    2014-07-01

    Full Text Available The used catalytic converters contain small amounts of precious metals. Recovery of these metals is essential for environmental and economic reasons. This work presents a method of Platinum Group Metals (PGM recovery from auto catalytic converters in which they are washed out by a liquid metal. The magneto-hydro-dynamic pump was used to force circulation of liquid metal under the influence of electromagnetic fields The influence of process time on platinum recovery was also carried out.

  10. Catalytic upgrading of biomass pyrolysis vapours using Faujasite zeolite catalysts

    NARCIS (Netherlands)

    Nguyen, T.S.; Zabeti, M.; Lefferts, L.; Brem, G.; Seshan, K.

    2012-01-01

    Bio-oil produced via fast pyrolysis of biomass has the potential to be processed in a FCC (fluid catalytic cracking) unit to generate liquid fuel. However, this oil requires a significant upgrade to become an acceptable feedstock for refinery plants due to its high oxygen content. One promising rout

  11. The tritium labelling of butibufen by herterogeneous catalytic exchange

    International Nuclear Information System (INIS)

    The labelling of a new non-steroidal antiinflammatory agent, butibufen (2-(4-isobutylphenyl) butyric acid) was studied. The method used was heterogeneous catalytic exchange between butibufen and tritiated water, obtained ''in situ''. Purification was accomplished through thin layer chromatography. Concentration, purity and specific activity of the labeled drug were determined by ultraviolet and liquid scintillation techniques. (author)

  12. The tritium labeling of Butibufen by heterogeneous catalytic exchange

    International Nuclear Information System (INIS)

    The labeling of a new non-steroidal antiinflammatory agent, Butibufen (2-(4-isobutylphenyl) butyric acid) was studied. The method used was heterogeneous catalytic exchange between Butibufen and tritiated water, obtained in situ. Purification was accomplished through thin layer chromatography. Concentration, purity and specific activity of the labeled drug were determined by ultraviolet and liquid scintillation techniques. (Author) 7 refs

  13. Chemistry and morphology of coal liquefaction. Quarterly report, January 1, 1984-March 31, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H.

    1984-04-01

    In task 1, selective synthesis of gasoline-range components from synthesis gas, rate expressions were developed for four different iron catalysts (promoted and unpromoted). Data for all four catalysts can be correlated by a semi-empirical expression. In task 2 catalyzed low temperature reactions of carbon and water, the catalytic activity for the production of hydrocarbons from graphite and water over KOH plus a co-catalyst was investigated for several first row transition metals. NiO showed the greatest activity. Several samples of /sup 13/CO, /sup 13/CO/sub 2/ and H/sub 2/O adsorbed on graphite and on catalyst-graphite systems after reaction with steam were prepared for NMR investigation. In task 3 chemistry of coal solubilization and liquefaction, rate studies of quinoline reduction to tetrahydroquinoline in the presence of the homogeneous catalysts (phi/sub 3/P)/sub 3/RhCl have provided definitive evidence that benzothiophene, indole, pyrrole, carbazole, thiophene, p-cresol and dibenzothiophene enhance the initial rate of hydrogenation of quinoline by a factor greater than 1.5. P-cresol was found to enhance the initial rate of hydrogenation of quinoline (1.6 to 2 fold) in a model coal liquid with polymer-supported (2% cross-linked) (phi/sub 3/P)/sub 3/ RhCl. 2 references, 6 figures.

  14. Oxidative desulfurization of liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Aida, T.; Yamamoto, D. [Kinki Univ., Fukuoka (Japan)

    1994-12-31

    The desulfurization of diesel fuels such as light or heavy oils is going to be critically important to sustain our modernized life. We had initiated research projects for developing efficient chemical desulfurization processes of coal, and revealed that the oxidation reaction significantly enhanced the chemical reactivity of the organic sulfur functionalities in coal, and it made them easy to remove from a solid coal. For instance, the alkaline fusion under oxygen gas, {open_quotes}Oxy-Alkalinolysis{close_quotes}, achieved the sulfur removal up to 95-98% for most of the coals. To use such drastic change of the chemical and physical properties of organic sulfur compounds by oxidation is our strategy for developing an efficient desulfurization process for liquid fuels. This paper present the results of the study on the desulfurization process using oxidation reactions for liquid fuels.

  15. China's Coal: Demand, Constraints, and Externalities

    Energy Technology Data Exchange (ETDEWEB)

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01

    future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

  16. Catalytic Conversion of Castor Oil to Biodiesel Using Ionic Liquid as Catalyst%碱性离子液体在制备生物柴油中的应用

    Institute of Scientific and Technical Information of China (English)

    马洁; 顾俊; 夏晓莉; 倪邦庆; 王海军

    2012-01-01

    Efficient catalytic conversion of castor oil to biodiesel,is achieved using 1-buthyl-3-methylimidazolium hydroxide(OH) as the catalyst.The influence factors,such as alcohol-oil ratio,catalyst dosage,reaction temperature,reaction time are investigated in detail.The results showed that OH was an efficient catalyst for catalytic conversion of castor oil to biodiesel,and 82.3 % yield of HMF was obtained for 90 min at 50 ℃ in the presence of the load of catalyst was 8 % and the CH3OH: oil ratio was 9∶1.%文章研究了碱性离子液体1-丁基-3-甲基咪唑氢氧盐([Bmim]OH)催化蓖麻油酯交换制备生物柴油的工艺。考察了醇油比、催化剂用量、反应温度、反应时间等因素对脂肪酸甲酯的得率的影响。研究表明以[Bmim]OH为催化剂,脂肪酸甲酯得率达到82.3%。最佳反应条件为:醇油摩尔比9∶1,催化剂用量8%,反应温度50℃,反应时间90 min。

  17. Assessing coal burnout

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, A. [Pacific Power, Sydney, NSW (Australia)

    1999-11-01

    Recent research has allowed a quantitative description of the basic process of burnout for pulverized coals to be made. The Cooperative Research Centre for Black Coal Utilization has built on this work to develop a coal combustion model which will allow plant engineers and coal company representatives to assess their coals for combustion performance. The paper describes the model and its validation and outlines how it is run. 2 figs.

  18. Colombian coal focus

    Energy Technology Data Exchange (ETDEWEB)

    Warden-Fernandez, J.; Rodriguez, L.E. [University of Dundee, Dundee (United Kingdom)

    2003-03-01

    The paper reviews the development of Colombia's coal industry over recent years. Colombia has recently modernised its mining code, Law 685 of 2001 concerning mineral rights and including the concept of sustainable development. The article discusses the legislation, analyses trends in Columbia's income from the coal and mineral industries (nickel, gold, emerald), and briefly discusses coal reserves, mining projects, coal exports and markets for Colombian coal. 7 refs., 7 figs., 4 tabs.

  19. Inorganic Constituents in Coal

    OpenAIRE

    Rađenović A.

    2006-01-01

    Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates),minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fract...

  20. Experimental study of coal topping process in a downer reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.G.; Lu, X.S.; Yao, J.X.; Lin, W.G.; Cui, L.J. [Chinese Academy of Science, Beijing (China). Inst. of Processing Engineering

    2005-02-02

    Experiments were carried out in a downer reactor integrated in a circulating fluidized bed combustor to examine the performance of the coal topping process. The effects of reaction temperature and coal particle size on the product distribution and their compositions were determined. The experimental results show that an increase in temperature will increase the yields of gas and liquid product, and the liquid yield decreases with the increase in coal particle size. The experiments exhibit an optimal condition for the liquid product. When the pyrolysis temperature is 660{sup o}C and coal particle size is less than 0.2-8 mm, the yield of light tar (hexane-soluble fraction) reaches 7.5 wt % (dry coal basis). The light tar is composed of acid groups (57.1 wt %), crude gasoline (aliphatics) (12.9 wt %), aromatics (21.4 wt %), and polar and basic groups (8.6 wt %). The experiments indicate that the coal topping process is a promising technology for partially converting coal into liquid fuels and fine chemicals.

  1. Coal data: A reference

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  2. Low Cost High-H2 Syngas Production for Power and Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, S. James [Gas Technology Inst., Des Plaines, IL (United States)

    2015-07-31

    This report summarizes the technical progress made of the research project entitled “Low Cost High-H2 Syngas Production for Power and Liquid Fuels,” under DOE Contract No. DE-FE-0011958. The period of performance was October 1, 2013 through July 30, 2015. The overall objectives of this project was to determine the technical and economic feasibility of a systems approach for producing high hydrogen syngas from coal with the potential to reduce significantly the cost of producing power, chemical-grade hydrogen or liquid fuels, with carbon capture to reduce the environmental impact of gasification. The project encompasses several areas of study and the results are summarized here. (1) Experimental work to determine the technical feasibility of a novel hybrid polymer/metal H2-membrane to recover pure H2 from a coal-derived syngas was done. This task was not successful. Membranes were synthesized and show impermeability of any gases at required conditions. The cause of this impermeability was most likely due to the densification of the porous polymer membrane support made from polybenzimidazole (PBI) at test temperatures above 250 °C. (2) Bench-scale experimental work was performed to extend GTI's current database on the University of California Sulfur Recovery Process-High Pressure (UCSRP-HP) and recently renamed Sulfur Removal and Recovery (SR2) process for syngas cleanup including removal of sulfur and other trace contaminants, such as, chlorides and ammonia. The SR2 process tests show >90% H2S conversion with outlet H2S concentrations less than 4 ppmv, and 80-90% ammonia and chloride removal with high mass transfer rates. (3) Techno-economic analyses (TEA) were done for the production of electric power, chemical-grade hydrogen and diesel fuels, from a mixture of coal- plus natural gas-derived syngas using the Aerojet Rocketdyne (AR) Advanced Compact coal gasifier and a natural gas partial oxidation reactor (POX) with SR2 technology. Due to the unsuccessful

  3. Catalytic thermal barrier coatings

    Science.gov (United States)

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  4. A catalytic cracking process

    Energy Technology Data Exchange (ETDEWEB)

    Degnan, T.F.; Helton, T.E.

    1995-07-20

    Heavy oils are subjected to catalytic cracking in the absence of added hydrogen using a catalyst containing a zeolite having the structure of ZSM-12 and a large-pore crystalline zeolite having a Constraint Index less than about 1. The process is able to effect a bulk conversion of the oil at the same time yielding a higher octane gasoline and increased light olefin content. (author)

  5. Energy and environmental research emphasizing low-rank coal. Semi-annual report, January--June 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    Summaries of progress on the following tasks are presented: Mixed waste treatment; Hot water extraction of nonpolar organic pollutant from soils; Aqueous phase thermal oxidation wastewater treatment; Review of results from comprehensive characterization of air toxic emissions from coal-fired power plants; Air toxic fine particulate control; Effectiveness of sorbents for trace elements; Catalyst for utilization of methane in selective catalytic reduction of NOx; Fuel utilization properties; Hot gas cleaning; PFBC; catalytic tar cracking; sulfur forms in coal; resid and bitumen desulfurization; biodesulfurization; diesel fuel desulfurization; stability issues; Sorbent carbon development; Evaluation of carbon products; Stable and supercritical chars; Briquette binders; Carbon molecular sieves; Coal char fuel evaporation canister sorbent; Development of a coal by-product classification protocol for utilization; Use of coal ash in recycled plastics and composite materials; Corrosion of advanced structural materials; Joining of advanced structural materials; Resource data evaluation; and the Usti and Labem (Czech Republic) coal-upgrading program.

  6. Sistema de alimentação gás-líquido para medidas de atividade catalítica Gas-liquid feeding system for catalytic activity measurements

    Directory of Open Access Journals (Sweden)

    Oscar W. Perez-Lopez

    2003-03-01

    Full Text Available This note has as objective to present the advantages of the use of syringe-type pumps for the feeding of liquid reactants, together with mass flow controllers for gases, instead of the saturators, as it is generally accomplished. Among the advantages, the system with syringe pumps presents a greater flexibility in flow control as well as in composition compared with the system that uses saturator. In addition, the flow of the liquid reactants is known with precision in the syringe pump system.

  7. Effect of in-situ solvent soaking and heating pre-treatment on coal conversion and oil yield during liquefaction of demineralized low-rank Malaysian coal

    Energy Technology Data Exchange (ETDEWEB)

    M.A.M. Ishak; M.F. Abdullah; K. Ismail; M.O.A. Kadir; A.R. Mohamed [University Technology MARA, Perlis (Malaysia). Fuel Combustion Research Laboratory, Faculty of Applied Sciences

    2005-07-01

    The effect of in-situ solvent soaking and heating (SSH) pre-treatment on demineralized low-rank Malaysian coal towards coal conversion and oil yield during direct liquefaction was investigated. Demineralization of coal was carried out by leaching with strong protic acids such as HCl, HF and HNO{sub 3} whereby more than 95 % of mineral content in the coal was reduced. Apparently, the mineral matter that was removed by the HCl treatment (i.e. cationics) exhibits more catalytic effect during the liquefaction process. The reduction in the mineral content increased the coal porosity that enabled the solvent to penetrate into the coal macropores during the SSH pre-treatment process. The results of liquefaction on the pre-treated SSH demineralized coal at 420{sup o}C and at 4 MPa, however show comparable amount of coal conversion with slightly lower amount of oil yield being obtained with comparison to the raw and SSH-raw coals. Thus, besides the in-situ solvent soaking and heating pre-treatment, the presence of mineral matters in coal prove to be beneficial during coal liquefaction process.

  8. EXPLORATORY RESEARCH ON NOVEL COAL LIQUEFACTION CONCEPT

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, S.D.; Winschel, R.A.

    1998-11-30

    The report presents a summary the work performed under DOE Contract No. DE-AC22-95PC95050. Investigations performed under Task 4--Integrated Flow Sheet Testing are detailed. In this program, a novel direct coal liquefaction technology was investigated by CONSOL Inc. with the University of Kentucky Center for Applied Energy Research and LDP Associates. The process concept explored consists of a first-stage coal dissolution step in which the coal is solubilized by hydride ion donation. In the second stage, the products are catalytically upgraded to refinery feedstocks. Integrated first-stage and solids-separation steps were used to prepare feedstocks for second-stage catalytic upgrading. An engineering and economic evaluation was conducted concurrently with experimental work throughout the program. Approaches to reduce costs for a conceptual commercial plant were recommended at the conclusion of Task 3. These approaches were investigated in Task 4. The economic analysis of the process as it was defined at the conclusion of Task 4, indicates that the production of refined product (gasoline) via this novel direct liquefaction technology is higher than the cost associated with conventional two-stage liquefaction technologies.

  9. Contact structure for use in catalytic distillation

    Science.gov (United States)

    Jones, Jr., Edward M.

    1984-01-01

    A method for conducting catalytic chemical reactions and fractionation of the reaction mixture comprising feeding reactants into a distillation column reactor contracting said reactant in liquid phase with a fixed bed catalyst in the form of a contact catalyst structure consisting of closed porous containers containing the catatlyst for the reaction and a clip means to hold and support said containers, which are disposed above, i.e., on the distillation trays in the tower. The trays have weir means to provide a liquid level on the trays to substantially cover the containers. In other words, the trays function in their ordinary manner with the addition thereto of the catalyst. The reaction mixture is concurrently fractionated in the column.

  10. Montana Integrated Carbon to Liquids (ICTL) Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    Fiato, Rocco; Sharma, Ramesh; Allen, Mark; Peyton, Brent; Macur, Richard; Cameron, Jemima

    2013-09-30

    Integrated carbon‐to‐liquids technology (ICTL) incorporates three basic processes for the conversion of a wide range of feedstocks to distillate liquid fuels: (1) Direct Microcatalytic Coal Liquefaction (MCL) is coupled with biomass liquefaction via (2) Catalytic Hydrodeoxygenation and Isomerization (CHI) of fatty acid methyl esters (FAME) or trigylceride fatty acids (TGFA) to produce liquid fuels, with process derived (3) CO{sub 2} Capture and Utilization (CCU) via algae production and use in BioFertilizer for added terrestrial sequestration of CO{sub 2}, or as a feedstock for MCL and/or CHI. This novel approach enables synthetic fuels production while simultaneously meeting EISA 2007 Section 526 targets, minimizing land use and water consumption, and providing cost competitive fuels at current day petroleum prices. ICTL was demonstrated with Montana Crow sub‐bituminous coal in MCL pilot scale operations at the Energy and Environmental Research Center at the University of North Dakota (EERC), with related pilot scale CHI studies conducted at the University of Pittsburgh Applied Research Center (PARC). Coal‐Biomass to Liquid (CBTL) Fuel samples were evaluated at the US Air Force Research Labs (AFRL) in Dayton and greenhouse tests of algae based BioFertilizer conducted at Montana State University (MSU). Econometric modeling studies were also conducted on the use of algae based BioFertilizer in a wheat‐camelina crop rotation cycle. We find that the combined operation is not only able to help boost crop yields, but also to provide added crop yields and associated profits from TGFA (from crop production) for use an ICTL plant feedstock. This program demonstrated the overall viability of ICTL in pilot scale operations. Related work on the Life Cycle Assessment (LCA) of a Montana project indicated that CCU could be employed very effectively to reduce the overall carbon footprint of the MCL/CHI process. Plans are currently being made to conduct larger

  11. Coal extraction - environmental prediction

    Energy Technology Data Exchange (ETDEWEB)

    C. Blaine Cecil; Susan J. Tewalt

    2002-08-01

    To predict and help minimize the impact of coal extraction in the Appalachian region, the U.S. Geological Survey (USGS) is addressing selected mine-drainage issues through the following four interrelated studies: spatial variability of deleterious materials in coal and coal-bearing strata; kinetics of pyrite oxidation; improved spatial geologic models of the potential for drainage from abandoned coal mines; and methodologies for the remediation of waters discharged from coal mines. As these goals are achieved, the recovery of coal resources will be enhanced. 2 figs.

  12. Hard coal; Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Kai van de; Sitte, Andreas-Peter [Gesamtverband Steinkohle e.V., Herne (Germany)

    2012-07-01

    While the black coal markets are expanding worldwide in 2011, the consumption of black coal in Germany stagnated in spite of positive economic impacts. A strong long-term decline may be expected by the structural change in the energy sector and the energy policy turnaround in Germany. Also, the accelerated phasing out nuclear power in 2011 brought any increases for the black coal. Now the discharge of domestic black coal until 2018 has become definitive. The imported coal now covers almost 80 % of the German black coal market.

  13. Survey of environmental-control technologies for industrial coal use

    Energy Technology Data Exchange (ETDEWEB)

    Seward, W.H.; Hollis, J.R.; Opalanko, R.S.

    1978-12-01

    This report presents the results of a screening study done by Mittelhauser Corporation for Argonne National Laboratory. The purpose of the study is to examine current and possible future constraints on the use of coal and coal-derived fuels in industry. Current environmental regulations pertaining to industrial fuel usage are listed and summarized. A Technology-Applications Matrix (TAM), which correlates generic types of industrial fuel-burning equipment with potential fuels, is a key element in this report. The study has led to several conclusions. Current environmental constraints may reduce significantly the attractiveness of coal-derived solid fuels. Coal-derived medium-Btu gases and methanol are unlikely to be economically competitive with natural gas, fuel oil, or other coal-derived synthetic fuels by 1985. It is unlikely that National Energy Act provisions, which force conversion of industrial facilities to coal-use, will be effective in changing the industrial fuel-use pattern in the United States in the near future. The most attractive application of coal technology in the industrial sector appears to be direct use of high-sulfur coal with post-combustion pollution control. It is recommended that this alternative be examined, along with the use of atmospheric fluidized-bed combustion, coal-oil mixtures, solvent-refined coal liquids, and high-Btu synthetic gas.

  14. Effective utilization of Mongolian coal by upgrading in a solvent

    Energy Technology Data Exchange (ETDEWEB)

    Avid, B.; Sato, Y.; Maruyama, K.; Yamada, Y. [Institute of Energy Utilization, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Purevsuren, B. [Institute of Chemistry and Chemical Technology, MAS, Ulaanbaatar-51 (Mongolia)

    2004-07-15

    Liquid-phase upgrading of Mongolian low-rank coals, which are rich in oxygen, having low heating value, was investigated using 200 ml autoclave at 380-440 C in the presence of t-decalin and coal tar as solvent under 2 MPa of initial nitrogen atmosphere. The upgrading of Baganuur-2A and Shivee ovoo coal at 440 C in t-decalin gave 9.7-10.2 wt.% of gas, 3.7-4.5 wt.% of oil, 4.4-8.4 wt.% of water and 77-82 wt.% of upgraded solid product. The heating value of the upgraded solid product from Baganuur-2A coal increased to 32.9 MJ/kg as compared to the heating value of raw coal, which was 26.3 MJ/kg, and for the Shivee ovoo coal, it was reached from 21.2 to 28.8 MJ/kg. The upgrading process has influenced significantly the enhancement of the aromaticity and the spontaneous ignition temperature of the raw coal. The distribution of aromatic stacking layers (N) is slightly higher for the upgraded solid products treated at 440 C than raw coal. The Baganuur-2A, Shivee ovoo coals and these upgraded solid products were mixed with Goonyella bituminous coal and tested on gieseler plastmeter to characterise thermoplastic behaviour.

  15. Liquids and liquid mixtures

    CERN Document Server

    Rowlinson, J S; Baldwin, J E; Buckingham, A D; Danishefsky, S

    2013-01-01

    Liquids and Liquid Mixtures, Third Edition explores the equilibrium properties of liquids and liquid mixtures and relates them to the properties of the constituent molecules using the methods of statistical thermodynamics. Topics covered include the critical state, fluid mixtures at high pressures, and the statistical thermodynamics of fluids and mixtures. This book consists of eight chapters and begins with an overview of the liquid state and the thermodynamic properties of liquids and liquid mixtures, including vapor pressure and heat capacities. The discussion then turns to the thermodynami

  16. Application of Fischer–Tropsch Synthesis in Biomass to Liquid Conversion

    Directory of Open Access Journals (Sweden)

    Yongwu Lu

    2012-06-01

    Full Text Available Fischer–Tropsch synthesis is a set of catalytic processes that can be used to produce fuels and chemicals from synthesis gas (mixture of CO and H2, which can be derived from natural gas, coal, or biomass. Biomass to Liquid via Fischer–Tropsch (BTL-FT synthesis is gaining increasing interests from academia and industry because of its ability to produce carbon neutral and environmentally friendly clean fuels; such kinds of fuels can help to meet the globally increasing energy demand and to meet the stricter environmental regulations in the future. In the BTL-FT process, biomass, such as woodchips and straw stalk, is firstly converted into biomass-derived syngas (bio-syngas by gasification. Then, a cleaning process is applied to remove impurities from the bio-syngas to produce clean bio-syngas which meets the Fischer–Tropsch synthesis requirements. Cleaned bio-syngas is then conducted into a Fischer–Tropsch catalytic reactor to produce green gasoline, diesel and other clean biofuels. This review will analyze the three main steps of BTL-FT process, and discuss the issues related to biomass gasification, bio-syngas cleaning methods and conversion of bio-syngas into liquid hydrocarbons via Fischer–Tropsch synthesis. Some features in regard to increasing carbon utilization, enhancing catalyst activity, maximizing selectivity and avoiding catalyst deactivation in bio-syngas conversion process are also discussed.

  17. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-07-13

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. The Hydrotreatment Facility is being prepared for trials with coal liquids. Raw coal tar distillate trials have been carried out by heating coal tar in the holding tank in the Hydrotreatment Facility. The liquids are centrifuged to warm the system up in preparation for the coal liquids. The coal tar distillate is then recycled to keep the centrifuge hot. In this way, the product has been distilled such that a softening point of approximately 110 C is reached. Then an ash test is conducted.

  18. SUPPORTED LIQUID CATALYSTS FOR REMOVAL OF HIGH TEMPERATURE FUEL CELL CONTAMINANTS

    Energy Technology Data Exchange (ETDEWEB)

    Alan W. Weimer (PI); Peter Czerpak; Patrick Hilbert

    2000-01-01

    A novel catalytic synthesis gas oxidation process using molten carbonate salts supported on compatible fluidized iron oxide particles (supported-liquid-phase-catalyst (SLPC) fluidized bed process) was investigated. This process combines the advantages of large scale fluidized bed processing with molten salt bath oxidation. Molten salt catalysts can be supported within porous fluidized particles in order to improve mass transfer rates between the liquid catalysts and the reactant gases. Synthesis gas can be oxidized at reduced temperatures resulting in low NO{sub x} formation while trace sulfides and halides are captured in-situ. Hence, catalytic oxidation of synthesis gas can be carried out simultaneously with hot gas cleanup. Such SLPC fluidized bed processes are affected by inter-particle liquid capillary forces that may lead to agglomeration and de-fluidization of the bed. An understanding of the origin and strength of these forces is needed so that they can be overcome in practice. Process design is based on thermodynamic free energy minimization calculations that indicate the suitability of eutectic Na{sub 2}CO{sub 3}/K{sub 2}CO{sub 3} mixtures for capturing trace impurities in-situ (< 1 ppm SO{sub x} released) while minimizing the formation of NO{sub x}(< 10 ppm). Iron oxide has been identified as a preferred support material since it is non-reactive with sodium, is inexpensive, has high density (i.e. inertia), and can be obtained in various particle sizes and porosities. Force balance modeling has been used to design a surrogate ambient temperature system that is hydrodynamically similar to the real system, thus allowing complementary investigation of the governing fluidization hydrodynamics. The primary objective of this research was to understand the origin of and to quantify the liquid capillary interparticle forces affecting the molten carbonate SLPC fluidized bed process. Substantial theoretical and experimental exploratory results indicate process

  19. Coal Combustion Science

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

    1991-08-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

  20. International perspectives on coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  1. Outlook and Challenges for Chinese Coal

    Energy Technology Data Exchange (ETDEWEB)

    Aden, Nathaniel T.; Fridley, David G.; Zheng, Nina

    2008-06-20

    China has been, is, and will continue to be a coal-powered economy. The rapid growth of coal demand since 2001 has created deepening strains and bottlenecks that raise questions about supply security. Although China's coal is 'plentiful,' published academic and policy analyses indicate that peak production will likely occur between 2016 and 2029. Given the current economic growth trajectory, domestic production constraints will lead to a coal gap that is not likely to be filled with imports. Urbanization, heavy industry growth, and increasing per-capita consumption are the primary drivers of rising coal usage. In 2006, the power sector, iron and steel, and cement accounted for 71% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units could save only 14% of projected 2025 coal demand. If China follows Japan, steel production would peak by 2015; cement is likely to follow a similar trajectory. A fourth wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. New demand from coal-to-liquids and coal-to-chemicals may add 450 million tonnes of coal demand by 2025. Efficient growth among these drivers indicates that China's annual coal demand will reach 4.2 to 4.7 billion tonnes by 2025. Central government support for nuclear and renewable energy has not been able to reduce China's growing dependence on coal for primary energy. Few substitution options exist: offsetting one year of recent coal demand growth would require over 107 billion cubic meters of natural gas, 48 GW of nuclear, or 86 GW of hydropower capacity. While these alternatives will continue to grow, the scale of development using existing technologies will be insufficient to substitute significant coal demand before 2025. The central role of heavy industry in GDP growth and the difficulty of substituting other fuels suggest that coal consumption is

  2. Outlook and Challenges for Chinese Coal

    Energy Technology Data Exchange (ETDEWEB)

    Aden, Nathaniel T.; Fridley, David G.; Zheng, Nina

    2008-06-20

    China has been, is, and will continue to be a coal-powered economy. The rapid growth of coal demand since 2001 has created deepening strains and bottlenecks that raise questions about supply security. Although China's coal is 'plentiful,' published academic and policy analyses indicate that peak production will likely occur between 2016 and 2029. Given the current economic growth trajectory, domestic production constraints will lead to a coal gap that is not likely to be filled with imports. Urbanization, heavy industry growth, and increasing per-capita consumption are the primary drivers of rising coal usage. In 2006, the power sector, iron and steel, and cement accounted for 71% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units could save only 14% of projected 2025 coal demand. If China follows Japan, steel production would peak by 2015; cement is likely to follow a similar trajectory. A fourth wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. New demand from coal-to-liquids and coal-to-chemicals may add 450 million tonnes of coal demand by 2025. Efficient growth among these drivers indicates that China's annual coal demand will reach 4.2 to 4.7 billion tonnes by 2025. Central government support for nuclear and renewable energy has not been able to reduce China's growing dependence on coal for primary energy. Few substitution options exist: offsetting one year of recent coal demand growth would require over 107 billion cubic meters of natural gas, 48 GW of nuclear, or 86 GW of hydropower capacity. While these alternatives will continue to grow, the scale of development using existing technologies will be insufficient to substitute significant coal demand before 2025. The central role of heavy industry in GDP growth and the difficulty of substituting other fuels suggest that coal consumption is

  3. Underground Coal Thermal Treatment: Task 6 Topical Report, Utah Clean Coal Program

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.J.; Deo, M.; Edding, E.G.; Hradisky, M.; Kelly, K.E.; Krumm, R.; Sarofim, Adel; Wang, D.

    2014-08-15

    The long-term objective of this task is to develop a transformational energy production technology by in- situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coal’s carbon in the ground. This process converts coal to a high-efficiency, low-greenhouse gas (GHG) emitting fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This task focused on three areas: Experimental. The Underground Coal Thermal Treatment (UCTT) team focused on experiments at two scales, bench-top and slightly larger, to develop data to understand the feasibility of a UCTT process as well as to develop validation/uncertainty quantification (V/UQ) data for the simulation team. Simulation. The investigators completed development of High Performance Computing (HPC) simulations of UCTT. This built on our simulation developments over the course of the task and included the application of Computational Fluid Dynamics (CFD)- based tools to perform HPC simulations of a realistically sized domain representative of an actual coal field located in Utah. CO2 storage. In order to help determine the amount of CO2 that can be sequestered in a coal formation that has undergone UCTT, adsorption isotherms were performed on coals treated to 325, 450, and 600°C with slow heating rates. Raw material was sourced from the Sufco (Utah), Carlinville (Illinois), and North Antelope (Wyoming) mines. The study indicated that adsorptive capacity for the coals increased with treatment temperature and that coals treated to 325°C showed less or similar capacity to the untreated coals.

  4. Study of methanol-to-gasoline process for production of gasoline from coal

    Institute of Scientific and Technical Information of China (English)

    HE Tian-cai; CHENG Xiao-han; LI Ling; MENG Guo-ying

    2009-01-01

    The methanol-to-gasoline (MTG) process is an efficient way to produce liquid fuel.The academic basis of the coal-to-liquid process is described and two different syn-thesis processes are focused on: Fixed MTG process and Fluid Bed MTG process.Then,the superiority of the Fluid Bed MTG Process is pointed out relative to the Fixed MTG Process.In addition,the development of the coal-to-liquid technique in China is briefly summarized.

  5. Nitrogen in Chinese coals

    Science.gov (United States)

    Wu, D.; Lei, J.; Zheng, B.; Tang, X.; Wang, M.; Hu, Jiawen; Li, S.; Wang, B.; Finkelman, R.B.

    2011-01-01

    Three hundred and six coal samples were taken from main coal mines of twenty-six provinces, autonomous regions, and municipalities in China, according to the resource distribution and coal-forming periods as well as the coal ranks and coal yields. Nitrogen was determined by using the Kjeldahl method at U. S. Geological Survey (USGS), which exhibit a normal frequency distribution. The nitrogen contents of over 90% Chinese coal vary from 0.52% to 1.41% and the average nitrogen content is recommended to be 0.98%. Nitrogen in coal exists primarily in organic form. There is a slight positive relationship between nitrogen content and coal ranking. ?? 2011 Science Press, Institute of Geochemistry, CAS and Springer Berlin Heidelberg.

  6. Coal Production 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-29

    Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

  7. Coal fires in China

    Institute of Scientific and Technical Information of China (English)

    CHE Yao(车遥); HUANG Wen-hui(黄文辉); ZHANG Ai-yun(张爱云)

    2004-01-01

    Coal fires have a very long history in China; the oldest coal fires have being burning for many million years. Up to now more than 56 coal fires spots were distinguished. They mainly locate in West-North of China, North of China and East-North of China. About millions of tons of coal have been burned in fires every year. Xinjiang Autonomy is the most serious region in coal fires as it has 38 coal fires spots and about 6.85 million tons of coal was burned every year. Coal fires in China ignited by wildfires, spontaneous combustion and human being during mining activities. These fires have released about 0.9 million tons of gasses (including CO, CO2, SO2, NO2 CH4, CO2, H2S etc.) into the atmosphere every year, most of which are brought to the east by wind and resulting more heavier air pollution in northern China.

  8. Coal worker's pneumoconiosis

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000130.htm Coal worker's pneumoconiosis To use the sharing features on this page, please enable JavaScript. Coal worker's pneumoconiosis is a lung disease that results ...

  9. Chemicals from coal

    Energy Technology Data Exchange (ETDEWEB)

    Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

    2004-12-01

    This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

  10. Fluorine in Chinese coals

    Energy Technology Data Exchange (ETDEWEB)

    Wu, D.S.; Zheng, B.S.; Tang, X.Y.; Li, S.H.; Wang, B.B.; Wang, M.S. [Chinese Academy of Science, Guiyang (China). Inst. of Geochemistry

    2004-05-01

    Three hundred and five coal samples were taken from the main coal mines of twenty-six provinces, autonomous regions, and municipalities of China. The method of pyrohydrolysis was applied to measure the fluorine content in the samples, which exhibit logarithmic normal frequency distributions. The range of fluorine content in dry coal varies from 26 to 1230 mg/kg with a geometric mean of 136 mg/kg. The fluorine content decreases gradually from sub-bituminous through bituminous coal to anthracite. However, such varying tendency of fluorine content is not due to the presence of organic fluorine in coal. The geological age also apparently has no effect on the fluorine content. Even though the fluorine content of most coals in China is not high, much more attention should be given to the fluoride pollution caused by improper (unvented) coal-burning and the widespread household use of high-fluoride coal-clay.

  11. Small boiler uses waste coal

    Energy Technology Data Exchange (ETDEWEB)

    Virr, M.J. [Spinheat Ltd. (United States)

    2009-07-15

    Burning coal waste in small boilers at low emissions poses considerable problem. While larger boiler suppliers have successfully installed designs in the 40 to 80 MW range for some years, the author has been developing small automated fluid bed boiler plants for 25 years that can be applied in the range of 10,000 to 140,000 lbs/hr of steam. Development has centered on the use of an internally circulating fluid bed (CFB) boiler, which will burn waste fuels of most types. The boiler is based on the traditional D-shaped watertable boiler, with a new type of combustion chamber that enables a three-to-one turndown to be achieved. The boilers have all the advantages of low emissions of the large fluid boilers while offering a much lower height incorporated into the package boiler concept. Recent tests with a waste coal that had a high nitrogen content of 1.45% demonstrated a NOx emission below the federal limit of 0.6 lbs/mm Btu. Thus a NOx reduction on the order of 85% can be demonstrate by combustion modification alone. Further reductions can be made by using a selective non-catalytic reduction (SNCR) system and sulfur absorption of up to 90% retention is possible. The article describes the operation of a 30,000 lbs/hr boiler at the Fayette Thermal LLC plant. Spinheat has installed three ICFB boilers at a nursing home and a prison, which has been tested on poor-grade anthracite and bituminous coal. 2 figs.

  12. Inorganic Constituents in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović A.

    2006-02-01

    Full Text Available Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates,minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fractions of trace elements usually decrease when the rank of coal increases.Fractions of the inorganic elements are different, depending on the coal bed and basin. A varietyof analytical methods and techniques can be used to determine the mass fractions, mode ofoccurrence, and distribution of organic constituents in coal. There are many different instrumentalmethods for analysis of coal and coal products but atomic absorption spectroscopy – AAS is theone most commonly used. Fraction and mode of occurrence are one of the main factors that haveinfluence on transformation and separation of inorganic constituents during coal conversion.Coal, as an important world energy source and component for non-fuels usage, will be continuouslyand widely used in the future due to its relatively abundant reserves. However, there is aconflict between the requirements for increased use of coal on the one hand and less pollution onthe other. It’s known that the environmental impacts, due to either coal mining or coal usage, canbe: air, water and land pollution. Although, minor components, inorganic constituents can exert asignificant influence on the economic value, utilization, and environmental impact of the coal.

  13. Fluorine in Canadian coals

    Energy Technology Data Exchange (ETDEWEB)

    Godbeer, W.G.; Swaine, D.J.; Goodarzi, F. (CSIRO, North Ryde, NSW (Australia). Division of Coal and Energy Technology)

    1994-08-01

    Fluorine was determined in 57 samples of coals from western Canada and the Yukon (47 bituminous, 4 subbituminous, 6 lignite) by a pyrohydrolysis method. The range of values is 31-930 ppmw F in dry coal, the lowest values being mainly for the low-rank coals. For bituminous coals most values are in the range 31-580 (mean 174) ppmw F. 23 refs., 4 tabs.

  14. Coal in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, A.R.

    1982-01-01

    This paper comprises a report on the coal industry in the Republic of South Africa. Stresses the importance of coal in the South African economy (meets 75% of the country's energy requirements and is in second place in the South African exports table). Covers deposits, production and prices, exports policy; winning methods, productivity and the various grades of coal. Also includes data on investments and refers to synthetic fuels from coal (Sasol I, II, III processes).

  15. Coal liquefaction. Quarterly report, January--March 1978. [Brief summary of 15 pilot plant projects supported by US DOE

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    The advantage of coal liquefaction is that the entire range of liquid products, including heavy boiler fuel, distillate fuel oil, gasoline, jet fuel, and diesel oil, can be produced from coal by varying the type of process and operating conditions used in the process. Furthermore, coal-derived liquids have the potential for use as chemical feedstocks. To provide efficient and practical means of utilizing coal resources, DOE is sponsoring the development of several conversion processes currently in the pilot plant stage. Fifteen coal liquefaction projects supported by US DOE are described briefly, with flowsheets, funding, history and progress during the quarter. (LTN)

  16. Advanced coal-using community systems. Task 1A. Technology characteristics. Volume 1. Fuel- and energy-production systems

    Energy Technology Data Exchange (ETDEWEB)

    Tison, R.R.; Blazek, C.F.; Biederman, N.P.; Malik, N.J.; Gamze, M.G.; Wetterstrom, D.; Diskant, W.; Malfitani, L.

    1979-03-01

    This report is presented in 2 volumes. It contains descriptions of engineering characterizations and equipment used in coal processing, fuel and energy distribution, storage, and end-use utilization. Volume 1 contains 4 chapters dealing with: coal conversion processes (high- and low-Btu gas from coal and coal-to-liquid fuels); coal cleaning and direct combustion (pretreating, direct combustion, and stack gas cleaning); electricity production (compression-ignition engines, turbines, combined-cycle, fuel cells, alternative Rankine cycles, Stirling cycles, and closed Brayton cycles); and thermal generating processes (steam plants, direct-contact steam-heated hot water systems, thermal liquid plants, absorption chillers, and centrifugal chillers). (DMC)

  17. Catalytic liquid-phase oxidation of acetaldehyde to acetic acid over a Pt/CeO2-ZrO2-SnO2/γ-alumina catalyst.

    Science.gov (United States)

    Choi, Pil-Gyu; Ohno, Takanobu; Masui, Toshiyuki; Imanaka, Nobuhito

    2015-10-01

    Pt/CeO2-ZrO2-SnO2/γ-Al2O3 catalysts were prepared by co-precipitation and wet impregnation methods for catalytic oxidation of acetaldehyde to acetic acid in water. In the present catalysts, Pt and CeO2-ZrO2-SnO2 were successfully dispersed on the γ-Al2O3 support. Dependences of platinum content and reaction time on the selective oxidation of acetaldehyde to acetic acid were investigated to optimize the reaction conditions for obtaining both high acetaldehyde conversion and highest selectivity to acetic acid. Among the catalysts, a Pt(6.4wt.%)/Ce0.68Zr0.17Sn0.15O2.0(16wt.%)/γ-Al2O3 catalyst showed the highest acetaldehyde oxidation activity. On this catalyst, acetaldehyde was completely oxidized after the reaction at 0°C for 8hr, and the selectivity to acetic acid reached to 95% and higher after the reaction for 4hr and longer. PMID:26456607

  18. Enhanced Combustion Low NOx Pulverized Coal Burner

    Energy Technology Data Exchange (ETDEWEB)

    David Towle; Richard Donais; Todd Hellewell; Robert Lewis; Robert Schrecengost

    2007-06-30

    For more than two decades, Alstom Power Inc. (Alstom) has developed a range of low cost, infurnace technologies for NOx emissions control for the domestic U.S. pulverized coal fired boiler market. This includes Alstom's internally developed TFS 2000{trademark} firing system, and various enhancements to it developed in concert with the U.S. Department of Energy. As of the date of this report, more than 270 units representing approximately 80,000 MWe of domestic coal fired capacity have been retrofit with Alstom low NOx technology. Best of class emissions range from 0.18 lb/MMBtu for bituminous coal to 0.10 lb/MMBtu for subbituminous coal, with typical levels at 0.24 lb/MMBtu and 0.13 lb/MMBtu, respectively. Despite these gains, NOx emissions limits in the U.S. continue to ratchet down for new and existing boiler equipment. On March 10, 2005, the Environmental Protection Agency (EPA) announced the Clean Air Interstate Rule (CAIR). CAIR requires 25 Eastern states to reduce NOx emissions from the power generation sector by 1.7 million tons in 2009 and 2.0 million tons by 2015. Low cost solutions to meet such regulations, and in particular those that can avoid the need for a costly selective catalytic reduction system (SCR), provide a strong incentive to continue to improve low NOx firing system technology to meet current and anticipated NOx control regulations. The overall objective of the work is to develop an enhanced combustion, low NOx pulverized coal burner, which, when integrated with Alstom's state-of-the-art, globally air staged low NOx firing systems will provide a means to achieve: Less than 0.15 lb/MMBtu NOx emissions when firing a high volatile Eastern or Western bituminous coal, Less than 0.10 lb/MMBtu NOx emissions when firing a subbituminous coal, NOx reduction costs at least 25% lower than the costs of an SCR, Validation of the NOx control technology developed through large (15 MWt) pilot scale demonstration, and Documentation required for

  19. Novel Catalytic Membrane Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stuart Nemser, PhD

    2010-10-01

    There are many industrial catalytic organic reversible reactions with amines or alcohols that have water as one of the products. Many of these reactions are homogeneously catalyzed. In all cases removal of water facilitates the reaction and produces more of the desired chemical product. By shifting the reaction to right we produce more chemical product with little or no additional capital investment. Many of these reactions can also relate to bioprocesses. Given the large number of water-organic compound separations achievable and the ability of the Compact Membrane Systems, Inc. (CMS) perfluoro membranes to withstand these harsh operating conditions, this is an ideal demonstration system for the water-of-reaction removal using a membrane reactor. Enhanced reaction synthesis is consistent with the DOE objective to lower the energy intensity of U.S. industry 25% by 2017 in accord with the Energy Policy Act of 2005 and to improve the United States manufacturing competitiveness. The objective of this program is to develop the platform technology for enhancing homogeneous catalytic chemical syntheses.

  20. Current experiences in applied underground coal gasification

    Science.gov (United States)

    Peters, Justyn

    2010-05-01

    The world is experiencing greater stress on its ability to mine and exploit energy resources such as coal, through traditional mining methods. The resources available by extraction from traditional mining methods will have a finite time and quantity. In addition, the high quality coals available are becoming more difficult to find substantially increasing exploration costs. Subsequently, new methods of extraction are being considered to improve the ability to unlock the energy from deep coals and improve the efficiency of the exploitation of the resources while also considering the mitigation of global warming. Underground Coal Gasification (UCG) is a leading commercial technology that is able to maximize the exploitation of the deep coal through extraction of the coal as a syngas (CO and H2) in situ. The syngas is then brought to the surface and efficiently utilized in any of combined cycle power generation, liquid hydrocarbon transport fuel production, fertilizer production or polymer production. Commercial UCG has been successfully operating for more than 50 years at the Yerostigaz facility in Angren, Uzbekistan. Yerostigaz is the only remaining UCG site in the former Soviet Union. Linc Energy currently owns 91.6% of this facility. UCG produces a high quality synthetic gas (syngas), containing carbon monoxide, hydrogen and methane. UCG produced syngas can be economically used for a variety of purposes, including: the production of liquid fuels when combined with Gas to Liquids (GTL) technology power generation in gas turbine combined cycle power stations a feedstock for different petrochemical processes, for example producing chemicals or other gases such as hydrogen, methane, ammonia, methanol and dimethyl ether Linc Energy has proven the combined use of UCG to Gas to Liquids (GTL) technologies. UCG to GTL technologies have the ability to provide energy alternatives to address increasing global demand for energy products. With these technologies, Linc Energy is

  1. Hard coal; Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Kai van de; Sitte, Andreas-Peter [Gesamtverband Steinkohle e.V., Herne (Germany)

    2013-04-01

    The year 2012 benefited from a growth of the consumption of hard coal at the national level as well as at the international level. Worldwide, the hard coal still is the number one energy source for power generation. This leads to an increasing demand for power plant coal. In this year, the conversion of hard coal into electricity also increases in this year. In contrast to this, the demand for coking coal as well as for coke of the steel industry is still declining depending on the market conditions. The enhanced utilization of coal for the domestic power generation is due to the reduction of the nuclear power from a relatively bad year for wind power as well as reduced import prices and low CO{sub 2} prices. Both justify a significant price advantage for coal in comparison to the utilisation of natural gas in power plants. This was mainly due to the price erosion of the inexpensive US coal which partly was replaced by the expansion of shale gas on the domestic market. As a result of this, the inexpensive US coal looked for an outlet for sales in Europe. The domestic hard coal has continued the process of adaptation and phase-out as scheduled. Two further hard coal mines were decommissioned in the year 2012. RAG Aktiengesellschaft (Herne, Federal Republic of Germany) running the hard coal mining in this country begins with the preparations for the activities after the time of mining.

  2. Turning Coal Into Oil

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    China's coal liquefaction industry is developing rapidly, but still needs improvement In its effort to become more self-sufficient in energy, China is turning to other countries, notably South Africa, to establish joint ventures in turning coal into oil. To China's Shenhua Group Corp. Ltd., one of the world's largest coal-producing companies, the government's 11th Five-Year

  3. Coal production 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-29

    Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

  4. Kinetics assisted design of catalysts for coal liquefaction. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Klein, M.T.; Foley, H.C.; Calkins, W.H.; Scouten, C.

    1998-02-01

    The thermal and catalytic reactions of 4-(1-naphthylmethyl)bibenzyl (NBBM), a resid and coal model compound, were examined. Catalytic reaction of NBBM was carried out at 400 C under hydrogen with a series of transition metal-based catalytic materials including Fe(CO){sub 4}PPh{sub 3}, Fe(CO){sub 3}(PPh{sub 3}){sub 2}, Fe(CO){sub 2}(PPh{sub 3}){sub 2}CS{sub 2}, Fe(CO){sub 5}, Mo(CO){sub 6}, Mn{sub 2}(CO){sub 10}, Fe{sub 2}O{sub 3} and MoS{sub 2}. Experimental findings and derived mechanistic insights were organized into molecular-level reaction models for NBBM pyrolysis and catalysis. Hydropyrolysis and catalysis reaction families occurring during NBBM hydropyrolysis at 420 C were summarized in the form of reaction matrices which, upon exhaustive application to the components of the reacting system, yielded the mechanistic reaction model. Each reaction family also had an associated linear free energy relationship (LFER) which provided an estimate of the rate constant k{sub i} given a structural property of species i or its reaction. Including the catalytic reaction matrices with those for the pyrolysis model provided a comprehensive NBBM catalytic reaction model and allowed regression of fundamental LFER parameters for the catalytic reaction families. The model also allowed specification of the property of an optimal catalyst. Iron, molybdenum and palladium were predicted to be most effective for model compound consumption. Due to the low costs associated with iron and its disposal, it is a good choice for coal liquefaction catalysis and the challenge remains to synthesize small particles able to access the full surface area of the coal macromolecule.

  5. Polycyclic aromatic hydrocarbons and the Oak Ridge National Laboratory's experimental coal program: minimizing the hazards

    Energy Technology Data Exchange (ETDEWEB)

    Forrester, R.C. III; Cochran, H.D.; Bolton, N.E.

    1977-01-01

    Many processing techniques for the liquefaction or gasification of coal are being developed at the Oak Ridge National Laboratory and elsewhere. Although different in many other respects, all coal conversion processes produce a liquid effluent comprising a complex mixture of hydrocarbons. Such mixtures invariably contain significant amounts of polycyclic, aromatic compounds, some of which are known to be highly active carcinogens. The underlying philosophy that has been adopted for the protection of personnel involved in experimental coal processing operations is defined, and procedures that have been instituted to govern the conduct of such experimental work and handling of associated coal-derived liquids are detailed.

  6. Ultra Low NOx Catalytic Combustion for IGCC Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Shahrokh Etemad; Benjamin Baird; Sandeep Alavandi; William Pfefferle

    2008-03-31

    In order to meet DOE's goals of developing low-emissions coal-based power systems, PCI has further developed and adapted it's Rich-Catalytic Lean-burn (RCL{reg_sign}) catalytic reactor to a combustion system operating on syngas as a fuel. The technology offers ultra-low emissions without the cost of exhaust after-treatment, with high efficiency (avoidance of after-treatment losses and reduced diluent requirements), and with catalytically stabilized combustion which extends the lower Btu limit for syngas operation. Tests were performed in PCI's sub-scale high-pressure (10 atm) test rig, using a two-stage (catalytic then gas-phase) combustion process for syngas fuel. In this process, the first stage consists of a fuel-rich mixture reacting on a catalyst with final and excess combustion air used to cool the catalyst. The second stage is a gas-phase combustor, where the air used for cooling the catalyst mixes with the catalytic reactor effluent to provide for final gas-phase burnout and dilution to fuel-lean combustion products. During testing, operating with a simulated Tampa Electric's Polk Power Station syngas, the NOx emissions program goal of less than 0.03 lbs/MMBtu (6 ppm at 15% O{sub 2}) was met. NOx emissions were generally near 0.01 lbs/MMBtu (2 ppm at 15% O{sub 2}) (PCI's target) over a range on engine firing temperatures. In addition, low emissions were shown for alternative fuels including high hydrogen content refinery fuel gas and low BTU content Blast Furnace Gas (BFG). For the refinery fuel gas increased resistance to combustor flashback was achieved through preferential consumption of hydrogen in the catalytic bed. In the case of BFG, stable combustion for fuels as low as 88 BTU/ft{sup 3} was established and maintained without the need for using co-firing. This was achieved based on the upstream catalytic reaction delivering a hotter (and thus more reactive) product to the flame zone. The PCI catalytic reactor was also shown

  7. Coal fired flue gas mercury emission controls

    International Nuclear Information System (INIS)

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations.

  8. Coal fired flue gas mercury emission controls

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jiang; Pan, Weiguo [Shanghai Univ. of Electric Power (China); Cao, Yan; Pan, Weiping [Western Kentucky Univ., Bowling Green, KY (United States)

    2015-05-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations.

  9. Australian Coal Company Risk Factors: Coal and Oil Prices

    OpenAIRE

    M. Zahid Hasan; Ratti, Ronald A.

    2014-01-01

    Examination of panel data on listed coal companies on the Australian exchange over January 1999 to February 2010 suggests that market return, interest rate premium, foreign exchange rate risk, and coal price returns are statistically significant in determining the excess return on coal companies’ stock. Coal price return and oil price return increases have statistically significant positive effects on coal company stock returns. A one per cent rise in coal price raises coal company returns ...

  10. Development of high energy density fuels from mild gasification of coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-01

    METC has concluded that MCG technology has the potential to simultaneously satisfy the transportation and power generation fuel needs in the most cost-effective manner. MCG is based on low temperature pyrolysis, a technique known to the coal community for over a century. Most past pyrolysis developments were aimed at maximizing the liquids yield which results in a low quality tarry product requiring significant and capital intensive upgrading. By properly tailoring the pyrolysis severity to control the liquid yield-liquid quality relationship, it has been found that a higher quality distillate-boiling liquid can be readily ``skimmed`` from the coal. The resultant liquids have a much higher H/C ratio than conventional pyrolytic tars and therefore can be hydroprocessed at lower cost. These liquids are also extremely enriched in l-, 2-, and 3-ring aromatics. The co-product char material can be used in place of coal as a pulverized fuel (pf) for power generation in a coal combustor. In this situation where the original coal has a high sulfur content, the MCG process can be practiced with a coal-lime mixture and the calcium values retained on the char can tie up the unconverted coal sulfur upon pf combustion of the char. Lime has also been shown to improve the yield and quality of the MCG liquids.

  11. Development of high energy density fuels from mild gasification of coal

    Energy Technology Data Exchange (ETDEWEB)

    Greene, Marvin

    1991-12-01

    METC has concluded that MCG technology has the potential to simultaneously satisfy the transportation and power generation fuel needs in the most cost-effective manner. MCG is based on low temperature pyrolysis, a technique known to the coal community for over a century. Most past pyrolysis developments were aimed at maximizing the liquids yield which results in a low quality tarry product requiring significant and capital intensive upgrading. By properly tailoring the pyrolysis severity to control the liquid yield-liquid quality relationship, it has been found that a higher quality distillate-boiling liquid can be readily skimmed'' from the coal. The resultant liquids have a much higher H/C ratio than conventional pyrolytic tars and therefore can be hydroprocessed at lower cost. These liquids are also extremely enriched in l-, 2-, and 3-ring aromatics. The co-product char material can be used in place of coal as a pulverized fuel (pf) for power generation in a coal combustor. In this situation where the original coal has a high sulfur content, the MCG process can be practiced with a coal-lime mixture and the calcium values retained on the char can tie up the unconverted coal sulfur upon pf combustion of the char. Lime has also been shown to improve the yield and quality of the MCG liquids.

  12. Preparation of Y-doped TiO2 photo-catalysts with microwave irradiation in ionic liquid and microwave enhanced photo-catalytic activity%微波助离子液体中Y掺杂TiO2光催化剂制备及微波强化光催化活性

    Institute of Scientific and Technical Information of China (English)

    李曼弯; 张美; 毕先均

    2016-01-01

    在微波助离子液体介质中制备稀土元素 Y 掺杂改性 TiO2光催化剂,以提高催化剂的光催化降解活性,用 XRD 、SEM 和 BET 等测试手段对催化剂结构进行表征;以甲基橙溶液和苯酚溶液为模拟污染物,分别在紫外光照(UV)和微波辐射-紫外光照(MW-UV)条件下考察 TiO2-Y 催化剂的光催化活性;以对苯二甲酸作为荧光探针利用荧光技术检测 TiO2-Y 催化剂表面所产生的羟基自由基,并对光催化降解反应进行动力学分析,探索了光催化降解反应机理.实验结果表明,通过优化反应条件后制得的 TiO2-Y 催化剂具有较高光催化活性和热稳定性,在 UV 和 UV-MW 条件下降解甲基橙和苯酚溶液1.5 h 后,甲基橙降解率分别为98.3%和99.5%,苯酚降解率分别为97.5%和98.2%.荧光光谱分析表明,TiO2-Y 在 MW-UV 条件下产生的羟基自由基比 UV 条件下要多,因而微波辐照具有强化 TiO2-Y 降解模拟污染物的作用;反应动力学数据分析表明,TiO2-Y 光催化降解甲基橙溶液反应呈现一级反应动力学规律,其表观速率常数 K 最大值为0.0519 min -1.%Y-doped TiO2 photo-catalysts were synthesized by a microwave aided sol-gel method using ionic liquid as a reaction medium .The purpose of the experiment was improvement for the photo-catalytic activity and accelerate the degradation of pollutants .The structure and mor-phology of Y-doped TiO2 were characterized using XRD ,BET and SEM .The photo-catalytic activity was respectively investigated by ultraviolet irradiation(UV) and microwave irradiation with ultraviolet irradiation (MW-UV ) using the photo-catalytic degradation of methyl orange and phenol solution as simulated pollutants .With terephthalic acid as the fluorescence probing , the influence of hydroxyl radical on the surface of TiO2-Y on the photo-catalytic activity was investigated by the fluorescence technology .To

  13. Gasification reactivity of various coals at a high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Kenji; Miura, Koichi; Xu, Ji-Jun; Yamada, Yoshikuni

    1986-10-23

    Eighteen ranks of coal and the coal deashed by acid-(hydrochlonic acid and hydrofluoric acid) treatment were used for the experiment to investigate the factors governing the gasification reaction of coal at a temperature as high as 1000/sup 0/C or over. A thermobalance type reactor possible to rapidly increase the temperature was used as the gasifier. The gasification rate was measured gasifying by steam and carbon dioxide at 1185/sup 0/C. The relationships of the gasification rate with the coal rank, C(%), the pore surface area of char, the size of a crystal of carbon and the amount of oxygen taken up by the char were investigated. The result indicates as follows: the gasification activities of coal vary according to the ranks of coal; the gasification rate decreases with the increase of coal rank representing the structure of graphite of carbon; and the amount of oxygen taken up to the surface is closely related to the rate of gasification independent of the effect of catalytic action. (9 figs, 1 tab, 4 refs)

  14. Mercury Oxidation via Catalytic Barrier Filters Phase II

    Energy Technology Data Exchange (ETDEWEB)

    Wayne Seames; Michael Mann; Darrin Muggli; Jason Hrdlicka; Carol Horabik

    2007-09-30

    In 2004, the Department of Energy National Energy Technology Laboratory awarded the University of North Dakota a Phase II University Coal Research grant to explore the feasibility of using barrier filters coated with a catalyst to oxidize elemental mercury in coal combustion flue gas streams. Oxidized mercury is substantially easier to remove than elemental mercury. If successful, this technique has the potential to substantially reduce mercury control costs for those installations that already utilize baghouse barrier filters for particulate removal. Completed in 2004, Phase I of this project successfully met its objectives of screening and assessing the possible feasibility of using catalyst coated barrier filters for the oxidation of vapor phase elemental mercury in coal combustion generated flue gas streams. Completed in September 2007, Phase II of this project successfully met its three objectives. First, an effective coating method for a catalytic barrier filter was found. Second, the effects of a simulated flue gas on the catalysts in a bench-scale reactor were determined. Finally, the performance of the best catalyst was assessed using real flue gas generated by a 19 kW research combustor firing each of three separate coal types.

  15. Study on Liquid Phase Chemo-Selective Catalytic Hydrogenation of Furfural to Furfuryl Alcohol%糠醛液相化学选择性加氢制糠醇的研究

    Institute of Scientific and Technical Information of China (English)

    孙绍晖; 马春松; 孙培勤; 陈俊武

    2015-01-01

    Using Cu-Zn/γAl2 O3 as catalyst, the catalytic hydrogenation of furfural to furfuryl alcohol was de-scribed at different temperatures, time, furfural concentration and solvent system. The different hydrogenation effects were compared at furfural conversion and furfuryl alcohol selectivity. Through experiments, the optimum conditions were determined for hydrogenation of furfural as a reaction temperature of 160 ℃, reaction time 3h, the amount of catalyst is furfural 7wt%, furfural concentration of 5wt% ~25wt%. When the solvent was toluene, the furfural con-version and furfuryl alcohol selectivity were respectively up to99% and 98%.%本文主要介绍了间歇式反应釜中糠醛在Cu-Zn/γAl2 O3催化剂条件下在不同温度、时间、糠醛浓度和溶剂体系中的催化加氢制糠醇,从糠醛转化率和糠醇选择性两方面对加氢效果进行比较。通过实验,我们得到了糠醛加氢制糠醇的最佳工艺条件为反应温度为160℃、反应时间为3 h、催化剂用量为糠醛的7wt%、糠醛浓度为5wt%~25wt%、溶剂为甲苯时,糠醛的转化率和糠醇的选择性最好,分别为99%和98%。

  16. Modelling of a reverse flow catalytic membrane reactor for the partial oxidation of methane

    NARCIS (Netherlands)

    Smit, J.; Sint Annaland, van M.; Kuipers, J.A.M.

    2003-01-01

    Gas-To-Liquid (GTL) processes have great potential as alternative to conventional oil and coal processing for the production of liquid fuels. In GTL-processes the partial oxidation of methane (POM) is combined with the Fischer-Tropsch reaction. An important part of the investment costs of a conventi

  17. The Dual Role of Oxygen Functions in Coal Pretreatment and Liquefaction: Crosslinking and Cleavage Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Michael Serio; Erik Kroo; Sylvie Charpenay; Peter Solomon

    1993-09-30

    The overall objective of this project was to elucidate and model the dual role of oxygen functions in thermal pretreatment and liquefaction of low rank coals through the application of analytical techniques and theoretical models. The project was an integrated study of model polymers representative of coal structures, raw coals of primarily low rank, and selectively modified coals in order to provide specific information relevant to the reactions of real coals. The investigations included liquefaction experiments in microautoclave reactors, along with extensive analysis of intermediate solid, liquid and gaseous products. Attempts were made to incorporate the results of experiments on the different systems into a liquefaction model.

  18. HYDROGEN TRANSFER IN CATALYTIC CRACKING

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Hydrogen transfer is an important secondary reaction of catalytic cracking reactions, which affects product yield distribution and product quality. It is an exothermic reaction with low activation energy around 43.3 kJ/mol. Catalyst properties and operation parameters in catalytic cracking greatly influence the hydrogen transfer reaction. Satisfactory results are expected through careful selection of proper catalysts and operation conditions.

  19. Radionuclides in US coals

    Energy Technology Data Exchange (ETDEWEB)

    Bisselle, C. A.; Brown, R. D.

    1984-03-01

    The current state of knowledge with respect to radionuclide concentrations in US coals is discussed. Emphasis is placed on the levels of uranium in coal (and lignite) which are considered to represent a concern resulting from coal combustion; areas of the US where such levels have been found; and possible origins of high radionuclide levels in coal. The report reviews relevant studies and presents new data derived from a computerized search of radionuclide content in about 4000 coal samples collected throughout the coterminous US. 103 references, 5 figures, 5 tables.

  20. The economics of coal

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Global aspects of the production, consumption and trade in coal are described. World reserves and resources, production (both by region and country), international trade (exporters and importers), coal consumption (by region and sector), and the demand for primary energy (1960-1979). Each of the producing and consuming countries are discussed individually. The electricity sector and its future demand for coal, and the future demand for coking coal are covered. Prices for metallurgical and steam coal are also given. Statistics are presented in tables.

  1. Coal Data: A reference

    International Nuclear Information System (INIS)

    The purpose of Coal Data: A Reference is to provide basic information on the mining and use of coal, an important source of energy in the United States. The report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ''Coal Terminology and Related Information'' provides additional information about terms mentioned in the text and introduces new terms. Topics covered are US coal deposits, resources and reserves, mining, production, employment and productivity, health and safety, preparation, transportation, supply and stocks, use, coal, the environment, and more. (VC)

  2. Petrographic and Vitrinite Reflectance Analyses of a Suite of High Volatile Bituminous Coal Samples from the United States and Venezuela

    Science.gov (United States)

    Hackley, Paul C.; Kolak, Jonathan J.

    2008-01-01

    This report presents vitrinite reflectance and detailed organic composition data for nine high volatile bituminous coal samples. These samples were selected to provide a single, internally consistent set of reflectance and composition analyses to facilitate the study of linkages among coal composition, bitumen generation during thermal maturation, and geochemical characteristics of generated hydrocarbons. Understanding these linkages is important for addressing several issues, including: the role of coal as a source rock within a petroleum system, the potential for conversion of coal resources to liquid hydrocarbon fuels, and the interactions between coal and carbon dioxide during enhanced coalbed methane recovery and(or) carbon dioxide sequestration in coal beds.

  3. Fungal degradation of coal as a pretreatment for methane production

    Science.gov (United States)

    Haider, Rizwan; Ghauri, Muhammad A.; SanFilipo, John R.; Jones, Elizabeth J.; Orem, William H.; Tatu, Calin A.; Akhtar, Kalsoom; Akhtar, Nasrin

    2013-01-01

    Coal conversion technologies can help in taking advantage of huge low rank coal reserves by converting those into alternative fuels like methane. In this regard, fungal degradation of coal can serve as a pretreatment step in order to make coal a suitable substrate for biological beneficiation. A fungal isolate MW1, identified as Penicillium chrysogenum on the basis of fungal ITS sequences, was isolated from a core sample of coal, taken from a well drilled by the US. Geological Survey in Montana, USA. The low rank coal samples, from major coal fields of Pakistan, were treated with MW1 for 7 days in the presence of 0.1% ammonium sulfate as nitrogen source and 0.1% glucose as a supplemental carbon source. Liquid extracts were analyzed through Excitation–Emission Matrix Spectroscopy (EEMS) to obtain qualitative estimates of solubilized coal; these analyses indicated the release of complex organic functionalities. In addition, GC–MS analysis of these extracts confirmed the presence of single ring aromatics, polyaromatic hydrocarbons (PAHs), aromatic nitrogen compounds and aliphatics. Subsequently, the released organics were subjected to a bioassay for the generation of methane which conferred the potential application of fungal degradation as pretreatment. Additionally, fungal-mediated degradation was also prospected for extracting some other chemical entities like humic acids from brown coals with high huminite content especially from Thar, the largest lignite reserve of Pakistan.

  4. Advanced physical fine coal cleaning spherical agglomeration. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    The project included process development, engineering, construction, and operation of a 1/3 tph proof-of-concept (POC) spherical agglomeration test module. The POC tests demonstrated that physical cleaning of ultrafine coal by agglomeration using heptane can achieve: (1) Pyritic sulfur reductions beyond that possible with conventional coal cleaning methods; (2) coal ash contents below those which can be obtained by conventional coal cleaning methods at comparable energy recoveries; (3) energy recoveries of 80 percent or greater measured against the raw coal energy content; (4) complete recovery of the heptane bridging liquid from the agglomerates; and (5) production of agglomerates with 3/8-inch size and less than 30 percent moisture. Test results met or exceeded all of the program objectives. Nominal 3/8-inch size agglomerates with less than 20 percent moisture were produced. The clean coal ash content varied between 1.5 to 5.5 percent by weight (dry basis) depending on feed coal type. Ash reductions of the run-of-mine (ROM) coal were 77 to 83 percent. ROM pyritic sulfur reductions varied from 86 to 90 percent for the three test coals, equating to total sulfur reductions of 47 to 72 percent.

  5. Supported ionic liquid-phase (SILP) catalysis

    DEFF Research Database (Denmark)

    Riisager, Anders; Fehrmann, Rasmus; Wasserscheid, P.;

    2005-01-01

    The concept of supported ionic liquid-phase (SILP) catalysis has been demonstrated for gas- and liquid-phase continuous fixed-bed reactions using rhodium phosphine catalyzed hydroformylation of propene and 1-octene as examples. The nature of the support had important influence on both the catalytic...

  6. Bifunctional catalytic electrode

    Science.gov (United States)

    Cisar, Alan (Inventor); Murphy, Oliver J. (Inventor); Clarke, Eric (Inventor)

    2005-01-01

    The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.

  7. Catalytic quantum error correction

    CERN Document Server

    Brun, T; Hsieh, M H; Brun, Todd; Devetak, Igor; Hsieh, Min-Hsiu

    2006-01-01

    We develop the theory of entanglement-assisted quantum error correcting (EAQEC) codes, a generalization of the stabilizer formalism to the setting in which the sender and receiver have access to pre-shared entanglement. Conventional stabilizer codes are equivalent to dual-containing symplectic codes. In contrast, EAQEC codes do not require the dual-containing condition, which greatly simplifies their construction. We show how any quaternary classical code can be made into a EAQEC code. In particular, efficient modern codes, like LDPC codes, which attain the Shannon capacity, can be made into EAQEC codes attaining the hashing bound. In a quantum computation setting, EAQEC codes give rise to catalytic quantum codes which maintain a region of inherited noiseless qubits. We also give an alternative construction of EAQEC codes by making classical entanglement assisted codes coherent.

  8. Coal and public perceptions

    International Nuclear Information System (INIS)

    The Department of Energy's (DOE) clean coal outreach efforts are described. The reason why clean coal technology outreach must be an integral part of coal's future is discussed. It is important that we understand the significance of these advances in coal utilization not just in terms of of hardware but in terms of public perception. Four basic premises in the use of coal are presented. These are: (1) that coal is fundamentally important to this nation's future; (2) that, despite premise number 1, coal's future is by no means assured and that for the last 10 years, coal has been losing ground; (3) that coal's future hinges on the public understanding of the benefits of the public's acceptance of advanced clean coal technology; and (4) hat public acceptance of clean coal technology is not going to be achieved through a nationwide advertising program run by the Federal government or even by the private sector. It is going to be gained at the grassroots level one community at a time, one plant at a time, and one referendum at a time. The Federal government has neither the resources, the staff, nor the mandate to lead the charge in those debates. What is important is that the private sector step up to the plate as individual companies and an individual citizens working one-one-one at the community level, one customer, one civic club, and one town meeting at a time

  9. Combining Renewable Energy With Coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-01

    There are various possibilities for incorporating biomass into coal-fuelled processes and a number of these are already being deployed commercially. Others are the focus of ongoing research and development. Biomass materials can vary widely, although the present report concentrates mainly on the use of woody biomass in the form of forest residues. Potentially, large amounts are available in some parts of the world. However, not all forested regions are very productive, and the degree of commercial exploitation varies considerably between individual countries. The level of wastage associated with timber production and associated downstream processing is frequently high and considerable quantities of potentially useful materials are often discarded. Overall, forest residues are a largely underexploited resource. Combining the use of biomass with coal can be beneficial, particularly from an environmental standpoint, although any such process may have its limitations or drawbacks. Each coal type and biomass feedstock has different characteristics although by combining the two, it may be possible to capitalise on the advantages of each, and minimise their individual disadvantages. An effective way is via cogasification, and useful operating experience has been achieved in a number of large-scale coal-fuelled gasification and IGCC plants. Cogasification can be the starting point for producing a range of products that include synthetic natural gas, chemicals, fertilisers and liquid transport fuels. It also has the potential to form the basis of systems that combine coal and biomass use with other renewable energy technologies to create clean, efficient energy-production systems. Thus, various hybrid energy concepts, some based on coal/biomass cogasification, have been proposed or are in the process of being developed or trialled. Some propose to add yet another element of renewable energy to the system, generally by incorporating electricity generated by intermittent

  10. Coal; Le charbon

    Energy Technology Data Exchange (ETDEWEB)

    Teissie, J.; Bourgogne, D. de; Bautin, F. [TotalFinaElf, La Defense, 92 - Courbevoie (France)

    2001-12-15

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  11. In situ catalyzed Boudouard reaction of coal char for solid oxide-based carbon fuel cells with improved performance

    International Nuclear Information System (INIS)

    Highlights: • Industrial coal char was used as a fuel for solid oxide-based carbon fuel cells. • The Boudouard reactivity of coal char is higher than that of a commercial activated carbon. • The mineral matter in coal char has a catalytic effect on the Boudouard reaction. • Added catalysts and the inherent catalysts synergetically improved cell output. - Abstract: The use of industrial coal char as a fuel source for an anode-supported solid oxide-based carbon fuel cell (SO-CFC) with a yttrium-stabilized zirconia electrolyte and La0.8Sr0.2MnO3 cathode was investigated. Both the Boudouard reactivity and electrochemical performance of the coal char samples are higher than those of activated carbon samples under the same conditions. The inherent catalytic activity of the metal species (FemOn, CaO, etc.) in the coal char mineral matter leads to good cell performance, even in the absence of an external catalyst. For example, the peak power density of a cell fueled with pure coal char is 100 mW cm−2 at 850 °C, and that of a cell fueled with coal char impregnated with an FemOn-alkaline metal oxide catalyst is 204 mW cm−2. These results suggest that using coal char as the fuel in SO-CFCs might be an attractive way to utilize abundant coal resources cleanly and efficiently, providing an alternative for future power generation

  12. Synthesis of isoamyl salicylate by catalytic action of ionic liquid doped polyaniline%离子液体掺杂聚苯胺催化合成水杨酸异戊酯

    Institute of Scientific and Technical Information of China (English)

    滕俊江; 张庆; 林建明

    2012-01-01

    Isoamyl salicylate was synthesized from salicylic acid and isoamyl alcohol with ionic liquid [ Hnmp ] HSO4 doped polyaniline ( PAn - [ Hnmp ] HSO4) as catalyst. The catalyst was prepared from polyaniline and ionic liquid[ Hnmp] HSO4. Doping ratio (mass fraction) of the ionic liquid is 14. 2%. Factors that influencing the product yield were investigated and optimum reaction conditions were obtained by orthogonal experiment. Results showed that under optimal conditions:n(salicylic acid): n( isoamyl alcohol) = 1:6;dosage of the catalyst PAn - [ Hnmp] HSO4 6% ( mass); dosage of water stripping agent cyclohexane 40% ;and reaction time 3 h;yield and purity of isoamyl salkylate achieves 93. 52% and 99. 0% respectively. After the catalyst was reused for 7 times,yield of isoamyl salicylate is still higher than 90. 0%.%以聚苯胺PAn和自制离子液体[Hnmp]HSO4为原料,制备了[Hnmp]HSO4掺杂率为14.2%(质量分数)的催化剂PAn -[Hnmp]HSO4.以PAn -[Hnmp]HSO4为催化剂,水杨酸和异戊醇为原料合成了水杨酸异戊酯,考察了PAn -[Hnmp]HSO4的催化活性,通过正交试验探讨各因素对反应的影响.结果表明,在n(水杨酸)∶n(异戊醇)=1∶6,催化剂用量为反应物料总质量的6%,回流反应时间为3h,带水剂环己烷用量为反应物总质量40%的较佳条件下,产品收率达93.52%,纯度经气相色谱分析大于99.0%.催化剂重复使用7次后,产品收率仍大于90.0%.

  13. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik

    2003-09-01

    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  14. Indium triflate in 1-isobutyl-3-methylimidazolium dihydrogenphosphate: an efficient and green catalytic system for Friedel-Crafts acylation

    DEFF Research Database (Denmark)

    Tran, Phuong Hoang; Hoang, Huy Manh; Chau, Duy-Khiem Nguyen;

    2015-01-01

    Indium triflate in the ionic liquid, 1-isobutyl-3-methylimidazolium dihydrogen phosphate ([i-BMIM]H2PO4), was found to show enhanced catalytic activity in the Friedel–Crafts acylation of various aromatic compounds with acid anhydrides. The catalytic system was easily recovered and reused without ...

  15. Adoption of clean coal technologies in India

    International Nuclear Information System (INIS)

    Coal is a major Indian energy resource. It is being utilized in conventional power stations now. Considerable coal resources are not located near load centers and therefore involve transport by rail. India is becoming more concerned with environmental matters and particularly with the health of its population. Clean coal electricity generation technologies are at the commercial demonstration stage in Europe and the USA in unit capacities appropriate to Indian needs. These technologies minimize environmental problems and promise 25% more efficiency. This competitive technology can be introduced to India in greenfield power stations, in repowering older power stations and in providing an enviable alternative for existing and new power stations presently depending on liquid or gas as fuel. (author)

  16. Coal to gas substitution using coal?!

    Science.gov (United States)

    Kempka, Thomas; Schlüter, Ralph

    2010-05-01

    Substitution of carbon-intensive coal with less carbon-intensive natural gas for energy production is discussed as one main pillar targeting reduction of antrophogenic greenhouse gas emissions by means of climate change mitigation. Other pillars are energy efficiency, renewable energies, carbon capture and storage as well as further development of nuclear energy. Taking into account innovative clean coal technologies such as UCG-CCS (underground coal gasification with carbon capture and storage), in which coal deposits are developed using directional drilling technologies and subsequently converted into a synthesis gas of high calorific value, the coupled conceptual approach can provide a synergetic technology for coal utilization and mitigation of carbon emissions. This study aims at the evaluation of UCǴ s carbon mitigation potentials and the review of the economical boundary conditions. The analytical models applied within this study are based on data available from world-wide UCG projects and extensive laboratory studies. In summary, scenarios considering costs and carbon storage potentials are economically feasible and thus competitive with less carbon-intensive energy generation technologies such as natural gas. Thus, coal to gas substitution can be one of the coal based options.

  17. Status of NO sub x control for coal-fired power plants

    Science.gov (United States)

    Teixeira, D. P.

    1978-01-01

    The status of technologies for controlling emissions of oxides of nitrogen (NOx) from coal-fired power plants is reviewed. A discussion of current technology as well as future NOx control approaches is presented. Advanced combustion approaches are included as well as post-combustion alternatives such as catalytic and noncatalytic ammonia-bases systems and wet scrubbing. Special emphasis is given to unresolved development issues as they relate to practical applications on coal-fired power plants.

  18. Coal gasification. Quarterly report, October--December 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-05-01

    A number of the processes for converting coal to gas supported by US DOE have reached the pilot plant stage. Laboratory research is also continuing in order to develop data for verifying the feasibility of the specific process and for supporting the operation of the plant. Responsibility for designing, constructing, and operating these pilot plants is given. The most successful test to date was completed in the pilot plant of the BI-GAS Process. The HYGAS Process pilot plant continued testing with Illinois bituminous coal to acquire data necessary to optimize the design of a commercial demonstration plant using the HYGAS process. The Synthane Process pilot plant continued studies of Illinois No. 6 coal. Other processes discussed are: Agglomerating Burner Process, Liquid Phase Methanation Process, Molten Salt Gasification Process, Advanced Coal Gasification System, and Lo-Btu Gasification of Coal for Electric Power Generation. Each project is described briefly with funding, history, and progress during the quarter. (LTN)

  19. Case studies on direct liquefaction of low rank Wyoming coal

    Energy Technology Data Exchange (ETDEWEB)

    Adler, P.; Kramer, S.J.; Poddar, S.K. [Bechtel Corp., San Francisco, CA (United States)

    1995-12-31

    Previous Studies have developed process designs, costs, and economics for the direct liquefaction of Illinois No. 6 and Wyoming Black Thunder coals at mine-mouth plants. This investigation concerns two case studies related to the liquefaction of Wyoming Black Thunder coal. The first study showed that reducing the coal liquefaction reactor design pressure from 3300 to 1000 psig could reduce the crude oil equivalent price by 2.1 $/bbl provided equivalent performing catalysts can be developed. The second one showed that incentives may exist for locating a facility that liquifies Wyoming coal on the Gulf Coast because of lower construction costs and higher labor productivity. These incentives are dependent upon the relative values of the cost of shipping the coal to the Gulf Coast and the increased product revenues that may be obtained by distributing the liquid products among several nearby refineries.

  20. Unsteady catalytic processes and sorption-catalytic technologies

    International Nuclear Information System (INIS)

    Catalytic processes that occur under conditions of the targeted unsteady state of the catalyst are considered. The highest efficiency of catalytic processes was found to be ensured by a controlled combination of thermal non-stationarity and unsteady composition of the catalyst surface. The processes based on this principle are analysed, in particular, catalytic selective reduction of nitrogen oxides, deep oxidation of volatile organic impurities, production of sulfur by the Claus process and by hydrogen sulfide decomposition, oxidation of sulfur dioxide, methane steam reforming and anaerobic combustion, selective oxidation of hydrocarbons, etc.